
Innovative Approaches for Real-Time Toxicity

Detection in Social Media Using Deep

Reinforcement Learning

Arezo Bodaghi

A Thesis

In the Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montréal, Québec, Canada

September 2024

© Arezo Bodaghi, 2024

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Arezo Bodaghi

Entitled: Innovative Approaches for Real-Time Toxicity Detection

in Social Media Using Deep Reinforcement Learning

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect

to originality and quality.

Signed by the final examining committee:

Chair
Dr. Emre Erkmen

External Examiner
Dr. Omair Shafiq

Arm’s Length Examiner
Dr. Hovhannes Harutyunyan

Examiner
Dr. Farnoosh Naderkhani

Examiner
Dr. Jeremy Clark

Thesis Supervisor
Dr. Ketra A. Schmitt

Thesis Supervisor
Dr. Benjamin C. M. Fung

Approved by
Dr. Farnoosh Naderkhani, Graduate Program Director

10/10/2024
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering Computer Science

ABSTRACT

Innovative Approaches for Real-Time Toxicity Detection in Social Media

Using Deep Reinforcement Learning

Arezo Bodaghi, Ph.D.

Concordia University, 2024

Toxic comments on social media discourage user engagement and have serious

consequences for mental health and social well-being. Such negativity heightens feelings

of anxiety, depression, and social isolation among users, ultimately diminishing their

experience on these platforms. For businesses, these toxic interactions are detrimental

as they lead to reduced user engagement, subsequently a↵ecting advertising revenue

and market share. Creating a safe and inclusive online environment is essential for

business success and social responsibility. This requires real-time detection of toxic

behavior through automated methods. However, many existing toxicity detectors

focus mainly on accuracy, often neglecting important factors including throughput,

computational costs, and the impact of false positives and negatives on user engagement.

Additionally, these methods are evaluated in controlled experimental settings (o✏ine

tests), which do not reflect the complexities of large-scale social media environments.

This limitation hinders their practical applicability in real-world scenarios. This thesis

addresses these limitations by introducing a Profit-driven Simulation (PDS) framework

for evaluating the real-time performance of deep learning classifiers in complex social

media settings. The PDS framework integrates performance, computational e�ciency,

and user engagement, revealing that optimal classifier selection depends on the toxicity

level of the environment. High-throughput classifiers are most e↵ective in low- and

iii

high-toxicity scenarios, while classifiers o↵ering moderate accuracy and throughput

excel in medium-toxicity contexts. Additionally, the thesis tackles the challenge of

imbalanced datasets by introducing a novel method for augmenting toxic text data.

By applying Reinforcement Learning with Human Feedback (RLHF) and Proximal

Policy Optimization (PPO), this method fine-tunes Large Language Models (LLMs) to

generate diverse, semantically consistent toxic data. This approach enhances classifier

robustness, particularly in detecting minority class instances. The thesis also proposes

a Proximal Policy Optimization-based Cascaded Inference System (PPO-CIS), which

dynamically assigns classifiers based on performance and computational costs. This

system improves e�ciency by using high-throughput classifiers for initial filtering

and more accurate classifiers for final decisions, reducing the workload on human

moderators. Extensive evaluations on datasets such as Kaggle-Jigsaw and ToxiGen

demonstrate significant improvements in processing time, detection accuracy, and

overall user satisfaction, contributing to the development of scalable, cost-e↵ective

toxicity detection systems for social media platforms.

iv

Preface

This thesis has been prepared in a manuscript-based format under the co-direction

of Dr. Ketra A. Schmitt from the Centre for Engineering in Society, Concordia

University, and Dr. Benjamin C. M. Fung, Canada Research Chair in Data Mining for

Cybersecurity and Professor at the School of Information Studies, McGill University.

This research was generously supported by Concordia University through Graduate

Fellowships, International Tuition Award of Excellence, the Mitacs Business Strategy

Internship (BSI), and the Mitacs Accelerate Fellowship in collaboration with Scrawlr.

Additionally, McGill University provided support via a Research Assistantship in

the School of Information Studies using NSERC Discovery Grants and the Canada

Research Chairs Program.

All the articles presented in this thesis were co-authored and reviewed prior to

submission for publication by Dr. Ketra A. Schmitt and Dr. Benjamin C. M. Fung.

The author of this thesis acted as the principal researcher and was responsible for the

development of models, programming of solution algorithms, analysis and validation

of results, and writing the initial drafts of the articles.

The first article [1] entitled “Technological Solutions to Online Toxicity: Potential

and Pitfalls ”, co-authored by Dr. Benjamin C. M. Fung, and Dr. Ketra Schmitt was

published in IEEE Technology and Society Magazine (TSM).

The second article [2] entitled “A Profit-driven Simulation (PDS) Framework

for Comparison of Deep Learning Models for Real-time Toxicity Detection in Social

v

Media”, co-authored by Dr. Benjamin C. M. Fung, Dr. Jonathan Shahen, and Dr.

Ketra Schmitt is submitted to ACM Transactions on Knowledge Discovery from Data

(TKDD).

The third article [3] entitled “AugmenToxic: Leveraging Reinforcement Learning

to Optimize LLM Instruction Fine-Tuning for Data Augmentation to Enhance Toxicity

Detection”, co-authored by Dr. Benjamin C. M. Fung, and Dr. Ketra Schmitt is

in press by ACM Transactions on the Web (TWEB), Special Issue on Advances in

Social Media Technologies and Analysis.

The forth article [4] entitled “Real-Time Adaptive Toxicity Detection with Cas-

caded Classifiers Optimized by Proximal Policy Optimization”, co-authored by Dr.

Benjamin C. M. Fung, and Dr. Ketra Schmitt is submitted to IEEE Transactions on

Computational Social Systems (TCSS), Special Issue on Trends in Social Multimedia

Computing: Models, Methodologies, and Applications .

vi

This thesis is dedicated to

My beloved parents, Alireza and Akram,

for their endless love and unlimited support.

My loving husband, Mohammad,

for his boundless support, inspiration, and invaluable assistance.

My dearest family,

Abbas, Davoud, Hossein, Hasan, Saeedeh, and Kaynoosh,

for their unwavering support and encouragement.

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor,

Dr. Ketra A. Schmitt. Her vast knowledge and invaluable advice have been pivotal

throughout my PhD journey. Her unwavering support, even during the most challeng-

ing times, has been akin to that of a sister. I remain forever indebted to her boundless

enthusiasm, encouragement, and patience.

I extend my heartfelt thanks to my co-advisor, Prof. Benjamin C. M. Fung, for his

invaluable guidance, tireless e↵orts, and incisive comments throughout my thesis. It

has been an honor working with him. His vast knowledge, inspiration, and exemplary

humility have been truly motivating.

I am profoundly grateful to Dr. Jonathan Shahen, Lead Developer at Scrawlr,

for imparting numerous technical skills and providing unwavering support. My

gratitude also extends to Scrawlr, a company o↵ering a platform for unrestricted,

global interaction with internet content and users. As a Mitacs intern at Scrawlr, I

had the opportunity to work on a project that formed the basis of my thesis. Scrawlr’s

ongoing support was crucial in enabling the successful implementation of my PhD

research.

To the members of the Systems Risk Laboratory and Data Mining and Security

Lab (DMaS), I extend my heartfelt gratitude. I would also like to extend my heartfelt

thanks to my friends who have not only been wonderful colleagues but have also

become lifelong friends throughout this journey.

viii

I express my deep appreciation to the Concordia Institute for Information Systems

Engineering (CIISE) for providing an enriching and friendly work environment.

Last but not least, my special thanks go to my husband, Mohammad, my parents,

and my brothers. Without Mohammad’s unwavering support and my family’s constant

encouragement, completing this journey would not have been possible. Along this path,

we have shared moments of joyous laughter and heartfelt tears, and I am immensely

grateful for having them all by my side through it all.

ix

Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Problem Statement and Motivation 1

1.2 Contributions . 3

1.2.1 Profit-Driven Simulation (PDS) Framework 5

1.2.2 Text Data Augmentation (TDA) for Toxic Language 5

1.2.3 Proximal Policy Optimization-based Cascaded Inference System 6

1.3 Organization of the Thesis . 7

2 Preliminaries 9

2.1 Text Generation . 9

2.2 Instruction Fine-tuning (ITune) . 10

2.3 Parameter-e�cient Fine-tuning (PEFT) 11

2.4 Reinforcement Learning (RL) . 12

2.5 Deep Reinforcement Learning . 14

2.5.1 Proximal Policy Optimization (PPO) 14

2.5.2 Actor-Critic with Experience Replay (ACER) 16

x

3 Literature Review 18

3.1 Online Toxicity: A Comprehensive Review 19

3.1.1 Toxicity in Online Content . 20

3.1.2 The Social Impact of Toxicity 22

3.2 Existing Tools for Detecting Online Toxicity 24

3.2.1 Machine Learning and Deep Learning-based Strategies 24

3.2.2 Ensemble Learning-based Strategies 26

3.2.3 Reinforcement Learning-based Strategies 30

3.2.4 Optimizing Ensemble Models with Reinforcement Learning . . 32

3.2.5 Evaluation Metrics . 33

3.3 Existing Tools for Addressing Class Imbalance in Toxicity Detection . 33

3.3.1 Data-level Approaches . 34

3.3.2 Algorithmic-level Approaches 38

3.3.3 Ensemble Learning Approaches 38

3.4 Text Data Augmentation . 40

3.5 Challenges in Online Toxicity Detection 45

3.5.1 Challenges in Data Preparation 46

3.5.2 Challenges in Model Construction 50

3.6 Humans and Machine Learning: A Team Approach to Detection . . . 52

3.7 Human Role in Machine Learning . 55

4 A Profit-driven Simulation (PDS) Framework for Comparison of

Deep Learning Models for Real-time Toxicity Detection in Social

Media 59

4.1 Problem Statement & Contributions 61

4.2 Methodology . 64

4.2.1 Generic Social Media Model (GSMM) 64

xi

4.2.2 Environments . 66

4.2.3 Social Media Profit Simulation 68

4.3 Experimental Setup . 82

4.3.1 Data Sets . 82

4.3.2 Detectors . 83

4.3.3 Environments . 92

4.3.4 Computer Power . 94

4.3.5 Profit . 95

4.4 Experimental Results . 95

4.5 Summary . 97

5 AugmenToxic: Leveraging Reinforcement Learning to Optimize LLM

Instruction Fine-Tuning for Data Augmentation to Enhance Toxicity

Detection 101

5.1 Problem Statement & Contributions 104

5.2 Methodology . 109

5.2.1 Supervised Instruction Fine-tuning 110

5.2.2 Optimization using Reward Function 113

5.3 Experimental Setup . 115

5.3.1 Instruction Dataset . 115

5.3.2 Toxic Datasets . 117

5.3.3 Instruction Fine-tuning . 118

5.3.4 Optimization . 120

5.3.5 Baselines . 125

5.3.6 Computational Resources . 128

5.4 Experimental Results . 128

5.5 Summary . 138

xii

6 Real-Time Adaptive Toxicity Detection with Cascaded Classifiers

Optimized by Proximal Policy Optimization 141

6.1 Problem Statement & Contributions 143

6.2 Methodology . 148

6.2.1 Cascaded Inference Systems 149

6.2.2 DRL-based Cascade Inference Systems 152

6.3 Experimental Setup . 160

6.3.1 Toxic Datasets . 160

6.3.2 Classifiers . 161

6.3.3 Baselines . 166

6.3.4 Experimental setting . 167

6.3.5 Computational Resources . 170

6.4 Experimental Results . 170

6.5 Summary . 183

7 Conclusion and Future Work 186

Bibliography 190

Appendices 256

xiii

List of Figures

1 PPO Model Architecture Overview 12

2 Taxonomy of Text Data Augmentation Techniques 40

3 The architecture of social media . 66

4 Di↵erent user disengagement reasons 69

5 Architecture for the POS Framework 73

6 User churn over the simulation period for Null Cases 80

7 The number of users left for di↵erent reasons based on the classifier used 81

8 Throughput for BERT-based and RoBERTa-based Models per second

(L is the Number of layers and H is Hidden size). 93

9 Users churn over the simulation time 98

10 The reasons for leaving a platform in di↵erent environments by applying

detectors . 99

11 Illustration of the process to convert the dataset into an instruction

format. 110

12 Instruction fine-tuning of pre-trained Large Language Models (LLMs)

for paraphrasing . 113

13 The proposed solution for paraphrasing toxic samples 116

14 Illustration of the Back-Translation Technique, where English toxic

samples are translated into multiple languages and then back into

English for data augmentation. 126

xiv

15 Total Toxic Samples Generated by Each Model: Toxicity Scores � 0.3

(Jigsaw Dataset) . 129

16 Total Toxic Samples Generated by Each Model: Toxicity Scores � 0.3

(ToxiGen Dataset) . 138

17 Architecture of Multi-Stage Cascade Inference Systems 148

18 Architecture of the proposed PPO-based cascade inference system for

dynamic selection of classifiers . 153

19 Comparison of accuracy distributions for di↵erent combinations of

classifiers using di↵erent label determination techniques on the a) D̂test

kaggle

and b) D̂test

toxigen
datasets. 171

20 Comparison of latency distributions for di↵erent combinations of clas-

sifiers using di↵erent label determination techniques on the a) D̂test

kaggle

and b) D̂test

toxigen
datasets. 172

21 Comparison of Throughput vs Accuracy for Various Content Moderation

Inference Systems tested on di↵erent datasets: (a) D̂test

kaggle
and (b) D̂test

toxigen
.184

xv

List of Tables

1 Summary of Text Data Augmentation Techniques with Citations . . . 42

2 PDS Framework Parameters for Null Cases Verification 78

3 Profit Variation Across Di↵erent Environments in Null Cases 79

4 Classification Experiment Results and Parameters for CNN-based Mod-

els with the Best Accuracy . 86

5 Classification experiment results and parameters for BERT-based mod-

els with the best accuracy . 88

6 Throughput Improvement for CNN Models 90

7 Throughput Improvement for CNN-fastText Models 91

8 Characteristics of 24 Smaller BERT Models (English only, Uncased,

Trained with WordPiece masking) . 92

9 All Models selected for experimentation 94

10 PDS framework results for di↵erent classifiers 97

11 Comparing Model Performance in Paraphrasing Tasks Pre and Post

Instruct-Finetuning . 121

12 Examining Paraphrasing Model Performance Enhanced by PPO Using

Diverse Toxicity Reward Mechanisms 123

13 Percentage Enhancement in Toxicity Scores for Paraphrasing Post-

Optimization with PPO . 124

xvi

14 Composition of Balanced Datasets: Model-Generated Toxic Samples

and Random Nontoxic Samples-Jigsaw 131

15 Classification Results-CNN-Jigsaw . 132

16 Classification Results-CNN-FastText-Jigsaw 132

17 Classification Results-BERT-Jigsaw 134

18 Classification Results-RoBERTa-Jigsaw 135

19 Classification Results-HateBERT-Jigsaw 136

20 Classification Results-BERTweet-Jigsaw 137

21 Composition of Balanced Datasets: Model-Generated Toxic Samples

and Random Nontoxic Samples-ToxiGen 137

22 CNN-Based Classification Performance-ToxiGen 139

23 Transformer-Based Classification Performance-ToxiGen 140

24 Number of Samples per Set for Dkaggle 161

25 All Models selected for experimentation 162

26 Classifier performance on misclassified samples for Dtest

kaggle
. 165

27 Classifier performance on misclassified samples for Dtest

toxiGen
. 165

28 PPO-Specific Hyperparameters . 168

29 Reward Function Hyperparameters 169

30 Performance Metrics of Classifiers on D̂test

kaggle
and D̂test

toxigen
. 173

31 Best-Performing Classifier Combinations on D̂test

kaggle
. 175

32 Best-Performing Classifier Combinations on D̂test

toxiGen
dataset 176

33 Performance Comparison of Inference Systems for High-Throughput

Toxicity Detection on the D̂test

kaggle
. 180

34 Inference Systems Comparison for Toxicity Detection on D̂test

toxiGen
Dataset180

35 Experimental Configurations for CNN-based Classifiers based on Jigsaw

Dataset . 257

xvii

36 Experimental Configurations for CNN-based Classifiers based on Toxi-

Gen Dataset . 257

37 Experimental Configurations for Transformer-based Classifiers: Jigsaw-

based Datasets . 259

38 Experimental Configurations for Transformer-based Classifiers: ToxiGen-

based Datasets . 260

39 Experimental Configurations for CNN-based Classifiers 261

40 Experimental Configurations for Transformer-based Classifiers 261

xviii

Chapter 1

Introduction

1.1 Problem Statement and Motivation

The rapid development of communication technology and the internet has transformed

social media platforms such as Facebook, X (formerly known as Twitter), Sina Weibo,

Instagram, and Reddit into dynamic virtual communities, fostering accessibility and

user interaction. However, this evolution has also brought significant challenges,

particularly regarding antisocial behavior, including toxic comments, hate speech,

cyberbullying, and other forms of online harassment [5]–[10]. These toxic behaviors can

deter participants from engaging in meaningful conversations, leading to self-censorship

and disengagement from social media platforms [11]. Major online platforms have

acknowledged the need to improve their services to protect users, especially women,

from harassment and abuse [12].

Detecting toxic behavior in a timely and automated manner is crucial for ensuring

a safe and inclusive online environment that fosters user satisfaction and engagement

[13]. The overwhelming flow of user-generated content (UGC) presents significant

challenges in real-time dissemination, computing, processing, and analysis. For

instance, platforms such as Twitter (now X) handle millions of daily active users

1

and thousands of tweets per second, making content moderation a monumental task

[14]–[16]. Various Deep Learning (DL) and Machine Learning (ML) techniques have

been developed to counteract the spread of harmful content, yet implementing these

methods in real-time for every comment remains resource-intensive and challenging

[17]–[19].

Social media content moderation currently relies on a collaborative approach

between human moderators and automated tools. Platforms utilize ML and DL

algorithms to analyze UGC, generate predictive scores, and classify content into

di↵erent categories [20]–[22]. Despite advancements, the dynamic nature of language,

regional variations, and the contextual subtleties of human communication pose

significant challenges, necessitating ongoing research and development to enhance the

accuracy and e↵ectiveness of these technologies [23]–[25].

Moreover, while DL and transformer-based models have demonstrated e↵ectiveness

in identifying toxic content, they can also exacerbate data bias issues. These models

rely heavily on large datasets that may not be inclusive of all user groups, potentially

marginalizing certain voices [25]. Another challenge is the issue of imbalanced datasets.

Training datasets are often skewed towards nontoxic content, which can result in

models that are overly optimistic in their detection rates [26]. This problem is further

compounded by the use of self-reported data or crowdsourcing for annotation, which

may not accurately capture the diversity of toxic language used online [27].

Additionally, the inherent complexities of language present further challenges.

Sarcasm, irony, and other forms of figurative language are di�cult for algorithms

to detect [28]. Users may also intentionally obfuscate their language or use coded

expressions to evade detection, complicating the task of identifying toxic content [29],

[30]. ML algorithms typically excel at identifying previously reviewed toxic content

but struggle with new and emerging forms of harmful content [31].

2

Another significant limitation is the potential unsuitability of these models for

real-time applications. The evaluation of ML systems often relies on metrics such

as accuracy or area under the receiver operating characteristic curve (AUROC),

which are useful for classification tasks but do not consider the model’s e�ciency

in real-time scenarios [19]. Throughput and latency are critical factors, especially

for applications where timely detection and response to toxic content are essential.

A study by Hosseinmardi et al. [32] found that while DL algorithms achieved high

accuracy in detecting hate speech, they also exhibited high latency and low throughput,

making them unsuitable for real-time applications. This underscores the importance

of evaluating not only the accuracy but also the e�ciency and scalability of ML

algorithms for detecting toxic language in real-world settings.

Addressing these challenges requires innovative approaches that not only improve

detection accuracy but also enhance the e�ciency and scalability of content moderation

systems.

1.2 Contributions

In this thesis, we focused on three main challenges in toxicity detection on social

media platforms and proposed innovative solutions to address these issues e↵ectively.

Firstly, the overwhelming volume and diversity of user-generated content (UGC)

present a significant challenge for real-time detection and moderation of toxic behavior.

To address this, we developed a novel Profit-Driven Simulation (PDS) Framework.

This framework evaluates the e↵ectiveness and e�ciency of various toxicity detection

algorithms by considering di↵erent levels of toxicity in social media environments. It

identifies the most profitable detector that accurately detects toxic content at the

lowest cost and within a reasonable time frame. The PDS framework also integrates

user satisfaction as a critical factor in selecting the optimal detector, emphasizing the

3

importance of minimizing false positives and false negatives to prevent user churn and

enhance engagement.

Secondly, the issue of imbalanced datasets significantly hampers the performance of

toxicity detection models. To mitigate this, we introduced AugmenToxic, a technique

for sentence-level text data augmentation (TDA) specifically targeting toxic language.

This approach leverages reinforcement learning from human feedback (RLHF) using

the Proximal Policy Optimization (PPO) algorithm, applied to an instruction fine-

tuned large language model (LLM). By optimizing the model to paraphrase text while

maintaining semantic coherence and maximizing toxicity, AugmenToxic significantly

expands the available toxic text data. This method enhances classifier accuracy and

performance by generating a more balanced and diverse dataset, surpassing traditional

data augmentation techniques, and ensuring better representation of toxic content in

training data.

Lastly, ensuring both accuracy and e�ciency in real-time toxicity detection re-

mains a crucial challenge. To overcome this, we proposed the Proximal Policy

Optimization-based Cascaded Inference System (PPO-CIS), an adaptive

multi-stage inference system for toxicity detection that employs a dynamic cascade

of classifiers. This system uses high-throughput classifiers for initial filtering and

highly accurate classifiers for final detection, optimizing both speed and accuracy. It

dynamically selects the most appropriate classifiers from the first and second stages

to ensure optimal performance. By integrating deep reinforcement learning (DRL)

with Proximal Policy Optimization (PPO), PPO-CIS identifies the most cost-e↵ective

set of cascaded classifiers, balancing classification accuracy, processing time, and

computational cost. This scalable and e�cient content moderation system reduces

the burden on human moderators and enhances user satisfaction by promptly and

accurately identifying toxic content in real-time.

4

These contributions address critical challenges in toxicity detection on social

media platforms, providing robust solutions that improve the e�ciency, accuracy, and

scalability of content moderation systems.

This thesis aims to address the significant challenges in toxicity detection on social

media platforms by proposing and developing innovative solutions. The primary

objectives are as follows:

1.2.1 Profit-Driven Simulation (PDS) Framework

• Propose a novel PDS framework to evaluate the e↵ectiveness and e�ciency

of toxicity detection algorithms across di↵erent toxicity levels in social media

environments.

• Identify the most profitable detector that can accurately detect toxic content

at the lowest cost, within a reasonable time, and with the highest level of user

engagement under various circumstances.

• Design a profit model tied to the simulation approach to identify the most

lucrative toxicity classifier for di↵erent environments on social media platforms.

• Consider user satisfaction as a critical factor in selecting the optimal detector,

highlighting the significance of false positive and false negative predictions, which

can lead to user churn.

1.2.2 Text Data Augmentation (TDA) for Toxic Language

• Develop a novel method for enhancing toxic text data through instruction

fine-tuning on the pretrained FLAN-T5 model, crafted for paraphrasing with

semantic equivalence using the PAWS dataset.

5

• Apply Proximal Policy Optimization (PPO) to further fine-tune the instruction-

tuned FLAN-T5, incorporating a reward model within the PPO framework to

ensure generated responses maintain the specified level of toxicity.

• Utilize the Google Perspective API to score toxicity and assign rewards accord-

ingly, while implementing KL-Divergence as a penalty in the reward function to

ensure generated text maintains human-like responses.

• Expand the imbalanced Jigsaw dataset into a balanced dataset comprising

over 278,000 samples, significantly improving the balance of toxic and nontoxic

samples.

• Outperform other data augmentation techniques such as zero-shot learning,

back-translation, and instruction-tuned LLMs by leveraging RLHF optimization.

1.2.3 Proximal Policy Optimization-based Cascaded Inference

System

• Develop an adaptive multi-stage inference system for toxicity detection, optimized

using deep reinforcement learning (DRL) through Proximal Policy Optimization

(PPO), balancing accuracy and processing e�ciency.

• Implement a novel cascaded classification methodology where high-throughput

classifiers perform initial filtering and highly accurate classifiers finalize the

detection, thus optimizing both speed and accuracy.

• Design an optimized reward function within the DRL framework that reduces

processing time and enhances classification accuracy by minimizing false positives

and false negatives.

6

• Conduct extensive evaluations on multiple datasets, demonstrating significant

improvements in processing time and detection accuracy with the proposed

PPO-CIS framework.

• Provide a scalable, cost-e↵ective solution for real-time content moderation,

reducing the burden on human moderators and enhancing user satisfaction by

promptly and accurately identifying toxic content.

By addressing these objectives, this thesis aims to provide robust solutions that

enhance the e�ciency, accuracy, and scalability of toxicity detection and content

moderation systems on social media platforms.

1.3 Organization of the Thesis

This manuscript is organized into six chapters, each focusing on di↵erent aspects of

toxicity detection on social media platforms and the innovative solutions developed to

address these challenges.

Chapter 2 covers the essential preliminaries for this thesis, including deep re-

inforcement learning, proximal policy optimization, Actor-Critic with Experience

Replay (ACER), text generation, instruction fine-tuning of large language models,

and parameter-e�cient fine-tuning.

Chapter 3 explores the current literature in toxicity detection, discussing various

approaches and techniques used in the field. It identifies the limitations and problems

in existing methods, highlighting the need for improved detection frameworks to

enhance accuracy and e�ciency.

Chapter 4 details the first proposed technique, focusing on the PDS framework.

This chapter describes the methodology for evaluating the e↵ectiveness and e�ciency

7

of toxicity detection algorithms, explaining the profit-driven approach and user satis-

faction considerations. It includes an experimental setup and results demonstrating

the capabilities of the framework.

Chapter 5 addresses the issue of imbalanced datasets. This chapter introduces Aug-

menToxic, a technique for sentence-level text data augmentation specifically targeting

toxic language. It describes the development and implementation of AugmenToxic,

leveraging reinforcement learning from human feedback (RLHF) with Proximal Policy

Optimization (PPO). The chapter provides a detailed methodology for paraphrasing

toxic text while maintaining semantic coherence, along with experimental results

showcasing improvements in dataset balance and classifier performance.

Chapter 6 delves into the challenge of real-time toxicity detection and the proposed

PPO-CIS. It presents the development of an adaptive multi-stage inference system

that employs a dynamic cascade of classifiers. The chapter explains the methodology

for using high-throughput classifiers for initial filtering and highly accurate classifiers

for final detection, optimizing both speed and accuracy. It highlights the integration of

deep reinforcement learning (DRL) with PPO for optimal classifier selection, supported

by experimental setup and results demonstrating the e�ciency and accuracy of PPO-

CIS.

Chapter 7 summarizes the key findings and contributions of the thesis, discussing

the impact of the proposed solutions on toxicity detection. It identifies potential

limitations and areas for improvement, and suggests future research directions and

advancements in the field.

8

Chapter 2

Preliminaries

2.1 Text Generation

Imagine a language model, denoted as M , which responds to a consistent prompt

P by generating a response y. The process involves the model sampling from its

distribution M(P) through decoding, represented as y ⇠ M(P). In typical text

generation scenarios, M calculates the probability distribution for the next token tk

based on the prior context C<tk, expressed as p!(tk|C<tk) [33]. The model learns

parameters ! in training by maximizing the likelihood of observed data. This learned

probability distribution (p!(tk|C<tk)) is crucial in guiding the model as it decodes the

next token, shaping the coherence of the generated text. By leveraging its learned

parameters !, the model captures relationships between tokens, enabling the creation of

coherent and contextually relevant sequences. Various decoding algorithms, including

greedy decoding, beam search, temperature sampling, and top-p sampling [34], play a

pivotal role in how the model selects and arranges tokens, contributing to the overall

coherence and relevance of the generated output.

In the context of text paraphrasing, for two sentences l and l0 that serve as

paraphrases of each other, we express this relationship as l ⌘ l0, indicating their

9

equivalent meanings (Semantic Meaning(l) = Semantic Meaning(l0) where l 2 L and

l0 2 L0). Consequently, when using a prompt to generate a paraphrase for l, we

denote the paraphrased version as l0, where M(l|P) = l0. Please note that a prompt

is composed of an instruction I and an input x 2 X so that P = I(x). Therefore,

(M(P) = y) ! (I(x)) = y). In the case of paraphrasing, where the instruction is a

request for paraphrasing and the input is l 2 L, then M(I(l)) = l0 where l ⌘ l0.

Response generation employs various methodologies, including zero-shot learning,

one-shot learning, few-shot learning, and fine-tuning language models on datasets with

instructional annotations [35], [36]. Zero-shot learning enables a model to generate

responses for categories or prompts it hasn’t been explicitly trained on by leveraging

its understanding of underlying concepts or patterns from the training data [37].

Conversely, few-shot learning involves training the model with minimal examples of

a specific category or prompt, yet it still learns to generalize and produce responses

for similar, previously unseen categories or prompts, showcasing its adaptability and

generalization prowess [38]. Research has shown that instruction tuning substantially

enhances zero-shot performance on unseen tasks [39]. In the following section, we will

delve deeper into the details of Instruction Fine-tuning.

2.2 Instruction Fine-tuning (ITune)

Generative LLMs are initially pre-trained on an extremely large and diverse public

dataset, and their weights can be fine-tuned for each task of interest using a much

smaller task-specific dataset. Instruction fine-tuning (ITune) is a process in which a

pre-trained model, represented by parameters !, undergoes refinement based on a

specialized instruction dataset DI. This dataset includes input-output pairs that serve

as explicit instructions or prompts for the model. Therefore, DI = {(Ii, xi, yi)}ni=1

represents an instruction dataset with each sample consisting of an instruction (Ii),

10

an input sequence (xi 2 X), and its corresponding response (yi 2 Y), with n total

samples in the dataset.

The objective is to adapt a M to better understand and generate responses aligned

with the provided instructions. The updated parameters after fine-tuning are denoted

as !0, and the fine-tuning process can be expressed as !0 = ITune(!, DI). This notation

captures the transformation of the model’s parameters to enhance its performance in

generating contextually relevant outputs in response to specific instructions provided

in the training dataset.

2.3 Parameter-e�cient Fine-tuning (PEFT)

In the conventional fine-tuning process, model weights are usually copied from a

pre-trained language model and adapted for a specific downstream task, requiring

the generation of new weights for each task. However, full fine-tuning of parameters

becomes impractical due to the rapidly growing size of models, making it infeasible

to fine-tune the entire model and store separate copies of parameters for numerous

downstream tasks [40]. Parameter-e�cient techniques have been introduced to address

concerns related to storage and computational costs associated with full fine-tuning

[41]–[43]. As a noteworthy contribution to parameter-e�cient fine-tuning (PEFT)

techniques, one approach is Low-Rank Adaptation (LoRA) [44]. In the LoRA method-

ology, the pre-trained model weights remain frozen, and trainable rank decomposition

matrices are introduced into each layer of the Transformer architecture. For each

M , the hyperparameters r (representing the rank of the update matrices) and ↵LoRA

(a scaling factor crucial for stabilizing training) are fine-tuned [45]. This innovative

technique e↵ectively reduces the number of trainable parameters for downstream tasks,

lowering GPU memory requirements and demonstrating a commitment to parameter

e�ciency in the adaptation process.

11

Figure 1: PPO Model Architecture Overview

2.4 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns

to make sequential decisions by interacting with an environment. The agent takes

actions (a 2 A), receives rewards (r 2 R) or penalties, and adjusts its strategy to

maximize cumulative rewards over time. RL involves sequences of states (s 2 S),

actions (a 2 A), and rewards (r 2 R), known as trajectories (⌧). The main objective

in RL is for the agent to learn a policy (⇡✓), parameterized by ✓, that maps states to

actions to maximize expected cumulative rewards.

Policies in RL can be deterministic or stochastic [46]. A deterministic policy

(⇡ : S ! A) maps each state directly to a specific action, while a stochastic policy

(⇡(a|s) : S ! P (A)) maps each state to a probability distribution over possible actions,

indicating the likelihood of selecting each action given a particular state. Deterministic

policies o↵er clear action choices but may be limited in adversarial environments and

12

computationally expensive in large action spaces [47].

During interactions, the agent selects actions at at time step t, transitioning from

state st to st+1 and receiving reward rt. The objective is to maximize the total future

rewards RT :

RT =
TX

t=1

rt

where T is the final time step. The policy ⇡(a, s) dictates the probability of

selecting action a in state s, and the Q-function Q(s, a) estimates the expected future

reward for taking action a in state s under the current policy ⇡. RL algorithms

are evaluated based on their capacity to develop e↵ective strategies across diverse

environments, enabling agents to explore actions, exploit learned knowledge, and

maximize long-term rewards in dynamic and complex environments.

Reinforcement Learning from Human Feedback (RLHF)

Reinforcement Learning from Human Feedback (RLHF) is a technique used to train

AI systems to align with human goals, and it has become the primary method for

fine-tuning state-of-the-art large language models (LLMs) [48], [49]. RLHF customizes

pre-trained large language models (LLMs) by defining a reward model and fine-tuning

the LLM using reinforcement learning. This process incorporates human feedback to

capture desired sentiments in the model’s responses, with the reward model mapping

the model’s output to a scalar reward representing human preferences [50]. By

leveraging the extensive knowledge and capabilities of LLMs, RLHF encourages desired

responses and behaviors, leading to safer, higher-performing, and more controllable

AI systems [51].

13

2.5 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) represents an advanced approach that combines

the principles of RL with the power of Deep Learning (DL) [52], [53]. Unlike traditional

RL, which often faces challenges in handling high-dimensional and complex data

spaces, DRL leverages Deep Neural Networks (DNNs) to e↵ectively manage and

process such data [54], [55]. In contrast, DRL utilizes DNNs to approximate the

Q-function Q(s, a; ✓), where ✓ represents the parameters of the neural network [56].

This approach is highly e↵ective for handling large or continuous state-action spaces

[57]. Consequently, while the Q-function in traditional RL is simpler and less scalable,

the Q-function in DRL provides superior representational power and generalization

capabilities, enabling it to perform well in complex environments [46].

2.5.1 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO), introduced by Schulman et al. [58], stands out

as a robust and widely used deep reinforcement learning algorithm. PPO is known for

its stability and e�ciency in optimizing policies against specified reward functions,

consistently achieving state-of-the-art performance across a wide range of challenging

tasks. The core idea behind PPO involves iteratively updating the policy ⇡✓ to improve

its performance while ensuring stability during training. It aims to balance exploration

and exploitation e↵ectively, where exploration refers to the agent’s ability to try out

di↵erent actions to learn about the environment, and exploitation involves utilizing

the knowledge gained to select actions that maximize expected rewards. Achieving a

balance between exploration and exploitation presents a challenge [59].

14

Policy Gradient Improvement and Surrogate Objective Function

PPO is designed to improve the stability and reliability of policy gradient methods

[60], which can su↵er from high variance and instability as updates to the policy can

sometimes lead to large, detrimental changes. PPO addresses these issues by ensuring

that policy updates are more controlled and constrained. It achieves this through the

use of a surrogate objective function that limits the magnitude of policy changes. The

key idea is to optimize a clipped objective function, which penalizes changes to the

policy that move too far from the current policy [61].

The objective function in PPO can be expressed as:

LCLIP(✓) = Et

h
min

⇣
rt(✓)Ât, clip (rt(✓), 1� ✏, 1 + ✏) Ât

⌘i
(1)

where:

• rt(✓) =
⇡✓(at|st)
⇡✓old (at|st)

is the probability ratio,

• ⇡✓ is the new policy with parameters ✓,

• ⇡✓old is the old policy with parameters ✓old,

• Ât is the advantage estimate at time step t,

• ✏ is a hyperparameter that controls the clipping range.

The clipping mechanism in PPO ensures that the ratio rt(✓) stays within the range

[1 � ✏, 1 + ✏], thus preventing large deviations from the old policy. This constraint

helps to maintain the stability of updates and improves overall training performance.

PPO can also incorporate the Kullback–Leibler (KL) divergence [62] as an addi-

tional penalty term or as a monitoring tool to ensure the policy does not deviate too

15

much from the previous policy. The KL divergence between the old policy ⇡✓old and

the new policy ⇡✓ is given by:

DKL(⇡✓oldk⇡✓) = Es⇠⇢⇡old

"
X

a

⇡✓old(a|s) log
⇡✓old(a|s)
⇡✓(a|s)

#

In some variants of PPO, an adaptive KL penalty is added to the objective function

to penalize large deviations:

LKL(✓) = LCLIP(✓)� �Es⇠⇢⇡old [DKL(⇡✓oldk⇡✓)]

where � is a coe�cient that determines the strength of the penalty. The KL

divergence serves as a broader measure of change and can adaptively adjust the

penalty based on how much the policies diverge, providing another layer of control to

ensure stability.

In summary, PPO enhances traditional policy gradient methods by incorporating

a clipped surrogate objective function to ensure controlled and stable policy updates.

This approach mitigates the risk of large, destabilizing changes to the policy, resulting

in more reliable and e�cient learning in reinforcement learning applications. PPO is

widely used in various RL tasks due to its simplicity, robustness, and e↵ectiveness,

striking a good balance between performance and computational e�ciency, making it

a preferred choice for many complex and high-dimensional environments.

2.5.2 Actor-Critic with Experience Replay (ACER)

Actor-critic with experience replay (ACER) [47] is a type of actor-critic [63] method,

which means it comprises two main components: the actor and the critic. The actor is

responsible for selecting actions based on a policy ⇡(s; ✓⇡), where ✓⇡ are the parameters

of the policy network. The critic, on the other hand, evaluates the actions taken by

16

the actor by estimating the value function Q(s, a; ✓Q), where ✓Q are the parameters of

the value network. This dual structure allows ACER to simultaneously learn a policy

for selecting actions and a value function for assessing the quality of those actions.

One of the key innovations in ACER is the use of experience replay. In traditional

actor-critic methods, updates are made using the most recent experiences, which can

lead to ine�cient learning and instability. ACER addresses this issue by storing past

experiences in a replay bu↵er and using these experiences to perform o↵-policy updates.

This approach not only improves sample e�ciency by reusing past experiences but also

stabilizes training by breaking the correlation between consecutive updates. Another

critical aspect of ACER is the use of a trust region policy optimization (TRPO) [64]

approach to ensure that the updates to the policy do not deviate too much from the

current policy, preventing large and potentially destabilizing changes. Additionally,

ACER employs importance sampling techniques to correct for any bias introduced by

using o↵-policy data from the replay bu↵er. In summary, ACER enhances traditional

actor-critic methods by integrating experience replay for better sample e�ciency,

trust region optimization for stable policy updates, and importance sampling for

unbiased learning. These features enable ACER to e↵ectively learn in complex and

high-dimensional environments, making it a powerful algorithm in the field of deep

reinforcement learning.

17

Chapter 3

Literature Review

This chapter is an extended version of the article entitled “Technological Solutions

to Online Toxicity: Potential and Pitfalls”, which was published in the IEEE

Technology and Society Magazine, vol. 42, no. 4, pp. 57-65, Dec. 2023, doi:

10.1109/MTS.2023.3340235.

18

Social media platforms present a perplexing duality, acting at once as sites to

build community and a sense of belonging, while also giving rise to misinformation,

facilitating and intensifying disinformation campaigns and perpetuating existing

patterns of discrimination from the physical world. The first step platforms take in

mitigating the harmful side of social media involves identifying and managing toxic

content. Users produce an enormous volume of posts that must be evaluated very

quickly. This is an application context that requires machine learning (ML) tools, but

as we detail in this chapter, ML approaches rely on human annotators, analysts, and

moderators. Our review of existing methods and potential improvements indicates

that neither humans nor ML can be removed from this process in the near future.

However, we see room for improvement in the working conditions of these human

workers.

Dealing with this problem is challenging due to the impracticality of manually

removing toxic content, given the volume, velocity, and variety of online material.

Consequently, platforms have increasingly adopted moderation systems incorporating

machine learning (ML) models. However, these models have limitations, including

biases and discriminatory outcomes. As a result, some platforms have opted to engage

human moderators in assessing content flagged as potentially toxic by ML models and

making the final decisions. However, these systems still undeniably have limitations

that require deep investigation. Therefore, this chapter aims to comprehensively review

moderation systems for automatic toxicity detection on social media, emphasizing the

need to understand their constraints.

3.1 Online Toxicity: A Comprehensive Review

Over the past decade, there has been tremendous growth in social networking services,

resulting in the creation of millions of data by platform users. As an example, Facebook

19

has nearly 2.85 billion users, while YouTube has 2 billion, and Twitter and Reddit

have 350 million and 430 million users, respectively [16]. On Twitter, for instance,

there are 192 million daily active users with an average of 6,000 tweets per second,

350,000 tweets per minute, and 500 million tweets sent each day, while the number

rises to more than 140,000 tweets per second during certain events (natural disasters,

breaking news, etc.) [14]. There are around 100 queries per second on Facebook, and

100 billion rows are processed per second, with average response times of less than 1

second [65].

Microblogging platforms are networks of real-time information, and their true

value lies in their ability to absorb timely and relevant information that is significant

to users [66]. Real-time promising an immediate experience, users also anticipate that

their generated content will be immediately visible to followers, ideally within seconds,

and any prolonged delay in this process could potentially lead to user churn [67]. The

overwhelming flow of content generated by users, who are imagined as potential super

processors [68], creates a significant challenge in real-time dissemination, computing,

processing, and analysis of data. It is di�cult to e↵ectively process big data as a

result of its variety, velocity, volume, and value [15]. Therefore, the aspect of real-time

processing plays a pivotal role in addressing online toxicity, and the developed models

should be able to handle a substantial volume of data within a second. Unfortunately,

this aspect has been largely overlooked in the literature and we were unable to locate

any related work that considered these features for the detection of toxicity on social

networks.

3.1.1 Toxicity in Online Content

Although a significant volume of content is shared every second, the majority of it is

relatively harmless, nontoxic, and knowledge-based. This leaves only a small fraction

20

that is toxic, often representing attacks on other users, individuals, or minority groups

[69], [70]. This di↵erence in rates of toxic and nontoxic content complicates the task

of flagging toxic content and increases the risk of false positives.

A dataset provided by [71] consists of 80K tweets, each annotated with five

judgments. The dataset is categorized into four groups: Abusive (11%), Hateful

(7.5%), Spam (22.5%), and Normal (59%). It reveals that over half of the tweets do

not contain any toxic language and are classified as normal. Furthermore, the analysis

of 293 million English tweets using Google’s Perspective API models by Qayyum et al.

[72] demonstrated that 80 percent had toxicity scores below 0.40. In particular, users

exhibiting high toxicity are often reported for misconduct violations and subsequently

banned [73]. However, the enforcement of rules can sometimes be uneven.

A study on 1.18M Twitter conversations, encompassing 58.5M tweets and 4.4M

users, found that users with moderate activity levels displayed a higher proportion of

toxic tweets than both low- and high-activity users [74]. The study conducted in this

paper determined that users posting between 10 and 1000 tweets were responsible

for 22% to 23% of toxic tweets. In contrast, highly active users with a substantial

number of posts (2,000-10,000) exhibited a lower percentage of toxic tweets (2%-19%)

than low-activity users. Furthermore, more than 50% of the users did not post any

toxic tweets. It should be noted that tweets from influential users often attract more

replies from users with fewer followers, increasing the likelihood of influential users

being targeted with toxic comments.

In another study by Radfar et al. [75], 178K tweets were collected from users with

di↵erent follower-friend relationships. Radfar et al. found that almost 9.6% shared

tweets between users who are mutual friends were deleted due to the high ratio of

toxicity. In contrast, Twitter removed almost 40% of tweets shared between users who

are not mutually connected or there is only a one-way connection due to toxicity. They

21

later selected 6.7K tweets and annotated them by human experts. Tweets between

users who do not have a connection were found to be nearly three times more likely to

be toxic than tweets between mutual friends. In addition, they also found that users

follow great users to read their posts while targeting them with a toxic message.

Thus, the variety in social media content and users emphasizes the limits of relying

on a single classifier to handle all platform situations e↵ectively. Consequently, the

dynamic nature of social media platforms demands di↵erent techniques for di↵erent

cases. However, identifying the detector most suitable for various scenarios remains a

significant challenge.

3.1.2 The Social Impact of Toxicity

Social Media platforms play a vital role in our daily lives by enabling users to stay in

touch, express their views in real time, and providing instant access to information.

However, the smooth sharing of content, and the cover of anonymity on microblogging

platforms along with the lack of normative cues in online interactions also contribute

to the widespread dissemination of antisocial and toxic behaviours [76].

The pervasive use of toxic language on social media has serious social implications.

Individuals may hesitate to express their opinions or participate in discussions due to

the fear of being targeted with harmful content [77]. In severe cases, this phenomenon

can lead to mental health issues and social isolation, particularly impacting teenagers

[78], [79]. Toxicity sometimes cooccurs with hate speech and violent threats and can

cross over into the physical realm through doxing, swatting, or stalking [80], [81].

Manual removal of toxic content is infeasible due to the sheer volume and mul-

tilingual diversity of online content [19]. Human removal would require enormous

sta�ng levels and expense, prompting the adoption of ML techniques as a viable

solution [21]. Although ML models exhibit e↵ectiveness in large-scale real-time content

22

classification, their performance is not without limitations, particularly in the context

of toxic language [82].

Toxicity detection models may confidently make incorrect predictions based on

spurious lexical features [83], [84]. In addition, subtle wording similarities can lead to

inaccurate outcomes, highlighting a significant concern: bias in modeling, training,

and usage [85], [86]. This bias may result in discrimination against specific social

subgroups, including black users, women, and LGBTQI+ communities, in automated

decision-making systems [87].

Despite these technical limitations, the urgent need to address antisocial online

behavior has led platforms to frequently adopt moderation systems that integrate

ML-based models. These systems are used to identify potentially harmful content,

and some platforms also involve human moderators to review flagged content and

make the final decision. It is worth noting that human judgments are utilized for

annotating training datasets to develop ML models. As a result, both ML techniques

and human individuals (moderators and annotators) remain crucial components for

e↵ective moderation systems to control online toxicity.

This collaboration between humans and ML has constraints that necessitate a

deep dive into potential causes of misidentification and poorly managed outcomes.

Our aim in this chapter is to comprehensively review ML techniques designed for

automatic toxicity detection, emphasizing the need to examine and understand their

limitations in the dynamic and varied landscape of social media content. We categorize

these methods into social, policy and technical approaches, with a particular focus

on technical solutions. We explore the potential of strictly technical approaches to

address these risks. We also explore the limitations inherent in a purely “technological

fix”.

23

3.2 Existing Tools for Detecting Online Toxicity

3.2.1 Machine Learning and Deep Learning-based Strategies

Recent years have witnessed a substantial surge in research dedicated to exploring

both the social and computational dimensions of toxic content detection [82], [88].

Existing research has tackled diverse aspects of online toxicity across various platforms.

This includes endeavors such as the detection and categorization of toxic content [89],

[90], assessment of the impact of online toxicity on communities [91], characterization

of di↵erent types of toxicity [75], and identification of toxic users [92].

Machine learning (ML) approaches, both classical and deep learning (DL) algo-

rithms, have been extensively implemented to identify toxicity in online conversations

[93]. Numerous studies have applied various classical ML techniques to tackle online

toxicity. For example, Logistic Regression (LR), Decision Trees (DT), Random Forest

(RF), and Support Vector Machine (SVM) have been used e↵ectively [92], [94]–[97].

Furthermore, combining Latent Semantic Analysis (LSA) with SVM and using Latent

Dirichlet Allocation (LDA) [98] have been explored. Common feature extraction

methods include bag-of-words (BOW), term-frequency-inverse document frequency

(TF-IDF), and word embeddings [99]. The literature o↵ers numerous studies com-

paring di↵erent techniques, considering various feature extraction and preprocessing

methods [100], [101].

Data-driven and ML approaches for detecting, categorizing, and measuring toxic

content are gaining popularity due to their scalability, robustness, and high performance

[102]. However, traditional ML methods often face challenges in detecting toxic

comments due to the high variability and complexity of language, including slang,

sarcasm, and cultural nuances [103]. The accuracy of these algorithms largely depends

on feature extraction from data [103].

24

Since 2006, research has shifted towards DL-based models derived from Neural

Networks (NN), which are rapidly gaining traction [104]. Various Deep Neural

Networks (DNN)-based models have been used extensively for detecting toxic content,

such as Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN),

Long Short-term Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent

Units (GRUs), and Bidirectional GRU (BiGRU) [105]–[108]. CNNs, specifically, have

been widely used to classify toxic content due to their e↵ectiveness in performing

convolutions [7], [93], [109].

With the introduction of pre-trained word embeddings, recent trends in text

classification tasks have switched to using language models trained on large unlabeled

corpora. The work by Collobert and Weston [110] established the utility of pre-trained

word embeddings. Mikolov et al. [111] created word2vec, followed by Global Vectors

(GloVe) [112]. FastText embeddings, developed by Facebook AI Research, is another

technique trained on Common Crawl and Wikipedia for 157 languages [113], [114].

These embeddings can be used as input features to DNN classifiers. For instance,

Mohammed et al. [115] compared CNN, RNN, LSTM, bi-LSTM, GRU, and bi-GRU

models using standard embedding layers and pre-trained embedding corpora such as

GloVe, word2vec, and fastText.

Bidirectional Encoder Representations from Transformers (BERT) is another suc-

cessful pre-trained language model introduced by Devlin et al. in 2018 [116]. It uses

transformer-based architecture to comprehend contextual word relationships, gener-

ating contextualized word embeddings. Several BERT variants have been developed

to improve its e�ciency and e↵ectiveness. These include BERT-base [116], ALBERT

[117], DistilBERT [118], and RoBERTa [119]. Studies have demonstrated the superior

performance of fine-tuning BERT for toxic language classification tasks [120]. Zhao et

al. [121] evaluated di↵erent pre-trained language models, including BERT, RoBERTa,

25

and XLM, using various architectures such as bi-LSTM + BERT/RoBERTa/XLM

and CNN + BERT/RoBERTa/XLM.

Deep learning techniques, such as neural networks and transformers, have shown

greater success in this area by capturing nuanced language patterns and context,

leading to improved detection accuracy [93]. DL models autonomously extract complex

features from raw data without the need for manually crafted features, showcasing their

ability to learn representations directly from input datasets [122]. Various studies have

explored di↵erent DL models and their variations for toxicity detection, comparing

their performance across di↵erent approaches [122], [123]. Some research has focused

on developing hybrid DL models that blend multiple methods to improve detection

accuracy and e�ciency, yielding promising results [11], [124]. However, hybrid models

can sometimes underperform with small datasets, making generalization challenging

[125].

According to Jahan and Oussalah [126], prominent deep neural network architec-

tures for this task include CNN [55], LSTM networks [127], Bi-LSTM architectures

[128], GRUs [129], and BERT [116]. CNNs, with character embedding models, have

shown excellent performance with an accuracy of 94%. Character-level embedding

has improved performance over word-level embedding for CNNs [90].

3.2.2 Ensemble Learning-based Strategies

Ensemble learning is a method used to enhance the performance of classifiers by

combining multiple models to create a stronger overall model. The three main

techniques of ensemble learning are bagging, boosting, and stacking.

Bagging: short for bootstrap aggregation, is a technique introduced by Leo

Breiman in 1996 [130]. Bagging involves drawing multiple bootstrap samples from the

original dataset and applying a prediction method to each sample. The predictions

26

are then combined through averaging for regression or simple voting for classification,

which reduces variance and improves the stability and accuracy of the final prediction.

Boosing: introduced by Robert Schapire in 1990 [131], enhances a weak learn-

ing algorithm by iteratively refining and combining multiple models for improved

performance.

Stacking: By integrating predictions from multiple models into a single meta-

learner, the approach demonstrates strong prediction capability, improving model

generalizability and accuracy.

Numerous ensemble learning techniques have been proposed for detecting toxic

content [90], [132]. For example, one approach involves combining various Recurrent

Neural Network (RNN) models to identify hate speech in short texts, incorporating

both textual content and user-related information [133]. Another method combines

three base classifiers trained using word2vec for hate speech detection [134]. A meta-

classifier (logistic regression) then combines the outputs and features from these base

classifiers to generate the final output. The study demonstrates that this approach

outperforms single classifiers, majority voting, and standard stacking in distinguishing

hateful and non-hateful tweets across four datasets. Alternatively, a multi-view

stacked classifier is proposed, leveraging di↵erent feature spaces to enhance model

robustness against unintended gender bias [135]. Furthermore, other works have

explored ensemble learning techniques such as parallelizing bagging, A-stacking, and

random sub-space to accelerate and improve hate speech detection on social media

[136]. This approach enhances e�ciency and accuracy, particularly when handling

large-scale, high-dimensional data, addressing the challenge of processing vast volumes

of data with high accuracy and fault tolerance.

In addition, various innovative approaches have been proposed to address the issue

of toxicity using ensemble learning. For example, DeL-haTE is a novel framework that

27

focuses on tackling class imbalance and model variability in hate speech detection

[137]. This framework utilizes an ensemble of deep learning models with customizable

CNN and GRU layers. The CNN layer extracts high-level features from the word

embedding matrix, which are then processed by the GRU layer to identify important

features from word sequences.

Another approach is the Stacked Weighted Ensemble (SWE), which combines

multiple standalone classifiers to detect toxic language [138]. In many studies, ensemble

learning techniques, especially those involving deep learning models, outperform

single models. This highlights the importance and benefits of ensemble learning over

individual models. However, these proposed techniques are not yet widely applicable

in real-world scenarios. Additionally, employing the entire ensemble for every sample,

although e�cient, frequently results in high costs and redundancy [139]. Moreover,

the most current techniques focus on achieving high accuracy in detecting toxicity

but often neglect the need for throughput when processing large volumes of data.

Therefore, these models must be tested in real-time, large-scale applications.

Social media platforms such as Facebook and Twitter currently lack real-time hate

speech detection systems, often taking corrective measures only after harmful content

has been posted online [103]. Given the large volume of data shared on these platforms

every second, it is essential for models to process vast amounts of data e�ciently and

e↵ectively. Balancing accuracy and speed is a significant challenge, making it crucial

to choose the most suitable classifier for each specific use case. Moreover, CMSs often

incorporate human oversight with ML/DL models, so optimizing collaboration between

the two is essential for achieving the best performance [19]. Additionally, models that

perform well on their own may not necessarily achieve the best results when working

alongside a human moderator [140]. Unfortunately, there is a lack of research addressing

this challenge in toxicity detection, highlighting the need for greater attention to this

28

issue. Google’s Jigsaw team explored how human moderators and machine learning

models can work together in content moderation systems to enhance their overall

performance. They presented an approach that integrates model uncertainty into

the collaboration and developed metrics to measure the system’s e↵ectiveness [19].

Although human moderators may be necessary to remove toxic content, automated

tools should still be enhanced to handle the large scale of user-generated content in

real-time. Improving these tools can reduce errors and misclassifications, ultimately

lightening the workload for human moderators and enhancing online safety. To achieve

this, we are exploring research beyond toxic language detection to discover advanced

methods for processing samples e↵ectively and e�ciently.

The literature suggests that employing a tree of classifiers is recognized as an

e↵ective approach for achieving high-throughput and accurate data processing. A

“One-class-at-a-time” approach [141], a multistage cascading classification technique

was proposed for triaging psychiatric patients using ML on textual patient records.

This method classifies one class at a time and uses the most accurate classifier at

each stage. It outperformed traditional multiclass classifiers, achieving an overall high

accuracy rates for individual classes. This approach helps reduce expert e↵ort and

serves as decision support for triaging psychiatric patients based on the severity of

their condition. However, this approach is not high-throughput enough to accurately

process large volumes of data in seconds.

Employing multiple learning models for a single task is a common practice seen

across di↵erent fields, enhancing classification accuracy but also presenting challenges

including increased time consumption, costs, and scalability issues [142]. Di↵erent

strategies have been proposed to address this, such as an AdaBoost-based algorithm

and a cascading approach for rapid and accurate visual object detection, aiming to

prioritize computational resources on relevant areas while ignoring backgrounds [143].

29

Employing multiple learning models for a single task is a common practice seen

across di↵erent fields, enhancing classification accuracy but also presenting challenges

such as increased time consumption, costs, and scalability issues [142].

Di↵erent strategies have been proposed to address this, such as using an AdaBoost-

based algorithm and a cascading approach for rapid and accurate visual object

detection, aiming to prioritize computational resources on relevant areas while ignoring

backgrounds [143].

3.2.3 Reinforcement Learning-based Strategies

Reinforcement Learning (RL) is a computational approach designed to understand

and automate goal-oriented learning and decision-making processes [144]–[146]. It

involves an agent that interacts with a dynamic environment, taking actions and

receiving feedback in the form of rewards or penalties [147]. The agent’s objective

is to learn optimal behavior over time through trial-and-error interactions, aiming

to maximize cumulative rewards and achieve specified objectives [148], [149]. This

iterative process entails exploring extensive solution spaces and developing e�cient

strategies across diverse domains, demonstrating RL’s capability to tackle complex

decision-making challenges e↵ectively [150].

However, accurately estimating expected rewards for every possible state-action

combination becomes impractical in scenarios with extensive state and action spaces

due to computational complexity [46]. Consequently, approximation-based techniques,

such as employing neural networks, are often utilized [63]. These techniques enable

RL to scale e↵ectively and perform well in complex environments by approximating

the value function [151].

Coupled with deep learning [109], [152], RL has significantly advanced, enabling it

to tackle previously intractable decision-making problems with high-dimensional state

30

and action spaces [148]. Deep reinforcement learning (DRL) algorithms have been

successfully applied to a wide range of problems. In robotics, DRL enables the learning

of control policies directly from camera inputs in real-world environments, surpassing

traditional controllers that were either hand-engineered or relied on low-dimensional

features of the robot’s state [153], [154]. In the realm of complex games, DRL has

achieved groundbreaking milestones, such as the success of AlphaGo in mastering the

game of Go, highlighting its potential in strategy formulation and decision making

[151]. In adversarial learning, DRL plays a crucial role in developing robust models

that can withstand adversarial attacks, thereby enhancing cybersecurity measures

[155]. Additionally, DRL has shown promising results in malware detection, providing

adaptive techniques to identify and mitigate evolving threats [156]. Natural Language

Processing (NLP) has leveraged the advantages of DRL across various applications,

including dialogue system [157], [158], machine translation [159], and text generation

[160].

Recently, DRL has been applied to optimize fine-tuned Large Language Models

(LLMs) [161] for generating toxic or nontoxic textual content [162], [163].

While research on using RL for online toxicity detection is still emerging, several

notable contributions have been made. The first significant work in this area, intro-

duced in 2019, proposed a self-learning model using Deep Q-Learning Networks to

detect toxicity in online conversations [164]. Although the results did not surpass the

baseline neural network model, the technique achieved competitive results compared

to other baseline machine learning models, whose F1-scores ranged from 50-60%.

