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Montréal, Québec, Canada

November 2024

© Arash Harirpoush, 2024



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Arash Harirpoush

Entitled: Optimization of Pre-Operative Planning in Minimally Invasive Thoracic

Surgeries with Deep Learning-based Patient-Specific 3D Modeling and

Intuitive VR Interaction

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Tiberiu Popa

External Examiner
Dr. Nizar Bouguila

Examiner
Dr. Tiberiu Popa

Co-supervisor
Dr. Marta Kersten-Oertel

Co-supervisor
Dr. Yiming Xiao

Approved by
Dr. Joey Paquet, Chair
Department of Computer Science and Software Engineering

2024
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science



Abstract

Optimization of Pre-Operative Planning in Minimally Invasive Thoracic Surgeries with
Deep Learning-based Patient-Specific 3D Modeling and Intuitive VR Interaction

Arash Harirpoush

This thesis explores the application of deep learning algorithms within extended reality to en-

hance preoperative planning in minimally invasive video-assisted thoracic surgery (VATS). VATS

faced technical challenges, such as a limited field of view and complex anatomical structures, which

require precise, patient-specific 3D modeling and intuitive data interaction for effective planning.

While deep learning, particularly U-shaped architectures, has emerged as a powerful approach for

generating these models through automated segmentation of preoperative medical images, the grow-

ing number of U-shaped models with diverse network configurations and attention mechanisms re-

quires systematic evaluation. Our first contribution addresses this need through a comprehensive

benchmark study of U-shaped models, focusing on their segmentation accuracy and computational

complexity. The study reveals the effectiveness of CNN-based U-shaped architectures for thoracic

anatomical segmentation, with residual blocks playing a crucial role in enhancing network perfor-

mance. These findings provide essential guidance for model selection and development in surgical

planning applications, where the balance between accuracy and computational efficiency is impor-

tant. Building upon these segmentation capabilities, our second contribution introduces an innova-

tive extended reality system for optimizing trocar placement in VATS procedures. Optimal trocar

placement is crucial to ensuring comprehensive thoracic cavity access, maintaining panoramic en-

doscopic visualization, and preventing instrument crowding. Our system features tailored visual-

ization and interaction designs that enable surgeons to explore trocar configurations preoperatively

using patient-specific 3D models. Preliminary evaluation demonstrates the system’s efficiency, ro-

bustness, and user-friendliness, establishing its potential for clinical implementation while offering

valuable insights for future surgical XR system development.
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Chapter 1

Introduction

Lung cancer is the second most common and deadliest cancer worldwide [79]. Surgical treat-

ment often involves different types of resections depending on the disease’s progression. A common

procedure is lobectomy, where the lung lobe containing the tumor is removed [64]. Conventionally,

this was performed through open surgery, requiring a large incision in the thorax to access the sur-

gical site. However, with advancements in surgical techniques and technology, minimally invasive

approaches like Robot-Assisted Thoracic Surgery (RATS) and Video-Assisted Thoracic Surgery

(VATS) have gained popularity for early-stage lung cancer. These methods offer numerous benefits,

including faster recovery, shorter operation time and hospital stay, and reduced blood loss.

In minimally invasive surgeries, small incisions, called trocars, are used to access and view the

surgical area. These entry points must be selected strategically to ensure full access to the chest,

allow the endoscope to provide a panoramic view, and prevent tool interference. Techniques like

the Baseball Diamond Principle (BDP) and Triangle Target Principle (TTP) have been developed to

achieve this. However, surgeons often rely on experience and patient-specific anatomical landmarks

for trocar placement, which can lead to sub-optimal trocar placement, resulting in surgical compli-

cations and the need to relocate the trocars. Note that this relocation increases the invasiveness of

the surgery for the patient and the operation time and could also increase the surgical team fatigue.

Preoperative planning with patient-specific 3D models and Extended Reality (XR) have shown

1



promise in overcoming these challenges. For instance, Maddah et al. [56] reported up to a 40% re-

duction in procedure time for laparoscopic hysterectomy using a decision aid system, while López-

Mir et al. [54] found a 33% improvement in trocar placement accuracy with Augmented Reality.

These results showcased the potential of preoperative planning to improve precision and efficiency

in minimally invasive surgeries. Inspired by this potential, we developed a patient-specific pre-

operative virtual system to investigate optimal trocar placement. This system requires accurate

segmentation of relevant anatomy from preoperative images. Given the variety of deep learning

models available for automated segmentation, we first benchmarked their performance in terms of

accuracy and efficiency, considering clinical needs. Then, we developed a rule-based VR system

to investigate optimized trocar placement within a patient’s 3D model preoperatively. This system

consists of two steps: first placing the endoscopic camera, followed by the surgical instrument tro-

cars. The rules prioritize maximizing the reachable area for instruments, ensuring sufficient camera

view, and preventing interference with critical anatomies.

1.1 Patient-Specific 3D Models in Surgical Planning

Integrating patient-specific models in surgical planning opens new avenues for enhancing proce-

dural accuracy and safety. For complex anatomies like the pulmonary system, these models enable

the surgical team to better understand tumor positioning relative to vital structures, aiding in pre-

cise diagnosis and reducing the risk of damaging critical arteries. This level of detail during surgical

planning can minimize blood loss and improve surgical outcomes. In addition, patient-specific mod-

els also play valuable roles in medical education and training systems to enable the development of

surgical skills without risking patients’ well-being.

These patient-specific models are typically generated from preoperative imaging, such as CT or

MRI scans. Traditionally, experts manually identified and segmented anatomical structures, mak-

ing it time-consuming and costly. Advances in deep learning have introduced algorithms that can

automate this process, accelerating model generation and allowing 3D models to be created more

quickly and efficiently. This automation enhances accessibility, integrating patient-specific surgical

planning tools into clinical workflows. For example, systems aimed at optimizing trocar placement

2



powered by deep learning-driven segmentation can be integrated into surgical environments. De-

ploying the systems in the cloud can further extend accessibility by allowing them to be accessed via

web servers, making them available to more clinical teams regardless of location. However, deep

learning models used in these systems must balance high accuracy with efficient computational

resource usage to ensure reliability.

1.2 Virtual Reality Systems in Surgical Planning

Recent studies highlight the promising potential of Virtual Reality (VR) environments in surgi-

cal procedures. These environments are types of Extended Reality systems providing fully immer-

sive environments with virtual elements. In minimally invasive surgeries, VR has proven beneficial

for training and preoperative planning, helping reduce the learning curve [43] in medical procedures

and enhancing surgical preparation. By integrating patient-specific 3D models, VR environments

allow surgical teams to explore detailed, personalized anatomy, supporting them in validating diag-

noses and practicing various aspects of the procedure.

1.3 Contributions

This thesis advances preoperative planning for thoracic surgery by incorporating patient-specific

models into a VR environment. Achieving this integration requires accurate segmentation algo-

rithms to generate accurate 3D models. To automate this process, we examined various U-shaped

deep learning architectures, which have demonstrated strong performance in medical imaging. Al-

though many variants of these architectures exist, few studies explore how they affect 3D image

analysis. In Chapter 3, we address this gap by investigating the accuracy and efficiency of different

U-shaped model variants, focusing on the effect of attention mechanisms and architectural config-

uration on model performance and computational demands. These findings can guide the selection

of optimal DL models for generating patient-specific segmentation maps.

Building on these segmentation maps, our second contribution, presented in Chapter 4, intro-

duces a VR-based preoperative planning system to optimize trocar placement for thoracic surgeries.
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Figure 1.1: Overview of the proposed workflow: (A) Preoperative imaging of the patient, (B) Seg-
mentation of torso anatomies related to the thoracic surgery, (C) Creation of patient-specific 3D
models from segmentation maps, (D) Employing these 3D models in a VR environment to optimize
trocar placement.

This system, designed for use with a head-mounted display (HMD), represents a pioneering ap-

proach to optimizing trocar placement in a VR environment. We demonstrate its functionality using

right upper lobectomy, a common lung resection, where trocar placement consists of two steps: first

placing the instrument trocars followed by camera placement for a panoramic view. The system

integrates task-specific visualization, intuitive interaction mechanisms, and real-time user feedback

to assist surgical planning. A preliminary user study with 20 participants evaluated the system’s

usability and robustness, indicating strong potential for its clinical application.

As a summary, Fig 1.1 shows the workflow, where Figs 1.1A and 1.1B represent the segmenta-

tion process discussed in Chapter 3, while Figs1.1C and 1.1D demonstrate the VR-based planning

and optimization described in Chapter 4.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 provides the background and

literature review related to our contributions and is divided into two main sections. The first sec-

tion introduces various deep learning architectures, including the nnU-Net framework, along with a

review of benchmark studies and their challenges. This section concludes with a brief overview of

how Convolutional Neural Networks (CNNs) and Transformers perform in the frequency domain.

The second section of Chapter 2 discusses foundational concepts of Extended Reality (XR), includ-

ing the Reality-Virtuality Continuum, and presents a literature review of XR applications in surgical
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settings. In Chapter 3, we present our first contribution, a systematic benchmark study of U-shaped

deep learning models for 3D medical image segmentation. Then, Chapter 4 details our second

contribution, where we introduce the first preoperative HMD VR system designed to optimize tro-

car placement for thoracic surgeries. Finally, Chapter 5 concludes the thesis by summarizing our

findings and discussing potential avenues for future research to build upon our contributions.

5



Chapter 2

Background

2.1 Deep Learning in Medical Image Segmentation

Deep learning has significantly impacted surgical planning by enabling the precise segmentation

of anatomical structures from medical images. This facilitates the creation of patient-specific 3D

models, giving surgeons a deeper understanding of the patient’s anatomy. These models can then

be integrated into extended reality (XR) environments, enhancing preoperative and intraoperative

planning. U-shaped architectures, known for their effectiveness in medical image segmentation,

have become a dominant approach due to their elegant design and strong performance. In this

section, we explore the key components of these U-shaped models, providing an overview of their

architectural designs and the associated functionalities.

2.1.1 CNN Auto-Encoder Models

Convolutional Neural Networks (CNNs) form the backbone of many medical segmentation

models due to their ability to extract spatial features from images [52]. CNNs achieve this through

convolutional filters that learn to recognize patterns in local image regions. These filters act like

high-pass filters [62], making CNNs adept at capturing fine details and boundaries. CNN’s typi-

cally integrated within an Auto-Encoder architecture to produce detailed segmentation masks that

precisely delineate the target structures. As shown in Fig. 2.1, this architecture consists of two

main components: an “Encoder” which extracts the features by leveraging CNN models, and a
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“Decoder” which employs operations like transpose convolution or interpolation to upsample these

feature maps and generates the final segmentation maps.

Figure 2.1: Overview of the CNN model for image segmentation [14]

2.1.2 nnU-Net framework

Developing deep learning models for medical image segmentation is complex, often requiring

significant expertise and experience [40]. The nnU-Net framework simplifies this process by au-

tomating the design and training of 2D and 3D U-Net-based models, tailoring the architecture and

hyperparameters based on the dataset and hardware specifications. To manage design choices ef-

ficiently, nnU-Net organizes parameters into three groups. Fixed parameters are those that don’t

require task-specific adjustments, such as the use of Dice and Cross-Entropy loss functions, which

are set according to standard practices. Rule-based parameters are guided by heuristic rules that link

specific dataset features to design choices. For example, the initial patch size is set to the median

image shape and then adjusted iteratively, alongside network topology changes, to allow training

with a batch size of two on the available GPU memory. Lastly, empirical parameters are those re-

fined through empirical tuning, including nuanced model architectural choices and post-processing

techniques. The framework trains three U-Net configurations (e.g., 2D and 3D models) and selects

the best-performing model, which may be a single model or an ensemble that combines softmax

probabilities from two configurations by averaging them. This automated pipeline, as shown in

Figure 2.2, enables nnU-Net to consistently achieve state-of-the-art performance in a wide range of

medical segmentation tasks, often outperforming its counterparts [39].
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Figure 2.2: Visual overview of the pipeline used in nnU-Net framework [40]

2.1.3 Vision Transformer

While CNNs have excelled in computer vision tasks, their limited ability to capture long-range

dependencies led to the development of attention mechanisms. These mechanisms focus on dif-

ferent parts of an image to better capture long-range features. Among them, self-attention [84]

8



assigns importance to various sequence tokens (e.g., image patches) and aggregates them accord-

ingly. Multi-Head Self-Attention (MSA) extends this by applying multiple self-attention operations

in parallel and then concatenating the results. Vision Transformers (ViTs) [19] use MSA to ex-

tract long-range features from input data. As shown in Figure 2.3.a, the input image is divided into

16x16 patches, which are processed and aggregated through MSA within Transformer blocks (Fig-

ure 2.3.b). However, despite their strong performance, ViTs suffer from weak local inductive bias

and quadratic computational complexity, which led to the development of the Swin Transformer.

This architecture introduces a window-based MSA (WMSA), which limits attention computations

to local non-overlapping windows while connecting information across windows (Figure 2.3c) [53].

This approach not only strengthens local inductive bias, but also reduces computational complexity

from quadratic to linear. As illustrated in Figure 2.3d, Swin Transformer blocks use WMSA, allow-

ing for smaller patch sizes (e.g., 4x4), enabling the capture of finer image details in comparison to

conventional ViTs.

2.1.4 Focal Modulation

To further enhance long-range feature extraction in vision models, Yang et al. [92] introduced

“Focal Modulation” (Figure 2.4a) as an alternative to self-attention (SA). While SA computes pair-

wise interactions between all tokens, Focal Modulation generates an attention map through a “Con-

text Aggregation” process (Figure 2.4b). This process uses a series of depth-wise convolutions

with varying kernel sizes to capture multi-scale features, which are then selectively aggregated by a

“Gated Aggregation” module based on their importance. The resulting attention map is applied to

the input features through element-wise or affine transformations, effectively modulating the input

based on the learned context.

