
Understanding and Locating Quality Issues in the Database Access

Code of Database-Backed Applications

Wei Liu

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

September 2024

© Wei Liu, 2024

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Wei Liu

Entitled: Understanding and Locating Quality Issues in the Database Access

Code of Database-Backed Applications
and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair
Dr. Andrea Schiffauerova

External Examiner
Dr. Cor-Paul Bezemer

Examiner
Dr. Weiyi Shang

Examiner
Dr. Joey Paquet

Examiner
Dr. Shin Hwei Tan

Supervisor
Dr. Tse-Hsun (Peter) Chen

Approved by
Dr. Leila Kosseim, Graduate Program Director

18 November 2024
Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Understanding and Locating Quality Issues in the Database Access Code of
Database-Backed Applications

Wei Liu, Ph.D.

Concordia University, 2024

Database-backed applications interact with the database management system (DBMS), such as

MySQL, for persistent data storage. These database accesses play a central role in such applications

and are crucial for their maintenance and quality. Developers build database-backed applications to

access relational databases using object-oriented programming languages such as Java, Python, C#,

PHP, and C++. Since object-oriented programming is a different paradigm compared to relational

databases, developers use various technologies to ease database access by abstracting persistent

data as objects. Specifically, developers often rely on two main access technologies: (i) executing a

Structured Query Language (SQL) query and manually converting the results to objects; and (ii)

using Object-Relational Mapping (ORM) frameworks, which automatically generate SQL queries

and convert the results to objects based on various object-database mapping configurations. How-

ever, developers may face different database access challenges when using different technologies.

Moreover, due to the abstraction of ORM frameworks, developers may face challenges when debug-

ging database access problems. ORM automatically generates SQL queries based on various ORM

configurations (e.g., the relationship among object types) and the invoked ORM APIs. As a result,

developers do not have direct control over how ORM generates SQL queries. If there is a database

access issue associated with a problematic-generated SQL query, developers may have difficulties

knowing how and where the SQL query is generated in the application code, causing challenges in

debugging database access problems.

Motivated by the importance and challenges of database access, in this thesis, we first conduct

an empirical study of database access bugs in seven large-scale Java open-source applications that

use relational database management systems. Specifically, by manually examining the bug reports

and commit histories ranging from 5 to 16 years, we investigate and derive the characteristics such

as categories, root cause, impact, and occurrence of database access issues when using popular

database access technologies. Our empirical study provides motivations and guidelines for future

research to help avoid, detect, and test database access bugs in database-backed applications. To

iii

assist developers in debugging database access problems, we propose an approach for locating the

origin (i.e., the control flow path containing a sequence of method calls) that generates a given SQL

query. It achieves state-of-the-art localization accuracy and improves Top@5 accuracy by 225% and

333% compared to the baseline approach when using SQL session logs and individual query logs,

respectively. We also find that our approach can help developers locate data access issues that

generate problematic SQL queries (i.e., slow SQL queries and database deadlocks). In conclusion,

this thesis uncovers the root causes of database access issues and demonstrates that leveraging

both static analysis and information retrieval techniques can help developers debug database access

issues associated with problematic SQL queries. It also paves the way for future research on the

development and automatic generation of tests for database access code to improve the quality of

database-backed applications.

iv

Statement of Originality

I hereby declare that I am the sole author of this thesis. All ideas and inventions attributed

to others have been properly referenced. I understand that my thesis may be made electronically

available to the public.

v

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr. Tse-Hsun

(Peter) Chen, for his exceptional guidance, patience, insights, and encouragement. Without your

supervision and invaluable support, this thesis would not have been possible.

Special thanks to my thesis examiners, Dr. Paquet, Dr. Tan, Dr. Shang, and Dr. Bezemer for

their extremely valuable and constructive suggestions.

I would also like to express my sincere gratitude to all the members of the SPEAR lab. Studying

in the lab has been a wonderful experience and a rewarding research experience.

Lastly, I want to thank my family and friends for their constant support and understanding

during this period. Your love and encouragement have been my primary motivation.

vi

Related Publications

In all chapters and directly related publications of this thesis, my contributions include: draft-

ing the initial research idea, researching background knowledge, reviewing related work, collect-

ing experimental data, implementing tools, conducting experiments, and writing and polishing the

manuscript. My co-authors supported me by refining the initial ideas, identifying missing related

work, independently deriving a second set of bug causes, providing feedback on earlier drafts, and

further polishing the writing.

The following publications are directly related to the materials presented in this thesis:

Wei Liu, Shouvick Mondal, and Tse-Hsun (Peter) Chen, "An Empirical Study on the Characteristics

of Database Access Bugs in Java Applications", ACM Transactions on Software Engineering and

Methodology (TOSEM), 33, 7, Article 181 (September 2024), 25 pages, doi:10.1145/3672449. This

work is discussed in Chapter 3.

Wei Liu, and Tse-Hsun (Peter) Chen, "SLocator: Localizing the Origin of SQL Queries in Database-

Backed Web Applications", IEEE Transactions on Software Engineering (TSE), vol. 49, no. 6, pp.

3376-3390, 1 June 2023, doi: 10.1109/TSE.2023.3253700. This work is discussed in Chapter 4.

The following publications are not directly related to this thesis but were conducted as parallel work

to the research presented in this thesis.

Steven Locke, Heng Li, Tse-Hsun (Peter) Chen, Weiyi Shang, and Wei Liu, “LogAssist: Assisting

Log Analysis Through Log Summarization”, IEEE Transactions on Software Engineering (TSE), vol.

48, no. 9, pp. 3227-3241, 1 Sept. 2022, doi: 10.1109/TSE.2021.3083715.

Zehao Wang, Wei Liu, Jinfu Chen, and Tse-Hsun (Peter) Chen, “RPerf: Mining User Reviews

Using Topic Modeling to Assist Performance Testing: An Industrial Experience Report”, Journal of

Systems and Software (JSS), under review.

vii

Contents

List of Figures xi

List of Tables xii

I Introduction, Background, and Literature Review 1

1 Introduction 2

1.1 Introduction . 2

1.2 Research Objective . 4

1.3 Thesis Overview . 5

1.3.1 Chapter 2: Background and Literature Review 5

1.3.2 Chapter 3: Studying Characteristics of Database Access Bugs in Java Appli-

cations . 5

1.3.3 Chapter 4: Localizing the Origin of SQL Queries in Database-Backed Web

Applications . 6

1.3.4 Chapter 5: Thesis Contributions and Future Work 6

1.4 Thesis Contributions . 6

1.5 Thesis Organization . 7

2 Background and Literature Review 8

2.1 Background . 8

2.2 Literature Review . 10

2.2.1 Paper Selection . 10

2.2.2 Database access quality issues when using SQL queries 12

2.2.3 Database access quality issues when using ORM frameworks 13

2.2.4 Adequacy of tests in database-backed applications 14

2.3 Chapter Summary . 15

viii

II Understanding and Locating Database Access Code Quality Issues 16

3 Studying the Characteristics of Database Access Bugs in Java Applications 17

3.1 Introduction . 18

3.2 Empirical Study Setup . 21

3.2.1 Collecting Studied Applications . 21

3.2.2 Collecting Database Access Bugs . 22

3.3 Empirical Study Results . 23

3.3.1 RQ1: What is the Trend in the Number of Reported Database Access Bugs? 23

3.3.2 RQ2: What are the Root Causes of Database Access Bugs? 26

3.3.3 RQ3: How do Categories of Database Access Bugs Prevail with Different

Database Access Technologies? . 35

3.4 Discussion . 37

3.5 Threats to Validity . 39

3.6 Related Work . 42

3.7 Conclusion . 43

4 Localizing the Origin of SQL Queries in Database-Backed Web Applications 44

4.1 Introduction . 45

4.2 Background and related work . 47

4.3 Approach . 52

4.3.1 Statically Inferring Database Access . 53

4.3.2 Locating the Paths that Generate a Given SQL Query 55

4.4 Evaluation . 58

4.4.1 Evaluation Setup . 58

4.4.2 RQ1: How effectively can SLocator locate the code path that generates a given

SQL query? . 62

4.4.3 RQ2: What is the localization accuracy for SQL queries with different lengths? 67

4.4.4 RQ3: Can SLocator help localize issues in database-backed web applications? 69

4.5 Threats to Validity . 73

4.6 Conclusion . 74

III Conclusion and Future Work 76

5 Thesis Contributions and Future Work 77

5.1 Summary . 77

ix

5.2 Thesis Contribution . 78

5.3 Future work . 78

Bibliography 81

x

List of Figures

1 Examples of database access using JDBC and Hibernate. 10

2 The trend of reported database access bugs (DBBug) and non-database access bugs

(NDBBug) across the studied applications. The reported bugs are aggregated at a

fixed time interval according to their reporting time in each application. 24

3 Distribution of the categories of database access bugs that occur in JDBC and Hiber-

nate database-backed applications. 36

4 An example of accessing the DBMS using ORM. 48

5 An overview of SLocator. CFP refers to control flow path and IR refers to information

retrieval. 53

6 Using SLocator to locate the paths in the control flow graphs that result in generating

deadlock SQL queries. 72

xi

List of Tables

1 Name of the conferences and journals as venues for the literature review. 11

2 The studied applications and bug issues. 22

3 Spearman’s rank correlation (rs) between the number of reported database and non-

database access bugs across the study period. The reported bugs are aggregated using

two time intervals (i.e., 3 months and 6 months). 25

4 The number of unique modified files in bug fixing commits for reported database access

bugs (DBBug) and non-database access bugs (NDBBug), the percentage (Pct.) of

modified files for DBBug across modified files for all bugs (i.e., DBBug and NDBBug),

and the number of common modified files (COM) shared between DBBug and NDBBug. 26

5 Categories of the root causes of database access bugs. 27

6 Related studies that perform SQL query extracting statically from the source code.

ORM, JPQL, and ORM APIs to access entity objects indicate whether the SQL query

extracting supports ORM frameworks, JPQL, or ORM APIs to access entity objects,

respectively. 51

7 Translations from ORM API calls to inferred database accesses (templated SQL

queries). For native SQL and JPQL, SQL statements or JPQL statements in queryS-

tring are extracted as inferred database accesses (inferred queries). Values in { } are

statically inferred based on the entity mapping. 56

8 An overview of the studied applications. DB access refers to database access. 59

9 Statistics of running SLocator against the studied applications. Time to locate the

paths refers to the average time to rank and locate the control flow paths for a given

SQL query. 60

10 The localization results when using SQL session logs. Request-Baseline refers to

locating the web request using the baseline approach. Request-SLocator and Path-

SLocator refer to using SLocator to locate the web request and control flow path,

respectively. 65

xii

11 The localization results when using individual query logs. Request-Baseline refers to

locating the web request using the baseline approach. Request-SLocator and Path-

SLocator refer to using SLocator to locate the web request and control flow path,

respectively. 66

12 The localization results for SQL queries with different lengths (i.e., bottom, middle,

and top) when using individual query logs. The length of SQL queries is measured

using the number of words and is classified into three buckets based on the quantiles

(i.e., bottom 1/3, middle 1/3, and top 1/3). Request and Path refer to using SLocator

to locate the web request and control flow path, respectively. SQL lengths refer to

the range of SQL query lengths. 68

xiii

Part I

Introduction, Background, and

Literature Review

1

Chapter 1

Introduction

1.1 Introduction

Database-backed applications are essential in many areas such as online shopping, social media,

banking, and health care. These applications rely on the underlying database management system

(DBMS), such as MySQL, for persistent data storage. Specifically, they interact with the database

to perform various operations such as retrieving, inserting, updating, or deleting data, which is

known as database access. However, the inherent difference between database-backed applications

and the underlying DBMS makes database access challenging. In database-backed applications,

developers often use object-oriented programming languages such as Java, Python, C#, PHP, and

C++ [101, 122] to implement the object and business logic. In relational databases, data is organized

in tables with rows and columns, defined by the database schema. Since object-oriented programming

is a different paradigm compared to relational databases, developers use two main database access

technologies to ease database access: (i) manually constructing raw Structured Query Language

(SQL) queries directly and converting the query results to objects; and (ii) using Object-Relational

Mapping (ORM) frameworks, which automatically generates SQL queries and converts the query

results to objects based on various object-database mapping configurations.

Since database data is critical to database-backed applications, accessing the database correctly

and efficiently is crucial. However, developers may face various challenges in accessing the database

when using different technologies. Database access issues refer to problems or failures that arise

during interactions between applications and databases through SQL queries or ORM frameworks.

These issues can manifest as runtime errors (e.g., crashes or exceptions), performance issues (e.g.,

slow queries or database deadlocks), or incorrect query results caused by bugs in application code,

database schema, or ORM configurations. When using raw SQL queries, developers must carefully

2

construct complex SQL queries that are free from syntax errors and satisfy all database schema

constraints. They also need to manually implement code to convert the query results into objects in

the applications. On the other hand, when using ORM frameworks, developers may unintentionally

misuse the ORM APIs because these frameworks hide the underlying SQL query generation and

execution. For instance, calling certain ORM APIs might lead to the generation of SQL queries that

eagerly load associated objects from the database, even if those objects are not used in the application

(i.e., inefficient eager loading [128]), which can lead to performance issues. In addition, the co-

evolution of database schema and application code [125] also makes database access challenging.

For instance, developers may be unaware of changes to table column names in databases when

updating the corresponding code in applications. Thus, accessing the database may cause runtime

exceptions when the column specified in the SQL query does not exist in the database. Due to

the importance and challenge of database access, many prior works have studied the maintenance

issues of database-backed applications from the perspective of syntactic or semantic errors in SQL

queries [28, 17], SQL anti-patterns [77, 24, 52, 18], SQL code smells [126, 129, 100], and performance

issues [38, 150, 151, 128]. However, they primarily focus on SQL statements within applications,

overlooking database access bugs that may occur during interactions with the database. There is

still limited research examining database access bugs arising from the use of SQL queries or ORM

frameworks, while considering both database access and business logic code simultaneously.

Using ORM frameworks also presents unique challenges compared to directly using SQL queries.

These frameworks provide an abstraction of the underlying database access details, allowing devel-

opers to focus on implementing the business logic of the application. They have become increasingly

popular with implementations in most modern programming languages such as Java, C#, Python,

and Ruby [42, 151]. A report also shows that among the 2,164 surveyed Java developers, ORMs are

the leading means of database access [30]. However, due to this abstraction, developers may face

challenges when debugging database access problems. ORMs automatically generate SQL queries

based on various ORM configurations (e.g., the relationship among object types) and the called ORM

APIs. As a result, developers do not have direct control over how the SQL queries are generated by

ORM. If there are issues with a generated SQL query, developers may have difficulties knowing how

and where the problematic SQL query is generated in the application code [153, 31, 41], causing

challenges in debugging database access problems.

Motivated by the above-mentioned importance and challenges of database access, in this thesis,

we first conduct an empirical study of database access bugs in seven large-scale Java open-source

applications that use relational database management systems. Specifically, by manually examining

the bug reports and commit histories ranging from 5 to 16 years, we investigate and derive char-

acteristics such as categories, root causes, impact, and occurrences of database access issues when

3

using two different popular database access technologies: manually constructing SQL queries and

using ORM. Our empirical study provides motivations and guidelines for future research to help

avoid, detect, and test database access bugs in database-backed applications.

To assist developers in debugging database access problems, we then propose an approach for

locating the origin (i.e., the control flow path containing a sequence of method calls) that generates

a given SQL query. Our hybrid approach leverages static analysis and information retrieval (IR)

techniques. It achieves good localization accuracy and has a better localization result than the

traditional text-based search baseline. Specifically, our approach achieves a Top@5 accuracy ranging

from 78.3% to 95.5% for SQL queries in sessions, marking a 225% improvement over the baseline. For

individual query logs, the Top@5 accuracy ranges from 59.1% to 100%, marking a 333% improvement

compared to the baseline. The illustration also demonstrates the effectiveness of our approach

in locating data access issues that generate problematic SQL queries (i.e., slow SQL queries and

database deadlocks). Our results show the potential of using a combination of IR techniques and

static analysis to help locate database-related issues.

1.2 Research Objective

Thesis Statement: Accessing the database and debugging the database access issues associated

with problematic SQL queries can be challenging yet crucial tasks in database-backed applica-

tions when using different technologies. By analyzing the characteristics of these issues from

large-scale applications and providing a localization tool, we can provide support to developers

on understanding and locating database access issues.

Database access is central to database-backed applications and is crucial for their maintenance

and quality. However, developers may encounter various challenges when using different technologies

to access the database. For instance, developers need to carefully construct complex SQL queries

when executing SQL queries or call ORM APIs when using ORM frameworks. Errors in SQL

queries or misuse of ORM APIs can result in issues such as unexpected query results or runtime

exceptions. Additionally, because ORM frameworks abstract the underlying SQL query generation

and execution, developers may struggle to debug database access problems. If there is a database

access issue in a generated SQL query, developers may have difficulties knowing how and where the

SQL query is generated in the application code, causing challenges in debugging database access

problems.

The goal of this thesis is therefore to help with the quality of database access. The thesis first

aims to understand the maintenance issues of database access in database-backed applications. The

4

thesis focuses on the root cause, impact, and occurrence of database access issues when using two

different and popular database access technologies: manually constructing SQL queries and ORM.

Then, the thesis aims to aid database access issue diagnosis by locating where a problematic SQL

query is generated in the source code.

1.3 Thesis Overview

This section presents an overview of the thesis, including a brief summary of each chapter.

1.3.1 Chapter 2: Background and Literature Review

In this chapter, we first present the background related to this thesis. We then discuss related

work, including database access issues and adequacy of tests in database-backed applications.

1.3.2 Chapter 3: Studying Characteristics of Database Access Bugs in

Java Applications

Database accesses are crucial for the maintenance and quality of database-backed applications.

However, the inherent difference between database-backed applications and the underlying DBMS

may lead to different bugs and maintenance challenges. Many prior works study the maintenance

issues of database-backed applications from the perspective of syntactic or semantic errors in SQL

queries, SQL anti-patterns, SQL code smells, and performance issues. Despite these efforts, there

is limited research on understanding database access bugs using SQL queries or ORM frameworks

in database-backed applications. In this chapter, we address this gap by conducting an empirical

study on the characteristics of database access bugs in database-backed Java applications. We

investigate 423 database access bugs collected from the issue tracking system of seven large-scale

Java open source applications that use relational database management systems (e.g., MySQL or

PostgreSQL). We generalize five categories (SQL queries, Schema, API, Configuration, SQL query

result) of the root causes of database access bugs, containing 25 unique root causes. For each

category, we thoroughly discuss the root cause, impact (e.g., crash), and how these bugs occur

by manually examining the bug reports and commit histories. In addition, we find that the bugs

pertaining to SQL queries, Schema, and API cover 84.2% of database access bugs across all studied

applications. In particular, SQL queries bug (54%) and API bug (38.7%) are the most frequent issues

when using JDBC and Hibernate, respectively. We believe that the categories of the root causes of

database access bugs can be useful for developers to help them avoid pitfalls and serve as a checklist to

help testers improve test scenarios that address specific database access bugs. Also, the distribution

5

of database access bugs between using JDBC and ORM frameworks provides complementary to

developers in selecting database access technologies, which often require trade-offs.

1.3.3 Chapter 4: Localizing the Origin of SQL Queries in Database-

Backed Web Applications

In database-backed web applications, developers often leverage Object-Relational Mapping (ORM)

frameworks for database access. Rather than manually constructing SQL queries and embedding

them in application code, ORM frameworks provide an abstraction of the underlying database access

details, allowing developers to manipulate persistent data as if it were in-memory objects through

APIs exposed by the ORM. However, due to the abstraction, developers may not know where and

how a problematic SQL query is generated in the application code, causing challenges in debugging

database access problems. In this chapter, we propose an approach to that addresses this challenge

by locating where a SQL query is generated in the application code. Specifically, the approach

takes the SQL queries in database logs and source code as the input, and outputs the most likely

control flow paths for those SQL queries. The approach is a hybrid, using both static analysis and

information retrieval (IR) techniques. It uses static analysis to infer the database access for every

possible path in the control flow graph. Then, given a SQL query, it applies IR techniques to find

the control flow path (i.e., a sequence of methods called in an interprocedural control flow graph)

whose inferred database access has the highest similarity ranking. Evaluation on seven open source

Java applications shows that our approach outperforms the baseline approach and achieves good

localization results for both SQL queries in sessions and individual SQL queries. We also conduct a

study to illustrate how our approach can be used for locating issues in the database access code.

1.3.4 Chapter 5: Thesis Contributions and Future Work

In this chapter, we summarize the contributions of this thesis and discuss several potential

directions for future work.

1.4 Thesis Contributions

The contributions of this thesis are as follows:

• We conduct an empirical study of database access bugs spanning 5 to 16 years in seven large-

scale Java open-source applications that use relational database management systems. We

investigate and derive characteristics such as categories, root causes, impact, and occurrences

of database access issues when using popular database access technologies. Our findings provide

6

motivations and guidelines for future research to help avoid, detect, and test database access

bugs in database-backed applications (Chapter 3).

• To the best of our knowledge, we conducted the first empirical study of database access bugs

across JDBC and Hibernate. The distribution of database access bugs between using JDBC

and ORM frameworks provides complementary to developers in selecting database access tech-

nologies, which often require trade-offs (Chapter 3).

• To assist developers in debugging database access problems, we propose an approach that

leverages both static analysis and information retrieval (IR) techniques to locate where a

SQL query is generated in the application code. Our approach outperforms the baseline

approach and achieves good localization results for different levels of granularity in SQL queries

(Chapter 4).

1.5 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses the background and literature

review of this thesis. Chapter 3 presents our study on characteristics of database access bugs in Java

applications. Chapter 4 describes our approach to localizing the origin of SQL queries in database-

backed web applications. Chapter 5 concludes the thesis and discusses potential directions for future

work.

7

Chapter 2

Background and Literature Review

In this chapter, we first present the background information related to our research. We then

present the related works of our research on database-backed applications, including database access

quality issues associated with using SQL queries or ORM frameworks. We also present the related

works on adequacy of tests in database-backed applications.

2.1 Background

Background of Database Access. Database access plays a central role in database-backed ap-

plications. Important business logic in such applications requires selecting, inserting, and updating

data in database management systems (DBMSs), such as MySQL [117]. While objects in database-

backed applications are often implemented in object-oriented programming languages such as Java,

database records are rows in tables defined by the database schema. The mapping between applica-

tion objects and database records can be complex and usually involves some impedance mismatch

(i.e., conceptual differences between object-oriented programming and relational databases) [37].

Due to this mismatch, database records need to be converted into corresponding objects in the

application.

Developers often rely on two main technologies to access the underlying database and convert

database records into objects in applications. The first technology is constructing SQL queries man-

ually and executing the SQL query by calling standard database connectivity interfaces [47] which

provides an abstraction for different DBMSs. In Java, the standard database connectivity interfaces

are implemented as Java Database Connectivity (JDBC) APIs. Other programming languages also

offer similar database access APIs for executing SQL queries, such as DB-API for Python [2] and

mysql2 for Ruby [3]. Developers call JDBC APIs to send the manually constructed SQL queries to

8

DBMSs. Subsequently, the applications retrieve the query results, and developers manually write

code to convert them into objects. The second technology is Object-Relational Mapping (ORM)

frameworks, which provide developers a conceptual abstraction for mapping database records to ob-

jects in object-oriented languages [38]. When using Hibernate (the most popular ORM framework

in Java [30]), developers only need to configure the mapping between entity classes (i.e., the class

mapped to a database table) and database tables, and then call Hibernate APIs. Such a mapping

(configuration) allows Hibernate to automatically generate SQL queries executed by DBMSs and

convert the object to/from the database record. Other programming languages also offer similar

abstractions within their ORM frameworks, such as Django for Python [1] and Ruby on Rails for

Ruby [4]. Compared to JDBC, ORM allows developers to focus on developing the business logic

without worrying too much about the database access details. When using JDBC and Hibernate,

developers can choose whichever underlying DBMS they want to use. These two database access

frameworks support most, if not all, relational database management systems. Developers can even

switch between the underlying DBMS if needed.

To better understand these two database access technologies, we take Java as an example and

compare the database access code using JDBC and Hibernate. Figure 1a shows an example of

database access using JDBC, where developers manually construct the SQL query and call the

JDBC API statement.executeQuery(query) to issue the SQL query to the DBMS (Lines 2-3).

After the SQL query is executed by the DBMS, developers retrieve the database record in query

result resultSet and convert it into an address object (Lines 6-12). Figure 1b shows an example of

database access using Hibernate, which achieves the same functionality as the code in Figure 1a. The

entity class Address (annotated with @Entity) is mapped to the table address in the DBMS using

the annotation @Table. Developers need to set up the configuration to map each field in the Address

entity to the database column (annotated with @Column) (Lines 5-10). When calling the Hibernate

API session.get(Address.class, 1) (Line 14, which gets the address in the DMBS with an ID

of 1), Hibernate automatically generates the SQL query, which is then sent to and executed by

the DBMS. Hibernate then automatically serializes the query results to an address object. Then,

developers can call address.setStreet(“First Street”) followed by session.update(address)

to update the corresponding database record.

Despite the wide usage of database-backed applications, their development may be challenging

due to the co-evolution of database schema and application code [125]. For instance, developers

may be unaware of the table column name change in databases to update corresponding code in

applications. Thus, accessing the database may cause runtime exceptions when the column spec-

ified in the SQL query does not exist in the database. Even worse, developers may face different

challenges to access the database when using different technologies. When using JDBC, developers

9

1 // Call JDBC API to execute the SQL query
2 String query = "SELECT * FROM address WHERE ADDR_ID = 1"
3 ResultSet resultSet = statement.executeQuery(query);
4

5 // Retrieve the database record in query result ResultSet
6 while (resultSet.next()) {
7 // Convert the database record to Java object address
8 Long id = resultSet.getLong("ADDR_ID");
9 String street = resultSet.getString("ADDR_STREET");

10 ...
11 Address address = new Address(id, street, ...);
12 }

(a) JDBC

1 // Configure the mapping
2 @Entity
3 @Table(name = "address")
4 public class Address {
5 @Column(name = "ADDR_ID")
6 private long id;
7

8 @Column(name = "ADDR_STREET", length = 40)
9 private String street;

10 ...
11 }
12

13 // Call Hibernate API to fetch the database record
14 Address address = (Address) session.get(Address.class, 1);

(b) Hibernate

Figure 1: Examples of database access using JDBC and Hibernate.

need to carefully construct complex SQL queries which should be free from syntax errors and be

executed successfully under the database schema constraint. On the other hand, developers may

unintentionally misuse the ORM APIs because ORM frameworks abstract the underlying SQL query

generation and execution. For instance, when calling ORM APIs, the generated SQL queries may

retrieve unused/unnecessary data from the database, thereby causing performance bugs [38].

2.2 Literature Review

2.2.1 Paper Selection

Database access quality involves many research areas. In this thesis, we mainly review papers

related to three aspects: 1) database access quality issues when using SQL queries; 2) database

access quality issues when using ORM frameworks; and 3) research on testing database-backed

applications. We select research papers from renowned venues in the field of software engineering

and databases (as shown in Table 1). Based on the results of our search, we identified a total of 41

relevant studies, including 38 research papers and 3 books, covering 20 years of research (2004 ∼

2023).

10

Table 1: Name of the conferences and journals as venues for the literature review.

Field Conference/Journal Name Abbreviation

SE International Conference on Software Engineering ICSE

SE International Conference on the Foundations of Software Engineering FSE

SE International Conference on Automated Software Engineering ASE

SE International Symposium on Software Testing and Analysis ISSTA

SE IEEE Transactions on Software Engineering TSE

SE ACM Transactions on Software Engineering and Methodology TOSEM

SE International Conference on Software Maintenance and Evolution ICSME

SE International Conference on Quality Software QSIC

SE Software Testing, Verification and Reliability STVR

SE International Conference on Program Comprehension ICPC

SE International Conference on Software Testing, Verification and Validation ICST

SE Asian Conference on Programming Languages and Systems APLAS

SE Information and Software Technology IST

SE International Conference on Source Code Analysis SCAM

SE International Conference on Mining Software Repositories MSR

SE Conference on Innovation and Technology in Computer Science Education ITiCSE

SE Engineering Reports Engineering Reports

SE Science of Computer Programming Sci. Comput. Program.

