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Abstract

Simplifying Interpretation of Ultrasound Imaging: Deep Learning
Approaches for Phase Aberration Correction and Automatic Segmentation

Mostafa Sharifzadeh, Ph.D.
Concordia University, 2024

Medical ultrasound imaging is a widely used diagnostic tool in clinical practice, offering

several advantages, including high temporal resolution, non-invasiveness, cost-effectiveness,

and portability. Despite these benefits, ultrasound modality often suffers from lower image

quality compared to other modalities, such as magnetic resonance imaging, which compli-

cates image interpretation and poses diagnostic challenges, even for experienced clinicians.

Given its unique advantages, simplifying the interpretation of ultrasound images can pro-

foundly impact the accessibility and affordability of healthcare. This thesis aims to enhance

the interpretability of ultrasound images using deep learning (DL)-based approaches on two

parallel fronts.

The first front focuses on improving image quality by addressing the phase aberra-

tion effect, a primary contributor to the degradation of medical ultrasound images. Phase

aberration arises from spatial variations in sound speed within heterogeneous media, intro-

ducing artifacts such as blurring and geometric distortions. This effect hinders the accurate

representation of tissue structures and complicates clinical interpretation. To tackle this,

we propose two novel methods. The first involves training a convolutional neural net-

work (CNN) to estimate the aberration profile from the B-mode image and employing it to

compensate for the aberration effects. The second introduces an aberration-to-aberration

approach combined with an innovative loss function to train a CNN that directly predicts

corrected radio frequency data without requiring ground truth.
The second front focuses on the automatic segmentation of ultrasound images and ex-

plores the challenges associated with employing DL-based approaches. Manual segmen-
tation, typically performed by expert clinicians, is time-consuming and prone to human
error, and automating this process can simplify the interpretation of ultrasound images.
While DL methods have demonstrated considerable potential, ultrasound image segmenta-
tion poses unique challenges due to artifacts such as shadowing, reverberation, refraction,
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phase aberration, and speckle noise. The scarcity of medical data further complicates these
challenges, limiting the generalizability and robustness of models in clinical settings. To
address these limitations, we investigate the shift-variance problem in CNNs and propose
pyramidal blur-pooling layers to mitigate this issue. Furthermore, we tackle domain shift
and data scarcity by employing a domain adaptation method and introducing an ultra-fast
ultrasound image simulation technique based on frequency domain analysis.
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Chapter 1

Introduction

1.1 Ultrasound Imaging

Medical ultrasound is one of the most widely used tools in clinical practice across various
applications, including therapy [1, 2], diagnostics [3, 4], and image-guided interventions
[5]. Additionally, it is often integrated with other modalities, such as photoacoustic tech-
niques [6]. The widespread adoption of ultrasound originates from several advantages,
including real-time imaging, non-invasiveness, cost-effectiveness, and portability. The ul-
trasound modality operates based on acoustic oscillation, with frequencies exceeding 20
kHz, which is the upper limit of human hearing and is classified as ultrasound. In ultra-
sound imaging, a piezoelectric crystal is excited electrically by a voltage pulse, causing it
to vibrate and generate acoustic waves. These waves propagate through a medium, and
when they encounter any discontinuities in mechanical characteristics along their path, a
portion of their energy is reflected back. These reflections, known as echoes, cause the
piezoelectric crystal to vibrate again and generate electronic signals, which are recorded.
These recorded signals, known as radio frequency (RF) data, are processed to reconstruct
a representation of the medium. The recorded data can be displayed in various formats,
including A-mode, B-mode, C-scan, and M-mode [7]:
In A-mode, the amplitude of the echo signal is plotted along the vertical axis versus time
on the horizontal axis.
In B-mode, which is also known as brightness modulation and is the most common method
for displaying ultrasound images, the amplitude of the echo signal is displayed as bright-
ness along a line that represents time. Converting RF data to B-mode involves envelope
detection, typically followed by applying log compression.
In C-scan, a 2D planar representation from a constant depth is obtained by moving the
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transducer mechanically over the scanning area. C-scan is primarily used as part of three-
dimensional ultrasound imaging [8].
In M-mode, where M stands for motion, the speed and displacement of moving structures
are primarily captured. In this mode, B-mode scans are obtained in a constant direction and
stacked along the vertical axis over time to construct a 2D image.
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Figure 1.1: Delay-and-sum beamforming in ultrasound imaging. (a) Ultrasound image of
a cyst phantom, with the red dot indicating the pixel intended for reconstruction from the
reflected waves. Echo signals received at each transducer element are shown (b) before and
(c) after applying delay compensation.

In practice, a transducer, which includes a batch of piezoelectric crystals, transmits
ultrasound waves of desired shapes and records the received echo signals. Considering the
B-mode case as an example, the goal is to translate the echo data received by the transducer
into brightness and reconstruct an image from the reflected waves. Given a transducer
imaging a medium, consider the red dot in Fig. 1.1 (a) as the pixel whose reconstruction
is desired. The reflected waves must travel different distances from that point to reach
each transducer element, depending on the transducer’s geometry. Therefore, as shown
in Fig. 1.1 (b), each element experiences a different delay for the received signal, which
can be calculated based on the geometrical distance and the speed of sound. For instance,
according to Fig. 1.1 (a), the rightmost element experiences a delay d1:

d1 =
x2 − x1

c
(1.1)

where x1 is the distance from the reference element, x2 is the distance from the rightmost
element, and c is the speed of sound. As shown in Fig. 1.1 (c), the received signals can be
compensated for the delays d1 to dn. Finally, the amplitude of the echo signals correspond-
ing to the indicated red dot in Fig. 1.1 (a) can be determined by summing the corresponding
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amplitudes from the delayed signals received at all elements in Fig. 1.1 (c). This method is
known as delay-and-sum (DAS) beamforming.

1.2 Phase Aberration Correction

While medical ultrasound is one of the most widely used tools in clinical practice, it often
suffers from artifacts such as the phase aberration effect, which complicates clinical inter-
pretation and compromises the diagnostic accuracy of examinations. Phase aberration, one
of the main sources of image quality degradation [9], is caused by spatially varying sound
speed while traveling through a heterogeneous medium [10]. In a perfectly homogeneous
medium, like the one shown in Fig. 1.1, the sound speed is known and remains constant.
Consequently, the travel time of a pulse from any transducer element to any point in the
medium can be calculated using basic geometric principles, as outlined in Eq. (1.1). There-
fore, the required time delays that need to be applied to each element can be determined
accurately to compensate for traveling path length differences and form the desired beam
in transmit beamforming. Similarly, in receive beamforming, time delays can be calculated
and applied to received echo signals in order to sum them coherently. In practice, however,
the human body is a heterogeneous medium, where, for instance, the sound speed in fat and
muscle is approximately 1460 m/s and 1610 m/s, respectively, which indicates a variation
of almost 10% [11]. The variation is even higher in applications such as transcranial imag-
ing [12], where the average sound speed in the skull is nearly 2740 m/s [13]. The phase
aberration effect in a heterogeneous medium alters the focal point in focused imaging and
perturbs the flat wavefront propagation in plane-wave imaging during the transmission,
and prevents coherent summation of echo signals in both imaging techniques during the
reception, all of which cause suboptimal image quality.

Aberration correction has been studied for years in the medical ultrasound community,
as it can enhance the interpretability of images by improving anatomical fidelity and spatial
localization, both of which lead to improved diagnostic accuracy and precision in image-
guided interventions. Several techniques attempted to estimate delay errors by maximizing
the cross-correlation [10] or minimizing the absolute differences between RF signals re-
ceived at adjacent array elements [14], maximizing mean speckle brightness in a region of
interest [15], or incorporating a virtual point reflector generated by iterative time reversal
focusing [16]. Li et al. utilized the generalized coherence factor for reducing focusing
errors, especially the ones caused by sound speed inhomogeneities [17]. Napolitano et

al. analyzed lateral spatial frequency content in reconstructed images to find the optimal
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sound speed for subsequent imaging that maximizes the focus quality [18]. Shin et al. em-
ployed a technique called frequency-space prediction filtering (FXPF), which presupposes
the existence of an autoregressive (AR) model across the echo signals received at the trans-
ducer elements and removes any components that do not conform to the established model
[19, 20].

As opposed to methods that model the phase aberration effect by a fixed near-field phase
screen in front of the transducer, the locally adaptive phase aberration correction technique
[21] assumed a spatially varying near-field phase screen and employed multistatic synthetic
aperture data to perform the correction at each point adaptively. Lambert et al. suggested
compensating for the spatially-distributed aberrations by decoupling aberrations undergone
by the outgoing and incoming waves utilizing the distortion matrix built from the focused
reflection matrix, which contains the responses between virtual transducers synthesized
from the transmitted and received focal spots [22, 23, 24].

A different category of techniques utilizes echo signals as input and returns an estima-
tion of the spatial distribution of sound speed in a given medium [25, 26]. Although these
methods are not an immediate approach for aberration correction, the estimated distribution
can be subsequently employed to compensate for the phase aberration effect, for instance,
by reconstructing the image by computing beamforming delays assuming that sound travels
on straight line paths [27] or using a set of refraction-corrected delays based on the Eikonal
equation [28], which can be efficiently solved using the fast marching method [29]. The
computed ultrasound tomography in echo mode (CUTE) method correlated the phase shifts
across a sequence of beamformed plane-wave images obtained with different steering an-
gles and exploited that to estimate the distribution of sound speed [30]. Jakovljevic et al.

proposed and solved a model via gradient descent that establishes a connection between
the local speed of sound along a wave propagation path and the average speed of sound
over that path [31], where the latter is measured using the method proposed in [32]. Al-
though the efficacy of this model was demonstrated in layered heterogeneous media, the
performance often drops when the variations of sound speed are not insignificant along the
lateral axis. Rehman et al. introduced a tomography-based method that directly accounts
for propagation paths between the scattering volume and each transducer element to mit-
igate that issue [33]. They also proposed an inverse-modeled phase aberration computed
tomography (IMPACT) framework, which utilizes multistatic synthetic aperture data, esti-
mates the global average sound speed [34] by maximizing coherence for each point, applies
an inversion to compute the local sound speed, and finally exploits them in two different
Eikonal equation-based and wavefield correlation-based distributed aberration correction
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techniques [35]. In addition to approaches aimed at rectifying the aberrated image, certain
beamformers are specifically designed to remain robust against this artifact. These beam-
formers leverage singular value decomposition applied to matrices constructed either from
aperture data in focused imaging [36] or from a matrix of backscattered data derived from
multiple transmissions in plane-wave imaging [37].

Recently, utilizing deep learning (DL)-based techniques for phase aberration correc-
tion has attracted growing interest. Feigin et al. simulated a dataset using the k-Wave
toolbox [38], wherein the organs in tissue were modeled as uniform ellipses over a ho-
mogeneous background with different sound speeds. They trained a convolutional neural
network (CNN) on the dataset to estimate sound speed distribution, taking raw RF channel
data of three plane-wave transmissions as inputs [39]. In a similar approach, demodulated
in-phase and quadrature (IQ) data were provided to the network as the inputs [40]. Addi-
tional comparable methodologies have been proposed in the literature [41, 42] for the same
purpose. Koike et al. trained a network by mapping aberrated RF inputs to their corre-
sponding aberration-free RF target outputs [43]. Shen et al. utilized a CNN to estimate the
aberrated point spread function (PSF) from beamformed IQ data and subsequently applied
the inverse filter to rectify the data [44]. Additionally, there are DL-based beamformers de-
signed to exhibit robustness to the aberration by suppressing off-axis scattering [45] or by
mapping images beamformed with randomly perturbed sound speed values to clean images
beamformed with a reference sound speed value [46].

1.3 Automatic Segmentation

In various applications, segmenting regions of interest within an ultrasound image enhances
its interpretability compared to analyzing the raw image by isolating key anatomical struc-
tures or pathological areas. Image segmentation entails pixel-level labelling of images
to obtain a representation of data that is more meaningful and easier to analyze for a
specific purpose and is a crucial task in numerous applications such as registration [47],
image-guided biopsy and therapy [48], automatic staging of stenoses in intravascular ul-
trasound (IVUS) diagnosis [49], detection of vessel boundaries to monitor cardiovascular
diseases [50], and delineation of the cardiac structures [51, 52].

Manual segmentation, often performed by experienced clinicians, is labor-intensive,
time-consuming, and prone to human error. Due to these challenges, along with the promis-
ing results that CNNs have demonstrated in segmentation tasks, automatic segmentation us-
ing CNNs has been extensively investigated in the medical ultrasound community. Yap et
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al. [53] compared the performance of three CNN-based approaches against four traditional
state-of-the-art (SOTA) algorithms for breast lesion detection: Radial Gradient Index [54],
Multifractal Filtering [55], Rule-based Region Ranking [56], and Deformable Part Mod-
els [57]. Besides, to overcome the lack of public datasets in this domain, they made a
breast lesion ultrasound dataset available for research purposes. In 2D echocardiographic
images, Smistad et al. developed a multi-view network to segment the left ventricular in
different apical views [58], and Leclerc et al. evaluated several encoder-decoder CNNs for
segmenting cardiac structures and estimating clinical indices [51]. They also developed
the Refining U-Net (RU-Net) and a multi-task Localization U-Net (LU-Net) to refine and
improve the robustness of segmentation [59, 60, 61]. Abraham et al. addressed the data
imbalance issue [62] in lesion segmentation by proposing a generalized focal loss function
based on the Tversky index and combining it with an improved version of an attention U-
Net [63]. Karimi et al. proposed three different methods to estimate Hausdorff distance
from the segmentation probability map produced by a CNN, and suggested three loss func-
tions for training CNNs that lead to a reduction in Hausdorff distance without degrading
other segmentation metrics such as the Dice similarity coefficient (DSC) [64]. Gu et al.

introduced a comprehensive attention-based CNN (CA-Net) by making extensive use of
multiple attentions in a CNN architecture for more accurate and explainable medical im-
age segmentation. They claimed that the network is aware of the most important spatial
positions, as well as channels and scales at the same time [65]. For prostate segmentation
in 2D and 3D transrectal ultrasound images, van Sloun et al. employed a variant of U-net
[66, 67, 68], and Wang et al. developed a 3D deep neural network equipped with attention
modules by harnessing the deep attentive features [69]. Li et al. employed three modified
U-Nets combined with the concept of cascaded networks in IVUS images [70]. Looney et

al. presented a multi-class CNN for real-time segmentation of the placenta, amniotic fluid,
and fetus in 3D ultrasound [71]. For a similar purpose, Zimmer et al. used an auxiliary
task to improve the performance and introduced a method to extract the whole placenta at
late gestation using multi-view images [72, 73]. Zhou et al. proposed a fully automated
solution to segment the myotendinous junction region in successive ultrasound images in
a single shot using a region-adaptive network (RAN), which learns about the salient infor-
mation of the myotendinous junction [74]. They also introduced an approach that com-
bined a voxel-based fully convolution network (Voxel-FCN) and a continuous max-flow
post-processing module to automatically segment the carotid media-adventitia (MAB) and
lumen-intima boundaries (LIB) and to generate the vessel-wall-volume (VWV) measure-
ment from three-dimensional ultrasound images [75]. Park et al. proposed a technique
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to improve the measurement accuracy of the flow velocity in arteries, especially in the
near-wall region, by introducing a U-Net-based architecture called USUNet followed by
compensation for the effect of wall motion [50]. Amiri et al. exploited test time aug-
mentation to improve the accuracy of segmentation of ultrasound images [76]. They also
investigated several different transfer learning schemes in ultrasound segmentation [77].

1.4 Thesis Statement

While ultrasound imaging is widely used as a diagnostic tool, its full potential is often con-
strained by artifacts such as phase aberration, which complicate image interpretation and
pose diagnostic challenges. This thesis aims to improve the interpretability of ultrasound
images using DL-based approaches on two parallel fronts: enhancing image quality by
mitigating the effects of phase aberration and automating the segmentation of ultrasound
images while addressing the challenges associated with segmentation.

1.5 Objectives and Contributions

The first part of this thesis focuses on enhancing image quality by mitigating the phase
aberration effect, which is a significant factor in the deterioration of medical ultrasound
images. In Chapter 2, we propose a novel method to estimate the aberration profile from an
ultrasound B-mode image using a deep CNN to compensate for the phase aberration effect.
Unlike traditional methods, which typically rely on time-consuming processing techniques
applied to RF channel data and require multiple iterations for acceptable accuracy, the pro-
posed approach uses only the B-mode image to predict the aberration profile in a single
step with high accuracy. However, the proposed method requires ground-truth aberration
profiles for training the CNN, and obtaining such profiles in real-world scenarios is chal-
lenging. To address this issue, in Chapter 3, we present a DL-based method that, for the first
time in the literature, does not require ground truth to correct the phase aberration effect, en-
abling direct training on real data. We train a network where both the input and target output
are randomly aberrated RF data. Moreover, we show that a conventional loss function, such
as mean square error (MSE), is insufficient for training such a network to achieve optimal
performance. Instead, we propose an adaptive mixed loss function that incorporates both
B-mode and RF data, leading to more efficient convergence and improved performance.
Regarding RF data normalization, we demonstrate in Appendix B that conventional min-
max scaling for normalizing RF data reduces the efficiency of the training set and propose
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that the individual standardization of each image substantially improves the performance
of neural networks by utilizing the data more efficiently. Additionally, we publicly release
our dataset, consisting of over 180,000 aberrated single plane-wave images (RF data). Al-
though not utilized in the proposed method, each aberrated image is paired with its corre-
sponding aberration profile and a non-aberrated version, aiming to alleviate data scarcity in
developing DL-based techniques for phase aberration correction. The source code is also
released along with the dataset at http://code.sonography.ai/main-aaa.

The second part of this thesis focuses on the automatic segmentation of ultrasound
images and explores the challenges associated with employing DL-based approaches for
this task. In Chapter 4, we investigate the shift-variance problem in CNNs. Despite their
increasing popularity in automatic ultrasound image segmentation, CNNs are not shift-
equivariant. This means that if the input is translated, such as laterally, by one pixel, the
resulting output segmentation can change drastically. While accuracy is an evident crite-
rion for ultrasound image segmentation, output consistency across different tests is equally
crucial for tracking changes in regions of interest in applications such as monitoring the
patient’s response to treatment, measuring the progression or regression of the disease,
reaching a diagnosis, or treatment planning. To the best of our knowledge, this problem
has not been studied in ultrasound image segmentation or even more broadly in ultrasound
images. Herein, in addition to investigating and quantifying the shift-variance problem,
we evaluate the performance of a recently published technique, called BlurPooling [78],
for addressing the problem. Additionally, we propose the Pyramidal BlurPooling method,
which outperforms BlurPooling in terms of output consistency and segmentation accuracy.
We also demonstrate that data augmentation is not a replacement for the proposed method.
In Appendix C, we benchmark this method on 3D intraoperative ultrasound images. The
source code is also released at http://code.sonography.ai.

Another challenge associated with DL-based approaches is that although they outper-
form classical methods in segmentation tasks, there is a trade-off between their perfor-
mance and data availability. CNNs with high learning capacities may suffer from overfit-
ting, particularly in the medical domain, where data is often limited. To mitigate this issue,
augmenting datasets with synthetic data is a widely adopted strategy; however, generating
a large number of images using packages such as Field II [79, 80] is time-consuming. In
Chapter 5, we introduce a novel ultra-fast ultrasound image simulation method based on the
Fourier transform and evaluate its efficacy in a lesion segmentation task. We demonstrate
that data augmentation employing images generated by the proposed method substantially
outperforms Field II regarding the DSC, while the simulation process is nearly 36,000
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times faster (using CPU). On the other hand, a common challenge in utilizing simulated
ultrasound data for training neural networks is the domain shift problem. This issue arises
when the distribution of simulated images differs from that of real images, resulting in mod-
els trained on synthetic data that are not generalizable to clinical data. The domain shift
problem can occur even when sufficient real data is available, but the data were acquired us-
ing different scanners or settings. In Chapter 6, we evaluate the effectiveness of the Fourier
domain adaptation method and demonstrate its efficacy in enhancing the performance of a
breast lesion segmentation task.
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Chapter 2

Phase Aberration Correction: A
Convolutional Neural Network
Approach
This chapter is based on our published paper [81].

This chapter proposes a novel method for estimating the aberration profile from an ul-
trasound B-mode image using a CNN to compensate for the phase aberration effect. To
the best of our knowledge, this is the first study that employs CNNs for phase aberration
correction in ultrasound images. In most cases, CNNs are regarded as a black box, where
the output is a corrected version of the input. However, our objective here is not to directly
generate a corrected image from the aberrated input. Instead, we aim to estimate the aber-
ration profile, represented as a vector with a limited number of elements. The advantages
of our approach are twofold. First, image fidelity is critical in medical applications, espe-
cially when it comes to accurately reconstructing hypoechoic targets such as blood vessels
and heart chambers. Estimating the aberration profile enables image formation using an
open system. Second, it allows us to guide the network to focus on one task, aberration
correction, by estimating a small vector instead of a large image. In contrast to traditional
methods, which mostly apply time-consuming processing techniques on RF channel data
and need several iterations for reasonable accuracy, the proposed approach utilizes only
the B-mode image to estimate the aberration profile in one shot with high accuracy. We
experimentally investigate the main characteristics of the proposed approach and present a
quantitative evaluation of the estimated aberration profile.

The proposed method is compared with the conventional DAS method and a method
based on nearest-neighbor cross-correlation (NNCC) [82, 83]. In the NNCC method, one
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element is set as the reference, and pairs of adjacent RF channel signals are selected. The
normalized cross-correlation (NCC) between one signal and time-shifted versions of the
other is then calculated to determine the time delay that maximizes the NCC. Repeating
this procedure for all N − 1 pairs of adjacent RF channel signals in a sub-aperture with N

elements yields the aberration profile. However, the NNCC is only able to estimate the rel-
ative delays between the probe elements, not the true mean delay error across the aperture.
To address this problem, Monjazebi et al. [84] presented an optimization-based algorithm
to maximize the brightness and variance over a region of interest of the reconstructed image
to estimate the absolute mean delay error. The results demonstrate that the proposed CNN
method substantially outperforms other approaches based on both quantitative metrics and
qualitative assessments.

