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Abstract 

 

Forecasting Electricity Load and Wind Generation: A Comparative Analysis of Machine 

Learning Models Enhanced by Bayesian Optimization under Different Sampling 

 

Zhen Wang 

 

The study explores the application of advanced machine learning techniques to forecast electricity 

load and wind generation data, focusing on the optimization and comparative analysis of various 

models. Given the critical importance of accurate energy forecasting in managing power grids and 

integrating renewable energy sources, this research seeks to enhance forecasting precision through 

the application of Bayesian optimization for hyperparameter tuning across multiple models. 

Utilizing time-series data, this study systematically evaluates the performance of several predictive 

models. Each model's parameters were meticulously optimized using Bayesian techniques to 

identify the most effective configurations for handling the complex dynamics of energy data. The 

research methodology involved a comparison within single datasets to identify the best model. 

Subsequently, the best-performing models were further analyzed across different datasets to 

validate their robustness and generalizability. The primary evaluation metric is the Root Mean 

Squared Error (RMSE), complemented by additional metrics to provide a comprehensive 

assessment of model accuracy and effectiveness. Key findings demonstrate that while some 

models excel in capturing overall trends, challenges remain in addressing the volatility and 

variability inherent in the data. The insights derived from this study not only advance the field of 

energy forecasting but also offer practical implications for energy policymakers and stakeholders 

in optimizing grid performance and renewable energy integration. 

 

Keywords: time series, machine learning, Bayesian optimization  
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1. Introduction 

1.1 Background and Motivation 

Electricity load and wind generation forecasting are critical components of modern energy systems. 

These forecasting processes serve as the foundation of energy system management, ensuring that 

the balance between supply and demand is precisely maintained (Pawar & TarunKumar, 2020). 

This balance is crucial for multiple reasons, including the optimization of resource allocation, the 

maintenance of grid stability, and the promotion of sustainable energy practices. The ability to 

predict electricity load and wind generation with high precision allows for a more efficient and 

reliable grid operation, reducing the risk of blackouts and ensuring that energy is available when 

and where it’s needed most (Jones, 2017).  

The integration of renewable energy sources, such as wind power, into the energy mix introduces 

new challenges and complexities in forecasting. Renewable sources like wind are inherently more 

influenced by environmental conditions, which can fluctuate widely and unpredictably 

(Katzenstein, 2010). While the inherent unpredictability of renewable energy sources poses a 

significant challenge, the application of time series data in forecasting models provides a strategic 

solution to address the problem. Therefore, the challenge lies not only in managing the 

unpredictability but also in effectively using time series data to create accurate models that could 

explain the temporal variability (Prema & Rao, 2015).  

Time series forecasting models are designed to leverage historical data to predict future data. The 

complexity arises in selecting and optimizing models that can effectively interpret the patterns and 

relationships within the data, accommodating both the seasonal trends and the shorter-term 

fluctuations driven by environmental conditions. Forecasting models must be capable of 

dynamically adjusting to new data and patterns as they emerge. This necessitates the development 

of models that continually refine their predictions based on the latest available data. Such models 

include advanced machine learning and deep learning approaches, which can learn complex 

relationships within the data and improve their accuracy over time. 

The motivation to build forecasting models is driven by the need to support the growing reliance 

on renewable energy. As the world moves towards a more sustainable energy future, the role of 

accurate forecasting becomes increasingly important. It enables energy systems to integrate 

renewable sources more effectively, reducing reliance on fossil fuels and lowering carbon 

emissions (Kariniotakis, 2017). Furthermore, accurate forecasting supports economic efficiency 

by optimizing the use of energy resources, reducing waste, and potentially lowering the cost for 

consumers. By improving the accuracy of electricity load and wind generation forecasts, 

stakeholders can make more informed decisions, paving the way for a more resilient, efficient, and 

sustainable energy future. 
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1.2 Research Context 

In the context of the European energy landscape, particularly through the lens of Austria, Germany, 

and the Netherlands, the research looks into the dynamics of electricity load and wind generation 

forecasting. These countries represent a cross-section of Europe’s energy ecosystem, each with its 

unique integration of renewable energy sources and demand patterns influenced by diverse 

environmental, economic, and societal factors. 

The research focuses on the utilization of time series data as a pivotal strategy in addressing the 

complexities inherent in forecasting the variability of electricity load and wind generation. The 

nuanced understanding of time series data enables a more accurate analysis of patterns over time, 

essential for managing the unpredictability of wind energy and the fluctuating demand for 

electricity. By dissecting the forecasting process into separate considerations for electricity load 

and wind generation, the study aims to tailor predictive models to the specific characteristics and 

challenges of each domain, thereby enhancing accuracy and reliability. 

 

1.3 Research Objectives 

The objective of this thesis is to conduct a comprehensive comparative analysis of various 

predictive modeling techniques for forecasting electricity load and wind generation in three 

European countries. This research seeks to shed light on the relative strengths and weaknesses of 

a broad array of predictive modeling techniques when applied to the specific challenges and data 

characteristics found in these regions. Specifically, the research aims to achieve the following 

objectives: 

The first objective is to implement and train multiple models. At the base of this research is the 

practical application of a diverse set of predictive modeling techniques. The models selected for 

this study are: Convolutional Neural Networks (CNN), Temporal Convolutional Neural Network 

(TCNN), Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), 

Gated Recurrent Unit (GRU), Bidirectional Gated Recurrent Unit (BiGRU), Deep Neural Network 

(DNN), K-Nearest Neighbors (KNN), and Decision Trees. The models represent a blend of 

classical machine learning algorithms and more recent deep learning approaches. Each model 

brings unique strengths to the table, such as CNN’s ability to capture spatial-temporal patterns, 

LSTM’s advantage in handling sequential data, and GRU’s simplified architecture that retains the 

ability to manage long-term dependencies while keeping computational efficiency. Implementing 

and training the models involves not just the application of the algorithms but also the delicately 

tuning of hyperparameters. 

The second objective is to evaluate the performance of models. The effectiveness of each model 

will be assessed through a combination of metrics and statistical methods. Accuracy metrics such 

as Root Mean Squared Error (RMSE) will be employed to quantify the forecasting precision of 

each model. Beyond accuracy, the evaluation will also consider factors such as training time.  

The third objective is to compare across different time intervals. A key aspect of this research is 

the comparison of model performance across different forecasting horizons, specifically 15-minute 



3 

 

and 60-minute intervals. This analysis is critical because the optimal model for short-term 

forecasting may not necessarily perform best over longer intervals, due to the different dynamics 

and uncertainties involved.  

The last objective is to identify the most effective predictive model. The culmination of this 

research is the identification of the predictive model or models that offer the best balance of 

forecasting accuracy and computational efficiency for electricity load and wind generation in the 

European context. This involves not just a straightforward ranking of models based on 

performance metrics but also consideration of factors such as model scalability, ease of 

implementation, and computational resource requirements.  

 

1.4 Significance of the Research 

The outcomes of this research hold significant implications for the energy sector, particularly in 

terms of enhancing the reliability, efficiency, and sustainability of energy systems in Europe and 

beyond. Furthermore, the findings contribute to extension of the current knowledge in predictive 

modeling and time series analysis. By conducting the comparative analysis, the research also 

shows how the predictability of electricity load and wind generation changes over different time 

scales and how each model adapts to these changes. And therefore, to provide a clear 

recommendation that can guide utilities, grid operators, and policymakers in selecting and 

deploying forecasting models that best meet their needs in their specific context. 

 

1.5 Structure of the Thesis 

This thesis is organized into several chapters, each addressing specific aspects of the research study. 

Chapter 1 introduces the research topic, outlining the background, motivation, objectives, and 

significance of the study. Chapter 2 presents a comprehensive review of literature related to 

electricity load and wind generation forecasting, as well as predictive modeling techniques. 

Chapter 3 describes the methodology employed in data collection, preprocessing, model 

implementation, and evaluation. Chapter 4 presents the results and findings of the analysis, 

including a comparative assessment of forecasting models. Chapter 5 discusses the implications 

of the findings, identifies limitations of the study, and suggests avenues for future research. Finally, 

Chapter 6 offers concluding remarks and summarizes the key contributions of the research.  
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2. Literature Review 

2.1 Electricity Load Forecasting 

The primary research question revolves around how to improve the accuracy of electricity load 

forecasting using advanced modeling methods. Researchers have integrated machine learning 

models with traditional forecasting methods to enhance prediction accuracy. For instance, Kaytez 

(2020) presents a comprehensive study focusing on forecasting Turkey’s net electricity 

consumption using a hybrid model. This model integrates the Autoregressive Integrated Moving 

Average (ARIMA) method with the Least Squares Support Vector Machine (LS-SVM) to enhance 

forecasting accuracy. Specifically, the ARIMA model is utilized for its effectiveness in 

understanding and predicting future points in a series, while the LS-SVM approach is applied for 

its proficiency in handling non-linear data patterns. This combination aims to address the complex 

dynamics of electricity consumption patterns in Turkey, a market characterized by its rapid 

development and increasing energy demand. The main findings demonstrate the hybrid model’s 

superior performance over traditional models like multiple linear regression and single ARIMA 

models, as well as the official forecasts. Kaytez also highlights the model’s ability to offer more 

realistic and reliable electricity consumption forecasts, which are crucial for strategic planning in 

energy investments and policy making. Gao et al. (2021) present a hybrid machine learning model 

for forecasting residential electricity consumption in China, combining an Extreme Learning 

Machine (ELM) optimized by the Jaya algorithm with online search data as predictors. This 

innovative approach significantly enhances forecasting accuracy by leveraging the predictive 

power of internet search trends related to electricity use. The model’s effectiveness is validated 

through comparative analysis with traditional models and standalone ELM, showing superior 

performance in accuracy metrics. Hadjout et al. (2022) introduce a deep learning-based ensemble 

model for forecasting monthly electricity consumption in Algeria, incorporating Long Short-Term 

Memory (LSTM), Gated Recurrent Unit (GRU), and Temporal Convolutional Networks (TCN) 

techniques. This approach aims to leverage the strengths of each method to enhance prediction 

accuracy. By evaluating the model using 14 years of data from nearly 2000 clients in Bejaia, the 

study demonstrates its effective performance over traditional forecasting models, offering valuable 

insights for energy management and planning in the Algerian market. Similarly, Albuquerque et 

al. (2022) conduct a comprehensive analysis to forecast Brazilian power electricity consumption 

using machine learning models, specifically Random Forest and Lasso Lars, and compares their 

performance to benchmark specifications such as ARIMA and Random Walk. The study reveals 

that machine learning method significantly outperform traditional models in accuracy for short to 

medium-term forecasting. These models effectively capture the complexities of trend and 

seasonality in power electricity consumption data, attributing their success to the inclusion of a 

broad set of explanatory variables, including weather and calendar effects, which are crucial for 

enhancing forecast accuracy, especially in the context of the Brazilian electricity market. Saranj 

and Zolfaghari (2022) adopt a hybrid model that combines Adaptive Wavelet Transform (AWT) 

with Long Short-Term Memory (LSTM) networks and ARIMAX-GARCH models. This approach 

is designed to enhance prediction accuracy by addressing the multi-frequency characteristics of 

electricity consumption data. The study tests the model using data from the UK market, 

considering various exogenous variables such as climate conditions and calendar dates. The hybrid 

model demonstrates superior performance over traditional forecasting models and alternative 
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filtering methods, indicating its effectiveness in improving the predictive power for short-term 

electricity consumption forecasting.  

