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ABSTRACT

Deep Reinforcement Learning-based Automated Penetration Testing for

Active Distribution Networks

Yuanliang Li, Ph.D.

Concordia University, 2024

The smart grid is a highly complex cyber-physical system of heterogeneous compo-

nents with sensory, control, computation, and communication. Due to its complexity,

dimensionality, uncertainty, and strong cyber-physical coupling, manually identify-

ing critical vulnerabilities against cyberattacks at infrastructure levels has proven to

be challenging. In the information and communication technology (ICT) industry,

penetration testing (PT) has demonstrated its efficacy in pinpointing vulnerabilities

within information systems through authorized cyberattacks. Building upon the prin-

ciples of PT, this study delves into exploring effective and efficient PT approaches to

discover vulnerabilities for active distribution networks (ADNs) of smart grids based

on deep reinforcement learning (DRL) methods.

To overcome the poor efficiency and non-comprehensiveness of common PT in

identifying vulnerabilities for an ADN caused by its complex structure and strong

cyber-physical coupling, we first propose a DRL-based PT framework and formulate

the PT as a Markov decision process (MDP) specifically for the industrial control

networks of the ADN. This framework comprehensively considers cyber-physical cou-

pling, realistic cyberattacks, and the physical impacts of ADNs. The framework is

applied to model a replay attack scheme on an ADN as the study case, which aims

to identify critical attack paths that lead to system voltage violations. Additionally,

a co-simulation platform named GridBattleSim was developed specifically for DRL-

based PT on ADNs, integrating dedicated simulators for different parts of the ADN.

The simulation results show the efficacy of DRL-based PT in learning optimal attack

paths under varying system conditions and different levels of attack difficulty.

To overcome the limited observability in practical PT scenarios, a partially ob-

servable Markov decision process (POMDP) formulation is proposed, which allows

the PT agent to learn PT policies under partially observable conditions. To solve the
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POMDP and obtain the optimal PT policy, we apply the physical model of the ADN

to estimate its full state based on the local observable data captured by the PT agent

and then transform the POMDP to an MDP that can be solved by DRL.

Furthermore, to address the sparse reward issue, improve the generalization of

reward functions, and improve the interpretability of DRL-based PT, a knowledge-

informed AutoPT framework (RM-PT) is proposed, which incorporates cybersecurity

domain knowledge based on Reward Machine (RM). We use the lateral movement

of PT on ANDs as a case study, where two RMs are designed based on MITRE

ATT&CK knowledge base as two PT guidelines. Finally, the deep Q-learning with

RM (DQRM) algorithm is applied to train the PT policies. The proposed RM-PT

is evaluated under the CyberBattleSim platform. The experimental results show that

the knowledge-informed PT exhibits a higher training efficiency compared to the PT

without knowledge embedding. Furthermore, RMs that incorporate more detailed

domain knowledge exhibit superior PT performance compared to RMs with simpler

knowledge.

Finally, we also discuss the future directions of this study in terms of domain

knowledge integration for AI-powered PT. We anticipate that the methodologies and

findings presented in this study can inspire efforts in securing critical infrastructure

and closing research gaps for the cybersecurity of smart grids.
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Last but not least, I want to thank my parents and my wife, who have always

been encouraging and supporting me to pursue my Ph.D. dream.

v



To my mother, the strongest woman I have ever seen.

To my father, the man who is always proud of me.

To my wife, my love in every sense of the word.



Contents

List of Figures x

List of Tables xiii

Abbreviation xiv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Smart Grid as a Cyber-Physical System . . . . . . . . . . . . 1

1.1.2 Security Challenges in Smart Grids . . . . . . . . . . . . . . . 4

1.1.3 Defense Against Cyberattacks on Smart Grids . . . . . . . . . 7

1.1.4 Penetration Testing and Its Challenges for Smart Grids . . . . 9

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Problem 1: Poor Efficiency and Non-Comprehensiveness of Com-

mon PT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Problem 2: Limited Observability of PT . . . . . . . . . . . . 17

1.2.3 Problem 3: Sparse-Reward Issues in RL/DRL-based PT . . . 18

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Literature Review 25

2.1 AutoPT Techniques for IT Industry . . . . . . . . . . . . . . . . . . . 25

2.1.1 AutoPT Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Attack-Graph-based AutoPT . . . . . . . . . . . . . . . . . . 29

2.1.3 RL/DRL-based AutoPT . . . . . . . . . . . . . . . . . . . . . 30

2.2 Vulnerability Analysis Approaches Against Cyberattacks for Smart Grids 33

vii



2.2.1 Optimization-based Vulnerability Analysis . . . . . . . . . . . 33

2.2.2 RL/DRL-based Vulnerability Analysis . . . . . . . . . . . . . 36

3 DRL-based AutoPT for ADNs 41

3.1 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 DRL-based AutoPT Framework for ADNs . . . . . . . . . . . 44

3.3.2 General MDP Formulation for AutoPT . . . . . . . . . . . . . 46

3.4 Case Study on ADNs Using MDP Formulation . . . . . . . . . . . . . 51

3.4.1 Threat Modeling of Replay Attacks on ADNs . . . . . . . . . 51

3.4.2 MDP Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3 PT Policy Optimization based on DQN . . . . . . . . . . . . . 54

3.5 GridBattleSim: A Co-Simulation Platform for AutoPT on ADNs . . . 57

3.5.1 Platform Introduction . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Platform Workflow . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 DRL-based AutoPT under Partially Observable Conditions for ADNs 77

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 General POMDP Formulation for AutoPT . . . . . . . . . . . 80

4.3.2 Belief State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Case Study on ADNs Using POMDP Formulation . . . . . . . . . . . 84

4.4.1 POMDP Design . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.2 PT Policy Optimization based on DQN with Belief State . . . 87

4.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



5 Knowledge-Informed AutoPT based on Reward Machine 99

5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Knowledge-Informed AutoPT Framework . . . . . . . . . . . . 103

5.3.2 POMDP with Reward Machine Formulation for AutoPT . . . 107

5.4 Case Study on Lateral Movement Using POMDPRM Formulation . . 108

5.4.1 POMDPRM Design . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.2 PT Policy Optimization based on DQRM . . . . . . . . . . . . 114

5.5 Simulation Platform and Testing Environments . . . . . . . . . . . . 116

5.6 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6.1 Agent Configurations . . . . . . . . . . . . . . . . . . . . . . . 118

5.6.2 Comparative Studies . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusions and Future Work 128

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Author’s Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 133

ix



List of Figures

1.1 The typical structure of the smart grid: an integrative system with

cyber and physical parts. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Different types of IDS against cyberattacks for smart grids [1]. . . . . 9

1.3 Work flow of common PT [2]. . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Thesis outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 DRL-based PT framework. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 The replay attack scheme on PMU packets in the ADN. . . . . . . . . 52

3.3 The framework of DQN algorithm. . . . . . . . . . . . . . . . . . . . 55

3.4 The framework of GridBattleSim. . . . . . . . . . . . . . . . . . . . . 59

3.5 IEEE 13-bus distribution feeder. . . . . . . . . . . . . . . . . . . . . . 63

3.6 The communication network for the ADN. . . . . . . . . . . . . . . . 64

3.7 The replay attack hook implementation in OmNet++. . . . . . . . . 65

3.8 The training process for the DRL-based PT in Scenario-1. . . . . . . 67

3.9 The lowest voltage of each phase under (a) a non-attack condition and

(b) the attack path of the trained PT policy in Scenario-1. . . . . . . 68

3.10 PT policies in different stages of the training process in Scenario-1: (a)

Policy A (episode reward = 0), (b) Policy B (episode reward = 1.11),

(c) Policy C (episode reward = 6.87), (d) Policy D (episode reward

= 6.87), (e) Policy E (episode reward = 19.68), (f) Policy F (episode

reward = 24.89). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.11 The lowest voltage of each phase under (a) a non-attack condition and

(b) the attack path of the trained PT policy in Scenario-2. . . . . . . 71

3.12 The lowest voltage of each phase under non-attack condition in Scenario-

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 The lowest voltage of each phase under non-attack condition in Scenario-

4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



3.14 The lowest voltage of each phase under (a) non-attack condition and

(b) the attack path of the trained PT policy in Scenario-5. . . . . . . 74

3.15 The lowest voltage of each phase under non-attack condition in Scenario-

6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.16 The lowest voltage of each phase under human policy in Scenario-1. . 75

4.1 The belief state estimation based on OSINT and local observations. . 82

4.2 Communication networks for the target ADN. . . . . . . . . . . . . . 90

4.3 The training process for the DQN-based PT using Reward Function I

and belief state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Attack path based on DQN using Reward Function I and belief state. 93

4.5 The training process for the DQN-based PT using Reward Function II

and belief state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 The training process for the Q-learning-based PT using Reward Func-

tion II and belief state. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Attack paths based on DQN using Reward Function II and belief state

in different stages of the training process: (a) Policy A (initial policy),

(b) Policy B (after 1000 episodes), (c) Policy C (after 2000 episodes),

(d) Policy D (final policy). . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 The lowest voltage of the system under the DQN-based PT with Re-

ward Function II and belief state. . . . . . . . . . . . . . . . . . . . . 96

4.9 The training process for the DQN-based PT using Reward Function II

without belief state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.10 The training process for the Q-learning-based PT using Reward Func-

tion II without belief state. . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 The proposed knowledge-informed AutoPT framework (RM-PT). . . 104

5.2 The diagram of Reward Machine I (R1). . . . . . . . . . . . . . . . . 112

5.3 The diagram of Reward Machine II (R2). . . . . . . . . . . . . . . . . 113

5.4 CyberBattleChain environment (env -1). . . . . . . . . . . . . . . . . . 117

5.5 CyberBattleToyCtf environment (env -2). . . . . . . . . . . . . . . . . 118

5.6 The training performance of four agents in env -1: accumulated rewards

with respect to the accumulated steps (ACR). . . . . . . . . . . . . . 122

5.7 The training performance of four agents in env -1: average rewards per

step (ARP ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xi



5.8 PT performance of four agents in env -1: accumulated rewards with

respect to the accumulated steps (ACR). . . . . . . . . . . . . . . . . 123

5.9 PT performance of four agents in env -1: number of steps per episode

(TS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.10 The training performance of four agents in env -2: accumulated rewards

with respect to the accumulated steps (ACR). . . . . . . . . . . . . . 125

5.11 The training performance of four agents in env -2: average rewards per

step (ARP ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.12 PT performance of four agents in env -2: number of steps per episode

(TS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xii



List of Tables

1.1 Identified threats and potential impacts to smart grids. . . . . . . . . 6

1.2 Common techniques used for vulnerability identification and analysis

in different domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Common PT tools for IT security. . . . . . . . . . . . . . . . . . . . . 28

2.2 Summary of advanced AutoPT methods for IT Industry. . . . . . . . 32

2.3 Summary of advanced vulnerability analysis against Cyberattacks for

smart grids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Action space of PT on smart grid . . . . . . . . . . . . . . . . . . . . 48

3.2 Configurations of the ADN entities . . . . . . . . . . . . . . . . . . . 64

4.1 Configurations of the target ADN . . . . . . . . . . . . . . . . . . . . 91

5.1 Event set of PT (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Action space for lateral movement . . . . . . . . . . . . . . . . . . . . 109

5.3 Observation space of PT . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Learning agents for comparison . . . . . . . . . . . . . . . . . . . . . 119

5.5 Training parameters of DQRM and DQN . . . . . . . . . . . . . . . . 120

xiii



Abbreviations

ADN Active Distribution Network

AGC Automatic Generation Control

AMI Advanced Metering Infrastructure

AutoPT Automated Penetration Testing

BDD Bad Data Detector

CA Contingency Analysis

CPS Cyber-Physical System

CVR Conservation Voltage Reduction

DA Distribution Automation

DER Distributed Energy Resource

DNN Deep Neuron Network

DoS Denial of Service

DQN Deep Q-Network

DQRM Deep Q-Learning with Reward Machine

DRL Deep Reinforcement Learning

ESS Energy Storage System

EV Electric Vehicle

FDIA False Data Injection Attack

GPS Global Positioning System

ICS Industrial Control System

xiv



ICT Information and Communication Technology

IDS Intrusion Detection System

IT Information Technology

MDP Markov Decision Process

MITM Man-in-the-Middle

OLTC On-Load Tap Changer

OPF Optimal Power Flow

OSIT Open-Source Intelligence Technique

OT Operational Technology

PDC Phasor Data Concentrator

PLL Phase Locked Loop

PMU Phasor Measurement Unit

POMDP Partially Observable Markov Decision Process

POMDPRM Partially Observable Markov Decision Process with Reward Machine

PT Penetration Testing

PV Photovoltaic

QoS Quality of Service

QRM Q-Learning with Reward Machine

RL Reinforcement Learning

RM-PT Knowledge-Informed AutoPT Framework based on Reward Machine

SAVMVI System Average Voltage Magnitude Violation Index

SCADA Supervisory Control and Data Acquisition

SE State Estimation

WAMPAC Wide Area Monitoring Protection and Control

δ Action Duration

γ Discount Factor

A, at Action Space, Action

xv



O, ot Observation Space, Observation

S, st State Space, State

ϕt Feature Vector

bt Belief State

M Number of sampling during one action duration

N Number of bus nodes of the power grid

NP Number of PMUs deployed in the power grid

NV P Number of visible PMUs deployed in the power grid

R(·),R, rt Reward Function, Reward Machine, Reward

xvi



Chapter 1

Introduction

1.1 Background

1.1.1 Smart Grid as a Cyber-Physical System

With the growing pressure of the global energy crisis and climate change, over 120

countries worldwide have committed to achieving net-zero emissions by 2050. This

ambitious target necessitates that countries’ economies either cease emitting green-

house gases entirely or offset their emissions through the utilization of carbon-neutral

technologies [3]. Among all industries, the energy and power sector holds a pivotal

role in a country’s economy and bears significant responsibilities in striving towards

the goal of net-zero emissions. A key objective of the energy and power sector is to

build efficient, reliable, and sustainable power grids for the nation through enhancing

energy conversion efficiency, embracing renewable energies, enforcing energy-saving

regulations, and maintaining the stability and quality of service (QoS) of grids.

In this context, the rapid development of information and communication tech-

nologies (ICT) plays a critical role and contributes dramatically to real-time monitor-

ing, optimal control, energy management, and timely emergency response of power
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grids. The extensive integration of ICT combined with the development of distribu-

tion generation techniques has gradually transformed conventional power grids into

smart grids that embrace many advanced features and applications, such as advanced

metering infrastructure (AMI) [4], active distribution networks (ADNs) [5], distri-

bution automation [6], demand-side response [7], virtual power plants (VPPs) [8],

transactive energy systems [9], among others.

The physical infrastructure and ICT integration of the smart grid have evolved it

into a large-scale cyber-physical system (CPS) [10]. A typical structure of the cyber-

physical smart grid is shown in Figure 1.1, which consists of a physical part and a

cyber part.

Monitoring Energy Management

Protection & Outage
Management

State Estimation

Communication
Networks

Measurements Control Commands

Generation Transmission Distribution

Power Grid

Cyber
Part

Physical
Part

Demand Response

Control Center
(TSO, DSO, MGCC, etc.)

Pricing Signals

RTU

Sensors
(PMU, Smart Meter, etc.)

Actuators
(Circuit Breaker, Inverter, etc.)

RTU

Figure 1.1: The typical structure of the smart grid: an integrative system with cyber
and physical parts.

The physical part of the smart grid involves generation systems, transmission

systems, and distribution systems [11]. Generation systems produce electricity from
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various types of power plants, e.g., hydropower stations, solar farms, wind farms,

etc. Transmission systems transport high-voltage electricity from power plants to

distribution systems over long distances. Distribution systems encompass the network

of medium- and low-voltage power lines, transformers, and other components that

deliver electricity from the transmission system to customers (end users). Customers

include any entity that consumes energy, e.g., houses, buildings, electric vehicles

(EVs), factories, among others.

Furthermore, the advancement of distributed generation techniques has led to

an increasing integration of distributed energy resources (DERs), such as rooftop

photovoltaic (PV) systems, wind turbines, and energy storage systems (ESSs), in

distribution systems. This integration enables power generation on the customer

side, transforming the traditional unidirectional power flow into a bidirectional one

[12]. It also enhances the flexibility of control and energy management within the

grid. Consequently, many advanced power grids, such as active distribution networks

(ADNs), microgrids, and virtual power plants (VPPs), have emerged as key players

in evolving distribution systems.

Sensors and actuators deployed throughout the grid play as bridges between the

cyber and physical parts through remote terminal units (RTUs). Sensors, such as

phasor measurement units (PMUs) [13] and smart meters, monitor various electri-

cal parameters of the power grid, including voltage, current, frequency, and energy

consumption of customers, among others. Actuators, such as circuit breakers, volt-

age regulators, etc., carry out control commands (like opening/closing breakers) to

control the physical state of the grid.

The cyber part of the smart grid encompasses communication networks and the

control center. Communication networks facilitate the transmission of sensor data to

the control center and control commands to actuators distributed across the grid. In

3



addition, pricing signals of current electricity will also be delivered to customers to

facilitate the demand response program.

Serving as the brains of smart grids, control centers, also called grid operators,

deploy Supervisory Control and Data Acquisition (SCADA) systems [14] to balance

supply and demand, regulate voltage and frequency, and support the emergence re-

sponse of smart grids. Typical tasks of control centers include data monitoring, state

estimation, energy management (automatic generation control(AGC), optimal power

flow (OPF), voltage-var control (VVC), etc.), demand response, protection, and out-

age management.

Control centers have multiple control objectives for smart grids: 1) stability,

which ensures there is just enough power to meet the load demand; 2) quality,

which ensures the quality of electricity required by the load demand; 3) economics,

which generates, transmits, and distributes electricity at lowest costs; 4) reliabil-

ity, which ensures uninterruptible delivery of electricity; 5) sustainability, which

reduces carbon emission and other pollution from smart grids. Based on their control

scopes, control centers can be categorized into transmission system operators (TSOs),

distribution system operators (DSOs), microgrid control centers (MGCCs), and VPP

coordinators, among others.

1.1.2 Security Challenges in Smart Grids

With the pervasive fusion of ICT, the cybersecurity of smart grids has received a great

deal of attention. The interconnection of millions of field devices creates an enormous

attack surface that could be exploited by prominent threats to the confidentiality, in-

tegrity, and availability (CIA) of information systems, as well as the physical security

of power systems [15]. Cyberattacks on smart grids could cause physical impacts due

to the tight integration between the grid’s cyber (control and information systems)
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and physical (generation, transmission, and distribution infrastructure) components.

Physical impacts of smart grids include interruptions in electricity supply, wide-area

power outages, equipment damage, or even safety hazards and casualties.

The infamous 2003 power blackout in the U.S. and Canada is an example of alarm-

ing incidences: a software bug led to a series of misoperations in a regional control

room in Ohio, which was aggravated by unforeseen cascading physical failures across

interconnected power grids of eight states/ provinces, eventually cutting power to

over 50 million people with an estimated loss of over $6 billion [16]. The Ukrainian

blackout in 2015 caused by spear-phishing emails and BlackEnergy 3 malware tar-

geting power grid SCADA systems finally resulted in power outages to over 225,000

customers for 1-6 hours [17]. In recent years, multiple U.S. critical infrastructure

sectors, including energy, nuclear, and commercial facilities, have witnessed a spate

of cyberattacks ranging from network reconnaissance to host-based exploitation and

denial of service, among other tactics[18].

Emerging DERs and customer-owned smart inverters (ICT-integrated power elec-

tronics that convert the DC power produced by DERs to AC power for grid con-

nections [36]) further aggravate the risk of cyberattacks on distribution systems due

to many factors. A large number of smart inverters are installed on customer sites,

extending the attack surface and making them easier to access, especially when con-

nected to building automation and other public IT networks [37]. DER owners may

not have sufficient awareness, expertise, or manpower of the cybersecurity of smart

inverters [37]. In addition, third parties, such as smart inverter manufacturers and

DER aggregators, often enable remote accesses to monitor, configure, and even di-

rectly control the operation of smart inverters. They offer online services like cloud

storage, real-time performance evaluation [38], remote maintenance, and fault diag-

nosis [39], providing critical paths that can be targeted for remote code injection and
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Table 1.1: Identified threats and potential impacts to smart grids.

Target Threat Impact Ref.

Synchronous Genera-
tors

Aurora attack Generator damage;
power shortage

[19]

Generation control AGC attack Disturbance; power
shortage

[20]

WAMPAC GPS spoofing Misinformation; line
outage

[21]

Transmission State Es-
timation

DoS, FDIA on PMU
data

Misinformation; BDD
bypassing; OPF perfor-
mance degradation

[22]

Outage Management Line outage masking Voltage violation; line
overflow

[23]

ADN CVR Measurements modifi-
cation on smart meters

Voltage violations; ac-
tive power increase

[24]

ADN dynamic reactive
power control

Voltage measurements
manipulation of trans-
former

Voltage violation; great
power loss

[25]

ADN load shedding Active/reactive power
set-points manipulation

Voltage violation [26]

ADN under frequency
load shedding

Active power set-points
manipulation

Frequency excursions;
load loss

[27]

Microgrid secondary
droop controller

DoS on frequency mea-
surements

Large frequency, volt-
age, active power oscil-
lations

[28]

Microgrid secondary
droop controller

Supplementary active
power set-point manip-
ulation

Large frequency, volt-
age, active power oscil-
lations

[29]

Smart inverter commu-
nication interface

Reconnaissance; Re-
play; DoS; MITM

Inverter shut down [30,
31,
32]

Smart inverter Firmware replacement Inverter disconnection [33]

Smart inverter PLL attack through
high voltage pulse gen-
erators

Output voltage wave-
form distortion

[34]

Smart inverter Hall spoofing Increase in output volt-
age and output active
power

[35]
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execution. Additionally, cyberattacks through third parties can influence a portion of

smart inverters with the same brand or service, which will probably result in incalcu-

lable consequences, e.g., blackouts caused by disconnecting or curtailing a significant

portion of the solar generation on a sunny day. Moreover, with the development of

module-level power electronics (MLPE) in recent years, smart micro-inverters that

control one or a small number of PV panels have started to prevail in distribution

systems to improve the output performance of PV arrays [40]; this will significantly

increase the number of inverters and communication nodes connected to networks.

The small size and resource-constrained nature of micro-inverters will also challenge

the security improvement in terms of cost [41].

According to surveys about cyber-physical attacks in smart grids [15] and our

investigation on smart inverter security [1], many vulnerabilities and threats, as well

as their potential impacts have been identified and investigated in smart grids, as

summarized in Table 1.1.

1.1.3 Defense Against Cyberattacks on Smart Grids

Concerned about these cybersecurity challenges in smart grids, extensive efforts have

been carried out in the power industry. Among them, the National Institute of Stan-

dards and Technology (NIST) proposed the NISTIR 7628: Guidelines for Smart Grid

Cybersecurity, which presents an analytical framework that organizations can use to

develop effective cybersecurity strategies tailored to their particular combinations

of smart grid-related characteristics, risks, and vulnerabilities [42]. The National

Electric Sector Cybersecurity Organization Resource (NESCOR) described the ar-

chitecture and identified the cybersecurity requirements for DERs [43] based on the
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reference model proposed in the NISTIR 7628. NESCOR also introduced cyberse-

curity failure scenarios and impact analysis for DERs [44]. Sandia National Labora-

tories (SNL) provided basic principles of cybersecurity, encryption, communication

protocols, cybersecurity recommendations and requirements for DERs, and proposed

best practices to ensure data confidentiality, integrity, and availability for DER ven-

dors, aggregators, and grid operators [45]. SNL also proposed a five-year roadmap

to improve cybersecurity for communication-enabled PV systems [46]. California’s

Rule 21 Smart Inverter Working Group (SIWG) has provided recommendations for

technical requirements for smart inverters with cybersecurity requirements [47]. The

National Renewable Energy Laboratory (NREL) proposed the certification process,

which contains 11 test cases to verify the data and communication security for DER

communication networks [48].