2.1.5 Benchmarking U-Shaped Architectures in Medical Image Segmentation

The availability of public datasets like BTCV and BraTS has enabled multiple studies to bench-

mark U-shaped models for medical image segmentation. Early research by Gut et al. [25] and

Kugelman et al. [46] used the nnU-Net framework to evaluate these models in a standardized
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Figure 2.3: Overview of the Vision and Swin Transformer models. (a) The ViT architecture trans-
forms input feature maps into patches, applies linear mapping, and processes them through the
Transformer, with final classification handled by an MLP. (b) Details of the ViT encoder emphasize
the role of multi-head attention modules in feature extraction. (c) In the Swin Transformer, fea-
ture maps evolve through Window-based Multi-Head Self-Attention (W-MSA) and Shifted Window
Multi-Head Self-Attention (SW-MSA), with a cyclic shift operation that enables feature integration
across shifted windows. (d) The Swin Transformer Block summarizes this process, outlining key
computational steps [66].

pipeline. Their findings consistently showed that increasing architectural complexity did not neces-

sarily lead to better performance, with the basic U-Net often outperforming more advanced variants

across various tasks and datasets. As architectures evolved, Vision Transformers were introduced

into U-shaped models to improve performance by capturing long-range dependencies. However,

their effectiveness remains debatable. Many studies [44, 93, 90] agree that fully Transformer-based

models struggle due to a lack of local inductive bias and increased computational overhead, which

hinder performance. Some research, including Xiao et al. [90] and Yao et al. [93], suggested that

10



Figure 2.4: Overview of the Focal Modulation. (a) Focal Modulation block. (b) Detailed visualiza-
tion of “Context Aggregation” in Focal Modulation [92].

incorporating Transformers into CNN architectures can be beneficial while others, such as Ji et al.

[44], found no significant performance gains. For example, the study of Ji et al. [44] on CT and MRI

images showed that the classic U-Net consistently outperformed hybrid and fully Transformer-based

models.

Addressing the inconsistencies in previous benchmarks, Isensee et al. [41] highlighted com-

mon pitfalls in model comparisons and recommended using the nnU-Net [40] framework to ensure

fair evaluations. Their comprehensive benchmarking of CNN, Transformer, and Mamba-based U-

shaped models validate earlier conclusions, demonstrating that increasing architectural complexity

does not always translate into improved performance, further confirming the observations of Gut

et al. [25] and Kugelman et al. [46].

2.1.6 CNNs and Transformers in the Frequency Domain

Park and Kim [62] analyzed the behavior of CNNs and Transformers in the frequency domain
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to better understand their complementary strengths. They found that while CNNs act as high-pass

filters, capturing high-frequency details, multi-head self-attention (MSA) mechanisms in Trans-

formers serve as low-pass filters, focusing on low-frequency information. This combination of

filtering behaviors suggests that integrating the two architectures can improve performance. Mod-

els like TransUNet [15] have already demonstrated the effectiveness of applying transformers after

CNN layers, leading to better segmentation results. Although this sequential approach was initially

adopted due to computational limitations, recent studies, such as the SwinUNETRV2 [33], indicate

that strategically placing residual blocks before Transformer layers can further boost performance.

Supporting these findings, Park and Kim [62] visualized ViT’s feature map, shown in Figure 2.5.

Their analysis in the Fourier domain showed that MSAs in the early stages amplify high-frequency

signals, similar to CNNs. This amplification helps explain why hybrid models, where Transformers

follow CNN layers, deliver outstanding performance compared to fully-transformer-based models

by combining the strengths of both architectures. However, as mentioned previously in subsection

2.1.5 these enhancements could not necessarily be due to the architectural differences. In most

cases, the limited amount of available data resulted in better performance of CNN models.

Figure 2.5: The ∆ Log amplitude of MSA at high frequency (1.0 π). Gray regions show a reduc-
tion of high-frequency features by MSA, while white regions display amplification by Multi-Layer
Perceptron (MLP) layers [62].
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2.2 Extended Reality (XR) Technologies for Surgical Applications

Extended Reality (XR) contains a spectrum of immersive technologies that seamlessly merge

real and virtual elements, creating novel environments and experiences with the potential to revolu-

tionize various fields, including medicine. To introduce the diverse landscape of XR technologies,

we turn to the Milgram and Kishino [59] Reality-Virtuality (RV) Continuum (see Figure 2.6), which

classifies different technologies based on how much they mix the real and virtual components. To-

wards the “real” end of the continuum lies Augmented Reality (AR), where digital content is over-

laid onto the real world, enhancing the user’s perception of their surroundings with supplementary

information. In surgical applications, this could involve overlaying patient-specific anatomical data

onto the surgeon’s field of view during a procedure.

Figure 2.6: Overview of the Milgram and Kishino [59] Reality-Virtuality (RV) Continuum, showing
the spectrum of immersive experiences from the real world to virtual environments [17]

Moving further along the spectrum, we encounter Augmented Virtuality (AV), which introduces

real world elements into predominantly virtual environments. This can be seen in a camera place-

ment system where a physical device allows users to manipulate the camera within a virtual environ-

ment to explore the entry point, providing haptic feedback and displaying a physical representation
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of the device in the virtual environment.

Milgram and Kishino [59] grouped AR and AV under the term Mixed Reality (MR), defining

it as any environment, where real and virtual objects coexist. However, recent research by Skarbez

et al. [76] expands this definition. They suggest that MR should be seen as environments, where

real and virtual elements not only coexist but also interact dynamically. In the surgical context, a

virtual model can be augmented on a physical phantom to simulate surgical procedures like organ

resection, combining real-world interaction with detailed virtual visualization for enhanced training.

At the “virtual” end of the continuum lies Virtual Reality (VR), where users are fully immersed

in a digital environment [59]. While VR typically engages the user’s exteroceptive senses, such as

perceiving external stimuli like sight and sound, it cannot fully control their interoceptive senses,

which provide awareness of the body’s internal state, such as balance and spatial orientation [76].

This persistent connection to the real world through interoception places VR within the broader

Mixed Reality spectrum, despite its primary focus on creating virtual experiences [76]. In surgical

training, VR can provide a safe and controlled environment for practicing procedures without the

risk of harming real patients.

2.2.1 XR for Surgical Path Planning

Several studies have highlighted the benefits of preoperative path planning systems across var-

ious surgical interventions. In minimally invasive lateral skull-based surgeries, single-port ap-

proaches were traditionally used. However, multi-port approaches offer advantages, such as en-

hanced instrument manipulation, direct visual feedback, and broader applications like tumor re-

moval. Multi-port setups also provide more space around the surgical area where instrument tra-

jectories intersect [78]. Stenin et al. [78] investigated the feasibility of multi-port approaches of

lateral skull base surgery, like tumor removal and biopsy, using a planning tool that mapped tra-

jectories inside patient-specific 3D temporal bone models created from CT scans. They plan three

ports: one for an endoscopic camera and two for surgical instruments, focusing on maximizing the

distance between critical structures and optimizing the angle between instrument paths. Similar to

minimally invasive thoracic surgery [73], Stenin et al. [78] emphasized that the procedure can be

facilitated when the instruments meet each other at the appropriate angle near the surgical target.
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The study stated that while intersecting instrument paths beyond the target allows for better manip-

ulation space, intersections that converge too closely can lead to instrument conflicts. This can be

analyzed by measuring the manipulation angle, the degree to which instruments meet each other,

with higher angles indicating greater distance between the ports.

In a study by Schwenderling et al. [74], they introduced a projector-based augmented reality

(AR) system to address challenges in identifying insertion points for percutaneous interventions.

Surgical Planning like identifying the entry points in traditional 2D imaging can be time-consuming,

and manually transferring insertion points to the skin increases the risk of error [74]. The AR system

introduced by Schwenderling et al. [74] projected insertion and target points onto a torso phantom,

allowing users to select the insertion point with a needle. Path quality was evaluated based on three

factors: distance from critical anatomy, path length, and insertion angle. Hard conditions were

used to exclude unsafe paths, while soft conditions were applied to score path quality. To explore

the impact of different visualization techniques on the user’s decision making they provided two

visualizations for the insertion based on the path quality: “Area Visualization”, in which all possible

paths were projected onto the phantom, and “Full Visualization”, which paths were color-coded

based on their score. The study found that inexperienced users benefited from the full visualization

technique, while the target visualization had minimal effect on their decision-making. These studies

demonstrate the potential of XR systems to enhance surgical path planning and improve decision-

making in complex procedures.

2.2.2 VR for Surgical Simulation

When it comes to surgical simulation, VR environments play a crucial role in education and

preoperative practice based on patient anatomy. Studies have focused on the applicability of these

systems and identifying metrics to evaluate procedure quality and differentiate participants by their

experience level. Early VATS training relied on animal models, which lacked anatomical variation,

leading to the development of XR environments for surgical simulation. To address this issue,

Solomon et al. [77] introduced a VR environment on a personal computer (PC), providing a 3D view

of anatomical structures from the perspective of an endoscope camera and an external view. It also

used haptic devices to control instruments simulating video-assisted thoracoscopic surgery (VATS)
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Figure 2.7: The insertion visualization projected possible insertion points onto the skin that met the
hard path planning conditions. In the baseline view (a), no insertion points were displayed. In the
Area visualization (b), there was no additional information on path quality. In the Full visualization
(c), the insertion points were color-coded based on their associated path quality values, which were
determined using soft path planning conditions. A green color scale was employed, where darker
shades indicated better paths with higher path quality values [74].

for a right upper lobectomy, demonstrating the feasibility of such simulations. The system allowed

users to select port locations via a mouse and manipulate surgical tools with haptic handles. For the

system, the first step involves identifying the endoscopic port and visualizing its view on a monitor.

As users explore the chest cavity, they identify other ports. Notably, the endoscopic port could

be adjusted during the procedure based on the locations of the other ports. The proposed system

could detect common issues, such as pulmonary parenchyma tears. While this proposed system

advanced surgical training methods, it still lacked surgical performance scoring, the incorporation

of patient-specific models, and physics-based tissue responses.

In order to identify performance metrics and refine VR systems, Jensen et al. [43] developed a

VR system inspired by the LapSim simulator, specifically designed for right upper lobectomy. Their

system incorporated various performance metrics, such as total procedural time, blood loss, and

hand movements, and was tested by over 100 thoracic surgeons with varying levels of experience.

The aim was to develop metrics that could differentiate participants’ skill levels while assessing the

system’s effectiveness from the surgeons’ perspective. The simulation followed a standard three-

port approach and included anatomical dissections and stapling. Four fixed endoscopic views were

provided, though the system also allowed assistance to control the camera. Despite the promising

feedback from experienced surgeons, who found the simulation realistic and beneficial for novice
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and intermediate surgeons, no clear metrics appeared to distinguish participants by experience due to

the complexity of the procedure and varying techniques. The study of Jensen et al. [43] emphasized

realistic simulation through enhanced graphics and physics-based tissue responses, but the challenge

of identifying experience-based metrics and incorporating patient-specific models remained.

Haidari et al. [26] expanded on this work by developing a VATS lobectomy module for the Lap-

Sim VR simulator, covering all five lobes. To validate the system and explore metrics for evaluating

surgical quality, 45 surgeons with different experience levels (novice, intermediate, and experi-

enced) participated in the study, similar to the study of Jensen et al. [43] design. Each participant

performed three lobectomies within the system, and their performance was evaluated based on nine

predefined metrics, including instrument path length and total procedural time. The study success-

fully identified three metrics that could differentiate the quality of results based on experience: mean

procedure time, mean blood loss, and total instrument path length. While this study demonstrated

the feasibility of establishing pass/fail levels concerning the quality of the surgical skills for simu-

lation results based on contrasting groups, the high cost of the LapSim VR simulator (reported as

79,000 C) limited its accessibility.

Beyond training, VR simulations have broader applications. In a study by Ujiie et al. [83], the

potential of an HMD-based VR surgical navigation system was explored for use in RATS (robot-

assisted thoracic surgery). This system employed volumetric, patient-specific 3D reconstructions

generated from contrast-enhanced CT scans. Perspectus VR education software was then used to in-

teract with these models preoperatively, allowing for actions such as rotation and cropping to better

understand the patient’s anatomy. These models were further integrated with the surgical console’s

endoscopic video feed using the TilePro multi-display platform, allowing surgeons to view multiple

information sources simultaneously. Ujiie et al. [83]’s findings highlighted the benefits of patient-

specific models in a VR environment, enhancing a surgeon’s understanding of pulmonary anatomy

and potentially improving the accuracy and safety of RATS through better surgical planning.

2.2.3 Trocar Placement Planning within XR

In robot-assisted minimally invasive surgeries, proper trocar placement is essential for access-

ing the surgical area and avoiding collisions between robotic arms, which can compromise surgical
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Figure 2.8: VATS module on the virtual reality simulator LapSim. (A) Dissection and (B) stapling
of the middle lobe vein on the VATS module on the LapSim virtual reality simulator. The blue circle
shows the tumor location. (C) The virtual reality simulator setup used in Haidari et al. [26].

precision. Studies have shown that optimizing trocar placement can significantly reduce planning

and procedural time. Simoes and Cao [75] developed a mixed reality system to help surgeons in

trocar placement decisions. This system uses an optimization algorithm to calculate initial trocar lo-

cations based on patient anatomy and the surgical procedure in robot-assisted laparoscopic surgery.

The trocar locations are then projected onto the patient’s abdomen, allowing the surgeon to interact

with them and adjust the placement. Similarly, Maddah et al. [56] explored the use of decision-aid

systems for trocar placement in robotic-assisted hysterectomies. Their system also uses an opti-

mization algorithm, incorporating patient-specific and robot models to determine optimal trocar

placement. The system was tested on four patients, with two surgeons providing feedback on its
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performance. To test the system’s usability, two surgeons performed simulated surgery on a torso

phantom, completing the task with and without the decision-aid system across three target areas.

The results showed a reduction of up to 40% in the total time needed to complete the given task

when using the decision aid system, showcasing the potential benefits of preoperative planning for

improved surgical outcomes and reduced procedure time.