Over time, the shift has been towards combining different data sources and leveraging the strengths 

of both statistical and machine learning models. The results consistently indicate a significant 

improvement in forecasting accuracy, providing crucial insights for energy management and 

planning. Nonetheless, challenges remain in handling the volatility of electricity consumption, 

integrating diverse data types, and ensuring model scalability. There’s an ongoing need for models 

that can adapt to changing consumption patterns and incorporate real-time data effectively. 

Table 1 Summary of Studies on Electricity Forecasting 

Study Features Models Sample Findings 

Kaytez 

(2020) 

Economic variables; 

Industry variables; 

Electricity 

consumption 

MLR; Single 

ARIMA; 

ARIMA-

LSSVM hybrid 

approach 

Net electricity 

consumption data of 

Turkey from 1970 

to 2017 

ARIMA-

LSSVM 

hybrid 

approach with 

best RMSE of 

0.904 

Gao et al. 

(2021) 

Online search 

volume of keywords 

SARIMA; 

SVR; BPNN; 

ELM; Jaya-

ELM;  

108 samples of 

monthly residential 

electricity 

consumption data of 

China from 2011 to 

2019 

Jaya-ELM 

with best 

MAE of 2.00 

and MAPE of 

2.41% 

Hadjout et 

al. (2022) 

Electricity 

consumption 

LSTM; GRU; 

TCNN; 

Ensemble of 

LSTM, GRU, 

and TCNN; 

SARIMA 

168,432 samples 

(used) of monthly 

electricity 

consumption data of 

Bejaia, Algeria from 

2006 to 2019 

Ensemble 

with best 

MAE of 

1649.65 and 

MAPE of 

3.04% 

Albuquerque 

et al. (2022) 

Time variables; 

Weather variables; 

Historical price; 

Economic variables; 

Electricity 

consumption 

Random 

Forest; Lasso 

Lars; Lars; 

ARIMA; 

Elastic Net  

546 samples of 

daily power 

electricity 

consumption data of 

Brazil from 

February 1, 2017 to 

July 31, 2018 

Random 

Forest with 

best MAE and 

MAPE across 

different time 

horizons 

Saranj and 

Zolfaghari 

(2022) 

Time variables; 

Weather variables; 

Electricity 

consumption 

A new hybrid 

model of 

“AWT-LSTM-

ARIMAX-

GARCH-RF” 

56,927 samples of 

half-hourly 

electricity 

consumption data of 

the UK from 

January 1, 2018 to 

March 31, 2021  

The hybrid 

model with 

best RMSE of 

1.249 and 

MAPE of 

0.869% 
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2.2 Wind Generation Forecasting 

The wind forecasting market is relatively new compared to the electricity forecasting market, 

primarily because wind energy’s integration into the energy mix has gained significant momentum 

only in the last few decades. While electricity load and demand forecasting has been a critical 

component of energy management for a longer period, driven by the need to balance supply and 

demand in grids primarily powered by fossil fuels, the rise of renewable energy sources has 

introduced new complexities. Wind energy’s variable and unpredictable nature necessitates 

advanced forecasting techniques to optimize its integration, leading to the development of a 

specialized wind forecasting market.  

Academically, the focus has been on optimizing wind speed forecasting models to accommodate 

the variability and unpredictability of wind speeds. Studies like Huang et al. (2023) have explored 

an advanced wind speed forecasting model using a genetic algorithm optimized Long Short-Term 

Memory network, and further enhances it through ensemble learning with a Differential Evolution 

based No Negative Constraint Theory. This hybrid approach targets improving wind speed 

prediction accuracy at two wind farms in Inner Mongolia, China, and Sotavento, Galicia, Spain. 

The model demonstrates superior forecasting performance compared to traditional and single 

model approaches. Yaghoubirad et al. (2023) evaluates LSTM, GRU, CNN, and CNN-LSTM 

models for multistep ahead wind speed and power generation forecasting in Zabol City, Iran, over 

6 months, 1 year, and 5 years. GRU was found to be the most accurate, particularly when utilizing 

multivariate data. Li et al. (2023) introduces a combined forecasting system for optimal wind speed 

prediction, incorporating data preprocessing, artificial intelligence algorithms, and multi-objective 

optimization. The findings demonstrate that the proposed integrated forecasting system enhances 

both the prediction capacity and accuracy of wind speed forecasts. In addition to addressing the 

limitations of individual models, the developed system selects an appropriate distribution for 

interval estimation.  

These methodologies aim to improve forecast accuracy and reliability by considering the nonlinear 

and non-stationary characteristics of wind speed data. There’s a noticeable trend towards 

leveraging ensemble learning and advanced optimization techniques to refine forecasting models. 

Among the research, key challenges include the need for more efficient data preprocessing 

techniques and the integration of environmental and geographical data into forecasting models. 

Additionally, there’s a gap in developing models that can seamlessly adapt to new data and predict 

extreme wind events accurately. 

Table 2 Summary of Studies on Wind Forecasting 

Study Features Models Sample Findings 

Huang et al. 

(2023) 

Wind speed ANN; LSTM; 

EvLSTM; 

EnEvLSTM 

1,150 samples of 10-

minute and one-hour 

interval wind speed 

data of Inner 

Mongolia, China and 

10-minute interval 

wind speed data of 

EnEvLSTM 

with best MAE, 

RMSE and 

MAPE across 

different interval 

and experiments 
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Sotavento, Galicia 

from March 3rd, 2017 

to March 12th, 2017 

Yaghoubirad 

et al. (2023) 

Weather 

variables 

LSTM; GRU; CNN; 

CNN-LSTM 

6-month, 1-year and 

5-year time horizon 

wind speed data of 

Zabol City, Iran from 

1984 to 2021 

GRU with the 

best MAE and 

MAPE for both 

univariate and 

multivariate 

models 

Li et al. 

(2023) 

Wind speed ARIMA; GRNN; 

BPNN; TCNN; 

LSTM; Elman 

Neural Network; A 

combined system 

based on VMD-

BEGA-LSTM, 

MODOA, MMED-

AT and AFSA-ACO 

Three sets of data, 

each consisting of 

2592 samples of 10-

minute interval wind 

data of Penglai, China 

The proposed 

model with the 

best MAE, 

RMSE and 

MAPE across 

different sites 

 

2.3 Critique of the literature and main contributions of the study 

Both electricity and wind forecasting are evolving towards more integrated and adaptive 

forecasting models that incorporate a blend of both traditional methods and advanced 

computational techniques to improve accuracy and reliability. Despite the considerable 

advancements that have been achieved in recent years, there are still opportunities for further 

research, particularly in enhancing real-time data integration, model adaptability, and forecasting 

under varying conditions.  

The electric power generation industry is undergoing significant transformations driven by a 

complex mix of factors. Historically, fossil fuels such as coal, oil, and natural gas have dominated 

power generation due to their high energy density and established infrastructure. However, these 

sources face increasing scrutiny due to their environmental impact, including greenhouse gas 

emissions and air pollution. As a result, many countries are shifting towards cleaner energy sources 

to address climate change and sustainability concerns. New energy generation technologies, 

particularly renewable sources like wind and solar power, are becoming increasingly prominent. 

Wind power offers a promising solution to reduce reliance on fossil fuels, providing a cleaner and 

more sustainable alternative. The integration of wind power into the existing energy mix presents 

both opportunities and challenges. On one hand, it can help reduce carbon emissions and diversify 

the energy supply. On the other hand, it introduces variability and intermittency issues that need 

to be addressed to ensure grid stability and reliability. 

Many prior studies have been constrained by geographic and market-specific limitations, not 

taking into full account how different energy mixes affect the effectiveness of forecasting models. 

There is a notable lack of comparative analysis to evaluate model performance in different context, 

which is crucial for understanding and improving model generalizability and adaptability in the 
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global energy transition. The limitations of previous studies in handling multiple energy sources 

simultaneously further underscore the significance of this research. 

While much of the existing research has focused specifically on either electricity load forecasting 

or wind generation forecasting, this study innovatively applies a unified model architecture across 

both markets. This approach addresses the gap in the previous works, where models are typically 

specialized for single forecasting tasks. By employing the same set of models for both electricity 

load and wind generation forecasts, this research demonstrates the versatility and adaptability of 

these models across different forecasting contexts. To further enhance the generalizability and 

performance of the models, this study utilizes Bayesian optimization for hyperparameter tuning. 

Traditional methods of hyperparameter selection often rely on manual adjustments or fixed 

parameters, which may not be optimal for different markets. By applying Bayesian optimization, 

the research automatically computes and adjusts hyperparameters tailored to each specific market. 

This methodology allows for a more precise and context-sensitive model calibration, improving 

forecasting accuracy and performance across both electricity load and wind generation forecasts. 

The application of these techniques suggests potential for further research into the use of universal 

model architectures and advanced optimization methods in other forecasting areas. Additionally, 

practitioners can benefit from the insights gained into how models can be generalized and 

optimized for different forecasting tasks, leading to more efficient and accurate forecasting 

solutions. As the energy landscape continues to evolve, incorporating advanced forecasting models 

will be crucial for navigating the complexities of integrating renewable energy sources and 

ensuring a sustainable and reliable power supply. 

To summarize, the research contributes to: 

• Considering the task of data forecasting applied to two major energy problems: electricity 

load and wind generation.  

• Implementation and comparison of different optimized deep learning models. 

• Use of Bayesian optimization to fine tune the deep learning models. 

• Comparison of deep learning models against standard data analytics models.  

• Utilization of quarterly-hour and hourly frequency sampling for electricity load and wind 

generation data.  

• Cross-Domain Analysis: Compared models across different energy markets and expanded 

the applicability of models, addressing the gap in understanding model performance in 

diverse contexts. 
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3. Methodology 

3.1 Research Design 

This research adopts a structured approach to forecast time series data on electricity load and wind 

generation through the deployment of machine learning models. The following flowchart 

illustrates the coding process. To maintain consistency, the raw time series datasets are first 

segmented by different markets, countries and time intervals. Then, the 12 datasets will be 

imported into the pre-configured code and executed one by one. No modification to the code will 

be made during this phase, maintaining uniformity in the execution for all datasets. The subsequent 

sections will provide a detailed description of the stages in the flowchart. 

Figure 1 Flowchart of the Experiments 

 

 

3.2 Data Collection and Preprocessing 

The original dataset (Open Power System Data, 2020) is sourced from the Open Power System 

Data platform, which provides preprocessed and continuous data from the European Network of 

Transmission System Operators for Electricity (ENTSO-E) Transparency platform. This ensures 

high reliability and suitability for time-series analysis. It contains various types of time series data 

relevant for power system modeling, including electricity load as well as wind power generation. 

The data is aggregated based on country, control area or bidding zone, covering the European 

Union and some neighboring countries. All variables are available in hourly resolution and some 

are available in higher resolution, including half-hourly and quarter-hourly formats, spanning from 

2015 to mid-2020. 
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The datasets are first divided into two domains – electricity load and wind generation. And for 

each domain, the datasets are separated by different countries – Austria (AT), Germany (DE), and 

Netherlands (NT). Finally, the datasets are further differentiated by fifteen-minute and sixty-

minute intervals. At this stage, the datasets used to train our models have undergone an initial 

differentiation step. Following this, we will perform additional preprocessing to prepare the dataset 

for direct use in model training section. This preprocessing process is standardized to streamline 

subsequent steps, as we will need to complete and evaluate a total of 12 datasets for training and 

comparison purposes. The streamlined procedure ensures consistency and accuracy across all 

datasets, making it easier to compare results. Additionally, this approach enhances efficiency and 

reduces the potential for errors. This convenience is particularly important in the context of time 

series data, which may frequently become available. By implementing a streamlined procedure, 

we ensure that the addition or updating of data can be managed quickly and efficiently, without 

compromising the integrity of our analysis. 