2.1 Methodology

2.1.1 Aberration profiles

Phase aberration is generally parameterized by a combination of its strength and correlation
length. The strength is the root mean square (RMS) of the aberrator function in nanosec-
onds, and the correlation length, which represents spatial frequency content, is referred to
as full width at half maximum (FWHM) of the aberrator autocorrelation function in mil-
limeters [85]. An aberration profile becomes stronger and induces more degradation effect
as its strength is increased and its correlation length is decreased, which means higher am-
plitude with more fluctuations. Several studies in the literature have reported parameters
of aberration profiles based on experimental measurements. For instance, the strength and
correlation length for in-vivo and ex-vivo breast tissue are reported as 28.0 ns, 3.48 mm,
and 66.8 ns, 4.3 mm respectively [86, 87]. We generated 35,000 one-dimensional aberra-
tion profiles by convolving a Gaussian function with Gaussian random numbers similar to
[85]. Aberration profiles were varied uniformly in strength and correlation length ranging
from 20 to 70 ns, and from 3 to 9 mm, respectively, to cover an extended set of tissues.

2.1.2 Training Dataset

The publicly available Field II simulation package [79, 80] was used to simulated 35,000
aberrated ultrasound images containing 15 scatterers per resolution cell and uniformly dis-
tributed inside a phantom of the size of 20×20×10 mm, which was centered at the focal
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point and located at an axial depth of 20 mm from the face of the transducer with 64
elements. The phase aberration effect was simulated by applying delays of previously gen-
erated aberration profiles to the transducer elements for both transmission and reception to
reflect a realistic aberration effect. Simulation parameters are tabulated in Table 2.1.

Table 2.1: Field II parameters for data simulation.

Parameter Value
Center Frequency 5 MHz

Number of Elements 64

Element Height 5 mm

Element Width Equals to wavelength

Kerf 0.05 mm

Transmit Focus 30 mm

In each simulation, we randomly created 1 to 4 inclusions with a random diameter
ranging from 2 to 5 mm and positioned randomly inside the phantom. Each region was
either an anechoic region or a hypoechoic region with an equal probability. For the latter,
the amplitudes of all inside scatterers were multiplied by a random constant ranging from
0 to 0.5.

2.1.3 Deep Convolutional Neural Networks

In all simulations, the RF channel data were utilized to generate B-mode images, and the
results were resized to 256×256 pixels using third-order spline interpolation. Before being
fed into the network, mean subtraction was performed to center the dataset around the
origin along each dimension. Furthermore, each dimension was divided by its standard
deviation to normalize the data. For both pre-processing steps, statistics were computed
solely on the training set and then applied to all training, validation, and test sets.

The aberration profiles were set as the output of the network. This output was a vector
of size 64, with each number representing the time delay experienced by the corresponding
transducer element. The aberration profiles were also normalized to range from -1 to 1
using the maximum absolute value in the training set. This coefficient was saved to con-
vert the network estimations back to the original scale. Fig. 2.1 shows the outline of the
proposed method.
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Figure 2.1: Outline of the proposed method. B-mode image is the input, and the estimated
aberration profile (vector of size 64) is the output.
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Figure 2.2: Training history and MSE calculated over the test set for several SOTA CNNs.
The networks were modified by replacing the final layer with a fully connected layer using
a linear activation function to address the regression problem.

Evaluation of Networks

As the first experiment, we investigated the performance of several SOTA CNNs including
MobileNetV2 [88], DenseNet [89], InceptionResNetV2 [90], NASNetMobile [91], Effi-
cientNet [92], and Xception [93]. As these networks were originally designed for classi-
fication problems, we removed the last layer and replaced it with a fully connected layer
with a linear activation function in order to solve the regression problem. The AMSGrad
optimizer [94], a variant of ADAM [95], was utilized for training the networks. The learn-
ing rate was heuristically set to 0.001. While MSE is a common loss function for solving
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regression problems using DL, it is more sensitive to outliers and may result in a less gen-
eral model in their presence. In this chapter, the mean absolute error (MAE) loss function
was employed as we found it more stable during the training process, similar to what is
reported in [96], and [97]. All trainings were performed using a single NVIDIA TITAN Xp
with 12 GB of memory.

The 15,000 images from the simulated dataset were divided into three training, vali-
dation, and test sets composed of 10,000, 3000, and 2000 samples, respectively. An early
stopping strategy was implemented to stop training when the validation loss stops improv-
ing after 50 epochs, with a minimum of 300 epochs required, regardless of the early stop-
ping rule. For each training epoch, we saved the weights only if the validation loss had been
improved and finally used the best weights for the test data. Although we only employed
the early stopping strategy to avoid overfitting, applying weight regularization techniques
such as L1, L2, or L1L2 regularization, or adding dropout, could also have helped miti-
gate overfitting. Fig. 2.2 shows training history and the test set MSE for each network. In
addition, a sample aberration profile from the test set and its corresponding estimations us-
ing each network is illustrated in Fig. 2.3 (top). Although the MobileNetV2 did not attain
the best MSE, it achieved comparable results to other networks despite being much less
computationally expensive. As such, we chose this network for the rest of this chapter.

Global Pooling

To investigate the effect of global pooling, we trained MobileNetV2 under three different
conditions: without a global pooling layer (adding a flatten layer before the fully connected
layer), with a global average pooling layer, and with a global max pooling layer. Results
for a test sample are presented in Fig. 2.3. As anticipated, including a global pooling layer
resulted in a lower error, as it functions as a regularizer [98]. Although some experiments
reported that max pooling provides a higher performance because of its nonlinearity [99],
we chose the global average pooling, as in addition to its slightly lower MSE in our exper-
iment, it provides a smoother estimation. The jagged estimation obtained by max pooling,
regardless of its error, highly decreases the correlation length of the estimated aberration
profile, which is not desirable in this application and induces a stronger aberration. We
believe this is due to aliasing issues caused by max pooling [78]. Fig. 2.3 shows how
the estimation of a sample aberration profile is smoother by employing a global average
pooling.

15



1 10 20 30 40 50 64
element number

0.5

0.0

0.5
no

rm
al

iz
ed

 d
el

ay

Prediction of a sample profile from the test set

ground truth
MobileNetV2 (no pooling)
MobileNetV2 (max pooling)

MobileNetV2 (avg pooling)
DenseNet201
InceptionResNetV2

NASNetMobile
Xception

1 10 20 30 40 50 64
element number

0.0

0.2

no
rm

al
iz

ed
 d

el
ay

Global pooling effect

ground truth
no pooling
max pooling

avg pooling
error (no pooling)

error (max pooling)
error (avg pooling)

Figure 2.3: (Top) A sample aberration profile from the test set and its corresponding esti-
mated profiles using different CNNs. (Bottom) Results of estimating an aberration profile
under three different conditions: without a global pooling layer, with a global average pool-
ing layer, and with a global max pooling layer.

MSE per Element

It is interesting to study the accuracy of delay estimation for different elements. The solid
line in Fig. 2.4 (left) shows that MSE of estimated delays is not the same for all elements.
Considering all scan lines at the same time, the mean power received by each element from
echo signals decreases by moving away from the middle element. Therefore, their corre-
sponding delays have less contribution to the information which supposed to be captured by
the network. However, MSE decreases for the very first and very last elements. We believe
this is due to the significant contribution of these elements in generating boundary artifacts,
which provides the network with a strong texture for the estimation. To demonstrate that
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Figure 2.4: Accuracy of delay estimation for each element. (Left) The solid line illus-
trates that the MSE of the estimated delays varies across different elements. To investigate
whether this variation originates from the network, we swapped the first and second halves
of the output vectors across the dataset and retrained the network. The dashed black line
represents the predicted output for this swapped experiment. (Middle) A sample profile
from the swapped dataset and the corresponding predicted output. (Right) Sample pre-
dicted outputs for trained networks when only a portion of the image is provided as input.

the origin of this MSE variation is not the network, we swapped the first and second halves
of the output vectors across the dataset and trained the network again. The dashed line
in Fig. 2.4 (middle) shows a sample swapped profile. Figure 2.4 (left) demonstrates that
the MSE for each element remains almost the same before and after the swapping process.
This finding indicates that the observed results are not artifacts of the network architecture
or the boundary effects of the CNN.

In addition to using the whole image as the input, we also trained networks by feeding
only a portion of the image. Fig. 2.4 (right) shows the results for four different cases. The
legend represents feeding the network with the whole, right half, left half, and vertically
middle part of the image, respectively. We can see that, for instance, the delay estimation
error increases for elements at the right side of the probe when the network is fed with
merely the left half of the image. It demonstrates that the left half of the image contains less
information for estimating element delays on the right side of the probe, as those elements
had less contribution in generating the left half of the image. The fourth case shows the
worst MSE because of both discarding a portion of axial information, as well as a smaller
sample size.

Training Set Size

We trained the network with training sets of sizes 7500, 10,000, 20,000, and 30,000 images.
As shown in Fig. 2.5, the MSE over the test set was 0.0293, 0.0260, 0.0254, and 0.0240,
respectively, which indicated 11.21%, 2.65%, and 5.52% improvement from the first to the
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Figure 2.5: The effect of training set size on error. The green triangle and orange line
represent the mean and median, respectively.

Output Size

In all previous experiments, the output was a vector of size 64 in which each vector element
was the delay of the corresponding transducer element. To study the effect of the output
size, we conducted three different new experiments: (1) Instead of estimating delays of
all 64 elements together using a single network, we modified the network to estimate the
delay of each element individually to see if we can achieve higher accuracy by training 64
separate networks. To that goal, we replaced the output layer with a new layer consisting of
only a single neuron. (2) We reduced the output size by a factor of 4 by replacing the output
layer with a new layer consisting of 16 neurons to see if higher performance is achievable
by reducing the number of parameters. In this case, aberration profiles were downsampled
to a vector of size 16 during training the network. For the test, we upsampled outputs again
to their original size to have the estimated delays for all 64 elements. (3) We increased the
output size by a factor of 4 by replacing the output layer with a new layer consisting of
256 neurons. For training, aberration profiles were upsampled to a vector of size 256, and
during the test, we downsampled estimated delays to their original size to make the results
comparable.

We trained networks for three aforementioned cases with 30,000 images and used the
trained model to estimate aberration profiles of the test set composed of 2000 images. For
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the first case, we only trained one network for element #32. Fig. 2.6 (top) shows the MSE
for element #32 when we tried to estimate the corresponding delay alone or with other
elements together. We can see that MSE decreases by increasing the number of tasks that
are asked from the network. Assuming that learning each delay is a separate task, we
considerably reduce the risk of overfitting by sharing the hidden layers between all tasks
and estimating all delays together. This approach aligns with the multi-task learning (MTL)
framework. For example, Baxter [100] demonstrated that the risk of overfitting shared
parameters is an order of magnitude N smaller than the risk of overfitting task-specific
parameters, where N is the number of tasks. This is why involving more auxiliary tasks,
i.e. estimating delays of more elements, leads to smaller errors. Our setup in estimating all
delays is analogous to hard parameter-sharing in MTL [101]. Intuitively, the larger number
of delays we are estimating simultaneously leads to a more general representation and less
chance of overfitting. Fig. 2.6 (bottom) shows the MSE of all elements for different output
sizes, except for the output size of 1 which is estimated only for element #32.

2.1.4 Quality Metrics

We evaluate the proposed method for different levels of aberration from weak to strong
using contrast, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) to quantita-
tively measure the quality of reconstructed images:

Contrast = −20 log10(
µtarget

µbackground

) (2.1)

CNR = 20log10(
|µbackground − µtarget|√︂
σ2
background + σ2

target

) (2.2)

SNR =
µbackground

σbackground

(2.3)

where µ is the mean and σ is the standard deviation. For contrast and CNR, the target refers
to inside a circular region with a radius of 0.8 times the cyst radius, and the background
refers to a region between two concentric circles with radii of 1.1 and 1.8 times the cyst
radius. For SNR, the background refers to a square region far from the cyst. These metrics
were calculated on the envelope-detected image in the linear domain and prior to applying
log-compression.
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Figure 2.6: MTL versus learning a few tasks. Framing the estimation of each delay as an
individual task, we achieve higher accuracy by estimating all delays together rather than
estimating them separately.

2.2 Results

The best weights for the network trained with 30,000 images were used to estimate 2,000
aberration profiles of the test set, and the outputs were subsequently subtracted from the
corresponding ground truths. The resulting errors can be considered as new aberration
profiles, which still induce aberration in the corrected images after compensating for the
phase aberration effect.

To quantitatively evaluate the proposed method regarding parameters of aberration pro-
files, their strength and correlation length were calculated before and after the correction of
the test set and shown in Fig. 2.7.

To be able to compare the image quality improvement achieved by the proposed CNN
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Figure 2.7: Evaluation of aberration profiles strength and correlation length before and
after compensating for the phase aberration effect using the proposed method. The green
triangle and orange line represent the mean and median, respectively.

method, we simulated another test set composed of 200 aberrated ultrasound images con-
taining an anechoic cyst with a diameter of 4 mm centered at the phantom. Aberration
profiles were varied uniformly from weak (20 ns in RMS and 6 mm in correlation length
for the first image) to strong (70 ns in RMS and 3 mm in correlation length for the last
image). Every other setting was the same as the previous dataset. The best weights for
the network trained with 30,000 images and the output size of 64 were used to estimate
aberration profiles and corrected images. Three sample images reconstructed using DAS,
NNCC, and the proposed CNN methods are pictured in Fig. 2.8, along with their corre-
sponding ground truths and estimated aberration profiles. Top, middle, and bottom rows
show samples with weak, moderate, and strong aberration levels, respectively.

Fig. 2.9 presents image quality metrics, encompassing contrast, CNR, and SNR, which
were calculated for each method over the test set. The mean and standard deviation values
for each comparison are also summarized in Table 2.2.
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Figure 2.8: Three sample images reconstructed using DAS, NNCC, and the proposed CNN
methods. The last column shows the corresponding ground truth and estimated aberration
profiles. The top, middle, and bottom rows show samples with weak, moderate, and strong
aberration, respectively.

Table 2.2: Results for anechoic cyst phantoms

Metric DAS NNCC CNN

Contrast (dB) 22.49 ± 5.95 23.52 ± 5.19 29.71 ± 2.24

CNR (dB) 2.91 ± 1.04 2.95 ± 0.94 3.35 ± 0.61

SNR 1.67 ± 0.14 1.64 ± 0.13 1.56 ± 0.1

2.3 Discussion

We subtracted estimated aberration profiles from corresponding ground truths for every
2000 samples of the test set. Assessing the resulted errors regarding both strength and cor-
relation length parameters is informative; because they are new aberration profiles, which
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Figure 2.9: Comparison of contrast (dB), CNR (dB), and SNR image quality metrics for
DAS, NNCC, and proposed CNN method. Quality metrics are computed from anechoic
cysts centered at phantoms and aberrated with different levels of phase aberration. The
green triangle and orange line represent the mean and median, respectively.

yet induced aberration to the corrected images. Fig. 2.7 shows that how the proposed
method weakened the induced aberration by reducing mean strength from 44.42 ns to 22.57
ns, and increasing mean correlation length from 5.98 mm to 8.15 mm, which indicates im-
provement by 49.19% and 36.29%, respectively.

Fig. 2.8 shows that the proposed CNN method successfully reconstructed the cyst lesion
for all three aberration levels. However, although the NNCC method managed to follow
the trend of the ground truth in moderate and strong aberration cases, it barely showed any
improvement in the contrast of the cyst lesion.

As we can see in Fig. 2.9, the proposed CNN method dramatically outperformed other
methods in terms of contrast, achieving a 7.22 dB improvement. The phase aberration
effect tends to smear the anechoic cyst and decrease the contrast; however, this effect can
be mitigated through a more accurate estimation of the aberration profile. In contrast, as
we expected, the SNR is decreased by the proposed method, as it recovered the speckle
pattern, which had been reduced because of the blurring effect induced by aberration. For
the same reason, i.e. increasing the background variance, the improvement of CNR is not
as substantial as the contrast. However, it’s not a drawback for the proposed method as it
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was not supposed to blur the speckle pattern in the first place.
The simulation results proved this concept that a CNN can estimate the aberration pro-

file from an ultrasound B-mode image. To be able to successfully apply the proposed
method on experimental phantom data or real clinical data, additional considerations may
need to be taken into account alongside training the network to minimize the domain shift
problem. First, the simulation parameters, such as the center frequency and the number of
transducer elements, need to be similar to the experimental transducer. Finally, applying a
domain adaptation method may help to achieve a lower error.

2.4 Conclusion

For the first time, we proposed a method to compensate for phase aberration in ultrasound
images using neural networks. We generated aberration profiles with a variety of strengths
and correlation lengths and employed them to simulate aberrated B-mode images to mimic
this artifact for an extended set of tissues, according to experimental measurements reported
in the literature. Deep CNNs were trained to take the B-mode image and estimate the
aberration profile. Several SOTA CNNs were modified to solve the regression problem and
evaluated for this task. In addition to the effect of global pooling and training set size,
we explored the effect of boundary artifacts, and how extracting features from different
parts of the image can affect the estimated delay per transducer element. We also showed
how estimating all delays together, instead of estimating each delay alone, leads to a better
performance due to hard parameter sharing in MTL. The proposed method was evaluated
in terms of aberration strength and correlation length, as well as image quality metrics,
including contrast, CNR, and SNR. The results demonstrated that our method dramatically
outperforms both the DAS and NNCC methods.
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Chapter 3

Mitigating Aberration-Induced Noise: A
Deep Learning-Based
Aberration-to-Aberration Approach
This chapter is based on our published paper [102].

In the previous chapter, we introduced an aberration correction method and demon-
strated that a CNN can estimate delay errors, or the aberration profile, directly from B-mode
images. Although this approach offers a more explainable solution than directly estimating
the corrected image, it requires ground truth data for network training. Obtaining ground
truths in real-world scenarios can be challenging, if not impossible. As a result, the meth-
ods requiring ground truths have to rely solely on simulated data for training, leading to a
drop in performance when testing on experimental data due to the domain shift problem.
Recent aberration correction studies have recognized the need to eliminate the requirement
of ground truths; however, even in such efforts, reconstructed images with a fixed sound
speed value of 1540 m/s were still considered clean images [46].

In this chapter, for the first time, we propose a novel DL-based method that does not
require ground truth to correct the phase aberration problem and, as such, can be directly
trained on real data. We train a network wherein both the input and target output are ran-
domly aberrated RF data. Moreover, we demonstrate that a conventional loss function such
as MSE is inadequate for training such a network to achieve optimal performance. In-
stead, we propose an adaptive mixed loss function that employs both B-mode and RF data,
resulting in more efficient convergence and enhanced performance. In addition, we pub-
licly release our dataset, comprising over 180,000 aberrated single plane-wave images (RF
data). Although not utilized in the proposed method, each aberrated image is paired with
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its corresponding aberration profile and the non-aberrated version, aiming to mitigate the
data scarcity problem in developing DL-based techniques for phase aberration correction.
Contributions of this chapter can be summarized as follows:

1. We propose the first DL-based aberration correction method that eliminates the need
for ground truth in the training phase. Both input and target output are randomly
aberrated RF data, which enables us to use real experimental data for training, fine-
tuning, or both without any explicit assumption regarding the presence or absence of
phase aberrations.

2. Our training setup presents a significant challenge as both the input and desired out-
put of the network contain aberrations that randomly differ in each frame and epoch.
Adding to the complexity is the fact that RF data includes high-frequency compo-
nents. We demonstrate that a conventional loss function such as MSE is inadequate
for training such a network. To address this challenge, we introduce a loss function
that incorporates both B-mode and RF data and evaluate its performance.

3. We publicly release a dataset comprising 1,802 sets of single plane-wave images (RF
data). Each set includes 100 aberrated versions of the same realization. Although not
utilized in the proposed method of this chapter, corresponding aberration profiles,
and non-aberrated versions are also included for comprehensiveness. To the best of
our knowledge, this is the first dataset practically suitable for developing DL-based
techniques in this domain, given its size and structure. The source code is also avail-
able along with the dataset at http://code.sonography.ai/main-aaa.

The proposed method mitigates aberration-induced noise using an aberration-to-aberration
approach, which we name MAIN-AAA, and show that it substantially improves aberrated
images in simulation and phantom experiments. Collaborating with an expert radiologist,
we could also visually corroborate improvements in in-vivo images.

3.1 Methodology

3.1.1 Aberration-to-Aberration Approach

Let us consider a set of noisy scalar measurements, denoted by a = (a1, a2, ..., aN), rep-
resenting the recorded signal amplitude corresponding to reflection from a particular point
within a medium. To estimate the true amplitude, a common approach involves finding
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a value â that minimizes the expected deviation from measurements according to a loss
function L:

argmin
â

Ea{L(â, a)}. (3.1)

For L(â, a) = (â − a)2, it is straightforward to demonstrate that this minimum occurs at
the arithmetic mean of the measurements. Training neural networks as regression models
is a generalization of this point estimation approach, which means that training a network
with infinite samples utilizing an MSE loss function estimates the expectation of the target
samples [103].

In the context of ultrasound images, tissue response can be represented as a single point
within a high-dimensional manifold. Phase aberrations and artifacts, such as those caused
by sidelobes and multiple scattering, can shift this point, deviating from its original posi-
tion. However, these artifacts tend to be inconsistent across different images, whereas the
tissue response remains consistent. Consequently, when training a network using randomly
aberrated images, the objective is to disentangle these artifacts from the tissue response by
interrogating different aberrated instances.

3.1.2 Phase Aberration Model

We modeled the phase aberration effect by assuming a near-field phase screen in front of
the transducer, which introduces different delay errors to each transducer element during
both transmission and reception. Although this model does not make any assumptions
regarding the spatial distribution of sound speed within the medium, it proves particularly
useful in scenarios where an aberrator layer in front of the transducer is so dominant that
other sources of aberration in the remainder of the medium are negligible. An example
is imaging overweight subjects, where the wave must propagate through a thick layer of
fat found in the near-field [20]. In these cases, slight lateral variations in the thickness
of the strong aberrator layer may impose strong aberrations, often impeding the optimal
performance of methods designed to estimate the distribution of sound speed [33].