In addition, various defense strategies against cyberattacks on smart grids have

been developed in recent years, including attack detection strategies, impact mitiga-

tion strategies, and prevention strategies, among others. Attack detection strategies,

as illustrated in Figure 1.2, mainly deploy signature-based intrusion detection sys-

tems (IDSs) [32, 49], or behavior-based IDSs [41, 50, 51] to detect cyberattacks by

analyzing captured data from the cyber part (IP addresses, source ports, event logs,

etc.), or from the physical part (voltages, current, active power, reactive power, etc.),

or from both parts (i.e., hybrid IDS [52, 53]) of the smart grid.

Impact mitigation strategies refer to strategies that, when cyberattacks occur, the

system can actively respond to them and take appropriate actions to reduce adverse

effects and protect the grid from system failure [1]. It includes attack-resistant control

of field actuators, such as smart inverters [54, 55, 56], to regulate their outputs and

keep the electrical parameters (e.g., voltage, current) within acceptable ranges.

Prevention strategies aim to prevent cyberattacks on smart grids. Common
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Figure 1.2: Different types of IDS against cyberattacks for smart grids [1].

prevention measures for smart grids include access control [57], implementation of

whitelisting and anti-virus software on servers, data encryption [31], segmentation of

communication networks [58], and vulnerability identification techniques, such as the

penetration testing (PT), among others.

1.1.4 Penetration Testing and Its Challenges for Smart Grids

This study delves into preventive strategies for smart grids, with a particular focus

on the theory and application of penetration testing (PT) to identify and analyze

vulnerabilities of smart grids in an effective and efficient way. For a smart grid,

the vulnerability is considered as potential attack paths that can be executed by

adversaries to bring negative impacts on the smart grid, such as the power outage

and voltage violations. Here, the PT is an offensive process that stands on adversaries’

perspective to discover vulnerabilities at the system level. It serves as a preventive

strategy as it is typically conducted prior to the deployment and operation of the
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target smart grid, allowing for timely patching of vulnerabilities that are identified.

Vulnerability identification and analysis have been investigated in various do-

mains. Table 1.2 lists common techniques for identifying and analyzing vulnerabilities

utilized in IT security, physical safety, and OT security. In the IT industry, PT, widely

recognized as ethical hacking, is one of the prevention strategies against cyberattacks.

It is adapted to access the security of target digital assets by actively identifying their

bugs, weaknesses, or vulnerabilities [59]. This is accomplished by simulating a series

of cyberattacks from the viewpoint of adversaries executed by pen-testers, also known

as ethical hackers. The scope of PT can encompass individual computers, websites,

software, communication networks, or comprehensive information systems.

Table 1.2: Common techniques used for vulnerability identification and analysis in
different domains.

Domain Target Technique

IT Security Software, local area net-
works, etc.

PT, etc.

Physical Safety Generation / transmis-
sion / distribution sys-
tems, power electronics,
etc.

Contingency analysis,
failure assessment,
stability analysis, etc.

OT Security ICS components, e.g.,
PLC, RTU, SCADA,
etc.

PT, etc.

Presently, PT is increasingly becoming a necessary and even mandatory proce-

dure for organizations and businesses in many nations. For instance, organizations

in Europe are mandated to establish appropriate technical and organizational mea-

sures to ensure the continuous confidentiality, integrity, availability, and resilience of

processing applications and services, according to European General Data Protection

Regulation (GDPR) Article 32 [60]. Apart from legal obligations, the cybersecurity
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community regards PT as the most effective approach to evaluate the effectiveness

of security defenses against skilled adversaries and to assess compliance with security

policies [61].

Information	Gathering
(System	Specification,
network	mapping,	task

planning,	etc.)

Discovery
(Scanning,	probing,

vulnerability	assessment,
etc.)

Attacking
(Vulnerability

exploitation,	privilege
escalation,		pivoting,

etc.)

Analysis	&
Reporting

Re-discovery

Cleaning	up

Figure 1.3: Work flow of common PT [2].

In practical terms, PT is a multi-phase process, as illustrated in Figure 1.3, com-

prising the following phases: information gathering, discovery, attacking, analysis

and reporting, and cleaning up [62]. During the information-gathering phase, pen-

testers conduct system specifications, identify the reachable systems, define the scope

of the PT, and prepare the testing plan. In the discovery phase, pen-testers use

vulnerability scanning tools to identify vulnerabilities and compile a list of specific

vulnerabilities to focus on. Subsequently, in the attack phase, pen-testers attempt

to exploit these vulnerabilities using various attack techniques. Following the attack

phase, the analysis and reporting phase becomes necessary, providing an overview

of the vulnerabilities explored and exploited and their potential risks to the system.

Lastly, the clean-up phase of the PT process involves removing artifacts and restoring

any modified configurations made during the PT to ensure the system can resume its

regular operation.
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PT often requires a high degree of expertise and competence due to the complex

characteristics of digital assets such as medium and large networks. As a result,

there has been a research emphasis on investigating the possible application of auto-

mated tools for different phases of PT, known as AutoPT, which will be reviewed in

Chapter 2.1.

Similarly, for the physical safety domain, contingency analysis (CA) [63], failure

assessment [64], and stability analysis [65] serve as common techniques to pinpoint

potential physical vulnerabilities or failure events in the target physical system. These

methods also help to quantitatively or qualitatively evaluate the impacts of failures

or vulnerabilities on the target system. In power grids, failure events such as short

circuit failure, voltage violation, frequency oscillation, cascading blackout, etc., under

the designed physical parameters/configurations/structures and the designed control

policies could be identified by adopting these techniques. Equivalent physical models,

represented by a set of differential equations (for transient state analysis) [66] or static

power flow equations (for static state analysis) [67], are commonly used and analyzed

in these techniques for different parts of power grids.

However, existing techniques used in the physical safety domain fail to consider

malicious events that can go beyond probable failures or inadvertent misoperations

and lack the connection between the cyber and physical layers, rendering them helpful

but insufficient for CPS security. Although some studies started to make associations

with these two layers, most of these considerations are assumptions without detailed

modeling for the cyber part.

Consequently, there is increasing attention to the field of operational technology

(OT) security, which commonly considers the interdependence of safety and secu-

rity issues in vulnerability analysis for CPSs. The testing objectives include com-

ponents or devices in industrial control systems (ICSs), such as programmable logic
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controllers (PLCs), SCADA systems in many CPSs, including building automation

systems, transportation systems, and power systems, among others. Thus, OT se-

curity is the focal field of this study, and smart grids are our target systems. PT

in ICS/OT environments has focused primarily on two main strategies: (1) building

physical testbeds or digital twins for the target system to perform offline vulnerability

analysis and (2) developing specialized tools to screen for vulnerabilities. Testbeds or

digital twins in the first strategy are valuable for identifying device-specific vulnera-

bilities in CPSs. However, their limited scale compared to real-world environments

makes them more suitable for host-level testing rather than comprehensive security

assessments of entire CPSs. For the second strategy, specialized tools like PLCScan

[68], and SimaticScan [69] can query various data from target PLCs but lack addi-

tional functionality, requiring manual assessment or other tools to perform further

vulnerability analysis.

To identify critical vulnerabilities that can trigger negative physical impacts on

smart grids, both physical and cyber parts should be thoroughly considered. However,

due to the large scale, interconnection, and strong cyber-physical coupling of smart

grids, the PT task has become highly complicated, which makes it impractical to

conduct manual PT at the system level by human experts who rely on exhaustive

specification and execution. Even for middle-sized networks, a PT requires extensive

repetitive tasks that can take anywhere from a day to a week to complete, resulting

in significant downtime that can be detrimental for smart grids with critical services

such as electricity supply [2].

Furthermore, hidden or complex vulnerabilities due to cyber-physical coupling,

complicated system dynamics, and uncertainties of smart grids should also be in-

vestigated under different cyberattack schemes with enriched setups like timing and
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order, precisely targeting the most vulnerable targets in the system. Such investiga-

tions will have directive significance in the design, operation, and maintenance of the

system, to enhance the security and safety of smart grids.

Therefore, automated, effective, and efficient PT approaches or frameworks for

smart grids should be investigated considering their nature of complexity and strong

cyber-physical coupling. Three key performance indicators for PT, i.e., automaticity,

effectiveness, and efficiency, are defined as follows.

Automaticity: The PT is designed to work automatically without or with little

human intervention. It is able to gather data from the target smart grid, process and

analyze the data, make decisions or predictions, and execute actions automatically to

identify vulnerabilities.

Effectiveness: Critical threats and vulnerabilities, including hidden vulnerabili-

ties that can lead to a negative impact on smart grids, can be captured systematically

and correctly during the PT.

Efficiency: The PT process can optimize the use of the resources by eliminating

time-consuming and irrelevant directions [2].

It should be noted that satisfying the three requirements above perfectly at the

same time is challenging, especially for a large-scale cyber-physical smart grid, in-

cluding generation systems, transmission systems, and distribution systems. To deal

with it, the PT can turn to focus on a small area/ sub-task/ aspect of the system.

In other words, we can narrow down the space of attack vectors and perform the

vulnerability identification in that space. Thus, based on this idea, this study focuses

on the PT on ADNs of smart grids, in which the vulnerability identification method

can meet the three requirements as much as possible.
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1.2 Problem Statement

With the advancement and integration of ICT, smart grids are extensively exposed

to the increasing frequency of cyberattacks, creating a significant threat to the stable

and reliable operation of smart grids. To protect smart grids from cyberattack, PT

is adopted as a preventive strategy. However, the complexity and large scale of smart

grids due to the strong cyber-physical coupling challenge the performance of PT for

identifying critical or hidden vulnerabilities that can be exploited by adversaries.

One promising solution to automate PT and improve its efficiency is the applica-

tion of reinforcement learning (RL) or deep reinforcement learning (DRL). RL/DRL is

used to handle complicated decision-making tasks by utilizing an intelligent agent that

interacts with an unknown environment through trial and error, which has already

shown remarkable achievements in various artificial intelligence (AI) applications, in-

cluding DeepMind’s AlphaGo, OpenAI’s ChatGPT, autonomous driving, robotics,

games, among others [70, 71]. One key advantage of RL/DRL is that the agent does

not require prior knowledge of the task, such as the dynamic model or operational

mechanism of the system. Instead, the decision-making policy is developed through

interactions with the black-box environment, where the agent executes actions and

observes feedback from the environment sequentially. Analytical modeling of the

operation process for smart grids is challenging due to the need for comprehensive

modeling of all components, from the physical to the cyber level, and their inter-

connection and interoperation. This requires extensive effort from multiple domains,

such as control and communication. Meanwhile, according to many works, analytical

models can assist in analyzing the vulnerability of a system through CA or stability

analysis in a mathematical way; the accuracy of results strongly relies on the preci-

sion of the model. This poses a significant challenge, particularly for complex smart

grids, not only because of their large-scale and time-varying characteristics but also
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because, in most cases, equipment suppliers do not provide device parameters con-

sidering intellectual property protection. Therefore, this study explores the potential

of applying RL/DRL methods to enhance PT for smart grids.

However, RL/DRL-based PT also encounters several challenges, including poor

sampling efficiency, intricate reward specification, and limited interpretability, which

are also handled in this study. An overview of the literature on PT based on RL/DRL

for information systems and RL/DRL-based vulnerability analysis for smart grids are

presented in Chapter 2.

Based on the information provided above, this section outlines the key challenges

and problems of PT techniques for smart grids that will be investigated in this study,

including the efficiency issue of common PT, the limited observability of PT, and the

sparse reward issue of RL/DRL-based PT. Moreover, corresponding solutions will

also be briefly summarized.

1.2.1 Problem 1: Poor Efficiency and Non-Comprehensiveness

of Common PT

The complexity of today’s smart grids makes it impractical to conduct exhaustive

manual PT at a system level. The extensive and repetitive PT tasks performed

by human experts are time-consuming and labor-costing. In addition, current PT

studies focus more on the cyber part of the system. It mainly sets the goal of taking

ownership of digital resources in the networks without considering the physical process

and physical impact of the CPS. On the contrary, most CA studies for smart grids lack

considerations of the cyber layer, where cyber events happening in the communication

networks can affect the physical output of the smart grid. Although some studies for

CA started to make associations with the cyber level, most of these considerations

are assumptions without detailed modeling for the cyber part.
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Proposed Solution for Problem 1: We proposed a DRL-based PT framework

to efficiently and adaptively identify critical vulnerabilities in cyber-physical ADNs.

Using replay attacks on an ADN with conservation voltage reduction (CVR) control

as a study case, this work models the pen-tester as a DRL agent and formulates the

PT as a Markov Decision Process (MDP) with three actions - stop, record, and re-

play - to learn the optimal timing and ordering of replay attacks in different operating

scenarios. The deep Q-network (DQN) algorithm, serving as the MDP solver, was

applied to train agents and optimize the PT policy. In addition, a cyber-physical co-

simulation platform, called GridBattleSim, with dedicated simulators for the physical,

cyber, control, and attacker aspects of ADNs, was developed as a sandbox environ-

ment to train the DRL agent. Scenarios with different levels of difficulty were tested

to validate the learning capability and performance to find critical attack paths of

the DRL-based PT. The detailed explanation of the proposed solution is presented

in Chapter 3

1.2.2 Problem 2: Limited Observability of PT

Although the MDP formulation and DRL application provide a framework for au-

tomating PT and improving PT efficiency, its underlying assumption of full system

state visibility often proves impractical in real-world scenarios. In practice, a pen-

tester aiming to inflict system-wide impact typically only gains access to a subset of

the system’s digital assets. As a result, the pen-tester is forced to make strategic

decisions based on what it can observe from a limited scope of locally available data.

The inherent lack of a comprehensive view of the system’s state poses a challenge to

PT, as it makes the potential impact of outside agent’s compromised digital assets

invisible. This limitation restricts the agent’s ability to make well-informed decisions,

thereby impeding the effectiveness of PT strategies.
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Proposed Solution for Problem 2: To address these limitations, a partially

observable MDP (POMDP) formulation for the PT is proposed, which is an exten-

sion of the MDP formulation specifically to deal with the environment with partial

observability. Using the same study case as Problem 1, the optimal replay attacks

are investigated to trigger the grid voltage violation based on a subset of information

collected by the agent. To solve the POMDP, a physical model of the power grid is

established for the agent to estimate the full state of the system based on the obtained

local data, then transforms the POMDP problem into an MDP problem that can be

solved by standard RL/DRL algorithms. The detailed explanation of the proposed

solution is presented in Chapter 4.

1.2.3 Problem 3: Sparse-Reward Issues in RL/DRL-based

PT

To identify critical vulnerabilities that can be exploited to create a negative impact

on smart grids, PT usually takes a long trajectory of searching over a large action

space and a large state space of the environment driven by the agent’s reward. The

sparse-reward issue of RL/DRL-based PT appears when the reward given to the agent

only reflects the achievement of the ultimate goal of PT. In other words, the agent

will receive a reward of zero value most of the time during PT until the PT goal is

achieved. Under such circumstances, most agent-environment interactions with zero

reward will have limited contributions to its learning progress toward the optimal

solution.

To handle the sparse-reward issue of the PT, one common approach is to improve

the reward function by integrating human knowledge about the target system. This

can help decompose the PT goal into many subgoals. By adding additional rewards

to the agent when some subgoals of PT are achieved instead of rewarding the agent
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only when the ultimate goal is achieved. The sparsity could be improved since sub-

goals will be easier to achieve than the ultimate goal. Based on this idea, our first

attempt, presented in Chapter 4, is to reshape the reward function by decomposing

the main goal into subgoals based on the agent’s knowledge about the control policy

of the power grid.

However, the improved reward function mentioned above is designed only for the

power grid with a certain control function. If the grid control function changes,

the reward function could be ineffective. Therefore, the reward function introducing

application-specific human knowledge about the target system could lose generality

since if the system changes, the reward function should be redesigned. Currently,

there is no standard principle for designing reward functions for PT across various

systems. Therefore, it is essential to explore the general task decomposition in terms

of reward function design based on human knowledge of PT.

Moreover, encoding intricate human knowledge into a single reward function could

increase the complexity of the reward function, making it difficult for the agent to

differentiate which aspects of contributions or losses result from its PT actions. There-

fore, the agent may need many more interactions to figure it out. In addition, the

reshaped reward function cannot strictly guarantee the optimal PT policy from a

mathematical point of view because it is designed empirically without considering

policy convergence. This is also a limitation for most RL/DRL-based PT or vulner-

ability analysis studies.

In addition, interpretability is commonly absent in RL/DRL-based PT. The PT

policy, once trained, may not be able to explicitly determine the current phase or

situation of the PT agent and the direction it should take next. While this perception

or awareness could potentially be embedded into the neural networks of the DRL

policy during training, extracting such information by decoding the neural networks
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remains a challenging task.

Proposed Solution for Problem 3:

To address the challenges related to sampling efficiency, reward specification, and

interpretability in RL/DRL-based PT, we proposed to integrate cybersecurity domain

knowledge as guidelines into the agent’s learning process in an interpretable manner.

We introduce a knowledge-informed AutoPT framework named RM-PT, which

leverages a reward machine (RM) to incorporate domain expertise from cybersecurity

knowledge bases, such as the MITRE ATT&CK [72]. The RM defines a series of events

within PT and decomposes the task into various subtasks based on established PT

practices. Furthermore, the RM enables the specification of diverse reward functions

for different phases of PT, offering greater flexibility compared to conventional reward

functions in RL/DRL-based PT. Within the RM-PT framework, PT is modeled as a

partially observable Markov decision process (POMDP) guided by RMs.

In this study, we focus on the lateral movement within the cyber part of the smart

grid as a case study, assuming that the pen-tester has already gained initial access to

the control center networks and aims to progress further to obtain high-value assets.

We explore two different RMs as guidelines. Finally, we employ the deep Q-learning

algorithm with RM (DQRM) to optimize the PT policy.

1.3 Thesis Contributions

This study proposes a set of AutoPT methodologies used to identify vulnerabilities

for cyber-physical ADNs effectively and efficiently based on DRL methods.

The scope of ADNs in this work falls into distribution systems of smart grids with

voltage regulation functions actively performed by a control center. Two types of

communication networks form the AND. One is the industrial control network con-

sisting of sensors, grid control devices, and communication infrastructure. Sensors
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(e.g., PMUs and PDCs) are deployed remotely at different locations of the grid to

obtain the voltage magnitude of the grid. Grid control devices (e.g., voltage regula-

tors) are used to regulate system voltage based on voltage measurements. The other

one is the local area network (LAN) deployed in the control center to facilitate its

operation.

The proposed AutoPT techniques identify vulnerabilities for different types of

networks in an ADN, respectively. For industrial control networks of the ADN, the

vulnerability is defined as cyberattack paths that could be utilized by adversaries to

compromise the grid control functions and create negative physical impacts. For the

LAN of the ADN, the vulnerability is defined as attack paths that could be exploited

to gain privilege for operating critical hosts in the control center.

The opposed AutoPT techniques require a simulator of the target AND to create

a digital sandbox. An agent, a computer program playing as the pen-tester, will

interact with the simulator by launching cyberattacks, aiming to train PT policies

that can identify vulnerabilities of the target ADN through trial and error.

Different groups of people can refer to or benefit from our opposed methods,

including grid operators, cybersecurity experts, and cybersecurity researchers.

The key contributions are summarized in terms of different scopes of ADNs, listed

as follows.

• First, to enhance the efficiency and reduce manual intervention of vulnerability

identification for industrial control networks of ADNs, we proposed a DRL-

based PT framework and formulated the PT as an MDP problem, where the

cyber-physical coupling, realistic cyberattack means, and physical impacts of

ADNs are comprehensively considered. Based on this framework, we formulated

the replay attack on ADNs with CVR control as an MDP and applied DRL to

identify the critical replay attack path toward the system voltage violation. We
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also analyzed the PT difficulty by performing PT in different scenarios with

different system load levels, solar power generations, and weather variations.

This contribution was published in the paper “Deep reinforcement learning for

penetration testing of cyber-physical attacks in the smart grid” in 2022 IEEE

World Congress on Computational Intelligence [73].

• Second, to address the limited observability in realistic PT scenarios, we intro-

duced the POMDP formulation of PT for ADNs. To solve the POMDP and

obtain the optimal PT policy, we used a physical model of the power grid to

estimate its full state based on the local observable data captured by the agent

and then transformed the POMDP into an MDP that can be solved by DRL.

This solution was submitted as a paper “Penetration Testing of Cyber-Physical

Attacks in Smart Grids Based on Partially Observable Markov Decision Pro-

cess” to IEEE Transactions on Dependable and Secure Computing.

• In addition, to conveniently create a digital sandbox for the industrial control

networks of ANDs and train PT policies using DRL, we developed a cyber-

physical co-simulation platform called GridBattleSim, which integrates dedi-

cated simulators and programs to simulate different parts of ADNs as well as

PT agents powered by DRL.

• Finally, to address the sparse reward issue, reduce the difficulty of reward func-

tion specification, and improve the interpretability of RL/DRL-based PT for

ANDs, we proposed a knowledge-informed AutoPT framework (RM-PT), which

can encode human knowledge using RMs to break down the PT goal into many

attainable subgoals. The framework was validated through case studies on lat-

eral movement for the LAN of ADNs, where MITRE ATT&CK framework is

considered as the human knowledge representation to design RMs. Guided by
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RMs, the DQRM algorithm was applied to train the agent and obtain the

optimal PT policies efficiently. This contribution was presented in the pa-

per “Knowledge-Informed Auto-Penetration Testing Based on Reinforcement

Learning with Reward Machine”, which has been published by the 2024 IEEE

World Congress on Computational Intelligence [74].

In addition to the contributions outlined in this thesis, the author also published

a survey paper titled ”Cybersecurity of Smart Inverters in the Smart Grid: A Sur-

vey” [1] in IEEE Transactions on Power Electronics. The paper investigated cyber-

security issues related to smart inverters and conducted a literature review on attack

and defense strategies for smart inverters and inverter-based power grids against cy-

berattacks. Some parts of this paper are referenced in this chapter as background.

Moreover, the author has other publications in related areas, but not within the main

scope of this thesis, as listed in Chapter 6.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

The literature review on vulnerability analysis approaches against cyberattacks

for smart grids, and AutoPT for the ICT industry will be presented in Chapter 2.

The DRL-based PT framework and the MDP formulation of PT will be introduced in

Chapter 3. Our developed co-simulation platform GridBattleSim will also be intro-

duced in Chapter 3. The POMDP formulation of PT will be detailed in Chapter 4. In

Chapter 5, the knowledge-informed AutoPT based on RM will be presented. Chap-

ter 6 concludes the thesis and depicts future research directions. The outline of this

thesis is shown in Figure 1.4.
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Figure 1.4: Thesis outline.
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Chapter 2

Literature Review

This thesis presents an interdisciplinary study of IT and OT security. We partially

investigate an RL/DRL-based AutoPT for smart grids to identify vulnerabilities that

can be exploited to create negative physical impacts. Prior to this study, numerous

research studies have been conducted in the fields of IT and smart grids, offering valu-

able insights. Hence, we conduct a comprehensive literature review on vulnerability

analysis approaches used in IT and smart grids, respectively, as the basic references

for this study.

In this chapter, we first present a literature review on the development of AutoPT

techniques in the IT industry, including existing AutoPT tools, attack-graph-based

AutoPT, and RL/DRL-based AutoPT. Then, we conduct a literature review on vul-

nerability analysis approaches dedicated to smart grids against cyberattacks, includ-

ing approaches based on optimization methods and RL/DRL methods, respectively.