We leverage Python to encapsulate these processes into reusable, modular components. By 

defining functions for each step of the data preprocessing, we can easily call these functions as 

needed, enhancing code reusability and maintainability. This approach exemplifies the procedural 

programming paradigm, which is centered around the idea of organizing code into procedures or 

routines that are called upon to perform tasks. Utilizing Python’s procedural capabilities ensures 

that our data processing is not only efficient but also adaptable. As new datasets are introduced or 

existing datasets are updated, the predefined functions can be easily adjusted or extended without 

disrupting the overall workflow. 

Building upon our standardized, streamlined preprocessing procedures, we have developed 

specific functions within our Python code to manage and manipulate our datasets effectively. A 

key function we’ve defined is called “prepare_data”. This function is designed to organize the 

imported raw data, by allocating 80% of the data for the training set and 20% for the test set. Unlike 

conventional random sampling or stratification technique, our approach specifically segments the 

first 80% of the sequential data for training due to the inherent temporal dependencies 

characteristic of time series data. This method ensures that the temporal features and sequential 

trends of the data are maintained, which is crucial for the reliability of our time series analysis. 

Following this data segmentation, we utilize a window of thirty observations to predict the 

subsequent observation. Consequently, we reshape the data into the format (n, 30, 1), where ‘n’ 

represents the number of such 30-observation windows in the dataset. Once the data is segmented 

and reshaped according to our specifications, the function will finalize by outputting the prepared 

datasets: training and testing data sets. This restructuring is critical as it aligns with our model’s 

input requirements, allowing us to effectively train our predictive models on time series data while 

maximizing the use of available information for accurate forecasting. 

Since the function have been ready to be deployed, the next step in our workflow is to import the 

raw data and perform an initial cleanup. As previously noted, the raw dataset comprises 

observations recorded at both 15-minute and 60-minute intervals, spanning from 2015 to 

approximately 2020. The dataset contains approximately 200,000 and 40,000 observations, 

respectively. However, given the limitations of our research infrastructure, handling such large 

datasets could be overly demanding. To mitigate this, we strategically select only the most recent 

10,000 observations from each dataset to use in our model training and testing processes. This 
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selection reduces computational load and storage requirements, thereby alleviating the strain on 

our research facility. Simultaneously, we ensure the integrity of our data by dropping any 

observations that contain null values.  

Following the cleanup, we proceed to normalize our data using the “MinMaxScaler” function from 

the “scikit-learn” library. The function is a feature scaling technique used to normalize data. It 

transforms features by scaling each feature to a given range, typically 0 and 1. This is achieved by 

subtracting the minimum value of the feature and then dividing by the range. The formula is as 

follows: 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
          (1) 

This normalization step is straightforward yet critical for the performance of machine learning 

models. 

After normalizing the data, we call the previously defined “prepare_data” function to split the data 

into designated training and test sets. This marks the completion of data preparation and 

preprocessing phases, setting the stage for model training. 

 

3.3 Model Implementation 

In this section, with the data adequately preprocessed, we transition to the model implementation 

part of the research. This section involves applying various machine learning algorithms to the 

prepared datasets and tuning model parameters.  

We define every model and set the parameter search space before model optimization and training 

phase to maintain clarity and consistency. Here is a brief overview of each model implemented in 

this study, detailing their specific parameters. 

3.3.1 Convolutional Neural Network 

The Convolutional Neural Network (LeCun et al., 2015) is known for their ability to perform 

automatic feature extraction. CNNs utilize layers of convolutional filters that apply over the input 

data, enabling the model to learn increasingly complex features at each layer. This eliminates the 

need for manual feature selection, reducing the risk of human bias and error. In time series analysis, 

CNNs can identify and learn important features from raw data sequences without pre-defined 

assumptions. Once a feature is learned, a CNN can recognize it in any part of the data sequence.  

To implement the CNN model, we define a “create_cnn_model” function, designed to encapsulate 

the architecture of the CNN tailored for time series forecasting. The model begins with a Conv1D 

layer since we have sequential data with one spatial dimension. The layer uses a specified number 

of filters and a kernel size to scan through the input data. The “relu” activation function is 

employed to introduce non-linearity, enabling the model to learn more complex patterns. 
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Mathematically, this convolution operation computes the inner product between a subsequence of 

the input data X (with length k, the kernel size) and the filter w: 

𝐶𝑖 = ∑ 𝑤𝑖 · 𝑋𝑖
𝑘
𝑖=1           (2) 

Following the convolutional layer, a MaxPooling1D layer reduces the dimensionality of the data, 

which helps in reducing computation as well as controlling overfitting by abstracting the features 

extracted by the convolutional layers. Then, a Flatten layer is used to transform the pooled feature 

map into a single linear vector and a Dropout layer is used to prevent overfitting. The architecture 

concludes with a Dense layer that uses a “linear” activation function. Finally, the model is 

compiled with the “adam” optimizer with a learning rate of 0.001, and the loss function is set to 

mean squared error.  

After defining the function, we set up the parameter search space for optimization targeting the 

CNN model’s filter, kernel size, pool size, and dropout rate. Filter determines the number of filters 

in the convolutional layers, ranging from 16 to 256. Kernel size defines the size of the window to 

be used in each convolutional filter, set between 2 and 8. Pool size dictates the size of the pooling 

window, ranging from 2 to 4. Dropout rate controls the proportion of neurons to drop out during 

training, set between 0.0 and 0.5. With the definition of the function and the search space, we have 

completed the architecture setup for the CNN model as shown in Figure 2. 

Figure 2 Architecture of the CNN 

 

 

3.3.2 Temporal Convolutional Neural Network 

The Temporal Convolutional Neural Network (Bai et al., 2018) is a variant of the traditional 

convolutional neural network specifically designed to handle sequence prediction problems more 

effectively, particularly in time series forecasting. TCNNs use causal convolutions, which ensure 

that the output at a given time is only determined by past inputs. This is a significant advantage 

for making predictions in real-time scenarios, where future data cannot be assumed available. 

Similarly with CNN, we define a “create_tcnn_model” function, which includes the architecture 

of our TCNN. But as a relatively newer model architecture compared to CNN, there are fewer 

ready-to-use libraries available for TCNN and we will have to build TCNN up based on the code 

of CNN. The model will include several Conv1D layers with a causal padding option, ensuring 

that the convolution output for a specific timestamp can only depend on current and past data. 

Mathematically, for a given input sequence X, a dilated causal convolution at time step t with a 

kernel size k, dilation rate d, and filter weights w is defined as: 

𝑦(𝑡) = ∑ 𝑤𝑖 · 𝑥𝑡−𝑑·𝑖
𝑘−1
𝑖=0          (3) 
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In our model, the dilation rate starts at 1 and increases with each subsequent layer. For instance, 

when d=1 for the first layer, it becomes 2 for the second layer, 3 for the third layer, and so on, 

expanding the receptive field exponentially. Each convolutional layer is followed by an activation 

layer set to “relu”, introducing non-linearity into the model. This is coupled with a dropout layer 

to prevent overfitting by randomly omitting a proportion of the feature detectors during training. 

After, this is followed by a Flatten layer, and a Dense layer with a “linear” activation function. 

Finally, the model is compiled using the “adam” optimizer, with a learning rate of 0.001 and mean 

squared error as the loss function. 

The parameter space for TCNN tuning includes the settings of the number of convolutional layers, 

filter, kernel size, dilation rate, and dropout rate. Specifically, the number of convolutional layers 

varies from 2 to 4, filters are adjusted between 16 and 256, kernel size extends from 2 to 8, dilation 

rate is set from 1 to 2, and dropout rate spans from 0.0 to 0.5. We have now completed the 

preparation of our second model, TCNN, as shown in Figure 3. 

Figure 3 Architecture of the TCNN 

 

 

3.3.3 Long Short-Term Memory Network 

The Long Short-Term Memory (Hochreiter, 1997) network is a type of recurrent neural network 

(RNN) specifically designed to address the shortcomings of traditional RNNs, particularly in 

handling long-term dependencies. Traditional RNNs often struggle with the vanishing gradient 

problem, where information from earlier input data is lost as it propagates through the network. 

LSTMs address this issue with their unique architecture of gates that regulate the flow of 

information. LSTMs contain memory cells that can maintain information in memory for long 

periods of time. Each LSTM memory cell has three gates: the forget gate, the input gate, and the 

output gate, which manage the flow of information. For each time step t, the memory cell stat 𝐶𝑡 
is updated based on the current input 𝑋𝑡 and the previous hidden state 𝐻𝑡−1, as described as follows: 

1. Forget Gate: Decides which part of the previous cell state to retain or forget. 

𝑓𝑡 = 𝑅𝑒𝐿𝑈(𝑋𝑡𝑈𝑓 + 𝐻𝑡−1𝑊𝑓)        (4) 

2. Input Gate: Decides how much new information should be added to the cell state. 

𝑖𝑡 = 𝑅𝑒𝐿𝑈(𝑋𝑡𝑈𝑖 + 𝐻𝑡−1𝑊𝑖)        (5) 

3. New Candidate Memory: Generates the candidate new information for the memory cell. 

𝑁𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑈𝑐 + 𝐻𝑡−1𝑊𝑐)        (6) 
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4. Cell State Update: The cell state is updated based on the forget and input gate outputs. 

𝐶𝑡 = 𝑓𝑡 · 𝐶𝑡−1 + 𝑖𝑡 · 𝑁𝑡        (7) 

5. Output Gate: Controls the information flow from the cell to the next hidden state. 

𝑂𝑡 = 𝑅𝑒𝐿𝑈(𝑋𝑡𝑈𝑜 + 𝐻𝑡−1𝑊𝑜)        (8) 

6. Hidden State Update: The hidden state is passed to the next LSTM layer or the output layer. 

𝐻𝑡 = 𝑂𝑡 · tanh⁡(𝐶𝑡)          (9) 

This feature of LSTM is particularly useful in applications like anomaly detection in time series 

data. Nevertheless, LSTMs are computationally intensive compared to simpler RNNs or other deep 

learning models. This is due to the complex architecture of LSTM cells. This complexity can lead 

to longer training times and higher computational costs, especially with large datasets or deep 

networks.  

In our code, the architecture of LSTM is defined in the “create_lstm_model” function. The model 

begins with a first LSTM layer. This first LSTM layer processes input sequences and ensures that 

the output includes sequences, necessary for chaining multiple LSTM layer. Following the first 

LSTM layer, a dropout layer is introduced to prevent overfitting. Then a subsequent LSTM layer, 

receives sequences from the previous layer, further refining the model’s ability to learn from the 

data. The output from this layer does not return sequences, preparing for a final dense output layer. 

A dense layer with a “linear” activation function produces the final output of the model. At last, 

the model is compiled using the “adam” optimizer, with a learning rate of 0.001 and mean squared 

error as the loss function. 

In the parameter search space, the number of neurons for the first and second LSTM layers is 

individually defined, allowing the model to capture complexities in the data at different levels of 

abstraction. Specifically, the number of neurons for the first LSTM ranges from 16 to 128, while 

the second spans from 8 to 64. Additionally, the "Dropout rate" is adjustable within a range from 

0.0 to 0.5. The architecture of the LSTM could be summarized as shown in Figure 4. 

