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ABSTRACT 

 

Early Detection of Emerging Technologies Using Machine Learning and Burst Detection 

 

Ali Ghaemmaghami 

 

Certainly, the impact of emerging technologies is changing our world and how we 

live, shaping our future significantly. In the constantly evolving landscape of these 

technologies, which attracts substantial yearly investments, spotting these trends early on is 

both challenging and expensive. However, applying an emerging technology detection 

method in an effective and efficient way is considered a challenging task for many 

stakeholders. In this thesis, we address these problems through applying a method to predict 

potential emerging technologies in the case study field of Artificial Intelligence (AI). Using 

this method may help policymakers to identify potential emerging technologies early in a 

more systematic way with little manual intervention. In the proposed method, using burst 

detection, machine learning, and deep learning, we attempt to predict the future sustaining 

emerging technologies. We applied the methodology by four methods, namely Random 

Forest, Gradient Boosting, XGBoost, and Multi-Layer Perceptron (MLP). Results showed 

that the method was successful in its tasks. The method had the Area under the Curve (AUC) 

rate of more than 75% to accurately predict the sustainability of the potential emerging 

technologies. More specifically, applying the MLP method showed the ability to increase 

the AUC rate and recall metric as the most important metrics of our work. In summary, this 

approach carries both theoretical and practical significance. Theoretically, the exploration of 

novel combinations, such as integrating deep learning and burst detection methods or 

employing transformers, offers researchers fresh insights into the challenge of detecting 

emergence. On the practical front, the application of methods providing high accuracy rates 

in machine learning methods empowers stakeholders to implement these methods effectively 

in practical scenarios. 
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1 Introduction 

1.1 Background and Motivation 

Emerging technologies have the potential not only to alter the technological paradigms 

on which traditional industries rely and to generate entirely new industries (Day and 

Schoemaker 2000; Porter et al. 2002), but also to alter existing socio-economic structures 

and production practices (Adner and Snow 2010; Rotolo et al. 2015; Y. Zhou et al. 2019). 

Early and accurate detection of emerging technologies can provide decision-makers with 

knowledge, intelligence, and opportunities, from research and development (R&D) 

departments of different institutions to national policy-making organizations and 

innovation administrations (Jang et al. 2021; S. Xu et al. 2021; Y. Zhou et al. 2021). 

Especially, in more recent years, the speed at which technology changes and advances 

has been staggering, making fast detection of emerging technologies more valuable. For 

instance, popular cutting-edge technologies such as cloud computing, mobile computing, 

the Internet of Things, the Internet of Services, data collection, big data analytics, 

artificial intelligence, augmented reality and 3D printing developed and adopted quickly 

(Zamani et al. 2022). As the amount of data available to us is growing at a stunning pace, 

applications of this data are growing as well. One of the applications of this huge quantity 

of data can be detecting emerging technologies or topics through data and with minimal 

intervention of experts. 

The trend on the topic of emerging technologies has followed an upward 

trajectory in recent years. The trend regarding results for the defined search with the 

topic of “emerging technologies” in the Web of Science (WOS) database since the year 

2000 is represented in Figure 1. The topic of emerging technologies  has been considered 

interesting in recent years, and thereby the subtopics around it, such as emerging 

technologies detection, have similarly gained attention.  
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Figure 1. The trend of the number of documents with the topic of emerging technologies in the WOS database 

 

There are different definitions of emerging technologies. Many of these 

definitions rely on attributes of emerging technologies, such as the famous definition of 

Rotolo et al. (2015) that defined emerging technologies with five attributes: radical 

novelty, relatively fast growth, coherence, prominent impact as well as uncertainty and 

ambiguity. 

Over the years, manifold approaches to emergence detection have been deployed 

to identify emerging technologies, from lexical-based approaches (Joung and Kim 2017; 

Weismayer and Pezenka 2017; Wu and Leu 2014), bibliometric approaches (Daim et al. 

2006; Kim and Bae 2017; Mejia and Kajikawa 2020), and indicator-based approaches 

(Abercrombie et al. 2012; Bengisu 2003; H. Xu et al. 2021) to more complex methods such 

as machine learning methods (Choi et al. 2021; S. Xu et al. 2021; Y. Zhou et al. 2021) and 

hybrid methods (Ávila-Robinson and Miyazaki 2013; Carley et al. 2017; Wang 2018). A 

new weak signal analysis method has been added to the emergence detection methods in 

recent years (Ebadi et al. 2022).  

 Most of these approaches use patents or publications as their source of emerging 

technologies. Based on their approach and their focus on various aspects, researchers 

tried to choose between patents and papers as their source of data. Both patents and 

papers can provide information about emerging technologies, but at various times and 

levels. Ávila-Robinson and Miyazaki (2013) deployed both sources to capture the cycle 
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of emerging technologies. However, very few tried to include both in the process of 

emerging technology detection. Mejia and Kajikawa (2020) were one of the few that 

evaluated the emerging topics in both science and technology using paper and patent 

databases simultaneously. Deploying both sources in a method can yield the opportunity 

of using the maximal quantity of all the useful data to meaningfully detect emerging 

technologies.  

 Many of the detection methods rely on emergence attributes, but there is no 

consensus regarding these attributes. Rotolo et al. (2015) considered the five 

aforementioned features as attributes of emergence. Wang (2018) took novelty, relatively 

fast growth, coherence, and scientific impact as attributes of emerging research topics. 

Carley et al. (2017) used novelty, growth, persistence, and community as attributes of 

emergence in their method. However, the methods can further be refined through the 

addition of new perspectives of emergence to assess different dimensions of emerging 

technologies.  

The process of detecting emerging technologies or topics does not end with the 

detection. Various institutions or companies want to know not only which technologies are 

emerging, but also which ones have higher probability of being emerging. Measuring 

emergence potential can be another crucial step in the process of emerging technology 

detection. 

However, there are some limitations  that have been observed in traditional 

approaches to detecting emerging technologies: 1) subjectivity risk due to manual 

interventions, 2) lack of scalability, 3) lack of quantifiable metrics to determine the 

performance of the emerging technology detection process, and 4) lack of predictability or 

low accuracy rates for future predictions.  

In this thesis, we are going to introduce and employ an emerging technology 

detection method in which the emerging technology terms in the field of AI will be detected 

using a burst detection algorithm. Then, the future trends of these terms will be predicted by 

combining machine learning techniques with burst detection, producing well-defined 

quantitative metrics for performance evaluation. The burst detection method is automated 

which reduces the need for manual curation and the risk of human biases.  
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The structure of this thesis is outlined as follows: the next section outlines the 

research objectives; Chapter 2 provides a review of pertinent research; Chapter 3 delves into 

the data utilized in this study; Chapter 4 presents the methodology of the thesis; Chapter 5 

represents the results for the research objective; Chapter 6 discusses the findings of this 

research; and Chapter 7 concludes the thesis by highlighting the limitations of this study 

while suggesting directions for future research. 

 

1.2 Research Objectives 

To address the limitations mentioned in the previous section, the main objective of this 

research is as follows: 

 

Objective: Prediction of sustaining emerging technologies using burst detection and 

machine learning 

• Proposing an emerging technology term detection framework that requires little 

tuning and manual interventions, 

• Testing the proposed approach on a case technology field, i.e., artificial intelligence 

(AI), using different datasets. 
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2 Literature Review 

This section provides a concise summary of the literature relevant to the research objective. 

It begins by examining studies that scrutinize the broader research landscape of emerging 

technology detection, comparing findings in previous research. Subsequently, it delves into 

literature that explores burst detection in emerging technologies. 

Identifying the most suitable method for future implementation is crucial. To achieve 

this, we need to comprehend the key methods for detecting emergence. Furthermore, because 

various data types have been used and proposed in the literature, we need to understand the 

research gaps in order to deduce implications for the data types of emergence detection as 

well. 

 

2.1 Definitions of Emerging Technologies 

There are various definitions for the concept of emerging technologies, and, depending 

on the definition, different methods for detecting emerging technologies are applicable. 

The main focus of this research is on the following definitions that utilize defined 

attributes to detect emerging technologies. Cozzens et al. (2010) defined emerging 

technologies as those with characteristics such as rapid growth, newness, untapped market 

potential, and a high-technology base. Rotolo et al. (2015) believed that there are five 

attributes for considering a concept to be an emergence of novel technology: radical 

novelty, relatively fast growth, coherence, prominent impact, and uncertainty and 

ambiguity. Based on different circumstances, these definitions can be altered; for 

instance, Wang (2018) defined emergence for research topics by replacing prominent 

impact by scientific impact. Based on these definitions, many articles have been written 

to design approaches to detect emerging technologies.  

This study does not go further about definitions of emerging technologies, firstly 

because previous works have dedicated a significant amount of effort to defining 

emerging technologies and topics; for example, the paper of Rotolo et al. (2015) 

discovered many of these definitions of emerging technologies in the literature. 

Secondly, this study does not focus on this matter, as researchers can modify the 

definition of emerging technologies that has been proposed by Rotolo et al. (2015) based 

on different circumstances. The focus of this study is on approaches to detect emerging 
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technologies and how to modify and improve current methods, as well as to suggest novel 

approaches. 

 

2.2 Approaches to Detect Emerging Technologies 

Thus far, several approaches have been proposed for detecting emerging technologies. 

Rotolo et al. (2015) grouped them into five classes: 1. Indicators and trend analysis; 2. 

Citation analysis; 3. Co-word analysis; 4. Overlay mapping; and 5. Hybrid approaches. 

Also, Xu et al. (2021) grouped methods of emergence detection into three groups: 

citation-based approaches, lexical-based approaches, and machine learning approaches. 

This section provides an updated categorization reflecting the latest approaches. 