The aberration profile in this model is represented as an array, where each element of the
array corresponds to a delay error value assigned to a specific transducer element. Aber-
ration profiles are characterized by their strength and correlation length. The strength is
defined as its RMS amplitude in nanoseconds, and the correlation length, which represents
the spatial frequency content, is defined as the FWHM of its autocorrelation in millimeters
[85]. An aberration profile becomes stronger and induces more degradation effect as its
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strength is increased, and its correlation length is decreased, which means higher ampli-
tude with more fluctuation across the aperture [81]. Experiments were conducted in some
literature to estimate the parameters of aberration profiles. For instance, the strength and
correlation length for in-vivo and ex-vivo breast tissue are reported as 28.0 ns, 3.48 mm,
and 66.8 ns, 4.3 mm respectively [86, 87]. We generated random aberration profiles by
convolving a Gaussian function with Gaussian random numbers [85], where they were var-
ied uniformly in strength and correlation length ranging from 20 to 80 ns, and from 4 to 9
mm, respectively, to encompass a broad range of tissues.

3.1.3 Phase Aberration Implementation

We first explain the methodology used for introducing phase aberration into simulated and
experimental phantom data. Details regarding the simulation or acquisition of data, as well
as where each approach was employed, will be discussed later. The Supplementary Video,
at http://code.sonography.ai/main-aaa, also provides an overview.

Simulated Aberration

To introduce the aberration effect into simulated data, we utilized full synthetic aperture
data and synthesized aberrated plane-wave images under linear and steady conditions. Fig.
3.1 demonstrates a typical configuration of ultrasonic imaging systems in the (a) absence
and (b) presence of a near-field phase screen, which can be defined by an aberration profile
τa. A linear array transducer consisting of N elements is positioned in direct contact with
the imaging medium of interest. The array is oriented such that the x-axis is parallel to its
length, while the depth direction within the imaging medium is represented by the z-axis.
After a single plane-wave transmission, the received echo signal at time t by element n
located at xn can be calculated using full synthetic aperture data as follows:

RF (xn, t) =
N∑︂

m=1

RFfsa (xm, xn, t+ τa (xm)), (3.2)

where RFfsa(xm, xn, t) is the received echo signal at time t by element n located at xn

solely due to excitation of element m located at xm and τa (xm) is the delay error that el-
ement m experiences according to the aberration profile τa. In the absence of aberration,
as shown in Fig. 3.1(a), we can assume synchronous excitation times for all piezoelec-
tric elements during synthesizing, equivalent to transmitting a flat wavefront. In this case,
the delay error τa equals zero for all transducer elements. However, to simulate the phase
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aberration effect during transmission, as shown in Fig. 3.1(b), we assumed asynchronous
excitation times for piezoelectric elements by applying delay errors imposed by the aberra-
tion profile. In the absence of phase aberration, the required time for the acoustic wave to
travel to point (x, z) and return to the transducer element n located at xn is

τ(xn, x, z) = (z +

√︂
z2 + (x− xn)

2)/c, (3.3)

where c is the sound speed. The phase aberration effect in reception was implemented
as a set of time delay errors corresponding to backscattered signals and according to the
aberration profile τa. To this end, and given the calculated time delay, each point (x, z)
within the region of interest can be reconstructed as

s(x, z) =

k+[a/2]∑︂
n=k−[a/2]

RF (xn, τ(xn, x, z) + τa(xn)), (3.4)

where k is the nearest transducer element to x, and [.] represents rounding to the nearest
integer. Aperture size a determines the number of elements that contribute to the signal and
can be expressed using the f -number, which was set to 1.75 in this chapter and is defined as
F = z/a. In summary, delay errors τa(xm) and τa(xn) in Eqs. (3.2) and (3.4) contribute to
the aberrations that occur during transmission and reception, respectively, where the former
simulates asynchronous excitation of piezoelectric elements during synthesizing the plane-
wave and the latter disorders time delays corresponding to received echo signals.

Quasi-physical Aberration

Our approach for introducing a quasi-physical aberration to an experimental phantom re-
quired programming a Vantage 256 research scanner. We programmed the scanner to excite
transducer elements asynchronously according to a given aberration profile. To this end, de-
lay errors corresponding to each element were calculated in wavelengths of the transducer
center frequency and written to the TX.Delay array, provided by the scanner programming
interface, resulting in the generation of an aberrated wavefront during single plane-wave
imaging. Moreover, delay errors introduced by the aberration profile were taken into ac-
count during the reception process for reconstructing the image.
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Figure 3.1: A typical configuration of ultrasonic imaging systems in the (a) absence and
(b) presence of a near-field phase screen.

Physical Aberration

To introduce a physical aberration to the experimental phantom, we placed an uneven layer
of chicken bologna between the probe and the phantom, where the thickness of the left and
right halves was approximately 3 mm and 6 mm, respectively. Although the precise value
of the sound speed within this layer was unknown, we could be confident that it introduced
the aberration effect due to its uneven thickness and observing the effect in the resulting
image. To ensure proper contact, we filled the gap between the thinner half and the probe’s
surface with conductive gel and positioned the center of the probe at the discontinuity.

3.1.4 Datasets

Simulated

We simulated a synthetic dataset consisting of 1802 image sets using the publicly avail-
able Field II simulation package [80, 79], containing an average scatterer density of 60
per resolution cell (fully developed speckle pattern). The scatterers were uniformly dis-
tributed inside a phantom measuring 45 mm in the lateral and 40 mm in the axial direction,
positioned at an axial depth of 10 mm from the face of the transducer. We introduced
contrast to the images by incorporating five different types of echogenicities: anechoic re-
gions, hypoechoic regions, hyperechoic regions, diverse echogenicities, and point targets.
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To generate the first three types, we took 600 samples (200 samples per type) from a pub-
licly available dataset, known as XPIE [104], which included segmented natural images.
We then disregarded natural images and resampled only their corresponding segmentation
masks to match the phantom’s dimensions. Finally, the amplitude of scatterers located in-
side the mask was multiplied by a weight, which was zero for anechoic regions, a uniform
random number ∈ [0.063, 0.501] for -12 dB to -3 dB hypoechoic regions, and a uniform
random number ∈ [2, 15.8] for +3 dB to +12 dB hyperechoic regions. To enrich the range
of echogenicity, we obtained an additional 1000 samples from the XPIE dataset, but this
time we discarded the segmentation masks and instead resampled only the natural images
with the same dimensions as the phantom. These images were then converted to grayscale,
and similar to [105], the pixel intensities were utilized to weight the scatterers’ amplitude
according to their respective positions via bilinear interpolation. To enhance the contrast of
the ultrasound images, we preprocessed natural images by performing histogram equaliza-
tion and thresholding pixel values below 0.1 to zero and those above 0.9 to 1. Leveraging
natural images and masks for simulation, as described in this subsection, offers the ad-
vantage of providing the network with a broader range of features compared to images
containing only cysts or selectively chosen shaped regions. To simulate the remaining 200
sets, we introduced multiple randomly positioned point targets to each, where the number
of them was determined by a uniform random number ∈ [10, 20], and their amplitudes
were set randomly by drawing from a uniform distribution between 12 dB to 16 dB higher
than the mean amplitude of other scatterers. In addition, two test sets were simulated for
evaluation purposes: a contrast test set and a resolution test set. The former comprised
two anechoic cysts with diameters of 10 mm and 15 mm at central lateral positions and
depths of 10 mm and 28 mm, respectively. The latter included a total of 19 point targets
arranged in a vertical line at the central lateral position and two horizontal lines at depths
of 10 mm and 30 mm. The transducer settings used for simulation were similar to those
of the 128-element linear array L11-5v (Verasonics, Kirkland, WA) and are summarized
in Table 3.1.4. The center and sampling frequencies were set to 5.208 MHz and 20.832
MHz, respectively. It should be noted that due to the numerical precision of simulations
in Field II, the initial sampling frequency was set to 104.16 MHz, and the simulated data
was later downsampled by a factor of 5. All images were simulated using a full synthetic
aperture scan, followed by synthesizing plane-wave images [106] with 384 columns from
the acquired data and saved as RF data. We synthesized 100 randomly aberrated versions
of each image according to the procedure elaborated in subsection 3.1.3. Although the
non-aberrated version of images was not required for the proposed method, we opted to
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Table 3.1: The settings of linear array transducer L11-5v

Parameter Value Unit

Number of Elements 128 elements
Elevation Focus 20 mm
Element Height 5 mm
Element Width 0.27 mm
Kerf 0.03 mm

include them in the published dataset to enhance its comprehensiveness and facilitate the
utilization of our data in a broader range of applications. This is because other methods
may rely on non-aberrated images as a reference or ground truth. Fig. 3.2 shows samples
from the simulated dataset.

Experimental Phantom

An L11-5v linear array transducer was operated using a Vantage 256 system (Verasonics,
Kirkland, WA) to scan a multi-purpose multi-tissue ultrasound phantom (Model 040GSE,
CIRS, Norfolk, VA). We acquired one scan of anechoic cylinders for evaluations and an ad-
ditional 30 scans from other regions of the phantom for fine-tuning. In each acquisition, 51
single plane-wave images were captured, including one non-aberrated image (not for train-
ing and solely for visualization) and 50 randomly aberrated images utilizing pre-generated
aberration profiles as elaborated in subsection 3.1.3. To increase the frame rate, all 1550
required aberration profiles were randomly generated in advance and saved on the disk.
Given the fixed position of both the probe and phantom and the sufficiently high frame
rate, we assured that all 51 images belonged to the exact same region.

In-vivo

Two in-vivo images acquired from the carotid artery of a volunteer with cross-sectional
and longitudinal views were employed from the publicly available dataset provided by
the plane-wave imaging challenge in medical ultrasound (PICMUS) [107]. Although this
dataset was not explicitly designed for assessing aberration correction techniques, it was
utilized due to the unavailability of other in-vivo plane-wave images specifically acquired
with aberrations as testing on a publicly available dataset allows other researchers to com-
pare to our results.
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Figure 3.2: Samples from the simulated dataset. The left and middle columns showcase ex-
amples of anechoic and hyperechoic regions generated using arbitrary segmentation masks.
The right column presents a diverse echogenicity example generated based on a natural
image. For each case, the template, non-aberrated, and a sample aberrated version are
presented in the first to third rows, respectively. Templates and non-aberrated images are
included solely for visualization purposes and were not utilized in the proposed method.

3.1.5 Training

Inspired by Lehtinen et al. [103], the U-Net encoder-decoder CNN architecture [108]
was employed to map beamformed RF data input to beamformed RF data target output,
where both input and target output were distinct randomly aberrated versions of the same
realization. The network was trained on 1800 simulated image sets for 5000 epochs, each
set comprising 100 aberrated versions. In each epoch, a random pair of aberrated versions
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were mapped to each other. To optimize memory usage and accelerate the training process,
we downsampled images laterally by a factor of 2, resulting in 192 columns for each image.
Moreover, normalization was performed as outlined in Appendix B. A linear activation
function was employed in the last layer, and the batch size was set to 32. We utilized Adam
[95] with a zero weight decay as the optimizer. The learning rate was initially set to 10−3

and halved at epochs 500, 1000, 1500, and 4000. Fine-tuning on experimental images was
performed with the same configurations by extending the training by an additional 20%
of the original epochs while utilizing a constant and substantially lower learning rate of
5 × 10−5. To mitigate the impact of non-stationarity and attenuation in RF data training,
we partitioned experimental images into three axial sections, each with a 3% overlap, and
fine-tuned a distinct network for each depth. When testing experimental images, we fed
each image depth to its corresponding network and patched the outputs by blending the
envelope of overlapping margins using weighted spatial averaging before displaying the
final image. We implemented the method using PyTorch and trained all the models on two
NVIDIA A100 GPUs in parallel.

3.1.6 Loss Function

Let S,S′, Ŝ ∈ Rp×q represent input aberrated RF data, target output aberrated RF data,
and network output, respectively. The aberration-to-aberration problem can be formulated
as

Ŝ = fcnn(S,θ), (3.5)

θ∗ = argmin
θ

L(S′, Ŝ), (3.6)

where fcnn : Rp×q → Rp×q is the U-Net, θ are the network’s parameters, and during the
training phase, an optimizer is utilized to find optimal parameters θ∗ that minimize the
error, measured by a loss function L, between network’s output Ŝ and target output S′.
In this problem, input and target output were highly fluctuating aberrated RF data, which
were randomly substituted at each epoch. We demonstrated in a pilot study in Section 3.2.1
that the network encounters challenges in mapping pairs when comparing RF data directly
using a conventional MSE loss defined as

Lmse(S
′, Ŝ) =

1

p× q
||S′ − Ŝ||2. (3.7)
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On the other hand, we illustrated that training the network using the same loss function but
on B-mode data leads to improved convergence, which can be attributed to the smoother
loss landscape associated with B-mode data. Nonetheless, this improved convergence
comes at the expense of discarding valuable information present in RF data. To leverage
the benefits of both data types, we proposed an adaptive mixed loss function that gradually
shifts from B-mode data to RF data as the training progresses,

Ladaptive_mixed(S
′, Ŝ) = (1− α)Lmse(B{S′},B{Ŝ})

+ αLmse(S
′, Ŝ),

(3.8)

α =
current epoch number

total number of epochs
, (3.9)

where B{.} denotes the log-compressed envelope data standardized by mean subtraction
and division by its standard deviation.

Our interpretation suggests that the proposed loss function guides the optimizer towards
a correct solution by initially utilizing simpler data, before gradually incorporating more
complex, fluctuating RF data to take full advantage of the richer information, like curricu-
lum learning [109]. This helps to avoid getting stuck in local minima during the initial
stages of the optimization.

3.1.7 Methods for Comparison

Among recent aberration correction methods, many either require multiple plane-wave
transmissions [30, 37] or utilize multistatic aperture data for synthetic focusing across all
points [35]. We compared the proposed method with two approaches applicable to single
plane-wave images, enabling a fair comparison.

Beamsum

The beamsum method, which has recently demonstrated promising results in cardiac imag-
ing [110], estimates delay errors by maximizing NCC between individual channel signals
and a common reference signal, known as the beamsum [83]. In this method, after apply-
ing beamforming time delays, all channel signals are summed to form the reference signal.
Subsequently, each channel signal is aligned with the reference one by maximizing their
normalized cross-correlation. A potential limitation arises from a relatively low correlation
between individual channel signals and the beamsum, especially in plane-wave images with
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limited steering angles. To mitigate this, we averaged each channel signal with those from
its n adjacent channels before being compared with the beamsum. While this averaging
might theoretically reduce the accuracy of the aberration profile estimation, it enhances
overall performance in practical applications when the correlation is low. In this chapter,
we heuristically set n to 4 to achieve optimal performance. Additionally, to ensure a fair
comparison, corrections using the beamsum method were only applied during reception,
without iterative corrections during subsequent transmissions.

FXPF

The FXPF method has proven effective in filtering out acoustic clutter and random noise
[19], and its application has expanded to include mitigating noise induced by phase aber-
ration [20]. Let us consider the received RF signal at time t by element n located at xn and
denote its Fourier transform as RFn(f) = F{RF (xn, t)}. The FXPF method establishes
an AR model of order d across the RF channel signals received at transducer elements.
Specifically, in the frequency domain and for each temporal frequency f0, the method pre-
dicts a signal as a linear combination of the signals received by the preceding channels:

RFn+1(f0) = b1RFn(f0) + b2RFn−1(f0)+

...+ bdRFn+1−d(f0).
(3.10)

Estimating coefficients b from noisy data filters out non-conforming components based
on the established model. Further details can be found in [19, 20]. Although FXPF had
been previously employed for focused images, we adapted this method for plane-wave
images. The key adjustment involved applying apodization before using the method on the
data to avoid image deterioration at shallow depths. This alteration was necessary due to
significant variation in channel data across different elements at these depths, where signals
from more distant elements are inaccurate and negatively affect the AR model.

In all experiments, the FXPF method was employed with an AR model of order 2 and
3 iterations, determined to yield the optimal performance through a 6×6 grid search, with
each parameter ranging from 1 to 6. Consistent with the original study, we set a stability
factor of 0.01 and a kernel size equivalent to one wavelength. As the implementation of
this method was not publicly available, we took the initiative to publicly release our own
implementation, to enhance the reproducibility of the reported results.

36



3.1.8 Quality Metrics

To quantitatively measure the quality of reconstructed images, we calculated contrast,
generalized contrast-to-noise ratio (gCNR) [111], speckle SNR, and FWHM metrics for
the test images:

Contrast = −20 log10(
µt

µb

), (3.11)

SNR =
µb

σb

, (3.12)

gCNR = 1−
∫︂ +∞

−∞
min
x

{pt(x), pb(x)}dx, (3.13)

where t and b stand for target and background regions, respectively, µ is the mean, and
σ is the standard deviation. In Eq. (3.13), x denotes the image value at any given pixel,
and p(x) is the probability density function of the values taken by pixels of a region. The
gCNR ranges from 0 to 1, with a higher value indicating better contrast. To provide a
fair comparison, all metrics were calculated on the envelope-detected image in the linear
domain before applying the log-compression and its subsequent changes to the dynamic
range.

3.2 Results

3.2.1 Pilot Study

To assess the performance of the proposed adaptive mixed loss function, we conducted an
isolated pilot study using solely the simulated contrast test set described in Section 3.1.4.
That set consisted of 100 aberrated versions of the same realization, where 99 versions
served as the training set, and the remaining one version was used for testing in this pilot
study. The network was trained using the configuration specified in Section 3.1.5, in which
during each epoch, each of the 99 versions was randomly mapped to another one. We
trained three distinct networks, fed them with the test version, shown in Fig. 3.3(b), and
compared their outputs. The first network was trained using B-mode data, both as input and
output, utilizing MSE loss. The resulting output is depicted in (c), where cyst boundaries
were mostly recovered, but the image appears to be blurry compared to the non-aberrated
(a) and aberrated (b) images. This blurring effect is consistent with the findings reported
in [112], where the objective was speckle filtering. To further illustrate the principles out-
lined in Section 3.1.1 regarding the aberration-to-aberration approach, we averaged the 99
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Figure 3.3: Training with different data types and loss functions in a pilot study. (a) The
non-aberrated image, shown merely as a reference and not used for training. (b) The aber-
rated input image. The output of the network when it is trained on (c) B-mode data using
the MSE loss function, (d) RF data using the MSE loss function, and (e) RF data using
the proposed adaptive mixed loss function. Moreover, (f) and (g) show the mean of 99
aberrated versions that served as the training set in this pilot study, separately for B-mode
and RF data. All images were normalized to their maximum intensity value and displayed
on a 50 dB dynamic range.

aberrated versions that served as the training set in this pilot study, separately for B-mode
and RF data. The results are showcased in (f) and (g), which are aligned with findings
in [113]. Interestingly, the network output in (c) closely resembles that of (f), indicating
that the first network, trained with MSE loss, attempted to average the aberrated B-mode
targets. However, the speckle pattern contains valuable information that can be utilized
in applications such as elastography [114, 115, 116]. Motivated by the richer information
content present in RF data and aiming for a sharper output similar to the one shown in (g),
we trained the second network using RF data as both input and output. As shown in (d), the
network encountered challenges in mapping pairs of highly fluctuating aberrated RF data,
which were randomly substituted at each epoch, leading to limitations in recovering cyst
boundaries compared to the B-mode data scenario.

Inspired by the results obtained from training with B-mode and RF data, we combined
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Figure 3.4: Simulated contrast and resolution test images. (a) The non-aberrated image,
shown merely as a reference and not used for training. (b) A sample aberrated image
reconstructed using DAS. (c) Beamsum output. (d) FXPF output. (e) MAIN-AAA output.
All images were normalized to their maximum intensity value and displayed on a 50 dB
dynamic range.

both approaches by training the third network using RF data as both input and output but
employing the proposed adaptive mixed loss function. The proposed loss function gradu-
ally shifts from B-mode data to RF data as the training progresses toward convergence. As
shown in (e), this approach exploited the advantages of the rich information within RF data
and produced a sharper image compared to (c) while still retaining the ability to recover
boundaries more efficiently compared to (d). The enhanced contrast compared to (a) and
(g) is also elaborated upon in the Discussion section. Although further investigations are
required, we believe that the advantages of the proposed loss function extend beyond the
aberration correction task and can potentially improve the performance of other networks
working with RF data in various tasks.

3.2.2 Main Study

Based on the findings from the pilot study, we chose the adaptive mixed loss function and
utilized it for the subsequent experiments presented in this chapter. In the main study, we
trained the network using 1800 simulated image sets and evaluated its performance on two
contrast and resolution test sets, each including 100 aberrated versions of the corresponding
image. One such aberrated version, reconstructed using the conventional DAS, is shown in
Fig. 3.4(b) for each test image, followed by the resulting outputs of the beamsum, FXPF,
and the proposed method. Note that in contrast to the pilot study, the network, in this case,
was trained on images similar to those depicted in Fig. 3.2 and had never seen, for instance,
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Figure 3.5: Experimental phantom results with quasi-physical aberrations. (a) The non-
aberrated image, shown merely as a reference, and not used for training. (b) A sample
aberrated image reconstructed using DAS. (c) Beamsum output. (d) FXPF output. (e)
MAIN-AAA output. All images were normalized to their maximum intensity value and
displayed on a 60 dB dynamic range.

a perfectly circular cyst during the training phase.
To perform a quantitative evaluation, we calculated the average values of contrast and

gCNR across the top and bottom anechoic cysts, as well as the speckle SNR in the contrast
test image. Although target and background regions, used for calculating metrics, were
chosen similarly for both cysts, they are depicted only for the top cyst in the non-aberrated
image in Fig. 3.4(a) for brevity. For these metrics, the target region was inside a concentric
circle with the same radius as that of the cyst (solid red circle). For contrast and gCNR, the
background was the region between two concentric circles with radii of 1.1 and 1.5 times
the cyst radius (dashed blue circles), while for speckle SNR, it was inside a rectangle far
from the cyst (dashed blue rectangle). Additionally, to evaluate resolution, FWHM was
measured for 19 point targets within the resolution test image in the lateral direction. To
isolate the FWHM values of each point target from its adjacent ones, we confined the lateral
profile to a 4 mm span on either side. The results were obtained for 100 aberrated versions
of each test image and are shown in Fig. 3.6.

