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Montréal, Québec, Canada

November 2024

© Yiwen Zhang, 2024



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Yiwen Zhang

Entitled: A Comparative Analysis of Oil and Natural Gas Price Forecasting Using

Deep Learning, Ensemble Methods, and Bayesian Optimization

and submitted in partial fulfillment of the requirements for the degree of

Master of Business Analytics and Technology Management (MSc)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Danielle Morin

Examiner
Dr. Rustam Vahidov

Examiner
Dr. Dongliang Sheng

Supervisor
Dr. Salim Lahmiri

Approved by
Rustam Vahidov, Chair
Department of Supply Chain and Business Technology Manage-
ment

2024
Anne-Marie Croteau, Dean
John Molson School of Business



Abstract

A Comparative Analysis of Oil and Natural Gas Price Forecasting Using Deep Learning,
Ensemble Methods, and Bayesian Optimization

Yiwen Zhang

This study introduces a comprehensive framework for enhancing price forecasting in the oil

(Brent and WTI) and natural gas (Henry Hub) markets, which play a critical role in the global econ-

omy. By integrating advanced deep learning models and ensemble methods, optimized through

Bayesian Hyperparameter Optimization (BO), the research improves predictive accuracy. Utilizing

an extensive dataset from January 2010 to February 2024, the models were trained and validated.

Results indicate that, in the oil market, the weighted ensemble model combining LSTM and GRU

performs best, leveraging the strengths of both models. In the natural gas market, post-optimization,

CNN proves most effective in capturing the market’s volatility and trends. XGBoost also demon-

strates strong performance in both markets, balancing predictive accuracy with training efficiency.

These findings offer valuable insights for risk management and decision-making in the energy sec-

tor.

Keywords: Oil price forecasting, natural gas markets, deep learning, ensemble methods, Bayesian

Optimization, energy markets, predictive accuracy.
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Chapter 1

Introduction

1.1 Research background

With the continuous growth of the global economy and the acceleration of industrialization, the

international energy market, particularly fossil fuels, experiences significant volatility in demand

and prices (S. Gupta & Pahwa, 2011). Key components of global energy consumption, such as crude

oil and natural gas, have price fluctuations that directly impact the global economic structure and

influence national policy-making. Increases in energy prices directly impact economic productivity,

unemployment, inflation, and balance of payments equilibrium (Al-Roubaie, 2010). Moreover,

geopolitical tensions, international trade policies, and currency exchange rate fluctuations further

complicate these commodities’ pricing. Technological advancements and market speculation also

play crucial roles, as do environmental regulations and the costs associated with carbon emissions.

The complexity of forecasting in this volatile market has been underscored by recent unprece-

dented events, such as the COVID-19 pandemic, which have compounded these challenges by caus-

ing unprecedented shocks to the energy markets, as evidenced by the historic drop in 20 April 2020,

when WTI crude oil futures dropped to a negative value at around negative 37 dollars per barrel

(Lee, 2020). In addition, there has been a substantial rise in global natural gas prices since 2021 due

to a combination of factors, including increased energy demand during the post-COVID economic

recovery and supply constraints (Kotek, Selei, Tóth, & Felsmann, 2023). These dynamics high-

light the critical need for more sophisticated forecasting tools to navigate and predict such complex
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market behaviors effectively.

1.2 Motivation and research objectives

1.2.1 Motivation

Energy markets, known for their volatility and complexity, have traditionally relied on statistical

methods and, more recently, machine learning models for forecasting. However, these approaches

often struggle to effectively handle the multifaceted behaviors and unpredictable dynamics of such

markets (Viviani, Di Persio, & Ehrhardt, 2021). Single-model techniques, in particular, frequently

result in unreliable forecasts due to their inability to capture the full range of market patterns.

Recent advancements in deep learning offer sophisticated algorithms capable of uncovering

intricate patterns within large datasets, yet their full potential remains untapped when used in iso-

lation. The integration of multiple model architectures, particularly through ensemble methods,

presents a promising solution. Ensemble techniques, by combining the strengths of diverse models,

have been shown to reduce biases and variance, thereby improving forecasting accuracy (H. Wang,

Lei, Zhang, Zhou, & Peng, 2019). This highlights a key gap in current research, where leveraging

ensemble methods could offer significantly enhanced forecasting capabilities.

1.2.2 Research objectives

This study focuses specifically on deep learning and ensemble methods rather than traditional

models like ARIMA and linear regression. This choice stems from the unique characteristics of

energy price data. Oil and gas prices show complex, non-linear patterns with sudden changes and

sharp fluctuations that simple linear models can’t capture effectively. Moreover, energy prices are

non-stationary data, meaning their statistical properties like mean and variance change over time.

Traditional time series models like ARIMA are designed for stationary data where these properties

remain constant. Although ARIMA can deal with some level of non-stationarity, it often falls short

of capturing the complex and volatile patterns of energy prices (Dritsaki, 2018). In contrast, deep

learning models can automatically learn and adapt to non-linear patterns. Models like LSTM and

GRU are especially good at handling time-based data with changing patterns. Similarly, ensemble

2



methods like XGBoost and Random Forest can pick up complex relationships through their tree

structures and boosting techniques.

Building upon these advantages of advanced models, the primary goal of this research is to

develop a robust, weighted ensemble model that integrates predictions from various deep-learning

models. This ensemble approach aims to address the shortcomings of single-model techniques by

combining the strengths of multiple architectures, including One-Dimensional Convolutional Neu-

ral Networks (1D CNNs), Long Short-Term Memory Networks (LSTMs), Bidirectional LSTMs

(BiLSTMs), Gated Recurrent Units (GRUs), Bidirectional GRUs (BiGRUs), and Deep Feedfor-

ward Neural Networks (DFFNNs). Additionally, tree-based ensemble methods—Extreme Gradient

Boosting (XGBoost) and Random Forest—are incorporated to compare their performance and po-

tential advantages within the forecasting framework.

Focusing on key international energy markets—Brent crude oil, West Texas Intermediate (WTI)

crude oil, and Henry Hub natural gas—the research aims to optimize predictive performance using

Bayesian Hyperparameter Optimization (BO). This technique will fine-tune the ensemble model by

improving the efficiency of hyperparameter selection, ultimately boosting forecast accuracy.

The specific research objectives are as follows:

(1) Apply a range of deep learning and ensemble models (1D-CNNs, LSTMs, BiLSTMs, GRUs,

BiGRUs, DFFNNs, XGBoost, and Random Forest) to multiple energy markets (Oil and Gas),

evaluating their comparative performance in forecasting.

(2) Utilize Bayesian Hyperparameter Optimization (BO) to enhance model efficiency and accu-

racy through improved hyperparameter selection.

(3) Evaluate the predictive accuracy of various models to identify the most effective one for each

market, offering actionable insights for improved forecasting and decision-making.

(4) Compare the optimized ensemble model against conventional forecasting methods and stan-

dalone models using historical energy market data, providing empirical evidence of the en-

semble approach’s effectiveness.
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1.3 Main work and contributions

This research introduces a comprehensive framework specifically designed to address the com-

plexity and volatility of energy markets, with a focus on improving forecasting accuracy in the oil

and natural gas sectors. By applying a combination of advanced deep learning architectures and

ensemble methods, this study aims to provide more reliable predictive tools for decision-makers in

these markets. The research also leverages Bayesian Hyperparameter Optimization (BO) to system-

atically fine-tune model parameters, significantly enhancing performance.

The study utilized an extensive dataset spanning from January 4, 2010, to February 12, 2024,

covering key oil and gas markets. The comprehensive nature of this dataset ensures the model is

well-trained and validated across diverse market conditions, making the results applicable in real-

world scenarios.

The main contributions of this research are as follows:

(1) Innovative Model Integration: This study applied a diverse set of deep learning models (1D

CNNs, LSTMs, BiLSTMs, GRUs, BiGRUs, DNNs) and ensemble methods (XGBoost, Ran-

dom Forest) to both oil and natural gas price predictions. This approach enabled the identifi-

cation of market-specific model performance patterns.

(2) Bayesian Hyperparameter Optimization: The research employed BO to fine-tune model pa-

rameters, which resulted in reduced prediction errors and enhanced model performance across

individual and ensemble models.