Another important development is Q-Bully, designed to detect cyberbullying on

various social media and online gaming platforms using RL combined with NLP tech-

niques [165]. This study incorporated RL by feeding messages and posts from bullies

31

and victims to an RL agent for classification. Additionally, ConBERT-RL, a policy-

driven DRL-based approach, was proposed to detect homophobia and transphobia

in low-resource languages [166]. This framework leverages a concatenated represen-

tation that combines BERT’s contextualized outputs with a pre-trained classifier

model within a reinforcement learning setting. Specifically, it uses the REINFORCE

algorithm to capture problem-specific features and understand nuances in translit-

erated Tamil words into English, significantly improving classification accuracy for

o↵ensive comments. This demonstrates ConBERT-RL’s robustness and e↵ectiveness

in capturing language-specific features.

3.2.4 Optimizing Ensemble Models with Reinforcement Learn-

ing

DRL emerges as a promising approach for economically selecting classifiers, as demon-

strated by innovative solutions such as Security Policy Implementation using Rein-

forcement Learning (SPIREL) [142] and Cost E↵ective Transfer of Reinforcement

learning policies (CETRA) [139]. These approaches leverage DRL for dynamically

allocating detectors in a sequential manner for malware detection.

SPIREL is a DRL-based framework, specifically Actor–Critic, where the reward

function assigns values based on both correct and incorrect classifications, as well as

the runtime needed for analyzing each sample. This method ensures a balanced trade-

o↵ between accuracy and computational e�ciency, making it suitable for real-time

applications.

Building upon SPIREL, CETRA empowers organizations to establish desired

benchmarks for key performance indicators, such as memory usage, running time, or

Area Under the ROC Curve (AUC). CETRA dynamically adjusts its reward function

to achieve these objectives, providing a flexible and adaptive approach to maintaining

32

optimal performance across di↵erent operational contexts.

By incorporating these advanced DRL techniques, both SPIREL and CETRA

demonstrate how reinforcement learning can e↵ectively manage and optimize classifier

selection processes, o↵ering significant improvements in resource allocation and overall

system e�ciency.

3.2.5 Evaluation Metrics

Various metrics have been used to assess algorithm performance and compare di↵erent

techniques developed to detect toxic language. A systematic review of ML techniques

for toxic comment classification [93] indicates that F1-score, accuracy, and area

under the ROC curve (AUC ROC) are the most widely used evaluation metrics.

Additionally, other metrics including Log Loss, Hamming Loss, Mean Precision, Mean

Recall, Specificity, and Mean Error Rates are utilized. These metrics primarily focus

on gauging the model’s ability to accurately di↵erentiate between toxic and nontoxic

content. Although crucial for identifying the most accurate model, this assessment is

insu�cient, especially in the context of real-time information networks such as social

media platforms.

3.3 Existing Tools for Addressing Class Imbalance

in Toxicity Detection

In the literature, various solutions have been proposed to the class imbalance problem.

These techniques can be categorized into Data Level, Algorithmic Level, Ensemble

Learning, and Data Augmentation, each of which is briefly discussed in this section.

Furthermore, we examine methodologies employed in toxicity detection.

33

3.3.1 Data-level Approaches

In managing the class imbalance at the data level, the primary goal is to adjust

the distribution of classes by strategically resampling the data space. This involves

increasing instances of the underrepresented class through techniques including over-

sampling and reducing instances of the overrepresented class through methods such as

undersampling. In many cases, a combination of both oversampling and undersampling

techniques may be employed to achieve optimal results [167]–[170]. Each of these

resampling techniques, along with their variations and applications, will be explored

individually and in detail in the following subsections.

3.3.1.1 Undersampling

In the undersampling method, the primary focus is on the majority class within

the dataset, from which instances are extracted either randomly or through specific

techniques to achieve class balance [171], [172]. Undersampling, while incurring

the main drawback of information loss through the deletion of examples from the

training data, nonetheless, o↵ers the benefit of reducing the time required to train

models by diminishing the size of the training dataset [172]. The most straightforward

method of undersampling involves randomly choosing a portion of samples from the

majority class [173]. The random undersampling (RUS) strategy poses a significant

risk of eliminating potentially valuable data from the majority class [174], [175]. In

response to this limitation, specific methodologies, such as informative undersampling

techniques, selectively eliminate insignificant patterns from the majority class, thereby

aiming to maintain performance levels and overcome this drawback [176]. One

suggested informative undersampling method, the Condensed Nearest Neighbour

(CNN) discussed in [177], serves as a data reduction approach to create a representative

subset of the original training set, proficient in accurately classifying all instances [176].

34

Similarly, the Edited Nearest Neighbors (ENN) uses a K-nearest neighbors (K-NN)

approach to identify atypical examples within their neighborhood and subsequently

removes them [178]. Furthermore, one-sided selection [179] serves as an alternative

approach utilizing Tomek links [180] to detect and eliminate such atypical instances.

These approaches are not very useful for text data; they are more applicable to

numerical data. In the case of toxic language detection, this technique proves ine↵ective

because we still need a su�cient number of samples from the nontoxic class to

successfully train classifiers for distinguishing toxic from nontoxic content. Therefore,

our proposed method is specifically developed for textual data and can e↵ortlessly

handle unstructured sentences while increasing toxicity scores. There is no need to

remove samples from the nontoxic class.

An alternative approach proposed to tackle the RUS limitation involves replacing

the strategy with a clustering technique as discussed by [174]. Employing cluster-based

techniques aims to group similar objects, or data samples, into the same clusters,

with objects in distinct clusters di↵ering in their feature representations. In 2017,

imbalanced-learn, an open-source Python toolbox, aimed to address imbalanced dataset

challenges in ML and pattern recognition by incorporating state-of-the-art techniques

grouped into four categories: (i) under-sampling, (ii) over-sampling, (iii) combined

over- and under-sampling, and (iv) ensemble learning methods [181]. Imbalanced-learn

1 o↵ers tools such as ClusterCentroids and RandomUnderSampler. ClusterCentroids

reduces the majority class by substituting a cluster with the centroid from a KMeans

algorithm. RandomUnderSampler swiftly balances data by selecting a subset randomly.

Mediratta and Oswal [182] employed RandomUnderSampler to tackle the imbalance

issue in a toxic content classification model. In their comparison of various machine

learning models (Support Vector Machine (SVM), Näıve Bayes, Gated Recurrent Unit

1https://imbalanced-learn.org/stable/

35

%20https://imbalanced-learn.org/stable/

(GRU), Long Short-term Memory (LSTM), they observed that SVM and Näıve Bayes

achieved high accuracy even without addressing the imbalance, e↵ectively learning

from imbalanced datasets. The most promising outcomes occurred with GRU when

handling imbalance with a random sampler and employing GloVe (Global Vectors

for Word Representation) word embedding. Rupapara et al., [101] introduced an

ensemble technique for toxic comment detection, comparing its performance with other

ML classifiers on both imbalanced and balanced datasets. They employed various

resampling methods, including RUS and oversampling, highlighting that machine

learning models achieved superior performance when using oversampling for dataset

balance.

3.3.1.2 Oversampling

Undersampling techniques work well for datasets with a lower class imbalance ratio,

while oversampling methods e↵ectively manage high-class imbalance [183]. Yet,

oversampling tends to expand the training set size by replicating patterns, leading to

extended learning times and potential overfitting [170], [174], [184]. Similar to random

undersampling, oversampling can occur randomly but involves replicating instances

from the minority class to achieve dataset balance [185].

An alternative oversampling approach, referred to as informative oversampling,

focuses on amplifying the smaller class. In contrast to generating new samples, this

method selectively chooses samples from the minority class for resampling instead of

employing a random approach [170].

Another technique for oversampling is synthetic oversampling, where artificial

samples are generated for the minority class [186]. These additional samples supplement

vital information to the minority class, preventing misclassification of its instances.

The Synthetic Minority Oversampling Technique (SMOTE), introduced by [167],

36

operates as an oversampling approach that aims to generate additional instances for

the minority class by interpolating between various neighboring instances within that

class [185].

Continuing the exploration of oversampling techniques for the minority class,

additional methods include the Modified Synthetic Minority Oversampling Technique

(MSMOTE) [187], and the Selective Preprocessing of Imbalanced Data (SPIDER) [188].

MSMOTE modifies SMOTE by categorizing minority class instances into safe, border,

and latent noise groups, adjusting the neighbor selection strategy accordingly, and

SPIDER combines local minority class oversampling with identifying noisy majority

class instances, implementing di↵erent preprocessing methods to enhance the minority

class and eliminate remaining noisy majority class examples [185].

In the case of toxic language, where the number of samples in the nontoxic class

significantly surpasses the number of samples in the toxic class, oversampling can

be a beneficial strategy. However, it must be performed with caution. The nature

of language, particularly sentences, implies that the combination of various words

together can be quite intricate. Some words may not be toxic when considered

individually, but they can become toxic when used in combination.

In our proposed method, we leverage pretrained large language models that have

been trained on extensive datasets and exposed to numerous sample sentences. This

approach helps us in generating new samples in the minority class, thereby increasing

the diversity of samples.

3.3.1.3 Hybrid Sampling

Both undersampling and oversampling techniques present challenges by respectively

risking the removal of vital majority class examples, potentially causing underfitting,

and inducing overfitting through an increased number of specific but potentially

37

misleading minority class samples a↵ecting the model’s decision boundaries [167],

[189]. A sought-after approach involves integrating the benefits of both techniques to

manage imbalanced medical diagnostic data.

3.3.2 Algorithmic-level Approaches

This approach involves developing new algorithms or adapting existing ones to be

more responsive to class imbalance issues [190], [191]. In this approach, the focus is

on addressing the minority class, preventing the learner from exhibiting bias toward

the majority class to mitigate the overall cost associated with misclassification [192],

[193]. Usually, these methods include the utilization of cost-sensitive and ensemble

approaches [194]–[196]. Resampling techniques and algorithmic methods alone may

prove insu�cient in addressing class imbalance challenges in high-dimensional scenarios

[197], [198].

3.3.2.1 Cost-sensitive Learning

The cost-sensitive learning framework integrates strategies at both the data and

algorithmic levels, considering the increased costs associated with misclassifying

samples from the positive class compared to the negative ones [185], [190], [199]. This

approach has been applied to address imbalanced labels in toxic content detection by

incorporating it into machine learning and deep learning models to enhance overall

performance. However, it is crucial to note that accurate estimation of misclassification

costs is necessary, and it can be challenging to achieve in practical applications [200].

3.3.3 Ensemble Learning Approaches

The limitation of traditional approaches (sampling, algorithm level, and cost-sensitive)

lies in the requirement to define misclassification costs, often unavailable in datasets,

38

leading to the introduction of ensemble-based methods that combine ensemble learning

algorithms with data-level and cost-sensitive techniques to address class imbalance,

although the challenge of defining costs persists [185]. Boosting, bagging, and stacking

stand out as the most frequently employed techniques within this category [201]. Ac-

cording to a survey on the application of ensemble learning methods for class imbalance

problems, Random Forest (RF) and XGBoost have emerged as the most commonly

utilized methods in the literature, with both demonstrating reliable performance

[202]. Another review paper focusing on ensemble learning and data augmentation

models for class imbalance issues demonstrated that various combinations of ensemble

learning and oversampling techniques, including SMOTE-LightGBM and random

oversampling-LightGBM (ROS-LightGBM), are e↵ective approaches for addressing

this challenge [203].

Addressing data imbalance is a crucial aspect in ML, and various techniques

have been proposed to tackle this issue across di↵erent domains. However, when it

comes to textual data, especially in the context of toxic language detection, existing

methods face challenges. Traditional data imbalance techniques, such as oversampling

or undersampling, may not be directly applicable to textual data due to its unique

characteristics. Moreover, the nature of toxic language data often involves intricate

linguistic nuances, making it di�cult to apply standard resampling methods e↵ectively.

In light of these challenges, there is a growing need for specialized techniques in data

augmentation tailored for textual data, which can help alleviate data imbalances

and enhance the performance of toxic language detection models. Hence, we further

explore text data augmentation techniques, particularly those designed for balancing

datasets to improve online toxicity detection.

39

Figure 2: Taxonomy of Text Data Augmentation Techniques

3.4 Text Data Augmentation

Text data augmentation (TDA) involves generating additional training data from exist-

ing data, thereby expanding the dataset available for training classifiers or classification

models [204]. Unlike image data augmentation, where simple transformations such

as rotation and translation easily preserve the original label, these methods for TDA

present a greater challenge in maintaining the original label after perturbations [205].

In recent years, researchers have proposed both unsupervised and supervised TDA

methods, generating synthetic data through advanced techniques, where unsupervised

methods do not rely on labeled data and supervised methods utilize labeled data

for augmentation [204]. The taxonomy of TDA techniques is illustrated in Figure 2,

accompanied by a summary of citations included in Table 1. Comprehensive reviews

of TDA methodologies can be found in survey papers, such as [205]–[207]. These

surveys provide an in-depth synthesis of the field. TDA encompasses diverse strategies

40

applied at di↵erent levels, including character, word, sentence, and document levels.

At the character level, techniques involve Textual Noise Injection and Spelling Error

Injection. Moving to the word level, augmentation includes the introduction of spelling

errors, random deletion, replacement using the thesaurus, swapping word order, and

embedding replacement. In the realm of toxic language, a specific instance involved

replacing words with their synonyms [208] using word embeddings such as Word2Vec

[209], GloVe [112], Fattest [114]. Word replacement can also be performed using

features obtained from ConceptNet relations and their descriptions extracted from

Wikidata [210].

Expanding to larger units, such as phrases or sentences, TDA incorporates trans-

formation, paraphrasing, and sentence generation. These techniques can be further

segmented into specialized methods. For instance, back-translation involves translat-

ing a sentence from one language to another and then translating it back into the

original language. The back-translation method was employed for data augmentation

in the context of hate speech and cyberbullying, involving the initial translation of

English text to German and then translating it back to English [220]. Syntactic

tree transformations [221] are additional techniques applied at this level. Moreover,

the generation of new sentences is achieved through advanced approaches, including

Generative Adversarial Networks (GANs) and generative language models. These

models contribute to the creation of diverse and contextually relevant text during

the augmentation process. As an illustration, generative language models such as

Generative Pretrained Transformer 2 (GPT-2) [222] were employed to generate extra-

textual samples for the minority class by fine-tuning on existing minority class samples

[223], [224]. ToxiGen, a large-scale dataset of toxic and benign statements about

minority groups, generated using a demonstration-based prompting framework and

an adversarial classifier-in-the-loop decoding method [163]. They demonstrate that

41

Table 1: Summary of Text Data Augmentation Techniques with Citations

TDA Level Method Reference

Character Level
Textual Noise Injection [207]

Spelling Error Injection [207]

Word Level

Spelling Error Injection [211]

Replacement Using Thesaurus [212]

Swapping Word Order [213]

Embedding Replacement [214]

Sentence Level

Interpolation [214]

Structure [215]

Grammar Error Injection [216]

Back-Translation [205]

Syntactic Trees Transformations [207]

Generation- Language Model (LM) [217]

Generative Adversarial Network (GAN) [218]

Paraphrasing - Language Model (LM) [219]

42

ToxiGen improves the performance of toxicity classifiers on human-written data and

can also help fight machine-generated toxicity. Leveraging the extensive ToxiGen

dataset, ConPrompt introduces an innovative pre-training strategy tailored for implicit

hate speech detection. Through contrastive learning and prompt-based positive sam-

pling, ConPrompt, embodied by ToxiGen-ConPrompt, emerges as a leading solution.

Experimental findings undeniably demonstrate ToxiGen-ConPrompt’s superiority

over established models including HateBERT and BERT, showcasing its exceptional

generalization and bias mitigation [225].

In certain studies, researchers assigned the minority class label to each newly

generated sample [226]. Alternatively, in other studies, the classifiers were fine-tuned

for toxicity detection, and only the samples identified as toxic by the classifier were

retained after analysis [227]. To ensure that augmentation samples capture target

class features, using o↵-the-shelf language models is limited due to their undirected

and random generation, as noted by Liu et al. [228]. In response, they presented Data

Boost, a text data augmentation framework guided by reinforcement learning and

based on an o↵-the-shelf language model (GPT-2). The approach involves computing

a Salience Score for each word and selecting the top-N highest-scoring words as the

salient lexicon for the target class label. Lee et al. [229] explore alignment algorithms,

particularly Direct Preference Optimization (DPO), and their role in reducing toxicity

in pre-trained language models such as GPT-2-medium. Their research delves into

toxicity representation and elicitation in these models, showcasing how DPO can curb

toxic outputs while preserving learned abilities. Furthermore, they present a method

to revert models to toxic behavior, underscoring the significance of understanding

alignment algorithms in natural language processing.

Comprehensive utilization of these techniques not only aids in overcoming over-

fitting but also enriches the input feature range, enhancing the overall robustness of

43

classification models [230], [231]. However, current methodologies for data augmen-

tation exhibit significant limitations and remain imperfect. For example, labeling

all generated samples with the minority class label [226] is flawed because it does

not guarantee the preservation of the intended target class label or ensure that the

generated samples adhere to the characteristics of their supposed label. Furthermore,

analyzing the toxicity of generated samples using a classifier trained on the same data

used for fine-tuning generative language models may introduce bias, given its lack of

data agnosticism and potential ine�cacy on diverse datasets [232]. In addition, there

is a common deficiency in instruction fine-tuning of large language models (LLMs)

for specific tasks. In the context of conditional generation, the proposed reward

function, which employs Salience Gain [228], tends to prioritize token similarity over

toxicity level and may exhibit limited improvement in tasks involving challenging

class modeling. Moreover, it faces challenges in extracting explicit lexical features

for metaphor, sarcasm, and formality. These techniques may struggle to e↵ectively

implement data augmentation, particularly on a large scale, especially for unstructured

sample sentences from social media. Additionally, generated samples may deviate from

the intended scope of the work, possibly leading to hallucinatory outcomes [233]–[235].

To address these limitations, we propose a sentence-level data augmentation technique

based on paraphrasing. In this approach, we employ fine-tuning a pretrained Large

language model (LLM) through instruction specifically for the task of text paraphras-

ing. We optimize the model by using reinforcement learning to generate toxic samples.

Additionally, data-agnostic models are used to assess the toxicity of generated sam-

ples, enabling the assignment of toxic rewards accordingly. This approach is suitable

for generating samples at a large scale and has demonstrated superior performance

compared to other data augmentation techniques, such as back-translation.

44

3.5 Challenges in Online Toxicity Detection

Little scholarship exists exploring the limitations of innovative techniques for ad-

dressing antisocial behaviors. Some existing studies have examined natural language

processing (NLP) techniques for automatic hate speech detection while also recog-

nizing and addressing their limitations [236]. Others have explored the reliability of

pretrained large language models (LLMs), assessing their e↵ectiveness in decision-

making tasks that involve aspects of uncertainty, robust generalization, and adaptation

[237]. Furthermore, a comprehensive analysis of the risks associated with LLMs has

been conducted to better guide responsible innovation [238]. This analysis draws

from various fields, including computer science, linguistics, and social sciences. The

examination and consideration of uncertainty in ML techniques, including the realm

of online toxicity detection, have prompted the proposal and application of methods

designed to address this issue [239], [240].

Despite these e↵orts, there is uncertainty about the e�cacy of ML techniques in

detecting and managing toxic speech. Notably, the presence of biases in both data and

algorithms poses a significant issue, potentially resulting in increased discrimination

[241]. Bias in datasets causes posts from minoritized groups to be over-flagged

(false positives (FPs) identifying toxicity when none existed) [242]. Furthermore,

research has concentrated predominantly on textual content, and the conclusions

drawn about uncertainty in toxicity detection using ML techniques for textual posts

may not necessarily apply to multimodal content. Consequently, a comprehensive

understanding of uncertainty in identifying toxic multimodal content is necessary.

Deploying ML techniques at the platform level poses broader challenges. Some

studies indicate that considering the prediction uncertainty of neural networks fa-

cilitates detecting complex text inputs. This includes short or lengthy texts with

45

less informative tokens and potentially incorrect predictions, which requires manual

verification. Google’s Jigsaw team [19] presented Collaborative Toxicity Moderation

in the Wild (CoToMoD), a benchmark to assess the e↵ectiveness of systems involving

both ML models and human moderators. They introduced principled metrics such

as collaborative accuracy of the oracle model (OC-ACC), collaborative area of the

oracle model under the receiver operating characteristic curve (ROC) (OC-AUC) and

review e�ciency, which evaluate the performance of the system in utilizing human

attention and decisions, going beyond traditional predictive performance or uncertainty

calibration measures.

Obstacles to e↵ective ML detection occur at various stages of content moderation.

We start by examining challenges related to obtaining labeled datasets, which can

introduce uncertainty and impact prediction accuracy. Following that, we delve into

the modeling approach, covering both training and testing phases.

3.5.1 Challenges in Data Preparation

ML techniques, particularly supervised learning, are valuable tools for detecting online

toxicity [125]. The initial and crucial step in these techniques involves data collection,

which, in the context of online toxicity, entails gathering data from various platforms.

Social media platforms have a global reach, empowering people worldwide to create

profiles. However, the pattern of use di↵ers among regions, with certain platforms

being more popular in one region than another, and others being outright banned by

federal governments. This regional variability in use patterns adds a layer of complexity

to analysis but does not significantly impact the diverse user base across social media

platforms. The diversity results in vast amounts of unstructured and multilingual

content being shared every second on social media platforms, rendering its management

exceptionally complex. Once a dataset is collected and cleaned, it needs to be reviewed

46

and labeled by annotators to be used for training classifiers. This task itself has many

challenges. Many datasets are publicly available for toxicity detection, including the

Jigsaw Toxicity Dataset [243], which involves Wikipedia comments labeled by human

annotators, and ToxiGen [163], comprising a large-scale machine-generated dataset

that addresses adversarial and implicit hate toward minority groups. However, precise

guidelines on how these datasets were annotated are not available. In some cases, tools

such as Google’s Perspective API 2, HATECHECK 3 or pretrained models including

HateBERT [244] are used to annotate the dataset. However, they may not perform

perfectly, indicating that the labeled dataset may not be perfectly accurate and can

potentially introduce bias [29]. Therefore, for each specific task, a rubric is required for

annotation. A rubric is a set of guidelines on how specific words should be interpreted

in di↵erent contexts. However, this guide document is not enough to ensure unbiased

annotation of potentially toxic posts. Annotators need an ethical framework to direct

the task. Two additional challenges relate to the annotators themselves. Human

annotators are sometimes exposed to violent and disturbing content, which often has

a hidden human cost. These annotators are often paid far less than the prevailing

minimum wage and below a living wage [245], [246].

These poor working conditions compound the second challenge human annotators

face, which is having su�cient identity knowledge of the target of antisocial behavior

to accurately identify toxicity. For example, when detecting toxic comments against

LGBTQIA2+ people, the annotators should ideally include people from that group to

review the provided dataset and label each sample according to the rubric. However,

detailed demographic information on the annotators is rarely available. Moreover,

another significant challenge arises from the ambiguity that exists between various

forms of toxic language, including hate speech and o↵ensive language. In addition,

2https://perspectiveapi.com/
3https://hatecheck.ai/

47

annotating multilingual datasets are also challenging. Many ML algorithms are

trained primarily on English-language data, leading to potential shortcomings in

their performance when applied to other languages. Furthermore, these models

often struggle to accurately identify subtle content in statements that carry multiple

meanings. An illustrative example is the challenge posed by dog-whistle phrases in

various languages. A dog whistle refers to a pejorative term deliberately crafted to be

discernible only by individuals actively engaged in discrimination against a particular

group while remaining undetected by the general population—those who neither

experience discrimination in this manner nor partake in discriminatory behavior [247].

Deep learning (DL) and transformer-based models have demonstrated e↵ective

results in identifying toxic content [122]. However, they may also worsen the problem

of data bias since these models rely heavily on large amounts of training data that

may not be inclusive of all user groups [25]. Although LLMs have recently shown

impressive capabilities in a wide range of applications and tasks, including natural

language understanding, generation, and translation, it is important to note that they

can also inherit biases from the training data, as these data can mirror the societal

biases present during their collection. One potential remedy to inherited data bias is to

create models with logic awareness. Adam et al. [248] conducted a study to determine

if language models that incorporate logic-awareness could successfully mitigate the

presence of harmful biases. Their findings revealed that when a language model lacks

explicit logic acquisition, it often displays a significant degree of biased reasoning,

while, integrating logic learning into the language model can decrease.

Rule enforcement is another approach to reducing antisocial behavior. Platforms

work to keep users safe by enforcing rules such as removing toxic posts or suspending

accounts from users who frequently engage in hateful conduct. However, it is not

clear if suspending users who behave badly reduces the overall prevalence of toxic

48

speech online. Suspending an account may encourage bad actors to migrate to other

platforms with fewer rules. Ali et al. [249] analyzed posting behavior on Twitter

(now called X) and Reddit and compared the same individuals’ content on Gab, a

site known for promoting hateful conduct and not enforcing behavioral rules. The

results of this comparison revealed that users exhibited increased toxicity when they

experienced suspension on one platform and were compelled to migrate to another.

Additionally, their level of activity rises, leading to a higher frequency of posts.

In terms of the process of managing online toxicity, removing toxic content,

and suspending users are critical moments because these actions have important

consequences. Content moderation involves both people and ML models working

together. For instance, the model can pick outposts that probably break the rules,

and then human moderators can take a closer look at them. Accurate classification is

crucial in this situation. If toxic content is mistakenly identified as nontoxic (FN),

users will see harmful content (even if they have settings to prevent this). Moreover,

having a high number of FPs or FNs can lead users to disengage from discussions

and become less active on these platforms. In addition, over-flagging content as toxic

can also drive users away, as it is likely that many of their posts will be marked as

toxic,discouraging them from posting or commenting due to the high chance of their

content getting blocked. Jhaver et al. [250] examined how Reddit users responded to

the platform’s moderation process. Their findings showed that 18% of the participants

agreed that their posts were correctly removed, 37% were uncertain about the reasons

behind their post removal, and 29% expressed frustration regarding the removal of

their posts.

49

3.5.2 Challenges in Model Construction

After preparing the dataset, the subsequent step involves training and testing the

model, where the importance of a well-prepared dataset cannot be overstated. Quality

and quantity both play vital roles in this phase. To ensure the reliability of results, it

is imperative to maintain a near balance in the number of samples across di↵erent

classes, creating a balanced dataset. Datasets with imbalanced class distributions

pose a frequent challenge across various classification tasks [102]. This issue is

particularly challenging in the domain of toxic language detection because toxic

language is typically less frequent when compared to nontoxic language [26]. As an

example, consider a dataset of 100,000 tweets gathered from Twitter (now called X),

where the proportion of toxic tweets was relatively low, accounting for approximately

5% (around 5,000 instances), while the majority of the data consisted of nontoxic

content [71]. Consequently, this data imbalance can result in models excelling at

recognizing nontoxic language but struggling with identifying toxic content. This

issue can be compounded by the use of self-reported data or crowd-sourcing for

annotation, which may not accurately reflect the diversity of toxic language used

online [27]. Moreover, proposed techniques may be limited by the very nature of

language itself. Sarcasm, irony, and other forms of figurative language can be di�cult

for algorithms to detect [28]. Various solutions have been proposed to address class

imbalance issues at both the data and algorithmic levels [184]. At the data level, these

solutions involve di↵erent types of resampling, such as random oversampling, random

undersampling, directed oversampling, directed undersampling, oversampling with

informed generation, and their combinations [173], [251], [252]. At the algorithmic

level, solutions include adjusting class costs, adjusting the probabilistic estimate at the

tree leaf, adjusting the decision threshold, and recognition-based learning [253], [254].

While these techniques have shown promising results in improving the performance

50

of models on imbalanced datasets, they also have limitations. Oversampling and

undersampling can lead to overfitting and underfitting, respectively, and may not

work well when the dataset is extremely imbalanced [255]. Cost-sensitive learning

requires accurate estimation of the misclassification costs, which may be di�cult in

practice [200]. These oversampling techniques are particularly e↵ective in image data

but may not perform optimally with textual content. Therefore, data augmentation

methods, such as synonym replacement, back-translation, and text generation, have

been introduced, primarily tailored to address these limitations in textual data. While

employing back-translation techniques can enhance accuracy by balancing the dataset,

it is crucial to acknowledge that this approach may still lead to a significant number

of false detections, which can be prohibitively costly in real-world applications [220].

The occurrence of misclassifications highlights an additional challenge, which is closely

tied to the existing evaluation metrics. The most frequently used evaluation metrics

encompass accuracy, precision, recall, and the area under the ROC curve (AUCROC).

These metrics e↵ectively measure the model’s performance on training and testing data

but may not accurately reflect how the model will perform in real-world applications.

In the work done by [29], they provided evidence that an adversary can make subtle

changes to a highly toxic phrase, causing the system to assign a significantly lower

toxicity score. Their experiment involved applying this method to the sample phrases

provided on the Perspective website, consistently reducing the toxicity scores to the

level of nontoxic phrases. This finding underscores the detrimental e↵ect of adversarial

examples on the usability of toxic content detection systems.

Another challenge to address is the requirement for high throughput, particularly in

the context of toxicity detection due to the enormous data flow received every second.

While throughput is a critical aspect of ML techniques, in general, it holds even greater

significance in the realm of toxicity detection. In a study by [32], it was found that

51

although DL algorithms achieved high accuracy in detecting hate speech, they also had

high latency and low throughput, making them unsuitable for real-time applications.

This implies that the models we develop should not only be highly accurate, but

also exceptionally fast, as users expect their posts and comments to appear for their

followers within seconds. The most proposed techniques in the literature are tested in

laboratory conditions on relatively small datasets and timescales, where processing

speed is not an urgent consideration. To implement these models at a platform level,

their performance must be characterized at large scales and in real-time. At present

no/only one/few published articles engage with platform-level performance, and only

one considers processing speed. Ensuring that toxicity detection techniques perform

adequately at scale requires constructing measures of uncertainty along with the

development of reliable performance evaluation metrics that fully consider uncertainty

continues to be an ongoing concern.

3.6 Humans and Machine Learning: A Team Ap-

proach to Detection

Our exploration of the methods available to limit toxic speech online revealed that

both ML techniques and human intervention are necessary through the process of

data collection, annotation, analysis, and action.

While data collection processes are easily automated, human annotators are still

vital in enabling any ML technique to operate on data. While automated toxicity

detectors exist, our analysis and others have shown that these have very low reliability.

A human annotator must interact with content to understand its meaning within a

context and community. But while these human annotators are needed to enable this

process, their jobs are not well remunerated, nor are they pleasant for the person who

52

must sift through toxic content. Once trained, several approaches can do a relatively

e↵ective job of identifying toxic posts.However, certain techniques are necessary to

limit data bias that can inadvertently over-flag posts from marginalized communities.

Human intervention is again needed to verify automated detection approaches and

to make more permanent decisions such as content removal or user suspension (or to

verify automated decisions on these topics).

Given the sheer volume of posts that are made within and across platforms, the

consequences of FPs and FNs from automated detection methods seem unacceptably

high. But so do the social and ethical implications of hiring human annotators.

What other solutions exist beyond these two poles? Individual users can take

action to protect themselves from toxic speech. This can include settings to prevent

inappropriate or o↵ensive images from showing, as well as muting or blocking problem-

atic posters. Groups of people also create block lists to create safe online experiences

for communities with common values or identities. Some platforms also allow di↵erent

levels of sharing for identified groups.

We then have three possible approaches: 1) individual protective measures, 2)

human-based measures by the platform, and 3) automated approaches. All these

approaches involve some level of tradeo↵—time and e↵ort for individual protective

measures, harm and low pay for human annotators, and risks of bias and FPs and

FNs for automated approaches. What can be done to mitigate these risks?

Improve Working Conditions for Annotators and Human Mod-

erators

Gig-based approaches, such as those monetized through the Amazon Mechanical Turk

program, have found a way to provide a technological version of piecework, a classic

way to underpay workers by paying them a low rate for a unit of work, rather than

53

paying a fair wage per hour. Because online work can cross international boundaries,

they can find workers willing to take poor wages to annotate toxic posts. But contract

work plays other critical roles for social media platforms. Contract workers are the

first line in content moderation and face serious mental health consequences due to

the violent and disturbing content that they remove [256]. Workers are forced to sign

nondisclosure agreements (NDAs) which prevent them from sharing the horrifying

nature of their working conditions. Again, the global reach of the internet allows for

platforms to hire contracting companies to pay workers in the global south less and

provide them with fewer protections [257].

Develop Social Media Platform Cultures that Prioritize Care

and Respect

Platforms, like other communities, have cultures. We recognize certain platforms

for very high levels of toxicity (Gab, 4Chan, 8Chan, and TruthSocial), but online

spaces also exist that prize kindness and good conduct. Reddit is an example of

collectively managed communities that manage to enforce their own norms of behavior.

One insight into these communities is that they may be connected through common

interests, and, therefore, have stronger potential bonds and common values. For

example, Wattpad [258], a networking site where authors can share work in progress,

or Reddit subcommunities like r/fountainpens which bring together people with niche

interests. At the same time, community-based platforms can clearly have other cultures

and prioritize other types of behavior. However, these examples may provide some

insights into how platforms can become kinder places.

54

Improve Algorithmic Approaches

LLMs have improved at an astonishing pace. While detection methods are improving,

they are still beset by a number of challenges including misidentification, and di�culty

in di↵erentiating sentiment and toxicity in specific contexts. The ways to address

these shortcomings are not immediately clear.

Hire Adequate Sta↵ at The Platform Level and Treat Them

Decently

Recent cuts across a swathe of social media companies have given rise to concerns

that platforms will lack the resources to combat serious threats such as disinformation,

false information, and online toxicity [259]. X, in particular, has seen a rapid rise in

disinformation and toxicity [260], [261]. The cultures of the social media platform

organizations themselves have influences on their employees. Just as poor working

conditions and pay for gig workers who annotate posts for ML influence the quality of

annotation and raise ethical concerns, the toxicity of the corporate culture at X under

the new leadership influences the performance of workers employed by the platform.

Just like anyone else, the human annotators, programmers, and sta↵ tasked with

removal and suspension decisions need safe and stable work environments.

3.7 Human Role in Machine Learning

A common narrative of artificial intelligence (AI) processes states that the human

element can be removed from work, including decision-making as well as boring,

repetitive tasks. However, this review of the process of online toxicity detection

demonstrates how much this narrative leaves out. Toxicity detection begins with

55

dataset annotation that is typically carried out by human annotators (a boring,

repetitive task). Although pretrained tools are employed in some instances, human

analysis and intervention are often necessary due to the imperfect accuracy of these

tools, rea�rming the central role of human annotation in the process. The ML tasks

only begin once annotation is complete, when the classifier can be trained and tested

on a small dataset.

These techniques are then applied to user-generated content to distinguish between

toxic and nontoxic content. In some cases, potentially incorrect classifications are

forwarded to human moderators for content removal decisions. In other words, a

human worker retains decision-making in the moderation process. The classification

results are of utmost importance, with both FPs and, in particular, FNs incurring

significant costs. Both human annotators and the ML algorithms produce errors.

Moreover, results from our lab and others indicate that ML techniques for annotation

without a human user are prone to much higher error rates. This means that for the

near future, human involvement remains integral to the moderation process to tackle

toxicity. However, it is crucial to emphasize the importance of prioritizing human

safety within the moderation framework. That means that for the near future, humans

remain a critical part of the moderation process used to control online toxicity, but

these humans need protection: for all the talk about AI safety, human safety should

be a priority.

After a thorough review of the literature, we have identified three main problems

that this thesis will address with proposed solutions:

Uncertainty in Practical Application of Toxicity Detection Techniques:

While numerous techniques for detecting toxicity exist in the literature, it is often

unclear how and when they add value to di↵erent tasks or how they perform in

complex real-world settings. These algorithms are typically tested in simplified

56

experimental setups that do not accurately reflect the complexity of large-scale social

media environments. This limitation makes it di�cult for social media companies to

predict the cost and e↵ectiveness of these algorithms when deployed at scale in real-

time. Consequently, there is a lack of information that hinders widespread adoption

and places additional testing burdens on companies.

Moreover, algorithms have distinct features such as diverse formulations, computa-

tional times, and memory footprints. Their performance can vary across social media

platforms with di↵erent toxicity levels, influenced by the user’s network and reach.

Algorithms can also exhibit biases, inadvertently flagging content from certain groups

more often than others, leading to unfair treatment and reduced user trust.

To address these challenges, Chapter 4 presents a pioneering e↵ort that prioritizes

the creation of high-accuracy deep learning models with fast processing capabilities,

managing a significant number of data points per second. This chapter introduces

an innovative simulation framework to help social media companies strategically

choose e�cient classifiers across varying toxicity levels. This framework considers

operational costs, advertising revenue, user satisfaction, and advertisement visibility.

Recognizing the influence of toxicity detectors on user satisfaction and revenue, the

study highlights the importance of considering more than just accuracy when selecting

a toxicity classifier. User satisfaction and engagement are crucial elements that impact

revenue generation. The framework also addresses scalability issues, ensuring solutions

are e↵ective and e�cient even as the data volume grows.

Imbalanced Datasets in Toxicity Detection: The literature shows that

imbalanced datasets can significantly impact the performance of classification tools,

particularly in toxicity detection tasks. Addressing this imbalance is crucial for

improving classifier performance. Existing methods predominantly utilize supervised

approaches, which heavily depend on labeled datasets. This poses a challenge due to

57

the inherently imbalanced nature of toxic language datasets [262].

Hence, Chapter 5 aims to tackle the imbalance in toxic datasets to enhance classifier

performance in toxicity detection by fine-tuning large language models (LLMs) using

reinforcement learning from human feedback (RLHF) section 2.4.

Challenges in Current Moderation Systems: Current moderation systems

employ a combination of human moderators and automated tools using machine

learning algorithms. However, these systems often struggle to balance classification

accuracy and speed, leading to frequent misclassifications. This increases the workload

for human moderators and results in longer overall process times.

Therefore, Chapter 6 introduces an innovative deep reinforcement learning (DRL)-

based framework for dynamically selecting classifiers in toxicity detection. The

framework is designed to deliver both high-throughput and precise solutions, enabling

rapid and accurate identification of toxic content amid the vast volumes of data

exchanged on online platforms every second.

58

Chapter 4

A Profit-driven Simulation (PDS)

Framework for Comparison of Deep

Learning Models for Real-time

Toxicity Detection in Social Media

This chapter is dedicated to the article entitled “A Profit-driven Simulation (PDS)

Framework for Comparison of Deep Learning Models for Real-time Toxicity Detection

in Social Media”. This article is under review by ACM Transactions on Knowledge

Discovery from Data. The titles, figures, and mathematical formulations have been

revised to keep the coherence through the manuscript.

59

The growing prevalence of toxic comments in social media has heightened the need

for a safe and inclusive online environment, where the automatic and swift detection

of such behavior is crucial for enhancing user satisfaction and engagement. Most of

the existing toxicity detection techniques in the literature are mainly evaluated by

performance metrics such as accuracy and F-score. However, key algorithmic aspects,

such as throughput and the potential impact of false positives and false negatives on

user engagement, are often overlooked. Moreover, the operational characteristics of

these algorithms are typically tested in simple experimental setups, which may not

accurately reflect the complexity of large-scale social media environments. These simple

setups make it di�cult for social media companies to predict the cost and e↵ectiveness

of these algorithms when running at scale in real-time environments. To address these

drawbacks, this study presents a novel profit-driven simulation (PDS) framework to

evaluate the e↵ectiveness and e�ciency of toxicity detection algorithms in complex

social media environments. This PDS framework enables us to evaluate the real-time

performance of toxicity classifiers by incorporating their e↵ectiveness, computational

costs, and user engagement level. We conduct comprehensive experiments to verify

the e↵ectiveness and e�ciency of the proposed PDS framework, employing multiple

Deep Learning (DL) algorithms including Convolutional- and Transformer-based.

More precisely, two variants are developed for each classifier: one highly accurate but

slower, and another with higher throughput but slightly less accurate. Our findings

demonstrate that the highest throughput classifier is the most profitable in low- and

high-toxic social media environments. On the contrary, the moderately accurate

classifier with acceptable throughput shows superior performance in a medium-toxic

environment. This finding highlights the significance of the proposed PDS framework

and emphasizes that there is no universally suitable classifier for all toxic environments.

60

4.1 Problem Statement & Contributions

Antisocial behavior on social media platforms is a serious social issue, with unequal

impacts across social groups [5], [6]. Toxic comments are a form of this behavior that

forces users to abandon conversations and may include insults, threats, hate speech, and

cyberbullying [7]–[9]. Fear of online abuse can lead to self-censorship and disengagement

from social media platforms [11]. In 2021, major online platforms promised to improve

their services to protect users, especially women, following widespread criticism that

existing mechanisms for harassment protection are inadequate [12].

Detecting toxic behavior in a timely and automated manner is crucial to ensure a

safe and inclusive online environment that fosters user satisfaction and engagement

[263]. Over the past decade, there has been tremendous growth in social networking

services, resulting in the creation of millions of data by platform users. On Twitter,

for instance, there are 192 million daily active users with an average of 6,000 tweets

per second, 350,000 tweets per minute, and 500 million tweets sent each day, while the

number rises to more than 140,000 tweets per second during certain events (natural

disasters, breaking news, etc.) [14]. The overwhelming flow of generated content

creates a significant challenge in real-time dissemination, computing, processing, and

analysis of the data. It is di�cult to e↵ectively process big data as a result of its

variety, velocity, volume, and value [15]. Various Deep Learning (DL) techniques have

been developed to counteract the spread of harmful content on social media platforms,

enabling them to successfully identify toxic content. However, implementing these

methods in real-time for every comment can be resource-intensive [17], [18]. The

speed of a detection model is critical for social media applications since users expect

real-time visibility of their content [16], [67]. Toxic content must be flagged and

hidden promptly to prevent its spread. This time-sensitive process poses a challenge

61

for existing methods, which may not be optimal when delays occur. To measure the

e↵ectiveness of a detection model, its accuracy is typically the main focus rather than

its real-time prediction speed, cost, or memory usage, although the ultimate objective

is to identify and address toxic content before it reaches users [264], [265]. It is obvious

that accurately flagging toxic content is crucial to prevent user churn, as wrongly

labeling nontoxic content as toxic or vice versa can lead to user dissatisfaction. This

highlights the importance of high-performing and accurate detection models [266].

Although a large volume of content is shared per second, most content is relatively

harmless, nontoxic, and knowledge-based, leaving only a small fraction o↵ensive, and

represent attacks on other users, individuals, or minority groups [69], [70]. This

di↵erential in rates of toxic and nontoxic content complicates the task of flagging toxic

content and increases the risk of false positives and false negatives. Moreover, the

most common method of identifying toxicity focuses on specific content terms within

exchanges, but this approach may not be su�cient to determine if the content is

truly toxic [267]. An example of this is how teenagers in North America use language

among themselves that may be considered toxic by adults [18]. Furthermore, when

addressing toxic content and toxic users on social media, it is crucial to acknowledge

the significant variation in responsiveness based on users’ follower and following counts.

Some users consistently post content and receive numerous comments per second,

while others rarely post or comment [268]. Hence, the diversity observed in social

media content and users underscores the limitation of relying exclusively on a single

classifier, particularly when its evaluation and selection are based solely on accuracy, to

e↵ectively address all cases on a platform. Consequently, the large-scale and dynamic

nature of social media platforms necessitates techniques capable of both e↵ective

and e�cient analysis of high-throughput streams of unstructured content in real-time

[269]. However, identifying the most suitable detector for di↵erent scenarios poses a

62

significant challenge.

This chapter proposes a novel approach to determining the most suitable model

for detecting toxic content, o↵ering the following contributions:

• A novel profit-driven simulation (PDS) framework is proposed to evaluate

the e↵ectiveness and e�ciency of toxicity detection algorithms across di↵erent

toxicity levels in social media environments.

• The proposed PDS framework can identify the most profitable detector that can

accurately detect toxic content, at the lowest cost, within a reasonable time, and

the highest level of user engagement under di↵erent possible circumstances.

• A profit model tied to this simulation approach is designed to identify the most

lucrative toxicity classifier for various environments on social media platforms.

• This framework considers user satisfaction as a critical factor when selecting

the optimal detector for di↵erent environments under realistic scenarios. It

highlights the significance of false positive and false negative predictions, which

lead to user churn.

To the best of my knowledge, our approach is the first to reveal that evaluation

metrics such as accuracy and F score are inadequate to e↵ectively and e�ciently identify

toxic content on social media. Additional considerations encompass computational

cost, real-time data processing at scale, and the influence of detector performance

on user engagement must also be taken into account. Additionally, this chapter

categorizes toxicity into three distinct levels based on social media characteristics, and

the PDS framework can adeptly choose the most suitable detector for each of these

levels.

A brief preview of what will be covered in the following sections can be found below:

Section 4.2 presents a comprehensive overview of our methodology, while section 4.3

63

delves into the specifics of the experimental setup and explains how various toxicity

classifiers were fine-tuned and chosen to function as a detector in the PDS framework.

The results of the PDS framework are presented in section 4.4. This chapter concludes

with a summary of our contributions in section 4.5.

4.2 Methodology

This section delves into the intricacies of our POS framework, providing insights into

how it was developed. Initially, we highlight common features shared by most social

media platforms in Equation 4.2.3.2. Following that, we detail the simulation process

in subsection 4.2.3, explaining how we simulated various social media components and

assessed the impact of di↵erent classifiers on users and overall profit.

To illustrate the structure and features of the PDS framework, we begin by o↵ering

an overview of the input graph used in the simulation, along with how user behavior is

defined and controlled throughout the simulation (explained in subsubsection 4.2.3.1).

Subsequently, in subsubsection 4.2.3.2, we provide a comprehensive explanation of

how the simulation operates, covering the calculation of costs, revenue, and profit.

Finally, in subsubsection 4.2.3.3, we subject the simulation to null cases to validate

its accuracy before employing it for experimentation.

4.2.1 Generic Social Media Model (GSMM)

We will briefly cover some of the common features shared by most social media

platforms (see Figure 3). The primary feature is the user who can create and share

information on the platform. After creating an account, users can set up a profile,

and they are then considered part of the platform’s user base. Users can choose to

leave the platform at any time and return later. In addition, they have the option to

64

follow or unfollow other users, with each user having a list of followers and followings.

The list of followers shows users who follow the user, while the following list displays

users that the user follows.

A post, also known as user-generated content, can be in the form of text (un-

structured), visual, or audio. Users can view posts generated by other users in their

following list and interact with them by reacting or replying. Social media platforms

o↵er various ways for users to react, such as commenting to express opinions, o↵er

praise, disagree, ask questions, and participate in online conversations about social

content. Credibility is another significant feature of social media, where users can

indicate their agreement or disagreement with a post using features such as “Likes”

on Facebook or “Retweets” on Twitter, which also facilitate the dissemination of

information.

On a page called the front page, users can find a list of the most recent posts

from their following list, which are available for a specified period. Meanwhile, the

trending page showcases the most popular posts determined by a generic algorithm

that takes into account factors such as the time since the post was made and the

number of comments or likes it has received.

The maintenance of social media platforms greatly relies on advertisement

revenue as their primary funding source [270]. For example, Google discloses an

annual advertising revenue of $50.57 billion, which represents 91% of their yearly

earnings. Furthermore, according to a report by Statista 1, advertising constituted

98.3% of Facebook’s revenue and 84% of Twitter’s revenue in the first quarter of 2021.

Taking these general features into account, we simulate the social media environ-

ment. Further details on the development and simulation process are outlined in

subsection 4.2.3. It is important to note that, while we utilize these generic features

1https://www.statista.com/statistics/279456/share-of-revenue-of-facebook-by-source/

65

https://www.statista.com/statistics/279456/share-of-revenue-of-facebook-by-source/

in our study, they may vary for di↵erent platforms.

Figure 3: The architecture of social media

4.2.2 Environments

As discussed in subsection 3.1.1, it is evident that social media is not uniformly toxic.

Numerous factors play a direct role in influencing users’ encounters with or the creation

of toxic content.

Initially, the likelihood of users engaging or receiving toxic content hinges on

their network a�liation and follower/following ratio. Within the realm of social

media, symmetric connections, where users mutually follow each other and often share

mutual friends, are commonplace, termed as friendship networks. In this context, the

66

likelihood of encountering toxic content is notably low, although not completely absent.

Essentially, toxic interactions are less probable between individuals who share direct

connections such as friendships, family ties, work associations, and more. However,

such instances can still arise due to di↵ering viewpoints, competition, and aspirations

for status.

Another essential aspect to consider is the reach rate, which measures the number

of users who come across content from an account. Some users receive many comments,

reactions, or reposts, which brings their posts to the attention of a wide audience [268].

For instance, this is often the case with celebrities, influencers, and public figures,

commonly referred to as “high-reach” users in this chapter, who have substantial

reaching rates from both followers and non-followers. Whether these users encounter

hurtful comments depends on their expertise and their audience. Influencers, activists,

and politicians, for example, are more likely to face such negativity. Also, users who

post a lot, especially those who get into arguments, are more likely to be attacked

or criticized. As the reach rates increase, these users become more vulnerable to

encountering toxic content, even if they themselves generate less toxic content. It is

exceptionally uncommon for high-reach users to respond negatively to comments from

their followers

Moreover, for high-reach users, the balance between the number of their followers

and the limited number of accounts they follow is another crucial aspect in addition

to the reaching rate. These users often have a significantly larger number of followers

compared to the few accounts they follow. This discrepancy increases the chances of

encountering toxic comments. In a broader context, interactions that involve users

who lack any previous connection, indicating that they do not follow each other, tend

to be more toxic. The concept of reaching rates is also applicable to the content they

share. High-reach users’ posts, along with public content and trending pages, typically

67

reach a larger audience compared to personal posts from users with fewer followers

or private accounts. As a result, both creators of widely seen posts and users who

frequently comment face an increased risk of encountering toxic content. In summary,

environments characterized by frequent highly visible posts often exhibit a higher

frequency of toxic occurrences.

Hence, the varied nature of toxicity within social media underscores the necessity for

an appropriate toxic content detector that e↵ectively aligns with this diversity. A single

detector cannot reliably perform optimally in di↵erent environments. Additionally, the

implementation of classifiers customized for each specific environment has significant

potential for profitability for social media companies. Subsequent paragraphs will

delve into this hypothesis with more comprehensive details.

Consequently, we define three levels of social media toxicity: low, medium, and

high, determined by factors such as the user network and the reach rate. Within these

toxicity tiers, we will evaluate the e↵ectiveness of the detectors in diverse settings.

4.2.3 Social Media Profit Simulation

4.2.3.1 Input Graph and User Behavior

Our consideration involves a group of users connected to each other, with their own

list of followers and followings. Users can create posts visible to their followers, and

interact with posts by reading, liking, and commenting. We focus only on users who

do not want to be exposed to toxic content, although some users may view social

media as a platform for self-expression and do not mind encountering toxic content.

User engagement on online platforms can a↵ect the likelihood of encountering

harmful content, and personal attacks may lead to decreased activity or platform

abandonment [16]. Inaccurate toxicity detection systems can result in users receiving

multiple toxic messages (false negatives) and leaving the platform to avoid further

68

Figure 4: Di↵erent user disengagement reasons

exposure.

Disengagement from a platform can occur due to various reasons beyond user

sensitivity to harmful content. For instance, frequent post-flagging as toxic can lead

to disengagement, particularly when false positives are produced by the classifier.

While accurate blocking (true positive) may not significantly a↵ect user engagement,

the e↵ect of false positives can be significant. Classifier performance typically has a

significant impact on user engagement, with a well-functioning classifier potentially

increasing engagement. Simulation frameworks can be used to compare the impact

of di↵erent toxicity classifiers under various conditions and evaluation metrics. The

PDS framework assesses user behavior according to three factors that can cause

dissatisfaction with their social media experience (see Figure 4). It is important to

note that there is a pre-established limit for the number of posts received for di↵erent

reasons, and exceeding this limit may lead to user disengagement and platform

abandonment. The reasons are as follows:

69

Toxic posts: The simulation tracks the number of visible toxic posts (false

negative) received by users. If a user is exposed to too many toxic posts, they may

become disinterested in the platform and leave, resulting in zero revenue for the

company. User engagement is measured by the amount of time they spend reading

content each day, and a decrease in reading time may be a result of the platform’s

toxic content.

Blocked posts: The simulation records the number of blocked posts (true positive)

for each user due to the toxicity detector’s evaluation. If the detector is too stringent

in its assessment, it may block several posts that are not highly toxic, or if it is biased

in its classification of toxic content.

Accused Posts: The simulation records and keeps track of the number of false

positives for each user, where nontoxic posts are wrongly detected as toxic.

4.2.3.2 How the POS Framework works

The simulation system incorporates multiple inputs, such as the user graph, pre-trained

classifiers, and previously calculated predictions. As mentioned earlier, the user graph

comprises users, their followers, followings, and di↵erent sensitivity levels.

In order to simulate the real-time system used by social media, the PDS framework

involves the concurrent operation of three distinct threads, as illustrated in Figure 5.

Further elaboration on each of these threads is provided below.

Reader Thread: The simulation involves the replication of user activities such

as reading, commenting, and liking posts. To accomplish this, we have defined three

distinct states namely Waiting, Read Session, and Read Post. Initially, all users

are in the waiting state. They are subsequently assigned to their unique reading

session using a designated function. Each reading session contains all the new posts

70

available on the front page and the trending page, which are specific to each user. The

front page displays all posts created by the user’s followings, while the trending page

features popular posts whose creators are not on the reader’s followings list. Notably,

the trending page is dynamic and changes at the end of the simulated day. In order

to guarantee that all posts are available and not concealed, snapshots of the front and

trending pages are captured when a user enters the reading session. These snapshots

are later inspected to identify any posts that have been removed. Once a toxicity

detector is implemented to distinguish between toxic and nontoxic posts, some posts

may be hidden from the user based on the detector’s classification.

We made the assumption that users would first read all unread posts from the

people they follow before moving on to unread posts from the trending page, if time

permits. During the Reading session, the time spent by users is recorded. Reading

sessions are scheduled for a certain amount of time, and some users may read in many

small sessions throughout the day, while others may read in fewer or larger chunks. If

a user reads a post, they are moved to the next state, Reading post, and then return to

the reading session to read the next post. The time spent in the Reading post state is

also recorded. Users are permitted to follow or unfollow the creators of posts they are

reading. If a reader decides to follow the creator of an additional post while reading it,

their list of followings will expand during the simulation. As a result, the number of

posts that they can read will increase, potentially leading to a decrease in the number

of readers leaving their reading session early. Users can also like and/or comment on

each post during the reading session. A user’s engagement increases when they like or

comment on a post, while reading toxic content decreases their engagement. When

the allotted time for the reading session is over, the user returns to the waiting state

until they decide to check for updates and view generated content again.

For the creation of the trending page, we take into account the number of likes

71

(↵) and the number of comments (�) received by each public post, along with the

time it takes (�) to accumulate those likes and comments. This information is used to

compute the post’s score using the formula:

Score = ↵w1 + �w2 � �w3 (2)

where w1, w2, w3 > 0 and w1 + w2 + w3 = 1.

By ranking posts (created within a simulated time) in descending order based on

their scores, we select the top 100 posts as trending posts for updating the trending

page. The trending page is refreshed every simulated day and prior to users enter-

ing their reading session, the system checks if an update to the trending page is needed.

Poster Thread: It simulates how users create new content (toxic and nontoxic).

It only includes the Waiting state, where all users are present and can decide whether

or not to post. A time will be assigned for each user. Based on their unique prob-

ability of generating toxic posts provided by the user graph, a Normal distribution

(Gaussian distribution) determines whether the user creates a toxic/nontoxic post.

If the user decides to generate a post, then a post will be created. Moreover, the

system keeps track of the time per user for generating a post, indicating when each

post is generated. This means that the time interval between each post generated

by a user can be determined. It should be noted that prior to receiving newly gen-

erated posts from the Poster Thread, certain posts have already been forwarded to

the Reader Thread, providing users with some content to peruse during the simulation.

Detection Thread: which simulates detecting and hiding toxic posts in real-time.

This thread includes two states, Waiting and Processing. A detector is first in the

waiting state until it receives posts as input for classifying. Note that, all three threads

72

happen simultaneously, then the number of available posts for processing is di↵erent

every time. Additionally, we considered di↵erent batch sizes for detectors to take

input for classification, which resulted in di↵erent processing times.

Figure 5: Architecture for the POS Framework

In terms of time, the PDS framework runs in a squeezed time, where we can

simulate a long-running simulation within a short span of time, while still operating

in a real-time system. In addition, precalculation is done within the simulation to

speed up the system so that we can perform long-running simulations.

Social media toxicity is influenced by the user’s network and reaching rate. Toxic

73

content is less likely in friendship networks but still possible. Users with high-reaching

rates are more likely to receive toxic comments, especially on high-reaching posts.

Therefore, we have categorized toxicity into three levels: low, medium, and high, and

we will evaluate the detectors’ e�cacy in di↵erent environments across these three

levels of toxicity.

Finally, the outputs of the simulation include profit, revenue from user engage-

ment, costs of the machine for using classifiers, the number of users who did not leave

the platform, the number of uncreated posts (because the user left the platform), the

confusion matrix (error matrix) of the detection results, the total number of posts

created by users, and the total number of blocked posts because of toxicity. Note that

a confusion matrix is used to summarize the performance of classifiers. This method

is useful for measuring Precision, Recall, Accuracy, F1-score, and AUC-ROC curves

which will be explained later in Section 4.3.2.

Cost: We precompute the actual time that a detector takes to do the batch

computation and then using a linear transform between the two estimates the amount

of computation time will be calculated. To calculate the cost of a classification task

using instances, we first determine the total cost per second for an instance used to

run the batch classification. Then, the total cost for each classifier is calculated by

multiplying the cost per second of the instance used for batch classification and the

total detection time. In this context, Wi represents the cost incurred by instance i

when processing and classifying samples within a given time frame. Similarly, Tx,i

denotes the total time taken by classifier x running on instance i to complete the

classification of S samples. Therefore, the total cost for classifying n samples using

instance (i) per classifier (x) is given by the following formula:

Tx(t, s) =
X

s2S

ts (3)

74

• Tx,i(t, s) is the total time for processing S samples by classifier x.

• ts: time required for classifying sample s.

therefore the total cost is equal to:

C(x, i) = T ⇥W (4)

Revenue: As mentioned earlier in , advertising is the primary source of revenue

for social media companies. Consider that every post includes an advertisement, which

generates revenue per view when users view it. By acknowledging that every post

incorporates an advertisement, revenue is generated in accordance with the views it

accumulates from users. In other words, each view encompasses both content and ads,

and a higher number of views results in more revenue. This is due to the platform

receiving payments for showcasing advertisements to its users, e↵ectively leading to

increased revenue.

Assume Av represents the revenue earned per advertisement’s view.

Let u 2 Um is a user on platform m, and N(u, m) shows the total number of

views by user u on the platform m. Then

V =
X

u2U

N(u,m) (5)

V represents the total number of views on platform m that have been carried out

by U users. Thus, the total revenue generated from viewing posts is given by:

R = A⇥ V (6)

Profit: Profit can be calculated by subtracting the total cost from the revenue

generated.