According to the adopted methodology, emerging detection approaches can be 

organized into six distinct groups: 1. Lexical-based approaches; 2. Bibliometric-based 

approaches; 3. Indicator-based approaches; 4. Machine learning approaches; 5. Weak 

signal analysis; and 6. Hybrid approaches. By classifying and examining these diverse 

approaches, a comprehensive understanding of the current landscape in emerging technology 

detection can be achieved. 

 

2.2.1 Lexical Approaches 

Lexical methods in detecting emerging technologies refer to the use of term-related 

information to analyze and extract information from text-based sources, such as scientific 

literature, patents, and news articles (Xu et al. 2021). These techniques are used to identify 

and track new or developing technologies by analyzing the language and terms used to 

describe them. Lexical methods can include techniques such as co-word analysis, and 

keyword analysis. These methods can be used to identify key terms and phrases associated 

with specific technologies, to classify documents by technology, and to identify patterns and 

trends between terms in research and development.  

 Wu and Leu (2014) recommend using a patent co-word map analysis (PCMA) in 

order to assess the tendencies of technological trends in the field of hydrogen energy. 

Furukawa et al. (2015) propose a method to analyze chronological changes in research 

themes as seen from proceedings articles and conference sessions in order to discover, 
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identify, and analyze the evolutionary process of new technologies in the numerous rapidly 

expanding research domains. Joung and Kim (2017) apply a keyword-based model in 

contents-based patent analysis and suggest a technical keyword-based analysis of patents to 

track developing technologies.  

 Weismayer and Pezenka (2017) offer a longitudinal latent semantic analysis of 

keywords as an application to content analytics.  

Recently, lexical-based approaches have mostly been replaced with natural language 

processing methods that are more complex and comprehensive than lexical approaches. 

These new methods are included in the machine learning methods. 

In summary, lexical methods can provide valuable insights into the attention and 

impact of emerging technologies based on the key terms containing them, but it should be 

used in conjunction with other methods and approaches to get a more complete 

understanding of the field and its trends, and to consider other important aspects of emerging 

technologies. 

 

2.2.2 Bibliometric Approaches 

Bibliometric methods in detecting emerging technologies refer to the use of various metrics 

and techniques to analyze and extract information from scientific literature, patents, and 

other text-based sources (Rotolo et al. 2015). Bibliometric methods are used to identify 

patterns and trends in research and development, and to track the evolution of specific 

technologies over time. These methods can include techniques such as citation analysis, co-

citation analysis, and social network analysis. Bibliometric methods can be used to identify 

key researchers, organizations, and institutions in a specific technology area, to classify 

documents by technology, and to identify patterns and trends in research and development.  

Daim et al. (2006) were some of the first authors to use this approach by combining 

the use of bibliometrics and patent analysis with well-known technology forecasting 

methods including scenario planning, growth curves, and analogies for three emerging 

technological sectors. 

 Shibata et al. (2009) performed three citation network methods to detect a research 

front including co-citation, direct citation, and bibliographic coupling, and they found that 

direct citation performs the best to detect large and young clusters earlier. Shibata et al. 
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(2008) successfully used topological measures for detecting branching innovation in the 

citation network of scientific publications. Shibata et al. (2011) detected emerging research 

fronts and future core papers by using the topological clustering method and citation network 

analysis. Chen et al. (2011) deployed the logistic growth curve approach to detect 

emergence, growth, maturity, and saturation in the field of hydrogen energy using 

patents. 

 Iwami et al. (2014) identified emerging leading papers using time transition of 

centrality measures. Yoon and Kim (2012) used outlier patents as sources of emerging 

technologies and semantic patent analysis as sources of topics. Kim and Bae (2017) formed 

technology clusters and with the usage of patent indicators assessed whether or not a 

technology cluster is promising or not.  

In order to suggest potential future research topics for technological observatories, 

Santa Soriano et al. (2018) examined citation patterns and co-occurrence keywords while 

evaluating their importance and level of maturity. Mejia and Kajikawa (2020) used a 

computational algorithm based on citation networks and thoroughly examined energy 

storage emerging topics by mining journal articles and patents.  

It is generally accepted that bibliometric methods can provide valuable insights into 

emerging technologies' attention and impact. However, in order to obtain a full 

understanding of the field and its trends, and to consider other important aspects of emerging 

technologies, a combination of this method and other approaches may be employed. 

 

2.2.3 Indicator Approaches 

Indicator methods in detecting emerging technologies refer to the use of various metrics 

or indicators to identify and track new or developing technologies. These indicators can 

be based on various data sources, such as scientific literature, patents, news articles, and 

social media, and can be used to identify patterns and trends in research and development.  

 Porter and Detampel (1995) were some of the first researchers that used the number 

of records that include a specific keyword in their abstract as an indicator of emerging 

technologies to detect in bibliometric databases. Watts and Porter (1997) introduced five 

indicators of Research and Development (R&D) profiles: the number of items in 

databases such as Science Citation Index as Fundamental research, the number of items 
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in databases such as Engineering Index as Applied research, the number of items in 

databases such as U.S. Patents as Application, the number of items in databases such as 

Newspapers Abstracts Daily as Fundamental research, issues raised in the Business and 

Popular Press Abstracts as Societal Impacts. Bengisu (2003) used the slope of the 

regression line of the number of records in the specific field to the time as an indicator 

of emergence in fields. Watts and Porter (2003) defined some cluster quality measures 

including cohesion (as the cosine similarity measure), entropy, and F-measure as 

emergence indicators. Bettencourt et al. (2008) used an epidemic model to relate the 

increasing number of publications and new authors in an emerging field. Schiebel et al. 

(2010) used interesting indicators such as TF-IDF (Term Frequency Inverse Document 

Frequency) and Gini coefficient as well as the minimum number of articles that contain 

the keyword to detect an emerging research issue. This research can be considered as one 

of the first  to detect emerging topics with multi-layer filtering approaches and indicators. 

Guo et al. (2011) deployed three indicators of the number and type of bursting terms, the 

number of new authors in a field, and the interdisciplinary of paper references to identify 

emerging research areas. Järvenpää et al. (2011) used Technology Life Cycle indicators 

based on the databases that have been used in emerging technologies detection including 

the number of articles in the science datasets, the number of patents in the patent datasets, 

and the amount of news in newspaper datasets. Abercrombie et al. (2012) constructed a 

network of scholarly publications, citations, patents, news, and online mappings to 

discover the relations of the indicators of each, for any emerging technology. Jun (2012) 

evaluated the technology hype cycle of hybrid cars and used Google search traffic trend 

(or Google trend) as an indicator of users’ behavior. Jun et al. (2014) believed that Google 

search trend can be a better measurement of new technology adoption than other indices 

such as patents, news, or articles for forecasting demands. De Rassenfosse et al. (2013) 

believed that the inventor's total number of priority patent applications, regardless of the 

patent office where they were submitted, can be an indicator to assess and detect 

emerging technologies with. Ho et al. (2014) used a fitted logistic curve on the cumulative 

number of publications in a field per year to assess the emergence and predict the life 

cycle of that technology.  

 H. Xu et al. (2021) used eight indicators to detect emergence, to wit average growth 

rates of paper numbers, journal numbers, funding numbers, authors numbers, weakly 
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connected components, strongly connected components, plus publications cited by 

patents divided by the total number of publications on a topic, and patents cited by 

publications divided by the total number of publications on a topic. 

In general, indicator-based approaches can provide valuable insight into the 

attention and impact of emerging technologies. However, they should also be used along 

with other methods and approaches to gain a deeper understanding of the field and its 

trends, as well as to take into account other important aspects of emerging technologies. 

 

2.2.4 Machine Learning Approaches 

Machine learning methods are used to detect and track emerging technologies (Xu et al. 

2021). This can include using data mining and statistical analysis to identify patterns and 

trends in research and development, natural language processing to analyze scientific 

literature and patents, and predictive modeling to forecast future technological 

advancements. The goal of using machine learning in emerging technology detection is 

to automate the process of identifying and analyzing new technologies, and to provide 

insights that can aid in the development and prediction of these technologies. 

Because of the successful usage of machine learning approaches in different 

fields, the implementation of machine learning approaches has increased in the field of 

emerging technology detection as well. S. Xu et al. (2019) used the Dynamic Influence 

Model (DIM) to detect topics and then by using Citation Influence Model (CIM), they 

calculated input indicators and predicted the next two years’ values with Multi-Task 

Least-Squares Support Vector Machine (MTLS-SVM). Zhou et al. (2019) combined a 

semi-supervised text-clustering model (Labeled Dirichlet Multi Mixture) for topic 

segmentation and a sentence-level semantic description method (Various-aspects 

Sentence-level Description) information extraction method for topic description to 

identify emerging technologies using a semi-supervised topic clustering model. Zhou et 

al. (2020) built a supervised machine learning model to label them ET (Emerging 

Technology) or NET (Not Emerging Technology) and patent features as inputs with the 

usage of data augmentation with GAN (Generative Adversarial Networks) to build 

enough data to train the model. Altuntas et al. (2020) evaluated emerging candidates with 

the patent analysis using a semi-supervised clustering. Ma et al. (2021) proposed a hybrid 
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approach to integrate topic modeling, semantic SAO analysis, machine learning, and 

expert judgment, identifying technological topics and potential development 

opportunities. Zhou et al. (2021) deployed 11 patent indicators to detect emerging 

technologies that are large-scale outlier patents using technological and social impact 

with the deep learning method. Jang et al. (2021) used expert opinions on future and 

emerging technologies identified through the LDA (Latent Dirichlet Allocation) model 

and fuzzy c-means probabilistic clustering by utilizing diversity and centrality indices.  