(3) Model Performance Comparison: A detailed comparison was conducted between ensemble

models and standalone deep learning models, emphasizing the trade-offs in forecasting accu-

racy and computational efficiency across different markets.

(4) Extensive Dataset Utilization: The study utilized a robust dataset spanning from 2010 to 2024,

covering oil and natural gas markets. This ensured that the models were trained and validated

on real-world data, thereby enhancing their practical applicability.

(5) Practical Impact: The research led to the development of forecasting tools that provide ac-

tionable insights for policymakers, investors, and energy companies, aiding in better risk
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management and decision-making processes.
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Chapter 2

Literature review

Many methodologies have been explored in forecasting oil and natural gas prices, reflecting the

complex nature of energy markets. These methods range from traditional statistical approaches, ma-

chine learning, deep learning, and hybrid models, illustrating the evolution of forecasting methods

in response to the complex dynamics of energy markets. These methods demonstrate varying de-

grees of success in handling complex, non-linear, and non-stationary time series data characteristic

of energy prices. Each methodology brings unique advantages and limitations, with recent trends

showing a move toward combining diverse techniques to tackle the complexities of energy price

forecasting effectively. Table 2.1 provides a comprehensive summary of the literature reviewed in

this study, along with their respective research focus and key findings.

Previous research on energy market forecasting has focused on traditional statistical methods.

The Autoregressive Integrated Moving Average (ARIMA) model is a prominent conventional sta-

tistical method applied to energy price forecasting. Alam, Murshed, Manigandan, Pachiyappan, and

Abduvaxitovna (2023) utilized traditional statistical techniques such as ARIMA, Single Exponen-

tial Smoothing (SES), and K- Nearest Neighbor (K-NN) to forecast oil, coal, and natural gas prices

in India before and after the COVID-19 scenario, highlighting the utility of conventional models in

capturing price dynamics. The autoregressive conditional heteroskedasticity (GARCH) model also

plays a crucial role in forecasting the volatility of oil prices. Haque and Shaik (2021) compared

ARIMA and the Generalized GARCH model during the COVID-19 pandemic highlights ARIMA’s
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superior performance in forecasting under extreme market volatility, reinforcing the relevance of tra-

ditional methods in new, unpredictable scenarios. Furthermore, Kristjanpoller and Minutolo (2016)

introduced a hybrid model that combines ANN with GARCH to enhance oil price volatility pre-

dictions. Their findings, which indicate a 30% improvement in accuracy over conventional models,

demonstrate the potential of merging GARCH’s volatility analysis with ANN’s pattern recognition

to tackle market unpredictability.

However, as the dynamic nature of crude oil markets became more apparent, the focus shifted

towards integrating machine learning and artificial intelligence techniques to improve forecasting

accuracy. With the advent of computational power, machine learning methods, including Support

Vector Machine (SVM) and Random Forests (RF), have been extensively applied to price forecast-

ing due to their efficacy in handling non-linear data. Abdollahi (2020) introduced an improved

model combining Particle Swarm Optimization (PSO) with Support Vector Machine (SVM) for

forecasting daily crude oil spot prices, showcasing the effectiveness of machine learning techniques.

R. Gupta, Pierdzioch, and Salisu (2022) explored the predictive role of oil-price uncertainty on

the UK’s unemployment rate using Random Forests (RF), highlighting the application of machine

learning in macroeconomic forecasts.

Deep learning allows the processing of large datasets and the learning of complex non-linear

patterns. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks are high-

lighted for their effectiveness in time series forecasting. Exploring deep learning techniques, par-

ticularly LSTM networks, marks a significant advancement in forecasting crude oil prices. Unlike

traditional statistical models such as ARIMA and GARCH, which have been staples in analysing

time series data for decades, deep learning approaches offer a nuanced understanding of nonlinear

relationships and temporal dependencies within the data. Recent studies have demonstrated the ap-

plication and efficacy of LSTM and GRU models in crude oil price forecasting. For instance, the

work by Busari and Lim (2021), which integrated AdaBoost with LSTM and GRU models, show-

cases the potential of deep learning techniques to enhance predictive accuracy in the volatile domain

of crude oil prices. Similarly, the innovative study by Huang and Deng (2021) employed Variational

Mode Decomposition (VMD) in conjunction with LSTM networks, illustrating how combining ad-

vanced signal processing with deep learning can yield superior forecasting performance. The study
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by Lahmiri (2024) explores various machine learning systems for forecasting fossil energy market

prices. By optimizing these systems with Bayesian methods, the research evaluates the Gaussian

regression process, support vector regression, regression trees, k-nearest neighbor algorithm, and

deep feedforward neural networks. The findings highlight Gaussian regression’s accuracy and deep

learning’s prediction stability.

Hybrid and ensemble methods combine multiple forecasting models and techniques to over-

come the limitations of single models, aiming to improve prediction accuracy and robustness. Li,

Zhu, and Wu (2019) developed hybrid forecasting models that combine Variational Mode Decom-

position (VMD) with artificial intelligence techniques for monthly crude oil spot price forecasting.

Incorporating multiple deep learning models in an ensemble framework has been shown to reduce

overfitting risks and yield more reliable forecasts, as demonstrated by the works of Deng et al.

(2023). The study by B. Wu, Wang, Lv, and Zeng (2021) that incorporated a novel approach incor-

porating sentiment analysis from financial news into crude oil price forecasting models, blending

qualitative and quantitative data to enhance prediction accuracy, illustrates the innovative directions

in hybrid modeling techniques. J. Wang, Lei, and Guo (2020) introduced a weighted hybrid model

incorporating IPSS, SVR, and LSTM, showcasing the versatility of SVM in capturing non-linear

patterns in energy prices. Ding, Fu, Ding, and Wang (2022) employed Random Forest (RF), XG-

Boost, and LightGBM in a hybrid forecasting model, demonstrating the effectiveness of ensemble

methods in improving prediction accuracy.

The existing literature sets a foundation highlighting the utility of machine learning and deep

learning in energy price forecasting but also reveals gaps in applying advanced optimization tech-

niques, like BO, to fine-tune these models. Such optimization not only promises to refine model

accuracy by identifying optimal configurations but also addresses critical challenges like model

overfitting and computational efficiency. Besides, this study focuses on developing a comprehensive

ensemble approach that leverages the unique capabilities of different deep-learning architectures to

enhance forecasting accuracy. While LSTM, GRU, and CNN models are well mentioned in the

literature, there is a potential research gap in systematically comparing and combining these and

other deep learning architectures within an ensemble model. This research could fill this gap by

identifying which architectures are most effective for different aspects of energy price forecasting

8



and how they can be best integrated.

Several studies have underscored the complexity and the risk of overfitting associated with ad-

vanced modeling techniques. A research opportunity exists to explore how ensemble methods, com-

bined with BO, might alleviate these concerns. These methods can reduce overfitting and simplify

model management by optimizing model parameters and selectively incorporating the most effec-

tive models into the ensemble. Lévesque, Gagné, and Sabourin (2016) notes that when enhanced by

BO, ensemble methods adeptly tackle issues like overfitting and model complexity. This is achieved

by refining model parameters and strategically selecting optimal models for the ensemble.

Table 2.1: Summary of literature review

Study
Research

Market

Data Pe-

riod
Models Findings

Alam et al.

(2023)

Oil, coal,

and natural

gas prices

2020-01 to

2022-05

ARIMA, SES, K-

NN

Traditional statistical

techniques capture price

dynamics effectively.

Haque and

Shaik (2021)
Oil prices

2020-02 to

2020-04
ARIMA, GARCH

ARIMA’s superior per-

formance under extreme

conditions.

Kristjanpoller

and Minutolo

(2016)

Oil prices
2002-07 to

2014-05

Hybrid (ANN +

GARCH)

The ANN-GARCH hy-

brid model improves

forecasting accuracy by

30%.