75

Px,i = R� C (7)

Px,i represents the profit generated by classifier x, while the R and C determine

the revenue and cost associated with the application of classifier x using instance i,

respectively.

4.2.3.3 Null Case Verification

The main goal of this study is to identify e�cient techniques for addressing online

toxicity and increasing user engagement. Thus, using the PDS framework we will

test di↵erent scenarios to find the best solution per case. To ensure that the PDS

framework meets expectations, we first tested several null cases. All null classifiers

have zero computation costs, and all machines are the same type. The key parameters

for simulating null cases are presented in Table 2.

Perfect Detector (PD): Always returns the correct detection for Toxic/nontoxic.

Always Toxic Detector (AT): Returns the toxic for all detections.

Always nontoxic Detector (AN): Returns the nontoxic for all detections.

Random Detector (RD): Equally random chance of returning toxic/nontoxic

for all detections.

The Perfect Detector (PD) is the most ideal detector. It is unlikely that a user

will leave this platform because of toxic or accused posts. Nevertheless, blocking posts

may cause some users to leave the platform. It is important to note that revenue is

derived from views of posts, but not from hidden posts. Therefore, a perfect detector

does not generate more revenue since toxic posts will be blocked and no one will see

them.

The Always Toxic Detector (AT) is the worst detector. Due to the fact that no

post will be visible to users, it will generate zero profit in any environment. Users will

76

eventually leave the platform.

Always nontoxic Detector (AN) does not hide any toxic posts, then users who are

sensitive to toxic posts will leave the platform. It generates the most revenue because

all posts even toxic ones will be shown to users. The revenue decreases over time due

to users leaving the platform because of toxic posts. The worst case happens in a

highly-toxic environment, and the highest revenue will be generated in a slightly-toxic

environment.

Random Detector (RD) fails to function accurately. The posts are incorrectly

classified as toxic or nontoxic in this case. It is possible that some users will leave

the platform because of posts that are toxic but the classifier failed to detect them;

or because of posts that are falsely detected and blocked as toxic; or due to blocked

posts. The revenue generated by RD varies depending on the environment.

The simulation was run with a shrink factor of 100 ⇥, enabling it to model a week

of activity over the course of 6048 seconds, while incorporating 10,000 users during

the process. The use of a shrink factor in the simulation is a common technique used

to speed up the execution time of simulations. By reducing the scale of the simulation,

it is possible to run it more quickly while still maintaining the overall accuracy of the

results. In this case, the shrink factor of 100 allowed the PDS framework to execute

much more quickly than it would have if it had run at full scale, while still representing

a full week of activity. The four detectors were evaluated across environments with

varying levels of toxicity: from low toxicity, indicating approximately 20%, to medium

toxicity encompassing around 50%, and highly toxic environments comprising over

80%. In this case, zero cost is assumed, resulting in the profit being equal to the

revenue. As discussed, revenue is also generated based on the number of views

by users. To determine the revenue earned per view of an advertisement, Google

77

Table 2: PDS Framework Parameters for Null Cases Verification

Parameter Value

Shrink Factor 100 ⇥
Simulation Duration 604800 sec
Users 10,000
Ad revenue $0.0086
Cost 0
Low Toxic ratio ⇠20%
Medium Toxic ratio ⇠50%
High Toxic ratio ⇠80%
Machine Type Paperspace P4000

AdSense 2 was utilized. Selecting the North America region and the People and

Society content category would yield a revenue of $0.0086 per view, according to

Google AdSense. This projection suggests that 50,000 monthly views would generate

an annual revenue of $5,202. So all three threads (Poster, Reader, Detector) will begin

simultaneously. This results in some posts that are not analyzed by the detector and

are displayed to users as is. Table 3 shows the profit generated by each detector in

di↵erent environments.

The simulation results validate our null hypotheses across multiple environments

and confirm the reliability of the simulation. Apparently, PD o↵ers the best perfor-

mance and profitability regardless of the environment. AT, on the other hand, made

no profit because all posts were treated as toxic content and were hidden from users,

so they couldn’t be seen or read by other users. In all environments, AN outperforms

RD.

Figure 6 provides an overview of user fall over the simulation time. It is evident

that across all environments, the PD classifier demonstrates the lowest user churn rate

when compared to other classifiers. Specifically, PD exhibits the least user attrition in

the low-toxic environment, while experiencing the higher user churn in medium- and

2https://adsense.google.com/

78

https://adsense.google.com/

Table 3: Profit Variation Across Di↵erent Environments in Null Cases

Environment Detector Profit ($)

Low
Toxic

PD 381,990
RD 40,313
AT 0
AN 83,853

Medium
Toxic

PD 214,315
RD 13,568
AT 0
AN 23,044

High
Toxic

PD 146,164
RD 10,209
AT 0
AN 15,094

high-toxic environments. Moreover, AT and PD experience a sudden rise in user fall

at the beginning of the simulation, which then gradually increases. Similarly, RD and

AN show a notable number of users leaving, with a major churn of more than 7500

users taking place within the initial 2000 seconds, followed by a gradual increase.

According to Figure 7 which shows the number of users who left the platform per

second for various reasons, when PD is applied in all environments, users leave the

platform only because they get many posts blocked because of toxicity, not because

they receive toxic content or their posts are incorrectly blocked. AN, however, causes

many users to leave even in low-toxic environments due to no control over shared

content and toxicity. When AN is used, fewer users leave the low toxic environment

compared to medium/high toxic environments.

It was evident that AT blocked all posts, so users eventually left the platform after

their posts were blocked incorrectly or correctly and there were no posts for followers

to read. Additionally, more users left because of wrongly blocked posts in higher and

medium-toxic environments than in a low-toxic environment. As toxicity increases

(medium and high-toxic), the number of users who leave due to blocked posts by AT

79

Figure 6: User churn over the simulation period for Null Cases

80

Figure 7: The number of users left for di↵erent reasons based on the classifier used

increases, while the number of users who leave due to wrongly blocked posts decreases.

RD results in users leaving for all three reasons in all environments. In addition, a

higher level of toxicity leads to a larger number of left users who don’t wish to see

toxic content.

Users were tracked throughout the simulation and both their departure and reasons

were recorded. PD clearly outperforms other approaches, and the line chart shows

that it gradually increases over simulation time, even if it starts out sharply. Initially,

AT loses the most users, but their numbers gradually increase over time. In both RD

and AN, the maximum number of left users has finally been reached.

In general, the simulation outcomes illustrate that diverse classifiers’ e↵ectiveness

and e�ciency can be evaluated in a range of settings, and user engagement can be

tracked throughout the simulation process.

81

4.3 Experimental Setup

This section describes our experiment setup, including the toxic dataset for toxicity

detection, the graph dataset for our PDS framework, and the classifiers used in the

detection thread. We also explain the improvements made to the classifiers for higher

throughput and provide details on the computing resources and tools utilized in our

experiments.

4.3.1 Data Sets

4.3.1.1 Toxic text data set

We utilized a dataset from the Google Jigsaw team [271] to train our detectors. This

dataset comprises 159,571 Wikipedia comments that have been human-rated for

toxicity across six categories: toxic, severe toxic, insult, obscene, threat, and identity

hate. Additionally, the dataset contains comments labeled as nontoxic. For classifier

development, the dataset was randomly split into three sets: a training set (70%), a

validation set (20%), and a test set (10%).

4.3.1.2 Graph data set

To better reflect the typical behavior of social media users, a dataset consisting of

10,000 users was generated, with consideration given to various follower/following

ratios. The follower/following ratio, which is calculated by dividing the number of

users following an individual (followers) by the number of users they follow (followings),

can provide insight into the type of user on social media platforms [272]. Normal users

typically have an equal ratio of followers to followings, while celebrities or influencers

have a higher number of followers and a lower number of followings, resulting in a

high follower/following ratio. New or less active users tend to have a lower number of

82

followers and a higher number of followings. Fake accounts often have few followers,

while normal users tend to have identifiable followers such as family and friends. In

addition, profiles can be public or private, allowing users to choose who sees their

content. Popular content can be found on the trending page.

To ensure user engagement and retention, each user in the experiment was assigned

maximum sensitivity levels based on various factors. For instance, a toxic content

threshold was assigned to each user using a normal distribution (Gaussian distribution)

to represent their sensitivity to toxic content. Additionally, random numbers were

generated for each user’s threshold to account for scenarios such as posts being blocked

correctly or incorrectly. Each user also had a unique probability for liking, commenting,

following, unfollowing, and creating new posts.

4.3.2 Detectors

To detect toxic text, DL models are considered as viable options. However, their

e↵ectiveness, e�ciency, and ability to handle large volumes of data must be balanced

for use in social media platforms. To this end, we developed multiple DL models to be

used in the “Detection Thread” of the PDS framework. We can finally identify the most

profitable detector for real-time toxicity detection across social media environments.

We use Accuracy, AUC-ROC, F1-score, and Throughput as metrics to evaluate

model performance. Using multiple metrics, we can evaluate various aspects of the

models’ strengths and weaknesses and choose the best one based on our evaluation.

This ensures that our selected models are not only accurate but also e�cient in terms

of processing time.

Accuracy: It measures the proportion of correctly classified samples and is a

crucial indicator of a model’s performance, calculated from the confusion matrix.

83

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

AUC-ROC: It measures the model’s ability to rank positive and negative samples

and is helpful in imbalanced datasets with fewer positive samples [273]. The formula

for AUC can be expressed as the area under the ROC curve (receiver operating

characteristic curve):

AUC =

Z
1

0

TPR(FPR�1(t))dt (9)

where TPR is the true positive rate (sensitivity) and FPR is the false positive

rate (1-specificity), both of which range between 0 and 1. FPR�1(t) represents the

threshold value that corresponds to a given false positive rate t [273].

F1-score: It assesses test accuracy using precision and recall. Precision is the

ratio of true positive results to all positive results (including misidentified ones), while

recall is the ratio of true positive results to all actual positive samples.

F1-score = 2 ⇤ (precision ⇤ recall)/(precision+ recall) (10)

Throughput: It is the number of samples processed per unit of time, and is

important for applications that require fast predictions. We calculated the throughput

per classifier in terms of how many samples can be processed and classified in a second,

using only the test set data.

Throughput =
N

t
(11)

where N is the total number of samples processed and t is the time taken to process

the samples.

This study involves developing eight candidate models for social media toxicity

84

detection, categorized into two sets: CNN- and Transformer-based. The objective

is to select the most accurate and the fastest (higher throughput) model variants

in each category. For CNN-based, both CNN and CNN-fastText model variants are

considered, with modifications made to improve throughput. For Transformer-based,

variants of BERT-based and RoBERTa-based models are tested, including distilled

and BERT miniatures to improve performance. The chosen models will be assessed

within a PDS framework to determine their e�ciency and e↵ectiveness in identifying

toxic contents on social media. The goal is to identify the most profitable model

for this task. Details on developing high-accuracy models can be found in sections

4.3.2.1.1 and 4.3.2.1.2, while sections 4.3.2.2.1 and 4.3.2.2.2 provide information on

enhancing throughput.

4.3.2.1 Detectors selected for best accuracy

4.3.2.1.1 CNN-based

The input to the CNN model undergoes data cleaning and preprocessing, which

involves removing URLs, punctuations, digits, stop-words, and normalizing cases,

acronyms, and abbreviations. Tokenization is performed, and the text comments are

truncated or padded to a fixed length before being converted to vector words. The

model comprises four 1D convolutional layers with multiple window sizes and output

channels. A pooling layer is utilized to reduce the dimensionality of the convolutions,

followed by a global max pooling to further reduce the dimension. The hidden layers

of the model employ ReLU activation function, while the output layer uses Sigmoid

activation function. During training, binary cross entropy is used as the loss function

to measure the di↵erence between predicted and actual labels. Additionally, Adam

optimizer is employed to update the model’s parameters during training, which helps

85

Table 4: Classification Experiment Results and Parameters for CNN-based Models
with the Best Accuracy

Model Epoch Batch Learning Dropout Filters Accuracy AUC F1-score Throughput
size rate rate (s)

CNN 30 128 2.00E-05 0.1 128 0.92 0.70 0.72 231.9
CNN fastText Crawl 3 256 0.002 0.4 300 0.92 0.77 0.75 384.9

to speed up convergence and improve accuracy.

We incorporated pre-trained fastText word embeddings into our CNN model to

accelerate the training process (CNN-fastText). Our experiments employed the “crawl-

300d-2M” embeddings, which consist of 2 million word vectors trained on Common

Crawl using a continuous bag of words (CBOW) with position weights, character

n-grams of length 5, and a window of size 5 and 10 negatives. The CNN model

convolves over the embedded vectors, which are then passed through a max pooling

layer to reduce the dimensionality. The final classification is performed using fully

connected layers with a Sigmoid activation function. The use of pre-trained word

embeddings helped to significantly reduce the training time of our CNN model. The

hyperparameter tuning for these models was performed using a random search.

The experimental results for the most accurate CNN and CNN-fastText models

are shown in Table 4.

According to the results, the CNN model with 30 epochs, 128 batches, 2.00E-05

learning rate, and 0.1 dropout rate achieved the highest accuracy (92%), and F1-score

(72.33%) followed closely by the CNN model with fastText embedding, which had

a higher AUC, F1-score and throughput. Please note that, while these models are

accurate, their throughputs are currently inadequate for e↵ective application in social

media scenarios. Hence, we are actively exploring ways to enhance their throughput

without compromising their accuracy.

86

4.3.2.1.2 Transformer-based

We utilized the Huggingface transformer library, which is compatible with Tensorflow

2.4.1. To detect toxicity, we tested various versions of BERT such as BERT-base,

AlBERT, Distilbert, RoBERTa-base, RoBERTa-large, and DistilRoBERTa. To prepare

text data for BERT-based models, we used BERT tokenizer, which transforms raw

text into BERT-compliant tokens. A pre-trained BERT model has a built-in tokenizer

and can handle up to 512 tokens, which is the maximum limit in BERT. During the

training phase, we limited the token length to 200, 256, and 400 tokens to address

computational constraints or minimize the risk of overfitting on lengthy sequences.

The BERT architecture utilizes the Self Attention mechanism of the Transformer

model to acquire context by examining word embeddings in other sentences. We

trained our models using di↵erent epochs and batch sizes, employed the binary cross-

entropy loss function, and Adam adaptive optimizer with varying learning rates for

better GPU utilization.

To identify the most accurate BERT and RoBERTa architectures, we conducted

experiments and tested various variants by adjusting random hyperparameters, such

as dropout probabilities and ReLU activation. We randomly explored a di↵erent set of

hyper-parameters for each model to identify the one that produced the most accurate

results. We tested the Accuracy, AUC, F1-score, and Throughput values for each

model, and their respective optimal hyper-parameters are reported in Table 5 for both

BERT and RoBERTa models.

The results demonstrate that all BERT and RoBERTa-based models exhibit

nearly identical accuracy and F1-score in detecting online toxicity, with variations in

throughput. BERT-base has the highest AUC (79%) and F1-score (78%), but the

87

Table 5: Classification experiment results and parameters for BERT-based models
with the best accuracy

Model Epoch Batch Learning Dropout Accuracy AUC F1-score Throughput
size rate rate (s)

BERT 3 8 2.00E-05 0.1 0.92 0.79 0.78 2.5
Distilbert 1 2 2.00E-05 0.2 0.92 0.71 0.75 6.4
ALBERT 1 16 2.00E-05 0.3 0.92 0.70 0.73 4.4
RoBERTa 4 16 2.00E-05 0.1 0.92 0.78 0.77 5.4
DistilRoBERTa 3 16 2.00E-05 0.2 0.92 0.77 0.77 9.1

lowest throughput (25). Distilbert has a lower AUC and F1-score compared to BERT-

base but a higher throughput (64). RoBERTa-base and DistilRoBERTa are very close

in terms of accuracy, AUC, and F-score, but they have di↵erent throughputs. However,

in the context of social media, where thousands of posts and comments are received

every second, faster predictions are necessary. Despite their acceptable accuracy,

AUC, and F1-score, transformers have low throughput and require improvements for

practical use.

In the upcoming sections, we will detail the modifications applied to the CNN,

CNN-fastText, BERT-based, and RoBERTa-based models with the aim of improving

their throughput and profitability.

4.3.2.2 Modified detectors selected for best profit

Although the developed models are accurate in classification tasks, they are not

optimal for high-throughput toxicity classification. To address this challenge, a variety

of approaches have been suggested and put into practice to find the right balance

between throughput and accuracy. However, it’s important to note that the classifier

with the highest throughput may not necessarily be the optimal choice for toxicity

detection and application on platforms. There are numerous other factors that can not

be adequately evaluated using metrics such as accuracy or throughput. Therefore, at

the end of the assessment, models exhibiting both high throughput and high accuracy

88

will be selected for testing within the PDS framework. Ultimately, the most profitable

model, which is best suited for each environment, will be chosen.

4.3.2.2.1 CNN-based

(1) Tuning Parameters: A potential avenue for enhancing throughput involves

adjusting parameters including learning rates and filters. We experimented with

various parameter sets for CNN-based models to evaluate the impact on throughput.

(2) Shallower Network Topology: To potentially increase the throughput

of a CNN, we experimented with reducing the depth of the network. While deeper

networks can improve accuracy, they can also be computationally expensive and

slow down the process. A shallower network with fewer convolutional 1D layers can

be a good compromise between accuracy and throughput. For instance, we tested

a CNN with four convolution layers and found that while it performed accurately

enough, its throughput needed to be improved. To achieve this, we experimented with

reducing the number of convolution layers to three and two, while still maintaining

good accuracy.

(3) Smallest pre-trained embedding: Using larger pre-trained models can

improve accuracy, but we also tested how smaller pre-trained fastText embedding

would a↵ect CNN performance. We compared two fastText pre-trained embeddings:

wiki-news-300d-1M (16B tokens) and crawl-300d-2M (600B tokens) 3. The wiki-

news-300d-1M, which is trained on Wikipedia 2017, UMBC web-based corpus, and

statmt.org news dataset has 1 million word vectors compared to crawl-300d-2M.

It is worth noting that while tuning model parameters and adjusting network

topology can improve throughput, hardware and software optimization, such as using

specialized hardware and e�cient libraries, can also impact it significantly. However,

3https://fasttext.cc/index.html

89

https://fasttext.cc/index.html

Table 6: Throughput Improvement for CNN Models

Throughput Accuracy AUC F1-score Hidden Filter Batch Learning
(s) layers Size Rate

169.4 91.14% 64.50% 61.41% 4 128 512 0.01
231.9 92.06% 70.00% 72.33% 4 128 128 2.00E-05
3359 90.91% 75.25% 70.59% 4 400 128 5.00E-05
484.5 91.82% 69.98% 70.76% 4 128 256 0.01
608.5 90.98% 73.34% 69.54% 3 300 256 0.00.2
788.7 90.41% 74.12% 68.73% 3 128 128 0.01
8,65.1 90.27% 74.00% 68.03% 3 128 64 0.01
1,077.7 91.40% 73.91% 71.72% 2 128 64 0.01
1,135.6 91.26% 69.80% 71.37% 2 200 64 0.02
1,193.4 91.35% 71.38% 68.61% 2 300 64 0.0002
1,255.0 91.47% 72.12% 70.98% 2 300 64 0.0002

these factors were not considered in this study and will be explored in future work.

After hyperparameter tuning and adjusting the network topology, the CNN model

achieved the highest throughput of 1,255 per second with 2 convolution layers, batch

size of 128, learning rate of 0.01, maximum features of 50000, and filter size of 64. How-

ever, it is important to note that only parameter tuning could not significantly improve

throughput; a shallower network topology had a more substantial impact. Combining

both a shallower network and tuned parameters led to improved throughput. Similar

techniques were applied to CNN-fastText, considering di↵erent word embeddings.

Results revealed that the CNN model without pre-trained embeddings performed best,

while among the fastText pre-trained embeddings, the Crawl news model achieved

higher throughput than the wiki-news model. The CNN model using Crawl News

achieved a throughput of 936.4 per second with 2 convolution 1D layers, GlobalMax-

Pooling1D, batch size of 128, learning rate of 0.01, maximum features of 40000, and

filter size of 32. In contrast, the CNN model using wiki-news reached a throughput of

686.3 per second with 4 convolution layers. Additional details are available in Tables

Table 6 and Table 7 for CNN and CNN-fastText models, respectively.

90

Table 7: Throughput Improvement for CNN-fastText Models

Throughput Accuracy AUC F1-score Hidden Sources Filter Batch Learning
(s) layers Size Rate

186.0 91.74% 76.83% 73.81% 4 crawl 300 512 0.002
202.8 90.60% 77.25% 74.05% 4 wiki 300 256 0.0002
241.6 91.32% 79.25% 74.26% 4 wiki 300 128 0.002
384.9 92.14% 77.65% 75.25% 4 crawl 300 256 0.002
408.5 91.08% 80.30% 74.03% 4 crawl 300 64 5.00E-5
549.8 91.20% 80.70% 74.96% 3 crawl 300 64 5.00E-5
564.2 91.28% 80.65% 74.52% 3 crawl 300 64 5.00E-5
686.3 90.88% 84.40% 74.71% 2 wiki 128 128 0.001
687.7 91.92% 71.43% 73.28% 4 crawl 128 256 0.01
786.7 91.76% 82.28% 76.39% 2 crawl 64 128 0.001
843.2 91.39% 80.91% 75.04% 2 crawl 64 128 0.0001
936.4 91.74% 73.80% 73.62% 2 crawl 32 128 0.01

4.3.2.2.2 Transformer-based

Transformers are known for their high computational requirements due to a large

number of parameters and multiple layers of transformers. This limitation often makes

them unsuitable for real-time applications that require high throughput. To address

this issue, we explored various BERT models, including BERT-base, DistilBERT,

ALBERT, RoBERTa, and DistilRoBERTa, to identify the most e�cient models that

o↵er high throughput. In addition, we tested all 24 BERT miniatures and found that

BERT-Tiny, with two transformer layers and a hidden embedding size of 128, was the

most suitable model for our memory and throughput requirements. Table 8 illustrates

detailed information about the BERT miniatures and their characteristics. Through

multiple experiments involving adjustments to parameters, we observed that BERT-

Tiny performed optimally with epoch=1, batch-size=16, learning-rate=2.00E-05, and

dropout-rate=0.3, yielding a throughput of 152.7 and an accuracy of 91%, along

with an AUC and F1-score of 68.79% and 70.36%, respectively. Among RoBERTa-

based variants, DistilRoBERTa achieved the highest throughput at 11.5 per second,

accompanied by accuracy, AUC, and F1-score of 89.76%, 60.03%, and 67%, respectively.

91

A comparison of the throughput among di↵erent versions of BERT and RoBERTa is

separately illustrated in Figure 8. The results point out that utilizing smaller variants

of BERT and RoBERTa embeddings led to higher throughput.

Table 8: Characteristics of 24 Smaller BERT Models (English only, Uncased, Trained
with WordPiece masking)

H=128 H=256 H=512 H=768

L=2 2/128 (BERT-Tiny) 2/256 2/512 2/768
L=4 4/128 4/256 (BERT-Mini) 4/512 (BERT-Small) 4/768
L=6 6/128 6/256 6/512 6/768
L=8 8/128 8/256 8/512 8/768
L=10 10/128 10/256 10/512 10/768
L=12 12/128 12/256 12/512 12/768 (BERT-Base)

As you observe, classifiers exhibit significant di↵erences in terms of evaluation

metrics. The results are derived from testing algorithms in simple experimental

setups, which may not accurately reflect the complexity of large-scale social media

environments. Consequently, we have selected the best models based on their accuracy,

F1-score, and throughput to compare and evaluate them using the PDS framework,

while other aspects such as cost, revenue, and user satisfaction will also be evaluated

this time. Table 25 presents the list of chosen classifiers. Notably, BERT-base boasts

the highest accuracy (92.96%) and F1-score (78.26%) among all the models selected for

PDS framework, while CNN exhibits the highest throughput (1,255). To di↵erentiate

between the models selected for PDS framework, we utilized the su�xes v1 and v2,

where v1 indicates the version with higher accuracy, and v2 denotes the version with

superior throughput.

4.3.3 Environments

The evaluation of classifiers spanned environments with diverse toxicity levels, ranging

from low toxicity (about 20%), to medium toxicity (around 50%), and highly toxic

environments (over 80%)

92

Figure 8: Throughput for BERT-based and RoBERTa-based Models per second (L is
the Number of layers and H is Hidden size).

93

Table 9: All Models selected for experimentation

Model Accuracy AUC F1-score Throughput (s)

Accuracy

CNNv1 92.06% 70.06% 72.33% 231.9
CNN-fastTextv1 92.14% 77.65% 75.25% 384.9
BERT-basev1 92.96% 78.50% 78.26% 2.5

RoBERTa-basev1 92.88% 78.63% 77.44% 5.4

Throughput

CNNv2 91.47% 72.12% 70.98% 1,255
CNN-fastTextv2 91.74% 77.65% 75.25% 936.4
BERT-Tinyv2 91.50% 68.79% 70.36% 152.7

DistilRoBERTa-basev2 89.76% 60.03% 60.67% 11.5

4.3.4 Computer Power

We used the cloud computing instance “Paperspace P4000” with NVIDIA GPUs 4 for

our study. P4000 has 1 GPU with 8 GB memory, NVIDIA QUADRO P4000 type, 30

GB RAM, 8 vCPUs, Intel Xeon processor, and 2.60 GHz Clock Speed. The cost per

second for a classification task on P4000 has been previously calculated as $0.000142.

Therefore, according to Equation 4, the total cost of each classifier can be determined

as follows: C(x, P4000) = $0.000142 multiplied by Tx, i, where Tx, i indicates the

total detection time for classifier x running on instance i. Although we wrote all

of the classifiers in Python 3.8, we opted to use Java 18 for the PDS framework as

it significantly improved the running time and resulted in faster performance. We

also visualized the PDS framework results using “InfluxDB” 5, a high-performance,

open-source, distributed, and scalable time-series database designed to handle high

volumes of time-stamped data. InfluxDB is widely used for real-time monitoring and

provides a comprehensive set of tools for data visualization and analysis, making it

easy to create real-time dashboards and reports.

4https://www.nvidia.com/en-us/design-visualization/quadro/
5https://www.influxdata.com/

94

https://www.nvidia.com/en-us/design-visualization/quadro/
https://www.influxdata.com/

4.3.5 Profit

The ultimate metric employed to evaluate the performance of distinct classifiers is

profit. The computation of profit within the PDS framework is carried out using

Equation 7. The calculation of costs was elucidated in the previous section. In terms

of revenue assessment, the same configuration and features used for verifying null cases

were adopted. This process is comprehensively explained in subsubsection 4.2.3.3.

As a quick reminder, the revenue earned per advertisement view is determined by

“Google AdSense” at a rate of $0.0086 per user view for the “North America region”.

More specifically, within the “People and Society” content category. The total revenue

is calculated using Equation 6.

4.4 Experimental Results

Individually, every classifier was employed as the toxicity detector within the simula-

tion’s detector thread to exhibit its real-time performance within scaled environments.

These environments encompassed scenarios with 10,000 users over the span of one week,

incorporating varying degrees of toxicity. The outcomes are condensed in Table 10

outlining the profit achieved by each classifier in distinct environmental conditions.

The results show that in a low-toxic environment, the model with the highest

throughput is the most profitable solution. A CNNv2 with 91.47% accuracy, 70.98%

F1-score and 1,255 throughput produces $402,046 profit while a CNNv1 with 92.06%

accuracy, and 72.33% produces $343,759 profit. Although BERTv1 is the most accurate

model, it could not be the most profitable in this situation. Moreover, the profits

produced by BERTv1 ($341,727) are very close to those produced by CNNv1 ($343,759),

while their throughputs are very di↵erent. Even though DistilRoBERTav2 has a higher

throughput (115) than other RoBERTa variants, it achieves the lowest profit ($88,796)

95

among all models due to its low accuracy (89.76%).

Under moderately toxic conditions, CNNv1 generated the highest profit of $70,807

outperforming other models. There are other classifiers, such as CNN-fastTextv1, that

exhibit higher accuracy, AUC, F1-score, and throughput when compared to CNNv1.

However, despite their superior performance, they were unable to generate higher

profits. It is interesting to note that neither the model with the highest throughput

nor the most accurate model made the most profit in this environment. Similar to the

low-toxic environment, DistilRoBERTav2 makes the lowest profit. The reasoning makes

sense, given that when a classifier underperforms in a low-toxic environment, while

having neither higher accuracy nor throughput than others, it will likely underperform

in a medium or high-toxic environment.

As a result of a highly toxic environment, CNNv2 with the highest throughput

ranks first in terms of profit ($26,196). Next, it is followed by the most accurate model

(BERT-basev1) which generates $24,143 profits. With a profit of $22,201, CNNv1 takes

third place. In line with our expectations, DistilRoBERTav2 has the worst performance

with a profit of $15,162.

According to Figure 9, 36.05% of users left low-toxic environments when CNNv2

was applied, while 95.4% left by DistilRoBERTav2 . The total percentage of users left

over the simulation varied between 50% and 80% for other classifiers. There is a sharp

increase of 58% in DistilRoBERTav2 , followed by a gradual increase, while in other

classifiers the rate gradually increases from the beginning. All classifiers encountered

the maximum number of left users in medium and high-toxic environments. Compared

to high-toxic environments, medium-toxic environments have a slower rate of user

fall. There are fewer left users in CNNv1 until 22000 seconds, but CNNv2 meets it and

shows fewer falls in the rest of the test. CNNv2 keeps increasing very closely to CNNv1

(90.55%) in a highly toxic environment, but CNNv2 finally achieves the lowest number

96

Table 10: PDS framework results for di↵erent classifiers

Model Profit ($)
Low Medium High

CNNv1 343,759 70,807 22,201
CNN fastTextv1 311,540 47,186 19,243
BERT basev1 341,727 46,678 24,143
RoBERTav1 312,819 48,000 18,667

CNNv2 402,046 63,123 26,196
CNN fastTextv2 282,555 39,945 18,371
BERT Tinyv2 279,594 37,016 16,783

DistilRoBERTav2 88,796 23,017 15,162

(99.3%).

In addition, the number of users who left the platform for di↵erent reasons is also

shown by Figure 10. The results demonstrate that by applying CNNv2 in low- and

high-toxic environments, the main reason that pushes users away from the platform

is a large number of blocked posts, while in a medium-toxic environment, the main

reason for leaving the platform is a large number of toxic posts. Moreover, applying

RoBERTav2 in all environments resulted in user churn due to a large number of toxic

posts.

Overall, the CNNv2 classifier outperformed the others in low and highly toxic

environments, but CNNv1 was the most profitable classifier in the medium-toxic

environment. The study shows that CNN-based models are the best candidates for

detecting toxic language online.

4.5 Summary

In conclusion, this chapter has presented a novel PDS framework that e↵ectively and

e�ciently determines the most profitable toxicity classifier for various environments

on social media platforms characterized by di↵ering levels of toxicity. The proposed

97

Figure 9: Users churn over the simulation time

98

Figure 10: The reasons for leaving a platform in di↵erent environments by applying
detectors

PDS framework evaluates toxicity classifiers by considering computational cost, real-

time data processing at scale, and the impact of false positives, false negatives, true

positives, and true negatives on user engagement and ad-generated revenue. Ultimately,

this framework selects the optimal classifier for each scenario based on the highest

profit achieved. The simulation results demonstrated that some classifiers with higher

accuracy, AUC and F scores were not necessarily appropriate for all environments.

Therefore, it is necessary to trade o↵ the accuracy and the throughput and choose

the model which ultimately increases user satisfaction and engagement and results in

more profit for social media companies.

In addition, the PDS framework o↵ers a valuable contribution to the field of social

media analysis by providing researchers and practitioners with a tool that can better

understand the complex nature of toxic behaviour on platforms and select the most

e↵ective and e�cient classifiers to address these issues.

In addition, during our experiments, we observed that our deep learning classifiers,

particularly transformer-based models, did not have acceptable throughput to process

99

a large volume of data. As a result, we took further action to improve their through-

put while ensuring that these models were well-fitted without su↵ering from either

underfitting or overfitting.

The PDS framework has shown promise in identifying the most suitable toxicity

detector for social media platforms, but limitations remain. To ensure the e↵ectiveness

of the system, validation with real-world datasets containing actual content and

connections is crucial. In addition, developing other classifiers using various datasets

can also enhance the accuracy. Finally, integrating the PDS framework into A/B

testing in a social media model can optimize the overall user experience and evaluate

the system’s e↵ectiveness in a real-world scenario.

Acknowledgement We gratefully acknowledge the support of MITACS through

the Accelerate and Business Strategy programs. Additionally, we extend our thanks

to Kexin Yan, software engineer at Scrawlr, for his contributions to this research.

100

Chapter 5

AugmenToxic: Leveraging

Reinforcement Learning to

Optimize LLM Instruction

Fine-Tuning for Data Augmentation

to Enhance Toxicity Detection

This chapter is dedicated to the article entitled “AugmenToxic: Leveraging Reinforce-

ment Learning to Optimize LLM Instruction Fine-Tuning for Data Augmentation to

Enhance Toxicity Detection”. This article was submitted to the ACM Transactions

on the Web and is under review. The titles, figures, and mathematical formulations

have been revised to maintain coherence throughout the theis.

101

Addressing the challenge of toxic language in online discussions is crucial to

developing e↵ective toxicity detection models. This pioneering work focuses on

addressing imbalanced datasets in toxicity detection by introducing a novel approach

to augment toxic language data. We create a balanced dataset by instructing fine-

tuning of Large Language Models (LLMs) using Reinforcement Learning with Human

Feedback (RLHF). Recognizing the challenges in collecting su�cient toxic samples

from social media platforms for building a balanced dataset, our methodology involves

sentence-level text data augmentation through paraphrasing existing samples using

optimized generative LLMs. Leveraging generative LLM, we utilize the Proximal

Policy Optimizer (PPO) as the RL algorithm to fine-tune the model further and align

it with human feedback. In other words, we start by fine-tuning a LLM using an

instruction dataset, specifically tailored for the task of paraphrasing while maintaining

semantic consistency. Next, we apply PPO and a reward function, to further fine-tune

(optimize) the instruction-tuned LLM. This RL process guides the model in generating

toxic responses. We utilize the Google Perspective API as a toxicity evaluator to

assess generated responses and assign rewards/penalties accordingly. This approach

guides LLMs through PPO and the reward function, transforming minority class

samples into augmented versions. The primary goal of our methodology is to create a

balanced and diverse dataset to enhance the accuracy and performance of classifiers

in identifying instances from the minority class. Using two publicly available toxic

datasets, we compared various techniques with our proposed method for generating

toxic samples, demonstrating that our approach outperforms all others in producing a

higher number of toxic samples. Starting with an initial 16,225 toxic prompts, our

method successfully generated 122,951 toxic samples with a toxicity score exceeding

30%. Subsequently, we developed various classifiers using the generated balanced

datasets and applied a cost-sensitive learning approach to the original imbalanced

102

dataset. The findings highlight the superior performance of classifiers trained on the

data generated using our proposed method. These results highlight the importance

of employing RL and a data-agnostic model as a reward mechanism for augmenting

toxic data, thereby enhancing the robustness of toxicity detection models.

103

5.1 Problem Statement & Contributions

The rapid development of communication technology and the internet has transformed

virtual communities, making social media platforms more accessible and user-friendly,

but also presents significant challenges [10]. Toxic language, a prevalent issue in

online discussions, is frequently characterized by disrespectful responses that can deter

participants from engaging in meaningful conversations [7], [274]. To ensure the safety

of online civil discussions and mitigate the potential harm caused by toxic language,

the vast amount of user-generated content (UGC) requires the implementation of data-

driven techniques, including Machine Learning (ML) algorithms, for the automatic

classification of UGC within modern content moderation systems [19], [275], [276].

Developing e�cient detection systems for toxic content is heavily dependent on the

availability of appropriate training datasets. This is in line with the fundamental

principle in data-driven research, which states that the quality of outputs is directly

influenced by the quality of inputs [102].

Imbalanced datasets and lack of annotated samples pose significant challenges in

various classification tasks, such as toxicity detection [173], [276]. In these datasets, one

class is often much more numerous than the others, typically known as the majority

class, which can result in the development of biased models that yield unsatisfactory

results when dealing with the underrepresented minority class [173], [277]. The problem

is particularly acute in toxicity detection, as the frequency of toxic samples is often

low compared to nontoxic ones. In other words, it is di�cult to collect roughly the

same number of samples for both toxic and nontoxic classes. For instance, Madukwe

et al. [278] highlighted a pronounced class imbalance problem in hate speech detection,

with the hate class constituting less than 12% in multi-class datasets and less than

half in binary datasets. Additionally, a systematic review of datasets for automatic

104

hate speech detection revealed that 41% of the datasets are small (0-5k posts), with

37% containing less than 20% o↵ensive content [82]. This confirms the challenges

associated with obtaining extensive labeled data and underscores the potential pitfalls

of class imbalance in training datasets. The imbalance in data distribution can lead

to overfitting and hinder generalizability, especially for Deep Learning (DL) models.

This imbalance may result in models that excel in detecting nontoxic language but

perform poorly on toxic content.

To address imbalanced classification challenges, a diverse set of techniques is utilized

at both the data and algorithmic levels [184]. At the data level, these techniques

encompass various re-sampling approaches, including oversampling of minority classes

and undersampling of the majority class [173], [251]. Undersampling techniques consist

of methods such as random undersampling [252], Inverse random undersampling

[279], and directed undersampling (informed undersampling) [280]. On the contrary,

oversampling techniques [281] include random oversampling with replacement, directed

oversampling (which entails informed choices for replacing samples, rather than random

selection), and oversampling methods with informed generation of new samples.

Moreover, an alternative strategy involves a hybrid method [282] that combines both

undersampling and oversampling techniques. In addition to data-level strategies, at

the algorithmic level, methods such as cost-sensitive learning (which entails adjusting

costs associated with di↵erent classes), asymmetric classification, dimension reduction,

expert systems, and ensemble techniques such as bagging, boosting, and stacking all

assume crucial roles [170], [201], [253], [254], [283], [284]. Although these techniques

have shown promising results in improving the performance of models on imbalanced

datasets, they also have limitations. Oversampling and undersampling can lead to

overfitting and underfitting, respectively, and may not work well when the dataset

is extremely imbalanced [255], [285]. Cost-sensitive learning requires an accurate

105

estimation of the misclassification costs, which may be di�cult in practice [200]. In

the case of ensemble methods, as sampling techniques are used to balance the data

in each iteration, they can potentially eliminate valuable information and be prone

to overfitting [175]. To mitigate overfitting, an alternative method is automatic data

augmentation (DA), involving the creation of synthetic data based on an existing

dataset [204]. This can contribute to improving the generalizability of text classification

models, making them more adept at performing well with unseen data [286]. The

methods for augmenting text data depend on the specific task and the type of text

data under consideration [204]. Text data augmentations (TDA) can be classified

into several categories, including the injection of textual noise or spelling errors, word

replacement using a thesaurus, and the generation of paraphrases through syntactic

tree transformations, back-translation, and pre-trained transformer networks [207],

[287]. However, these techniques are not yet ideal, and their e↵ectiveness is hindered

because the structure and meaning of the text are closely connected, making it

challenging to manipulate one aspect without a↵ecting the other satisfactorily [286].

Therefore, to address the challenge of balancing datasets and enhancing the

detection of toxic language through a data augmentation approach, there is a pressing

need to develop e↵ective techniques for generating toxic text. While some solutions have

been proposed to generate toxic text [163], and general text generation techniques have

been tested for toxic language detection [223], [224], [226], they all exhibit limitations.

For instance, certain methods necessitate precise and well-written prompts to function

e↵ectively, potentially performing inadequately when dealing with original, unrefined

samples. Others rely heavily on zero-shot learning, which involves fine-tuning models

solely on toxic or non-toxic samples. This approach often neglects the significant

role that instruction fine-tuned language models play in handling specific tasks.

Additionally, another issue arises from the practice of assigning the same label to

106

generated samples as the prompt sample. This can lead to inaccuracies, especially if the

generated content deviates from the intended toxicity, resulting in the misclassification

of non-toxic content as toxic, or vice versa.

As we address these challenges, our objective is to introduce a novel technique

for sentence-level TDA, specifically targeting toxic language. This approach aims

to overcome the limitations observed in previous works by making a substantial

contribution to the development of techniques for creating a balanced and diverse

toxic dataset, ultimately enhancing classifier accuracy and performance.

We present a TDA framework guided by Reinforcement Learning from Human

Feedback (RLHF) [288], specifically employing the Proximal Policy Optimization

(PPO) algorithm [58]. This framework operates on an Instruction Fine-Tuned (IFT)

Large Language Model (LLM) [161] and focuses on refining the model’s ability to

paraphrase text. The process begins by fine-tuning the LLM using an instruction

dataset derived from the PAWS dataset (Paraphrase Adversaries from Word Scram-

bling) [289]. PAWS is selected because it is human-labeled, enabling it to accurately

discern between paraphrases with equivalent semantic meaning and those with high

lexical overlap but are not true paraphrases. This ensures that the paraphrasing task

maintains semantic coherence. Throughout our experiment, we exclusively concentrate

on paraphrase pairs exhibiting identical semantic meaning. After the initial fine-

tuning, we optimize the model further using PPO in conjunction with a reward model.

PPO guides the model through the augmentation process by facilitating fine-tuning

against this reward model. Operating within a hybrid architecture that seamlessly

combines value-based and policy-based methods, Proximal Policy Optimization (PPO)

enhances training stability by iteratively updating the model’s policy in a controlled

and proximal manner. This approach prevents drastic changes that could potentially

disrupt the training process, thereby ensuring a more stable and reliable learning

107

experience.

To encourage paraphrasing while maximizing toxicity, we utilize the Google Per-

spective API to evaluate the toxicity level of each generated text. This API assigns

toxicity scores ranging from 0 to 1, indicating the likelihood of a text being toxic.

This incentivizes the model to produce toxic samples as it seeks to maximize rewards.

Additionally, to prevent the LLM from generating peculiar and non-human-like re-

sponses solely to maximize rewards, we employ Kullback-Leibler (KL) Divergence

as a penalty. This divergence is calculated between the active policy, influenced by

reinforcement signals for toxicity, and the reference policy derived from the initial

instruction-tuned LLM. This measure ensures that when the model is hallucinated, it

aligns closer to the reference model, striking a balance between maximizing rewards

and maintaining human-like response characteristics. By imposing this penalty, the

model is motivated to generate paraphrases that closely align with the reference model,

thus achieving a balance between maximizing rewards and preserving human-like

response characteristics. We evaluated the proposed method and compared it with

other techniques using the Jigsaw toxic dataset [271] and the ToxiGen dataset [163].

This is the first work to employ an optimized instruction-fine-tuned language model

(LLM) to paraphrase existing unstructured data, thereby augmenting toxic textual

samples in the minority class. Furthermore, our dataset is one of the largest and most

balanced available. Additionally, we applied zero-shot learning, and back-translation

techniques to benchmark our developed model against other methods, resulting in the

creation of the largest balanced dataset for toxicity detection, generated through back-

translation from nine di↵erent languages into English. In summary, our contributions

can be outlined as:

• A novel method for enhancing toxic text data through Instruction Fine-tuning on

the pretrained FLAN-T5 model, precisely crafted for paraphrasing with semantic

108

equivalence using PAWS.

• Applying Proximal Policy Optimization (PPO) to further fine-tune (optimize)

the instruction-tuned FLAN-T5; our approach incorporates a reward model

within the PPO framework to ensure the generated responses maintain the

specified level of toxicity.

• Utilizing the Google Perspective API to score toxicity and assign rewards

accordingly, while implementing KL-Divergence as a penalty in the reward

function to ensure the generated text maintains human-like responses.

• Expanded the imbalanced Jigsaw dataset, which originally included 143,346

nontoxic samples and 16,225 toxic samples, into a balanced dataset comprising

over 278,000 samples.

• Outperforming other data augmentation techniques, such as zero-shot learning,

back-translation, and instruction-tuned LLMs, which lack RLHF optimization.

The chapter is organized as follows: section 5.2, covers the proposed method.

Section 5.3 details the experimental setup, and the results are presented in section 5.4.

Section 5.5 concludes the chapter with remarks and discussions.

5.2 Methodology

In this section, we outline the structure of our proposed approach. Initially, we conduct

fine-tuning on the generative LM by utilizing an instruction dataset to paraphrase

samples while preserving their semantic meaning (Section 5.2.1). Subsequently, to

optimize the process, we employ PPO and reward function to guide the model toward

toxic paraphrasing, aiming to generate more toxic responses (Section 5.2.2).

109

Figure 11: Illustration of the process to convert the dataset into an instruction format.

5.2.1 Supervised Instruction Fine-tuning

Our primary goal is to increase the number of minority class samples through para-

phrasing techniques using generative Language Models (LMs). Although models like

zero-shot learning may o↵er simplicity, they are less e↵ective in paraphrasing toxic

samples from online conversations. The subtle and context-dependent nature of toxic-

ity in online discussions poses challenges beyond the capabilities of general language

understanding methods, including zero-shot, one-shot, or few-shot learning [290], [291].

Limited exposure to samples can hinder the model’s paraphrasing accuracy, making

it challenging to maintain meaningful output [292]. To address this, instruction

fine-tuning emerges as a promising alternative. This approach involves training an LM

on a specific task with explicit instructions, enhancing its ability to paraphrase toxic

content while preserving semantic meaning. Instruction fine-tuning o↵ers a focused

and tailored training process, enabling the model to adapt more e↵ectively to the

nuances of paraphrasing toxic language in unstructured online comments, ultimately

improving the quality of generated samples.

110

5.2.1.1 Instruction Dataset

An instruction dataset DI typically refers to a specific dataset designed to provide

explicit instructions for training a model on a particular task. It contains examples

paired with clear instructions on how the model should interpret or respond to those

examples. The purpose of an instruction dataset is to guide the model’s learning

process and help it acquire specific skills or behaviors.

To construct DI, we utilize a structured format containing examples, making it

more intuitive for the generative model M to learn in accordance with our requirements.

The dataset includes pairs s 2 S and s0 2 S 0 representing paraphrases of each other

(s ⇠ s0) while maintaining semantic equivalence.

To convert the dataset into an instruction format, each sample s undergoes a

wrapping process with an instruction, as illustrated in Figure 11. The instruction

provided is formulated as follows: “Paraphrase the following text while maintaining

its semantic meaning: {text}.” This instruction serves as a directive for the model,

guiding it to generate paraphrases that retain the same semantic meaning as the

original text. Additionally, all samples, both input prompt (instruction + s) and

output (s0), undergo tokenization using the LM’s tokenizer. Padding is also applied to

the tokenized sequences, ensuring they have the same maximum length.

5.2.1.2 Instruction Fine-tuning

With the constructed instruction dataset DI (refer to Section 5.2.1.1), the pre-trained

model M undergoes fine-tuning in a fully supervised manner. This process entails

training M to predict each token in the output sequentially, guided by the instruction

dataset [293]. The fine-tuning adapts M ’s parameters based on the task-specific

information embedded in the instruction dataset, thereby enhancing its performance

in generating paraphrases while preserving semantic meaning.

111

Recognizing the advantages of Parameter-E�cient Fine-Tuning (PEFT) techniques,

such as reducing computational costs, minimizing memory usage during training,

streamlining the storage and deployment of task-specific fine-tuned parameters [294],

directed us to utilize PEFT as a substitute for the full fine-tuning process in our

instruction fine-tuning approach. Furthermore, its demonstrated superiority over full

fine-tuning across a diverse array of tasks [45] further supported our decision.

PEFT methods (refer to Section 2.3) involve freezing the majority of parameters

in pre-trained models while still demonstrating comparable capabilities in downstream

tasks [295]. Specifically, we considered fine-tuning through Low-Rank Adaptation

(LoRA) [44] as an additive fine-tuning scheme, as defined in Section 2.3. The instruction

fine-tuning of the LM for the specific task of paraphrasing is illustrated in Figure 12.

While the fine-tuned model MLoRA excels at paraphrasing existing samples in

the minority class and generating new samples, it may encounter challenges when

faced with unstructured input from online conversations. Particularly, its performance

might diminish when dealing with less well-written or unstructured prompts, even

after pre-processing. This challenge is exacerbated when the model is tasked with

generating multiple responses for each prompt. Moreover, we anticipate scenarios

where the model may generate toxic samples, and there is a need for the LM to

rephrase the input while retaining or even increasing its toxicity. Therefore, following

the fine-tuning process via LoRA (MLoRA), an additional optimization step using

Reinforcement Learning from Human Feedback (RLHF) becomes essential. RLHF

aims to guide the LM in rephrasing while preserving toxicity or potentially intensifying

it, based on human feedback expressed through a reward function. The subsequent

section will delve into the specifics of the optimization process using RLHF.

112

Figure 12: Instruction fine-tuning of pre-trained Large Language Models (LLMs) for
paraphrasing

5.2.2 Optimization using Reward Function

In this study, we employ Reinforcement Learning from Human Feedback (RLHF)

Section 2.4, specifically utilizing Proximal Policy Optimization (PPO) as described in

Section 2.5.1. Our objective is to optimize the fine-tuned model MLoRA to generate

toxic responses, acknowledging that not all augmented sentences may exhibit toxicity.

The development of e�cient optimization algorithms is crucial across various scientific

disciplines, as researchers seek faster and stronger algorithms capable of optimizing a

wide range of functions [296]–[299]. After the initial fine-tuning with LoRA, where

only a portion of parameters was trained, we seek further refinement by updating

these trainable parameters to obtain an optimized fine-tuned model. To achieve this,

we incorporate a data-agnostic classifier to assess the toxicity of generated responses

and assign rewards or penalties accordingly. It is important to note that DI used for

instruction fine-tuning is nontoxic, but our aim is to increase toxicity using the reward

model, directing MLoRA to generate toxic tokens.

As a reward model, we leverage the Google Perspective API (API) 1, a machine

1https://perspectiveapi.com/

113

learning-based tool designed to detect abusive comments. This API furnishes toxicity

scores ranging from 0 to 1, serving as a probability indicator without delineating

severity. Higher scores indicate a greater likelihood of resembling patterns observed in

toxic comments. We employ PPO to fine-tune MLoRA with respect to the reward model,

resulting in MPPO-API. While MLoRA has initially been trained using the instruction

dataset, our aim is to optimize its performance leveraging the reward model.

In the proposed PPO framework, MLoRA serves as an active model (Mact) during

training and as a reference model (Mref) when not trainable. The generative model

functions as an agent, selecting tokens during language generation. The agent initializes

its policy with MLoRA and, at each time step t, observes the current state st (previously

generated tokens), takes action at according to the policy �, and transitions to the

next state. The agent receives a reward r from the reward model, aiming to maximize

the expected reward during PPO training. The framework is visually depicted in

Figure 13.

A prompt xt from DI is simultaneously inputted into both the active model

Mact and the reference model Mref. Active policy ⇡✓act and reference policy ⇡✓ref are

initialized. The active model Mact generates a response (paraphrased input), such

that ⇡✓act(at | st) �! Mact(xt) = yactt . Similarly, the reference model Mref generates a

response ⇡✓ref(at | st) �! Mref(xt) = yreft). Subsequently, the response generated by

the active model yactt is decoded and passed to the Google Perspective API, which

assigns a toxicity score. We have defined a reward of 1 for samples with toxicity

exceeding 0.7; otherwise, it receives a penalty of -10. This reward scheme is formalized

as follows:

rtoxic =

8
>><

>>:

+1 if API(yactt) � 0.7

�10 if API(yactt) < 0.7

114

We assigned greater value to punishment compared to reward because if both

were given equal values, such as +1 and -1, the agent might learn to generate only

nontoxic responses. In such a scenario, the penalty for producing a nontoxic response

would be only 1, which would not su�ciently di↵erentiate between the reward and the

penalty. Additionally, to discourage Mact from producing unnatural responses solely

for increased rewards, a reference model with frozen weights serves as a fixed point

of reference. The Kullback-Leibler (KL) Divergence is calculated between the two

policies ⇡✓reft and ⇡✓actt as follows:

rkl = �DKL(⇡✓actt k ⇡✓reft) = �� log

⇡✓actt
⇡✓reft

!

rkl serves as a penalty, ensuring that when Mact generates hallucinations, it aligns

closer to Mref. This penalty is added to the toxicity reward, constraining the update

within a trust region defined by the distance between the two policies. The total

reward is computed as:

rt = rtoxic + rkl (12)

This cumulative reward guides PPO through multiple prompt-response experiments,

facilitating ranking averages and employing backpropagation to optimize the response

of Mact. The proposed framework is illustrated in Figure 13.

5.3 Experimental Setup

5.3.1 Instruction Dataset

To fine-tune the LLM for text paraphrasing, we employed the Paraphrase Adversaries

from Word Scrambling (PAWS) dataset [289], introduced by Google AI Language

115

Agent

Policy

Instruction Dataset

Prompt & Responce

Prompt Generated Response

Toxicity Reward

Kl Divergence

Probability
distributions of the

 for tokens

PPO

Adapters are trainable : True

Active Model

Instruct Fine-tuned LM

Generated Response

Policy

Adapters are trainable : False

Reference Model

Instruct Fine-tuned LM

Decoded Evaluate
Toxicity Reward

Nontoxic

Toxic

Probability
distributions of

the for
tokens

Update Rule

Reward Model

Penalty

Figure 13: The proposed solution for paraphrasing toxic samples

in 2019. This openly accessible dataset comprises 108,463 thoughtfully crafted pairs,

encompassing both paraphrases and non-paraphrases with significant lexical overlap.

Specifically, we utilized the PAWS-Wiki Labeled “Final” version, which includes 65,401

pairs generated through both word swapping and back translation methods. All pairs

have undergone human assessments for both paraphrasing fidelity and fluency. The

dataset is divided into Train, Validation, and Test sets containing 49,401, 8,000, and

8,000 respectively with no overlap of source sentences across sets. Maintaining high

quality, the dataset is structured with three columns—sentence 1 (L1), sentence 2

(L2), and a label (0 or 1). In this organization, sentence 1 (l1 2 L1) represents the

primary text, and sentence 2 (l2 2 L2) serves as its counterpart. A label of 1 signifies

that sentence 2 is a paraphrase of sentence 1, while a label of 0 indicates a distinct

semantic meaning between the two. Combining all sets (train, validation, and test)

into one dataset, comprising “65,401” samples, we exclusively consider the “28,904”

samples with label (1), denoting paraphrasing, and discarding samples with label (0).

116

Subsequently, an 80-20 split was performed, allocating “23,123” samples to the training

set and “5,781” samples to the test set. Within the training set, a further subdivision

was implemented for hyperparameter tuning, with ‘2,312” samples, constituting 10%

of the training data, reserved for validation purposes.

5.3.2 Toxic Datasets

5.3.2.1 Jigsaw-dataset

We employed a publicly available dataset provided by Google Jigsaw and Kaggle [271],

which comprises 159,571 Wikipedia comments human-rated for toxicity across six

categories: toxic (15,294), severe toxic (1,595), insult (7,877), obscene (8,449), threat

(478), and identity hate (1,405). The remaining data (143,346), which is not included in

any type of toxicity, is considered nontoxic. Notably, this dataset exhibits a significant

imbalance, with the majority class consisting of nontoxic samples. Within this dataset,

aside from nontoxic samples, others may bear multiple labels. For instance, a sample

could be labeled as both insult and obscene without carrying the toxic label, while

another might solely be labeled as insult, and yet another could have labels for both

insult and toxic. Unfortunately, precise descriptions or definitions for the various

types are not published. Consequently, we classify all samples with at least one form

of toxicity as toxic and convert the dataset into binary labels (toxic, nontoxic). It is

crucial to emphasize that, in this chapter, we use the term “toxic” to encompass any

type of toxicity. As a result, the final dataset includes 143,346 nontoxic samples and

16,225 toxic samples. This implies that, for every toxic sample, approximately eight

nontoxic examples exist in the dataset. To ensure an adequately balanced dataset,

we decided to generate nine samples per toxic sample, resulting in a total of 146,025

samples. Since not all generated samples are necessarily toxic, we opted for generating

additional samples to maintain a su�cient number even if nontoxic ones are removed,

117

thereby achieving an equal balance of toxic and nontoxic samples in the final dataset.f

5.3.2.2 ToxiGen-dataset

ToxiGen is a machine-generated dataset comprising 274,000 statements, encompassing

both toxic and benign content associated with 13 distinct minority groups [163]. They

gathered human-written sentences showcasing implicit toxicity directed at the 13

minority groups, resulting in 26 sets of prompts. Each set includes two variations

(benign and toxic) for every target group. From these sets, we specifically chose 2000

prompts displaying hateful content. To achieve our objective, we aim to rephrase toxic

prompts and generate additional toxic samples. Subsequently, to ensure a balanced

dataset, we randomly select benign samples from the dataset equal to the number of

augmented toxic samples.

5.3.3 Instruction Fine-tuning

In our study, we employed FLAN-T5 [292] for the data augmentation task by para-

phrasing existing samples in the minority class. FLAN-T5 is a Fine-tuned Language

Network (FLAN) built on the T5 (Text-To-Text Transfer Transformer) architecture

[300] and pre-trained on an extensive text corpus. It demonstrates robust general-

ization across multiple tasks [301]. We specifically employed flan-t5-base, which

features 250 million parameters, an encoder-decoder architecture, and span corruption

[292].

To fine-tune the flan-t5-base model through instruction, we employed the PAWS

dataset Section 5.3.1 for the targeted paraphrasing task. Following the methodology

explained in Section 5.2.1.1, we first constructed the instruction dataset. The PAWS

dataset was adapted into the instruction dataset, where the prompt is generated

by wrapping inputs (8s1 2 S1) with paraphrasing instructions, and the response is

118

provided by S2. The minimum and maximum lengths of the input data are set to

10 and 300, respectively. As mentioned earlier in Section 2.3, we utilized LoRA to

e�ciently fine-tune the flan-t5-base model with limited computational resources. The

training consisted of 15 epochs with a learning rate of 1⇥ 10�5, where Lora-rank (r)

was set to 70, ↵ to 70, and dropout to 0.05. The total number of trainable parameters

for the original model is 255,319,296. With the use of PEFT, this figure is reduced to

7,741,440, signifying that only 3.03% of the model parameters are now trainable.