2.1 AutoPT Techniques for IT Industry

PT has been performed primarily by skilled human experts. However, this process

relies on pen-testers with a high level of expertise and implicit knowledge about
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cybersecurity, making it time-consuming, labor-costing, and susceptible to human

mistakes. In addition, driven by the expansion of ICT markets and security policies,

there is an increasing demand for PT services. Therefore, the security industry is

focusing on developing automated PT (AutoPT) techniques to improve efficiency

and effectiveness (accuracy) in identifying vulnerabilities for various types of digital

assets and information systems.

2.1.1 AutoPT Tools

Currently, many AutoPT tools and frameworks have been developed in the IT indus-

try to enhance PT automation and efficiency in different scopes or levels of impact.

PT tools can commonly be classified into or a mix of the following categories [75]:

• Port scanners: detect open ports on a system, aiding in identifying the operating

system and applications active on a network they aim to access. Port scanners

are utilized in reconnaissance and can reveal information for possible attack

vectors.

• Vulnerability scanners: identify known vulnerabilities in servers, operating sys-

tems, and applications, as well as configuration errors that can be exploited.

Reports generated by vulnerability scanners assist pen-testers in choosing a

vulnerability that can be exploited to gain initial access to the system.

• Network sniffer: capture and analyze data packets in network traffic, revealing

details such as the origin, destination, communicating devices, and protocols

and ports in use. This tool is valuable for verifying data encryption and pin-

pointing communication routes that may be vulnerable during PT.

• Web proxy: capture and alter traffic between a web browser and the organi-

zation’s web servers. This allows for identifying hidden form fields and other
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HTML features that could facilitate attacks such as cross-site scripting (XSS)

or cross-site request forgery (CSRF).

• Password cracker: attackers often target password hashes to escalate privileges

within a system or network. Password crackers enable pen-testers to check if

organizations use weak passwords that could be exploited.

Table 2.1 lists many widely used PT tools. Among them, Wireshark [76] is a basic

packet analyzer. It can record live or saved network traffic, enabling troubleshooting

of network traffic and security analysis. It can parse network packets for numerous

protocols, allowing pen-testers to identify security vulnerabilities. Metasploit [79] is a

Ruby programming language-based PT framework that enables pen-testers to write,

test, and execute exploit code against a remote target machine. The Metasploit

Framework contains a suite of tools that can be used to find vulnerabilities, execute

attacks, and avoid detection. At its core, the Metasploit framework is a collection

of commonly used tools that provide a complete environment for PT. Nmap (Net-

work Mapper) is a network scanner used to discover hosts and services on a computer

network by sending packets and analyzing responses [80]. John the Ripper is a pass-

word cracking tool with many options for password testing, including auto-detection

of password hash types and the ability to crack password encryption based on DES,

MD5, Blowfish, and MD4, among others [78]. Kali Linux [81] is a Debian-based

Linux distribution, which was delicately developed for digital forensics and penetra-

tion testing. Kali Linux has integrated approximately 600 PT tools, including Nmap,

Wireshark, Metasploit, John the Ripper, etc.

However, automating the entire testing process usually includes the diverse tasks

and subtasks for each PT phase, presenting a significant challenge and often failing to

achieve the desired objective when executed inappropriately. The utilization of auto-

mated tools that perform all possible tests without optimization or pre-processing can

27



Table 2.1: Common PT tools for IT security.

Name Category Functionality Ref.

Wireshark Network sniffer Packet capture, proto-
col analysis, statistics
and reporting, etc.

[76]

Burp Suite Web proxy Web application scan-
ning, proxy server,
spidering and crawling,
statistics and reporting,
etc.

[77]

John the Ripper Password cracker Brute force cracking,
dictionary cracking,
rule-based cracking
password auditing, etc.

[78]

Metasploit Port scanner,
vulnerability
scanner, network
sniffer

Exploit development,
vulnerability analysis,
payload generation,
post-exploitation, social
engineering, statistics
and reporting, etc.

[79]

Nmap Port scanner,
vulnerability
scanner, network
sniffer

Host discovery, port
scanning, service ver-
sion detection, vulnera-
bility analysis, network
mapping statistics and
reporting, etc.

[80]

Kali Linux Port scanner,
vulnerability
scanner, network
sniffer, Web
proxy, Password
cracker

a Linux platform inte-
grated with various PT
tools

[81]
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lead to suboptimal results [82, 83, 84]. Most of these automated tools require contin-

uous oversight from a human pen-tester and usually fail to deliver satisfactory results,

particularly in medium and large-scale network testing, due to the substantial num-

ber of operations needed to cover entire networks [85, 86]. Furthermore, automation

introduces additional problems, such as long testing durations that exceed practical

limits, increased network congestion from generated traffic, and a high volume of false

positive alerts triggered by the system’s defense solutions, such as intrusion detection

and prevention systems (IDPSs) and firewalls [2]. Blind AutoPT is also restricted to

small networks and some medium-sized networks, relying on customized scripts that

are cumbersome and resource-intensive [61].

2.1.2 Attack-Graph-based AutoPT

To address the limitations of existing AutoPT tools, AutoPT methods have been

further explored to reduce the degree of manual intervention and improve efficiency.

Many AutoPT methods have been proposed. Among them, numerous works define

PT as a path planning problem represented by attack graphs. Phillips et al. [87] first

proposed a method based on the attack graph to analyze the system’s vulnerability,

which can pinpoint attack paths with a high likelihood of success or low effort for

the attacker. The method requires a database of common attacks, network configura-

tion details, and an attacker profile as input to create a comprehensive attack graph.

By assigning probabilities or costs to the attack paths, the system can identify the

most probable attack paths using graph algorithms, contributing to enhancing net-

work security measures. Based on [87], Kyle et al. [88] developed the NetSPA attack

graph, which leverages firewall rules and vulnerability scans to evaluate multiple tar-

gets in minutes, significantly reducing the time required to construct attack graphs.

To improve the reliability of attack paths of attack graphs, Qiu et al. [85] introduced
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a method for the automatic creation of attack graphs utilizing the Common Vul-

nerability Scoring System (CVSS). However, most of the methods mainly generate

action paths for static environments, offering guidelines for PT, but cannot perform

PT dynamically and interactively in changing environments. When the environment

changes, these methods usually need to rebuild the attack graphs. Therefore, the

attack graphs used before are not easily reused again, leading to a waste of knowl-

edge. In addition, these methods require a comprehensive understanding of the target

system and detailed machine information, which sometimes are not easy to satisfy,

especially for large-scale and complex information systems.

2.1.3 RL/DRL-based AutoPT

Therefore, the security industry is currently investigating more intelligent and au-

tonomous methods for PT. Early research efforts focused on enhancing PT by op-

timizing the planning phase, which was conceptualized using attack trees or attack

graphs [89, 90]. These models were designed to map the sequential decision-making

process of PT to graph representations, aiming to identify critical attack paths in a

logical way. Nevertheless, these methods encounter several issues. First, they require

a clear and accurate understanding and specification of the target systems, thereby

limiting their applicability. Second, the constructed attack trees and attack graphs

are difficult to reuse when the target systems are changed in terms of structure and

configurations [91], making it challenging to maintain the effectiveness of PT methods

over time.

To overcome these challenges, there has been a rise in research on RL/DRL-

powered PT on information systems. Schwartz et al. [92] proposed a DQN-based

PT approach for enterprise networks. The PT was formulated as a Markov decision

process (MDP) with the known configuration of the network as states and available
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scans and exploits as actions. To validate the DQN agent, a lightweight network sim-

ulator was utilized to play as the environment. Hu et al. [93] proposed a two-stage

deep reinforcement learning (DRL)-based PT approach for communication networks.

In the first stage, the approach utilizes scanning tools to collect network informa-

tion and build an attack tree. In the second stage, the DQN algorithm is applied to

identify the most impactful and shortest attack path based on the attack tree. This

approach aims to save labor costs and improve PT performance. To further enhance

the PT performance and reduce manual labor costs, Ghanem et al. [94, 2] devel-

oped the Intelligent Automated Penetration Testing System (IAPTS). The IAPTS

combines the reinforcement learning (RL) module with industrial IT PT frameworks.

Tran et al. [95] introduced a hierarchical DRL method for PT to address its large

discrete action space, where a decomposition strategy for the action space is utilized.

Qianyu et al. [96] proposed the INNES model for DRL-based PT to characterize its

observation space and action space of PT, which makes the MDP formulation of PT

more accurate. The Microsoft Defender Research Team developed an open-source

RL-based PT research platform called CyberBattleSim [97]. This platform builds a

high-level parameterizable model of enterprise networks with pre-defined vulnerabili-

ties to play as the environment. The agent launches RL-powered cyberattacks based

on the lateral movement mechanism that exploits network vulnerabilities.

The reviewed advanced AutoPT methods (attack graph-based and RL/DRL-

based) for the IT industry are summarized in Table 2.2.

While studies employing RL/DRL techniques offered valuable insights, they are

still in the early stages and lack established practical standards, protocols, or frame-

works. Moreover, most of the models used in these studies are highly abstract and

simplified, which cannot fully capture real-world systems. In addition, the goal of
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Table 2.2: Summary of advanced AutoPT methods for IT Industry.

Authors Year Approach Contributions Limitations Ref.

Phillips
et al.

1998 Attack graph-
based vulnerabil-
ity analysis and
path planning.

First introduced at-
tack graphs to pin-
point attack paths.

Requires database
of common attacks
and network details;
Limited to static
environments.

[87]

Kyle et
al.

2009 NetSPA attack
graph utilizing
firewall rules
and vulnerability
scans.

Developed NetSPA
attack graph to
reduce time in con-
structing attack
graphs.

Limited to static en-
vironments.

[88]

Qiu et
al.

2014 Automatic cre-
ation of attack
graphs using
Common CVSS
for improved
reliability.

Introduced methods
for the automatic
creation of attack
graphs using CVSS
that enhances the
reliability of attack
graphs.

Limited to static
environments; Re-
quires detailed
information about
the target system.

[85]

Ghanem
et al.

2018 Developed
IAPTS, which
combines RL
with existing PT
frameworks.

Reduce manual labor
costs; Integration of
RL with industrial
IT frameworks.

Not be validated in
diverse IT environ-
ments.

[94,
2]

Schwartz
et al.

2019 DQN-based PT
for enterprise
networks.

MDP formulation;
DQN as the MDP
solver.

Validation using a
lightweight network
simulator.

[92]

Hu et
al.

2020 Two-stage DQN-
based PT for
communication
networks.

Integration of exist-
ing PT tools with at-
tack tree and DQN
algorithm.

Identified attack
paths are restricted
by the attack
tree, which cannot
identify hidden vul-
nerabilities outside
of attack trees.

[93]

Tran
et al.

2021 Hierarchical RL
(HRL) method
for PT to address
large discrete
action spaces.

Propose action de-
composition strategy
for PT based on
HRL.

Complicated imple-
mentation; Need for
further validation in
diverse PT scenarios.

[95]

Li et
al.

2023 INNES model
for DRL-based
PT to enhance
MDP formulation
accuracy.

Proposed an obser-
vation and action
space characteri-
zation method for
MDP formulation.

Limited real-world
validation.

[96]
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these works is to take ownership of the digital assets of the target system. For cyber-

physical smart grids, the goals of PT should also consider identifying vulnerabilities

that can lead to negative physical impacts. Thus, there is a pressing need for the

development of comprehensive and system-level PT solutions specifically for smart

grids.

2.2 Vulnerability Analysis Approaches Against Cy-

berattacks for Smart Grids

According to the review of the literature conducted by this study, vulnerability anal-

ysis approaches for smart grids can generally be categorized into optimization-based

methods and RL/DRL-based methods. Optimization-based vulnerability analysis is

commonly used to identify critical attack vectors or the most vulnerable components

of smart grids that can create an instant impact under the current grid condition

without consideration of the subsequent attack sequences. On the contrary, RL/DRL-

based vulnerability analysis methods try to identify a sequence of coordinated attack

vectors with the goal of maximizing a long-term impact or achieving an impact that

should go through a series of attack steps.

2.2.1 Optimization-based Vulnerability Analysis

We first give a review of optimization-based vulnerability analysis for smart grids as

follows.

For identifying critical false data injection attacks (FDIAs) on smart grids, Ref. [98]

first introduced FDIA against state estimation (SE) in electric power grids as a new

class of attacks, which can introduce undetected errors into certain state variables by

manipulating meter measurements at certain nodes of the grid. The injected error is
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produced based on the topological matrix (also known as the Jacobian matrix) of the

power grid, which can bypass the bad data detector (BDD) of the SCADA system.

Ref. [99] considered resource constraints in FDIA, which decides the minimum

number of sensors of the power grid that could be attacked by injecting Gaussian

noises. This constrained FDIA is formulated into a convex optimization problem

that is solved based on matrix theory, where the trace of the remote estimation error

covariance is maximized.

Similarly, [100] applied a multi-objective optimization approach to identify criti-

cal FDIA on SE of smart grids, aiming to minimize attack cost and maximize attack

impact stealthily. The optimization involves an objective for reducing the number

of compromised measurements and an objective for maximizing errors in estimated

states or branch power flows. The SPEA2 algorithm was utilized to solve the opti-

mization problem, which can find a set of optimal attack vectors on the Pareto front

while considering physical and operational constraints to ensure stealthiness.

Ref. [101] investigates the vulnerability of the AC-based State Estimation (SE)

function in power systems against FDIA. To identify stealthy, low-cost, and impactful

FDIAs, this study proposed a convexification framework based on semidefinite pro-

gramming (SDP). By solving the SDP, it found the optimal FDIAs that can delineate

the “attackable region” for any given set of measurement types and grid topology,

where the spurious state can be falsified by FDIA.

Ref. [102] introduced the concept of optimal FDIAs (OFDIAs) in the power system

frequency control loop, utilizing a linearized formulation of power systems’ dynamics

in an optimization framework. It investigated the impact of continuous and time-

limited FDIAs on power grid frequency behavior, showing that continuous FDIAs

can lead to severe consequences like frequency instability, while time-limited FDIAs

can cause fluctuations triggering protection relays.
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Ref. [103] investigated the impact of FDIAs on power system frequency-based

protection relays, which can lead to false relay operations and threaten power system

security. An optimization-based formal model is proposed to identify the optimal

FDIA with the shortest time required to trigger a false relay operation. The model

considered power system dynamics to determine the optimal attack size over multiple

generator dispatching cycles, showcasing that systems with higher inertia and certain

governor settings are more resilient against such attacks.

Ref. [104] analyzed the risk of GPS spoofing attacks on smart grids. It intro-

duced a novel measurement model to assess the impact of GPS spoofing attacks and

formulated an optimization problem to identify the most vulnerable PMUs. This

optimization problem was subsequently addressed using a greedy algorithm.

To identify vulnerable components in smart grids, Ref. [105] explores the vul-

nerability of power grids to cascading failures induced by physical sabotages and

cyberattacks on substations and transmission lines. Unlike prior research focusing on

individual components, this study introduces a joint perspective considering simulta-

neous attacks on both substations and transmission lines. Through the introduction

of the component interdependency graph (CIG) metric and analysis of joint attack

strategies, the research illustrates the efficacy of the CIG-based approach in identify-

ing vulnerabilities and improving attack performance in diverse power grid systems.

Similarly, Ref. [106] analyzed the vulnerability of the power grid to simultaneous

attacks, emphasizing the potential of critical system failures. By utilizing a modified

cascading failure simulator with enhanced efficiency, the study assesses the impact

of combined attacks on generation power loss and blackout duration. A new damage

measurement matrix is proposed to identify the most effective attack combinations

that lead to maximum damage, offering valuable insights for enhancing system re-

silience against coordinated threats.
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2.2.2 RL/DRL-based Vulnerability Analysis

For RL/DRL-based vulnerability analysis on smart grids against cyberattacks, Yan

et al. in [107] proposed a sequential topology attack scheme on the transmission sys-

tem of smart grids based on the Q-learning algorithm [107]. This approach enables

the identification of the optimal ordering for sequentially triggering power lines to

create cascading blackouts. Subsequently, Ref. [108, 109] expanded on Yan’s work

by considering the involvement of defenders and formulating the attack as a Markov

Game, thereby increasing the attack difficulty. In [110], the authors assumed that

attackers could not only cut power lines but also attack the communication topology,

which could mask the line outage signal sent to the control center and cause improper

energy management actions. To address this issue, they applied the Deep Q-learning

(DQN) algorithm to identify the critical attack path that could result in a cascading

failure. Ref. [111] proposed a cybersecurity assessment approach that uses DRL and

CVSS to evaluate power grids’ vulnerabilities against cascading failures, considering

intermittent DER generation and IT/OT device vulnerabilities. The simulation re-

sults validated the effectiveness of the approach, showing that the DQN algorithm

closely matches a graph-search approach in identifying optimal attack policies with

fewer transitions needed. Ref. [112] focuses on identifying critical transmission lines

in smart grids considering load uncertainty to prevent cascading failures and enhance

system robustness. The study introduced an optimal virtual attacking problem to

maximize expected generation loss under given resources and proposed an online al-

gorithm based on prioritized multi-agent-attention-actor-critic (PMA3C) to efficiently

identify critical lines instantly under load uncertainty.

Another area of investigation is RL/DRL-based FDIAs on the SE function of the

transmission system. In [113], researchers utilized the Q-learning algorithm to deter-

mine the optimal injected error on phasor measurement unit (PMU) measurements.
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Furthermore, the trained FDIA could be launched stealthily and bypass the bad data

detection (BDD) of the supervisory control and data acquisition (SCADA) system

via the design of the reward function. Ref. [114] proposed a DRL-based vulnerability

analysis scheme that allows the control center to identify vulnerable meters by con-

structing attack vectors based on power system states, meter measurements, previous

analyses, and injected errors without knowledge of the power system topology. The

proposed actor-critic architecture of the DRL agent effectively handles continuous

and high-dimensional vulnerability analysis policies. The simulations demonstrated

improved vulnerability detection rates, reduced number of analyzed meters, and en-

hanced utility while considering computational complexity. Ref. [115] applied DRL

to identify underlying systemic vulnerabilities of the reactive power market of the

smart grid. The researchers demonstrated how attackers could exploit the market

by inducing constraint violations and profiting from the flexibility market, revealing

previously unknown attack strategies. Recent research has also explored the influ-

ence of RL-based FDIA on microgrids, where intelligent FDIA modifies the control

parameters of distribution energy resources (DER) [116].

However, these studies reviewed above rely heavily on the assumption that the

power grid has been deeply penetrated by attackers who can directly modify control

commands without considering real-world scenarios such as communication protocols.

Furthermore, established models of these studied or experimental testbeds in these

works often neglect the cyber aspect of the power grid, resulting in oversimplification

and lack of comprehensiveness.

The summary of existing advanced vulnerability analysis methods (optimization-

based and RL/DRL-based) for smart grids is listed in Table 2.3.
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Table 2.3: Summary of advanced vulnerability analysis against Cyberattacks for
smart grids.

Authors Year Approach Contributions Ref.

Liu et

al.

2011 FDIA modeling against SE

that can bypass BDD.

First work that identified

stealthy FDIA on SE of

power grids

[98]

Li et al. 2018 FDIA modeling against SE

based on convex optimiza-

tion with resource con-

straints.

Formulated constrained

FDIA with Gaussian noises

[99]

Jin et

al.

2018 FDIA modeling against AC-

based SE based on SDP

Found out the optimal

FDIAs that can delineate

the “attackable region”

[101]

Risbud

et al.

2018 GPS spoofing vulnerability

analysis on smart grids

Introduced novel measure-

ment model to identify most

vulnerable PMUs.

[104]

Rahman

et al.

2020 FDIA modeling based on

multi-objective optimiza-

tion

The proposed FDIA mini-

mizes attack cost and max-

imize attack impact

[100]

Jafari et

al.

2022 FDIA modeling against fre-

quency control loop

Studied impact of continu-

ous and time-limited FDIAs

on power grid frequency be-

havior

[102]
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Zhu et

al.

2015 Cascading failures analysis

for cyberattacks on substa-

tions and transmission lines.

Introduced a joint perspec-

tive considering simultane-

ous attacks on both substa-

tions and transmission lines

[105]

Paul et

al.

2017 Simultaneous topology at-

tack analysis on smart grids.

Assessed and identified si-

multaneous topology attack

that leads to generation

power loss and blackout du-

ration.

[106]

Yan et

al.

2016 Sequential topology at-

tack analysis based on

Q-learning.

Analyzed and identified the

most impactful sequential

topology attacks.

[107]

Chen et

al.

2018 Optimal FDIA identifica-

tion on SE function based

on POMDP

Formulated FDIA on SE as

a POMDP

[113]

Ni et al. 2019 Sequential topology attack

analysis with defender in-

volved based on Q-learning.

Identified critical attack

path under defence.

[108]

Liu et

al.

2020 Cascading failure analysis

for power grids based on

DRL and CVSS.

CVSS integration into

DRL-based vulnerability

analysis.

[111]

Wang et

al.

2020 Critical attack path analy-

sis involving communication

topology attacks

Applied DQN algorithm to

identify critical attack paths

considering communication

topology attacks

[110]
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Yu et al. 2022 PMA3C algorithm for criti-

cal line identification under

load uncertainty

Introduced optimal virtual

attacking problem for crit-

ical line identification under

load uncertainty.

[112]

Neal et

al.

2021 RL-based FDIA impact

analysis on microgrids

Analyzed impact of RL-

based FDIA that can mod-

ify DER control parameters

of microgrids

[116]
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Chapter 3

DRL-based AutoPT for ADNs 1

3.1 Problem Statements

The increasing complexity of smart grids makes manual penetration testing at a

system level impractical for identifying critical vulnerabilities to cyberattacks. The

extensive and repetitive PT tasks carried out by human experts are time-consuming

and labor-consuming. Current PT studies on information systems, as reviewed in

Chapter 2.1, concentrated primarily on the cyber aspects of the system, with the aim

of securing digital resources within networks. They commonly neglected to consider

the impact of cyberattacks on the physical processes of the target system, especially

for a CPS. On the contrary, most CA studies against cyberattacks for smart grids,

reviewed in Chapter 2.2, overlooked the cyber aspects, neglecting the practical way

of cyberattack intrusion. While some CA studies have begun to explore connections

with the cyber layer, these considerations are often based on assumptions rather than

conducting detailed modeling of the cyber component and implementing realistic

cyberattacks.

1This chapter is published in 2022 IEEE World Congress on Computational Intelligence [73].
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3.2 Related Works

RL/DRL-based cyberattacks against power grids have been investigated. Ref. [107]

studied on sequential topology attack schemes on transmission systems with Q-

learning, where the learned policy is able to identify critical transmission lines that

can cause cascading failures of the power grid if tripped sequentially. Ref. [108, 109]

extended the work in [107], considering the participation of the defenders and form-

ing the problem as a Markov Game to be solved by RL. Ref. [110] extended the

attacker’s capability to target not only the power grid topology but also the commu-

nication topology, so the outage signal would be masked, and the control center misled

into improper dispatch with negative impacts. Ref. [113] investigated the RL-based

false data injection attack (FDIA) on the state estimation in the transmission system,

where the optimal injected attack vector on phase measurement units (PMU) can be

learned online by the Q-learning algorithm. Similarly, researchers in [116] analyzed

the impact of the RL-based FDIA on microgrids where the control input of distri-

bution energy resource (DER) controllers can be strategically manipulated by FDIA.

However, the above-mentioned studies are based on assumptions that the power grid

has been compromised so that the attackers are able to launch cyberattacks and in-

flict physical actions directly as the starting point. The simulators also only model

the physical side of the power grid, whereas the cyber part was neglected.

Meanwhile, RL/DRL-based PT on information systems for the ICT industry has

recently drawn attention. Ref. [92] proposed an RL-based PT for communication net-

works, where a lightweight network attack simulator was developed to perform the

PT. The study then proposed the PT as a Markov decision process (MDP) with the

known network configuration as states and the available scans and exploits as actions;

the final PT actions are determined by applying Q-learning and DQN, respectively.