The studies of Simoes and Cao [75] and Maddah et al. [56] provide compelling evidence for

the potential benefits of preoperative planning tools in robot-assisted surgeries. Simoes and Cao

[75] demonstrated the feasibility of using a mixed reality system to guide trocar placement in robot-

assisted laparoscopic surgery. Meanwhile, Maddah et al. [56] found that a decision-aid system

could significantly reduce procedural time in robotic-assisted hysterectomies. These findings high-

light the crucial role of proper trocar placement in ensuring surgical precision and efficiency. In-

spired by these findings, we investigated preoperative planning of trocar placement within a VR

environment for Video-Assisted Thoracic Surgery. This immersive system allows surgeons to inter-

actively explore and refine their approach before surgery, potentially enhancing surgical outcomes

and reducing procedural time.
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Chapter 3

Architecture Analysis and

Benchmarking of 3D U-shaped Deep

Learning Models for Thoracic

Anatomical Segmentation

A version of this chapter has been published in IEEE Access:

• Harirpoush A, Rasoulian A, Kersten-Oertel M, Xiao Y. Architecture Analysis and Bench-

marking of 3D U-shaped Deep Learning Models for Thoracic Anatomical Segmentation.

IEEE Access,12, 127592 - 127603, 2024 [29].
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3.1 Introduction

In modern surgical planning that emphasizes high precision and low trauma, 3D anatomical seg-

mentation from pre-operative medical images is becoming increasingly important. Thoracic surgery,

i.e., chest surgery which involves operations on lungs affected by cancer, trauma, pulmonary dis-

ease, or cardiac conditions, accounts for approximately 530,000 cases per year in the US [8]. In

addition to video-based surgical guidance with limited spatial information, recent studies [67, 24]

have demonstrated significant advantages of using patient-specific physical or digital 3D models

for various thoracic surgeries [67, 24] in both conventional and mixed reality surgical environments

[82, 12, 72]. To ensure the outcomes of these applications, efficient and accurate 3D anatomical

segmentation and reconstruction is essential.

Deep learning (DL) approaches, such as convolutional neural networks (CNNs) have dominated

the state-of-the-art performance in various radiological tasks. With their quick inference time, they

offer a tool to enable efficient digital twin construction for thoracic surgical planning, simulation,

and intra-operative monitoring. U-shaped models, pioneered by the 2D UNet [70], stand out among

DL segmentation models [52] for their robust performance and elegant architecture. The typical U-

shaped architecture comprises three key elements: an encoder for learning relevant image features

and compressing them into lower-dimensional embeddings, a decoder for expanding these embed-

dings and producing the final segmentation, and skip connections that maintain fine-grained details

during upsampling by aggregating feature maps across encoder and decoder layers. Since the first

inception, major efforts have been dedicated to adapting the 2D framework to 3D [16], exploring

different backbones for the encoder/decoder [40, 38, 61, 30, 68, 9], updating the resolution stages

[94], and experimenting with novel network configurations [25]. To better understand the impact

of these enhancements and investigate the application of 3D anatomical reconstruction for thoracic

surgical planning and simulation, a comprehensive benchmark study, providing the models’ archi-

tectural characteristics, would be highly instrumental, but has yet to be conducted.
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Figure 3.1: Demonstration of the anatomical structures for U-shaped model benchmarking, includ-
ing 12 labels for thoracic surgery and 13 labels that are consistent with the BTCV segmentation
challenge.

3.1.1 Variants of U-shaped Architectures

Many variants of the U-shaped architectures have been proposed primarily for medical image

segmentation [70]. Among these, the nnUNet [40] framework, which allows task-specific opti-

mization of 2D and 3D UNet models and training strategies, has achieved great success in a wide

range of segmentation tasks. Recently, Huang et al. [38] proposed the STUNet, an enhancement

of 3DUNet model from the nnUNet [40] framework, with modified downsampling and upsampling

blocks in the encoder and decoder, respectively.

Besides architecture and training strategy optimization, some attempts have also been made to

incorporate various attention mechanisms in U-shaped models. In the AttentionUNet [61], attention

gates that combine trained soft attention feature maps through skip connections are implemented to

enhance accuracy and model transparency for pancreas segmentation. With the emergence of the

Vision Transformer (ViT), which leverages self-attention to capture long-range dependencies within

an image, CNN-Transformer-hybrid U-shaped models were introduced to enhance the performance

of the CNN-based UNet.

For example, the TransUNet [13], CoTR [91], and TranBTS [86] models strategically incorpo-

rated Transformer layers into the concluding stages of the encoder to enable enhanced features ex-

traction from the feature maps generated by the preceding CNN blocks. More recently, the UNETR

[31] and SwinUNETR [30] advocate for utilizing fully-transformer-based encoders by using ViT
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and Swin Tranformer [53], respectively, while retaining CNN decoders. Attempts have also been

made to create U-shaped models driven fully by Transfomer blocks. Notably, the 2D Swin-UNet

[9] first implemented this approach and demonstrated its performance on abdominal CT segmenta-

tion. Similarly, the VT-UNet [63] adopts the same approach, with further addition of cross-attention

mechanisms in the decoder. In the same category, Zhou et al. [96] proposed the nnFormer, which

introduced local and global self-attention mechanisms in the encoder, decoder, and skip-attentions.

Lastly, the more recent Focal Modulation [92] offers an alternative attention mechanism that models

hierarchical contextualization of image features, which are aggregated for each query token. This

relatively new technique was shown to outperform its state-of-the-art counterparts, such as Swin and

focal Transformers in 2D natural image recognition and segmentation tasks. Leveraging this new

mechanism, the FocalSegNet [68] replaces the Transformer blocks of the encoder in the UNETR

with new 3D Focal Modulation blocks to perform volumetric medical image segmentation.

Aside from attention mechanisms in U-shaped models, earlier research has explored various

setups for the number of resolution stages and diverse skip connection schemes [97, 89, 85, 13]

to improve segmentation accuracy. Among these, UNet++ [97] introduced nested hierarchical skip

connections to fuse encoder and decoder features, and the BiO-Net [89] and its variants lever-

aged bidirectional skip connections within the U-Net model. Another technique in this context is

to incorporate Transformers in skip connections for 2D medical image segmentation that is more

computationally intensive [85, 13].

3.1.2 Previous Anatomical Segmentation Benchmarking studies

The increasing amount of public datasets, such as Kits [35], CHAOS [45], SegTHOR [47],

BTCV [48], and ACDC [6] have greatly facilitated the benchmarking of various new algorithms in

medical image segmentation. For 2D OCT image segmentation, Kugelman et al. [46] tested eight

U-shaped models (VanillaUNet, DenseUNet, AttentionUNet, SEUNet, ResidualUNet, R2UNet,

UNet++, and InceptionUNet), and concluded that the VanillaUNet was the most appropriate con-

sidering computational complexity while all models performed similarly. Yao et al. [93] bench-

marked UNet, UNet++, TransUNet, and SwinUnet for 2D segmentation tasks of the lung and ab-

dominopelvic ovarian masses, and they showed that the TransUNet model had the best performance
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in both datasets. In their paper, Ji et al. introduce the AMOS [44] MRI and CT dataset for 3D

abdominal anatomy segmentation and tested UNet, VNet [60], CoTr, UNETR, SwinUNETR, and

nnFormer on the proposed dataset. When considering both accuracy and model complexity (i.e.,

model parameters and the number of GFlops), they found no advantage of using transformers over

CNNs, with the UNet achieving the best accuracy, particularly for larger anatomies. After review-

ing various U-shaped transformer-based models in 2D and 3D medical image segmentation, Xiao

et al. [90] evaluated Swin-Unet, LeViT-UNet, UCTransNet, TransAttUnet, UTNet, and UTNetV2

on MSD [1] and NSCLC [3] datasets for 2D segmentation of pancreas and lung cancer, respec-

tively. Their study showed that while UTNetV2 is the best for pancreas segmentation, TransUNet

achieved the best performance in lung cancer segmentation. They also found that combining CNN

and Transformer was beneficial, and the choice of the best model can be task-specific.

3.1.3 Novelty and Contributions

While several groups have benchmarked U-shaped models as systematic studies or validation of

a new algorithm, there are still remaining research gaps that we aim to address in this study. First,

few studies investigated 3D segmentation of the lung [90] and other related anatomies for thoracic

surgical planning and simulation. Second, many studies focused on 2D segmentation tasks and

models while direct 3D processing can offer better spatial continuity across slices in the segmented

labels. Finally, there is a lack of dedicated exploration for the impact of various attention mecha-

nisms and network configuration designs on multi-organ 3D segmentation tasks. To tackle these,

our study evaluates the performance of several U-shaped models, including 3DUNet, STUNet, 3D

AttentionUNet, SwinUNETR, FocalSegNet, and a new 3DSwinUnet along with its variants, in seg-

menting anatomical structures associated with thoracic surgery from CT scans of the TotalSegmen-

tator dataset [87]. To allow an easy comparison of conclusions with concurrent literature, we also

benchmarked these models for the anatomies in the BTCV [48] challenge in the same dataset (see

Fig. 3.1). Our main contributions can be summarized as follows:

• Investigate the effects of different attention mechanisms (attention-gate, self-attention, focal mod-

ulation, and baseline UNet) in U-shaped architectures

24



• Benchmark state-of-the-art U-shaped models, including our novel 3D SwinUNet and its eight

variants in 3D image segmentation for thoracic surgery and BTCV challenge anatomies by con-

sidering their accuracy and computational complexity

• Investigate the impacts of different network configuration designs, including the number of res-

olution stages (number of upsampling/downsampling operations), different operations for skip

connections, downsampling, and upsampling, and the effect of the bottleneck operation in a pure

Swin Transformer-based 3D U-shaped model

The nuanced insights from this study can directly contribute to the development of more ad-

vanced and robust segmentation algorithms for medical image analysis and thoracic surgical plan-

ning. Specifically, by well understanding the strengths and limitations of different model architec-

tures and operations, our study can better inform future DL model designs that balance accuracy and

efficiency to meet the needs of different clinical contexts. The patient-specific 3D models derived

from these enhanced segmentation techniques can offer promising avenues for improving surgical

precision and patient outcomes. For instance, integrating these models into surgical virtual reality

can offer fast and accurate patient-specific digital twin creation to allow safer and more efficient sur-

gical planning, such as more accurate tumor localization [2] and optimized trocar placement [65].

These would ensure better treatment outcomes and time-saving in the often resource-limited clinical

environment.

3.2 Methods and Materials

3.2.1 Dataset

We employed the dataset from the TotalSegmentator paper [87], which included 1204 body

CT scans with 104 different labels. These labels covered 27 organs, 59 bones, 10 muscles, and

8 vessels. For our study, we focused on 79 annotations that are relevant to thoracic surgery and

correspond to the BTCV challenge. As there is no need for further division of some anatomies

and to facilitate training and evaluation, we combined some of the annotations that belong to the

same anatomical structure, resulting in 25 labels: 12 for thoracic surgery and 13 that correspond
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to the BTCV challenge. The list and visualization of these anatomies are shown in Fig. 3.1. As

the CT scans in the dataset contain different fields-of-view and an inconsistent number of labels,

we selected the cases that contain more than 22 of the 25 classes that we defined, resulting in 440

training cases, 26 validation cases, and 30 testing cases. To facilitate the assessment, we also provide

the distributions of each anatomical label across the training and testing datasets in Fig. S1 of the

Supplementary Materials.

3.2.2 Experimental set-up and network training

We selected six U-shaped models for performing the benchmarking, including a 3DUNet op-

timized based on the nnUNet framework [40], STUNet [38], AttentionUNet [61], Swin-UNETR

[30], FocalSegNet [68], and a new 3D implementation of the original 2D Swin-Unet [9] (we refer

to as 3DSwinUnet). A visual summary of these models’ architectures is included in Fig. S2 of the

Supplementary Materials. Furthermore, we also devised 8 additional variants of the 3DSwinUnet

with different strategies for skip connections, feature map downsampling, upsampling, and bottle-

neck (more details in Section 3.2.3). Such a range of models allows us to comprehensively assess

the impact of different attention mechanisms, as well as more nuanced network configuration de-

signs for U-shaped models. Specifically, the STUNet [38] and FocalSegNet [68] models were taken

from their github repositories while implementation of 3D AttentionUNet and SwinUNETR mod-

els in MONAI [10] were used. Finally, the 3DSwinUnet and its variants were implemented using

the MONAI framework. The 3DUNet, STUNet, and AttentionUNet models contain five resolution

stages while the SwinUNETR and FocalSegNet models have four resolution stages. Finally, the

3DSwinUnet model and its variants consist of three resolution stages [9].

As the dimension of the input image patch is 96 × 96 × 96 voxels across all selected neural

network architectures, to allow a similar field-of-view per 3D input patch to the original TotalSeg-

mentator paper [87] for comparison, we resampled the CT scans to a 2.0 × 2.0 × 2.0mm3 reso-

lution. For all model training, we used the SGD optimizer with an initial learning rate of 0.01, a

Nesterov momentum of 0.99, and a weight decay of 1e − 3 to minimize the loss function which

is a sum of the cross-entropy and Dice loss. For the learning rate scheduler, we employed the

Poly method, which reduces the learning rate by increasing the number of epochs by calculating
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LR × (1 − Epoch/MaxEpoch)0.9, where LR represents the initial learning rate, Epoch is the

current epoch number, and MaxEpoch is the maximum epoch number. Each epoch consists of 250

iterations and a batch size of two. Finally, data augmentation techniques, including random rotation

and scaling were added to enhance the robustness of training. All models in this study were trained

from scratch with all parameters made trainable (i.e., no parameters were frozen), ensuring a fair

and consistent evaluation of their performance on our specific task.