Figure 4 Architecture of the LSTM 
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3.3.4 Bidirectional Long Short-Term Memory Network 

The Bidirectional Long Short-Term Memory (BiLSTM) network is an enhancement of the LSTM 

model that involves training two LSTMs on the input sequence: one with the input in natural order 

and the other in reverse order. This approach allows the model to gather information from both 

past and future states simultaneously. The outputs of the forward and backward layers at each time 

step t are concatenated to form a single output vector. Mathematically, the hidden state at time step 

t in the BiLSMT is: 

𝐻𝑡
𝐵𝑖𝐿𝑆𝑇𝑀 = [𝐻𝑡

𝑓𝑜𝑟𝑤𝑎𝑟𝑑
, 𝐻𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑]         (10) 

By processing data from both directions, BiLSTMs capture a richer understanding of the context 

and thus capture dependencies and features that may be missed by single-direction LSTMs. Like 

LSTM, BiLSTM requires longer training times and greater demands on computational resources. 

The overall architecture of our BiLSTM model is similar to our LSTM model. Leveraging the 

robust capabilities of the “Keras” library, the definition of the “create_bilstm_model” function 

closely mirrors the structure used in the “create_lstm_model” function. The first BiLSTM layer is 

a Bidirectional wrapper applied to an LSTM layer with hyper-tunable number of neurons in each 

direction. This configuration allows the layer to process the input sequence both forwards and 

backwards. The second BiLSTM layer similarly utilizes the Bidirectional wrapper on an LSTM 

layer with another hyper-tunable number of neurons. Dropout layers are interspersed between 

BiLSTM layers to prevent overfitting. The final layer is a Dense layer with a “linear” activation 

function. Lastly, the model is compiled with the “adam” optimizer with a learning rate of 0.001, 

and the loss function is mean squared error. 

The parameter search space designated for the BiLSTM model is similar to that of the LSTM as 

well. Specifically, the number of units in the first BiLSTM layer is set between 16 and 128, while 

the second can range from 8 to 64. Additionally, the dropout rate is configurable from 0.0 to 0.5. 

The architecture of the BiLSTM could be summarized as shown in Figure 5. 

Figure 5 Architecture of the BiLSTM 

 

 

3.3.5 Gated Recurrent Unit 

The Gated Recurrent Unit (Cho, 2014) is a type of RNN similar to the LSTM network but designed 

to be simpler and more efficient in certain scenarios. GRUs have only two gates, update and reset. 

The following formulas describe the key operations within each GRU unit: 
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1. Update Gate: The update gate controls how much of the previous hidden state should be 

carried forward to the current time step. 

𝑧𝑡 = 𝑅𝑒𝐿𝑈(𝑋𝑡𝑈𝑧 + 𝐻𝑡−1𝑊𝑧)        (11) 

2. Reset Gate: The reset gate decides how much of the previous hidden state should be 

forgotten when computing the candidate hidden state. And it controls the contribution of 

the previous hidden state to the candidate hidden state computation. 

𝑟𝑡 = 𝑅𝑒𝐿𝑈(𝑋𝑡𝑈𝑟 + 𝐻𝑡−1𝑊𝑟)        (12) 

3. Candidate Hidden State: The candidate hidden state is computed based on the reset gate’s 

influence on the previous hidden state. The reset gate allows the model to determine how 

much of the previous hidden state to use in computing the new candidate hidden state. 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑈ℎ + (𝑟𝑡 · 𝐻𝑡−1)𝑊ℎ)       (13) 

4. Hidden State Update: The final hidden state is update by combining the previous hidden 

state and the candidate hidden state using the update gate. This formula balances the 

influence of past and new information, controlled by the update gate. 

ℎ𝑡 = (1 − 𝑧𝑡) · 𝐻𝑡−1 + 𝑧𝑡 · ℎ̃𝑡       (14) 

GRUs require fewer parameters than LSTMs because they lack an output gate, making them faster 

to train while still capturing dependencies in sequence data effectively. This reduction in 

complexity often leads to faster training times without a significant decrease in performance, 

especially in tasks where long-term dependencies are less critical. The simpler architecture of 

GRUs, while beneficial in terms of reduced complexity, also means they offer less control over 

what the network chooses to remember or forget compared to LSTMs. But overall, GRUs could 

provide a good balance between computational efficiency and model performance.  

When defining “create_gru_model” function, which also benefit from the scikit-learn library, the 

overall process is similar to that of the LSTM in the previous section. A first GRU layer processes 

the input sequence and provides a temporal dimension output that is necessary for chaining to the 

next recurrent layer. A second GRU layer further refines the ability of the model to learn from the 

temporal data, processing the sequence output from the previous GRU layer. Interspersed between 

the GRU layers, dropout layers help mitigate the risk of overfitting. A dense layer with a single 

neuron concludes the model. At last, the model is compiled with the “adam” optimizer, with a 

learning rate of 0.001 and mean squared error as the loss function. 

The hyperparameter search space defined for the GRU model is identical to that of the LSTM. 

Notably, the number of neurons in the initial GRU layer varies between 16 and 128, and for the 

subsequent layer, it ranges from 8 to 64. The dropout rate is adjustable, with values spanning from 

0.0 to 0.5. The architecture of the GRU is as shown in Figure 6. 
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Figure 6 Architecture of the GRU 

 

 

3.3.6 Bidirectional Gated Recurrent Unit 

The Bidirectional Gated Recurrent Unit (BiGRU) model extends the traditional GRU architecture. 

BiGRUs process sequences both forwards and backwards, enabling the model to access past and 

future context. At each time step t, the hidden states from both directions are concatenated: 

𝐻𝑡
𝐵𝑖𝐺𝑅𝑈 = [𝐻𝑡

𝑓𝑜𝑟𝑤𝑎𝑟𝑑
, 𝐻𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑]         (15) 

Compared to BiLSTMs, BiGRUs typically have fewer parameters due to the simpler gating 

mechanisms of GRUs. Despite being more efficient than BiLSTMs, BiGRUs still require more 

computational resources than their unidirectional counterparts due to processing sequences twice. 

The definition process for the “create_bigru_model” function aligns closely with the other three 

RNN models previously discussed. The model begins with a Bidirectional wrapper applied to a 

GRU layer. After each BiGRU layer, Dropout layers help reduce overfitting. The second BiGRU 

layer adds further depth to the model’s ability to process information bidirectionally. A Dense 

layer with “linear” activation serves as the output layer. The model is compiled using the “adam” 

optimizer with a learning rate of 0.001 and the loss function is mean squared error. 

The parameter search space for the BiGRU model is consistent with that of other RNN models 

previously discussed. Specifically, it allows for the number of neurons in the first BiGRU layer to 

range from 16 to 128 and in the second BiGRU layer from 8 to 64. Additionally, the dropout rate 

is adjustable from 0.0 to 0.5. The architecture of the BiGRU is as shown in Figure 7. 

Figure 7 Architecture of the BiGRU 

 

 

3.3.7 Deep Neural Network 

The Deep Neural Network (DNN) is a standard, straightforward multilayer perceptron (MLP) 

consisting of fully connected layers. Each layer performs a linear transformation of the input 
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followed by a non-linear activation function. Mathematically, the operation in a Dense layer is 

described as: 

𝑦𝑖 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑗
𝑛
𝑗=1 + 𝑏𝑖)          (16) 

Where: 

• 𝑦𝑖 is the output of the i-th neuron, 

• 𝑤𝑖𝑗 is the weight associated with the connection between the j-th input and the i-th neuron, 

• 𝑥𝑗 is the j-th input to the neuron, 

• 𝑏𝑖 is the bias term, 

• 𝑓(·) is the activation function. 

In our case, each hidden layer uses the Rectified Linear Unit (ReLU) activation function, which 

allows the model to capture more complex patterns in the data by only passing positive values 

through the layers. 

𝑅𝑒𝐿𝑈(𝑥) = max⁡(0, 𝑥)         (17) 

This type of neural network is fundamental in deep learning, offering a baseline architecture from 

which more complex models evolve. With multiple hidden layers, DNNs can learn complex 

patterns and relationships in the data. And DNNs are inherently scalable, capable of handling large 

datasets and expanding in complexity as needed by adding more layers or neurons. Unlike RNNs 

or CNNs, DNNs treat input features as independent and identically distributed. They fail to 

recognize the context or sequence in the input data, which is often crucial for more complex tasks. 

The structure of the DNN is defined to be flexible, allowing adjustments in the number of layers 

and units to suit different complexity requirements and dataset characteristics. The model starts 

with a Dense layer, processing the input data, with the activation function of ‘relu’. Subsequently, 

a loop constructs additional layers as part of the optimization process to determine the optimal 

number of layers for the model. Each subsequent layer uses the same number of units and 

activation function, stacking up the network’s capability to learn more complex patterns. The 

model ends with a final Dense layer with one neuron and a “linear” activation function. Finally, 

the model is compiled with the “adam” optimizer, with a learning rate of 0.001 and the loss 

function of mean squared error. 

The parameter search space for a DNN model is relatively simple, primarily involving the 

adjustment of the model’s depth, which is set to vary between 1 and 3 layers. The parameter "units" 

determines the number of neurons per layer, with a range extending from 8 to 256. The architecture 

of the DNN is as shown in Figure 8. 
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Figure 8 Architecture of the DNN 

 

 

3.3.8 k-Nearest Neighbors 

The k-Nearest Neighbors (Fix, 1985) algorithm is a simple, versatile, and widely used machine 

learning method based on feature similarity. Unlike many other machine learning algorithms that 

require a training phase to learn a model, kNN makes predictions using the entire dataset as the 

“model”. Nonetheless, one of the major drawbacks of kNN is its computational inefficiency, 

especially with large datasets. Every prediction requires a distance calculation to all training points, 

which can be computationally expensive and slow. 

In kNN regression, the model finds k-nearest neighbors to a given input point using a distance 

metric, and then makes a prediction by averaging the target values of these neighbors. 

Mathematically, the predicted value for an input is: 

𝑦̂(𝑥) =
1

𝑘
∑ 𝑦𝑖
𝑘
𝑖=1           (18) 

The code for kNN is much simpler than the previously mentioned deep learning models. We 

initialize the “KNeighborsRegressor” from the scikit-learn library to build a basic kNN model and 

then we define the parameter search space. We set the range for “k” from 3 to 10. This parameter 

determines the number of nearest neighbors to be considered when making predictions.  

We then configure the “weights” parameter, which presents two categorical options: “uniform” 

and “distance”. Under the 'uniform' setting, each neighbor contributes equally to the final 

prediction. Conversely, the 'distance' option assigns greater importance to nearer neighbors. The 

third parameter “p” is the power parameter for the Minkowski metric.  

• When p=1, the distance metric used is Manhattan distance: 

𝑑(𝑥, 𝑥′) = ∑ |𝑥𝑖 − 𝑥𝑖
′|𝑛

𝑖=1         (19) 

• When p=2, it is the Euclidean distance: 

𝑑(𝑥, 𝑥′) = √∑ (𝑥𝑖 − 𝑥𝑖
′)2𝑛

𝑖=1         (20) 
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The parameter space for the kNN model has been established, and we will leave it to the 

optimization process to decide the optimal parameters. 