However, the built communication networks are highly abstract and simplified - not
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simulated - that cannot fully capture real-world systems. Ref. [93] proposed a two-

stage DRL-based PT on communication networks, where the first stage uses search

engines to collect network information to build an attack tree; the second stage applies

the DQN algorithm to discover the easiest-to-exploit attack path based on the attack

tree. Ref. [94, 2] proposed the Intelligent Automated Penetration Testing System

(IAPTS), which integrates the RL module with industrial IT PT frameworks with

the aim to save human resources while producing much-enhanced PT results. These

studies are valuable but still at the early stage without practical standards, protocols,

or devices considered. Moreover, these works are limited to network infrastructures

PT planning and not the entire practice. These studies also only focused on vulnera-

bilities of the cyber part, while the cyber-physical coupling and the physical impact

were not considered.

To address this gap, we proposed a DRL-based PT framework aimed at efficiently

and adaptively identifying critical vulnerabilities in cyber-physical ADNs. Based on

this framework, the pen-tester is modeled as a DRL agent, and the PT is formulated

as a Markov decision process (MDP). To illustrate the effectiveness of our framework,

we conducted a case study on replay attacks targeting an ADN with Conservation

Voltage Reduction (CVR) control. This approach enables the agent to learn the

optimal timing and ordering of replay attacks in various operating scenarios. To solve

the MDP, we employed the Deep Q-Network (DQN) algorithm to train the agent and

optimize the PT policy. Furthermore, we developed a cyber-physical co-simulation

platform named GridBattleSim, which includes specialized simulators for the physical,

cyber, control, and attacker components of ADNs. This platform serves as a sandbox

environment for training the DRL agent. We conducted tests on scenarios of varying

difficulty levels to assess the learning capability and performance of our DRL-based

PT framework in identifying critical attack paths.

43



3.3 Proposed Methodology

3.3.1 DRL-based AutoPT Framework for ADNs

In this work, the PT is a sequence of cyberattacks on the target cyber-physical ADN

launched by a pen-tester or ethical hacker. The objective of PT is to identify critical

attack paths that can lead to negative physical impacts on the system. Thus, PT is

considered as a sequential decision-making problem. A typical mathematical formu-

lation of PT is the Markov decision process (MDP), which can be solved by applying

RL/DRL algorithms to obtain the optimal decision-making policy.

Fig. 3.1 shows the proposed DRL-based PT framework, which involves an agent

and an environment. The agent, acting as a pen-tester, takes PT actions to interact

with an environment that is a target cyber-physical smart grid. The environment

is coupled with various physical components and cyber components. The physical

components include grid feeders, transformers, DERs (e.g., PV arrays, wind turbines,

batteries), power electronic devices (e.g., DC-AC inverters, DC-DC converters), loads

(e.g., houses, factories), voltage regulation devices (e.g., voltage regulators, capacitor

banks), among others. The cyber components include endpoints for many above-

mentioned power devices using communication interfaces (e.g., RTUs), sensors (e.g.,

PMUs, smart meters), as well as the communication networks that facilitate the mes-

sage delivery between endpoints and the control center (e.g., routers, communication

channels). In addition, grid control applications (e.g., voltage control and energy

management) in the control center are also covered in the cyber part, which gathers

measurements from the power grid through sensors and dispatch control commands

to actuators to achieve the control objectives.

The actions taken by the agent can be atomic actions of various cyberattack

techniques used in PT, such as deny of service (DoS), packet drop, packet replay, and
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Figure 3.1: DRL-based PT framework.

man-in-the-middle (MITM), among others. The environment will transit its state

to a new state when the action works and outputs its state or observations to the

agent, including electrical measurements from the physical part of the power grid (e.g.,

voltage, current, frequency) and measurements that describe the cyber part of the

power grid (e.g., throughput, latency). At the same time, the agent will also receive

an immediate reward signal from the environment obtained by a reward function to

judge the agent’s action performance. Since the goal of PT is to identify attack paths

that can create a negative impact on the power grid, the reward function can be

designed to reflect the existence or extent of a physical impact, such as power loss

and reduction in power quality, or an economic impact, such as the economic loss, or

the combination of the physical impact and the economic impact. In this work, we

are mainly concerned with the physical impact caused by cyberattacks. Therefore,

the reward function is designed based on the physical impact of the power grid.

Under the RL/DRL paradigm, the agent’s objective is to find an optimal PT policy
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that can maximize the accumulated rewards during PT through learning experiences

from agent-environment interactions [117]. The PT policy determines the action to

take in a given state or an observation from the environment. In this framework,

to address the curse of dimensionality challenge resulting from the large state space

or observation space in the complicated cyber-physical system [118], deep artificial

neural networks are applied to represent the policy in terms of an approximation of

a value function or a policy function [119].

In this study, the terms “pen-tester” and “agent” can be interchangeably since

they refer to the same entity.

Under the proposed DRL-based PT framework, PT is formulated as an MDP

problem, which will be introduced in the next subsection.

3.3.2 General MDP Formulation for AutoPT

An MDP is a discrete-time stochastic control process that uses a mathematical frame-

work to describe the sequential decision-making process of an agent in a dynamic

system. It is utilized in situations where the internal state of the environment is un-

certain and influenced by the agent who makes sequential decisions over time [120].

We formulate the proposed PT as an MDP, which is defined by a tuple with five

components ⟨S,A, P (st+1|st, at), R(st, at, st+1), γ⟩ [121], where S is a set of environ-

ment states; st ∈ S is a state at time t; A is a set of actions; at ∈ A is an action taken

by the agent at time t. P (st+1|st, at) is the state transition probability that describes

the transition of the environment state when the agent performs an action at in a

current state st. R(st, at, st+1) is the reward function that calculates the immediate

reward rt+1 received by the agent after performing the action at and the environ-

ment transitions to the state st+1. γ ∈ [0, 1) is the discount factor that determines

the trade-off between the immediate and long-term rewards that the agent prefers to
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achieve. In addition to the MDP tuple, we utilize the feature vector ϕt to represent

the extracted feature information from the environmental state at time t. The design

of feature extraction functions is tailored to specific study cases.

Due to the complex nature of the target smart grid, the determination of P (st+1|st, at)

poses challenges for PT. However, model-free RL/DRL methods allow the agent to

take the environment as a black box and learn the PT policy through pure trial and

error.

A general description of MDP components for the proposed DRL-based PT frame-

work is presented below.

State: In the field of power systems, the steady operational state of a power grid

is commonly characterized by the magnitude and angle of the three-phase voltages

of every node bus. These state parameters can be used to calculate the power flow

of each bus node and each branch of the power grid. These state parameters are also

the outputs of the state estimation (SE) function performed by the control center

based on the obtained measurements from field sensors, such as PMUs. Accordingly,

in this study, the environment state of the target smart grid is defined as a vector of

the three-phase voltage magnitude and three-phase voltage angle of every node bus

in the power grid. Let N denote the number of node buses; Vi,p and θi,p denote the

voltage magnitude and angle, respectively, of the i-th node in phase p. Then, the

state vector is expressed as follows:

st = [V1,A, V1,B, V1,C , ..., VN,A, VN,B, VN,C ,

θ1,A, θ1,B, θ1,C , ..., θN,A, θN,B, θN,C ]

(3.1)

Action: The action at taken by the agent at time t is selected from a set A (also

called the action space). The agent needs to select an action from this set in each time

step to form a cyberattack. Usually, a pen-tester can perform various cyberattack
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techniques, including denial of service (DoS), packet drop, packet replay, and packet

delay, among others. Each cyberattack technique may have several atomic actions,

and each action will also have many action parameters set in the background. The

aggregation of these atomic actions forms the action space A for PT. Table 3.1 lists

four typical cyberattack techniques on smart grids as well as their action spaces and

action parameters.

Table 3.1: Action space of PT on smart grid

Cyberattack
Techniques

Action Spaces Action Parameters

DoS
{DoS Start,
DoS End}

IP address,
port number,
packet size,
time interval

Packet Drop
{Drop Start,
Drop End} Type of packets

Packet Delay
{Delay Start,
Delay End}

Type of packets,
delay duration

Packet Replay
{Packet Record,
Packet Replay,
Replay End}

Type of packets,
replay order

For a DoS attack, two atomic actions could be defined: DoS Start and DoS End.

For DoS Start action, the pen-tester should determine some parameters to perform a

flooding attack, including the IP address of the target device, the port number of the

target device, the size of the sending packet, and the time interval between sending

each message. For DoS End action, since it is a stop of DoS, no parameters need to

be determined.

For a packet drop attack, two atomic actions could be defined: Drop Start and

Drop End. For Drop Start action, the pen-tester should determine what types of

packets captured by the pen-tester will be dropped, which could be the PMU pack-

ets, dynamic pricing packets, or both. For Drop End, since it is a stop action, no
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parameters need to be determined.

For packet delay attack, two atomic actions could be defined: Delay Start andDelay

End. For Delay Start, the pen-tester should determine what types of packets captured

by the pen-tester will be delayed and a fixed delay duration that will be conducted

on the received packets. For Delay End, since it is a stop action, no parameters need

to be determined.

For replay attack, three atomic actions could be defined: Packet Record, Packet

Replay, and Replay End. For Packet Record, the pen-tester should determine what

type of packets will be recorded. For Packet Replay action, the pen-tester should

determine the replay order of recorded packets saved in its memory. The order can

start from the latest recorded packet (packets are recorded in a first-in-last-out mem-

ory, FILO) or starting from the oldest recorded packet (packets are recorded in a

first-in-first-out memory, FIFO). For the Replay End action, since it is a stop action,

no parameters need to be determined, but it will end either Packet Record action or

Packet Replay action.

Moreover, we define the action duration, denoted as δ (unit: second), as the time

duration used by each atomic action.

Reward Function: In this work, the reward function encodes the tactical goal

of PT. More specifically, the reward function is designed to reflect the existence or

extent of negative physical impacts on the power grid. A negative physical impact is

defined as the violation of the compliance limit (safety range) for the power quality

parameters, including voltage violation, frequency variation, voltage unbalance, and

voltage harmonics, among others [122]. A general form of the reward function is

expressed in Eq. 3.2:

R(st, at, st+1) =

NQ∑
i=1

(Ui ×RQ
i (st, at, st+1)), (3.2)
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Where NQ is the number of possible power quality parameters that we focus on

for the smart grid; Ui is a binary variable that indicates whether the ith power quality

parameter is considered or not (Ui = 1: considered, Ui = 0: not considered); RQ
i (·) is

the impact function for the ith power quality parameter. If the action at performed

by the agent brings some violations on the safety range for the ith power quality

parameter, RQ
i (·) will output a continuous positive value to quantify the extent of the

impact or output the integer 1 to indicate the occurrence of this violation. A case-

specific reward function design will be presented by the case study in Section 3.4.

Objective Function: The PT can be considered as a kind of worst-case identi-

fication procedure on the target system, where the pen-tester tries to create as many

negative physical impacts on the smart grid through cyberattacks. Therefore, the

discounted accumulated rewards during the PT can serve as the objective function

for the agent to maximize, denoted as G and represented in Eq. 3.3:

G =
T∑
t=1

γt−1rt, (3.3)

where T is the maximum number of actions taken in the PT. rt is the immediate

reward obtained by the reward function R(st, at, st+1). γ ∈ [0, 1) is the discount

factor that controls the trade-off between the immediate and long-term rewards that

the agent tends to achieve. By optimizing Eq. 3.3, we hope to find out an optimal

PT policy a∗t = π∗(st) that maps the current state st to the an optimal action a∗t , as

expressed in Eq. 3.4

π∗ = argmax
π

G. (3.4)

Thus, solving the MDP and obtaining the optimal policy π∗ that maximizes G is

an optimization problem that can be solved by RL/DRL algorithms.
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3.4 Case Study on ADNs Using MDP Formulation

In this chapter, we focus on PT on an ADN with conservation voltage reduction

(CVR) as the control application deployed by the control center. We investigate the

replay attack on PMU packets as the main cyberattack technique used in the PT and

hope to identify the optimal timing and ordering of replay attacks toward the voltage

instability of the ADN.

3.4.1 Threat Modeling of Replay Attacks on ADNs

In this study, a centralized CVR control application is applied as a distribution au-

tomation (DA) function performed by the control center. The replay attack used in

the PT is a category of network attack techniques in which an attacker detects a

data transmission and fraudulently has it delayed or repeated [50]. In this work, the

replay attack replays the latest recorded PMU packets sent from the endpoints to

the control center server to mislead the CVR to dispatch wrong control signals to the

voltage regulator of the power grid, as shown in Figure 3.2. The replay attack has two

atomic actions: packet record and packet replay. The record action will continuously

capture the packets and save them into the agent’s buffer, and the replay action will

replay the last packet from the buffer. This work focuses on investigating the timing

and ordering of launching these two atomic actions sequentially during the PT.

The CVR function is widely adopted by utilities for peak demand reduction and

energy savings through reducing the voltage of distribution feeders for the ADN [123].

The deployed voltage regulator, known as the on-load tap changer (OLTC), changes

its three-phase tap positions according to system voltage and keeps the minimal

voltage within a low-level voltage band (CVR control band). For the centralized

CVR function, the server will send control commands to increase or decrease the tap

position by one tap, as shown in Figure 3.2.
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Figure 3.2: The replay attack scheme on PMU packets in the ADN.

3.4.2 MDP Design

Based on the general MDP formulation proposed in Section 3.3.2, we give a more

specific MDP design for the case study.

State: The state vector st of the ADN at time t is defined as a vector of the

three-phase voltage magnitude and three-phase voltage angle of every node bus in

the ADN, as expressed in Eq. 3.1.

Action: The at taken by the agent at time t is selected from the action space A

for replay attacks. According to Table 3.1, A can be defined as:

A = {a(1), a(2), a(3)}, (3.5)

where a(1) is the Packet Record action, a(2) is the Packet Replay action, a(3) is the

Replay Stop action. The action duration is set by the parameter δ. The Packet Record

action will continuously capture PMU packets sent from the RTU of the PMUs and

save them into the agent’s buffer. The Packet Replay action will replay PMU packets

starting from the latest one of the buffer. Therefore, this buffer can be considered as
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a FILO memory.

Feature Vector: We assume that the agent is able to parse PMU packets based

on the knowledge of protocols and obtain the node measurements of the target ADN.

Let NP be the number of PMUs deployed in the ADN. For each PMU, the pen-tester

can obtain the voltage magnitude for each phase. If M samplings are performed

during one action duration by the agent, we can directly extract features from these

measurements into a vector ft, as expressed as follows:

ft = [V −
a , Va−, Ṽa, V

−
b , Vb−, Ṽb, V

−
c , Vc−, Ṽc], (3.6)

where V −
a is the maximal phase-A voltage magnitude among N PMUs averaged by M

samples. Va− is the minimal voltage magnitude of phase-A among N PMUs averaged

by M samples; similarly, Ṽa is the average voltage magnitude of phase-A among N

PMUs averaged by M samples. The feature extractions for phase-B and phase-C are

the same as that of phase-A.

The final feature vector ϕt is formulated as:

ϕt = [f c
t , f

m
t ], (3.7)

where f c
t represents the extracted features from current measurements, fm

t represents

the extracted features from measurements obtained during the latest Packet Record

action. fm
t is an important part of the ϕt since the Packet Replay action may replay

different packets from its buffer under the same system state, which may transfer

the system to an unsure state, ignoring the state transition probability P (st+1|st, at).

However, if the fm
t is included, the current state has the information of the Packet

Replay action, making the next state deterministic.

Reward Function: Based on the general form of reward function defined by
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Eq. 3.2, in this case study, we select the voltage magnitude as the power quality pa-

rameter to form the reward function, which is designed to reflect the voltage violation

extent of the power grid. We apply the System Average Voltage Magnitude Violation

Index (SAVMVI) proposed in [124] to shape this function as:

R(st, at, st+1) =
1

NP

1

M

1

3

Nv∑
i=1

M∑
k=1

3∑
p=1

V IOi,p,k, (3.8)

where the V IOi,p,k denotes the voltage magnitude violation of phase p obtained from

the ith PMU of kth sample within the one action duration. More specifically, V IOi,p,k

is defined as:

V IOi,p,k =


Vmag − Vmax, if Vmag > Vmax

0, if Vmin ≤ Vmag ≤ Vmax

Vmin − Vmag, if Vmag < Vmin,

(3.9)

where Vmin and Vmax are the minimum and maximum acceptable values for steady-

state voltage magnitudes, respectively.

3.4.3 PT Policy Optimization based on DQN

The objective function of PT, as defined in Eq. 3.3, aims to maximize the discounted

accumulated rewards during the PT process. The solution to Eq. 3.3 yields the

optimal PT policy π∗, which dictates the best action to take given a specific state. In

order to determine the optimal PT policy, RL algorithms are employed to solve the

MDP.

While traditional RL algorithms, such as Q-learning and SARSA [117], are effec-

tive for solving decision-making problems with finite and discrete state spaces, they
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encounter the curse of dimensionality challenges when confronted with the PT prob-

lem, characterized by large and continuous state space due to the complexity nature

of the cyber-physical smart grid. To overcome this challenge in the context of PT,

DRL algorithms are applied, which integrate deep neural networks (DNNs) into RL

algorithms. More specifically, we apply deep Q-network (DQN), as a typical DRL

algorithm, to obtain the optimal PT. The framework of DQN is shown in Figure 3.3.

TD	Error

Q-Network Target	Q-
Network

Replay	Buffer

Environment

Gradient
update

argmaxa	Q(s,a;θQ)

Q(s,a;θQ) maxa	Q(s',a;θQ'	)

Store

s

(s,	a,	r,	s')

(s,	a) s' r

Copy	every
C	steps

DQN	Agent

Figure 3.3: The framework of DQN algorithm.

The action value function Q(s, a), which estimates the future accumulated rewards

when taking action a under state s, is approximated by a neural network (Q-network)

parameterized by θQ [125]. The update rule for the Q-networks is to minimize the

mean square Temporal-Difference (TD) error as follows:

L(θQ) = E[(Q(st, at; θ
Q)− y)2], (3.10)

where y = rt+γmaxaQ
′(st+1, a; θ

Q′
), Q′(·) is the target Q-networks parameterized by

θQ
′
.

The Q(s, a) will be iteratively updated through the interactions between the agent
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and the environment. Finally, the optimal action a∗t at st can be obtained by:

a∗t = arg maxaj∈AQ(st, aj). (3.11)

In this study, the input state of the Q function is replaced by the feature vector

ϕt.

The pseudo-code of the DQN-based PT optimization is shown in Algorithm 3.1.

Algorithm 3.1 PT policy optimization based on DQN

1: Initialize the Q(·) and Q′(·) with parameter θQ and θQ
′
;

2: Initialize the experience replay buffer D;
3: for episode = 1 to Nep do
4: Get the initial feature vector ϕ0 extracted from PMU packets;
5: for t = 1 to T do
6: The agent selects an action at from A based on the current feature vector ϕt

following the ϵ-greedy strategy;
7: The agent executes at on the AND and gets the new feature vector ϕt+1;
8: Calculate the reward rt based on Eq. 3.8;
9: Store transition (ϕt, at, rt, ϕt+1) in D;
10: Sample random minibatch of transitions from D, and update the θQ for Q(·) by

minimizing the Eq. 3.10;
11: Every C steps rest θQ

′
= θQ;

12: end for
13: end for

The algorithm begins by initializing the main Q-network Q(·) and the target Q-

network Q′(·) with respective parameters θQ and θQ
′
. In addition, an experience re-

play buffer D is initialized to store and sample experiences from agent-environment in-

teractions for policy training. During each episode, the algorithm progresses through

a series of time steps, denoted by t, within a predefined time horizon T . At each

time step, the agent selects an action at from the action space A based on the current

feature vector ϕt, employing an ϵ-greedy strategy to control exploration and exploita-

tion of the action space. Subsequently, the agent executes the selected action on the
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system and observes the resulting new feature vector ϕt+1. A reward rt is then cal-

culated according to the system’s responses based on Eq. 3.8. The algorithm stores

the transition tuple (ϕt, at, rt, ϕt+1) in the experience replay buffer D. Periodically,

a random minibatch of transitions is sampled from D, and the parameters θQ of the

Q-network Q(·) are updated by minimizing the loss function specified in Eq. 3.10.

Moreover, to stabilize the learning process, the target network parameters θQ
′
are

synchronized with the main network parameters θQ every C steps. Finally, we will

get the trained Q(·) as the final PT policy.

3.5 GridBattleSim: A Co-Simulation Platform for

AutoPT on ADNs

To facilitate the study on the DRL-based PT for cyber-physical smart grids, a

software-based co-simulation platform, called GridBattleSim, was developed, where

the proposed solutions in Chapter 3 and 4 are validated. GridBattleSim is developed

based on the research platform ASGARDS-H (Enabling Advanced Smart Grid Cyber-

Physical Attacks, Risk and Data Studies with HELICS) [126]. GridBattleSim and

ASGARDS-H are all based on the Hierarchical Engine for Large-scale Infrastructure

Co-Simulation (HELICS) developed by the Pacific Northwest National Laboratory

[127].

3.5.1 Platform Introduction

HELICS and ASGARDS-H

Before introducing GridBattleSim, we first briefly introduce HELICS and ASGARDS-

H:

HELICS is an open-source cyber-physical co-simulation framework for energy
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systems, with a strong tie to power systems [127]. It provides users with a high-

performance way to integrate multiple simulators across a variety of computation

platforms (Linux, Windows, etc.) and languages (C++, Python, etc.) from various

domains. HELICS can co-simulate diverse simulators for power systems, including

GridLAB-D, GridDyn, Matpower, Pypower, OpenDSS, PSLF, InterPSS, etc., but is

also general enough to support many simulators in other domains by using HELICS

API. Under the HELICS framework, a simulator or a program running the simulation

model is called a “federate”. These dedicated federates are time-synchronized by a

HELICS core and a HELICS broker. HELICS core is the software that will be embed-

ded inside the simulator to allow it to become a HELICS federate. HELICS broker

is a special executable distributed with HELICS; it is responsible for performing two

key tasks for co-simulation: (1) maintaining synchronization for federates and (2)

facilitating message exchange between federates based on the ZeroMQ protocol [128].

Based on the HELICS framework, ASGARDS-H [126] was developed, which is

a flexible co-simulation platform that can simulate cyberattacks on cyber-physical

smart grids. It integrates four simulators and programs as federates, including the

GridLAB-D for power grid simulation, OmNet++ for communication networks simu-

lation, one Python program for launching the grid control functions, one Python pro-

gram for launching cyberattacks through man-machine interaction, and one Python

program for data monitoring and visualization. This platform allows users to test

different cyberattack means on a distributed power grid, including eavesdropping,

DoS/DDoS, replay attack, packet dropping, packet delay, and false data injection

attack (FDIA), etc. However, it does not support users to perform AutoPT using

specific strategies. It also does not implement a specific grid control program but

leaves such development to users.
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GridBattleSim

GridBattleSim is a secondary development based on ASGARDS-H. It inherits the

basic structure of ASGARDS-H and develops dedicated programs and API for creat-

ing a co-simulation project, implementing the DRL-based AutoPT on specific power

grids with specific grid control applications, making it a dedicated research platform

for DRL-based AutoPT on ADNs.

Figure 3.4: The framework of GridBattleSim.

Figure 3.4 shows the framework of GridBattleSim. In this framework, GridBat-

tleSim adopts a Project Generator (a Python program used in ASGARDS-H but

modified specifically for DRL-based AutoPT) to create a co-simulation project based

on our research purposes. We can configure different cyber-physical settings of an

ADN in terms of the physical part, cyber part, and cyberattack techniques, among
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others. For the physical part of ADN, configurations include the load level, power gen-

eration level, PV penetration ratio, and weather-related parameters, among others.