Fig. 3.5 presents the results for one of the aberrated versions of the experimental phan-
tom test image, which was acquired with quasi-physical aberrations as explained in Section
3.1.3. The quality metrics were calculated similar to those for the simulated test sets. The
top and bottom anechoic cysts were utilized for calculating contrast metrics, while the
point target at a depth of 37 mm was employed for resolution metrics. These metrics were
obtained for all 50 aberrated versions of the test set and presented in Fig. 3.7.

Fig. 3.8 presents the results for the experimental phantom aberrated with a physical
aberrator. The first column displays the image reconstructed using conventional DAS,
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Figure 3.8: Experimental phantom aberrated using a physical aberrator layer. (a) DAS
reconstruction. (b) Beamsum output. (c) FXPF output. (d) MAIN-AAA output. All im-
ages were normalized to their maximum intensity value and displayed on a 60 dB dynamic
range. The second row shows cropped regions of interest (top and bottom anechoic cysts)
corresponding to each image, where they were histogram-equalized to enhance visual com-
parability.

while the subsequent columns show the output images of the beamsum, FXPF, and pro-
posed methods. To enhance visual comparability, the top and bottom cysts were cropped,
then histogram-equalized, and displayed under their respective images. The results indicate
that the proposed method outperformed the others in recovering cyst boundaries, especially
the bottom one. Finally, we applied the methods to in-vivo cross-sectional and longitudinal
carotid artery images obtained from the PICMUS dataset. The results are shown in Fig.
3.9, including annotations highlighting specific features, which will be further explained in
the subsequent section.

3.3 Discussion

In the pilot study, we conducted an experiment where we mapped different aberrated ver-
sions of the same image to each other to demonstrate the effectiveness of the proposed adap-
tive mixed loss function in correcting the phase aberration effect without over-smoothing
the RF data and without requiring a non-aberrated ground truth. Notably, the results of this
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Figure 3.9: In-vivo cross-sectional and longitudinal carotid artery images from the
PICMUS dataset. (a) DAS reconstruction. (b) Beamsum output. (c) FXPF output. (d)
MAIN-AAA output. All images were normalized to their maximum intensity value and
displayed on a 50 dB dynamic range.

experiment also revealed an interesting finding. Specifically, it is evident in Fig. 3.3 that not
only the phase aberration effect introduced in the input (b) is corrected in the output (e), but
a higher contrast is achieved even compared to the non-aberrated reference image (a) and
the averaged image (g). One possible explanation for this superior performance could be
attributed to the ability of the network to leverage the RF data across the entire image and
to average across all plausible explanations in order to output each region of the corrected
version. By taking into account all the data points collectively, the network can make more
informed decisions regarding each individual value during the reconstruction process. This
can be analogized to the non-local means denoising algorithm [117] in traditional image
processing, which has been shown to outperform local filters in achieving higher perfor-
mance. As a result, the network does not rely solely on RF data from local areas to correct
the aberration but instead takes advantage of information from the entire dataset, resulting
in an improved image compared to the reference image reconstructed using DAS. Another
possible explanation is that the network develops the ability to effectively eliminate noise
and clutter while randomly mapping one aberrated version to another. Since the noise and
clutter are inconsistent across different aberrated versions, the network learns to disentangle
them from the consistent tissue response by averaging plausible explanations. Interestingly,
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this finding aligns with the study by Jing et al. [118], in which they proposed enhancing
the spatial resolution of plane-wave images by introducing weak aberration into received
data. They calculated the pixel-wise standard deviation of multiple aberrated versions and
subtracted the result from the original image. Although our approach differs entirely from
theirs, the concept of obtaining an enhanced image from its aberrated versions is similar
and can explain the improvement over the reference image reconstructed using DAS.

The main study involved training a general model on a dataset containing images simi-
lar to those presented in Fig. 3.2 and evaluating its performance using contrast and resolu-
tion test sets, with sample images depicted in Fig. 3.4. Red arrows in the aberrated contrast
image (b) highlight the shadowing effect of the perturbed wavefront during transmission.
The proposed method outperformed both beamsum and FXPF, which failed to detect and
correct this effect. As previously mentioned, the beamsum method was applied only dur-
ing the reception, unable to compensate for this effect without iterative corrections during
subsequent transmissions. Similarly, the FXPF method relies solely on the local signal
information of a single image and eliminates components that do not conform to the AR
model across the echo signals received at the transducer elements. Nevertheless, in cases
where all the echo signals experience a decrease in amplitude, the algorithm is unable to es-
timate a corrected signal with a higher amplitude. Instead, it tends to amplify the darkness
of already dark regions, which may not necessarily correspond to anatomically relevant
tissues, such as an anechoic cyst. The findings are consistent with the metrics reported in
Fig. 3.6, indicating that while the FXPF algorithm improved contrast, it slightly impacted
gCNR. Conversely, the proposed MAIN-AAA method enhanced contrast and achieved a
higher gCNR of 0.96, which is substantially closer to the maximum value of 1.

Similarly, we can observe in Fig. 3.5 that the proposed method recovered the size of the
anechoic cyst at the bottom of the image more accurately, contrasting with the beamsum
and FXPF methods which respectively led to an underestimation and overestimation of its
size. As reported in Fig. 3.7, although the FXPF method improved the mean contrast of
cysts, the mean gCNR actually decreased due to its aforementioned limitation. Conversely,
the beamsum and proposed methods consistently enhanced both the contrast and gCNR
metrics, with MAIN-AAA outperforming the other in both metrics. In addition to the top
and bottom anechoic cysts, this image contained four additional cysts positioned at a depth
of 30 mm, arranged from left to right with contrast levels of -6 dB, -3 dB, +3 dB, and +6
dB relative to the background. It can be observed that, for instance, the -3 dB target was
recovered with higher accuracy in terms of both its shape and contrast level, aligning with
our prior knowledge that it was a hypoechoic cyst with a contrast level of -3 dB.
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In both simulation and phantom experiments, the FXPF method reduced speckle SNR,
which aligns with the findings reported in [20]. As illustrated in Figs. 3.4 and 3.5, this
method increased the variance of the values within the blue rectangle while it preserved or
even reduced their mean (darker region), thereby leading to a reduction in speckle SNR.
In contrast, the proposed method consistently preserved the speckle SNR at a level ap-
proximately comparable to that of the aberrated image reconstructed using conventional
DAS and the beamsum method. This preservation is deemed positive, given that the pro-
posed method inherently operates by averaging all plausible explanations, thereby tending
to smooth images. One of the objectives of introducing the adaptive mixed loss function
was to prevent the network from over-smoothing images. While smoothing the speckle
pattern could enhance the SNR, preserving it was desired for the proposed method.

Both simulation and phantom experiments demonstrated a relatively similar trend in
resolution metrics. As shown in Fig. 3.6 and Fig. 3.7, MAIN-AAA achieved the best mean
FWHM, followed by the beamsum method. According to the mean values, the distributions
of FWHM seemed more skewed in the simulation experiment compared to the phantom ex-
periment because the experimental phantom images featured only one point target, whereas
the simulated images contained 19 point targets distributed across different depths, with a
less pronounced impact of aberration on shallower targets. While the mean FWHM across
multiple data points can serve as a reliable measure for assessing resolution, it is worth not-
ing that the phase aberration effect can also lead to artificially lower FWHM values. Such
instances may occur when calculating the metric at the edge of the target or on a noisy
profile, often due to a displaced or entirely missing target. If a method mitigates the issue
by partially recovering such a missing target, this recovery may contribute to increasing
the FWHM value. This partially explains why the proposed method consistently yielded
higher minimum FWHM values due to recovering more erroneous values. Another reason
is its inherent averaging nature, which limits its ability to achieve resolutions equivalent to
non-aberrated versions.

Fig. 3.8 shows a similar trend as observed in Figs. 3.4 and 3.5, where the improvement
in the bottom cyst is more prominent than in the top cyst. This observation can be attributed
to the fact that the severity of the phase aberration effect, which needs to be corrected, is
lower at shallower depths compared to deeper depths for two reasons. Firstly, perturbations
in the wavefront escalate with propagation, leading to an increase in the aberration effect
during transmission as the wavefront moves forward. Secondly, in plane-wave imaging,
the reconstruction process uses a smaller aperture size a at shallower depths and gradually
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increases it for deeper depths according to the f -number. Employing fewer neighboring el-
ements during the reconstruction of lower depths can limit the aberration effect, especially
when the aberration profile lacks abrupt changes, as a smaller segment of the aberration
profile directly affects the reconstruction.

In Fig. 3.9, we compared the methods on cross-sectional and longitudinal views of the
in-vivo carotid artery image obtained from the PICMUS dataset. Despite the absence of
intentional aberrations and any ground truth, we observed interesting results in these im-
ages. Several parts of the images were modified after applying the aberration correction
methods, and we highlighted some of the notable alterations. In the cross-sectional view,
the reconstructed image obtained by the DAS method exhibited indistinct boundaries for
the right subclavian vein (arrow #1). Although the FXPF method mitigated the issue, the
proposed MAIN-AAA method achieved a higher level of boundary contrast, allowing dif-
ferentiation of the vessel wall and its anechoic lumen. A similar trend was observed for
the right jugular vein (arrow #2) and right common carotid artery (arrow #3), wherein the
proposed method reconstructed images with superior tissue differentiation as evidenced by
sharper boundaries and more distinct anatomical structures compared to other methods.
Similarly, the proposed method demonstrated a higher contrast for the posterior edge of
the right thyroid lobe (arrow #4), thereby further enhancing the visual quality of the recon-
structed image. Additionally, the MAIN-AAA method revealed ovoid-shaped structures
within the two rectangles, which may represent the right subclavian artery (small rectan-
gle) and right vertebral artery (large rectangle) seen cross-sectionally. These areas were
barely visible using the DAS method, potentially because of their depth and size, as well
as potential aberration induced by the highly anisotropic sternocleidomastoid muscle (the
large oval at the top left of the figure). Although an aberration-free ground truth for this
image is unavailable, this representation is supported by the similarity of the pattern within
these rectangles in the DAS image to the aberrated anechoic cysts seen in the phantom im-
ages and the fact that both the beamsum and FXPF methods, which are not learning-based,
identified them by attempting to enhance their contrast, while the proposed method pro-
duced substantially sharper boundaries for these tissues. In the longitudinal image, while
both the beamsum and FXPF methods aimed to mitigate reverberation within the lumen
of the common carotid artery at a depth of 17 mm, the proposed method outperformed
them, resulting in a markedly sharper vessel wall contrast. A similar trend was observed
for the muscle structure at depths ranging from 20 to 28 mm. Interestingly, regardless
of the contrast improvement, both the beamsum and proposed methods slightly refined the
bright point at a depth of 37 mm, reducing its dispersion. Although the absence of a ground
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truth complicates evaluating the accuracy of this modification, considerations such as the
position of the bright point suggest that these methods have contributed to a more precise
depiction.

The capability of a network trained based on the near-field phase screen model to mit-
igate the noise induced by phase aberration in images such as the presented in-vivo ones,
which might be affected by distributed aberrations and do not necessarily adhere to the
model, could be a subject of doubt. To address this concern, we can assume that the aber-
ration at any given point within a medium is a consequence of variations in sound speed
along the trajectory linking said point to each element of the aperture. Thus, regardless of
the distribution of the aberrator, the variations in sound speed that contribute to the aber-
ration of a particular point can still be approximated by a near-field phase screen. In other
words, distributed aberrations throughout a heterogeneous medium can be characterized
by multiple aberration profiles, each corresponding to a specific point. Chau et al. [21]
developed a locally adaptive phase aberration correction method based on this assumption,
estimating a local aberration profile at each point in the discretized image domain. While,
theoretically, each point within the propagation medium may require a dedicated aberration
profile, adopting the concept of finite-sized isoplanatic patches allows a single aberration
profile to effectively model aberrations for all adjacent points within the same patch, which
dramatically reduces the number of profiles required to characterize distributed aberrations
across the medium. Consequently, we speculate that a network, trained and fine-tuned on
over 180,000 unique aberration profiles, could learn from the presented variations and be-
come capable of correcting distributed aberrations locally, even if they cannot be modeled
by a single near-field phase screen.

While the proposed method eliminates the need for ground truth data, a drawback is
its reliance on averaging aberrated patterns to approximate the original tissue response.
We investigated the incorporation of both low and high-frequency data, introducing an
adaptive mixed loss function to facilitate the network’s utilization of RF data and pro-
duce sharper outputs. Nevertheless, the underlying averaging principle inherently results
in a smoother speckle pattern compared to methods that directly compensate for delay er-
rors, such as beamsum. Furthermore, although modeling phase aberrations using near-field
phase screens effectively mitigated noise resulting from distributed aberrations by address-
ing them locally, the performance is ultimately restricted by the aberration model within
the training dataset. Future studies could explore the utilization of more complex models
for phase aberrations, potentially leading to improved method efficacy. Additionally, we
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demonstrated the effectiveness of an aberration-to-aberration approach using single plane-
wave images. Expanding on this work by incorporating compounded plane-wave images
with additional steering angles [119] or exploring other imaging modes presents potential
avenues for future research.

3.4 Conclusions

We proposed a novel DL-based approach for correcting phase aberration that eliminates
the requirement for ground truths. We illustrated that a conventional loss function, such
as MSE, is inadequate to achieve optimal performance and introduced an adaptive mixed
loss function to train a network capable of mapping aberrated RF data to aberrated RF data.
This approach permits training or fine-tuning using experimental images without prior as-
sumptions about the presence or absence of aberration. Furthermore, we demonstrated the
feasibility of obtaining the required data for this method using a programmable transducer
and acquiring multiple aberrated versions of the same scene during a single scan. Apart
from releasing the code for the proposed and the FXPF method, we also made available
to the public a dataset containing more than a thousand sets of single plane-wave images
stored as RF data, where each set comprises 100 aberrated versions of the same realization
along with corresponding aberration profiles and the non-aberrated version, aiming to facil-
itate the advancement of DL-based methods for correcting phase aberration in ultrasound
images.
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Chapter 4

Investigating Shift-Variance of
Convolutional Neural Networks in
Ultrasound Image Segmentation
This chapter is based on our published papers [120, 121].

The primary focus of the previous two chapters was to enhance the interpretability of
ultrasound images by improving their quality. This chapter pursues the same objective
through a parallel approach, focusing on the automatic segmentation of ultrasound images,
which can contribute to simplifying their interpretation. Manual segmentation is regarded
as the gold standard in many applications, but it is tedious and impossible to perform fast
enough for real-time applications. To overcome these issues, automatic segmentation has
been a highly sought-after research area in medical image processing, with approaches
based on CNNs gaining increasing attention recently. However, while CNNs had been
considered shift-invariant for many years, it has been recently reported that they are sub-
ject to the shift-variance problem [122, 78, 123, 124, 125, 126]. In other words, if the
input translates by only one pixel, the segmentation result may change. Although this
drawback may be tolerated in applications such as natural image classification, it hinders
CNNs’ performance in sensitive applications, such as medical image segmentation, where
the reliance of the networks on main features, as well as reproducibility of the results, are
essential. Since in many scenarios, changes in images are being tracked to monitor the pro-
gression or regression of the disease or the patients’ response to the therapy. In addition,
in image-guided interventions wherein the target moves with breathing or other physiolog-
ical motions, shift-equivariance is paramount. All of this brings us to the conclusion that
in addition to accuracy, consistency is also a crucial metric that needs to be considered
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while evaluating CNN-based methods for medical applications such as ultrasound image
segmentation.

To shed light on the shift-variance problem in CNNs, Fig. 4.1 shows the effect of input
translations on output segmentation masks. The left column shows an identical input image
from the test set, which was translated diagonally from top-left to bottom-right for -3, -1,
1, and 3 pixels. The next column shows the corresponding segmentation masks generated
by a baseline method without addressing the shift-variance problem. The baseline method
was affected by small translations and generated substantially different output masks.

While the output robustness against input translations can be crucial in medical appli-
cations, in the literature, the main focus has primarily been on improving segmentation
accuracy metrics such as the mean boundary distance, Hausdorff distance, DSC, and vol-
ume difference or overlap. Since CNN-based methods are prone to the shift-variance prob-
lem, the effect of input translations on the output should not be overlooked. This chapter
represents the first study, to our knowledge, that investigates the shift-variance problem of
CNNs in the context of ultrasound image segmentation or even more broadly in ultrasound
imaging. The key contributions of this chapter are summarized as follows:

• We investigate the shift-variance problem of CNNs in ultrasound image segmentation
using synthetic and in-vivo datasets.

• A recently published technique, called BlurPooling [78], is applied to mitigate the
shift-variance problem, and its performance is evaluated on all datasets.

• We propose a new approach, called Pyramidal BlurPooling, which takes into account
the nature of the ultrasound segmentation task, and outperforms BlurPooling in both
shift-equivariance and segmentation accuracy.

• We demonstrate that data augmentation by random translations, a common practice
to aid training, is not a replacement for the proposed method.

4.1 Background

4.1.1 Shift-variance in CNNs

One of the motivations for proposing CNN and applying pooling layers as a part of their
architectures was making networks robust to irrelevant changes, such as different scales of
the same object or image translations [127]. This idea had been considered valid for many
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Figure 4.1: Illustration of the effect of input translations on generating output segmenta-
tion masks. The left column shows an identical input image from the test set translated
diagonally for k pixels, where k ∈ {−3,−1, 0,+1,+3}. The following columns show
corresponding segmentation masks generated by the baseline method, BlurPooling (7× 7),
and the proposed method (Pyramidal BlurPooling), respectively.
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years based on two reasons: the convolutional nature of layers is shift-equivariance, and
data augmentation can be employed by feeding the network with variant versions of the
same input. Utilizing convolutional layers in today’s CNNs is inspired by Neocognitron
architecture proposed by Fukushima et al. [128] and popularized by LeCun et al. [129].
In the Neocognitron architecture, the authors assumed that because all layers are convo-
lutional, the output of the final layer will not be affected by input translations. The data
augmentation is motivated by the fact that, for instance, if we randomly crop the input
image, the network will see translated versions of the same object during training. Con-
sequently, the trained network will be invariant to both input translations and the absolute
spatial location of objects. Nevertheless, it has been reported in the literature that most
of the SOTA CNNs are not robust to input translations [122, 78, 123, 124]. Azulay et al.

showed that the chance of generating a different output by a CNN after translating its input
by only a single pixel could be as high as 30% [124].

Neither data augmentation nor convolutional layers guarantee shift-equivariance. If all
layers of a CNN were purely convolutional, input translations would be preserved through
all layers then, and the network would be shift-equivariance. However, most modern CNNs
contain other layers as well, among which are downsampling layers. It has been suggested
that ignoring the Nyquist–Shannon sampling theorem by these downsampling layers is
an origin of the shift-variance problem in modern CNNs [124, 78]. The downsampling
operation is mostly performed using pooling or strided-convolutional layers with a stride
of more than one. These layers have been employed frequently in commonly-used CNNs
such as ResNet [130], VGG [131], MobileNetV2[88], U-Net [108]. Similarly, showing
translated versions of inputs to the network as a data augmentation method may help the
network to learn input translations, but shift-equivariance will be learned merely for similar
samples that have been seen before during the training phase. However, the distribution of
the training set can be highly biased, and those samples that do not necessarily follow that
bias will not take advantage of the learned shift-equivariance. The problem can even be
amplified in most medical applications with limited acquired data, where the bias is higher
due to the limited number of samples in training sets.

4.1.2 BlurPooling

Consider a band-limited signal, which contains no frequencies higher than B Hz. In order
to sample the signal without losing any information, the well-known Nyquist–Shannon
sampling theorem in the digital signal processing domain indicates that the sampling rate
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must be higher than 2B Hz, or otherwise, the reconstructed signal will suffer from aliasing
artifact. As mentioned previously, downsampling layers such as max-pooling and strided-
convolutional layers do not necessarily respect the Nyquist–Shannon sampling theorem,
which leads to sensitivity to input translations and consequently the shift-variance problem
[78, 124].

A well-known signal processing approach for anti-aliasing is applying a low-pass filter
before downsampling. Influenced by this idea, Zhang et al. [78] proposed merging a low-
pass filter with pooling or strided convolutional layers to mitigate the aliasing effect, with
minimal additional computation. They referred to the proposed approach as BlurPooling.
Although it has been thought that there is a trade-off between blurred-downsampling and
max-pooling [132], they demonstrated that they are compatible. This method decomposes
pooling and strided-convolutional layers into two separate operations:

1. Reducing the operation’s stride to 1. It is equivalent to apply the same operation
densely. For instance, for a max-pooling layer with a 2×2 kernel and stride 2, the
max() operator will be applied as previously, but with stride 1 instead of 2. This
dense operation preserves shift-equivariance.

2. Applying an anti-aliasing filter with an m×m kernel and finally subsampling with the
desired factor. Unlike the previous step, which does not change the input dimension,
this step reduces the input dimensions as expected.

Fig. 4.2 illustrates the difference between the implementation of a conventional max-
pooling layer and its equivalent BlurPooling (anti-aliased max-pooling) layer. The top path
shows a conventional max-pooling layer, which does not respect the Nyquist–Shannon
sampling theorem during downsampling leading to aliasing artifact and, consequently, lack
of shift-equivariance. The bottom path decomposes this procedure into two steps: 1) A
densely-evaluated max-pooling. 2) Applying an anti-aliasing filter followed by a sub-
sampling operation. In the second step, applying the anti-aliasing filter before the sub-
sampling step mitigates the aliasing effect without compromising the advantages of the
max() operation. The same concept is also applicable to other downsampling layers, such
as strided convolutional layers. This approach suggests augmenting pooling and strided-
convolutional layers by low-pass filtering instead of replacing them with averaging opera-
tors, which provides shift-equivariance while preserving the advantages of those layers.
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Figure 4.2: Illustration of the difference between a conventional max-pooling layer and its
equivalent BlurPooling layer. (Top path) A conventional max-pooling layer. It does not
respect the Nyquist–Shannon sampling theorem during downsampling leading to aliasing
artifact and, consequently, lack of shift-equivariance. (Bottom path) A blurpooling layer.
It decomposes the max-pool operator into two steps: 1) A densely-evaluated max-pooling.
2) Applying an anti-aliasing filter followed by a subsampling operation.