 

3.3.9 Decision Tree 

The Decision Tree (Breiman, 2017) is a non-parametric supervised learning method used for both 

classification and regression tasks. Decision trees are able to manage complex, non-linear 

relationships. A decision tree builds a tree-like structure by splitting the data at each node based 

on the feature that increases the homogeneity of the target variable within each region. In 

regression trees, the goal is to minimize the variance of the target variable within each region after 

splitting the data. Mathematically, for a given split at node t, the split criterion is based on reducing 

the Mean Square Error. The MSE at a node is calculated as: 

𝑀𝑆𝐸𝑡 =
1

𝑁𝑡
∑ (𝑦𝑖 − 𝑦̅𝑡)

2𝑁𝑡
𝑖=1          (21) 

The decision tree evaluates every possible split and selects the one that maximizes the reduction 

in MSE, which is also referred to as variance reduction: 

𝛥𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑝𝑎𝑟𝑒𝑛𝑡 − (
𝑁𝑙𝑒𝑓𝑡

𝑁𝑝𝑎𝑟𝑒𝑛𝑡
𝑀𝑆𝐸𝑙𝑒𝑓𝑡 +

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁𝑝𝑎𝑟𝑒𝑛𝑡
𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡)     (22) 

The tree continues to split until one of the stopping criteria is met: the maximum number of levels 

in tree, minimum samples of a node to perform a split, and minimum number of samples a leaf 

node must have. Once the tree has reached a leaf node, it predicts the output by averaging the target 

values of the samples in that node: 

𝑦̂(𝑥) =
1

𝑁𝑙𝑒𝑎𝑓
∑ 𝑦𝑖
𝑁𝑙𝑒𝑎𝑓

𝑖=1
          (23) 

In contrast to various neural network models, decision trees have inherent limitations in 

extrapolating beyond the scope of the training data. This characteristic presents a significant 

challenge in time-series forecasting, where it is frequently necessary to predict future values that 

extend past the range observed within the training dataset.  

When setting up the base model, we utilize the “DecisionTreeRegressor” from the scikit-learn 

library. Correspondingly, we establish the parameter search space to facilitate the exploration and 

optimization of model parameters. We set the maximum depth parameter range between 3 and 20. 

A deeper tree is capable of capturing more intricate patterns within the dataset. However, it also 

runs the risk of learning noise rather than the underlying data trends. Conversely, setting a 

shallower tree enhances the model's generalizability but may not capture enough complexity from 

the data. We set the range for “min_samples_split” between 2 and 20. This parameter specifies the 

minimum number of samples required to split an internal node within the decision tree. Higher 

values restrict the tree’s complexity while lower values facilitate a more liberal growth of the tree. 

The last parameter “min_samples_leaf” is set within a range from 1 to 10. This parameter 
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determines the minimum number of samples required in a leaf node. A lower threshold in this 

range may capture highly specific patterns, and conversely a higher value promotes better 

generalization. 

 

3.4 Model Optimization and Training 

Upon the completion of defining all required models, we proceed to the model optimization and 

training. Bayesian optimization (Snoek et al., 2012) is specifically designed to identify an optimal 

set of parameters that achieve minimal values for the loss function. This technique utilizes a 

probabilistic model to predict the performance of the models given different hyperparameter 

settings and iteratively updates the model based on the outcomes of the evaluations. This method 

is effective compared to random or grid search approaches, particularly under conditions where 

model performance evaluations are computationally demanding or when navigating a vast 

hyperparameter space. 

The optimization process can be described in the following steps: 

1. Gaussian Process Surrogate Model: In Bayesian Optimization, a Gaussian Process (GP) is 

commonly used as a surrogate model for the objective function 𝑓(𝑥). Given the current 

evaluations of the function at different hyperparameter values, the GP predicts the function 

value at any new point 𝑥 by providing a mean prediction 𝜇(𝑥) and uncertainty 𝜎(𝑥). The 

GP regression model can be expressed as: 

𝑓(𝑥) ∼ 𝐺𝑃(𝜇(𝑥), 𝑘(𝑥, 𝑥′))        (24) 

Where 𝑘(𝑥, 𝑥’) is the kernel function representing the correlation between different points 

in the search space. 

2. Acquisition Function: The acquisition function 𝛼(𝑥)  selects the next set of 

hyperparameters to evaluate by balancing high uncertainty and low mean prediction. 

Common acquisition functions used include: 

o Expected Improvement (EI): 

𝛼𝐸𝐼(𝑥) = 𝐸[𝑚𝑎𝑥(0, 𝑓(𝑥) − 𝑓(𝑥+))]      (25) 

Where 𝑓(𝑥+) is the best observed objective function value. 

o Upper Confidence Bound (UCB): 

𝛼𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + 𝜅𝜎(𝑥)       (26) 

Where 𝜇(𝑥) is the predicted mean, 𝜎(𝑥) is the uncertainty, and 𝜅 is a parameter 

that controls the balance between exploration and exploitation. 



22 

 

3. Objective Function Evaluation: Once the next set of hyperparameters is selected using the 

acquisition function, the model is trained using those hyperparameters, and the validation 

performance is evaluated. 

4. Cross-Validation: Typically, we will apply cross-validation to evaluate models, such as k-

fold cross-validation. In k-fold cross-validation, the data is shuffled and split into ‘k’ 

subsets, where each subset gets a turn at being the testing set while the others are used for 

training. However, this method is unsuitable for time series data. Time series observations 

are chronologically ordered and shuffling them disrupts their inherent temporal nature. The 

sequence of events is crucial in time series analysis as the value at a given time point is 

often dependent on previous values. Randomly splitting the data into folds for cross-

validation can lead to scenarios where the model is inadvertently trained on future data 

before learning from past data, leading to unrealistic performance estimates and potential 

lookahead biases. Given the limitations of traditional cross-validation methods for time 

series data, we choose the “TimeSeriesSplit” method provided by the scikit-learn library 

for our optimization process. “TimeSeriesSplit” ensures that the training set always 

contains observations that occur prior to those in the test set.  

5. Optimization Process: The process continues for a specified number of iterations, refining 

the hyperparameters to optimize the objective function. Mathematically, at each iteration, 

Bayesian Optimization selects hyperparameters by optimizing the function: 

𝑥𝑛𝑒𝑥𝑡 = argmax𝛼(𝑥|𝜇(𝑥), 𝜎(𝑥))        (27) 

Where 𝛼(𝑥) is the acquisition function, 𝜇(𝑥) is the predicted mean function from the GP, 

and 𝜎(𝑥) is the predicted uncertainty. 

And since the Bayesian optimization from “skopt” library supports “callback” parameters during 

the fitting procedure, we incorporate commands to record the duration of each iteration as well as 

the optimal parameters identified at the end of each iteration. Furthermore, we track and compile 

the total time to complete the optimization process for each model. This tracks a thorough record 

of the effects of parameter tuning throughout the optimization timeline, thus improving our 

understanding of the computational efficiency and effectiveness of the model tuning phase. 

Having established the foundational elements, we proceed to optimize our models. We utilize 

“BayesianSearchCV” from the “skopt” library, an advanced method that employs Bayesian 

optimization techniques for hyperparameter tuning. By defining each model and its corresponding 

parameter search space beforehand, we can seamlessly integrate “BayesianSearchCV” into our 

workflow. For the cross-validation method, we specify “TimeSeriesSplit” to ensure the temporal 

sequence of the dataset is considered. For other parameters, we limit the number of iterations to 

30 to balance between thoroughness in the search and computational efficiency. We use Mean 

Squared Error (MSE) as the scoring metric and set the random state to 42 to ensure the 

reproducibility of our results. After obtaining the optimal parameters through the fitting of the 

Bayesian optimizer, the next step is to retrain the model utilizing these hyper-tuned parameters. 

Finally, the best model retrained with the optimized parameters will be saved for future use. 

At the end of this phase, we will have robust models that can effectively predict outcomes based 

on the trends and patterns identified in the training data.  
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3.5 Evaluation Metrics 

Now that we have the best models using the optimal parameters, the next step is to evaluate these 

models. This evaluation is crucial for determining which model yields the most accurate forecasts 

for each specific dataset. During the data preparation phase, the dataset was carefully partitioned, 

reserving 20% as a test set. This subset, which the models have never seen during before, can 

reflect the models' ability to predict the new, unseen data. For a comprehensive evaluation, four 

key metrics have been selected: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Deviation (MAD), and Mean Absolute Scaled Error (MASE).  

Root Mean Squared Error is a widely used measure of the differences between values predicted 

by a model and the values actually observed. It squares the errors before averaging them, which 

penalizes larger errors. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2
𝑛
𝑖=1          (28) 

Mean Absolute Error measures the average magnitude of the errors in a set of predictions, without 

considering their direction. It’s the average over the test sample of the absolute differences between 

prediction and actual observation where all individual differences have equal weight. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1          (29) 

Similar to MAE, Mean Absolute Deviation measures the average absolute deviation of data points 

relative to a dataset’s mean. It is a measure of dispersion. 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑦̂𝑖 − 𝜇𝑦|
𝑛
𝑖=1          (30) 

Mean Absolute Scaled Error measures the accuracy of forecasts relative to a naïve benchmark 

prediction, typically the value from the previous period. It is especially useful because it is scale-

independent and can handle data with zeros. A MASE less than one indicates that the model 

performs better than a naïve baseline model. It is particularly suitable for time-series data because 

it normalizes the error based on the historical data variability. 

𝑀𝐴𝑆𝐸 =
1

𝑛
∑ |𝑦𝑖−𝑦̂𝑖|
𝑛
𝑖=1

1

𝑛−1
∑ |𝑦𝑖−𝑦𝑖−1|
𝑛
𝑖=2

         (31) 

We will compare the performance of each model within individual markets to identify which 

model predicts the most accurate in a specific market context. Subsequently, this analysis will be 

extended to compare the best-performing models from each market against each other across 

different markets. We can thus identify the most effective model for a particular market and also 

assess the generalizability and robustness of the model across different market environments. 

Moreover, we will have valuable insights into the relative strengths and weaknesses of the models, 

which will help make informed decisions about model selection and deployment in different 

market situations. 
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4. Results 

4.1 Descriptive Analysis of Data 

We will begin our analysis with the dataset used in the study. To recapitulate, the dataset comprises 

12 distinct subsets, derived from a factorial combination of three variables: three countries (Austria, 

Germany, and Netherlands), two market types (electricity load and wind generation), and two 

observation intervals (15 and 60 minutes). The Table 3 below provides a detailed description of 

the data, demonstrating key statistical measures such as the mean, standard deviation, minimum, 

and maximum values, along with the 25th, 50th (median), and 75th percentiles.  

Table 3 Description of the datasets 

Market Country Interval Mean 
Standard 

Deviation 
Min 25% 50% 75% Max 

Load 

Austria 
15 minutes 6332 1137 4000 5322 6271 7406 8994 

60 minutes 6872 1385 4004 5745 6829 7815 10779 

Germany 
15 minutes 51306 9015 32669 43549 50702 59754 69079 

60 minutes 53825 9842 31923 45786 53398 61629 75551 

Netherlands 
15 minutes 11878 1468 7412 10758 11835 12813 16196 

60 minutes 12474 1942 7451 10967 12172 13782 17782 

Wind 

Austria 
15 minutes 616 671 4 112 348 912 2792 

60 minutes 828 792 4 165 548 1336 2969 

Germany 
15 minutes 9103 7240 126 3663 6861 12433 43702 

60 minutes 14301 10497 136 5852 11637 20744 46064 

Netherlands 
15 minutes 581 529 0 145 420 877 2097 

60 minutes 822 637 0 261 676 1339 2199 

In all three countries, the data indicate that electrical load exceeds wind generation by a large 

margin. This observation underscores a significant reliance on other traditional energy within these 

countries. Such a pattern highlights the current energy dynamics where traditional power remains 

predominant over renewable wind energy sources within these national grids. From the Table 3 

we can also find that Germany exhibits the highest levels of electricity load and wind generation 

among the datasets on average. Additionally, the Netherlands demonstrates a higher average 

electricity load compared to Austria, although their average wind generation levels are 

approximately equivalent. The standard deviation also reveals significant fluctuations in every 

dataset. Generally, these variations suggest a high level of volatility inherent in both markets. 