SE International Workshop on Mutation analysis Mutation

DB International Conference on Management of Data SIGMOD

DB International Conference on Data Engineering ICDE

DB ACM on Conference on Information and Knowledge Management CIKM

11

2.2.2 Database access quality issues when using SQL queries

When accessing the database in database-backed applications, developers need to carefully con-

struct SQL queries that are free from syntax errors and correctly embed them in the host language

(e.g., Java). However, even syntactically correct SQL queries may still encounter issues, resulting

in database access issues. The related work on database access issues can be summarized into three

aspects: 1) syntactic or semantic errors in SQL queries, 2) SQL anti-patterns, and 3) SQL code

smells. Below, we summarize the related work for each aspect.

Syntactic or semantic errors in SQL queries. Gould et al. [61] proposed a static analysis

approach for syntax analysis and type checking within SQL queries to verify the correctness of SQL

query strings in database-backed applications. Unlike syntactic errors, a semantic error in an SQL

query means that it is syntactically correct but does not return the intended results when executed.

For example, a SQL query such as SELECT * FROM EMP WHERE JOB = ‘CLERK’ and JOB =

‘MANAGER’ contains an inconsistent condition, resulting in an empty result set. However, no task

would query the database to produce an always empty result. Brass and Goldberg [28] identified

37 types of semantic errors in SQL queries and developed a tool called SQLLint [5] to detect them.

Ahadi et al. [17] also investigated semantic errors in seven types of SQL SELECT statement queries

and the reasons behind them. They found that semantic errors are much harder to correct compared

to syntactic errors in SQL queries. Annamaa et al. [20] proposed a SQL syntax analyzer to statically

analyze SQL queries embedded in Java programs to detect syntactic errors in SQL queries. They

also proposed a testing facility to generate sample SQL statements from embedded SQL queries and

perform semantic validation of them on a running database engine.

SQL anti-patterns. Anti-patterns are design decisions intended to solve a problem but often lead

to other issues by violating fundamental design principles. In the context of SQL, anti-patterns arise

from violating practices that suggest the best way to retrieve and manipulate data using SQL, which

may affect the performance, maintainability, and accuracy of database-backed applications [52]. One

example of an SQL anti-pattern is using the INSERT statement without explicitly listing column

names. For instance, a SQL query like INSERT INTO Bugs VALUES (DEFAULT, CURDATE(), ’New

bug’, ’Test T987 fails...’) relies on implicit column names and gives values for all columns in the same

order that columns are defined in the table. However, if a new column is added to the Bugs table,

the SQL query may produce an error because the value count would not match the column count

anymore. Karwin [77] provided an overview of SQL design anti-patterns, while Alshemaimri et al.

[18] categorized SQL anti-patterns in their survey. Arzamasova et al. [24] analyzed anti-patterns in

SQL query logs and proposed a framework to discover and resolve these anti-patterns. Dintyala et al.

[52] presented a holistic toolchain called SQLCheck for automatically finding and fixing anti-patterns

12

in database applications. Shao et al. [128] conducted a literature survey and reported 34 database

access performance anti-patterns in total. Lyu et al. [86] proposed a static analysis approach, SAND,

to detect SQL anti-patterns in mobile apps.

SQL code smells. Code smells indicate software design problems that harm software quality. Sim-

ilarly, SQL code smells are issues within SQL code resulting from query misuses, such as excessively

long or short identifiers [126]. Redgate [126] documented 119 SQL code smells. Nagy and Cleve [102]

mined Stack Overflow questions to identify error-prone patterns in SQL queries. They also proposed

a static analysis approach to detect SQL code smells in queries extracted from Java code [103, 104].

Gonçalves de Almeida Filho et al. [60] investigated the prevalence and co-occurrence of SQL code

smells in PL/SQL projects. An empirical study by Muse et al. [100] investigated the prevalence

and evolution of SQL code smells in open-source, data-intensive systems. The study finds that SQL

code smells are prevalent and persist in these systems, independent of traditional code smells. In

addition to SQL code smells, Sharma et al. [129] presented a catalog of 13 database schema smells

(i.e., smells that arise due to poor schema design). They also developed a tool called DbDeo to

detect database schema smells and found that ‘index abuse’ is the most frequent one.

Most prior research focuses on the quality of database access by statically analyzing the quality

of SQL queries. Despite these efforts, there is still limited research on understanding database

access bugs related to using SQL queries or ORM frameworks. Database access bugs in database-

backed applications during runtime may be different from the syntactic or semantic errors in isolated

SQL queries since database access leverages SQL queries embedded within the application code

or generated by the ORM frameworks to interact with DBMSs. On the other hand, SQL anti-

patterns or SQL code smells are potential indications of quality issues (not necessarily bugs), and

allow programs to execute correctly with quality problems such as poor performance. In contrast,

database access bugs may lead to unexpected program behaviors, with diverse causes and impacts.

For instance, as database-backed applications and their underlying database evolve (e.g., modifying

a table column name), the specified column in the SQL query might no longer exist, resulting

in severe problems like exceptions when executing the SQL query. This thesis addresses this gap

by conducting an empirical study on the characteristics (e.g., bug occurrence and root cause) of

database access bugs in database-backed applications (in Chapter 3).

2.2.3 Database access quality issues when using ORM frameworks

Since ORM frameworks abstract the underlying SQL query generation and execution, develop-

ers may unintentionally misuse the ORM APIs to generate problematic SQL queries, resulting in

database access issues. One example of such an issue is retrieving unused or unnecessary data from

13

the database [38]. Many prior studies have focused on detecting and analyzing database access qual-

ity issues in applications that use ORM frameworks. Chen et al. [38, 40] proposed an automated

framework to detect and prioritize both performance and functional ORM anti-patterns. They also

identified four types of redundant data access and found that eliminating them can improve SQL

execution time by up to 92% [41]. Yan et al. [150] studied database-related performance inefficien-

cies in web applications built using the Ruby on Rails ORM framework. Yang et al. [151] identified

several performance anti-patterns and proposed detection algorithms based on static analysis. They

also developed a tool called PowerStation to automatically detect and fix ORM-related performance

issues in database-backed web applications [152]. Chen et al. [36] identified and cataloged 17 per-

formance anti-patterns for ORM applications written in PHP. They find that the response time of

the applications significantly reduces after refactoring these anti-pattern instances. Huang et al. [71]

proposed a static analysis-based tool called HBSniff to detect 14 code smells in Java source code

using Hibernate ORM framework.

Most prior studies focus on detecting database access issues at the code level (i.e., anti-patterns).

Anti-patterns in ORM code may lead to generating inefficient or incorrect SQL queries. However, one

limitation of the prior approaches is that they focus on detecting issues based on predefined/known

anti-patterns [128] in database-backed applications and cannot detect issues that do not belong to

any of the predefined anti-patterns. In this thesis, given a potentially problematic SQL query, we

locate the code path that generates the given query (in Chapter 4). Hence, we complement prior

approaches by identifying the code that may result in generating problematic SQL queries.

2.2.4 Adequacy of tests in database-backed applications

Prior works have proposed different coverage criteria to measure the adequacy of tests for

database-backed applications, e.g., SQL commands [66], SQL queries and clauses [135, 140], and

database schema constraints [90]. Halfond and Orso [66] introduced a database interaction test-

ing adequacy criteria based on command-form coverage which takes into account variants of SQL

commands. Suárez-Cabal and Tuya [135] introduced a coverage metric for SELECT queries while

Tuya et al. [140] proposed a form of predicate coverage criterion for SQL queries by considering the

coverage of several clauses like JOIN, WHERE, HAVING, GROUP BY, etc. Mcminn et al. [90] proposed

a family of coverage criteria for testing the integrity constraints in a relational database schema.

However, these coverage criteria are defined separately for embedded SQL queries.

Other works have applied mutation testing to SQL queries to assess the adequacy of tests in

database-backed applications and proposed mutation operators for SQL queries [75, 127]. Chan et al.

[34] proposed seven SQL mutation operators based on the enhanced entity-relationship model. Tuya

et al. [138, 139] proposed a set of mutation operators for SQL queries and integrated these operators

14

into a tool called SQLMutation that automatically generates mutants for SQL queries. Zhou and

Frankl [157] extended the work by Tuya et al. and applied mutation testing to database application

programs by performing those mutation operators on the SQL queries in Java/JDBC applications.

Gupta et al. [63] proposed a set of join/outer-join mutations that model common programmer errors.

Kapfhammer et al. [76] and Wright et al. [148] also proposed operators for introducing SQL query

faults that violate database schema constraints. However, all the above mutation operators for

SQL queries are proposed aiming at covering SQL features or SQL syntax and semantics without

considering real SQL query bugs. Our study of database access bugs (especially the SQL queries

and database schema-related bugs) in large-scale open-source applications (in Chapter 3) can be

used as a complementary aid for designing mutation operators and SQL mutants [91]. Furthermore,

our findings show that several database access bugs are introduced when calling database access

APIs (21.7%) or converting SQL query results (6.8%), which calls for the study of mutation for host

languages (e.g., Java) that access databases by issuing SQL queries.

2.3 Chapter Summary

In this chapter, we present a literature review on the state-of-the-art research regarding database

access quality in database-backed applications. The related research papers mainly focus on the

database access quality issues from the perspective of syntactic or semantic errors in SQL queries,

SQL anti-patterns, and SQL code smells. However, there is still a lack of studies toward understand-

ing database access bugs that occur when using SQL queries or ORM frameworks in database-backed

applications. These database access bugs may differ from those quality issues and can lead to un-

expected program behavior (e.g., crashes) with diverse causes and impacts. On the other hand,

researchers often leverage static analysis to detect database access issues at the code level (e.g.,

anti-patterns). However, this approach cannot detect issues that do not belong to any of the pre-

defined anti-patterns. Motivated by the findings of our literature review, we first conducted an

empirical study on the characteristics (e.g., bug occurrence and root cause) of database access bugs

in database-backed applications (in Chapter 3). We then propose an approach to help developers

locate database access issues by identifying the code path that generates potentially problematic

SQL queries (in Chapter 4).

15

Part II

Understanding and Locating

Database Access Code Quality Issues

16

Chapter 3

Studying the Characteristics of

Database Access Bugs in Java

Applications

Database-backed applications rely on the database access code to interact with the underlying

database management systems (DBMSs). Developers may face different challenges in accessing

the database when using different technologies (e.g., executing SQL queries or calling ORM APIs).

Although many prior studies focus on database access issues such as SQL anti-patterns or SQL code

smells, limited research addresses database access bugs during the maintenance of database-backed

applications. In this chapter, we empirically investigate 423 database access bugs collected from

seven large-scale open source Java applications that use relational database management systems

(e.g., MySQL or PostgreSQL). We study the occurrence of the bugs and find that the number of

reported database and non-database access bugs shares a similar trend, but their modified files in

bug fixing commits are different. In addition, we generalize categories of the root causes of database

access bugs, including five main categories (SQL queries, Schema, API, Configuration, SQL query

result) and 25 unique root causes. For each category, we thoroughly discuss the root cause, impact

(e.g., crash), and how these bugs occur by manually examining the bug reports and commit histories.

We find that the bugs pertaining to SQL queries, Schema, and API cover 84.2% of database access

bugs across all studied applications. In particular, SQL queries bug (54%) and API bug (38.7%)

are the most frequent issues when using JDBC and Hibernate, respectively. Finally, we discuss the

implications of our findings for developers and researchers.

An earlier version of this chapter is published at ACM Transactions on Software

17

Engineering and Methodology, 33(7), September 2024. doi: 10.1145/3672449. [84]

3.1 Introduction

From online shopping to social media, many applications need to store and access data at their

back-end for rich functionalities and better user experiences. Such database-backed applications are

built around the database access to interact with database management systems (DBMSs), such as

MySQL, to store and retrieve data values. These database accesses are crucial for the maintenance

and quality of database-backed applications.

Developers often build database-backed applications with object-oriented programming lan-

guages such as Java, Python, C#, PHP, and C++ [101, 122]. Since object-oriented programming is

a different paradigm compared to relational databases, developers use different technologies to ease

database access by abstracting persistent data as objects. Developers often rely on two main access

technologies: (i) execution of a Structured Query Language (SQL) query (e.g., using JDBC) and

manually converting the results to objects; and (ii) using Object-Relational Mapping (ORM) frame-

works, which automatically generate SQL queries and convert the results to objects based on various

object-database mapping configurations. However, the inherent difference between database-backed

applications and the underlying DBMS may lead to different bugs and maintenance challenges. For

instance, since the syntax of SQL queries is not checked during compile time, syntax errors in SQL

queries may lead to production issues. On the other hand, developers may unintentionally misuse

the ORM APIs because the ORM framework hides both the generation of the underlying SQL query

and its execution. As an example, when issuing calls to ORM APIs, the generated SQL queries may

retrieve unused/unnecessary data from the database, thereby causing performance bugs [38].

There are many prior works that study the maintenance issues of database-backed applica-

tions from the perspective of syntactic or semantic errors in SQL queries [28, 17], SQL anti-

patterns [77, 24, 52, 18], SQL code smells [126, 129, 100], and performance issues [38, 150, 151, 128].

Specifically, Brass and Goldberg [28] proposed a list of semantic errors in SQL queries. A recent sur-

vey by Alshemaimri et al. [18] summarized categories of SQL anti-patterns and framework-specific

(e.g., ORM) anti-patterns. Redgate [126] documented 119 SQL code smells while Shao et al. [128]

conducted a literature survey and reported 34 database access performance anti-patterns in total.

Despite these efforts, there is limited research on understanding database access bugs using SQL

queries or ORM frameworks. Database access bugs in database-backed applications during runtime

may be different from the syntactic or semantic errors in separate SQL queries since database access

leverages SQL queries embedded within the application code or generated by the ORM frameworks

to interact with DBMSs. Unlike SQL anti-patterns or SQL code smells, which allow programs to

18

execute correctly but have quality problems such as poor performance or indicate the presence of

quality problems but not necessarily bugs, respectively, database access bugs may cause severe prob-

lems like crashes. Our work addresses this gap by providing categories of database access bugs from

the issue tracking system and highlighting their root causes. Inspired by previous bug characteriza-

tion studies [72, 128], we define the root cause as a human mistake in the program code, database

schema, or configuration that causes database access errors.

In this study, we conduct an empirical study to understand the characteristics and causes of

database access bugs in Java database-backed applications, since Java is one of the most popu-

lar programming languages [59, 15] used by millions of developers worldwide [118, 132]. We focus

on studying the systems that use relational database management systems (e.g., MySQL or Post-

greSQL) due to their wide adoption and frequent use in handling complex data requests1. We

consider all types of database access bugs (e.g., not limited to performance issues that were the

main focus in prior studies [150, 151, 128]) and consider the bugs that occur in applications that

use two different types of technologies (i.e., JDBC and ORM). We conducted an empirical study on

seven popular and large-scale open-source Java database-backed applications. These applications

use either the Java Database Connectivity (JDBC) or the Hibernate ORM framework for database

access. JDBC is part of the official Java Development Kit (JDK) for accessing the DBMS and

Hibernate is one of the most popular Java ORM frameworks [30].

We collected a statistically significant sample of 5,323 fixed bug issues from the issue tracking

systems of studied applications, of which 423 were manually identified as database access bugs and

4,900 are non-database access bugs. We performed a quantitative study to compare the database

access bugs to non-database access bugs to study their characteristics (i.e., reported trends). Then,

we performed a qualitative study on 423 database access bugs to examine their root causes. We

manually examined the bug reports and commit histories of the database access bugs to understand

how developers discuss/fix these bugs. The goal of the manual analysis is to identify the root cause

behind the bugs and the output is categories of the root causes of database access bugs related to

JDBC or Hibernate.

In particular, we seek to answer the three following research questions (RQs):

RQ1 (Bug occurrence): What is the trend in the number of reported database access

bugs? We find that database access bugs are reported throughout the life cycle of the applications.

These observations indicate that database access bugs are common and the maintenance of database

access code requires continuous attention. We also find that developers modify different sets of files in

bug fixing commits for database access bugs compared to non-database access bugs, which indicates

that database access bugs may have their own unique characteristics and motivates further research
1https://www.ibm.com/cloud/blog/sql-vs-nosql

19

to examine their root causes.

RQ2 (Root cause): What are the root causes of database access bugs? We generalize

categories of the root causes of database access bugs. We derived the category by manually studying

423 database access bugs and identified 25 unique root causes. We find that most of the database

access bugs cause problems like runtime exceptions or the return of unexpected query results to

users. While a few of these bugs have been identified in the prior work [28, 52, 40], the majority of

them have not yet been examined in the past.

RQ3 (Bug category): How do categories of database access bugs prevail with different

database access technologies? To determine whether certain categories of database access bugs

arise frequently and whether this is dependent on database access technologies, we compared the

percentage of categories of bugs across JDBC and Hibernate. Our study reveals that SQL queries,

schema, and API bugs cover 84.2% database access bugs across all studied applications. Moreover,

SQL queries bug (54%) and API bug (38.7%) are the most frequent issues when using JDBC and

Hibernate, respectively.

The main contributions of this study are as follows:

• To the best of our knowledge, we conduct the first empirical study of database access bugs in

database-backed applications.

• We find that the number of reported database and non-database access bugs share a similar

trend throughout the life cycle of database-backed applications. However, their modified files

in bug fixing commits are different. This implies that they are not necessarily co-located and

database access bugs may have different causes and fixes as compared to non-database access

bugs.

• We generalize categories of the root causes of database access bugs into five main categories,

containing 25 unique root causes, by thoroughly studying 423 database access bugs. We find

that SQL queries, schema, API bugs cover 84.2% database access bugs across all studied

applications. We also find that SQL queries bug (54%) and API bug (38.7%) are the most

frequent issues when using JDBC and Hibernate, respectively. We provide a discussion and

implication of our findings for future work.

Overall, we conduct an empirical study of database access bugs in database-backed Java applica-

tions that use relational database management systems. In particular, we study the characteristics

of database access bugs and the categories of their root causes. Our empirical study provides mo-

tivations and guidelines for future research to help avoid, detect, and test database access bugs in

database-backed applications. Our dataset is publicly available [10].

20

Chapter Organization. The rest of this chapter is organized as follows. Section 3.2 describes the

studied applications and our data collection approach. Section 3.3 presents our detailed results and

Section 3.4 further discusses them and provides actionable implications. Next, we discuss possible

threats to validity (Section 3.5) and survey related work (Section 3.6). Finally, Section 3.7 concludes

the chapter.

3.2 Empirical Study Setup

In this section, we present the setup for our empirical study. In particular, we describe our

process of collecting studied applications and database access bugs.

3.2.1 Collecting Studied Applications

We focus our study on database access bugs from open-source applications implemented with

Java, which is one of the most popular programming languages [59] used by millions of developers

worldwide [118, 132]. Besides, applications in Java have been studied by many prior studies [44,

119, 42, 39, 105, 21].

We apply three selection criteria to select the studied applications. First, we pick the top 100

most popular Java applications that use database technology from GitHub based on the number of

stars. We filter the applications using database technology by manually examining the application’s

description and wiki on GitHub. Second, a candidate application should use an issue tracking system

(e.g., Jira) and contain database access bug reports so that we can study real-world bugs that occur

when accessing the database. Finally, the application should be actively maintained, having a long

revision history (having more than 1,000 commits) and at least 100 fixed bug reports.

We end up with seven open-source applications in total that satisfy our selection criteria. Ta-

ble 2 shows an overview of the studied applications, such as the number of stars, lines of code

(LOC), and commits. The studied applications are from various domains and four use JDBC to

access the database while the other three use Hibernate. BroadleafCommerce [29] is an enterprise

e-commerce framework while metasfresh [92] is an enterprise resource planning (ERP) system.

Openfire [107] is a real-time collaboration (RTC) system that supports instant messaging using

the open communication protocol. ADempiere [16] is an enterprise business suite integrated with

ERP, customer relationship management, and supply chain management. DBeaver [51] is a universal

and multi-platform database tool which supports various popular DBMSs. dotCMS [53] is a content

management system (CMS) while OpenMRS [108] is a widely used patient-based electronic medical

record (EMR) system. All of the studied applications have been developed over a period of 5 to 16

years.

21

Table 2: The studied applications and bug issues.

Application Persistence Description Stars(K) LOC(K) Commits Study Period
Fixed

bug issues

Studied

bug issues

Database

access bugs

BroadleafCommerce Hibernate E-commerce 1.5 197 17,381 03/13 ∼ 03/17 593 593 57/593 (9.6%)

metasfresh JDBC ERP System 0.9 1,610 52,927 06/16 ∼ 03/21 712 712 27/712 (3.8%)

Openfire JDBC RTC Server 2.4 117 10,034 08/05 ∼ 04/21 749 749 41/749 (5.5%)

ADempiere JDBC Business Suite 0.6 879 16,006 09/15 ∼ 03/21 866 866 63/866 (7.3%)

DBeaver JDBC Database Tool 22.5 430 21,176 10/15 ∼ 06/21 3,203 801 106/801 (13.2%)

dotCMS Hibernate CMS 0.6 522 18,317 03/12 ∼ 05/21 4,607 867 50/867 (5.8%)

OpenMRS Hibernate EMR System 1.0 128 11,530 03/06 ∼ 03/21 2,359 735 79/735 (10.7%)

*Note that we study the issues of BroadleafCommerce until 03/2017 because developers do not actively maintain the

issue tracking system for the open source version. However, developers are still actively developing the application.

3.2.2 Collecting Database Access Bugs

We collect the database access bugs from the issue tracking system of the studied applications.

We first collect fixed bug issues and filter the issues using database-related keywords. Finally, we

manually verify whether the identified issues are related to database access bugs. Below, we discuss

our bug collection process in detail.

Collecting studied bug issues. We collect the issues with the type of bug and fix status of fixed

and resolved in each application during the study period, from the time they were first reported to

06/2021. Note that, we study the issues of BroadleafCommerce until 03/2017 because developers do

not actively maintain the issue tracking system for the open source version of BroadleafCommerce.

However, developers are still actively developing the application [29]. Table 2 shows the number

of fixed bug issues for each application. From these, we identified the studied bug issues. For

applications with less than 1,000 fixed bug issues (i.e., the first four applications), we analyze all

fixed bug issues. However, for other applications which have 2,359 to 4,607 fixed bug issues (i.e.,

DBeaver, dotCMS, and OpenMRS), it is not feasible to manually study all bug reports. To address

this, we randomly select a statistically significant sample from the fixed bug issues with a 95%

confidence level and a 3% margin of error. This sampling approach results in 801, 867, and 735

studied bug issues for DBeaver, dotCMS, and OpenMRS, respectively.

Filtering & verifying studied bug issues. We filter the studied issues by searching for database-

related keywords in each issue’s title, description, and comments to get the database-related issues.

The database-related keywords are concluded by manually examining 50 random database-related

issues from the issue tracking system and are listed below along with matching text (underlined)

examples:

• database: “the entry is added in the database”

22

• constraint: “a foreign key constraint fails”

• MySQL, PostgreSQL, SQLite, Oracle, DB2, SQL Server: “PubSubManager: DELETE FROM

ofPubsubItem LEFT JOIN breaks MySQL”

• SQL: “You have an error in your SQL syntax”

• Hibernate: “Hibernate startup errors”

• JDBC: “I have confirmed that this is an issue with the mysql JDBC driver version.”

Next, we verify the database-related issues manually to examine the database access bug or

non-database access bug because our heuristic approach (i.e., filtering by keywords) may result in

false positives. For instance, BroadleafCommerce#378 reports an issue that contains the keyword

“database” in the sentence “the data is saved appropriately in the database, but the list grid value

for the column is not immediately updated”. However, according to the sentence, the issue is not a

database access bug since the program accesses the database correctly. Instead, the issue is caused

by calling an API incorrectly which leads to incorrect UI (i.e., list grid) refresh.

After the filtering and verifying process, we end up with manually verified database access bugs

for each studied application, shown in the last column of Table 2. Other bugs in the studied bug

issues are identified as non-database access bugs. The percentages of database access bugs among

studied bug issues range from 3.8% to 13.2%. In total, we collected 423 database access bugs,

among which 186 are related to Hibernate and 237 are related to JDBC. We also collected 4,900

non-database access bugs.

3.3 Empirical Study Results

In this section, we present the results of our empirical study by answering the research questions

(RQs).

3.3.1 RQ1: What is the Trend in the Number of Reported Database

Access Bugs?

Motivation. In this research question, we study when database access bugs are reported in the

studied applications. In particular, we want to examine whether database access bugs are more

likely to occur during a specific time period. For example, are most database access bugs reported

at the beginning of the development history, with fewer reported as the application evolves, or are

the bugs reported throughout the development history? We are also interested in the trend of the

number of database access bugs reported, because database access is critical to database-backed

23

R

ep
or

te
d

B
ug

s

0
20

40
60

80

2013−04 2013−10 2014−04 2014−10 2015−04 2015−10

Interval = 3 months

DBBug
NDBBug

(a) BroadleafCommerce

R

ep
or

te
d

B
ug

s

0
50

10
0

15
0

2016−06 2017−06 2018−06 2019−06 2020−06 2021−06

Interval = 6 months

DBBug
NDBBug

(b) metasfresh

R

ep
or

te
d

B
ug

s

0
20

40
60

80

2005−08 2008−08 2011−08 2014−08 2017−08 2020−08

Interval = 12 months

DBBug
NDBBug

(c) Openfire

R

ep
or

te
d

B
ug

s

0
50

10
0

15
0

2015−09 2017−03 2018−09 2020−03

Interval = 6 months

DBBug
NDBBug

(d) ADempiere

R
ep

or
te

d
B

ug
s

0
20

60
10

0

2015−10 2017−04 2018−10 2020−04

Interval = 6 months

DBBug
NDBBug

(e) DBeaver

R

ep
or

te
d

B
ug

s

0
20

40
60

80

2012−03 2014−03 2016−03 2018−03 2020−03

Interval = 6 months

DBBug
NDBBug

(f) dotCMS

R
ep

or
te

d
B

ug
s

0
20

40
60

80

2006−03 2009−03 2012−03 2015−03 2018−03 2021−03

Interval = 12 months

DBBug
NDBBug

(g) OpenMRS

Figure 2: The trend of reported database access bugs (DBBug) and non-database access bugs

(NDBBug) across the studied applications. The reported bugs are aggregated at a fixed time interval

according to their reporting time in each application.

applications and any failures related to database access may have disastrous results [87]. Knowing

when database access bugs are reported is the first step toward better debugging and maintenance

of database-backed applications.

Approach. We study how many and when the database access bugs collected in Section 3.2 are

reported across the study period. For each studied application, we study the number of reported

bugs. For each bug, we take the creation time of the bug report as the reporting time. To gain a

more comprehensive understanding of the quantitative magnitude of database access bugs, we further

study the correlation between the reported numbers of database access bugs and non-database access

bugs throughout the study period (i.e., every three or six months). We choose to use Spearman’s

rank correlation rs because it is a non-parametric correlation test and does not have an assumption

on the underlying data distribution [160]. We classify the strength of the relationship between the

number of database access bugs and non-database access bugs to zero (0), weak (± 0.1 to ±0.3),

moderate (± 0.4 to ± 0.6), strong (± 0.7 to ± 0.9), and perfect (± 1) according to the rs value

threshold as per prior work [50].

Results. We find that the number of database and non-database access bugs share a similar trend.

24

Table 3: Spearman’s rank correlation (rs) between the number of reported database and non-

database access bugs across the study period. The reported bugs are aggregated using two time

intervals (i.e., 3 months and 6 months).