Choi et al. (2021) deployed 3 semi-supervised active learning algorithms with 32 input 

variables of patents and one binary target variable of being promising or not to identify 

emerging promising technologies. 

Overall, machine learning can be a powerful tool for detecting emerging 

technologies, but it is important to recognize its limitations to implement the model and 

analysis of the results.  

 

2.2.5 Weak Signal Analysis 

Weak signal analysis methods in detecting emerging technologies refer to techniques 

used to identify and track new or developing technologies by analyzing early signs or 

indications of their emergence (Ebadi et al. 2022). These methods are used to identify 

potential future technologies by detecting patterns and trends in data that may not be 

immediately apparent or that may be difficult to discern using traditional methods. Weak 

signal analysis methods can include techniques such as trend analysis, anomaly 

detection, and horizon scanning. The goal of using weak signal analysis methods in 

emerging technology detection is to provide early insights into new technologies that can 

aid in the identification and development of these technologies before they become 

mainstream. 

Weak signal analysis can be considered another type of emerging technology 

detection method that has been used recently. The recent definition of the weak signal 

based on the previous definitions is proposed by van Veen and Ortt (2021): “A perception 

of strategic phenomena detected in the environment or created during interpretation that 

are distant to the perceiver’s frame of reference.” This concept can be used in emergence 
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detection because these weak signals may be potential signals of future trends and 

technologies.  

 Yoon (2012) first introduced the concept of weak signal analysis to detect 

business opportunities, trying to identify weak signal topics using text mining based on 

keywords. Its data type was Web news articles, and its domain of research case study 

was solar cells. Using term and document frequencies, Yoon (2012) described a weak 

signal as a term with low term and document frequencies and a high growth rate. This 

study also described a strong signal as a term with high term and document frequencies 

and a high growth rate. 

 Griol-Barres et al. (2020) combined three data types from scientific, journalistic, 

and social sources to detect weak signals in the field of remote sensing. It uses three data 

sources; papers from Science Direct, newspapers from New York Times, and social 

media from Twitter to capture future changes using weak signals in the targeted field.  

 Ebadi et al. (2022) applied recent concepts of weak signal analysis to the early 

detection of technology emergence. They mixed a deep learning and NLP (Natural 

Language Processing) approach to detecting keywords with a weak signal analysis to 

identify emerging terms as future signs early in the field of “hypersonic” using scientific 

publications. 

 H. Xu et al. (2021) attached the concept of weak signal in emergence detection to 

the uncertainty and ambiguity attribute and tried to measure it into that attribute in the 

process of emergence detection. They suggested that capturing weak signals can help the 

process of early identification of emerging technologies. 

 Weak signals are considered to be emerging trends that are yet to catch the eye of 

experts and growing areas that show high dynamics but are not widespread yet 

(Nazarenko et al. 2022). Therefore, weak signal analysis can play an important role in the 

process of emerging technologies detection. It can potentially even become a new trend 

in the identification of emerging technologies as some more advanced techniques such 

as quantum computing are being used in detecting future weak signals (Griol-Barres et 

al. 2021). 

Broadly, weak signal analysis can be useful for identifying emerging technologies 

that are still in the early stages of development, but it should be used in conjunction with 

other methods and approaches to get a more complete understanding of the field and its 
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trends. 

 

2.2.6 Hybrid Approaches 

Hybrid methods in detecting emerging technologies refer to the combination of multiple 

techniques, methods, and algorithms from different fields, such as machine learning, 

lexical, bibliometrics, and indicator methods, to identify and track new or developing 

technologies (Rotolo et al. 2015). The goal of using hybrid methods is to create a more 

comprehensive and accurate approach by leveraging the strengths of different methods 

and to overcome the limitations of a single method. By combining multiple methods, 

hybrid methods can provide a more holistic view of the technology landscape, allowing 

for a more accurate identification of emerging technologies and the trends and patterns 

associated with them. Hybrid methods can also be used to increase the efficiency of the 

analysis process by allowing the use of multiple data sources, and to increase the 

robustness of the results by combining different types of information. 

 Ávila-Robinson and Miyazaki (2013) used bibliometric indicators to detect 

technological emergence. Using the Thomson Reuters/ISI Science Citation Index 

Expanded database and their citations and references, they integrated bibliometric, social 

network analysis and multivariate statistical methods. Q. Wang (2018) used bibliometrics 

and indicators of growth of the number of publications, the novelty of the topic, 

coherence of the cluster of a topic, and the number of citations as the scientific impact 

to detect an emerging research topic.  

J. Garner et al. (2017) used a set of indicators to evaluate the emergence of the 

terms in terms of novelty, growth, community, and persistence, which was a combination 

of lexical and indicator methods; their method was called Emergence Score (EScore). 

Carley et al. (2017) used the same EScore method but evaluated the effects of scale and 

domain on the persistence of an emerging topic. Carley et al. (2018) elaborated on the 

EScore method more thoroughly, implementing it on a dye-sensitized solar cells 

(DSSCs) dataset, and found the emerging terms, authors, and affiliations in this field. 

Porter et al. (2019) implemented the EScore method and revised it to identify the 

emerging terms and key players, as well as high-priority research papers and patents. 
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Ranaei et al. (2020) compared the EScore method with other approaches, concluding that 

EScore provided a robust, holistic view of technological emergence by integrating term 

frequency, community size, and origin parameters. However, the method had limitations 

in capturing highly niche or less-researched areas. They recommended using EScore in 

combination with other methods, like term counting or LDA, to get a more 

comprehensive understanding of emerging technologies. 

Overall, hybrid methods can be a powerful tool for detecting emerging 

technologies, but it is important to recognize their complexity and the need for expert 

knowledge to implement and interpret the results.  

 

2.2.7 Analysis of the Literature and Research Gaps in Approaches to Emergence 

Detection 

A comprehensive list of emergence detection methods is presented in Table 1. The 

categorization of these methods proves challenging and intricate due to the inherent 

difficulty of assigning a singular category to each method without encountering overlap with 

other categories. Nonetheless, efforts have been made to categorize each paper's method, 

drawing upon the previously established definitions and descriptions provided in preceding 

sections. 

A list of different emergence detection methods with their pros and cons (as mentioned by 

the authors) can be seen in Table 1. 

Table 1. List of different emergence detection methods 

Papers 

Emergence 

Detection 

Method 

Pros Cons 

Mejia & Kajikawa 

(2020) 
Bibliometric 

Clear identification of 

influential works 

Limited to 

citation-based 

networks 

Kim & Bae (2017) Bibliometric 
Effective for citation-

based trend detection 

Limited to 

research-focused 

trends 
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Iwami et al. (2014) Bibliometric 
Clear methodology for 

mapping trends 

Limited by 

citation network 

bias 

Fujita et al. (2014) Bibliometric 
Effective for detecting 

well-cited research 

May overlook 

emerging but 

less-cited fields 

Yoon & Kim (2012) Bibliometric 
Effective in technology 

classification 

May miss 

emerging niche 

technologies 

Kajikawa et al. 

(2008) 
Bibliometric 

Effective for identifying 

influential research 

Misses emerging 

but less-cited 

technologies 

Shibata et al. (2008) Bibliometric Simple and effective 
Limited to 

citation data 

Huang et al. (2021) Hybrid 
Combines strengths of 

multiple approaches 

Complexity in 

integration 

X. Liu & Porter 

(2020) 
Hybrid 

Broader scope through 

hybrid approaches 

Difficult to 

implement due to 

complexity 

Ranaei et al. (2020) Hybrid 

Comprehensive view of 

technological 

emergence 

Less effective for 

niche 

technologies 

Li et al. (2019) Hybrid 
Comprehensive in 

scope 

Complexity in 

combining 

different methods 

Porter et al. (2019) Hybrid 
Combines multiple data 

sources 

High rates of 

noise in final 

results 

Q. Wang (2018) Hybrid 
Multiple sources 

increase accuracy 

Resource-

intensive 
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Carley et al. (2018) Hybrid 
Easy to understand and 

apply 

High rates of 

noise in final 

results 

H. Xu et al. (2021) Indicator 
Focused on specific 

technology indicators 

May miss 

broader, context-

based signals 

Guderian (2019) Indicator 
Simple and transparent 

methodology 

Limited to 

selected 

indicators 

Z. Wang et al. 

(2019) 
Indicator 

Effective in specific 

technology areas 

Limited to patent-

driven detection 

Moehrle & 

Caferoglu (2019) 
Indicator 

Focuses on specific 

indicators 

May miss 

emerging trends 

outside data 

sources 

Guo et al. (2011) Indicator Simple methodology 
May miss broader 

trends 

Shibata et al. (2011) Indicator Clear methodology 

Limited by 

citation network 

bias 

Weismayer & 

Pezenka (2017) 
Lexical Easy to implement 

Limited to text 

analysis 

Joung & Kim (2017) Lexical 
Efficient for analyzing 

text corpora 

Limited to 

keyword 

matching 

Furukawa et al. 

(2015) 
Lexical Easy to interpret 

Limited by the 

scope of lexical 

data 

Zhou et al. (2021) Machine Learning 
Scalable with large 

datasets 

Requires high 

computational 

power 
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S. Xu et al. (2021) Machine Learning 
Adapts well to large 

datasets 

Dependent on 

data quality 

Jang et al. (2021) Machine Learning 
Handles unstructured 

data well 

Requires 

extensive training 

data 

Choi et al. (2021) Machine Learning 
Handles large text 

corpora well 

Can overlook 

subtle emerging 

signals 

Ma et al. (2021) Machine Learning 
Effective for large 

datasets 

Resource-

intensive 

implementation 

Zhou et al. (2020) Machine Learning 
Robust performance in 

structured data 

Limited to 

specific data 

formats 

Altuntas et al. 