Notably, the variability in wind generation is more pronounced than that in electricity load. This 

highly variability in wind generation can be attributed to the inherently unpredictability of wind 

speeds and patterns.  

In addition to the above, it is crucial to mention a particular aspect of the dataset from the 

Netherlands that requires careful consideration. The minimum value recorded in the Netherlands 
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wind data is 0. The presence of 0 values poses a challenge. Ignoring these records could disrupt 

the temporal continuity of the time series while imputing these zeros with substitute values 

introduces the dilemma of choosing an appropriate fill value. Therefore, we decide to retain these 

zero values in the dataset. This decision, however, impacts the selection of appropriate 

performance metrics for model evaluation. Specifically, it precludes the use of Mean Absolute 

Percentage Error (MAPE) as an evaluation metric. MAPE is typically calculated by dividing the 

absolute error of the prediction by the actual values, which becomes undefined when actual values 

are zero. To address this, some implementations, including Python’s scikit-learn library, modify 

the MAPE calculation by incorporating a small positive number in the denominator to prevent 

division by zero. While this adjustment ensures that the metric is always defined, it can lead to 

disproportionately high percentage errors when actual values are close to zero, severely skewing 

the overall MAPE. Given these considerations, we exclude MAPE from our evaluation criteria. 

Instead, we selected other metrics such as RMSE, MAE, MAD and MASE, which do not suffer 

from the same limitations and provide a more reliable assessment of model performance in the 

presence of zero values. 

Following the statistical summary, we will have a preliminary inspection of the visual graphs. The 

visualizations will offer further insights into the data, helping to identify any underlying patterns, 

trends, or anomalies that may not be immediately apparent from the statistical metrics alone. 

Figure 9 and Figure 10 presented below illustrate the time series visualizations of the datasets. 

These figures are designed to present the temporal patterns and fluctuations observed within the 

data over the 60-minute intervals. This is because data collected at 15-minute intervals essentially 

provides a higher-resolution view of the same phenomena captured in the 60-minute data, whereas 

we now only observe the general trend, and therefore focus on the latter in the trend visualization 

to improve clarity. 
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Figure 9 Time plot for 10000 observations 
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Figure 10 Time plot for 504 observations 
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Figure 9 presents a comprehensive visualization based on the entire dataset, encompassing 10,000 

observations. The coverage confirms the initial statistical observation that the electric load 

surpasses the wind generation by a considerable amount across the dataset. Furthermore, it is 

evident that electric load patterns exhibit greater regularity when compared to the wind generation. 

To facilitate a more detailed inspection of the data, Figure 10 reduces the scope to 504 observations, 

equivalent to 504 hours or approximately 21 days. This temporal contraction significantly 

enhances the visibility of underlying patterns without sacrificing the broader temporal context. The 

strategic sampling allows patterns to be discerned more readily by the naked eye. Within this more 

focused timeframe, the electricity load trends in Austria and Germany reveal discernible cycles. 

There is a conspicuous daily cycle, marked by fluctuations every 24 hours, and a more pronounced 

weekly cycle evident every seven days. These periodic trends are less apparent in the Netherlands 

data. In contrast, the wind generation displays an expected lack of discernible pattern, aligning 

with the variable nature of wind which does not follow strict cyclical patterns like those observed 

in electricity data. 

 

4.2 Model Performance Evaluation 

Upon collecting all evaluation results, we systematically aggregate and analyze them. Our primary 

objective is to identify the best-performing model for each dataset, primarily considering the 

RMSE as the principal metric here. Secondary criteria, including additional metrics and the 

computational efficiency reflected by the time taken under optimization process, are also taken 

into account. The tables and figures below present the evaluation results that we have compiled.  

Table 4 Evaluation Results for Austria Load (15-Minute Intervals) 

Model  RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 164.22 128.31 1008.30 1.93 5.07 

TCNN 101.02 78.38 988.29 1.18 271.32 

LSTM 202.28 170.68 995.37 2.57 41.08 

BiLSTM 129.36 99.06 1014.16 1.49 83.43 

GRU 90.06 72.37 998.05 1.09 40.46 

BiGRU 122.81 98.70 992.23 1.49 76.80 

DNN 74.22 57.15 1002.09 0.86 3.92 

kNN 123.96 97.71 1005.88 1.47 0.33 

Tree 63.07 46.77 1005.82 0.71 1.17 
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Table 4 presents the evaluation results of electrical loads for 15-minute intervals for Austria. The 

Decision Tree model shows the lowest RMSE, MAE and MASE values at 63.07, 46.77 and 0.71 

respectively. The Tree also demonstrates considerable efficiency in terms of optimization time, 

requiring only 1.17 minutes. While this duration is slightly longer than that for the kNN, it is 

substantially quicker compared to the neural network models. The DNN also shows commendable 

performance among deep learning models with a low optimization time of 3.92 minutes. Yet 

overall, the decision tree proves to be the most effective model for this dataset. And as illustrated 

in Figure 11 and Figure 12 below, each model approximately captures the underlying trend of the 

data. Figure 13 and Figure 14 depict plots that compare the predicted values from the models with 

the actual observations for the last 24 hours of the dataset. The last 96 observations are included 

here due to the 15-minute intervals. In the later section, which addresses the data from 60-minute 

intervals, comprises only 24 observations. Due to the higher resolution, as depicted in Figure 14, 

both the actual and predicted value curves lack smoothness, which may contribute to the higher 

error. 
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Figure 11 All Results for Austria Load (15-minute intervals) 

 

Figure 12 Best vs. Actual Results for Austria Load (15-minute intervals) 
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Figure 13 All Results Last 24-hour for Austria Load (15-minute intervals) 

 

Figure 14 Best vs. Actual Results Last 24-hour for Austria Load (15-minute intervals) 
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Table 5 Evaluation Results for Germany Load (15-Minute Intervals) 

 Model  RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 1531.60 1201.88 7952.66 2.26 5.23 

TCNN 1301.13 995.12 8124.17 1.87 201.07 

LSTM 1458.86 1108.28 8274.61 2.09 43.08 

BiLSTM 1151.74 859.83 7948.68 1.62 82.22 

GRU 710.93 526.08 8057.85 0.99 35.77 

BiGRU 1169.70 970.33 8224.91 1.83 81.47 

DNN 964.24 795.62 7974.43 1.50 3.69 

kNN 1078.55 765.21 7974.71 1.44 0.34 

Tree 476.06 351.20 8113.38 0.66 0.25 

Table 5 presents the evaluation results of electrical loads for 15-minute intervals for Germany. The 

results also identify the Decision Tree as the most proficient model in terms of RMSE, MAE, 

MASE and optimization time. The GRU ranks second with RMSE of 710.93 and MAE of 526.08. 

However, its optimization time takes about 36 minutes which is much higher than the 0.25 minutes 

of the Tree. Thus, the Decision Tree is identified as the best model for this dataset. Figure 15 and 

Figure 17 illustrate that while all models generally capture the overarching trend of the data, some 

are not closely matching the curve of the true values. However, Figure 16 demonstrates that the 

predicted values from the Decision Tree align closely with the curve of the true values. 
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Figure 15 All Results for Germany Load (15-minute intervals) 

 

Figure 16 Best vs. Actual Results for Germany Load (15-minute intervals) 
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Figure 17 All Results Last 24-hour for Germany Load (15-minute intervals) 

 

Figure 18 Best vs. Actual Results Last 24-hour for Germany Load (15-minute intervals) 
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Table 6 Evaluation Results for Netherlands Load (15-Minute Intervals) 

 Model RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 579.66 454.99 1279.64 3.47 6.24 

TCNN 531.33 458.01 1353.38 3.50 199.55 

LSTM 603.68 491.99 1343.66 3.76 48.10 

BiLSTM 288.31 220.70 1337.44 1.69 96.50 

GRU 387.51 302.98 1288.35 2.31 54.89 

BiGRU 392.22 324.74 1309.96 2.48 92.64 

DNN 320.27 265.89 1335.56 2.03 4.04 

kNN 528.58 393.56 1221.29 3.01 0.57 

Tree 166.91 107.21 1302.92 0.82 0.36 

Table 6 presents the evaluation results of electrical loads for 15-minute intervals for Netherlands. 
Once again, the Decision Tree shows exceptional performance with the lowest RMSE, MAE and 

MASE. Moreover, it takes only 0.36 minutes to optimize. However, the MASE values for other 

models in this market exceed 1. Their performance does not surpass that of a simple naïve 

benchmark. In Figure 19 through Figure 22 below, the majority of models adhere to the general 

trend but demonstrate a limited fit to the curve of the true values. This discrepancy is partly due to 

the fluctuations within the data, which are discernible roughly in the plots. In particular, the error 

is most pronounced when encountering new maximum and minimum values. However, the 

predictive curves generated by some neural network models tend to more closely adhere to the true 

value curves, especially in these extreme cases.  
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Figure 19 All Results for Netherlands Load (15-minute intervals) 

 

Figure 20 Best vs. Actual Results for Netherlands Load (15-minute intervals) 
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Figure 21 All Results Last 24-hour for Netherlands Load (15-minute intervals) 

 

Figure 22 Best vs. Actual Results Last 24-hour for Netherlands Load (15-minute intervals) 
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Table 7 Evaluation Results for Austria Load (60-Minute Intervals) 

 Model  RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 320.62 250.44 937.87 1.07 8.40 

TCNN 461.24 437.99 1064.05 1.86 290.55 

LSTM 602.14 513.50 760.96 2.19 60.64 

BiLSTM 319.49 257.52 895.50 1.10 120.59 

GRU 254.98 189.56 941.03 0.81 50.20 

BiGRU 215.09 175.17 972.80 0.75 108.37 

DNN 119.98 90.09 1004.36 0.38 4.60 

kNN 160.70 124.65 1002.79 0.53 0.41 

Tree 136.50 99.64 999.60 0.42 0.35 

Table 7 presents the results of 60-minute intervals of electrical loads for Austria. For 60-minute 

interval in the same market, although the Decision Tree still performs strongly, DNN takes the 

first place with better RMSE, MAE and MASE. In terms of time used, the Decision Tree is still in 

first place, and DNN, although longer than the decision tree, is acceptable compared to the other 

neural network models. Figure 23 through Figure 26 present graphical comparisons between the 

actual values and the predicted values at 60-minute intervals. These plots are noticeably tighter 

than those depicted for the 15-minute intervals. It can be interpreted that the plots for the 15-minute 

intervals represent a higher sampled version of the latter portion of the 60-minute interval plots.  
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Figure 23 All Results plot Austria Load (60-minute intervals) 

 

Figure 24 Best vs. Actual Results for Austria Load (60-minute intervals) 
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Figure 25 All Results Last 24-hour for Austria Load (60-minute intervals) 

 

Figure 26 Best vs. Actual Results Last 24-hour for Austria Load (60-minute intervals) 
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Table 8 Evaluation Results for Germany Load (60-Minute Intervals) 

 Model  RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 1903.04 1254.28 7585.96 0.69 5.21 