Application

rs

Interval = 3 months Interval = 6 months

BroadleafCommerce 0.9 0.9

metasfresh 0.9 0.9

Openfire 0.5 0.7

ADempiere 0.7 0.9

DBeaver 0.9 0.9

dotCMS 0.4 0.5

OpenMRS 0.5 0.5

Figure 2 shows the trend of reported bugs during the study period. The x-axis represents the

time interval, and the y-axis represents the number of reported bugs. For better visualization,

we aggregate the reported bugs at a fixed time interval according to their reporting time in each

application (e.g., interval = 3 months in BroadleafCommerce) and count the number of reported

bugs within every time interval. We see that database access bugs are reported throughout the

study period. Although sometimes more database access bugs are reported, not all of them are

reported during a specific time (e.g., when the application is first released). This finding indicates

that database access code maintenance [125, 42, 94] is a continuous process for database-backed

applications and requires continuous attention. We also use the density curves (i.e., the smooth

lines) to fit the distribution of reported bugs. For each application, we find that both database

access bugs and non-database access bugs have a similar trend - the density value increases at the

beginning, reaches a peak, and decreases thereafter.

We further apply correlation analysis (i.e., Spearman’s rank correlation) to verify if there is

a consistent trend between the number of reported database and non-database access bugs. We

calculate the Spearman’s rank correlation coefficient rs between the number of reported database

and non-database access bugs based on two time intervals (i.e., 3 months and 6 months) and report

the results of rs in Table 3. We find that rs values of four studied applications are between 0.7 to 0.9

(strong) while rs values of two studied applications are between 0.4 to 0.6 (moderate). The results

indicate that the number of reported database access and non-database access bugs have a moderate

to strong correlation: increasing or decreasing at the same time.

Discussion. We find that the number of reported database and non-database access bugs share a

similar trend. Hence, we further investigate whether the reported database and non-database access

25

Table 4: The number of unique modified files in bug fixing commits for reported database access

bugs (DBBug) and non-database access bugs (NDBBug), the percentage (Pct.) of modified files for

DBBug across modified files for all bugs (i.e., DBBug and NDBBug), and the number of common

modified files (COM) shared between DBBug and NDBBug.

Type

Broadleaf-

Commerce
metasfresh Openfire ADempiere DBeaver dotCMS OpenMRS

Pct. #COM # Pct. #COM # Pct. #COM # Pct. #COM # Pct. #COM # Pct. #COM # Pct. #COM

DBBug

NDBBug

119

645
16% 64

72

2946
2% 36

33

452
7% 23

63

772
8% 31

182

735
20% 88

133

704
16% 33

149

664
18% 90

bugs occur at similar locations by examining their modified files in bug fixing commits. Table 4

shows the number of unique modified files in bug fixing commits between database access bugs and

non-database access bugs. The database access bugs occur in a small range of source code files (the

number of modified files is between 33 to 182), while the non-database access bugs occur in a large

range of source code files (the number of modified files is between 452 to 2,946). In particular, the

percentage of modified files for database access bugs across modified files for all bugs is between

2% to 20%. We also observe that there are 23 to 90 common modified files (COM) shared between

database access bugs and non-database access bugs. The reason is that database access code may

share common files with other code (e.g., business logic code). As found in a prior study by Qiu et

al. [125], database schema co-evolves with the application code, which may explain the correlation

between the number of reported bugs. However, our findings show that database access bugs may

occur in different source code files compared to non-database access bugs. In other words, database

access bugs require further research to understand their root causes and attention from the research

community. In the next RQ, we manually study database access bugs to understand and create

categories of the root causes.

Database access bugs are reported throughout the development history of the applications. While

the number of reported database and non-database access bugs share a similar trend, their

modified files in bug fixing commits are different. This implies that they are not necessarily

co-located and database access bugs may have different causes and fixes as compared to non-

database access bugs.

3.3.2 RQ2: What are the Root Causes of Database Access Bugs?

Motivation. In RQ1, we find that developers modify different files when fixing database and non-

database access bugs. Thus, database access bugs may have their own unique characteristics of

26

root cause and impact. In this RQ, we manually study database access bugs to uncover their root

causes. Our goal is to create categories of the root causes that may inspire future research and help

practitioners avoid common pitfalls. For researchers, the category could guide in designing research

tools to improve the quality of database-backed applications. For practitioners, the category could

serve as a checklist to define test scenarios that address specific bug types in database access.

Approach. For the 423 database access bugs collected in Section 3.2, we manually study their bug

reports, comments, and commits to uncover their root causes. Our manual study involves three

phases:

Phase I. Two authors of this study (A1 and A2) independently derived an initial list of the causes

by manually inspecting the title, description, commit message, comment, and code change of each

bug report.

Phase II. A1 and A2 unified the derived causes and compared the assigned cause for each database

access bug. Any disagreement was discussed until reaching a consensus. The inter-rater agreement

of the cause of bugs has a Cohen’s kappa [46] of 0.83, indicating an almost perfect agreement [80].

To encourage replication of our results, we have made the dataset available online [10].

Phase III. We further grouped the database access bugs into five categories based on the stage when

the bug occurs in the process of accessing the database: SQL Queries, Schema, API, Configuration,

and SQL query result.

Results. Table 5 summarizes the manually-uncovered root causes of the database access bugs and

the number of bug instances. Below, we discuss each category in detail.

Table 5: Categories of the root causes of database access bugs.

Root Cause Description # Bugs

SQL Queries 169 (40%)

SQL syntax error The SQL query contains SQL syntax error, which causes runtime exceptions. 108

SQL logic error The SQL query contains incorrect business logic (e.g., incorrect condition

in the WHERE clause), where the returned results are not what the developers

expected.

45

SQL query is incompatible

with some DBMSs

The syntax of the SQL query is not compatible with some database man-

agement systems that the application promises to support.

11

Invalid user-defined function The SQL query calls a user-defined function written in PL/SQL (i.e., stored

procedure) which is missing or compiled with errors.

3

Error while converting data

types

The SQL query fails when trying to convert from one data type to another. 2

Schema 95 (22.5%)

Violation of database con-

straint

The SQL query violates database schema constraints such as not-null, for-

eign key, and primary key constraint.

46

Non-existent table/column The table/column specified in the SQL query does not exist in the database. 20

Continued on next page

27

Table 5 – continued from previous page

Root Cause Description # Bugs

Poor schema design The design of the database scheme needs improvement or is incorrect. 11

Invalid/unexpected column

value

The SQL query inserts or updates a table column with invalid/unexpected

value (e.g., the size of the value is larger than the specified column size in

the DBMS).

9

Invalid modification of

schema

The SQL statement modifying the table schema is invalid (e.g., duplicate

values exist before creating a unique index constraint on the table columns).

9

API 92 (21.7%)

Incomplete/invalid object

values

Some fields of the entity object are not set or are set with invalid value

when trying to save or update the object to the DBMS.

21

Incorrect flow of calling APIs The application code calling the database access API does not conform to

the expected flow. For example, the code to update an entity object never

calls the save method after updating the object.

18

Inconsistent entity object

state

Calling Hibernate APIs to modify entity objects whose states are incon-

sistent with the action (e.g., saving an entity object that is detached from

Hibernate session, for which the change will not be reflected in the DBMS).

16

Bugs in database access

APIs

There are bugs in the JDBC driver or the Hibernate framework. 9

Missing exception handling There is no proper exception handling when calling database access APIs

(e.g., missing try-catch block).

8

Incorrect parameter The database access API is called with missing parameters or invalid argu-

ments.

7

Hibernate proxy misuse The Hibernate proxy object, representing a lazily loading object, is accessed

incorrectly (e.g., accessing non-initialized fields of a proxy object directly).

6

Transaction misuse Missing or using transaction incorrectly (e.g., missing annotation @Trans-

actional when calling database access APIs).

4

Inefficient API call The database access API call retrieves too much unnecessary data (e.g.,

retrieving all fields of an object while some of them are never used in the

application).

3

Configuration 38 (9%)

Incorrect database connec-

tion

The configuration of the database connection is incorrect so that the con-

nection to the DBMS cannot be established.

16

Incompatible database

driver version

The database driver version is incompatible with the database version. 12

Incorrect ORM configura-

tion

Bugs in ORM configuration, such as having a typo in ORM annotations

that causes unexpected database access behavior.

10

SQL Query Result 29 (6.9%)

Incorrect entity object con-

version

Database-returned results are converted to entity objects incorrectly (e.g.,

fields mismatch between the returned database record and the entity ob-

ject).

15

Cache misuse Developers use the cache of database records incorrectly (e.g., the cache is

cleared unintentionally and causes performance bugs).

10

Missing cache Developers do not add the needed cache for some database tables, which

causes performance bugs.

4

28

- SQL Queries (169/423, 40%). Database-backed applications access DBMS data by issuing

SQL queries (i.e., either manually constructed by developers or automatically generated by ORM

frameworks) to DBMSs. Since the compiler cannot capture errors in the SQL query during compile

time, any errors in the SQL query may return unexpected results or even runtime exceptions that

may cause the application to crash. We find that, among all the bugs related to SQL queries, syntax

error in SQL queries is the most common root cause (108/169, 63.9%). In this case, the SQL query

issued to DBMSs violates the SQL syntax rule, causing runtime exceptions. These bugs usually

happen when developers make a typo in the SQL query or fail to generate the criteria as expected

in the SQL query. For example, ADempiere #2494 reports a runtime exception due to the syntax

error as follows:

Query.list: SELECT Gender, ... FROM C_BPartner WHERE (AND C_BP_Group_ID=103) AND ... [76]

org.postgresql.util.PSQLException: ERROR: syntax error at or near "AND"

The SQL keyword AND (as highlighted in red) violates the SQL syntax. AND should be used between

two conditions and not immediately after the keyword WHERE. The SQL query was generated based

on some developer-specified criteria to find specific records in the database table. The problematic

SQL query was caused by some untested criteria, which resulted in generating incorrect logical

operators (i.e., AND, OR, and NOT) to combine conditions in the WHERE clause.

The second most common root cause is logic error in SQL queries (45/169, 26.6%). Although the

SQL query issued to DBMSs may be syntactically correct, the returned result may not be what the

developers expected. These bugs usually happen when developers partially understand the business

requirements of the underlying data query. For example, there may be a logical error (e.g., missing

conditions) in the WHERE clause of the SQL query (e.g., BroadleafCommerce #586), which leads to

unexpected query results. We also find cases where the SQL queries are not compatible with some

DBMSs that the application promises to support (11/169, 6.5%). In some cases (3/169, 1.8%), we

find that the SQL query calls invalid user-defined functions, which is missing (e.g., non-existent)

or compiled with errors (e.g., ADempiere #828). Hence, the SQL query causes runtime exceptions,

leading to no query results. Finally, in 2/169 (1.2%) cases, we find that there are data conversion

errors in SQL queries. For example, in Adempiere #1174, the SQL query calls the COALESCE()

function which fails to implicitly convert the data type from VARCHAR to NVARCHAR2. Developers

fixed these bugs by using the target data type directly to avoid erroneous implicit conversion.

Overall, based on our manual observation, many SQL-related bugs may be revealed if developers

have proper test cases in place. For example, if test cases cover all the SQL queries, then the

test cases should be able to capture SQL syntax errors. Moreover, some logic errors in the SQL

queries (e.g., the returned result is unexpected) may also be revealed if there are comprehensive test

cases. After manually checking the test cases, we find that many problematic SQL queries are not

29

fully covered by test cases. One possible way to improve the quality of database access code is by

introducing SQL query coverage as code coverage criteria to measure how well the database access

code is tested. For researchers, our findings call for automatic test generation tools [119, 54, 33, 22]

that can cover SQL queries in database access.

Any errors in SQL queries issued to DBMSs may cause unexpected query results or even runtime

exceptions. Our manual analysis finds that these problematic SQL queries are not fully covered

by test cases. Future studies should emphasize the development of test generators that target

SQL query coverage.

- Schema (95/423, 22.5%). The database schema defines how data is structured in the database

(e.g., tables and data types) and how data records inside the database relate to each other (e.g.,

foreign key). When database-backed applications access the data, the DBMS receives the SQL

query and executes it by querying the data defined by the database schema. Hence, any issues related

to database schema may return unexpected results or cause runtime exceptions. We find that, among

all the bugs related to the database schema, violation of database constraint is the most common

root cause (46/95, 48.4%). In these cases, the SQL query violates one or more of the common

database constraints: foreign key, unique, not-null, and primary key constraints, which causes

an exception to occur. The violation of database constraints usually happens if developers do not

handle corner cases or exceptions properly when they try to persist the data in database tables. As

the database constraints are configured in the DBMS, the developers may not know their existence

or fail to validate if the data complies with the database constraints in the application code. For

example, Openfire #692 reports a runtime exception due to the violation of not-null database

constraint when an SQL query tries to insert the value of NULL into a column that does not allow

null value. The code snippet is shown as follows:

1 public class XMPPServer {
2 ...
3 try {
4 host = InetAddress.getLocalHost().getHostName();
5 } catch (UnknownHostException ex) {
6 Log.warn("Unable to determine local hostname.", ex);
7 host = "127.0.0.1";
8 }
9 }

10

11 public class DefaultSecurityAuditProvider {
12 ...
13 String LOG_ENTRY = "INSERT INTO ofSecurityAuditLog

(msgID,username,entryStamp,summary,node,details) VALUES(?,?,?,?,?,?)";
14 PreparedStatement pstmt = con.prepareStatement(LOG_ENTRY);
15 ...
16 pstmt.setString(5, XMPPServer.getInstance().getServerInfo().getHostname());
17 pstmt.executeUpdate(); //execute the SQL
18 }

30

The value of host (i.e., hostname) is initialized in class XMPPServer (Line 4). In case UnknownHost

Exception happens, developers try to assign an IP address (i.e., 127.0.0.1) to the host name in

the catch block (Line 7). Then, in class DefaultSecurityAuditProvider, developers construct the

SQL query (Line 13) and set the parameter node with the value of host (Line 16). However, if an

uncaught exception (any exception that is not UnknownHostException) occurs in class XMPPServer,

the host name would be null and executing the SQL query in Line 17 would violate the not-null

database constraint (the corresponding column of the table for node should not be NULL).

The second most common root cause is non-existent table/column in the database (20/95,

21.1%). Database-backed applications and the underlying database evolve during the software de-

velopment, which may lead to inconsistency between the SQL query and database schema. For

instance, the table/column specified in the SQL query may be deleted, renamed, or not yet created

(e.g., dotCMS #4806) in the database. Another root cause is poor schema design (11/95, 11.6%),

where the design of the database schema needs improvement or is incorrect, which may cause un-

expected results. For example, missing a unique constraint on specific table columns may result

in unintended duplicate table records on those columns (e.g., dotCMS #5755). We also find cases

where the SQL query inserts or updates a table column with invalid/unexpected value (9/95, 9.5%).

For example, the size of the value in the SQL query may be larger than the specified column size

in the DBMS (e.g., OpenMRS #601). Finally, in 9/95 (9.5%) cases, we find that the SQL statement

modifying the table schema is invalid because it violates how data is structured in the database or

the constraint rule. For example, in Adempiere #1174 the CREATE UNIQUE INDEX statement fails

to create the unique constraint as duplicate records already exist on the table columns.

We find that database access bugs caused by violation of database constraints usually happen

if developers do not handle corner cases properly (i.e., untested conditions), which leads to an

invalid value of persistent data that violates database schema constraints. For example, NULL value

is invalid to be inserted into the database table if the corresponding column is configured with a

not-null database constraint. The invalid value of persistent data may be detected earlier by test

cases or avoided if developers have proper validation of the data before persisting it to the DBMS.

We also find that the co-evolution of underlying database schema and code [125, 144] in database-

backed applications may lead to violation of database schema in SQL queries (e.g., non-existent

table/column). For example, the table name may still remain the same in SQL queries when it has

been modified in the DBMS. Our findings suggest that developers should consider the underlying

database schema when generating SQL queries and keep track of the database schema evolution

to update the SQL query. Our findings also call for an automatic mechanism to maintain the

consistency between SQL queries and database schema when the schema evolves.

31

SQL queries with invalid values of persistent data may violate database schema constraints and

SQL queries may also violate database schema due to the database schema evolution, causing

runtime exceptions. Future studies may provide support for the development and maintenance

on SQL queries regarding database schema.

- API (92/423, 21.7%). In database-backed applications, developers call database access APIs

(e.g., ORM APIs) to access database data. Bugs are introduced if developers partially understand

the assumptions made by the rich set of APIs or use the API in a way that does not conform to the

business logic of applications. While most issues are related to incorrect or inefficient usages of APIs

(90.2%), there are still some issues related to the API itself (i.e., bugs in database access APIs, 9/92,

9.8%). We find that, among all the bugs related to database access API usage, incomplete/invalid

values in the entity object is the most common root cause (21/92, 22.8%). These bugs usually

happen when developers call database access APIs to persist the entity object with many fields, of

which developers forget to set values of some fields (e.g., OpenMRS #3337) or set some fields with

invalid values, resulting in incorrect records in database tables. The second most common root

cause is business logic error when calling database access APIs (18/92, 19.6%). In this scenario, the

application code calling the database access API does not conform to the application’s business logic

which may cause unexpected records in database tables. For example, in BroadleafCommerce #1538,

the application intends to set the payment status in the database to archived. However, developers

never explicitly call the database API to update the corresponding database record, which causes

incorrect payment status. The third most common root cause is inconsistent entity object state

when calling database access APIs (16/92, 17.4%). Developers may misuse the Hibernate session to

modify the entity object, causing Hibernate exception NonUniqueObjectException, which means

that the developer tries to associate two different entity objects with the same identifier value (i.e.,

primary key), in the scope of a single session. For example, the developer may try to save an entity

object that is detached from Hibernate session, when a different object with the same identifier value

is already associated with the session (e.g., OpenMRS #3728).

The next two most common root causes are bugs in database access APIs (9/92, 9.8%) and miss-

ing exception handling when calling database access APIs (8/92, 8.7%). For example, DBeaver

#6554 reports unexpected query results caused by a bug in the JDBC driver for SQL Server

(mssql-jdbc #969 [95]). We also find cases (7/92, 7.6%) where the database access API is called with

incorrect parameter, missing parameters or invalid arguments (e.g., null argument in BroadleafCommerce

#153). In some cases (6/92, 6.5%), we find that developers misuse Hibernate proxy where the Hi-

bernate proxy, representing lazily loading object, is accessed incorrectly. The non-initialized fields

of the proxy object are accessed directly by developers (e.g., OpenMRS #3340) instead of calling

32

the associated getter method which enforces Hibernate to initialize fields by querying the DBMS.

In some cases (4/92, 4.3%), we find that developers misuse the transaction, which may cause data

integrity bugs in the database (e.g., missing transaction in BroadleafCommerce #330). Finally, in

(3/92, 3.3%) cases, we find that developers call the database API to retrieve too much unnecessary

data, which may cause performance bugs (e.g., BroadleafCommerce #762).

We find that, when calling database APIs, many database access bugs are related to the discrep-

ancy between database records and objects in object-oriented languages. Although ORM frameworks

provide developers with a conceptual abstraction for mapping the database records to objects, any

errors in entity objects may cause incorrect records in database tables (e.g., incomplete/invalid val-

ues in the entity object). We also find that developers may have difficulties managing the entity

object when calling database access APIs (e.g., inconsistent entity object state) due to the complex-

ity and impedance mismatches [41] of the object-relational mapping. Simplifying the complexity

of database access APIs may help reduce database access bugs. Future studies may also provide

support to developers in using database access APIs. For example, an entity object checker may

help developers detect incomplete values in the entity object when calling database access APIs.

When calling database APIs, many of the issues are related to incorrect API usage or API

anti-patterns. Future studies may provide support for developers in using database access APIs.

- Configuration (38/423, 9%). In database-backed applications, developers need to set up

various configurations (e.g., database connection) before accessing the database. Incorrect config-

urations may cause errors or unexpected behaviors when accessing the database. We find that,

among all the database access bugs related to configuration, incorrect database connection is the

most common root cause (16/38, 42.1%). The database connection is configured as a URL that

contains information such as where to search for the database (i.e., the host name and port number

of the node hosting the DBMS) and the name of the database to connect to. The information in

the database connection URL may be incorrectly configured (e.g., DBeaver #9382), causing the

connection error to the DBMS. The second most common root cause is incompatible database driver

version (12/38, 31.6%), which may lead to database access failure. For example, some data types for

a specific DBMS release may be changed and not supported by the database driver (e.g., Openfire

#759), causing runtime exceptions. We also find cases where the ORM configuration is incorrect

(10/38, 26.3%). Since the ORM frameworks automatically convert entity objects to/from the cor-

responding database record based on the configuration, incorrect configuration of ORM may lead

to unexpected ORM framework behaviors. For example, in BroadleafCommerce #497, a duplicate

annotation JoinTable is configured on the entity class OfferCode, which incorrectly adds additional

duplicate records in the database table.

33

We find that developers may incorrectly set up configurations before accessing the database,

which may cause errors or unexpected behaviors when accessing the database. We also find that

developers may forget to update the configurations (e.g., database driver version) when the code or

DBMS evolves. Our findings indicate that managing the configuration is a continuous process during

the development and evolution of database-backed applications. Developers may benefit from tools

that can detect incorrect configurations automatically. For example, an ORM configuration checker

may help developers detect duplication annotations in ORM configurations.

Incorrect configurations may cause errors or unexpected behaviors when accessing the database.

Developers should develop automated tests that continuously verify various configurations. Fu-

ture studies may also work on tools to help developers detect incorrect configurations automat-

ically.

- SQL Query Result (29/423, 6.9%). Database-backed applications often convert the

data records returned by the DBMS into objects in object-oriented programming languages. For

frequently-queried data in the DBMS, developers also store the corresponding objects in the cache.

We find that, among all the bugs related to SQL query results, incorrect entity object conversion is

the most common root cause (15/29, 51.7%). These bugs are caused by incorrect conversion from

database-returned results into entity objects and usually happen when developers mismatch the

fields between them (e.g., Openfire #664), thereby causing inconsistency between entity objects

in applications and database records. We also find cases where developers misuse the cache for

database table records (10/29, 34.5%). For example in dotCMS #5553, developers incorrectly clear

the entire cache instead of the corresponding cache needed after updating the data and saving it in

the DBMS, which may cause performance bugs due to the unnecessary cache updates. Finally, in

4/29 (13.8%) cases, we find that developers did not use cache to store frequently-queried data in

database tables (e.g., dotCMS #6288), which causes significant data retrieval overhead.

We find that database access bugs caused by incorrect entity object conversion usually occur when

calling JDBC APIs to access the database. When using JDBC APIs, developers have to extract the

SQL query results and convert the values to corresponding fields of the entity object. In contrast,

when using ORM frameworks, the conversion is done automatically after developers configure the

mapping between entity classes and database tables. While caching is a common way to improve the

performance of database access, we also find that misuse of the cache may introduce performance

bugs. Future studies may propose tools to help developers use caching frameworks when accessing

the database [39].

34

When retrieving SQL query results, developers may incorrectly convert the database records

returned by the DBMS into entity objects in applications, causing inconsistency between them.

Developers may also misuse the cache which causes performance bugs, calling for tools to help

developers use caching frameworks more intelligently when accessing the database.

3.3.3 RQ3: How do Categories of Database Access Bugs Prevail with

Different Database Access Technologies?

Motivation. In RQ2, we analyzed the root causes of database access bugs and grouped them

according to several categories. In general, database accesses leverage two widely used technologies:

(i) SQL queries (e.g., JDBC), and (ii) ORM (e.g., Hibernate). These database access technologies

have unique design principles and goals. For example, rather than constructing SQL queries in the

database access code, ORM enables developers to manipulate persistent data as if it is in-memory

objects [150]. Thus, studying bugs related to these two technologies allows us to better understand

their maintenance challenges. In this RQ, we investigate how different categories of database access

bugs prevail with these two technologies. Our findings may guide future studies to provide support

for developers in maintaining database-backed applications that use different technologies.

Approach. We further analyze the database access bugs that we studied in RQ2 and classify the bug

reports by the technology (i.e., JDBC or Hibernate) used to access the DBMS. We perform a manual

inspection of the source code associated with the bug fix to verify the usage of the technologies. For

each bug category, we compare the percentage of database access bugs related to each technology.

Results. Among all the studied applications, metasfresh, Openfire, ADempiere, and DBeaver

use JDBC while BroadleafCommerce, dotCMS, and OpenMRS use Hibernate to access the database.

Accordingly, 237 database access bugs are related to JDBC, and 186 are related to Hibernate. Figure

3 compares the distribution of database access bug categories between JDBC and Hibernate. We

find that SQL queries, Schema, and API bugs cover (356/423, 84.2%) database access bugs.

- SQL queries bug (128/237, 54%) is the most frequent issue when using JDBC, while

API bug (72/186, 38.7%) is the most frequent issue when using Hibernate. The possible

reason is that developers manually construct the SQL queries when using JDBC, while Hibernate

generates the SQL queries automatically which makes it less prone to errors in SQL queries (e.g.,

SQL syntax errors). In terms of API bugs, the advanced Hibernate features (e.g., Hibernate session

and Hibernate proxy) make Hibernate APIs more complex to use compared to JDBC APIs. We

find that, when using Hibernate, most of the API bugs happen when developers call database access

APIs to persist the entity objects (e.g., updating the value of the entity object to the corresponding

35

0

10

20

30

40

50

SQL Queries Schema API Configuration SQL Query Result

P
er

ce
nt

ag
e

Hibernate JDBC

Figure 3: Distribution of the categories of database access bugs that occur in JDBC and Hibernate

database-backed applications.

database record). Our findings suggest that developers should pay more attention to constructing

the SQL queries when using JDBC and pay more attention to API usage, especially persistent APIs,

when using Hibernate.

- There are many SQL query bugs (128/237, 54%) when using JDBC, while there are

still SQL query bugs (41/186, 22%) when using Hibernate. As discussed in RQ2, most of

the SQL query bugs are caused by syntax error in SQL queries. Although Hibernate automatically

generates the SQL queries executed by DBMSs, it provides APIs to use Hibernate Query Language

(HQL) queries [68]. Hibernate may also generate problematic SQL queries if there are errors in

HQL queries manually constructed by developers (e.g., OpenMRS #5359). Hence, using Hibernate

may still result in SQL query bugs.

- There are schema bugs when using JDBC (51/237, 21.5%) and Hibernate (44/186,

23.7%). 1) When using JDBC, schema bugs are mainly caused by Non-existent table/column

(18/51, 35.3%), mostly due to the co-evolution of underlying database schema and code (as discussed

in RQ2). In contrast, schema bugs caused by Non-existent table/column only account for (2/44,

4.5%) when using Hibernate. The possible reason is that, when database schema evolves (e.g., the

table column name changes), developers only need to modify the mapping between entity/table

once when using Hibernate, but have to manually modify all corresponding SQL queries when

36

using JDBC. Developers using JDBC may benefit a lot from automatic tools to help maintain the

consistency between SQL queries and database schema. 2) When using Hibernate, schema bugs

are mainly caused by violation of database constraint (31/44, 70.5%). Hibernate provides built-

in constraints [67] on entity fields to help developers prevent violation of database constraint. For

example, the annotation @NotNull in Hibernate declares a field to be not-null. If the field value is null,

Hibernate will not execute any SQL statements and prevents storing null values in the underlying

database, which avoids the violation of database constraint not-null. However, Hibernate does

not provide corresponding built-in constraints for other database constraints such as foreign key

(e.g., BroadleafCommerce #678), primary key, or unique constraint. Developers of Hibernate

framework may provide more built-in constraints in the future to help developers deal with common

database constraints [154].

- There are cache issues in SQL query result bugs when using JDBC (5/13, 38.5%) and

Hibernate (9/16, 56.3%) We find that, when using JDBC and Hibernate, some SQL query result

bugs are related to the cache, which may cause performance issues. Future studies of performance

in database-backed applications may address SQL query results when accessing the database.