For the cyber part of ADN, configurations include PMU locations, PDC locations,

and PDC-aggregated PMU locations, among others. For the cyberattack techniques,

we will configure the hook layer for desired endpoints (assign which device can be

attacked by which cyberattack techniques). In addition, many time-related settings

should also be configured, including the co-simulation duration, PT starting time,

and PT duration.

The generated co-simulation project consists of multiple dedicated simulators

or programs for the physical power grid, communication networks, control center,

and attacker, respectively. Under the HELICS co-simulation framework, simula-

tors and programs are considered federates and are time-synchronized by a central

HELICS broker. Data exchanges between federates are realized through publica-

tions/subscriptions to/from the HELICS broker. The applied federates of GridBat-

tleSim are GridLAB-D federate, OmNet++ federate, Control-Centre feder-

ate, and Attacker federate.

In this platform, the physical process of the AND is simulated by the GridLAB-

D federate; the endpoints, communication networks, and cyberattacks are simulated

in the OmNet++ federate; the grid control functions, such as the CVR, are imple-

mented in the Control-Center federate; the DRL-based AutoPT is implemented in

the Attacker federate. In addition, a knowledge module is communicated with

the Attacker federate and provides supporting information to the Attacker federate

to assist its decision-making. The knowledge module will be used and explained in

Chapter 4.

The publications and subscriptions for each federate are also illustrated in Fig-

ure 3.4. We use different colored shapes representing different publication-subscription
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pairs to describe the information flow between federates. The GridLAB-D federate

publishes node measurements subscribed by the RTU endpoints in OmNet++. These

RTU endpoints will generate PMU packets and deliver them through communication

networks to the control center server. When the server receives the PMU packets,

it parses them and publishes the payload, which will be subscribed by the Control-

Center federate.

The Control-Center federate performs the grid control function based on the re-

ceived PMU data. The control commands for the voltage regulator will be published

by the Control-Center federate and then subscribed by the server in the OmNet++

federate. The server will send the control commands through the network to the

voltage regulators. The voltage regulator will publish the control parameters that

will be subscribed by the GridLAB-D federate. The GridLAB-D federate then per-

forms the power flow calculation to update measurements for the power grid. To

make the co-simulation more realistic, in OmNet++, PMU packets are implemented

with the C37-244-2013 synchrophasor protocol specifications. The control commands

dispatched by the Control-Center server follow the Modbus-TCP protocol.

The GridLAB-D, OmNet++, and Control-Center federates constitute the PT en-

vironment. The Attacker federate plays as the RL agent: It launches cyberattacks

(actions) by publishing parameters for attack actions subscribed by the OmNet++

federate; it also subscribes node measurements from the GridLAB-D federate to form

its observation vectors for the DRL agent. The proposed testbed is flexible in config-

uring and testing different distribution systems, communication networks, centralized

control strategies, and cyberattack strategies. The implemented cyberattacks include

packet drop, packet delay, DoS, and replay attack, where we use replay attack as the

main cyberattack technique to investigate DRL-based PT.
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3.5.2 Platform Workflow

To study the DRL-based PT by using GridBattleSim, we need to follow three basic

steps:

Step 1: Create a co-simulation project. In this step, we can generate a

co-simulation project based on the research purpose by configuring parameters for

the power grid and the attack capability of the pen-tester. The platform allows us

to configure the load level, generation level, PMU location, and other parameters for

the power grid. It also allows us to set the hook on endpoints that we want to attack.

Here, the hook is an additional layer inserted between the network layer and the data

link layer of a target endpoint. A hook can be configured to implement different

cyberattacks, such as packet drop, packet delay, and packet replay, among others.

Step 2: Train the PT policy. Once we build a co-simulation project, we can

train our agent to optimize the PT policy. Before launching the training, we need

to configure the MDP or POMDP settings, including the action space, observation

space, step function, reset function, and reward function. We also need to configure

the hyperparameters of the RL/DRL algorithms. Then, we can run the training to

optimize the PT policy. During the training, the Q-network will be saved.

Step 3: Test the PT policy. When the training is completed, we can test

the trained PT policy, where we select the trained Q-network to generate the PT

decisions.
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3.6 Experimental Validation

3.6.1 Experiment Setup

AND Configurations

The standard IEEE 13-bus distribution feeder [129], as shown in Figure 3.5, is used

as a skeleton to build the cyber-physical ADN, serving as the PT environment. The

configurations include settings for the physical power grid, communication networks,

and the control center. Based on this standard feeder, we added residential houses,

PV stations, and a voltage regulator to the system. Configuration parameters and

locations of these entities are listed in Table 3.2.

Figure 3.5: IEEE 13-bus distribution feeder.

For the communication network, we add one router in each bus node to create

a star-type topology. Each bus node has one PMU endpoint. Some bus nodes also

have endpoints for smart inverters or voltage regulators. All endpoints are wirelessly

connected to their local access points. The communication network is visualized in

Figure 3.6. Moreover, the sampling interval for PMU measurement is 0.3s. The data

rate of the communication network is 50Mbps.
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Table 3.2: Configurations of the ADN entities

Name Node Locations Configurations

Houses
646, 645, 634, 611,
692, 675, 652, 680

All houses equip with
lights, HVACs,
water heaters

PV stations
646, 645, 634, 611,
692, 675, 652, 680

Smart inverters operate on
unity-power-factor mode

Voltage
regulator

650
The tap position ranges

from -16 to +16

PMU
650

Control Center

Server

PMU
632

PMU
645

PMU
646

PMU
634

PMU
611

PMU
684

PMU
671

PMU
692

PMU
675

PMU
652

PMU
680

PGW

PMU
630

PMU
633

Firewall

PV Inverter
Endpoint

PMU
Phasor

Measurement
Unit

Wireless Access Point

Router

Voltage Regulator End
Point

Communication Link

Main Aggregator

Figure 3.6: The communication network for the ADN.
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PT Configurations

The replay attack will record and replay outgoing packets from compromised end-

points to external networks, implemented as a replay attack hook [126] inserted be-

tween the data link layer and the network layer of the router at Node 650 in Om-

Net++, as shown in Figure 3.7. This means the attacker is able to record and replay

PMU packets from all PMU endpoints. The PT duration is 30s, and the duration of

each attack is 3s.

Figure 3.7: The replay attack hook implementation in OmNet++.

For the control center, the CVR control function will adjust the tap positions of

the voltage regulator for each phase according to the minimal measured voltage from

PMUs. The CVR control set-point is set to 0.962 p.u., and the width of the CVR

control band is set to 0.012 p.u.
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Hyperparameters of the DQN-based Agent

The DQN hyperparameters are selected empirically based on a number of experiments

and evaluations. The entire training process takes 6,000 episodes, during which ϵ, a

parameter that controls the action selection strategy, changes linearly from 0.5 to 0.1

to encourage exploration at the beginning and exploitation at the end. The learning

rate for updating the Q-network is 0.001, with 30 neurons in each of the two hidden

layers. The discount factor γ is fixed at 1.0.

3.6.2 Simulation Results

We investigated the training performance of PT in different scenarios with different

attack difficulties. There are three main factors, namely load level, PV generation

percentage, and irradiation drop ratio, that can affect the difficulty of PT. The load

level is controlled by the number of houses in each phase. The PV generation per-

centage is the ratio of PV power to the load consumption, which can be controlled

by the PV penetration ratio of the system. The irradiation drop ratio reflects the

changing percentage of solar irradiation caused by changing weather.

Load Demand in PT Difficulty

We first created three scenarios with two different load levels (100 houses, 50 houses,

20 houses). The other two factors are fixed with a 100% PV penetration ratio and

a 90% irradiation drop starting from 5s and lasting for 6s. The PTs are launched in

the noon when the irradiation level is around 850 W/m2.

In Scenario-1, the number of houses for each phase is 100. Figure 3.9a shows

the lowest 3-phase voltages in the system when no attack is launched. When the

irradiation drops, the voltages of each phase fluctuate for some time and trigger the

CVR control simultaneously when the voltages exceed the CVR lower and upper
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bounds. The CVR control will adjust the tap positions of the voltage regulator to

maintain the lowest voltage of each phase within the CVR control band (shown as

the black dotted lines in Figure 3.9a.

Figure 3.8 shows the training log of the PT agent based on DQN, where the solid

blue curve represents the episode rewards; the solid orange and green curve shows the

moving average of 10 and 20 episode rewards, respectively. From Figure 3.8, we can

see that the episode reward increases with the number of episodes, suggesting that

the DQN is improving the policy based on the designed MDP during the PT process.

Figure 3.8: The training process for the DRL-based PT in Scenario-1.

We also captured 6 PT policies in different training stages to illustrate how the

agent learns to improve the attach path. As shown in Figure 3.10, 6 attack paths are

generated by Policies A to F captured at 1,000th to 6,000th episodes, respectively,

with the corresponding episode rewards for each policy.

Policy A is a null policy that launches the Stop action from the start to the end,

which cannot have any impact on the system. After 1,000 epochs, Policy B launches

2 consecutive Record actions between 6s and 12s, then launches 3 consecutive Replay

actions starting from 21s. While the final episode reward is 1.11, which is relatively

lower than that of subsequent policies, it is an important improvement over Policy A
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(a)

(b)

Figure 3.9: The lowest voltage of each phase under (a) a non-attack condition and
(b) the attack path of the trained PT policy in Scenario-1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: PT policies in different stages of the training process in Scenario-1: (a)
Policy A (episode reward = 0), (b) Policy B (episode reward = 1.11), (c) Policy C
(episode reward = 6.87), (d) Policy D (episode reward = 6.87), (e) Policy E (episode
reward = 19.68), (f) Policy F (episode reward = 24.89).
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because Policy B is able to capture the packets when the lowest voltage is higher than

the upper limit of the CVR control (as shown in Figure 3.9a). The second recorded

packets were later replayed three times and triggered the movement of the tap position

towards the lower side. The last replay action triggered the voltage violation on the

lower limit (0.95 p.u.).

Then, after another 1,000 epochs, Policy C only launches 1 Record action be-

tween 9s and 12s and then launches 4 consecutive replay actions starting from 18s.

Compared to Policy B, Policy C further improves the attack path by extending the

duration of the Replay action, which can bring more negative impacts to the system.

It also neglected the first Record action in Policy A, because the subsequent Replay

action only replays the latest recorded packet from the attacker’s replay memory,

making it unnecessary to record the first packet that is not important in the attack

path.

For the remaining policies, while Policy D at 4,000 episodes keeps the same policy

as Policy C, Policy E at 5,000 episodes extends the repetition of Replay from 4 to 5,

which further extends the attack impact. Eventually, Policy F learns to remove all

Stop actions after the Record action; it replays packets immediately when it captures

the voltage violation on the CVR control upper bound, making the voltage over-limit

as quickly as possible before the CVR control can recover the voltage. Compared

with the previous policies, this final policy brings more negative impacts within this

PT period and gets a 24.89 episode reward finally. Figure 3.9b shows the lowest

voltage of each phase when the agent applies the final Policy F. It can be seen that

the voltage starts to violate the lower limit (0.95 p.u.) after 20s and continuously

decreases until the end.

Scenario-2 has 50 houses in each phase to represent a lower load level. Fig-

ures 3.11a and 3.11b show the lowest 3-phase voltages under non-attack and the
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trained attack path, respectively. In this scenario, only the lowest voltage in phase-C

violates the CVR band and triggers the CVR control when there is no attack. When

we launch the PT with the trained policy, which is the same as Figure 3.10f, only

phase-C voltages violate the lower limit and finally obtain a 13.26 episode reward,

which is lower than that of Scenario-1.

(a)

(b)

Figure 3.11: The lowest voltage of each phase under (a) a non-attack condition and
(b) the attack path of the trained PT policy in Scenario-2.

Scenario-3 has 20 houses in each phase to represent the lowest load level. Fig-

ure 3.12 shows the lowest 3-phase voltages when there is no attack in the system. In

this scenario, the voltages in each phase do not violate the CVR control band when

the irradiation drops, so they cannot trigger the CVR control.

The PT training was also performed under Scenario-3 using DRL. However, the
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Figure 3.12: The lowest voltage of each phase under non-attack condition in Scenario-
3.

episode rewards are all 0 during the training, which means that the agent cannot learn

from the interaction with the PT environment. Since no actions can bring positive

rewards to the agent, the agent simply keeps the Stop action from the beginning to

the end.

From the experiments of Scenario-1 to 3, when the load increases to the level that

can trigger the CVR control, the PT agent is able to learn from the environment. A

higher load level will bring greater impacts on the system stability.

PV Generation Percentage in PT Difficulty

Scenario-4, which has a 50% PV penetration ratio, is compared with Scenario-2 to

investigate the influence of the PV generation percentage. The load level is fixed

with 50 houses in each phase, and the irradiation drop is set to 90%. From Fig-

ure 3.13, similar to Scenario-3, voltages in each phase do not violate the CVR control

band under the non-attack condition, which means the agent cannot learn from the

environment.

However, when we set the PV penetration ratio to 120% and set the number of

houses to 20 in Scenario-5 to make a comparison with Scenario-3, we can find phase-

A voltages violate the CVR control band, as shown in Figure 3.14a, which can be
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Figure 3.13: The lowest voltage of each phase under non-attack condition in Scenario-
4.

captured and learned by the agent. Figure 3.14b shows the impact of the trained PT

policy launched in Scenario-5, in which the agent can receive an episode reward of

12.43.

Irradiation Drop Ratio in PT Difficulty

We also created Scenario-6 with a 20% irradiation drop ratio to represent a slight

weather change. Compared with Scenario-2, as shown in Figure 3.15, since there is

no violation on the CVR control band, the agent cannot capture packets that can

trigger the movement of the tap position of the voltage regulator. Thus, the agent

cannot also learn from this scenario.

Comparative studies

We also compared the DRL-based PT policy in Scenario-1 with the random policy,

where actions are selected with equal probabilities, and a human policy that records

the packets when the system experiences the voltage reduction and replays them

afterward. For the random policy, since it has a lower probability to capture the

CVR boundary violations and replay them continuously, in most of the cases, it

73



(a)

(b)

Figure 3.14: The lowest voltage of each phase under (a) non-attack condition and (b)
the attack path of the trained PT policy in Scenario-5.

cannot bring negative impacts, and the voltage curves remain the same as the none-

attack condition like Figure 3.9a. For the human policy, since the replayed packets

are measurements lower than the CVR lower bound, it will trigger the tap position

increase of the voltage regulator and lead to the voltage violation on the higher limit

(l.05 p.u.) finally. However, compared with the DRL-based policy, this human policy

will take more time to achieve the voltage violation (for DRL-based policy, less than

30s; for human policy, more than 35s). This is because, under the CVR control

scheme, the system voltage is approaching 0.95 p.u., which is relatively far away from

1.05 p.u.

From the experiments above, we can see that increasing the load level, power
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Figure 3.15: The lowest voltage of each phase under non-attack condition in Scenario-
6.

Figure 3.16: The lowest voltage of each phase under human policy in Scenario-1.
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generation ratio, and irradiation drop ratio can all decrease the difficulty of the PT

since they have the chance to make the voltages violate the CVR control band that

can be captured by the agent. Moreover, compared with high load level conditions, to

make more impact through PT, the lower load level scenario requires greater power

generation.

3.7 Conclusions

To improve the efficiency and non-comprehensiveness of common PT for cyber-physical

smart grids, this chapter proposed a DRL-based PT framework to efficiently and adap-

tively identify critical vulnerabilities for ADNs. Using replay attacks on ADNs with

CVR control as a study case, this chapter modeled the attack as an MDP, where the

state space, action space, feature vectors, and reward function are designed specif-

ically. The DQN algorithm was adopted to solve the MDP and learn the optimal

timing and ordering of replay attacks toward maximal voltage instability in different

operating scenarios. A cyber-physical co-simulation platform, named GridBattleSim,

was developed as a sandbox environment to train the DRL agent. This platform

integrates dedicated simulators for the physical part, cyber part, control part, and

attacker part of ADNs. Using GridBattleSim, scenarios with different levels of diffi-

culty were tested to validate the learning capability and performance in finding critical

attack paths of the DRL-based PT. The simulation results showed that DRL-based

PT can learn to find the optimal attack path against system stability when the grid

is under high load demand, solar power generation, and weather variation. These

results are promising first steps toward a highly customizable framework for test-

ing complex cyber-physical power systems with automated DRL agents and various

attack schemes.
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Chapter 4

DRL-based AutoPT under

Partially Observable Conditions for

ADNs
1

4.1 Problem Statement

While the MDP formulation and DRL methods proposed in Chapter 3 provide a

valuable framework for automating PT and improving its efficiency, the assumption

of complete system state visibility may not be feasible in real-world scenarios. In

practice, a pen-tester aiming to infiltrate a system and cause critical impacts typically

only has access to a subset of the system’s digital resources. As a result, the tester

must carefully select their actions based on the limited information available locally.

The lack of a holistic view of the system’s state poses challenges to PT, as it obscures

the potential impact beyond the compromised digital assets. This limitation restricts

the agent’s ability to make well-informed decisions, ultimately reducing the efficacy

of PT strategies.

1This chapter was submitted to IEEE Transactions on Dependable and Secure Computing.
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Moreover, the incomplete visibility of the system state introduces uncertainties

in PT that can impede the effectiveness of PT efforts. Without a comprehensive

understanding of the system’s overall state, the penetration tester may overlook crit-

ical vulnerabilities or fail to anticipate the full extent of the potential damage that

could be inflicted. This limited perspective undermines the accuracy of the vulnera-

bility identification. Therefore, addressing the challenge of incomplete system state

visibility is crucial for enhancing the robustness and reliability of AutoPT.

Solution Overview:

To address the aforementioned limitations in the context of AutoPT for ADNs, an

improved approach utilizing a partial observable Markov Decision Process (POMDP)

formulation is proposed. This framework extends the MDP formulation to accommo-

date scenarios characterized by partial observability. Building upon the case study

detailed in Chapter 3, the study is also investigating the identification of optimal

replay attacks capable of triggering grid voltage violations by leveraging a subset of

information gathered by the agent during PT.

In order to tackle the uncertainty of PT introduced by partial observability, a

physical model of the power grid was established to enable the agent to infer the sys-

tem’s complete state from the local data it can access to. Subsequently, the POMDP

problem can be reformulated into an MDP problem, thereby enabling the application

of conventional RL/DRL algorithms to obtain the optimal PT policy.

4.2 Related Works

In recent years, there are many works applying POMDP to formulate the process of

PT or vulnerability analysis. Authors in [86] and [130] proposed the use of POMDP

to model PT in network security, providing a more accurate representation of at-

tack planning in PT compared to traditional planning methods, allowing intelligent
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decision-making, integrating scanning actions with actual exploits to enhance the

effectiveness of automated PT tools.

Ref. [131] highlighted the shortcomings of PT methods, such as classical planning

and previous POMDP-based approaches, which fail to accurately simulate real-world

scenarios and scale effectively. To address these issues, the authors modeled the PT

as a partially observable contingent problem, accommodating partial observability

and non-deterministic action effects. The experimental findings suggest that the

contingent planning approach provides a more sophisticated and scalable solution for

PT, surpassing the capabilities of conventional methods.

Ref. [2] pinpointed the inefficiencies in current PT techniques, which are non-

standardized, intricate, and resource-heavy. To mitigate these issues, the authors

introduced the Intelligent Automated Penetration Testing System (IAPTS), which

operates by conceptualizing PT environments and tasks as a POMDP problem that

was solved by RL. The experimental validations suggested that RL can significantly

enhance PT, outperforming human capabilities in terms of time efficiency, coverage

of attack vectors, and PT accuracy and reliability.

Ref. [132] identified a gap in AutoPT where existing methods do not fully ac-

count for uncertainties caused by partial network observability and network changes

made by the defender. To address this, the authors proposed a new framework based

on the POMDP that incorporates the defenders’ behaviour as an information decay

factor. Two models are proposed: D-PenTesting, which assumes the decay factor is

known beforehand, and LD-PenTesting, which learns the decay factor during the pro-

cess. Both models, when tested on two benchmark scenarios, outperformed existing

POMDP-based PT methods and demonstrated greater robustness.

Ref. [133] modeled the PT as a black-box POMDP and proposed an algorithm,
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called ND3RQN, to optimize the PT. The algorithm utilizes a Long Short-Term Mem-

ory (LSTM) structure to make decisions based on historical memory and enhances

performance through neural network structure adjustments. Experimental results

indicate that ND3RQN outperforms other state-of-the-art algorithms to find greater

attack paths and exhibit superior generalization and robustness in various simulation

scenarios.

To overcome the challenges in AutoPT due to the incomplete knowledge of target

network systems and the challenges of managing uncertainties, Ref. [134] introduced

the EPPTA (efficient POMDP-driven PT agent), which utilizes an asynchronous RL

framework equipped with an implicit belief module to estimate the current environ-

ment state. EPPTA significantly reduces the convergence time in training the PT

policies, achieving about a 20-fold acceleration compared to existing methods.

4.3 Proposed Methodology

4.3.1 General POMDP Formulation for AutoPT

A partially observable MDP (POMDP) serves as a generalization of the MDP, aiming

to model the decision-making process of an agent under the assumption that the

system dynamics adhere to an MDP, yet the agent lacks direct access to the complete

underlying state of the system [135].

Based on the proposed DRL-based PT framework illustrated in Figure 3.1, the

proposed PT is formulated as a POMDP in this chapter, which is defined by a tu-

ple consisting of seven components ⟨S,A,O, T (st+1|st, at), O(ot|st), R(ot, at, ot+1), γ⟩

[121]. S denotes the set of system states with st ∈ S representing the state at time t.

O denotes the set of observations the agent can observe, and ot ∈ O represents the

observation at time t; A represents the set of actions with at ∈ A denoting the action
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taken by the agent at time t. T (st+1|st, at) denotes the state transition probability

when the agent performs an action at in the current state st. O(ot|st) denotes the

emission function that maps the current state to the observation the agent receives.

The reward function R(ot, at, ot+1) calculates the immediate reward received by the

agent after the action is performed. The constant γ ∈ [0, 1) represents the reward

discount factor across time. Due to the intricate nature of cyber-physical smart grids,

the pen-tester faces challenges in determining T (st+1|st, at) and O(ot|st). Therefore,

model-free RL/DRL are still the primary methods to solve the POMDP and obtain

the optimal PT policies.

The state space, action space, reward function, and objective function in this

context align with the design provided in Section 3.3.2 of Chapter 3. The state of the

environment is represented by the vector comprising voltage magnitude and voltage

angle values for each bus node, as outlined in Eq. 3.1. The action space encompasses

a range of cyberattack techniques commonly employed in PT, detailed in Table 3.1.

A generic reward function for PT is structured to capture deviations in various power

quality parameters, as depicted in Eq. 3.2. The objective function for PT aims at

maximizing the discounted cumulative rewards, as expressed in Eq. 3.3.

4.3.2 Belief State

Since the pen-tester lacks the global perception of the system state, it cannot directly

observe the attack impact beyond the observable area. To overcome this limitation

and transfer the POMDP to MDP that can be solved by standard RL/DRL algo-

rithms, the belief of the state (belief state) is utilized, which is the estimation of

the system’s full state based on the agent’s observation from the environment. The

belief state of the smart grid is generated by performing state estimation in the agent

side, which combines the pen-tester’s prior knowledge of the power grid and its local
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observations.

The open-source intelligence techniques (OSINTs) used by attackers have already

been shown to be an effective means of gaining knowledge about the target power

grid through publicly available sources. The knowledge about the power grid includes

the topology, feeder parameters, number of residential houses, and distribution of

distributed energy resources (DERs) per node, among others [111]. Therefore, by

utilizing OSINTs, the pen-tester is able to establish a physical model, such as the

power flow model, of the target power grid. This physical model is capable of simu-

lating the operation process of the power grid, from which the estimated state can be

obtained if the input of the physical model can be well-configured. Additionally, the

power consumption and generation of each node usually follow a similar pattern or

profile, which allows the pen-tester to make a general estimation of the state of the

power grid based on gathered measurements from certain locations.

