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ABSTRACT 

Automated Planning and Scheduling Method for Modular Construction Manufacturing  

Angat Pal Singh Bhatia, Ph.D. 

Concordia University, 2024 

Modular construction is a promising alternative to conventional construction; offering improved 

productivity, high-quality end products, and reduced labour requirements. To realize these 

benefits, sequencing module components during prefabrication process in a manner that ensures 

efficient allocation and utilization of labor resources at workstations is essential. However, one of 

the significant challenges in modular construction manufacturing (MCM) is that it follows a make-

to-order process, resulting in customized module components. This customization leads to 

variations in the design specifications of module components, causing different processing times 

at each workstation. These imbalances in production lines result in increasing the waiting time for 

module components between the workstations, ultimately extending the makespan. This poses a 

challenge for production line managers, requiring frequent adjustments to plans and schedules 

related to the sequencing of module components at workstations using conventional methods. 

To address these challenges, this thesis introduces a framework composed of three modules: (i) a 

simulation-based statistical method for planning in modular construction; (ii) a deep neural 

network (DNN)-based method for predicting production process times; and (iii) a hybrid 

optimization technique for scheduling in modular construction. In the first module, a simulation 

based statistical method is developed to plan the sequencing of module fabrication and the 

allocation of workers at workstations. The method encompasses data collection process to obtain 

historical/near real-time data and identification of significant impact factors affecting process 

times at workstations along the production line. In the second module, a newly developed method 
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for predicting processing time at each workstation is introduced utilizing Deep Neural Network 

(DNN), Artificial Neural Network (ANN), and Multiple Linear Regression (MLR) for predicting 

production process time spent at each workstation in a manufacturing plant. The third module 

focuses on planning and scheduling method that ensures optimal sequencing of module 

components at workstations using Genetic Algorithm (GA), Simulated Annealing (SA), and 

Hybrid Genetic Algorithm Simulated Annealing (HGASA). 

Two case studies were analyzed to demonstrate the use of the developed methods and test their 

performance. The first case is of a light gauge steel (LGS) wall panel production line operated by 

a modular fabricator in Edmonton, Canada, and the second is of a wood-based semi-automated 

wall panel production line also in Edmonton, Canada. These cases involve the production of 200 

wall panels in the first case and 39703 wall panels in the second at various workstations along the 

production line. The simulation-based statistical method developed in the first module yielded 

89.39% accuracy in prediction of process time and indicate a 44.42 hr duration to produce 309 

wall panels with regards to first case. The results of the second case showing process time 

predictive method developed in the second module for most workstations had a mean absolute 

error (MAE) of under 2.50 minutes, with symmetric mean absolute percentage error (SMAPE) 

ranging between 22 % - 28%, respectively. The developed scheduling method of the third module 

provided an optimal sequence of wall panels for prefabrication, minimizing makespan. As a result, 

the hybrid optimization reduces makespan to 105.63 hr from those generated by GA (138.08 hr) 

and SA (108.06hr). 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Canada requires 4.3 million affordable homes for individuals with low incomes and more facilities 

like hospitals and long-term care homes to support a growing population, according to the CSA 

Public Policy Centre (Dragicevic and Riaz 2024). In the meantime, it is projected that 700,000 

skilled workers will retire between 2019-2028, increasing labor shortage (ESDC 2022). Decision-

makers are considering modular construction as a means to address such challenges. Modular 

construction, also known as panelized construction, off-site construction, volumetric 

manufacturing, and industrialized construction, is noted for its efficiency. According to the 

modular building institute (MBI 2023), modular construction can be utilized to construct 

condominium, dormitory, and duplex homes in about half the time required in conventional 

construction. Figure 1.1 shows that multifamily projects held the largest market share in the 

modular industry at 32% in 2022. The United Kingdom's housing sector brought significant 

attention to modular construction in 2004 by aiming to build 25% of new houses using these 

techniques to meet housing demands (Boyd et al. 2013). Modular construction has also been 

utilized in other countries such as the United States, Canada, China, and Australia (Steinhardt and 

Manley 2016). In this type of construction, module components such as wall, floor, and roof panels 

are prefabricated in mass production under a controlled factory environment and transported on-

site for assembly of built facilities. The principal idea underlying this construction process is to 

reduce the on-site work and instead perform the majority of work, off-site, at factories under a 

controlled work environment.  
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Figure 1.1: Market share of various projects for the modular industry (MBI 2023) 