SQL queries, Schema, and API bugs cover 84.2% of database access bugs across all studied

applications. SQL queries bug (54%) and API bug (38.7%) are the most frequent issues when

using JDBC and Hibernate, respectively. Hibernate cannot abstract database access completely,

so many issues such as SQL query bugs and Schema bugs still exist when using Hibernate. Future

studies should provide support for developers in using different database access technologies.

3.4 Discussion

We now state the actionable implications of our findings and highlight opportunities for future

work.

There is a need for better support for the development and maintenance of database

access code in database-backed applications. In RQ2 and RQ3, we find that bugs related to

SQL queries or the database schema (e.g., syntax error or inconsistency with the database schema)

are the most frequent category of database access bugs when using JDBC. For example, developers

may make a typo in the SQL query or fail to construct the search criteria as expected in the SQL

query, leading to problematic SQL queries which are not checked at compile time. We also find that

this type of bug still exists when using Hibernate, since developers may need to use JPQL for more

complex database access. Therefore, to assist developers with improving the quality of database-

backed applications, there is a need for better tooling support to verify the SQL queries and database

37

schema. For example, future research may work on tools that statically verify the syntax of SQL

queries and the consistency between database schema and the SQL queries in the application code.

Although there are some static analysis tools, such as dbcritic [6] and holistic [7], that try to

help detect SQL schema issues using static analysis, these tools can only analyze specific database

access frameworks (mostly only JDBC) or DBMS due to the limitation of static analysis. Building

more generic static analysis tools that can detect errors in SQL queries will alleviate more SQL query

bugs during system development. Future research may also work on approaches to automatically

maintain database access code. Developers may benefit from approaches that automatically suggest

updates to the database schema or database access code when developers modify the code – change

impact analysis. For example, when a developer modifies the database schema, the approach can

automatically identify all the database access code (e.g., either SQL queries or ORM database access

APIs) that is impacted by the change and require an update.

Future studies should help developers better leverage ORMs such as Hibernate. In RQ2

and RQ3, we find that API bug is the most frequent issue when using Hibernate. Compared to

JDBC APIs, the advanced Hibernate features (e.g., Hibernate session and Hibernate proxy) make

Hibernate APIs more complex to use. When calling Hibernate APIs, developers may persist entity

objects with errors (e.g., incomplete/invalid object values), which causes incorrect records in database

tables. While there are many prior studies [38, 150, 151, 128, 85] focus on helping developers detect

performance issues when using ORM APIs, there is limited study on the functional aspect. Future

studies should provide support for developers in using Hibernate APIs. For example, future research

may propose an entity object checker that helps developers detect incomplete values in the entity

object before calling Hibernate APIs. Another possible idea is to check whether every field of the

persistent entity has been initialized or set with a value. This helps ensure the validity of the

database-managed objects and avoid runtime errors. We also find that there are many issues related

to the incorrect flow of calling APIs or API parameters. Future studies can also propose approaches

to help detect issues in ORM API usage.

Designing and Generating adequate test cases for database access code. In RQ2, we

find that most database access bugs cause severe problems like unexpected query results or runtime

exceptions that may cause the application to crash. Our manual study finds that these bugs are

usually not fully covered by test cases. For example, SQL queries with invalid values (e.g., NULL) of

persistent data may violate database schema constraints (e.g., not-null). These bugs occur if invalid

values are generated from untested conditions. In order to improve the quality of database-backed

applications, developers may consider coverage of both SQL queries (syntax and semantics) and

database access API usage to measure how well the database access code is tested. Developers may

also consider different types of coverage such as database coverage (e.g., coverage based on database

38

schema, constraints, or database access code) since databases are the key components of database-

backed applications. Future studies may consider this coverage as code coverage criteria in automatic

test generation tools for database-backed applications. For example, future studies may use database

coverage to guide test case generation using search-based or fuzz-based approaches. Future studies

may also propose metrics or approaches to evaluate the effectiveness of the existing test cases. For

instance, there may be a need to design specialized mutation operators for database-related tests

and help developers with the quality assurance of database-backed applications.

Complementary to developers in selecting database access technologies. Developers often

rely on two main technologies (i.e., SQL queries and ORM frameworks) to access the underlying

database and discuss a lot on how to select them. We select the top 15 questions that compare

Hibernate to JDBC in Stack Overflow and manually examine the answers. We find that developers

often make trade-offs in the selection, mainly focusing on the strengths and limitations between

JDBC and Hibernate. For example, one strength of using Hibernate is that developers do not need

to write SQL queries (“Such ORMs provide the maximum level of abstraction to the point you almost

never have to write SQL queries.” [9]). On the other hand, no explicit SQL in the source code when

using Hibernate sometimes makes debugging and performance tuning difficult (“The time savings

gained are easily blown away when you have to debug abnormalities resulting from the use of the

ORM.” [8]). We also contacted the main contributors of the studied applications by inquiring why

and how they selected JDBC or Hibernate in their applications. They mention that Hibernate makes

their code easy to understand and modify since the application is open source and has contributors

at every level from around the world. However, they also address that developers may not truly

know the automatically generated SQL queries by Hibernate, which may cause major slowdowns or

failures after deployment. Our findings provide complementary to developers in selecting database

access technologies. For example, considering developers’ capabilities in technologies, if they have

a good understanding of the entity object in Java code, they may make fewer bugs (i.e., database

access bugs related to incomplete/invalid values in the entity object or inconsistent entity object

state) when calling Hibernate APIs.

3.5 Threats to Validity

External Validity. One possible threat to external validity is the generalization of the dataset (i.e.,

database access bugs) we collected. To ensure that the applications we study are large enough and

well maintained, we apply three criteria to select the studied Java applications based on the number

of stars, the use of issue tracking systems, whether containing database-related bugs, and active

maintenance activities (having more than 1,000 commits and at least 100 fixed bug reports). Based

39

on these criteria, we ended up with seven applications, all of which use Hibernate or JDBC to access

the DBMS. These applications contain thousands of lines of code (117K ∼ 1,610K), thousands

of commits (10K ∼ 52K), and a pronounced development period (5 ∼ 16 years), across different

domains such as e-commerce, ERP, and database tools. We do notice that metasfresh is a fork

of ADempire, but the fork was done in 2015 due to the development gap compared to the latest

ADempiere codebase2. Since then, both applications have grown apart and there has been active

development on metasfresh. As shown in Table 2, the studied periods of both applications are from

after 2015, which cover the multiple years of development activities and database access bugs after

the fork. The LOC also differs significantly between metafresh and ADempiere (879K vs. 1,610K).

Therefore, due to the difference in development activities, we include these two applications in our

study. Developers can also use these database access frameworks to interact with a wide range of

underlying relational DBMSs (e.g., MySQL, PostgreSQL, or Oracle). There may be some framework-

specific issues when using other database access frameworks, but many of the issues that we found in

this study are not specific to one framework (e.g., there are many bugs related to SQL query syntax

or database schema). Therefore, we believe our findings offer valuable insights for both researchers

and practitioners. We acknowledge that non-relational databases such as NoSQL are becoming

more popular. However, in this study, we focus on studying the systems that use relational database

management systems (e.g., MySQL or PostgreSQL). This focus is due to their established history

and the relative scarcity of studies examining the characteristics of database access bugs in these

environments. Future studies should consider NoSQL as it is also a critical topic, especially given

the variety of NoSQL database vendors and data types (e.g., graphs or documents).

Internal Validity. The main threat to the internal validity of our results could be the bias when

deriving bug causes. To mitigate this threat, two authors of this study (A1 and A2) independently

inspected the bug report and commit to each bug to identify the cause. The inter-rater agreement

of the cause of bugs was measured using Cohen’s Kappa coefficient and the disagreements were

discussed until reaching a consensus. We considered only the database access technologies (i.e, JDBC

and Hibernate) as the factors for the categories of database access bugs. However, other factors (e.g.,

design, coding style, and framework) may also affect the design of database access code. To mitigate

this threat, we carefully examined the documentation and source code of the studied applications

and found that they mainly use JDBC or Hibernate directly to access the database. Therefore, we

believe that other factors should not significantly affect the database access and thus the occurrence

of categories of database access bugs. We only conducted our study in Java applications, but

there are other database-backed applications implemented in other programming languages such as

Python and Ruby. These programming languages also have various ORM frameworks available (e.g.,
2https://en.wikipedia.org/wiki/Metasfresh

40

Django, and Ruby on Rails) that may have their own unique challenges. Based on the literature [38,

41, 39, 151, 150], there are many overlaps in the database access performance problems between

Ruby and Java. Common issues in both Ruby and Java include retrieving more data than needed,

not using batching for database access, caching, and inefficient ORM API usage. Therefore, we

expect that there are some similar issues in the database-backed applications that are implemented

in other programming languages, but there should also be language- and framework-specific issues.

Future studies are needed to further study the issues in applications that are implemented in other

programming languages and identify commonalities and differences between them.

Construct Validity. The construct validity of our study rests on the methodology of collecting

database access bugs from the fixed bug reports of studied applications. First, for applications with

fixed bug reports of more than 1,000, we conduct the study on a statistically significant sample

from all fixed bug reports randomly under a 95% confidence level and a 3% margin of error, which

may introduce minimal noise. Second, we filtered the studied bug reports by searching for database-

related keywords in each bug report. The keywords were derived based on manual analysis and hence,

may not be comprehensive. We may have omitted seemingly trivial database-related bugs with very

little reported information. The similarity in the trends between the database and non-database

bugs may be related to the application’s development process. Hence, we manually examine the code

repositories, release notes, and development history to uncover the possible development process that

the applications follow. Overall, we find that all the studied applications have adopted continuous

integration and agile development, at least since the past decade. Most of the applications, such

as DBeaver and dotCMS, have a consistent release cycle of three months. We further examine the

spikes in the number of reported issues as shown in Figure 2, and we find that most spikes are related

to having more code changes (e.g., a major release). In short, we do not find a clear connection

between the software development process and the trends across the studied applications. On the

other hand, we find specific reasons for some database access bugs (as discussed in RQ2). For

example, ADempiere #2494 reports a runtime exception due to the syntax error in the SQL query.

The SQL query was generated based on some developer-specified criteria to find specific records

in the database table. The problematic SQL query was caused by some untested criteria, which

resulted in generating incorrect logical operators (i.e., AND, OR, and NOT) to combine conditions

in the WHERE clause. Another example is Openfire #692 which reports a runtime exception

due to the violation of not-null database constraint when an SQL query tries to insert the value

of NULL into a column that does not allow null value. The bug happens when developers do not

handle corner cases properly (i.e., untested conditions). In short, these bugs may happen at any

stage of the development when developers modify existing database access code, fix other bugs, or

41

add new features. However, our finding shows that database access code is the core of database-

backed applications. Although these applications may have well-designed databases, database access

code co-evolves with other source code, requiring continuous attention for maintenance and quality

assurance.

3.6 Related Work

In this section, we discuss the related work of our study.

Database access issues in database-backed applications. Prior works study the database

access issues in database-backed applications from different perspectives, e.g., syntactic or semantic

errors in SQL queries [28, 17], SQL anti-patterns [77, 24, 52, 18], SQL code smells [126, 129, 100],

and performance issues [38, 150, 151, 128]. Specifically, Brass and Goldberg [28] proposed a list of

semantic errors in SQL queries. The book by Karwin [77] provided an overview of SQL design anti-

patterns containing four categories: logical database design anti-patterns, physical database design

anti-patterns, query anti-patterns, and application development anti-patterns when employing SQL

in the application code. A recent survey by Alshemaimri et al. [18] summarized categories of SQL

anti-patterns and framework-specific (e.g., ORM) anti-patterns. Redgate [126] documented 119

SQL code smells, concerning database design issues, table design, data types, expressions, naming,

routines, query syntax, and security loopholes. Shao et al. [128] conducted a literature survey and

reported 34 database access performance anti-patterns in total.

Despite these efforts, there is a lack of study toward understanding database access bugs using

SQL queries or ORM frameworks. Database access bugs in database-backed applications during run-

time may be different from the syntactic or semantic errors in separate SQL queries since database

access leverages SQL queries embedded within the application code or generated by the ORM frame-

works to interact with DBMSs. On the other hand, unlike SQL anti-patterns or SQL code smells,

which allow programs to execute correctly but have quality problems such as poor performance or

indicate the presence of quality problems but not necessarily bugs, respectively, database access

bugs may cause severe problems like crashes. Our work addresses this gap by providing categories of

database access bugs from the issue tracking system and highlighting their root causes. We believe

that the category and our actionable implications would help developers understand the maintenance

issues and challenges in database-backed applications.

Database schema and program co-evolution. Prior research [125, 42, 49, 89] study the co-

evolution between database schemas and database-backed application programs. Curino et al. [49]

studied the database schema evolution on Wikipedia and the effect of schema evolution on the sys-

tem front-end. Maule et al. [89] proposed a program analysis-based approach to perform change

42

impact analysis on applications caused by database schema changes. Qiu et al. [125] conducted

a comprehensive empirical analysis of how programs co-evolve with schema changes in database-

backed applications. They find that database schemas evolve frequently and schema changes induce

significant code-level modifications. Chen et al. [42] reported that in particular ORM-related code,

changes are more scattered and frequent than regular code and these changes mostly address perfor-

mance or security concerns. Previous studies mainly focus on how database schema changes impact

applications programs, while we investigate how they may cause bugs in applications. In our work,

we generalize categories of the root causes of database access bugs, of which some bugs are caused by

database schema changes. Our derived categories provide a finer-grained view of the maintenance

challenges that developers encounter.

3.7 Conclusion

In this chapter, we conducted an empirical study of 423 database access bugs from seven real-

world Java database-backed applications. We find that although the number of reported database

and non-database access bugs share a similar trend, their modified files in bug fixing commits are

different. This implies that they are not necessarily co-located and database access bugs may have

different causes as compared to non-database access bugs. Execution of SQL queries forms an integral

part of database accesses and weighs 40% (169/423) of the studied bugs. The downside is that errors

in SQL queries are not checked at compile time, thereby leading to erroneous access to the database.

Further, many problematic SQL queries are not fully covered by test cases. This suggests that future

development of test generators for database-backed applications should target SQL query coverage.

Additionally, databases are the key components of database-backed applications and bugs related

to database schema weigh 22.5% (95/423) of the studied bugs. This calls for the development of

test cases that comprehensively cover the database (e.g., database constraint). We believe that our

findings would provide developers with a comprehensive understanding of database access and aid

related research on bug detection, testing, and debugging regarding database access.

43

Chapter 4

Localizing the Origin of SQL Queries

in Database-Backed Web

Applications

In database-backed web applications, developers often leverage Object-Relational Mapping (ORM)

frameworks for database access. ORM frameworks provide an abstraction of the underlying database

access details so that developers can focus on implementing the business logic of the application.

However, due to the abstraction, developers may not know where and how a problematic SQL query

is generated in the application code, causing challenges in debugging database access problems. In

this chapter, we propose an approach, called SLocator, which locates where a SQL query is gener-

ated in the application code. SLocator is a hybrid approach that leverages both static analysis and

information retrieval (IR) techniques. SLocator uses static analysis to infer database access for every

possible path in the control flow graph. Then, given a SQL query, SLocator applies IR techniques

to find the control flow path (i.e., a sequence of methods called in an interprocedural control flow

graph) whose inferred database access has the highest similarity ranking. We implement SLocator

for Java’s official ORM API specification (JPA) and evaluate SLocator on seven open source Java

applications. We find that SLocator is able to locate the control flow path that generates a SQL

query with a Top@1 accuracy ranging from 37.4% to 70% for SQL queries in sessions, and 30.7%

to 69.2% for individual SQL queries; and Top@5 ranging from 78.3% to 95.5% for SQL queries in

sessions, and 59.1% to 100% for individual SQL queries. We also conduct a study to illustrate how

SLocator can be used to locate issues in database access code.

An earlier version of this chapter is published at IEEE Transactions on Software

44

Engineering, vol. 49, no. 6, pp. 3376-3390, 1 June 2023. [83]

4.1 Introduction

Modern database-backed web applications are becoming more complex due to the ever-increasing

functionality. To reduce development efforts and allow developers to focus on the business logic

of the applications, database-backed web applications often use Object-Relational Mapping (ORM)

frameworks to abstract database accesses. ORM frameworks have become increasingly popular with

implementations in most modern programming languages such as Java, C#, Python, and Ruby

[42, 151]. A report also shows that among the 2,164 surveyed Java developers, ORMs are the leading

means of database access and 67.5% use Hibernate (one of the most popular Java ORM frameworks)

instead of other database abstraction frameworks [30]. ORM provides a conceptual mapping between

objects in object-oriented programming languages, such as Java, and tables in database management

systems (DBMSs). With ORM mapping, developers can access the DBMS through a combination of

object modifications and ORM API calls. For example, by calling user.setName(“Alice”) followed by

entityManager.persist(user), the ORM framework would automatically generate a SQL query, such

as UPDATE User SET userName = “Alice” WHERE ..., which updates the user name in the DBMS.

Due to their intuitive abstraction of database access, ORM frameworks are widely used in

database-backed web applications [153, 40, 38]. Despite the popularity and convenience of ORM

frameworks, they may also cause maintenance challenges [42]. ORM automatically generates SQL

queries based on various ORM configurations (e.g., the relationship among object types) and the

called ORM APIs. As a result, developers do not have direct control over how the SQL queries

are generated by ORM. When there are issues with a generated SQL query, developers may have

difficulties knowing how the SQL query is generated and where in the code [153, 31, 41].

Hibernate, which is one of the most popular Java ORM frameworks, provides a mechanism that

allows developers to record the generated SQL queries [70], i.e., ORM logs. Such ORM logs com-

prehensively record every generated SQL query so that developers would know what the generated

queries look like. However, even with the recorded SQL queries, it would be difficult to infer how

and locate where a given SQL query is generated [40, 106]. Hibernate generates a SQL query by

considering all of the ORM configurations (e.g., how objects should be retrieved from the DBMS),

how the objects are accessed, and the executed ORM APIs, on one code path. There may be hun-

dreds or even thousands of database accesses in the source code. Thus, simply searching for the

query text in the code would not work, and the generated SQL query may change based on the

ORM configuration and the executed branch on an execution path.

45

Prior studies [158, 147, 149, 142, 146, 82, 123, 35] propose information retrieval based bug lo-

calization (IRBL) approaches that try to locate buggy files given some software artifacts (e.g., bug

reports). IRBL approaches compute and rank the files based on their similarity with the given soft-

ware artifact, where the files with the highest similarity are more likely to be defect-prone. IRBL

approaches provide good indications of where the bugs are given limited information of the bugs [99].

Similarly, the ORM-generated SQL queries may have quality issues that are caused by incorrect or

inefficient usage of ORM code/configuration [38, 150, 128].

In this study, we propose an approach, SLocator, that combines static analysis and information

retrieval techniques to locate the origin (i.e., the control flow path, which contains a sequence of

method calls) that generates a given SQL query in database-backed web applications. Different from

prior studies on database-backed applications [151, 40, 38, 150], which focus on statically detecting

issues based on predefined/known anti-patterns in database-backed web applications, SLocator can

be used to locate the origin of any given SQL queries. SLocator also complements existing studies,

which rely mostly on static analysis, by providing an approach to help analyze the dynamically-

generated SQL queries.

SLocator is a hybrid approach that combines both static code analysis and information retrieval

techniques for localization. First, SLocator applies static analysis to analyze the ORM configurations

in the source code, which specify the mapping between objects and database tables, and how various

objects should be retrieved from the DBMS. Then, SLocator statically analyzes each web request

handling method and constructs interprocedural control flow graphs. For each path in the control

flow graph, SLocator analyzes both the called ORM APIs and the ORM configurations to statically

infer the database access (i.e., templated SQL query). Given a SQL query recorded by a DBMS,

SLocator pre-processes the query to remove dynamic elements (e.g., dynamically generated values).

Finally, SLocator uses cosine and Jaccard distance to find the control flow path for which the inferred

database access has the highest similarity ranking with the given SQL query. Different from existing

IRBL approaches, SLocator locates the control flow path that generates a given SQL query instead

of the file/method that contains the corresponding ORM code. We choose to locate the control flow

path because prior studies found that control flow paths provide additional information for locating

the root causes of an issue [35, 26, 155, 134]. Moreover, database access issues may not only exist in

ORM API calls but may also be related to how the objects are accessed during execution and the

corresponding ORM configuration [38, 41, 150].

We implement SLocator for the Java Persistent API (JPA), which is the official ORM API spec-

ification for Java. We evaluate SLocator on seven open source database-backed web applications

which use the Hibernate ORM framework. SLocator uses DBMS logs (e.g., MySQL logs) as the

input. We use DBMS logs instead of ORM logs because DBMS logs are lightweight and commonly

46

used in production to record problematic SQL queries. In contrast, ORM log introduces signifi-

cant performance overhead [69, 156, 159], as ORM would record every executed SQL query. Since

large-scale web applications may execute hundreds of SQL queries per second, such performance

overhead makes enabling ORM logs impractical in production. The dataset of SLocator is publicly

available [11].

The main contributions of this study are:

• SLocator is one of the first techniques that combine interprocedural control flow analysis and

information retrieval techniques for localization.

• SLocator is able to locate the control flow path that generates a given set of SQL queries with

high accuracy (average Top@5 is 88.8%).

• We evaluate SLocator on existing problematic SQL queries (i.e., slow SQL queries) and we find

that SLocator can locate where the SQL queries are generated with similarly high accuracy.

• We conduct a study to illustrate how SLocator helps locate slow SQL queries and database

deadlocks in studied applications.

In conclusion, our study proposes a novel approach that is able to locate the control flow path

that generates a given SQL query. Our research also illustrates the potential direction of leveraging

static code analysis to enhance software artifact/bug localization techniques.

Chapter Organization. The rest of the chapter is structured as follows. Section 4.2 introduces the

background of using ORM in database-backed web applications and surveys related work. Section 4.3

presents our approach in detail. Section 4.4 evaluates our approach on seven open source applications

and conducts a study on locating the origin of problematic SQL queries. Section 4.5 discusses threats

to validity. Finally, Section 4.6 concludes the chapter.

4.2 Background and related work

In this section, we first provide some background knowledge of ORM frameworks. Then, we

use an example to illustrate the challenge of manually locating the origin of an SQL query (i.e.,

the control flow path that generates the query). Finally, we discuss related work in three areas:

quality assurance of database-backed web applications, SQL query extracting, and IR-based bug

localization.

Background of ORM. Object-relational mapping (ORM) frameworks provide a conceptual ab-

straction between objects in object-oriented languages and the data stored in the underlying DBMS [37].

47

@Entity

@Table(name = "pets")

public class Pet {

 @Id

 @Column(name = "id")

 private Integer id;

 @ManyToOne

 private Owner owner;

Pet.java

@Entity

@Table(name = "owners")

public class Owner {

 @Id

 @Column(name = "id")

 private Integer id;

 @OneToMany(fetch = FetchType.EAGER)

 @Fetch(value = FetchMode.JOIN)

 private Set<Pet> pets;

Owner.java

(a) Entity mapping.

select owner0_.id as id1_0_0_, ... pets1_.id as id1_1_1_, ... from owners owner0_

left outer join pets pets1_ on owner0_.id=pets1_.owner_id where owner0_.id=1

public Owner findById(Integer id) {

 return entityManager.find(Owner.class, id);

}

id = 1

(b) Translating objects to SQL queries by ORM.

Figure 4: An example of accessing the DBMS using ORM.

To leverage ORM frameworks, developers need to first specify ORM configurations. ORM frame-

works have two main types of configurations. The first type of the configuration is the mapping

configuration, where developers configure the mapping between entity classes and database tables.

As shown in Figure 4a, the two entity classes, Pet and Owner (annotated with @Entity), are mapped

to the pets and owners tables in the DBMS, respectively, using the annotation @Table. Both Pet and

Owner entities have primary keys (@Id) which are mapped to database columns named id (@Col-

umn). Such mapping configuration allows ORM frameworks to automatically convert an object

to/from the corresponding database record.

The second type of configuration relates to entity relationship and data retrieval strategies.

ORM provides annotations that allow developers to specify the entity relationship to represent the

business logic. For example, Pet has a @ManyToOne relationship with Owner, meaning that mul-

tiple pets may belong to the same owner. Similarly, there are @OneToOne, @OneToMany, and

@ManyToMany relationships. The relationship between entity classes affects how ORM frame-

works retrieve the corresponding object from the DBMS. By default, objects with @OneToOne and

@ManyToOne relationship are retrieved together (i.e., eager retrieval), while objects with @One-

ToMany and @ManyToMany are not retrieved at the same time (i.e., lazy retrieval) for performance

48

optimization reasons [111, 78]. Developers can also explicitly specify the retrieval strategy. For ex-

ample, by adding FetchType.EAGER to the configuration of Owner, as shown in Figure 4a, ORM will

retrieve all the associated pets at the same time regardless of the type of the relationship. Finally,

developers can configure how the associated objects are retrieved. For example, a FetchMode.JOIN

to the configuration of Owner configures ORM to use an outer join to load the associated pets when

fetching.

Despite ORM’s advantages in abstracting database access, various configuration options and the

paths that the application takes may affect how the SQL query is generated. Therefore, it may

cause challenges in locating the origin of the SQL query. For example, as shown in Figure 4b, the

ORM API, entityManager.find, retrieves the Owner object from the DBMS based on the owner ID.

The corresponding SQL query generated by ORM retrieves not only the owner data but also the

associated pets at the same time using an outer join according to the configured ORM annotation.

The ORM-generated SQL query does not explicitly exist in the source code and the dynamically

generated aliases (e.g., owner0_ and pets1_ for the owners and pets tables) introduce discrepancy

when locating the origin of a SQL query. Therefore, if there are issues with a generated SQL

query, it is challenging to locate where the SQL query is generated when diagnosing the database

access code. Moreover, due to the complexity of database-based web applications, different code

paths with the same root may generate slightly different SQL queries based on different API calls,

which further increases localization difficulty. In short, manually locating where a SQL is generated

can be time-consuming and challenging, especially given the size of modern database-backed web

applications.

Below, we discuss related work relevant to this study.

Quality assurance of database-backed applications. Most prior research aims to study and

detect performance issues in database-backed applications that are developed using ORM. Yan et

al. [150] studied database-related performance inefficiencies in real-world web applications that are

built using the Ruby on Rails ORM framework. They concluded several performance anti-patterns

and proposed detection algorithms based on static analysis [151]. Shao et al. [128] presented a

comprehensive empirical study that characterizes performance anti-patterns related to database

accesses in web applications. Brass and Goldberg [28] summarized common SQL anti-patterns and

how to address them. Chen et al. [40, 38] proposed an automated framework to detect and prioritize

both performance and functional ORM anti-patterns. Grechanik et al. [62] proposed a run-time

monitoring technique to detect database deadlocks.

Most prior studies focus on detecting database access issues at the code level (i.e., anti-patterns).

Anti-patterns in ORM code may lead to generating inefficient or incorrect SQL queries. However, one

limitation of the prior approaches is that they focus on detecting issues based on predefined/known

49

anti-patterns [128] in database-backed web applications and cannot detect issues that do not belong

to any of the predefined anti-patterns. In contrast, given a potentially problematic SQL query (e.g.,

slow SQL queries or SQL queries that cause database deadlocks), our approach locates the code

path that generates the query. Hence, we complement prior approaches by identifying the code that

may result in generating problematic SQL queries.