To assess the performance of the model for paraphrase generation before and after

instruction fine-tuning, there is a lack of consensus on the metrics appropriate for

these task-specific models, resulting in variations in measurements across di↵erent

studies. One commonly utilized metric in the assessment of summarization tasks is

ROUGE which is Recall-Oriented Understudy for Gisting Evaluation [302]. This

metric, which predominantly emphasizes recall, is widely employed and extends its

applicability to paraphrase evaluation [303], [304]. ROUGE captures the n-gram

overlap between responses generated by LM and those generated by humans. It

is diversified into several types, including ROUGE-1, ROUGE-2, ROUGE-N, and

ROUGE-L, ROUGE-W, ROUGE-S, each tailored to specific features. As an example,

ROUGE-N emphasizes gram count and calculates recall by examining matching

unigrams in the context of unigram analysis (ROUGE-1). Conversely, ROUGE-L

evaluates the Longest Common Subsequence (LCS), ROUGE-W focuses on Weighted

LCS, ROUGE-S delves into skip-bigram co-occurrence statistics, and ROUGE-LSUM

shows the Length of LCS normalized by the total words in the reference. Additionally,

we incorporated other metrics to assess the quality of generated responses, including

METEOR (Metric for Evaluation of Translation with Explicit Ordering) [305], and

BERTScore [306]. METEOR integrates semantic understanding into its translation

evaluation process by assessing matches in terms of exactness, stemming, or synonymy

119

[307]. BERTScore leverages pre-trained contextual embeddings from BERT-based

models to compare words between the source and generated texts, employing cosine

similarity for matching [308]. We utilized METEOR 1.5 [309] and the ’bert-base-

uncased’ model for BERTScore.

Table 11 presents the assessment outcomes using ROUGE, METEOR, and

BERTScore metrics, comparing the initial model pre-finetuning using Zero-shot

learning (flant5Zero�shot) with the instruct-tuned flan-t5-base (flant5LoRA).

The findings indicate that the flant5LoRA exhibits absolute percentage enhance-

ments compared to the flant5Zero-sho, with improvements in all metrics. Please note

that PAWS does not include any toxic samples, and, so far, flan-t5-base is only

instruct-tuned for the paraphrasing task while preserving semantic meaning. It may

not perform well in countering toxic content or may unintentionally remove toxic

words to avoid generating harmful samples. Therefore, further optimization is needed

using a reward function to perform paraphrasing while preserving semantic meaning

and addressing or potentially increasing the toxicity level.

In the following section, we explain our experimental setup for optimizing instruc-

tion fine-tuning of flan-t5-base using a reward function.

5.3.4 Optimization

While the instruct-tuned flan-t5-base (flant5LoRA) has demonstrated improvements

over the flan-t5-base using zero-shot learning (flant5initial), further optimization is

possible through the integration of a reward function and PPO. Due to the unstructured

nature of toxic samples, characterized by online comments deviating from ordinary

grammar and vocabulary, the task of paraphrasing becomes notably challenging. To

address this challenge, optimization involves leveraging a reward function capable

of evaluating text toxicity. By rewarding or penalizing the model accordingly, the

120

Table 11: Comparing Model Performance in Paraphrasing Tasks Pre and Post Instruct-
Finetuning

Model Metric Value

flant5Zero-shot

ROUGE-1 0.324
ROUGE-2 0.289
ROUGE-L 0.318

ROUGE-LSUM 0.321
METEOR 0.317

BERTScore-Precision 0.332
BERTScore-Recall 0.323
BERTScore-F1 0.326

flant5LoRA

ROUGE-1 0.416
ROUGE-2 0.392
ROUGE-L 0.412

ROUGE-LSUM 0.413
METEOR 0.526

BERTScore-Precision 0.547
BERTScore-Recall 0.531
BERTScore-F1 0.539

objective is to encourage the generation of toxic samples compared to nontoxic ones.

For optimization, we follow the method explained by Section 5.2.2 and use

flant5LoRA as a reference model (flant5RF), where its adaptors are not trainable,

and all weights are frozen, and an active model (flant5ACT) with trainable adaptors.

We also employ the Google Perspective API 2 as the toxicity detector in the reward

model to evaluate the toxicity of generated samples. The Perspective API utilizes

machine learning to identify abusive comments, providing toxicity scores between 0

and 1 as a probability indicator, not a severity measure. Higher scores indicate a

greater likelihood of resembling patterns in toxic comments, and developers can set

thresholds based on these scores without quantifying the degree of toxicity [310].

Additionally, we utilize another toxicity detector to score the toxicity of generated

2https://perspectiveapi.com/

121

https://perspectiveapi.com/

paraphrased samples and gain a toxicity reward. The facebook/roberta-hate-

speech3, which we refer to as HateRoBERTa in this chapter, is a RoBERTa model

fine-tuned on a hate/toxic speech dataset [311], available on Hugging Face4, specifically

designed for detecting hate/toxic speech.

The goal is to compare the performance of flant5LoRA when optimized by PPO,

and the toxicity detector in the reward function is Perspective API (flant5PPO-API),

and when the optimization is done using HateRoBERTa as the toxicity detector

(flant5PPO-RoBERTa). Perspective API is more data-agnostic than HateRoBERTa,

and we expect to see superior performance.

The toxicity reward is then added to the penalty. The reference model (flant5RF)

also acts as a fixed point of reference, ensuring that when the active model hallucinates,

it aligns closer to the reference model, providing positive responses that are not bizarre.

KL-Divergence is then calculated and used as a penalty. This penalty is added to the

toxicity reward, and the total reward is passed to the value function (PPO) to update

the policy accordingly.

To optimize both optimization techniques utilizing various toxicity reward func-

tions, we utilized the trl package [312]. This involved setting generation parameters

to Top-k=0.0, Top-p=1.0, output-min-length=50, output-max-length=512, and imple-

menting a maximum of 20 PPO steps.It is important to note that the Top-k sampler

restricts sampling to the k most probable tokens, while the Top-p (nucleus) sampler

constrains sampling to the smallest set of tokens [34], [313], [314]. Additionally, we

conducted iterative tests using a validation set and experimented with random values

for hyperparameters to determine the optimal settings.

To assess the quality of paraphrased responses generated by flant5PPO�API and

flant5PPO�RoBERTa, we utilized ROUGE, METEOR, and BERTScore metrics to

3https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target
4https://huggingface.co/

122

https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target
https://huggingface.co/

Table 12: Examining Paraphrasing Model Performance Enhanced by PPO Using
Diverse Toxicity Reward Mechanisms

Model Metric Value

flant5PPO-API

ROUGE-1 0.798
ROUGE-2 0.793
ROUGE-L 0.797

ROUGE-LSUM 0.798
METEOR 0.831

BERTScore-Precision 0.924
BERTScore-Recall 0.916
BERTScore-F1 0.920

flant5PPO-RoBERTa

ROUGE-1 0.788
ROUGE-2 0.784
ROUGE-L 0.789

ROUGE-LSUM 0.789
METEOR 0.803

BERTScore-Precision 0.893
BERTScore-Recall 0.889
BERTScore-F1 0.892

analyze the impact of PPO optimization on paraphrasing quality. Table 12 presents

the results for these two models across various metrics. The findings indicate that their

performance is quite comparable, with optimization via PPO leading to noticeable

improvements in paraphrasing quality. Furthermore, a comparison between the results

presented in Table 12 and those in Table 11, which includes all four models (including

flant5Zero-shot, flant5LoRA, flant5PPO�API , and flant5PPO�RoBERTa), underscores

the significant enhancement in generated response quality achieved through PPO

optimization compared to Zero-shot learning or instruct-finetuning.

Furthermore, to assess the ability of the developed models to generate toxic samples,

we employed a test set for sentence paraphrasing tasks. We assessed the toxicity of the

test set, calculated the average and standard deviation of toxic scores for paraphrasing

samples generated by the reference model (flant5RF), and compared it with the toxicity

of samples generated by flant5PPO-API and flant5PPO-RoBERTa. Table 13 outlines the

123

Table 13: Percentage Enhancement in Toxicity Scores for Paraphrasing Post-
Optimization with PPO

Model Improvement in Toxicity Score (%)
Average Standard Deviation

flant5PPO-RoBERTa 12.35 27.44

flant5PPO-API 28.42 25.18

results, demonstrating the enhancement in the toxicity of generated samples through

the optimization task. Specifically, flant5PPO-API could generate more toxic samples

compared to flant5PPO-RoBERTa on average by 21.68% and 7.57%, respectively.

Please note that the toxicity of generated responces for samples in the test set was

evaluated by HateBERT [244]. In other words, for samples generated by flant5PPO-API,

and flant5PPO-RoBERTa, HateBERT was employed to score toxicity and facilitate

comparison between the reference model and the optimized model.

After constructing the models for sentence-level augmentation through paraphras-

ing, we utilized the toxic datasets detailed in Section 5.3.2 to evaluate our proposed

model.

5.3.4.1 Jigsaw

As previously mentioned, the jigsaw toxic dataset comprises 143,346 nontoxic samples

and 16,225 toxic samples. The objective is to generate additional toxic samples

to achieve a balanced dataset with an almost equal number of toxic and nontoxic

samples. To accomplish this, we aimed to augment toxic samples approximately

9 ⇥ 16, 225 = 146, 025, considering that not all augmented samples are necessarily

toxic, and some may be removed later.

To meet this objective, we chose to generate nine di↵erent paraphrases per toxic

sample using all instruct-tuned models flant5LoRA, flant5PPO-RoBERTa, flant5PPO-API.

124

Subsequently, we transformed the toxic dataset into an instruction dataset by encap-

sulating all 16,255 toxic samples with instructions to form prompts. These prompts

were then fed into the models with the following generation parameters: minimum

length, top-k, top-p, and the number of returned sequences set to (5, 0.0, 1.0, 9). The

results will be presented in the results section Section 5.4.

5.3.4.2 ToxiGen

We followed a similar approach as with the ToxiGen dataset, starting with 2,000

toxic samples. Utilizing all models including flant5LoRA, flant5PPO-RoBERTa, and

flant5PPO-API, we generated an additional 2,000 samples. In other words, we para-

phrased every sample in the ToxiGen dataset, resulting in 2,000 augmented samples.

The outcomes are detailed in the following section.

5.3.5 Baselines

We evaluate our proposed method for augmenting toxic samples through paraphrasing

by comparing it against four baselines. The first baseline is zero-shot learning technique

(flant5Zero-shot) , the second one is the instruct-tuned FLAN-T5 model, represented

as flant5LoRA. These baseline allows us to observe how the incorporation of RLHF

can enhance model performance, especially in the context of toxic paraphrasing.

The third baseline is the optimized model, flant5PPO�RoBERTa, using toxicity

detector of HateRoBERTa in the reward model. A comparison between our proposed

technique and this baseline enables us to assess the impact of di↵erent reward models

on performance.

Additionally, we aim to broaden our comparison to include other data augmentation

techniques, specifically, back-translation. We have already detailed the setup for the

first three baselines. In the following subsection, we will guide you through the setup

125

Figure 14: Illustration of the Back-Translation Technique, where English toxic samples
are translated into multiple languages and then back into English for data augmenta-
tion.

for data augmentation using back-translation.

5.3.5.1 Zero-shot Learning

In our approach to generating toxic text via paraphrasing, we leveraged zero-shot

learning, which involves training a model without explicit examples of the task it is

meant to perform. We employed “flan-t5-base” or this purpose.

First, we transformed our toxic dataset (Section 5.3.2) into an instruction dataset.

This involved encoding each toxic sample along with a prompt requesting its para-

phrasing while maintaining the same semantic meaning. This method allowed us to

generate toxic text without explicitly providing examples of such text. Instead, the

model learned to generate toxic text by understanding the underlying semantics of

the provided prompts and applying paraphrasing techniques accordingly.

126

5.3.5.2 Back Translation

To evaluate our proposed approach against existing text augmentation techniques,

we utilized back-translation to generate additional toxic samples. For Jigsaw dataset,

our objective was to expand the dataset by creating nine additional samples for each

original toxic sample while maintaining a balanced distribution. We employed the

flan-t5-base model, known for its multilingual capabilities, for this task. However, we

encountered a challenge when translating English toxic samples into nine di↵erent

versions of a single language, such as French. To overcome this challenge, we opted to

translate each English toxic sample into nine di↵erent languages and subsequently

back into English. Notably, we employed the Zero-shot learning technique for this

process. In zero-shot learning, the model is trained to perform a task without explicit

examples or training data. In our case, we provided prompts to the flan-t5-base model,

instructing it to translate each English toxic sample into nine di↵erent languages.

Crucially, we did not provide any explicit examples for the model to learn from; instead,

it generalized its translation capabilities based on the prompt and input provided.

This zero-shot learning technique allowed us to e↵ectively generate diverse translations

for each English toxic sample without the need for specific training data in each target

language. By back-translating these multilingual translations into English, we were

able to augment our dataset with additional diverse toxic samples, enhancing the

robustness of our evaluation.

We translate toxic samples into French, Spanish, Romanian, Bulgarian, German,

Dutch, Portuguese, Albanian, and Russian, followed by translating all samples back

into English. The selection of these languages was determined through trial and error,

as we experimented with various languages. Flan-t5-base did not consistently respond

appropriately in some instances, generating responses with unintelligible characters,

leading us to settle on the aforementioned languages.

127

We used all toxic samples as input for the prompt requesting translation from

English into di↵erent languages and vice versa. The method is illustrated in Figure 14.

For the ToxiGen dataset, we followed a similar process, but with a slight modi-

fication. Instead of utilizing all nine languages available, we restricted our focus to

English and French, along with their respective translations. This decision was made

due to the limited availability of toxic prompts, which amounted to only 2,000 entries.

5.3.6 Computational Resources

We utilized the cloud computing instance ’Paperspace P6000’ equipped with NVIDIA

P6000 GPUs. The P6000 features a GPU with 24 GB memory, 30 GB RAM, 8 vCPUs,

and supports multi-GPU instances of 2X and 4X. The cost per hour for each task on

the P6000 is $1.10.

The Google Perspective API is free and processes each query per second. To

expedite the process, we employed five di↵erent API keys simultaneously and divided

the Test set into five parts, with each part assigned to a separate API key.

5.4 Experimental Results

Generating Toxic Samples based on Jigsaw dataset

As detailed in section (Section 5.3), the proposed technique (flant5PPO-API) and four

baselines (flant5Zero�shot, flant5LoRA, flant5PPO�RoBERTa, flant5Back�translation),

were employed to generate toxic samples.

A total of “146,025” samples were generated by each of the models flant5PPO-API,

flant5PPO-RoBERTa, flant5LoRA, flant5Zero�shot, and flant5Back-translation. However,

not all samples are deemed acceptable, as some may be repetitive, nonsensical, or

nontoxic, lacking coherence or logical consistency. Consequently, we conducted a

128

Figure 15: Total Toxic Samples Generated by Each Model: Toxicity Scores � 0.3
(Jigsaw Dataset)

thorough analysis of the generated samples, meticulously selecting only those that

are readable and meaningful for both humans and machines. This filtering process

ensures the quality and relevance of the data for subsequent tasks and evaluations.

The flant5Zero-shot model struggled to produce multiple responses per request,

leading us to limit each request to one response. Ultimately, it generated 16,225

responses, each corresponding to a single prompt. However, the model encountered

di�culty in generating distinct responses. Specifically, for 458 toxic samples, the

paraphrased responses were identical. To address this issue, we filtered out the

redundant responses, resulting in a final count of “15,763” unique responses.

We leveraged Google Perspective API to evaluate the toxicity of our selected

samples. Notably, we also incorporated HateRoBERTa into our analysis to mitigate

potential bias, ensuring a comprehensive assessment of toxicity. Interestingly, the

results from both evaluators were highly consistent. As such, for the sake of clarity and

simplicity in reporting, we focus solely on the findings obtained through Perspective

API.

129

Following evaluation with Perspective API, all samples received toxicity scores

ranging from 0 to 1. Subsequent manual inspection revealed an apparent threshold:

samples scoring below 0.3 typically exhibited nontoxic characteristics, while those

surpassing 0.3 were deemed potentially toxic. As a result, we made the decision to

discard samples with scores below 0.3 and focus solely on those with toxicity scores

above this threshold. This ensured that only samples exhibiting a significant level of

toxicity were included in our analysis.

It is worth noting that during the training phase, we incentivized the model

to generate responses with higher toxicity by rewarding samples with scores above

0.7. After experimenting with various thresholds, we determined that a threshold

of 0.7 or higher yielded the most satisfactory results during hyperparameter tuning.

Consequently, this threshold was chosen as the desired level of toxicity for our study.

Figure 15 below displays the final number of toxic samples generated by each model.

The analysis reveals that the proposed model (flant5PPO-API) generates a higher num-

ber of toxic samples (122,951) compared to other models. In contrast, flant5Zero-shot

exhibits the poorest performance, generating only 8,691 toxic samples out of 15,763

responses generated. Following this, flant5Back-translation generates 29,583 toxic samples

out of the total 146,025 generated samples. Overall, the instruction-tuned models

demonstrate exceptional performance in the task of text data augmentation, with

potential for further enhancement through Reinforcement Learning with Human Feed-

back (RLHF). Back-translation technique did not work well, because toxic language

often contains subtle nuances, sarcasm, or contextual references that may not translate

accurately or be preserved through this process. As a result, paraphrased versions

may fail to capture the original toxicity or convey the intended tone. Moreover, the

complexity of toxic language and the need for contextual understanding pose challenges

for back-translation models, which may struggle to accurately reproduce the nuanced

130

Table 14: Composition of Balanced Datasets: Model-Generated Toxic Samples and
Random Nontoxic Samples-Jigsaw

Model Generated Toxic Samples � 0.3 Total Toxic Samples Nontoxic Toxic + Nontoxic

flant5Zero-shot 8,691 24,916 24,916 49,832
flant5Back-translation 29,583 45,808 45,808 91,616
flant5LoRA 109,699 125,924 125,924 251,848
flant5PPO-RoBERTa 112,704 128,929 128,929 257,858
flant5PPO-API 122,951 139,176 139,176 278,352

toxicity present in the original text. Additionally, the e↵ectiveness of back-translation

relies on the quality and capabilities of the underlying translation model, which may

further limit its suitability for toxic text paraphrasing tasks.

Now, we need to understand how the generated toxic samples (GTS) can impact

the performance of classifiers for toxic language detection. Therefore, we first build

balanced datasets and then employ some classifiers to test the quality and e↵ectiveness

of the balanced dataset. Since we have ensured that the original toxic samples

(16,225 toxic samples) are not included in the augmented dataset, we add them to all

augmented samples. Subsequently, we randomly select an equal number of nontoxic

samples from the toxic dataset in Section 5.3.2 to create a balanced dataset. Note

that di↵erent models generated di↵erent numbers of toxic samples, as illustrated in

Figure 15. Therefore, we will have balanced datasets with varying numbers of toxic

and nontoxic samples, as shown in Table 14.

Classification of Balanced Datasets Generated from Jigsaw

Prompts

After preparing all balanced datasets, our focus shifted to evaluating the quality of

the generated samples and determining which dataset could enhance the accuracy of

classifiers for toxicity detection. In this phase, we selected four di↵erent classifiers; two

131

Table 15: Classification Results-CNN-Jigsaw

Dataset Accuracy Precision Recall F1-Score

UnbalancedJigsaw 94.78% 71.39% 81.25% 76%
BalancedZero-shot 89.20% 88.42% 90.85% 89.50%
BalancedBack-translation 90.20% 88.85% 91.95% 90.37%
BalancedLoRA 93.75% 92.03% 95.79% 93.88%
BalancedPPO-RoBERTa 94.01% 92.22% 96.12% 94.13%
BalancedPPO-API 95.28% 94.23% 96.46% 95.33%

Table 16: Classification Results-CNN-FastText-Jigsaw

Dataset Accuracy Precision Recall F1-Score

UnbalancedJigsaw 89.98% 50.40% 91.52% 65%
BalancedZero-shot 90.49% 89.12% 91.63% 90.62%
BalancedBack-translation 91.32% 92.68% 89.72% 91.18%
BalancedLoRA 93.35% 90.69% 96.61% 93.56%
BalancedPPO-RoBERTa 94.00% 91.60% 96.31% 94.17%
BalancedPPO-API 94.23% 92.47% 96.89% 94.35%

of them are CNN-based, and the other two are transformer-based, to be trained/fine-

tuned using the balanced datasets and the original unbalanced toxic dataset. The

classifiers include Convolutional Neural Networks (CNN) [55], CNN with FastText

embeddings, where FastText embeddings are a vector representation technique created

and released by Facebook AI research [113]. Furthermore, our selection of transformer-

based models encompassed Bidirectional Encoder Representations from Transformers

(BERT) [116], HateBERT [244], a specialized variant of BERT tailored for detecting

abusive language in English, and RoBERTa [119], a robust BERT model that employs

dynamic masking during pre-training to enhance its performance. Additionally, we

incorporated BERTweet [315], a pre-trained language model designed specifically for

English Tweets, to further enrich our analysis.

As discussed, we incorporated the primary Jigsaw toxic dataset including 143,346

nontoxic samples, and 16,225 toxic samples to examine the impact of an imbalanced

132

training set on classifier performance. To mitigate dataset imbalance, we implemented

a weighted loss function during training, prioritizing the minority class. This strategy

enhances the model’s ability to learn from underrepresented data, e↵ectively addressing

challenges posed by imbalanced distributions. Traditional methods like oversampling

and undersampling, as tested on the Jigsaw dataset, often fall short compared to

more sophisticated approaches such as ensemble learning [101]. Undersampling risks

losing valuable data and features, potentially degrading model performance, while

oversampling may introduce redundancy and overfitting, particularly if not carefully

applied. Additionally, both methods may fail to accurately capture the underlying

data distribution, leading to biased models and suboptimal performance. Details about

the experimental setup of classifiers are mentioned in Chapter 7. The performance

of classifiers is then evaluated based on Accuracy, Precision, Recall, and F1-score.

All results per classifier are demonstrated in Table 15, Table 16, Table 17, Table 18,

Table 19 and Table 20.

The results indicate that the dataset generated by flant5PPO�API significantly

enhanced the performance of all classifiers, outperforming alternative versions trained

or fine-tuned with di↵erent datasets. Classifiers developed using balancedflant5PPO�API

achieved the highest metrics in accuracy, precision, recall, and F1-score. De-

spite addressing the imbalance issue with a weighted loss function, prioritizing F1-

score for comparison due to the dataset’s imbalance revealed BERT developed by

balancedflant5PPO-API
as the top-performing classifier with an outstanding F1-score of

97.28%. Following closely is HateBERT, fine-tuned by balancedflant5PPO-API
, which

achieved a notable F1-score of 97.12%. Conversely, classifiers developed using the

UnbalancedJigsaw dataset did not yield satisfactory results. Furthermore, classifiers

developed with the BalancedPPO-RoBERTa dataset exhibited good performance, closely

trailing balancedflant5PPO-API
, but fell short of surpassing our proposed technique.

133

Table 17: Classification Results-BERT-Jigsaw

Dataset Accuracy Precision Recall F1-Score

UnbalancedJigsaw 96.04% 75.75% 89.83% 82.19%

BalancedZero-shot 94.31% 92.74% 96.14% 94.41%

BalancedBack-translation 95.15% 95.61% 94.66% 95.13%

BalancedLoRA 96.70% 96.11% 97.34% 96.72%

BalancedPPO-RoBERTa 96.82% 96.28% 97.41% 96.84%

BalancedPPO-API 97.27% 96.91% 97.65% 97.28%

Generating Toxic Samples and Classification with ToxiGen

Dataset

We selected 2,000 toxic prompts and utilized various models, including flant5Zero-shot,

flant5LoRA, flant5PPO-RoBERTa, flant5PPO-API, and flant5back-translation, to generate

toxic samples. It is important to note that we aimed to generate a maximum of 2,000

samples, as only one response was requested per prompt. Subsequently, all generated

samples underwent toxicity evaluation using the Perspective API, and only those with

a toxicity score of 0.30 or higher were retained. Figure 16 illustrates the distribution

of generated toxic samples across di↵erent models.

Then, all augmented samples were added to the initially selected toxic samples

used as prompts to create a balanced dataset. To achieve balance, an equal number of

nontoxic (benign) samples were randomly selected from the ToxiGen dataset. The final

results are shown in Table 21. The results indicate that applying reinforcement learning

for instruction tuning surpasses other techniques such as zero-shot learning, back-

translation, or even simple instruction fine-tuning. Moreover, utilizing the Perspective

134

Table 18: Classification Results-RoBERTa-Jigsaw

Dataset Accuracy Precision Recall F1-Score

UnbalancedJigsaw 96.68% 82.11% 86.19% 84.10%

BalancedZero-shot 94.27% 93.27% 95.42% 94.33%

BalancedBack-translation 95.68% 95.88% 95.45% 95.67%

BalancedLoRA 96.65% 95.53% 97.69% 96.59%

BalancedPPO-RoBERTa 96.65% 95.89% 97.47% 96.67%

BalancedPPO-API 97.01% 96.13% 97.97% 97.04%

API as a toxicity evaluator for toxicity reward yields better performance compared to

HateRoBERTa. Finally, 1,894 toxic samples were generated by flant5PPO-API, which,

combined with the initial 2,000 toxic prompts, resulted in a total of 3,894 toxic samples.

Subsequently, a balanced dataset comprising 7,788 samples, both toxic and nontoxic,

was created.

After creating balanced datasets from ToxiGen, various classifiers, including CNN,

CNN-FastText, BERT, RoBERTa, HateBERT, and BERTweet, were trained on

the complete datasets. Each dataset was carefully split into training and testing

sets, maintaining an 80% to 20% ratio, respectively. The performance metrics and

classification results of these classifiers can be found in Table 22, and Table 23.

The classification results for datasets developed using ToxiGen prompts show

that classifiers trained on the BalancedPPO-API dataset outperform other models.

Overall, transformer-based models outperform CNN-based models. Specifically, BERT

fine-tuned with the BalancedPPO-API dataset achieves the best performance with an

accuracy of 97.98% and an F1-score of 98.05%. In contrast, the CNN classifier trained

135

Table 19: Classification Results-HateBERT-Jigsaw

Dataset Accuracy Precision Recall F1-Score

UnbalancedJigsaw 96.52% 82.9% 86.11% 84.55%

BalancedZero-shot 94.32% 93.24% 95.56% 94.39%

BalancedBack-translation 95.35% 95.51% 95.16% 95.34%

BalancedLoRA 96.72% 95.88% 97.63% 96.74%

BalancedPPO-RoBERTa 96.75% 96.07% 97.48% 96.77%

BalancedPPO-API 97.03% 96.20% 97.98% 97.12%

on the BalancedZero-shot dataset performs the worst, with an accuracy of 90.18% and

an F1-score of 90.24%.

To conclude, our proposed approach to text data augmentation for constructing a

balanced dataset has not only demonstrated its e↵ectiveness in generating a larger

quantity of high-quality toxic samples but also led to enhanced performance across a

diverse range of evaluation metrics. This augmentation technique, leveraging state-of-

the-art language models and reinforcement learning, provides a straightforward and

e↵ective strategy for addressing imbalances in toxic datasets, contributing to superior

classifier performance in toxicity detection tasks.

However, an important question arises regarding the significance of our improve-

ments. Despite our model consistently outperforming the baseline methods, the

progress might seem modest, especially considering that the baselines were already

quite e↵ective. It is crucial to emphasize that even small improvements in accuracy

and performance have significant implications, particularly in areas such as detecting

toxic content in online conversations. Additionally, the ability of our method to create

136

Table 20: Classification Results-BERTweet-Jigsaw

Dataset Accuracy Precision Recall F1-Score

UnbalancedJigsaw 96.41% 82.45% 86.03% 84.21%

BalancedZero-shot 94.22% 93.19% 95.44% 94.24%

BalancedBack-translation 95.48% 95.49% 95.12% 95.30%

BalancedLoRA 96.68% 95.83% 97.60% 96.64%

BalancedPPO-RoBERTa 96.71% 96.67% 97.41% 96.96%

BalancedPPO-API 97.02% 96.26% 97.95% 97.00%

Table 21: Composition of Balanced Datasets: Model-Generated Toxic Samples and
Random Nontoxic Samples-ToxiGen

Model Generated Toxic Samples � 0.3 Total Toxic Samples Nontoxic Toxic + Nontoxic

flant5Zero-shot 139 2,139 2,139 4,278
flant5Back-translation 341 2,341 2,341 4,682
flant5LoRA 804 2,804 2,804 5,608
flant5PPO-RoBERTa 1,682 3,682 3,682 7,364
flant5PPO-API 1,894 3,894 3,894 7,788

more toxic samples is extremely useful, especially when there are not many toxic

examples available.

In terms of the computational aspect, we understand the importance of balancing

the complexity of our model with the available resources. Our approach includes

methods such as PEFT to reduce computational overhead and make better use

of memory during training. Furthermore, we use RLHF to improve our model’s

performance while keeping computational demands low.

In summary, our model significantly enhances toxicity detection by addressing

data imbalances and increasing resilience.

137

Figure 16: Total Toxic Samples Generated by Each Model: Toxicity Scores � 0.3
(ToxiGen Dataset)

5.5 Summary

In conclusion, this chapter presents a novel approach to sentence-level text data

augmentation, employing reinforcement learning guided by human feedback to enhance

the performance of the fine-tuned FLAN-T5 model. By prioritizing paraphrasing

while maintaining semantic coherence and generating toxic responses, our method

e↵ectively tackles the challenges posed by imbalanced datasets in toxic language

detection. Central to our approach is the utilization of Proximal Policy Optimization

as a reinforcement learning technique, coupled with the Google Perspective API

as a toxicity evaluator and the integration of Kullback-Leibler Divergence. These

components synergistically produce high-quality toxic responses, yielding a balanced

and diverse dataset that outperforms existing data augmentation methods. Through a

comprehensive exploration of various methodologies for toxic text generation, including

Zero-shot learning, Back-translation, and instruc-tuned FLAN-T5, optimized with

Proximal Policy Optimization (PPO) and evaluated using di↵erent toxicity evaluators

138

Table 22: CNN-Based Classification Performance-ToxiGen

Model Dataset Accuracy Precision Recall F1-Score

CNN

BalancedZero-shot 90.18% 89.31% 91.67% 90.24%
BalancedBack-translation 91.34% 89.97% 93.78% 91.42%
BalancedLoRA 92.40% 91.73% 94.15% 92.61%
BalancedPPO-RoBERTa 93.36% 91.58% 94.28% 93.71%
BalancedPPO-API 94.30% 93.86% 95.75% 94.62%

CNN-FastText

BalancedZero-shot 91.20% 90.42% 92.85% 91.50%
BalancedBack-translation 92.31% 91.27% 93.84% 92.69%
BalancedLoRA 93.75% 91.03% 94.79% 93.88%
BalancedPPO-RoBERTa 94.01% 94.22% 95.12% 94.24%
BalancedPPO-API 95.28% 94.10% 96.73% 95.47%

such as HateRoBERTa and the Google Perspective API, we have demonstrated the

superiority of our proposed framework. Our findings, validated across two distinct

toxic datasets, Jigsaw and ToxiGen, consistently point to the e�cacy of instruc-tuned

FLAN-T5 with PPO and Perspective API as a superior approach. Our approach

has yielded impressive results, generating 122,951 toxic samples with a toxicity score

exceeding 30%, highlighting its potential to significantly advance toxicity detection

models in online conversations. Notably, over 20,000 of the generated samples exhibit

toxicity levels exceeding 90%, further emphasizing the impact of our method on

enhancing toxicity detection models. However, it is essential to acknowledge the

limitations of our approach, which we aim to address in future research endeavors.

Specifically, the simplification of the Jigsaw toxic dataset into two broad categories

limits the granularity of our analysis.

Acknowledgments

This research is supported by NSERC Discovery Grants (RGPIN-2024-04087) and

Canada Research Chairs Program (CRC-2019-00041).

139

Table 23: Transformer-Based Classification Performance-ToxiGen

Model Dataset Accuracy Precision Recall F1-Score

BERT

BalancedZero-shot 92.46% 91.25% 92.84% 92.39%
BalancedBack-translation 92.71% 91.44% 93.06% 92.68%
BalancedLoRA 96.88% 95.03% 96.87% 96.75%
BalancedPPO-RoBERTa 97.52% 97.12% 96.22% 97.43%
BalancedPPO-API 97.98% 96.23% 98.26% 98.05%

RoBERTa

BalancedZero-shot 92.01% 90.34% 93.59% 92.27%
BalancedBack-translation 92.68% 91.38% 92.91% 92.46%
BalancedLoRA 95.88% 94.39% 95.97% 95.76%
BalancedPPO-RoBERTa 96.83% 96.22% 97.12% 96.43%
BalancedPPO-API 97.31% 96.04% 97.59% 97.29%

BERTweet

BalancedZero-shot 92.27% 93.59% 90.34% 92.16%
BalancedBack-translation 92.23% 93.83% 91.48% 92.57%
BalancedLoRA 96.05% 94.83% 96.11% 95.98%
BalancedPPO-RoBERTa 96.94% 96.17% 97.29% 96.88%
BalancedPPO-API 97.36% 96.54% 97.62% 97.34%

HateBERT

BalancedZero-shot 92.35% 91.22% 92.76% 92.27%
BalancedBack-translation 92.65% 91.39% 93.01% 92.59%
BalancedLoRA 96.81% 94.98% 96.79% 96.67%
BalancedPPO-RoBERTa 97.47% 97.02% 96.15% 97.25%
BalancedPPO-API 97.85% 97.19% 98.13% 97.92%

140

Chapter 6

Real-Time Adaptive Toxicity

Detection with Cascaded Classifiers

Optimized by Proximal Policy

Optimization

This chapter is dedicated to the article entitled “Real-Time Adaptive Toxicity Detection

with Cascaded Classifiers Optimized by Proximal Policy Optimization”. This article

was submitted to the IEEE Transactions on Computational Social Systems . The

titles, figures, and mathematical formulations have been revised to keep the coherence

through the manuscript.

141

Managing toxic content, such as hate speech and harassment, on online platforms

is a critical and complex task due to the impracticality of manual moderation and

the sheer volume of data. Current moderation systems employ a combination of

human moderators and automated tools using Machine Learning (ML) algorithms.

However, these systems often face di�culties in balancing classification accuracy and

speed, leading to frequent misclassifications that increase the workload for human

moderators and result in longer overall process times. These delays impact user

satisfaction, as users who wish to avoid toxic content desire it to be hidden as

quickly as possible. To address these challenges, we propose a novel framework for

toxicity detection in user-generated content, leveraging cascaded classifiers optimized

through deep reinforcement learning. Our framework, Proximal Policy Optimization-

based Cascaded Inference System (PPO-CIS), dynamically assigns classifiers based

on their performance and computational cost, utilizing high-throughput classifiers for

initial filtering and more accurate classifiers for final decision-making. By employing

Proximal Policy Optimization, our deep reinforcement learning (DRL)-based system

adapts to varying data volumes and classifier performances, ensuring e�cient and

accurate content moderation. Extensive evaluations on two di↵erent datasets, Kaggle

and ToxiGen, considering all possible combinations of classifiers with various label

determination techniques, including majority voting, soft voting, and sequential output,

as well as di↵erent policy-based DRL approaches with various reward functions,

demonstrate the e↵ectiveness of PPO-CIS. The results show significant improvements

in both processing time and detection accuracy. This work paves the way for more

scalable and cost-e↵ective content moderation systems, enhancing user satisfaction

and reducing the burden on human moderators.

142

6.1 Problem Statement & Contributions

Every platform that enables user interaction faces the complexities of handling toxicity

including hate speech, profanity, o↵ensive language, slurs, personal attacks, defamatory

statements, bullying, and harassment [316], [317]. Addressing this issue is di�cult

because manually removing toxic content is impractical, given the sheer volume, speed,

and diversity of online material [1].

Social media content moderation currently relies on a collaborative approach

between human moderators and automated tools [318]. Platforms have adopted

Machine Learning (ML) and Deep Learning (DL) algorithms to analyze user-generated

content (UGC), generating predictive scores and classifying content into di↵erent

categories [20]–[22]. Depending on these scores or classifications, UGC might be

flagged and sent to a human moderator (HM) for final assessment on whether it

should remain visible or be hidden [319]. Content moderation systems (CMS) face the

daunting task of managing a vast volume of UGC every second. The rapid expansion

of social networking services over the past decade has led to an explosion of data from

millions of users, making it di�cult to e�ciently process and moderate the constant

influx of information [15]. Social media platforms have seen a significant increase

in user numbers over the years, reflecting a corresponding rise in overall usage. For

instance, in 2022, Facebook and YouTube boasted nearly 2.85 billion and 2 billion

users, respectively, while X (called Twitter) and Reddit had 350 million and 430

million users [16]. X alone records 192 million daily active users, averaging 6,000

tweets per second, 350,000 per minute, and 500 million tweets daily, with numbers

surging to over 140,000 tweets per second during events such as natural disasters

or breaking news [14], [320]. Fast forward to April 2024, the numbers have grown

substantially: Facebook now leads with 3.065 billion monthly active users, followed

143

by YouTube with 2.504 billion users, while other platforms such as X have also seen

significant growth, reaching 661 million users [321]. This surge in user numbers

indicates higher engagement on these platforms, with the global average time spent

on social media daily now at 2 hours and 24 minutes [322]. Moreover, under recent

regulations such as the German NetzDG or the EU Code of Conduct on Hate Speech,

platforms are compelled to rapidly remove these contents, driving them to rely on

automated systems for proactive and large-scale detection of illegal or problematic

material [316].

Due to the substantial potential for incorrect labels (false positive or false negative)

leading to the removal of innocent users and their content, there is a noteworthy

emphasis on auditing, evaluating, and improving ML/DL methods employed in CMS

[1], [323]. Traditional ML methods often struggle with complex data characteristics

such as high-dimensionality, imbalances, and noise, which can lead to higher rates of

misclassification [54]. Ensemble classifiers, widely adopted for their ability to achieve

accurate, robust, and e�cient performance in analyzing large and diverse datasets,

o↵er a compelling solution [324].

Ensemble learning, also known as multiple classifier systems or committee-based

learning, combines multiple learners to address learning challenges e↵ectively [325].

Given the rapid data generation (high velocity), vast amount of data (large volume),

and diverse data types and sources (variety) on social media platforms, ensemble

learning stands out as a superior approach for processing, analyzing, and evaluating

incoming data compared to single-model approaches [136].

In toxic content detection, ensemble techniques such as bagging [326], boosting

[327], and stacking [328] have proven e↵ective. A specific ensemble classifier type,

the cascade of binary classifiers, arranges ML/DL models sequentially to enhance

detection performance [329], [330]. In this approach, the output of one classifier

144

serves as the input for the next classifier. This method has been applied in various

domains such as object detection and sentiment analysis [143], [331], [332]. Using

multiple classifiers in a cascaded manner can significantly reduce storage space and

computation time, resulting in faster processing and increased user satisfaction [333].

By cascading several classifiers with increasing complexity, the first few classifiers

remove most of the easy negatives, while the more accurate and complex ones at the

end of the cascade provide excellent discrimination and yield good overall performance

[334].

In the context of toxicity detection, a tree of classifiers can significantly enhance

the classification process by balancing accuracy and speed at scale. Given the massive

volume and high velocity of the data that platforms receive every second, it is critical

to process information both accurately and e�ciently. Typically, improving accuracy

requires more complex architectures that slow down processing, while simplifying

architectures to boost speed can reduce accuracy [335].

To address this challenge, we propose an e�cient multi-stage inference system for

toxicity detection, utilizing a dynamic cascade of classifiers. Initially, high-throughput

classifiers quickly process all data, categorizing it into toxic and nontoxic samples. Toxic

samples then proceed to a second stage with highly accurate but lower-throughput

classifiers. Depending on the query, at least one classifier will process each sample

in each stage, and in some cases, multiple classifiers might be employed for more

thorough consideration. This approach optimizes processing time while maintaining

accurate classification of toxic content.

However, utilizing multiple ML/DL models for each sample can significantly

increase processing time [142]. Selecting the best set of classifiers for the cascade is

challenging due to variations in accuracy, processing time, and computational cost

among classifiers. To improve the e↵ectiveness and e�ciency of these cascades, we

145

employ deep reinforcement learning (DRL) [53] to identify optimal cascaded models

that can analyze user-generated content (UGC) e↵ectively.

By discovering the most cost-e↵ective set of cascaded classifiers for toxicity de-

tection, we introduce an adaptive multi-stage inference system optimized by DRL,

specifically Proximal Policy Optimization (PPO) [58]. This system dynamically adjusts

classifier selection based on real-time confidence scores, ensuring that each sample is

processed by the most suitable classifiers at each stage. To the best of my knowledge,

this is the first DRL-based inference system for toxicity detection that successfully

balances throughput and accuracy.

The proposed Proximal Policy Optimization-based Cascaded Inference System

(PPO-CIS) represents a significant advancement in the field of toxicity detection, being

the first framework to leverage deep reinforcement learning (DRL) for dynamically

optimizing a cascade of classifiers. Unlike static baselines, which rely on single

classifiers or predetermined combinations of classifiers, PPO-CIS dynamically adjusts

classifier selection based on real-time confidence scores, optimizing both detection

accuracy and e�ciency. This adaptive approach ensures superior performance over

fixed configurations in real-world applications. Our extensive evaluations on multiple

datasets demonstrate that PPO-CIS achieves a unique balance between throughput

and accuracy, surpassing existing methods. Specifically, PPO-CIS improves accuracy

by approximately 2.10% and increases throughput from 42.74 to 384 samples per

second compared to static baselines. When benchmarked against CETRA [139], a

state-of-the-art DRL-based system for malware detection, PPO-CIS shows significant

improvements, enhancing accuracy by 0.37% and boosting throughput by around

107.57%. These results underscore the framework’s e↵ectiveness in rapidly and

accurately identifying toxic content, providing a scalable and cost-e↵ective solution for

real-time content moderation. This pioneering work not only advances the methodology

146

for toxicity detection but also establishes a new benchmark in the application of DRL

for optimizing classifier cascades, o↵ering a robust, e�cient, and adaptive system for

large-scale social media platforms.

These results highlight PPO-CIS’s capability to achieve higher accuracy and

throughput, making it highly e↵ective for various deployment scenarios. Summary of

Our Contributions:

• Dynamic Cascade of Classifiers: Introduced a novel approach to toxicity

detection using a dynamic cascade of classifiers, optimized through Proximal

Policy Optimization (PPO), a deep reinforcement learning (DRL) method.

• Enhanced Classification System: Developed an innovative inference system

where high-throughput classifiers perform initial filtering, followed by highly

accurate classifiers for final detection, improving both speed and accuracy.

• Optimized DRL Reward Function: Designed a reward function within

the DRL framework that minimizes processing time and enhances classification

accuracy by reducing false positives and false negatives.

• Comprehensive Evaluation: Conducted extensive evaluations on two datasets

(Kaggle and ToxiGen), demonstrating significant improvements in processing

time and detection accuracy with the proposed PPO-CIS framework.

• Balance of Throughput and Accuracy: Achieved a unique balance of

throughput and accuracy, addressing the challenge of processing high volumes

of data quickly without sacrificing detection precision.

• Scalable Real-Time Content Moderation: Provided a scalable, cost-e↵ective

solution for real-time content moderation, reducing the burden on human mod-

erators and enhancing user satisfaction by e�ciently identifying toxic content.

147

Figure 17: Architecture of Multi-Stage Cascade Inference Systems

The rest of this chapter is structured as follows. The proposed methodology is

detailed in Section 6.2. Section 6.3 presents the experimental setup, and Section 6.4

analyzes the experimental results. Finally, Section 6.5 summarizes the key findings

and conclusions of the work.

6.2 Methodology

In this section, I present the structure of my proposed approach. I start by constructing

a multi-stage cascade of classifiers tailored for toxicity detection, as illustrated in

Figure 17 within Section 6.2.1. To optimize the performance of these cascades, we

employ Proximal Policy Optimization (PPO) combined with a specially designed

reward function, depicted in in Figure 18 (see Section 6.2.2). This methodology aims

to achieve higher throughput and more accurate classification of toxic content.

148

6.2.1 Cascaded Inference Systems

The proposed multi-stage cascade inference system is designed to e�ciently and

accurately detect toxic content in real-time social media applications. This system

utilizes a hierarchical approach with multiple stages of classifiers, where each stage is

tailored to balance speed (throughput) and accuracy. The architecture of the proposed

CIS is illustrated in Figure 17. The initial stage employs high-throughput classifiers

to quickly process the bulk of the data, while the subsequent stages use more accurate

classifiers to refine the detection of toxic content. This system can e↵ectively handle

the massive volume and velocity of UGC.

Let K = {k1, k2, . . . , kn}, with n ✓ N represent a set of classifiers developed for

toxic content detection, each assessed for prediction quality based on true positive

(TP), true negative (TN), false positive (FP), and false negative (FN) counts, alongside

resource usage costs such as runtime, CPU, and memory.

• Accuracy (↵): TP+TN
TP+TN+FP+FN

• Precision (⇢): TP
TP+FP

• Recall (�): TP
TP+FN

• F-measure (�): 2 · ⇢·�
⇢+�

• Throughput (): Number of samples processed per unit of time, crucial for

fast predictions.

 ki =
total number of samples processed by ki

time period

149

• Individual Instance Latency (�qki): Latency for each query qi processed by

classifier ki.

• Average Latency per Classifier (�ki): Average latency across all queries

processed by classifier ki.

• Additional Costs (!): Costs incurred during processing, such as CPU usage

or instance costs. For each classifier ki, additional costs are denoted as !ki .

Therefore, the performance of each classifier ki 2 K is evaluated using the tuple:

(↵ki , ⇢ki , �ki ,�ki , ki ,�ki ,!ki)

These metrics o↵er a comprehensive comparison of classifier e↵ectiveness and

e�ciency in toxic content detection, focusing on operational costs per classifier.

Once the classifiers are developed, we select ki 2 K based on their throughput (),

accuracy (↵), and F-measure (�). We consider classifiers with high throughput, high

accuracy, and a balance between accuracy and throughput. This results in three sets

of classifiers including Most Accurate classifiers (Vacc), Moderately Accurate classifiers

(Vmod) and High-Throughput classifiers(Vfast):

Vacc = {ki 2 K | max(↵ki)}

Vmod = {kj 2 K | moderate(↵kj) and moderate(kj)}

Vfast = {kk 2 K | max(kk)}

where Vacc \ Vmod \ Vfast = ;.

In social media applications, real-time processing is critical, as users expect to see

their content quickly [16], [67]. Therefore, in the first stage, we use classifiers from

150

L1 = Vfast [Vmod due to their higher throughput. When the CIS receives a set of

samples D = {x1, x2, . . . , xz}, with z ✓ N, including toxic and nontoxic samples, at

least one classifier ki 2 L1 will be employed to generate a toxicity score (yscorei).

The nontoxic samples Dnontox ✓ D are those with a high probability of being

nontoxic and yscorei is below a predefined threshold (⇠), while Dtox = D \ Dnontox

contains potentially toxic samples when the yscorei meets or exceeds the (⇠). If

necessary, another classifier kj 2 L1 (i 6= j) will be applied to samples in Dnontox to

confirm their status, ensuring that nontoxic samples are correctly identified and exit

the process. Toxic samples are then forwarded to the second stage.

In the second stage, classifiers from L2 = Vacc [Vmod are used, where L1 \ L2 = ;.

This ensures that no classifier is used in both stages, maintaining the uniqueness of

each stage’s classifiers. Classifiers in the second stage are more accurate but have

lower throughput compared to the first stage. This balance allows for trade-o↵s

between accuracy and speed, depending on the number of samples. Each classifier

in L2 processes the flagged input from the first stage and assigns a refined toxicity

score (yscorej). Based on this score, the content is finally classified as either toxic or

nontoxic. Content classified as nontoxic at either stage is labeled accordingly and does

not proceed further, while content confirmed as toxic in the second stage is labeled as

toxic and can be handled or removed as necessary.

This adaptive approach ensures that the system can quickly filter out nontoxic

content using high-throughput classifiers and thoroughly analyze potentially toxic

content with more accurate classifiers, e↵ectively balancing speed and accuracy.

However, manually selecting the best set of classifiers can be challenging. If

|L1| = m1 classifiers and |L2| = m2 classifiers, the total number of possible cases where

at least one classifier is selected from the union of these two sets |L1|+ |L2| = m1+m2

can be determined using the principle of combinations. The total number of ways to

151

select any subset of classifiers (including the empty set) from these m1 +m2 classifiers

is 2m1+m2 . Since we need at least one classifier to be selected, we must subtract the one

case where no classifiers are selected. Thus, the total number of possible cases where

at least one classifier is selected from the union of |L1|+ |L2| = m1+m2 is 2m1+m2 � 1.

This makes it di�cult to find an ideal solution for various situations. Furthermore,

applying the entire ensemble to every sample is costly and often unnecessary.

6.2.2 DRL-based Cascade Inference Systems

Since each classifier has its own features, in some cases, processing a query with several

classifiers can result in a more accurate response. Assume that classifiers in L1 all

have high throughput, which is useful for processing large volumes of data within a

second. Among these classifiers, one can have the highest while its ↵ might be less

compared to other ki 2 L1. There is another classifier kj (where i 6= j) whose j is

the least throughput in L1 but still acceptable for analyzing large volumes of data in

seconds, and it has the highest ↵ in L1. There are also other classifiers in L1 where

 < max() and ↵ < max(↵).

Now, assume that x 2 D is processed by k1 2 L1 and the prediction score kscore

1

indicates nontoxic content. If another classifier such as k2 analyzes x, the prediction

score might either reinforce the nontoxic label or suggest toxic content. If it is closer

to nontoxic, the probability of a nontoxic label for x is higher. If the score is closer

to toxic, it is better to call k3 2 L1 to continue the analysis and get the score with

the highest confidence. Finally, those x 2 D that are detected as nontoxic with

high confidence can be made visible to users and removed from further processing.

This reduces the number of samples requiring more processing, allowing us to use

classifiers in L2 with lower throughput but higher accuracy. The same process is

repeated in the second stage to get the final decision with a high confidence score.

152

Figure 18: Architecture of the proposed PPO-based cascade inference system for
dynamic selection of classifiers

Since manually selecting classifiers is challenging and costly, we use PPO (Proximal

Policy Optimization) as a DRL-based approach to handle this multi-decision-making

process.

We present PPO-CIS, depicted in Figure 18, a cascade inference system based on

deep reinforcement learning using Proximal Policy Optimization (PPO). PPO-CIS is

designed for high-throughput and accurate classification of online toxicity, serving as

an early phase in content moderation systems. Instead of deploying a single classifier

or all at once, the agent dynamically selects which additional classifiers (if any) to

call based on the results of previous ones, and moves to the next stage where more

accurate but lower-throughput classifiers analyze the samples using the same rule

as in the first stage. Using this approach, the classifiers in the second stage, which

have lower throughput, receive fewer samples, allowing them to handle those samples

more e↵ectively. Below, we describe the states, actions, and rewards of our proposed

153

PPO-CIS.

States: The state space S consists of all possible scenarios the algorithm may

encounter. For the first stage with |L1| = m1 classifiers, there are 2m1 � 1 possible

selections of at least one classifier, each associated with a confidence score yscore
1

.

Based on this initial confidence score, the classifiers in the second stage |L2| = m2 are

activated. Consequently, the overall environment includes |S| = 2m1+m2 � 1 states.

When at least one classifier in the second stage is activated, a second confidence score

yscore
2

is achieved. It is important to note that the order of classifiers applied in the

cascade is not fixed but is dynamically selected to optimize performance.

For a cascade consisting of H ✓ K classifiers, each possible state s 2 S is

represented by a vector � = {�1, �2, . . . , �H}, with the value of �h set by:

�h =

8
>><

>>:

[0, 1] if the classifier is employed

�1 if the classifier is not employed

Action Space: In the PPO-CIS, the action space is designed to adapt dynamically

based on the stage of classification. Initially, the action space A1 includes selecting

one of the m1 classifiers in L1 or making a classification decision (toxic or nontoxic),

resulting in |A1| = m1 + 2 possible actions. If the sample is classified as toxic in the

first stage, the action space changes to A2, where the actions include selecting one

of the classifiers in L2 or making a final classification decision. This design ensures

that the agent can make more granular decisions initially and refine these decisions in

subsequent stages.

Thus, the action spaces are defined as follows:

• Termination Action Space (AT):

– AT consists of two actions:

154

∗ Classify as Toxic

∗ Classify as Nontoxic

• First Stage Action Space (A1):

A1 = |L1|+ 2

The available actions for the agent at the first stage include:

– Applying any classifier ki 2 L1

– Classifying a sample as nontoxic

– Classifying a sample as toxic

If the agent classifies a sample as nontoxic (taking the action of nontoxic 2 AT),

the process terminates for that sample.

• Second Stage Action Space (A2):

A2 = |L2|+ 2

The available actions for the agent at the second stage include:

– Applying any classifier kj 2 L2

– Classifying a sample as nontoxic

– Classifying a sample as toxic (which must be reviewed by moderators)

The design of these action spaces enables the agent to dynamically select the most

appropriate classifiers and make classification decisions that maximize the confidence

in correct labeling while minimizing processing time. By structuring the action spaces

155

in stages, the system ensures that nontoxic samples are e�ciently filtered out, and

toxic samples receive thorough and detailed analysis.

Rewards: The reward function in our PPO-CIS is designed to balance the need

for accurate classification with the e�ciency of processing time and resource utilization.

The rewards are structured to reflect the importance of minimizing classification errors

and optimizing computational resources. The following factors are considered to define

the reward function:

1. Classification Accuracy Reward: Correct classifications (TP and True TN)

are rewarded, while incorrect classifications (FP and FN) incur penalties. This ensures

that the system prioritizes accuracy. Di↵erent weights can be assigned to each type

of error based on the organization’s policy. For instance, FN (where toxic content is

misclassified as nontoxic) might incur a higher penalty due to the potential harm of

exposing toxic content to users. The classification reward is defined as follows:

Rclass(x, y) =

8
>><

>>:

+r if TP, TN

�◆r if FP, FN

(13)

where:

• r is the reward for a correct classification (TP or TN).

• ◆ is a penalty factor (◆ > 1) to di↵erentiate the severity of misclassifications.

For example, ◆ can be higher for FN to reflect the higher penalty due to the

potential harm of exposing toxic content.

• x is the predicted label.

• y is the true label.

This reward structure allows the agent to prioritize accuracy by rewarding correct

156

classifications and penalizing incorrect ones, with adjustable weights to reflect the

relative importance of di↵erent types of errors.

2. Computational E�ciency Reward: The e�ciency of processing user-

generated content (UGC) is measured in terms of latency. To incentivize quick

processing and penalize delays, we propose a reward function that rewards lower

latency and applies penalties for higher latency. This ensures that the system can

handle large volumes of data e�ciently.

The reward function Rtime(t) is defined as follows:

Rtime(t) =

8
>><

>>:

'+ #1 · log2(u� t) if 0  t < u

'+ #1 · log2(t� u) if t � u

(14)

where:

• t is the processing time for a sample.

• u is the upper limit of acceptable processing time.

• ' is a constant o↵set to ensure a baseline reward, set to ' � 1.

• #1 is a scaling factor to amplify the di↵erences between rewards and penalties,

set to #1 > 1.

The function is designed to achieve the following:

• **Reward for Low Latency**: When the processing time t is less than the

acceptable limit u, the agent receives a reward. The reward increases as t

decreases, encouraging the agent to minimize latency.

• **Penalty for High Latency**: When the processing time t exceeds the accept-

able limit u, the agent incurs a penalty. The penalty increases as t increases,

discouraging the agent from allowing high latency.

157

The constants ' and #1 are critical for tuning the reward function. By setting

#1 to a value greater than 1, we significantly amplify the reward for low latency and

the penalty for high latency, creating a strong incentive for the agent to optimize

processing times e↵ectively.

3. Single Observation Reward: The total reward for each observation combines

both classification accuracy and computational e�ciency. This ensures the agent is

incentivized to achieve both high accuracy and low processing times.

Rinput(x, y, t) = Rclass(x, y) +Rtime(t) (15)

where:

• Rclass(x, y) is the reward for classification accuracy, based on the comparison of

the predicted label x with the true label y (see Equation 13.

• Rtime(t) is the reward for computational e�ciency (see Equation 14.

4. Batch Reward: We also introduce a reward function for a batch of M

observations. This allows the system to evaluate accuracy and other metrics for a

batch of samples, incorporating throughput as a metric to guide the agent in optimizing

processing e�ciency for batches of data.

The throughput M for a batch of M observations is calculated as:

 M =
M

PM
i=1

ti
(16)

where
PM

i=1
ti is the total processing time for the batch.

5. Total Batch Reward: The reward for the batch combines the classification

and time rewards for each observation and incorporates the throughput reward:

158

RM =
MX

i=1

(Rtime(ti) +Rclass(xi, yi)) (17)

The total reward for the batch is:

Rtot = RM + M (18)

This reward function ensures that the agent is encouraged to make accurate classifica-

tions e�ciently, balancing the trade-o↵ between processing speed and computational

cost.

To ensure that the agent processes samples within acceptable time ranges, we

apply a final adjustment to the batch reward based on the evaluated metric �:

R̂tot(�) =

8
>>>>>><

>>>>>>:

�#2 ·RM if �  l

RM if l < �  U

#2 ·RM if � > U

(19)

where:

• U and l are the upper and lower bounds of the acceptable range of the evaluated

metric �.

• � is the value obtained by our approach for a batch of M samples.

• #2 is a manually defined bonus/penalty factor.

PPO is a powerful RL algorithm that can utilize both single observation rewards and

batch rewards to guide the agent’s learning process. During each step of the training

process, the agent receives an immediate reward for each observation Rinput(x, y, t)

(Equation 15). This reward informs the agent about the quality of its classification

decision and the e�ciency of its processing time for each individual sample.

159

PPO can also be configured to use batch rewards, which provide feedback based on

the collective performance over a batch of observations. The total reward for a batch

of M observations is Rtot (Equation 17). Where RM is the sum of rewards for each

observation in the batch, and M is the throughput reward. Additionally, the final

adjustment (R̂tot Equation 19 ensures that the agent considers the overall e�ciency

and accuracy within acceptable ranges.

By incorporating both single and batch rewards, PPO can balance the trade-o↵s

between immediate and long-term performance, encouraging the agent to optimize for

both individual and collective metrics. This dual reward structure helps the agent to

make decisions that are beneficial in both the short-term (single observations) and

long-term (batches), leading to more robust and e↵ective learning.

6.3 Experimental Setup

6.3.1 Toxic Datasets

To evaluate our proposed technique, we used two distinct toxic datasets, detailed in

Section 6.3.1.1 and Section 6.3.1.2.

6.3.1.1 Jigsaw Dataset

We utilized a toxic content dataset developed by our team, based on publicly available

datasets from Google Jigsaw and Kaggle [271], as described by [3]. This dataset was

generated using the instruct-tuning of FLAN-T5 [292] and further optimized through

Reinforcement Learning from Human Feedback (RLHF) [288].

The dataset consists of 278,352 samples, equally divided between toxic and nontoxic

categories (139,176 samples each). All nontoxic samples were generated and rated by

humans. The toxic samples include 16,225 instances generated and rated by humans,

160

while the remaining 122,951 samples were generated by the optimized FLAN-T5 and

rated using the Google Perspective API1.

The dataset is divided into training, validation, and test sets, with proportions of

70%, 10%, and 20%, respectively (see Table 24. The training and validation sets were

used for developing and fine-tuning the classifiers, while the test set was reserved for

evaluating the performance of classifiers and developing the DRL-based and cascaded

models. In this chapter, we refer to this dataset as “Kaggle” and denote it as Dkaggle.

Table 24: Number of Samples per Set for Dkaggle

Set Number of Samples

Train 194,846
Validation 27,835

Test 55,670

6.3.1.2 ToxiGen Dataset

The second dataset, ToxiGen, consists of 274,000 machine-generated statements,

covering both toxic and nontoxic content related to 13 di↵erent minority groups [163].