Previous studies (Nick et al. 2019; Zhang 2020) indicate that modular construction manufacturing 

(MCM) adheres to standardized operating procedures (SOPs) at each workstation in order to 

prefabricate the module components. These SOPs assists production managers in standardizing 

the tasks and efficiently implementing innovative technologies such as automation and robotics, 

thereby reducing the time and cost of produced modules. Modular construction, also, offers 

opportunities to: (i) improve productivity by allowing tasks to move towards the workers at the 

workstations via conveyor belt rather than the traditional method of workers moving towards tasks, 

the common practice in conventional construction; (ii) minimizing material waste and actively 

supporting the initiatives of circular economy; and (iii) achieve faster return on investment, as the 

modular construction process enables developers to open building doors sooner for the residents, 

thus starting to generate profits earlier (Garusinghe et al. 2023; Nik-Bakht et al. 2021). Due to 

these features, the MBI reports that gross revenues increase from $ 3.3 billion in 2016 to $ 3.97 

billion in 2017 (MBI 2018), and the modular construction industry generated $12 billion in North 

America in 2022, accounting for 6.03 percent of all new construction projects. However, a certain 

level of customization (i.e., different design specifications) is required to build these homes in 

accordance with owners demands. Customized module components when prefabricated at the 
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same production line lead to varying production rates, imbalanced production lines and increased 

makespan (i.e., total completion time). 

1.2 Research Motivation and Problem Statement 

Despite the advantages highlighted above, design customization of module components causes 

significant challenges in modular construction manufacturing (MCM). Such customization calls 

for variation in the design specifications of module components (e.g., different number of studs, 

cripples, doors and windows). Figure 1.2 illustrates the different types of module components such 

as interior and exterior wall panels, which vary in sizes and design specifications. Due to these 

variations, it is difficult for production line managers to accurately forecast the process times 

(Mohsen et al. 2022; Altaf et al. 2018). Process time (i.e., time taken to complete one module 

component at each workstation), being a critical component for measuring performance in MCM, 

requires accurate forecasting in order to: (i) controlling hourly/daily production line operations by 

effectively managing the workloads; (ii) gaining insights into underlying patterns of the production 

line; and (iii) making data-driven decisions with respect to resource planning (e.g., labors) and 

scheduling sequences of module components in the production line. In practice, production 

managers often rely on the average process times and linear fixed rate (sq. ft. per minute) to 

estimate the process time of module components at workstations. This leads to inaccurate 

prediction of process times, given that process time at workstations largely depends on the type of 

module components (interior and exterior wall panels) and its design specifications, for example, 

number of doors, windows and studs (Altaf et al. 2018). Inaccurate forecasting of process times 

combines with the dynamic nature of MCM that requires frequent hourly/daily changes, makes it 

challenging to develop a robust method for planning, and scheduling the sequences of module 

components and resource allocation in MCM. Additionally, it is challenging to optimize the 
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sequences of module component and balance the production line with reasonable model runtime, 

considering this sequencing problem as a non-deterministic polynomial-time hard (NP-hard) 

problem. This results in an imbalanced production line, causing module components to experience 

waiting between workstations and workers to face idle time at workstations, ultimately extending 

the total project completion time.  

    
             (a)                                                                   (b) 

 
(c) 

Figure 1.2: Different types of wall panels: (a) Interior wall panel; (b) Interior wall panel with 

door; and (c) Exterior wall panel with window 

To reduce subjectivity, various researchers have used probabilistic and statistical methods to 

predict duration and productivity in construction management (Altaf et al. 2018; AbouRizk and 

Halpin 1992; Lu and AbouRizk. 2000, Lee 2005; Barkokebas et al. 2018). However, probability 

distributions can lead to misleading results as they do not account for variations arising from 

clients' customization requirements when predicting production durations. Effective planning and 
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scheduling are crucial for completing projects on time and within budget (Salama et al. 2021). 