Figure 4.1 illustrates the proposed belief state estimation process for PT on smart

grids.

Agent	uses	OSINT	to	obtain	the
structural	information	of	the

power	grid

Physical	Model	with	State
Estimation

Power	generation
(PG,	QG),	

Power	consumption
(PL,	QL)	

of	every	bus	nodeSpatial
Data

Prediction

Agent	obtains
local

measurements

i	=	1	...	N

Belief	State	bt
	(V,			),	

of	every	bus	node

Power	generation
(PG,	QG),	

Power	consumption
(PL,	QL)	

of	visiable	nodes

Figure 4.1: The belief state estimation based on OSINT and local observations.

The agent begins by using OSINT to gather enough structural information about

the target power grid, including the topology, the profile of physical components,

the impedance of each component, the profile of residential houses and DERs of the

grid, etc. The gathered information is to establish a power flow model of the power
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grid. The power flow model, also known as the load flow model, is a mathematical

representation used to analyze the flow of electrical power through a transmission or

distribution network. The model helps determine the voltage magnitude and voltage

angle at each bus node, the real and reactive power flowing in each line, and each

node under steady-state conditions [136].

Based on the established power flow model, the agent can use it to generate the

belief state. During the PT, the agent will obtain some local measurements from com-

promised digital assets or captured packets. These local measurements can include

the active/reactive power generation (PG/QG) and active/reactive power consump-

tion (PL/QL) of visible bus nodes. Using these measurements, the agent can perform

a spatial data prediction for other invisible nodes based on the assumption that the

power consumption and generation of each node for a power grid in a region usu-

ally follow a similar pattern. Since the agent already knows the profile of residential

houses and DERs by using OSINT, the agent is able to estimate the power consump-

tion and generation of invisible nodes by scaling on the measurements from visible

nodes according to their ratio of the rated power.

The output of the spatial data prediction is the power generation and power

consumption for every bus node, which will be the input of the established power

flow model. By running the state estimation over the power flow model, the agent

can obtain the voltage magnitude and voltage angle of every bus node, which will

form the belief state vector bt.

After getting the belief state, the POMDP can be transferred to an MDP that

can be solved by traditional RL/DRL methods.
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4.4 Case Study on ADNs Using POMDP Formu-

lation

In this case study, our focus remains on examining the replay attack on PMU packets

as the primary cyberattack technique within an AND with Conservation CVR as the

grid control application. Our objective is to determine the most effective timing and

sequence for executing replay attacks to induce voltage instability within the ADN.

This investigation is conducted under the constraint of partial observability, where

the agent’s ability is restricted to capturing only a limited number of PMU packets.

4.4.1 POMDP Design

Based on the general POMDP formulation proposed in Section 4.3.1, we give a more

specific POMDP design for the case study.

State: The state vector st of the ADN at time t is still defined as a vector of

the three-phase voltage magnitude and three-phase voltage angle of every node bus

in the ADN, as expressed in Eq. 3.1.

Action: The at taken by the agent at time t is selected from the action space

A = {a(1), a(2), a(3)}, for replay attacks, where a(1) is the Packet Record action, a(2)

is the Packet Replay action, a(3) is the Replay Stop action. The action duration is

set by the parameter δ. The Packet Record action will continuously capture PMU

packets sent from the RTU of the PMUs and save them into the agent’s buffer. The

Packet Replay action will replay PMU packets starting from the latest one of the

buffer. Therefore, this buffer can be considered as a FILO memory.

Belief State: Based on the proposed belief state generation process illustrated in

Figure 4.1, the pen-tester establishes a distribution system power flow model of the
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target ADN based on OSINTs. During the PT, the pen-tester obtains the measure-

ments from captured PMU packets for visible nodes, including the voltage magnitude,

voltage angle, active/reactive power consumption, and active/reactive power genera-

tion. The agent then performs the spatial data prediction on the power consumption

and generation for other invisible nodes based on the obtained local measurements,

which allows the agent to obtain the global view of the power consumption and

generation of all nodes of the ADN. Finally, the agent combined the measured and

predicted power consumption and generation as input to the power flow model and

ran the state estimation to obtain the belief state bt (voltage magnitude and angle of

all nodes).

Belief Feature Vector: When the agent obtains the belief state bt of the power

grid, it is able to extract feature information from it to form the belief feature vector

ϕb
t . If a sequence of M samples of PMU packets is obtained during a single action

duration, the relevant belief feature can be extracted from bt and represented as:

f b
t = [V −

a , Va−, Ṽa, V
−
b , Vb−, Ṽb, V

−
c , Vc−, Ṽc], (4.1)

where V −
a represents the maximum phase-A voltage magnitude among all bus nodes

averaged over M samples. Similarly, Va− is the minimum phase-A voltage magnitude

among all nodes averaged over M samples, and Ṽa is the average phase-A voltage

magnitude among all nodes averaged over M samples. The feature extraction for

phase-B and phase-C follows the same procedure as phase-A.

We can then define the final belief feature vector as:

ϕb
t = [f bc

t , f bm
t ], (4.2)

where f bc
t represents belief features extracted from current bt, and f bm

t represents
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belief features extracted from belief state obtained during the previous Packet Record

action. The inclusion of f bm
t is still crucial as the Packet Replay action may replay

different packets from its buffer under the same system state, which may transfer the

system to an uncertain state, ignoring the state transition probability T (st+1|st, at).

However, with the inclusion of f bm
t , the current observation contains information

about the Packet Replay action, making the next state deterministic.

Reward Function: Based on the general form of the reward function defined

by Eq. 3.2, in this case study, we still select the voltage magnitude as the target

power quality parameter to form the reward function. The agent hopes to trigger

voltage violations through cyberattacks. To achieve this goal, two reward functions

are designed. We adopt Eq. 3.8 designed in Section 3.4 as the default reward function

(we call it Reward Function I), which employs SAVMVI to measure the extent of

voltage violation in the system.

The results of the experimental validation section reveal that the episode rewards

during the training phase are consistently 0. This is because the Reward Function I

only rewards the agent when the voltage violation is observed, which usually takes a

relatively long exploration time for the agent. Therefore, most of the time, the agent

lacks feedback in the form of rewards, which hinders the agent’s learning efficiency. To

address the issue of sparse rewards and improve learning efficiency, Reward Function

II is proposed, as presented in Eq. 4.3. Reward Function II incentivizes the agent by

breaking down the overall objective into some smaller achievable goals. It is designed

based on the assumption that the pen-tester is able to obtain knowledge of the CVR

control program that aims to maintain the system’s lowest voltage within the CVR

control band. As such, the reward function gives +0.01 when the voltage falls outside

the CVR control band, +1 when the voltage violates the system constraints, and

-0.01 when the voltage stays within the CVR control band.
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R(st, at, st+1) =
1

M

1

3

M∑
k=1

3∑
p=1

(
1

NP

NP∑
i=1

ri,p,kv + rp,kc ) (4.3)

where ri,p,kv and rp,kc are respectively defined as:

ri,p,kv =


1, if Vmag violates constraints

0, others

(4.4)

rp,kc =


0.01, if Vmin violates CVR

− 0.01, others

(4.5)

4.4.2 PT Policy Optimization based on DQN with Belief

State

This section introduces the PT policy optimization. Specifically, the DQN with belief

state algorithm will be applied to solve the POMDP, as presented in Algorithm 4.1.

This algorithm begins by initializing the action-value functions Q(·) and Q′(·)

with parameters θQ and θQ
′
, respectively, alongside creating the experience replay

buffer D. Throughout each episode, the agent captures PMU packets from PDCs to

acquire local measurements regarding power generation and load consumption from

visible nodes. Subsequently, the agent conducts spatial data prediction to estimate

power generation and load consumption for every bus node based on the gathered

information. The initial belief state b0 is derived using the established power flow

model, followed by the generation of the initial belief feature vector ϕb
0 based on b0.

Within each time step t, the agent selects an action at from the action space

A according to the current belief feature vector ϕb
t , employing an ϵ-greedy strategy

to explore the action space. The selected action at is executed on the ADN, and
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Algorithm 4.1 PT policy optimization based on DQN with belief state

1: Initialize the Q(·) and Q′(·) with parameter θQ and θQ
′
;

2: Initialize the experience replay buffer D;
3: for episode = 1 to Nep do
4: Agent captures PMU packets from visible nodes and obtains local measurements for

the power generation and power consumption;
5: Agent performs spatial data prediction to estimate the power generation and con-

sumption for every bus node;
6: Agent gets the initial belief state b0 by using the established power flow model;
7: Agent gets the initial belief feature vector ϕb

0 based on b0;
8: for t = 1 to T do
9: Agent selects an action at from A based on the current belief feature vector ϕb

t

following the ϵ-greedy strategy;
10: Agent executes at on the AND and captures new PMU packets from visible

nodes;
11: Agent performs spatial data prediction to estimate the power generation and

consumption for every bus node;
12: Agent gets the next belief state bt+1 by using the established power flow model;
13: Agent gets the next belief feature vector ϕb

t+1 based on bt+1;
14: Calculate the reward rt based on Eq. 3.8 or Eq. 4.3;
15: Store transition (ϕb

t , at, rt, ϕ
b
t+1) in D;

16: Sample random minibatch of transitions from D, and update the θQ for Q(·) by
minimizing the Eq. 3.10;

17: Every C steps rest θQ
′
= θQ;

18: end for
19: end for
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new PMU packets are captured from visible nodes. Subsequently, the agent con-

ducts spatial data prediction to estimate power metrics for all bus nodes, leading to

the determination of the next belief state bt+1 through the power flow model. The

corresponding next belief feature vector ϕb
t+1 is generated based on bt+1.

The algorithm calculates the reward rt according to specified equations, either

Eq. 3.8 or Eq. 4.3. The transitions (ϕb
t , at, rt, ϕ

b
t+1) are stored in the experience replay

buffer D, from which a random minibatch is sampled for updating the parameter

θQ of Q(·) by minimizing the loss function defined in Eq. 3.10. Additionally, the

parameter θQ
′
is updated to match θQ every C steps to ensure the stability of the

learning process.

4.5 Experimental Validation

The GridBattleSim co-simulation platform introduced in Chapter 3 continues to be

adopted to validate the proposed POMDP formulation for PT on smart grids. Illus-

trated in Figure 3.4, the Attacker federate communicates with a Knowledge module

that models the power flow dynamics of the ADN based on the topology information

obtained by the pen-tester in advance. The Knowledge module inputs are observable

and predicted load consumption and power generation for visible and invisible nodes,

and its output is the belief state of the entire power grid, forming the belief feature

vectors for the Attacker federate.

In this work, the Knowledge module is implemented by another GridLAB-D sim-

ulator that runs power flow model of the ADN for belief state calculation. This

Knowledge module is also co-simulated under the HELICS framework through pub-

lications and subscriptions.
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4.5.1 Experiment Setup

AND Configurations

The standard IEEE 13-bus system is used to build the cyber-physical ADN as the PT

environment. Based on this, we add residential houses, PV stations, and a voltage

regulator into the system.

Figure 4.2 is the corresponding communication network of the target ADN, which

is designed as a star-type topology with a router placed in each bus node. The central

router is placed in Node-650 and connects to the control center. Endpoints for PMUs,

smart inverters, and voltage regulators are located in certain nodes. We also add a

Phasor data concentrator (PDC) in Node 611 as a PMU aggregator to aggregate

PMU packets from Node 611, 692, 675, 652, and 680. These endpoints are connected

wirelessly to their local access points.

Figure 4.2: Communication networks for the target ADN.
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The detailed system configuration, including device locations, default control pa-

rameters, network parameters, simulation time duration, etc., are listed in Table 4.1.

Table 4.1: Configurations of the target ADN

Parameter Value

House location
646, 645, 634, 611,
692, 675, 652, 680

Number of houses in each phase 100

PV station location
646, 645, 634, 611,
692, 675, 652, 680

PV penetration ratio 100%

Smart inverter working mode Unity-power-factor mode

Voltage regulator location 650

PDC location 611

PMUs aggregated by PDC 611, 692, 675, 652, 680

PMU data sampling interval 0.3s

Tap position ranges of
voltage regulator

from -16 to +16

CVR control set-point 0.962 p.u.

CVR control band width 0.012 p.u.

Network bandwidth 50Mbp

Simulation duration 40s

Irradiation drop duration 4s to 10s

PT Configurations

The replay attack will record and replay outgoing packets from compromised end-

points to external networks, implemented as a replay attack hook inserted between

the data link layer and the network layer of the endpoint in OmNet++ [126], as shown

in Figure 3.7. In this work, the pen-tester attacks on the PDC at Node-611, which

aggregates PMUs from Node-611, 692, 675, 652, and 680. That allows the pen-tester

to record or replay packets from these aggregated PMUs simultaneously. The PT will
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last for the 40s, with each action lasting 1s.

Hyperparameters of the DQN-based Agent

The hyperparameters for the DQN algorithm were determined through a series of

experiments and evaluations. The training process consists of 3,000 episodes, during

which the ϵ parameter that regulates the action selection strategy gradually decreases

from 0.5 to 0.1 to encourage exploration at the beginning and exploitation at the end.

The Q-network is a neural network that has two hidden layers with a neuron size of

30 in each layer. The learning rate for updating the Q-network is set at 0.001. The

discount factor γ is fixed at 0.95.

4.5.2 Simulation Results

In this study, we conducted an in-depth investigation on the training performance of

the PT by considering different reward functions and the use of belief states. Addi-

tionally, we also compared the performance of DQN with the Q-learning algorithm,

which is a popular traditional RL algorithm that adopts the Q table to approximate

the action-value function (Q function) instead of using a neural network.

PT with Belief State and Reward Function I

The training log of the DQN-based PT using the belief state under Reward Function I

is depicted in Figure 4.3, where the episodic reward remains at zero (i.e., sparse reward

issue) throughout the entire training process, indicating that the agent is unable to

trigger any voltage violation during the PT and the agent is unable to improve its

policy from its learning experiences. Thus, the agent repeatedly chooses the Stop

action, as shown in Figure 4.4. The reason is that Reward Function I only rewards

the agent upon successfully achieving the final goal (system voltage violation), which
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typically takes a long time to achieve. As a result, the agent has a low probability of

obtaining positive episodic rewards when the number of training episodes is limited,

such as 3000 episodes in this case.

To address this issue, a new Reward Function II was proposed in Section 4.4.1,

which can handle the sparse reward issues by rewarding the agent when subgoals of

PT are achieved. The proposed Reward Function II will be validated in the following

sections.

Figure 4.3: The training process for the DQN-based PT using Reward Function I and
belief state.

Figure 4.4: Attack path based on DQN using Reward Function I and belief state.

PT with Belief State and Reward Function II

Figures 4.5 and 4.6 illustrate the training logs of the PT utilizing the DQN and

Q-learning algorithms, respectively. Driven by Reward Function II, the agent can
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achieve non-zero episodic rewards in both DQN-based and Q-learning-based train-

ing processes. Notably, the performance of the DQN algorithm surpasses that of

Q-learning in terms of learning efficiency within 3000 episodes. An obvious trend

from the smoothed curves indicates that the episodic rewards of the DQN agent in-

crease at a faster pace compared to the Q-learning agent after 2000 episodes. This

trend underscores the superior learning capabilities of the DQN algorithm for solving

POMDP in the context of PT on smart grids.

Figure 4.5: The training process for the DQN-based PT using Reward Function II
and belief state.

Figure 4.6: The training process for the Q-learning-based PT using Reward Function
II and belief state.

Figure 4.7 shows the attack paths based on DQN using Reward Function II and

belief state in different stages of the training process. Four policies (Policy A, B, C

and D) are captured at 0th, 1,000th, 2,000th, and 3,000th episodes, respectively.
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Policy A is the initial policy (non-trained policy) that launches the Stop action

from the start to the end, which cannot have any impact on the system. After 1,000

epochs, Policy B launches 6 consecutive Record actions before 6s, then launches 13

consecutive Replay actions starting from 6. It is an important improvement over

Policy A because Policy B is able to capture PMU packets when the grid’s lowest

voltage is lower than the CVR control band lower bound (as illustrated in Figure 3.9a

that shows the non-attack condition). The recorded packets were later replayed many

times and triggered the movement of the tap position towards the higher side. Then,

after another 1,000 epochs, Policy C launches 7 Record actions before 7s and then

launches 20 consecutive replay actions. Compared to Policy B, Policy C further

improves the attack path by extending the duration of the Replay action, which can

bring more negative impacts to the system. After the training, the final policy (Policy

D) further extends the Replay action duration to the end of the episode, leading to

the continuous increment of the tap position and a maximized negative impact.

Figure 4.8 displays the lowest three-phase voltage magnitude of the system and

the corresponding predicted voltages (belief state) under Policy D. As seen in the

figure, the pen-tester records the packets when the voltage is lower than the CVR

lower bound due to the weather changes and replays them subsequently. Since the

CVR control strives to keep the lowest voltage of the system within the CVR control

band, the tap position of the voltage regulator will continuously increase when it

receives the replayed PMU packets during the previous time. As a result, the actual

voltages increase until they violate the system constraints.

PT Using Reward Function II without Belief State

Figure 4.9 and 4.10 are training logs for DQN-based PT and Q-learning-based PT

without belief state, respectively. The DQN also outperforms the Q-learning for the
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(a) (b)

(c) (d)

Figure 4.7: Attack paths based on DQN using Reward Function II and belief state
in different stages of the training process: (a) Policy A (initial policy), (b) Policy B
(after 1000 episodes), (c) Policy C (after 2000 episodes), (d) Policy D (final policy).

Figure 4.8: The lowest voltage of the system under the DQN-based PT with Reward
Function II and belief state.
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PT training in terms of learning efficiency. By the end of the training, the average

episodic reward of DQN-based PT can exceed zero, while the Q-learning-based PT is

still under zero.

Figure 4.9: The training process for the DQN-based PT using Reward Function II
without belief state.

Figure 4.10: The training process for the Q-learning-based PT using Reward Function
II without belief state.

However, without the global perception of the full state of the system, the learning

efficiency is slowing down in this case, as shown in the comparison between Figure 4.5

and Figure 4.9, where the average episodic reward of DQN-based PT using the belief

state can approach 0.5.

4.6 Conclusions

To overcome the limited observability of PT in practical scenarios, this chapter pro-

posed to apply POMDP to formulate the PT process for ADNs, where the replay
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attacks on PMU/PDC endpoints were investigated in a developed GridBattleSim.

The agent established a physical model of the power grid based on its knowledge of

the system to estimate its full state (belief state) by using the obtained local data. An

improved reward function was proposed to decompose the ultimate goal into some

sub-goals to improve learning efficiency. Then, the POMDP of the PT was trans-

formed into an MDP problem, which was solved by the DQN algorithm to obtain the

optimal timing and ordering of replay attacks. The experimental results showed that

the belief state generated by the physical model could help the pen-tester to perceive

the conditions or cyberattack impact of the invisible area and improve the learning

efficiency of the PT. Compared with the reward function without considering the

sub-goal, the proposed improved reward function can effectively address the sparse

reward issue and boost learning efficiency.
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Chapter 5

Knowledge-Informed AutoPT

based on Reward Machine
1

5.1 Problem Statement

The primary objective of PT is to identify critical vulnerabilities that could poten-

tially be exploited, resulting in critical negative impacts on the system. This process

typically involves an extensive search of action sequences from action spaces over a

large state space driven by the agent’s reward. A challenge arises in RL/DRL-based

PT due to the sparse-reward issue. This issue emerges when the reward given to the

agent solely reflects the achievement of the ultimate PT goal. Consequently, the agent

receives a reward of zero value for the majority of the PT duration until the goal is

achieved. Under these conditions, most agent-environment interactions yielding zero

reward contribute minimally to the agent’s learning progress toward the optimal so-

lution. This lack of substantial contribution can potentially impede the process of

finding the optimal solution.

1This chapter was published on the paper “Knowledge-Informed Auto-Penetration Testing Based
on Reinforcement Learning with Reward Machine” [74], which was published by IEEE WCCI2024.
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To address the sparse-reward issue of the PT, a prevalent strategy is to reshape

the reward function by integrating human knowledge about the target system, which

facilitates the decomposition of the PT goal into many subgoals or subtasks. By

providing the agent with additional rewards upon achieving PT subgoals or subtasks

rather than solely upon reaching the ultimate goal, the sparsity issue can be miti-

gated. This is because the subgoals or subtasks are usually more attainable compared

to the ultimate objective. Based on this idea, our initial effort, detailed in Chapter 4,

involves restructuring the reward function by decomposing the main goal into sub-

goals according to the assumption that the agent knows the control rule of the CVR

performed in the control center, as expressed in Eq. 4.3.

However, the reshaped reward function Eq. 4.3 is specifically designed for ADNs

with CVR control applications. This reward function introduces application-specific

human knowledge about the target system, which loses generality since if the system

changes, the reward function should be redesigned. Currently, there is no standard

principle on the design of reward functions for PT in a variety of systems. Therefore,

general task decomposition in terms of the reward function design based on human

knowledge of PT, should be investigated.

Furthermore, encoding complex human knowledge into a single reward function

could increase the complexity of the reward function itself. For example, the reward

function could be a linear combination of rewards for a set of subgoals. Such a complex

reward function will make it difficult for the agent to differentiate which aspects of

contributions or losses result from its PT actions since the agent can only receive

a single reward to guide its learning process. As a result, the agent may require a

substantially larger number of interactions with the environment to comprehend this.

Additionally, from a mathematical standpoint, the reshaped reward function cannot

definitively assure the optimal PT policy, as it is empirically designed without taking
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policy convergence into account.

In addition, interpretability is often lacking in RL/DRL-based PT. The trained PT

policy cannot explicitly identify the current phase or situation of the PT agent and the

subsequent direction it shall be heading. This type of perception or awareness could

be encoded into the agent’s neural networks representing the DRL policy through

training, but it remains challenging to extract such information by decoding the

neural networks.

Solution Overview: In response to the aforementioned challenges with respect

to sampling efficiency, reward specification, and interpretability for RL/DRL-based

PT, we propose to embed knowledge from the cybersecurity domain as guidelines into

the agent’s learning process in an explainable way. This approach can automatically

break down the complex PT task into multiple subtasks, allowing the agent to learn

more efficiently.

More specifically, we propose a knowledge-informed AutoPT framework called

RM-PT, which utilizes a reward machine (RM) to encode domain knowledge based

on cybersecurity knowledge bases, such as MITRE ATT&CK [72] and Cyber Kill

Chain [137], etc. The RM specifies a set of events that occurred in PT and decomposes

PT into multiple subtasks based on existing PT practices. Moreover, RM can specify

different reward functions for PT in different phases, expanding the flexibility of

traditional reward functions in RL/DRL-based PT. Under the RM-PT framework,

PT is formulated as a POMDP guided by RMs. We focus specifically on the lateral

movement of the cyber part of the smart grid as a case study, which assumes the

pen-tester has gained initial access to the network of the control center and will move

deeper into the network to own high-value assets. We investigate two different RMs as

two guidelines. Finally, we employ the deep Q-learning algorithm with RM (DQRM)

to solve the POMDP and optimize the PT policy.
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5.2 Related Works

Human knowledge integration in RL/DRL-based PT and vulnerability analysis has

already been investigated.

In [138], the authors explored the model-free RL-based PT specifically for the

Capture-the-Flag (CTF) game. The research demonstrated through simulations that

while RL can effectively solve simple CTF instances with basic structures, changes

in the problem’s structure can increase the PT complexity and require a significant

number of samples for the RL agent to learn the PT policy. To address these chal-

lenges, the paper proposed to use techniques such as lazy loading, state aggregation,

and imitation learning to equip the RL agent with essential prior knowledge about

the problem structure, enabling it to handle more intricate problems efficiently. The

authors concluded that RL agents that combine model-free algorithms with rich prior

knowledge can be effective and useful in enhancing PT performance.