Abdollahi

(2020)

Daily crude

oil spot

prices

2015-06 to

2016-04

CEEMD, PSO,

SVM, MS-

GARCH

The proposed hybrid

model improves crude

oil price forecasting by

better capturing nonlin-

earity and volatility.
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Table 2.1: (continued)

Study
Research

Market

Data Pe-

riod
Models Findings

R. Gupta et

al. (2022)

Oil-price un-

certainty and

the U.K. un-

employment

rate

1859-09 to

2020-05

Random Forest,

Lasso estimator

Random Forests outper-

form Lasso in forecast-

ing unemployment rate

changes.

Busari and

Lim (2021)

Crude oil

prices

2009-10 to

2021-06

AdaBoost, LSTM,

GRU

Deep learning boosts

accuracy in volatile mar-

kets.

Huang and

Deng (2021)

Crude oil

prices

1994-01 to

2018-07
VMD, LSTM

Advanced signal process-

ing with deep learning

improves forecasting.

Lahmiri

(2024)

12 different

fossil energy

markets

1993-08 to

2023-06

Gaussian regres-

sion, SVR, regres-

sion trees, k-NN,

DFFNN, BO

Gaussian regression de-

livers the best forecasts

for fossil energy markets,

while DFFNN provide

stable predictions. Price

prediction is more chal-

lenging for natural gas,

coal, and propane than

for crude oil.

Li et al.

(2019)

Monthly

crude oil

spot prices

1994-01 to

2018-07

Hybrid (VMD +

AI techniques)

Variational Mode De-

composition is effective

in complex time series.
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Table 2.1: (continued)

Study
Research

Market

Data Pe-

riod
Models Findings

Deng et al.

(2023)

Chinese

crude oil

futures

2020-01 to

2021-12

Multiple Time-

frame eXtreme

Gradient Boosting,

Non-dominated

Sorting Genetic

Algorithm-II, etc.

Ensemble deep learning

models reduce overfitting

and offer reliable fore-

casts.

B. Wu et al.

(2021)

Crude oil

prices

2011-06 to

2019-08

Sentiment

analysis-CNN;

hybrid modeling-

LSTM, GRU, and

RNN

Text-based and big-data

features enhance crude

oil price forecasting.

J. Wang et al.

(2020)

Daily natu-

ral gas price

2018-06 to

2019-05
IPSS, SVR, LSTM

Non-linear pattern mod-

eling improves prediction

accuracy.

Ding et al.

(2022)
Crude oil

2018-03 to

2021-06

Random Forest,

XGBoost, and

LightGBM

Hybrid models enhance

forecasting precision.

Lévesque et

al. (2016)

Various

datasets

from the

UCI Ma-

chine Learn-

ing Reposi-

tory

N/A

KNN, SVM, deci-

sion trees, random

forests, AdaBoost,

Gaussian Naive

Bayes, etc.

Ensemble optimization

outperforms classical

Bayesian methods.
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Chapter 3

Data and methodology

The workflow and sequence of operations within the proposed model are depicted in Figure

3.1, which highlights the systematic approach to data processing, model training, and performance

evaluation. After data cleaning and normalization, two primary categories of predictive methods are

applied: deep learning models and ensemble models (tree-based).

In Step 2, the focus is on training and testing a set of deep learning models, including 1D CNNs,

Uni/Bi-LSTMs, Uni/Bi-GRUs, and DFFNNs. Each of these models is tuned using BO to optimize

their hyperparameters, ensuring that each model performs at its best. After training, the predictions

from each base model are collected. A weighted ensemble method is then applied, where the final

predictions are combined using a weighted average. The weights are determined by optimizing an

objective function using the Sequential Least Squares Programming (SLSQP) algorithm. The goal

is to find the set of weights that minimize the error metric (e.g., RMSE) and maximize the overall

performance of the ensemble.

Step 3 introduces traditional ensemble models such as XGBoost and Random Forest. Similar to

the deep learning models, these ensemble models are also optimized using BO.

Finally, the results from each model are evaluated using performance metrics such as RMSE,

MAE, and MAPE. This step is crucial for comparing the predictive accuracy and robustness of

different approaches.

In this study, we focus on exploring the advantages and disadvantages of each model. Specif-

ically, we aim to determine whether combining multiple deep learning models in an ensemble can

12



improve overall performance and reduce overfitting, or if using standalone ensemble models like

Random Forest or XGBoost can achieve similar results. The comparison between the weighted

ensemble of deep learning models and the traditional ensemble models offers insights into which

strategy is more effective for this specific predictive task. The details of each step and methodology

will be discussed in the later sections.

Figure 3.1: The overall workflow of the study

3.1 Data retrieval and processing

This study examined three major datasets—Brent crude oil spot price, WTI crude oil spot price,

and Henry Hub Natural Gas spot price. These time series datasets span from January 4, 2010, to

February 12, 2024, and feature daily observations. The data were sourced from the U.S. Energy

Information Administration (EIA), which provides extensive energy statistics and can be accessed

via its official website at https://www.eia.gov/. Figure 3.2 illustrates these trends graphically, while

Table 3.1 presents the descriptive statistics of the daily spot prices for these datasets. Collecting

over a decade of data enhances the deep learning models used in this research by providing a broad
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spectrum of market conditions, which helps detect complex patterns and improve forecasts’ accu-

racy. This extensive data collection enables the models to effectively generalize and predict future

market behaviors, which is crucial for achieving robust performance in the volatile markets of oil

and natural gas.

A normalization procedure is applied to scale the data between 0 and 1, ensuring consistency in

data scales and facilitating efficient model training. The dataset is split into 80% for training and

20% for testing, allowing for robust training and performance evaluation on unseen data. A 30-day

historical window is used to forecast one day ahead, capturing essential trends in markets like oil

and natural gas. Each training instance uses a 30-day sequence to predict the next day’s value,

enhancing the model’s ability to learn from recent behaviors. This method aligns with standard

financial analysis practices and ensures reliable forecasting performance.

(a) Brent Spot Price (b) WTI Spot Price (c) Natural Gas Spot Price

Figure 3.2: Daily spot price for crude oil and natural gas

Table 3.1: The descriptive statistics of datasets

Count Mean Std Min 25% 50% 75% Max

Brent 3571.0 77.83 25.47 9.12 57.36 75.77 103.47 133.18

WTI 3544.0 71.77 22.06 -36.98 52.62 72.48 91.19 123.64

Natural Gas 3563.0 3.42 1.36 1.33 2.60 3.02 3.99 23.86
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3.2 Methodology

3.2.1 1D-CNNs

Convolutional Neural Networks (CNNs) are traditionally employed for image processing tasks

due to their ability to leverage 2D input-data structures like image signals (Alzubaidi et al., 2021).

However, these networks have been adapted to analyze sequential data efficiently by applying con-

volutions across the temporal dimension. One-dimensional Convolutional Neural Networks (1D-

CNNs) utilize convolutional layers with learnable filters that are applied to one-dimensional data,

allowing them to capture temporal features automatically without the need for manual feature engi-

neering (Kim, Oh, Kim, & Choi, 2023). This adaptation enables 1D-CNNs to excel in various appli-

cations, including audio processing, natural language processing, and financial time-series analysis

(Kiranyaz et al., 2021). Unlike conventional 2D-CNN architectures, which are limited to 2D inputs,

1D-CNNs are specifically designed to handle 1D signal prediction effectively.

The core operation within 1D-CNNs involves the convolution of filters across the time dimen-

sion of the input data (Srinivasamurthy, 2018):

f(x) = ReLU(w ∗ x+ b) (1)

Here, x is the input sequence, w represents the weights of the convolutional filters, b is the bias,

and ∗ denotes the convolution operation. The output is passed through a Rectified Linear Unit

(ReLu) activation function to introduce non-linearity, enhancing the model’s ability to learn complex

patterns. The typical architecture is shown in Figure 3.3. First, the convolutional layers use filters

that slide over the input data to extract local patterns and features, capturing relationships across

the temporal dimension. After convolution, an activation function is applied to produce the initial

output. This output is then processed by pooling layers, which downsample the feature maps by

selecting the maximum or average values within pooling windows, thus reducing the dimensionality

while retaining important information. Next, the flattened output from the convolutional and pooling

layers forms a one-dimensional vector, which is fed into fully connected (dense) layers. These

layers learn high-level representations of the features for classification or regression tasks. The
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configuration of the output layer depends on the specific task: for time series forecasting, it may

consist of a single neuron for predicting the next data point or multiple neurons for predicting

multiple future values. For anomaly detection, the output layer may perform binary classification

(normal vs. anomaly) or multiclass classification to categorize each time step.