(2020) 
Machine Learning 

Efficient at processing 

large volumes of data 

Data-dependent 

performance 

Kwon & Geum 

(2020) 
Machine Learning High scalability 

Requires high-

quality data for 

best results 

S. Xu et al. (2019) Machine Learning 
Handles large text 

datasets well 

Requires 

extensive training 

data 

Zhou et al. (2019) Machine Learning 
Effective in large 

dataset applications 

Requires high 

computational 

resources 

Ebadi et al. (2022) Weak Signal 
Effective in early-stage 

detection 

Returns some 

noisy terms 

 

2.3 Data Sources Used to Detect Emergence 

There are different data sources used for the identification of emerging technologies and 

topics. From science and technology (S&T) sources including papers and patents as the 
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typical sources of emergence detection in the literature to novel data sources such as 

altmetrics, news, or funding. Various online platforms are used to measure the dissemination 

of research results using altmetrics (Akella et al. 2021). Based on information in Table 2, 

from our 34 main research in emergence detection studies, 18 research works used papers as 

their main source of emergence, 14 used patents, one used both, and one used online posts. 

As seen in Table 2, one research gap in the literature on emergence detection could be using 

other types of data such as altmetrics, news, social media, or funding as the main source of 

data emergence.  

 

2.3.1 Research Papers 

Research papers are considered as the main source of the data in the process of emergence 

detection in the literature. This can include articles and journal papers or conference papers. 

One of the advantages of using papers to detect emerging technologies is that they are 

perceived to be upstream of patents (Liu and Porter 2020); therefore, they can identify the 

emerging topics sooner. 

 Some of the works that use papersas their main data source of emergence try to detect 

emerging research topics on the basis that using papers as the source might lead to the finding 

of emerging research topics instead of emerging technologies. You can see works that used 

research papers as their main source of emergence detection in Table 2. 

  

2.3.2 Patents 

Many researchers used patents in the process of emergence detection, especially detecting 

emerging technologies. As patents are more closely related to technology than research 

papers, some might prefer evaluating patents as their main data source of emergence. You 

can see works that used the patents as their main source of emergence detection in Table 2. 

 

2.3.3 Supplementary Data 

In this thesis, the concept of supplementary data in the process of emergence detection will 

be discussed. Supplementary data encompasses information from which emerging topics or 
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technologies are not directly extracted. Rather, this data serves as a supplementary resource 

in the process of detecting or assessing emergence. You can see the supplementary data in 

Table 2. 

 Four papers in the literature worked on supplementary data. Furukawa et al. (2015) 

detected potential emerging topics from papers but also used names of conference sessions 

to detect and assess emerging topics. Li et al. (2019) used tweets as a supplementary data 

source to patents for detecting emerging technologies and development trends. H. Xu et al. 

(2021) used patents as supplementary data to papers to better evaluate the potential for the 

prominent impact of the candidate technologies. Zhou et al. (2021) used web articles to 

evaluate the social and technological impact of the potential technologies extracted from 

patents. 

 

2.3.4 Domain of Datasets 

There are many different science and technology domains studied in the literature on 

emergence detection by researchers, including dye-sensitized solar cells (DSSC), which is 

the most frequently researched topic compared to other domains, such as stem cells, 3D 

printing, and even hypersonic technology. 

  

Table 2. Research gap of different data types of emergence detection 

Papers 
Data Emergence 

Source 

Supplementary 

Data 

Domain of 

Datasets 

(Ebadi et al. 2022) Paper × hypersonic 

(Zhou et al. 2021) Patent Web Article CNC machine tool  

(S. Xu et al. 2021) Paper × synthetic biology 

(H. Xu et al. 2021) Paper Patent stem cells 

(Jang et al. 2021) Online posts × food processing 

(Huang et al. 2021) Paper × 
Information 

Science 
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(Choi et al. 2021) Patent × 
Batteries for 

electric vehicles 

(Ma et al. 2021) Patent × 
Dye sensitized 

solar cell 

(Zhou et al. 2020) Patent × × 

(X. Liu and Porter 2020) Paper × 

NEDD (Nano 

Enabled Drug 

Delivery), Non-

Linear 

Programming, 

DSSCs 

(Altuntas et al. 2020) Patent × 
dental implant 

technology 

(Kwon and Geum 2020) Patent × 
electric digital 

data processing 

(Ranaei et al. 2020) Paper × 
LEDs and flash 

memory 

(Mejia and Kajikawa 

2020) 
Paper and Patent × energy storage 

(S. Xu et al. 2019) Paper × gene editing 

(Zhou et al. 2019) Paper × 3D printing  

(Guderian 2019) Patent × smart houses 

(Z. Wang et al. 2019) Patent × 3D printing 

(Moehrle and Caferoglu 

2019) 
Patent × 

camera 

technology 

(Li et al. 2019) Patent Tweets 
perovskite solar 

cell 

(Porter et al. 2019) Paper × 
NEDD, Non-

Linear 
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Programming, 

DSSCs, Big Data 

(Q. Wang 2018) Patent × × 

(Carley et al. 2018) Paper × 

DSSCs and 

Nonlinear 

Programming 

(Weismayer and 

Pezenka 2017) 
Paper × 

marketing and 

tourism 

(Joung and Kim 2017) Patent × 
electron transfer in 

glucose biosensors 

(Kim and Bae 2017) Patent × wellness care 

(Furukawa et al. 2015) Paper 
Conference 

Session 

Web-based 

technology 

(Iwami et al. 2014) Paper × 

Fluorescent 

protein, 

Cryptology, 

Quasicrystal, iPS 

cell 

(Fujita et al. 2014) Paper × 

gallium nitride, 

complex 

networks, and 

nano-carbon 

(Yoon and Kim 2012) Patent × 
organic 

photovoltaic cells 

(Guo et al. 2011) Paper × 

RNAi, Nano, h-

Index, and Impact 

Factor 

(Shibata et al. 2011) Paper × 
regenerative 

medicine 

(Kajikawa et al. 2008) Paper × energy 
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(Shibata et al. 2008) Paper × 

gallium nitride 

(GaN) and 

complex networks 

 

2.3.5 Evaluation of Data 

Scientific papers are a reliable source of information about new and emerging technologies, 

as they have undergone peer review and have been deemed credible by experts in the field 

(Rotolo et al. 2015). They provide detailed information about the technology, including its 

development, potential applications, and limitations, which can be useful for an automated 

process. Many scientific papers are now available in digital format, making it easier to collect 

and process large amounts of data from this source. 

 However, not all emerging technologies are necessarily published in scientific 

papers, so relying solely on this source may lead to missing some important developments. 

Papers can be technical and difficult to understand for those without a background in the 

field, which can make it more difficult to automatically extract useful information (Park and 

Yoon 2018). 

Patents are a good source of information about new technologies that are being 

developed and commercialized. Patents provide information about the inventors and 

companies involved in the technology, which can be useful for understanding its potential 

impact and commercial potential. Patents are often filed before the technology is 

commercially available, making them a good source for identifying emerging technologies. 

However, patents are often written in legal language and can be difficult to 

understand for those without a background in patent law (Park and Yoon 2018). Patents may 

furthermore not provide as much detail about the technology as scientific papers. 

It is important to note that both patents and scientific papers are different sources of 

data and have their own advantages and disadvantages. Patents capture applied, market-

driven innovations, while scientific papers provide insights into theoretical advancements 

and research trends. By combining them, we can identify both the development of new 

technologies and the underlying research, offering a fuller picture of technological 

emergence (H. Xu et al. 2021). 

It can be valuable to use supplementary data such as funding information, altmetrics, 
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online posts, or newspapers in the process of emerging technology detection, as they may 

offer additional perspectives not captured by scientific papers or patents alone. Although not 

widely adopted in the literature, these sources could enhance the understanding of 

technology trends. Some insights provided by these aspects of supplementary data follow: 

• Funding data can provide information about which technologies are receiving 

investment, which can be a good indicator of their potential impact and 

commercial potential. 

• Altmetrics, such as social media mentions, can provide insight into which 

technologies are receiving attention and interest from the public and 

stakeholders, which can be an indicator of their potential impact. 

• Online posts and news articles can provide information about the real-world 

applications and uses of technologies, as well as any challenges or barriers to 

adoption. 

• Combining multiple data sources can give a more comprehensive understanding 

of the technology's potential impact, commercial potential and its current state. 

• There are still many domains that have remained untouched. One of them is 

artificial intelligence (AI) which can be a suitable candidate for future work. 

Furthermore, by using different sources of data, it can help to account for the 

limitations of any one data source. For example, patents may not provide as much detail 

about the technology as scientific papers or may be filed before the technology is 

commercially available, whereas funding and altmetrics data can provide a more real-time 

picture of the technology's current state and its potential impact. 

 

 

2.4 Burst Detection 

In this section, we briefly summarize and look at the literature of burst detection. We mainly 

discuss the entire concept of burst detection as well as the details of the methods related to 

burst detection found in the literature.  

In the literature, "bursty terms" refer to terms that experience a sudden increase in 

usage and popularity within a certain time frame, contrasting with those that are consistently 

popular (Katsurai & Ono, 2019). Early methods of burst detection involved segmenting the 
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corpus into topics and tracing changes in their popularity across different years. One of the 

foundational methods is Kleinberg's burst detection algorithm, which identifies bursts of 

activity in streams of data based on the frequency of certain terms over time (Kleinberg, 

2002). This algorithm has been used in various contexts, including social media platforms 

like Twitter and news feeds (Diao et al., 2012; Fung et al., 2005). 