3.2.3 Ablation studies

In addition to comparing the six established U-shaped models, we also conducted ablation stud-

ies on them to further probe the relevant design choices that can influence their performance. First,

to confirm the impact of attention mechanisms, we evaluated the variants with these DL models, all

with four resolution stages. Second, to understand the impact of the number of resolution stages,

we compared these models and their variants that are one stage different from the original architec-

tures. Note that, here we evaluated 3DSwinUnet with three and four resolution stages using a patch

embedding size of two, as the four-staged version has a downsampling limitation on the input patch

size at the last resolution stage. Finally, the more nuanced design elements for U-shaped models,

including the operations for skip-connections (SC), downsampling (DS), and upsampling (US) are

often overlooked. To further improve the adapted 3DSwinUnet, which is a full Swin Transformer

model and to better understand the effects of these operations, we investigated the influences of

these design choices on the baseline 3DSwinUnet. Following the original 2D design, the baseline

3DSwinUnet employs linear layers in its skip-connection, downsampling, and upsampling. Here,

we introduced four additional 3DSwinUnet variants, named 3DSwinUnetV1 ∼ 3DSwinUnetV4,

with their detailed design differences listed in Table 3.4. For skip-connection and downsampling,

we compared the application of linear and residual operations while for upsampling, we tested lin-

ear operation, nearest interpolation, and transpose convolution. Also, to investigate the impact of

the bottleneck design in the 3DSwinUnet model, we have further introduced four variants based

on 3DSwinUnetV4, including 3DSwinUnetB0 ∼ 3DSwinUnetB3. These variants explore the influ-

ence of employing no operation, one Swin Transformer block, and one or two Residual blocks at

the bottleneck, as detailed in Table 3.5.
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(a) Dice Coefficient [69] (b) Normalized Surface Distance (NSD) [69]

Figure 3.2: The formula of the segmentation accuracy metrics (Dice Coefficient and Normalized
Surface Distance) used in this study.

3.2.4 Evaluation Metrics and Statistical Analysis

For each CT scan of the test cases, sliding windows with 50% overlapping were used to compute the

automatic segmentation results, which were combined into one volume using a Gaussian weighting

function with a standard deviation coefficient of 0.125. We compared the aforementioned DL mod-

els for their segmentation accuracy and efficiency for the Surgical Labels and BTCV Labels, which

include anatomical structures of various sizes and geometries. Specifically, in terms of segmenta-

tion accuracy, we used the Dice coefficient (Fig. 3.2a) and Normalized Surface Distance (NSD)

(Fig. 3.2b), both with the range of [0,1] (1 being the most desirable). While the first metric was

widely used, it tends to favor larger objects and those with a bigger surface-to-volume ratio. To

complement the Dice coefficient, the NSD measures the tightness of fit for the surfaces between the

automatic segmentation and the ground truths. It can more appropriately assess the segmentation

quality for smaller anatomies. Here, we used a 3mm threshold for computing the NSD.

In terms of computational complexity, we evaluated the number of parameters in the model and

the inference latency. Specifically, the inference latency is the amount of time needed for a model to

process one 96× 96× 96 voxel image patch and was obtained by using the benchmark framework

with 1000 run time provided by [34] on a desktop computer with an NVIDIA GeForce RTX 3090
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GPU and an 11th Gen Intel® Core™ i9 CPU. The number of parameters reflects a model’s complex-

ity, correlating with its memory demand. At the same time, inference latency indicates the model’s

speed and computational demand. Considering both metrics helps us comprehensively assess the

model’s overall resource consumption, containing both memory and computational aspects.

To verify the differences in segmentation performances across different models, we performed a

statistical analysis on the results. Specifically, two-way ANOVA tests were conducted to investigate

whether group-wise difference exists among the tested models, and whether there exists a differ-

ence in terms of segmentation performance between the Surgical labels and BTCV labels. If the

ANOVA test indicates a significant difference, pair-wise post-hoc analysis with Tukey’s Honestly

Significant Difference (HSD) was employed to further identify the between-model differences with

statistical significance. Here, we defined a p-value of 0.05 as the threshold that indicates a statistical

significance.

3.2.5 Algorithm Ranking Method

To properly assess the performance of algorithms [57], public medical image processing chal-

lenges have widely adopted various ranking methods that incorporate multiple evaluation metrics.

In general, two main ranking mechanisms have been utilized in algorithm ranking:

• Metric-based aggregation (“aggregate then rank”): the evaluation metrics are first aggregated

using median or mean across all cases, and then the ranking is based on the aggregated value.

• Case-based aggregation (“rank then aggregate”: the models are first ranked for each metric on

each case, and then the average values of all the rankings are used to rank the models.

Maier et al. [57] found that metric-based aggregation is the most commonly used ranking method

in different medical image processing challenges, and recommend using it over case-based aggrega-

tion. Furthermore, for metric-based aggregation, the mean as an aggregation method was evaluated

to be more robust than the median. Following these guidelines, we adopted the “aggregate then

rank” approach with the mean value for metric aggregation. Specifically, we first aggregated the

results of all test cases and then ranked the models for each metric. With this strategy, we obtained

the algorithm rankings for segmentation accuracy and model complexity by averaging the rankings
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Table 3.1: Computational complexity and segmentation performance (mean±std) across 3DUNet,
STUNet, AttentionUNet, and 3DSwinUnet models with different numbers of resolution stages.

(a) Computational Complexity and Accuracy (mean ± std)

Model Name

Model Complexity ↓ Dice ↑ NSD ↑

Parameters Inference

(M) Latency BTCV Surgery Total BTCV Surgery Total

(ms)

3DUNet 30.64 6.1581 93.66± 3.083 96.96± 1.112 95.18± 1.692 97.50± 2.892 98.88± 1.251 98.13± 1.652

STUNet 30.232 7.2983 94.08± 2.921 97.04± 1.201 95.44± 1.621 97.57± 2.541 98.85± 1.592 98.16± 1.541

AttentionUNet 30.593 7.1932 93.78± 3.112 96.76± 1.293 95.14± 1.743 97.40± 2.843 98.77± 1.603 98.03± 1.693

SwinUNETR 62.196 18.5855 93.32± 3.215 96.54± 1.455 94.79± 1.835 97.10± 2.865 98.28± 1.815 97.64± 1.785

FocalSegNet 69.657 15.4124 93.47± 2.984 96.57± 1.394 94.89± 1.674 97.20± 2.814 98.43± 1.584 97.77± 1.664

3DSwinUnet 7.981 22.916 46.15± 7.027 59.30± 4.607 52.20± 5.067 34.81± 5.647 38.52± 4.157 36.54± 4.247

3DSwinUnetV 4 31.555 29.0257 92.04± 3.586 95.72± 1.586 93.73± 2.006 96.14± 3.476 97.50± 1.966 96.76± 2.066

(b) Model Rankings

Model Name

Rankings ↓

Model Segmentation Final

Complexity BTCV Surgery Total BTCV Surgery Total

3DUNet 1 2 1 2 2 1 2

STUNet 1 1 1 1 1 1 1

AttentionUNet 1 2 2 3 2 2 3

SwinUNETR 3 4 4 5 4 4 5

FocalSegNet 3 3 3 4 3 3 4

3DSwinUnet 2 6 6 7 4 4 5

3DSwinUnetV 4 4 5 5 6 5 5 6

of the sub-measures of each category. Finally, to fully consider both categories of factors, the final

algorithm ranking was achieved based on the average of the segmentation accuracy ranking and

model complexity ranking for each algorithm. For the assessment, we obtained the segmentation

accuracy rankings and the final rankings for the Surgical label, BTCV labels, and the combination

of both groups.

3.3 RESULTS

In Table 3.1, we summarize the segmentation accuracy, model complexity, and ranking for the

3DUNet, STUNet, AttentionUNet, SwinUNETR, FocalSegNet, and 3DSwinUnet. Additionally,

the evaluation metrics of the ablation studies are listed in Tables 3.2 to 3.5. Finally, due to the

page limit, we demonstrate the segmentation outcomes of these models with image examples and

anatomy-wise boxplots in Fig. S3-S4 and S5-S6 of the Supplementary Materials, respectively.
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3.3.1 Segmentation Accuracy

With the segmentation performance of the six U-shaped models, and the best-performing 3DSwi-

nUnet (i.e., 3DSwinUnetV4) in Table 3.1, we found three general observations. First, these in-

cluded models achieved significantly higher Dice scores on the surgical labels rather than BTCV

ones (p<0.05). Second, the 3DSwinUnet model performed significantly worse in segmentation

accuracy than the rest of the counterparts (p<0.05). Finally, despite the differences in model ar-

chitectures, especially in the adoption of diverse attention mechanisms, and the variations in the

mean metrics, their segmentation performances do not differ significantly (p>0.05). Specifically,

for the surgical labels, the 3DUNet achieved the second best mean Dice score of 96.96% and the

best mean NSD of 98.88% while the STUNet had the highest mean Dice score of 97.04% and the

second best NSD of 98.85%, making them share the first ranking for segmentation accuracy in this

task. The AttentionUNet, FocalSegNet, SwinUNETR, 3DSwinUnetV4, and 3DSwinUnet followed

in our ranking, respectively. For the BTCV labels, the STUNet model also achieved the best Dice

scores (94.08%) and NSD (97.57%). 3DUNet and AttentionUNet shared the second place in the

ranking, with 3DUNet achieving the second best mean NSD (97.50%) while AttentionUNet had the

second best Dice score of (93.78%). After them, the models in descending order of ranking are the

FocalSegNet, SwinUNETR, 3DSwinUnetV4, and 3DSwinUnet. Finally, when pulling both sets of

labels together, the STUNet model again achieved the highest Dice score of 95.44% and the best

NSD of 98.16%, with the 3DUNet ranked second, followed by the AttentionUNet, FocalSegNet,

SwinUNETR, 3DSwinUnetV4, and 3DSwinUnet.

3.3.2 Model Complexity

Primarily due to the choice of architecture types, the model complexity varies, with the 3DUNet

having the lowest inference latency. By sharing the basic structure of the UNETR [31], the Swi-

nUNETR and FocalSegNet have more than twice the computational cost of the CNN U-shaped

models, with the latter containing the highest number of model parameters. Finally, 3DSwinUnet

had the lightest model architecture, and 3DSwinUnetV4 had the highest inference latency on aver-

age.
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3.3.3 Final algorithm ranking

In our final algorithm ranking for the total anatomical labels, the STUNet, 3DUNet, and At-

tentionUNet were ranked first, second, and third, respectively. These three models stood out due to

their model efficiency and higher segmentation accuracy. Even though 3DUNet ranked second over-

all, it shared the first place with STUNet for surgical labels and second place with AttentionUNet

for BTCV labels. The FocalSegNet, SwinUNETR, 3DSwinUnet, and 3DSwinUnetV4 were ranked

next from the fourth to the last position for the combined total anatomical labels. As our ranking

balances both accuracy and model complexity, although the baseline 3DSwinUnet had significantly

lower segmentation performance (P < 0.05) than the rest, its lowest number of parameters boosted

its final ranking.

3.3.4 Ablation studies

Impact of attention mechanisms

Table 3.2 provides the segmentation accuracy, model complexity, and ranking of the selected

U-shaped models with four resolution stages. While our general observations align with those in

Section 3.3.1, the model ranking changed slightly. Among the selected models, 3DUNet ranked

first in all of our ranking categories thanks to its computational efficiency and high segmentation

accuracy. Following 3DUNet, STUNet came as second in computation complexity, segmentation

performance, and final ranking for the surgical labels. Meanwhile, the AttentionUNet ranked as the

second best model in our segmentation and final rankings for the BTCV labels and combined la-

bels. Together, FocalSegNet, SwinUNETR, and 3DSwinUnet placed as fourth in the computational

complexity category. With the same number of resolution stages, 3DSwinUnet still kept the low-

est number of parameters, and FocalSegNet had the lowest inference latency. Finally, FocalSegNet,

SwinUNETR, and 3DSwinUnet placed from the fourth to the sixth in segmentation quality and final

ranking for all three label groups, respectively.
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Table 3.2: Model Performance (mean±std) and ranking across the selected four-stage U-shaped
Models. Note that an individual metric’s rankings are shown as superscripts beside the correspond-
ing metrics.

(a) Computational Complexity and Accuracy (mean ± std)

Model Name

Model Complexity ↓ Dice ↑ NSD ↑

Parameters Inference

(M) Latency BTCV Surgery Total BTCV Surgery Total

(ms)

3DUNet 14.592 5.108± 0.411 94.03± 3.021 97.04± 1.081 95.41± 1.651 97.55± 2.581 98.90± 1.361 98.17± 1.501

STUNet 14.511 6.052± 0.653 93.75± 3.223 96.87± 1.142 95.18± 1.783 97.41± 2.783 98.76± 1.372 98.03± 1.593

AttentionUNet 14.773 5.970± 0.442 93.86± 2.962 96.82± 1.383 95.21± 1.672 97.48± 2.772 98.72± 1.643 98.05± 1.702

SwinUNETR 62.195 18.585± 1.245 93.32± 3.215 96.54± 1.455 94.79± 1.835 97.10± 2.865 98.28± 1.815 97.64± 1.785

FocalSegNet 69.656 15.412± 0.844 93.47± 2.984 96.57± 1.394 94.89± 1.674 97.20± 2.814 98.43± 1.584 97.77± 1.664

3DSwinUnet 30.914 28.611± 1.326 59.71± 6.126 68.95± 4.566 63.98± 4.356 53.96± 6.566 58.23± 4.596 55.96± 4.986

(b) Model Rankings

Model Name

Rankings ↓

Model Segmentation Final

Complexity BTCV Surgery Total BTCV Surgery Total

3DUNet 1 1 1 1 1 1 1

STUNet 2 3 2 3 3 2 3

AttentionUNet 3 2 3 2 2 3 2

SwinUNETR 4 5 5 5 5 5 5

FocalSegNet 4 4 4 4 4 4 4

3DSwinUnet 4 6 6 6 6 6 6

Impact of resolution stages

In Table 3.3, we show the segmentation accuracy results for 3DUNet, STUNet, AttentionUNet,

and 3DSwinUnet across different numbers of resolution stages. The findings revealed distinct be-

haviors among the models when increasing the number of resolution stages. Specifically, increasing

the number of resolution stages enhanced the performance of STUNet while it reduced the perfor-

mance of 3DUNet and 3DSwinUnet. In the case of AttentionUNet, an increase in resolution stages

led to a slight enhancement in model performance concerning the NSD score for surgery labels,

while its performance was lower in all other scenarios. It is worth noting that despite the minor

changes in the model performance due to varying the number of resolution stages, these changes

were not statistically significant (p > 0.05).

3DSwinUnet modifications

Tables 3.4-3.5 summarize the computational complexity and segmentation accuracy for the cor-

responding operations used in each design component of the 3DSwinUnet variants. The findings
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Table 3.3: Computational complexity and segmentation performance (mean±std) across 3DUNet,
STUNet, AttentionUNet, and 3DSwinUnet models with different numbers of resolution stages.