Figure 3.3: Detailed architecture of the 1D-CNN model

1D-CNNs exhibit several advantages in time series analysis, including efficient feature extrac-

tion, translation invariance, and computational speed, making them suitable for large datasets. How-

ever, these models face challenges with long-term dependencies and are sensitive to hyperparameter

settings. To address these challenges, careful model design and regularization are essential. In tasks

requiring a better understanding of long-range temporal patterns, combining 1D-CNNs with other

architectures or incorporating techniques such as dilated convolutions may be necessary.

3.2.2 LSTMs and BiLSTMs

Long Short-Term Memory Networks (LSTMs) are a crucial component in the deep learning

landscape because of their capacity to capture long-term dependencies within sequential data. Ini-

tially proposed by Hochreiter and Schmidhuber (1997), numerous researchers have extensively im-

proved and popularised these particular types of Recurrent Neural Networks (RNNs). The architec-

ture of LSTMs is shown in Figure 3.4.
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The cell state mechanism is the core of its design, composed of a symphony of gates: the

input gate (it), the forget gate (ft), and the output gate (ot), which together manage the flow of

information. Weights and biases (W and b) correspond to the weight matrices and bias parameters

within the network.

ft = σ(Wf [ht−1, Xt] + bf ) (2)

Here, the forget gate (ft) regulates the flow of information from the current input and the previous

hidden state (ht−1) by applying a sigmoid activation function, selectively keeps or discarding pre-

vious information, guaranteeing that the cell state (Ct) is a dynamic representation of learned data

over time.

The following step is to use the input gate (it) to manage the patterns of data flowing from the

current input and the previous hidden states. Cell State (Ct) updates with contributions from the

input gate, forget gate, previous cell state (Ct−1), and the transformed input using the tanh function.

it = σ(Wi[ht−1, Xt] + bi) (3)

Ct = ft ⊙ Ct−1 + it ⊙ tanh(Wc · [ht−1, xt] + bc), (4)

Finally, the output gate (Ot) determines the necessary information for the activation function of

the output value (ht).

Ot = σ(Wo[ht−1, Xt] + bo) (5)

ht = Ot tanh(Ct) (6)

Enhancing the LSTM’s capability, BiLSTMs employ a forward and backward pass through the

data. This approach allows the network to capture information from both past and future contexts.

This bidirectional sweep is pivotal for predictions where understanding the entire temporal context

is beneficial. The BiLSTM modifies the LSTM’s structure by introducing two separate hidden states

for each time step:
−→
ht =

−−−−→
LSTM(xt,

−−→
ht−1) (7)
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←−
ht =

←−−−−
LSTM(xt,

←−−
ht+1) (8)

Subsequently, the model joins these states,
←−
ht and

−→
ht , to provide a comprehensive output that cap-

tures data in both directions, improving the model’s predicted accuracy. The BiLSTMs model’s

structure is shown in Figure 3.4.

(a) LSTM (b) BiLSTM

Figure 3.4: Framework of the LSTM and BiLSTM models

3.2.3 GRUs and BiGRUs

Gated Recurrent Units (GRUs) and their bidirectional counterparts (BiGRUs) are integral com-

ponents of modern sequence modeling within deep learning frameworks. Shen, Tan, Zhang, Zeng,

and Xu (2018) demonstrated the superior performance of GRU-based models in financial time se-

ries predictions. The GRU layer, like the LSTM layer, is a type of recurrent neural network that

addresses the vanishing gradient problem and can learn long sequences of data (Faraji, Sadrossadat,

Na, Feng, & Zhang, 2023). However, the GRU has fewer parameters than the LSTM, leading to

better model accuracy (Faraji et al., 2023). This makes GRUs suitable for use in systems where

computing performance is crucial.

The primary distinction between GRU and LSTM lies in their approach to managing memory

cell state. In LSTM, the memory cell state is maintained separately from the hidden state and is

updated through three gates: the input gate, the output gate, and the forget gate. Conversely, GRU

simplifies this by using Candidate Activation Vector (h̃t) instead of a distinct memory cell state

and updates it with two gates: the reset gate (rt) and the update gate (zt). The reset gate controls

how much of the previous hidden state should be forgotten, while the update gate determines the
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extent to which the candidate activation vector should be incorporated into the new hidden state.

The equations are represented as follows:

zt = σ(Wz · [ht−1, xt]) (9)

rt = σ(Wr · [ht−1, xt]) (10)

h̃t = tanh(Wh · [rt · ht−1, xt]) (11)

ht = (1− zt) · ht−1 + zt · h̃t (12)

Here, the update gate (zt) determines how much the unit’s activation or state should be updated.

The associated reset gate (rt) controls the influence of the previous state on the current computa-

tion, allowing GRUs to dynamically discard or retain information across time steps. The candidate

activation vector (h̃t) is computed from the current input (xt) and a modified version of the previous

hidden state that is adjusted by the reset gate. The new hidden state (ht) is then derived by combin-

ing the candidate activation vector with the previous hidden state (ht−1), with the contribution of

each weighted by the update gate.

BiGRUs enhance the GRU’s functionality by processing data in both forward and backward

directions, encapsulating a broader temporal context. By combining the forward and backward,

BiGRUs enhance the GRU’s functionality by processing data in both forward and backward di-

rections, encapsulating a broader temporal context, as shown in Figure 3.5. The formulas for the

BiGRU model are as follows:
−→
ht =

−−→
GRU(xt,

−−→
ht−1) (13)

←−
ht =

←−−
GRU(xt,

←−−
ht+1) (14)
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(a) GRU (b) BiGRU

Figure 3.5: Framework of the GRU and BiGRU models

3.2.4 DFFNNs

Deep feedforward neural networks (DFFNNs), also known as deep neural networks (DNNs),

are a widely used type of artificial neural networks (ANNs) with multiple hidden layers, designed

to model complex functions by increasing network depth (Lau, Phang, & Lim, 2019). They are

useful in many different applications, including image classification (Lau et al., 2019), speech syn-

thesis (Z. Wu, Valentini-Botinhao, Watts, & King, 2015), and financial market prediction (Dixon,

Klabjan, & Bang, 2015). DFFNNs typically consist of multiple hidden layers, each containing nu-

merous neuron nodes. The architecture ensures that each neuron in one layer is connected to every

neuron in the next layer. This structure helps the network learn the best weights for representing the

data, which is essential for tasks such as classification or regression. However, the performance of

DFFNNs can be influenced by various hyper-parameters, such as the activation function, dropout

regularization, and network architecture (Koutsoukas, Monaghan, Li, & Huan, 2017). This study

tests three activation functions in the BO process: rectified linear unit (relu) function, sigmoid func-

tion, and hyperbolic tangent (tanh) function.

The DFFNNs model consists of an input layer, multiple hidden layers (k ≥ 2), and an output

layer. This structure, depicted in Figure 3.6, showcases how the DFFNN model processes input data

through interconnected layers, adjusting weights to learn and predict outcomes effectively.

The input layer receives the initial data, represented by the input vector x = [x1, x2, . . . , xn],
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where n denotes the number of input features. The data is then passed through a series of trans-

formations in the hidden layers. For each hidden layer k, the input undergoes a linear transforma-

tion followed by a nonlinear activation function. Specifically, the linear transformation involves

multiplying the input by a weight matrix Wk and adding a bias vector bk. This results in the

pre-activation value zk. The pre-activation value is then passed through an activation function f to

produce the activation output hk. This process can be summarized by the equations:

zk = Wkhk−1 + bk (15)

hk = f(zk) (16)

Where hk−1 is the output from the previous layer (or the input vector x for the first hidden

layer).