Traditional methods, such as the critical path method (CPM), commonly used for project planning 

and scheduling has been proven to be ineffective due to: (i)  time-consuming and error prone when 

rescheduling and re-optimization of sequences of panels at workstations due to dynamic factors 

such as change orders, weather conditions, and on-site demands (Lee and Hyun 2019); (ii) lack of 

crew work continuity, which helps to prevent idle time during repetitive tasks by planning the 

advancing from one task to another in accordance with the task demands and not considering crew 

work continuity leads to reduced productivity (Hegazy and Kamarah 2022); (iii) inability to make 

the real-time adjustments in the production planning and scheduling, which is essential for a 

dynamic production line environment; and (iv) being challenged to effectively model uncertainties 

arising from variations in process times due to customization requirements from clients and 

minimize makespan when scheduling production line operations (Wei et al. 2024). While the linear 

scheduling method (LSM) can adequately address these limitations in the scheduling of repetitive 

tasks (Salama et al. 2018), it does not: (i) account for decision variables such as module dimensions 

and wall openings in their sequencing and labour allocation, which significantly affects the cycle 

time of the production line; and (ii) consider multiple scenarios of resources and sequences of 

modules which is critical for planning effectively and improving production performance of MCM 

lines. To address the challenges associated with LSM and CPM, various studies have developed 

planning methods using job sequencing rules (Shafai 2012). However, the later method accounts 

only for a limited number of job sequencing rules for prefabricating module components, thereby 

falling short of providing an optimal sequence of the module components to be prefabricated in 

the production line. In terms of optimization algorithms, no prior research has employed a hybrid 
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optimization method and compared it with other algorithms to determine the most suitable 

algorithm for scheduling modular construction projects. 

1.3 Research Scope and Objectives 

This research focuses on the planning and scheduling method for modular construction 

manufacturing (i.e., off-site) as illustrated in Figure 1.3. To tackle the previously stated challenges, 

this research aims to: 

Minimize the total completion time (i.e., makespan) of prefabricating in the production line 

based on the sequences of module components and allocation of workers at workstations. 

This is achieved through the following objectives:  

1) Development of predictive method for forecasting process times of module components at each 

workstation. 

2) Investigate a simulation-based method facilitating the generation of multiple scenarios based on 

sequences of module components and allocation of workers at workstations. 

3) Optimize the sequences of the module components at workstations by experimenting with the 

utilization of Genetic Algorithm (GA), Simulated Annealing (SA) and hybrid Genetic Algorithm 

Simulated Annealing (HGASA) in order to develop an optimal production line plan and schedule.  

 

Figure 1.3: Research Scope 
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1.4 Thesis Organization 

This thesis is organized in five chapters as shown in Figure 1.4. Chapter 2 provides an overview 

of the literature, focusing on: (i) data analytics including statistical methods, multiple linear 

regression and artificial neural network; (ii) planning in modular construction using lean 

manufacturing; (iii) discrete event simulation for planning in construction industry and (iv) 

production line scheduling. Chapter 3 is the main chapter and it describes the framework of the 

developed method, which is composed of three modules: (i) a simulation-based statistical method 

for planning in modular construction production lines; (ii) a deep neural network (DNN)-based 

method for predicting process times of module components at each workstation; and (iii) an 

optimization method for scheduling in modular construction. Chapter 4 demonstrates the use of 

the developed methods in two case studies, along with a discussion on their performance. Chapter 

5 concludes with a summary of the thesis, the academic and industrial contributions of the work. 

It also highlights the research limitations and opportunities for future works. 



8 
 

 

Figure 1.4: General overview of research framework 
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CHAPTER 2: LITERATURE REVIEW 
2.1 Introduction  

Literature review is conducted to support the understanding of the current practices, existing 

studies and research opportunities in the field of planning and scheduling for modular construction 

manufacturing (MCM). Figure 2.1 presents the overview of the literature review chapter that 

focuses on the following research areas: (i) data analytics; (ii) planning in modular construction 

using lean manufacturing; (iii) application of simulation in construction; and (iv) production line 

scheduling. 

 

Figure 2.1: Literature review overview 

2.2 Application of Data Analytics  

The modular construction production line must run at its full capacity in order to elevate 

productivity to its maximum limit and meet the on-site demands successfully. However, since the 

production line receives orders of multiple projects, which are highly customized, this results in 

an uneven distribution of historical data related to the process time of module components across 

the workstations and creates uncertainty in predicting the process times (Mohsen et al. 2022). As 

a highly customized product, which increases the complexity of predicting process times, an 

accurate prediction model is essential and becomes a primary concern for the production line 
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managers in MCM. In today's manufacturing environment, it is important for the production line 

managers to provide accurate prediction of processing times by methods that has less 

computational time in order to make real-time changes in the production (Taiwo et al. 2022). 