The idea of burstiness has been explored in various fields, including finance (Murphy 

1999), disaster or biological studies (Ruzzo and Tompa 1999), traffic management (A. Zhou 

et al. 2005), and information technology (Mane and Börner 2004). Different applications 

typically use specific burst models and detection techniques. A large body of research has 

emerged on burst detection, much of which is influenced by the work of Kleinberg 

(Kleinberg 2002) and Shasha (Zhu and Shasha 2003). Kleinberg's approach models bursty 

streams using an infinite-state automaton, where each state represents a data emission rate 

governed by an exponential distribution of time gaps between data arrivals. Shasha's method 

defines bursts based on fixed-length sliding windows to enable efficient monitoring of elastic 

bursts in higher-dimensional data. Subsequent research has proposed improved definitions 

and detection methods, addressing general-purpose use, multi-sequence data, and 

computational efficiency. For instance, Zhou introduced the concepts of increasing and 

decreasing bursts, noting that the ratio of aggregate values in consecutive subsequences of 

the same length can help identify bursts (A. Zhou et al. 2005). 

 T. Chen et al. (2006) incorporates a lasting factor and an abrupt factor into the 

standard definition of a burst, aiming to quantify the aggregate value within a time window 

and the growing discrepancy between two points within that window in practical scenarios. 

Lappas et al. (2009) details a new search technique that detects term burstiness in document 

sequences by applying principles from discrepancy theory. This paper suggests a parameter-

free, linear-time method for pinpointing the time intervals where a given term exhibits its 

highest burst.  

A commonly used technique for extracting topics from a collection of documents is 

Latent Dirichlet Allocation (LDA), introduced by Blei et al. (2003). LDA has become 

integral to understanding thematic structures in large text datasets. However, despite its 

widespread use, LDA has some drawbacks, such as its lack of interpretability and difficulty 

in linking topics across different time periods (Tattershall et al., 2020). This limitation makes 
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it less ideal for detecting bursts in evolving research areas. 

Kleinberg's burst detection algorithm, though effective in real-time environments 

such as social media, is less applicable to scientific literature because scientific papers are 

not continuously published but rather in batches (Tamura and Kitakami 2014). Furthermore, 

changes in scientific research happen over longer time scales compared to the real-time 

nature of tweets or news updates. To address this limitation, alternative burst detection 

methods have been proposed. For example, He and Parker (2010) adapted stock market 

analysis models to detect bursts in scientific documents, allowing for more effective analysis 

of term emergence in slower, cumulative datasets. 

Thus, burst detection can be a tool in understanding the dynamics of emerging 

technologies, with adaptations that span various data types and domains. While challenges 

such as linking bursts across time periods and managing real-time versus slower streams 

remain, continued improvements in methods ensure more robust applications in detecting 

and forecasting emerging trends. 

 

2.5 Discussion on Literature Review 

The literature review has extensively covered various methodologies and data 

sources prevalent in the field of emerging technology detection along with the burst detection 

method that can be useful in the process of emerging technology detection. Despite the 

comprehensive review of existing studies, it was observed that the literature on emerging 

technology detection has increasingly underscored the significance of automating the 

detection process to minimize subjectivity and enhance reproducibility. Traditional methods 

predominantly rely on manual interventions and expert judgments, introducing a risk of 

subjectivity that may skew the detection and evaluation of emerging technologies (Rotolo et 

al., 2015). Moreover, these methods often lack scalability and flexibility to adapt to rapidly 

changing technology landscapes, which is critical given the exponential growth of data and 

technology domains. 

Further compounding the issue, traditional approaches typically do not employ 

quantifiable metrics that facilitate an objective assessment of their performance. This 

absence hinders the ability to gauge the effectiveness of the technology detection process 
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systematically, thereby limiting the predictive validity of these methods concerning future 

technology trends (Porter et al., 2002). Such gaps underscore the necessity for innovative 

methods that incorporate robust, quantifiable metrics to enhance predictive accuracy and 

reliability. 

In response to these challenges, this thesis proposes an innovative method leveraging 

burst detection and machine learning techniques to identify and predict the trends of 

emerging technology terms within the AI sector. Unlike conventional methods, the proposed 

approach utilizes burst detection algorithms to automate the initial detection of emerging 

terms, significantly reducing the need for manual curation and thereby mitigating the risk of 

human biases. This automation is pivotal in enhancing the objectivity and efficiency of the 

detection process. 

Moreover, by integrating machine learning models with burst detection, the proposed 

method not only identifies emerging terms but also predicts their future trajectory based on 

historical data patterns. This integration facilitates the generation of quantifiable 

performance metrics, such as accuracy and recall rates, which are critical in evaluating the 

effectiveness of the detection method. Such metrics provide a solid foundation for 

continuously improving the detection process through systematic feedback and adjustment. 

In summary, the proposed method addresses the identified gaps in traditional 

emerging technology detection approaches by enhancing objectivity, scalability, and 

predictability through the innovative use of burst detection and machine learning techniques. 

This approach not only contributes to the theoretical advancements in technology detection 

methodologies but also offers practical applications for stakeholders aiming to harness the 

potential of emerging technologies effectively. 
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3 Data 

Two types of data are used in this research; we used different sources and processes to collect 

and prepare the data depending on the type thereof. In the following paragraphs, each data 

type and its process are discussed. 

 

3.1 Patents 

Patent data were sourced from the Lens database. We conducted a query search using the 

terms "artificial intelligence," "deep learning," and "machine learning" within titles and 

abstracts, spanning from 1990 to 2023. For each patent, we extracted both the abstract and 

title, and yearly vectorization was performed. Additionally, we employed two distinct 

thesauri to eliminate English stopwords and common words. Unrelated terms outside the AI 

domain were also filtered out. This process resulted in a dataset of 1.2 million AI-related 

patents from 1990 to 2023. 

 

3.2 Papers 

We also compiled academic papers base on the previous databases in the literature to better 

compare the results of this method to the previous ones. We used the comprehensive dataset 

from DBLP, a well-regarded computer science bibliography hosted by Trier University, 

Germany. After gathering the data and filtering non-English abstracts, the final version of 

this dataset includes 2.6 million articles from 1988 to 2017. 
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4 Methodology 

In this chapter, we will provide a detailed explanation of the techniques and approaches used, 

including burst detection, machine learning, and deep learning methods, to predict the 

sustainability of emerging technology terms. Moreover, we analyze the metrics of machine 

learning and deep learning approaches in order to assess  the exent of these approaches’s 

ability to predict the future sustainability of the emerging technology terms. In the context 

of emerging technologies, we refer to sustainability as the ability of emerging technologies 

to continue developing and being adopted over time, rather than fading out. You can see an 

overview of the conceptual flow of the proposed methodology in Figure 2. 

 

 

Figure 2. An overview of the conceptual flow of the proposed methodology for detecting emerging 

technologies using machine learning and burst detection 

 

4.1 Keyword Extraction Using the Count Vectorizer 

In the first step, we will identify the key phrases using a keyword extraction method 

(Ghaemmaghami et al. 2022). The process begins with the use of the count vectorizer and 

stop-words to extract key phrases used every studied year. We also tried to exclude general 
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terms in two steps: firstly, the terms that are general English terms have been removed using 

two English word thesauri; secondly, any unmeaningful term in the context of studies 

concerning AI have also been removed using a list of terms related to this field. The 

remaining terms used each year have been added to create a yearly vector of terms. 

 

4.2 Filtering and Normalization 

We faced two main challenges at this step of our work, after the keyword extraction. First, 

the output terms could be noisy and include many terms that appear in very few records. 

Second, inasmuch as  the AI domain is undergoing an increase in popularity and interest, 

new terms are becoming more prevalent, not because they are more emerging or bursty but 

because of the increase in the data size. To overcome these challenges, we followed the 

approach proposed in Tattershall et al. (2020), consisting of two steps: 1) remove any terms 

that have been absent from more than 0.02% of the body text or abstract for at least 3 

successive years, and 2) normalize the frequency counts for each document twice, first by 

dividing their total number by each year's number of documents, then by the total number of 

tokens per document. The normalized frequency count, called prevalence, was used as the 

main input in the calculations in the following sections. 

 

4.3 Moving Average Convergence Divergence 

The Moving Average Convergence Divergence (MACD) is a technical analysis tool that 

uses exponential moving averages (EMAs) to smooth out stock price fluctuations and reveal 

underlying trends (He and Parker 2010). They are a type of moving average that gives more 

weight to the most recent data points in a time series. In this work, we use the MACD notions 

described by He and Parker (2010). For a time span n, and a time series variable such as 

price of a stock (or, in our case, the frequency of a term in bibliometric record) in time t as 

y(𝑡𝑖): 

EMA(𝑡𝑖) = EMA(𝑡𝑖−1) + (2/(n +  1)) ∗ (y(𝑡𝑖) − EMA(𝑡𝑖−1))                         (1) 
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Figure 3. Exponential Moving Average (EMA) Over Time: Demonstrating the EMA Calculation for Stock 

Prices 

 

 Figure 3 illustrates the concept of EMA by plotting its calculation against a time 

series, highlighting how it smooths out stock price fluctuations and reveals underlying 

trends. 

 The MACD is calculated by subtracting a long EMA from a short EMA, resulting in 

the MACD line (Eq. 2). Long EMA covers more time spans in comparison to short EMA.  

MACD(𝑛1, 𝑛2)  =  EMA(𝑛1)  −  EMA(𝑛2)                                             (2) 
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Figure 4. MACD calculation: Long vs short exponential moving averages: Visualizing the components of the 

MACD line 

 

 Figure 4 focuses on the MACD line's formulation, showcasing the dynamic 

interaction between the long and short EMAs to demonstrate how their difference forms the 

basis of MACD analysis. 