4.2 Methodology

Let I ∈ Rd and Ŝ ∈ {0, 1}d denote a sample input image and the corresponding output
segmentation mask, respectively. The segmentation problem can be formulated as

Ŝ = fseg(I,θ) (4.1)

where fseg : Rd → {0, 1}d is the segmentation CNN, and θ are the network’s parameters.
By training the CNN, an optimizer is utilized to find optimal parameters θ∗ that minimize
the error, measured by a loss function L, between predicted mask Ŝ and ground truth S

θ∗ = argmin
θ

L(S, Ŝ) (4.2)
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4.2.1 Network architecture

The U-Net [108] was designed for biomedical segmentation applications to work with a
limited number of training samples more efficiently. Showing promising results, it is no
wonder that the network attracted growing interest in the ultrasound image segmentation
domain, and an extended range of networks has been built upon that.

As the primary goal of this chapter was to investigate the effect of input translations in
ultrasound images, we chose the vanilla U-Net as the baseline method to cover an exten-
sive range of previous works. It allows generalizing conclusions of this chapter and makes
them applicable to other work that utilized the original or extended versions of the U-Net
without considering the shift-variance problem. Findings can also be valid for studies em-
ploying any other networks with conventional downsampling layers, such as max-pooling
or strided-convolution, as the source of the problem.

The U-Net consists of a contracting path (encoder) followed by an expansive path (de-
coder), in which the former extracts locality features, and the latter resamples the image
maps with contextual information. Skip connections are also employed to produce more
semantically meaningful outputs by concatenating low- and high-level features. Without
losing generality, we replaced the transposed convolutions in the original U-Net with bilin-
ear upsampling layers in favor of memory efficiency. For investigating the shift-variance
problem, we employed three variants of U-Net by altering its downsampling layers as the
source of shift-variance. Fig. 4.3 illustrates the network architectures with three different
types of downsampling layers in the contracting path. In the first version, referred to as the
baseline network, we utilized max-pooling layers similar to the original U-Net. In the sec-
ond version, referred to as the BlurPooling network, we replaced the original max-pooling
layers with BlurPooling layers, where anti-aliasing filters in all four layers have an identical
size of m×m. The third version is described in the following subsection.

4.2.2 Pyramidal BlurPooling (PBP)

BlurPooling [78] was originally introduced for mitigating the shift-variance problem and
mainly tested in classification applications and on datasets of natural images, such as CI-
FAR10 [133], and ImageNet [134]. In such cases, the predicted probability of the correct
class may drop by applying an anti-aliasing filter to feature maps while it climbs, for in-
stance, from the top-3 values to the top-1 value, which leads to preserving or improving the
top-N accuracy. However, a concern with adding anti-aliasing filtering is undermining the
accuracy of generated segmentation masks, which is critical in sensitive applications, such
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Figure 4.3: Networks architectures. (a) Similar to the vanilla U-Net, max-pooling layers
(kernel=2×2, stride=2) were utilized as downsampling layers. (b) Max-pooling layers were
altered with their corresponding BlurPooling layers, in which the size of anti-aliasing filters
was identical (m × m) for all four layers. (c) Similar to the previous case, BlurPooling
layers were utilized instead of max-pooling layers; however, the size of anti-aliasing filters
gradually decreased at each downsampling layer from the first to the fourth one.

as medical image segmentation. It has been reported that employing BlurPooling layers in
image-to-image translation networks compromises the accuracy [78]. It is shown that while
the quality of the generated image holds for small anti-aliasing filters, there is a trade-off
between quality and shift-invariance for larger ones.

To address this trade-off, we proposed using a pyramidal stack of anti-aliasing filters.
As shown in Fig. 4.3, filters were applied to densely max-pooled feature maps of sizes
128×128×c, 64×64×c, 32×32×c, and 16×16×c from the first to the fourth downsam-
pling layer, respectively, where c is the number of channels. In Fig. 4.3 (c), labeled as
pyramidal blur-pooling (PBP), instead of using anti-aliasing filters of the same size for all
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downsampling layers, we started with a filter of size 7×7 and made it smaller at each down-
sampling layer. Moving from the first layer to the last one, more energy of the feature maps
concentrates at lower frequencies. Therefore, the shift-equivariance effect can be preserved
with a smaller anti-aliasing filter at deeper layers without compromising accuracy.

4.2.3 Anti-aliasing filters

In this chapter, we utilized similar smoothing filters used in Laplacian pyramids [78, 135,
136]. Let Hs and ws denote the m×m filter, and a vector of size m× 1, respectively

Hs = ws ⊗ws (4.3)

where operator ⊗ represents the outer product. For the filter m = 2, we simply chose
ws = 1

2
[1, 1]. For filters m = 2k + 1, ws was chosen subject to the following constraints

[135]:

Normalization:
(m−1)/2∑︂

n=−(m−1)/2

ws[n] = 1 (4.4)

Symmetry: ws[n] = ws[− n] for all n (4.5)

Unimodal: ws[n1] ≥ ws[n2] ≥ 0 for 0 ≤ n1 ≤ n2 (4.6)

Equal Contribution:
∑︂

|n| even

ws[n] =
∑︂
|n| odd

ws[n] (4.7)

In summary, we obtained anti-aliasing filters by taking the outer product of the following
vectors with themselves:

ws =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2
[1, 1], m = 2

1
4
[1, 2, 1], m = 3

1
16
[1, 4, 6, 4, 1], m = 5

1
64
[1, 6, 15, 20, 15, 6, 1], m = 7

(4.8)
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4.2.4 Datasets

Synthetic dataset

We simulated a synthetic dataset as a reference wherein ground truths are error-free and in-
dependent of radiologists’ bias to quantify the shift-variance problem in such a scenario. A
total of 163 ultrasound images were simulated using the publicly available Field II simula-
tion package [79, 80] containing 100,000 scatterers uniformly distributed inside a phantom
of size 50 mm × 10 mm × 50 mm in x, y, and z directions, respectively. All phantoms were
positioned at an axial depth of 30 mm from the face of the transducer, and each contained
an anechoic region with a different shape. To generate those anechoic regions, instead of
using arbitrary shapes, we took corresponding ground truth masks of 163 images of the
UDIAT ultrasound breast dataset [53] and resampled them with the same size as the phan-
tom. Then we assigned a zero amplitude to scatterers that were located inside the mask. In
each simulation, we set the transmit focus at the center of mass of the mask. Finally, we
considered masks as the exact ground truths of the simulated images. We split simulated
images into three training, validation, and test subsets, each containing 100, 30, and 33
samples, respectively. The simulation parameters are summarized in Table 4.1.

Table 4.1: Field II parameters for the synthetic dataset.

Parameter Value

Speed of Sound 1540 m/s

Center Frequency 8.5 MHz

Subaperture Size 64 elements

Number of Scan Lines 100

Element Height 5 mm

Element Width Equals to wavelength

Kerf 0.05 mm

UDIAT dataset

We used a publicly available ultrasound breast images dataset, collected from the UDIAT
Diagnostic Centre in 2012 with a Siemens ACUSON Sequoia C512 system and a 17L5 HD
linear array transducer (8.5 MHz) [53]. It is comprised of 163 breast B-mode ultrasound
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images, with a mean image size of 760×570 pixels, containing lesions of different sizes at
different locations. Lesions were categorized into two classes: benign lesions and cancer-
ous masses, with 110 and 53 samples, respectively. Most of the lesions in the dataset were
hypoechoic regions, in which the intensity of the lesion was lower than its background.
The dataset also contained respective delineations of the breast lesions as ground truths in
separate files, which had been obtained manually by experienced radiologists. We split
images into three training, validation, and test subsets, each containing 100, 30, and 33
samples, respectively. Besides, in each subset, we approximately preserved the original
ratio of samples per class.

Baheya dataset

To investigate how increasing the number of training samples may affect the shift-variance
problem in different scenarios such as with or without augmentation, we employed a larger
publicly available dataset collected at Baheya hospital with a LOGIQ E9 ultrasound system
equipped with an ML6-15-D Matrix linear probe (1-5 MHz) [137]. It contained 780 breast
ultrasound images with an average image size of 500×500 pixels, collected from 600 fe-
male patients with ages ranging from 25 to 75 years old. The dataset was categorized
into three classes: normal, benign, and malignant each with 133, 437, 210 cases, respec-
tively. The ground truths, delineated manually by expert radiologists, were presented along
with original images. In the case of images containing more than one lesion, each lesion’s
ground truth had been stored in a separate file. Therefore as a preprocessing step, in those
cases, we merged ground truths to have one ground truth file per image. Besides, as the
main focus of this chapter was to investigate the effect of input translations on the predicted
segmentation mask, we did not utilize images of the normal class and split the remaining
647 images into three subsets: training, validation, and test, each containing 387, 130, and
130 samples, respectively. Although we reproduced the original classes’ ratio in the sub-
sets, we could not separate samples at the subject level because the required information
was not available. However, since we fixed the same subsets for all experiments, it did not
affect the comparison purposes.

Mixed ultrasound dataset

To explore the effect of combining two datasets on output consistency, we concatenated
training, validation, and test subsets of the UDIAT dataset with the corresponding ones of
the Baheya dataset to create the new dataset with training, validation, and test subsets, each
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containing 487, 160, and 163 samples, respectively.

Brain magnetic resonance imaging (MRI) dataset

Ultrasound scans are among the most challenging images for CNNs due to several com-
plexities such as speckle noise, non-uniform resolution, and ambiguous boundaries. To
evaluate the generalizability of the study and severity of the shift-variance problem on less
challenging and even larger datasets, we employed the low-grade glioma segmentation
dataset from TCIA (The Cancer Imaging Archive) [138, 139], which is comprised of mag-
netic resonance images from 110 patients’ brain. Image sizes were 256×256 pixels, and the
number of slices ranged from 20 to 88. We divided patients into three subsets: training, val-
idation, and test composed of 66, 22, and 22 patients, respectively. Although pre-contrast
and post-contrast sequences were also provided, we utilized only fluid-attenuated inver-
sion recovery (FLAIR) with their corresponding manual abnormality segmentation masks.
Besides, we only used slices containing at least one abnormality and their corresponding
ground truths as two-dimensional images. Finally, our training, validation, and test sets
were comprised of 833, 268, 272 samples, respectively.

For all datasets, we resampled the images and their corresponding masks to an identical
size of 138×138 pixels. Sample images from each dataset are shown in Fig. 4.4

4.2.5 Training Strategy

In total, we trained 500 networks from scratch. For each dataset, we trained 5 different
networks without data augmentation: a baseline network, three BlurPooling networks with
anti-aliasing filters of sizes 3×3, 5×5, and 7×7, and finally a PBP network. Then we
trained another 5 networks corresponding to the previous ones and with the same config-
urations, while this time, data augmentation was applied. Finally, due to small training
datasets, we repeated each training 10 times with different random initializations to mit-
igate the randomness out of the interest of this study. Although those 10 initializations
were randomly generated using LeCun method [140], we used 10 fixed initializations and
trained the corresponding networks with identical initializations. For instance, if the first
repeat of the baseline network (without data augmentation) trained with initialization #1,
the first repeat of the rest 9 networks, i.e., baseline with data augmentation, BlurPooling
m×m, and PBP networks (with and without data augmentation) were also initialized with
initialization #1. The same 10 initializations were similarly used across all datasets.
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Figure 4.4: Sample images from datasets employed in experiments. For UDIAT and Ba-
heya datasets, samples #1 and #2 belong to benign and malignant categories, respectively.

61



138×138

5

5 128×128

(a) Center crop 
for training w/o 
augmentation

138×138

(b) Random crop 
for training with 
augmentation

128×128

(c) All 121 possible 
crops for testing

138×138

Shifted by (-5,-5) px

Sweep

Shifted by (+5,+5) px

Figure 4.5: To mimic input translations, we resampled all images to a size of 138×138
in the first stage. (a) For training without data augmentation, where translations were not
required, we always center cropped a 128×128 square. (b) For training with data aug-
mentation, at each iteration, a 128×128 square was cropped at a random location. (c)
For testing, we mimicked all 121 possible translations. For instance, cropping the top-left
region mimics a translated version with respect to the center cropped version where it is
shifted by +5 pixels in both horizontal and vertical directions.

Since DSC is one of the most common metrics for evaluating medical image segmenta-
tion, we chose the loss function based on this metric that quantifies the area overlap between
the predicted and ground truth masks

DSC(S, Ŝ) =
2
⃓⃓⃓
S ∩ Ŝ

⃓⃓⃓
+ ε

|S|+
⃓⃓⃓
Ŝ
⃓⃓⃓
+ ε

(4.9)

L(S, Ŝ) = 1−DSC(S, Ŝ) (4.10)

Moreover, the sigmoid function was employed as the activation function of the last layer,
and the learning rate and batch size were 2×10−4 and 24, respectively. We utilized AdamW
[141], a variant of Adam [95] as the optimizer, and set the weight decay parameter to
10−2. AdamW yields a better regularization by decoupling the weight decay from the
optimization steps taken with regard to the loss function. To avoid overfitting, in addition
to applying a weight regularization strategy, an early stopping strategy was also pursued to
stop training when the validation loss stops improving after 100 epochs. For each training
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epoch, we saved model weights only if the validation loss had been improved and finally
used the best weights for testing. We used the same configuration for all experiments.
They were programmed using the PyTorch package [142], and training was performed on
a single NVIDIA TITAN Xp GPU with 12 GB of memory.

4.2.6 Augmentation

One may wonder that instead of modifying the downsampling layers, the shift-equivariance
in CNNs can be achieved by showing the networks the translated versions of images in the
training set. To evaluate the effectiveness of this solution and compare it with the other
approach, we conducted each experiment both with and without data augmentation. For
the former case, as shown in Fig. 4.5 (a), we trained networks with center cropped im-
ages of size 128×128 pixels. For the latter case, since the focus was on achieving shift-
equivariance, we augmented the data merely by input translations and isolated experiments
from other transformations. To this end, we applied an on-the-fly augmentation by ran-
domly choosing a different square with a size of 128×128 within the original image at
each training epoch (Fig. 4.5 (b)). Since the stopping strategy was based on the valida-
tion set, we always used center cropped images for validation, even for augmented training
cases.

4.2.7 Evaluation Metrics

Accuracy

To report the accuracy, we used the segmentation error defined in Eq. (4.10). The error
range is [0, 1], and it is closer to 0 for more accurate predictions.

Consistency

To quantify shift-equivariance, we evaluated the output consistency across input transla-
tions. To this aim, as shown in Fig. 4.5 (c), we mimicked input translations by translating
a sample image I from the test set by i pixels horizontally and j pixels vertically with re-
spect to its center cropped version, where {i, j ∈ N | − 5 ≤ i, j ≤ 5}. We labeled such a
translation as (i, j) and the translated input as I ij . Then we obtained corresponding output
segmentation masks Ŝij for all 121 possible translated versions. Finally, the variance over
segmentation errors was calculated for the test sample I , where a lower variance denotes
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Figure 4.6: Illustration of the effect of input translations on generating segmentation masks.
An identical input image from the test set was translated by (i, j) pixels, where {i, j ∈
N | − 5 ≤ i, j ≤ 5}. Each network generated output segmentation masks corresponding
to those 121 translated inputs. Outputs were compensated for translations with respect to
the reference and finally averaged over all translations. (Left) Baseline network. (Middle)
BlurPooling with an anti-aliasing filter of size 7× 7. (Right) PBP U-Net.

more consistency and higher shift-equivariance.

Li,j = L(Sij, Ŝij) (4.11)

Error Mean = Li,j =
1

121

i=5∑︂
i=−5

j=5∑︂
j=−5

Li,j (4.12)

Error V ariance =
1

120

i=5∑︂
i=−5

j=5∑︂
j=−5

(Li,j − Li,j)
2 (4.13)

4.3 Results

As mentioned before, we trained three types of networks using each dataset: 1) a vanilla
U-Net with conventional max-pooling layers referred to as the baseline, 2) three U-Nets,
in which max-pooling layers had been replaced with corresponding BlurPooling layers
with anti-aliasing filters of sizes 3×3, 5×5, and 7×7, and 3) a U-Net with PBP layers as
downsampling layers.

Fig. 4.1 illustrates output segmentation masks corresponding to an identical sample
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Figure 4.7: Segmentation errors for 121 translated versions of an identical input image
from the test set. The input image was translated for (i, j) pixels, where {i, j ∈ N | − 5 ≤
i, j ≤ 5}. (Top) The 2D view wherein i changes faster than j from −5 to +5. (Bottom)
Same values in a 3D view.
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from the test set of UDUAT dataset as an input. The input was translated diagonally for
(k, k) pixels, where k ∈ {−3,−1, 0,+1,+3}. The left column displays the inputs, and the
following columns show the output segmentation masks generated by the baseline method
with conventional max-pooling layers, the BlurPooling method with an anti-aliasing filter
of size 7 × 7, and the proposed method with PBP downsampling layers, respectively. In
this figure, we limited the results up to 5 translated versions for brevity. For better visual-
ization and to provide a more trustworthy comparison, we generated corresponding outputs
for all 121 translated versions of the same test sample. Then we compensated for transla-
tions by zero-padding in the output segmentation masks regarding the reference and finally
averaged across all translated versions. The results are presented in Fig. 4.6, where the
left, middle, and right images show averaged outputs for baseline, BlurPooling, and PBP
methods, respectively. Moreover, the values of segmentation errors corresponding to those
121 translated versions are plotted in Fig. 4.7 in both 2D (top) and 3D (bottom) views.

To quantify the output accuracy and output consistency for each method, as mentioned
in Section 4.2.7, we calculated the mean and variance of the segmentation errors for each
test sample I over its all translated versions using Eqs. (4.12) and (4.13). Then we aver-
aged the results over the 10 training repeats with random initializations, and finally over
the test set. The whole procedure was completed for each method with and without data
augmentation during training, and the results for each dataset are illustrated in Fig. 4.8.

4.4 Discussion

4.4.1 Consistency

Fig. 4.1 sheds light on the shift-variance problem in CNN-based methods and provides a
visual perception of the importance of output segmentation consistency. While diagonally
translated inputs in the left column look similar, it can be seen that the baseline method gen-
erated substantially different output segmentations in the second column. It demonstrates
that translating the input even by one pixel may drastically alter the output segmentation
mask. In the third column, applying the BlurPooling method alleviated the problem and
improved the output consistency; however, it came at the cost of losing accuracy at the le-
sion’s boundaries. The fourth column demonstrates how the proposed method mitigated the
problem and improved the output consistency without compromising accuracy by replacing
conventional max-pooling layers with pyramidal BlurPooling layers. Note that shift values
are merely a convention during the test phase, and it is not expected to achieve a lower error
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Figure 4.8: Comparison of segmentation accuracies, as well as output consistencies.
Hatched and solid bars represent training networks with and without data augmentation,
respectively. The results are demonstrated for (a) the synthetic dataset, (b) the UDIAT
dataset, (c) the Baheya dataset, (d) the mixed ultrasound dataset, and (e) the brain MRI
dataset. Lower error mean and error variance are better and indicate higher accuracy and
consistency, respectively.
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for the no-shift case since networks are not aware of the origin. Fig. 4.6 gives a broader
view of the problem, where output segmentation masks are averaged over 121 translated
versions. In addition to detecting wrong regions as the lesion for some translated versions,
the baseline method failed to detect the lesion consistently, and the predicted mask at the
right side of the lesion is very blurry. Conversely, the BlurPooling and proposed meth-
ods offered a more robust prediction across translated inputs, where the proposed method
achieved a higher accuracy.

Fig. 4.7 confirms the same concept as well, where the error generated by the baseline
method fluctuates more intensively over input translations compared to the BlurPooling
and the proposed method.

In Fig. 4.8, it can be observed that applying BlurPooling m×m layers always reduced
error variance (improved consistency) compared to the baseline method. As expected, the
general trend is that applying progressively stronger low-pass filters yields higher output
consistency. Results for the synthetic, UDIAT, and MRI datasets (without augmentation)
confirm that BlurPooling layers with filters of sizes, for instance, 5 × 5 and 7 × 7 led to
lower error variances in comparison with a 3×3, where we can see that larger filters almost
achieved a zero error variance for the simple and ideal synthetic dataset. However, in some
cases, such as the Baheya dataset (without augmentation), increasing the filter size did not
make a considerable difference in the consistency. Because this dataset was more challeng-
ing and the output generated by the network had an intrinsic level of uncertainty. Therefore,
some degree of error variance was inevitable, and further improvements were hindered by
the saturated consistency, even by increasing the low-pass filter size. Results for the mixed
ultrasound dataset suggest that combining two datasets from different distributions may
lead to a lower output consistency compared to each one of the datasets separately.

4.4.2 Accuracy

Fig. 4.8 shows that for all datasets, except for the Baheya one, utilizing BlurPooling m×m

layers yielded a better accuracy compared to the baseline for non-augmented cases across
all m values. It may seem surprising as we generally expect to see degradation in accuracy
after applying a low-pass filter. However, as the results demonstrated, it is not always the
case, and BlurPooling layers may improve accuracy as well for three reasons: 1) Consid-
ering the fact that applying low-pass filters did not add any learnable parameters to the
network, they might act as a regularization method and control the capacity of CNN to
prevent overfitting. This improvement has been observed in classification applications as
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well [78]. 2) It is worth noting that low-pass filters were not applied on feature maps di-
rectly but on densely max-pooled maps instead. As shown in Fig. 4.2 (bottom path), this
approach enables the network to take advantage of information that was supposed to be
entirely ignored. Therefore, exploiting that information might enhance the accuracy. 3)
Although low-pass filters were originally applied to mitigate the shift-variance problem,
they may be effective in suppressing spurious noise sources, such as speckle noise or other
artifacts in the signal that may make the learning process more challenging. In Fig. 4.8 (a),
the results demonstrate that the baseline method with the explained configurations man-
aged to achieve a DSC as high as 94.6% for the synthetic dataset. Interestingly, applying
BlurPooling layers improved the accuracy even in this case because of the aforementioned
reasons. For the Baheya dataset in Fig. 4.8 (c), utilizing BlurPooling 3 × 3 layers could
not improve the accuracy in comparison with the baseline; however, it managed to pre-
serve the accuracy while decreased the error variance from 6.9 × 10−3 to 3.5 × 10−3, i.e.,
improved consistency by almost a factor of 2. Comparing the results across BlurPooling
m × m networks shows that accuracy generally decreased by employing a larger filter. It
was expected because, at some point, the smoothing effect of the filter compromises its
potential advantages, meaning that larger filters may improve consistency at the expense of
accuracy.