Accurate prediction of module component process time at workstations will assist production 

managers with resource allocation and reduction in makespan. According to a research report by 

McKinsey Global Institute (Manyika et al. 2024), big data and data analytics can help in managing 

manufacturing production lines by developing robust quantitative decision support solutions. In 

this respect, knowledge discovery (predictive modelling), which is defined as a process of 

identifying novel and potentially useful patterns from the data set in order to make it more 

understandable, has been applied by various researchers (Cheng et al. 2018). Moreover, in modular 

construction production lines, the amount of data plays a significant role in order to efficiently 

train the prediction model. For instance, if the collected data only includes the working period of 

the experienced worker, the prediction models are likely to perform differently when the work at 

that workstation will be performed by the new worker. Additionally, if the collected data period is 

for a project where design factors are not complicated for the module components as compared to 

a project with complex design factors, then also the prediction model is likely to perform 

differently (Mohsen et al. 2023). It should be noted that there are number of design factors (e.g., 

number of studs, number of doors, number of windows and net area) that affects the process times 

of workstations at the production line according to the type of module component (i.e., interior or 

exterior wall panel) as shown in Figure 2.2. In this respect, accurate prediction of workstation 

process times based on a module’s design specifications is essential for production planning in 

MCM. Therefore, identifying the key features affecting the process times and developing 

predictive method that use historical data is vital to support intelligent decision making in 
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production planning that promote productivity improvement. Feature selection methods in data 

analysis are used to select important features from available subset of variables in order to develop 

efficient and accurate predictive models (Guyon and Elisseeff, 2003). According to Mohsenijam 

and Lu (2019), a predictive model with key input features significantly reduces the collinearity 

between input variables and overfitting issues. Various feature selection methods, such as 

correlation matrix, principal component analysis, and t-test, have been used to identify key features 

(e.g., work durations, worker’s skill, profit margin, and module type) in order to improve 

understanding of the underlying processes and overall performance of projects (Xu et al., 2016; 

Xie et al., 2018). For instance, Chanmeka et al. (2012) carried out a correlation analysis and 

statistical test of significance to determine critical factors related to the performance of oil & gas 

projects in Alberta, Canada. Mohsenijam et al. (2017) used stepwise regression to identify key 

design features such as rebar, bolts, nuts, etc. The project’s labor hours were predicted using a 

regression model created using these smaller subsets of design features. Despite the appropriate 

use of feature selection methods and regression-type predictive models in the aforementioned 

studies, though, they cannot be effectively applied to MCM because of its process-oriented nature. 

In the MCM approach, the entire production process is divided into sequences of smaller repetitive 

processes, such that the productivity of the manufacturing production line can be improved. As 

such, in the case of MCM, an analytical framework is required in order to identify significant 

module design factors and establish a method to accurately predict the workstation process times. 

In consideration of these characteristics, the research presented in this thesis seeks to identify 

which feature selection methods are most effective for production planning in MCM. 
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Figure 2.2: List of design factors (pictures provided by Dr. Sadiq Altaf) 

Multiple linear regression (MLR) have been implemented to develop data-driven predictions 

metrices in various construction and fabrication projects. Multiple linear regression analysis is a 

statistical method, and this approach relies on input variables to predict the output variable as a 

way of gaining insights into underlying patterns. In construction management, MLR has been 

applied from predicting duration for earthmoving productivity (Smith 1999) to forecasting cycle 

time for one-span installation in precast bridges (Mohsenijam et al. 2017). Additionally, there are 

various examples of applying multiple linear regression in production lines. For instance, Akpinar 

et al. (2020) applied an MLR in order to describe the relationship between operations' cycle time 

and productivity in the case of a vehicle production line. Bhatia et. al. (2022) applied MLR to 

predict the processing time of wall panels at workstations of the production line. The predicted 

model achieves an R square of more than 70% with a dataset of 200 data points. However, the 

multiple linear regression works with the underlying assumption that there is a linear relationship 

between the independent variables and the dependent variable (e.g., process time) and does not 

perform well when the relationship is non-linear (Mohsenijam et al. 2017). Additionally, with the 
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introduction of more complex manufacturing systems (e.g., modular construction manufacturing), 

the limitations of linear regression came to attention. For instance, in the case of aircraft assembly 

lines, which is a non-linear assembly system, regression has not provided a satisfactory result for 

predicting productivity (Mattsson et al. 2017). 