 This MACD line is then averaged with an EMA of a third span, creating the signal 

line (Eq. 3). The signal line is the smoothed MACD line and helps to identify buy and sell 

signals or the points that the trend is changing to upward or downward by reducing the noise 

and making it easier to see the trend. 

signal(𝑛1, 𝑛2, 𝑛3)  =  EMA(𝑛3)[MACD(𝑛1, 𝑛2)]                                        (3) 
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Figure 5. Signal line derivation from MACD: Showcasing the smoothing of the MACD line 

 

 In Figure 5, we delve into the smoothing of the MACD line, illustrating how the 

Signal Line is calculated by applying an EMA to the MACD line, and emphasizing its role 

in highlighting potential buy and sell signals. 

 In Figure 6, a histogram is used as an indicator of price acceleration by comparing 

the MACD line with the signal line (Eq. 4). When there is a positive trend, the histogram is 

positive. Therefore, a change in the value represented by the histogramfrom negative to 

positive can be sign of changing a trend from negative to positive. 

histogram(𝑛1, 𝑛2, 𝑛3)  =  MACD(𝑛1, 𝑛2)  −  signal(𝑛1, 𝑛2, 𝑛3)                          (4) 
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Figure 6. Histogram analysis in MACD: Illustrating the difference between MACD and signal line as an 

indicator of trend changes 

 

 The Figure 6 aims to demonstrate the significance of the MACD Histogram by 

comparing it with the MACD and Signal lines, underscoring how changes in the histogram 

can indicate shifts in market trends. 

 The MACD has been applied to analyze scientific data, such as the frequency of 

Medical Subject Headings (MeSH) in scientific papers instead of the stock price over time 

(He and Parker 2010). A modified version of it (presented in Figure 7) is also used to identify 

bursty terms in the computer science field (Tattershall et al. 2020). 
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Figure 7. MACD, Signal Line, and Histogram and how they can signal an increase in the time series 

variables. In our case, this is a sample random data to show the “emergence signal” based on the frequency of 

a term in scientific papers. 

 

 In Figure 7, we tried to visually show the main indicators of MACD, Signal Line, 

and Histogram in the context of time series in scientific papers. 
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4.4 Applying MACD 

We selected a range of (6, 12, 3) as our parameters for the moving average spans (𝑛1, 𝑛2, 𝑛3). 

Different methods use different burstiness calculations. The raw value of the histogram was 

used by He and Parker (2010) as a measure of burstiness, while Tattershall et al. (2020) used 

the square root of the historical maximum prevalence as the scaled factor to calculate 

burstiness. We followed Tattershall et al. (2020) as it produces more consistent results. The 

burstiness is calculated based on the prevalence of a specific term w in time t, p(w, t), as 

follows: 

𝐵𝑢𝑟𝑠𝑡𝑖𝑛𝑒𝑠𝑠[𝑛1, 𝑛2, 𝑛3](𝑝(𝑤, 𝑡))  =  ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚[𝑛1, 𝑛2, 𝑛3](𝑝(𝑤, 𝑡))/ √𝑚𝑎𝑥(𝑝(𝑤, 𝑡))    

(5)     

 We also considered the burstiness investigation period to be a changeable parameter, 

𝑛4. It refers to the number of previous time spans that should be considered in the process 

of taking MACD features for the bursty terms. In the literature, it has been considered 

unchangeable and assigned 8 for 𝑛4. Through experimentation, we found that 8 and 9 are 

the best 𝑛4 values for papers and patents, respectively, in our datasets. 

 

4.5 Predicting the Emergence Using MACD Features 

The next step is to build a supervised learning model that receives the term and its features 

as the input and produces a label as the output. Following Tattershall et al. (2020), we built 

the model based on MACD features. However, the data splitting method we use is a time-

based split, which differs from the approaches used in previous studies. Previous studies 

employ random sampling methods for splitting the dataset into training and test sets. For 

instance, random cross-validation techniques, where data points are randomly selected to 

form the training and testing sets, are prevalent in studies like in Tattershall et al. (2020). 

These methods, while effective for general statistical validation, might not account 

adequately for the temporal nature of data in technology forecasting where the order of data 

points (i.e., chronological order) plays a crucial role. 

According to these  points, we formulate our methodology by the following steps. The 

prediction interval I indicates the prediction time window, i.e., the number of years ahead 

the prediction is made (e.g., 3). The algorithm works as follows, for each of the following 
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years, yi:  

1. Consider the range of data from [(i+𝑛2+𝑛4-1), N].   

2. Consider the whole set of data D(y(i+𝑛2+𝑛4-1), yN).  (N is time span in our data) 

3. Apply burst detection to D(y(i+𝑛2+𝑛4-1), yN) and select all terms with burstiness levels 

above a certain level that we choose as a parameter.  

4. Calculate MACD, histogram, standard deviation, minimum and maximum values as 

the X component (the input). 

5. Calculate if the smoothed value of term prevalence during yi+I is higher or lower than 

the prevalence during yi, as the Y component (the label).  

6. Assign X_train and Y_train by time split to X(y(i+𝑛2+𝑛4-1), yN-1) and Y(y(i+𝑛2+𝑛4-1), 

yN-1) 

7. Assign X_test and Y_test by time split to X(yN) and Y(yN) (latest available year) 

 

4.6 Baseline Machine Learning Models 

Prior works (Balili et al. 2017; He and Parker 2010; Tattershall et al. 2020) used a tree-based 

method for predicting the popularity of clusters or terms. We trained and built a Random 

Forest classifier as the baseline. We tuned the hyperparameters of the Random Forest model 

for each data type and applied the best maximum depth and number of estimators to achieve 

the highest possible accuracy.  

While previous studies primarily utilized Random Forest classifiers to predict the 

popularity of terms, this research extends the comparative framework by incorporating 

Gradient Boosting and XGBoost models to compare the performance of these conventional 

machine learning methods and identify which models to prioritize for further use. These 

additional models were meticulously tuned for hyperparameters such as maximum depth and 

number of estimators to enhance accuracy, thus providing a comprehensive evaluation of 

their effectiveness in identifying emerging trends. 
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4.7 Construction of a Neural Network Classifier 

We built a Multi-Layer Perceptron (MLP) neural network classifier and compared the results 

with the baseline Random Forest classifier. The use of the MLP classifier based on MACD 

features will enable the capturing of complex time series problems, such as stock market 

prediction and emerging technologies detection; deep learning models may work more 

effectively than conventional machine learning methods, given their ability to capture more 

complex relationships. It is important to optimize the MLP's architecture and determine the 

best configuration, because the structure of a neural network (i.e., the number of layers and 

units per layer) can significantly affect its performance. Therefore, we will find the optimal 

number of layers and nodes by running a series of experiments to maximize performance. 

The introduction of a MLP neural network classifier represents a further departure and 

advancement over the conventional methods cited in earlier studies. Unlike traditional tree-

based methods that might struggle with the complexity and non-linearity of time-series data 

often found in technology forecasting, the MLP classifier is specifically adapted to handle 

these complexities. This adaptability is crucial for effectively modeling and predicting 

dynamics such as those seen in emerging technologies and stock market fluctuations. To 

ensure the neural network's optimal performance, extensive experimentation was conducted 

to determine the most effective network architecture, including the appropriate number of 

layers and nodes. This approach not only aligns with the methodologies from foundational 

literature but significantly augments them by leveraging deeper insights into data patterns, 

thereby offering improved accuracy, efficiency, and applicability in forecasting emerging 

technologies. These enhancements highlight the thesis's contributions to advancing the field 

of technology detection and prediction, underscoring the benefits of integrating sophisticated 

machine learning techniques to better capture and analyze the nuanced behaviors of 

technological evolution. 

 

4.8 Model Evaluation 

In the context of a binary classification problem, where outcomes are categorized as either 

positive (𝑝) or negative (𝑛), four potential outcomes need consideration: 

• True Positive (TP) 
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• False Positive (FP) 

• True Negative (TN) 

• False Negative (FN) 

If the prediction outcome is 𝑝 and the actual value is also 𝑝, it is classified as TP. Conversely, 

if the true value is 𝑛, it is classified as FP. When both the prediction and true values are 𝑛, it 

is categorized as TN. FN occurs when the true value is 𝑝, but the prediction is 𝑛. Various 

metrics can be computed based on TP, FP, TN, and FN, providing valuable insights into the 

evaluation of machine learning classifiers. 

 

4.8.1 Precision 

Precision, also known as positive predictive value, is defined as the ratio of true positive 

predictions to all positive predictions, as illustrated in the following equation. It serves as a 

relevant evaluation metric, especially in scenarios where the cost of FP is high, such as in 

email spam detection models. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (6) 

 

4.8.2 Recall 

Recall gauges how effectively a machine learning model predicts instances of the actual 

positive class. The following equation depicts recall as the proportion of TP predictions out 

of all actual positive examples. This metric is particularly useful when the cost associated 

with FN is substantial, as seen in applications like cancer detection models. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (7) 

In our problem, it is more important not to miss rising terms than identifying false rising 

terms. Therefore, out of the two metrics, recall is the more important one. 

 

4.8.3 F1 Score 

The F1 score, also referred to as the F-score or the F-measure, quantifies the weighted 
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average of precision and recall. The following equation represents the F1 score as the 

harmonic mean of precision and recall, providing a balanced assessment. The F1 score 

ranges from 0 to 1. 

𝐹1 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (8) 

 

4.8.4 F1-score Weighted Value 

The F1-score is especially valuable when dealing with imbalanced classes. The F1-score 

weighted value calculates F1-scores for each class and then determines the weighted 

average. The weighting is based on the number of true instances for each class, making this 

metric a robust choice for scenarios where classes exhibit disparate sizes. This 

comprehensive evaluation encapsulates the balance between precision and recall in the 

context of varying class distributions. 