TCNN 1083.49 784.54 7699.85 0.43 205.13 

LSTM 2806.71 2061.80 7153.53 1.13 42.81 

BiLSTM 1890.08 1429.04 7639.69 0.78 81.20 

GRU 1506.70 1161.04 7580.95 0.64 35.93 

BiGRU 1436.11 1090.38 7771.06 0.60 68.11 

DNN 809.76 609.66 7905.96 0.33 3.29 

kNN 983.67 749.60 7915.07 0.41 0.36 

Tree 960.88 721.90 7928.43 0.40 0.21 

Table 8 presents the results of 60-minute intervals of electrical loads for Germany. DNN exhibits 

outstanding performance with the lowest RMSE, MAE and MASE. And all models demonstrate 

improved performance to varying degrees, on the 60-minute dataset compared to 15-minute 

interval. The visualizations in Figure 27 to Figure 30 further confirm the consistency and 

orderliness of the observed data trends. Such findings are consistent with Germany's reputation as 

a highly developed and industrially advanced country. 
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Figure 27 All Results for Germany Load (60-minute intervals) 

 

Figure 28 Best vs. Actual Results for Germany Load (60-minute intervals) 
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Figure 29 All Results Last 24-hour for Germany Load (60-minute intervals) 

 

Figure 30 Best vs. Actual Results Last 24-hour for Germany Load (60-minute intervals) 
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Table 9 Evaluation Results for Netherlands Load (60-Minute Intervals) 

 Model RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 531.04 380.77 1103.86 1.05 6.51 

TCNN 358.62 256.75 1168.39 0.71 209.14 

LSTM 1161.89 930.44 693.73 2.58 53.13 

BiLSTM 824.52 683.11 1015.22 1.89 112.32 

GRU 657.00 553.35 1177.89 1.53 54.52 

BiGRU 441.83 338.57 1206.93 0.94 95.14 

DNN 335.28 246.16 1197.70 0.68 5.15 

kNN 665.96 482.78 1194.83 1.34 0.52 

Tree 375.28 269.35 1219.41 0.75 0.41 

Table 9 presents the results of 60-minute intervals of electrical loads for Netherlands. DNN retains 

its preeminent position. And the Decision Tree performs robustly. Notably, TCNN stands out as a 

significant spot, securing the second place in terms of error metrics. However, the optimization 

time for the TCNN is a considerable drawback. TCNN takes approximately 209 minutes to 

optimize for this dataset alone. The complexity and irregularity in Netherlands dataset are further 

exemplified in the visualizations in Figure 31 to Figure 34. We are nearly unable to derive 

meaningful information from the comparison plots that encompass all 2000 predictions. Closer 

examination of the plots of the final 24-hour data reveals a pronounced discrepancy between the 

predicted values and the actual values curves, indicating a generally poor fit across most models.  
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Figure 31 All Results for Netherlands Load (60-minute intervals) 

 

Figure 32 Best vs. Actual Results for Netherlands Load (60-minute intervals) 
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Figure 33 All Results Last 24-hour for Netherlands Load (60-minute intervals) 

 

Figure 34 Best vs. Actual Results Last 24-hour for Netherlands Load (60-minute intervals) 
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Table 10 Evaluation Results for Austria Wind (15-Minute Intervals) 

 Model  RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 86.71 55.61 543.39 1.83 6.34 

TCNN 49.05 31.03 543.45 1.02 275.37 

LSTM 137.67 96.55 530.15 3.17 43.83 

BiLSTM 96.90 72.30 538.13 2.38 84.39 

GRU 76.27 51.79 537.82 1.70 35.70 

BiGRU 72.11 51.04 558.54 1.68 76.18 

DNN 131.41 94.59 522.23 3.11 3.47 

kNN 134.96 87.94 532.94 2.89 0.36 

Tree 47.61 30.28 548.70 1.00 0.21 

For wind generation, Table 10 presents the evaluation results of 15-minute intervals for Austria. 

Returning to the 15-minute intervals, the Decision Tree once again reclaims its position as the top-

performing model. It is worth noting that the metrics of TCNN are slightly lower than that of 

Decision Tree. However, the time used for TCNN is still a significant drawback, approximately 

1000 times that of Decision Tree. The volatility of wind generation is further exemplified in Figure 

35 through Figure 38. The increased frequency of data points from 15-minute intervals presents 

significant challenges for model predictions.  
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Figure 35 All Results for Austria Wind (15-minute intervals) 

 

Figure 36 Best vs. Actual Results for Austria Wind (15-minute intervals) 
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Figure 37 All Results Last 24-hour for Austria Wind (15-minute intervals) 

 

Figure 38 Best vs. Actual Results Last 24-hour for Austria Wind (15-minute intervals) 
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Table 11 Evaluation Results for Germany Wind (15-Minute Intervals) 

 Model  RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 1089.05 799.40 5043.56 3.75 4.21 

TCNN 582.33 414.58 5352.63 1.94 196.70 

LSTM 997.84 704.16 5075.81 3.30 41.34 

BiLSTM 869.45 666.12 5286.35 3.12 79.75 

GRU 687.55 474.10 5100.22 2.22 35.19 

BiGRU 686.10 536.30 5208.85 2.51 77.77 

DNN 450.76 321.39 5200.90 1.51 3.17 

kNN 889.23 638.81 5103.64 2.99 0.37 

Tree 253.29 178.07 5223.61 0.83 0.22 

Table 11 presents the evaluation results of 15-minute intervals for Germany. As shown in the time 

series plots presented in preliminary analyses, the wind market exhibits significant randomness, 

which impacts the performance of forecasting models. Only Decision Tree stands out with MASE 

less than 1. Although the metrics are not initially promising, the models generally conform to the 

actual trend as depicted from Figure 39 to Figure 42. In Figure 42, the prediction curve generated 

by the Decision Tree demonstrates a closer alignment with the true value curve.  
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Figure 39 All Results for Germany Wind (15-minute intervals) 

 

Figure 40 Best vs. Actual Results for Germany Wind (15-minute intervals) 
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Figure 41 All Results Last 24-hour for Germany Wind (15-minute intervals) 

 

Figure 42 Best vs. Actual Results Last 24-hour for Germany Wind (15-minute intervals) 
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Table 12 Evaluation Results for Netherlands Wind (15-Minute Intervals) 

Model RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 81.34 58.35 355.78 2.64 4.26 

TCNN 45.00 32.83 343.11 1.49 199.61 

LSTM 69.86 49.43 342.20 2.24 38.54 

BiLSTM 64.25 46.10 342.83 2.09 73.46 

GRU 51.78 37.13 359.19 1.68 31.66 

BiGRU 53.72 37.32 357.55 1.69 69.67 

DNN 45.17 31.63 343.48 1.43 4.82 

kNN 74.19 51.00 347.47 2.31 0.36 

Tree 37.06 24.90 357.32 1.13 0.28 

Table 12 presents the evaluation results of 15-minute intervals for Netherlands. In this dataset, 

none of the models can make satisfactory predictions. Among the models, the Decision Tree, 

typically the better model, exhibits only modest result. In Figure 43 and Figure 44, the plotted data 

points appear to closely align with the actual value curve, suggesting a relatively accurate model 

performance at first glance. However, a more detailed examination of Figure 45 and Figure 46 

reveals a different scenario. These figures show that the data points show a jagged pattern and 

deviate at a noticeable distance from the true value curve, indicating that the model's predictions 

are not as closely aligned with the actual outcomes as initially perceived. 
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Figure 43 All Results for Netherlands Wind (15-minute intervals) 

 

Figure 44 Best vs. Actual Results for Netherlands Wind (15-minute intervals) 
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Figure 45 All Results Last 24-hour for Netherlands Wind (15-minute intervals) 

 

Figure 46 Best vs. Actual Results Last 24-hour for Netherlands Wind (15-minute intervals) 
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Table 13 Evaluation Results for Austria Wind (60-Minute Intervals) 

 Model  RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 204.43 139.14 445.32 1.46 4.90 

TCNN 153.52 99.65 447.48 1.05 289.37 

LSTM 236.93 182.37 420.69 1.92 38.86 

BiLSTM 234.10 178.87 478.34 1.88 90.91 

GRU 169.11 112.71 470.58 1.19 48.15 

BiGRU 156.80 98.55 472.54 1.04 94.36 

DNN 166.92 110.01 459.52 1.16 3.22 

kNN 254.46 176.06 426.64 1.85 0.38 

Tree 155.56 100.03 470.63 1.05 0.25 

The next three tables show the wind market at 60-minute intervals. Table 13 presents the results 

of Austria. Among the models, TCNN, Decision Tree and BiGRU are relatively superior. However, 

while these models outperform their counterparts, they all have a MASE greater than 1. In Figure 

47 through Figure 50, the plots have a pronounced level of clutter. The visual congestion in these 

figures makes it difficult to discern whether the models align closely with the actual data trends. 
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Figure 47 All Results for Austria Wind (60-minute intervals) 

 

Figure 48 Best vs. Actual Results for Austria Wind (60-minute intervals) 
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Figure 49 All Results Last 24-hour for Austria Wind (60-minute intervals) 

 

Figure 50 Best vs. Actual Results Last 24-hour for Austria Wind (60-minute intervals) 
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Table 14 Evaluation Results for Germany Wind (60-Minute Intervals) 

 Model  RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 1885.93 1401.90 5281.51 1.98 7.02 

TCNN 2399.06 1945.11 5223.12 2.74 202.02 

LSTM 2416.48 1885.91 4572.87 2.66 51.41 

BiLSTM 2344.06 1949.61 4925.83 2.75 83.73 

GRU 1350.46 1018.58 5252.57 1.44 34.19 

BiGRU 1358.89 1002.56 5191.29 1.41 77.57 

DNN 1008.61 758.25 5248.66 1.07 3.67 

kNN 2228.24 1623.88 4911.05 2.29 0.35 

Tree 765.73 554.87 5332.17 0.78 0.26 

Table 14 presents the results of 60-minute intervals for Germany. As with the corresponding 15-

minute market, the Decision Tree becomes the only model with a MASE less than 1. DNN has a 

MASE slightly above 1, which narrowly misses the benchmark. The scenarios depicted in Figure 

51 through Figure 54 are similar trends to those observed at 15-minute intervals. When examining 

these models on at the last 24-hour observations, there is a misalignment from the true value curve. 
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Figure 51 All Results for Germany Wind (60-minute intervals) 

 

Figure 52 Best vs. Actual Results for Germany Wind (60-minute intervals) 
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Figure 53 All Results Last 24-hour for Germany Wind (60-minute intervals) 

 

Figure 54 Best vs. Actual Results Last 24-hour for Germany Wind (60-minute intervals) 
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Table 15 Evaluation Results for Netherlands Wind (60-Minute Intervals) 

 Model RMSE MAE MAD MASE Optimization Time Used (Minutes) 

CNN 124.25 90.14 365.67 1.64 5.22 

TCNN 83.59 60.10 397.16 1.09 148.45 

LSTM 145.28 112.25 353.87 2.04 37.73 

BiLSTM 104.73 76.66 367.15 1.40 88.66 

GRU 90.09 65.88 378.76 1.20 38.16 

BiGRU 87.53 62.84 378.54 1.14 75.44 

DNN 92.51 66.62 378.68 1.21 3.68 

kNN 147.00 112.01 357.58 2.04 0.34 

Tree 78.82 55.65 377.81 1.01 0.27 

Lastly, Table 15 presents the results of 60-minute intervals for Netherlands.  Decision Tree again 

performs best, with an RMSE of 78.82. However, its MASE is slightly above the benchmark at 

1.01. TCNN closely follows, with an RMSE of 83.59 and a MASE of 1.09. In Figure 55 through 

Figure 58, the models demonstrate a capacity to approximate the general trend of the dataset. 