Model Name of

Model Complexity ↓ Dice ↑ NSD ↑

Num Parameters Inference

stages (M) Latency BTCV Surgery Total BTCV Surgery Total

(ms)

3DUNet 4 14.59 5.108± 0.41 94.03± 3.02 97.04± 1.08 95.41± 1.65 97.55± 2.58 98.90± 1.36 98.17± 1.50

3DUNet 5 30.6 6.158± 0.49 93.66± 3.08 96.96± 1.11 95.18± 1.69 97.50± 2.89 98.88± 1.25 98.13± 1.65

STUNet 4 14.51 6.052± 0.65 93.75± 3.22 96.87± 1.14 95.18± 1.78 97.41± 2.78 98.76± 1.37 98.03± 1.59

STUNet 5 30.23 7.298± 0.55 94.08± 2.92 97.04± 1.20 95.44± 1.62 97.57± 2.54 98.85± 1.59 98.16± 1.54

AttentionUNet 4 14.77 5.970± 0.44 93.86± 2.96 96.82± 1.38 95.21± 1.67 97.48± 2.77 98.72± 1.64 98.05± 1.70

AttentionUNet 5 30.59 7.193± 0.48 93.78± 3.11 96.76± 1.29 95.14± 1.74 97.40± 2.84 98.77± 1.60 98.03± 1.69

3DSwinUnet 3 7.85 22.860± 0.82 60.81± 6.24 70.76± 4.10 65.38± 4.26 54.48± 6.74 60.57± 4.70 57.29± 5.12

3DSwinUnet 4 30.91 28.611± 1.32 59.71± 6.12 68.95± 4.56 63.98± 4.35 53.96± 6.56 58.23± 4.59 55.96± 4.98

presented in Table 3.4 indicate that replacing linear with convolutional layers can improve model

performance. Specifically, replacing the linear layers with residual blocks in skip-connection blocks

in 3DSwinUnetV1 led to a significant (p < 0.05) performance improvement compared to 3DSwi-

nUnet. For 3DSwinUnetV2 and 3DSwinUnetV3, replacing linear layers in decoder up-sampling

blocks with nearest interpolation and transpose convolutional layers, respectively, resulted in a

significant (p < 0.05) performance enhancement compared to 3DSwinUnetV1. However, there

was only a slight difference (p > 0.05) between the performance of 3DSwinUnetV2 and 3DSwi-

nUnetV3. Finally, using residual layers in encoder downsampling blocks resulted in a slight (p >

0.05) performance improvement in 3DSwinUnetV4 than in 3DSwinUnetV3.

Table 3.4: Computational complexity and segmentation performance (mean±std) across various
3DSwinUnet model variants. Here, SC=skip-connection type, DS=downsampling operation, and
US=upsampling operation.

Model Name

Details Model Complexity ↓ Dice ↑ NSD ↑

SC DS US

Parameters Inference

(M) Latency BTCV Surgery Total BTCV Surgery Total

(ms)

3DSwinUnet Linear Linear Linear 7.98 22.910± 0.93 46.15± 7.02 59.30± 4.60 52.20± 5.06 34.81± 5.64 38.52± 4.15 36.54± 4.24

3DSwinUnetV 1 Residual Linear Linear 24.39 27.382± 0.95 86.17± 5.50 92.04± 2.60 88.87± 3.24 89.06± 6.20 91.29± 3.58 90.09± 3.95

3DSwinUnetV 2 Residual Linear Interpolation 23.57 27.716± 0.89 91.47± 3.89 95.32± 1.81 93.23± 2.22 95.76± 3.57 96.70± 2.32 96.19± 2.20

3DSwinUnetV 3 Residual Linear Transpose Convolution 24.39 27.706± 1.42 91.67± 3.40 95.32± 1.62 93.34± 1.91 95.79± 3.36 96.65± 2.40 96.19± 2.11

3DSwinUnetV 4 Residual Residual Transpose Convolution 31.55 29.025± 0.81 92.04± 3.58 95.72± 1.58 93.73± 2.00 96.14± 3.47 97.50± 1.96 96.76± 2.06

Further analysis of bottleneck modifications in Table 3.5 revealed a slight impact of different

operations on 3DSwinUnetV4 performance (p > 0.05). Specifically, employing either a single

Swin Transformer block or a Residual block in the bottleneck resulted in a marginal improvement
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(p > 0.05) in overall model performance (Total Dice and NSD). However, increasing the number of

operations within the bottleneck, compared to using a single block, led to a minor decrease in the

overall performance. The results revealed that using one Swin Transformer block in 3DSwinUnetB1

performed slightly better than its counterparts (p > 0.05).

Table 3.5: Comparison of Computational Complexity and Segmentation Performance Across
3DSwinunet Model Variants with Different Bottleneck Types.

Model Name Bottleneck

Model Complexity ↓ Dice ↑ NSD ↑

Parameters Inference

Type (M) Latency BTCV Surgery Total BTCV Surgery Total

(ms)

3DSwinUnetB0 None 27.89 26.21± 2.94 91.87± 3.70 95.75± 1.61 93.65± 2.04 96.07± 3.41 97.50± 2.13 96.73± 2.01

3DSwinUnetB1 Swin Transformer 29.72 28.04± 3.22 91.99± 3.70 95.83± 1.46 93.75± 2.03 96.19± 3.50 97.69± 1.84 96.88± 2.05

3DSwinUnetV4 Swin Transformer×2 31.55 29.025± 0.81 92.04± 3.58 95.72± 1.58 93.73± 2.00 96.14± 3.47 97.50± 1.96 96.76± 2.06

3DSwinUnetB2 Residual 35.85 26.96± 3.11 92.06± 3.66 95.74± 1.69 93.75± 2.06 96.14± 3.88 97.53± 2.17 96.77± 2.33

3DSwinUnetB3 Residual×2 43.82 27.98± 3.08 91.92± 3.76 95.83± 1.48 93.71± 2.10 96.07± 3.48 97.65± 1.82 96.79± 2.03

3.4 Discussion

We compared six state-of-the-art U-shaped techniques and one model variant (3DSwinUnetV4)

with a focus on the impacts of different attention mechanisms, including attention gates, self-

attention, and focal modulation, as well as comparing CNN-Transformer hybrid and full Trans-

former models. We didn’t observe a significant difference (p>0.05) among these models, except

for the 3DSwinUnet. However, the attention mechanisms were ranked in the descending order of

attention gate, focal modulation, window-based self-attention, and full integration of window-based

self-attention. While some previous studies showed the benefit of various attention mechanisms in

U-shaped models [81], in some recent medical image segmentation benchmarking reports [44, 25],

3D UNets were shown to perform better than CNN-Transformer hybrid counterparts. To further

confirm this observation while removing the influence of different resolution stages [46], we con-

ducted an ablation study by fixing the number of resolution stages of all models to four, and the

observation remained. This could potentially be explained by the patch-based training and infer-

ence, where limited field-of-view and information redundancy may benefit local feature extraction

slightly. The segmentation accuracy ranking of the attention mechanisms reflected their ability to

encode local features. Furthermore, the observation may also be due to the need for larger training
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datasets for Transformer models. In clinical deployment, computational efficiency is important, so

with similar segmentation accuracy, CNN U-shaped models that contain fewer parameters and faster

inference latency can be more favorable. Across all tested models in Table 3.1, we demonstrated

that the segmentation quality is in general better for larger anatomies. This is reflected in the sig-

nificant differences (p<0.05) of Dice coefficient and NSD between the BTCV and surgical labels,

where the latter contains larger anatomical structures. This observation is consistent with previous

studies [44]. Furthermore, for these smaller anatomies, the standard deviations of the segmentation

accuracy metrics are also greater than those of the larger structures, suggesting lower robustness.

Deeper layers in convolutional neural networks may help encode more refined features for rel-

evant tasks [80]. However, based on Table 3.3, more resolution stages in U-shaped models do

not always improve segmentation accuracy. Among the models, STUNet was the only model that

slightly benefited from increasing the number of resolution stages potentially because of its exten-

sive incorporation of residual blocks and multi-scale processing in its architecture design. For pure

Transformer-based models, increasing the number of resolution stages may reduce performance due

to the loss of spatial information in the last layers and cause the attention to collapse [95]. To mit-

igate this, the integration of the attention mechanism with convolutional operations, as proposed in

paper [18] can be beneficial. Finally, as additional resolution stages augment model complexity, the

advantage of large models could also depend on the complexity of the task, size of training data,

and the initial input image size, and resolution.

The optimization of model complexity revealed a trade-off between the number of parameters

and inference latency, with an interplay with other additional factors. First, incorporating interpo-

lation operations for upsampling in both CNN-based and attention-based U-shaped models, while

reducing the number of parameters, resulted in increased inference latency. This was evident in

the STUNet model, which, despite having fewer parameters than 3DUNet, showed higher latency.

Similarly, within the attention-based U-shaped models, 3DSwinUnetV2 demonstrated higher la-

tency despite having fewer parameters than its counterparts, 3DSwinUnetV1 and 3DSwinUnetV3,

due to the inclusion of interpolation layers. Second, within the attention-based U-shaped models,

incorporating self-attention mechanisms resulted in longer inference latencies than focal modula-

tion (i.e., FocalSegNet), even though the self-attention-based models had fewer parameters. This
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suggests that the computational demands of the self-attention mechanism, such as computing sim-

ilarity coefficients and employing a window-based mechanism, contribute to the increased latency.

In contrast, the FocalSegNet’s use of depthwise convolutions, while increasing the parameter count,

led to reduced inference latency compared to self-attention mechanisms. This highlights the impact

of specific computational operation choices on model complexity attributes.

Finally, a direct adaptation of the original 2D SwinUnet model [9] for 3D segmentation offered

sub-optimal performance as previously mentioned in another study [32]. Although the shifted win-

dow mechanism in the Swin Transformer adds inductive bias to this operation, its self-attention can

still interfere with local information, as previously noted in [33]. The lack of local feature extractors

in the 3DSwinUnet, due to the use of Swin Transformer and linear layers, results in suboptimal per-

formance in our analysis. Previous studies [63, 32] attempted to address this issue by incorporating

the cross-attention mechanism into the decoders’ Swin Transformer blocks. Although QTUNet [32]

showed improved performance over VTUNet [63] in the BTCV dataset, the results on this dataset

remained suboptimal and required further investigation. Therefore, in our work, we diverge from

the Cross-Attention approach and explore using convolutional operations to enhance local feature

representation in SwinUnet for 3D image analysis of thoracic organs. Inspired by the use of residual

blocks in the STUNet, we developed four variants of the 3DSwinUNet to fully explore the poten-

tial of pure Transformer UNets by modifying the operations of upsampling, skip-connection, and

downsampling (Table 3.4).

In short, we found greatly enhanced performance when replacing linear operations with resid-

ual blocks in skip connections and downsampling operations, as well as employing interpolation or

transpose convolution in upsampling operations for the baseline 3DSwinUnet. As residual blocks

are known to improve the learning efficiency of hierarchical features and gradient flow during train-

ing, they could potentially promote inductive bias compared with simple linear operations. No-

tably, the performance boost in terms of accuracy and robustness (i.e., lower standard deviations

of metrics) was much more evident for their deployment in skip connections than downsampling.

While keeping residual blocks for skip-connections and linear operation for downsampling (3DSwi-

nUnetV2 vs. 3DSwinUnetV3), upsampling operations with interpolation and transpose convolution

provided similar further accuracy enhancement, with the latter offering slightly better performance
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robustness. This enhancement was due to the hierarchical representation of convolutional layers

[96].

Given that prior studies that modified SwinUnet for 3D image analysis often incorporated a Swin

Transformer block at the bottleneck of their models [63, 32] we investigated the impact of different

bottleneck configurations on our 3DSwinUnetV4 (see Table 3.5), the top-performing variant from

our experiments. Our results demonstrate that using either a Swin Transformer or Residual block

at the bottleneck is effective, likely due to their ability to extract fine-grained features from the

down-sampled encoder output. Notably, the Swin Transformer block consistently outperformed the

Residual block. This may be attributed to the fact that in 3DSwinUnetV4, the bottleneck receives

input features already processed by residual blocks within the patch merging blocks. Consequently,

employing a Swin Transformer block after the residual blocks can enhance results by leveraging

its self-attention mechanism to extract global features. This is consistent with findings in [62, 33],

where self-attention after convolutional operations aggregated features and improved robustness to

high-frequency noise, similar to spatial smoothing. Further experiments increasing the number of

blocks in the bottleneck yielded mixed results in different datasets. Increasing Swin Transformer

blocks in 3DSwinUnetV4 led to a higher BTCV Dice score compared to 3DSwinUnetB1 (which has

one Swin Transformer block). However, overall performance decreased, potentially due to the loss

of spatial information and attention collapse in the deeper layers [95]. On the other hand, Increasing

the number of Residual blocks in 3DSwinUnetB3 also resulted in mixed outcomes, with small

improvements in the surgical labels but a minor decrease in performance on BTCV. This suggests

the potential benefit of deeper residual blocks, but the optimal structure may be task-dependent.

Finally, our findings suggest that while increasing the depth of the bottleneck could potentially

enhance results, this effect was inconsistent across tasks and led to increased model complexity.

Therefore, we did not find increasing the depth of the model bottleneck to be efficient, considering

the trade-off between accuracy and complexity. Therefore, we recommend using a single block at

the bottleneck of the model, which extracts different features than the final encoder layer (global

feature extractor if the previous layer is a local feature extractor, or vice-versa)

Our presented study primarily focuses on the impacts of attention mechanisms, number of res-

olution stages, and network configuration designs for U-shaped deep learning models. As a result,
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we selected the most popular and representative models for the themes of our investigation, instead

of analyzing an exhaustive list of U-shaped models. For the model performance, it is possible that

the insights drawn from the experiments may be task- and modality-specific [90, 51], and should be

verified further with additional benchmarking datasets.