 

4.8.5 Accuracy 

Accuracy, a fundamental metric in model evaluation, measures the ratio of correctly 

predicted instances (both positive and negative) to the total number of instances. It is 

calculated using this formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (9) 

 

4.8.6 Area under the Curve (AUC) 

AUC corresponds to the area under the Receiver Operating Characteristic (ROC) curve, 

which shows the performance of a binary classifier across various threshold settings. The 

ROC curve is constructed by plotting the True Positive Rate (TPR), as indicated in Equation 

10, against the False Positive Rate (FPR), as shown in Equation 11. AUC ranges between 0 

and 1, where an AUC of 0 indicates a model misidentifying all samples, an AUC of 1 

signifies a model with 100% correct predictions, and an AUC of 0.5 represents a random 

predictor. 
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𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (10) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁+𝐹𝑃
        (11) 
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5 Results 

In this section, we evaluate the performance of several machine learning models, including 

Random Forest, Gradient Boosting, XGBoost, and MLP, across patent and paper datasets. 

Key metrics such as precision, recall, F1-score, and AUC rates are presented to compare 

model effectiveness in detecting emerging technologies. The results highlight differences 

between patent and paper data and provide insights into the models' strengths, particularly 

in classifying rising and falling technological trends. 

 
5.1 Patents 

In Random Forest, we ran the model to see which hyperparameters work better. The best 

performance was achieved by having maximum depth of 12 trees and the number of 

estimators at 50. As the Random Forest serves as the baseline in the literature for this 

problem, we extensively report its results in Tables 3 and 4. 

Table 3. Machine learning classification performance metrics for patent results 

Metrics Precision Recall F1-score Support Accuracy 
Weighted 

F1 

Falling 0.8525 0.6681 0.7491 476 - - 

Rising 0.5298 0.7639 0.6257 233 - - 

Overall - - - - 0.6996 0.7085 

 

Table 4. Machine learning confusion matrix for patent results 

Confusion Matrix Predicted Falling Predicted Rising 

True Falling 318 158 

True Rising 55 178 

 

Table 3 shows the machine learning classification performance metrics for patent 

results, indicating a precision of 0.8525 and a recall of 0.6681 for the 'Falling' category, 

alongside a lower precision of 0.5298 but higher recall of 0.7639 for the 'Rising' category. 

This resulted in an overall accuracy of 0.6996 and a weighted F1 score of 0.7085, 

highlighting a balanced performance across categories. In Table 4, the confusion matrix for 

patent results is presented, showing the model's capability in accurately predicting 318 
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instances as 'True Falling' and 178 as 'True Rising,' but also indicating a notable number of 

instances (158) where 'True Falling' was incorrectly predicted as 'Rising,' and 55 instances 

of 'True Rising' being predicted as 'Falling.' 

In Gradient Boosting, we ran the model to see which hyperparameters work better. 

The best performance was achieved by having maximum depth of 4 trees and the number of 

estimators at 100. 

An exhaustive analysis was performed on the XGBoost model to pinpoint the ideal 

hyperparameters. Optimal performance was realized by limiting the tree depth to 12 and 

setting the estimator count to 100. 

 The best performance for the MLP model in the patent dataset was observed by 

having 2 layers, with 8 nodes in the first layer and 8 nodes in the second layer. 

Our model accurately predicted that the prevalence of terms such as "convolutional 

neural networks" is falling, but terms such as "natural language processing," "reinforcement 

learning," and "object detection" are rising in patents in 2023. 

The AUC rates and recall results of the tuned version of each method including 

Gradient Boosting, XGBoost, Random Forest, and MLP is in the Table 5.  

Table 5. Machine learning paper results for the prediction of models 

Model AUC Test Data Recall 

Random Forest 76.58% 76.39% 

Gradient Boosting 73.88% 61.80% 

XGBoost 73.33% 48.93% 

Multi-layer perceptron 76.73% 84.98% 

 

 As it is shown in the Table 5, the Random Forest model strikes a good balance 

between AUC and recall, landing at similar figures of 76.58% and 76.39%, respectively. 

Gradient Boosting, with a slightly lower AUC of 73.88%, falls behind more noticeably in 

recall, at 61.80%. XGBoost shows a comparable trend, achieving an AUC of 73.33% and a 

lower recall of 48.93%, which might suggest some difficulty in accurately identifying true 

positives. On the other hand, the MLP stands out with its high recall of 84.98% and solid 
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AUC of 76.73%, indicating its effectiveness in both prediction and accurately pinpointing 

relevant instances. These insights are quite useful for making informed choices when 

selecting models for specific predictive tasks in machine learning. 

 

5.2 Papers 

In the Random Forest model, an exploration of hyperparameters revealed that the highest 

performance was attained with a maximum depth of 9 trees and 64 estimators. As previously, 

since  Random Forest is established as the baseline in the literature for this problem, we 

provide a detailed report of its results here. 

Table 6. Machine learning classification performance metrics for paper results 

Metrics Precision Recall F1-score Support Accuracy 
Weighted 

F1 

Falling 0.8486 0.8608 0.8547 1537 - - 

Rising 0.7003 0.6793 0.6897 736 - - 

Overall - - - - 0.8020 0.7859 

 

Table 7. Machine learning confusion matrix for paper results 

Confusion Matrix Predicted Falling Predicted Rising 

True Falling 1323 214 

True Rising 236 500 

 

Table 6 details the classification performance metrics for paper results, highlighting 

a high precision of 0.8486 and recall of 0.8608 for 'Falling', along with a precision of 0.7003 

and recall of 0.6793 for 'Rising'. This leads to an overall accuracy of 0.8020 and a weighted 

F1 score of 0.7859, demonstrating the model's effectiveness. Additionally, Table 7 presents 

the confusion matrix for these results, showing that the model correctly predicted 1323 

instances as 'True Falling' and 500 as 'True Rising', while misclassifying 214 as 'Predicted 

Rising' and 236 as 'Predicted Falling'. These results provide a comprehensive view of the 

model's performance, showcasing its strengths and areas for improvement in classifying 

paper results. 
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For Gradient Boosting, we conducted a comprehensive model assessment to identify 

optimal hyperparameters. The highest performance was achieved by setting the maximum 

depth to 8 trees and the number of estimators to 800. 

We carried out an extensive evaluation of the XGBoost model to determine the best 

hyperparameters. The most effective results were obtained with a maximum tree depth of 16 

and using 800 estimators. 

 The optimal configuration for the MLP model in the paper dataset was achieved with 

a 2-layer architecture, featuring 4 nodes in the first layer and 4 nodes in the second layer.  

The AUC rates and recall results for the fine-tuned versions of each method, 

including Gradient Boosting, XGBoost, Random Forest, and MLP, can be found in Table 8. 

Table 8. Machine learning paper results for the prediction of models 

Model AUC Test Data Recall 

Random Forest 77.01% 67.93% 

Gradient Boosting 78.68% 71.74% 

XGBoost 78.84% 71.74% 

Multi-layer perceptron 86.51% 75.41% 

 

 As seen in Table 8, the Random Forest model showed a solid AUC rate of 77.01%, 

paired with a recall of 67.93%, indicating its reliable predictive capability. Gradient Boosting 

exhibited a higher AUC of 78.68% and a recall of 71.74%, suggesting improved accuracy in 

predictions. XGBoost reported similar performance, with a marginally better AUC of 

78.84% and an identical recall to Gradient Boosting at 71.74%, highlighting its efficiency in 

certain scenarios. However, the MLP outperformed the other models with an outstanding 

AUC of 86.51% and a higher recall of 75.41%, showcasing its exceptional ability in both 

prediction accuracy and correctly identifying relevant cases.  

 

5.3 Comparison of the AUC Results 

In the literature, the AUC metric is the most important metric to compare different methods 

(Fawcett 2006). Consequently, we compiled the results into a single figure to facilitate a 
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more effective comparison of different models based on this metric. 

 

 

Figure 8. AUC results of different methods on patents and papers 

 

Figure 8 shows the AUC results of different machine learning models applied to 

patents and papers. The models evaluated are Random Forest, Gradient Boosting, XGBoost, 

and MLP. 

In the patent domain, MLP leads with the highest AUC result, which suggests it is 

the most effective among the models at distinguishing between the classes of interest in this 

context. 

Gradient Boosting and XGBoost show similar performance for patents, with 

Gradient Boosting slightly edging out. 

For papers, the MLP demonstrates a significant advantage with an AUC result 

approaching 86.51%, indicating it has a superior capability for classification tasks in this 

area compared to the others. 

The AUC results for Random Forest, Gradient Boosting, and XGBoost are relatively 

lower for patents than for papers, showing these models may not perform as well with the 

patent data as they do with papers. 

The AUC metric used here is a measure of a model's ability to distinguish between 
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positive and negative classes. Higher AUC values suggest better model performance. The 

marked difference in performance of the MLP for papers might imply that the MLP is better 

at capturing the nuances and complexities in the textual data often found in papers, compared 

to the more structured data of patents. This figure informs us about the relative strengths of 

each model in different domains and can guide decision-making in model selection for 

specific types of data. 

 

5.4 Comparison of the Recall of Rising Technologies 

As discussed before, the recall metric is one of the most important metrics inemerging 

technology detection. Therefore, we gathered the results in one figure to better compare 

different models in this metric. 

 

Figure 9. Recall results of different methods on patents and papers 

 

Figure 9 presents a comparison of recall scores for rising technologies using different 

machine learning models: Random Forest, Gradient Boosting, XGBoost, and MLP, applied 

to two types of data, patents and papers. 

The recall metric, crucial in the context of emerging technology detection, measures 

the model's ability to correctly identify all relevant instances. Below is the summary of the 

results: 
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• Random Forest shows a higher recall for patents compared to papers, indicating that 

it is more adept at identifying relevant technologies in patent data. 