SQL query extracting. Table 6 summarizes the related studies that perform SQL query extracting

statically from the source code in their work. The closest related work is by Nagy et al. [106] which

is the only study focusing on locating SQL queries. The authors proposed a static concept location

approach to match HQL/JPQL query string in the code and the generated SQL query by comparing

their abstract syntax trees (AST). However, they do not consider ORM APIs to access entity objects

or ORM configurations. In our work, we consider not only static SQL queries (i.e., JPQL) but also

ORM API calls to access entity objects and ORM configurations. When using ORM APIs to access

entity objects, many SQL queries are generated dynamically, so it is not possible to locate where

they are generated by doing string matching. In addition, we locate the control flow path (CFP)

that generates a given SQL query instead of the method that contains a database access call (e.g.,

where the SQL query is defined). Prior studies show that such CFP provides important information

when locating a fault and diagnosing the issues [35, 26, 155]. We find that our approach can locate

the control flow path that generates a given SQL query with high accuracy. A relevant tool in this

context is Hypersistence Utils [96], which logs SQL queries generated by Hibernate along with the

stack traces of their associated methods. While it helps developers trace SQL queries back to the

application code, it requires integration into the application and configuration to monitor specific

packages. Furthermore, it introduces significant performance overhead by logging every query and

method, making it impractical for production environments in large-scale web applications with

high query volumes. In contrast, our static analysis tool eliminates the reliance on runtime logging,

making it a more practical and efficient solution for production use.

Other studies on database-backed applications address different issues. Prior studies focus on

detecting ORM code smell [71], conducting empirical studies of how SQL queries are constructed [19],

extracting SQL queries from source code [93, 88, 105], checking the correctness of SQL queries [61],

analyzing SQL queries [20], or detecting SQL anti-patterns [86]. Many studies [19, 88, 61, 20] do

not support ORM frameworks but statically extract embedded SQL queries manually constructed

by developers from the source code. Some studies [71, 93] partially supported ORM frameworks by

extracting SQL queries from the source code. However, the extracted SQL queries are different from

the dynamically generated SQL queries by the ORM during runtime, which still leaves the task of

locating SQL queries challenging.

Information retrieval based bug localization. Information retrieval based bug localization

50

T
ab

le
6:

R
el

at
ed

st
ud

ie
s

th
at

pe
rf

or
m

SQ
L

qu
er

y
ex

tr
ac

ti
ng

st
at

ic
al

ly
fr

om
th

e
so

ur
ce

co
de

.
O

R
M

,
JP

Q
L,

an
d

O
R

M
A

P
Is

to
ac

ce
ss

en
ti

ty

ob
je

ct
s

in
di

ca
te

w
he

th
er

th
e

SQ
L

qu
er

y
ex

tr
ac

ti
ng

su
pp

or
ts

O
R

M
fr

am
ew

or
ks

,J
P

Q
L,

or
O

R
M

A
P

Is
to

ac
ce

ss
en

ti
ty

ob
je

ct
s,

re
sp

ec
ti

ve
ly

.

St
ud

y
Su

m
m

ar
y

of
st

ud
y

G
oa

lo
f
st

ud
y

O
R

M
JP

Q
L

O
R

M
A

P
Is

to
ac

ce
ss

en
ti

ty
ob

je
ct

s

N
ag

y
et

al
.

[1
06

]
T

he
y

pr
op

os
ed

a
st

at
ic

co
nc

ep
t

lo
ca

ti
on

ap
pr

oa
ch

to
m

at
ch

H
Q

L/
JP

Q
L

qu
er

y

st
ri

ng
in

th
e

co
de

an
d

th
e

ge
ne

ra
te

d
SQ

L
qu

er
y

by
co

m
pa

ri
ng

th
ei

r
ab

st
ra

ct

sy
nt

ax
tr

ee
s

(A
ST

).

Lo
ca

ti
ng

SQ
L

Y
es

Y
es

N
o

H
ua

ng
et

al
.

[7
1]

T
he

y
pr

op
os

ed
a

st
at

ic
an

al
ys

is
to

ol
,

ca
lle

d
H

B
Sn

iff
,

fo
r

de
te

ct
in

g
14

co
de

sm
el

ls
.

D
et

ec
ti

ng
O

R
M

co
de

sm
el

l
Y

es
Y

es
N

o

A
nd

er
so

n
[1

9]
T

he
y

st
ud

ie
d

fiv
e

pa
tt

er
ns

of
SQ

L
qu

er
y

co
ns

tr
uc

ti
on

in
ac

tu
al

P
H

P
sy

st
em

s.
E

m
pi

ri
ca

ls
tu

dy
of

SQ
L

N
o

N
/A

N
/A

M
eu

ri
ce

et
al

.
[9

3]
T

he
y

pr
es

en
te

d
a

st
at

ic
an

al
ys

is
ap

pr
oa

ch
to

ex
tr

ac
t

SQ
L

qu
er

ie
s

in
Ja

va
sy

s-

te
m

s.

E
xt

ra
ct

in
g

SQ
L

Y
es

Y
es

N
o

M
an

ou
si

s
et

al
.

[8
8]

T
he

y
pr

es
en

te
d

a
m

et
ho

d
th

at
id

en
ti

fie
s

th
e

em
be

dd
ed

qu
er

ie
s

w
it

hi
n

da
ta

ba
se

ap
pl

ic
at

io
ns

.

E
xt

ra
ct

in
g

SQ
L

N
o

N
/A

N
/A

N
ag

y
an

d
C

le
ve

[1
05

]
T

he
y

br
ie

fly
de

sc
ri

be
d

th
e

to
ol

th
at

is
ab

le
to

ex
tr

ac
t

SQ
L

qu
er

ie
s

fr
om

Ja
va

co
de

th
ro

ug
h

st
at

ic
st

ri
ng

an
al

ys
is

.

E
xt

ra
ct

in
g

SQ
L

N
o

N
/A

N
/A

G
ou

ld
et

al
.

[6
1]

T
he

y
pr

es
en

te
d

a
st

at
ic

an
al

ys
is

te
ch

ni
qu

e
fo

r
ve

ri
fy

in
g

th
e

co
rr

ec
tn

es
s

of
dy

-

na
m

ic
al

ly
ge

ne
ra

te
d

SQ
L

qu
er

y
st

ri
ng

s
fo

r
da

ta
ba

se
ap

pl
ic

at
io

ns
in

Ja
va

.

C
he

ck
in

g
SQ

L
N

o
N

/A
N

/A

A
nn

am
aa

et
al

.
[2

0]
T

he
y

de
sc

ri
be

d
a

to
ol

th
at

st
at

ic
al

ly
an

al
yz

es
SQ

L
qu

er
ie

s
em

be
dd

ed
in

Ja
va

pr
og

ra
m

s.

A
na

ly
zi

ng
SQ

L
N

o
N

/A
N

/A

Ly
u

et
al

.
[8

6]
T

he
y

pr
op

os
ed

a
st

at
ic

an
al

ys
is

ap
pr

oa
ch

to
de

te
ct

SQ
L

an
ti

-p
at

te
rn

s
in

m
ob

ile

ap
ps

.

D
et

ec
ti

ng
SQ

L
an

ti
-p

at
te

rn
s

N
o

N
/A

N
/A

O
u
r

w
or

k
W

e
p
ro

p
os

ed
an

ap
p
ro

ac
h

to
lo

ca
te

th
e

p
at

h
s

th
at

le
ad

to
th

e
ge

n
-

er
at

ed
S
Q

L
qu

er
ie

s.

L
oc

at
in

g
p
at

h
s

fo
r

S
Q

L
Y

es
Y

es
Y

es

51

(IRBL) aims to identify potentially buggy files by computing the similarity between a given software

artifact (e.g., bug report) and source code files [149, 146, 81, 136, 143, 133]. The source code files

are then ranked based on their similarity with the software artifact for investigation. Zhou et al.

[158] proposed an IR-based method named BugLocator for locating relevant source code files based

on initial bug reports by utilizing a revised Vector Space Model (rVSM) as well as similar bug

information. Wong et al. [147] proposed an approach, BRTracer, which leverages two techniques

segmentation and stack-trace analysis to improve the performance of bug localization. Wang and

Lo [142] proposed an approach called AmaLgam+ that integrates various information (e.g., version

history, similar bug reports, and stack traces) to better locate buggy files given a bug report. Lee et

al. [82] presented a comprehensive study that compares six state-of-the-art IR-based bug localization

techniques. Pradel et al. [123] presented a technique Scaffle which uses crash reports to identify

the possible file paths and the associated files that may have caused the crash. Chen et al. [35]

proposed an IRBL approach, Pathidea, which leverages logs in bug reports to re-construct execution

paths and they found that the execution path provides a significant improvement in bug localization

accuracy. Other works on IRBL focus on optimizing and reformulating queries extracted from the

bug report text [65, 64, 98, 55]. Similarly, our approach first applies static analysis to infer the

database access (i.e., templated SQL query) for each control flow path. Then, we apply information

retrieval (IR) techniques to find the control flow paths for which the inferred database accesses have

the highest similarity with the given SQL query. Different from prior IRBL approaches that aim

to locate bugs using bug reports, our approach is one of the first to apply IR techniques to locate

the origin of SQL queries. Our approach also provides additional information (i.e., the code path)

instead of only locating the method that generates the SQL query. Given a problematic SQL query,

SLocator can locate the code path that generates the query.

4.3 Approach

As discussed in Section 4.2, there are various factors that affect how a SQL query is generated

when using ORM. Hence, a simple text search based on the generated SQL query may not be

sufficient to locate the origin (i.e., the control flow path, which contains a sequence of method calls)

of the SQL query. Figure 5 provides an overview of our approach, SLocator, which automatically

locates the origin of the SQL query. SLocator uses a combination of static analysis and information

retrieval to locate the path. We first use static analysis to infer the database access of each control

flow path in the source code. Then, given SQL queries, we use information retrieval techniques

to rank the control flow paths that have the highest database access similarity (i.e., the similarity

score between the database access inferred from the control flow path and the given SQL query).

52

1. Statically Inferring Database Access1. Statically Inferring Database Access

2. Locating the Paths that Generate a Given SQL Query2. Locating the Paths that Generate a Given SQL Query

Pre-processing

Generating and Pruning

Control Flow Graphs

Ranked CFPs

CFPsSource code
CFPs with

Database Access

SQL queries
Pre-processed

SQL queries

Inferring Database Access

(Templated SQL Queries)

Applying IR for

Syntactic&Semantic Matching

1. Statically Inferring Database Access

2. Locating the Paths that Generate a Given SQL Query

Pre-processing

Generating and Pruning

Control Flow Graphs

Ranked CFPs

CFPsSource code
CFPs with

Database Access

SQL queries
Pre-processed

SQL queries

Inferring Database Access

(Templated SQL Queries)

Applying IR for

Syntactic&Semantic Matching

Figure 5: An overview of SLocator. CFP refers to control flow path and IR refers to information

retrieval.

We implement SLocator in Java based on the Java Persistent API (JPA), which is Java’s official

specification for ORM frameworks. Below, we discuss the design of SLocator in detail.

4.3.1 Statically Inferring Database Access

4.3.1.1 Generating and Pruning Control Flow Graphs

To locate the possible control flow paths that generate a given SQL query, we use static analysis

to construct the interprocedural control flow graph (CFG) of the application [131]. Specifically, the

CFG is a directed graph, where the nodes represent the basic blocks and the edges connecting the

nodes represent the transfer of control flow between basic blocks. We use Crystal1, a Java static

analysis framework that is built on top of Eclipse JDT, to analyze the source code and construct

the CFG.

In database-backed web applications, users often interact with the applications by sending HTTP

requests (e.g., using RESTFul APIs or through browsers) [14]. Therefore, SLocator statically an-

alyzes the Java API for RESTful web services (JAX-RS) [109] specifications in the source code to

identify a list of web request handling methods. An example of JAX-RS code is shown below:

@RequestMapping(value = "/owners/{ownerId}", method = RequestMethod.GET)

public Owner showOwner(int ownerId) {

Owner owner = this.clinicService.findOwnerById(ownerId);

return owner;

}

In this example, based on the JAX-RS annotations, when users send an HTTP GET request that

ends with the URL “/owners/{ownerId}”, method showOwner is called to handle the request.
1https://code.google.com/archive/p/crystalsaf/

53

https://code.google.com/archive/p/crystalsaf/

The request handling methods are used as the entry points to the uncovered control flow graphs.

For each request handling method, SLocator uncovers all of the associated control flow paths by

traversing the interprocedural CFG. As the goal of SLocator is to statically locate the control flow

path that results in generating a given SQL query, we omit cycles in the CFG. We perform a depth-

first search (DFS) to traverse the CFG and omit the vertex that has been visited before (i.e., a cycle

is detected). There may be multiple control flow paths that are associated with one request handling

method, and not every path is related to database access. Hence, we further conduct pruning to

remove the paths that do not have database access calls. In particular, we analyze if a path contains

any API call to the EntityManager class (i.e., the main class in JPA for database accesses). We prune

the path if it does not contain any call to EntityManager.

4.3.1.2 Statically Inferring the Database Access of Each Control Flow Path

When using ORM frameworks, many database accesses are abstracted as ORM API calls. As

shown in Section 4.2, in most cases, developers only need to specify the association among classes

(e.g., OneToMany or OneToOne relationships) and different database access configurations (e.g.,

EAGER or LAZY). Then, developers can access the DBMS by calling APIs such as EntityMan-

ager.find(User.class, userID). Therefore, to statically infer the database access (i.e., templated SQL

queries), we analyze both the database access methods that are called on the control flow path

and the corresponding ORM configuration. To infer the database access, we implement a database

access translator that takes as input the tuple {database access method, entity mapping, association,

retrieval strategy}, which are defined as:

• Database access methods: API calls to EntityManager.

• Entity Mapping: Annotations, such as @Table and @Column, which map an entity class to its

corresponding database table.

• Associations: ManyToOne, OneToMany, OneToOne, and ManyToMany.

• Retrieval Strategy: EAGER or LAZY.

Table 7 shows the inferred database accesses given the database access APIs, entity mapping,

association, and retrieval strategy. In addition to using method calls such as EntityManager.find(),

JPA also provides native SQL to query database tables and JPA query language (JPQL) [78] to create

queries against entities. Native SQL queries can be used in the method createNativeQuery(String

queryString) while JPQL queries can be used in createQuery(String queryString), where queryString

is the SQL query statement and JPQL query statement, respectively, to be executed. During our

analysis, we analyze the abstract syntax tree (AST) of the program to extract the potential value of

54

the string variable (i.e., queryString) as the inferred database access (i.e., inferred queries). During

the static analysis of the source code, we first use Eclipse JDT to create the AST for the method,

which contains database access API calls. Then, we handle the argument of database access API

calls, such as createQuery(String queryString). If the argument is a literal text, we extract it directly.

If the argument is a variable, we try to extract its value in the AST based on the prior variable

assignment. For the method createNamedQuery(String name), which supports both native SQL and

JPQL, the inferred database access queryString is the corresponding named query (i.e., native SQL

query or JPQL query) based on the name.

For direct calls to EntityManager APIs, the translator translates the Create, Read, Update,

and Delete (CRUD) operations to the corresponding SQL queries using the SQL query templates

shown in the table. For each operation, the translator inputs the parameters in the template, such

as table_name, column_name, and primary_key_name, based on the entity mapping to generate

the inferred SQL queries. When the association is ManyToOne, OneToOne, or when the retrieval

strategy is EAGER, the inferred SQL queries for the EntityManager API calls would contain a join

clause that selects data from two or more database tables [38, 78]. For JPQL, the inferred queries

would contain multiple select statements to select the data records from the associated tables [12].

4.3.2 Locating the Paths that Generate a Given SQL Query

SLocator uses information retrieval techniques to locate the origin of a given SQL query. The

SQL queries are used as the search term, and the corpus (i.e., collections of documents) is the

inferred database access. Each document represents the inferred database access, with a mapping

to the corresponding control flow path (as discussed in Section 4.3.1). SLocator compares both the

syntactic and semantic similarity between the inferred database access and the given SQL query.

SLocator returns a ranked list of the control flow paths whose inferred database accesses have the

highest similarity with the SQL query. Below, we discuss the approach in detail.

4.3.2.1 Pre-processing SQL Queries

The SQL queries generated by the ORM frameworks may contain dynamic elements (e.g., aliases)

that can affect localization accuracy. For example, SQL queries may contain dynamic values that

cannot be found in the source code. Consider a SQL query from PetCinic that is generated by

Hibernate:

select owner0_.id as id1_0_0_, ... pets1_.id as id1_1_1_, ... from owners owner0_ left

outer join pets pets1_ on owner0_.id=pets1_.owner_id where owner0_.id=1

where owner0_ and pets1_ are aliases for the owners and pets tables, id1_0_0_ and id1_1_1_ are

55

T
ab

le
7:

T
ra

ns
la

ti
on

s
fr

om
O

R
M

A
P

I
ca

lls
to

in
fe

rr
ed

da
ta

ba
se

ac
ce

ss
es

(t
em

pl
at

ed
SQ

L
qu

er
ie

s)
.

Fo
r

na
ti

ve
SQ

L
an

d
JP

Q
L,

SQ
L

st
at

em
en

ts

or
JP

Q
L

st
at

em
en

ts
in

qu
er

yS
tr

in
g

ar
e

ex
tr

ac
te

d
as

in
fe

rr
ed

da
ta

ba
se

ac
ce

ss
es

(i
nf

er
re

d
qu

er
ie

s)
.

V
al

ue
s

in
{

}
ar

e
st

at
ic

al
ly

in
fe

rr
ed

ba
se

d
on

th
e

en
ti

ty
m

ap
pi

ng
.

O
pe

ra
ti

on
D

at
ab

as
e

A
cc

es
s

A
P

I
In

fe
rr

ed
D

at
ab

as
e

A
cc

es
s

In
fe

rr
ed

D
at

ab
as

e
A

cc
es

s
w

it
h

E
A

G
E

R
re

tr
ie

va
l

JP
A

E
nt

it
y

M
an

ag
er

C
re

at
e

pe
rs

is
t(

O
bj

ec
t

en
ti

ty
)

in
se

rt
in

to
{t

ab
le

_
na

m
e}

({
co

lu
m

n_
na

m
e}

,.
..)

va
lu

es
(?

,.
..)

R
ea

d
fin

d(
C

la
ss

en
ti

ty
C

la
ss

,

O
bj

ec
t

pr
im

ar
yK

ey
)

se
le

ct
{c

ol
um

n_
na

m
e}

...
fr

om
{t

ab
le

_
na

m
e}

w
he

re
{p

ri
m

ar
y_

ke
y_

na
m

e}
=

?

se
le

ct
co

lu
m

n_
na

m
e

...
fr

om
ta

bl
e_

na
m

e

[j
oi

n
on

{t
ab

le
_

n
am

e.
co

lu
m

n
_

n
am

e}
=

{t
ar

ge
t_

ta
b
le

_
n
am

e.
jo

in
_

co
lu

m
n
_

n
am

e}
]
∗

w
he

re
{p

ri
m

ar
y_

ke
y_

na
m

e}
=

?

U
pd

at
e

m
er

ge
(T

en
ti

ty
)

up
da

te
{t

ab
le

_
na

m
e}

se
t

{c
ol

um
n_

na
m

e}
=

?
...

w
he

re
{p

ri
m

ar
y_

ke
y_

na
m

e}
=

?

D
el

et
e

re
m

ov
e(

O
bj

ec
t

en
ti

ty
)

de
le

te
fr

om
{t

ab
le

_
na

m
e}

w
he

re
{p

ri
m

ar
y_

ke
y_

na
m

e}
=

?

N
at

iv
e

SQ
L

C
R

U
D

cr
ea

te
N

at
iv

eQ
ue

ry
(S

tr
in

g
qu

er
yS

tr
in

g)

cr
ea

te
N

am
ed

Q
ue

ry
(S

tr
in

g
na

m
e)

qu
er

yS
tr

in
g

JP
A

Q
ue

ry
La

ng
ua

ge
C

R
U

D
cr

ea
te

Q
ue

ry
(S

tr
in

g
qu

er
yS

tr
in

g)

cr
ea

te
N

am
ed

Q
ue

ry
(S

tr
in

g
na

m
e)

qu
er

yS
tr

in
g

qu
er

yS
tr

in
g

[s
el

ec
t

{c
ol

u
m

n
_

n
am

e}
..
.

fr
om

{t
ar

ge
t_

ta
b
le

_
n
am

e}
w

h
er

e

{p
ri

m
ar

y_
ke

y_
n
am

e}
=

?]
∗

56

aliases for the ID columns in the selected tables. Including such automatically-generated IDs and

dynamic values/aliases will reduce the localization accuracy because they do not exist in the inferred

database accesses (i.e., templated SQL queries). We pre-process the SQL queries by following pre-

processing techniques that are used for software artifacts [81, 136, 143, 133, 43, 79, 24]. We first parse

the SQL queries into abstract syntax trees (ASTs) and traverse the ASTs to remove automatically-

generated variable and column names, and aliases. Then, we remove the dynamic values (i.e.,

string literals and numeric values). Finally, we transform all the words into lowercase. After the

pre-processing steps, the above-mentioned SQL query becomes:

select from owners left outer join pets where owner.id=?

Once the SQL queries are pre-processed, we apply information retrieval to find the corresponding

inferred database accesses that have the highest similarity.

4.3.2.2 Applying Information Retrieval for Syntactic and Semantic Matching

Given a SQL query (or a set of SQL queries), the goal is to find the inferred database accesses

that have the highest similarity. In particular, SLocator compares both the syntactic and semantic

similarity between the pre-processed SQL queries and the inferred database accesses.

Computing Syntactic Similarity. To compute the syntactic similarity, we represent both the

pre-processed SQL query and the inferred database access as strings and calculate the similarity

score [79, 73]. Given a SQL query q, SLocator computes the syntactic similarity as the cosine

similarity between q and the inferred database access of a control flow path p as follows:

simsyn(q, p) = cosine(q⃗, p⃗) =
q⃗ · p⃗

∥q⃗∥ · ∥p⃗∥
, (1)

where q⃗ and p⃗ are the weight vectors for the SQL query q and the inferred database access of a

control flow path p, respectively. We compute the weight vectors based on the term frequency and

inverse document frequency (i.e., tf · idf), where more weights are given to words that have higher

occurrences in a given document but have lower occurrences in the corpus (i.e., words that are more

relevant).

Computing Semantic Similarity. As found in prior studies [79, 23], semantic information in SQL

queries such as the accessed tables and operations on tables (e.g., select and update) are useful in

identifying similar SQL queries. SLocator uses the Jaccard similarity index to compute the semantic

similarity between a SQL query q and the inferred database access of a control flow path p as follows:

simsem(q, p) =
|features(q) ∩ features(p)|
|features(q) ∪ features(p)|

, (2)

57

where features(p) is the set of accessed tables and CRUD operations on tables in p. Intuitively, if the

accessed tables and operations are different between p and q, it is less likely that the two database

accesses are similar.

Combining Similarity Scores and Deriving Path Ranking. We combine the semantic and

syntactic similarity to measure the similarity score between a SQL query q and an inferred database

access of a path p as follows:

Score(q, p) = simsyn(q, p) + simsem(q, p) (3)

Score(q, p) ranges between 0 and 2, where the larger the value the higher the similarity. Given q,

we compute the Score(q, pi) for every control flow path pi generated by the previous steps in our

approach. The pi with a higher similarity score would be ranked higher in the result and is more

likely to be the path that generates q.

4.4 Evaluation

In this section, we first introduce the studied applications and experimental setup. Then, we eval-

uate SLocator by answering three research questions (RQs). For each RQ, we discuss the motivation,

approach, and results.

4.4.1 Evaluation Setup

Studied Applications. We conduct our study on seven open source applications that are popular

(i.e., with an average of 1.4K stars on GitHub), have a long development history, or have been used

in prior studies on database-backed applications [38, 39, 130, 27, 48, 32, 145]. Table 8 shows an

overview of the studied applications, such as the number of commits, database tables, Java files, and

distinct database accesses. On average, there are 33 database tables, 463 Java source code files, and

85 distinct database accesses where the SQL queries may be generated. The database-backed web

applications are implemented in Java using JPA to access the database. Among all the 595 database

accesses, 113 (19.0%) use JPA API persist(), 59 (9.9%) use JPA API find(), 54 (9.1%) use JPA

API merge(), 67 (11.3%) use JPA API remove(), 291 (48.9%) use JPQL queries, and 11 (1.8%) use

JPA criteria (the statistics of JPA API usage can be found in the online appendix [11]). No native

SQL queries are used in the studied applications. Hence, given a large number of database access

calls, manual analysis of the origin of a SQL query can be difficult. PetClinic [120] is developed and

maintained by Pivotal Software for showcasing standard practices in developing database-backed

web applications. CloudStore [45] is an e-commerce web application that is developed according to

the TPC-W benchmark [137] while BroadleafCommerce [29] is an enterprise e-commerce framework.

58

Table 8: An overview of the studied applications. DB access refers to database access.

Application Version LOC
No. of

commits

No. of

tables

No. of

Java files

No. of distinct

DB accesses

PetClinic 1.5 2.4K 707 7 38 12

CloudStore 2.0 11.2K 200 11 98 40

WallRide 1.0.0.M18 32.6K 744 35 363 93

JeeWeb 1.0 40.8K 64 31 419 112

PublicCMS 4.0 47.3K 1,103 43 496 132

bbs 5.6 129K 40 44 579 148

BroadleafCommerce 6.0.11-GA 197K 17,599 60 1,284 58

Avg. across applications – 65.8K 2,922 33 463 85

Since Broadleaf is a framework, we study the site module provided by BroadleafCommerce, which

uses Broadleaf’s APIs to build an online shopping website. PublicCMS [124] and WallRide [141] are

content management systems (CMSs). JeeWeb [74] is a development system that helps developers

generate source code. bbs [25] is a forum application and we study the admin module that is used

to manage the forum. In particular, PublicCMS is developed/maintained by a company, has over

1.6K stars on GitHub, is used in many commercial settings, and has many users around the world.

BroadleafCommerce has been developed since 2009 and has over 1.5K stars on GitHub.

Experimental Setup. We deploy the studied applications on Tomcat 7, using MySQL 5.6 as the

database management system. To simulate a real-world deployment setting, we follow a prior study

and populate the main database tables to 20,000 records [151]. For the applications that already

contain initial data records, we duplicate these records while keeping their association relationships.

For the applications that do not have initial data records, we exercise them by simulating user ac-

tions to generate data records and populate the databases. To evaluate SLocator, we exercise the

applications by running simulated workloads after the data is populated, and record the application

execution information. We first analyze the application usage and then use JMeter [56] to automat-

ically send user requests to simulate hundreds of concurrent users. For each user, we set JMeter

to generate random values for variables in the request. Hence, given hundreds of concurrent users,

each request would be called hundreds of times with random input values.

The workload covers most of the application web pages by navigating the menu. For PetClinic,

the workload covers user actions such as searching and adding/modifying owners’ and pets’ informa-

tion. For CloudStore and BroadleafCommerce, the workload covers browsing, searching for items,

59

Table 9: Statistics of running SLocator against the studied applications. Time to locate the paths

refers to the average time to rank and locate the control flow paths for a given SQL query.

Application
No. of

inferred CFPs

Static analysis

execution time (s)

Time to locate

the paths (ms)

PetClinic 18 13 7

CloudStore 64 48 12

WallRide 487 175 142

JeeWeb 333 102 20

PublicCMS 1,267 318 41

bbs 2,298 162 120

BroadleafCommerce 1,317 371 679

Avg. across applications 826 170 146

adding items to carts, and checking out. For WallRide and PublicCMS, the workload covers com-

mon actions in CMS such as editing user profiles, adding content (e.g., pictures), editing/adding

posts, and editing web pages. For JeeWeb, the workload covers editing/adding system content (e.g.,

user, department, role), configuring the database, and generating source code to query the database

tables. For bbs, the workload covers common actions in forums such as writing posts and questions,

editing/adding tags for posts and questions, and viewing posts and questions. Overall, the workload

covers 71.2% of the related web requests, 70.7% of the related database accesses, and 74% of the

related database tables. Both the workload and SQL queries generated by the workload are publicly

available (the statistics of the workload and SQL queries can be found in the online appendix) [11].