3.5 Conclusion

In this study, we conducted a comprehensive evaluation of various U-shaped deep learning

models in CT-based segmentation for thoracic surgical planning and other abdominal anatomies

(BTCV dataset), and showed that the STUNet ranked the best for the designated tasks based on

the joint consideration of accuracy and model complexity. In summary, we found that CNN U-

shaped models offer excellent values for the demonstrated tasks while attention mechanisms may

not necessarily enhance the outcomes, with those better preserving local features gaining a slight

edge in patch-based processing. In addition, although augmenting resolution stages does not always

result in better accuracy, careful design of operations for different components of the U-shaped

models can greatly boost the results. We hope the insights from our experiments will facilitate

the deployment and development of deep learning models for the demonstrated application and

beyond. In our future work, we aim to further expand this study by evaluating the models on more

diverse benchmarking datasets and exploring the effects of various skip-connection mechanisms,

such as nested hierarchical and Transformer-based approaches. Also, we will investigate the optimal

integration of Transformer blocks within CNN models to enhance segmentation accuracy, as well

as explore the impact of incorporating different attention blocks, like squeeze-and-excitation [37]

or MRA block [20], within U-shaped architectures.
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Chapter 4

Virtual Reality-Based Preoperative

Planning for Optimized Trocar

Placement in Thoracic Surgery: A

Preliminary Study

A version of this chapter has been presented in Augmented Environments for Computer Assisted

Interventions (AE-CAI 2024) joint workshop at the Medical Image Computing and Computer As-

sisted Interventions (MICCAI 2024) Conference. The conference proceeding will be published in

the Wiley journal Technology Healthcare Letters:

• Harirpoush A, Rakovich G, Kersten-Oertel M, Xiao Y. Virtual Reality-Based Preoperative

Planning for Optimized Trocar Placement in Thoracic Surgery: A Preliminary Study. Tech-

nology Healthcare letters, in press (arXiv preprint arXiv:2409.04414), 2024 [28].
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4.1 Introduction

Lung cancer is the second most common cancer and the leading cause of cancer-related deaths

worldwide [79]. In the United States, approximately 56,000 to 57,000 lung cancer resections are

performed each year, with lobectomies being the most common type of resection [64]. Low post-

trauma minimally invasive surgeries, such as video-assisted thoracoscopic surgery (VATS), are now

being used to treat early-stage non-small-cell lung cancer [5]. During VATS surgeries, optimal trocar

placement, which guides the entry of surgical tools and endoscopic camera into the body through

small incisions is necessary for surgical success. Optimal placement involves three key principles:

(1) Trocars must be carefully positioned to ensure full access to all relevant areas within the thoracic

cavity to facilitate complete surgical exploration and intervention. (2) The endoscopic camera trocar

should be strategically placed to provide a panoramic view of the surgical field and sufficient room

for instrument manipulation and avoiding visual obstruction. (3) All trocar placements should be

meticulously planned to prevent instrument crowding or “fencing”, ensuring smooth and efficient

instrument handling throughout the procedure [73, 49].

While VATS offers numerous benefits, the optimal placement of trocars remains an area of lim-

ited research and standardized guidelines. Two common principles to guide trocar placement exist:

(1) the Baseball Diamond Principle (BDP), which offers enhanced maneuverability and wider ac-

cess to the thoracic cavity, particularly advantageous in non-pulmonary procedures [42], and (2) the

Triangle Target Principle (TTP), which optimizes direct access to the surgical target and is preferred

for retraction or stapling [73, 42]. Despite these principles, surgeons primarily rely on their expe-

rience and patient-specific anatomy to make trocar placement decisions [73], potentially leading to

longer operating times, increased risk of complications, and greater fatigue for the surgical team

due to limited instrument working area, and maneuverability [65]. Thus there is a need for effec-

tive preoperative planning techniques, such as through virtual reality (VR) for precise and effective

trocar placement.

In this paper, we introduce the first VR application for thoracic pre-operative planning to ef-

ficiently provide optimal trocar placement based on established surgical principles and developed

in close collaboration with an experienced thoracic surgeon. In a preliminary study, we showcase
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the system’s application in right upper lung lobectomy, a common thoracic surgery. Following con-

ventional practice, we included three trocars: two for surgical instruments in tissue resection and

manipulation and one for the insertion of an endoscopic camera for surgical monitoring. The im-

portance of accessing all areas of the chest cavity in this procedure led to the development of a

rule-based trocar placement system. This system aims to help in precise trocar placement to opti-

mize the operable area, i.e., the intersection between the working area of surgical instruments and

the endoscopic camera’s field of view (FOV).

We designed three key VR interaction and visualization features that are tailored for thoracic

surgery. First, to enhance precision in planning, our application uses a pivot mechanism for surgical

tool trocar placement. Second, we employed a ”hand grabbing” interaction method for endoscopic

camera position planning and camera trocar placement. Lastly, real-time visual feedback and eval-

uation metrics were devised to further assist in trocar placement based on existing guidelines and

discussions with an experienced thoracic surgeon. Upon completion of planning, a comprehensive

summary is generated, detailing key metrics for surgical plan quality to allow further refinement of

plans. A preliminary user study was done to confirm the system’s robustness and usability. The

resulting insights can provide valuable information for future development of VR surgical applica-

tions for thoracic procedures and beyond.

4.2 Related Works

4.2.1 Patient-specific 3D Models

Recent studies have highlighted the significant advantages of incorporating patient-specific 3D

models into preoperative planning across various surgical specialties [11, 2, 82, 65]. Within thoracic

surgery, Cen et al. [11] demonstrated the utility of both physical (3D printed) and digital (VR/MR)

3D models in improving surgical field alignment during complex pulmonary atresia surgeries [11].

Ujiie et al. [82] focused on lung segmentectomy, utilizing a VR-based system with patient-specific

3D lung models to enhance surgical planning and surgeon confidence by facilitating the identifica-

tion of anatomical landmarks and potential surgical challenges.

The value of 3D models extends beyond thoracic procedures. In laparoscopic hiatal hernia
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repair, Preda et al. [65] developed a preoperative planning system based on patient-specific 3D

reconstruction and simulation, receiving positive feedback from surgeons who noted its potential

to improve ergonomics and its particular value in challenging cases involving obese patients with

large hiatal hernias. Further evidence for the utility of 3D models in thoracic surgery comes from

Bakhuis et al. [2], who compared 2D planning with CT images to 3D planning in VR for pulmonary

segmentectomy. Their findings revealed that 2D planns were adjusted in 52% of cases and tumor

localization was inaccurate in 14%, underscoring the potential of 3D models to improve surgical

accuracy and planning [2]. Beyond their use in individual procedures, Heuts et al. [36] explored the

broader benefits of 3D models in thoracic surgical planning, finding that their use increases surgical

efficiency, minimizes complications, and enhances overall surgical outcomes [36].

4.2.2 Extended Reality Applications in Minimally Invasive Surgeries

Extended Reality (XR) has been used in various minimally invasive surgeries to enhance pro-

cedural efficiency and precision. Several studies [54, 21, 22] have explored the use of XR for

trocar planning systems to optimize minimally invasive surgery outcomes. For instance, López-

Mir et al. [54] developed an augmented reality (AR) system to improve trocar placement accuracy

in laparoscopic cholecystectomy, which is facilitated by a full HD monitor with transparency for

enhanced depth perception. In their study involving four clinicians and 24 patients, the AR sys-

tem demonstrated a 33% improvement in accuracy compared to traditional trocar placement meth-

ods. Similarly, Feuerstein et al. [21] presented an AR system for port placement in robotic-assisted

surgeries (RATS). Their approach involved registering the patient for their preoperative CT scan

by maneuvering the endoscope around fiducials, enabling automatic 3D position reconstruction.

Later, Feuerstein et al. [22] proposed an AR system for port placement and intraoperative planning

in minimally invasive liver resection that further accounts for intraoperative organ shifts. In an-

other study, Bauernschmitt et al. [4] reported a significant reduction in operation time in minimally

invasive robot-assisted heart surgery, thanks to employing their AR system for offline port place-

ment planning and intraoperative navigation. Meanwhile, other endeavors [75, 74] have proposed

decision-based mixed-reality (MR) and AR systems for automatic path planning to enhance surgical

performance and streamline surgical workflows. For example, Simoes and Cao [75] introduced a
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decision-aid MR system to improve RATS performance and reduce planning time. Their system in-

corporates an optimization algorithm that suggests trocar placements based on the patient’s anatomy

and the specific surgery type. These suggestions are then projected onto the patient’s body with a

projector, allowing surgeons to refine the placement as needed. In another study, Schwenderling

et al. [74] proposed a condition-based automated path planning AR system for percutaneous inter-

ventions. This system uses a projector to visualize the insertion point, path quality, and target on a

phantom. Their results demonstrated the potential of visualizing insertion points and path quality in

selecting safer access paths.

Beyond surgical planning, virtual Reality (VR) environments with haptic feedback devices have

emerged as valuable tools for simulating surgical procedures and training trocar placement. Ad-

dressing limitations in previous training modules, such as limited anatomical variation, Solomon

et al. [77] proposed a VR training system with haptic feedback to simulate VATS right upper lobec-

tomy. In their system, trocar placement for each instrument is selected from predetermined sites

on the chest wall, and instruments are then controlled via haptic devices. The process begins with

determining the 30-degree thoracoscope trocar location, followed by an inspection of the anatomy

through a camera view to guide the placement of the remaining trocars. The system includes both

training and testing modes, with the latter featuring pop-up questions and explanations for incorrect

answers. Similarly, Haidari et al. [26] developed a VR system with haptic devices for simulating

VATS resection of the five lung lobes. Their study involved surgeons across three experience lev-

els: novice, intermediate, and experienced. Their results showed significant differences between

novices and experienced surgeons in blood loss, procedure time, and total instrument path length.

Meanwhile, the only significant difference between intermediates and experienced surgeons was in

procedure time.

While previous studies have widely investigated the influence of XR environments and patient-

specific 3D models in surgical planning, the use of HMD VR systems for trocar placement in VATS

remains untouched. This method could enhance surgical outcomes by offering surgeons superior

depth perception and spatial understanding compared to traditional AR-based or monitor-based

methods. Furthermore, using a VR environment could decrease potential registration errors that

may arise in AR systems, thereby contributing to increased precision in surgical planning.
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4.3 Materials and Methods

4.3.1 3D Model Generation

A 3D thoracic anatomical model was constructed based on a patient computed tomography (CT)

scan (1.5×1.5×1.5 mm3 resolution) selected from the publicly available TotalSegmentator [88]

dataset. We obtained anatomical segmentations of the vertebrae, ribs, scapula, and trachea, which

were manually refined using 3D Slicer to enhance model accuracy. Additionally, we further manu-

ally segmented the pulmonary vasculature and skin surface with 3D Slicer. All segmentations were

converted into triangulated meshes (.obj format), and then integrated into the VR environment.

Figure 4.1: Overview of the pivot mechanism in surgical trocar placement: A. Initial anterior view
with trajectory endpoint spheres positioned in front of each controller; B. Spheres manipulated
to define endpoints (green when near target); C. Endpoint verification displays working area and
trajectory paths; D. Spheres moved to the skin to define entry points (green on contact); E. Green
spheres and paths indicate valid entry, verifying trocar placement; F. Manipulation angle displayed
for adjustment/confirmation.

4.3.2 VR user interface and workflow

Our system was created using the Oculus Quest Pro headset and controllers, employing the

Unity game engine (Version 2021.3.11f1). Both development and user studies were conducted on a

desktop computer with an NVIDIA GeForce RTX 3090 GPU, an 11th Gen Intel® Core™ i9 CPU,
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and 32 GB of RAM. The VR environment developed for this study includes three main visual com-

ponents. First, a large information panel is positioned in front of the user to provide instructions

for surgical planning tasks. Second, a virtual screen is positioned to the right of the information

panel to display simulated video streaming from the virtual endoscopic camera, enabling precise

adjustments and optimal positioning of the camera. Third, a detailed 3D anatomical model, fea-

turing distinctly color-coded anatomical structures (see Fig. 1A, vertebrae in brown, scapula in

yellow, trachea in blue, and pulmonary vasculature in red) is placed in front of the user for surgical

planning. In the 3D model, we annotated the convergent point of the surgical tool trajectories and

the optical axis of the endoscopic camera as a pink sphere. This convergent point was identified by

our collaborating surgeon as the root of the right upper lobe and is common for planning most lung

procedures. As key anatomies in surgical planning, we render the skin and ribs as semi-transparent

structures to allow views of the underlying anatomy and their spatial relationship.

The workflow of the system is as follows. During the surgical planning, the user will remain

in a standing position, mimicking a surgeon’s posture during surgery. Before initiating planning,

the user is asked to re-adjust the vertical position of the anatomical model to a comfortable level by

using a slider selection tool shown in a control panel in the VR environment. Afterwards, planning

can be initiated by pressing the “Start” button on the control panel. Typically during the right upper

lung lobectomy procedure, the surgeon operates from the front of the patient (anterior view) while

the camera-holding assistant is positioned at the back (posterior view). Therefore, the positioning

of the patient model will be automatically adjusted according to this convention for the two sur-

gical planning tasks in sequence: (1) surgical tool trocar placement with an anterior view of the

patient, replicating the surgeon’s perspective, and (2) endoscopic camera and the associated trocar

placement, with a posterior view that mirrors the assistant’s perspective. This task sequence was

refined through an iterative development process to enhance workflow efficiency. In both tasks, the

system provides visual feedback as color cues and numerical metric displacement in VR to guide

users toward valid trocar placement areas. Further details on the data visualization and interaction

schemes are provided in Sections 4.3.2 and 4.3.2.
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Surgical tool trocar placement

The trocar placement uses a pivot mechanism guided by two white spheres, one attached at the

tip of each controller (Fig. 4.1A). This mechanism consists of two phases: endpoint selection and

entry point placement for the surgical trajectories. First, the user reaches the two white spheres

from left and right controllers within a 3D anatomical model towards the convergent point (the

pink sphere) until the sphere turns green (Fig. 4.1B) indicating correct endpoint localization. The

endpoints (i.e., white spheres) are placed by pressing the corresponding controller’s trigger button.