4.4.3 Pyramidal BlurPooling

Fig. 4.8 also provides a comparison of the proposed method (labeled as PBP) with the
baseline and BlurPooling m × m methods. We demonstrated that the overall trend with
increasing filter size was better output consistency and the general trend with decreasing
filter size was higher segmentation accuracy. As mentioned in Section 4.2.2, the proposed
method employs a pyramidal stack of low-pass filters to combine the best of two worlds,
in which the filter size is larger at the first downsampling layer and gradually decreases
by moving toward the fourth one, aiming to enhance consistency without compromising
the accuracy. As is evident from Fig. 4.8 (b), (c), and (d), for the UDIAT and Baheya, and
mixed ultrasound datasets, the proposed method consistently outperformed all baseline and
BlurPooling m × m methods with or without data augmentation, whether in terms of ac-
curacy or consistency. Interestingly, in these cases, the proposed method achieved higher
accuracy in comparison with BlurPooling 3 × 3, as well as better consistency compared
to BlurPooling 7 × 7. As for the former, in the last downsampling layer, low-pass filters
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were applied on feature maps with a size of 16×16, where most of the energy of the sig-
nal concentrated around zero. Therefore, in the pyramidal BlurPooling, we utilized the
smallest possible filter size (2×2) to avoid the unnecessary smoothing effect. As for the
latter, regardless of the accuracy, one might expect that the BlurPooling method with an
anti-aliasing filter of size 7 × 7 must always obtain a higher consistency compared to the
PBP method. However, accuracy and consistency are not completely decoupled, meaning
that changing one of them can affect the other one. For instance, a BlurPooling 7 × 7 net-
work may hold a high output consistency across most of the input translations; however, in
specific circumstances, such as where the lesion is too close to the image borders, the net-
work can fail to detect the lesion for translations toward the borders due to lower accuracy,
and consequently, these outliers cause a higher error variance in the final results. Meaning
that compare to the BlurPooling 7 × 7, PBP achieves even more consistency by providing
higher accuracy and avoiding those outliers. Fig. 4.1, 4.6, and 4.7 illustrate this case for a
sample image where the BlurPooling 7 × 7 method ended up with a higher error variance
(more fluctuations in segmentation error in Fig. 4.7) because of failing to detect the lesion
accurately for vertical translations, where the lesion was too close to the image border. This
is also confirmed in Fig. 4.8 (a), and (e), where instead of challenging ultrasound datasets
containing lesions with vague boundaries and speckle noise, we applied methods on less
challenging synthetic and brain MRI datasets. In these cases, while the proposed method
provided higher accuracy compared to BlurPooling 7× 7, the consistency is slightly worse
in the absence of outliers generated by the inaccuracy of BlurPooling 7× 7 in challenging
translations.

It is worth noting that although using different sets of filter sizes in PBP can lead to
different results, we noticed that choosing a set of low-pass filters with slightly different
sizes does not dramatically affect the results, and the concept of not using filters with
the same size for all feature maps plays the main role. However, as a rule of thumb, to
find the size of the first filter, we visually investigated input images and found the largest
possible low-pass filter that can be applied to the input image without noticeably changing
the boundaries or visibility of the lesions. In our experiments, the inputs had a size of
128 × 128, and we chose a 7 × 7 low-pass filter for the first downsampling layer and
decreased the filter size gradually moving toward deeper layers. The same rule can be
applied for larger or smaller inputs. If the input size is too small or the network has more
downsampling layers leading to very small feature maps at deeper layers, we also have this
option to apply low-pass filters only to more shallow layers and leave the deeper layers
with conventional max-pooling to achieve better results.
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4.4.4 Data Augmentation

We reported the results of every experiment with and without data augmentation in Fig.
4.8, represented by hatched and solid bars, respectively. In most cases, such as the UDIAT,
Baheya, and brain MRI datasets, the proposed method without data augmentation out-
performed the baseline method even with data augmentation in terms of both accuracy
and consistency. However, even in the remaining cases, the proposed method still outper-
formed the baseline method of the same category (i.e., with or without augmentation). For
data augmentation, both its type and parameters need to be chosen carefully concerning
the specifications of the dataset. For more illustration, take the classification of images
containing handwritten digits as an example, where augmenting the dataset with rotating
or flipping may lead to a wrong label for digit "nine" by changing it to digit "six" or vice
versa. Despite this evident example, less obvious scenarios can happen as well. In Fig.
4.8 (c) and (e), we can see that utilizing data augmentation increased error means. In the
brain MRI dataset, for instance, skull boundaries might be powerful features for the net-
work. Therefore, randomly cropping a portion of boundaries results in a more challenging
learning process leading to lower performance. In this case, the crop size can be consid-
ered a hyperparameter that needs to be tuned carefully. It is an advantage for the PBP
method, which provides a built-in data augmentation without the aforementioned limita-
tion. Moreover, applying BlurPooling layers on top of the data augmentation improved the
consistency even further. It demonstrates that data augmentation cannot be considered as a
replacement for the proposed method, and they are not interchangeable concepts.

4.5 Conclusions

The study presented in this chapter was encouraged by the fact that although accuracy is a
principal measure in ultrasound image segmentation using CNNs, the consistency of out-
puts across different tests must not be overlooked due to multiple clinical motivations. Ac-
cording to the rapidly growing exploitation of CNNs in this domain, and based on what has
been reported in the literature, we challenged the common assumption that CNNs are shift-
invariant. For the first time, we investigated the shift-variance problem in ultrasound image
segmentation or even more broadly in ultrasound images. To cover an extensive range of
previous studies, we chose U-Net as the baseline network due to widespread utilization of
either its vanilla version or its variants by the community. Moreover, we discussed the ori-
gin of the shift-variance problem that enables us to generalize the concept of the study
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to other networks with different architectures from the U-Net, which still use conven-
tional downsampling layers such as max-pooling or strided-convolutional layers without
respecting the Nyquist–Shannon sampling theorem. Demonstrating the existence of the
shift-variance problem in the ultrasound image segmentation task, we applied a recently
published technique referred to as BlurPooling to mitigate the problem and evaluated its
performance with different configurations. For evaluation, we quantified the shift-variance
problem using a metric based on error variance and conducted all experiments with and
without data augmentation to illustrate that augmentation techniques are not a replace-
ment for modifying downsampling layers. Finally, we presented the Pyramidal BlurPooling
method specifically for medical image segmentation, in which the size of blurring kernels
decreases gradually at deeper downsampling layers, where more energy of feature maps is
concentrated at lower frequencies. Testing on in-vivo ultrasound datasets, we demonstrated
that the proposed method outperformed the baseline and BlurPooling methods, where it
drastically improved the output consistency and, to a lesser extent, segmentation accuracy.
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Chapter 5

An Ultra-Fast Method for Simulation of
Realistic Ultrasound Images
This chapter is based on our published paper [143].

As mentioned in Chapter 4, CNNs have attracted a rapidly growing interest in a variety
of different processing tasks in the medical ultrasound community, including segmentation.
However, the performance of CNNs is highly reliant on both the amount and fidelity of the
training data. Therefore, scarce data is almost always a concern, particularly in the medical
field, where clinical data is not easily accessible. The utilization of synthetic data is a
popular approach to address this challenge. However, simulating a large number of images
using packages such as Field II is time-consuming, and the distribution of simulated images
is far from that of the real images. Herein, we introduce a novel ultra-fast ultrasound image
simulation method based on the Fourier transform and evaluate its performance in a lesion
segmentation task. We demonstrate that data augmentation using the images generated by
the proposed method substantially outperforms Field II in terms of the DSC, while the
simulation is almost 36000 times faster (both on CPU).

Simulating ultrasound images have been extensively investigated in the medical con-
text, and several publicly available packages have been released for this purpose [144, 38,
79]. Solving acoustic wave equations in the medium is one of the most well-known ap-
proaches to that aim [145], where complex equations make it computationally expensive
and relatively slow. Treeby et al. used the k-space pseudospectral method to reduce the
complexity for modeling nonlinear ultrasound propagation in heterogeneous media with
power law absorption [146]. Jensen et al. suggested calculating pulsed pressure fields
based on the Tupholme-Stepanishen method, wherein shape, excitation, and apodization of
the transducer could be set as parameters. They divided the surface into small rectangular
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patches and calculated the field in each one to obtain the final field by summing their re-
sponses. Besides, they used a far-field approximation instead of the geometric one in favor
of a faster calculation compared to the older methods [80].

Another approach for ultrasound simulation is based on ray-tracing methods, where the
graphics processing unit (GPU) is employed to simulate the propagation of the ultrasound
wavefront as rays. Given scatterers’ distribution, this approach is capable of generating
the speckle pattern by convolving a PSF with scatterers, while simulating complex ultra-
sound interactions, such as refractions and reflections. Bürger et al. suggested a simulation
method based on a convolution-enhanced ray-tracing approach and employed a deformable
mesh model. They demonstrated that a better simulation of artifacts is achievable by fol-
lowing the path of the ultrasound pulse [147]. Mattausch et al. proposed using interactive
Monte-Carlo path tracing for simulation of complex surface interactions, which enables
more realistic simulation of tissue interactions, such as soft shadows and fuzzy reflections
[148].

Recently, DL-based approaches are also exploited for synthesizing ultrasound images.
Zhang et al. demonstrated an approach to estimate the probabilistic scatterer from ob-
served ultrasound data by imposing a known statistical distribution on scatterers and learn
the mapping between ultrasound image and distribution parameter map by training a CNN
on synthetic images [149]. Hu et al. proposed a method based on a conditional generative
adversarial network (GAN) to simulate ultrasound images at given 3D spatial locations
relative to the patient anatomy [150]. Cronin et al. investigated a framework that accepts
synthetic masks and real images as inputs of a GAN and generates realistic B-mode mus-
culoskeletal ultrasound images that are statistically similar to real images [151]. Liang et

al. introduced an end-to-end framework for enhancing the structure fidelity and resolution
of simulated images by employing a sketch GAN and a progressive training strategy and
validated that on the follicle and ovary ultrasound image synthesis [152]. GANs were also
adopted for simulating intraoperative ultrasound images of the brain after tumor resection
surgery [153], intravascular [154], and kidney ultrasound images [155].

In this chapter, we propose a paradigm shift for ultra-fast simulation of B-mode ultra-
sound images, which is entirely different from the abovementioned methods and is based
on the Fourier transform.
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5.1 Ultra-fast simulation

To simulate a new ultrasound image containing lesion(s) with known ground truth, we
propose taking a real ultrasound image and an arbitrary mask (as the ground truth) and
substituting the phase information of the low-frequency spectrum of the real image with
the corresponding information of the mask.

Let Ir, Im, and Is ∈ RW×H represent a real ultrasound image, an arbitrary mask, and
the new simulated output image, respectively. In addition, let FM(I) : RW×H → RW×H

and FP (I) : RW×H → RW×H denote the magnitude and phase of the Fourier transform F
of the image I:

F(I)(m,n) =
W−1∑︂
w=0

H−1∑︂
h=0

I(w, h)e−j2π( h
H
n+ w

W
m) (5.1)

Accordingly, given FM(I) and FP (I), F−1 is the inverse Fourier transform that converts
back the signal from the frequency domain to the image domain.

I = F−1(FM(I),FP (I)) (5.2)

where j2 = −1, and (5.1) and (5.2) can be implemented using fast Fourier transform (FFT)
[156] and inverse fast Fourier transform (IFFT) algorithms, respectively.
Further, let denote with Mα a matrix of size W ×H:

Mα(w, h) =

⎧⎨⎩1,
(w−W

2
)2

(αW
2
)2

+
(h−H

2
)2

(αH
2
)2

≤ 1

0, otherwise
(5.3)

Finally, given a pair of a real image and an arbitrary mask, the proposed method for simu-
lating a new image can be formulated as:

Is = F−1(FM(Ir),Mα · FP (Im) + (1−Mα) · FP (Ir)) (5.4)

where α ∈ R is a parameter that specifies the amount of phase information that needs to
be replaced, and in this chapter, we set α = 0.11. Fig. 5.1 illustrates the proposed method,
where (a) is an arbitrary mask Im, and (b) is a real ultrasound image Ir. After taking the
FFT of both images, we replaced the phase information of the low-frequency spectrum of
the real image with the corresponding information of the mask. Finally, by taking the IFFT
of the modified real image Ir, the simulated image Is was generated.
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Figure 5.1: Given an arbitrary mask and a real ultrasound image, the proposed method takes
the FFT of both inputs and replaces the phase information of the low-frequency spectrum
of the real image with the corresponding information of the arbitrary mask to generate the
output. (a) An arbitrary mask. (b) A real ultrasound image. (c) The simulated output image.

5.2 Segmentation Task

Given a sample input image I ∈ RW×H and its corresponding output segmentation mask
Ŝ ∈ {0, 1}W×H , the segmentation problem can be formulated as:

Ŝ = fseg(I,θ) (5.5)

where W and H are width and height of the image, respectively, fseg : RW×H → {0, 1}W×H

is the segmentation CNN, and θ are the network’s parameters. By training the model, an
optimizer tries to find optimal parameters θ∗ that minimize the error, measured by a loss
function L, between predicted mask Ŝ and ground truth S

θ∗ = argmin
θ

L(S, Ŝ) (5.6)

5.2.1 Datasets

In-vivo Dataset

We utilized a publicly available ultrasound breast images dataset, known as Dataset B [53],
which was collected in 2012 from the UDIAT Diagnostic Centre with a Siemens ACUSON
Sequoia C512 system and a 17L5 HD linear array transducer with a frequency of 8.5 MHz.
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The dataset consisted of 163 breasts B-mode ultrasound images from different women with
a mean image size of 760×570 pixels, where each one included lesions of different sizes
at different locations. Lesions were categorized into two classes of benign and cancerous,
with 110 and 53 images in each class, respectively. Corresponding lesion masks were also
delineated by experienced radiologists and provided along with the dataset as ground truth
masks. We resampled all images to a size of 256×256 pixels and split the dataset into three
training, validation, and test sets, each containing 20, 20, and 123 images, respectively.

Field II Dataset

To compare the proposed method with Field II, we simulated 1000 focused images using
this publicly available simulation package [80, 79]. Each image contained 100,000 scat-
terers uniformly distributed inside a phantom of size 50 mm × 10 mm × 50 mm in x, y,
and z directions, respectively. Phantoms were positioned at an axial depth of 20 mm from
the face of the transducer and centered at the focal point. Besides, we added an anechoic
region with an arbitrary shape to each one. To generate those anechoic regions, we took
1000 samples with only one salient object from a publicly available dataset, known as XPIE
[104], which contained segmented natural images. Then we discarded natural images and
resampled only their ground truth masks with the same size as the phantom. Finally, we
assigned a zero weight to the amplitude of those scatterers which were located inside the
mask. The advantages of this method were twofold: First, it enabled us to consider the
masks as the ground truths of simulated images. Second, we provided the network with a
wider range of features compared to regions with limited shapes. Finally, we resampled all
images to 256×256 pixels, and split them into two training and validation sets, each con-
taining 800 and 200 images, respectively. Note that this data was merely used for training
and validation and did not contain a test set. The parameters of the Field II simulation are
summarized in Table 5.1.

Ultra-Fast Dataset

For simulating an image using the proposed method, an arbitrary mask and a real image
are required. We took the same 1000 masks from the XPIE dataset, which were used for
simulating the Field II dataset, and randomly paired each one with a real image from the
training set of the in-vivo dataset to simulate 1000 new images. Similar to the Field II
dataset, we resampled all images to 256×256 pixels and split them into two training and
validation sets, each containing 800 and 200 images, respectively, where there was no need
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Table 5.1: Field II parameters for data simulation.

Parameter Value
Sound Speed 1540 m/s

Number of Lines 50

Number of Elements 192

Number of Active Elements 64

Elevation Element Height 5 mm

Element Width Equals to wavelength

Kerf 0.05 mm

for a test set.

5.2.2 Network Architecture and Training Strategy

We used a vanilla U-Net [108] to evaluate the performance of the proposed method in a
segmentation task. U-Net was proposed particularly for biomedical image segmentation,
where the size of the training set is small. Its architecture comprises an encoder followed
by a decoder, and skip connections are also employed to concatenate low-level features of
the encoder with high-level ones in the decoder.

For the training process, we set the learning rate and batch size to 1 × 10−4 and 16,
respectively. The AdamW [141], a variant of Adam [95], with a weight decay of 10−2

was exploited as the optimizer, and a sigmoid activation function was used for the output
layer. The loss function was defined based on the DSC. This metric quantifies the area
overlap between the ground truth and predicted masks and was also used for evaluating the
segmentation performance:

DSC(S, Ŝ) =
2
⃓⃓⃓
S ∩ Ŝ

⃓⃓⃓
+ ε

|S|+
⃓⃓⃓
Ŝ
⃓⃓⃓
+ ε

(5.7)

where ε is a small number that prevents numerical instability for small masks. After each
training or fine-tuning epoch, model weights were saved only if the validation loss had been
improved, and finally, the best model was used for testing. Experiments were implemented
using the PyTorch package [142] and run on an NVIDIA TITAN Xp GPU with 12 GB of
memory.
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Figure 5.2: Comparison of DSC over the in-vivo test set achieved by three conducted exper-
iments. (Top) Training the network from scratch merely using in-vivo training set. (Middle)
Pre-training the network using synthetic data simulated by Field II and then fine-tuning on
the in-vivo training set. (Bottom) Pre-training the network using synthetic data simulated
by the ultra-fast proposed method and then fine-tuning on the in-vivo training set. The tri-
angle and vertical line represent the mean and median, respectively.

5.3 Results

To assess the proposed method for improving the performance of the segmentation task, we
conducted three separate experiments. In the first one, labeled as the baseline, a network
was trained merely using 20 training images of the in-vivo dataset for 200 epochs. In the
next experiment, first, the network was trained using 800 training images of the Field II
dataset for 150 epochs, and then it was fined-tined using 20 training images of the in-vivo

dataset for 50 more epochs. Finally, as the last experiment, we repeated the second one,
except that instead of the Field II dataset, the ultrafast dataset was employed for pre-training
the network. As mentioned before, to avoid data leakage, only the training set of the in-vivo

dataset had been used for simulating the ultrafast dataset.
Fig. 5.2 shows the DSC results over the test set of the in-vivo dataset for all three

experiments. As expected, the baseline method achieved the lowest mean DSC due to
training on 20 real ultrasound images and without pre-training on simulated images. The
second experiment obtained a better performance by taking advantage of pre-training on
synthetic images simulated by Field II and then fine-tuning on real ultrasound images.
Finally, the third experiment demonstrated that pre-training the network on synthetic data
simulated by the proposed method achieved 24.8% higher mean DSC than the baseline
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experiment and outperformed Field II simulations by 15.6% improvement in mean DSC.
Another advantage of the proposed method is that most of its computational cost is devoted
to taking FFT and IFFT, which made simulating the ultra-fast dataset almost 36000 times
faster than the Field II dataset using the same CPU.

5.4 Conclusion

We introduced a novel ultra-fast approach based on the Fourier transform for simulating
ultrasound images. In this approach, in contrast with the existing methods such as solving
acoustic wave equations, employing ray-tracing, or using GANs, we proposed replacing the
phase information of the low-frequency spectrum of a real ultrasound image with the cor-
responding information of an arbitrary mask to simulate a new image containing lesion(s)
with known ground truth. We assessed the utility of this method in a lesion segmentation
task, where a U-Net was pre-trained using synthetic data. We demonstrated that images
simulated by the proposed method outperformed Field II simulations in terms of improv-
ing the mean DSC by 15.6%, while the simulation was almost 36000 times faster (both on
CPU).
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Chapter 6

Ultrasound Domain Adaptation Using
Frequency Domain Analysis
This chapter is based on our published paper [157].

As mentioned in the previous chapter, utilizing synthetic data to train networks is a
popular approach to address the challenge of limited data availability in the medical field.
Although this method can alleviate the issue, models trained on synthetic data often face
difficulties in generalizing effectively to real-world applications, which involve handling
images obtained from various scanners and different protocols [158]. This issue originally
comes from the fact that deep neural networks typically assume that both training and
test sets have been drawn from the same distribution [159], which is not necessarily true,
especially regarding the recent trend of using synthetic data for training. This problem is
usually referred to as the domain shift problem, which induces a dramatic performance
drop [160].

Domain adaptation methods are a well-known solution to address the domain shift prob-
lem and have been investigated in the medical ultrasound domain. Tierney et al. proposed a
scheme that incorporates both simulated and unlabeled in-vivo data to train a beamformer.
They employed cycle-consistent generative adversarial networks to map between simu-
lated and in-vivo data in both the input and ground truth target domains [161, 162]. Ying
et al. introduced a multi-scale self-attention unsupervised network for domain adaptation
between labeled thyroid ultrasound images and unlabeled ones in a different domain [163].
Meng et al. introduced mutual information-based disentangled neural networks for clas-
sifying unseen categories of fetal ultrasound images in different domains. They extracted
generalizable categorical features by explicitly disentangling categorical and domain fea-
tures via mutual information minimization to transfer knowledge to unseen categories in
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a target domain [164]. Zhang et al. proposed a deep-stacked transformation approach for
generalizing medical image segmentation models to unseen domains and evaluated it on
segmentation tasks involving MRI and ultrasound modalities [165].

Recently, Yang et al. [166] introduced the Fourier domain adaptation (FDA) method in
the field of computer vision. They proposed that moving sample A from the source distri-
bution to the distribution of sample B in the target dataset can be achieved by computing
the FFT of both samples and substituting the magnitude of the low-frequency spectrum of
the source sample with the target sample and finally reconstructing the modified source
sample using IFFT. This method is much faster than DL-based methods, and they demon-
strated promising results to adapt synthetic dataset GTA5 [167] to the real domain dataset
CityScapes [168], which both contain urban street scenes.

We believe this method can perform even better on ultrasound images than urban street
scenes because two common differences between synthetic and real ultrasound data are
caused by unknown values of attenuation and speed of sound (SOS) in real tissues. At-
tenuation leads to slow variations in the amplitude of the B-mode image, and a mismatch
between the nominal and true values of the SOS creates aberration and subsequent blurring.
As such, both of these domain shifts are low-frequency in nature and can be compensated
by swapping the low-frequency spectrum of the synthetic and real image.