However, they do not adequately capture the finer details of the true value curve. 
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Figure 55 All Results for Netherlands Wind (60-minute intervals) 

 

Figure 56 Best vs. Actual Results for Netherlands Wind (60-minute intervals) 
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Figure 57 All Results for Netherlands Wind (60-minute intervals) 

 

Figure 58 Best vs. Actual Results Last 24-hour for Netherlands Wind (60-minute intervals) 
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After comparing the performance within each respective market, we identified the most effective 

model for each individual market based on the established metrics. Then, these best performing 

models are selected for a side-by-side comparative analysis. The four tables below present the 

comparison. 

Table 16 Comparison of Load (15-minute intervals)  

Country Model RMSE MAE MAD MASE 
Optimization Time Used 

(Minutes) 

Austria Tree 63.07 46.77 1005.82 0.71 1.17 

Germany Tree 476.06 351.20 8113.38 0.66 0.25 

Netherlands Tree 166.91 107.21 1302.92 0.82 0.36 

Table 16 presents the electricity load datasets at 15-minute intervals for all three countries. 

Decision Trees are the best models, yielding satisfactory predictions across all three datasets.  

Table 17 Comparison of Load (60-minute intervals) 

Country Model RMSE MAE MAD MASE 
Optimization Time Used 

(Minutes) 

Austria DNN 119.98 90.09 1004.36 0.38 4.60 

Germany DNN 809.76 609.66 7905.96 0.33 3.29 

Netherlands DNN 335.28 246.16 1197.70 0.68 5.15 

Table 17 presents the electricity load datasets at 60-minute intervals. DNNs are the best models in 

terms of errors. And the computational time required for training is acceptable as well. 

Table 18 Comparison of Wind (15-minute intervals) 

Country Model RMSE MAE MAD MASE 
Optimization Time Used 

(Minutes) 

Austria Tree 47.61 30.28 548.70 1.00 0.21 

Germany Tree 253.29 178.07 5223.61 0.83 0.22 

Netherlands Tree 37.06 24.90 357.32 1.13 0.28 

Table 18 shows the wind generation datasets at 15-minute intervals. The performance of the 

models generally fell short of expectations, except for the Germany dataset, where the models 

demonstrated relatively better predictive accuracy. Nevertheless, the Decision Tree consistently 

achieved the highest ranking in respective datasets. 
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Table 19 Comparison of Wind (60-minute intervals) 

Country Model RMSE MAE MAD MASE 
Optimization Time Used 

(Minutes) 

Austria TCNN 153.52 99.65 447.48 1.05 289.37 

Germany Tree 765.73 554.87 5332.17 0.78 0.26 

Netherlands Tree 78.82 55.65 377.81 1.01 0.27 

Table 19 demonstrates the wind generation datasets at 60-minute intervals. The datasets are not 

promising like the previous ones. Decision Tree are the best models for Germany and Netherlands, 

while TCNN is the best for Austria.  
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5. Discussion 

5.1 Interpretation of Findings 

Focusing on the datasets, an initial review indicates that traditional energy sources remain the 

predominant contributors to electricity load across all three countries analyzed. Concurrently, wind 

power constitutes a relatively minor segment of the total energy mix, its contribution significantly 

influenced by the stochastic characteristics of wind availability. The findings also underscore the 

reliance on conventional energy sources and highlight the challenges that renewable energy faces 

in increasing its market share and improving its reliability. Furthermore, the results suggest an 

ongoing need to balance the utilization of traditional energy and the integration and expansion of 

renewable energy to meet both current energy demands and future sustainability goals. As 

previously mentioned, the electricity load patterns in the three countries are considerably regular, 

which has helped the models make relatively good predictions. On the contrary, wind power 

presents more irregular patterns which complicate the models to generate reliable forecasts. It also 

highlights the need for sophisticated modeling techniques that can accommodate the considerable 

unpredictability of wind energy sources. 

In terms of experimental results, the performance of the neural network models did not fully meet 

expectations, with only the DNN demonstrating notable proficiency within the 60-minute interval 

for electricity load datasets. While other neural network models successfully captured general 

trends, the quantitative metrics suggest their overall performance was merely average. 

Several potential reasons could explain this. First, neural networks, particularly deep learning 

models, tend to be computationally intensive. In this research, each iteration of the optimization 

process took several minutes, and optimization was limited to thirty iterations. This constraint 

likely prevented the models from converging to the optimal parameter combinations, especially 

considering the complexity of neural networks. Thirty iterations may simply be insufficient for the 

models to explore the full range of parameter space, potentially limiting their ability to achieve 

superior results. Additionally, some models appeared to reach the upper bounds of the defined 

parameter space, suggesting that the parameter space itself may have been too restrictive, hindering 

the discovery of more effective configurations. 

Another key factor may be the window size of thirty observations used for prediction. For the 60-

minute intervals, this represents just over a day’s worth of data, while for the 15-minute intervals, 

it corresponds to roughly seven and a half hours. These window lengths may not provide enough 

historical context for the models to fully capture long-term patterns, especially in datasets where 

consumption patterns or wind generation vary on longer timescales. 

The nature of the data also presents inherent challenges. The electricity load data includes 

unpredictable peaks, and wind generation data is known for its inherent volatility and non-

stationary characteristics. Decision tree may be better suited to handle these challenges due to their 

ability to segment the data and fit complex, non-linear relationships without needing as much fine-

tuning or extensive optimization. In contrast, neural networks often require more data 

preprocessing, careful tuning of hyperparameters, and larger datasets to perform well. Moreover, 

decision trees are less sensitive to issues like multicollinearity and can often produce satisfactory 
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results even when the underlying data is noisy or irregular, as is the case with wind generation and 

electricity load datasets. 

Furthermore, decision tree models tend to be more robust in cases of overfitting when compared 

to deep learning models, which are prone to overfitting when working with smaller training sets 

or insufficiently varied data. In this context, the decision tree models might have achieved better 

generalization and performed more effectively on the test data. 

In conclusion, the observed performance differences between the decision tree and neural network 

models can be attributed to several factors: the limited optimization iterations, restricted parameter 

spaces, potentially insufficient window lengths for neural networks, and the intrinsic complexities 

of the datasets. These factors collectively exacerbate the difficulty for neural networks to achieve 

high performance in these specific forecasting tasks, giving decision tree models a comparative 

advantage. 

 

5.2 Implications 

The research underscores the critical role of accurate forecasts in electricity load and wind 

generation for enhancing grid efficiency and supporting governmental operations. Leveraging 

advanced machine learning techniques and Bayesian optimization, organizations can make 

informed decisions to enhance efficiencies and operational capacities. The ability to forecast 

electricity load and wind generation is essential for effective energy management and extends 

beyond mere operational concerns. Accurate predictions help prevent power outages, thereby 

fostering social stability and enhancing grid profitability. Thus, the development of precise and 

dependable models is crucial for enabling informed decision-making in power consumption 

management. The broader economic implications are significant. Failures in power supply often 

cause social instability. By providing accurate forecasts of power load, organizations can 

proactively address potential energy crises. 

The study provides a thorough exploration of models for predicting electricity load and wind 

generation. The detailed analysis of these prediction models can be employed to evaluate the status 

of power grids, offering stakeholders crucial data to enhance their management of electrical power 

and other related operations. It delivers essential insights into effective prediction models for 

electricity load and wind generation, which are instrumental for organizations managing power 

grids in optimizing power management and relevant processes. The research comprises instructive 

and technical content beneficial for academics and professionals within the industry. 

 

5.3 Limitation and Future Research 

The first notable limitation encountered in our study pertains to the computational resources 

utilized. The field of energy forecasting deals with extensive datasets, and in our initial dataset 

compilation, we had over a million observations in total. However, due to the constraints posed by 
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our computing infrastructure, we have to select only the most recent observations for detailed 

analysis. This limitation was identified during our initial trials where training a single neural 

network model required more than 24 hours. Consequently, a decision was made to reduce the 

dataset size to manage computational demands more effectively. Furthermore, there are significant 

opportunities for enhancing the optimization of model parameters and the iterative settings used 

in our experiments. These aspects of our methodology were particularly influenced by the 

limitations of our current devices. With an upgrade in computational resources, there would be 

substantial scope to extend both the parameter search space and the number of iterations, 

potentially leading to improvements in model performance and accuracy. Future improvements in 

computational capacity could unlock new possibilities for more comprehensive data analysis and 

refined model tuning, thereby enhancing the robustness and applicability of the models. 

While the current study provides substantial insights into energy forecasting, there remains a 

possibility that the models may not fully capture the complicated dynamics of real-world energy 

systems. Future research could focus on developing and testing more sophisticated models that 

incorporate a broader range of variables and interaction effects. As the energy sector continues to 

evolve, the integration of renewable energy sources becomes increasingly critical. Research could 

explore forecasting models that specifically address the variability and unpredictability associated 

with renewable energy sources, such as solar and wind power. There is an opportunity to expand 

the geographical scope of the research to include cross-regional studies that examine the 

applicability of forecasting models in different climatic and socio-economic contexts.  

 

6. Conclusion 

The research has systematically explored the efficacy of various predictive models in forecasting 

electricity load and wind generation, contributing significantly to the understanding and 

improvement of forecasting practices in the energy sector. The analysis reveals that among the 

various models tested, the Decision Tree consistently outperforms others in forecasting accuracy 

for almost every dataset. DNN is the most effective for predicting electricity loads at 60-minutes 

interval. The results of DNN implies the potential of advanced machine learning techniques in 

enhancing traditional energy forecasting methods. 

For wind generation, there are significant challenges due to the inherent irregularity and 

unpredictability of wind patterns. As a result, almost every model evaluated in this study 

underperforms relative to expectations. The stochastic nature of wind makes it complex for models, 

and this difficulty is reflected in the consistently moderate performance. Despite advancements in 

predictive modeling, the capricious characteristics of wind continue to impede the ability of 

models to achieve optimal accuracy in wind generation forecasts. It underscores the need for 

research and development in this field to enhance the predictive capabilities of models dealing 

with such volatile energy sources. 

The study's contributions extend beyond the empirical findings. Methodologically, it advances the 

application of complex neural network architectures in the energy sector, providing a blueprint for 
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future research and development in energy forecasting. Practically, it offers actionable insights for 

energy policymakers and professionals on selecting and implementing forecasting models that can 

handle the complexities of modern energy systems. These findings not only pave the way for more 

reliable energy forecasting models but also contribute to the broader discourse on integrating 

machine learning into energy management systems, thereby supporting more sustainable and 

efficient energy use globally. The research highlights the potential for these technologies to 

transform energy operations, emphasizing the critical role of accurate forecasting in the transition 

to more adaptive and resilient energy systems. 

The research also contributes to the theoretical underpinnings of energy forecasting by exploring 

and validating various predictive models for electricity load and wind generation. By comparing 

the efficacy of different models, this research has also contributed to theoretical discussions on the 

suitability of various forecasting methodologies under specific conditions encountered within the 

energy sector. Furthermore, the use of Bayesian optimization for hyperparameter tuning in 

complex models has demonstrated a robust framework for improving model performance, setting 

a precedent for future research to build upon. 

In conclusion, the research fills a crucial gap in our understanding of electricity load and wind 

generation forecasting and offers a multi-dimensional benefit to the field. The continued 

exploration of these themes is essential for the evolution of energy management strategies and the 

development of policies that support the informed and efficient use of resources. 
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