To overcome challenges involving vast state and action spaces and ineffective ex-

ploration in existing RL/DRL-based PT. Ref. [139] applied the hierarchical DRL

(HDRL) model with experts’ prior knowledge to improve the training performance

of PT agents. The applied HDRL model, designed with two layers of agents and

deep neural networks, aims to decompose PT tasks and reduce complexity, while ex-

pert prior knowledge provides rules and knowledge graphs to guide decision-making

and reduce invalid exploration. Experimental results based on actual network en-

vironments demonstrated that the proposed method significantly improves sample

efficiency, reduces learning time, and performs well in large-scale network scenarios.

Ref. [140] proposed the DQfD-AIPT PT framework, which combines RL with im-

itation learning to improve PT efficiency. The framework defines expert knowledge

structure and utilizes the deep Q-learning from demonstrations (DQfD) algorithm
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to enhance the training performance of the agent while avoiding overfitting. Exper-

imental results in a simulated network scenario with honeypots demonstrated the

effectiveness of incorporating expert knowledge, showing that the DQfD algorithm

outperforms classical RL/DRL methods in terms of efficiency and cumulative reward,

especially in reducing interactions with honeypots.

Similar to [140], Ref. [141] proposed a novel framework called Generative Ad-

versarial Imitation Learning based intelligent PT (GAIL-PT), which utilizes expert

knowledge bases and GAIL network to guide policy generation of RL/DRL agents

with lower costs. Experimental results showed that GAIL-PT outperforms the state-

of-the-art method DeepExploit in exploiting Metasploitable2 and Q-learning in dif-

ferent scale networks, demonstrating its effectiveness and suitability for enhancing

RL/DRL-based PT methods.

5.3 Proposed Methodology

5.3.1 Knowledge-Informed AutoPT Framework

In this chapter, the investigated AutoPT method employs a computer program acting

as an agent to launch a series of cyberattacks on network systems. The objective is

to discover possible attack paths to take ownership of critical resources, similar to

the capture-the-flag game. Thus, PT is a sequential decision-making problem, which

can be formulated as a partially observable Markov decision process (POMDP) [2],

and the optimal PT policy with respect to the POMDP can be obtained by applying

RL/DRL algorithms.

To address the challenges of sampling efficiency, reward specification, and inter-

pretability in RL/DRL-based PT, we propose a knowledge-informed AutoPT frame-

work based on RL with reward machine (RM-PT), as depicted in Figure 5.1, which
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uses a reward machine (RM) to encode domain knowledge of PT based on existing

cybersecurity knowledge bases.

Observation Space:
"newly discovered nodes count",
"leaked credentials",
"discovered node count",
"nodes privilege level"
...

Action Space:
"exploit local vulnerability"
"exploit remote vulnerability"
"connect"
...

Event Detector

start u0 u1 u2

<!b, 0>

<b, 0> <c, 0>

u3
<True, 0>

<h&d&f, 10>
<h&!d&!f&!g, 0>

<h&!d&!f&g, 0>

<!h, 0>

<!c&!g, 0> <!c&g, 0>

<h&d&!f&!g, 1>

<h&d&!f&g, 1>

(Labeling Function)

Event Set :
'a': 'discovered new nodes',
'b': 'discovered new credentials',
'c': 'lateral moved/connected to a new node',
'd': 'privilege elevated',
'e': 'new flags captured',
...

Events
(e.g., {'h','d', 'f'})

Subpolicy
for subtask:

Reward Machine PT Agent

Target Network System

ActionObservation

Subpolicy for u0 :

Subpolicy for u1 :

Subpolicy for u2 :

Cybersecurity Domain
Knowledge Encoding(e.g., MITRE ATT&CK, Cyber Kill

Chain, etc.)

Cybersecurity
Knowledge Base

Reward

Subtask
(e.g., u = u2),

Figure 5.1: The proposed knowledge-informed AutoPT framework (RM-PT).

This framework involves an agent that acts as a pen-tester and interacts with the

target network system that makes up the environment. This environment typically

consists of hosts, firewalls, routers, and communication channels, among other com-

ponents. The agent’s action is selected from a range of PT activities (action space),

such as network scanning, exploiting vulnerabilities, lateral movement, and privilege

escalation. Additionally, the agent can gather observations from the environment

through the information from scanning operations, defined by an observation space

containing newly discovered vulnerabilities, leaked credentials, etc. The immediate

reward reflects the evaluation of the agent’s action. The aim of PT typically involves

taking ownership of critical resources within the networks, such as customer data.

Thus, the agent can assign a positive reward to itself when the action is beneficial for

accomplishing this goal or a negative reward when it is not. The agent wants to find

an optimal PT policy to maximize accumulated rewards through learning experiences
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from agent-environment interactions [117]. To tackle the challenge of high dimension-

ality of the target system arising from the large observation or action spaces[118], the

PT policy is represented by deep neural networks to determine the best action based

on input observation. During the training phase, after each step, the agent will use

the experience (observation, action, reward, next observation) to update the weights

of the neural networks (iteratively improving the PT policy).

In this framework, the agent is informed and guided by a cybersecurity domain

knowledge encoding module, which uses an RM to encode the domain knowledge of

PT based on the cybersecurity knowledge bases, such as MITRE ATT&CK, Cyber

Kill Chain, etc.

The RM is a state machine with two essential functions: 1) decomposing the PT

task into a series of subtasks, such as “discover credentials” and “privilege escalation”,

and organizing them using a state machine structure; 2) specifying a reward function

for each state transition within the RM.

The RM receives a set of events detected during PT as input, leading to a tran-

sition of its internal state from one state to another according to its transition rules

(logic formula over the event set). The output of the RM includes the RM state and

a reward function. The RM state indicates the completion of the previous subtask

and the initiation of a new subtask; thus, it can be used to denote the subtask ID.

The event detector (also called the labeling function under the RM theory [142])

can identify occurring events, denoted by symbols, e.g., ‘a’ for “discovered new nodes”

and ‘b’ for “discovered new credentials”, from the environment by analyzing the lat-

est agent-environment interaction. These events are designed to represent successful

executions of adversary tactics as defined by cybersecurity knowledge bases. Because

these tactics serve as the adversary’s tactical goals, providing the motivation behind
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their actions [72]. For instance, privilege escalation is one tactic for attacking en-

terprise networks defined by ATT&CK. Therefore, the corresponding event can be

defined as its successful outcome, i.e., “privilege escalated”. All events are predefined

in an event set and can be detected using the event detector. Table 5.1 shows an

example of an event set designed for PT based on ATT&CK tactics.

Table 5.1: Event set of PT (P)

Event Symbol Event Description

‘a’ Discovered new nodes

‘b’ Discovered new credentials

‘c’ Lateral moved (connected to a new node)

‘d’ Privilege elevated

‘e’ New flags captured (new target nodes owned)

‘f’ Achieved the PT goal

‘g’ Has unused credentials

‘h’ Taken action to elevate the privilege

As an example shown in Figure 5.1, when events ‘h’, ‘d’, and ‘f’ are detected, the

RM will transit its state from u2 to u3 and output u3 (subtask ID) and a constant

reward function (reward = 10) according to its defined transition rule < h&d&f, 10 >.

In addition, RM outputs a reward function instead of a reward value. Thus, RM

allows the agent to specify task-specific reward functions to enhance the flexibility of

the single reward function used in traditional RL algorithms.

Furthermore, RM-PT utilizes deep Q-learning with RM algorithm (DQRM) to

train a PT policy, which decomposes the policy into a set of sub-policies for every

subtask and can train all sub-policies simultaneously. Therefore, the final PT policy

selects the sub-policy to determine the PT action.
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5.3.2 POMDP with Reward Machine Formulation for Au-

toPT

The proposed PT under the RM-PT framework is formulated as a POMDP with

RM (POMDPRM). A POMDPRM is characterized by a tuple consisting of seven

components ⟨S,A,O, T (st+1|st, at), O(ot|st),R, γ⟩ [143].

S represents the set of environment states, where st ∈ S denotes the state at time

t. O represents the set of observations, and ot ∈ O denotes the observation at time

t. A represents the set of actions, and at ∈ A denotes the action taken by the agent

at time t. T (st+1|st, at) is the probability of transition from the current state st to

the next state st+1 when the agent performs an action at. O(ot|st) is the emission

function that maps the current state to the observation received by the agent.

R is the RM, which is a tuple with six components R = ⟨P , L, U, u0, δ
u, δr⟩. P is

an event set of PT. L is the labeling function (event detector), L : O×A×O → 2P ,

which assigns truth values to events (True: event occurred, False: event not occurred),

by analyzing the input experience (ot, at, ot+1). U is a finite set of RM states. u0 ∈ U

is an initial state. δu is the state-transition function, δu : U × 2|P | → U , which

determines the next RM state based on its current state and the captured events (i.e.,

ut+1 ← δu(ut, L(ot, at, ot+1))). δr is the reward-transition function, δr : U × 2|P | →

[O × A × O → R], which outputs a reward function based on its current state and

the captured events (i.e., R(ot, at, ot+1) ← δr(ut, L(ot, at, ot+1))). The agent can use

the output reward function to obtain the reward.

γ ∈ [0, 1) is the discount factor that determines the trade-off between immediate

and long-term rewards that the agent prefers to achieve.

Due to the complex nature of the target network system, the determination of

T (st+1|st, at) and O(ot|st) poses challenges for PT. However, the agent can take the

environment as a black box and learn the policy through pure trial and error.
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For a specific scope of PT, the action space, observation space, and RM can be

customized accordingly.

5.4 Case Study on Lateral Movement Using POMD-

PRM Formulation

In this work, the lateral movement on enterprise networks is considered as the study

case of PT, which is under the assumption that the agent has already entered the

target network (post-exploitation assumption). The POMDPRM formulation and

two RMs are designed in the following subsections.

5.4.1 POMDPRM Design

Action Space

We consider three types of actions that the agent can execute during lateral move-

ment. The first is scanning, which involves collecting network information by dis-

covering new machines (nodes), determining the connections between these nodes,

acquiring machine configuration data, and gathering vulnerability information for

discovered nodes.

The second type of action is vulnerability exploitation, which can be classified

into local vulnerability exploitation and remote vulnerability exploitation. Local vul-

nerability exploitation can only be performed on a connected node (the node where

the agent is operating), and the agent seeks to steal local information, increase host

privileges, or discover credentials for connecting to other nodes. Remote vulnerabili-

ties come from nodes that are currently discovered but are not owned by the agent.

By exploiting remote vulnerabilities, the agent can gather more information about

the remote nodes.
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The third type of action is connection, which enables the agent to connect a node

using specific credentials and ports.

Due to the agent’s lack of direct access to action outcomes, scanning is considered

a mandatory action that must be performed after each action rather than being

optional in action space. Additionally, the scanning operation can also contribute to

forming an observation.

The action space is listed in Table 5.2, which includes three subspaces for local

vulnerability exploitation, remote vulnerability exploitation, and connection, respec-

tively. i, j, l, r, p, and c denote the ID of the source node, the target node, the local

vulnerability, the remote vulnerability, the port, and the credentials, respectively. n̂,

n̂l, n̂r, n̂p, and n̂c are agent’s estimations of the maximum number of nodes, local

vulnerabilities, remote vulnerabilities, ports, and credentials, respectively. Table 5.2

implies that for local vulnerability exploitation, the agent should choose the node ID

and local vulnerability ID. For remote vulnerability exploitation, the agent should

choose the source node ID, target node ID, and remote vulnerability ID. The source

node ID, target node ID, port ID, and credential ID should be set for the connection.

The PT action is a vector selected from one of the subspaces.

Table 5.2: Action space for lateral movement

Action Notation Subspace Size

Local vulnerability exploit [i, l] n̂× n̂l

Remote vulnerability exploit [i, j, r] n̂× (n̂− 1)× n̂r

Connection [i, j, p, c] n̂× (n̂− 1)× n̂p × n̂c

We consider each action will last a constant unit period, after which it will be

considered completed and terminated.
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Observation Space

The observation of the agent in PT is obtained by scanning operation after each action

taken using scanning tools, such as Nmap [144]. The observation space is designed

and shown in Table 5.3, which consists of many subspaces, including the discovered

nodes count, nodes privilege level, discovered nodes properties, leaked credentials, and

lateral move.

Table 5.3: Observation space of PT

Observation Notation Subspace Size

Discovered nodes count nd n̂

Nodes privilege level [ai]n̂ 2n̂

Discovered nodes properties [ai,p]n̂×n̂pr 3n̂×n̂pr

Leaked credentials [ai,p,c]n̂×n̂p×n̂c 3n̂×n̂p×n̂c

Lateral move bl 2

Among them, nodes privilege level is a vector describing the privilege level of

every node, where two values can be assigned to each entry: 0 = “not owned”, 1 =

“Admin”.

Discovered nodes properties tells what properties each node has. Properties in-

clude different types of operating systems (e.g., Windows, Linux), different types of

databases (e.g., SQLServer, MySQL), etc. It is represented by a n̂×n̂pr matrix, where

n̂pr is the estimated maximum number of properties. Each entry has three values: 0

= “No”, 1 = “Yes”, 2 = “Unknown”.

Leaked credentials is a n̂× n̂p × n̂c tensor with the first dimension indicating the

target node ID, the second dimension indicating the port ID, the third dimension

indicating the credential ID. Each entry has three values: 0 = “Not discovered”, 1 =

“Used”, 2 = “Unused”.
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Lateral move indicates whether the agent successfully moves from one node to

another in a new interaction with two values: 0 = “No”, 1 = “Yes”.

By flattening and concatenating all vectors from these five subspaces, we can get

an observation vector.

Reward Machine I (R1)

In this work, the PT agent is guided by the domain knowledge of PT encoded in an

RM. In the field of PT, one useful guideline is that the pen-tester attempts to discover

as many login credentials as possible to gain access and control over as many nodes

as possible. Therefore, the PT can be divided into three subtasks: 1) discover new

credentials, 2) gain access (connect) to a new node by using the discovered credentials,

and 3) elevate the privilege of the connected node to own its properties. This process

will be repeated to own more and more nodes until the PT goal is met, such as

discovering critical data or owning a specific number of nodes.

According to this guideline, our first designed RM (R1) is shown in Figure 5.2,

which has four states (U1 = {u0, u1, u2, u3}) starting from u0 and terminates at u3.

Its event set P1 = {‘b’, ‘c’, ‘d’, ‘f’, ‘g’, ‘h’} is a subset of the set defined in Table 5.1.

R1 tells that the agent will stay on u0 until new credentials are found (‘b’), then

transition to u1. The agent will remain in u1 if no successful connection is made (‘c’)

and the previously discovered credentials do not run out (‘g’). If all credentials are

used (‘!g’), but still cannot connect to a new node (‘!c’), it will go back to u0 to find

new credentials. If the agent can connect to a new node from u1 (‘c’), it will move to

u2. Then, the agent tries to take actions to elevate the privilege level of the connected

node (‘h’). If the privilege level is elevated (‘d’) and the final goal is reached (‘f’),

R1 ends in u3. If the final goal is not reached (‘!f’), the agent checks for unused

credentials. If it is (‘g’), the agent returns to u1 to try other credentials. If not, the
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agent returns to u0 to find new credentials.

start u0 u1 u2

<!b, 0>

<b, 0> <c, 0>

u3
<True, 0>

<h&d&f, 10>
<h&!d&!f&!g, 0>

<h&!d&!f&g, 0>

<!h, 0>

<!c&!g, 0> <!c&g, 0>

<h&d&!f&!g, 1>

<h&d&!f&g, 1>

Event Set: = {'b', 'c', 'd', 'f'f'f , 'g', 'h'}

Figure 5.2: The diagram of Reward Machine I (R1).

Each transition in R1 also outputs a reward value. According to Figure 5.2, when

the privilege level of a connected node is elevated (‘d’), the agent gets a reward = 1.

When the final goal is reached (‘f’), the agent gets a reward = 10.

Reward Machine II (R2)

We also investigate a more detailed RM R2 where the knowledge guides the agent to

discover new nodes first, then discover new credentials. Next, connect to a new node,

and finally, elevate the privilege of the connected node. Therefore, its event set is P2

= {‘a’, ‘b’, ‘c’, ‘d’, ‘f’, ‘g’, ‘h’}, where ‘a’ is added. The diagram of R2 is shown in

Figure 5.3. R2 has five states since it has one more task compared to R1.

According to Figure 5.3, the agent will stay on u0 until new nodes are discovered

(‘a’), then transition to u1. Sometimes, the agent also finds credentials simultaneously

(‘a&b’) because discovering a new credential usually comes with a new target node;

thus, it can directly transition to u2. The transitions in R2 from u1 are similar to

those in R2 from u0. One difference is that after a successful connection (‘c’), if all
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u0start u1 u2<a&!b, 0>

u4

u3

<!a, 0> <!b, 0>

<b, 0> <c, 0>

<h&d&f, 10>
<a&b, 0>

<!c&g, 0>

<!c&!g, 0>

<h&d&!f&g, 1>

<h&d&!f&!g, 1>

<!h, 0>

<True, 0>
<h&!d&!f&g, 0>

<h&!d&!f&!g, 0>

Event Set: = {'a', 'b', 'c', 'd', 'f'f'f , 'g', 'h'}

Figure 5.3: The diagram of Reward Machine II (R2).

discovered credentials are run out (‘!g’) but still cannot achieve the PT goal (‘!f’), it

will transition to u0 to find new nodes instead of to find new credentials.

The reward transition function of R2 is similar to that of R1. When the connected

node’s privilege level is elevated (‘d’), the agent receives a reward of 1. When the

agent reaches the final goal (‘f’), the reward is 10.

PT Objective

The goal of lateral movement is to take ownership (elevate privilege) of as many nodes

as possible to own their properties. Therefore, discounted accumulated rewards with

respect to R (denoted by GR) during PT can be used as the objective function for

the agent to maximize, as expressed in Eq. 5.1.

GR =
T∑
t=1

γt−1rt, (5.1)

where T is the maximum number of actions taken in the PT. rt is the immediate

reward obtained by R. γ is the discount factor. By optimizing Eq. 5.1, we hope to
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find out an optimal PT policy with respect to R, denoted as π∗
R = argmaxπ GR.

5.4.2 PT Policy Optimization based on DQRM

The deep Q-learning with RM algorithm (DQRM) is used to train the agent and

obtain the optimal PT policy π∗
R. It is an updated version based on the Q-learning

with RM (QRM).

Give an RM R, QRM decomposes the training process by learning one Q-function

(Q(o, a), a function used to evaluate future rewards for a certain observation and

action) per state in R [145]. These Q-functions can be considered as subpolicies and

represented by Q-tables. We denote Qu as the Q-function for state u of R. Since

the terminal state will bring no future rewards, the corresponding Q-function will

always output 0. For example, in Figure 5.2, R1 has four states and will have four

Q-functions.

The update rule for Q-tables in QRM is as follows:

Qu(o, a)
α←− r(o, a, o′) + γmax

a′
Qu′(o′, a′), (5.2)

where Qu is the Q-table of state u; Qu′ is the Q-table of the next state u′; α is the

learning rate. According to Ref. [142], QRM can guarantee the convergence to the

optimal policy with respect to R.

As the complexity of the environment increases, the observation space of PT

defined in Table 5.3 will grow exponentially, bringing a curse of dimensionality chal-

lenging to the QRM. Therefore, we adopt DQRM, which utilizes deep neural networks

(called Q-networks and are parameterized by θu) instead of Q-tables to approximate

Q-functions. It also adopts target Q-networks (parameterized by θ−u ) and the experi-

ence replay mechanism to stabilize the training process.
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The update rule for Q-networks is as follows:

Qu(o, a; θu)
α←− r(o, a, o′) + γmax

a′
Q−

u′(o
′, a′; θ−u′), (5.3)

where Qu is the Q-network of state u; Q−
u′ is the target Q-network of the next state

u′.

These Q-networks will be iteratively updated through the agent’s interactions with

the environment until the end of training. Finally, the optimal action a∗t given ot can

be obtained by:

a∗t = argmax
a∈A

Qu(ot, a; θu). (5.4)

Algorithm 5.1 PT policy optimization using DQRM

Require: A,O,R = ⟨P , L, U, u0, δu, δr⟩ , γ, α, C
1: For every u ∈ U − {uT }, initialize Qu(·) and Q−

u (·) with parameters θu and θ−u , respec-
tively;

2: Initialize an experience replay buffer D;
3: for episode = 1 to Nep do
4: Agent takes scanning operation to get the initial observation o0 from the target

network system, ot ← o0;
5: ut ← u0;
6: for t = 1 to Nit do
7: Agent selects an action at under ot from A based on ϵ-greedy strategy;
8: Agent executes at and takes scanning operation to get the observation ot+1 from

the target network system;
9: ut+1 ← δu(ut, L(ot, at, ot+1));
10: R(·)← δr(ut, L(ot, at, ot+1));
11: rt+1 = R(ot, at, ot+1);
12: Save the experience (ot, at, ot+1, ut, ut+1, rt+1) into D;
13: Sample random mini-batch of experiences (o, a, o′, u, u′, r) from D, and update

θu for Qu(·) based on Eq. 5.3;
14: if t mode C = 0 ? then
15: For every u ∈ U − {uT }, θ−u ← θu;
16: end if
17: ot ← ot+1

18: ut ← ut+1

19: end for
20: end for
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The pseudo-code of the PT optimization using DQRM is shown in Algorithm 5.1.

The algorithm requires the specification for the action space A, observation space

O, RM R = ⟨P , L, U, u0, δ
u, δr⟩, and the configurations of three hyperparameters,

i.e., γ, α, and C. Subsequently, for each RM state u within the set U excluding

the terminal state uT , the algorithm initializes Qu(·) and Q−
u (·) parameterized by θu

and θ−u , respectively. The algorithm also initializes an experience replay buffer D to

store the agent’s experiences during the training process. At the beginning of each

episode, the agent performs a scanning operation to obtain the initial observation

o0 from the target network system, setting ot to o0, and initializes the current RM

state ut to the initial tactic u0. The agent then interacts with the environment

iteratively to update its policy, where the agent will select an action based on the

ϵ-greedy strategy under the observation ot and execute the action to receive the

next observation ot+1. After that, the agent gets its next RM state ut+1 based on

RM’s state-transition function δu given the previous RM state ut and the detected

events from the labeling function L(ot, at, ot+1). The RM also outputs the reward

function R(·) based on the reward-transition function δr and calculates the reward

rt+1. The experience (ot, at, ot+1, ut, ut+1, rt+1) will be stored in the replay buffer D.

The agent will sample a random mini-batch of experiences from D, where each sample

(o, a, o′, u, u′, r) is used to update the Q-network parameters θu using the update rule

specified in Eq. 5.3. Furthermore, as the same trick used in the DQN algorithm, the

DQRM algorithm synchronizes the target Q-network parameters θ−u with the main

Q-network parameters θu for every C steps to improve the stability of training.

5.5 Simulation Platform and Testing Environments

In this study, we use CyberBattleSim as our experimental platform [97]. This plat-

form, developed by Microsoft, is an open-source network simulator designed for lateral
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movement research. It enables users to examine PT strategies they establish on sim-

ulated enterprise networks. Simulation networks are modeled by an abstract graph

with nodes (machines) parameterized by a set of pre-planted vulnerabilities. In ad-

dition, the OpenAI Gym interface allows automated agents to be trained by utilizing

RL/DRL algorithms.