Finally, the output layer takes the output from the last hidden layer hL−1 as its input and applies

a similar transformation. The pre-activation value for the output layer is computed as:

zL = WLhL−1 + bL (17)

This pre-activation value is then passed through an activation function g to produce the final output

y:

y = g(zL) (18)

(a) (b)

Figure 3.6: Architecture of the DFFNN network
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3.2.5 XGBoost

XGBoost (Extreme Gradient Boosting) is an advanced machine learning technique that im-

proves the performance of decision trees through a boosting framework. It improves upon traditional

Gradient Boosting Decision Tree (GBDT) approaches. XGBoost and GBDT possess the same basic

algorithmic structure, with XGBoost being an implementation of GBDT (Zhang, Li, & Jiao, 2019),

designed to improve both the speed and accuracy of predictions. XGBoost has emerged as a power-

ful tool for predictive tasks, particularly in handling large-scale datasets. Its effectiveness has been

demonstrated in various domains, making it a powerful tool for predictive tasks like price forecast-

ing (Ding et al., 2022; Gono, Napitupulu, & Firdaniza, 2023). XGBoost consistently outperforms

traditional regression models in terms of accuracy and efficiency(dairu & Zhang, 2021). Its scala-

bility allows it to process billions of examples using fewer resources than existing systems(Chen &

Guestrin, 2016).

XGBoost builds an ensemble of ”weak learners” through an iterative process. Each new deci-

sion tree is trained to correct the errors (residuals) made by the previous trees, thus improving the

model’s accuracy (Ding et al., 2022). One of the key features of XGBoost is its regularized objec-

tive function, which combines a loss function that measures prediction error with a regularization

term to limit model complexity. By controlling the number of leaves in each tree and adjusting the

weights of the leaf nodes, XGBoost helps prevent overfitting and improves the model’s ability to

generalize (Chen & Guestrin, 2016).

The algorithm starts by making an initial prediction, usually the average of the target variable. It

then calculates the residuals, which are the differences between the actual and predicted values, and

constructs decision trees to minimize these residuals. As shown in Figure 3.7, XGBoost sequentially

builds multiple decision trees. The final prediction is the weighted sum of the predictions from all

the trees, as shown in the following equation:

ŷ =

K∑
k=1

fk(xi) (19)

where ŷ is the final prediction, K is the number of trees, and fk(xi) is the prediction from the

k-th tree for input xi. To prevent overfitting, XGBoost incorporates a regularization term into the
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objective function:

L(θ) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) (20)

Where l(yi, ŷi) represents the loss function measuring the difference between the actual value

yi and predicted value ŷi, and Ω(fk) is the regularization term controlling the complexity of the k-th

tree.

The regularization term helps prevent overfitting and is defined as:

Ω(fk) = γT +
1

2
λ

T∑
j=1

w2
j (21)

Where T is the number of leaf nodes in the tree, wj is the weight of the j-th leaf, γ controls

the penalty on the number of leaves, and λ is the L2 regularization term that penalizes large leaf

weights.

This regularization encourages simpler trees and reduces the risk of overfitting, especially when

dealing with noisy or high-dimensional data. By incorporating both the loss function and regular-

ization, XGBoost ensures a balance between model accuracy and generalization.

Figure 3.7: Overview of the XGBoost regression tree model
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3.2.6 Random Forest

Random Forest is a bagging-based ensemble method that builds multiple decision trees us-

ing bootstrap sampling and random feature selection (Liaw, 2002). It combines the predictions of

individual trees, and the final prediction is made by averaging the predictions from all trees (for re-

gression tasks) or by majority vote (for classification tasks) (Talekar, 2020), as shown in Figure 3.8.

This approach reduces overfitting and improves prediction accuracy compared to single decision

trees (Liaw, 2002).

It introduces randomness by training each tree on a bootstrap sample of the data and selecting a

random subset of features for splitting at each node. For regression problems, the final prediction is

the average of all the trees:

ŷ =
1

T

T∑
t=1

ft(x) (22)

where T is the number of trees, and ft(x) is the prediction from the t-th tree.

Figure 3.8: Overview of the random forest algorithm

3.2.7 Parameter tuning using Bayesian optimization (BO)

Bayesian optimization (BO) has emerged as a compelling strategy for hyperparameter tuning

in machine learning, proving to be highly beneficial for optimizing complex deep neural networks.

As evidenced in the findings of the Black-Box Optimization Challenge 2020 (Turner et al., 2021),
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BO demonstrates a superior capability for tuning hyperparameters across various machine-learning

models, outperforming random search, showing better efficiency and effectiveness in navigating

complex hyperparameter spaces.

BO employs a sophisticated probabilistic model based on Gaussian Processes (Rasmussen,

2003), utilizing Bayes’ theorem (Brochu, Cora, & De Freitas, 2010) to navigate and optimize the

hyperparameter search space systematically. This search space typically includes crucial hyperpa-

rameters, such as the number of neurons, learning rates, and network depth, which depend on the

structure of machine learning models.

At the core of BO’s methodology is the application of Bayes’ theorem, which is expressed

mathematically as:

p(f | D) =
p(D | f) · p(f)

p(D)
(23)

Here, p(f | D) represents the posterior probability of the function f after observing the data D,

p(D | f) is the likelihood of observing the data given the function, p(f) denotes the prior belief

about the distribution of function f , and p(D) serves as the normalizing constant.

BO employs Bayes’ theorem to refine its model of hyperparameter performance iteratively, inte-

grating data from new evaluations. This probabilistic updating process enables BO to recalibrate the

search space exploration dynamically. It adeptly balances the exploration of unexplored parameter

configurations with the exploitation of regions known to produce favorable outcomes. This strategic

balance is critical as it directs BO’s computational efforts towards the most promising areas of the

search space, thereby increasing sample efficiency.

Moreover, the strategic utilization of BO has been demonstrated to significantly reduce the Mean

Square Error (MSE) and enhance the overall performance of models across various settings (Victo-

ria & Maragatham, 2021). L. Wang, Dernoncourt, and Bui (2020) elaborated on a unified Bayesian

optimization framework designed to optimize machine learning models for both predictive effective-

ness and training efficiency. This framework underscores how sophisticated optimization techniques

like BO can revolutionize the field of machine learning by boosting efficiency and diminishing the

resources required for model training.
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3.3 Experimental setting

We applied BO to explore the best hyper-parameters for each model. Table 3.2 displays the

hyperparameters with the range values for each model studied in this paper.

Table 3.2: Experimental parameter values for BO by exploring different ranges

Model Parameters Value range and step

Conv1D

Filters (16, 256, 16)

Kernel size [3, 5]

Dense units (8, 128, 8)

Learning rate (0.0001, 0.01, Log-uniform)

Uni/BiLSTM
Units (16, 256, 16)

Learning rate (0.0001, 0.01, Log-uniform)

Uni/BiGRU
Units (16, 256, 16)

Learning rate (0.0001, 0.01, Log-uniform)

DFFNN

Hidden layers (1, 5)

Network neurons (10, 100)

Activation (0, 2)

XGBoost

Max depth (3, 10)

Learning rate (0.01, 0.3, Log-uniform)

N estimators (100, 1000)

Min child weight (1, 10)

Subsample (0.5, 1.0, Uniform)

Colsample bytree (0.5, 1.0, Uniform)

RandomForest

N estimators (100, 1000)

Max depth (3, 20)

Min samples split (2, 10)

Min samples leaf (1, 4)

Max features [’sqrt’, ’log2’, None]

Bootstrap [True, False]

Note: activation (0, 2) - Index for activation functions; maps to relu, sigmoid, tanh.
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3.4 Evaluation criteria

A range of evaluation metrics are used for time series forecasting, with Root Mean Square Error

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) being the

most common (Astatkie, 2006; Mahmoud & Pegels, 1990). These metrics, of which MAPE is a

relative measure while RMSE and MAE are absolute values, are used to compare the performance

of various models.

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (24)

• Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi| (25)

• Mean Absolute Percentage Error (MAPE):

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (26)

In these equations, yi is the actual observed value for the i -th observation; ŷi is the predicted

value for the i-th observation.
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Chapter 4

Experimental results

In this chapter, we evaluate and compare the forecasting performance of nine different models

before and after applying BO. These include six individual deep learning models (i.e., 1D-CNN,

LSTM, BiLSTM, GRU, BiGRU, and DFFNN), two classic tree-based ensemble models (i.e., XG-

Boost and Random Forest), and one weighted ensemble model that combines all the deep learning

models. We also provide a comparative analysis of the training times for each model, both before

and after the application of BO. To demonstrate the effectiveness of these methods, we present

detailed graphs depicting the actual versus predicted data for three distinct datasets.