In this chapter, we exploit the FDA method to mitigate the domain shift problem of
synthetic ultrasound images and evaluate its performance in a breast lesion segmentation
task.

6.1 Methodology

6.1.1 Datasets

Synthetic Dataset

We simulated 1000 ultrasound images using the publicly available Field II simulation pack-
age [79, 80] containing 100,000 scatterers uniformly distributed inside a phantom of size
50 mm × 10 mm × 50 mm in x, y, and z directions, respectively. All phantoms were
centered at the focal point, positioned at an axial depth of 20 mm from the face of the
transducer, and each contained an anechoic region with a different shape. To generate
those anechoic regions, we took 1000 samples with only one salient object from a pub-
licly available dataset, denoted as XPIE [104], which contained segmented natural images.
Then we discarded natural images and resampled only their ground truth masks with the
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same size as the phantom. Finally, we assigned a zero weight to the amplitude of scatterers
which were located inside the mask. The advantages of this method were twofold: First,
the mask could be considered as the ground truth of the simulated images. Second, we
provided the network with an extended range of features as opposed to regions with limited
shapes. Finally, we resampled all images to a size of 256×256 and split the dataset into
two training and validation sets, each containing 800 and 200 images, respectively. Note
that this data was only used for training and validation and did not contain a test set. The
simulation parameters were the same as those outlined in Table 5.1.

In-vivo Dataset

We exploited an ultrasound breast images dataset, known as Dataset B [53]. The dataset
was publicly available and collected in 2012 from the UDIAT Diagnostic Centre with a
Siemens ACUSON Sequoia C512 system and a 17L5 HD linear array transducer. It in-
cluded 163 breast B-mode ultrasound images containing lesions of different sizes at differ-
ent locations, with a mean image size of 760×570 pixels. Lesions were categorized into
benign and cancerous classes, with 110 and 53 samples in each class, respectively. The
dataset also contained respective ground truth masks of the breast lesions, manually ob-
tained by experienced radiologists. We resampled all images to a size of 256×256, and
split the dataset into three training, validation, and test sets, each containing 20, 20, and
123 images, respectively.

6.1.2 Fourier Domain Adaptation

To mitigate the domain shift problem, the FDA method [166] suggests replacing the magni-
tude of the low-frequency spectrum of source samples with target samples. Let Is ∈ RW×H ,
and It ∈ RW×H represent a simulated image using Field II (source) and an in-vivo image
(target), respectively. Besides, let FM(I) : RW×H → RW×H and FP (I) : RW×H →
RW×H be the magnitude and phase of the Fourier transform F of the image I , as defined
in Eq. (5.1). Accordingly, given FM(I) and FP (I), F−1 is the inverse Fourier transform
that converts back the signal from the frequency domain to the image domain, as indicated
in Eq. (5.2). Further, let denote with Mα a mask matrix of size W ×H:

Mα(w, h) =

⎧⎨⎩1, −α < 2w
W

− 1 < α,−α < 2h
H

− 1 < α

0, otherwise
(6.1)
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Finally, given a pair of simulated and in-vivo images, the FDA method can be formalized
as:

Is→t = F−1(Mα · FM(It) + (1−Mα) · FM(Is),FP (Is)) (6.2)

where α ∈ (0, 1). In this chapter, we set α = 0.014. Fig. 6.1 illustrates the FDA method. It
shows (a) a simulated image Is, and (b) a real ultrasound image It from the in-vivo dataset.
After taking the FFT of both images, the magnitude of the low-frequency spectrum of the
simulated image has been replaced with the real one. Finally, by taking the IFFT, the output
Is→t has been obtained.

FFT

FFT

Magnitude Result

IFFT

(Real Image)

Target

Source

(Simulated Image)

𝜶

(a)

(b)

(c)

Figure 6.1: The FDA method takes the FFT of simulated and real images, which belong
to source and target distributions, respectively. Then it replaces the magnitude of the low-
frequency spectrum of the simulated image with the real one. Finally, it obtains the output
by taking the IFFT from the modified simulated image. (a) A synthetic ultrasound image,
which is simulated using Field II and belongs to the source distribution. (b) A real ultra-
sound image, which belongs to the target distribution. (c) The output, which seems closer
to the target distribution.

6.1.3 Network Architecture and Training Strategy

We used a vanilla U-Net [108] to evaluate the performance of the FDA method on ultra-
sound images for a segmentation task. The sigmoid function was chosen as the activation
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function of the output layer, and the learning rate and batch size were 1 × 10−4 and 16,
respectively. The AdamW [141], a variant of Adam [95], with a weight decay of 10−2 was
exploited as the optimizer. Additionally, we used the DSC, as defined in Eq. 5.7, to eval-
uate segmentation performance. The loss function was also based on this metric, which
quantifies the area of overlap between the ground truth and predicted masks. For each
epoch of training or fine-tuning, the model weights were stored only when the validation
loss had been improved, and finally, the best weights were used for testing. Experiments
were implemented using the PyTorch package [142], and training was performed on an
NVIDIA TITAN Xp GPU with 12 GB of memory.
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Figure 6.2: Quantitative comparison of DSC over the in-vivo test set. (Left) Training the
network from scratch merely using in-vivo images. (Middle) Use pre-trained weights ob-
tained from training on simulated images without applying the FDA method. (Right) Use
pre-trained weights obtained from training on simulated images with applying the FDA
method. The triangle and horizontal line represent the mean and median, respectively.

6.2 Results

To assess the effect of the FDA method for mitigating the domain shift problem, we con-
ducted three different experiments. In the first experiment, labeled as the baseline, a net-
work was trained merely using 20 training samples of the in-vivo dataset for 200 epochs. In
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the next experiment, first, the network was trained using 800 training samples of the sim-
ulated dataset without applying the FDA method for 150 epochs. Then it was fined-tined
using 20 training samples of the in-vivo dataset for 50 epochs. Finally, as the third experi-
ment, we applied FDA to the simulated images and repeated the previous experiment. To
apply the FDA method, for each training simulated image and at each iteration, the target
image was randomly chosen from 40 images in the training and validation sets of the in-

vivo dataset. However, we used a fixed set of target images for applying the FDA method
on the validation samples. Since the main purpose of using the validation set was to find
and save the best model across different epochs, injecting randomness caused by choosing
random target images was not desired.

Fig. 6.2 illustrates the DSC results for 123 test set images of the in-vivo dataset for
the aforementioned three experiments. As we expected, the baseline method led to the
lowest DSC due to training on only 20 real ultrasound images without taking advantage of
pre-training on simulated images. The second experiment achieved a better performance
by pre-training on simulated data and using in-vivo images for fine-tuning. However, it
suffered from the domain shift problem, where there was a high discrepancy between the
distribution of the simulated data and the in-vivo data. The third experiment showed a 3.5%
improvement in mean DSC, obtained by applying the FDA method.

6.3 Conclusion

In conclusion, we claimed that important differences between simulated and real ultrasound
data are low-frequency in nature. We employed the FDA method, which replaces the mag-
nitude of the low-frequency spectrum of a synthetic image with a real one to tackle the issue
of domain shift. For the first time, we exploited the FDA method in segmentation of ultra-
sound images, and more generally in ultrasound imaging. We demonstrated that applying
this fast and simple method on simulated ultrasound data can improve the mean DSC as
high as 3.5% compared to using simulated data without applying any domain adaptation
method.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

To enhance the interpretability of ultrasound images by tackling the phase aberration prob-
lem, we proposed two novel phase aberration correction techniques. In the first approach,
we trained a CNN to estimate the aberration profile from an ultrasound B-mode image.
This estimated profile was subsequently used to compensate for the phase aberration. We
experimentally examined the main characteristics of the proposed method and provided a
quantitative evaluation of the predicted aberration profile. Results demonstrated that the
CNN-based method substantially outperforms the conventional DAS method and another
technique based on NNCC. In the second approach, we introduced MAIN-AAA, a DL-
based aberration correction technique that did not require ground truth data during the
training phase. In this approach, we proposed training a network where both the input and
target outputs were randomly aberrated RF data. Additionally, we introduced an adaptive
mixed loss function that gradually shifts from B-mode data to RF data as training pro-
gresses toward convergence. This proposed loss function achieved superior performance
by utilizing smoother B-mode data in the beginning, guiding the optimizer toward a cor-
rect solution, and gradually incorporating more fluctuating RF data to fully leverage its
richer information. This strategy helped to avoid getting stuck in local minima during the
initial stages of optimization. Each of these aberration correction methods presents dis-
tinct advantages and limitations. In contrast to MAIN-AAA, which estimates the corrected
image using an end-to-end network, the first method offers a more explainable solution
by estimating the aberration law before correcting the phase aberration effect. However,
MAIN-AAA does not require ground truth data, allowing it to be trained on real data rather
than relying on synthetic data. Furthermore, the first method assumes that the aberration
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is caused by a near-field phase screen, whereas MAIN-AAA can also mitigate distributed
aberrations.

In order to simplify the interpretation of ultrasound images through automatic segmen-
tation, we investigated the shift-variance problem in CNNs and evaluated the effectiveness
of replacing max-pooling layers in the encoder of the U-Net with BlurPooling layers to
address this issue. Furthermore, instead of using anti-aliasing filters of the same size for all
downsampling layers, we proposed the Pyramidal BlurPooling method, which incorporates
a pyramidal stack of anti-aliasing filters at each BlurPooling layer to improve the output
consistency without compromising accuracy. We demonstrated that the proposed method
outperforms BlurPooling in terms of output consistency and segmentation accuracy. To
address the scarcity of data in DL-based approaches for ultrasound image segmentation,
we introduced a novel ultra-fast image simulation method and evaluated its effectiveness
in a lesion segmentation task. Our findings demonstrated that pretraining a U-Net with
images generated by this method significantly outperforms the traditional Field II simula-
tion, as measured by the DSC. Notably, the proposed simulation process is nearly 36,000
times faster than Field II when both methods are executed on a CPU. A limitation of the
proposed method is that it is only applicable to segmentation tasks and may not be as ef-
fective for other tasks, such as classification. In scenarios where data is available but from
different domains, we employed a domain adaptation method based on frequency domain
analysis, which replaces the magnitude of the low-frequency spectrum of an image from
the source distribution with an image from the target distribution. Results demonstrated the
effectiveness of this approach in enhancing the performance of a breast lesion segmentation
task.

7.2 Future Work

Phase aberration is a significant factor contributing to the degradation of ultrasound image
quality, and mitigating its effects remains an active area of research. In Chapter 2, we
demonstrated that a CNN can effectively estimate aberrator profiles from B-mode images,
providing an explainable approach to mitigate aberration by compensating for the estimated
delays. Estimating the aberration profile is a crucial step in transcranial ultrasound, not
only for imaging but also for therapeutic applications, a class of non-invasive techniques
that utilize ultrasound energy to alter brain structure or function, for instance, to modulate
brain activity [169]. In transcranial ultrasound, the skull is often modeled as a near-field
phase screen, where auxiliary imaging modalities such as MRI or computed tomography
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are employed to estimate the aberration profile according to the skull thickness and density
[170, 171]. This profile is then used to correct the strong phase aberration induced by the
skull, both for image reconstruction and for focusing energy beams during therapy. An
interesting avenue for future research involves investigating the application of the proposed
CNN-based method in transcranial ultrasound by estimating the aberration profile directly
from ultrasound images, potentially eliminating the need for auxiliary modalities.

In transcranial ultrasound, the near-field phase screen model can be considered an ef-
fective aberration model due to the presence of the skull. However, there are scenarios
where the aberration is spatially distributed throughout the medium, making a near-field
phase screen model insufficient. As previously mentioned, the MAIN-AAA method intro-
duced in Chapter 3 can effectively address distributed aberrations. However, this method
estimates the corrected data directly, bypassing the estimation of the aberration law, which
results in a less explainable approach. In future work, the explainable method proposed
in Chapter 2 can be extended to address distributed aberrations by training a CNN to gen-
erate a three-dimensional aberration law rather than estimating a single one-dimensional
aberration profile for the entire medium. In this framework, the output would represent the
aberration profiles along one dimension, while the other two dimensions correspond to the
axial and lateral positions of different regions within the medium. Based on the physical
principles of ultrasound, abrupt changes in delays between regions are unlikely, provided
the regions are sufficiently small. To account for this, regularization terms can be incor-
porated into the loss function to enforce continuity both element-wise and region-wise,
thereby improving the network’s performance.

Regarding the automatic segmentation of ultrasound images, we investigated the shift-
variance problem and introduced PBP layers to mitigate this issue. A limitation of this
segmentation method is its training on only two relatively small ultrasound datasets due
to data scarcity, which restricts its generalizability when applied to images obtained from
diverse organs, devices, or settings. To address this challenge, we proposed an ultrafast
method for simulating ultrasound images and utilized domain adaptation techniques. Re-
cently, foundation models such as SAM [172] and SAM2 [173] have gained considerable
interest as highly generalized models for segmentation tasks. These transformer-based
models are pre-trained on an excessive number of images, including over 1 billion masks.
While foundation models have shown promising results in zero-shot natural image segmen-
tation tasks, their performance on ultrasound images tends to be relatively lower due to the
inherent differences between natural and ultrasound images, compounded by the general
scarcity of medical ultrasound data. In parallel, stable diffusion models have recently been
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employed to address data scarcity in medical imaging by generating an arbitrary number of
synthetic images with diverse characteristics [174]. Several avenues for future research in-
clude evaluating the performance of foundation models in the segmentation of ultrasound
images, investigating the shift-variance problem within these transformer-based models,
and exploring potential solutions to alleviate this issue. Furthermore, fine-tuning these
foundation models using datasets of real ultrasound images, augmented with synthetic im-
ages generated by stable diffusion models, may offer enhanced performance.

In ultrasound segmentation, we aim to delineate anatomical targets or lesions within
organs such as the liver, kidneys, or brain, which are often obscured by aberrating layers
like fat or the skull. Another direction for future research involves assessing the impact
of phase aberration correction methods on segmentation accuracy within a sequential pro-
cessing framework, followed by exploring techniques for simultaneous phase aberration
correction and image segmentation. While aberration correction enhances image quality,
we anticipate that any errors in correction will propagate to the segmentation task. In-
stead of employing a pipeline that treats these tasks sequentially, a MTL framework can be
used to jointly optimize both processes. By sharing representations between the two tasks,
the network enables mutual learning, where phase aberration correction is guided by seg-
mentation information and vice versa. This allows the aberration correction task to directly
benefit from the segmentation masks, which capture high-level structural information about
the target, something that is impossible in a sequential pipeline. The segmentation process,
in turn, operates on corrected features, resulting in a synergistic improvement of both tasks.
This joint optimization can minimize error propagation and enhance the overall accuracy
and robustness of both phase correction and segmentation.
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Appendix A

Frequency-Space Prediction Filtering
for Phase Aberration Correction in
Plane-Wave Ultrasound
This chapter is based on our published paper [175].

In Chapter 3, we compared the proposed method with the frequency-space (F-X) pre-
diction filtering technique or FXPF. Initially developed for random noise suppression in
seismic imaging [176], this method has recently been applied to correct phase aberrations
in focused ultrasound imaging [20]. The FXPF method assumes an AR model of order
p across the signals received by the transducer elements, systematically eliminating any
components that deviate from the established model.

This appendix highlights the challenges of applying this technique to plane-wave imag-
ing. At shallower depths, signals from more distant elements become less relevant, result-
ing in fewer elements contributing to image reconstruction. Since the number of contribut-
ing signals varies with depth, utilizing a fixed-order AR model across all depths leads to
suboptimal performance. To address this issue, we propose an AR model with an adaptive
order and quantify its effectiveness using contrast and gCNR metrics.

A.1 Methodology

A.1.1 Adaptive FXPF

Let us consider a transducer with N elements and denote the Fourier transform of the re-
ceived RF signal at time t by element n ∈ [1, N ] located at xn as RFn(f) = F{RF (xn, t)}.
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The FXPF establishes an AR model of order p across the RF channel signals received at
transducer elements. Specifically, in the frequency domain and for each temporal frequency
fk, the method predicts a signal as a linear combination of the signals received by the p pre-
ceding channels:

RFn+1(fk) = a1(fk)RFn(fk) + a2(fk)RFn−1(fk)+

a3(fk)RFn−2(fk) + ...+ ap(fk)RFn+1−p(fk),
(A.1)

where coefficients denoted by a need to be estimated. Given that Eq. (A.1) represents a
convolution, it can be expressed as

RFn+1 =
[︂
RFn RFn−1 . . . RFn+1−p

]︂⎡⎢⎢⎣
a1
...
ap

⎤⎥⎥⎦ , (A.2)

where the fk was left out for simplicity of notation, but the equation pertains to a specific
temporal frequency, denoted as fk. Equation (A.2) can be written in a more general form
as the product of a matrix and a vector. For example, when p = 4, it can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RF2
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0
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=
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⎤⎥⎥⎥⎥⎦ . (A.3)

Let us express Eq. (A.3) as
d = Ma, (A.4)

where d represents the vector comprising values associated with the current elements, M
denotes the convolution matrix consisting of values corresponding to the preceding ele-
ments, and a is the prediction error filter with a length of p. In practice, RF channel data
are inevitably contaminated with random noise from various sources. Therefore, the pre-
diction error filter a in Eq. (A.4) must be estimated from the noisy data d. Achieving this
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requires minimizing the energy associated with the prediction error:

L = ∥Ma− d∥22, (A.5)

where ∥.∥22 is the square of the Euclidean norm. To minimize the cost function L, it is
required to set ∂L

∂a
= 0, which results in

MTd = MTMa. (A.6)

We can obtain an estimate â of the prediction error filter a as

â = (MTM+ µI)−1MTd (A.7)

where a stability factor µ is added into the diagonal components of MTM to enhance the
stability of the matrix inversion. In this chapter, µ was set to 0.01, and the results exhibit
minimal sensitivity to its value. After obtaining the estimated prediction error filter â, an
estimate d̂ of the noise-free signal d can be acquired by applying it to the noisy data M:

d̂ = Mâ, (A.8)

where components of noisy data that do not conform to the established AR model are
filtered out. Finally, the filtered RF signals can be obtained by applying the inverse Fourier
transform.

While FXPF has been utilized for phase aberration correction in focused images [20],
employing this method for plane-wave images poses a challenge. This challenge primarily
arises from the substantial variation in channel data across elements at shallower depths,
where signals from more distant elements become irrelevant and may negatively impact
the performance of the AR model. Even after applying apodization, using a high-order AR
model for shallow depths with only a few echo signals may lead to over-smoothing during
prediction filtering. In such scenarios, adopting a fixed-order AR model across all depths
would result in suboptimal performance. To address this issue, we propose the utilization
of an AR model with an adaptive order, defined as follows:

p(z) = min(pmax, ⌈pmax ×
(︃

z

f × L

)︃β

⌉), (A.9)

where f represents the f -number, z is the depth, pmax is the maximum order used at depths
where all elements are utilized for reconstruction, ⌈.⌉ denotes rounding up to the nearest
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integer, and β is the non-linearity coefficient that controls the speed of transition from lower
orders to higher orders. In summary, as per the formulation given by Eq. (A.9), the AR
model featuring an adaptive order always commences with a lower order (e.g., p = 1)
for shallower depths, progressively increasing the order until it reaches pmax, a value we
established for the deepest depths.

Although the technique was presented based on a forward AR model, a backward AR
model can also be established by reversing the sequence of transducer elements [20]. To
minimize potential directional biases and enhance the performance of the technique, the
data underwent two independent filtering processes using both forward and backward AR
models. The final output was then determined by averaging the results of these dual filtering
paths. In practice, we used a moving axial kernel to compute the fast Fourier transform.
Rather than processing the entire image all at once, we progressively shifted the kernel
along the axial direction until the full depth was covered. Furthermore, once the method
has been applied to the image for an initial iteration, it can undergo subsequent iterations,
as long as it continues to yield improved outcomes. In our experimental setup, we set the
f -number to 1.75, employed an axial kernel size equivalent to one wavelength, and applied
the FXPF method for 2 iterations. For the adaptive FXPF, we configured pmax to be 4,
while β was set to 1/3. These specific parameters were selected due to their production of
the most optimal results in our cases.

A.1.2 Tissue-Mimicking Phantom Data

An L11-5v linear array transducer was operated using a Vantage 256 system (Verasonics,
Kirkland, WA) to acquire a single plane-wave image from a multi-purpose multi-tissue ul-
trasound phantom (Model 040GSE, CIRS, Norfolk, VA). The center and sampling frequen-
cies were set at 5.208 MHz and 20.832 MHz, respectively, with the sound speed assumed to
be 1540 m/s. The transducer settings are the same as those summarized in Table 3.1.4. We
introduced a quasi-physical aberration to the image by programming the scanner to excite
transducer elements asynchronously according to a randomly generated aberration profile,
as explained in Section 3.1.3. Moreover, delay errors introduced by the aberration profile
were taken into account during the reception process for reconstructing the image. Re-
ceived signals were stored as RF channel data after applying beamforming delays, serving
as the input for the proposed method.
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A.1.3 Quality Metrics

To quantitatively measure the quality of the reconstructed images, we calculated contrast
and gCNR [111] metrics, as defined in Eqs. (3.11) and (3.13) for the top and bottom
anechoic cysts using the target and background regions shown in Fig. A.1(a).

A.2 Results and Discussion
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Figure A.1: Qualitative comparison between FXPF methods with fixed orders and an adap-
tive order. (a) An aberrated single plane-wave image reconstructed using DAS. (b) The
FXPF output with a fixed order of 1. (c) The FXPF output with a fixed order of 4. (d) The
FXPF output with an adaptive order.