In CyberBattleSim, two typical networks are set as optional environments to test

PT strategies, called CyberBattleChain (denoted as env -1) and CyberBattleToyCtf

(denoted as env -2), as shown in Figure 5.4 and 5.5, respectively. Each node in both

environments is a host that possesses a set of properties and is pre-planted with a

set of local and remote vulnerabilities (vulnerabilities are listed on each node in the

figure). These vulnerabilities could reveal the credentials of adjacent nodes or lead

to the privilege escalation of target nodes. Moreover, both environments are pre-

configured with ‘flag’ nodes, which contain important or sensitive resources, such as

customer data. The agent’s goal is to capture as many flags as possible during the

PT while minimizing the number of actions.

env -1, as shown in Fig. 5.4, has a sequential network topology constructed by

a number of “Linux-Windows” links (i.e., a Windows host connected with a Linux

host). The first node is a Windows host and is assumed to be infected by the pen-

tester. The flag is located at the terminal node, which means that to capture the

flag, the agent needs to elevate the privileges of all nodes one by one. We use N to

denote the number of “Linux-Windows” links. In this case, we set N to 8.

Windows (start)
Local vulnerability: 
Scan Explorer Recent Files

Linux
Local vulnerability: 
(Scan Bash History,
Crack Keep Pass X)
Remote vulnerability: 
Probe Linux

Windows
Local vulnerability:     
(Scan Explorer Recent Files,
Crack Keep Pass)
Remote vulnerability:  
Probe Windows

Linux (Flag)
Local vulnerability:
None
Remote vulnerability:
None

.	.	.

x	N

Static	Communication	Edge
Attack	Path

initial	infect

.	.	.

Figure 5.4: CyberBattleChain environment (env -1).
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Compared to env -1, env -2 is more complex. env -2 is made up of a mesh net-

work architecture, as shown in Fig. 5.5. env -2 contains four flags, of which two are

unattainable since they did not leak credentials and the attacker cannot gain higher

privileges, but the attacker can discover other nodes from it by performing remote

attacks, such as navigating the web directory. The agent’s goal is to capture two

attainable flags.

Client
Local vulnerability:
Search edge history
Remote vulnerability:
None

Wbesite
Local vulnerability: 
Scan bash history
Remote vulnerability: 
(Scan page content,
 Scan page source)

GitHub Project
Local vulnerability: None
Remote vulnerability: Scan git history

Website Directory
(FLAG: Discover secret data) Unownable
Local vulnerability: None
Remote vulnerability (Navigate web directory
further, Navigate web directory)

Website Monitor
Local vulnerability: Scan home directory
Remote vulnerability: None

Share Point
Local vulnerability: None
Remote vulnerability: Scan
Share point parent directory

Azure Resource Manager monitor
Local vulnerability: None
Remote vulnerability: None

Azure Storage (FLAG: Leaked customer data)
Local vulnerability: None
Remote vulnerability: Access data with SAS token

Azure Resource Manager
(FLAG: Leaked Customer Data)
Local vulnerability: None
Remote vulnerability: 
List Azure Resources

Azure VM
(FLAG: VM Private Info) Unownable
Local vulnerability: None
Remote vulnerability: None

Static	Environment	Edge

Attack	Path

Initial	Infect

Figure 5.5: CyberBattleToyCtf environment (env -2).

5.6 Experimental Validation

We design the experiments to validate our proposed method and attempt to answer

two research questions below:

• RQ1: Can the agent guided by RM improve the learning efficiency of PT

compared to the agent without RM?

• RQ2: How will different RM designs affect the PT performance?

5.6.1 Agent Configurations

Table 5.4 lists four different agents, where DQRM-RM1 and DQRM-RM2 are agents

that use the DQRM algorithm guided by R1 (shown in Figure 5.2) and R2 (shown

in Figure 5.3), respectively. DQN-RM1 and DQN-RM2 are agents that use the DQN

algorithm where only one policy will be trained, but the reward is determined by R1

and R2, respectively.
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Table 5.4: Learning agents for comparison

Agent Name Description

DQRM-RM1 DQRM guided and rewarded by R1

DQN-RM1 DQN rewarded by R1

DQRM-RM2 DQRM guided and rewarded by R2

DQN-RM2 DQN rewarded by R2

The agents’ training parameters are empirically determined, as listed in Table 5.5.

We run 100 episodes to train each agent and 50 episodes to evaluate their trained

policies. Each episode is an execution of one PT, which is terminated upon the

achievement of the predefined PT goal (capture all flags) or the maximum number

of actions performed. The Q-functions are fully connected neural networks with two

hidden layers, and each hidden layer has 150 neurons. After each step, the agents

will randomly sample 100 experiences (batch size) to update their policies. For every

10 steps, the target neural networks will copy the weights from the training neural

networks. The learning rate of neural networks is set to 0.001. γ is set to 0.9. ϵ is set

to 0.3.

These four agents in Table 5.4 are comparable in the same environment since

agents always receive the same reward given the same agent-environment interaction,

which also means that their objective functions are the same. The performance

indicators of an agent include training efficiency and PT efficiency, which will be

compared in the training phase and in the evaluation phase, respectively.

Training efficiency indicates how quickly an agent learns to achieve a high accu-

mulated reward within a certain number of training episodes, which can be visualized

by two indicators: (1) the accumulated rewards with respect to the accumulated steps

(actions), denoted by ACR, and (2) the average rewards per step, denoted by ARP .

ACR is visualized by collecting the accumulated rewards for every time step from

119



1 to the maximum (Nit = 1500) among all training episodes. Specifically, for every

time step t, we collect the accumulated rewards ending at t from all episodes and

visualize them into a figure. ARP is obtained by calculating the ratio between the

total rewards and the total number of steps used for every training episode.

PT efficiency indicates how quickly an agent achieves its goal during PT, which

can also be observed using ACR and ARP , but can be directly measured by the

number of steps per episode, denoted by TS.

Table 5.5: Training parameters of DQRM and DQN

Parameter Description Value

Nit Maximum number of actions per episode 1500

Nep Number of episodes (train) 100

Nevl Number of episodes (evaluation) 50

γ Discount factor 0.9

α Learning rate 0.001

C Target networks update frequency 10

Nbch Batch size 100

Nhl Number of hidden layers 2

Nhs Hidden size 150

ϵ ϵ-greedy parameter 0.3

5.6.2 Comparative Studies

We train these four agents using the configurations listed in Table 5.4 in env -1 and

env -2. The experimental results are shown in figures from 5.6 to 5.12.

Figures 5.6 and 5.7 illustrate the comparison of training efficiency between four

agents in env -1. Figure 5.6 shows the comparisons of ACR. Figure 5.7 shows the

comparisons of ARP. Figures 5.8 and 5.9 illustrate the comparison of PT efficiency

between four agents in env -1. Figure 5.8 shows the comparisons of ACR. Figure 5.9
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shows the comparisons of TS.

Similarly, Figures 5.10 and 5.11 illustrate the comparison of training efficiency

between four agents in env -2. Figure 5.10 shows the comparisons of ACR. Figure 5.11

shows the comparisons of ARP. Figure 5.12 shows the comparisons of TS, which

illustrates the comparison of PT efficiency between four agents in env -2.

Comparison Between DQRM Agents and DQN Agents in env-1

To answer RQ1, we compare the training efficiency between DQRM agents and the

DQN agents guided by R1 and R2, respectively, in different environments.

By looking at the average value of ACR (smoothed curves) from Figure 5.6, we

can see that both DQRM-RM1 and DQRM-RM2 outperform DQN-RM1 and DQN-

RM2 in terms of the training efficiency in env -1, respectively. This is because by using

the same number of actions, DQRM agents can obtain higher average accumulated

rewards than DQN agents. As a result, the curve that exhibits superior performance

will tend to approach the top left corner more closely. For instance, by 200 steps, the

average accumulated rewards of DQRM-RM1 and DQRM-RM2 are about 15 and 16,

respectively, whereas the average accumulated rewards of DQN-RM1 and DQN-RM2

are about 10 and 13, respectively.

The ARP of four agents is depicted in Figure 5.7 using box plots that display the

data distribution of ARP for all training episodes, showcasing key statistical measures

such as median, first quartile, third quartile, minimum, maximum values, and outliers.

We can also see that the ARP median of DQRM-RM1 (0.154) is greater than DQN-

RM1 (0.078), the ARP median of DQRM-RM2 (0.60) is greater than DQN-RM2

(0.26). Therefore, both DQRM-RM1 and DQRM-RM2 outperform DQN-RM1 and

DQN-RM2 in terms of the training efficiency in env -1, respectively.

We also compare the PT efficiency using trained policies between four agents. In
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Figure 5.6: The training performance of four agents in env -1: accumulated rewards
with respect to the accumulated steps (ACR).

Figure 5.7: The training performance of four agents in env -1: average rewards per
step (ARP ).
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Figure 5.8, the x-axis is the logarithmic scale of the step. The trained PT policies of

DQRM-RM1, DQRM-RM2, and DQN-RM1 in env -1 can achieve higher accumulative

rewards in around 50 steps compared to DQN-RM2. DQRM-RM1 and DQRM-RM2

exhibit similar levels of performance, both of which outperform DQN-RM1.

Figure 5.8: PT performance of four agents in env -1: accumulated rewards with respect
to the accumulated steps (ACR).

Figure 5.9 uses box plots to display the data distribution of TS for all evaluation

episodes, where we can observe that DQRM-RM1, DQRM-RM2, and DQN-RM1 can

capture the flag using a limited number of steps, which means that their policies

are well trained. However, the number of steps in DQN-RM2 has a great variance.

Finally, the average number of steps for DQRM-RM1, DQRM-RM2, and DQN-RM1

is 23.48, 21.32, and 29.76, respectively. The average number of steps for DQN-RM2

is 767.46, which reflects poor PT performance.
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Figure 5.9: PT performance of four agents in env -1: number of steps per episode
(TS).

Comparison Between DQRM Agents and DQN Agents in env-2

In env -2, DQRM agents also show improved learning efficiency according to Fig-

ures 5.10 and 5.11. By looking at the average value of ACR (smoothed curves) from

Figure 5.10, we can see that both DQRM-RM1 and DQRM-RM2 can learn faster than

DQN-RM1 and DQN-RM2 in env -2, respectively. For instance, by 200 steps, the av-

erage accumulated rewards of DQRM-RM1 and DQRM-RM2 are about 11 and 7,

respectively, whereas the average accumulated rewards of DQN-RM1 and DQN-RM2

are all about 6.

Figure 5.11 shows box plots of ARP for four agents. We can also see that the ARP

median of DQRM-RM1 (0.06) is greater than DQN-RM1 (0.05), the ARP median of

DQRM-RM2 (0.077) is greater than DQN-RM2 (0.05). Therefore, both DQRM-RM1

and DQRM-RM2 outperform DQN-RM1 and DQN-RM2 in terms of the training

efficiency in env -2, respectively.

We also compare the PT efficiency between four agents using trained policies
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Figure 5.10: The training performance of four agents in env -2: accumulated rewards
with respect to the accumulated steps (ACR).

Figure 5.11: The training performance of four agents in env -2: average rewards per
step (ARP ).
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in env -2. Figure 5.12 uses box plots to display the data distribution of TS for all

evaluation episodes, where we can observe that both DQRM-RM1 and DQRM-RM2

have fewer attack steps than DQN-RM1 and DQN-RM2, respectively. The median

values of TS are 202, 320, 163, and 311, respectively, for four agents.

Figure 5.12: PT performance of four agents in env -2: number of steps per episode
(TS).

From the previous analysis, we can answer RQ1 that RMs can help the agent

learn PT policies faster in different environments.

Comparison Between Different RMs

To answer RQ2, we compare the PT performance between DQRM-RM1 and DQRM-

RM2 in env -1 and env -2, respectively.

From Figure 5.6, DQRM-RM2 demonstrates better training efficiency compared

to DQRM-RM1 in env -1. We can see that after approximately 80 steps, DQRM-RM2

achieves an average accumulated reward of approximately 15, whereas DQRM-RM1

achieves around 10. The superior training efficiency of RM2 can also be observed from
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Figure 5.7 where the ARP median of DQRM-RM2 (0.6) is greater than DQRM-RM1

(0.154).

From Figure 5.9, the DQRM-RM2 agent requires fewer steps to capture the flag

in most episodes compared to the DQRM-RM1 agent in env -1. The median TS of

DQRM-RM1 and DQRM-RM2 are 23 and 21, respectively, indicating that DQRM-

RM2’s PT efficiency is better than DQRM-RM1 in env -1. From Figure 5.12, DQRM-

RM2 also shows lower median TS (163) compared to DQRM-RM1 (202) in env -2.

Based on the previous analysis, we can conclude that the PT performance of agents

guided by R2 is more effective than R1 in different environments since it involves an

additional subtask, i.e., discovering new nodes, which is more detailed than R1.

5.7 Conclusions

To handle the sparse reward issue, reduce the difficulty of reward function specifica-

tion, and improve the interpretability of RL/DRL-bade PT, we proposed a knowledge-

informed AutoPT framework called RM-PT in this chapter. This framework utilizes

RMs to embed domain knowledge from the field of cybersecurity, which serves as

guidelines for training PT policies. We took lateral movement in ADNs as a case

study of PT, and we formulated it as a POMDP guided by RMs. We also designed

two RMs based on the MITRE ATT&CK knowledge base. To train the agent and

derive the PT policy, we adopted the DQRM algorithm. The effectiveness of our solu-

tion was evaluated using the CyberBattleSim platform, from which the experimental

results demonstrate that the DQRM agent exhibits a higher training efficiency in PT

compared to agents without knowledge embedding. Furthermore, RMs that incorpo-

rate more detailed domain knowledge exhibit superior PT performance compared to

RMs with simpler knowledge.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work proposed a set of DRL-based PT techniques to identify critical vulnerabil-

ities for cyber-physical ADNs.

Chapter 1 provided an overview of cyber-physical smart grids, covering cyber-

security issues, defense strategies, PT concepts, and associated challenges. It out-

lined the problem statements of PT for smart grids, including efficiency issues, non-

comprehensiveness, limited observability, and sparse-reward issues of RL/DRL-based

PT, setting the foundation and motivation for the study. Chapter 2 provided a litera-

ture review and identified research gaps in existing literature, including vulnerability

analysis against cyberattacks for smart grids and AutoPT techniques used in the ICT

industry.

To handle the poor efficiency and non-comprehensiveness issues of command PT

for cyber-physical ANDs, Chapter 3 first proposed a DRL-based PT framework for

ANDs. The framework formulates PT as an MDP considering cyber-physical cou-

pling and realistic cyberattacks demonstrated through a replay attack model on an

ADN with CVR control. By applying the DQN algorithm, critical replay attack paths
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leading to system voltage violations were identified, showcasing the framework’s ef-

fectiveness in addressing PT challenges under varying system conditions. The simu-

lation results also showed that DRL-based PT can learn to find the optimal attack

path against system stability when the grid is under high load demand, solar power

generation, and weather variation.

To facilitate the study, a co-simulation platform named GridBattleSim was de-

veloped specifically for DRL-based PT on ADNs. This platform integrates and co-

simulates various simulators and programs to model different parts of the ADN.

To handle the limited observability of PT, Chapter 4 introduced a POMDP for-

mulation for PT on ADNs and applied a physical model to estimate the power grid’s

full state (belief state) from locally obtained data, which transfers the POMDP to

an MDP solvable by DRL. In addition, the proposed reshaped reward function con-

sidering the goal decomposition can mitigate the sparse reward issue of DRL and

accelerate learning progress compared to the baseline reward function used in the

MDP formulation in Chapter 3.

To address the sparse reward issue, difficult reward function specification, and

poor interoperability of RL/DRL-based PT, Chapter 5 introduced the RM-PT frame-

work. This framework applies RMs to embed domain knowledge of cybersecurity into

RL/DRL, which decomposes PT into subtasks and allows learning separate poli-

cies for each. The efficacy of the framework was demonstrated through case studies

on lateral movement, where the MITRE ATT&CK framework serves as the human

knowledge encoded by two different RMs. The DQRM algorithm was employed to

train the PT agent and derive optimal PT policies. Experiments performed on the

CyberBattleSim platform showed that the DQRM agent has better training efficiency

in PT compared to agents without knowledge embedding, and the RM containing

more detailed domain knowledge can perform better in PT than those with simpler
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knowledge.

6.2 Future Work

In the future, we will explore further in the experimental sections, including a sensitiv-

ity analysis on the weights used in the updated reward function to trade-off between

the optimal goal and the subgoals. Additionally, we will create more diverse opera-

tional scenarios of ANDs to examine the training performance of PT using different

DRL algorithms.

Furthermore, we will continue to investigate the human knowledge integration

for AI-powered PT on cyber-physical smart grids with the purpose of improving the

environment adaptation ability, where the trained PT agents can handle PT tasks in

various environments with minimal effort. We plan to extend our research from three

aspects:

• The forms of knowledge embedding: The human knowledge will be embed-

ded not only from the perspective of reward function design for RL/DRL-based

PT, but also from the perspective of action space. For example, the action space

of PT can be dynamically constrained during the PT based on the human knowl-

edge and the current observation captured by the agent. This approach allows

the agent to avoid selecting actions from a potentially large action space at all

times, thereby enhancing learning efficiency and the robustness of the trained

policy. More specifically, one direction for us is to improve the RM presented

in Chapter 5 by constraining the action space for each subtask (tactic).

• The quality of the embedded knowledge: Since the quality of knowledge

significantly influences the performance of RL/DRL-based PT, we will delve

into enhancing the quality of the embedded knowledge by adopting reliable
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knowledge bases and exploring advanced knowledge embedding techniques. For

example, the application of the knowledge graph to encode knowledge from

ATT&CK knowledge base.

• LLM + Domain knowledge: With the wide application of large language

model (LLM) [146], we will also conduct research on LLM-based PT, where

we use LLM-based agents to replace RL/DRL-based agents to perform PT.

Since the LLM is a pre-trained language model, it already has the intelligence

to perform contextual understanding and reasoning for a variety of tasks at

the beginning. To optimize the performance of the LLM agent in PT tasks,

the integration of domain knowledge into the LLM is crucial. This can be

achieved through fine-tuning using domain-specific databases or prompt engi-

neering techniques such as the retrieval-augmented generation (RAG) approach

[147]. LLM fine-tuning for PT is the process of taking an LLM as the base

model and further training it using query-answer pairs extracted from existing

PT knowledge to improve LLMs’ performance in PT tasks. RAG for PT is

a non-training approach that combines LLMs with external knowledge bases

storing PT knowledge, and then retrieving necessary knowledge from it as the

context to form the queries used in PT. Following these two angles, we will

investigate the fine-tuning techniques by designing an appropriate training set

from the cybersecurity domain and designing an appropriate vector database

for retrieval in RAG.

6.3 Author’s Publications

To the end, the author has published or submitted the following papers that are

related to the topic of the thesis:
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• Yuanliang Li, Jun Yan, and Mohamed Naili. “Deep reinforcement learning for

penetration testing of cyber-physical attacks in the smart grid.” 2022 Interna-

tional Joint Conference on Neural Networks (IJCNN). IEEE, 2022 [73].

• Yuanliang Li, Jun Yan, and Mohamed Naili. “Penetration Testing of Cyber-

Physical Attacks in Smart Grids Based on Partially Observable Markov De-

cision Process.” Submitted to IEEE Transactions on Dependable and Secure

Computing (under review).

• Yuanliang Li, Hanzheng Dai, and Jun Yan. ”Knowledge-Informed Auto-Penetration

Testing Based on Reinforcement Learning with Reward Machine.” Accepted by

the 2024 IEEE World Congress on Computational Intelligence [74].

• Yuanliang Li, and Jun Yan. ”Cybersecurity of smart inverters in the smart grid:

A survey.” IEEE Transactions on Power Electronics 38.2 (2022): 2364-2383 [1].

In addition, the author has other publications in related areas, but not within the

main scope of this thesis, including:

• Yuanliang Li, Luyang Hou, et al. “A Novel Iterative Double Auction Design

and Simulation Platform for Packetized Energy Trading of Prosumers in A

Residential Microgrid.” Accepted by Energy Conversion and Economics.

• Yuanliang Li, Luyang Hou, et al. “A Two-Stage Packetized Energy Trading

and Management Framework for Virtual Power Plants.” 2023 IEEE Power &

Energy Society General Meeting (PESGM) [148].

• Hou, Luyang, Yuanliang Li, et al. “Multi-agent reinforcement mechanism design

for dynamic pricing-based demand response in charging network.” International

Journal of Electrical Power & Energy Systems 147 (2023): 108843 [149].
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• Yuanliang Li, Luyang Hou, et al. “PEMT-CoSim: A Co-Simulation Platform

for Packetized Energy Management and Trading in Distributed Energy Sys-

tems.” 2022 IEEE International Conference on Communications, Control, and

Computing Technologies for Smart Grids (SmartGridComm) [150].

• Moshfeka Rahman, Yuanliang Li, et al. “Multi-objective evolutionary optimiza-

tion for worst-case analysis of false data injection attacks in the smart grid.”

2020 IEEE Congress on Evolutionary Computation (CEC) [100].

133



Bibliography

[1] Yuanliang Li and Jun Yan. Cybersecurity of smart inverters in the smart grid:

A survey. IEEE Transactions on Power Electronics, 2022.

[2] Mohamed C Ghanem and Thomas M Chen. Reinforcement learning for efficient

network penetration testing. Information, 11(1):6, 2019.

[3] Net-zero emissions by 2050. Available at https://www.canada.ca/en/

services/environment/weather/climatechange/climate-plan/net-zero-

emissions-2050/.

[4] Ramyar Rashed Mohassel, Alan Fung, Farah Mohammadi, and Kaamran Raa-

hemifar. A survey on advanced metering infrastructure. International Journal

of Electrical Power & Energy Systems, 63:473–484, 2014.

[5] Simon Gill, Ivana Kockar, and GrahamWAult. Dynamic optimal power flow for

active distribution networks. IEEE Transactions on Power Systems, 29(1):121–

131, 2013.

[6] James A Momoh. Electric power distribution, automation, protection, and con-

trol. CRC press, 2017.

[7] Peter Palensky and Dietmar Dietrich. Demand side management: Demand

response, intelligent energy systems, and smart loads. IEEE transactions on

industrial informatics, 7(3):381–388, 2011.

134

https://www.canada.ca/en/services/environment/weather/climatechange/climate-plan/net-zero-emissions-2050/
https://www.canada.ca/en/services/environment/weather/climatechange/climate-plan/net-zero-emissions-2050/
https://www.canada.ca/en/services/environment/weather/climatechange/climate-plan/net-zero-emissions-2050/


[8] Hedayat Saboori, M Mohammadi, and R Taghe. Virtual power plant (vpp),

definition, concept, components and types. In 2011 Asia-Pacific power and

energy engineering conference, pages 1–4. IEEE, 2011.

[9] Qi Huang, Waqas Amin, Khalid Umer, Hoay Beng Gooi, Foo Yi Shyh Eddy,

Muhammad Afzal, Mahnoor Shahzadi, Abdullah Aman Khan, and Syed Adrees

Ahmad. A review of transactive energy systems: Concept and implementation.

Energy Reports, 7:7804–7824, 2021.

[10] Nasser Jazdi. Cyber physical systems in the context of industry 4.0. In 2014

IEEE international conference on automation, quality and testing, robotics,

pages 1–4. IEEE, 2014.

[11] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart grid—the

new and improved power grid: A survey. IEEE communications surveys &

tutorials, 14(4):944–980, 2011.

[12] Junhui Zhao, Caisheng Wang, Bo Zhao, Feng Lin, Quan Zhou, and Yang Wang.

A review of active management for distribution networks: current status and

future development trends. Electric Power Components and Systems, 42(3-

4):280–293, 2014.

[13] Antonello Monti, Carlo Muscas, and Ferdinanda Ponci. Phasor measurement

units and wide area monitoring systems. Academic Press, 2016.

[14] Mini S Thomas and John Douglas McDonald. Power system SCADA and smart

grids. CRC press, 2017.

[15] Haibo He and Jun Yan. Cyber-physical attacks and defences in the smart grid: a

survey. IET Cyber-Physical Systems: Theory & Applications, 1(1):13–27, 2016.

135
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