Afterward, a red surgical trajectory line will extend from the placed endpoint to each controller,

along with a 20-degree-angle cone, the angle between the side to the principal axis, that represents

the degree-of-free (DOF) of the surgical instrument’s maneuver. The cone angle was defined using

the surgeon’s wrist range of motion (40 degrees for radial-ulnar deviation), as indicated by previous

research [71]. Note that the right trocar’s DOF cone is indicated by green color and the left one’s

by blue (Fig. 4.1C).

Second, the user drags the trajectory lines with the controllers onto the skin surface while en-

suring that they avoid bony structures and that the real-time displayed trajectory distance for each

controller remains under 28 cm, which is the maximum working length of the surgical instruments.

The user must place the trocars in the designated area as contoured by green lines on the anatomical

model. When these criteria are met, the system provides visual cues by turning both the trajectory

lines and spheres green (Fig. 4.1D). The user then fixes the placement of each of the two trocars

by pressing the corresponding controller’s trigger button (Fig. 4.1E). After fixing both trocars, the

“manipulation angle” between the two trajectories is displayed on a confirmation panel to confirm

the planning or repeat the procedure till satisfaction (Fig. 4.1F). Note that prior research [27] sug-

gests a manipulation angle between 45 and 75 degrees for optimal surgical instrument positioning

with trocars parallel and sufficiently spaced.

Endoscopic camera placement

For our system, we simulate a rigid endoscopic camera (an elongated tube with the camera

at the tip) with a 30-degree tilt angle (between the optical axis and the rigid tubular body of the
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camera) and a 60-degree field of view, which is preferred for thoracic surgery [55]. During the task

of endoscopic camera placement, we visualize the camera’s FOV as a semi-transparent yellow cone

and the optical axis as a red line (Fig. 4.2A). The user can manipulate the camera using a hand-

grabbing interaction, by pressing the grip button of their dominant controller to hold and release it

to place it in space(Fig. 4.2B). The second task of surgical planning requires the user to insert the

camera into the chest cavity, by aiming the optical axis towards the convergent point (pink sphere)

and checking the virtual camera display for optimal views. Upon inserting the camera tube into

the body, a virtual trocar appears intersecting the skin surface, marking the camera’s entry point

and guiding the user to position it within the designated area (as contoured by green lines on the

anatomical model). To avoid instrument crowding, the camera should be positioned outside the

working area (shown as blue and green cones) of the surgical tools. Further, contact with bony

structures should be avoided. To ensure correct placement, the red line (camera optical axis) will

turn green once it aims directly at the convergent point without obstructions (Fig. 4.2C). Upon

pressing the trigger button of the controller, a confirmation panel will appear to confirm or repeat

the placement. Upon confirmation, the operable volume that considers the surgical tools’ DOFs and

camera’s FOV will be calculated and visualized as purple voxels with numerical quantification in

liters (Fig. 4.2D).

4.3.3 Computing operable volume

For the surgery, it is desirable to maximize the area that both surgical tools can cooperate while

the endoscopic camera can inspect the full operation of the tools. Thus, the operable volume is

determined by the overlap between the surgical tools’ DOF and the camera’s FOV, represented as

three different cones. While triangulated meshes accurately represent the surface of objects, they do

not provide the volume of the mesh. To address this, we employed the mesh voxelization method

introduced by [23] to compute the operable volume. This consists of three steps: (1) A 3D grid

surrounding the given mesh will be created, forming the foundation for the process with each cell

representing a voxel. (2) The mesh surface will be voxelized by identifying voxels intersecting with

the mesh triangles, effectively replacing the triangulated representation with small 3D cubes. (3)

A scan-line fill algorithm will be used to identify the voxels within the object border. This process
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Figure 4.2: Overview of the hand grabbing method in camera placement: A. Initial posterior view
and endoscopic camera; B. Pointing toward endoscopic camera and hold it by pressing grip button;
C. Green camera optical axis line demonstrates valid placement; D. Volume of operable area dis-
played for adjustment/confirmation.

is similar to filling a shape in 2D by drawing horizontal lines until the boundaries are reached. To

balance accuracy and efficiency, we use 1.5cm × 1.5cm × 1.5cm voxels; smaller voxels would

improve resolution but increase computational cost. We customized the implementation of Mattatz

[58], which was based on the work of [23] to compute the operable volume. Specifically, to compute

the volumetric overlap between multiple meshes, we use a single 3D grid covering all models. Each

mesh is assigned a unique ID (one for each cone), and for each voxel, the mesh ID is stored in a

HashSet. Overlapping voxels are identified by HashSets containing the same number of elements

as the input meshes.

4.3.4 User study design & system validation

Upon informed consent, we recruited 20 non-clinician participants (age = 25.95 ± 3.31 years,

7 female, 13 male) for our user study. To better understand the study cohort, we also surveyed
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their level of familiarity with VR technology and human anatomy. Among them, 75% indicated

”Familiar” or ”Somewhat Familiar” with VR, while only 30% reported similar familiarity with

human anatomy, with one participant indicating ”Unfamiliar” with both. All participants were right-

handed, and two (one male, one female) reported color blindness. No participants experienced VR

sickness.

Participants were first given a brief Powerpoint presentation introducing the clinical context,

tasks, and goals of the study. Following this, a hands-on tutorial was conducted to familiarize par-

ticipants with the VR environment, planning process, and various interactions. This tutorial involved

tasks different from those in the main study. During the tutorial, participants practiced planning on

the left side of the 3D patient model, with an anterior view provided. Text-to-speech technology for

the instruction from the information panel was integrated to offer assistance throughout each task.

For the camera placement task, a semi-transparent ”phantom camera” positioned at the desirable

location and position was presented as a ground truth reference, and the participants were asked

to place the actual camera to overlap with the phantom guide. This served to illustrate optimal

camera placement and angling towards the posterior side of the patient, as required in the surgery.

Participants were encouraged to continue practicing until they felt comfortable using the system.

Following the tutorial, we conducted the user study to formally validate our proposed system by

following the workflow introduced in Section 4.3.2.

The proposed system was evaluated through a mixed-methods approach employing both semi-

quantitative and quantitative measures. System usability was assessed using the System Usability

Scale (SUS) by Brooke et al. [7], a widely recognized standardized questionnaire. The SUS evalua-

tion is a Likert-scale questionnaire consisting of ten items, each with a range of 1 (strongly disagree)

to 5 (strongly agree) [50]. Questions alternate between positively and negatively worded statements,

ensuring participants actively engage with the content and thoughtfully consider their responses.

These questions cover various aspects of the system, including effectiveness, efficiency, and overall

user satisfaction. Among the 10 questions of SUS, each odd-numbered question is scored as x-1,

and each even-numbered question is scored as 5-x, where x is the question’s resulting value. The

scores for each participant are then summed, and then multiplied by 2.5 - resulting in a maximum

SUS score of 100. A software system that receives an SUS score above 68 indicates good usability.

50



To further evaluate participant experience and effectiveness of the tailored data visualization and

interaction designs, an additional Likert-scale questionnaire with eleven items was used to assess

engagement, immersion, system usability, and the efficacy of visualizations, interactions, and visual

feedback (the questions are detailed in Fig. 4.4). Specifically, the participants were asked to evaluate

their engagement level within the application, the application’s visual appeal, and usefulness in the

designated task as well as the ergonomic design of the system. They were also asked to evaluate the

ease of use and effectiveness of specific functionalities, including pivoting methods for surgical tro-

car placement, the hand-grabbing for camera placement, the visual feedback mechanisms provided,

the information panels, and the final visualization of the operable volume. Participants rated each

item on a 1-to-5 Likert scale (1=strongly disagree, 5=strongly agree). Finally, participants were

asked to provide open-ended feedback on the positive and negative aspects of the system, along

with recommendations for system improvement, and reported their familiarity with virtual reality

(VR) and human anatomy. For the total SUS score, a one-sample t-test was used to assess whether

the results were significantly different from 68. For each SUS sub-score and the customized UX

questions, we compared the results to a neutral response (score=3), also with the Mann–Whitney U

test. A p− value < 0.05 was used to indicate a statistically significant difference.

In addition to the semi-quantitative assessment, relevant quantitative metrics were collected

from the proposed VR system for each designated task. These metrics included the total time spent

on each task, the number of adjustments made in each task, and the historical and final positions of

the trocars and the camera. For the first task (surgical trocar placement), we also recorded trajec-

tory distance (in cm) for each surgical instrument (measured as the distance between the skin entry

point and the surgical target), as well as the manipulation angle (the angle between the instruments

upon reaching the surgical target). For the second task (camera placement), the volume of over-

lap between the camera’s field of view and the surgical instruments’ working area (in liters) was

recorded.
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4.4 Results

4.4.1 Semi-Quantitative Evaluation

Our VR system achieved an average SUS score of 81.8 ± 10.5, significantly higher than the

usability threshold of 68 (p=1.24×10−5), categorizing it as “A” in system usability [7]. In addition,

all scores of individual SUS and user experience (UX) questions are significantly better than the

neutral score of 3 (p<0.001). The distributions of individual SUS question scores are illustrated in

Fig. 4.3. These results indicate positive experience and attitude for various aspects of the proposed

system. Specifically, the SUS questionnaire responses highlighted that participants perceived the

system as well-integrated (score = 4.6 ± 0.5) but expressed lower confidence in task performance

(score = 4.0± 0.8). While they did not find the system complex (score = 1.3± 0.6), they indicated

a preference for technical support (score = 2.3± 1.1).

Figure 4.3: Distribution of SUS Question Scores Across Participants.

For the UX questions, all average ratings ranged from 4 to 4.65, with a majority of respondents

expressing positive feedback (rating 4 or 5 out of 5) on various aspects. Specifically, 65% found

the final visualization informative, 80% found the system ergonomic, 90% felt engaged, and 85%

found the hand-grabbing interface and visual feedback for camera placement intuitive. The majority

of participants (95%) also found the pivot method for trocar placement intuitive, while 70% found

the information panels helpful. The assessments of the individual UX questions are depicted in Fig.

4.4.

In the open-ended questions, 19 out of 20 participants provided positive and negative aspects of

the surgical planning system. Most (14/19) found it easy to use and the feedback metrics helpful

(7/19). However, two participants noted the semi-transparent materials hindered depth perception,
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Figure 4.4: Distribution of UX Question Scores across Participants, with mean ± standard deviation
displayed beside the respective bar plot.

though visual feedback (White spheres turn into green) helped. Nine participants suggested im-

provements, e.g., four recommended auditory feedback for guidance and errors, four suggested

more guidance for how to optimize surgical planning, such as color-coded manipulation angles

on the confirmation panel, and one participant proposed direct 3D model manipulation for height

adjustment of the 3D model.

4.4.2 Quantitative Evaluation

Trajectory distance, manipulation angle, operable volume, and task completion times were col-

lected from the VR application. In Task 1 (surgical trocar placement), the maximum trajectory

distance for both trocars was less than 28 cm, ensuring the surgical target was reachable. The av-

erage manipulation angle of 48 degrees was consistent with recommendations from prior research.

For Task 2 (camera placement), positioning the camera outside the DOF of other trocars prevented

instrument interference and maximized the common area volume, averaging 1 liter of operable vol-

ume across participants. We also recorded the number of adjustments and time required for each

task during the user study. The summary of these data can be seen in Table 4.1.

The majority of participants (75%) completed both tasks without adjustments. Participants spent

an average of 3.70 ± 1.52 minutes on planning, with Task 1 taking 1.37 ± 0.89 minutes and Task

2 taking 2.33± 1.15 minutes. Our statistical analysis also revealed significant negative correlations

between time spent on the surgical planning and anatomy familiarity (p = 0.041 and correlation =

-0.460). This suggests familiarity with the human anatomy can boost performance efficiency.
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Table 4.1: Quantitative Evaluation from the User Study

Task Metric Result

Surgical Trocar placement

Time (Minutes) 1.37 ± 0.89

Number of Adjustments 0.35 ± 0.67

Manipulation Angle 48.63 ± 7.39

Right Hand Trajectory Distance (CM) 25.13 ± 1.84

Left Hand Trajectory Distance (CM) 27.07 ± 0.70

Camera Placement

Time (Minutes) 2.33 ± 1.15

Number of Adjustments 0.35 ± 0.67

Volume of Common Workable Area (Litres) 1.01 ± 0.12

4.5 Discussion

In an earlier version of our system, mirroring standard thoracic surgical procedures, participants

were required to position the endoscope camera before placing surgical trocars. However, a pilot

study involving four participants revealed the necessity for camera adjustments after trocar place-

ment to mitigate instrument crowding and optimize the shared workspace. Consultation with our

expert surgeon led to the decision to reverse the task order in the final system. Although in typical

surgical procedures, the camera is placed before surgical trocars to guide following placements, em-

ploying semi-transparent materials in our 3D model enables the view of internal anatomies in our

system making this sequence unnecessary. By reversing the task order, we eliminated the redundant

camera adjustment step and the potential for instrument fighting during camera placement.

In the semi-quantitative evaluation using the SUS questionnaire and customized UX questions

showed promising results. While participants generally found the system well-integrated and easy

to use, a lack of confidence and a perceived need for technical support emerged. This may be re-

lated to the absence of a definitive metric for optimal surgical view and manipulation angles, despite

the incorporation of soft metrics to guide trocar placement. The UX questions highlighted a posi-

tive user experience overall, with high engagement and perceived usefulness, which are crucial for

future clinical adoption. However, information panels and the final operable volume visualization

were slightly less well-received than other items in the UX questions. Participants suggested a voice

assistant for guidance and error reporting. Notably, those who found the operable volume visualiza-

tion informative reported lower system complexity and less need for technical support in the SUS

questionnaire, resulting in higher overall SUS scores. Regarding the “freehand” camera placement
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and pivot mechanism, most participants responded favorably and found the visual feedback helpful.

Notably, 15% of participants held a neutral view of the freehand camera placement and its feedback,

compared to only 5% for surgical trocar placement, suggesting an area for potential improvement.

Finally, with a short planning time (3.70±1.52 minutes) with no failed surgical plans, our proposed

system offers high efficiency and robustness, required for clinical use.