Statistics of SLocator. Table 9 shows the statistics of running SLocator against the studied

applications. On average, there are 826 control flow paths that contain database access calls leading

to generating SQL queries. Note that, each database access may generate multiple SQL queries

based on the ORM configuration and each control flow path may contain several database accesses.

Hence, the number of generated SQL queries would be even larger, which makes manual analysis

of the origin of a SQL query more difficult. We conduct all of our experiments on a Windows 10

machine with an Intel Core i5 CPU@1.70GHz and 16GB of RAM. On average, SLocator takes 170

seconds to statically analyze the source code to infer control flow paths with database access details.

SLocator takes an average of 146 milliseconds to rank and locate the control flow paths for given

SQL queries. For each release of the application, the static analysis only needs to be executed once.

Thus, the performance overhead of SLocator is relatively small.

60

Approaches and Metrics for Evaluating SLocator. In regular usage of SLocator, we would

not need any instrumentation. However, to evaluate the localization accuracy of SLocator, we use

AspectJ [57] to instrument the application to get the ground truth (i.e., the web request handling

methods and the control flow paths that generate the given SQL query). We only apply instrumen-

tation to get the ground truth. First, we set the configuration of AspectJ to define the pointcuts to

match all the methods within the application source code. During the execution of the workloads,

for each user request, AspectJ records all the methods that are executed and the corresponding SQL

queries that are sent to the DBMS (i.e., MySQL), which represents the dynamic execution path (i.e.,

the ground truth). Then, given a SQL query, we apply SLocator to find its origin and compare the

origin with the ground truth in the evaluation step. For replication purposes, we make our AspectJ

configuration publicly available [11].

We define that a dynamic execution path, d, matches with the statically uncovered control flow

path, p, if p ⊂ d. Namely, if every method in p appears in d in the same order, we say that p matches

with d (i.e., an ordered set). We define the matching using a subset due to two reasons. First, there

may be calls to external frameworks in the dynamic execution paths, which may not be captured

in the statically uncovered control flow paths. Second, there may be repeated method calls in the

dynamic execution path.

Below, we define the information retrieval metrics that we use to evaluate the effectiveness of

SLocator when locating the paths that generate the SQL queries.

Top@K. This metric calculates the percentage of the SQL queries whose dynamic execution path

matches with one of the top K results, i.e., successfully located.

Precision@K. Given a SQL query, this metric calculates the percentage of the paths that are

correctly located within the given top K results.

Precision(K) =
correctly located paths in top K

K
(4)

Mean Average Precision (MAP). Given a SQL query, this metric first calculates the average

precision (AP) for every path in the ranked paths as follows:

AP =

N∑︂
i=1

Precision(i)× pos(i)

total # of correctly located paths
(5)

where N is the number of ranked paths and pos(i) is an indicator function. pos(i) = 1 if the ith

path correctly matches with the dynamic execution path. Otherwise, pos(i) = 0. For computing

MAP, we take the average AP of all the given SQL queries.

Mean Reciprocal Rank (MRR). The reciprocal rank for a SQL query is the reciprocal of the

position of the first correctly matched path in the ranked results. This metric calculates the mean

61

of the reciprocal ranks across all SQL queries:

MRR =
1

M

M∑︂
j=1

1

rankj
(6)

where M is the number of given SQL queries and rankj means the position of the first correctly

matched path in the ranked list for the jth SQL query.

4.4.2 RQ1: How effectively can SLocator locate the code path that gen-

erates a given SQL query?

Motivation. Due to the discrepancy between the application code and the generated SQL queries,

locating where a given SQL query is generated can be a challenging task. In this RQ, we evaluate

how well SLocator can locate the paths that generated a given list of SQL queries.

Approach. In production settings, developers often only have access to DBMS logs, where DBMS

(e.g., MySQL) records the SQL queries that it executes. DBMS logs often record possibly prob-

lematic SQL queries for diagnosing database access issues (e.g., slow SQL queries or SQL queries

that caused database deadlocks) [114, 121]. We retrieve DBMS logs from MySQL and use such

logs as the input to SLocator to evaluate its effectiveness. Note that, as described in Section 4.4.1,

we obtain the dynamic execution paths that generate the SQL queries (i.e., the ground truth) by

instrumenting the applications using AspectJ. For every SQL query recorded in the DBMS log, we

map it to the corresponding SQL query and dynamic execution path captured by AspectJ.

We evaluate SLocator by using two types of DBMS logs: individual query log and SQL session

log. In the individual query log, MySQL records the execution of individual SQL queries. In the

SQL session log, MySQL records all the SQL queries that it executes and groups the queries based

on sessions (i.e., connections). Listing 4.1 shows an example of SQL session log from General Query

Log [115] in MySQL which has three columns: session ID, command, and argument.

Listing 4.1: An example of SQL session log.

1 8 Query set session transaction read only

2 8 Query SET autocommit=0

3 8 Query select owner0_.id as id1_0_0_, ... from owners owner0_ left outer join pets pets1_ on

owner0_.id=pets1_.owner_id where owner0_.id=1

4 8 Query select pettype0_.id as id1_3_0_, ... from types pettype0_ where pettype0_.id=1

5 8 Query select visits0_.pet_id as pet_id4_1_0_, visits0_.id as id1_6_0_, ... from visits

visits0_ where visits0_.pet_id=1

6 8 Query commit

62

For instance, 8 is the session ID, “Query” is the command, and the rest are arguments (i.e.,

actual SQL query). The session starts with set session transaction read only, SET autocommit=0

(Lines 1-2) and ends with commit (Line 6). We identify the session based on ID and extract query

statements on Lines 3-5 as input for SLocator. Since the SQL queries are executed in the same

connection, they reflect that the queries are generated by one sequential execution in the application

(i.e., from the same execution path).

We report two levels of granularity in the SQL query localization results: web request and control

flow path. In database-backed web applications, most user actions are handled by various web

requests. Therefore, identifying the correct web request and the corresponding request handling

methods (i.e., the root of the control flow path) that generate a given SQL query provides an

important starting point for investigation. We also report the localization results at a finer-grained

level, namely, whether SLocator can locate the execution path that generates a given SQL query.

We also compare SLocator with a baseline approach, which applies text search to locate the origin

of a given SQL query at the level of web request handling method (the baseline approach does not

contain the static analysis component so it cannot locate control flow paths). Given a SQL query,

we build a corresponding query template and search for matching database accesses in the source

code. We use query templates instead of directly using the given SQL query because there may be

major differences between the generated SQL queries and the database accesses (JPQL or calls to

EntityManager) in the source code [78] (e.g., generated SQL queries may have aliases as discussed in

Section 4.2). The query template consists of keywords such as the CRUD operations (e.g., SELECT,

UPDATE, INSERT, and DELETE) and the database tables and conditions used in the given SQL

query. For calls to ORM APIs (i.e., EntityManager), the query template consists of keywords such

as the ORM API calls and entity names inferred from the given SQL query. For example, given a

SQL query SELECT * from owners, we infer the ORM API call EntityManager.find() and the entity

name Owner. We rank the matching database accesses by calculating the cosine similarity between

the query template and the database accesses. Finally, for each matched database access call, we

analyze its call hierarchy to find the corresponding web request handling method as the origin of

the SQL query.

Results. Table 10 shows the localization results of using SQL session logs. Overall, we find that

SLocator has a high Top@K when locating both the web request and the control flow path that

generates the SQL queries. When K = 1 and K = 5, SLocator achieves an average Top@K of 54.0%

and 88.8% when locating control flow paths, and 60.2% and 91.7% when locating web requests.

The average MAP and MRR are 0.60 and 0.72 when locating control flow paths, and 0.63 and 0.75

when locating web requests. Table 11 shows the localization results of using individual query logs.

Compared to the localization results of using SQL session logs, the localization performance is lower

63

when using individual query logs. The average Top@K is 48.3% for control flow paths and 54.4%

for web requests when K = 1. When K = 5, Top@K is 74.7% and 79.6% for control flow paths and

web requests, respectively. Correspondingly, the average MAP and MRR are 0.47 and 0.64 when

locating control flow paths, and 0.53 and 0.68 when locating web requests.

SLocator has a much better localization result compared to the baseline. The baseline approach

achieves an average Top@5, MAP, and MRR of 28.2%, 0.21, and 0.22, respectively, when using

SQL session logs. When using individual query logs, the baseline achieves an average Top@5, MAP,

and MRR of 18.4%, 0.15, and 0.15, respectively. Compared to the baseline, SLocator improves the

Top@5, MAP, and MRR by 225%, 200%, and 241%, respectively, when using SQL session logs.

When using individual query logs, the improvement of Top@5, MAP, and MRR is by 333%, 253%,

and 353%, respectively.

We find that the decrease in Top@K when using individual query logs is because there may be

multiple control flow paths or web requests that can generate the same SQL query. For example, in

PetClinic, the application generates a SQL query to select pets’ visit information: select from visit

where pet_id=1, which may come from six different request handling methods: processFindform,

initCreationForm, showOwner, initUpdateOwnerForm, processUpdateOwnerForm, and processUpdate-

Form. Even for one request handling method showOwner, this SQL query may come from three

different paths. In total, the SQL query may come from nine control flow paths. Therefore, the

localization accuracy decreases when using individual query logs.

In contrast, there may be fewer web requests and control flow paths that generate a given SQL

session log. SQL queries in the SQL session log are more likely generated by the same business logic

(e.g., the same web request). Hence, it is less likely that multiple web requests and control flow paths

generate the same set of SQL queries. For example, in PetClinic, the SQL session log shown in the

previous example in Listing 4.1 may come from only two request handling methods (i.e., showOwner

and initUpdateOwnerForm) and four control flow paths. However, if we consider the individual SQL

query on Line 5, it may be generated by six request handling methods and nine control flow paths.

Nevertheless, our findings show that SLocator can still achieve good accuracy when localizing the

path given one single SQL query.

We apply SLocator on the seven studied applications and find that, on average, developers

need to investigate two control flow paths (the paths have an average of six methods) when using

SQL session logs, and five control flow paths (the paths have an average of eight methods) when

using individual query logs, to find the origin of the SQL query. Hence, developers do not need to

investigate many returned paths to find the correct SQL origin when using SLocator.

Discussion. As shown in Tables 10 and 11, SLocator has a very high Top@K across the studied

applications. However, we find that even if we increase K (e.g., set K to 10 or 20), the numbers

64

Table 10: The localization results when using SQL session logs. Request-Baseline refers to locating

the web request using the baseline approach. Request-SLocator and Path-SLocator refer to using

SLocator to locate the web request and control flow path, respectively.

Application Matching
Top@K

MAP MRR
K=1 K=3 K=5

PetClinic

Request-Baseline

Request-SLocator

Path-SLocator

9.5%

52.4%

52.4%

14.3%

95.2%

95.2%

14.3%

95.2%

95.2%

0.12

0.67

0.67

0.12

0.76

0.76

CloudStore

Request-Baseline

Request-SLocator

Path-SLocator

28.6%

71.4%

57.1%

42.9%

85.7%

85.7%

42.9%

92.9%

92.9%

0.31

0.79

0.71

0.35

0.80

0.73

WallRide

Request-Baseline

Request-SLocator

Path-SLocator

11.4%

59.1%

54.5%

22.7%

79.5%

77.3%

27.3%

95.5%

95.5%

0.17

0.62

0.65

0.18

0.73

0.71

JeeWeb

Request-Baseline

Request-SLocator

Path-SLocator

4.0%

40.4%

37.4%

16.2%

85.9%

78.8%

16.2%

90.9%

82.8%

0.09

0.38

0.35

0.09

0.65

0.66

PublicCMS

Request-Baseline

Request-SLocator

Path-SLocator

10.0%

86.0%

70.0%

20.0%

96.0%

88.0%

26.0%

98.0%

94.0%

0.16

0.75

0.67

0.17

0.93

0.83

bbs

Request-Baseline

Request-SLocator

Path-SLocator

31.4%

64.3%

58.6%

34.3%

85.7%

78.6%

35.7%

91.4%

82.9%

0.32

0.62

0.57

0.33

0.77

0.73

Broadleaf-

Commerce

Request-Baseline

Request-SLocator

Path-SLocator

26.1%

47.8%

47.8%

34.8%

60.9%

60.9%

34.8%

78.3%

78.3%

0.30

0.59

0.56

0.30

0.60

0.60

Avg. across

applications

Request-Baseline

Request-SLocator

Path-SLocator

17.3%

60.2%

54.0%

26.5%

84.1%

80.6%

28.2%

91.7%

88.8%

0.21

0.63

0.60

0.22

0.75

0.72

65

Table 11: The localization results when using individual query logs. Request-Baseline refers to

locating the web request using the baseline approach. Request-SLocator and Path-SLocator refer to

using SLocator to locate the web request and control flow path, respectively.

Application Matching
Top@K

MAP MRR
K=1 K=3 K=5

PetClinic

Request-Baseline

Request-SLocator

Path-SLocator

15.4%

69.2%

69.2%

23.1%

92.3%

92.3%

23.1%

100.0%

100.0%

0.19

0.65

0.65

0.19

0.82

0.82

CloudStore

Request-Baseline

Request-SLocator

Path-SLocator

16.1%

61.3%

45.2%

19.4%

77.4%

61.3%

19.4%

87.1%

80.6%

0.18

0.61

0.47

0.18

0.71

0.58

WallRide

Request-Baseline

Request-SLocator

Path-SLocator

8.0%

35.2%

30.7%

13.6%

54.5%

52.3%

15.9%

60.2%

59.1%

0.11

0.36

0.34

0.11

0.50

0.47

JeeWeb

Request-Baseline

Request-SLocator

Path-SLocator

3.3%

52.0%

48.8%

10.6%

87.0%

78.0%

10.6%

90.2%

80.5%

0.06

0.46

0.42

0.06

0.72

0.74

PublicCMS

Request-Baseline

Request-SLocator

Path-SLocator

10.8%

62.2%

52.7%

18.9%

71.6%

66.2%

18.9%

73.0%

68.9%

0.14

0.55

0.47

0.14

0.74

0.66

bbs

Request-Baseline

Request-SLocator

Path-SLocator

26.0%

53.0%

48.0%

30.0%

69.0%

63.0%

30.0%

77.0%

71.0%

0.28

0.52

0.48

0.28

0.68

0.68

Broadleaf-

Commerce

Request-Baseline

Request-SLocator

Path-SLocator

8.7%

47.8%

43.5%

10.9%

63.0%

54.3%

10.9%

69.6%

63.0%

0.10

0.54

0.44

0.10

0.59

0.53

Avg. across

applications

Request-Baseline

Request-SLocator

Path-SLocator

12.6%

54.4%

48.3%

18.1%

73.5%

66.8%

18.4%

79.6%

74.7%

0.15

0.53

0.47

0.15

0.68

0.64

66

still may not reach 100%. The finding shows that there may be some SQL queries for which we

cannot find the corresponding statically inferred control flow path. After some manual investigation,

we find that such mismatches are caused by the limitation of static analysis and the frameworks

that these applications use. For example, PetClinic uses the Spring framework [13] for web request

handling and adds the @ModelAttribute=“visit” annotation to the method loadPetWithVisit(). The

method loadPetWithVisit() contains a database access call, but the method is not used in all the

Java files. We find that the model attribute (i.e., “visit”) is referenced in one of the JSP (Java Server

Page) files that takes input from the user. In other words, loadPetWithVisit() is called automatically

when a user submits a web form to the application server, which is the reason why SLocator was

not able to find the control flow path that generates the given SQL query. The issue is common

across the studied applications. As another example, in WallRide, developers override the method

postHandle() from the Spring framework. postHandle() is executed automatically after handling each

web request, and the overridden postHandle() contains database access calls.

In short, even though our results show that SLocator is able to locate the path where a given

SQL query is generated with good accuracy, there are still some limitations caused by static analysis.

Future studies may consider the frameworks that the application uses to increase the accuracy of

static analysis.

We find that SLocator achieves good localization accuracy. When using SQL session logs, the

origin (i.e., the CFP) of 54% of the SQL queries can be located in Top@1, and almost 89% can

be located in Top@5. When using individual SQL queries, the origin of more than 48% of the

SQL queries can be located in Top@1, and almost 75% can be located in Top@5. On average,

developers need to investigate two and five control flow paths to find the origin when using SQL

session logs and individual SQL queries, respectively.

4.4.3 RQ2: What is the localization accuracy for SQL queries with dif-

ferent lengths?

Motivation. In RQ1, we evaluate the overall localization accuracy of SLocator. However, the

recorded SQL queries may have different complexities such as lengths which may affect how SLocator

performs. In this RQ, we evaluate the accuracy of SLocator in localizing the paths for SQL queries

with different lengths (i.e., the number of words involved).

Approach. The goal of RQ2 is to assess the ability of SLocator to locate SQL queries with different

lengths. Since the range of SQL query lengths varies in the studied applications, instead of using

a pre-defined threshold for all the applications, we classify the length of the SQL queries in each

67

Table 12: The localization results for SQL queries with different lengths (i.e., bottom, middle, and

top) when using individual query logs. The length of SQL queries is measured using the number of

words and is classified into three buckets based on the quantiles (i.e., bottom 1/3, middle 1/3, and

top 1/3). Request and Path refer to using SLocator to locate the web request and control flow path,

respectively. SQL lengths refer to the range of SQL query lengths.

Application Matching

Bottom length Middle length Top length

SQL

lengths

Top@K

MAP MRR
SQL

lengths

Top@K

MAP MRR
SQL

lengths

Top@K

MAP MRRK=1 K=3 K=5 K=1 K=3 K=5 K=1 K=3 K=5

PetClinic
Request

7–9
75.0% 100.0% 100.0% 0.58 0.88

10–31
75.0% 100.0% 100.0% 0.71 0.88

59–113
60.0% 80.0% 100.0% 0.66 0.74

Path 75.0% 100.0% 100.0% 0.58 0.88 75.0% 100.0% 100.0% 0.71 0.88 60.0% 80.0% 100.0% 0.66 0.74

CloudStore
Request

5–20
80.0% 90.0% 90.0% 0.69 0.84

21–68
60.0% 80.0% 90.0% 0.60 0.73

79–266
45.5% 63.6% 81.8% 0.55 0.58

Path 60.0% 60.0% 90.0% 0.44 0.67 40.0% 70.0% 80.0% 0.50 0.57 36.4% 54.5% 72.7% 0.48 0.50

WallRide
Request

5–12
51.7% 72.4% 86.2% 0.51 0.64

12–57
24.1% 44.8% 44.8% 0.25 0.34

57–990
30.0% 46.7% 50.0% 0.35 0.42

Path 44.8% 69.0% 82.8% 0.48 0.60 20.7% 44.8% 44.8% 0.24 0.32 26.7% 43.3% 50.0% 0.33 0.40

JeeWeb
Request

5–10
65.9% 95.1% 95.1% 0.52 0.81

10–51
26.8% 85.4% 90.2% 0.36 0.57

51–141
63.4% 80.5% 85.4% 0.50 0.74

Path 63.4% 87.8% 87.8% 0.49 0.76 24.4% 75.6% 78.0% 0.31 0.50 58.5% 70.7% 75.6% 0.46 0.67

PublicCMS
Request

5–6
75.0% 83.3% 87.5% 0.70 0.80

6–22
64.0% 72.0% 72.0% 0.54 0.69

23–106
48.0% 64.0% 64.0% 0.52 0.56

Path 70.8% 83.3% 87.5% 0.60 0.78 56.0% 68.0% 68.0% 0.53 0.63 48.0% 64.0% 64.0% 0.46 0.56

bbs
Request

5–7
75.8% 84.8% 93.9% 0.71 0.82

7–21
69.7% 81.8% 81.8% 0.57 0.75

22–100
14.7% 41.2% 55.9% 0.28 0.33

Path 69.7% 78.8% 87.9% 0.65 0.76 60.6% 69.7% 69.7% 0.53 0.65 14.7% 41.2% 55.9% 0.27 0.33

Broadleaf-

Commerce

Request
5–11

33.3% 46.7% 66.7% 0.49 0.45
13–39

40.0% 46.7% 46.7% 0.46 0.47
39–447

37.5% 62.5% 75.0% 0.46 0.52

Path 33.3% 46.7% 66.7% 0.46 0.45 40.0% 40.0% 46.7% 0.36 0.45 37.5% 62.5% 75.0% 0.45 0.52

Avg. across

applications

Request – 65.2% 81.8% 88.5% 0.60 0.75 – 51.4% 73.0% 75.1% 0.50 0.63 – 42.7% 62.6% 73.2% 0.47 0.56

Path – 59.6% 75.1% 86.1% 0.53 0.70 – 45.2% 66.9% 69.6% 0.45 0.57 – 40.3% 59.5% 70.5% 0.44 0.53

studied application into three buckets based on the quantiles (i.e., bottom 1/3, middle 1/3, and top

1/3). We use length (number of words) as a proxy for the complexity of a SQL query, whereas a

longer SQL query has a higher complexity. We evaluate the effectiveness of SLocator on localizing

the paths for SQL queries in each studied application across the three length groups.

Results. Table 12 shows the localization results for SQL queries at different length groups (i.e.,

bottom 1/3, middle 1/3, and top 1/3) when using individual query logs. We observe that, in most

studied applications, bottom-length SQL queries get better localization results than middle-length

SQL queries, which in turn get better localization results than top-length SQL queries. When

locating web requests for SQL queries that belong to the three length groups, the average Top@1

are 65.2%, 51.4%, and 42.7% while the Top@5 are 88.5%, 75.1%, and 73.2%, respectively. When

locating control flow paths for SQL queries that belong to the three length groups, the average Top@1

are 59.6%, 45.2%, and 40.3% while the Top@5 are 86.1%, 69.6%, and 70.5%, respectively. We find

that the decrease in Top@K for SQL queries at different length groups is because longer SQL queries

have more words involved, and therefore, are harder to be matched with corresponding control flow

paths’ inferred database accesses compared to shorter SQL queries. Nevertheless, SLocator achieves

good localization results for SQL queries with different lengths. For the SQL queries with length

in the top 1/3, the average Top@5 are 73.2% and 70.5% for web requests and control flow paths,

68

respectively. Compared to the result in RQ1, the decreases are by 8% and 6%, respectively. These

results suggest that SLocator can be used to effectively locate the code path for SQL queries at

different length groups.

We find that SLocator achieves better localization results for short SQL queries compared to

long SQL queries. For the SQL queries with length in the top 1/3, SLocator achieves good

localization results - the average Top@5 are 73.2% and 70.5% for web requests and control flow

paths, respectively.

4.4.4 RQ3: Can SLocator help localize issues in database-backed web

applications?

Motivation. Database access performance is critical in database-backed applications since it di-

rectly affects the user-perceived quality [151, 38, 150]. Most DBMSs record slow SQL queries and

database deadlocks for developers to conduct further investigation [116, 113, 112]. Slow SQL log

records the SQL queries that take longer than a predefined threshold (e.g., one second) to exe-

cute. Such slow SQL queries may indicate performance issues or opportunities for performance

optimization. Deadlock log records the SQL queries that were blocked when deadlocks happen. In

database-backed applications, each database transaction may execute multiple SQL queries. Dead-

locks happen when two or more database transactions are waiting for one another to release locks.

Database deadlock is one of the main reasons for major performance degradation [40, 62].

In the previous RQs, we evaluate the overall localization accuracy of SLocator. In this RQ, we

conduct two case studies, i.e., slow SQL queries and SQL queries that cause database deadlocks, to

illustrate how SLocator helps localize database access issues in database-backed web applications.

Approach. As described in Section 4.4.1, we populate the data in the database since many per-

formance issues only occur under large loads [38, 150]. We evaluate SLocator using either existing

slow SQL queries or injected database deadlocks. Below, we discuss how we trigger/inject the

performance issues.

Triggering Slow Queries: To trigger slow queries, we exercise the applications by running the same

workload that we used in RQ1 and configure MySQL to record the execution time of each SQL

query. Then, we calculate the average execution time for each unique SQL query and take the top

10% most time-consuming queries as slow SQL queries by following a prior study [151].

Injecting and Triggering Database Deadlocks: Injecting deadlocks requires much manual effort, and

a deep understanding of the database tables and the business logic of the system. Therefore, we

choose WallRide, a medium size application with 35 database tables, to inject a deadlock. The size

69

of WallRide is not too small for a study on deadlocks and is feasible for manual study the application

source code to inject a deadlock. However, since SLocator achieves similar localization results across

the studied applications, we believe SLocator can still help locate the origin of deadlocking SQL

queries in other applications. We inject a deadlock in WallRide by changing the lock model type

from PESSIMISTIC_WRITE (i.e., pessimistic write lock) to NONE (i.e., no lock) [110] (Lines 3-4),

as shown in Listing 4.2.

The method PostRepositoryImpl.lock is called before retrieving data from the DBMS and locks

the corresponding database records with a pessimistic write lock. A pessimistic write lock is an

exclusive lock in MySQL [97], which prevents concurrent writing of the same records and reduces

the likelihood of deadlock in the database. By changing the lock to NONE, there will be chances that

a deadlock may happen. After injecting the deadlock, we build and deploy the modified application.

We use JMeter to automatically send user requests and simulate hundreds of concurrent users to

trigger the deadlock.

Listing 4.2: Database deadlock injected in WallRide.

1 public void PostRepositoryImpl.lock(long id) {

2 ...

3 - entityManager.createQuery(query).setLockMode(LockModeType.PESSIMISTIC_WRITE).getSingleResult();

4 + entityManager.createQuery(query).setLockMode(LockModeType.NONE).getSingleResult();

Results.

Slow Queries: We give an example from PetClinic to demonstrate how SLocator locates the origin

of a slow SQL query. The slow SQL log identifies the following SQL query as slow in PetClinic:

select distinct owner0_.id as id1_0_0_, ... from owners owner0_ left outer join pets

pets1_ on owner0_.id=pets1_.owner_id where owner0_.last_name like ’%’

The SQL query searches for the owner whose last name matches any string (i.e., like ‘%’, where

the wildcard ‘%’ means a string with zero or more characters). By using this SQL query as the

input to SLocator, SLocator returns the control flow path as shown in Listing 4.3 as the first ranked

result. To gain more information about the inferred control flow paths, SLocator also returns calls

to third-party libraries in the returned path. For instance, the request method processFindForm calls

the methods findOwnerByLastName and java.util.Map.put, while the generic method java.util.Map.put

is from Java’s util library. The method findByLastName accesses the DBMS and generates three SQL

queries Q1, Q2, and Q3, where the slow query is generated (i.e., Q1).

Listing 4.4 shows the corresponding source code containing the origin of the slow SQL query.

70

Based on the control flow path returned by SLocator, the potential execution path of the source

code covers Line 3 and Lines 9-10 (as highlighted in blue). Line 10 indicates that all the owners

retrieved from the DBMS will be displayed on one web page ownersList.html. The performance issue

occurs when there are many owners whose last name matches the given search string. For this

particular SQL query, it retrieves and displays all the users. A solution is to add pagination so that

only a limited number of owners would be retrieved and displayed for every page. Note that, in this

example, the performance issue would not occur if the code executes the first or the second branch

(i.e., the number of matched owners is zero or one). Hence, the control flow path that is returned

by SLocator may provide additional information to locate performance issues.

Listing 4.3: The control flow path and inferred database access returned by SLocator for a slow SQL

query in PetClinic.

1 String ownercontroller.processFindForm(Owner, BindingResult, Map)

2 Collection<Owner> ClinicServiceImpl.findOwnerByLastName(String)

3 Collection<Owner> JPAOwnerRepositoryImpl.findByLastName(String)

4 [Q1: select distinct owner from owner owner left join fetch owner.pets where

owner.lastname like :lastname]

5 [Q2: select id, name from types where id=?]

6 [Q3: select id, visit_date, description from visits where id=?]

7 V java.util.Map.put(K, V)

Listing 4.4: Source code containing the origin of the slow SQL query.