4.1 Performance evaluation

Table 4.1 presents the forecasting performance of various models for Brent Oil using three eval-

uation metrics: MAE, RMSE, and MAPE, before and after Bayesian Optimization (BO). Overall,

most models improved all three metrics after BO, indicating that the optimization enhanced their

predictive accuracy.

Looking at RMSE, which reflects the average prediction error, several models experienced no-

table improvements. The models that showed the most improvement were LSTM, BiLSTM, 1D-

CNN, GRU, and XGBoost. For example, the RMSE of LSTM dropped from 3.726 to 2.504, a

significant reduction of about 32.8%.

After BO, the Weighted Ensemble model achieved the best performance, with the lowest RMSE
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of 2.289 and the shortest blue bars among all models, as shown in Figure 4.1. In this step, the

Sequential Least Squares Programming (SLSQP) algorithm was used to minimize the mean squared

error (MSE) between the actual values and the weighted sum of model predictions. The algorithm

adjusted the weights of 1D-CNN, LSTM, BiLSTM, GRU, BiGRU, and DFFNN, with the constraint

that the weights sum to 1. The final optimized weights were LSTM: 0.2701, BiLSTM: 0.1595, and

GRU: 0.5704. This suggests that combining multiple models (ensemble) helped capture complex

patterns better than individual models, resulting in lower prediction errors. The next best individual

model was GRU, with an RMSE of 2.299. XGBoost performed better than Random Forest, with an

RMSE of 2.317. XGBoost is known for its strong predictive performance, especially with complex

and nonlinear data, making it a solid choice for this task. On the other hand, the worst-performing

model post-BO was DFFNN with an RMSE of 3.836, indicating that this model struggled to improve

despite optimization. This suggests that DFFNN may not be as effective for this type of time-series

data or that its structure requires further refinement.

Table 4.1: Forecasting performance comparison of Brent Oil

Models performance Pre-BO Post-BO

RMSE MAE MAPE RMSE MAE MAPE

1D-CNN 3.754 2.720 3.050% 2.905 1.981 2.218%

LSTM 3.726 2.666 3.010% 2.504 1.751 1.979%

BiLSTM 4.523 3.250 3.690% 3.059 2.480 2.805%

GRU 2.876 2.046 2.290% 2.299 1.655 1.851%

BiGRU 2.768 1.977 2.210% 2.606 1.846 2.090%

DFFNN 3.292 2.297 2.570% 3.836 2.740 3.072%

Weighted Ensemble 3.276 2.314 2.600% 2.289 1.637 1.833%
XGBoost 2.736 1.997 2.230% 2.317 1.693 1.898%

Random Forest 2.377 1.737 1.950% 2.356 1.713 1.925%

Notes: Bold numbers show the model with the best forecasting performance.
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Figure 4.1: Model performance evaluation (post-BO) - Brent Oil

For WTI Oil (See Table 4.2 and Figure 4.2), before BO, the models exhibited varying perfor-

mance. Random Forest had the lowest RMSE at 2.491, likely due to its ability to capture non-linear

patterns through its ensemble structure. GRU also performed well with an RMSE of 2.720, reflect-

ing its strength in handling sequential data. In contrast, more complex models like BiLSTM and

BiGRU had higher RMSEs, possibly due to overfitting or the need for further tuning.

After applying BO, the Weighted Ensemble model once again achieved the best results, with

the lowest RMSE of 2.207, confirming the value of ensemble methods in improving accuracy. The

optimal weights for the weighted ensemble model were LSTM: 0.2916 and BiGRU: 0.7084, indi-

cating a stronger contribution from BiGRU in the ensemble’s overall prediction. DFFNN, however,

continued to perform poorly, with an RMSE of 4.914, indicating it is not well-suited for this task

without further refinement.

In summary, the analysis shows that simpler models like Random Forest and GRU were more

robust and performed better pre-BO, while more complex models like BiLSTM and BiGRU needed

optimization to reach their full potential. After BO, weighted ensemble models and GRU-based

models excelled in the oil market predictions, while simpler neural networks like DFFNNs face

difficulties in achieving competitive results.
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Table 4.2: Forecasting performance comparison of WTI Oil

Models performance Pre-BO Post-BO

RMSE MAE MAPE RMSE MAE MAPE

1D-CNN 3.477 2.525 3.010% 4.061 3.054 3.720%

LSTM 4.139 3.105 3.680% 2.855 2.323 2.789%

BiLSTM 3.778 2.725 3.270% 3.133 2.261 2.729%

GRU 2.720 2.053 2.430% 2.363 1.804 2.157%

BiGRU 3.348 2.608 3.130% 2.266 1.610 1.923%

DFFNN 3.508 2.658 3.190% 4.914 4.010 5.013%

Weighted ensemble 3.307 2.452 2.930% 2.207 1.604 1.905%
XGBoost 3.112 2.118 2.440% 2.637 1.813 2.094%

Random Forest 2.491 1.796 2.100% 2.474 1.764 2.057%

Notes: Bold numbers show the model with the best forecasting performance.

Figure 4.2: Model performance evaluation (post-BO) - WTI Oil

Table 4.3 and Figure 4.3 show the forecasting performance for the natural gas market. In the

natural gas market, 1D-CNN stands out as the most effective model after BO, with the lowest RMSE

at 0.627, indicating it adapted well to this market. XGBoost had a significant improvement, with

its RMSE decreasing by 45.5%, although it did not outperform Random Forest. On the other hand,

DFFNN performed exceedingly before BO, however, it experienced a decline in performance, with

its RMSE increasing to 0.685 post-BO, suggesting it is not suitable for this task without further

refinement.

Compared with the performance of machine learning models in the Brent and WTI Oil markets,
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the natural gas market favored models like 1D-CNN, which performed moderately in the oil mar-

ket but excelled post-BO for natural gas forecasting. On the other hand, models like BiGRU and

Random Forest remained reliable across both markets, while DFFNN consistently underperformed,

showing limitations in handling both tasks.

Shifting the focus to MAPE, this metric is particularly useful for comparing models across

different datasets, as it normalizes errors relative to the true values, making it independent of scale.

The results show that MAPE values are generally lower in the oil market compared to the natural gas

market, suggesting that the oil market is more predictable and that the proposed models are better

suited for forecasting oil prices. Conversely, the higher MAPE values in the natural gas market

reflect greater complexity and volatility, making it more difficult to capture consistent patterns. This

underscores the need for further tuning or alternative modeling approaches to better address the

inherent complexities of natural gas price movements.

Table 4.3: Forecasting performance comparison of Natural Gas

Models performance Pre-BO Post-BO

RMSE MAE MAPE RMSE MAE MAPE

1D-CNN 0.666 0.360 7.400% 0.627 0.293 6.679%
LSTM 0.755 0.440 8.840% 0.794 0.326 7.383%

BiLSTM 0.819 0.450 8.330% 0.778 0.298 6.124%

GRU 0.787 0.426 7.990% 0.702 0.268 5.523%

BiGRU 0.669 0.330 6.280% 0.662 0.261 5.644%

DFFNN 0.590 0.261 6.200% 0.685 0.371 7.653%

Weighted ensemble 0.669 0.350 6.810% 0.710 0.291 5.865%

XGBoost 1.404 0.663 10.910% 0.765 0.392 7.052%

Random Forest 0.962 0.427 7.530% 0.702 0.379 7.557%

Notes: Bold numbers show the model with the best forecasting performance.
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Figure 4.3: Model performance evaluation (post-BO) - Natural Gas

4.2 Training time analysis

In this study, the proposed models were trained using a Google Colab environment with an L4

GPU as the hardware accelerator. The training time for machine learning models, especially deep

learning models can vary greatly depending on the hardware used.

Figure 4.4 compares the training time of different models across three datasets—Brent, WTI,

and Henry Hub Natural Gas—both before and after BO. After BO, where 30 iterations of parameter

combinations were tried. For most models, training time after BO is significantly longer than before

BO, reflecting the computational cost of hyperparameters tuning. This is a common trade-off in

model optimization—improved performance often comes at the cost of increased training time.