We selected 8,000 samples, equally divided into 4,000 toxic and 4,000 nontoxic. This

dataset was exclusively used to test the performance of the classifiers and for developing

the DRL-based and cascaded classification models. Throughout this chapter, we will

refer to this dataset as “toxiGen” and denote it as Dtoxigen.

6.3.2 Classifiers

Our selection of classifiers for cascaded inference was guided by strategic objectives

aimed at optimizing performance and adaptability:

Architectural Diversity: We selected classifiers with diverse architectures

1https://perspectiveapi.com/

161

Table 25: All Models selected for experimentation

Objective Model Accuracy F1-score Throughput (s)

Accuracy

CNN↵ 95.04% 95.10% 494
CNN-fastText↵ 94.17% 94.29% 307
BERT-base↵ 96.97% 97.22% 7.4

RoBERTa-base↵ 96.26% 97.00% 7.8

Throughput

CNN 93.27% 932% 1,512
CNN-fastText 91.90% 92.24% 418
BERT-Tiny 95.10% 95.19% 169

DistilRoBERTa-base 96.64% 96.68% 11

tailored for various facets of text processing, including CNN-based models and

transformer-based models. This diversity ensures comprehensive coverage across

di↵erent types of textual data and tasks.

Performance Variability: Each classifier was deliberately chosen to o↵er distinct

trade-o↵s in performance metrics, such as accuracy and computational e�ciency

(throughput). This approach allows us to explore di↵erent levels of computational

demand while maintaining high accuracy levels across di↵erent application scenarios.

These objectives underpin our approach to building a robust cascaded inference sys-

tem capable of e↵ectively handling diverse tasks and adapting to varying computational

requirements.

To operationalize these goals, we evaluated four di↵erent detectors sourced from

recent studies. For each classifier, we developed two variants: one optimized for

accuracy and another for high throughput, resulting in a total of eight distinct

classifiers.

For developing detectors, we used the training set discussed in Section 6.3.1.1, and

the validation set was utilized for hyperparameter tuning. We employed four di↵erent

sets of classifiers, including CNN, CNN with fastText embeddings [336] for CNN-based

models, and BERT and RoBERTa [119] for Transformer-based models. Our objective

162

was to select the most accurate and the fastest (higher throughput) models. Therefore,

we developed di↵erent versions with random hyperparameters and evaluated them

on the validation set to find the most suitable classifiers. Throughout this chapter,

we denote the accurate variants of classifiers as ↵ and the high-throughput variants

as . Since all datasets used in this chapter are balanced with an equal number of

toxic and nontoxic samples in all sets (train, validation, and test), we used Accuracy

(↵) and Throughput () as the evaluation metrics for comparing the performance of

classifiers.

CNN-based: For developing accurate variants of CNN and CNN-fastText, we

used four 1D convolutional layers with multiple window sizes and output channels. A

pooling layer was utilized to reduce the dimensionality of the convolutions, followed

by a global max pooling layer to further reduce the dimension. The hidden layers of

the model employed the ReLU activation function, while the output layer used the

Sigmoid activation function. During training, binary cross-entropy was used as the loss

function to measure the di↵erence between predicted and actual labels. Additionally,

the Adam optimizer was employed to update the model’s parameters during training,

which helped speed up convergence and improve accuracy. For CNN-fastText, we

compared di↵erent variants of fastText embeddings, with “crawl-300d-2M” yielding

the highest accuracy. The experimental results for the most accurate CNN and

CNN-fastText models are shown in Table 25 the results are based on the validation set

of Dval

kaggle
. Detailed information about the parameters of di↵erent variants is provided

in Chapter 7.

As shown in Table 25, the throughput for the accurate variants of CNN and

CNN-fastText is not high, which is acceptable since our focus was on improving

accuracy. To develop high-throughput variants, we modified the architecture, resulting

in some loss of accuracy. We applied various techniques, including parameter tuning

163

and adopting a shallower network topology. While deeper networks can improve

accuracy, they are computationally expensive and can slow down the process. Thus,

a shallower network with fewer convolutional 1D layers can be a good compromise

between accuracy and throughput. We reduced the number of convolutional layers

to three and two, while still maintaining good accuracy. The highest throughput

was achieved with two convolutional 1D layers and a specific set of hyperparameters

detailed in (Chapter 7). The high-throughput variants of CNN-based classifiers are

also depicted in Table 25.

Transformer-based: We used the Huggingface transformer library, compatible

with TensorFlow 2.15.0, for our work. We experimented with di↵erent variants of

BERT and RoBERTa to select the most accurate and high-throughput variants for

each. The experiments resulted in “bert-base-uncased” and “roberta-base” as the

most accurate models, while “BERT-Tiny” [337] and “DistilRoBERTa” were identified

as the high-throughput variants. We explored a distinct set of hyperparameters

randomly to identify the configurations yielding the desired results. The optimal

hyperparameters for each model are detailed in Appendix A (Chapter 7). The results

are shown in Table 25.

According to Table 25, BERT↵ is the most accurate classifier with an accuracy

of 96.97%, whereas fastText has the lowest accuracy at 91.90%. When considering

throughput, BERT↵ processes the fewest samples per second, handling only 7.4, while

CNN achieves the highest throughput at 1,512 samples per second. Additionally,

CNN↵ o↵ers a balance between accuracy and speed, with an accuracy of 95.04% and

a throughput of 494 samples per second.

This analysis highlights that no single classifier excels in both accuracy and

throughput, making it challenging to select an ideal solution for toxicity detection.

Although CNN↵ performs moderately well in both aspects, its throughput may

164

Table 26: Classifier performance on misclassified samples for Dtest

kaggle

CNN↵ fastText↵ BERT↵ RoBERTa↵ CNN fastText BERT RoBERTa

CNN↵ - 14% 93% 91% 12% 16% 92% 91%
fastText↵ 16% - 93% 90% 13% 9% 92% 90%
BERT↵ 50% 47% - 32% 48% 42% 32% 29%
RoBERTa↵ 52% 48% 49% - 51% 42% 54% 31%
CNN 11% 10% 92% 91% - 13% 92% 90%
fastText 21% 12% 92% 89% 18% - 92% 90%
BERT 50% 48% 37% 43% 47% 47% - 40%
RoBERTa 48% 43% 43% 26% 46% 40% 49% -

Table 27: Classifier performance on misclassified samples for Dtest

toxiGen

CNN↵ fastText↵ BERT↵ RoBERTa-base↵ CNN fastText BERT lRoBERTa

CNN↵ - 11% 74% 71% 14% 11% 76% 77%
fastText↵ 35% - 77% 75% 28% 5% 79% 80%
BERT↵ 55% 46% - 19% 55% 43% 32% 30%
RoBERTa↵ 55% 47% 30% - 55% 44% 38% 31%
CNN 18% 6% 76% 72% - 5% 77% 78%
fastText 40% 13% 78% 76% 33% - 80% 81%
BERT 59% 50% 34% 30% 59% 47% - 39%
RoBERTa 55% 46% 21% 10% 55% 43% 30% -

be insu�cient during peak times when platforms receive higher volumes of UGC.

Moreover, in scenarios with a high ratio of toxic content, CNN↵ may struggle to

process all UGC e�ciently, indicating the need for a more robust solution that can

handle diverse and high-volume content e↵ectively.

To demonstrate the relative performance and ensure no single classifier dominates,

we evaluated all selected classifiers using separate test sets fromDkaggle (55,653 samples)

and Dtoxigen (8,000 samples). Notably, these data points were not used during classifier

training or validation. As of now, we refer to these datasets as Dtest

kaggle
and Dtest

toxigen
to

distinguish them from the training and validation sets.

Table 26 and Table 27 compare the classifiers’ performance on the Dtest

kaggle
and the

Dtest

toxigen
dataset, respectively. Each table illustrates the percentage of samples that

one classifier misclassified (rows) but another correctly classified (columns).

For example, the BERT↵ detector accurately identified 93% of comments misclas-

sified by CNN↵. In the Dtest

kaggle
set, 35.20% of samples were correctly classified by all

165

eight classifiers, with 17.08% being toxic and 18.12% nontoxic. Similarly, in Dtest

toxigen
,

50.22% of samples were correctly classified overall, comprising 35.64% toxic and 14.58%

nontoxic samples. As of now, we refer to these datasets as Dtest

kaggle
and Dtest

toxigen
to

distinguish them from the training and validation sets. In addition, for Dtest

toxigen
, only

50.22% of the samples were correctly classified by all classifiers. Specifically, 35.64% of

the toxic samples were correctly identified as toxic, while only 14.58% of the nontoxic

samples were correctly identified as nontoxic.

For Dtest

kaggle
, only 45.20% of the samples were correctly classified by all classifiers.

Among these, 27.08% of the toxic samples were correctly identified as toxic, while

18.12% of the nontoxic samples were correctly identified as nontoxic.

These findings underscore that no single classifier dominates in accuracy across

both datasets, a�rming the robustness and comparative performance of each classifier.

6.3.3 Baselines

To evaluate the performance of PPO-CIS, we compare it with several baselines:

Dynamic vs. Static Classifier Selection: PPO-CIS dynamically adjusts

classifier selection based on real-time confidence scores to optimize detection accuracy

and e�ciency. In contrast, static baselines employ predetermined combinations of

classifiers within the cascade, with decisions finalized using majority voting, soft voting,

or the output from the last classifier in the sequence. This comparison highlights

DRL-CIS’s adaptability and its performance advantages over fixed configurations in

real-world applications.

Comparison with CETRA: We benchmark PPO-CIS against CETRA [139]

to evaluate the e↵ectiveness of its reward function, Proximal Policy Optimization

(PPO) as the DRL model, and cascaded classifier arrangements with dual variants

emphasizing throughput and accuracy. This comparison underscores the superiority

166

of PPO-CIS’s cascaded design in toxicity detection scenarios, showcasing its enhanced

adaptability and e↵ectiveness.

In real-time scenarios, we assess PPO-CIS and the baselines across critical metrics

including throughput, processing time, and detection accuracy. This evaluation

provides insights into the operational e�ciency of PPO-CIS for dynamic toxicity

detection, highlighting its capability for rapid decision-making and robust performance.

6.3.4 Experimental setting

As detailed in Section 6.3.2, we first trained and validated classifiers using the Dtrain

kaggle

and Dval

kaggle
datasets (see Section 6.3.1.1). Subsequently, the Dtest

kaggle
and the entire

Dtest

toxigen
datasets were utilized to evaluate these classifiers. Each data point was

assessed for binary and probabilistic labels, alongside processing times, providing

comprehensive metrics such as accuracy, precision, recall, F1-score, throughput per

second, and average processing time. These evaluations formed the basis for developing

our deep reinforcement learning (DRL) models, using the Dtest

kaggle
and Dtest

toxigen
datasets

for testing and refinement.

For developing DRL-based models, we split Dtest

kaggle
and Dtest

toxigen
into train, test,

and validation sets. To compare the performance of all potential cascade inference

systems (CIS) with single classifiers, we held out two balanced datasets, D̂test

kaggle
and

D̂test

toxigen
, containing 5,000 and 2,000 samples respectively. All results reported from

this point onwards are based on these datasets.

Our framework was implemented in Python v3.8 using OpenAI Gym [338]. For our

DRL agents, we employed Proximal Policy Optimization (PPO) (??) for PPO-CIS and

Actor-Critic with Experience Replay (ACER) (Section 2.5.2) for CETRA, utilizing

the “ChainerRL” library [339]. CETRA, originally designed for dynamic classifier

selection in ensemble learning for malware detection, provided a comparative baseline

167

with five distinct reward functions evaluated separately.

In our implementation of PPO-CIS, we used an “FCSoftmaxPolicyAdam” archi-

tecture for the policy network, featuring fully connected layers followed by softmax

activation to facilitate decision-making. The “FCVFunction” served as the value

function, crucial for estimating expected returns during policy updates. The Adam

optimizer was configured with a conservative learning rate of 1⇥ 10�5 and gradient

clipping with a threshold of 0.5, ensuring stable training dynamics by limiting excessive

gradient updates.

The neural network architecture included an input layer with 8 neurons to handle

the state representation required for decision-making, a hidden layer with 64 neurons,

and an output layer with 12 neurons supporting 12 possible actions across two distinct

action spaces. These actions encompassed selections among individual classifiers and

final toxicity classifications, critical for e↵ective decision-making in cascade inference

systems.

To ensure reproducibility and clarity of our proposed method, we specify the

hyperparameters used in our experiments in Table 28 and Table 29.

Table 28: PPO-Specific Hyperparameters

Hyperparameter Value

Clip Range (✏) 0.2
Learning Rate (lr) 0.0003
Batch Size 256
Number of Epochs 10
Discount Factor (�) 0.99
GAE Lambda (�) 0.95
Entropy Coe�cient 0.01
Value Function Coe�cient 0.5

Our experimental approach prioritized stability and e�ciency, with carefully

chosen architecture and optimizer configurations tailored to the demands of real-time

inference tasks. By detailing these parameters, we aimed to enhance transparency and

168

Table 29: Reward Function Hyperparameters

Hyperparameter Value

Classification Reward (r) 10
Classification Penalty Factor (◆) 2
Upper Limit of Acceptable Processing Time (u) 1
Constant O↵set (') 1
Scaling Factor (#1) 10
Bounds for Final Adjustment (U and l) U = 1.5, l = 0.5
Bonus/Penalty Factor (#2) 1.2

reproducibility while ensuring robust performance in complex decision environments.

The reward function in CETRA is defined as follows:

C2Total
(T) =

8
>><

>>:

r for TP or TN

�1⇥
PT

t=1
C2(t) for FN or FP

(20)

Here, r is a constant, and C2(t) is the reward function for each step, defined as:

C2(t) =

8
>><

>>:

t
d2

for 0  t < d2

1 + log
2

⇣
min(t,t2(s))

d2

⌘
for d2  t

(21)

The reward values were assigned di↵erently in five separate experiments. In

Experiment 1, TP and TN both received a reward value of C2,j, whereas FP and FN

both received a penalty of �C2,j . Experiment 2 maintained the same rewards for TP

and TN at C2,j , but increased the penalties for FP and FN to �10C2,j . In Experiment

3, a uniform reward of 1 was assigned to both TP and TN, with FP and FN penalties

remaining at �C2,j . Experiment 4 increased the rewards for TP and TN to 10, while

keeping the FP and FN penalties at �C2,j. Finally, Experiment 5 further increased

the rewards for TP and TN to 100, with FP and FN penalties still at �C2,j. In our

experiment, d2 was set to 0.5 because both datasets include a balanced number of

toxic and nontoxic samples.

169

6.3.5 Computational Resources

For our experiments, we utilized the ’Paperspace P6000’ cloud computing instance,

which is equipped with NVIDIA P6000 GPUs. Each P6000 GPU o↵ers 24 GB of

memory, 30 GB of RAM, and 8 vCPUs, providing robust computational power for our

tasks. This setup supports multi-GPU configurations, including 2x and 4x instances,

allowing for scalability and parallel processing. The cost for utilizing the P6000

instance is $1.10 per hour.

This computing environment was consistently used for both developing and training

the classifiers as well as for implementing and evaluating the DRL-based approaches.

The consistent usage of this environment ensures that our experiments have a reliable

and stable computational foundation, allowing for accurate performance comparison

and benchmarking.

6.4 Experimental Results

In this section, we present the results from testing all baseline models. We start

by evaluating the performance of individual classifiers on the D̂test

kaggle
and D̂test

toxigen

datasets, as shown in Table 30. Subsequently, Section 6.4 details the performance

of various classifier combinations arranged in cascades. This analysis highlights the

e↵ectiveness of di↵erent cascaded configurations and identifies the optimal setups

for toxicity detection. The best-performing cascades are then compared with the

DRL-based approaches. Finally, Section 6.4 discusses the experimental results for

CETRA with di↵erent reward functions and the proposed PPO-CIS.

According to Table 30, for both datasets, BERT↵ is the most accurate classifier but

has the lowest throughput. Conversely, CNN demonstrated the highest throughput

as expected, but with lower accuracy.

170

(a) D̂test

kaggle

(b) D̂test

toxigen

Figure 19: Comparison of accuracy distributions for di↵erent combinations of classifiers
using di↵erent label determination techniques on the a) D̂test

kaggle
and b) D̂test

toxigen
datasets.

171

(a) D̂test

kaggle

(b) D̂test

toxigen

Figure 20: Comparison of latency distributions for di↵erent combinations of classifiers
using di↵erent label determination techniques on the a) D̂test

kaggle
and b) D̂test

toxigen
datasets.

172

Table 30: Performance Metrics of Classifiers on D̂test

kaggle
and D̂test

toxigen

Dataset Model Accuracy Precision Recall F1-Score Throughput Latency
(%) (%) (%) (%) (s) (s)

D̂test

kaggle

CNN↵ 93.18% 94.17% 95.42% 94.79% 148 0.0067
fastText↵ 92.23% 90.19% 94.78% 92.43% 64.43 0.01552
BERT↵ 93.22% 92.38% 94.20% 93.28% 4.595 0.2176
RoBERTa↵ 92.67% 90.85% 93.43% 92.12% 4.73 0.2113
CNN 90.33% 90.27% 94.30% 92.09% 269.58 0.00371
fastText 91.07% 92.25% 93.84% 93.08% 121.48 0.00823
BERT 91.00% 87.27% 96.00% 91.43% 7.843 0.1275
RoBERTa 91.56% 89.48% 94.20% 91.78% 5.41 0.1848

D̂test

toxigen

CNN↵ 93.54% 89.46% 91.25% 90.35% 28.01 0.0357
fastText↵ 91.52% 90.42% 93.25% 91.82% 19.93 0.050175
BERT↵ 93.91% 90.52% 95.45% 92.92% 4.10 0.2442
RoBERTa↵ 92.85% 89.79% 94.98% 92.31% 4.23 0.2366
CNN 90.09% 88.34% 92.78% 90.83% 52.56 0.01903
fastText 90.19% 89.36% 92.98% 91.07% 34.81 0.0287
BERT 91.82% 88.76% 93.75% 91.18% 5.75 0.174
RoBERTa 92.76% 93.14% 92.30% 92.73% 4.56 0.21925

Cascade of Classifiers

Since we have 8 classifiers, where 4 (CNN-based) have higher throughput and the other

4 (transformer-based) have lower throughput but higher accuracy, the low-throughput

classifiers are not capable of processing the large amount of data received per second.

However, we tested all possible combinations of classifiers and recorded the total

(↵Pi
, ⇢Pi

, �Pi
,�Pi

, Pi
,�Pi

) for each set, as explained in Section 6.2.1. Please note that

the computational cost !Pi
is considered zero in our experiments. The results for

D̂testkaggle are shown in Table 31, and for D̂testtoxiGen in Table 32.

The combination of 8 classifiers, using di↵erent voting methods (majority and

soft), or the last response (sequential output), results in large number of possible cases

when considering at least 2 classifiers for each dataset. Therefore, we only report the

competitive combinations that result in higher accuracy and throughput compared to

a single classifier.

Figure 19 illustrates the accuracy achieved by combining at least two classifiers in

173

a cascaded manner using various label determination techniques on di↵erent datasets.

For the D̂test

kaggle
dataset, the Soft Vote method shows a wide accuracy range (0.0 to

1.0) with a median of 0.5, indicating high variability. The Majority Vote method has

a similar wide range but a higher median of 0.6, also showing significant variability.

The Sequential Output method, however, has a more concentrated accuracy range

(0.5 to 0.9) with a median of 0.72, demonstrating higher consistency and reliability.

For the D̂test

toxigen
dataset, the Soft Vote method also shows a wide accuracy range (0.0

to 1.0) with a median of 0.35, indicating high variability and less consistent performance.

The Majority Vote method again displays a broad range of accuracies (0.0 to 1.0) with

a higher median accuracy of 0.65, but still shows significant variability. In contrast,

the Sequential Output method demonstrates a more concentrated distribution of

accuracies, ranging from 0.65 to 0.98, with a median accuracy near 0.75, indicating

less variability and higher consistency. Overall, the Sequential Output technique

outperforms both the Soft Vote and Majority Vote methods in terms of median

accuracy and consistency for both datasets.

The box plots in Figure 20 illustrate the latency distributions for di↵erent com-

binations of classifiers using Soft Vote, Majority Vote, and Sequential Output label

determination techniques on the D̂test

kaggle
and D̂test

toxigen
datasets.

For the Kaggle dataset (Figure 20a), the Soft Vote method shows latencies ranging

from approximately 0.015 ms to 0.045 ms, with a median latency around 0.03 ms,

indicating moderate variability in latency across di↵erent classifier combinations. The

Majority Vote method exhibits a similar latency range, from approximately 0.015 ms

to 0.045 seconds, with a median latency slightly above 0.03 ms, suggesting comparable

variability. The Sequential Output method also demonstrates latencies in the same

range, with a median latency around 0.03 ms, showing consistent performance across

classifier combinations.

174

Table 31: Best-Performing Classifier Combinations on D̂test

kaggle

No. Combination Label Accuracy↵ Precision⇢ Recall� F1-Score� Throughput Latency�
Determination (%) (%) (%) (%) (s) (s)

1
fastText (0), CNN ||fastText (1), CNN

Sequential 90.32% 89.13% 96.08% 92.47% 723 0.0013

2
fastText↵(0), BERT ||fastText↵(1), BERT

Sequential 93.16 92.95 93.40 93.17 192.22 0.0052

3
BERT↵(1), BERT

Sequential 92.39% 92.39% 92.46% 92.42% 86.21 0.0116

4
CNN↵(1), fastText↵(1), BERT↵(1),
RoBERTa↵(1), CNN ||CNN↵(0), fastText↵(0),
BERT↵(0), RoBERTa↵(0), fastText

Sequential 95.03% 95.12% 98.22% 96.60% 340 0.0224

5
CNN↵(1), fastText↵(0), BERT

Majority 92.01% 93.59% 97.79% 95.64% 311.64 0.0032

6
CNN↵(0), BERT↵(0), fastText (1),
BERT (0), RoBERTa (1)

Majority 91.35% 91.28% 95.42% 93.31% 51.02 0.0196

7
CNN↵(0), CNN (1), fastText (1), BERT (1),
RoBERTa ||CNN↵(1), CNN (0), fastText (0),
BERT (0), RoBERTa

Majority 94.94 93.79 96.50% 95.13% 82 0.012

8
BERT↵(0), RoBERTa↵(1), fastText (1), BERT ||
BERT↵(1), RoBERTa↵(0), fastText (0), BERT

Majority 96.14% 96.09% 96.38% 96.19% 34.97 0.0286

9
CNN (1), fastText (1), BERT (1),
RoBERTa (1)||CNN↵(0), fastText↵(0), BERT↵(0),
RoBERTa↵(0), CNN

Majority 96.15% 96.10% 97.25 96.64% 42.74 0.0234

10
BERT↵(1), CNN (1), fastText ||
BERT↵(0), CNN (0), fastText

Soft 92.63% 92.63% 91.30% 96.17% 53.19 0.0188

11
fastText↵(0), BERT↵(1), CNN (1), fastText (0),
BERT ||fastText↵(1), BERT↵(0), CNN (1),
fastText (1), BERT

Soft 93.10% 92.38% 94.20% 93.28% 40.65 0.0246

12
CNN↵(0), fastText↵(0), BERT↵(1), RoBERTa↵(1),
CNN (0), fastText ||CNN↵(0), fastText↵(1),
BERT↵(0), RoBERTa↵(0), CNN (0),
fastText (0) > RoBERTa (0), BERT (0)

Soft 84.08% 92.67% 83.20% 87.68% 28.09 0.0356

13
CNN↵(1), fastText↵(1), BERT↵(1), RoBERTa↵(1),
CNN (1), fastText (1), RoBERTa ||CNN↵(1),
fastText↵(0), BERT↵(1), RoBERTa↵(1), CNN (1),
fastText (0), RoBERTa (1)

Soft 91.74% 85.32% 92.89% 88.94% 43.04 0.0234

For the ToxiGen dataset (Figure 20b), the Soft Vote method shows a latency

range from approximately 0.01 ms to 0.05 ms, with a median latency around 0.03 ms,

indicating some variability in latency. The Majority Vote method has a latency range

similar to the Soft Vote method, but with a slightly lower median latency around 0.03

ms, demonstrating similar variability. The Sequential Output method shows a latency

range from approximately 0.01 ms to 0.05 ms, with a median latency slightly above

0.03 ms, indicating consistent performance with less variability compared to the other

methods.

Overall, all three label determination techniques exhibit similar latency distribu-

tions for both the Kaggle and Toxigen datasets. The median latencies are consistent

around 0.03 ms, with some variability across di↵erent classifier combinations. The

175

Table 32: Best-Performing Classifier Combinations on D̂test

toxiGen
dataset

No. Combination Label Accuracy↵ Precision⇢ Recall� F1-Score� Throughput Latency�
Determination (%) (%) (%) (%) (s) (s)

1
CNN↵(1), BERT

Sequential 92.74% 92.18% 96.96% 94.51% 138.88 0.0072

2
fasText↵(1), BERT↵(0), RoBERTa↵(0), RoBERTa

Sequential 90.48% 87.27% 94.30% 90.65% 64.93 0.0154

3
CNN↵(1), BERT↵(0), RoBERTa↵(0),
BERT (0), RoBERTa

Sequential 90.90% 89.48% 92.46% 90.94% 29.59 0.0338

4
CNN↵(1), fastText↵(1), BERT↵(1), RoBERTa↵(1),
CNN ||
CNN↵(0), fastText↵(0), RoBERTa↵(0), CNN

Sequential 91.43% 92.14% 95.91% 93.99% 36.50 0.0274

5
fastText (0), CNN (1), CNN↵(1),
fastText (1), CNN↵(0), CNN (0)

Sequential 92.74% 93.85% 96.07% 94.95% 556 0.00179

6
CNN↵(0), fastText↵(0), fastText (1)

Sequential 93.50% 93.14% 94.09% 93.61% 301.8 0.003315

7
CNN↵(1), CNN (1), RoBERTa (1)

Majority 93.73% 92.80% 95.05% 93.91% 217 0.0046

8
CNN↵(1), fastText↵(0), BERT↵(0), RoBERTa↵

Majority 93.87% 92.39% 95.93% 94.12% 208 0.0048

9
BERT↵(0), RoBERTa↵(0), CNN (1), RoBERTa (1)

Majority 96.06% 93.12% 95.85% 94.43% 38.17 0.0262

10
CNN↵(0), fastText↵(1), fastText (1), BERT (1),
RoBERTa (0)||CNN↵(1), fastText↵(0),
fastText (0), BERT (0), RoBERTa

Majority 96.84% 94.98% 97.45% 96.20% 30.49 0.0328

11
BERT↵(0), RoBERTa↵(1), CNN (1), fastText (1),
RoBERTa ||BERT↵(1), RoBERTa↵(0), CNN (0),
fastText (0), RoBERTa

Majority 97.10% 96.43% 97.66% 97.07% 28.86 0.0324

12
CNN↵(1), fastText↵(0), RoBERTa↵(1)

Soft 90.94 90.92 95.25 92.98% 149.5 0.0066

13
CNN↵(0), BERT↵(1), RoBERTa↵(1), BERT ||
CNN↵(1), BERT↵(0), RoBERTa↵(0), BERT

Soft 88.70% 86.73% 95.20% 90.77% 43.86 0.0228

14
CNN↵(0), RoBERTa↵(1), fastText (0),
RoBERTa ||
fastText↵(0), BERT↵(1), CNN (0), BERT

Soft 89.72% 87.27% 92.59% 89.85% 43.10 0.0232

15
BERT↵(1), RoBERTa↵(1), CNN (1), RoBERTa ||
BERT↵(0), RoBERTa↵(0), FastText (0), BERT

Soft 93.68% 93.56% 97.02% 95.26% 37.02 0.027

choice of label determination technique does not significantly impact the latency,

indicating comparable performance in terms of latency across the di↵erent methods.

Based on the results presented in Table 31 and Table 32, several key insights

can be drawn about the performance of di↵erent classifier combinations in terms of

throughput, accuracy, and F1-score.

In Table 31, the highest throughput of 723 samples per second is achieved by the

No. 1combination. It is significantly higher than the throughput of single classifiers

(CNN and fastText), and it is notably higher than that of transformer-based

classifiers applied alone. The combinations No. 5 and No. 2 follow with throughputs

of 311 and 192 samples per second, respectively. These combinations are among the

best in terms of throughput, but have comparatively lower accuracy.

The highest accuracy and F1-score are achieved by combinations using Majority

176

Vote for label determination, specifically No. 8 and No. 9. Despite their high

accuracy, these combinations handle fewer than 50 samples per second, suggesting that

single classifiers might be preferable in scenarios that require higher throughput. The

combination No. 4 stands out with an accuracy of 95.03% and an F1-score of 96.60%,

coupled with a more reasonable throughput of 340 samples per second, making it a

balanced choice compared to No. 8 and No. 9.

Transformer-based models (BERT↵, BERT , RoBERTa↵, RoBERTa) in the

cascade significantly reduce throughput, especially at primary stages. Applying CNN-

based classifiers at primary stages boosts throughput. For instance, in combination No.

5, all samples are initially processed by CNN↵. Toxic samples are then processed by

fastText↵, and only those classified as nontoxic undergo further analysis by BERT .

This staged filtering improves throughput by reducing the number of samples needing

in-depth processing by BERT . One of the most surprising results was achieved

by No. 3, where BERT↵ was applied first, followed by BERT . The throughput

significantly improved to 86, even though the throughput for both individual models

was less than 10.

Soft Vote methods do not significantly enhance accuracy or throughput. Further-

more, long cascades, such as those in combinations No. 11, No. 12, and No. 13 fail to

improve accuracy and instead reduce throughput, indicating that more classifiers do

not necessarily lead to better performance.

In Table 32, combination No. 5 achieves the highest throughput () of 556 samples

per second by avoiding transformer-based classifiers. The lowest throughput ()

of 28.86 samples per second is observed in combination No. 11, which uses highly

accurate but slower classifiers, such as BERT↵, at the initial stage. Notably, this

combination also achieves the highest accuracy with majority vote.

Combinations using majority voting, such as No. 10 and No. 11, yield higher

177

accuracy and F1-scores. For instance, No. 10 achieves an accuracy of 96.84% and an

F1-score of 96.20%, with a throughput of 30.49 samples per second. No. 11 achieves

the highest accuracy of 97. 10% and an F1 score of 97. 07%, although it has a lower

throughput of 28.86 samples per second.

On the other hand, soft voting combinations, such as No. 12 and No. 13, tend

to exhibit lower accuracy and F1-scores, indicating that soft voting may reduce

performance compared to majority voting. However, No. 15 achieves the highest

accuracy and lower throughput among soft vote models.

Overall, balancing accuracy and throughput is crucial. Using fast classifiers like

CNNs in the initial stages can improve throughput without significantly compromising

accuracy. For example, in combination No. 5 in Table 32, all samples are processed by

CNN↵, then toxic samples by fastText↵, and only nontoxic samples undergo further

analysis by BERT . This staged filtering reduces the number of samples needing

in-depth processing, thereby improving throughput.

DRL-based Inference Systems

After developing top-performing classifiers in a cascaded manner, we demonstrated

that this approach could improve processing time for low-throughput classifiers. In

addition, high-throughput combinations still exhibited lower accuracy compared to

those with higher accuracy but very low throughput.

A key insight from our results is that the order of classifiers is crucial. By applying

fast classifiers at the initial stages and slow classifiers in the final stages, we can achieve

higher throughput. Nevertheless, caution is required because adding many classifiers

does not necessarily lead to better performance and may even negatively impact it.

This underscores the proposal for dynamic selection of classifiers.

Moreover, the results presented in Section 6.4 indicated that good results could

178

be achieved by using cascades of classifiers. The key to success lies in dynamically

selecting classifiers to enhance both accuracy and throughput. This objective can

be accomplished by designing a reward function that considers both accuracy and

throughput.

Therefore, the next step is to explore dynamic classifier selection within the cascade.

This approach will guide the selection process towards our goal of simultaneously

increasing accuracy and throughput.

To evaluate PPO-CIS for toxicity detection, we compared it with CETRA across

three key aspects: (a) the reward function used, (b) the dynamic selection of classifiers

in a cascaded manner, where high-throughput classifiers are prioritized in the initial

stages and more accurate classifiers are employed in subsequent stages, and (c) the

DRL model applied, where CETRA uses ACER and we have implemented PPO.

Note that all five reward functions were tested for both DRL approaches (ACER

and PPO). The final results for each dataset are presented in Table 33 and Table 34.

All results are reported based on the test set for each dataset, which includes 5,000

samples for D̂test

kaggle
and 2000 samples for D̂test

toxigen
.

Please note that we use CETRA� CISi for i = 1 to 5 to denote models that use

the CETRA structure, employing ACER as the DRL model, with all 8 classifiers at

the same stage. The index i = 1 to 5 refers to the specific reward functions proposed

by [139]. Additionally, we use ACER � CIS to refer to our proposed CIS, which

includes two space actions, where ACER is applied as the DRL model instead of PPO,

along with our proposed reward function. We also use ACER�CISi for i = 1 to 5 to

denote models tested with the five di↵erent reward functions. Similarly, PPO � CIS

refers to our proposed CIS with PPO as the DRL model, incorporating its own reward

function and two space actions. Furthermore, PPO � CISi for i = 1 to 5 denotes the

proposed PPO-CIS models tested with the reward functions proposed by [139].

179

Table 33: Performance Comparison of Inference Systems for High-Throughput Toxicity
Detection on the D̂test

kaggle

Model Action Accuracy↵ Precision⇢ Recall� F1-Score� Throughput Latency�
Space (%) (%) (%) (%) (samples/s) (s)

CETRA� CIS1 1 94.88% 93.59% 92.20% 92.89% 63.72 0.0314
CETRA� CIS2 1 95.65% 93.24% 96.79% 94.99% 97.12 0.0206
CETRA� CIS3 1 94.38% 94.31% 95.91% 95.11% 83.33 0.0240
CETRA� CIS4 1 95.48% 94.65% 95.79% 95.22% 111.52 0.0179
CETRA� CIS5 1 94.17% 93.78% 95.29% 94.53% 172.41 0.0116
ACER� CIS 2 97.76% 97.60% 97.82% 97.71% 213 0.0094
ACER� CIS1 2 95.80% 95.13% 96.70% 95.90% 107.70 0.0186
ACER� CIS2 2 97.70% 96.83% 98.38% 97.60% 105 0.0190
ACER� CIS3 2 96.55% 95.88% 96.93% 96.40% 110 0.0182
ACER� CIS4 2 95.05% 95.38% 95.94% 95.66% 119 0.0168
ACER� CIS5 2 96.12% 95.45% 96.00% 95.72% 160 0.0125
PPO � CIS 2 98.17% 97.96% 98.10% 98.03% 384 0.0052
PPO � CIS1 2 96.03% 92.23% 96.95% 94.54% 146 0.0137
PPO � CIS2 2 97.81% 96.40% 98.43% 97.41% 185 0.0108
PPO � CIS3 2 97.05% 96.88% 97.34% 97.11% 251.89 0.0079
PPO � CIS4 2 97.80% 95.13% 98.00% 96.54% 168 0.0119
PPO � CIS5 2 96.50% 95.83% 97.38% 96.60% 203 0.0099

Table 34: Inference Systems Comparison for Toxicity Detection on D̂test

toxiGen
Dataset

Model Action Accuracy↵ Precision⇢ Recall� F1-Score� Throughput Latency�
Space (%) (%) (%) (%) (samples/s) (s)

CETRA� CIS1 1 92.89% 92.89% 92.89% 92.89% 47.11 0.0425
CETRA� CIS2 1 94.35% 94.14% 94.58% 94.36% 86.90 0.0230
CETRA� CIS3 1 93.04% 92.98% 93.08% 93.03% 79.56 0.0251
CETRA� CIS4 1 93.68% 93.60% 93.65% 93.62% 90.57 0.0221
CETRA� CIS5 1 92.96% 91.83% 93.04% 92.43% 100.3 0.0199
ACER� CIS 2 96.87% 96.20% 96.92% 96.56% 206 0.0097
ACER� CIS1 2 95.34% 95.27% 95.39% 95.33% 144 0.0139
ACER� CIS2 2 94.89% 93.92% 95.17% 94.54% 120 0.0167
ACER� CIS3 2 94.01% 93.35% 94.90% 94.12% 127 0.0157
ACER� CIS4 2 95.75% 95.08% 96.65% 95.86% 135 0.0148
ACER� CIS5 2 95.45% 94.78% 96.33% 95.55% 152 0.0132
PPO � CIS 2 97.03% 96.81% 97.95% 97.38% 296 0.0068
PPO � CIS1 2 95.10% 93.93% 96.05% 94.98% 113 0.0177
PPO � CIS2 2 96.25% 95.81% 96.37% 96.09% 125 0.0160
PPO � CIS3 2 95.64% 93.99% 96.01% 94.99% 143 0.0140
PPO � CIS4 2 95.92% 93.63% 96.57% 95.08% 182 0.0110
PPO � CIS5 2 95.21% 94.95% 95.84% 95.39% 195 0.0103

180

We compared the performance of various inference systems for high-throughput

toxicity detection on the D̂test

kaggle
dataset. According to the results in Table 33, the

CETRA�CIS models demonstrate a good balance between accuracy and throughput.

The CETRA � CIS1 model achieves an accuracy of 94.88% with a throughput of

63.72 samples per second and a latency of 0.0314 seconds. Among the CETRA�CIS

models, CETRA� CIS5 has the highest throughput at 172.41 samples per second,

but it compromises slightly on accuracy, achieving 94.17%. The CETRA � CIS4

model provides a slightly higher accuracy of 95.48% with a throughput of 111.52

samples per second and a lower latency of 0.0179 seconds, making it a well-rounded

option.

The ACER � CIS models generally exhibit higher accuracy and throughput

compared to CETRA� CIS models. The ACER� CIS model stands out with an

accuracy of 97.76%, a high throughput of 213 samples per second, and a very low

latency of 0.0094 seconds. This model is particularly e↵ective for scenarios requiring

high accuracy and fast processing times. Similarly, the ACER�CIS2 model achieves

an accuracy of 97.70% and a throughput of 105 samples per second with a latency of

0.0190 seconds.

Our proposed approach, the PPO�CIS model, o↵ers the highest accuracy among

all models tested. The PPO�CIS model achieves an impressive accuracy of 98.17%,

with a throughput of 384 samples per second and a latency of 0.0052 seconds. This

model is highly e�cient, providing both high accuracy and fast processing times. The

PPO � CIS3 model also performs well, with an accuracy of 97.05%, a throughput of

251.89 samples per second, and a latency of 0.0079 seconds.

According to the results in Table 34, the CETRA � CIS models demonstrate

varied performance in terms of accuracy and throughput. The CETRA�CIS1 model

achieves an accuracy of 92.89% with a throughput of 47.11 samples per second and

181

a latency of 0.0425 seconds. Among the CETRA � CIS models, CETRA � CIS5

has the highest throughput at 100.3 samples per second, but it compromises slightly

on accuracy, achieving 92.96%. The CETRA� CIS4 model o↵ers a balance with an

accuracy of 93.68% and a throughput of 90.57 samples per second, with a latency of

0.0221 seconds.

The ACER � CIS models generally exhibit higher accuracy and throughput

compared to CETRA� CIS models. The ACER� CIS model stands out with an

accuracy of 96.87%, a high throughput of 206 samples per second, and a very low

latency of 0.0097 seconds. Similarly, the ACER�CIS3 model achieves an accuracy of

94.01% and a throughput of 127 samples per second with a latency of 0.0157 seconds.

The PPO � CIS models maintain their high performance, with the PPO � CIS

model achieving an accuracy of 97.03%, a throughput of 296 samples per second, and

a latency of 0.0068 seconds. The PPO � CIS5 model also performs well, with an

accuracy of 95.21%, a throughput of 195 samples per second, and a latency of 0.0103

seconds.

To compare the throughput and accuracy achieved by all models, including random

combinations with various label determination methods and di↵erent DRL-based

approaches, we visualized the results for both datasets, as shown in Figure 21. The

size of each bubble represents the latency, illustrating the trade-o↵ between processing

speed and accuracy across di↵erent models and combinations. The results indicate

that the PPO-CIS model consistently outperforms other models on both datasets,

achieving the highest levels of accuracy and throughput.

In summary, the proposed Cascade Inference System (CIS) with two action spaces

and a new reward function that considers both accuracy and throughput, particularly

when using Proximal Policy Optimization (PPO) as the deep reinforcement learning

(DRL) model, delivers the best overall performance in terms of both accuracy and

182

throughput. The CIS using ACER as the DRL model (ACER � CIS) o↵ers a

commendable balance of high accuracy and low latency, demonstrating the e↵ectiveness

of the proposed CIS and reward function.

6.5 Summary

In this study, we aimed to develop a robust and e�cient inference system for moderating

toxic content on social media platforms. Our experimental analysis revealed that

no single classifier excels in all performance aspects, highlighting the diversity in

processing times and accuracy across various classifier architectures. This underscores

the complexity of balancing accuracy with throughput, a critical factor for real-time

applications such as content moderation.

Our investigations suggested that while highly accurate classifiers often su↵er from

lower throughput, those prioritizing speed may compromise accuracy. To address

this, we explored a cascaded arrangement of classifiers, which proved beneficial in

leveraging the strengths of multiple systems to enhance overall performance. However,

identifying the optimal combination of classifiers remains a non-trivial challenge that

significantly impacts operational e�ciency and e↵ectiveness.

To overcome these limitations, we introduced a deep reinforcement learning ap-

proach, specifically the Proximal Policy Optimization (PPO) guided Cascaded Infer-

ence System (PPO-CIS). This system dynamically selects an appropriate cascade of

classifiers based on the given context, adjusting via a reward mechanism that considers

both accuracy and throughput to optimize decision-making continuously.

Comparative evaluations across two datasets, demonstrated that PPO-CIS con-

sistently outperforms other models, achieving the highest levels of accuracy and

throughput. The results show that PPO-CIS is a promising solution for e↵ective and

e�cient toxicity detection, outperforming individual classifiers and other combinations.

183

(a) D̂test

kaggle

(b) D̂test

toxigen

Figure 21: Comparison of Throughput vs Accuracy for Various Content Moderation
Inference Systems tested on di↵erent datasets: (a) D̂test

kaggle
and (b) D̂test

toxigen
.

184

Implementing such a system not only aids in reducing the workload for human

moderators but also contributes positively to user engagement and safety. By ensuring

a faster and more accurate content moderation process, our approach helps maintain

a healthier online environment.

Acknowledgments

This research is supported by NSERC Discovery Grants (RGPIN-2024-04087) and

Canada Research Chairs Program (CRC-2019-00041).

185

Chapter 7

Conclusion and Future Work

Concluding Remarks

This thesis has explored the complexities and challenges associated with detecting

and mitigating toxic language on social media platforms. Through a comprehensive

multi-method approach, several key contributions have been made to enhance the

e↵ectiveness and e�ciency of toxicity detection systems.

Firstly, we introduced the innovative Profit-Driven Simulation (PDS) Framework,

which e↵ectively determines the most profitable toxicity classifier for various social

media environments characterized by di↵ering levels of toxicity. By evaluating toxicity

classifiers based on computational cost, real-time data processing capabilities, and the

impact of false positives and negatives on user engagement and ad-generated revenue,

the PDS framework identifies the optimal classifier for each scenario. Our simulation

results demonstrated that some classifiers with higher accuracy, AUC, and F-scores

were not necessarily appropriate for all environments, highlighting the necessity of

balancing accuracy and throughput to enhance user satisfaction and engagement,

ultimately leading to increased profits for social media companies. The PDS framework

provides a valuable tool for researchers and practitioners to better understand and

186

address the complexities of toxic behavior on social media platforms.

Secondly, we developed AugmenToxic, a novel method for enhancing sentence-level

text data that specifically targets toxic language. Leveraging reinforcement learning

from human feedback with Proximal Policy Optimization (PPO), this approach

enhances the performance of the fine-tuned FLAN-T5 model. By generating high-

quality toxic responses while maintaining semantic coherence, AugmenToxic e↵ectively

addresses the issue of imbalanced datasets. Our extensive evaluations demonstrated

that this method outperforms existing data augmentation techniques, generating a

balanced and diverse dataset that significantly improves toxicity detection models.

Lastly, we proposed the Proximal Policy Optimization-based Cascaded Inference

System (PPO-CIS), a novel adaptive multi-stage inference system for real-time toxicity

detection. This system dynamically selects the most appropriate classifiers from

a cascade, balancing accuracy and processing e�ciency. By integrating deep rein-

forcement learning with PPO, PPO-CIS optimizes decision-making based on context,

continuously improving performance. Comparative evaluations revealed that PPO-CIS

consistently outperforms other models in both accuracy and throughput, making

it a promising solution for e↵ective and e�cient toxicity detection. Implementing

such a system not only aids in reducing the workload of human moderators, but also

contributes positively to user engagement and safety.

In conclusion, this thesis has contributed to the development of more scalable, cost-

e↵ective, and adaptive toxicity detection systems in social media. These advancements

not only enhance the safety and inclusiveness of online environments but also reduce

the burden on human moderators, paving the way for more robust and equitable

content moderation practices.

187

Future research directions

While the contributions of this thesis represent significant advancements in toxicity

detection, several areas for future research remain.

For the PDS Framework, real-world validation with actual content and connections

is crucial to further enhance its e↵ectiveness. Future work will involve integrating

the PDS framework into A/B testing within social media models to optimize the

overall user experience and evaluate the system’s real-world e↵ectiveness. In addition,

developing other classifiers using various datasets can also enhance accuracy.

Regarding AugmenToxic, future research will focus on generating samples for indi-

vidual toxic labels to create a more detailed and balanced dataset, thereby enabling a

deeper understanding and modeling of various forms of toxic language. Additionally,

exploring the performance of other FLAN-T5 variants or larger models could yield

further insights and improvements. Addressing the need for human processing of gener-

ated responses remains a significant challenge and will be a priority in future iterations

of our research. Our study represents a substantial advancement in the development

of robust toxicity detection models for online conversations. By acknowledging current

limitations and outlining future research directions, we aim to contribute meaningfully

to the field of natural language processing and online moderation.

For PPO-CIS, future enhancements will involve developing an advanced version

of PPO-CIS with varying action space sizes, as the current model only utilizes two

action spaces of the same size. Additionally, we aim to incorporate user behavior

patterns into our framework. User activity varies significantly across platforms; for

instance, users with large followings receive more comments and consequently face a

higher ratio of toxic comments, whereas users with smaller, family-oriented networks

encounter fewer toxic interactions. By integrating user activity patterns into the

188

agent’s decision-making process, we can tailor policies to account for these di↵erences,

potentially enhancing the system’s e�ciency and accuracy. This user-centric approach

could lead to more personalized and e↵ective content moderation, ultimately improving

the overall user experience and safety on social media platforms.

By addressing these areas in future research, we aim to continue advancing the

field of toxicity detection, ultimately contributing to the creation of safer and more

engaging online environments.

Despite the advancements made, several limitations and challenges require further

attention:

Bias and Discrimination: Machine learning models can exhibit biases in modeling,

training, and usage, potentially resulting in discrimination against specific social

subgroups such as Black users, women, and LGBTQI+ communities. Addressing

these biases is crucial for fair and equitable content moderation.

Complexity of Language: The proposed techniques may be limited by the nature

of language itself. Sarcasm, irony, and other forms of figurative language can be

challenging for algorithms to detect accurately, leading to misclassifications.

High False Positives and Negatives: Incorrectly identifying content as toxic (false

positives) can suppress legitimate discourse, while failing to identify toxic content

(false negatives) can allow harmful interactions to persist. Both types of errors can

significantly impact user experience and trust.

Context Dependence: The meaning of a word or phrase can change based on the

context in which it is used. Toxicity detection systems often struggle to understand

the broader conversation or context, leading to misclassification.

Multilingual and Multimodal Content: Social media platforms host content in

numerous languages and formats (text, images, videos). Developing models that

can handle this diversity e↵ectively is a significant challenge. Most current models

189

are primarily trained on English-language data, limiting their e↵ectiveness in other

languages.

Adversarial Attacks: Users who wish to bypass content moderation systems can use

adversarial tactics, such as misspellings, deliberate obfuscations, or coded language,

to evade detection. This requires constant updates to detection algorithms to keep up

with new strategies.

Evolving Nature of Toxicity: The definitions and norms around what constitutes

toxic or o↵ensive content can change over time and vary across cultures. Detection

systems must be adaptable to these changes to remain e↵ective.

By addressing these areas in future research, the field of toxicity detection can be

further advanced, ultimately contributing to the creation of safer and more engaging

online environments.

190

Bibliography

[1] A. Bodaghi, B. C. M. Fung, and K. A. Schmitt, “Technological Solutions to

Online Toxicity: Potential and Pitfalls,” IEEE Technology and Society Magazine,

vol. 42, no. 4, pp. 57–65, Dec. 2023, issn: 1937-416X. doi: 10.1109/MTS.2023.

3340235.

[2] A. Bodaghi, B. C. M. Fung, and J. Shahen, “A Profit-driven Simulation (PDS)

Framework for Comparison of Deep Learning Models for Real-time Toxicity

Detection in Social Media,” ACM Transactions on Knowledge Discovery from

Data, pp. 1–31, 2023.

[3] A. Bodaghi, B. C. M. Fung, and K. A. Schmitt, “AugmenToxic: Leveraging

Reinforcement Learning to Optimize LLM Instruction Fine-Tuning for Data

Augmentation to Enhance Toxicity Detection,” ACM Trans. Web, no. Special

Issue on Advances in Social Media Technologies and Analysis, Oct. 2024, issn:

1559-1131. doi: 10.1145/3700791. [Online]. Available: https://dl.acm.org/

doi/10.1145/3700791.

[4] A. Bodaghi, B. C. M. Fung, and K. A. Schmitt, “Optimizing Real-Time Toxicity

Detection with Deep Reinforcement Learning-Driven Cascaded Classifiers,”

IEEE Transactions on Computational Social Systems, p. 27, 2024.

[5] D. Nafus, “‘Patches don’t have gender’: What is not open in open source

software,” New Media & Society, vol. 14, no. 4, pp. 669–683, Jun. 2012, issn:

191

https://doi.org/10.1109/MTS.2023.3340235
https://doi.org/10.1109/MTS.2023.3340235
https://doi.org/10.1145/3700791
https://dl.acm.org/doi/10.1145/3700791
https://dl.acm.org/doi/10.1145/3700791

1461-4448. doi: 10 . 1177 / 1461444811422887. [Online]. Available: https :

//doi.org/10.1177/1461444811422887 (visited on 04/28/2022).

[6] E. a. Vogels, The State of Online Harassment, Jan. 2021. [Online]. Available:

https://www.pewresearch.org/internet/2021/01/13/the-state-of-

online-harassment/ (visited on 04/19/2022).

[7] V. Maslej-Krešňáková, M. Sarnovský, P. Butka, and K. Machová, “Comparison

of Deep Learning Models and Various Text Pre-Processing Techniques for

the Toxic Comments Classification,” en, Applied Sciences, vol. 10, no. 23,

p. 8631, Jan. 2020, Number: 23 Publisher: Multidisciplinary Digital Publishing

Institute, issn: 2076-3417. doi: 10.3390/app10238631. [Online]. Available:

https://www.mdpi.com/2076-3417/10/23/8631 (visited on 04/30/2024).

[8] G. Jigsaw, Jigsaw Toxic Comment Classification Challenge, en, 2017. [Online].

Available: https://kaggle.com/competitions/jigsaw-toxic-comment-

classification-challenge (visited on 04/26/2022).

[9] R. Yan, Y. Li, D. Li, Y. Wang, Y. Zhu, and W. Wu, “A Stochastic Algorithm

Based on Reverse Sampling Technique to Fight Against the Cyberbullying,”

en, ACM Transactions on Knowledge Discovery from Data, vol. 15, no. 4,

pp. 1–22, Aug. 2021, issn: 1556-4681, 1556-472X. doi: 10.1145/3441455.

[Online]. Available: https://dl.acm.org/doi/10.1145/3441455 (visited on

08/25/2023).

[10] L. Abualigah, Y. Y. Al-Ajlouni, M. S. Daoud, M. Altalhi, and H. Migdady,

“Fake news detection using recurrent neural network based on bidirectional

LSTM and GloVe,” en, Social Network Analysis and Mining, vol. 14, no. 1, p. 40,

Feb. 2024, issn: 1869-5469. doi: 10.1007/s13278-024-01198-w. [Online].

Available: https://doi.org/10.1007/s13278-024-01198-w (visited on

05/01/2024).

192

https://doi.org/10.1177/1461444811422887
https://doi.org/10.1177/1461444811422887
https://doi.org/10.1177/1461444811422887
https://www.pewresearch.org/internet/2021/01/13/the-state-of-online-harassment/
https://www.pewresearch.org/internet/2021/01/13/the-state-of-online-harassment/
https://doi.org/10.3390/app10238631
https://www.mdpi.com/2076-3417/10/23/8631
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://doi.org/10.1145/3441455
https://dl.acm.org/doi/10.1145/3441455
https://doi.org/10.1007/s13278-024-01198-w
https://doi.org/10.1007/s13278-024-01198-w

[11] R. Beniwal and A. Maurya, “Toxic Comment Classification Using Hybrid Deep

Learning Model,” 2021. doi: 10.1007/978-981-15-8677-4_38.

[12] A. Hern, “Social network giants pledge to tackle abuse of women online,” en-GB,

The Guardian, Jul. 2021, issn: 0261-3077. [Online]. Available: https://www.

theguardian.com/society/2021/jul/01/social-networks-facebook-

google-twitter-tiktok-pledge-to-tackle-abuse-of-women-online

(visited on 04/19/2022).

[13] F.-z. El-Alami, S. Ouatik El Alaoui, and N. En Nahnahi, “A multilingual of-

fensive language detection method based on transfer learning from transformer

fine-tuning model,” en, Journal of King Saud University - Computer and In-

formation Sciences, Jul. 2021, issn: 1319-1578. doi: 10.1016/j.jksuci.2021.

07.013. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S1319157821001804 (visited on 10/04/2021).

[14] R. Ranjan, “Modeling and Simulation in Performance Optimization of Big

Data Processing Frameworks,” IEEE Cloud Computing, vol. 1, no. 4, pp. 14–19,

Nov. 2014, issn: 2325-6095. doi: 10.1109/MCC.2014.84.

[15] J. Patel, “An E↵ective and Scalable Data Modeling for Enterprise Big Data

Platform,” in 2019 IEEE International Conference on Big Data (Big Data), Dec.

2019, pp. 2691–2697. doi: 10.1109/BigData47090.2019.9005614. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/9005614

(visited on 04/08/2024).

[16] R. Urbaniak, M. Ptaszyński, P. Tempska, G. Leliwa, M. Brochocki, and M.

Wroczyński, “Personal attacks decrease user activity in social networking

platforms,” Computers in Human Behavior, vol. 126, p. 106 972, Jan. 2022, issn:

0747-5632. doi: 10.1016/j.chb.2021.106972. [Online]. Available: https:

193

https://doi.org/10.1007/978-981-15-8677-4_38
https://www.theguardian.com/society/2021/jul/01/social-networks-facebook-google-twitter-tiktok-pledge-to-tackle-abuse-of-women-online
https://www.theguardian.com/society/2021/jul/01/social-networks-facebook-google-twitter-tiktok-pledge-to-tackle-abuse-of-women-online
https://www.theguardian.com/society/2021/jul/01/social-networks-facebook-google-twitter-tiktok-pledge-to-tackle-abuse-of-women-online
https://doi.org/10.1016/j.jksuci.2021.07.013
https://doi.org/10.1016/j.jksuci.2021.07.013
https://www.sciencedirect.com/science/article/pii/S1319157821001804
https://www.sciencedirect.com/science/article/pii/S1319157821001804
https://doi.org/10.1109/MCC.2014.84
https://doi.org/10.1109/BigData47090.2019.9005614
https://ieeexplore.ieee.org/abstract/document/9005614
https://doi.org/10.1016/j.chb.2021.106972
https://www.sciencedirect.com/science/article/pii/S0747563221002958
https://www.sciencedirect.com/science/article/pii/S0747563221002958

//www.sciencedirect.com/science/article/pii/S0747563221002958

(visited on 07/10/2024).

[17] P. Fortuna and S. Nunes, “A Survey on Automatic Detection of Hate Speech

in Text,” ACM Computing Surveys, vol. 51, no. 4, 85:1–85:30, Jul. 2018, issn:

0360-0300. doi: 10.1145/3232676. [Online]. Available: https://doi.org/10.

1145/3232676 (visited on 03/29/2023).

[18] A. Sheth, V. L. Shalin, and U. Kursuncu, “Defining and detecting toxicity on

social media: Context and knowledge are key,” en, Neurocomputing, vol. 490,

pp. 312–318, Jun. 2022, issn: 0925-2312. doi: 10.1016/j.neucom.2021.

11.095. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0925231221018087 (visited on 03/29/2023).

[19] I. D. Kivlichan, Z. Lin, J. Liu, and L. Vasserman, Measuring and Improving

Model-Moderator Collaboration using Uncertainty Estimation, arXiv:2107.04212

[cs], Jul. 2021. doi: 10.48550/arXiv.2107.04212. [Online]. Available: http:

//arxiv.org/abs/2107.04212 (visited on 04/19/2024).

[20] M. Bickert and B. Fishman, Hard Questions: What Are We Doing to Stay Ahead

of Terrorists? en-US, Nov. 2018. [Online]. Available: https://about.fb.com/

news/2018/11/staying-ahead-of-terrorists/ (visited on 04/11/2024).

[21] B. Etim, “The Times Sharply Increases Articles Open for Comments, Using

Google’s Technology,” en-US, The New York Times, Jun. 2017, issn: 0362-4331.

[Online]. Available: https://www.nytimes.com/2017/06/13/insider/have-

a-comment-leave-a-comment.html (visited on 08/01/2024).

[22] A. Lees, V. Q. Tran, Y. Tay, et al., A New Generation of Perspective API:

E�cient Multilingual Character-level Transformers, arXiv:2202.11176 [cs], Feb.

194

https://www.sciencedirect.com/science/article/pii/S0747563221002958
https://www.sciencedirect.com/science/article/pii/S0747563221002958
https://www.sciencedirect.com/science/article/pii/S0747563221002958
https://doi.org/10.1145/3232676
https://doi.org/10.1145/3232676
https://doi.org/10.1145/3232676
https://doi.org/10.1016/j.neucom.2021.11.095
https://doi.org/10.1016/j.neucom.2021.11.095
https://www.sciencedirect.com/science/article/pii/S0925231221018087
https://www.sciencedirect.com/science/article/pii/S0925231221018087
https://doi.org/10.48550/arXiv.2107.04212
http://arxiv.org/abs/2107.04212
http://arxiv.org/abs/2107.04212
https://about.fb.com/news/2018/11/staying-ahead-of-terrorists/
https://about.fb.com/news/2018/11/staying-ahead-of-terrorists/
https://www.nytimes.com/2017/06/13/insider/have-a-comment-leave-a-comment.html
https://www.nytimes.com/2017/06/13/insider/have-a-comment-leave-a-comment.html

2022. [Online]. Available: http://arxiv.org/abs/2202.11176 (visited on

04/11/2024).