1 String ownercontroller.processFindForm(Owner, BindingResult, Map){

2 // find owners by last name

3 Collection<Owner> results = this.clinicService.findOwnerByLastName(owner.getLastName());

4 if (results.isEmpty()) { // branch 1: no owners found

5 ...

6 } else if (results.size() == 1) { // branch 2: 1 owner found

7 ...

8 } else { // branch 3: multiple owners found

9 model.put("selections", results);

10 return "owners/ownersList";

11 }

12 }

Database Deadlocks: We use the injected deadlock in WallRide to illustrate the usage of SLocator

to locate the origin of deadlock SQL queries for further diagnosis. Figure 6a shows the deadlock log

obtained by using the MySQL command SHOW ENGINE INNODB STATUS. Two SQL queries are

71

String PageBulkDeleteController.delete(...)
 List<Page> PageService.bulkDeletePage(...)
 Page PageService.deletePage(...)
 void PostRepositoryImpl.lock(long)
 [Q: select from post where post.id=?]
 void PageRepository.delete(Page)

String PageEditController.saveAsPublished(...)
 Page PageService.savePageAsPublished(...)
 Page PageService.savePage(...)
 void PostRepositoryImpl.lock(long)
 [Q: select from post where post.id=?]
 Page PageRepository.save(Page)

*** (1) TRANSACTION: 1

*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS ... index `PRIMARY` of table `wallride`.`post` …

*** (2) TRANSACTION: 2

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS ... index `PRIMARY` of table `wallride`. `post_category` ...

insert into `post_category` (`post_id`, `category_id`) values (5, 1)

delete from `post` where `id`=5

 [Q1: delete from post_category where post_id=?]
 [Q2: delete from post where id=?]

 [Q3: update post set updated_at=?, body=? where id=?]
 [Q4: insert into post_category (post_id, category_id) values (?, ?)]

(a) Deadlock log obtained from MySQL. A deadlock happens when two
transactions T1 and T2 access database tables post and post_category.

(b) The control flow paths and inferred database access for the
deadlock SQL queries.

Locate

Locate

Figure 6: Using SLocator to locate the paths in the control flow graphs that result in generating

deadlock SQL queries.

blocked (as highlighted in blue), waiting for a lock to be granted in transactions T1 (TRANSAC-

TION: 1) and T2 (TRANSACTION: 2), respectively. However, it is unknown how this deadlock

happens according to the log because these two SQL queries should not block each other as they

access different tables (i.e., post and post_category).

By using the first blocked SQL query in transaction T1 as the input to SLocator, SLocator

returns the first control flow path shown in Figure 6b. Note that the path returned by SLocator

is one specific path in the control flow graph, so the methods are on the same call path (i.e., no

branching in between). The request handling method PageBulkDeleteController.delete (i.e., the root

of the returned control flow path) calls the method PageService.bulkDeletePage, which in turn calls

the method PageService.deletePage. PostRepositoryImpl.lock accesses the DBMS and generates the

SQL queries Q. PageRepository.delete accesses the DBMS and generates two SQL queries Q1 and

Q2, where SLocator locates Q2 as where the first blocked SQL query is generated. Note that Q

and Q1 must have been executed since Q, Q1, and Q2 are on the same control flow path. Similarly,

using the second blocked SQL query in Figure 6a as the input, SLocator returns the second control

flow path shown in Figure 6b.

Based on the control flow paths that are returned by SLocator, we can see that Q1 and Q4 access

the post_category table, and Q2 and Q3 access the post table. Since Q1 and Q4, and Q2 and Q3 are

in different methods, a deadlock may happen when the two methods are executed by two separate

transactions. For example, a transaction T1 may hold the lock on the post_category table (i.e.,

executing Q1) while another transaction T2 holds the lock on the post table (i.e., executing Q3). In

this case, T1 cannot execute Q2 because T2 is holding the lock; and T2 cannot execute Q4 because

T1 is holding the lock. Possible ways to solve this deadlock are to execute the SQL queries that

72

access the same set of tables in a fixed order, or add a pessimistic lock (as shown in Listing 4.2).

In short, the origins of the SQL queries returned by SLocator may provide developers additional

information to investigate the root cause of deadlocks.

We evaluate SLocator to illustrate its usage in locating the application code that results in

generating two cases of problematic SQL queries, i.e., slow SQL queries and SQL queries that

cause database deadlocks. We find that SLocator provides developers with additional information

to localize the database access issues.

4.5 Threats to Validity

External Validity. We evaluate SLocator exclusively on seven open-source applications imple-

mented using the Hibernate ORM, which may affect the generalizability of our results. To mitigate

these threats, we choose the studied applications with various sizes (the LOC ranges from 2.4K to

197K) across different domains such as e-commerce, CMS, and forum to improve the generalizabil-

ity. Another threat may come from the studied application PetClinic, which only has 2.4K lines of

source code. However, we find that the average accuracy does not change much after excluding Pet-

Clinic. For example, when using SQL session logs, the average Top@5 for locating the web request

changes from 91.7% to 91.2% while the average Top@5 for locating the control flow path changes

from 88.8% to 87.7%. Moreover, the approach in SLocator may be applicable to applications us-

ing non-Hibernate ORM. Future studies may apply the needed changes to evaluate how SLocator

performs on applications implemented using other ORM frameworks.

Construct Validity. One possible threat to construct validity might come from the workload in

our experimental setup. We use simulated workload to exercise different workflows in the studied

applications. However, this simulated workload may not cover all the workflows and may not be

representative of real application workflows. To mitigate these threats, our workload achieves high

coverage of the web page and database table, although a high value in different metrics is needed to

fully address the construct threat.

A Limitation of static analysis in our approach. One threat is the limitation of static analysis in

inferring control flow paths (as discussed in RQ1). For example, due to different used frameworks

and the embedded code logic in the user interface (UI), static analysis may not be able to infer the

complete code path that generates a SQL query. Future studies need to consider the peculiarity of

various web frameworks of applications when analyzing the source code statically. Another limitation

may exist in inferring the database access that occurs outside of the web requests. We choose the web

request handling methods as the entry points to the studied applications because most functionalities

73

in a web-based application are accessible through web requests. To verify our design decision, we

conduct a backward control flow analysis on the entry points of the database access calls in the

studied applications. We found that among all the database accesses, only one database access call

in JeeWeb is triggered by a timer in the application instead of accessible through web requests. The

limitation of static analysis may also exist in inferring database accesses. Our approach translates

the basic and commonly used CRUD operations of the JPA API calls to infer database accesses

(templated SQL queries), and extracts the native SQL query and JPQL query as inferred database

accesses (inferred queries) (as discussed in Section 4.3.1.2). We did not include criteria APIs

due to their dynamic nature. However, we carefully checked the source code of the seven studied

applications and found that criteria queries are less used compared to the basic CRUD operations

of the JPA EntityManager (there are only 11 usages of Criteria among all the 595 usages of JPA

APIs in the studied applications). Future studies should consider examining the usage of various

JPA APIs and may expand SLocator’s translation layer to cover APIs such as Criteria.

Populated database. We use the synthesized database content to populate the main database

tables (as discussed in Section 4.4.1). However, the applications running on the synthesized data

may behave differently from the actual deployments, which may affect the execution of the studied

applications. To mitigate these threats, we try to populate realistic values into the database. For

example, we populate unique email addresses and realistic addresses into customer and address tables

in BroadleafCommerce. Besides, all of the synthesized database data still follows the association

relationships and database constraints in the database. Hence, the applications should execute well

on the synthesized database data. The synthetic database data and data-populating scripts (written

in procedures in MySQL) are publicly available [11].

4.6 Conclusion

Object-relational mapping (ORM) frameworks are widely used to abstract database access in

database-backed web applications. However, when using ORM, developers do not have full control

of how a SQL query is generated. Therefore, given a problematic SQL query, developers may

encounter challenges to know how and locate where the SQL query is generated. In this chapter,

we propose SLocator, an automated approach to locate the control flow path (i.e., the origin) that

generates a given SQL query. SLocator combines static analysis and information retrieval (IR)

techniques for locating the origin. We evaluate SLocator on seven open source applications by

using two types of DBMS logs: SQL session log and individual query log. SLocator achieves good

localization accuracy and has a better localization result compared to the baseline. We also conduct

a study to demonstrate how SLocator may be used to locate the database access code that generates

74

problematic SQL queries (i.e., slow SQL queries and database deadlocks). Our findings show the

potential of using IR techniques to help locate database-related issues.

75

Part III

Conclusion and Future Work

76

Chapter 5

Thesis Contributions and Future

Work

In this chapter, we summarize the research and contribution of this thesis. We also discuss

potential future work related to database access in database-backed applications.

5.1 Summary

Despite the widespread use of database-backed applications, the inherent difference between

these applications and the underlying DBMS makes database access challenging. Developers may

face various challenges in accessing the database when using different technologies. Additionally, due

to the abstraction of ORM frameworks, developers may face challenges when debugging database

access problems associated with problematic SQL queries. To address these challenges, this thesis

aims to understand database access issues and assist in debugging database access issues by locating

the associated problematic SQL queries. By manually examining bug reports and commit histories

of large-scale Java applications that use SQL queries or ORM frameworks, we investigate and derive

the characteristics of database access issues, including categories, root cause, impact, and occurrence.

We believe that our findings can be useful for developers to help them avoid pitfalls and serve as

a checklist to help testers improve test scenarios that address specific database access bugs. Our

results also provide motivations and guidelines for future research to help avoid, detect, and test

database access bugs in database-backed applications. Furthermore, we propose an approach for

locating the origin (i.e., the control flow path containing a sequence of method calls) that generates

a given SQL query. The approach is effective in locating data access issues that generate problematic

SQL queries, such as slow SQL queries and SQL queries that cause database deadlocks. The results

77

show the potential of using IR techniques to help locate database-related issues.

5.2 Thesis Contribution

To address the challenges of database access, this thesis aims to understand the characteristics

of database access issues and proposes an approach to locate database issues related to SQL queries.

The contributions of this thesis are summarized as follows:

• We empirically study the characteristics of database access bugs in Java applications. We

derive five categories (SQL queries, Schema, API, Configuration, SQL query result) of the

root causes of database access bugs, containing 25 unique root causes, which can be useful to

help developers avoid pitfalls and serve as a checklist to help testers improve test scenarios

that address specific database access bugs (Chapter 3).

• To the best of our knowledge, we conduct the first empirical study of database access bugs

across JDBC and Hibernate. We find that SQL queries, Schema, and API bugs cover 84.2% of

database access bugs across all studied applications. In particular, SQL queries bug (54%) and

API bug (38.7%) are the most frequent issues when using JDBC and Hibernate, respectively.

The distribution of database access bugs between using JDBC and ORM frameworks provides

complementary to developers in selecting database access technologies, which often require

trade-offs (Chapter 3).

• We propose SLocator, which leverages both static analysis and information retrieval (IR)

techniques to locate where a SQL query is generated in the application code. Our approach

outperforms the baseline approach and achieves good localization results for different levels of

granularity in SQL queries. For SQL queries in sessions, it achieves a Top@5 accuracy ranging

from 78.3% to 95.5% , marking a 225% improvement over the baseline. For individual query

logs, the Top@5 accuracy ranges from 59.1% to 100%, marking a 333% improvement compared

to the baseline (Chapter 4).

5.3 Future work

This thesis aims to understand the database access bugs during the development of database-

backed applications and provides support on locating the SQL queries in the application source

code that may cause database access issues. There are still many open challenges and research

opportunities that may complement this thesis to improve the quality of database access code or

78

provide support for developers to test and debug the database access. We highlight some directions

for future work.

Supporting for the development of database access code in database-backed applica-

tions. In this thesis, we find that database access bugs related to SQL queries or the database

schema (e.g., syntax error or inconsistency with the database schema) are the most frequent cate-

gory of database access bugs when using JDBC. For example, developers may make a typo in the

SQL query or fail to construct the search criteria in the SQL query as expected, resulting in prob-

lematic SQL queries that are not checked at compile time. We also find that these types of bugs

still exist when using Hibernate because developers may need to use HQL/JPQL queries for more

complex database access. Therefore, to assist developers improve the quality of database-backed ap-

plications, there is a need for better tooling support to verify the SQL queries and database schema.

Specifically, future research may work on tools that statically extract the SQL queries (including

HQL/JPQL queries) from the application code and verify their syntax. The tools can also verify the

consistency between the database schema and the SQL queries extracted from the the application

code. In this way, these tools statically detect errors in SQL queries and will alleviate more SQL

query bugs during system development.

Supporting for the maintenance of database access code in database-backed applica-

tions. Future research may develop new approaches to automatically maintain database access code.

During the development of database-backed applications, both the database schema and the ORM-

related code evolves frequently [125, 42]. However, this evolution of database-backed applications

and the underlying database can lead to inconsistencies between the SQL query and the database

schema. For example, in this thesis we find that the table/column specified in the SQL query may

be deleted, renamed, or not yet created in the database, leading to database access bugs. Therefore,

developers may benefit from approaches that automatically suggest updates to the database schema

or database access code when developers modify the code. For example, when a developer modifies

the database schema, the approach can automatically identify all the database access code (e.g.,

either SQL queries or ORM database access APIs) that is affected by the change and needs to be

updated.

Examining the Adequacy of Database Access Testing in Large-Scale Database-Backed

Applications. In this thesis, we investigate the root cases of database access bugs and find that

some database access bugs occur when the database access code is not fully covered by the test

cases. However, there is a lack of study on the adequacy of database access testing in large-scale

database-backed applications. In the future, we can further investigate the open source database-

backed applications by examining what percentage of database access methods are covered by the

tests and what types of database access methods are prone to be missed by the tests. For those

79

database access methods associated with tests, we can further examine their line coverage and branch

coverage. If the lines of the database access methods are not fully covered, we can examine what

specific database access source code (e.g., building query criteria) is missed. For the uncovered

specific types of database access methods and lines of the database access source code, developers

can focus on them when writing database access tests, and researchers can work on automatic tools

to generate adequate tests for them.

Examining the Effectiveness of Automatic Test Generation on Database Access Code.

Unit tests play a key role in ensuring program correctness. However, writing unit tests manually is

a time-consuming and laborious task. Automated test generation techniques, such as the state-of-

the-art search-based software testing tool EvoSuite [58], have shown their effectiveness. However,

these techniques may be hampered when generating tests for database access code. Database access

code may not be fully covered because it depends on the state of the database. For example, the

database access code may have different paths to handle the query results. If the database has

no corresponding data row, it will not return a query result, and the corresponding path may not

be covered. In future studies, we may seek to investigate the effectiveness of search-based test

generation, machine-based test generation, and large-language model-based test generation on the

database access code. Specifically, we will focus on the correctness, coverage, and readability of the

automatically generated tests.

80

Bibliography

[1] Django. URL https://www.djangoproject.com/.

[2] Pep 249 – python database api specification v2.0. URL https://peps.python.org/

pep-0249/.

[3] A modern, simple and very fast mysql library for ruby, . URL https://github.com/

brianmario/mysql2.

[4] Ruby on rails, . URL https://rubyonrails.org/.

[5] Sqllint - detecting semantic errors in sql queries. URL https://dbs.informatik.uni-halle.

de/sqllint/.

[6] channable/dbcritic. https://github.com/channable/dbcritic. (Accessed on 03/25/2023).

[7] Db optimization service - holistic.dev. https://holistic.dev/. (Accessed on 03/25/2023).

[8] What java orm do you prefer, and why?, 2009. URL https://stackoverflow.com/

questions/452385/what-java-orm-do-you-prefer-and-why.

[9] Jpa or jdbc, how are they different?, 2012. URL https://stackoverflow.com/questions/

11881548/jpa-or-jdbc-how-are-they-different/.

[10] Replication package, 2021. URL https://github.com/SPEAR-SE/

empirical-db-issue-data.

[11] Online appendix/replication package for “SLocator: Localizing the origin of sql queries

in database-backed web applications”, 2021. URL https://github.com/liuwei-tianshu/

SLocator.

[12] Eager fetching is a code smell when using jpa and hibernate. https://vladmihalcea.com/

eager-fetching-is-a-code-smell/, 2021. Last accessed Aug. 2021.

[13] Spring framework. https://spring.io/, 2021. Last accessed Aug. 2021.

81

https://www.djangoproject.com/
https://peps.python.org/pep-0249/
https://peps.python.org/pep-0249/
https://github.com/brianmario/mysql2
https://github.com/brianmario/mysql2
https://rubyonrails.org/
https://dbs.informatik.uni-halle.de/sqllint/
https://dbs.informatik.uni-halle.de/sqllint/
https://github.com/channable/dbcritic
https://holistic.dev/
https://stackoverflow.com/questions/452385/what-java-orm-do-you-prefer-and-why
https://stackoverflow.com/questions/452385/what-java-orm-do-you-prefer-and-why
https://stackoverflow.com/questions/11881548/jpa-or-jdbc-how-are-they-different/
https://stackoverflow.com/questions/11881548/jpa-or-jdbc-how-are-they-different/
https://github.com/SPEAR-SE/empirical-db-issue-data
https://github.com/SPEAR-SE/empirical-db-issue-data
https://github.com/liuwei-tianshu/SLocator
https://github.com/liuwei-tianshu/SLocator
https://vladmihalcea.com/eager-fetching-is-a-code-smell/
https://vladmihalcea.com/eager-fetching-is-a-code-smell/
https://spring.io/

[14] Usage statistics of site elements for websites, 2022. URL https://w3techs.com/

technologies/overview/site_element.

[15] Pypl popularity of programming language index. https://pypl.github.io/PYPL.html, 2022.

(Accessed on 12/21/2022).

[16] ADempiere. Adempiere business suite, 2021. URL https://github.com/adempiere/

adempiere.

[17] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. Students’ semantic mistakes

in writing seven different types of sql queries. In Proceedings of the 2016 ACM Conference on

Innovation and Technology in Computer Science Education, ITiCSE ’16, page 272–277, New

York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342315.

[18] Bader Alshemaimri, Ramez Elmasri, Tariq Alsahfi, and Mousa Almotairi. A survey of prob-

lematic database code fragments in software systems. Engineering Reports, 3(10):e12441, 2021.

[19] David Anderson. Modeling and analysis of sql queries in php systems. Master’s thesis, East

Carolina University, April 2018.

[20] Aivar Annamaa, Andrey Breslav, Jevgeni Kabanov, and Varmo Vene. An interactive tool

for analyzing embedded sql queries. In Kazunori Ueda, editor, Programming Languages and

Systems, pages 131–138, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-

642-17164-2.

[21] Andrea Arcuri. RESTful api automated test case generation with evomaster. ACM Trans.

Softw. Eng. Methodol., 28(1), jan 2019. ISSN 1049-331X.

[22] Andrea Arcuri and Juan P. Galeotti. Handling sql databases in automated system test gener-

ation. ACM Trans. Softw. Eng. Methodol., 29(4), jul 2020. ISSN 1049-331X.

[23] N. Arzamasova, K. Böhm, B. Goldman, C. Saaler, and M. Schäler. On the usefulness of sql-

query-similarity measures to find user interests. IEEE Transactions on Knowledge and Data

Engineering, 32(10):1982–1999, Oct 2020. ISSN 1558–2191. doi: 10.1109/TKDE.2019.2913381.

[24] Natalia Arzamasova, Martin Schäler, and Klemens Böhm. Cleaning antipatterns in an sql

query log. In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages

1751–1752, 2018.

[25] bbs, 2022. URL https://github.com/diyhi/bbs.

82

https://w3techs.com/technologies/overview/site_element
https://w3techs.com/technologies/overview/site_element
https://pypl.github.io/PYPL.html
https://github.com/adempiere/adempiere
https://github.com/adempiere/adempiere
https://github.com/diyhi/bbs

[26] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and Thomas

Zimmermann. What makes a good bug report? In Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16,

pages 308–318, New York, NY, USA, 2008. Association for Computing Machinery. ISBN

9781595939951. doi: 10.1145/1453101.1453146.

[27] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Diversity-based web test

generation. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE

2019, pages 142–153, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450355728. doi: 10.1145/3338906.3338970.

[28] S. Brass and C. Goldberg. Semantic errors in sql queries: a quite complete list. In Fourth

International Conference on Quality Software, 2004. QSIC 2004. Proceedings., pages 250–257,

2004.

[29] BroadleafCommerce. Broadleafcommerce - enterprise ecommerce framework based on spring,

2021. URL https://github.com/BroadleafCommerce/BroadleafCommerce.

[30] JRebel by Perforce. Java tools and technologies landscape 2014, 2014. URL https://www.

jrebel.com/resources/java-tools-and-technologies-landscape-2014.

[31] Vasco Ferreira C. Hibernate debugging - finding the origin of a query, 2022. URL https:

//dzone.com/articles/hibernate-debugging-where-does.

[32] George G. Cabral, Leandro L. Minku, Emad Shihab, and Suhaib Mujahid. Class imbalance

evolution and verification latency in just-in-time software defect prediction. In Proceedings of

the 41st International Conference on Software Engineering, ICSE ’19, pages 666–676. IEEE

Press, 2019. doi: 10.1109/ICSE.2019.00076.

[33] Jeroen Castelein, Maurício Aniche, Mozhan Soltani, Annibale Panichella, and Arie van

Deursen. Search-based test data generation for sql queries. In Proceedings of the 40th In-

ternational Conference on Software Engineering, ICSE ’18, pages 1220–1230, New York, NY,

USA, 2018. Association for Computing Machinery. ISBN 9781450356381.

[34] W.K. Chan, S.C. Cheung, and T.H. Tse. Fault-based testing of database application programs

with conceptual data model. In Fifth International Conference on Quality Software (QSIC’05),

pages 187–196, 2005.

83

https://github.com/BroadleafCommerce/BroadleafCommerce
https://www.jrebel.com/resources/java-tools-and-technologies-landscape-2014
https://www.jrebel.com/resources/java-tools-and-technologies-landscape-2014
https://dzone.com/articles/hibernate-debugging-where-does
https://dzone.com/articles/hibernate-debugging-where-does

[35] An Ran Chen, Tse-Hsun Peter Chen, and Shaowei Wang. Pathidea: Improving information

retrieval-based bug localization by re-constructing execution paths using logs. IEEE Transac-

tions on Software Engineering, pages 1–1, 2021. doi: 10.1109/TSE.2021.3071473.

[36] Boyuan Chen, Zhen Ming (Jack) Jiang, Paul Matos, and Michael Lacaria. An indus-

trial experience report on performance-aware refactoring on a database-centric web appli-

cation. In Proceedings of the 34th IEEE/ACM International Conference on Automated Soft-

ware Engineering, ASE ’19, page 653–664. IEEE Press, 2020. ISBN 9781728125084. doi:

10.1109/ASE.2019.00066.

[37] Tse-Hsun Chen. Improving the performance of database-centric applications through program

analysis. PhD thesis, Queen’s University (Canada), 2016.

[38] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser, and Par-

minder Flora. Detecting performance anti-patterns for applications developed using object-

relational mapping. In Proceedings of the 36th International Conference on Software Engi-

neering, ICSE 2014, pages 1001–1012, New York, NY, USA, 2014. Association for Computing

Machinery. ISBN 9781450327565.

[39] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder

Flora. Cacheoptimizer: Helping developers configure caching frameworks for hibernate-based

database-centric web applications. In Proceedings of the 2016 24th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, FSE 2016, pages 666–677, New

York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342186.

[40] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora.

Detecting problems in the database access code of large scale systems - an industrial expe-

rience report. In 2016 IEEE/ACM 38th International Conference on Software Engineering

Companion (ICSE-C), pages 71–80, 2016.

[41] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser, and

Parminder Flora. Finding and evaluating the performance impact of redundant data access

for applications that are developed using object-relational mapping frameworks. IEEE Trans-

actions on Software Engineering, 42(12):1148–1161, 2016.

[42] Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E. Hassan, Michael W. Godfrey, Mohamed

Nasser, and Parminder Flora. An empirical study on the practice of maintaining object-

relational mapping code in java systems. In Proceedings of the 13th International Conference on

Mining Software Repositories, MSR ’16, pages 165–176, New York, NY, USA, 2016. Association

for Computing Machinery. ISBN 9781450341868.

84

[43] Tse-Hsun Chen, Stephen W. Thomas, and Ahmed E. Hassan. A survey on the use of topic

models when mining software repositories. Empirical Software Engineering, 21(5):1843–1919,

2016.

[44] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing database-backed

applications with query synthesis. SIGPLAN Not., 48(6):3–14, jun 2013. ISSN 0362-1340.

[45] CloudStore, 2022. URL https://github.com/CloudScale-Project/CloudStore.

[46] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20(1):37–46, 1960.

[47] C. Coronel and S. Morris. Database Systems: Design, Implementation, & Management, chap-

ter 15. Cengage Learning, 13 edition, 2018. ISBN 9781337627900.

[48] Davide Corradini, Amedeo Zampieri, Michele Pasqua, and Mariano Ceccato. Empirical com-

parison of black-box test case generation tools for restful apis. In 2021 IEEE 21st International

Working Conference on Source Code Analysis and Manipulation (SCAM), pages 226–236, 2021.

doi: 10.1109/SCAM52516.2021.00035.

[49] Carlo Curino, Hyun J. Moon, Letizia Tanca, and Carlo Zaniolo. Schema evolution in wikipedia

- toward a web information system benchmark. In José Cordeiro and Joaquim Filipe, editors,

ICEIS (1), pages 3231–332, 2008. ISBN 978-989-8111-36-4.

[50] Christine Dancey. Statistics without maths for psychology. Pearson/Prentice Hall, Harlow,

England New York, 2007. ISBN 978-0-13-205160-6.

[51] DBeaver. Free universal database tool and sql client, 2021. URL https://github.com/

dbeaver/dbeaver.

[52] Prashanth Dintyala, Arpit Narechania, and Joy Arulraj. Sqlcheck: Automated detection

and diagnosis of sql anti-patterns. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’20, pages 2331–2345, New York, NY, USA,

2020. Association for Computing Machinery. ISBN 9781450367356.

[53] dotCMS. Source code for dotcms hybrid content management system, 2021. URL https:

//github.com/dotCMS/core.

[54] Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamic test input generation for

database applications. In Proceedings of the 2007 International Symposium on Software Test-

ing and Analysis, ISSTA ’07, pages 151–162, New York, NY, USA, 2007. Association for

Computing Machinery. ISBN 9781595937346.

85

https://github.com/CloudScale-Project/CloudStore
https://github.com/dbeaver/dbeaver
https://github.com/dbeaver/dbeaver
https://github.com/dotCMS/core
https://github.com/dotCMS/core

[55] Juan Manuel Florez, Oscar Chaparro, Christoph Treude, and Andrian Marcus. Combining

query reduction and expansion for text-retrieval-based bug localization. In 2021 IEEE In-

ternational Conference on Software Analysis, Evolution and Reengineering (SANER), pages

166–176, 2021. doi: 10.1109/SANER50967.2021.00024.

[56] Apache Software Foundation. Apache jmeter, 2021. URL https://jmeter.apache.org/.

[57] Eclipse Foundation. The aspectj project, 2021. URL https://www.eclipse.org/aspectj/.

[58] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-

oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Eu-

ropean Conference on Foundations of Software Engineering, ESEC/FSE ’11, page 416–419,

New York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450304436. doi:

10.1145/2025113.2025179.

[59] GitHub. The top programming languages, 2022. URL https://octoverse.github.com/

2022/top-programming-languages. Last accessed Nov. 2022.

[60] Francisco Gonçalves de Almeida Filho, Antônio Diogo Forte Martins, Tiago da Silva Vin-

uto, José Maria Monteiro, Ítalo Pereira de Sousa, Javam de Castro Machado, and Lin-

coln Souza Rocha. Prevalence of bad smells in pl/sql projects. In 2019 IEEE/ACM 27th

International Conference on Program Comprehension (ICPC), pages 116–121, 2019. doi:

10.1109/ICPC.2019.00025.