Figure 4.4: Training time comparison for Brent, WTI, and Henry Hub Natural Gas
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Random Forest stands out with the highest training time after BO, exceeding 500 seconds in

the oil market. The reason for this is that Random Forest, being an ensemble method with many

trees, is computationally expensive, and optimizing hyperparameters such as the number of trees

or the depth of trees further adds to this. BiGRU also exhibits a longer processing time, likely due

to the complexity of the model. Bidirectional networks like BiGRU and BiLSTM require more

computations, as they process information in both forward and backward directions.

In addition, DFFNN has a much longer training time after BO, nearly matching the time taken

by BiGRU, as seen in the graph. The training process takes longer because the network can have

many parameters to adjust, particularly when using multiple hidden layers with many neurons.

During the BO process, every time the hyperparameters change, the model needs to be completely

retrained, updating all these parameters through multiple layers. Additionally, since DFFNN has

limitations in processing sequential data like energy prices, it might need more time to learn the

patterns. These factors could explain why the training takes so long, even though there are not

many hyperparameters to tune.

Models like LSTM, 1D-CNN, and GRU see relatively moderate increases in training time after

BO. This suggests that while these models benefit from optimization, their computational complex-

ity is not as high as more complex architectures like BiGRU or Random Forest. Hence, the time

cost is more manageable.

XGBoost demonstrates impressive efficiency in this analysis. Despite having the shortest aver-

age training time of around 100 seconds post-BO, XGBoost delivers strong predictive performance.

Its relatively low training time highlights its computational efficiency, a key advantage of tree-based

models like XGBoost, especially when combined with boosting techniques that reduce errors with-

out requiring excessive computational resources.

In summary, considering both error performance and training time, GRU stands out as the most

cost-effective model because it offers a substantial reduction in error metrics while keeping training

time relatively low compared to more complex models like BiGRU and Random Forest. LSTM and

1D-CNN also provide a reasonable balance, with moderate increases in training time and decent

improvements in performance, making them good alternatives when time efficiency is crucial. Bi-

GRU and Random Forest, while performing well post-BO, may not be as time-efficient due to their
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longer training times. However, despite this increased training time, DFFNN’s predictive perfor-

mance post-BO remained poor, with high error rates (as discussed earlier). This suggests that the

extended training time does not translate into improved performance, making DFFNN an inefficient

choice both in terms of time and accuracy.

4.3 Prediction visualization

In this section, we present a comparison between the predicted and actual values for the test

set across three key markets: Brent, WTI, and Natural Gas, as shown in Figures 4.5, 4.6, and 4.7.

For each market, we highlight the prediction plots of the top three performing models. These plots

illustrate how well the models align with the actual value patterns, showcasing their impressive

predictive capabilities. The models consistently capture the trends and fluctuations in each market,

reflecting their robustness and accuracy in handling complex time series data. This alignment with

actual values underscores the effectiveness of these models in real-world market prediction.

Figure 4.5: Actual and predicted graph of Brent Oil Prices
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Figure 4.6: Actual and predicted graph of WTI Oil Prices

Figure 4.7: Actual and predicted graph of Natural Gas Prices
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Chapter 5

Discussion

5.1 Findings analysis

This study tackles the challenge of forecasting prices in the highly volatile oil and natural gas

markets, which play a crucial role in the global economy. Price fluctuations in these markets have

significant impacts on national economies, energy policies, and investment decisions. The models

developed in this research aim to enhance forecasting accuracy, offering valuable insights for risk

management and informed decision-making.

In the oil market, the weighted ensemble model, combining LSTM and GRU, emerged as the top

performer. This model excels in capturing both short- and long-term patterns in the data, effectively

managing the volatility inherent in oil prices. LSTM’s ability to handle sequential data, along

with GRU’s more efficient architecture, results in more reliable and accurate predictions, making it

particularly well-suited for the complex price dynamics in the oil market. As a result, the LSTM-

GRU combination is a strong option for decision-makers looking to minimize forecasting errors in

this sector.

In the natural gas market, 1D-CNN showed the best prediction performance after BO, contrast-

ing with the oil market. CNNs excel at capturing short-term fluctuations and sudden spikes in price

data (Livieris, Pintelas, Kiriakidou, & Stavroyiannis, 2020). The ability of CNNs to identify local

patterns and short-term dependencies makes them particularly suitable for financial time series fore-

casting, where temporal structures can be inconsistent and subject to short-term variability (Zeng et
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al., 2023).

Conversely, the worst-performing model in both oil and gas markets was the standalone Deep

Feedforward Neural Networks (DFFNNs). While DFFNNs can capture general trends, they struggle

with the sequential and time-dependent nature of energy prices. DFFNNs are more difficult to train

because of issues like overloading of hidden units and vanishing or exploding gradients (Glorot &

Bengio, 2010). This limitation makes them less effective in volatile markets like oil and natural gas,

where capturing dependencies over time is crucial.

Overall, Bayesian Optimization played a crucial role in enhancing the performance of deep

learning models and ensemble models by systematically optimizing the hyperparameters. BO ex-

plores the hyperparameter space using probabilistic models to minimize errors effectively. In this

study, BO led to significant improvements in model performance, especially for BiLSTM, GRU, Bi-

GRU, and XGBoost. However, the optimization process incurs a time cost, as seen in the increased

training times across all models after BO. Despite this, the overall benefit of reducing prediction

errors outweighs the time investment, making BO a valuable tool for improving forecasting models

in the energy market.

In summary, this research significantly contributes to the field by demonstrating the effective-

ness of using advanced models and optimization techniques for forecasting energy prices. The

results show that, in the oil market, the weighted ensemble model performs best, while in the natu-

ral gas market, 1D-CNN excels. These models, optimized through BO, offer practical solutions for

managing the inherent risks and uncertainties of energy markets, providing stakeholders with more

reliable forecasts for informed decision-making.

5.2 Managerial implications

This research presents a direct comparison between deep learning models (such as LSTM and

GRU) and ensemble models (like XGBoost and Random Forest), an area that has been less thor-

oughly explored in the current literature. This analysis highlights the distinct advantages of each

approach. While earlier studies often focus on either deep learning or ensemble models in isola-

tion, our findings demonstrate that ensemble methods, particularly when fine-tuned using Bayesian
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Optimization (BO), can match or even exceed the performance of deep learning techniques. For ex-

ample, XGBoost displayed high predictive accuracy while requiring significantly less training time

compared to more complex models, making it particularly effective for time-sensitive forecasting

needs.

The findings from this research have important implications for professionals in the crude oil

and natural gas industries. Accurate forecasting models are essential for energy companies, pol-

icymakers, and risk management professionals. GRU, for instance, excels at capturing long-term

trends in time series data, which makes it a valuable tool for pricing policy development. By im-

proving the precision of price forecasts, GRU helps companies in the energy sector minimize costly

errors and make better-informed decisions.

Conversely, XGBoost stands out in situations where fast decision-making is critical. Its short

training time and consistent predictive performance make it an excellent choice for managing risks,

providing reliable forecasts that help businesses respond to market volatility. Additionally, weighted

ensemble models that combine multiple deep learning approaches leverage the strengths of various

methods, further enhancing both prediction accuracy and reliability, making them ideal for long-

term strategic planning in the energy industry.

The practical applications of these results are far-reaching. More accurate forecasting mod-

els enable managers and traders to improve pricing strategies, inventory management, and hedging

tactics, ultimately resulting in more profitable and data-driven decision-making. Governments and

policymakers can use these models to design more effective energy policies and better manage sup-

ply in fluctuating markets. For investors, improved predictions of price trends present opportunities

for strategic investments, reducing risk while maximizing returns in the energy market.

5.3 Limitations and future work

While this research has made significant progress in forecasting oil and natural gas prices, there

are a few limitations. First, the models were tested only on oil and natural gas markets, leaving other

energy markets like coal, gasoline, or propane unexplored. Since different energy markets may show

different price patterns, as a result, the performance of certain models could vary, and other models
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may perform better in these markets. Second, due to limited computational resources, the Bayesian

Hyperparameter Optimization (BO) process was simplified. Although BO improved model perfor-

mance, the search for the best hyperparameters was restricted. With more powerful computational

resources, future studies could explore a wider range of hyperparameter combinations for better

optimization. Additionally, this study covers a data period from 2010 to 2024. While this is a robust

dataset, future work could benefit from testing the models on longer time frames or different periods

to capture more market conditions and trends.