[23] A. Sheth, V. L. Shalin, and U. Kursuncu, “Defining and detecting toxic-

ity on social media: Context and knowledge are key,” en, Neurocomputing,

Dec. 2021, issn: 0925-2312. doi: 10.1016/j.neucom.2021.11.095. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/

S0925231221018087 (visited on 03/30/2022).

[24] E. W. Pamungkas, V. Basile, and V. Patti, “Towards multidomain and multilin-

gual abusive language detection: A survey,” Personal and Ubiquitous Computing,

Aug. 2021, issn: 1617-4917. doi: 10.1007/s00779-021-01609-1. [Online].

Available: https://doi.org/10.1007/s00779-021-01609-1 (visited on

04/27/2022).

[25] N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, and N. Bhamidi-

pati, “Hate Speech Detection with Comment Embeddings,” in Proceedings

of the 24th International Conference on World Wide Web, ser. WWW ’15

Companion, New York, NY, USA: Association for Computing Machinery, May

2015, pp. 29–30, isbn: 978-1-4503-3473-0. doi: 10.1145/2740908.2742760.

[Online]. Available: https://doi.org/10.1145/2740908.2742760 (visited on

03/30/2023).

[26] T. Davidson, D. Bhattacharya, and I. Weber, “Racial Bias in Hate Speech and

Abusive Language Detection Datasets,” in Proceedings of the Third Workshop

on Abusive Language Online, Florence, Italy: Association for Computational

Linguistics, Aug. 2019, pp. 25–35. doi: 10.18653/v1/W19-3504. [Online].

Available: https://aclanthology.org/W19-3504 (visited on 04/28/2023).

195

http://arxiv.org/abs/2202.11176
https://doi.org/10.1016/j.neucom.2021.11.095
https://www.sciencedirect.com/science/article/pii/S0925231221018087
https://www.sciencedirect.com/science/article/pii/S0925231221018087
https://doi.org/10.1007/s00779-021-01609-1
https://doi.org/10.1007/s00779-021-01609-1
https://doi.org/10.1145/2740908.2742760
https://doi.org/10.1145/2740908.2742760
https://doi.org/10.18653/v1/W19-3504
https://aclanthology.org/W19-3504

[27] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang, “Abusive

Language Detection in Online User Content,” in Proceedings of the 25th Inter-

national Conference on World Wide Web, ser. WWW ’16, Republic and Canton

of Geneva, CHE: International World Wide Web Conferences Steering Commit-

tee, Apr. 2016, pp. 145–153, isbn: 978-1-4503-4143-1. doi: 10.1145/2872427.

2883062. [Online]. Available: https://doi.org/10.1145/2872427.2883062

(visited on 03/30/2023).

[28] M. Abulaish, A. Kamal, and M. J. Zaki, “A Survey of Figurative Language and

Its Computational Detection in Online Social Networks,” ACM Transactions

on the Web, vol. 14, no. 1, 3:1–3:52, Feb. 2020, issn: 1559-1131. doi: 10.1145/

3375547. [Online]. Available: https://doi.org/10.1145/3375547 (visited

on 03/30/2023).

[29] H. Hosseini, S. Kannan, B. Zhang, and R. Poovendran, Deceiving Google’s

Perspective API Built for Detecting Toxic Comments, arXiv:1702.08138 [cs],

Feb. 2017. doi: 10.48550/arXiv.1702.08138. [Online]. Available: http:

//arxiv.org/abs/1702.08138 (visited on 03/30/2023).

[30] J. S. Hu↵aker, J. K. Kummerfeld, W. S. Lasecki, and M. S. Ackerman, “Crowd-

sourced Detection of Emotionally Manipulative Language,” en, in Proceed-

ings of the 2020 CHI Conference on Human Factors in Computing Systems,

Honolulu HI USA: ACM, Apr. 2020, pp. 1–14, isbn: 978-1-4503-6708-0. doi:

10.1145/3313831.3376375. [Online]. Available: https://dl.acm.org/doi/

10.1145/3313831.3376375 (visited on 03/30/2023).

[31] T. Gillespie, “Content moderation, AI, and the question of scale,” en, Big

Data & Society, vol. 7, no. 2, p. 2 053 951 720 943 234, Jul. 2020, Publisher:

SAGE Publications Ltd, issn: 2053-9517. doi: 10.1177/2053951720943234.

196

https://doi.org/10.1145/2872427.2883062
https://doi.org/10.1145/2872427.2883062
https://doi.org/10.1145/2872427.2883062
https://doi.org/10.1145/3375547
https://doi.org/10.1145/3375547
https://doi.org/10.1145/3375547
https://doi.org/10.48550/arXiv.1702.08138
http://arxiv.org/abs/1702.08138
http://arxiv.org/abs/1702.08138
https://doi.org/10.1145/3313831.3376375
https://dl.acm.org/doi/10.1145/3313831.3376375
https://dl.acm.org/doi/10.1145/3313831.3376375
https://doi.org/10.1177/2053951720943234

[Online]. Available: https://doi.org/10.1177/2053951720943234 (visited

on 03/31/2023).

[32] H. Hosseinmardi, R. I. Rafiq, R. Han, Q. Lv, and S. Mishra, “Prediction of

cyberbullying incidents in a media-based social network,” in 2016 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM), Aug. 2016, pp. 186–192. doi: 10.1109/ASONAM.2016.7752233.

[33] J. Liu, A. Cohen, R. Pasunuru, Y. Choi, H. Hajishirzi, and A. Celikyilmaz, Don’t

throw away your value model! Making PPO even better via Value-Guided Monte-

Carlo Tree Search decoding, arXiv:2309.15028 [cs], Oct. 2023. doi: 10.48550/

arXiv.2309.15028. [Online]. Available: http://arxiv.org/abs/2309.15028

(visited on 12/17/2023).

[34] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, The Curious Case of

Neural Text Degeneration, arXiv:1904.09751 [cs], Feb. 2020. doi: 10.48550/

arXiv.1904.09751. [Online]. Available: http://arxiv.org/abs/1904.09751

(visited on 12/14/2023).

[35] P. Gupta, C. Jiao, Y.-T. Yeh, S. Mehri, M. Eskenazi, and J. P. Bigham,

InstructDial: Improving Zero and Few-shot Generalization in Dialogue through

Instruction Tuning, en, arXiv:2205.12673 [cs], Oct. 2022. [Online]. Available:

http://arxiv.org/abs/2205.12673 (visited on 05/02/2024).

[36] H. Xu, M. Chen, L. Huang, S. Vucetic, and W. Yin, X-Shot: A Unified Sys-

tem to Handle Frequent, Few-shot and Zero-shot Learning Simultaneously in

Classification, en, arXiv:2403.03863 [cs], Mar. 2024. [Online]. Available: http:

//arxiv.org/abs/2403.03863 (visited on 05/02/2024).

[37] Y. Song, T. Wang, P. Cai, S. K. Mondal, and J. P. Sahoo, “A Comprehen-

sive Survey of Few-shot Learning: Evolution, Applications, Challenges, and

197

https://doi.org/10.1177/2053951720943234
https://doi.org/10.1109/ASONAM.2016.7752233
https://doi.org/10.48550/arXiv.2309.15028
https://doi.org/10.48550/arXiv.2309.15028
http://arxiv.org/abs/2309.15028
https://doi.org/10.48550/arXiv.1904.09751
https://doi.org/10.48550/arXiv.1904.09751
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/2205.12673
http://arxiv.org/abs/2403.03863
http://arxiv.org/abs/2403.03863

Opportunities,” ACM Computing Surveys, vol. 55, no. 13s, 271:1–271:40, Jul.

2023, issn: 0360-0300. doi: 10.1145/3582688. [Online]. Available: https:

//doi.org/10.1145/3582688 (visited on 05/02/2024).

[38] S. Rahman, S. Khan, and F. Porikli, “A Unified Approach for Conventional

Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning,” IEEE Transactions

on Image Processing, vol. 27, no. 11, pp. 5652–5667, Nov. 2018, Conference

Name: IEEE Transactions on Image Processing, issn: 1941-0042. doi: 10.1109/

TIP.2018.2861573. [Online]. Available: https://ieeexplore.ieee.org/

document/8423721 (visited on 05/02/2024).

[39] J. Wei, M. Bosma, V. Y. Zhao, et al., Finetuned Language Models Are Zero-

Shot Learners, arXiv:2109.01652, Feb. 2022. doi: 10.48550/arXiv.2109.

01652. [Online]. Available: http://arxiv.org/abs/2109.01652 (visited on

11/04/2024).

[40] Y.-L. Sung, J. Cho, and M. Bansal, “VL-ADAPTER: Parameter-E�cient

Transfer Learning for Vision-and-Language Tasks,” en, in 2022 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans,

LA, USA: IEEE, Jun. 2022, pp. 5217–5227, isbn: 978-1-66546-946-3. doi:

10.1109/CVPR52688.2022.00516. [Online]. Available: https://ieeexplore.

ieee.org/document/9878858/ (visited on 12/19/2023).

[41] D. Yu, S. Naik, A. Backurs, et al., Di↵erentially Private Fine-tuning of Language

Models, arXiv:2110.06500 [cs, stat], Jul. 2022. [Online]. Available: http://

arxiv.org/abs/2110.06500 (visited on 12/19/2023).

[42] N. Houlsby, A. Giurgiu, S. Jastrzebski, et al., Parameter-E�cient Transfer

Learning for NLP, arXiv:1902.00751 [cs, stat], Jun. 2019. doi: 10.48550/

arXiv.1902.00751. [Online]. Available: http://arxiv.org/abs/1902.00751

(visited on 12/19/2023).

198

https://doi.org/10.1145/3582688
https://doi.org/10.1145/3582688
https://doi.org/10.1145/3582688
https://doi.org/10.1109/TIP.2018.2861573
https://doi.org/10.1109/TIP.2018.2861573
https://ieeexplore.ieee.org/document/8423721
https://ieeexplore.ieee.org/document/8423721
https://doi.org/10.48550/arXiv.2109.01652
https://doi.org/10.48550/arXiv.2109.01652
http://arxiv.org/abs/2109.01652
https://doi.org/10.1109/CVPR52688.2022.00516
https://ieeexplore.ieee.org/document/9878858/
https://ieeexplore.ieee.org/document/9878858/
http://arxiv.org/abs/2110.06500
http://arxiv.org/abs/2110.06500
https://doi.org/10.48550/arXiv.1902.00751
https://doi.org/10.48550/arXiv.1902.00751
http://arxiv.org/abs/1902.00751

[43] R. K. Mahabadi, J. Henderson, and S. Ruder, Compacter: E�cient Low-Rank

Hypercomplex Adapter Layers, arXiv:2106.04647 [cs], Nov. 2021. doi: 10.48550/

arXiv.2106.04647. [Online]. Available: http://arxiv.org/abs/2106.04647

(visited on 12/19/2023).

[44] E. J. Hu, Y. Shen, P. Wallis, et al., LoRA: Low-Rank Adaptation of Large

Language Models, arXiv:2106.09685 [cs], Oct. 2021. doi: 10.48550/arXiv.2106.

09685. [Online]. Available: http://arxiv.org/abs/2106.09685 (visited on

12/19/2023).

[45] M. Weyssow, X. Zhou, K. Kim, D. Lo, and H. Sahraoui, Exploring Parameter-

E�cient Fine-Tuning Techniques for Code Generation with Large Language

Models, arXiv:2308.10462 [cs], Aug. 2023. [Online]. Available: http://arxiv.

org/abs/2308.10462 (visited on 12/21/2023).

[46] C. P. Andriotis and K. G. Papakonstantinou, “Managing engineering systems

with large state and action spaces through deep reinforcement learning,” Re-

liability Engineering & System Safety, vol. 191, p. 106 483, Nov. 2019, issn:

0951-8320. doi: 10.1016/j.ress.2019.04.036. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0951832018313309

(visited on 07/09/2024).

[47] Z. Wang, V. Bapst, N. Heess, et al., Sample E�cient Actor-Critic with Expe-

rience Replay, arXiv:1611.01224 [cs], Jul. 2017. doi: 10.48550/arXiv.1611.

01224. [Online]. Available: http://arxiv.org/abs/1611.01224 (visited on

07/09/2024).

[48] S. Casper, X. Davies, C. Shi, et al., Open Problems and Fundamental Limitations

of Reinforcement Learning from Human Feedback, en, arXiv:2307.15217 [cs],

Sep. 2023. [Online]. Available: http://arxiv.org/abs/2307.15217 (visited

on 08/07/2024).

199

https://doi.org/10.48550/arXiv.2106.04647
https://doi.org/10.48550/arXiv.2106.04647
http://arxiv.org/abs/2106.04647
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2308.10462
http://arxiv.org/abs/2308.10462
https://doi.org/10.1016/j.ress.2019.04.036
https://www.sciencedirect.com/science/article/pii/S0951832018313309
https://www.sciencedirect.com/science/article/pii/S0951832018313309
https://doi.org/10.48550/arXiv.1611.01224
https://doi.org/10.48550/arXiv.1611.01224
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/2307.15217

[49] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,

“Deep Reinforcement Learning from Human Preferences,” in Advances in Neu-

ral Information Processing Systems, vol. 30, Curran Associates, Inc., 2017.

[Online]. Available: https : / / papers . nips . cc / paper _ files / paper /

2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html (visited

on 08/07/2024).

[50] D. Bill and T. Eriksson, Fine-tuning a LLM using Reinforcement Learning from

Human Feedback for a Therapy Chatbot Application, eng. ROYAL INSTITUTE

OF TECHNOLOGY, 2023. [Online]. Available: https://urn.kb.se/resolve?

urn=urn:nbn:se:kth:diva-331920 (visited on 12/21/2023).

[51] J. Dai, X. Pan, R. Sun, et al., Safe RLHF: Safe Reinforcement Learning from

Human Feedback, arXiv:2310.12773 [cs], Oct. 2023. doi: 10.48550/arXiv.2310.

12773. [Online]. Available: http://arxiv.org/abs/2310.12773 (visited on

08/07/2024).

[52] L. Arnold, S. Rebecchi, S. Chevallier, and H. Paugam-Moisy, “An Intro-

duction to Deep Learning,” Apr. 2011. [Online]. Available: https://www.

semanticscholar . org / paper / An - Introduction - to - Deep - Learning -

Arnold- Rebecchi/7fc7bb4eec2f27b8f0a0c7fb2a4112c7a7a7abed (visited

on 07/09/2024).

[53] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau,

“An Introduction to Deep Reinforcement Learning,” Foundations and Trends®

in Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018, arXiv:1811.12560

[cs, stat], issn: 1935-8237, 1935-8245. doi: 10.1561/2200000071. [Online].

Available: http://arxiv.org/abs/1811.12560 (visited on 07/09/2024).

[54] H. Dong, Z. Ding, and S. Zhang, Eds., Deep Reinforcement Learning: Funda-

mentals, Research and Applications, en. Singapore: Springer Singapore, 2020,

200

https://papers.nips.cc/paper_files/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-331920
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-331920
https://doi.org/10.48550/arXiv.2310.12773
https://doi.org/10.48550/arXiv.2310.12773
http://arxiv.org/abs/2310.12773
https://www.semanticscholar.org/paper/An-Introduction-to-Deep-Learning-Arnold-Rebecchi/7fc7bb4eec2f27b8f0a0c7fb2a4112c7a7a7abed
https://www.semanticscholar.org/paper/An-Introduction-to-Deep-Learning-Arnold-Rebecchi/7fc7bb4eec2f27b8f0a0c7fb2a4112c7a7a7abed
https://www.semanticscholar.org/paper/An-Introduction-to-Deep-Learning-Arnold-Rebecchi/7fc7bb4eec2f27b8f0a0c7fb2a4112c7a7a7abed
https://doi.org/10.1561/2200000071
http://arxiv.org/abs/1811.12560

isbn: 9789811540943 9789811540950. doi: 10.1007/978-981-15-4095-0. [On-

line]. Available: http://link.springer.com/10.1007/978-981-15-4095-0

(visited on 07/09/2024).

[55] K. O’Shea and R. Nash, An Introduction to Convolutional Neural Networks,

arXiv:1511.08458 [cs], Dec. 2015. doi: 10.48550/arXiv.1511.08458. [Online].

Available: http://arxiv.org/abs/1511.08458 (visited on 07/09/2024).

[56] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through

deep reinforcement learning,” en, Nature, vol. 518, no. 7540, pp. 529–533, Feb.

2015, Publisher: Nature Publishing Group, issn: 1476-4687. doi: 10.1038/

nature14236. [Online]. Available: https://www.nature.com/articles/

nature14236 (visited on 07/06/2024).

[57] S. Amarjyoti, Deep Reinforcement Learning for Robotic Manipulation-The

state of the art, en, arXiv:1701.08878 [cs], Jan. 2017. [Online]. Available: http:

//arxiv.org/abs/1701.08878 (visited on 07/09/2024).

[58] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal

Policy Optimization Algorithms, arXiv:1707.06347 [cs], Aug. 2017. doi: 10.

48550/arXiv.1707.06347. [Online]. Available: http://arxiv.org/abs/1707.

06347 (visited on 07/09/2024).

[59] J. Bai, Y. Li, M. Zheng, et al., “A Sinh Cosh optimizer,” Knowledge-Based

Systems, vol. 282, p. 111 081, Dec. 2023, issn: 0950-7051. doi: 10.1016/j.

knosys.2023.111081. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0950705123008316 (visited on 05/01/2024).

[60] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradient Meth-

ods for Reinforcement Learning with Function Approximation,” in Advances

201

https://doi.org/10.1007/978-981-15-4095-0
http://link.springer.com/10.1007/978-981-15-4095-0
https://doi.org/10.48550/arXiv.1511.08458
http://arxiv.org/abs/1511.08458
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
http://arxiv.org/abs/1701.08878
http://arxiv.org/abs/1701.08878
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/j.knosys.2023.111081
https://doi.org/10.1016/j.knosys.2023.111081
https://www.sciencedirect.com/science/article/pii/S0950705123008316
https://www.sciencedirect.com/science/article/pii/S0950705123008316

in Neural Information Processing Systems, vol. 12, MIT Press, 1999. [On-

line]. Available: https://proceedings.neurips.cc/paper_files/paper/

1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html (visited

on 07/09/2024).

[61] J. Zhu, F. Wu, and J. Zhao, “An Overview of the Action Space for Deep

Reinforcement Learning,” en, in 2021 4th International Conference on Algo-

rithms, Computing and Artificial Intelligence, Sanya China: ACM, Dec. 2021,

pp. 1–10, isbn: 978-1-4503-8505-3. doi: 10.1145/3508546.3508598. [Online].

Available: https://dl.acm.org/doi/10.1145/3508546.3508598 (visited on

07/12/2024).

[62] S. Kullback and R. A. Leibler, “On Information and Su�ciency,” The Annals

of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951, Publisher: Institute

of Mathematical Statistics, issn: 0003-4851. [Online]. Available: https://www.

jstor.org/stable/2236703 (visited on 08/07/2024).

[63] V. Mnih, A. P. Badia, M. Mirza, et al., Asynchronous Methods for Deep

Reinforcement Learning, arXiv:1602.01783 [cs], Jun. 2016. doi: 10.48550/

arXiv.1602.01783. [Online]. Available: http://arxiv.org/abs/1602.01783

(visited on 07/09/2024).

[64] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, Trust Region

Policy Optimization, arXiv:1502.05477 [cs], Apr. 2017. doi: 10.48550/arXiv.

1502.05477. [Online]. Available: http://arxiv.org/abs/1502.05477 (visited

on 07/09/2024).

[65] J. Wiener and N. Bronson, Facebook’s Top Open Data Problems - Meta Research,

en, Oct. 2014. [Online]. Available: https://research.facebook.com/blog/

2014/10/facebook-s-top-open-data-problems/ (visited on 09/21/2022).

202

https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://doi.org/10.1145/3508546.3508598
https://dl.acm.org/doi/10.1145/3508546.3508598
https://www.jstor.org/stable/2236703
https://www.jstor.org/stable/2236703
https://doi.org/10.48550/arXiv.1602.01783
https://doi.org/10.48550/arXiv.1602.01783
http://arxiv.org/abs/1602.01783
https://doi.org/10.48550/arXiv.1502.05477
https://doi.org/10.48550/arXiv.1502.05477
http://arxiv.org/abs/1502.05477
https://research.facebook.com/blog/2014/10/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/2014/10/facebook-s-top-open-data-problems/

[66] E. Weltevrede, A. Helmond, and C. Gerlitz, “The Politics of Real-time: A Device

Perspective on Social Media Platforms and Search Engines,” en, Theory, Culture

& Society, vol. 31, no. 6, pp. 125–150, Nov. 2014, Publisher: SAGE Publications

Ltd, issn: 0263-2764. doi: 10.1177/0263276414537318. [Online]. Available:

https://doi.org/10.1177/0263276414537318 (visited on 08/18/2023).

[67] D. Kirkpatrick, Google: 53% of mobile users abandon sites that take over 3

seconds to load, en-US, 2016. [Online]. Available: https://www.marketingdive.

com/news/google-53-of-mobile-users-abandon-sites-that-take-over-

3-seconds-to-load/426070/ (visited on 04/20/2022).

[68] R. W. Gehl, “The archive and the processor: The internal logic of Web 2.0,”

en, New Media & Society, vol. 13, no. 8, pp. 1228–1244, Dec. 2011, Publisher:

SAGE Publications, issn: 1461-4448. doi: 10.1177/1461444811401735. [On-

line]. Available: https://doi.org/10.1177/1461444811401735 (visited on

08/18/2023).

[69] C. N. d. Santos, I. Melnyk, and I. Padhi, Fighting O↵ensive Language on

Social Media with Unsupervised Text Style Transfer, arXiv:1805.07685 [cs],

May 2018. doi: 10.48550/arXiv.1805.07685. [Online]. Available: http:

//arxiv.org/abs/1805.07685 (visited on 06/10/2024).

[70] M. A. H. Wadud, M. M. Kabir, M. F. Mridha, M. A. Ali, M. A. Hamid, and

M. M. Monowar, “How can we manage O↵ensive Text in Social Media - A Text

Classification Approach using LSTM-BOOST,” en, International Journal of

Information Management Data Insights, vol. 2, no. 2, p. 100 095, Nov. 2022, issn:

2667-0968. doi: 10.1016/j.jjimei.2022.100095. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S2667096822000386

(visited on 09/20/2022).

203

https://doi.org/10.1177/0263276414537318
https://doi.org/10.1177/0263276414537318
https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://doi.org/10.1177/1461444811401735
https://doi.org/10.1177/1461444811401735
https://doi.org/10.48550/arXiv.1805.07685
http://arxiv.org/abs/1805.07685
http://arxiv.org/abs/1805.07685
https://doi.org/10.1016/j.jjimei.2022.100095
https://www.sciencedirect.com/science/article/pii/S2667096822000386
https://www.sciencedirect.com/science/article/pii/S2667096822000386

[71] A.-M. Founta, C. Djouvas, D. Chatzakou, et al., Large Scale Crowdsourcing

and Characterization of Twitter Abusive Behavior, arXiv:1802.00393 [cs], Apr.

2018. doi: 10.48550/arXiv.1802.00393. [Online]. Available: http://arxiv.

org/abs/1802.00393 (visited on 04/08/2023).

[72] H. Qayyum, B. Z. H. Zhao, I. D. Wood, M. Ikram, M. A. Kaafar, and N. Kourtel-

lis, A deep dive into the consistently toxic 1% of Twitter, arXiv:2202.07853 [cs],

Feb. 2022. [Online]. Available: http://arxiv.org/abs/2202.07853 (visited

on 09/22/2022).

[73] S. Jhaver, C. Boylston, D. Yang, and A. Bruckman, “Evaluating the E↵ective-

ness of Deplatforming as a Moderation Strategy on Twitter,” Proceedings of

the ACM on Human-Computer Interaction, vol. 5, no. CSCW2, 381:1–381:30,

Oct. 2021. doi: 10.1145/3479525. [Online]. Available: https://doi.org/10.

1145/3479525 (visited on 09/22/2022).

[74] M. Saveski, B. Roy, and D. Roy, “The Structure of Toxic Conversations on

Twitter,” en, in Proceedings of the Web Conference 2021, Ljubljana Slovenia:

ACM, Apr. 2021, pp. 1086–1097, isbn: 978-1-4503-8312-7. doi: 10.1145/

3442381.3449861. [Online]. Available: https://dl.acm.org/doi/10.1145/

3442381.3449861 (visited on 09/22/2022).

[75] B. Radfar, K. Shivaram, and A. Culotta, “Characterizing Variation in Toxic

Language by Social Context,” en, Proceedings of the International AAAI

Conference on Web and Social Media, vol. 14, pp. 959–963, May 2020, issn:

2334-0770. [Online]. Available: https://ojs.aaai.org/index.php/ICWSM/

article/view/7366 (visited on 10/12/2022).

[76] A. Vasalou, A. N. Joinson, and J. Pitt, “Constructing my online self: Avatars

that increase self-focused attention,” in Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, ser. CHI ’07, New York, NY, USA:

204

https://doi.org/10.48550/arXiv.1802.00393
http://arxiv.org/abs/1802.00393
http://arxiv.org/abs/1802.00393
http://arxiv.org/abs/2202.07853
https://doi.org/10.1145/3479525
https://doi.org/10.1145/3479525
https://doi.org/10.1145/3479525
https://doi.org/10.1145/3442381.3449861
https://doi.org/10.1145/3442381.3449861
https://dl.acm.org/doi/10.1145/3442381.3449861
https://dl.acm.org/doi/10.1145/3442381.3449861
https://ojs.aaai.org/index.php/ICWSM/article/view/7366
https://ojs.aaai.org/index.php/ICWSM/article/view/7366

Association for Computing Machinery, Apr. 2007, pp. 445–448, isbn: 978-1-

59593-593-9. doi: 10.1145/1240624.1240696. [Online]. Available: https:

//doi.org/10.1145/1240624.1240696 (visited on 04/10/2024).

[77] A. Giachanou and P. Rosso, “The Battle Against Online Harmful Information:

The Cases of Fake News and Hate Speech,” en, in Proceedings of the 29th ACM

International Conference on Information & Knowledge Management, Virtual

Event Ireland: ACM, Oct. 2020, pp. 3503–3504, isbn: 978-1-4503-6859-9. doi:

10.1145/3340531.3412169. [Online]. Available: https://dl.acm.org/doi/

10.1145/3340531.3412169 (visited on 03/28/2023).

[78] S. Kim, S. R. Colwell, A. Kata, M. H. Boyle, and K. Georgiades, “Cyberbullying

Victimization and Adolescent Mental Health: Evidence of Di↵erential E↵ects

by Sex and Mental Health Problem Type,” Journal of Youth and Adolescence,

vol. 47, no. 3, pp. 661–672, Mar. 2018, issn: 1573-6601. doi: 10.1007/s10964-

017-0678-4. [Online]. Available: https://doi.org/10.1007/s10964-017-

0678-4 (visited on 04/28/2022).

[79] E. M. Selkie, J. L. Fales, and M. A. Moreno, “Cyberbullying Prevalence Among

US Middle and High School–Aged Adolescents: A Systematic Review and

Quality Assessment,” Journal of Adolescent Health, vol. 58, no. 2, pp. 125–133,

Feb. 2016, issn: 1054-139X. doi: 10.1016/j.jadohealth.2015.09.026.

[Online]. Available: https://www.sciencedirect.com/science/article/

pii/S1054139X15003821 (visited on 04/28/2022).

[80] K. Cross, “Toward a formal sociology of online harassment,” en, Human

Technology, vol. 15, no. 3, pp. 326–346, Nov. 2019, Number: 3, issn: 1795-6889.

[Online]. Available: https://ht.csr-pub.eu/index.php/ht/article/view/

274 (visited on 08/01/2024).

205

https://doi.org/10.1145/1240624.1240696
https://doi.org/10.1145/1240624.1240696
https://doi.org/10.1145/1240624.1240696
https://doi.org/10.1145/3340531.3412169
https://dl.acm.org/doi/10.1145/3340531.3412169
https://dl.acm.org/doi/10.1145/3340531.3412169
https://doi.org/10.1007/s10964-017-0678-4
https://doi.org/10.1007/s10964-017-0678-4
https://doi.org/10.1007/s10964-017-0678-4
https://doi.org/10.1007/s10964-017-0678-4
https://doi.org/10.1016/j.jadohealth.2015.09.026
https://www.sciencedirect.com/science/article/pii/S1054139X15003821
https://www.sciencedirect.com/science/article/pii/S1054139X15003821
https://ht.csr-pub.eu/index.php/ht/article/view/274
https://ht.csr-pub.eu/index.php/ht/article/view/274

[81] D. M. Douglas, “Doxing: A conceptual analysis,” en, Ethics and Information

Technology, vol. 18, no. 3, pp. 199–210, Sep. 2016, issn: 1572-8439. doi: 10.

1007/s10676-016-9406-0. [Online]. Available: https://doi.org/10.1007/

s10676-016-9406-0 (visited on 08/01/2024).

[82] M. S. Jahan and M. Oussalah, “A systematic review of Hate Speech automatic

detection using Natural Language Processing,” arXiv:2106.00742 [cs], May 2021,

arXiv: 2106.00742. [Online]. Available: http://arxiv.org/abs/2106.00742

(visited on 04/27/2022).

[83] H. Yao, Y. Chen, Q. Ye, X. Jin, and X. Ren, “Refining Language Models

with Compositional Explanations,” in Advances in Neural Information Pro-

cessing Systems, vol. 34, Curran Associates, Inc., 2021, pp. 8954–8967. [On-

line]. Available: https://proceedings.neurips.cc/paper_files/paper/

2021/hash/4b26dc4663ccf960c8538d595d0a1d3a-Abstract.html (visited

on 08/01/2024).

[84] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions

on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2010,

Conference Name: IEEE Transactions on Knowledge and Data Engineering,

issn: 1558-2191. doi: 10.1109/TKDE.2009.191. [Online]. Available: https:

//ieeexplore.ieee.org/document/5288526 (visited on 08/01/2024).

[85] Z. Wang and A. Culotta, “Identifying Spurious Correlations for Robust Text

Classification,” in Findings of the Association for Computational Linguistics:

EMNLP 2020, Online: Association for Computational Linguistics, Nov. 2020,

pp. 3431–3440. doi: 10.18653/v1/2020.findings- emnlp.308. [Online].

Available: https://aclanthology.org/2020.findings-emnlp.308 (visited

on 04/26/2023).

206

https://doi.org/10.1007/s10676-016-9406-0
https://doi.org/10.1007/s10676-016-9406-0
https://doi.org/10.1007/s10676-016-9406-0
https://doi.org/10.1007/s10676-016-9406-0
http://arxiv.org/abs/2106.00742
https://proceedings.neurips.cc/paper_files/paper/2021/hash/4b26dc4663ccf960c8538d595d0a1d3a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/4b26dc4663ccf960c8538d595d0a1d3a-Abstract.html
https://doi.org/10.1109/TKDE.2009.191
https://ieeexplore.ieee.org/document/5288526
https://ieeexplore.ieee.org/document/5288526
https://doi.org/10.18653/v1/2020.findings-emnlp.308
https://aclanthology.org/2020.findings-emnlp.308

[86] X. Ferrer, T. v. Nuenen, J. M. Such, M. Coté, and N. Criado, “Bias and

Discrimination in AI: A Cross-Disciplinary Perspective,” IEEE Technology and

Society Magazine, vol. 40, no. 2, pp. 72–80, Jun. 2021, Conference Name: IEEE

Technology and Society Magazine, issn: 1937-416X. doi: 10.1109/MTS.2021.

3056293. [Online]. Available: https://ieeexplore.ieee.org/document/

9445793 (visited on 10/27/2023).

[87] F. Faal, J. Yu, and K. Schmitt, “Domain Adaptation Multi-task Deep Neural

Network for Mitigating Unintended Bias in Toxic Language Detection:” en,

in Proceedings of the 13th International Conference on Agents and Artificial

Intelligence, Online Streaming, — Select a Country —: SCITEPRESS - Science

and Technology Publications, 2021, pp. 932–940, isbn: 978-989-758-484-8. doi:

10.5220/0010266109320940. [Online]. Available: https://www.scitepress.

org/DigitalLibrary/Link.aspx?doi=10.5220/0010266109320940 (visited

on 04/03/2023).

[88] E. W. Pamungkas, V. Basile, and V. Patti, “Towards multidomain and mul-

tilingual abusive language detection: A survey,” en, Personal and Ubiqui-

tous Computing, vol. 27, no. 1, pp. 17–43, Feb. 2023, issn: 1617-4917. doi:

10.1007/s00779-021-01609-1. [Online]. Available: https://doi.org/10.

1007/s00779-021-01609-1 (visited on 10/24/2023).

[89] D. Hardage and P. Najafirad, “Hate and Toxic Speech Detection in the Context

of Covid-19 Pandemic using XAI: Ongoing Applied Research,” en, Jul. 2020.

[Online]. Available: https://openreview.net/forum?id=7HP_0BgVX7v

(visited on 08/25/2023).

207

https://doi.org/10.1109/MTS.2021.3056293
https://doi.org/10.1109/MTS.2021.3056293
https://ieeexplore.ieee.org/document/9445793
https://ieeexplore.ieee.org/document/9445793
https://doi.org/10.5220/0010266109320940
https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0010266109320940
https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0010266109320940
https://doi.org/10.1007/s00779-021-01609-1
https://doi.org/10.1007/s00779-021-01609-1
https://doi.org/10.1007/s00779-021-01609-1
https://openreview.net/forum?id=7HP_0BgVX7v

[90] P. Malik, A. Aggrawal, and D. K. Vishwakarma, “Toxic Speech Detection

using Traditional Machine Learning Models and BERT and fastText Em-

bedding with Deep Neural Networks,” in 2021 5th International Confer-

ence on Computing Methodologies and Communication (ICCMC), Apr. 2021,

pp. 1254–1259. doi: 10.1109/ICCMC51019.2021.9418395. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9418395 (visited on

04/30/2024).

[91] T. Wijesiriwardene, H. Inan, U. Kursuncu, et al., “ALONE: A Dataset for Toxic

Behavior Among Adolescents on Twitter,” in Social Informatics, S. Aref, K.

Bontcheva, M. Braghieri, et al., Eds., ser. Lecture Notes in Computer Science,

event-place: Cham, Springer International Publishing, 2020, pp. 427–439, isbn:

978-3-030-60975-7. doi: 10.1007/978-3-030-60975-7_31.

[92] R. Mall, M. Nagpal, J. Salminen, H. Almerekhi, S.-G. Jung, and B. J. Jansen,

“Four Types of Toxic People: Characterizing Online Users’ Toxicity over Time,”

en, in Proceedings of the 11th Nordic Conference on Human-Computer Interac-

tion: Shaping Experiences, Shaping Society, Tallinn Estonia: ACM, Oct. 2020,

pp. 1–11, isbn: 978-1-4503-7579-5. doi: 10.1145/3419249.3420142. [Online].

Available: https://dl.acm.org/doi/10.1145/3419249.3420142 (visited on

05/24/2024).

[93] D. Androcec, “Machine learning methods for toxic comment classification: A

systematic review,” Acta Universitatis Sapientiae, Informatica, vol. 12, pp. 205–

216, Dec. 2020. doi: 10.2478/ausi-2020-0012.

[94] O. Makhnytkina, A. Matveev, D. Bogoradnikova, I. Lizunova, A. Maltseva,

and N. Shilkina, “Detection of Toxic Language in Short Text Messages,” en,

in Speech and Computer, A. Karpov and R. Potapova, Eds., Cham: Springer

208

https://doi.org/10.1109/ICCMC51019.2021.9418395
https://ieeexplore.ieee.org/abstract/document/9418395
https://doi.org/10.1007/978-3-030-60975-7_31
https://doi.org/10.1145/3419249.3420142
https://dl.acm.org/doi/10.1145/3419249.3420142
https://doi.org/10.2478/ausi-2020-0012

International Publishing, 2020, pp. 315–325, isbn: 978-3-030-60276-5. doi:

10.1007/978-3-030-60276-5_31.

[95] J. Salminen, M. Hopf, S. A. Chowdhury, S.-g. Jung, H. Almerekhi, and B. J.

Jansen, “Developing an online hate classifier for multiple social media platforms,”

Human-centric Computing and Information Sciences, vol. 10, no. 1, p. 1, Jan.

2020, issn: 2192-1962. doi: 10.1186/s13673-019-0205-6. [Online]. Available:

https://doi.org/10.1186/s13673-019-0205-6 (visited on 04/17/2024).

[96] Rahul, H. Kajla, J. Hooda, and G. Saini, “Classification of Online Toxic

Comments Using Machine Learning Algorithms,” in 2020 4th International

Conference on Intelligent Computing and Control Systems (ICICCS), IEEE,

May 2020, pp. 1119–1123. doi: 10.1109/ICICCS48265.2020.9120939. [On-

line]. Available: https://ieeexplore.ieee.org/document/9120939 (visited

on 04/30/2024).

[97] M. A. Saif, A. N. Medvedev, M. A. Medvedev, and T. Atanasova, “Classification

of online toxic comments using the logistic regression and neural networks

models,” AIP Conference Proceedings, vol. 2048, no. 1, p. 060 011, Dec. 2018,

issn: 0094-243X. doi: 10.1063/1.5082126. [Online]. Available: https://doi.

org/10.1063/1.5082126 (visited on 04/30/2024).

[98] A. Bonetti, M. Mart́ınez-Sober, J. C. Torres, J. M. Vega, S. Pellerin, and

J. Vila-Francés, “Comparison between Machine Learning and Deep Learning

Approaches for the Detection of Toxic Comments on Social Networks,” en,

Applied Sciences, vol. 13, no. 10, p. 6038, Jan. 2023, Number: 10 Publisher:

Multidisciplinary Digital Publishing Institute, issn: 2076-3417. doi: 10.3390/

app13106038. [Online]. Available: https://www.mdpi.com/2076-3417/13/

10/6038 (visited on 08/21/2023).

209

https://doi.org/10.1007/978-3-030-60276-5_31
https://doi.org/10.1186/s13673-019-0205-6
https://doi.org/10.1186/s13673-019-0205-6
https://doi.org/10.1109/ICICCS48265.2020.9120939
https://ieeexplore.ieee.org/document/9120939
https://doi.org/10.1063/1.5082126
https://doi.org/10.1063/1.5082126
https://doi.org/10.1063/1.5082126
https://doi.org/10.3390/app13106038
https://doi.org/10.3390/app13106038
https://www.mdpi.com/2076-3417/13/10/6038
https://www.mdpi.com/2076-3417/13/10/6038

[99] S. Akuma, T. Lubem, and I. T. Adom, “Comparing Bag of Words and TF-

IDF with di↵erent models for hate speech detection from live tweets,” en,

International Journal of Information Technology, vol. 14, no. 7, pp. 3629–3635,

Dec. 2022, issn: 2511-2112. doi: 10.1007/s41870-022-01096-4. [Online].

Available: https://doi.org/10.1007/s41870-022-01096-4 (visited on

08/21/2023).

[100] Y. HaCohen-Kerner, D. Miller, and Y. Yigal, “The influence of preprocessing

on text classification using a bag-of-words representation,” en, PLOS ONE,

vol. 15, no. 5, e0232525, May 2020, Publisher: Public Library of Science,

issn: 1932-6203. doi: 10.1371/journal.pone.0232525. [Online]. Available:

https://journals.plos.org/plosone/article?id=10.1371/journal.

pone.0232525 (visited on 08/21/2023).

[101] V. Rupapara, F. Rustam, H. F. Shahzad, A. Mehmood, I. Ashraf, and G. S. Choi,

“Impact of SMOTE on Imbalanced Text Features for Toxic Comments Classifica-

tion Using RVVC Model,” en, IEEE Access, vol. 9, pp. 78 621–78 634, 2021, issn:

2169-3536. doi: 10.1109/ACCESS.2021.3083638. [Online]. Available: https:

//ieeexplore.ieee.org/document/9440474/ (visited on 04/30/2024).

[102] B. Vidgen and L. Derczynski, “Directions in abusive language training data, a

systematic review: Garbage in, garbage out,” en, PLOS ONE, vol. 15, no. 12,

e0243300, Dec. 2020, Publisher: Public Library of Science, issn: 1932-6203. doi:

10.1371/journal.pone.0243300. [Online]. Available: https://journals.

plos.org/plosone/article?id=10.1371/journal.pone.0243300 (visited

on 04/17/2024).

[103] Anjum and R. Katarya, “Hate speech, toxicity detection in online social

media: A recent survey of state of the art and opportunities,” en, International

Journal of Information Security, vol. 23, no. 1, pp. 577–608, Feb. 2024, issn:

210

https://doi.org/10.1007/s41870-022-01096-4
https://doi.org/10.1007/s41870-022-01096-4
https://doi.org/10.1371/journal.pone.0232525
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232525
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232525
https://doi.org/10.1109/ACCESS.2021.3083638
https://ieeexplore.ieee.org/document/9440474/
https://ieeexplore.ieee.org/document/9440474/
https://doi.org/10.1371/journal.pone.0243300
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243300
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243300

1615-5270. doi: 10.1007/s10207-023-00755-2. [Online]. Available: https:

//doi.org/10.1007/s10207-023-00755-2 (visited on 04/18/2024).

[104] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao, “Deep learning and

its applications to machine health monitoring,” Mechanical Systems and Signal

Processing, vol. 115, pp. 213–237, Jan. 2019, issn: 0888-3270. doi: 10.1016/j.

ymssp.2018.05.050. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0888327018303108 (visited on 05/03/2022).

[105] C. E. R. Salim and D. Suhartono, “A Systematic Literature Review of Di↵erent

Machine Learning Methods on Hate Speech Detection,” JOIV : International

Journal on Informatics Visualization, vol. 4, no. 4, pp. 213–218, Dec. 2020,

issn: 2549-9904. doi: 10.30630/joiv.4.4.476. [Online]. Available: http:

//joiv.org/index.php/joiv/article/view/476 (visited on 05/03/2022).

[106] A. Vaidya, F. Mai, and Y. Ning, “Empirical Analysis of Multi-Task Learning

for Reducing Identity Bias in Toxic Comment Detection,” en, Proceedings of

the International AAAI Conference on Web and Social Media, vol. 14, pp. 683–

693, May 2020, issn: 2334-0770. doi: 10.1609/icwsm.v14i1.7334. [Online].

Available: https://ojs.aaai.org/index.php/ICWSM/article/view/7334

(visited on 08/21/2023).

[107] Z. Wang and B. Zhang, “Toxic Comment Classification Based on Bidirectional

Gated Recurrent Unit and Convolutional Neural Network,” ACM Transactions

on Asian and Low-Resource Language Information Processing, vol. 21, no. 3,

51:1–51:12, Dec. 2021, issn: 2375-4699. doi: 10 . 1145 / 3488366. [Online].

Available: https://doi.org/10.1145/3488366 (visited on 08/21/2023).

[108] M. Ibrahim, M. Torki, and N. El-Makky, “Imbalanced Toxic Comments Classi-

fication Using Data Augmentation and Deep Learning,” in 2018 17th IEEE

International Conference on Machine Learning and Applications (ICMLA),

211

https://doi.org/10.1007/s10207-023-00755-2
https://doi.org/10.1007/s10207-023-00755-2
https://doi.org/10.1007/s10207-023-00755-2
https://doi.org/10.1016/j.ymssp.2018.05.050
https://doi.org/10.1016/j.ymssp.2018.05.050
https://www.sciencedirect.com/science/article/pii/S0888327018303108
https://www.sciencedirect.com/science/article/pii/S0888327018303108
https://doi.org/10.30630/joiv.4.4.476
http://joiv.org/index.php/joiv/article/view/476
http://joiv.org/index.php/joiv/article/view/476
https://doi.org/10.1609/icwsm.v14i1.7334
https://ojs.aaai.org/index.php/ICWSM/article/view/7334
https://doi.org/10.1145/3488366
https://doi.org/10.1145/3488366

Dec. 2018, pp. 875–878. doi: 10.1109/ICMLA.2018.00141. [Online]. Available:

https://ieeexplore.ieee.org/document/8614166 (visited on 04/18/2024).

[109] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, en. MIT Press, Nov.

2016, Google-Books-ID: omivDQAAQBAJ, isbn: 978-0-262-33737-3.

[110] R. Collobert and J. Weston, “A unified architecture for natural language

processing: Deep neural networks with multitask learning,” in Proceedings of

the 25th international conference on Machine learning, ser. ICML ’08, New

York, NY, USA: Association for Computing Machinery, Jul. 2008, pp. 160–167,

isbn: 978-1-60558-205-4. doi: 10.1145/1390156.1390177. [Online]. Available:

https://doi.org/10.1145/1390156.1390177 (visited on 06/14/2022).

[111] T. Mikolov, K. Chen, G. Corrado, and J. Dean, E�cient Estimation of Word

Representations in Vector Space, arXiv:1301.3781 [cs], Sep. 2013. doi: 10.

48550/arXiv.1301.3781. [Online]. Available: http://arxiv.org/abs/1301.

3781 (visited on 04/30/2024).

[112] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors for Word

Representation,” in Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP), A. Moschitti, B. Pang, and W.

Daelemans, Eds., Doha, Qatar: Association for Computational Linguistics,

Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162. [Online]. Available:

https://aclanthology.org/D14-1162 (visited on 04/30/2024).

[113] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, Learning Word

Vectors for 157 Languages, arXiv:1802.06893 [cs], Mar. 2018. doi: 10.48550/

arXiv.1802.06893. [Online]. Available: http://arxiv.org/abs/1802.06893

(visited on 01/05/2024).

212

https://doi.org/10.1109/ICMLA.2018.00141
https://ieeexplore.ieee.org/document/8614166
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.48550/arXiv.1802.06893
https://doi.org/10.48550/arXiv.1802.06893
http://arxiv.org/abs/1802.06893

[114] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors

with Subword Information,” Transactions of the Association for Computa-

tional Linguistics, vol. 5, pp. 135–146, 2017, Place: Cambridge, MA Pub-

lisher: MIT Press. doi: 10.1162/tacl_a_00051. [Online]. Available: https:

//aclanthology.org/Q17-1010 (visited on 08/25/2023).

[115] H. H. MOHAMMED, E. DOGDU, A. K. GÖRÜR, and R. CHOUPANI, “Multi-

Label Classification of Text Documents Using Deep Learning,” in 2020 IEEE

International Conference on Big Data (Big Data), IEEE, Dec. 2020, pp. 4681–

4689. doi: 10.1109/BigData50022.2020.9378266. [Online]. Available: https:

//ieeexplore.ieee.org/document/9378266 (visited on 05/24/2024).

[116] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding,”

arXiv:1810.04805 [cs], May 2019, arXiv: 1810.04805. [Online]. Available: http:

//arxiv.org/abs/1810.04805 (visited on 05/03/2022).

[117] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “AL-

BERT: A Lite BERT for Self-supervised Learning of Language Representations,”

en, Sep. 2019. doi: 10.48550/arXiv.1909.11942. [Online]. Available: https:

//arxiv.org/abs/1909.11942v6 (visited on 10/31/2022).

[118] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, DistilBERT, a distilled version

of BERT: Smaller, faster, cheaper and lighter, arXiv:1910.01108 [cs], Feb. 2020.

doi: 10.48550/arXiv.1910.01108. [Online]. Available: http://arxiv.org/

abs/1910.01108 (visited on 04/30/2024).

[119] Y. Liu, M. Ott, N. Goyal, et al., RoBERTa: A Robustly Optimized BERT

Pretraining Approach, arXiv:1907.11692 [cs], Jul. 2019. doi: 10.48550/arXiv.

1907.11692. [Online]. Available: http://arxiv.org/abs/1907.11692 (visited

on 07/15/2024).

213

https://doi.org/10.1162/tacl_a_00051
https://aclanthology.org/Q17-1010
https://aclanthology.org/Q17-1010
https://doi.org/10.1109/BigData50022.2020.9378266
https://ieeexplore.ieee.org/document/9378266
https://ieeexplore.ieee.org/document/9378266
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.1909.11942
https://arxiv.org/abs/1909.11942v6
https://arxiv.org/abs/1909.11942v6
https://doi.org/10.48550/arXiv.1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
http://arxiv.org/abs/1907.11692

[120] A. G. D’Sa, I. Illina, and D. Fohr, “BERT and fastText Embeddings for Auto-

matic Detection of Toxic Speech,” in 2020 International Multi-Conference on:

“Organization of Knowledge and Advanced Technologies” (OCTA), IEEE, Feb.

2020, pp. 1–5. doi: 10.1109/OCTA49274.2020.9151853. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9151853 (visited on

05/01/2024).

[121] Z. Zhao, Z. Zhang, and F. Hopfgartner, “A Comparative Study of Using Pre-

trained Language Models for Toxic Comment Classification,” in Companion

Proceedings of the Web Conference 2021, ser. WWW ’21, New York, NY, USA:

Association for Computing Machinery, Jun. 2021, pp. 500–507, isbn: 978-1-

4503-8313-4. doi: 10.1145/3442442.3452313. [Online]. Available: https:

//doi.org/10.1145/3442442.3452313 (visited on 04/30/2024).

[122] D. Dess̀ı, D. R. Recupero, and H. Sack, “An Assessment of Deep Learning

Models and Word Embeddings for Toxicity Detection within Online Textual

Comments,” en, Electronics, vol. 10, no. 7, p. 779, Jan. 2021, Number: 7

Publisher: Multidisciplinary Digital Publishing Institute, issn: 2079-9292. doi:

10.3390/electronics10070779. [Online]. Available: https://www.mdpi.

com/2079-9292/10/7/779 (visited on 05/04/2022).

[123] T. Chu, K. Jue, and M. Wang, “Comment abuse classification with deep

learning,” Von https://web. stanford. edu/class/cs224n/reports/2762092. pdf

abgerufen, 2016.

[124] F. Alkomah and X. Ma, “A Literature Review of Textual Hate Speech Detection

Methods and Datasets,” en, Information, vol. 13, no. 6, p. 273, Jun. 2022,

Number: 6 Publisher: Multidisciplinary Digital Publishing Institute, issn: 2078-

2489. doi: 10.3390/info13060273. [Online]. Available: https://www.mdpi.

com/2078-2489/13/6/273 (visited on 04/18/2024).

214

https://doi.org/10.1109/OCTA49274.2020.9151853
https://ieeexplore.ieee.org/abstract/document/9151853
https://doi.org/10.1145/3442442.3452313
https://doi.org/10.1145/3442442.3452313
https://doi.org/10.1145/3442442.3452313
https://doi.org/10.3390/electronics10070779
https://www.mdpi.com/2079-9292/10/7/779
https://www.mdpi.com/2079-9292/10/7/779
https://doi.org/10.3390/info13060273
https://www.mdpi.com/2078-2489/13/6/273
https://www.mdpi.com/2078-2489/13/6/273

[125] F. Museng, A. Jessica, N. Wijaya, A. Anderies, and I. A. Iswanto, “Systematic

Literature Review: Toxic Comment Classification,” en, in 2022 IEEE 7th

International Conference on Information Technology and Digital Applications

(ICITDA), Yogyakarta, Indonesia: IEEE, Nov. 2022, pp. 1–7, isbn: 978-1-66546-

136-8. doi: 10.1109/ICITDA55840.2022.9971338. [Online]. Available: https:

//ieeexplore.ieee.org/document/9971338/ (visited on 04/17/2024).

[126] M. S. Jahan and M. Oussalah, “A systematic review of hate speech auto-

matic detection using natural language processing,” Neurocomputing, vol. 546,

p. 126 232, Aug. 2023, issn: 0925-2312. doi: 10.1016/j.neucom.2023.126232.

[Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0925231223003557 (visited on 07/29/2024).

[127] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Com-

put., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, issn: 0899-7667. doi: 10.1162/

neco.1997.9.8.1735. [Online]. Available: https://doi.org/10.1162/neco.

1997.9.8.1735 (visited on 07/15/2024).

[128] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidi-

rectional LSTM and other neural network architectures,” Neural Networks,

IJCNN 2005, vol. 18, no. 5, pp. 602–610, Jul. 2005, issn: 0893-6080. doi:

10 . 1016 / j . neunet . 2005 . 06 . 042. [Online]. Available: https : / / www .

sciencedirect.com/science/article/pii/S0893608005001206 (visited

on 07/15/2024).

[129] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, On the Properties

of Neural Machine Translation: Encoder-Decoder Approaches, arXiv:1409.1259

[cs, stat], Oct. 2014. doi: 10.48550/arXiv.1409.1259. [Online]. Available:

http://arxiv.org/abs/1409.1259 (visited on 07/15/2024).

215

https://doi.org/10.1109/ICITDA55840.2022.9971338
https://ieeexplore.ieee.org/document/9971338/
https://ieeexplore.ieee.org/document/9971338/
https://doi.org/10.1016/j.neucom.2023.126232
https://www.sciencedirect.com/science/article/pii/S0925231223003557
https://www.sciencedirect.com/science/article/pii/S0925231223003557
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.neunet.2005.06.042
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://doi.org/10.48550/arXiv.1409.1259
http://arxiv.org/abs/1409.1259

[130] L. Breiman, “Bagging predictors,” en, Machine Learning, vol. 24, no. 2, pp. 123–

140, Aug. 1996, issn: 1573-0565. doi: 10.1007/BF00058655. [Online]. Available:

https://doi.org/10.1007/BF00058655 (visited on 04/17/2024).

[131] R. E. Schapire, “The strength of weak learnability,” en,Machine Learning, vol. 5,

no. 2, pp. 197–227, Jun. 1990, issn: 1573-0565. doi: 10.1007/BF00116037.

[Online]. Available: https://doi.org/10.1007/BF00116037 (visited on

04/16/2024).

[132] K. Poojitha, A. S. Charish, M. A. K. Reddy, and S. Ayyasamy, Classification of

social media Toxic comments using Machine learning models, arXiv:2304.06934

[cs], Apr. 2023. [Online]. Available: http://arxiv.org/abs/2304.06934

(visited on 04/18/2024).

[133] G. K. Pitsilis, H. Ramampiaro, and H. Langseth, “Detecting O↵ensive Language

in Tweets Using Deep Learning,” Applied Intelligence, vol. 48, no. 12, pp. 4730–

4742, Dec. 2018, arXiv:1801.04433 [cs], issn: 0924-669X, 1573-7497. doi: 10.

1007/s10489-018-1242-y. [Online]. Available: http://arxiv.org/abs/

1801.04433 (visited on 04/19/2024).

[134] M. K. A. Aljero and N. Dimililer, “A Novel Stacked Ensemble for Hate Speech

Recognition,” en, Applied Sciences, vol. 11, no. 24, p. 11 684, Jan. 2021, Number:

24 Publisher: Multidisciplinary Digital Publishing Institute, issn: 2076-3417.

doi: 10.3390/app112411684. [Online]. Available: https://www.mdpi.com/

2076-3417/11/24/11684 (visited on 04/17/2024).

[135] F. R. S. Nascimento, G. D. C. Cavalcanti, and M. Da Costa-Abreu, “Unintended

bias evaluation: An analysis of hate speech detection and gender bias mitigation

on social media using ensemble learning,” Expert Systems with Applications,

vol. 201, p. 117 032, Sep. 2022, issn: 0957-4174. doi: 10.1016/j.eswa.2022.

216

https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00116037
https://doi.org/10.1007/BF00116037
http://arxiv.org/abs/2304.06934
https://doi.org/10.1007/s10489-018-1242-y
https://doi.org/10.1007/s10489-018-1242-y
http://arxiv.org/abs/1801.04433
http://arxiv.org/abs/1801.04433
https://doi.org/10.3390/app112411684
https://www.mdpi.com/2076-3417/11/24/11684
https://www.mdpi.com/2076-3417/11/24/11684
https://doi.org/10.1016/j.eswa.2022.117032
https://doi.org/10.1016/j.eswa.2022.117032

117032. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S095741742200447X (visited on 04/17/2024).

[136] S. Agarwal, A. Sonawane, and C. R. Chowdary, “Accelerating automatic

hate speech detection using parallelized ensemble learning models,” Expert

Systems with Applications, vol. 230, p. 120 564, Nov. 2023, issn: 0957-4174.

doi: 10.1016/j.eswa.2023.120564. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0957417423010667 (visited on

04/17/2024).

[137] J. Melton, A. Bagavathi, and S. Krishnan, “DeL-haTE: A Deep Learning

Tunable Ensemble for Hate Speech Detection,” en, in 2020 19th IEEE Inter-

national Conference on Machine Learning and Applications (ICMLA), Miami,

FL, USA: IEEE, Dec. 2020, pp. 1015–1022, isbn: 978-1-72818-470-8. doi:

10.1109/ICMLA51294.2020.00165. [Online]. Available: https://ieeexplore.

ieee.org/document/9356174/ (visited on 04/17/2024).

[138] S. A. Kokatnoor and B. Krishnan, “Twitter Hate Speech Detection using

Stacked Weighted Ensemble (SWE) Model,” in 2020 Fifth International Con-

ference on Research in Computational Intelligence and Communication Net-

works (ICRCICN), Nov. 2020, pp. 87–92. doi: 10.1109/ICRCICN50933.2020.

9296199. [Online]. Available: https://ieeexplore.ieee.org/document/

9296199 (visited on 04/17/2024).

[139] O. Lavie, G. Katz, and A. Shabtai, Cost E↵ective Transfer of Reinforcement

Learning Policies, en, SSRN Scholarly Paper, Rochester, NY, Jan. 2023. doi:

10.2139/ssrn.4341615. [Online]. Available: https://papers.ssrn.com/

abstract=4341615 (visited on 01/18/2024).

[140] G. Bansal, B. Nushi, E. Kamar, E. Horvitz, and D. S. Weld, Is the Most Accurate

AI the Best Teammate? Optimizing AI for Teamwork, arXiv:2004.13102 [cs],

217

https://doi.org/10.1016/j.eswa.2022.117032
https://doi.org/10.1016/j.eswa.2022.117032
https://doi.org/10.1016/j.eswa.2022.117032
https://www.sciencedirect.com/science/article/pii/S095741742200447X
https://www.sciencedirect.com/science/article/pii/S095741742200447X
https://doi.org/10.1016/j.eswa.2023.120564
https://www.sciencedirect.com/science/article/pii/S0957417423010667
https://www.sciencedirect.com/science/article/pii/S0957417423010667
https://doi.org/10.1109/ICMLA51294.2020.00165
https://ieeexplore.ieee.org/document/9356174/
https://ieeexplore.ieee.org/document/9356174/
https://doi.org/10.1109/ICRCICN50933.2020.9296199
https://doi.org/10.1109/ICRCICN50933.2020.9296199
https://ieeexplore.ieee.org/document/9296199
https://ieeexplore.ieee.org/document/9296199
https://doi.org/10.2139/ssrn.4341615
https://papers.ssrn.com/abstract=4341615
https://papers.ssrn.com/abstract=4341615

Feb. 2021. doi: 10.48550/arXiv.2004.13102. [Online]. Available: http:

//arxiv.org/abs/2004.13102 (visited on 04/19/2024).