[61] Carl Gould, Zhendong Su, and Premkumar Devanbu. Static checking of dynamically gener-

ated queries in database applications. In Proceedings of the 26th International Conference on

Software Engineering, ICSE ’04, page 645–654, USA, 2004. IEEE Computer Society. ISBN

0769521630.

[62] Mark Grechanik, B. M. Mainul Hossain, Ugo Buy, and Haisheng Wang. Preventing database

deadlocks in applications. In Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-

ware Engineering, ESEC/FSE 2013, pages 356–366, New York, NY, USA, 2013. Association

for Computing Machinery. ISBN 9781450322379. doi: 10.1145/2491411.2491412.

[63] Bhanu Pratap Gupta, Devang Vira, and S. Sudarshan. X-data: Generating test data for killing

sql mutants. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010),

pages 876–879, 2010.

[64] Sonia Haiduc. Automatically detecting the quality of the query and its implications in ir-based

concept location. In 2011 26th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2011), pages 637–640, 2011. doi: 10.1109/ASE.2011.6100144.

86

https://jmeter.apache.org/
https://www.eclipse.org/aspectj/
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages

[65] Sonia Haiduc and Andrian Marcus. On the effect of the query in ir-based concept location. In

2011 IEEE 19th International Conference on Program Comprehension, pages 234–237, 2011.

doi: 10.1109/ICPC.2011.48.

[66] William G.J. Halfond and Alessandro Orso. Command-form coverage for testing database ap-

plications. In 21st IEEE/ACM International Conference on Automated Software Engineering

(ASE’06), pages 69–80, 2006.

[67] Hibernate. Built-in constraints, 2021. URL https://docs.jboss.org/hibernate/

validator/6.0/reference/en-US/html_single/#section-builtin-constraints.

[68] Hibernate. Hql and jpql, 2021. URL https://docs.jboss.org/hibernate/orm/5.3/

userguide/html_single/Hibernate_User_Guide.html#hql.

[69] Hibernate. Logging, 2021. URL https://docs.jboss.org/hibernate/orm/5.3/userguide/

html_single/Hibernate_User_Guide.html#best-practices-logging. Last accessed Jul.

2021.

[70] Hibernate. Logging. https://docs.jboss.org/hibernate/orm/5.3/userguide/html_

single/Hibernate_User_Guide.html#best-practices-logging, 2021. Last accessed Aug.

2021.

[71] Zijie Huang, Zhiqing Shao, Guisheng Fan, Huiqun Yu, Kang Yang, and Ziyi Zhou. Hbsniff:

A static analysis tool for java hibernate object-relational mapping code smell detection. Sci.

Comput. Program., 217(C), may 2022. ISSN 0167-6423.

[72] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco,

and Paolo Tonella. Taxonomy of real faults in deep learning systems. In Proceedings of the

ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20, pages 1110–

1121, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450371216.

[73] Aminul Islam and Diana Inkpen. Semantic text similarity using corpus-based word similarity

and string similarity. ACM Trans. Knowl. Discov. Data, 2(2), July 2008. ISSN 1556-4681.

[74] JeeWeb, 2022. URL https://github.com/white-cat/jeeweb.

[75] Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing.

IEEE Transactions on Software Engineering, 37(5):649–678, 2011.

[76] Gregory M. Kapfhammer, Phil McMinn, and Chris J. Wright. Search-based testing of relational

schema integrity constraints across multiple database management systems. In 2013 IEEE

87

https://docs.jboss.org/hibernate/validator/6.0/reference/en-US/html_single/#section-builtin-constraints
https://docs.jboss.org/hibernate/validator/6.0/reference/en-US/html_single/#section-builtin-constraints
https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#hql
https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#hql
https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#best-practices-logging
https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#best-practices-logging
https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#best-practices-logging
https://docs.jboss.org/hibernate/orm/5.3/userguide/html_single/Hibernate_User_Guide.html#best-practices-logging
https://github.com/white-cat/jeeweb

Sixth International Conference on Software Testing, Verification and Validation, pages 31–40,

2013.

[77] B. Karwin. SQL Antipatterns: Avoiding the Pitfalls of Database Programming. Pragmatic

Bookshelf, 2010. ISBN 9781934356555.

[78] Mike Keith, Merrick Schincariol, and Massimo Nardone. Pro JPA 2 in Java EE 8: An In-

Depth Guide to Java Persistence APIs, chapter 4, pages 101–155. Apress, Berkeley, CA, 3

edition, 2018. ISBN 978-1-4842-3420-4. doi: 10.1007/978-1-4842-3420-4_4.

[79] G. Kul, D. T. A. Luong, T. Xie, V. Chandola, O. Kennedy, and S. Upadhyaya. Similarity

metrics for sql query clustering. IEEE Transactions on Knowledge and Data Engineering, 30

(12):2408–2420, Dec 2018. ISSN 1558–2191. doi: 10.1109/TKDE.2018.2831214.

[80] J. Richard Landis and Gary G. Koch. The measurement of observer agreement for categorical

data. Biometrics, 33(1):159–174, 1977. ISSN 0006341X, 15410420.

[81] Tien-Duy B. Le, Ferdian Thung, and David Lo. Predicting effectiveness of ir-based bug lo-

calization techniques. In 2014 IEEE 25th International Symposium on Software Reliability

Engineering, pages 335–345, 2014. doi: 10.1109/ISSRE.2014.39.

[82] Jaekwon Lee, Dongsun Kim, Tegawendé F. Bissyandé, Woosung Jung, and Yves Le Traon.

Bench4bl: Reproducibility study on the performance of ir-based bug localization. In Proceed-

ings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis,

ISSTA 2018, pages 61–72, New York, NY, USA, 2018. Association for Computing Machinery.

ISBN 9781450356992. doi: 10.1145/3213846.3213856.

[83] Wei Liu and Tse-Hsun Chen. Slocator: Localizing the origin of sql queries in database-backed

web applications. IEEE Transactions on Software Engineering, 49(6):3376–3390, 2023. doi:

10.1109/TSE.2023.3253700.

[84] Wei Liu, Shouvick Mondal, and Tse-Hsun (Peter) Chen. An empirical study on the character-

istics of database access bugs in java applications. ACM Trans. Softw. Eng. Methodol., 33(7),

September 2024. ISSN 1049-331X. doi: 10.1145/3672449.

[85] Yingjun Lyu, Ali Alotaibi, and William G. J. Halfond. Quantifying the performance impact of

SQL antipatterns on mobile applications. In 2019 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 53–64, 2019.

88

[86] Yingjun Lyu, Sasha Volokh, William G. J. Halfond, and Omer Tripp. Sand: A static analysis

approach for detecting sql antipatterns. In Proceedings of the 30th ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis, ISSTA 2021, page 270–282, New York,

NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384599.

[87] ManageForce. System failure - the cost of database downtime, 2016. URL http:

//www.manageforce.com/blog/dba-suffering-from-system-failure-infographic. Last

accessed Nov. 2021.

[88] Petros Manousis, Apostolos Zarras, Panos Vassiliadis, and George Papastefanatos. Extrac-

tion of embedded queries via static analysis of host code. In Eric Dubois and Klaus Pohl,

editors, Advanced Information Systems Engineering, pages 511–526, Cham, 2017. Springer

International Publishing.

[89] Andy Maule, Wolfgang Emmerich, and David S. Rosenblum. Impact analysis of database

schema changes. In Proceedings of the 30th International Conference on Software Engineering,

ICSE ’08, pages 451–460, New York, NY, USA, 2008. Association for Computing Machinery.

ISBN 9781605580791.

[90] Phil Mcminn, Chris J. Wright, and Gregory M. Kapfhammer. The effectiveness of test cov-

erage criteria for relational database schema integrity constraints. ACM Trans. Softw. Eng.

Methodol., 25(1), dec 2015. ISSN 1049-331X.

[91] Phil McMinn, Chris J. Wright, Colton J. McCurdy, and Gregory M. Kapfhammer. Automatic

detection and removal of ineffective mutants for the mutation analysis of relational database

schemas. IEEE Transactions on Software Engineering, 45(5):427–463, 2019.

[92] metasfresh. We do open source erp - fast, flexible & free software to scale your business., 2021.

URL https://github.com/metasfresh/metasfresh.

[93] Loup Meurice, Csaba Nagy, and Anthony Cleve. Static analysis of dynamic database usage in

java systems. In Selmin Nurcan, Pnina Soffer, Marko Bajec, and Johann Eder, editors, Ad-

vanced Information Systems Engineering, pages 491–506, Cham, 2016. Springer International

Publishing.

[94] Loup Meurice, Csaba Nagy, and Anthony Cleve. Detecting and preventing program inconsis-

tencies under database schema evolution. In 2016 IEEE International Conference on Software

Quality, Reliability and Security (QRS), pages 262–273, 2016.

[95] Microsoft. getmoreresults skips resultsets[bug] #969, 2019. URL https://github.com/

microsoft/mssql-jdbc/issues/969.

89

http://www.manageforce.com/blog/dba-suffering-from-system-failure-infographic
http://www.manageforce.com/blog/dba-suffering-from-system-failure-infographic
https://github.com/metasfresh/metasfresh
https://github.com/microsoft/mssql-jdbc/issues/969
https://github.com/microsoft/mssql-jdbc/issues/969

[96] Vlad Mihalcea. hypersistence-utils. URL https://github.com/vladmihalcea/

hypersistence-utils. Last accessed Nov. 2022.

[97] Vlad Mihalcea. How do lockmodetype.pessimistic_read and lockmode-

type.pessimistic_write work in jpa and hibernate, 2019. URL https://vladmihalcea.

com/hibernate-locking-patterns-how-do-pessimistic_read-and-pessimistic_

write-work/.

[98] Chris Mills, Esteban Parra, Jevgenija Pantiuchina, Gabriele Bavota, and Sonia Haiduc. On

the relationship between bug reports and queries for text retrieval-based bug localization.

Empirical Software Engineering, 25, 09 2020. doi: 10.1007/s10664-020-09823-w.

[99] Vijayaraghavan Murali, Lee Gross, Rebecca Qian, and Satish Chandra. Industry-scale ir-

based bug localization: A perspective from facebook. In 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages

188–197, 2021. doi: 10.1109/ICSE-SEIP52600.2021.00028.

[100] Biruk Asmare Muse, Mohammad Masudur Rahman, Csaba Nagy, Anthony Cleve, Foutse

Khomh, and Giuliano Antoniol. On the prevalence, impact, and evolution of sql code smells

in data-intensive systems. In Proceedings of the 17th International Conference on Mining

Software Repositories, MSR ’20, page 327–338, New York, NY, USA, 2020. Association for

Computing Machinery. ISBN 9781450375177.

[101] MySQL. Mysql connectors, 2022. URL https://www.mysql.com/products/connector/.

[102] Csaba Nagy and Anthony Cleve. Mining stack overflow for discovering error patterns in

sql queries. In 2015 IEEE International Conference on Software Maintenance and Evolution

(ICSME), pages 516–520, 2015. doi: 10.1109/ICSM.2015.7332505.

[103] Csaba Nagy and Anthony Cleve. A static code smell detector for sql queries embedded in

java code. In 2017 IEEE 17th International Working Conference on Source Code Analysis and

Manipulation (SCAM), pages 147–152, 2017.

[104] Csaba Nagy and Anthony Cleve. Sqlinspect: A static analyzer to inspect database usage in

java applications. In 2018 IEEE/ACM 40th International Conference on Software Engineering:

Companion (ICSE-Companion), pages 93–96, 2018.

[105] Csaba Nagy and Anthony Cleve. Sqlinspect: A static analyzer to inspect database usage in

java applications. In Proceedings of the 40th International Conference on Software Engineering:

Companion Proceeedings, ICSE ’18, page 93–96, New York, NY, USA, 2018. Association for

Computing Machinery. ISBN 9781450356633.

90

https://github.com/vladmihalcea/hypersistence-utils
https://github.com/vladmihalcea/hypersistence-utils
https://vladmihalcea.com/hibernate-locking-patterns-how-do-pessimistic_read-and-pessimistic_write-work/
https://vladmihalcea.com/hibernate-locking-patterns-how-do-pessimistic_read-and-pessimistic_write-work/
https://vladmihalcea.com/hibernate-locking-patterns-how-do-pessimistic_read-and-pessimistic_write-work/
https://www.mysql.com/products/connector/

[106] Csaba Nagy, Loup Meurice, and Anthony Cleve. Where was this sql query executed? a

static concept location approach. In 2015 IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), pages 580–584, 2015. doi: 10.1109/SANER.

2015.7081881.

[107] Openfire. An xmpp server licensed under the open source apache license., 2021. URL https:

//github.com/igniterealtime/Openfire.

[108] OpenMRS. Openmrs api and web application code, 2021. URL https://github.com/

openmrs/openmrs-core.

[109] Oracle. Jax-rs: Java api for restful web services, 2013. URL https://download.oracle.com/

otn-pub/jcp/jaxrs-2_0_rev_A-mrel-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf.

Last accessed Jul. 2021.

[110] Oracle. Lockmodetype, 2015. URL https://docs.oracle.com/javaee/7/api/javax/

persistence/LockModeType.html.

[111] Oracle. Jsr 338: Java persistence api, version 2.2, 2017. URL https://download.oracle.com/

otn-pub/jcp/persistence-2_2-mrel-eval-spec/JavaPersistence.pdf. Last accessed

Jul. 2021.

[112] Oracle. An innodb deadlock example, 2020. URL https://dev.mysql.com/doc/refman/5.

6/en/innodb-deadlock-example.html.

[113] Oracle. Deadlocks in innodb, 2020. URL https://dev.mysql.com/doc/refman/5.6/en/

innodb-deadlocks.html.

[114] Oracle. Mysql server logs, 2020. URL https://dev.mysql.com/doc/refman/5.6/en/

server-logs.html.

[115] Oracle. The general query log, 2020. URL https://dev.mysql.com/doc/refman/5.6/en/

query-log.html.

[116] Oracle. The slow query log, 2020. URL https://dev.mysql.com/doc/refman/5.6/en/

slow-query-log.html.

[117] Oracle. Mysql, 2021. URL https://www.mysql.com/.

[118] Oracle. Java software, 2021. URL https://www.oracle.com/java/. Last accessed Nov. 2021.

[119] Kai Pan, Xintao Wu, and Tao Xie. Guided test generation for database applications via

synthesized database interactions. ACM Trans. Softw. Eng. Methodol., 23(2), apr 2014. ISSN

1049-331X.

91

https://github.com/igniterealtime/Openfire
https://github.com/igniterealtime/Openfire
https://github.com/openmrs/openmrs-core
https://github.com/openmrs/openmrs-core
https://download.oracle.com/otn-pub/jcp/jaxrs-2_0_rev_A-mrel-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-2_0_rev_A-mrel-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf
https://docs.oracle.com/javaee/7/api/javax/persistence/LockModeType.html
https://docs.oracle.com/javaee/7/api/javax/persistence/LockModeType.html
https://download.oracle.com/otn-pub/jcp/persistence-2_2-mrel-eval-spec/JavaPersistence.pdf
https://download.oracle.com/otn-pub/jcp/persistence-2_2-mrel-eval-spec/JavaPersistence.pdf
https://dev.mysql.com/doc/refman/5.6/en/innodb-deadlock-example.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-deadlock-example.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-deadlocks.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-deadlocks.html
https://dev.mysql.com/doc/refman/5.6/en/server-logs.html
https://dev.mysql.com/doc/refman/5.6/en/server-logs.html
https://dev.mysql.com/doc/refman/5.6/en/query-log.html
https://dev.mysql.com/doc/refman/5.6/en/query-log.html
https://dev.mysql.com/doc/refman/5.6/en/slow-query-log.html
https://dev.mysql.com/doc/refman/5.6/en/slow-query-log.html
https://www.mysql.com/
https://www.oracle.com/java/

[120] PetClinic. A sample spring-based application, 2022. URL https://github.com/

spring-projects/spring-petclinic.

[121] PostgreSQL. Error reporting and logging, 2020. URL https://www.postgresql.org/docs/

13/runtime-config-logging.html.

[122] PostgreSQL. Software catalogue - drivers and interfaces, 2022. URL https://www.

postgresql.org/download/products/2-drivers-and-interfaces/.

[123] Michael Pradel, Vijayaraghavan Murali, Rebecca Qian, Mateusz Machalica, Erik Meijer, and

Satish Chandra. Scaffle: Bug localization on millions of files. In Proceedings of the 29th ACM

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2020, pages

225–236, 2020.

[124] PublicCMS, 2022. URL https://github.com/sanluan/PublicCMS.

[125] Dong Qiu, Bixin Li, and Zhendong Su. An empirical analysis of the co-evolution of schema

and code in database applications. In Proceedings of the 2013 9th Joint Meeting on Founda-

tions of Software Engineering, ESEC/FSE 2013, pages 125–135, New York, NY, USA, 2013.

Association for Computing Machinery. ISBN 9781450322379.

[126] Redgate. 119 sql code smells. URL https://www.red-gate.com/library/

119-sql-code-smells.

[127] Tanmoy Sarkar. Testing database applications using coverage analysis and mutation analysis.

PhD thesis, Iowa State University, 2013.

[128] Shudi Shao, Zhengyi Qiu, Xiao Yu, Wei Yang, Guoliang Jin, Tao Xie, and Xintao Wu.

Database-access performance antipatterns in database-backed web applications. In 2020 IEEE

International Conference on Software Maintenance and Evolution (ICSME), pages 58–69,

2020.

[129] Tushar Sharma, Marios Fragkoulis, Stamatia Rizou, Magiel Bruntink, and Diomidis Spinellis.

Smelly relations: Measuring and understanding database schema quality. In 2018 IEEE/ACM

40th International Conference on Software Engineering: Software Engineering in Practice

Track (ICSE-SEIP), pages 55–64, 2018.

[130] Ravjot Singh, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Hassan. Optimizing the

performance-related configurations of object-relational mapping frameworks using a multi-

objective genetic algorithm. In Proceedings of the 7th ACM/SPEC on International Conference

on Performance Engineering, ICPE ’16, pages 309–320, 2016.

92

https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://www.postgresql.org/docs/13/runtime-config-logging.html
https://www.postgresql.org/docs/13/runtime-config-logging.html
https://www.postgresql.org/download/products/2-drivers-and-interfaces/
https://www.postgresql.org/download/products/2-drivers-and-interfaces/
https://github.com/sanluan/PublicCMS
https://www.red-gate.com/library/119-sql-code-smells
https://www.red-gate.com/library/119-sql-code-smells

[131] S. Sinha and M.J. Harrold. Analysis and testing of programs with exception handling con-

structs. IEEE Transactions on Software Engineering, 26(9):849–871, 2000. doi: 10.1109/32.

877846.

[132] SlashData. State of the developer nation, 2022. URL https://slashdata-website-cms.s3.

amazonaws.com/sample_reports/VZtJWxZw5Q9NDSAQ.pdf.

[133] J. Sohn, Y. Kamei, S. McIntosh, and S. Yoo. Leveraging fault localisation to enhance de-

fect prediction. In 2021 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 284–294, Los Alamitos, CA, USA, mar 2021. IEEE Computer

Society. doi: 10.1109/SANER50967.2021.00034.

[134] Mozhan Soltani, Felienne Hermans, and Thomas Bäck. The significance of bug report elements.

Empirical Software Engineering, 25:1–40, 11 2020.

[135] María José Suárez-Cabal and Javier Tuya. Using an sql coverage measurement for testing

database applications. In Proceedings of the 12th ACM SIGSOFT Twelfth International Sym-

posium on Foundations of Software Engineering, SIGSOFT ’04/FSE-12, page 253–262, New

York, NY, USA, 2004. Association for Computing Machinery. ISBN 1581138555.

[136] Ferdian Thung, Tien-Duy B. Le, Pavneet Singh Kochhar, and David Lo. Buglocalizer: In-

tegrated tool support for bug localization. In Proceedings of the 22nd ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, FSE 2014, pages 767–770,

New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450330565. doi:

10.1145/2635868.2661678.

[137] TPC-W, 2022. URL https://www.tpc.org/tpcw/.

[138] Javier Tuya, Ma Jose Suarez-Cabal, and Claudio de la Riva. SQLMutation: A tool to generate

mutants of sql database queries. In Second Workshop on Mutation Analysis (Mutation 2006 -

ISSRE Workshops 2006), pages 1–1, 2006.

[139] Javier Tuya, M José Suárez-Cabal, and Claudio de la Riva. Mutating database queries. In-

formation and Software Technology, 49(4):398–417, 2007. ISSN 0950-5849.

[140] Javier Tuya, María José Suárez-Cabal, and Claudio de la Riva. Full predicate coverage for

testing sql database queries. Softw. Test. Verif. Reliab., 20(3):237–288, sep 2010. ISSN 0960-

0833.

[141] WallRide. Multilingual easy-to-customize open source cms made by java, 2022. URL https:

//github.com/tagbangers/wallride.

93

https://slashdata-website-cms.s3.amazonaws.com/sample_reports/VZtJWxZw5Q9NDSAQ.pdf
https://slashdata-website-cms.s3.amazonaws.com/sample_reports/VZtJWxZw5Q9NDSAQ.pdf
https://www.tpc.org/tpcw/
https://github.com/tagbangers/wallride
https://github.com/tagbangers/wallride

[142] Shaowei Wang and David Lo. Amalgam+: Composing rich information sources for accurate

bug localization. J. Softw. Evol. Process, 28(10):921–942, October 2016. ISSN 2047–7473. doi:

10.1002/smr.1801.

[143] Shaowei Wang, David Lo, and Julia Lawall. Compositional vector space models for improved

bug localization. In 2014 IEEE International Conference on Software Maintenance and Evo-

lution, pages 171–180, 2014. doi: 10.1109/ICSME.2014.39.

[144] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. Synthesizing database programs for

schema refactoring. In Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019, pages 286–300, New York, NY, USA, 2019.

Association for Computing Machinery. ISBN 9781450367127.

[145] Todd Warszawski and Peter Bailis. Acidrain: Concurrency-related attacks on database-backed

web applications. In Proceedings of the 2017 ACM International Conference on Management

of Data, SIGMOD ’17, pages 5–20, New York, NY, USA, 2017. Association for Computing

Machinery. ISBN 9781450341974. doi: 10.1145/3035918.3064037.

[146] M. Wen, R. Wu, and S. Cheung. Locus: Locating bugs from software changes. In 2016

31st IEEE/ACM International Conference on Automated Software Engineering (ASE), pages

262–273, 2016.

[147] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong Mei. Boosting

bug-report-oriented fault localization with segmentation and stack-trace analysis. In 2014

IEEE International Conference on Software Maintenance and Evolution, pages 181–190, 2014.

doi: 10.1109/ICSME.2014.40.

[148] Chris J. Wright, Gregory M. Kapfhammer, and Phil McMinn. The impact of equivalent, re-

dundant and quasi mutants on database schema mutation analysis. In 2014 14th International

Conference on Quality Software, pages 57–66, 2014.

[149] Xin Xia, David Lo, Xingen Wang, Chenyi Zhang, and Xinyu Wang. Cross-language bug

localization. In Proceedings of the 22nd International Conference on Program Comprehension,

ICPC 2014, pages 275–278, New York, NY, USA, 2014. Association for Computing Machinery.

ISBN 9781450328791. doi: 10.1145/2597008.2597788.

[150] Cong Yan, Alvin Cheung, Junwen Yang, and Shan Lu. Understanding database performance

inefficiencies in real-world web applications. In Proceedings of the 2017 ACM on Confer-

ence on Information and Knowledge Management, CIKM ’17, pages 1299–1308, 2017. ISBN

9781450349185.

94

[151] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung. How not

to structure your database-backed web applications: A study of performance bugs in the

wild. In Proceedings of the 40th International Conference on Software Engineering, ICSE

’18, pages 800–810, New York, NY, USA, 2018. Association for Computing Machinery. ISBN

9781450356381.

[152] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung. Powersta-

tion: automatically detecting and fixing inefficiencies of database-backed web applications

in ide. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE

2018, page 884–887, New York, NY, USA, 2018. Association for Computing Machinery. ISBN

9781450355735. doi: 10.1145/3236024.3264589. URL https://doi.org/10.1145/3236024.

3264589.

[153] Junwen Yang, Cong Yan, Chengcheng Wan, Shan Lu, and Alvin Cheung. View-centric per-

formance optimization for database-backed web applications. In Proceedings of the 41st Inter-

national Conference on Software Engineering, ICSE ’19, pages 994–1004, 2019.

[154] Junwen Yang, Utsav Sethi, Cong Yan, Alvin Cheung, and Shan Lu. Managing Data Con-

straints in Database-Backed Web Applications, pages 302–303. Association for Computing

Machinery, New York, NY, USA, 2020. ISBN 9781450371223.

[155] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy.

Sherlog: Error diagnosis by connecting clues from run-time logs. SIGPLAN Not., 45(3):143–

154, March 2010. ISSN 0362–1340. doi: 10.1145/1735971.1736038.

[156] Lei Zeng, Yang Xiao, and Hui Chen. Linux auditing: Overhead and adaptation. In 2015 IEEE

International Conference on Communications (ICC), pages 7168–7173, 2015. doi: 10.1109/

ICC.2015.7249470.

[157] Chixiang Zhou and Phyllis Frankl. Jdama: Java database application mutation analyser.

Softw. Test. Verif. Reliab., 21(3):241–263, sep 2011. ISSN 0960-0833.

[158] Jian Zhou, Hongyu Zhang, and David Lo. Where should the bugs be fixed? more accurate

information retrieval-based bug localization based on bug reports. In 2012 34th International

Conference on Software Engineering (ICSE), pages 14–24, 2012. doi: 10.1109/ICSE.2012.

6227210.

[159] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei Zhang.

Learning to log: Helping developers make informed logging decisions. In Proceedings of the

95

https://doi.org/10.1145/3236024.3264589
https://doi.org/10.1145/3236024.3264589

37th International Conference on Software Engineering - Volume 1, ICSE ’15, pages 415–425.

IEEE Press, 2015. ISBN 9781479919345.

[160] Daniel Zwillinger and Stephen Kokoska. CRC standard probability and statistics tables and

formulae. Chapman & Hall/CRC, Boca Raton, 2000. ISBN 9781584880592.

96

	List of Figures
	List of Tables
	I Introduction, Background, and Literature Review
	Introduction
	Introduction
	Research Objective
	Thesis Overview
	Chapter 2: Background and Literature Review
	Chapter 3: Studying Characteristics of Database Access Bugs in Java Applications
	Chapter 4: Localizing the Origin of SQL Queries in Database-Backed Web Applications
	Chapter 5: Thesis Contributions and Future Work

	Thesis Contributions
	Thesis Organization

	Background and Literature Review
	Background
	Literature Review
	Paper Selection
	Database access quality issues when using SQL queries
	Database access quality issues when using ORM frameworks
	Adequacy of tests in database-backed applications

	Chapter Summary

	II Understanding and Locating Database Access Code Quality Issues
	Studying the Characteristics of Database Access Bugs in Java Applications
	Introduction
	Empirical Study Setup
	Collecting Studied Applications
	Collecting Database Access Bugs

	Empirical Study Results
	RQ1: What is the Trend in the Number of Reported Database Access Bugs?
	RQ2: What are the Root Causes of Database Access Bugs?
	RQ3: How do Categories of Database Access Bugs Prevail with Different Database Access Technologies?

	Discussion
	Threats to Validity
	Related Work
	Conclusion

	Localizing the Origin of SQL Queries in Database-Backed Web Applications
	Introduction
	Background and related work
	Approach
	Statically Inferring Database Access
	Locating the Paths that Generate a Given SQL Query

	Evaluation
	Evaluation Setup
	RQ1: How effectively can SLocator locate the code path that generates a given SQL query?
	RQ2: What is the localization accuracy for SQL queries with different lengths?
	RQ3: Can SLocator help localize issues in database-backed web applications?

	Threats to Validity
	Conclusion

	III Conclusion and Future Work
	Thesis Contributions and Future Work
	Summary
	Thesis Contribution
	Future work

	Bibliography