While this study shows the benefits of using deep learning, ensemble methods, and BO, future

research could apply these models to other energy commodities, like coal or renewable energy. This

would help test if the models work well in different market conditions. Another direction is to add

external factors such as macroeconomic data, geopolitical events, or climate information. Including

these could make the models better at capturing a wider range of influences on energy prices. With

better computational resources, future studies could also try more combinations of hyperparameters

to improve the model’s accuracy. Finally, making the models easier to understand would help users

see what drives the predictions, making the results clearer and more useful for decision-makers.
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Chapter 6

Conclusion

The energy market, especially the oil and natural gas sectors, plays a crucial role in the global

economy, influencing a wide range of activities, from industrial production to household consump-

tion. Price fluctuations in these markets have extensive consequences, affecting national economies,

government policies, and the strategic decisions of businesses and investors. In such volatile mar-

kets, where supply and demand can change suddenly, accurate price forecasting becomes crucial for

risk management, pricing strategies, and policy-making.

This research addresses the need for better forecasting models in the energy sector by employing

a combination of deep learning techniques, ensemble methods, and BO to improve the accuracy of

oil and natural gas price predictions. Through this study, we demonstrate that integrating multiple

models and fine-tuning their parameters using BO significantly enhances forecasting performance,

providing a valuable tool for decision-makers in the energy industry.

The key contributions of this research are threefold. First, we implemented a variety of fore-

casting models, including deep learning and tree-based ensemble methods, to predict both oil and

natural gas prices. Second, by applying BO, we reduced forecasting errors—measured by RMSE,

MAE, and MAPE—across both markets, optimizing the performance of each model. Third, we con-

ducted a thorough comparison of model performance and training times, highlighting the strengths

and trade-offs of different models in various market contexts.

Our results show clear distinctions in model performance across the two markets. In the oil

market, the Weighted Ensemble model outperformed other models by effectively combining the
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strengths of LSTM and GRU, both of which also showed strong individual performance. This

suggests that ensemble methods, when optimized, can significantly improve predictive accuracy by

leveraging the strengths of different models. In contrast, for the natural gas market, 1D-CNN was the

best performer after BO optimization, showing its ability to handle the volatility and trends unique

to this market. Additionally, XGBoost proved to be a strong performer in both markets, offering an

optimal balance between predictive accuracy and shorter training times, making it a practical choice

when both accuracy and computational efficiency are important. As a result, the model presented

in this study provides valuable and practical insights for policymakers, companies, and investors,

enabling them to choose models that align with their specific priorities, whether focused on accuracy

or training efficiency.
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Appendix A

My Appendix

A.1 The proposed model code

This appendix provides the code developed for the study. The sample code for the Brent Oil

market demonstrates the key models used in the research, including 1D-CNNs, LSTMs, BiLSTMs,

GRUs, BiGRUs, DFFNNs, weighted ensemble models, XGBoost, and Random Forest, alongside

the application of Bayesian optimization techniques across 30 trials.

The code can be accessed via the following link:

https://colab.research.google.com/drive/1o8yOFdfxVLokyL5B1Kh2T76UJbStmRia

?usp=sharing
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Lévesque, J.-C., Gagné, C., & Sabourin, R. (2016). Bayesian hyperparameter optimization for

ensemble learning. arXiv preprint arXiv:1605.06394.

Li, J., Zhu, S., & Wu, Q. (2019). Monthly crude oil spot price forecasting using variational mode

decomposition. Energy Economics, 83, 240–253.

Liaw, A. (2002). Classification and regression by randomforest. R news.

Livieris, I. E., Pintelas, E. G., Kiriakidou, N., & Stavroyiannis, S. (2020). An advanced deep

learning model for short-term forecasting u.s. natural gas price and movement. Artificial

Intelligence Applications and Innovations. AIAI 2020 IFIP WG 12.5 International Workshops,

585, 165 - 176. Retrieved from https://api.semanticscholar.org/CorpusID:

218980710

Mahmoud, E., & Pegels, C. C. (1990). An approach for selecting times series forecasting models.

International Journal of Operations & Production Management, 10(3), 50–60.

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer school on machine

learning (pp. 63–71). Springer.

Shen, G., Tan, Q., Zhang, H., Zeng, P., & Xu, J. (2018). Deep learning with gated recurrent unit

networks for financial sequence predictions. Procedia computer science, 131, 895–903.

Srinivasamurthy, R. S. (2018). Understanding 1d convolutional neural networks using multiclass

time-varying signalss (Unpublished doctoral dissertation). Clemson University.

Talekar, B. (2020). A detailed review on decision tree and random forest. Bioscience Biotechnology

Research Communications. Retrieved from https://api.semanticscholar.org/

CorpusID:234423825

Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laaksonen, E., Xu, Z., & Guyon, I. (2021).

Bayesian optimization is superior to random search for machine learning hyperparameter

tuning: Analysis of the black-box optimization challenge 2020. In Neurips 2020 competition

and demonstration track (pp. 3–26).

Victoria, A. H., & Maragatham, G. (2021). Automatic tuning of hyperparameters using bayesian

optimization. Evolving Systems, 12(1), 217–223.

47

https://www.cnbc.com/2020/06/16/how-negative-oil-prices-revealed-the-dangers-of-futures-trading.html
https://www.cnbc.com/2020/06/16/how-negative-oil-prices-revealed-the-dangers-of-futures-trading.html
https://api.semanticscholar.org/CorpusID:218980710
https://api.semanticscholar.org/CorpusID:218980710
https://api.semanticscholar.org/CorpusID:234423825
https://api.semanticscholar.org/CorpusID:234423825


Viviani, E., Di Persio, L., & Ehrhardt, M. (2021). Energy markets forecasting. from inferential

statistics to machine learning: The german case. Energies, 14(2), 364.

Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A review of deep learning for renewable

energy forecasting. Energy Conversion and Management, 198, 111799.

Wang, J., Lei, C., & Guo, M. (2020). Daily natural gas price forecasting by a weighted hybrid

data-driven model. Journal of Petroleum Science and Engineering, 192, 107240.

Wang, L., Dernoncourt, F., & Bui, T. (2020). Bayesian optimization for selecting efficient machine

learning models. arXiv preprint arXiv:2008.00386.

Wu, B., Wang, L., Lv, S.-X., & Zeng, Y.-R. (2021). Effective crude oil price forecasting using new

text-based and big-data-driven model. Measurement, 168, 108468.

Wu, Z., Valentini-Botinhao, C., Watts, O., & King, S. (2015). Deep neural networks employing

multi-task learning and stacked bottleneck features for speech synthesis. In 2015 ieee inter-

national conference on acoustics, speech and signal processing (icassp) (pp. 4460–4464).

Zeng, Z., Kaur, R., Siddagangappa, S., Rahimi, S., Balch, T. H., & Veloso, M. (2023). Financial

time series forecasting using cnn and transformer. ArXiv, abs/2304.04912. Retrieved from

https://api.semanticscholar.org/CorpusID:258060145

Zhang, R., Li, B., & Jiao, B. (2019). Application of xgboost algorithm in bearing fault diagnosis.

In Iop conference series: Materials science and engineering (Vol. 490, p. 072062).

48

https://api.semanticscholar.org/CorpusID:258060145

	List of Figures
	List of Tables
	Introduction
	Research background
	Motivation and research objectives
	Motivation
	Research objectives

	Main work and contributions

	Literature review
	Data and methodology
	Data retrieval and processing
	Methodology
	1D-CNNs
	LSTMs and BiLSTMs
	GRUs and BiGRUs
	DFFNNs
	XGBoost
	Random Forest
	Parameter tuning using Bayesian optimization (BO)

	Experimental setting
	Evaluation criteria

	Experimental results
	Performance evaluation
	Training time analysis
	Prediction visualization

	Discussion
	Findings analysis
	Managerial implications
	Limitations and future work

	Conclusion
	Appendix My Appendix
	The proposed model code

	Bibliography