[141] V. K. Singh, U. Shrivastava, L. Bouayad, B. Padmanabhan, A. Ialynytchev,

and S. K. Schultz, “Machine learning for psychiatric patient triaging: An inves-

tigation of cascading classifiers,” Journal of the American Medical Informatics

Association, vol. 25, no. 11, pp. 1481–1487, Nov. 2018, issn: 1527-974X. doi:

10.1093/jamia/ocy109. [Online]. Available: https://doi.org/10.1093/

jamia/ocy109 (visited on 04/12/2024).

[142] Y. Birman, S. Hindi, G. Katz, and A. Shabtai, “Cost-e↵ective ensemble models

selection using deep reinforcement learning,” en, Information Fusion, vol. 77,

pp. 133–148, Jan. 2022, issn: 1566-2535. doi: 10.1016/j.inffus.2021.

07.011. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S1566253521001524 (visited on 04/06/2023).

[143] P. Viola and M. Jones, “Rapid object detection using a boosted cascade

of simple features,” en, in Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1,

Kauai, HI, USA: IEEE Comput. Soc, 2001, pp. I–511–I–518, isbn: 978-0-

7695-1272-3. doi: 10.1109/CVPR.2001.990517. [Online]. Available: http:

//ieeexplore.ieee.org/document/990517/ (visited on 04/10/2024).

[144] C. D. Sutton, “11 - Classification and Regression Trees, Bagging, and Boosting,”

in Handbook of Statistics, ser. Data Mining and Data Visualization, C. R. Rao,

E. J. Wegman, and J. L. Solka, Eds., vol. 24, Elsevier, Jan. 2005, pp. 303–

329. doi: 10.1016/S0169-7161(04)24011-1. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0169716104240111

(visited on 04/16/2024).

218

https://doi.org/10.48550/arXiv.2004.13102
http://arxiv.org/abs/2004.13102
http://arxiv.org/abs/2004.13102
https://doi.org/10.1093/jamia/ocy109
https://doi.org/10.1093/jamia/ocy109
https://doi.org/10.1093/jamia/ocy109
https://doi.org/10.1016/j.inffus.2021.07.011
https://doi.org/10.1016/j.inffus.2021.07.011
https://www.sciencedirect.com/science/article/pii/S1566253521001524
https://www.sciencedirect.com/science/article/pii/S1566253521001524
https://doi.org/10.1109/CVPR.2001.990517
http://ieeexplore.ieee.org/document/990517/
http://ieeexplore.ieee.org/document/990517/
https://doi.org/10.1016/S0169-7161(04)24011-1
https://www.sciencedirect.com/science/article/pii/S0169716104240111
https://www.sciencedirect.com/science/article/pii/S0169716104240111

[145] Y. Yuan, Z. L. Yu, Z. Gu, et al., “A novel multi-step Q-learning method to

improve data e�ciency for deep reinforcement learning,” Knowledge-Based

Systems, vol. 175, pp. 107–117, Jul. 2019, issn: 0950-7051. doi: 10.1016/

j.knosys.2019.03.018. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0950705119301431 (visited on 04/24/2024).

[146] Y. Wang, S. Geng, and H. Gao, “A proactive decision support method based

on deep reinforcement learning and state partition,” Knowledge-Based Sys-

tems, vol. 143, pp. 248–258, Mar. 2018, issn: 0950-7051. doi: 10.1016/j.

knosys.2017.11.005. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S095070511730504X (visited on 04/24/2024).

[147] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learning:

A Survey,” en, Journal of Artificial Intelligence Research, vol. 4, pp. 237–285,

May 1996, issn: 1076-9757. doi: 10.1613/jair.301. [Online]. Available:

https://www.jair.org/index.php/jair/article/view/10166 (visited on

04/24/2024).

[148] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep

Reinforcement Learning: A Brief Survey,” IEEE Signal Processing Magazine,

vol. 34, no. 6, pp. 26–38, Nov. 2017, Conference Name: IEEE Signal Processing

Magazine, issn: 1558-0792. doi: 10.1109/MSP.2017.2743240. [Online]. Avail-

able: https://ieeexplore.ieee.org/abstract/document/8103164 (visited

on 07/06/2024).

[149] R. S. Sutton and A. G. Barto, Reinforcement Learning, second edition: An

Introduction, en. MIT Press, Nov. 2018, Google-Books-ID: uWV0DwAAQBAJ,

isbn: 978-0-262-35270-3.

[150] X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, End-to-End Task-

Completion Neural Dialogue Systems, arXiv:1703.01008 [cs], Feb. 2018. doi:

219

https://doi.org/10.1016/j.knosys.2019.03.018
https://doi.org/10.1016/j.knosys.2019.03.018
https://www.sciencedirect.com/science/article/pii/S0950705119301431
https://www.sciencedirect.com/science/article/pii/S0950705119301431
https://doi.org/10.1016/j.knosys.2017.11.005
https://doi.org/10.1016/j.knosys.2017.11.005
https://www.sciencedirect.com/science/article/pii/S095070511730504X
https://www.sciencedirect.com/science/article/pii/S095070511730504X
https://doi.org/10.1613/jair.301
https://www.jair.org/index.php/jair/article/view/10166
https://doi.org/10.1109/MSP.2017.2743240
https://ieeexplore.ieee.org/abstract/document/8103164

10.48550/arXiv.1703.01008. [Online]. Available: http://arxiv.org/abs/

1703.01008 (visited on 07/06/2024).

[151] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of Go

with deep neural networks and tree search,” en, Nature, vol. 529, no. 7587,

pp. 484–489, Jan. 2016, Publisher: Nature Publishing Group, issn: 1476-4687.

doi: 10.1038/nature16961. [Online]. Available: https://www.nature.com/

articles/nature16961 (visited on 07/06/2024).

[152] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” en, Nature, vol. 521,

no. 7553, pp. 436–444, May 2015, Publisher: Nature Publishing Group, issn:

1476-4687. doi: 10.1038/nature14539. [Online]. Available: https://www.

nature.com/articles/nature14539 (visited on 07/06/2024).

[153] S. Levine, C. Finn, T. Darrell, and P. Abbeel, End-to-End Training of Deep

Visuomotor Policies, arXiv:1504.00702 [cs], Apr. 2016. doi: 10.48550/arXiv.

1504.00702. [Online]. Available: http://arxiv.org/abs/1504.00702 (visited

on 07/06/2024).

[154] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, Learning Hand-Eye

Coordination for Robotic Grasping with Deep Learning and Large-Scale Data

Collection, en, arXiv:1603.02199 [cs], Aug. 2016. [Online]. Available: http:

//arxiv.org/abs/1603.02199 (visited on 07/06/2024).

[155] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary, Robust

Deep Reinforcement Learning with Adversarial Attacks, arXiv:1712.03632 [cs],

Dec. 2017. doi: 10.48550/arXiv.1712.03632. [Online]. Available: http:

//arxiv.org/abs/1712.03632 (visited on 07/06/2024).

[156] L. Binxiang, Z. Gang, and S. Ruoying, “A Deep Reinforcement Learning

Malware Detection Method Based on PE Feature Distribution,” in 2019 6th

220

https://doi.org/10.48550/arXiv.1703.01008
http://arxiv.org/abs/1703.01008
http://arxiv.org/abs/1703.01008
https://doi.org/10.1038/nature16961
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://doi.org/10.1038/nature14539
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://doi.org/10.48550/arXiv.1504.00702
https://doi.org/10.48550/arXiv.1504.00702
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1603.02199
https://doi.org/10.48550/arXiv.1712.03632
http://arxiv.org/abs/1712.03632
http://arxiv.org/abs/1712.03632

International Conference on Information Science and Control Engineering

(ICISCE), Dec. 2019, pp. 23–27. doi: 10.1109/ICISCE48695.2019.00014.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/

9107644 (visited on 07/06/2024).

[157] B. Dhingra, L. Li, X. Li, et al., Towards End-to-End Reinforcement Learning

of Dialogue Agents for Information Access, arXiv:1609.00777 [cs], Apr. 2017.

doi: 10.48550/arXiv.1609.00777. [Online]. Available: http://arxiv.org/

abs/1609.00777 (visited on 07/06/2024).

[158] Y. Li, Deep Reinforcement Learning: An Overview, arXiv:1701.07274 [cs],

Nov. 2018. doi: 10.48550/arXiv.1701.07274. [Online]. Available: http:

//arxiv.org/abs/1701.07274 (visited on 07/06/2024).

[159] Y. Xia, D. He, T. Qin, et al., Dual Learning for Machine Translation, en,

arXiv:1611.00179 [cs], Nov. 2016. [Online]. Available: http://arxiv.org/abs/

1611.00179 (visited on 07/06/2024).

[160] D. Bahdanau, P. Brakel, K. Xu, et al., An Actor-Critic Algorithm for Sequence

Prediction, arXiv:1607.07086 [cs], Mar. 2017. doi: 10.48550/arXiv.1607.

07086. [Online]. Available: http://arxiv.org/abs/1607.07086 (visited on

07/06/2024).

[161] D. M. Ziegler, N. Stiennon, J. Wu, et al., Fine-Tuning Language Models from

Human Preferences, arXiv:1909.08593 [cs, stat], Jan. 2020. doi: 10.48550/

arXiv.1909.08593. [Online]. Available: http://arxiv.org/abs/1909.08593

(visited on 07/09/2024).

[162] F. Faal, K. Schmitt, and J. Y. Yu, “Reward Modeling for Mitigating Toxicity

in Transformer-based Language Models,” Applied Intelligence, vol. 53, no. 7,

pp. 8421–8435, Apr. 2023, arXiv:2202.09662 [cs], issn: 0924-669X, 1573-7497.

221

https://doi.org/10.1109/ICISCE48695.2019.00014
https://ieeexplore.ieee.org/abstract/document/9107644
https://ieeexplore.ieee.org/abstract/document/9107644
https://doi.org/10.48550/arXiv.1609.00777
http://arxiv.org/abs/1609.00777
http://arxiv.org/abs/1609.00777
https://doi.org/10.48550/arXiv.1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1611.00179
http://arxiv.org/abs/1611.00179
https://doi.org/10.48550/arXiv.1607.07086
https://doi.org/10.48550/arXiv.1607.07086
http://arxiv.org/abs/1607.07086
https://doi.org/10.48550/arXiv.1909.08593
https://doi.org/10.48550/arXiv.1909.08593
http://arxiv.org/abs/1909.08593

doi: 10.1007/s10489-022-03944-z. [Online]. Available: http://arxiv.org/

abs/2202.09662 (visited on 12/22/2023).

[163] T. Hartvigsen, S. Gabriel, H. Palangi, M. Sap, D. Ray, and E. Kamar, ToxiGen:

A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate

Speech Detection, arXiv:2203.09509 [cs], Jul. 2022. doi: 10.48550/arXiv.2203.

09509. [Online]. Available: http://arxiv.org/abs/2203.09509 (visited on

07/15/2024).

[164] A. Singh, “Detecting Toxicity in a Diverse Online Conversation using Rein-

forcement Learning,” M.S. thesis, University of Maryland, Baltimore County,

2020. [Online]. Available: https : / / search . proquest . com / openview /

b7af8344c480abe7ba0a9b705dce511c / 1 ? pq - origsite = gscholar & cbl =

18750&diss=y (visited on 07/19/2024).

[165] A. T. Aind, A. Ramnaney, and D. Sethia, “Q-Bully: A Reinforcement Learning

based Cyberbullying Detection Framework,” in 2020 International Confer-

ence for Emerging Technology (INCET), Jun. 2020, pp. 1–6. doi: 10.1109/

INCET49848.2020.9154092. [Online]. Available: https://ieeexplore.ieee.

org/document/9154092 (visited on 07/27/2024).

[166] V. S. Raj, C. N. Subalalitha, L. Sambath, F. Glavin, and B. R. Chakravarthi,

“ConBERT-RL: A policy-driven deep reinforcement learning based approach

for detecting homophobia and transphobia in low-resource languages,” Natural

Language Processing Journal, vol. 6, p. 100 040, Mar. 2024, issn: 2949-7191.

doi: 10 . 1016 / j . nlp . 2023 . 100040. [Online]. Available: https : / / www .

sciencedirect.com/science/article/pii/S2949719123000377 (visited on

07/06/2024).

[167] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:

Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence

222

https://doi.org/10.1007/s10489-022-03944-z
http://arxiv.org/abs/2202.09662
http://arxiv.org/abs/2202.09662
https://doi.org/10.48550/arXiv.2203.09509
https://doi.org/10.48550/arXiv.2203.09509
http://arxiv.org/abs/2203.09509
https://search.proquest.com/openview/b7af8344c480abe7ba0a9b705dce511c/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/b7af8344c480abe7ba0a9b705dce511c/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/b7af8344c480abe7ba0a9b705dce511c/1?pq-origsite=gscholar&cbl=18750&diss=y
https://doi.org/10.1109/INCET49848.2020.9154092
https://doi.org/10.1109/INCET49848.2020.9154092
https://ieeexplore.ieee.org/document/9154092
https://ieeexplore.ieee.org/document/9154092
https://doi.org/10.1016/j.nlp.2023.100040
https://www.sciencedirect.com/science/article/pii/S2949719123000377
https://www.sciencedirect.com/science/article/pii/S2949719123000377

Research, vol. 16, pp. 321–357, Jun. 2002, arXiv:1106.1813 [cs], issn: 1076-9757.

doi: 10.1613/jair.953. [Online]. Available: http://arxiv.org/abs/1106.

1813 (visited on 04/18/2023).

[168] A. Fernández, S. Garćıa, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera,

Learning from Imbalanced Data Sets, en. Cham: Springer International Pub-

lishing, 2018, isbn: 978-3-319-98073-7 978-3-319-98074-4. doi: 10.1007/978-

3-319-98074-4. [Online]. Available: http://link.springer.com/10.1007/

978-3-319-98074-4 (visited on 11/09/2023).

[169] M. Koziarski, “CSMOUTE: Combined Synthetic Oversampling and Under-

sampling Technique for Imbalanced Data Classification,” in 2021 Interna-

tional Joint Conference on Neural Networks (IJCNN), ISSN: 2161-4407, Jul.

2021, pp. 1–8. doi: 10.1109/IJCNN52387.2021.9533415. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9533415 (visited on

05/24/2024).

[170] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting

for classification of imbalanced data,” en, Pattern Recognition, vol. 40, no. 12,

pp. 3358–3378, Dec. 2007, issn: 00313203. doi: 10.1016/j.patcog.2007.

04.009. [Online]. Available: https://linkinghub.elsevier.com/retrieve/

pii/S0031320307001835 (visited on 11/10/2023).

[171] K. M. Hasib, M. S. Iqbal, F. M. Shah, et al., “A Survey of Methods for Managing

the Classification and Solution of Data Imbalance Problem,” Journal of Com-

puter Science, vol. 16, no. 11, pp. 1546–1557, Nov. 2020, arXiv:2012.11870 [cs],

issn: 1549-3636. doi: 10.3844/jcssp.2020.1546.1557. [Online]. Available:

http://arxiv.org/abs/2012.11870 (visited on 11/09/2023).

[172] C. Sei↵ert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “RUSBoost:

A Hybrid Approach to Alleviating Class Imbalance,” IEEE Transactions on

223

https://doi.org/10.1613/jair.953
http://arxiv.org/abs/1106.1813
http://arxiv.org/abs/1106.1813
https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1007/978-3-319-98074-4
http://link.springer.com/10.1007/978-3-319-98074-4
http://link.springer.com/10.1007/978-3-319-98074-4
https://doi.org/10.1109/IJCNN52387.2021.9533415
https://ieeexplore.ieee.org/abstract/document/9533415
https://doi.org/10.1016/j.patcog.2007.04.009
https://doi.org/10.1016/j.patcog.2007.04.009
https://linkinghub.elsevier.com/retrieve/pii/S0031320307001835
https://linkinghub.elsevier.com/retrieve/pii/S0031320307001835
https://doi.org/10.3844/jcssp.2020.1546.1557
http://arxiv.org/abs/2012.11870

Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 40, no. 1,

pp. 185–197, Jan. 2010, Conference Name: IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, issn: 1558-2426. doi:

10.1109/TSMCA.2009.2029559. [Online]. Available: https://ieeexplore.

ieee.org/abstract/document/5299216 (visited on 11/14/2023).

[173] L. Nanni, C. Fantozzi, and N. Lazzarini, “Coupling di↵erent methods for

overcoming the class imbalance problem,” en, Neurocomputing, vol. 158, pp. 48–

61, Jun. 2015, issn: 09252312. doi: 10 . 1016 / j . neucom . 2015 . 01 . 068.

[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

S0925231215001411 (visited on 11/10/2023).

[174] W.-C. Lin, C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang, “Clustering-based undersam-

pling in class-imbalanced data,” Information Sciences, vol. 409-410, pp. 17–

26, Oct. 2017, issn: 0020-0255. doi: 10.1016/j.ins.2017.05.008. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/

S0020025517307235 (visited on 11/10/2023).

[175] Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, and Y. Zhou, “A novel ensemble method

for classifying imbalanced data,” Pattern Recognition, vol. 48, no. 5, pp. 1623–

1637, May 2015, issn: 0031-3203. doi: 10.1016/j.patcog.2014.11.014.

[Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0031320314004841 (visited on 11/10/2023).

[176] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, “An empirical com-

parison of repetitive undersampling techniques,” in 2009 IEEE International

Conference on Information Reuse & Integration, Aug. 2009, pp. 29–34. doi:

10.1109/IRI.2009.5211614. [Online]. Available: https://ieeexplore.ieee.

org/abstract/document/5211614 (visited on 11/10/2023).

224

https://doi.org/10.1109/TSMCA.2009.2029559
https://ieeexplore.ieee.org/abstract/document/5299216
https://ieeexplore.ieee.org/abstract/document/5299216
https://doi.org/10.1016/j.neucom.2015.01.068
https://linkinghub.elsevier.com/retrieve/pii/S0925231215001411
https://linkinghub.elsevier.com/retrieve/pii/S0925231215001411
https://doi.org/10.1016/j.ins.2017.05.008
https://www.sciencedirect.com/science/article/pii/S0020025517307235
https://www.sciencedirect.com/science/article/pii/S0020025517307235
https://doi.org/10.1016/j.patcog.2014.11.014
https://www.sciencedirect.com/science/article/pii/S0031320314004841
https://www.sciencedirect.com/science/article/pii/S0031320314004841
https://doi.org/10.1109/IRI.2009.5211614
https://ieeexplore.ieee.org/abstract/document/5211614
https://ieeexplore.ieee.org/abstract/document/5211614

[177] P. Hart, “The condensed nearest neighbor rule (Corresp.),” IEEE Transactions

on Information Theory, vol. 14, no. 3, pp. 515–516, May 1968, Conference

Name: IEEE Transactions on Information Theory, issn: 1557-9654. doi: 10.

1109/TIT.1968.1054155. [Online]. Available: https://ieeexplore.ieee.

org/document/1054155 (visited on 11/10/2023).

[178] D. L. Wilson, “Asymptotic Properties of Nearest Neighbor Rules Using Edited

Data,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-2,

no. 3, pp. 408–421, Jul. 1972, Conference Name: IEEE Transactions on Systems,

Man, and Cybernetics, issn: 2168-2909. doi: 10.1109/TSMC.1972.4309137.

[Online]. Available: https://ieeexplore.ieee.org/document/4309137

(visited on 11/10/2023).

[179] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training sets:

One-sided selection,” in Icml, Issue: 1, vol. 97, Citeseer, 1997, p. 179. [Online].

Available: https : / / citeseerx . ist . psu . edu / document ? repid = rep1 &

type=pdf&doi=ebc3914181d76c817f0e35f788b7c4c0f80abb07 (visited on

11/10/2023).

[180] I. Tomek, “Two Modifications of CNN,” in IEEE Transactions on Systems, Man,

and Cybernetics, ISSN: 0018-9472, 2168-2909 Issue: 11 Journal Abbreviation:

IEEE Trans. Syst., Man, Cybern., vol. SMC-6, Nov. 1976, pp. 769–772. doi:

10.1109/TSMC.1976.4309452. [Online]. Available: http://ieeexplore.ieee.

org/document/4309452/ (visited on 11/10/2023).

[181] G. Lemâıtre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A Python

Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning,”

Journal of Machine Learning Research, vol. 18, no. 17, pp. 1–5, 2017, issn:

1533-7928. [Online]. Available: http://jmlr.org/papers/v18/16-365.html

(visited on 11/10/2023).

225

https://doi.org/10.1109/TIT.1968.1054155
https://doi.org/10.1109/TIT.1968.1054155
https://ieeexplore.ieee.org/document/1054155
https://ieeexplore.ieee.org/document/1054155
https://doi.org/10.1109/TSMC.1972.4309137
https://ieeexplore.ieee.org/document/4309137
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ebc3914181d76c817f0e35f788b7c4c0f80abb07
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ebc3914181d76c817f0e35f788b7c4c0f80abb07
https://doi.org/10.1109/TSMC.1976.4309452
http://ieeexplore.ieee.org/document/4309452/
http://ieeexplore.ieee.org/document/4309452/
http://jmlr.org/papers/v18/16-365.html

[182] D. Mediratta and N. Oswal, Detect Toxic Content to Improve Online Conver-

sations, arXiv:1911.01217 [cs], Oct. 2019. [Online]. Available: http://arxiv.

org/abs/1911.01217 (visited on 11/10/2023).

[183] D. Devi, S. K. Biswas, and B. Purkayastha, “A Review on Solution to Class

Imbalance Problem: Undersampling Approaches,” in 2020 International Con-

ference on Computational Performance Evaluation (ComPE), Shillong, In-

dia: IEEE, Jul. 2020, pp. 626–631, isbn: 978-1-72816-644-5. doi: 10.1109/

ComPE49325.2020.9200087. [Online]. Available: https://ieeexplore.ieee.

org/document/9200087/ (visited on 11/10/2023).

[184] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: Special issue on learning

from imbalanced data sets,” ACM SIGKDD Explorations Newsletter, vol. 6,

no. 1, pp. 1–6, Jun. 2004, issn: 1931-0145. doi: 10.1145/1007730.1007733.

[Online]. Available: https://doi.org/10.1145/1007730.1007733 (visited on

04/18/2023).

[185] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A

Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-,

and Hybrid-Based Approaches,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), vol. 42, no. 4, pp. 463–484,

Jul. 2012, Conference Name: IEEE Transactions on Systems, Man, and Cyber-

netics, Part C (Applications and Reviews), issn: 1558-2442. doi: 10.1109/

TSMCC.2011.2161285. [Online]. Available: https://ieeexplore.ieee.org/

abstract/document/5978225 (visited on 11/14/2023).

[186] M. S. Shelke, P. R. Deshmukh, and V. K. Shandilya, “A review on imbalanced

data handling using undersampling and oversampling technique,” Interna-

tional Journal of Recent Trends in Engineering & Research (IJRTER), vol. 3,

no. 4, pp. 444–449, 2017, issn: 2455-1457. doi: 10.23883/IJRTER.2017.

226

http://arxiv.org/abs/1911.01217
http://arxiv.org/abs/1911.01217
https://doi.org/10.1109/ComPE49325.2020.9200087
https://doi.org/10.1109/ComPE49325.2020.9200087
https://ieeexplore.ieee.org/document/9200087/
https://ieeexplore.ieee.org/document/9200087/
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1109/TSMCC.2011.2161285
https://doi.org/10.1109/TSMCC.2011.2161285
https://ieeexplore.ieee.org/abstract/document/5978225
https://ieeexplore.ieee.org/abstract/document/5978225
https://doi.org/10.23883/IJRTER.2017.3168.0UWXM
https://doi.org/10.23883/IJRTER.2017.3168.0UWXM

3168.0UWXM. [Online]. Available: https://scholar.archive.org/work/

teyyts4dwnfpnlyovsrbsfxw6a/access/wayback/http://www.ijrter.com/

papers/volume-3/issue-4/a-review-on-imbalanced-data-handling-

using - undersampling - and - oversampling - technique . pdf (visited on

11/10/2023).

[187] S. Hu, Y. Liang, L. Ma, and Y. He, “MSMOTE: Improving Classification

Performance When Training Data is Imbalanced,” in 2009 Second International

Workshop on Computer Science and Engineering, vol. 2, IEEE, Oct. 2009,

pp. 13–17. doi: 10.1109/WCSE.2009.756. [Online]. Available: https://

ieeexplore.ieee.org/document/5403368 (visited on 11/10/2023).

[188] J. Stefanowski and S. Wilk, “Selective Pre-processing of Imbalanced Data for

Improving Classification Performance,” en, in Data Warehousing and Knowledge

Discovery, I.-Y. Song, J. Eder, and T. M. Nguyen, Eds., ser. Lecture Notes

in Computer Science, Berlin, Heidelberg: Springer, 2008, pp. 283–292, isbn:

978-3-540-85836-2. doi: 10.1007/978-3-540-85836-2_27.

[189] M. Molinara, M. Ricamato, and F. Tortorella, “Facing Imbalanced Classes

through Aggregation of Classifiers,” in 14th International Conference on Image

Analysis and Processing (ICIAP 2007), Sep. 2007, pp. 43–48. doi: 10.1109/

ICIAP.2007.4362755. [Online]. Available: https://ieeexplore.ieee.org/

abstract/document/4362755 (visited on 11/12/2023).

[190] M. Bach, A. Werner, and M. Palt, “The Proposal of Undersampling Method for

Learning from Imbalanced Datasets,” Procedia Computer Science, Knowledge-

Based and Intelligent Information & Engineering Systems: Proceedings of the

23rd International Conference KES2019, vol. 159, pp. 125–134, Jan. 2019, issn:

1877-0509. doi: 10.1016/j.procs.2019.09.167. [Online]. Available: https:

227

https://doi.org/10.23883/IJRTER.2017.3168.0UWXM
https://doi.org/10.23883/IJRTER.2017.3168.0UWXM
https://doi.org/10.23883/IJRTER.2017.3168.0UWXM
https://scholar.archive.org/work/teyyts4dwnfpnlyovsrbsfxw6a/access/wayback/http://www.ijrter.com/papers/volume-3/issue-4/a-review-on-imbalanced-data-handling-using-undersampling-and-oversampling-technique.pdf
https://scholar.archive.org/work/teyyts4dwnfpnlyovsrbsfxw6a/access/wayback/http://www.ijrter.com/papers/volume-3/issue-4/a-review-on-imbalanced-data-handling-using-undersampling-and-oversampling-technique.pdf
https://scholar.archive.org/work/teyyts4dwnfpnlyovsrbsfxw6a/access/wayback/http://www.ijrter.com/papers/volume-3/issue-4/a-review-on-imbalanced-data-handling-using-undersampling-and-oversampling-technique.pdf
https://scholar.archive.org/work/teyyts4dwnfpnlyovsrbsfxw6a/access/wayback/http://www.ijrter.com/papers/volume-3/issue-4/a-review-on-imbalanced-data-handling-using-undersampling-and-oversampling-technique.pdf
https://doi.org/10.1109/WCSE.2009.756
https://ieeexplore.ieee.org/document/5403368
https://ieeexplore.ieee.org/document/5403368
https://doi.org/10.1007/978-3-540-85836-2_27
https://doi.org/10.1109/ICIAP.2007.4362755
https://doi.org/10.1109/ICIAP.2007.4362755
https://ieeexplore.ieee.org/abstract/document/4362755
https://ieeexplore.ieee.org/abstract/document/4362755
https://doi.org/10.1016/j.procs.2019.09.167
https://www.sciencedirect.com/science/article/pii/S1877050919313456
https://www.sciencedirect.com/science/article/pii/S1877050919313456

//www.sciencedirect.com/science/article/pii/S1877050919313456

(visited on 11/10/2023).

[191] V. López, A. Fernández, S. Garćıa, V. Palade, and F. Herrera, “An insight into

classification with imbalanced data: Empirical results and current trends on

using data intrinsic characteristics,” Information Sciences, vol. 250, pp. 113–

141, Nov. 2013, issn: 0020-0255. doi: 10.1016/j.ins.2013.07.007. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/

S0020025513005124 (visited on 11/10/2023).

[192] H. Ali, M. M. Salleh, R. Saedudin, K. Hussain, and M. F. Mushtaq, “Imbalance

class problems in data mining: A review,” Indonesian Journal of Electrical

Engineering and Computer Science, vol. 14, no. 3, pp. 1560–1571, 2019. [Online].

Available: https://www.academia.edu/download/99950055/12240.pdf

(visited on 05/24/2024).

[193] M. Joshi, V. Kumar, and R. Agarwal, “Evaluating boosting algorithms to

classify rare classes: Comparison and improvements,” in Proceedings 2001

IEEE International Conference on Data Mining, Nov. 2001, pp. 257–264. doi:

10.1109/ICDM.2001.989527. [Online]. Available: https://ieeexplore.ieee.

org/document/989527 (visited on 05/24/2024).

[194] C. Elkan, “The foundations of cost-sensitive learning,” in International joint

conference on artificial intelligence, Issue: 1, vol. 17, Lawrence Erlbaum Asso-

ciates Ltd, 2001, pp. 973–978. [Online]. Available: http://cseweb.ucsd.edu/

~elkan/rescale.pdf (visited on 12/07/2023).

[195] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-

line learning and an application to boosting,” Journal of computer and sys-

tem sciences, vol. 55, no. 1, pp. 119–139, 1997, Publisher: Elsevier. [Online].

228

https://www.sciencedirect.com/science/article/pii/S1877050919313456
https://www.sciencedirect.com/science/article/pii/S1877050919313456
https://www.sciencedirect.com/science/article/pii/S1877050919313456
https://doi.org/10.1016/j.ins.2013.07.007
https://www.sciencedirect.com/science/article/pii/S0020025513005124
https://www.sciencedirect.com/science/article/pii/S0020025513005124
https://www.academia.edu/download/99950055/12240.pdf
https://doi.org/10.1109/ICDM.2001.989527
https://ieeexplore.ieee.org/document/989527
https://ieeexplore.ieee.org/document/989527
http://cseweb.ucsd.edu/~elkan/rescale.pdf
http://cseweb.ucsd.edu/~elkan/rescale.pdf

Available: https : / / www . sciencedirect . com / science / article / pii /

S002200009791504X (visited on 12/07/2023).

[196] M. Temraz and M. T. Keane, “Solving the class imbalance problem using

a counterfactual method for data augmentation,” Machine Learning with

Applications, vol. 9, p. 100 375, Sep. 2022, issn: 2666-8270. doi: 10.1016/j.

mlwa.2022.100375. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S2666827022000652 (visited on 12/07/2023).

[197] R. Longadge and S. Dongre, Class Imbalance Problem in Data Mining Review,

arXiv:1305.1707 [cs], May 2013. [Online]. Available: http://arxiv.org/abs/

1305.1707 (visited on 11/14/2023).

[198] M. Wasikowski and X.-w. Chen, “Combating the Small Sample Class Imbalance

Problem Using Feature Selection,” IEEE Transactions on Knowledge and Data

Engineering, vol. 22, no. 10, pp. 1388–1400, Oct. 2010, Conference Name:

IEEE Transactions on Knowledge and Data Engineering, issn: 1558-2191. doi:

10.1109/TKDE.2009.187. [Online]. Available: https://ieeexplore.ieee.

org/document/5276797 (visited on 11/14/2023).

[199] M. Bach and A. Werner, “Cost-Sensitive Feature Selection for Class Imbalance

Problem,” en, in Information Systems Architecture and Technology: Proceed-

ings of 38th International Conference on Information Systems Architecture

and Technology – ISAT 2017, L. Borzemski, J. Światek, and Z. Wilimowska,

Eds., ser. Advances in Intelligent Systems and Computing, Cham: Springer

International Publishing, 2018, pp. 182–194, isbn: 978-3-319-67220-5. doi:

10.1007/978-3-319-67220-5_17.

[200] C. Zhang, K. C. Tan, H. Li, and G. S. Hong, “A Cost-Sensitive Deep Belief

Network for Imbalanced Classification,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 30, no. 1, pp. 109–122, Jan. 2019, Conference Name:

229

https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://doi.org/10.1016/j.mlwa.2022.100375
https://doi.org/10.1016/j.mlwa.2022.100375
https://www.sciencedirect.com/science/article/pii/S2666827022000652
https://www.sciencedirect.com/science/article/pii/S2666827022000652
http://arxiv.org/abs/1305.1707
http://arxiv.org/abs/1305.1707
https://doi.org/10.1109/TKDE.2009.187
https://ieeexplore.ieee.org/document/5276797
https://ieeexplore.ieee.org/document/5276797
https://doi.org/10.1007/978-3-319-67220-5_17

IEEE Transactions on Neural Networks and Learning Systems, issn: 2162-2388.

doi: 10.1109/TNNLS.2018.2832648.

[201] A. Singh and A. Jain, “An e�cient credit card fraud detection ap-

proach using cost-sensitive weak learner with imbalanced dataset,” en,

Computational Intelligence, vol. 38, no. 6, pp. 2035–2055, 2022, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/coin.12555, issn: 1467-8640.

doi: 10.1111/coin.12555. [Online]. Available: https://onlinelibrary.

wiley.com/doi/abs/10.1111/coin.12555 (visited on 12/12/2023).

[202] I. D. Mienye and Y. Sun, “A survey of ensemble learning: Concepts, algo-

rithms, applications, and prospects,” IEEE Access, vol. 10, pp. 99 129–99 149,

2022, Publisher: IEEE. [Online]. Available: https://ieeexplore.ieee.org/

abstract/document/9893798/ (visited on 05/17/2024).

[203] A. A. Khan, O. Chaudhari, and R. Chandra, “A review of ensemble learning

and data augmentation models for class imbalanced problems: Combination,

implementation and evaluation,” Expert Systems with Applications, vol. 244,

p. 122 778, Jun. 2024, issn: 0957-4174. doi: 10.1016/j.eswa.2023.122778.

[Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0957417423032803 (visited on 04/26/2024).

[204] A. Onan, “GTR-GA: Harnessing the power of graph-based neural networks and

genetic algorithms for text augmentation,” Expert Systems with Applications,

vol. 232, p. 120 908, Dec. 2023, issn: 0957-4174. doi: 10.1016/j.eswa.2023.

120908. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0957417423014100 (visited on 12/07/2023).

[205] H. Q. Abonizio, E. C. Paraiso, and S. Barbon, “Toward Text Data Augmentation

for Sentiment Analysis,” en, IEEE Transactions on Artificial Intelligence, vol. 3,

no. 5, pp. 657–668, Oct. 2022, issn: 2691-4581. doi: 10.1109/TAI.2021.

230

https://doi.org/10.1109/TNNLS.2018.2832648
https://doi.org/10.1111/coin.12555
https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12555
https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12555
https://ieeexplore.ieee.org/abstract/document/9893798/
https://ieeexplore.ieee.org/abstract/document/9893798/
https://doi.org/10.1016/j.eswa.2023.122778
https://www.sciencedirect.com/science/article/pii/S0957417423032803
https://www.sciencedirect.com/science/article/pii/S0957417423032803
https://doi.org/10.1016/j.eswa.2023.120908
https://doi.org/10.1016/j.eswa.2023.120908
https://www.sciencedirect.com/science/article/pii/S0957417423014100
https://www.sciencedirect.com/science/article/pii/S0957417423014100
https://doi.org/10.1109/TAI.2021.3114390
https://doi.org/10.1109/TAI.2021.3114390

3114390. [Online]. Available: https://ieeexplore.ieee.org/document/

9543519/ (visited on 10/30/2023).

[206] M. Bayer, M.-A. Kaufhold, and C. Reuter, “A Survey on Data Augmentation

for Text Classification,” ACM Computing Surveys, vol. 55, no. 7, 146:1–146:39,

Dec. 2022, issn: 0360-0300. doi: 10.1145/3544558. [Online]. Available: https:

//doi.org/10.1145/3544558 (visited on 12/07/2023).

[207] C. Coulombe, Text Data Augmentation Made Simple By Leveraging NLP

Cloud APIs, arXiv:1812.04718 [cs], Dec. 2018. doi: 10.48550/arXiv.1812.

04718. [Online]. Available: http://arxiv.org/abs/1812.04718 (visited on

12/07/2023).

[208] G. Rizos, K. Hemker, and B. Schuller, “Augment to Prevent: Short-Text

Data Augmentation in Deep Learning for Hate-Speech Classification,” in

Proceedings of the 28th ACM International Conference on Information and

Knowledge Management, ser. CIKM ’19, New York, NY, USA: Association for

Computing Machinery, Nov. 2019, pp. 991–1000, isbn: 978-1-4503-6976-3. doi:

10.1145/3357384.3358040. [Online]. Available: https://doi.org/10.1145/

3357384.3358040 (visited on 12/12/2023).

[209] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

Representations of Words and Phrases and their Compositionality,” in Advances

in Neural Information Processing Systems, vol. 26, Curran Associates, Inc.,

2013. [Online]. Available: https://proceedings.neurips.cc/paper_files/

paper/2013/hash/9aa42b31882ec039965f3c4923ce901b- Abstract.html

(visited on 12/12/2023).

[210] S. Sharifirad, B. Jafarpour, and S. Matwin, “Boosting Text Classification Per-

formance on Sexist Tweets by Text Augmentation and Text Generation Using

a Combination of Knowledge Graphs,” in Proceedings of the 2nd Workshop

231

https://doi.org/10.1109/TAI.2021.3114390
https://doi.org/10.1109/TAI.2021.3114390
https://doi.org/10.1109/TAI.2021.3114390
https://ieeexplore.ieee.org/document/9543519/
https://ieeexplore.ieee.org/document/9543519/
https://doi.org/10.1145/3544558
https://doi.org/10.1145/3544558
https://doi.org/10.1145/3544558
https://doi.org/10.48550/arXiv.1812.04718
https://doi.org/10.48550/arXiv.1812.04718
http://arxiv.org/abs/1812.04718
https://doi.org/10.1145/3357384.3358040
https://doi.org/10.1145/3357384.3358040
https://doi.org/10.1145/3357384.3358040
https://proceedings.neurips.cc/paper_files/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

on Abusive Language Online (ALW2), D. Fǐser, R. Huang, V. Prabhakaran,

R. Voigt, Z. Waseem, and J. Wernimont, Eds., Brussels, Belgium: Association

for Computational Linguistics, Oct. 2018, pp. 107–114. doi: 10.18653/v1/W18-

5114. [Online]. Available: https://aclanthology.org/W18-5114 (visited on

12/12/2023).

[211] J. Quijas, “Analysing the e↵ects of data augmentation and free param-

eters for text classification with recurrent convolutional neural networks,”

2017. [Online]. Available: https : / / www . semanticscholar . org / paper /

Analysing- the- effects- of- data- augmentation- and- free- Quijas/

7dd727962dfe8a303a191aed177a3d6c89b6ab5b (visited on 05/09/2024).

[212] M. Jungiewicz and A. Smywiński-Pohl, “Towards textual data augmentation for

neural networks: Synonyms and maximum loss,” EN, Computer Science, vol. Vol.

20 (1), pp. 57–83, 2019, issn: 1508-2806. doi: 10.7494/csci.2019.20.1.3023.

[Online]. Available: http://yadda.icm.edu.pl/baztech/element/bwmeta1.

element.baztech-56c51ccc-d18a-410e-aa00-f0e3340ae317 (visited on

05/09/2024).

[213] T. Niu and M. Bansal, Automatically Learning Data Augmentation Policies for

Dialogue Tasks, arXiv:1909.12868 [cs], Sep. 2019. doi: 10.48550/arXiv.1909.

12868. [Online]. Available: http://arxiv.org/abs/1909.12868 (visited on

05/09/2024).

[214] J. Zhu, F. Gao, L. Wu, et al., Soft Contextual Data Augmentation for Neural

Machine Translation, en, arXiv:1905.10523 [cs], May 2019. [Online]. Available:

http://arxiv.org/abs/1905.10523 (visited on 05/09/2024).

[215] G. G. Şahin and M. Steedman, Data Augmentation via Dependency Tree

Morphing for Low-Resource Languages, arXiv:1903.09460 [cs], Mar. 2019. doi:

232

https://doi.org/10.18653/v1/W18-5114
https://doi.org/10.18653/v1/W18-5114
https://aclanthology.org/W18-5114
https://www.semanticscholar.org/paper/Analysing-the-effects-of-data-augmentation-and-free-Quijas/7dd727962dfe8a303a191aed177a3d6c89b6ab5b
https://www.semanticscholar.org/paper/Analysing-the-effects-of-data-augmentation-and-free-Quijas/7dd727962dfe8a303a191aed177a3d6c89b6ab5b
https://www.semanticscholar.org/paper/Analysing-the-effects-of-data-augmentation-and-free-Quijas/7dd727962dfe8a303a191aed177a3d6c89b6ab5b
https://doi.org/10.7494/csci.2019.20.1.3023
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-56c51ccc-d18a-410e-aa00-f0e3340ae317
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-56c51ccc-d18a-410e-aa00-f0e3340ae317
https://doi.org/10.48550/arXiv.1909.12868
https://doi.org/10.48550/arXiv.1909.12868
http://arxiv.org/abs/1909.12868
http://arxiv.org/abs/1905.10523

10.48550/arXiv.1903.09460. [Online]. Available: http://arxiv.org/abs/

1903.09460 (visited on 05/09/2024).

[216] H. Kim, D. Woo, S. J. Oh, J.-W. Cha, and Y.-S. Han, ALP: Data Augmentation

using Lexicalized PCFGs for Few-Shot Text Classification, arXiv:2112.11916

[cs], Dec. 2021. doi: 10.48550/arXiv.2112.11916. [Online]. Available: http:

//arxiv.org/abs/2112.11916 (visited on 05/09/2024).

[217] V. Kumar, A. Choudhary, and E. Cho, Data Augmentation using Pre-trained

Transformer Models, arXiv:2003.02245 [cs], Jan. 2021. doi: 10.48550/arXiv.

2003.02245. [Online]. Available: http://arxiv.org/abs/2003.02245 (visited

on 05/09/2024).

[218] R. Gupta, Data augmentation for low resource sentiment analysis using genera-

tive adversarial networks, arXiv:1902.06818 [cs, stat], Feb. 2019. doi: 10.48550/

arXiv.1902.06818. [Online]. Available: http://arxiv.org/abs/1902.06818

(visited on 05/09/2024).

[219] S. Witteveen and M. Andrews, “Paraphrasing with Large Language Models,”

in Proceedings of the 3rd Workshop on Neural Generation and Translation,

arXiv:1911.09661 [cs], 2019, pp. 215–220. doi: 10.18653/v1/D19-5623. [On-

line]. Available: http://arxiv.org/abs/1911.09661 (visited on 05/09/2024).

[220] D. R. Beddiar, M. S. Jahan, and M. Oussalah, “Data expansion using back

translation and paraphrasing for hate speech detection,” Online Social Networks

and Media, vol. 24, p. 100 153, Jul. 2021, issn: 2468-6964. doi: 10.1016/j.

osnem.2021.100153. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S2468696421000355 (visited on 10/30/2023).

[221] G. G. Şahin and M. Steedman, “Data Augmentation via Dependency Tree

Morphing for Low-Resource Languages,” in Proceedings of the 2018 Conference

233

https://doi.org/10.48550/arXiv.1903.09460
http://arxiv.org/abs/1903.09460
http://arxiv.org/abs/1903.09460
https://doi.org/10.48550/arXiv.2112.11916
http://arxiv.org/abs/2112.11916
http://arxiv.org/abs/2112.11916
https://doi.org/10.48550/arXiv.2003.02245
https://doi.org/10.48550/arXiv.2003.02245
http://arxiv.org/abs/2003.02245
https://doi.org/10.48550/arXiv.1902.06818
https://doi.org/10.48550/arXiv.1902.06818
http://arxiv.org/abs/1902.06818
https://doi.org/10.18653/v1/D19-5623
http://arxiv.org/abs/1911.09661
https://doi.org/10.1016/j.osnem.2021.100153
https://doi.org/10.1016/j.osnem.2021.100153
https://www.sciencedirect.com/science/article/pii/S2468696421000355
https://www.sciencedirect.com/science/article/pii/S2468696421000355

on Empirical Methods in Natural Language Processing, E. Rilo↵, D. Chiang,

J. Hockenmaier, and J. Tsujii, Eds., Brussels, Belgium: Association for Com-

putational Linguistics, Oct. 2018, pp. 5004–5009. doi: 10.18653/v1/D18-

1545. [Online]. Available: https://aclanthology.org/D18-1545 (visited on

12/12/2023).

[222] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language

models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,

2019. [Online]. Available: https://insightcivic.s3.us-east-1.amazonaws.

com/language-models.pdf (visited on 12/11/2023).

[223] T. Wullach, A. Adler, and E. Minkov, “Fight Fire with Fire: Fine-tuning Hate

Detectors using Large Samples of Generated Hate Speech,” in Findings of

the Association for Computational Linguistics: EMNLP 2021, M.-F. Moens,

X. Huang, L. Specia, and S. W.-t. Yih, Eds., Punta Cana, Dominican Republic:

Association for Computational Linguistics, Nov. 2021, pp. 4699–4705. doi:

10.18653/v1/2021.findings-emnlp.402. [Online]. Available: https://

aclanthology.org/2021.findings-emnlp.402 (visited on 11/14/2023).

[224] A. G. D’Sa, I. Illina, D. Fohr, D. Klakow, and D. Ruiter, “Exploring Condi-

tional Language Model Based Data Augmentation Approaches for Hate Speech

Classification,” en, in Text, Speech, and Dialogue, K. Ekštein, F. Pártl, and

M. Konoṕık, Eds., vol. 12848, Series Title: Lecture Notes in Computer Science,

Cham: Springer International Publishing, 2021, pp. 135–146, isbn: 978-3-030-

83526-2 978-3-030-83527-9. doi: 10.1007/978-3-030-83527-9_12. [Online].

Available: https://link.springer.com/10.1007/978-3-030-83527-9_12

(visited on 11/14/2023).

[225] Y. Kim, S. Park, Y. Namgoong, and Y.-S. Han, “ConPrompt: Pre-training

a Language Model with Machine-Generated Data for Implicit Hate Speech

234

https://doi.org/10.18653/v1/D18-1545
https://doi.org/10.18653/v1/D18-1545
https://aclanthology.org/D18-1545
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://doi.org/10.18653/v1/2021.findings-emnlp.402
https://aclanthology.org/2021.findings-emnlp.402
https://aclanthology.org/2021.findings-emnlp.402
https://doi.org/10.1007/978-3-030-83527-9_12
https://link.springer.com/10.1007/978-3-030-83527-9_12

Detection,” in Findings of the Association for Computational Linguistics:

EMNLP 2023, H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association

for Computational Linguistics, Dec. 2023, pp. 10 964–10 980. doi: 10.18653/

v1/2023.findings-emnlp.731. [Online]. Available: https://aclanthology.

org/2023.findings-emnlp.731 (visited on 05/05/2024).

[226] M. Juuti, T. Gröndahl, A. Flanagan, and N. Asokan, “A little goes a long

way: Improving toxic language classification despite data scarcity,” in Findings

of the Association for Computational Linguistics: EMNLP 2020, T. Cohn, Y.

He, and Y. Liu, Eds., Online: Association for Computational Linguistics, Nov.

2020, pp. 2991–3009. doi: 10.18653/v1/2020.findings-emnlp.269. [Online].

Available: https://aclanthology.org/2020.findings-emnlp.269 (visited

on 11/14/2023).

[227] T. Wullach, A. Adler, and E. Minkov, Towards Hate Speech Detection at

Large via Deep Generative Modeling, arXiv:2005.06370 [cs], May 2020. [Online].

Available: http://arxiv.org/abs/2005.06370 (visited on 12/12/2023).

[228] R. Liu, G. Xu, C. Jia, W. Ma, L. Wang, and S. Vosoughi, “Data Boost: Text

Data Augmentation Through Reinforcement Learning Guided Conditional

Generation,” in Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP), arXiv:2012.02952 [cs], 2020, pp. 9031–

9041. doi: 10.18653/v1/2020.emnlp-main.726. [Online]. Available: http:

//arxiv.org/abs/2012.02952 (visited on 11/14/2023).

[229] A. Lee, X. Bai, I. Pres, M. Wattenberg, J. K. Kummerfeld, and R. Mihalcea,

A Mechanistic Understanding of Alignment Algorithms: A Case Study on

DPO and Toxicity, en, arXiv:2401.01967 [cs], Jan. 2024. [Online]. Available:

http://arxiv.org/abs/2401.01967 (visited on 05/05/2024).

235

https://doi.org/10.18653/v1/2023.findings-emnlp.731
https://doi.org/10.18653/v1/2023.findings-emnlp.731
https://aclanthology.org/2023.findings-emnlp.731
https://aclanthology.org/2023.findings-emnlp.731
https://doi.org/10.18653/v1/2020.findings-emnlp.269
https://aclanthology.org/2020.findings-emnlp.269
http://arxiv.org/abs/2005.06370
https://doi.org/10.18653/v1/2020.emnlp-main.726
http://arxiv.org/abs/2012.02952
http://arxiv.org/abs/2012.02952
http://arxiv.org/abs/2401.01967

[230] C. F. G. D. Santos and J. P. Papa, “Avoiding Overfitting: A Survey on Regu-

larization Methods for Convolutional Neural Networks,” en, ACM Computing

Surveys, vol. 54, no. 10s, pp. 1–25, Jan. 2022, issn: 0360-0300, 1557-7341. doi:

10.1145/3510413. [Online]. Available: https://dl.acm.org/doi/10.1145/

3510413 (visited on 05/01/2024).

[231] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understanding

Data Augmentation for Classification: When to Warp?” In 2016 International

Conference on Digital Image Computing: Techniques and Applications (DICTA),

Nov. 2016, pp. 1–6. doi: 10.1109/DICTA.2016.7797091. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/7797091 (visited on

05/01/2024).

[232] Y. Meng, J. Huang, Y. Zhang, and J. Han, Generating Training Data with Lan-

guage Models: Towards Zero-Shot Language Understanding, arXiv:2202.04538

[cs], Oct. 2022. doi: 10.48550/arXiv.2202.04538. [Online]. Available: http:

//arxiv.org/abs/2202.04538 (visited on 05/17/2024).

[233] X. Qi, Y. Zeng, T. Xie, et al., Fine-tuning Aligned Language Models Compro-

mises Safety, Even When Users Do Not Intend To! en, arXiv:2310.03693 [cs],

Oct. 2023. [Online]. Available: http://arxiv.org/abs/2310.03693 (visited

on 05/01/2024).

[234] F. Liu, Y. Liu, L. Shi, et al., Exploring and Evaluating Hallucinations in

LLM-Powered Code Generation, en, arXiv:2404.00971 [cs], Apr. 2024. [Online].

Available: http://arxiv.org/abs/2404.00971 (visited on 05/01/2024).

[235] L. Huang, W. Yu, W. Ma, et al., A Survey on Hallucination in Large Lan-

guage Models: Principles, Taxonomy, Challenges, and Open Questions, en,

arXiv:2311.05232 [cs], Nov. 2023. [Online]. Available: http://arxiv.org/abs/

2311.05232 (visited on 05/01/2024).

236

https://doi.org/10.1145/3510413
https://dl.acm.org/doi/10.1145/3510413
https://dl.acm.org/doi/10.1145/3510413
https://doi.org/10.1109/DICTA.2016.7797091
https://ieeexplore.ieee.org/abstract/document/7797091
https://doi.org/10.48550/arXiv.2202.04538
http://arxiv.org/abs/2202.04538
http://arxiv.org/abs/2202.04538
http://arxiv.org/abs/2310.03693
http://arxiv.org/abs/2404.00971
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232

[236] A. S. Parihar, S. Thapa, and S. Mishra, “Hate Speech Detection Using Natural

Language Processing: Applications and Challenges,” in 2021 5th International

Conference on Trends in Electronics and Informatics (ICOEI), Jun. 2021,

pp. 1302–1308. doi: 10.1109/ICOEI51242.2021.9452882. [Online]. Available:

https://ieeexplore.ieee.org/document/9452882 (visited on 10/26/2023).

[237] D. Tran, J. Liu, M. W. Dusenberry, et al., Plex: Towards Reliability using Pre-

trained Large Model Extensions, arXiv:2207.07411 [cs, stat], Jul. 2022. [Online].

Available: http://arxiv.org/abs/2207.07411 (visited on 04/26/2023).

[238] L. Weidinger, J. Mellor, M. Rauh, et al., Ethical and social risks of harm

from Language Models, arXiv:2112.04359 [cs], Dec. 2021. [Online]. Available:

http://arxiv.org/abs/2112.04359 (visited on 10/29/2023).

[239] M. Abdar, F. Pourpanah, S. Hussain, et al., “A review of uncertainty quantifica-

tion in deep learning: Techniques, applications and challenges,” en, Information

Fusion, vol. 76, pp. 243–297, Dec. 2021, issn: 1566-2535. doi: 10.1016/j.

inffus.2021.05.008. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S1566253521001081 (visited on 04/25/2023).

[240] N. A. Palomares and V. S. Wingate, “Victims’ Goal Understanding, Uncertainty

Reduction, and Perceptions in Cyberbullying: Theoretical Evidence From Three

Experiments,” en, Journal of Computer-Mediated Communication, vol. 25, no. 4,

pp. 253–273, Jul. 2020, issn: 1083-6101. doi: 10.1093/jcmc/zmaa005. [Online].

Available: https://academic.oup.com/jcmc/article/25/4/253/5858237

(visited on 10/29/2023).

[241] A. Luccioni and Y. Bengio, “On the Morality of Artificial Intelligence [Com-

mentary],” en, IEEE Technology and Society Magazine, vol. 39, no. 1, pp. 16–25,

Mar. 2020, issn: 0278-0097, 1937-416X. doi: 10.1109/MTS.2020.2967486.

237

https://doi.org/10.1109/ICOEI51242.2021.9452882
https://ieeexplore.ieee.org/document/9452882
http://arxiv.org/abs/2207.07411
http://arxiv.org/abs/2112.04359
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1016/j.inffus.2021.05.008
https://www.sciencedirect.com/science/article/pii/S1566253521001081
https://www.sciencedirect.com/science/article/pii/S1566253521001081
https://doi.org/10.1093/jcmc/zmaa005
https://academic.oup.com/jcmc/article/25/4/253/5858237
https://doi.org/10.1109/MTS.2020.2967486

[Online]. Available: https://ieeexplore.ieee.org/document/9035523/

(visited on 10/31/2023).

[242] M. Sap, D. Card, S. Gabriel, Y. Choi, and N. A. Smith, “The Risk of Racial

Bias in Hate Speech Detection,” in Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, Florence, Italy: Association for

Computational Linguistics, Jul. 2019, pp. 1668–1678. doi: 10.18653/v1/P19-

1163. [Online]. Available: https://aclanthology.org/P19-1163 (visited on

10/29/2023).

[243] G. Jigsaw, Jigsaw Toxic Comment Classification Challenge, 2017. [Online].

Available: https://kaggle.com/competitions/jigsaw-toxic-comment-

classification-challenge (visited on 04/26/2022).

[244] T. Caselli, V. Basile, J. Mitrović, and M. Granitzer, “HateBERT: Retraining

BERT for Abusive Language Detection in English,” in Proceedings of the 5th

Workshop on Online Abuse and Harms (WOAH 2021), A. Mostafazadeh Davani,

D. Kiela, M. Lambert, B. Vidgen, V. Prabhakaran, and Z. Waseem, Eds.,

Online: Association for Computational Linguistics, Aug. 2021, pp. 17–25. doi:

10.18653/v1/2021.woah-1.3. [Online]. Available: https://aclanthology.

org/2021.woah-1.3 (visited on 10/31/2023).

[245] M. Dı́az, I. Kivlichan, R. Rosen, et al., “CrowdWorkSheets: Accounting for

Individual and Collective Identities Underlying Crowdsourced Dataset An-

notation,” en, in 2022 ACM Conference on Fairness, Accountability, and

Transparency, Seoul Republic of Korea: ACM, Jun. 2022, pp. 2342–2351,

isbn: 978-1-4503-9352-2. doi: 10.1145/3531146.3534647. [Online]. Avail-

able: https://dl.acm.org/doi/10.1145/3531146.3534647 (visited on

10/29/2023).

238

https://ieeexplore.ieee.org/document/9035523/
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://aclanthology.org/P19-1163
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://doi.org/10.18653/v1/2021.woah-1.3
https://aclanthology.org/2021.woah-1.3
https://aclanthology.org/2021.woah-1.3
https://doi.org/10.1145/3531146.3534647
https://dl.acm.org/doi/10.1145/3531146.3534647

[246] J. Dzieza, AI is a lot of work, en, Jun. 2023. [Online]. Available: https:

//nymag.com/intelligencer/article/ai- artificial- intelligence-

humans-technology-business-factory.html (visited on 11/27/2023).

[247] I. Olasov, O↵ensive political dog whistles: You know them when you hear them.

Or do you? en, Nov. 2016. [Online]. Available: https://www.vox.com/the-

big-idea/2016/11/7/13549154/dog-whistles-campaign-racism (visited

on 11/27/2023).

[248] H. Adam, A. Balagopalan, E. Alsentzer, F. Christia, and M. Ghassemi, “Miti-

gating the impact of biased artificial intelligence in emergency decision-making,”

en, Communications Medicine, vol. 2, no. 1, pp. 1–6, Nov. 2022, Number: 1 Pub-

lisher: Nature Publishing Group, issn: 2730-664X. doi: 10.1038/s43856-022-

00214-4. [Online]. Available: https://www.nature.com/articles/s43856-

022-00214-4 (visited on 10/30/2023).

[249] S. Ali, M. H. Saeed, E. Aldreabi, et al., “Understanding the E↵ect of De-

platforming on Social Networks,” in Proceedings of the 13th ACM Web Sci-

ence Conference 2021, ser. WebSci ’21, New York, NY, USA: Association for

Computing Machinery, Jun. 2021, pp. 187–195, isbn: 978-1-4503-8330-1. doi:

10.1145/3447535.3462637. [Online]. Available: https://doi.org/10.1145/

3447535.3462637 (visited on 10/24/2023).

[250] S. Jhaver, D. S. Appling, E. Gilbert, and A. Bruckman, “”Did You Suspect

the Post Would be Removed?”: Understanding User Reactions to Content

Removals on Reddit,” Proceedings of the ACM on Human-Computer Interaction,

vol. 3, no. CSCW, 192:1–192:33, Nov. 2019. doi: 10.1145/3359294. [Online].

Available: https://doi.org/10.1145/3359294 (visited on 04/29/2022).