• Gradient Boosting has a balanced recall performance for both patents and papers, 

suggesting a consistent ability to recognize rising technologies across these domains. 

• XGBoost appears to have a lower recall for patents but improves for papers, which 

may reflect an adaptation of the model to the different data structures or contents 

found in papers. 

• The MLP shows the highest recall among all the models for papers and a strong 

performance for patents, suggesting its superior capability in recognizing relevant 

instances of emerging technologies, especially in the context of textual data analysis 

in papers. 

These recall results provide insights into the efficacy of each model and help in 

determining which model might be best suited for analyzing specific types of data when it 

comes to detecting emerging technologies. The higher recall in papers for the MLP, in 

particular, underscores its potential usefulness in academic and research applications where 

paper data is prevalent. 
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6 Discussion 

This chapter presents a discussion regarding the predicting of the sustainability of emerging 

technology terms, combining burst detection and deep learning.  

Our results confirm that the burst detection method can successfully predict the future 

prevalence of the detected emerging technology terms with acceptable AUC accuracy rates 

for different data types with a 2-layer MLP model along with Random Forest, Gradient 

Boosting, and XGBoost models. By applying the trained MLP, Random Forest, Gradient 

Boosting, and XGBoost classifiers we predicted the future prevalence of emerging 

technology terms of unseen data using our data. We found that combining deep learning and 

burst detection can increase the AUC in comparison to other machine learning baseline 

methods. Also, by implementing the MLP on the dataset, we achieved higher AUC rates 

compared to previous research utilizing MACD applications for prediction. 

 

6.1 MLP Dominance across both Datasets in Predictive Modeling  

Here, baseline machine learning models, including Random Forest, Gradient Boosting and 

XGBoost, will be compared with a neural network classifier. The MLP classifier, leveraging 

MACD features, outperforms baseline models, demonstrating the effectiveness of deep 

learning in capturing complex relationships in time series data. 

 Between the four models applied across the two datasets—MLP, Random Forest, 

Gradient Boosting, and XGBoost—MLP consistently outperformed the baseline models in 

terms of AUC scores and recall. This consistent superiority underscores the efficacy of the 

MLP as a robust and versatile model capable of handling diverse datasets. Its inherent 

capacity to learn complex patterns and relationships has proven particularly advantageous in 

predicting emerging technologies and trends. The higher AUC scores further illustrate that 

the MLP consistently excelled in distinguishing between rising and falling prevalence 

instances, suggesting a higher degree of predictive accuracy and reliability. This 

demonstrates the MLP's superior ability to discern emerging trends, making it an invaluable 

tool in the study of technology forecasting. 

 Similarly, the higher recall rates for rising terms shows that MLP was more effective 

than other models in correctly identifying rising prevalence instances. This implies a greater 
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accuracy and dependability in the MLP's capability to pinpoint emerging trends 

comprehensively. 

 In essence, the prevalence of higher AUC and recall rates in the MLP models across 

different domains underscores its versatility and proficiency as a predictive tool in our study. 

 

6.2 Application of MACD in Emerging Technology Detection 

 The application of MACD features for burstiness calculation and subsequent 

prediction of term emergence is a notable contribution. The approach aligns with the 

methodology of Tattershall et al. (2020), demonstrating consistency and reliability. The 

presented algorithm, considering burstiness levels and MACD values, shows a systematic 

way to predict future prevalence. 

 The AUC accuracy rates in different data sources, including patents and papers, 

further test the robustness of the proposed methodology. Also, having appropriate recall rates 

suggest that we can for use this model for identifying rising prevalence instances. 

 The integration of MACD into the emerging technology detection models along with 

machine learning techniques has produced notable AUC results, indicating the potential 

effectiveness of this technique in enhancing the discriminative power of the models. While 

XGBoost, Gradient Boosting, and Random Forest exhibit strong AUC values, the MLP 

stands out as particularly promising in capturing intricate trends. This is perhaps because 

have complex, non-linear relationships and interactions between features that may not be 

easily captured by more traditional models. The accuracy rates of rising and falling term 

prevalences are between 70% and 80%, indicating the potential of the MACD integration 

and emergence detection. Also, AUC rates with more than 70% in different models and 

datasets also show evidence of the potential of this model for future usage in emergence 

detection and prediction. 

 

6.3 Effectiveness of the Proposed Emerging Technology Detection Method 

The method developed in this thesis effectively addresses several critical limitations 

traditionally associated with the detection of emerging technologies. Firstly, the inherent 

subjectivity risk due to manual interventions is significantly mitigated by the automation 
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features of the burst detection and machine learning techniques. By reducing human 

involvement in the initial detection phases, the proposed method minimizes bias and 

enhances the objectivity of the detection process. 

Regarding the lack of scalability, the integration of burst detection and machine 

learning models such as Random Forest, Gradient Boosting, XGBoost, and MLP allows the 

system to handle vast datasets efficiently. Burst detection is particularly effective with large 

volumes of data, enhancing the model's ability to accurately detect bursts and, in our case, 

the emergence of new technologies. This scalability is vital in adapting to the expansive and 

rapidly increasing volume of data concerning emerging technologies, making the method 

suitable for real-time and large-scale applications. 

The lack of quantifiable metrics to evaluate the performance of traditional detection 

processes is remedied by the inclusion of various evaluation metrics in the proposed method. 

Metrics such as burstiness as a measure of emergence, along with AUC and recall metrics, 

offer clear, quantifiable indicators of performance. These metrics facilitate a systematic 

assessment of the method's effectiveness in identifying relevant emerging technologies and 

predicting their future relevance. Consequently, the detection process becomes not only 

more accurate but also verifiable. 

Lastly, the issue of lack of predictability or low accuracy rates for future predictions 

is confronted by the advanced predictive capabilities of the MLP model. This model, in 

particular, has demonstrated high accuracy in forecasting the sustainability of emerging 

technologies, as evidenced by its superior AUC rate. This capability ensures that the 

predictions are reliable and actionable, enhancing the decision-making process for 

stakeholders involved in strategic planning and policy formulation regarding new 

technologies. 

In summary, the proposed method not only addresses the key limitations found in 

traditional emerging technology detection methods but also provides a robust framework for 

continuous improvement and application in diverse technological fields. 
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7 Conclusion 

Emerging technologies are unquestionably reshaping the world and various facets of our 

lifestyles, significantly influencing our future. In the dynamic and intricate landscape of 

emerging technologies, which attract substantial annual investments, early detection of  

emerging technologies proves to be both complex and costly. In addressing the challenges 

of early detection of emerging technologies, particularly in the realm of AI, this thesis has 

developed and validated an innovative methodology that leverages both burst detection and 

machine learning techniques.  

The motivation for this approach stemmed from the significant limitations of traditional 

emergence detection methods, which often involve high degrees of manual intervention, 

subjectivity, and lack scalability and accurate predictions. Such limitations hinder their 

effectiveness in today’s rapidly evolving technological landscape. 

Our research objective was to create a more systematic, efficient, and objective method for 

the early detection of emerging technologies. The solution entailed to adapt a stock market-

inspired algorithm for burst detection, enabling the identification and prediction of emerging 

technology trends in AI. This MACD process enabled us to provide machine learning 

features and inputs and also the output of the machine learning models. In the next step, by 

utilizing machine learning models—including Random Forest, Gradient Boosting, 

XGBoost, and the MLP classifier—we were able to forecast whether specific terms would 

gain or lose popularity over time.  

By applying these methods to diverse data types, such as abstracts and titles from patents 

and research papers, we successfully predicted the future prominence of emerging 

technologies. Notably, the MLP model consistently outperformed other models, achieving 

the highest AUC and recall rates, with performance exceeding 75% across the two data sets. 

This methodology not only reduced the need for manual intervention but also improved the 

scalability and provided acceptable accuracy rates of the emergence detection process. This 

research represents an important step toward combining burst detection with deep learning 

techniques to improve the detection and prediction of emerging technologies. Our findings 
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provide a strong foundation for further research and development in this area, contributing 

to more accurate and timely technology forecasting. 

  

7.1 Limitations and future works 

Admittedly, this research has its fair share of limitations. Firstly, results in this specific study 

may not generalize to other domains or scenarios, limiting the conclusions that can be drawn 

about its efficacy in broader applications, as it was only applied to one domain.  

 Secondly, even though noisy terms were managed by excluding irrelevant data and 

normalizing AI-related terms, the presence of new noisy terms underscores the inherent 

complexity and unpredictability in analyzing terms related to emerging technologies. There 

may still be noisy terms in our results reducing the quality of the final results. Improving 

methods for filtering noise, particularly in dynamic fields like AI, can increase the accuracy 

and reliability of predictions. Advanced preprocessing and data cleaning techniques might 

prove beneficial as noise reduction techniques. 

 Last but not least, applying MLP models despite having the potential in achieving 

higher accuracy rates might  pose a certain risk. Given the complex nature of MLP and its 

capability to learn intricate patterns, there is a risk of overfitting, especially if the model is 

not adequately regularized or if the data is not sufficiently representative of broader trends. 

Also, the deep learning approaches, particularly MLP, may lack interpretability compared 

to simpler models. This can be a significant drawback in contexts where understanding the 

decision-making process is as important as the predictive accuracy. In future works, applying 

regularization techniques in models, especially deep learning ones like MLP, can help 

prevent overfitting, ensuring that the model generalizes well onto new, unseen data. 

Furthermore, we might choose to apply techniques like LIME (Local Interpretable Model-

Agnostic Explanations) to increase interpretability, possibly thereby enhancing the 

understanding of the decision-making process. 
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