The current study has several limitations. First, semi-transparent rendering of anatomical struc-

tures (e.g., ribs, skin) compromised depth perception. Second, varying difficulty levels for trocar

placement based on surgical target location and individual anatomy were not fully explored due to

time constraints and the use of one patient model. Third, the limited number of anatomical struc-

tures included in the 3D model, due to visualization challenges and computational complexity of

segmentation, restricted the development of comprehensive metrics of the proposed system. For ex-

ample, incorporating the chest wall muscles could help in defining metrics to avoid thick muscles in

the chest wall, which can minimize tissue damage and bleeding, while maximizing ease of motion

during camera placement. Finally, in our preliminary study, we only recruited non-clinicians for

system validation due to the limited accessibility to thoracic surgeons, although the system devel-

opment greatly benefited from the expertise of our surgical collaborator. Future work will focus on

addressing these limitations through alternative visualization techniques, a wider range of patient

models, refining the system’s metrics and guidelines in collaboration with clinicians, and additional

clinical participants in extended system validation upon further refinement.

4.6 Conclusion

In this paper, we present the first pre-operative planning VR system designed to optimize trocar

placement in thoracic lung surgeries. Our system incorporates an effective pivoting mechanism

and a hand-grabbing method, both seamlessly integrated with visual feedback, to help users in the

planning process. A comprehensive user study revealed promising results regarding system usability

and overall user satisfaction. The insights from the VR system design and assessment can provide

important information for similar surgical VR system development, which has a profound potential

in clinical practice.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis investigated integrating deep learning and a virtual reality environment to improve

preoperative planning in minimally invasive thoracic surgery. Recognizing the important role of

precise, patient-specific 3D models in surgical planning, the first part of this thesis involved a de-

tailed analysis of various U-shaped deep learning models for segmenting thoracic anatomy from

CT images. This analysis evaluated the effects of different network configurations and attention

mechanisms, identifying CNN-based architectures as the most effective for creating accurate and

efficient segmentation maps. These segmentation maps form the foundation for constructing the

patient-specific 3D models essential to the VR-based planning system.

Building on these segmentation capabilities, the second part of this thesis proposed a rule-based

VR system for optimizing trocar placement using right upper lobectomy as a case study. This

VR environment allowed surgeons to interactively explore and evaluate trocar placement within a

patient-specific model, facilitating observation to establish surgical principles and potentially en-

hancing surgical outcomes. A preliminary user study involving 20 participants confirmed the sys-

tem’s user-friendliness, robustness, and efficiency, highlighting its promise for clinical application.

In summary, this thesis provided valuable insights for selecting optimal deep learning models to

generate accurate anatomical models and demonstrated the transformative potential of VR systems

in advancing preoperative planning for minimally invasive lung surgery.
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5.2 Future Work

One potential direction for future work, on the first contribution could involve investigating dif-

ferent skip connection schemes and their impact on model performance. Various skip-connection

schemes have been introduced in U-shaped models to enhance accuracy by reducing the semantic

gap between encoder and decoder features, enabling more effective feature aggregation. For exam-

ple, UNet++ [97] used a nested hierarchical skip-connection scheme to refine feature aggregation,

while UCTransNet [85] employed transformers between the encoder and decoder to improve feature

aggregation. Similarly, BiO-Net [89] incorporates bi-directional skip connections to reuse parame-

ters, further boosting accuracy. Future work could investigate the effects of modifying these archi-

tectures by replacing the CNN-based backbones in UNet++ and BiO-Net with Transformer-based

or MambaVision-based models and replacing the Transformer in UCTransNet skip-connection with

MambaVision. Such experiments could shed light on the effectiveness of skip-connection schemes

across different architectures, offering insights that may lead to improved feature aggregation and

accuracy in future model development.

Another promising avenue could be optimizing the STUNet architecture, which showed strong

performance in our experiments. By incorporating attention mechanisms into its skip connections,

STUNet could capture global contextual features. This enhancement would help the model retain

important information across layers and improve accuracy.

Finally, future work could explore semi-supervised learning techniques to improve model per-

formance by using unlabeled data during training. Semi-supervised approaches can unlock more

capacity within models, improving generalization across datasets. Benchmarking various models in

a semi-supervised training pipeline could provide valuable insights into the role of unlabeled data

in model accuracy and robustness, helping to refine the training pipeline for optimal performance.

For the VR application described in the second contribution, there are several possibilities for

future development. Currently, the patient-specific model is static, and physical tissue response is

not simulated. One direction for further work could involve making the patient’s 3D model de-

formable by integrating techniques such as Finite Element Modeling (FEM) to simulate realistic
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tissue behavior. Another promising direction would be to design optimization algorithms that rec-

ommend initial trocar placement on the patient’s body. Surgeons could then adjust this placement

based on their techniques. A possible approach for this could involve designing a fuzzy logic sys-

tem based on established principles and guidelines for trocar placement. This fuzzy system could

also be extended to evaluate the final score of the trocar placement, providing an additional layer of

decision support for surgeons.

Also, the system can include multi-user functionality, allowing the surgical team to practice the

procedure together. This feature would be beneficial when the surgeon needs different views during

the operation. It would also facilitate the practice of camera placement to achieve those views during

simulations. This approach could enhance the assistant’s familiarity with the surgical process and

potentially reduce fatigue for the surgical team, as well as decrease the overall operation time.

Moreover, the patient could observe the surgery and become more familiar with the procedure,

which may help reduce their stress leading up to the operation. To provide further information

between the 3D model and the preoperative images, the tool’s trajectory path can be mapped to the

preoperative images and shown within the simulation.

Finally, future work could explore directly integrating user interfaces for deep learning models

within the VR system. This would enable the automatic generation of patient-specific 3D models

from CT images, which could be loaded directly into the VR environment for further exploration

and surgical planning.
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Appendix A

Supplementary Materials for

Architecture Analysis and

Benchmarking of 3D U-shaped Deep

Learning Models for Thoracic

Anatomical Segmentation

A.1 The Distribution of the labels on the Train and Test dataset
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Figure A.1: Frequency distribution for each label class in the training and test datasets.

60



A.2 Architectures of the selected U-shaped models

Figure A.2: Model architecture diagrams for the selected U-shaped models.
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A.3 Segmentation results across different models

Figure A.3: Visual demonstration of segmentation results with an axial cross-section of a subject’s
CT scan from different models. The differences across different models are highlighted using the
cyan and red boxes.
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Figure A.4: Visual demonstration of segmentation results with a coronal cross-section of a subject’s CT scan from different models. The
differences across different models are highlighted using the white and red boxes.

63



A.4 Statistical Plots of Segmentation Accuracy

A.4.1 Boxplots of the Dice Scores among different classes

Figure A.5: Boxplots of Dice scores per class across different U-shaped models.
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A.4.2 Distribution of the NSD Score among classes

Figure A.6: Boxplots of Normalized Surface Distance (NSD) scores per class across different U-
shaped models.
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A.5 The volume distribution of the labels in the Train and Test dataset

(a) Boxplots of organ volume for each class within the training dataset.

(b) Boxplots of organ volume for each class within the test dataset.

Figure A.7: Boxplots of organ volume for each class within the training and test datasets.
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A.6 Jaccard Similarity Metric of the Models

Table A.1: Jaccard Similarity Metric (mean±std) across 3DUNet, STUNet, AttentionUNet, and
3DSwinUnet models with different numbers of resolution stages.

Model Name
Jaccard ↑

BTCV Surgery Total

3DUNet 89.10± 4.28 94.28± 1.85 91.48± 2.41

STUNet 89.75± 4.04 94.43± 1.98 91.89± 2.31

AttentionUNet 89.26± 4.26 93.94± 2.12 91.40± 2.46

SwinUNETR 88.59± 4.41 93.54± 2.32 90.86± 2.60

FocalSegNet 88.74± 4.10 93.60± 2.23 90.97± 2.38

3DSwinUnet 33.19± 5.59 48.06± 4.85 40.05± 4.58

3DSwinUNetV 4 86.47± 4.72 92.14± 2.47 89.07± 2.74
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Appendix B

User Study Questionnaire and Ethics

Approval of Virtual Reality-Based

Preoperative Planning for Optimized

Trocar Placement in Thoracic Surgery:

A Preliminary Study
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B.1 User Study Questionnaire

Participant Information

Study ID: Age:

Date: Sex:

System Usability Scale (SUS)

Please answer the following questions based on the system you just used. Select a value that

best describes your experience from 1 to 5 as directed.

(1) I think that I would like to use this system frequently

1 2 3 4 5

Strongly Disagree Strongly Agree

(2) I found the system unnecessarily complex

1 2 3 4 5

Strongly Disagree Strongly Agree

(3) I thought the system was easy to use

1 2 3 4 5

Strongly Disagree Strongly Agree

(4) I think that I would need the support of a technical person to be able to use this system

1 2 3 4 5

Strongly Disagree Strongly Agree

(5) I found the various functions in this system were well integrated

1 2 3 4 5

Strongly Disagree Strongly Agree
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(6) I thought there was too much inconsistency in this system

1 2 3 4 5

Strongly Disagree Strongly Agree

(7) I would imagine that most people would learn to use this system very quickly

1 2 3 4 5

Strongly Disagree Strongly Agree

(8) I found the system very cumbersome to use

1 2 3 4 5

Strongly Disagree Strongly Agree

(9) I felt very confident using the system

1 2 3 4 5

Strongly Disagree Strongly Agree

(10) I needed to learn a lot of things before I could get going with this system

1 2 3 4 5

Strongly Disagree Strongly Agree

User experience questions

(1) I felt engaged when using the VR application.

1 2 3 4 5

Strongly Disagree Strongly Agree

(2) I think the VR application is visually pleasant to use.

1 2 3 4 5

Strongly Disagree Strongly Agree

(3) I found the VR application useful for the designated task.

1 2 3 4 5

Strongly Disagree Strongly Agree
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(4) I found that the system was ergonomic to use.

1 2 3 4 5

Strongly Disagree Strongly Agree

(5) I was comfortable with the amount of visual elements in the VR environment.

1 2 3 4 5

Strongly Disagree Strongly Agree

(6) I found the “hand grabbing” method for endoscopic camera placement easy to use.

1 2 3 4 5

Strongly Disagree Strongly Agree

(7) I found the visual feedback (e.g., guidelines, color visual cues, camera port) helpful in camera

placement.

1 2 3 4 5

Strongly Disagree Strongly Agree

(8) I found the pivoting method easy to use for placing the surgical tool ports.

1 2 3 4 5

Strongly Disagree Strongly Agree

(9) I found the visual feedback (e.g., trajectory paths, color visual cues, degree-of-freedom cones) help-

ful in placing the surgical tool ports.

1 2 3 4 5

Strongly Disagree Strongly Agree

(10) I found the information panels (front wall to display instructions and confirmation/warning prompt

windows) helpful.

1 2 3 4 5

Strongly Disagree Strongly Agree

(11) I found the visualization of the final operatable volume informative.

1 2 3 4 5
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Strongly Disagree Strongly Agree

Additional Information

Please answer the following general questions regarding the system. These questions are a mix

of open answer and multiple-choice.

(1) What are the positives and negatives of the system?

(2) Any suggestions on how the system can be improved?

How familiar were you with Virtual Reality (or other Extended Reality techniques) before

performing the study?

• Familiar

• Somewhat Familiar

• Neutral

• Somewhat Unfamiliar

• Unfamiliar

How familiar were you with human anatomy before performing the study?

• Familiar

• Somewhat Familiar

• Neutral

• Somewhat Unfamiliar

• Unfamiliar
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B.2 Ethics Approval Form
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[32] Andreas Hammer Håversen, Durga Prasad Bavirisetti, Gabriel Hanssen Kiss, and Frank Lind-

seth. Qt-unet: A self-supervised self-querying all-transformer u-net for 3d segmentation. IEEE

Access, 2024.

[33] Yufan He, Vishwesh Nath, Dong Yang, Yucheng Tang, Andriy Myronenko, and Daguang Xu.

Swinunetr-v2: Stronger swin transformers with stagewise convolutions for 3d medical im-

age segmentation. In International Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 416–426. Springer, 2023.

[34] Lukas Hedegaard. Pytorch-benchmark, 10 2022.

[35] Nicholas Heller, Niranjan Sathianathen, Arveen Kalapara, Edward Walczak, Keenan Moore,

Heather Kaluzniak, Joel Rosenberg, Paul Blake, Zachary Rengel, Makinna Oestreich, et al.

The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmen-

tations, and surgical outcomes. arXiv preprint arXiv:1904.00445, 2019.

[36] Samuel Heuts, Peyman Sardari Nia, and Jos G Maessen. Preoperative planning of thoracic

surgery with use of three-dimensional reconstruction, rapid prototyping, simulation and virtual

navigation. Journal of Visualized Surgery, 2, 2016.

[37] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 7132–7141, 2018.

78



[38] Ziyan Huang, Haoyu Wang, Zhongying Deng, Jin Ye, Yanzhou Su, Hui Sun, Junjun He, Yun

Gu, Lixu Gu, Shaoting Zhang, and Yu Qiao. Stu-net: Scalable and transferable medical im-

age segmentation models empowered by large-scale supervised pre-training. arXiv preprint

arXiv:2304.06716, 2023.

[39] F Isensee, T Wald, C Ulrich, M Baumgartner, S Roy, K Maier-Hein, and PF Jaeger. nnu-

net revisited: A call for rigorous validation in 3d medical image segmentation,(2024). arXiv

preprint arXiv:2404.09556, 2024.

[40] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-

net: a self-configuring method for deep learning-based biomedical image segmentation. Na-

ture methods, 18(2):203–211, 2021.

[41] Fabian Isensee, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus

Maier-Hein, and Paul F Jaeger. nnu-net revisited: A call for rigorous validation in 3d med-

ical image segmentation. In International Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 488–498. Springer, 2024.

[42] Ahmad Jameel Ismail and RK Mishra. Comparing task performance and comfort during non-

pulmo nary video-assisted thoracic surgery procedures between the application of the ‘baseball

diamond’and the ‘triangle target’principles of port placement in swine models. World, 7(2):

60–65, 2014.

[43] Katrine Jensen, Flemming Bjerrum, Henrik Jessen Hansen, René Horsleben Petersen, Jes-
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Sapalidis, Lucian Gheorghe Gruionu, Ştefan Castravete, Ştefan Pătras, cu, and Valeriu Şurlin.
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