Fig. A.1(a) shows an aberrated single plane-wave image reconstructed using the DAS
method. To mitigate the phase aberration effect, we applied the FXPF method with three
distinct configurations. These include two AR models with fixed orders of 1 and 4, as
well as an additional AR model incorporating the proposed adaptive order. The outputs
obtained using fixed orders of 1 and 4 are illustrated in Fig. A.2(b) and (c), respectively.
While the model with a fixed order of 1 effectively enhanced the contrast of the anechoic
cyst at shallow depths, it was nearly ineffective for the -6 dB and -3 dB hypoechoic cysts
at the middle, as well as for the anechoic cyst at the bottom of the image. Conversely, the
model with a fixed order of 4 improved the quality of the deeper cysts but degraded the
contrast of the top cyst. The output of the adaptive FXPF is shown in (d), highlighting a
solution that effectively combines the advantages of both previous settings. This achieve-
ment was made possible by adaptively adjusting the order, utilizing a lower-order model for
shallower depths, and progressively increasing the order for deeper depths. Note that we
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Figure A.2: Quantitative comparison between FXPF methods with fixed orders and an
adaptive order.

generally observe more improvement for the bottom cyst when compared to the top one in
all the images. This observation can be explained by the fact that the severity of the phase
aberration effect, which requires correction, tends to be lower at shallower depths in con-
trast to deeper depths for two reasons. Firstly, perturbations in the wavefront become more
pronounced as it propagates, resulting in an increased aberration effect during transmission
as the wavefront advances. Secondly, as mentioned earlier, the aperture size is smaller at
shallower depths, which mitigates the issue of incoherent summation at lower depths, as
only a smaller number of neighboring elements are involved in the process of image re-
construction. The contrast and gCNR metrics were calculated on the envelope-detected
image in the linear domain before applying the log-compression, where the target region
was inside the solid red circle and the background was the region between two dashed blue
concentric circles. The average values across two cysts are reported in Fig. A.2.

A.3 Conclusion

We demonstrated a challenge associated with phase aberration correction in plane-wave
images using the FXPF method. This challenge arises due to substantial variations in chan-
nel data across elements at shallower depths, where signals from more distant elements
lose relevance and can adversely affect the performance of the AR model. To address
this challenge, we proposed the adaptive FXPF, which adjusts the order of the AR model
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by employing a lower order for shallower depths and progressively increases the order for
deeper depths. Both qualitative and quantitative results indicated that the adaptive approach
provides higher performance in correcting the phase aberration effect.
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Appendix B

RF Data Normalization for Deep
Learning
This chapter is based on our published paper [177].

In Chapter 3, we introduced a method for normalizing RF data, distinct from conven-
tional min-max scaling, to enable more efficient utilization of the generated dataset. This
method is particularly relevant as DL-based techniques have recently gained considerable
interest in medical ultrasound image processing, often demonstrating superior performance
compared to traditional approaches in various tasks. These techniques leverage the power
of neural networks to enhance image quality and aid in diagnostics. They have been applied
not only to phase aberration correction tasks [81, 43] but also to tasks such as beamforming
[178, 179, 180], speckle reduction [181], image segmentation, image registration [182],
elastography [183], quantitative ultrasound [184, 185, 186], and more.

Additionally, there has been a growing adoption of RF data in DL-based approaches due
to the fact that these methods prove more effective with more data, and RF data inherently
contains richer information compared to envelope or B-mode data. RF data has a higher
fidelity stemming from its raw and unprocessed form and contains complex details about
the interaction between ultrasound waves and tissue structures. This makes it particularly
well-suited for DL techniques, where these methods can leverage the complexity of RF
data to detect subtle tissue differences, texture variations, and acoustic properties that might
be missed in envelope or B-mode data. However, the highly fluctuating nature of RF data
poses a challenge for neural networks to learn effectively during training, given that regions
exhibiting comparable patterns might not appear very similar in RF data representation
from a network’s perspective. This challenge is exacerbated due to the high dynamic range
of signal amplitudes. Substantial differences in amplitudes of raw ultrasound signals can
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arise from variations in tissue density, acoustic impedance, the presence of bright specular
reflectors, and other factors.

RF data may be acquired under varying power settings and from diverse sources, in-
cluding various simulation packages and ultrasound machines, and needs to be normalized.
Many researchers choose to utilize min-max scaling to align the RF data within a prede-
fined range, such as [-1, 1], or less conventional ranges like [0, 1]. However, it is important
to recognize the susceptibility of these techniques to RF data. While min-max scaling ex-
hibits efficacy in the context of natural images, it may not be as effective for fluctuating RF
signals with a very high dynamic range.

In this chapter, we demonstrate the inadequacy of the conventional min-max scaling
techniques for normalizing RF data and illustrate how large amplitudes generated by a
typical structure, such as a bright specular reflector, introduce challenges to the learning
process of a neural network by preventing it from utilizing the data effectively. Addition-
ally, we propose that employing a robust normalization method substantially improves the
network’s performance.

B.1 Methodology

B.1.1 Robust Normalization

Let us denote the RF data of the ultrasound image by RF (x, y). A conventional normal-
ization technique involves dividing the RF data by its maximum absolute value, resulting
in RFMaxAbs(x, y) as given by

RFMaxAbs(x, y) =
RF (x, y)

max |RF (x, y)|
. (B.1)

This step plays a critical role in transforming the RF data, acquired from various simulation
packages and ultrasound machines, to a consistent range of [-1, 1]. We propose that follow-
ing the prior step, applying individual standardization to the image substantially enhances
the performance of deep neural networks by utilizing the data more efficiently:

RFRobust(x, y) =
RFMaxAbs(x, y)

σ
(B.2)

where σ is the standard deviation of values across RFMaxAbs(x, y).
By individually dividing each image by its corresponding standard deviation, the RF
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data is efficiently normalized with regard to its variability, which mitigates the impact of
large echoes in the process of comparing different images. It is worth noting that this
approach yields a distinct outcome compared to the well-known standardization technique
applied within DL frameworks, which relies on dataset-wide statistics. In this particular
context, the term “robust” indicates that the RF data from regions with similar patterns
undergo a transformation that results in an increased similarity between the scale of their
amplitude values. This interpretation of “robust” should not be confused with the notion
that the standard deviation value is insensitive to the larger amplitude of bright echoes.

B.1.2 Dataset

We synthesized 100 single plane-wave images using a full synthetic aperture scan, each
representing a randomly aberrated version of an identical phantom measuring 45 mm lat-
erally and 40 mm axially containing two anechoic cysts. The full synthetic aperture scan
was simulated using Field II [79], and images were synthesized as elaborated in Section
3.1.3. Additionally, among the aberrated images, one of them was selected and subse-
quently replicated. However, for the replicated version, we added a point target into the
phantom before running simulations, introducing bright echoes into the RF data. Further-
more, we created non-aberrated versions of both phantoms, with and without the point
target, for visualization purposes. Transducer settings used for simulation were similar to
those of the 128-element linear array L11-5v (Verasonics, Kirkland, WA). The central and
sampling frequencies were set to 5.208 MHz and 20.832 MHz, respectively. To ensure
accurate numerical results in Field II simulations, we initially set the sampling frequency
to 104.16 MHz and then downscaled the simulated data by a factor of 5.

B.1.3 Phase Aberration Correction Task

We evaluated the effectiveness of the robust RF data normalization in a phase aberration
correction task by conducting a simple yet enlightening experiment. To correct the phase
aberration effect, the aberration-to-aberration approach proposed in Chapter 3 was em-
ployed. In this approach, the network maps distinct randomly aberrated versions of the
same realization to each other during the training phase and is expected to output a cor-
rected version in the inference phase. Out of the 100 aberrated versions of the phantom
without the point target, 99 versions served as a training set, and during each epoch, each
of the 99 versions was randomly mapped to another one. The remaining version, along
with its replica containing a point target, was reserved for evaluation purposes.
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Two U-Nets [108] were trained using identical settings on the same training set with no
point target. The only difference lay in the preprocessing steps: for the first network, each
image in the dataset was normalized by a division with its maximum value, whereas for the
second network, a robust normalization approach was employed. In the inference phase,
the test images were also subjected to normalization, consistent with the method employed
during the network’s training.

The networks were trained for 1000 epochs with a batch size of 32, employing a linear
activation function for the last layer. In both cases, the dataset was standardized by sub-
tracting the mean and dividing it by its standard deviation. We utilized the adaptive mixed
loss, proposed in Section 3.1.6, as the loss function and Adam [95] with a zero weight
decay as the optimizer. The learning rate was initially set to 10−3 and halved at epoch 500.

B.2 Results and Discussion
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Figure B.1: A pair of ultrasound images simulated to be exactly identical using the Field II
simulation package, where the only distinction between them lay in the presence of a point
target within the second one. Both images are normalized in the same range and shown on
the same dynamic range.

Consider a pair of ultrasound images meticulously simulated to be identical using the
Field II simulation package. The only distinction between these images lay in the presence
of a point target exclusively within the second one. The RF data of each simulated image
was normalized by dividing it by its maximum absolute value. The B-mode images are
shown in Fig. B.1. To isolate specific structures and analyze their amplitude variations,
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Figure B.2: The RF data associated with the middle column of images with and without
the point target shown in Fig. B.1. The RF data were normalized by dividing them by their
maximum absolute values across the entire image. In the top signal, the range of amplitude
is roughly 5 times larger.
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Figure B.3: The RF data associated with the middle column of images with and without
the point target shown in Fig. B.1. In the bottom figure, the two signals almost overlap.

the RF data corresponding to the middle column of each image is plotted in Fig. B.2. It
is evident that while the fundamental pattern of the RF data remains consistent, there is
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Figure B.4: Histograms of RF data associated with the images shown in Fig. B.1, where
the data was normalized by (a) the conventional method and (b) the robust method.

Figure B.5: Evaluating the efficacy of the robust normalization technique in a phase aber-
ration correction task. (a) Non-aberrated reference images with and without point targets,
reconstructed using DAS. (b) Randomly aberrated inputs with and without point target.
(c) Output from the network trained on conventionally normalized data, utilizing similarly
normalized inputs. (d) Output from the network trained on robustly normalized data, also
with inputs normalized in a similar manner. All images are displayed in the same scale on
a 50 dB dynamic range.

a substantial difference between their amplitude ranges. As expected, the image contain-
ing the point target exhibits markedly lower amplitudes compared to the image lacking the
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said point target. The RF data for both images are superimposed in Fig. B.3(a), where
the amplitude corresponding to the image with the point target became almost negligible
compared to the other image. Therefore, from a network’s perspective, an identical pattern
in one image could be construed as a constant signal with a zero amplitude (e.g., an ane-
choic region) in the other image. Consequently, the network is unable to transfer its learned
knowledge from one signal to the other.

By employing the proposed robust normalization to preprocess the RF data of images,
a noticeable improvement was observed in addressing the previously mentioned issue. As
illustrated in Fig. B.3(b), the amplitudes of RF signals, which were initially expected to
be identical, subsequently fell within the same range. Note that in the context of conven-
tional normalization, the RF data was normalized by dividing each image by its maximum
absolute value present within the whole image. Consequently, as shown in Fig. B.3, the
expected outcome was that the amplitude of the RF signal would be confined within the
range of [-1, 1]. However, by applying the robust normalization, the amplitude values ex-
panded to cover a broader range beyond [-1, 1]. This expansion in range does not raise any
concerns as long as the same robust normalization approach is consistently applied during
both the training and testing phases. The histograms shown in Fig. B.4 represent the full
RF data for both images, which were normalized using conventional and robust techniques.

To evaluate the effectiveness of the proposed robust normalization technique in a phase
aberration correction task, we trained two different networks utilizing an identical dataset
devoid of any point targets. Therefore, neither of the networks had been exposed to any
point targets during the training phase. Nonetheless, during the training process, the initial
network’s dataset images underwent normalization through the conventional method, while
the second network’s images were normalized using the robust approach. We provided
both networks with two aberrated test images: one containing a point target, and the other
without, as illustrated in Fig. B.5(b), with all images displayed in the same scale on a 50 dB
dynamic range. As we can see in the outputs shown in (c), the inclusion of a point target
within the RF data introduced large echoes, and applying a conventional normalization
resulted in the compression of all other values towards proximity to zero, producing an
inferior output. In contrast, as shown in (d), applying robust normalization effectively
mitigated the impact of those large echoes on the remaining data. It enabled the network to
leverage its learned knowledge from the other image and output a corrected image, even in
the case where its training set did not include any point targets.

It is essential to recognize that adding bright specular reflectors to the training dataset
can indeed help the network in enhancing its ability to handle these features. However, it is
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crucial to emphasize that such augmentation does not serve as a replacement for the robust
normalization technique. Even by adding those reflectors with different random intensities
to the dataset, the network still may fail to establish a coherent relationship between similar
structures when their amplitudes occur on different scales. This effect is comparable to
dividing the dataset into multiple smaller subsets based on the presence of large echoes and
their amplitudes, which subsequently results in a suboptimal efficiency.

B.3 Conclusion

We investigated the importance of normalizing RF data on the performance of DL-based
approaches and demonstrated the inadequacy of conventional min-max scaling techniques,
particularly in a phase aberration correction task. We showed that standardizing RF data
individually, considering the variability within each image, leads to a more consistent range
of amplitude values for similar regions across different images. This process alleviates the
impact of large echoes and helps the network seamlessly transfer its learned knowledge
across images, resulting in higher performance.

123



Appendix C

Segmentation of Intraoperative 3D
Ultrasound Images Using a Pyramidal
Blur-Pooled 2D U-Net
This chapter is based on our published paper [187].

In this appendix, we benchmark the PBP U-Net proposed in Chapter 4 to perform two
tasks requested by the CuRIOUS 2022 - Segmentation Challenge organizers: segmentation
of the brain tumor in pre-resection 3D ultrasound images (Task 1) and segmentation of the
resection cavity in post-resection 3D ultrasound images (Task 2). The success rate of safely
resecting a brain tumor during neurosurgery highly depends on an accurate and reliable
intraoperative neuronavigation [188]. Preoperative imaging methods such as MRI play
a pivotal role in neurosurgery; however, distortions, deformations, and brain shifts make
those images less valuable during the operation. Intraoperative ultrasound is an affordable,
safe, and real-time imaging technique that, due to its high temporal resolution, can be easily
incorporated into the surgical workflow and provides live imaging during surgery. Although
ultrasound images are more difficult to interpret than those from other modalities, such as
MRI, automatic segmentation of intraoperative ultrasound images provides an effective
solution to this issue by, for instance, facilitating the registration of preoperative MRI and
intraoperative ultrasound images [189]. We employ the PBP U-Net to segment the tumor
and resection cavity before, during, and after resection in 3D intraoperative ultrasound
images. Slicing the 3D image along three transverse, sagittal, and coronal axes, we train
a different model corresponding to each axis and average three predicted masks to obtain
the final prediction. It is demonstrated that the averaged mask consistently achieves a DSC
greater than or equal to each individual mask predicted by only one model along one axis.
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C.1 Methodology

C.1.1 Dataset

We used RESECT, the publicly available dataset, including preoperative contrast-enhanced
T1-weighted and T2 FLAIR MRI scans alongside three 3D volumes of intraoperative ul-
trasound scans acquired from 23 clinical patients with low-grade gliomas before, during,
and after undergoing tumor resection surgeries [190]. In this appendix, only the ultrasound
volumes were employed for the segmentation tasks, where delineations of the brain tu-
mors and resection cavities had been provided as ground truths in addition to the original
database [191].

We split the dataset into training and validation sets containing 19 and 4 cases, respec-
tively. Seven additional cases, provided by the challenge organizers, were used as the test
set. All volumes were normalized between 0 and 1, individually, then zero-padded symmet-
rically to the maximum size existing in the dataset along each axis and finally resampled to
the size of 150×150×150.

C.1.2 Network Architecture

We employed the PBP U-Net, proposed in Chapter 4, a variant of U-Net that is more robust
to the shift-variance problem and provides higher output consistency. Compared to the
vanilla U-Net, the max-pooling layers are replaced with blur-pooling layers in PBP U-Net.
The anti-aliasing filters in pyramidal blur-pooled were of sizes 7×7, 5×5, 3×3, and 2×2,
from the first to the forth downsampling layer, respectively.

C.1.3 Training Strategy

For each task, we trained three different models using the 2D images acquired by slicing
3D volumes along three transverse, sagittal, and coronal axes. By slicing 3D volumes, we
obtained a highly imbalanced dataset wherein many images had a completely black mask
(no foreground). To mitigate this issue and to achieve a faster training time, we trained
the models merely using images with a non-zero mask (including at least one pixel as
the foreground) and discarded the rest. However, even in this case, the dataset was still
imbalanced as a large majority of the pixels were background in the remaining masks. To
alleviate this problem, we employed the focal Tversky loss function which is a generalized
focal loss function based on the Tversky index and was proposed to address the issue of
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data imbalance in medical image segmentation [63].
For Task 1 experiments, we merely used before-resection volumes; however, for Task

2 experiments, both during, and after-resection volumes were combined and considered as
one dataset. Task 2 experiments were trained from scratch; whereas Task 1 experiments
were initialized using pre-trained weights obtained from Task 2.

The sigmoid function was employed as the activation function of the last layer, and the
batch size was 32. We utilized AdamW [141] as the optimizer, and set the weight decay
parameter to 10−2. We trained each network for 500 epochs, and saved model weights only
if the validation loss had been improved and finally used the best weights for testing. The
learning rate was set to 2×10−4 initially and was lowered by 2 times at epochs 300 and 400.
The same configuration was used for all experiments. They were implemented using the
PyTorch package [142], and training was performed on two NVIDIA A100 GPUs utilizing
the DataParallel class, which parallelizes the training by splitting the input across the two
GPUs by chunking in the batch dimension.

C.1.4 Augmentation

During the training, six on-the-fly augmentation techniques were applied. We randomly
scaled the 2D images by s% along both axes, where s ∈ [−7,+7]. We also applied a
Gaussian smoothing filter with a kernel of size k × k and standard deviation σ, where
k ∈ {0, 2, 3, 5} and σ ∈ [0, 0.6] were chosen randomly. Besides, we randomly altered
images’ brightness and contrast and flipped (horizontally) and rotated (θ degrees) them,
where the chance of flipping was 50%, and θ ∈ [−15, 15]. As the dominant noise source in
ultrasound images, we modeled the speckle noise as a multiplicative noise and randomly
applied it to the images:

Inoisy = I +NI (C.1)

where N is a matrix with the same size of the image consisting of normally distributed
values with zero mean and standard deviation σ ∈ [0, 0.01].

Finally, we randomly cropped a patch of size 128×128 from images of the original size
150× 150, which is equivalent to the translation augmentation. Since choosing and storing
the best model was based on the validation set, we always used center-copped images
without any augmentations during the validation phase.
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Table C.1: DSC of the validation set, where B, D, and A stand for before, during, and after
resection, respectively, with the highest values shown in bold.

Case #24 Case #25 Case #26 Case #27

Stage B D A B D A B D A B D A

Axis 0 0.25 0.13 0.87 0.66 0.83 0.88 0.87 0.89 0.95 0.70 0.11 0.93

Axis 1 0.27 0.1 0.83 0.63 0.78 0.84 0.91 0.85 0.96 0.76 0.16 0.94

Axis 2 0.27 0.05 0.86 0.64 0.78 0.87 0.90 0.88 0.90 0.78 0.11 0.84

Final 0.47 0.23 0.88 0.73 0.89 0.92 0.92 0.93 0.96 0.85 0.21 0.94

C.2 Results

To predict the segmentation mask of each 3D volume, we followed the pre-processing pro-
cedure same as for the training. The volume was normalized between 0 and 1, zero-padded
symmetrically to the maximum size existing in the dataset along each axis, resampled to
the size of 150×150×150, and center-cropped to 128×128×128. Then it was sliced along
the three axes, and 2D slices along each axis were fed into the corresponding network to
predict 2D masks. Afterward, 2D masks were stacked together to form three 3D volumes,
each corresponding to one of the axes. Finally, we averaged three volumes and thresholded
the resulting volume at 0.5. To make sure that the mask size matches the original image
size, it was zero-padded symmetrically to the size of 150×150×150 and resampled to the
size of the original image volume to obtain the final predicted mask.

Applying the method to before, during, and after resection volumes of all cases in the
validation set, Table C.1 shows the resulted DSC according to the predicted masks and
ground truths. Although the dataset contained 23 cases, note that the cases in the table are
labeled based on the original labels in the publicly available dataset, wherein they were not
necessarily numbered consecutively. According to Table C.1, an easy (#26) and a difficult
(#24) case are chosen, and the qualitative results are demonstrated in Fig. C.1. It shows
the results for Task 1, where the tumor is segmented in a pre-resection image, and Task 2,
where the resection cavity is segmented in a post-resection image. Finally, the performance
across the test set is summarized in Table C.2 based on the averaged DSC, HD95, recall,
and precision metrics provided by the challenge organizer after submitting the results.
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Figure C.1: Sample slices from two cases of the validation set. Cases #24 and #26 represent
the lowest and highest DSC, respectively. The first and second columns show samples of
Task 1, where the tumor is segmented in a pre-resection image, and the third and fourth
columns correspond to Task 2, where the resection cavity is segmented in a post-resection
image.

C.3 Discussion and Conclusions

We benchmarked the PBP U-Net as a baseline method to segment the tumor and resection
cavity in 3D intraoperative ultrasound images. To this end, we predicted three different
masks for each volume based on the slicing axis and averaged them before thresholding to
obtain the final mask. In Table C.1, we can see that the final mask consistently achieved
a DSC greater than or equal to each individual mask predicted by only one model along
one axis. In Table C.2, a drop in performance can be observed for the test set, compared to
the validation set. To further improvement of the performance, an n-fold cross-validation
approach could be followed.
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Table C.2: Performance of the method across the test set.

DSC HD95 Recall Precision

Task 1 0.53 71.57 0.64 0.54

Task 2 0.62 36.08 0.54 0.80

One of the drawbacks of this appendix was that we separated 4 cases as the validation
set and those cases were never taken into account for the training, which means losing a
large portion of data in a small dataset of only 23 cases. Another limitation was utilizing
only one slice as the input; however, similar to [192, 193], adjacent slices also could be fed
into the network as the input channels to improve the predictions.

In this appendix, we performed training and testing on the same small dataset. However,
higher performance is expected by augmenting the small training set with more annotated
data. For instance, the approach described in Chapter 5 for ultra-fast simulation of realistic
ultrasound images could be utilized to augment the dataset with simulated data. Another
approach would be augmenting the training set with other annotated ultrasound datasets.
In these approaches, employing a domain adaptation method [157] to mitigate the domain
shift problem between two datasets plays a pivotal role in achieving higher performances.
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