[251] S. Susan and A. Kumar, “The balancing trick: Optimized sampling

of imbalanced datasets—A brief survey of the recent State of the

239

https://nymag.com/intelligencer/article/ai-artificial-intelligence-humans-technology-business-factory.html
https://nymag.com/intelligencer/article/ai-artificial-intelligence-humans-technology-business-factory.html
https://nymag.com/intelligencer/article/ai-artificial-intelligence-humans-technology-business-factory.html
https://www.vox.com/the-big-idea/2016/11/7/13549154/dog-whistles-campaign-racism
https://www.vox.com/the-big-idea/2016/11/7/13549154/dog-whistles-campaign-racism
https://doi.org/10.1038/s43856-022-00214-4
https://doi.org/10.1038/s43856-022-00214-4
https://www.nature.com/articles/s43856-022-00214-4
https://www.nature.com/articles/s43856-022-00214-4
https://doi.org/10.1145/3447535.3462637
https://doi.org/10.1145/3447535.3462637
https://doi.org/10.1145/3447535.3462637
https://doi.org/10.1145/3359294
https://doi.org/10.1145/3359294

Art,” en, Engineering Reports, vol. 3, no. 4, e12298, 2021, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/eng2.12298, issn: 2577-8196.

doi: 10.1002/eng2.12298. [Online]. Available: https://onlinelibrary.

wiley.com/doi/abs/10.1002/eng2.12298 (visited on 11/06/2023).

[252] J. Prusa, T. M. Khoshgoftaar, D. J. Dittman, and A. Napolitano, “Using

Random Undersampling to Alleviate Class Imbalance on Tweet Sentiment

Data,” in 2015 IEEE International Conference on Information Reuse and

Integration, Aug. 2015, pp. 197–202. doi: 10.1109/IRI.2015.39. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/7300975

(visited on 11/06/2023).

[253] V. Ganganwar, “An overview of classification algorithms for imbalanced

datasets,” International Journal of Emerging Technology and Advanced Engi-

neering, vol. 2, pp. 42–47, Jan. 2012.

[254] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing,

“Learning from class-imbalanced data: Review of methods and applications,”

Expert Systems with Applications, vol. 73, pp. 220–239, May 2017, issn: 0957-

4174. doi: 10 . 1016 / j . eswa . 2016 . 12 . 035. [Online]. Available: https :

//www.sciencedirect.com/science/article/pii/S0957417416307175

(visited on 11/06/2023).

[255] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. J. Kennedy, “Training

deep neural networks on imbalanced data sets,” in 2016 International Joint

Conference on Neural Networks (IJCNN), Vancouver, BC, Canada: IEEE, Jul.

2016, pp. 4368–4374, isbn: 978-1-5090-0620-5. doi: 10.1109/IJCNN.2016.

7727770. [Online]. Available: http://ieeexplore.ieee.org/document/

7727770/ (visited on 04/18/2023).

240

https://doi.org/10.1002/eng2.12298
https://onlinelibrary.wiley.com/doi/abs/10.1002/eng2.12298
https://onlinelibrary.wiley.com/doi/abs/10.1002/eng2.12298
https://doi.org/10.1109/IRI.2015.39
https://ieeexplore.ieee.org/abstract/document/7300975
https://doi.org/10.1016/j.eswa.2016.12.035
https://www.sciencedirect.com/science/article/pii/S0957417416307175
https://www.sciencedirect.com/science/article/pii/S0957417416307175
https://doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1109/IJCNN.2016.7727770
http://ieeexplore.ieee.org/document/7727770/
http://ieeexplore.ieee.org/document/7727770/

[256] C. Newton, The secret lives of Facebook moderators in America, en, Feb. 2019.

[Online]. Available: https://www.theverge.com/2019/2/25/18229714/

cognizant-facebook-content-moderator-interviews-trauma-working-

conditions-arizona (visited on 10/30/2023).

[257] V. Elliott and T. Parmar, The despair and darkness of people will get to you,

en-US, Jul. 2020. [Online]. Available: https://restofworld.org/2020/

facebook-international-content-moderators/ (visited on 10/30/2023).

[258] S. Moscone, The Beauty of Wattpad, en, 2018. [Online]. Available: https:

//vocal.media/journal/the-beauty-of-wattpad (visited on 10/30/2023).

[259] L. Aratani, “Concern as US media hit with wave of layo↵s amid rise of disinfor-

mation,” en-GB, The Guardian, Dec. 2022, issn: 0261-3077. [Online]. Available:

https://www.theguardian.com/media/2022/dec/10/media-layoffs-cnn-

buzzfeed-gannett-recount-protocol (visited on 10/30/2023).

[260] P. Suciu, X Is The Biggest Source Of Fake News And Disinformation, EU

Warns, en, Section: Social Media, Sep. 2023. [Online]. Available: https://www.

forbes.com/sites/petersuciu/2023/09/26/x-is-the-biggest-source-

of-fake-news-and-disinformation-eu-warns/ (visited on 10/30/2023).

[261] J. Cohen and U. o. S. California, Analysis finds hate speech has significantly

increased on Twitter, en, Apr. 2023. [Online]. Available: https://phys.org/

news/2023-04-analysis-speech-significantly-twitter.html (visited

on 10/30/2023).

[262] R. Cao and R. K.-W. Lee, “HateGAN: Adversarial Generative-Based Data Aug-

mentation for Hate Speech Detection,” in Proceedings of the 28th International

Conference on Computational Linguistics, D. Scott, N. Bel, and C. Zong, Eds.,

241

https://www.theverge.com/2019/2/25/18229714/cognizant-facebook-content-moderator-interviews-trauma-working-conditions-arizona
https://www.theverge.com/2019/2/25/18229714/cognizant-facebook-content-moderator-interviews-trauma-working-conditions-arizona
https://www.theverge.com/2019/2/25/18229714/cognizant-facebook-content-moderator-interviews-trauma-working-conditions-arizona
https://restofworld.org/2020/facebook-international-content-moderators/
https://restofworld.org/2020/facebook-international-content-moderators/
https://vocal.media/journal/the-beauty-of-wattpad
https://vocal.media/journal/the-beauty-of-wattpad
https://www.theguardian.com/media/2022/dec/10/media-layoffs-cnn-buzzfeed-gannett-recount-protocol
https://www.theguardian.com/media/2022/dec/10/media-layoffs-cnn-buzzfeed-gannett-recount-protocol
https://www.forbes.com/sites/petersuciu/2023/09/26/x-is-the-biggest-source-of-fake-news-and-disinformation-eu-warns/
https://www.forbes.com/sites/petersuciu/2023/09/26/x-is-the-biggest-source-of-fake-news-and-disinformation-eu-warns/
https://www.forbes.com/sites/petersuciu/2023/09/26/x-is-the-biggest-source-of-fake-news-and-disinformation-eu-warns/
https://phys.org/news/2023-04-analysis-speech-significantly-twitter.html
https://phys.org/news/2023-04-analysis-speech-significantly-twitter.html

Barcelona, Spain (Online): International Committee on Computational Linguis-

tics, Dec. 2020, pp. 6327–6338. doi: 10.18653/v1/2020.coling-main.557.

[Online]. Available: https://aclanthology.org/2020.coling-main.557

(visited on 05/01/2024).

[263] F.-z. El-Alami, S. Ouatik El Alaoui, and N. En Nahnahi, “A multilingual

o↵ensive language detection method based on transfer learning from trans-

former fine-tuning model,” Journal of King Saud University - Computer and

Information Sciences, vol. 34, no. 8, Part B, pp. 6048–6056, Sep. 2022, issn:

1319-1578. doi: 10.1016/j.jksuci.2021.07.013. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S1319157821001804

(visited on 08/05/2024).

[264] G. Contardo, “Machine learning under budget constraints,” en, Ph.D. dis-

sertation, Université Pierre et Marie Curie - Paris VI, Jul. 2017. [Online].

Available: https://tel.archives-ouvertes.fr/tel-01677223 (visited on

04/27/2022).

[265] W. Li, “A Content-Based Approach for Analysing Cyberbullying on Sina

Weibo,” in Proceedings of the 2nd International Conference on Information

Management and Management Sciences, ser. IMMS ’19, New York, NY, USA:

Association for Computing Machinery, Aug. 2019, pp. 33–37, isbn: 978-1-

4503-7144-5. doi: 10.1145/3357292.3357294. [Online]. Available: https:

//doi.org/10.1145/3357292.3357294 (visited on 04/11/2023).

[266] J. P. Chang, J. Cheng, and C. Danescu-Niculescu-Mizil, “Don’t Let Me Be

Misunderstood:Comparing Intentions and Perceptions in Online Discussions,”

in Proceedings of The Web Conference 2020, New York, NY, USA: Association

for Computing Machinery, Apr. 2020, pp. 2066–2077, isbn: 978-1-4503-7023-3.

242

https://doi.org/10.18653/v1/2020.coling-main.557
https://aclanthology.org/2020.coling-main.557
https://doi.org/10.1016/j.jksuci.2021.07.013
https://www.sciencedirect.com/science/article/pii/S1319157821001804
https://www.sciencedirect.com/science/article/pii/S1319157821001804
https://tel.archives-ouvertes.fr/tel-01677223
https://doi.org/10.1145/3357292.3357294
https://doi.org/10.1145/3357292.3357294
https://doi.org/10.1145/3357292.3357294

[Online]. Available: https://doi.org/10.1145/3366423.3380273 (visited on

04/29/2022).

[267] W. Wang, L. Chen, K. Thirunarayan, and A. P. Sheth, “Cursing in English on

twitter,” in Proceedings of the 17th ACM conference on Computer supported

cooperative work & social computing, event-place: Baltimore Maryland USA,

ACM, Feb. 2014, pp. 415–425, isbn: 978-1-4503-2540-0. doi: 10.1145/2531602.

2531734. [Online]. Available: https://dl.acm.org/doi/10.1145/2531602.

2531734 (visited on 04/28/2022).

[268] A. De Salve, P. Mori, B. Guidi, L. Ricci, and R. D. Pietro, “Predicting Influential

Users in Online Social Network Groups,” en, ACM Transactions on Knowledge

Discovery from Data, vol. 15, no. 3, pp. 1–50, Jun. 2021, issn: 1556-4681,

1556-472X. doi: 10.1145/3441447. [Online]. Available: https://dl.acm.

org/doi/10.1145/3441447 (visited on 08/25/2023).

[269] C. A. Steed, T. E. Potok, R. M. Patton, J. R. Goodall, C. Maness, and J.

Senter, Interactive Visual Analysis of High Throughput Text Streams, 2012.

[270] R. Zafarani, L. Tang, and H. Liu, “User Identification Across Social Media,”

en, ACM Transactions on Knowledge Discovery from Data, vol. 10, no. 2,

pp. 1–30, Oct. 2015, issn: 1556-4681, 1556-472X. doi: 10.1145/2747880.

[Online]. Available: https://dl.acm.org/doi/10.1145/2747880 (visited on

08/25/2023).

[271] C. J. Adams, J. Sorensen, J. Elliott, et al., Toxic Comment Classifica-

tion Challenge, en, 2017. [Online]. Available: https : / / kaggle . com /

competitions/jigsaw-toxic-comment-classification-challenge (vis-

ited on 11/15/2023).

243

https://doi.org/10.1145/3366423.3380273
https://doi.org/10.1145/2531602.2531734
https://doi.org/10.1145/2531602.2531734
https://dl.acm.org/doi/10.1145/2531602.2531734
https://dl.acm.org/doi/10.1145/2531602.2531734
https://doi.org/10.1145/3441447
https://dl.acm.org/doi/10.1145/3441447
https://dl.acm.org/doi/10.1145/3441447
https://doi.org/10.1145/2747880
https://dl.acm.org/doi/10.1145/2747880
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge

[272] L. Manikonda, Y. Hu, and S. Kambhampati, Analyzing User Activities, Demo-

graphics, Social Network Structure and User-Generated Content on Instagram,

arXiv:1410.8099 [physics], Oct. 2014. [Online]. Available: http://arxiv.org/

abs/1410.8099 (visited on 10/11/2022).

[273] T. Fawcett, “An introduction to ROC analysis,” en, Pattern Recognition

Letters, ROC Analysis in Pattern Recognition, vol. 27, no. 8, pp. 861–874,

Jun. 2006, issn: 0167-8655. doi: 10.1016/j.patrec.2005.10.010. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/

S016786550500303X (visited on 02/26/2023).

[274] J. Risch and R. Krestel, “Toxic Comment Detection in Online Discussions,” en,

in Deep Learning-Based Approaches for Sentiment Analysis, ser. Algorithms

for Intelligent Systems, B. Agarwal, R. Nayak, N. Mittal, and S. Patnaik, Eds.,

Singapore: Springer, 2020, pp. 85–109, isbn: 9789811512162. doi: 10.1007/978-

981-15-1216-2_4. [Online]. Available: https://doi.org/10.1007/978-981-

15-1216-2_4 (visited on 11/02/2023).

[275] C. Chelmis and D.-S. Zois, “Dynamic, Incremental, and Continuous Detection of

Cyberbullying in Online Social Media,” ACM Transactions on the Web, vol. 15,

no. 3, 14:1–14:33, May 2021, issn: 1559-1131. doi: 10.1145/3448014. [Online].

Available: https://doi.org/10.1145/3448014 (visited on 09/27/2023).

[276] S. Rojas-Galeano, “On Obstructing Obscenity Obfuscation,” en, ACM Transac-

tions on the Web, vol. 11, no. 2, pp. 1–24, May 2017, issn: 1559-1131, 1559-114X.

doi: 10.1145/3032963. [Online]. Available: https://dl.acm.org/doi/10.

1145/3032963 (visited on 11/02/2023).

[277] H. He and E. A. Garcia, “Learning from Imbalanced Data,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, Sep.

244

http://arxiv.org/abs/1410.8099
http://arxiv.org/abs/1410.8099
https://doi.org/10.1016/j.patrec.2005.10.010
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://doi.org/10.1007/978-981-15-1216-2_4
https://doi.org/10.1007/978-981-15-1216-2_4
https://doi.org/10.1007/978-981-15-1216-2_4
https://doi.org/10.1007/978-981-15-1216-2_4
https://doi.org/10.1145/3448014
https://doi.org/10.1145/3448014
https://doi.org/10.1145/3032963
https://dl.acm.org/doi/10.1145/3032963
https://dl.acm.org/doi/10.1145/3032963

2009, Conference Name: IEEE Transactions on Knowledge and Data Engi-

neering, issn: 1558-2191. doi: 10.1109/TKDE.2008.239. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/5128907 (visited on

11/06/2023).

[278] K. Madukwe, X. Gao, and B. Xue, “In Data We Trust: A Critical Analysis of

Hate Speech Detection Datasets,” in Proceedings of the Fourth Workshop on On-

line Abuse and Harms, Online: Association for Computational Linguistics, Nov.

2020, pp. 150–161. doi: 10.18653/v1/2020.alw-1.18. [Online]. Available:

https://aclanthology.org/2020.alw-1.18 (visited on 04/24/2023).

[279] M. A. Tahir, J. Kittler, and F. Yan, “Inverse random under sampling for

class imbalance problem and its application to multi-label classification,” Pat-

tern Recognition, vol. 45, no. 10, pp. 3738–3750, Oct. 2012, issn: 0031-3203.

doi: 10.1016/j.patcog.2012.03.014. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0031320312001471 (visited on

11/06/2023).

[280] H. El Saadi, A. F. Al-Sadek, and M. W. Fakhr, “Informed under-sampling for

enhancing patient specific epileptic seizure detection,” International Journal of

Computer Applications, vol. 57, no. 16, pp. 41–46, 2012, Publisher: Foundation

of Computer Science. [Online]. Available: https://www.academia.edu/

download/66547918/pxc3883733.pdf (visited on 12/07/2023).

[281] A. Gosain and S. Sardana, “Handling class imbalance problem using over-

sampling techniques: A review,” in 2017 International Conference on Ad-

vances in Computing, Communications and Informatics (ICACCI), IEEE, Sep.

2017, pp. 79–85. doi: 10.1109/ICACCI.2017.8125820. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8125820 (visited on

12/07/2023).

245

https://doi.org/10.1109/TKDE.2008.239
https://ieeexplore.ieee.org/abstract/document/5128907
https://doi.org/10.18653/v1/2020.alw-1.18
https://aclanthology.org/2020.alw-1.18
https://doi.org/10.1016/j.patcog.2012.03.014
https://www.sciencedirect.com/science/article/pii/S0031320312001471
https://www.sciencedirect.com/science/article/pii/S0031320312001471
https://www.academia.edu/download/66547918/pxc3883733.pdf
https://www.academia.edu/download/66547918/pxc3883733.pdf
https://doi.org/10.1109/ICACCI.2017.8125820
https://ieeexplore.ieee.org/abstract/document/8125820

[282] S. Choirunnisa and J. Lianto, “Hybrid Method of Undersampling and Over-

sampling for Handling Imbalanced Data,” in 2018 International Seminar on

Research of Information Technology and Intelligent Systems (ISRITI), IEEE,

Nov. 2018, pp. 276–280. doi: 10 . 1109 / ISRITI . 2018 . 8864335. [Online].

Available: https://ieeexplore.ieee.org/document/8864335 (visited on

05/24/2024).

[283] S. Hido, H. Kashima, and Y. Takahashi, “Roughly balanced bagging

for imbalanced data,” en, Statistical Analysis and Data Mining: The

ASA Data Science Journal, vol. 2, no. 5-6, pp. 412–426, 2009, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/sam.10061, issn: 1932-1872.

doi: 10.1002/sam.10061. [Online]. Available: https://onlinelibrary.

wiley.com/doi/abs/10.1002/sam.10061 (visited on 11/07/2023).

[284] S. S. Rawat and A. K. Mishra, Review of Methods for Handling Class-Imbalanced

in Classification Problems, arXiv:2211.05456 [cs], Nov. 2022. doi: 10.48550/

arXiv.2211.05456. [Online]. Available: http://arxiv.org/abs/2211.05456

(visited on 12/07/2023).

[285] Haibo He and E. Garcia, “Learning from Imbalanced Data,” en, IEEE Trans-

actions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284,

Sep. 2009, issn: 1041-4347. doi: 10.1109/TKDE.2008.239. [Online]. Available:

http://ieeexplore.ieee.org/document/5128907/ (visited on 10/03/2023).

[286] P. Liu, X. Wang, C. Xiang, and W. Meng, “A survey of text data aug-

mentation,” in 2020 International Conference on Computer Communication

and Network Security (CCNS), IEEE, 2020, pp. 191–195. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9240734/ (visited on

05/24/2024).

246

https://doi.org/10.1109/ISRITI.2018.8864335
https://ieeexplore.ieee.org/document/8864335
https://doi.org/10.1002/sam.10061
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10061
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10061
https://doi.org/10.48550/arXiv.2211.05456
https://doi.org/10.48550/arXiv.2211.05456
http://arxiv.org/abs/2211.05456
https://doi.org/10.1109/TKDE.2008.239
http://ieeexplore.ieee.org/document/5128907/
https://ieeexplore.ieee.org/abstract/document/9240734/

[287] C. Shorten, T. M. Khoshgoftaar, and B. Furht, “Text Data Augmentation

for Deep Learning,” Journal of Big Data, vol. 8, no. 1, p. 101, Jul. 2021,

issn: 2196-1115. doi: 10.1186/s40537-021-00492-0. [Online]. Available:

https://doi.org/10.1186/s40537-021-00492-0 (visited on 12/07/2023).

[288] J. Filar and K. Vrieze, Competitive Markov Decision Processes, en. Springer

Science & Business Media, Dec. 2012, Google-Books-ID: uXDjBwAAQBAJ,

isbn: 978-1-4612-4054-9.

[289] Zhang, Y. a. Baldridge, J. a. He, and Luheng, PAWS: Paraphrase Adversaries

from Word Scrambling, original-date: 2019-03-12T23:00:22Z, 2019. [Online].

Available: https://github.com/google-research-datasets/paws (visited

on 11/15/2023).

[290] H. Naveed, A. U. Khan, S. Qiu, et al., A Comprehensive Overview of Large

Language Models, arXiv:2307.06435 [cs], Apr. 2024. doi: 10.48550/arXiv.

2307.06435. [Online]. Available: http://arxiv.org/abs/2307.06435 (visited

on 05/05/2024).

[291] L. Ouyang, J. Wu, X. Jiang, et al., Training language models to follow instruc-

tions with human feedback, arXiv:2203.02155 [cs], Mar. 2022. doi: 10.48550/

arXiv.2203.02155. [Online]. Available: http://arxiv.org/abs/2203.02155

(visited on 05/05/2024).

[292] H. W. Chung, L. Hou, S. Longpre, et al., Scaling Instruction-Finetuned Language

Models, arXiv:2210.11416 [cs], Dec. 2022. [Online]. Available: http://arxiv.

org/abs/2210.11416 (visited on 10/02/2023).

[293] S. Zhang, L. Dong, X. Li, et al., Instruction Tuning for Large Language

Models: A Survey, arXiv:2308.10792 [cs], Oct. 2023. [Online]. Available: http:

//arxiv.org/abs/2308.10792 (visited on 12/19/2023).

247

https://doi.org/10.1186/s40537-021-00492-0
https://doi.org/10.1186/s40537-021-00492-0
https://github.com/google-research-datasets/paws
https://doi.org/10.48550/arXiv.2307.06435
https://doi.org/10.48550/arXiv.2307.06435
http://arxiv.org/abs/2307.06435
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2308.10792
http://arxiv.org/abs/2308.10792

[294] J. Kim, J. H. Lee, S. Kim, et al., Memory-E�cient Fine-Tuning of Compressed

Large Language Models via sub-4-bit Integer Quantization, arXiv:2305.14152

[cs], Oct. 2023. doi: 10.48550/arXiv.2305.14152. [Online]. Available: http:

//arxiv.org/abs/2305.14152 (visited on 01/08/2024).

[295] R. Zhang, J. Han, C. Liu, et al., LLaMA-Adapter: E�cient Fine-tuning of Lan-

guage Models with Zero-init Attention, arXiv:2303.16199 [cs], Jun. 2023. [Online].

Available: http://arxiv.org/abs/2303.16199 (visited on 12/19/2023).

[296] M. Ghasemi, M. Zare, A. Zahedi, M.-A. Akbari, S. Mirjalili, and L. Abualigah,

“Geyser Inspired Algorithm: A New Geological-inspired Meta-heuristic for Real-

parameter and Constrained Engineering Optimization,” en, Journal of Bionic

Engineering, vol. 21, no. 1, pp. 374–408, Jan. 2024, issn: 2543-2141. doi:

10.1007/s42235-023-00437-8. [Online]. Available: https://doi.org/10.

1007/s42235-023-00437-8 (visited on 05/01/2024).

[297] J. O. Agushaka, A. E. Ezugwu, and L. Abualigah, “Gazelle optimization algo-

rithm: A novel nature-inspired metaheuristic optimizer,” en, Neural Computing

and Applications, vol. 35, no. 5, pp. 4099–4131, Feb. 2023, issn: 1433-3058.

doi: 10.1007/s00521-022-07854-6. [Online]. Available: https://doi.org/

10.1007/s00521-022-07854-6 (visited on 05/02/2024).

[298] J. O. Agushaka, A. E. Ezugwu, and L. Abualigah, “Dwarf Mongoose Optimiza-

tion Algorithm,” Computer Methods in Applied Mechanics and Engineering,

vol. 391, p. 114 570, Mar. 2022, issn: 0045-7825. doi: 10.1016/j.cma.2022.

114570. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0045782522000019 (visited on 05/02/2024).

[299] G. Hu, Y. Guo, G. Wei, and L. Abualigah, “Genghis Khan shark optimizer:

A novel nature-inspired algorithm for engineering optimization,” Advanced

Engineering Informatics, vol. 58, p. 102 210, Oct. 2023, issn: 1474-0346. doi: 10.

248

https://doi.org/10.48550/arXiv.2305.14152
http://arxiv.org/abs/2305.14152
http://arxiv.org/abs/2305.14152
http://arxiv.org/abs/2303.16199
https://doi.org/10.1007/s42235-023-00437-8
https://doi.org/10.1007/s42235-023-00437-8
https://doi.org/10.1007/s42235-023-00437-8
https://doi.org/10.1007/s00521-022-07854-6
https://doi.org/10.1007/s00521-022-07854-6
https://doi.org/10.1007/s00521-022-07854-6
https://doi.org/10.1016/j.cma.2022.114570
https://doi.org/10.1016/j.cma.2022.114570
https://www.sciencedirect.com/science/article/pii/S0045782522000019
https://www.sciencedirect.com/science/article/pii/S0045782522000019
https://doi.org/10.1016/j.aei.2023.102210
https://doi.org/10.1016/j.aei.2023.102210

1016/j.aei.2023.102210. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S1474034623003385 (visited on 05/01/2024).

[300] M. Kale and A. Rastogi, “Text-to-Text Pre-Training for Data-to-Text Tasks,”

in Proceedings of the 13th International Conference on Natural Language

Generation, B. Davis, Y. Graham, J. Kelleher, and Y. Sripada, Eds., Dublin,

Ireland: Association for Computational Linguistics, Dec. 2020, pp. 97–102.

[Online]. Available: https://aclanthology.org/2020.inlg-1.14 (visited

on 11/15/2023).

[301] K. Anuranjana, “DiscoFlan: Instruction Fine-tuning and Refined Text Gener-

ation for Discourse Relation Label Classification,” in Proceedings of the 3rd

Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2023), C.

Braud, Y. J. Liu, E. Metheniti, et al., Eds., Toronto, Canada: The Association

for Computational Linguistics, Jul. 2023, pp. 22–28. doi: 10.18653/v1/2023.

disrpt-1.2. [Online]. Available: https://aclanthology.org/2023.disrpt-

1.2 (visited on 11/15/2023).

[302] C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” in

Text Summarization Branches Out, Barcelona, Spain: Association for Com-

putational Linguistics, Jul. 2004, pp. 74–81. [Online]. Available: https://

aclanthology.org/W04-1013 (visited on 11/15/2023).

[303] X. Chi and Y. Xiang, “Augmenting Paraphrase Generation with Syntax Infor-

mation Using Graph Convolutional Networks,” Entropy, vol. 23, no. 5, p. 566,

May 2021, issn: 1099-4300. doi: 10.3390/e23050566. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147394/ (visited on

11/15/2023).

[304] H. Palivela, “Optimization of paraphrase generation and identification using

language models in natural language processing,” International Journal of

249

https://doi.org/10.1016/j.aei.2023.102210
https://doi.org/10.1016/j.aei.2023.102210
https://doi.org/10.1016/j.aei.2023.102210
https://www.sciencedirect.com/science/article/pii/S1474034623003385
https://www.sciencedirect.com/science/article/pii/S1474034623003385
https://aclanthology.org/2020.inlg-1.14
https://doi.org/10.18653/v1/2023.disrpt-1.2
https://doi.org/10.18653/v1/2023.disrpt-1.2
https://aclanthology.org/2023.disrpt-1.2
https://aclanthology.org/2023.disrpt-1.2
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.3390/e23050566
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147394/

Information Management Data Insights, vol. 1, no. 2, p. 100 025, Nov. 2021, issn:

2667-0968. doi: 10.1016/j.jjimei.2021.100025. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S2667096821000185

(visited on 11/15/2023).

[305] S. Banerjee and A. Lavie, “METEOR: An Automatic Metric for MT Evaluation

with Improved Correlation with Human Judgments,” in Proceedings of the

ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine

Translation and/or Summarization, J. Goldstein, A. Lavie, C.-Y. Lin, and C.

Voss, Eds., Ann Arbor, Michigan: Association for Computational Linguistics,

Jun. 2005, pp. 65–72. [Online]. Available: https://aclanthology.org/W05-

0909 (visited on 05/10/2024).

[306] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Eval-

uating text generation with bert,” arXiv preprint arXiv:1904.09675, 2019.

[Online]. Available: https : / / arxiv . org / abs / 1904 . 09675 (visited on

05/10/2024).

[307] H. Saadany and C. Orasan, BLEU, METEOR, BERTScore: Evaluation of

Metrics Performance in Assessing Critical Translation Errors in Sentiment-

oriented Text, en, Sep. 2021. doi: 10.26615/978- 954- 452- 071- 7_006.

[Online]. Available: https://arxiv.org/abs/2109.14250v1 (visited on

05/10/2024).

[308] A. V. Glazkova and D. A. Morozov, “Applying Transformer-Based Text Sum-

marization for Keyphrase Generation,” en, Lobachevskii Journal of Math-

ematics, vol. 44, no. 1, pp. 123–136, Jan. 2023, issn: 1818-9962. doi: 10.

1134/S1995080223010134. [Online]. Available: https://doi.org/10.1134/

S1995080223010134 (visited on 05/10/2024).

250

https://doi.org/10.1016/j.jjimei.2021.100025
https://www.sciencedirect.com/science/article/pii/S2667096821000185
https://www.sciencedirect.com/science/article/pii/S2667096821000185
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://arxiv.org/abs/1904.09675
https://doi.org/10.26615/978-954-452-071-7_006
https://arxiv.org/abs/2109.14250v1
https://doi.org/10.1134/S1995080223010134
https://doi.org/10.1134/S1995080223010134
https://doi.org/10.1134/S1995080223010134
https://doi.org/10.1134/S1995080223010134

[309] M. Denkowski and A. Lavie, “Meteor Universal: Language Specific Translation

Evaluation for Any Target Language,” in Proceedings of the Ninth Workshop

on Statistical Machine Translation, O. Bojar, C. Buck, C. Federmann, et al.,

Eds., Baltimore, Maryland, USA: Association for Computational Linguistics,

Jun. 2014, pp. 376–380. doi: 10.3115/v1/W14- 3348. [Online]. Available:

https://aclanthology.org/W14-3348 (visited on 05/10/2024).

[310] Jigsaw, What do Perspective’s scores mean? en, Feb. 2021. [Online]. Available:

https://medium.com/jigsaw/what- do- perspectives- scores- mean-

113b37788a5d (visited on 11/15/2023).

[311] B. Vidgen, T. Thrush, Z. Waseem, and D. Kiela, Learning from the

Worst: Dynamically Generated Datasets to Improve Online Hate Detection,

arXiv:2012.15761 [cs], Jun. 2021. [Online]. Available: http://arxiv.org/abs/

2012.15761 (visited on 11/16/2023).

[312] L. von Werra, Y. Belkada, L. Tunstall, et al., TRL: Transformer Reinforcement

Learning, 2020. [Online]. Available: https://github.com/huggingface/trl.

[313] S. Welleck, I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston, Neural

Text Generation with Unlikelihood Training, arXiv:1908.04319 [cs, stat], Sep.

2019. [Online]. Available: http://arxiv.org/abs/1908.04319 (visited on

01/04/2024).

[314] A. Fan, M. Lewis, and Y. Dauphin, Hierarchical Neural Story Generation,

arXiv:1805.04833 [cs], May 2018. doi: 10.48550/arXiv.1805.04833. [Online].

Available: http://arxiv.org/abs/1805.04833 (visited on 01/04/2024).

[315] D. Q. Nguyen, T. Vu, and A. T. Nguyen, BERTweet: A pre-trained language

model for English Tweets, arXiv:2005.10200 [cs], Oct. 2020. doi: 10.48550/

251

https://doi.org/10.3115/v1/W14-3348
https://aclanthology.org/W14-3348
https://medium.com/jigsaw/what-do-perspectives-scores-mean-113b37788a5d
https://medium.com/jigsaw/what-do-perspectives-scores-mean-113b37788a5d
http://arxiv.org/abs/2012.15761
http://arxiv.org/abs/2012.15761
https://github.com/huggingface/trl
http://arxiv.org/abs/1908.04319
https://doi.org/10.48550/arXiv.1805.04833
http://arxiv.org/abs/1805.04833
https://doi.org/10.48550/arXiv.2005.10200
https://doi.org/10.48550/arXiv.2005.10200

arXiv.2005.10200. [Online]. Available: http://arxiv.org/abs/2005.10200

(visited on 05/10/2024).

[316] R. Gorwa, R. Binns, and C. Katzenbach, “Algorithmic content moderation:

Technical and political challenges in the automation of platform governance,” en,

Big Data & Society, vol. 7, no. 1, p. 2 053 951 719 897 945, Jan. 2020, Publisher:

SAGE Publications Ltd, issn: 2053-9517. doi: 10.1177/2053951719897945.

[Online]. Available: https://doi.org/10.1177/2053951719897945 (visited

on 04/09/2024).

[317] Z. Waseem, T. Davidson, D. Warmsley, and I. Weber, “Understanding Abuse: A

Typology of Abusive Language Detection Subtasks,” in Proceedings of the First

Workshop on Abusive Language Online, Z. Waseem, W. H. K. Chung, D. Hovy,

and J. Tetreault, Eds., Vancouver, BC, Canada: Association for Computational

Linguistics, Aug. 2017, pp. 78–84. doi: 10.18653/v1/W17-3012. [Online].

Available: https://aclanthology.org/W17-3012 (visited on 07/15/2024).

[318] Y. Gerrard and H. Thornham, “Content moderation: Social media’s sex-

ist assemblages,” en, New Media & Society, vol. 22, no. 7, pp. 1266–1286,

Jul. 2020, Publisher: SAGE Publications, issn: 1461-4448. doi: 10.1177/

1461444820912540. [Online]. Available: https : / / doi . org / 10 . 1177 /

1461444820912540 (visited on 04/11/2024).

[319] S. T. Roberts, Behind the screen: content moderation in the shadows of social

media, en. New Haven: Yale University Press, 2019, OCLC: on1055263168,

isbn: 978-0-300-23588-3.

[320] J. Sani and N. Oseji, “UTILIZING THE POTENTIALS OF BIG DATA

IN LIBRARY ENVIRONMENTS IN NIGERIAN FOR RECOMMENDER

SERVICES,” Library Philosophy and Practice (e-journal), Jan. 2022. [Online].

Available: https://digitalcommons.unl.edu/libphilprac/7467.

252

https://doi.org/10.48550/arXiv.2005.10200
https://doi.org/10.48550/arXiv.2005.10200
https://doi.org/10.48550/arXiv.2005.10200
http://arxiv.org/abs/2005.10200
https://doi.org/10.1177/2053951719897945
https://doi.org/10.1177/2053951719897945
https://doi.org/10.18653/v1/W17-3012
https://aclanthology.org/W17-3012
https://doi.org/10.1177/1461444820912540
https://doi.org/10.1177/1461444820912540
https://doi.org/10.1177/1461444820912540
https://doi.org/10.1177/1461444820912540
https://digitalcommons.unl.edu/libphilprac/7467

[321] S. J. Dixon, Biggest social media platforms 2024, en, May 2024. [Online]. Avail-

able: https://www.statista.com/statistics/272014/global-social-

networks-ranked-by-number-of-users/ (visited on 07/08/2024).

[322] B. Dean, Social Network Usage & Growth Statistics: How Many People Use So-

cial Media in 2024? en-US, Dec. 2023. [Online]. Available: https://backlinko.

com/social-media-users (visited on 07/08/2024).

[323] B. Ganesh and J. Bright, “Countering Extremists on Social Me-

dia: Challenges for Strategic Communication and Content Modera-

tion,” en, Policy & Internet, vol. 12, no. 1, pp. 6–19, 2020, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/poi3.236, issn: 1944-2866.

doi: 10.1002/poi3.236. [Online]. Available: https://onlinelibrary.wiley.

com/doi/abs/10.1002/poi3.236 (visited on 04/09/2024).

[324] R. Polikar, “Ensemble Learning,” en, in Ensemble Machine Learning: Methods

and Applications, C. Zhang and Y. Ma, Eds., New York, NY: Springer, 2012,

pp. 1–34, isbn: 978-1-4419-9326-7. doi: 10.1007/978-1-4419-9326-7_1.

[Online]. Available: https://doi.org/10.1007/978-1-4419-9326-7_1

(visited on 04/15/2024).

[325] Z.-H. Zhou, “Ensemble Learning,” en, in Machine Learning, Z.-H. Zhou, Ed.,

Singapore: Springer, 2021, pp. 181–210, isbn: 9789811519673. doi: 10.1007/

978-981-15-1967-3_8. [Online]. Available: https://doi.org/10.1007/978-

981-15-1967-3_8 (visited on 04/15/2024).

[326] F. Husain, Arabic O↵ensive Language Detection Using Machine Learning and

Ensemble Machine Learning Approaches, arXiv:2005.08946 [cs], May 2020. [On-

line]. Available: http://arxiv.org/abs/2005.08946 (visited on 04/15/2024).

253

https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://backlinko.com/social-media-users
https://backlinko.com/social-media-users
https://doi.org/10.1002/poi3.236
https://onlinelibrary.wiley.com/doi/abs/10.1002/poi3.236
https://onlinelibrary.wiley.com/doi/abs/10.1002/poi3.236
https://doi.org/10.1007/978-1-4419-9326-7_1
https://doi.org/10.1007/978-1-4419-9326-7_1
https://doi.org/10.1007/978-981-15-1967-3_8
https://doi.org/10.1007/978-981-15-1967-3_8
https://doi.org/10.1007/978-981-15-1967-3_8
https://doi.org/10.1007/978-981-15-1967-3_8
http://arxiv.org/abs/2005.08946

[327] A. M. U. D. Khanday, S. T. Rabani, Q. R. Khan, and S. H. Malik, “Detecting

twitter hate speech in COVID-19 era using machine learning and ensemble

learning techniques,” International Journal of Information Management Data

Insights, vol. 2, no. 2, p. 100 120, Nov. 2022, issn: 2667-0968. doi: 10.1016/

j.jjimei.2022.100120. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S2667096822000635 (visited on 07/08/2024).

[328] A. C. Mazari, N. Boudoukhani, and A. Dje↵al, “BERT-based ensemble learning

for multi-aspect hate speech detection,” en, Cluster Computing, vol. 27, no. 1,

pp. 325–339, Feb. 2024, issn: 1573-7543. doi: 10.1007/s10586-022-03956-x.

[Online]. Available: https://doi.org/10.1007/s10586- 022- 03956- x

(visited on 04/12/2024).

[329] M. Chen, Z. Xu, K. Weinberger, O. Chapelle, and D. Kedem, “Classifier

Cascade for Minimizing Feature Evaluation Cost,” en, in Proceedings of the

Fifteenth International Conference on Artificial Intelligence and Statistics,

ISSN: 1938-7228, PMLR, Mar. 2012, pp. 218–226. [Online]. Available: https:

//proceedings.mlr.press/v22/chen12c.html (visited on 05/10/2023).

[330] V. C. Raykar, B. Krishnapuram, and S. Yu, “Designing e�cient cascaded

classifiers: Tradeo↵ between accuracy and cost,” in Proceedings of the 16th ACM

SIGKDD international conference on Knowledge discovery and data mining,

ser. KDD ’10, New York, NY, USA: Association for Computing Machinery, Jul.

2010, pp. 853–860, isbn: 978-1-4503-0055-1. doi: 10.1145/1835804.1835912.

[Online]. Available: https://doi.org/10.1145/1835804.1835912 (visited on

04/22/2024).

[331] J. I. A. Salas, P. Mirabal, and A. Ballester-Espinosa, “Cascade of Bi-

ased Two-class Classifiers for Multi-class Sentiment Analysis,” 2021. [On-

line]. Available: https : / / www . semanticscholar . org / paper / Cascade -

254

https://doi.org/10.1016/j.jjimei.2022.100120
https://doi.org/10.1016/j.jjimei.2022.100120
https://www.sciencedirect.com/science/article/pii/S2667096822000635
https://www.sciencedirect.com/science/article/pii/S2667096822000635
https://doi.org/10.1007/s10586-022-03956-x
https://doi.org/10.1007/s10586-022-03956-x
https://proceedings.mlr.press/v22/chen12c.html
https://proceedings.mlr.press/v22/chen12c.html
https://doi.org/10.1145/1835804.1835912
https://doi.org/10.1145/1835804.1835912
https://www.semanticscholar.org/paper/Cascade-of-Biased-Two-class-Classifiers-for-Salas-Mirabal/436fde9146659d530e64168f80f9d316d2f9c8ec
https://www.semanticscholar.org/paper/Cascade-of-Biased-Two-class-Classifiers-for-Salas-Mirabal/436fde9146659d530e64168f80f9d316d2f9c8ec

of - Biased - Two - class - Classifiers - for - Salas - Mirabal /

436fde9146659d530e64168f80f9d316d2f9c8ec (visited on 04/10/2024).

[332] H. Calvo and O. Juárez Gambino, “Cascading Classifiers for Twitter Senti-

ment Analysis with Emotion Lexicons,” en, in Computational Linguistics and

Intelligent Text Processing, A. Gelbukh, Ed., Cham: Springer International

Publishing, 2018, pp. 270–280, isbn: 978-3-319-75487-1. doi: 10.1007/978-3-

319-75487-1_21.

[333] S. Paisitkriangkrai, “Robust object detection with e�cient features and e↵ective

classifiers,” PhD Thesis, UNSW Sydney, 2011. [Online]. Available: https:

//unsworks.unsw.edu.au/entities/publication/cd8df6ea-322a-46f0-

b485-d094c6c649fd/full (visited on 04/15/2024).

[334] G. Forman and S. Rajaram, “Scaling up text classification for large file sys-

tems,” in Proceedings of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining, ser. KDD ’08, New York, NY, USA:

Association for Computing Machinery, Aug. 2008, pp. 239–246, isbn: 978-1-

60558-193-4. doi: 10.1145/1401890.1401923. [Online]. Available: https:

//doi.org/10.1145/1401890.1401923 (visited on 04/15/2024).

[335] A. Vandierendonck, “On the Utility of Integrated Speed-Accuracy Measures

when Speed-Accuracy Trade-o↵ is Present,” en-US, Journal of Cognition, vol. 4,

no. 1, Mar. 2021, issn: 2514-4820. doi: 10.5334/joc.154. [Online]. Available:

https://journalofcognition.org/articles/10.5334/joc.154 (visited on

07/09/2024).

[336] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, Advances

in Pre-Training Distributed Word Representations, arXiv:1712.09405 [cs], Dec.

2017. doi: 10.48550/arXiv.1712.09405. [Online]. Available: http://arxiv.

org/abs/1712.09405 (visited on 07/15/2024).

255

https://www.semanticscholar.org/paper/Cascade-of-Biased-Two-class-Classifiers-for-Salas-Mirabal/436fde9146659d530e64168f80f9d316d2f9c8ec
https://www.semanticscholar.org/paper/Cascade-of-Biased-Two-class-Classifiers-for-Salas-Mirabal/436fde9146659d530e64168f80f9d316d2f9c8ec
https://www.semanticscholar.org/paper/Cascade-of-Biased-Two-class-Classifiers-for-Salas-Mirabal/436fde9146659d530e64168f80f9d316d2f9c8ec
https://www.semanticscholar.org/paper/Cascade-of-Biased-Two-class-Classifiers-for-Salas-Mirabal/436fde9146659d530e64168f80f9d316d2f9c8ec
https://doi.org/10.1007/978-3-319-75487-1_21
https://doi.org/10.1007/978-3-319-75487-1_21
https://unsworks.unsw.edu.au/entities/publication/cd8df6ea-322a-46f0-b485-d094c6c649fd/full
https://unsworks.unsw.edu.au/entities/publication/cd8df6ea-322a-46f0-b485-d094c6c649fd/full
https://unsworks.unsw.edu.au/entities/publication/cd8df6ea-322a-46f0-b485-d094c6c649fd/full
https://doi.org/10.1145/1401890.1401923
https://doi.org/10.1145/1401890.1401923
https://doi.org/10.1145/1401890.1401923
https://doi.org/10.5334/joc.154
https://journalofcognition.org/articles/10.5334/joc.154
https://doi.org/10.48550/arXiv.1712.09405
http://arxiv.org/abs/1712.09405
http://arxiv.org/abs/1712.09405

[337] X. Jiao, Y. Yin, L. Shang, et al., TinyBERT: Distilling BERT for Natural

Language Understanding, arXiv:1909.10351 [cs], Oct. 2020. doi: 10.48550/

arXiv.1909.10351. [Online]. Available: http://arxiv.org/abs/1909.10351

(visited on 07/15/2024).

[338] G. Brockman, V. Cheung, L. Pettersson, et al., OpenAI Gym, arXiv:1606.01540

[cs], Jun. 2016. doi: 10.48550/arXiv.1606.01540. [Online]. Available: http:

//arxiv.org/abs/1606.01540 (visited on 07/18/2024).

[339] A. Nandy and M. Biswas, “Reinforcement Learning with Keras, TensorFlow,

and ChainerRL,” en, in Reinforcement Learning : With Open AI, TensorFlow

and Keras Using Python, A. Nandy and M. Biswas, Eds., Berkeley, CA: Apress,

2018, pp. 129–153, isbn: 978-1-4842-3285-9. doi: 10.1007/978-1-4842-3285-

9_5. [Online]. Available: https://doi.org/10.1007/978-1-4842-3285-9_5

(visited on 07/18/2024).

Appendix A

In this section, we outline the experimental configurations for the classifiers developed

in this research. We divided all datasets, including five balanced datasets generated

using TDA and the original imbalanced dataset, into training and testing sets. The

training set consists of 70% of the data, with 10% allocated for the validation set, and

the remaining 20% designated for the test set, applied to both the Jigsaw and ToxiGen

datasets. To ensure consistency across classifiers and datasets, we used a random-state

approach for the train-test split, resulting in identical training and testing sets for all

classifiers. All six classifiers received the same training and testing sets to maintain

uniformity in the experimental setup.

256

https://doi.org/10.48550/arXiv.1909.10351
https://doi.org/10.48550/arXiv.1909.10351
http://arxiv.org/abs/1909.10351
https://doi.org/10.48550/arXiv.1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/978-1-4842-3285-9_5
https://doi.org/10.1007/978-1-4842-3285-9_5
https://doi.org/10.1007/978-1-4842-3285-9_5

Table 35: Experimental Configurations for CNN-based Classifiers based on Jigsaw
Dataset

Model Dataset Epoch Batch Learning Dropout Filters Max Max
size rate rate Features Length

CNN

UnbalancedJigsaw 35 128 5.00E-05 0.5 128 100000 400
BalancedZero-shot 25 128 5.00E-03 0.3 128 100000 400
BalancedBack-translation 18 512 2.00E-05 0.5 128 100000 400
BalancedLoRA 28 512 2.00E-05 0.3 128 100000 400
BalancedPPO-RoBERTa 15 128 2.00E-04 0.5 300 100000 400
BalancedPPO-API 10 512 1.00E-05 0.5 300 100000 400

CNN-
fasText

UnbalancedJigsaw 19 32 1.00E-03 0.4 128 100000 400
BalancedZero-shot 17 256 5.00E-05 0.5 256 100000 400
BalancedBack-translation 33 128 3.00E-04 0.3 128 100000 400
BalancedLoRA 6 256 2.00E-04 0.4 300 100000 400
BalancedPPO-RoBERTa 22 256 5.00E-04 0.5 128 100000 400
BalancedPPO-API 25 512 5.00E-05 0.5 128 100000 400

Table 36: Experimental Configurations for CNN-based Classifiers based on ToxiGen
Dataset

Model Dataset Epoch Batch Learning Dropout Filters Max Max
size rate rate Features Length

CNN

UnbalancedToxiGen 31 512 5.00E-05 0.5 300 100000 400
BalancedZero-shot 26 256 5.00E-03 0.5 300 100000 400
BalancedBack-translation 20 128 5.00E-05 0.5 300 100000 400
BalancedLoRA 22 512 5.00E-05 0.4 128 100000 400
BalancedPPO-RoBERTa 27 256 5.00E-05 0.4 128 100000 400
BalancedPPO-API 17 512 5.00E-05 0.4 128 100000 400

CNN-
fasText

UnbalancedJigsaw 12 256 2.00E-03 0.5 128 100000 400
BalancedZero-shot 15 256 5.00E-05 0.5 300 100000 400
BalancedBack-translation 24 128 4.00E-04 0.5 300 100000 400
BalancedLoRA 18 64 4.00E-04 0.5 300 100000 400
BalancedPPO-RoBERTa 15 64 5.00E-05 0.5 300 100000 400
BalancedPPO-API 23 64 5.00E-05 0.5 300 100000 400

CNN-based: CNN and CNN-fastText for balanced datasets

We started the training process with a data cleaning and preprocessing phase as the

initial step. This process includes the removal of URLs, punctuation, digits, stop-

words, and the normalization of cases, acronyms, and abbreviations. Subsequently,

the tokenization process takes place, with text comments either truncated or padded

to achieve a fixed length before being transformed into vector words.

The model architecture incorporates four 1D convolutional layers with multiple

257

window sizes and output channels. A pooling layer is employed to reduce the di-

mensionality of the convolutions, followed by a global max pooling step to further

diminish the dimension. ReLU activation functions are used in the hidden layers,

while the output layer employs a Sigmoid activation function. During training, the

binary cross-entropy loss function measures the disparity between predicted and actual

labels. The Adam optimizer is applied to update the model’s parameters, facilitating

faster convergence and improved accuracy.

To expedite the training process, we integrated pre-trained fastText word em-

beddings into our CNN model, resulting in the CNN-fastText variant. Specifically,

we utilized the “crawl-300d-2M” embeddings, consisting of 2 million word vectors

trained on Common Crawl using a continuous bag of words (CBOW) with position

weights, character n-grams of length 5, and a window of size 5 and 10 negatives. The

CNN model convolves over these embedded vectors, which then undergo max pooling

to reduce dimensionality. The final classification is executed using fully connected

layers with a Sigmoid activation function. Incorporating pre-trained word embeddings

significantly reduced the training time of our CNN model. We systematically tested

hyperparameters to optimize results for each dataset. A detailed overview of the final

hyperparameter settings is presented in Table 39 for datasets developed using prompts

from the Jigsaw dataset and in Table 36 for those developed using the ToxiGen dataset.

Transformer-based: BERT, RoBERTa, HateBERT, and

BERTweet

We used the Huggingface transformer library, compatible with Tensorflow 2.14.0, for

our work. To identify toxic content, we employed the bert-base-uncased, roberta-base,

HateBERT, and bertweet-base variants. Text data preparation involved the use of

tokenizers, which convert raw text into tokens compatible with BERT/RoBERTa. We

258

Table 37: Experimental Configurations for Transformer-based Classifiers: Jigsaw-based
Datasets

Model Dataset Epoch Batch Learning Dropout Max
size rate rate Length

BERT

UnbalancedJigsaw 2 16 2e-5 0.5 400
BalancedZero-shot 2 8 3e-5 0.4 400
BalancedBack-translation 2 8 3e-5 0.4 400
BalancedLoRA 1 8 4e-5 0.5 400
BalancedPPO-RoBERTa 1 2 2e-5 0.4 400
BalancedPPO-API 1 4 2e-5 0.5 400

RoBERTa

UnbalancedJigsaw 2 16 4e-5 0.3 400
BalancedZero-shot 2 8 3e-5 0.4 400
BalancedBack-translation 3 8 3e-5 0.3 400
BalancedLoRA 1 16 3e-5 0.4 400
BalancedPPO-RoBERTa 1 8 3e-5 0.5 400
BalancedPPO-API 1 2 3e-5 0.4 400

Hate-
BERT

UnbalancedJigsaw 2 16 4e-5 0.3 400
BalancedZero-shot 2 128 3e-5 0.4 400
BalancedBack-translation 2 64 2e-5 0.4 400
BalancedLoRA 1 16 2e-5 0.4 400
BalancedPPO-RoBERTa 1 4 2e-5 0.5 400
BalancedPPO-API 1 4 2e-5 0.5 400

BERTweet

UnbalancedJigsaw 1 16 4e-5 0.3 400
BalancedZero-shot 1 256 3e-5 0.5 400
BalancedBack-translation 1 64 2e-5 0.5 400
BalancedLoRA 1 8 2e-5 0.5 400
BalancedPPO-RoBERTa 1 4 2e-5 0.5 400
BalancedPPO-API 1 4 2e-5 0.5 400

explored a distinct set of hyperparameters randomly to identify the configuration

yielding the most accurate results. The optimal hyperparameters for each model

developed via di↵erent datasets are detailed via Table 40 and Table 38.

Appendix B

In this section, we describe the experimental setup for the classifiers developed in this

research. We utilized the training and validation sets from Dkaggle for all classifier

259

Table 38: Experimental Configurations for Transformer-based Classifiers: ToxiGen-
based Datasets

Model Dataset Epoch Batch Learning Dropout Max
size rate rate Length

BERT

BalancedZero-shot 2 128 2e-5 0.5 400
BalancedBack-translation 2 64 2e-5 0.5 400
BalancedLoRA 1 16 2e-5 0.5 400
BalancedPPO-RoBERTa 1 2 2e-5 0.4 400
BalancedPPO-API 1 2 2e-5 0.5 400

RoBERTa

BalancedZero-shot 2 128 2e-5 0.4 400
BalancedBack-translation 1 64 2e-5 0.3 400
BalancedLoRA 1 16 2e-5 0.5 400
BalancedPPO-RoBERTa 1 4 2e-5 0.5 400
BalancedPPO-API 1 4 2e-5 0.4 400

HateBERT

BalancedZero-shot 2 256 2e-5 0.4 400
BalancedBack-translation 2 128 2e-5 0.3 400
BalancedLoRA 1 16 2e-5 0.5 400
BalancedPPO-RoBERTa 1 2 2e-5 0.5 400
BalancedPPO-API 1 2 2e-5 0.5 400

BERTweet

UnbalancedZero-shot 2 128 2e-5 0.5 400
BalancedBack-translation 2 64 2e-5 0.5 400
BalancedLoRA 1 64 2e-5 0.5 400
BalancedPPO-RoBERTa 1 2 2e-5 0.5 400
BalancedPPO-API 1 2 2e-5 0.5 400

development. To ensure consistency across the classifiers, we applied a random-state

approach for the train-test split, which resulted in identical training, validation, and

testing sets for each classifier. This uniformity ensured that all eight classifiers were

evaluated under the same conditions.

Further details on the development process and parameter settings for the various

classifiers are provided in Chapter 7 and Chapter 7.

CNN-based: CNN, CNN-fastText

We began with data cleaning and preprocessing, including the removal of URLs,

punctuation, digits, and stop-words, and normalization. The text was tokenized,

260

Table 39: Experimental Configurations for CNN-based Classifiers

Model Hidden Layers Epochs Batch Size Learning Rate Dropout Rate Filters Max Features Max Length

CNN↵ 4 15 512 5.00E-05 0.4 300 100000 400
CNN 2 23 512 5.00E-05 0.5 300 100000 400
fastText↵ 4 5 256 0.0002 0.4 300 100000 400
fastText 2 14 256 5.00E-7 0.5 128 100000 400

Table 40: Experimental Configurations for Transformer-based Classifiers

Model Model Name Epochs Batch Size Learning Rate Weight Decay Max Length

BERT↵ bert� base� uncased 1 8 2E-5 0.01 300
BERT googlebertuncasedL � 2H � 128 A� 2 3 32 3E-5 0.01 300
RoBERTa↵ roberta� base 1 4 2E-5 0.01 300
DistilRoBERTa distilroberta� base 2 16 3E-5 0.01 300

truncated or padded to a fixed length, and converted into word vectors.

The model was tested with di↵erent configurations. For accuracy, the optimal

variant used four 1D convolutional layers, while the high-throughput variant achieved

better performance with two 1D layers. We applied pooling and global max pooling

to reduce dimensionality, used ReLU activations in hidden layers, and a Sigmoid

activation in the output layer. Binary cross-entropy loss and the Adam optimizer were

employed for training.

To accelerate training, we incorporated pre-trained fastText embeddings (“crawl-

300d-2M”) into the CNN model, resulting in the CNN-fastText variant. These

embeddings, trained on Common Crawl with CBOW, character n-grams, and negative

sampling, improved training e�ciency. Hyperparameter settings are detailed in

Table 39.

261

Transformer-based: BERT, RoBERTa, TinyBERT, Distil-

RoBERTa

We utilized the Hugging Face Transformers library with TensorFlow 2.15.0 to eval-

uate various models for toxic content detection. Our assessment included sev-

eral BERT-based models: bert-base-uncased, bert-large-uncased, ALBERT (albert-

base-v2), RoBERTa (roberta-base), GroNLP’s hateBERT, and vinai’s BERTweet

(vinai/bertweet-base), along with their distilled variants and 24 BERT miniature

models.

For preprocessing, we employed model-specific tokenizers to convert raw text into

tokens compatible with each model. This ensured that the data was appropriately

formatted for e↵ective processing.

Our testing revealed that bert-base-uncased delivered the best balance of accuracy

and acceptable throughput among the BERT variants. Among the BERT miniatures,

BERT-Tiny achieved the highest throughput. For RoBERTa models, roberta-base

provided the most accurate results, while DistilRoBERTa demonstrated the highest

throughput.

We thoroughly explored various hyperparameters to optimize both accuracy and

throughput for each model. The detailed hyperparameter settings and results are

provided in Table 40.

This comprehensive evaluation enabled us to select the models that o↵er the best

performance for both accuracy and e�ciency in toxic content detection.

262

	List of Figures
	List of Tables
	Introduction
	Problem Statement and Motivation
	Contributions
	Profit-Driven Simulation (PDS) Framework
	Text Data Augmentation (TDA) for Toxic Language
	Proximal Policy Optimization-based Cascaded Inference System

	Organization of the Thesis

	Preliminaries
	Text Generation
	Instruction Fine-tuning (ITune)
	Parameter-efficient Fine-tuning (PEFT)
	Reinforcement Learning (RL)
	Deep Reinforcement Learning
	Proximal Policy Optimization (PPO)
	Actor-Critic with Experience Replay (ACER)

	Literature Review
	Online Toxicity: A Comprehensive Review
	Toxicity in Online Content
	The Social Impact of Toxicity

	Existing Tools for Detecting Online Toxicity
	Machine Learning and Deep Learning-based Strategies
	Ensemble Learning-based Strategies
	Reinforcement Learning-based Strategies
	Optimizing Ensemble Models with Reinforcement Learning
	Evaluation Metrics

	Existing Tools for Addressing Class Imbalance in Toxicity Detection
	Data-level Approaches
	Algorithmic-level Approaches
	Ensemble Learning Approaches

	Text Data Augmentation
	Challenges in Online Toxicity Detection
	Challenges in Data Preparation
	Challenges in Model Construction

	Humans and Machine Learning: A Team Approach to Detection
	Human Role in Machine Learning

	A Profit-driven Simulation (PDS) Framework for Comparison of Deep Learning Models for Real-time Toxicity Detection in Social Media
	Problem Statement & Contributions
	Methodology
	Generic Social Media Model (GSMM)
	Environments
	Social Media Profit Simulation

	Experimental Setup
	Data Sets
	Detectors
	Environments
	Computer Power
	Profit

	Experimental Results
	Summary

	AugmenToxic: Leveraging Reinforcement Learning to Optimize LLM Instruction Fine-Tuning for Data Augmentation to Enhance Toxicity Detection
	Problem Statement & Contributions
	Methodology
	Supervised Instruction Fine-tuning
	Optimization using Reward Function

	Experimental Setup
	Instruction Dataset
	Toxic Datasets
	Instruction Fine-tuning
	Optimization
	Baselines
	Computational Resources

	Experimental Results
	Summary

	Real-Time Adaptive Toxicity Detection with Cascaded Classifiers Optimized by Proximal Policy Optimization
	Problem Statement & Contributions
	Methodology
	Cascaded Inference Systems
	DRL-based Cascade Inference Systems

	Experimental Setup
	Toxic Datasets
	Classifiers
	Baselines
	Experimental setting
	Computational Resources

	Experimental Results
	Summary

	Conclusion and Future Work
	Bibliography
	Appendices