Therefore, the application of artificial neural networks (ANN) to enhance the accuracy of 

predicting models has been used by various researchers. In particular, ANN are utilized as a 

method in the field of engineering operations and management in order to develop predictive 

models and help managers to enhance their decision-making process (Moon et al. 2023). 

Moreover, ANN: (i) provides superior performance for highly uncertain, nonlinear, and 

complicated problems; and (ii) frequently used in prediction for nonlinear problems in 

manufacturing and supply chain problems (Moon et al. 2023; Ambrogio and Gagliardi 2013). 

According to Moselhi et al. (1991) ANN is the most common supervised learning method to 

analyze the relation between input and output. The model encompasses a collection of processing 

elements, usually organized into layers (i.e., input, hidden, and output layers) and the target is to 

predict one/more dependent variable(s) from independent variables. The input layer accepts the 

data (i.e., independent variables), which is used by the hidden layers to represent the relationship, 

and the output layer produces the network response (i.e., dependent variable). In this study, ANN 

is defined as a neural network that has one hidden layer, whereas DNN (deep neural network) is 

characterized by having two or more hidden layers (Aggarwal 2018). In this thesis, 'deep' refers to 

the presence of multiple hidden layers, enabling the network to learn complex representations from 

the input data. ANN has been extensively applied in the construction and manufacturing industry. 

For example, Ambrogio and Gagliardi (2013) applied ANN to predict the performance of the 

production line process in manufacturing and improved prediction accuracy. Basma and Moselhi 
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(2022) implemented ANN in order to predict the duration and cost of highway projects, with Mean 

Absolute Percentage Error (MAPE) of 7.4% and 4.5% for the duration and cost. El-Sawah and 

Moselhi (2014) applied back propagation neural network, probabilistic neural network, 

generalized regression network, and regression analysis in order to estimate the cost at the pre-

design stage for structural steel building and short-span timber bridges. The results of the different 

neural network models were compared, and it showed that the probabilistic neural network 

outperformed the regression method with a mean absolute percentage error of 1.91 %. Moselhi 

and Siqueira (1998) designed an ANN in order to estimate the direct costs for low-rise structural 

steel buildings. The model was developed using NeuraShell 2, a commercial software, and its 

performance outperformed that of regression method. Moon et al. (2023) successfully 

implemented a multilayer perceptron ANN to predict production and latency days for 

manufacturing production facilities. However, some studies, for example, Mohsen et al. (2022) 

and Alsakka et al. (2023) have advanced the development of forecasting process times at 

workstations along the production line in modular construction by applying various machine 

learning models, including ANN. However, the prediction model was not developed for all of the 

workstations, manual tuning and GridSearchCV were used to find the optimal parameters for the 

neural networks. This approach leads to subjectivity in the process of tuning the parameters and 

does not ensure optimal parameters (Callens 2020).  

Various researchers have utilized GA to optimize hyperparameters for machine learning 

algorithms in the fields of construction and infrastructure engineering. For instance, Assad and 

Bouferguene (2022) used the GA in order to improve the accuracy of predicting the water mains 

condition by finding the optimal hyperparameters of various data mining techniques (e.g., deep 

neural network). However, this optimization approach omitted key hyperparameters such as 
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learning rate and momentum, which inclusion could enhance convergence efficiency and reduce 

overall training time. Koc et al. (2021) applied tree based (e.g., Random Forest) machine learning 

models to predict the post-accident disability status of workers in the construction industry. The 

machine learning parameters were tuned using GA in order to improve the prediction accuracy. 

Considering the successful application of GA in tuning the parameters of machine learning 

algorithms this thesis implements GA to select the optimal neural network hyperparameters for 

predicting the process times of module components in the production line.   

In summary, as shown in Table 2.1, the existing methods for predicting process times of module 

components in MCM involves following limitations: (i) manual tuning was employed to determine 

the optimal hyperparameters for the neural networks, which introduces subjectivity into the 

hyperparameter tuning process and does not guarantee optimal hyperparameters; (ii) predictive 

method have not been created for all workstations along the production line; (iii) the dataset used 

to train the model was small (i.e., 200), which may not yield better prediction performance for 

projects with complex designs and larger datasets; and (iv) probability distributions can produce 

misleading results as they do not account for design variations stemming from clients' 

customization requirements, which are unique to module components when predicting process 

time. 

Table 2.1: Research gaps for data analytics 

Number Author and 

Year 

Method 

 

Gaps 

1 Alsakka et al. 

(2023) 

 

Used computer vision-based 

data to develop cycle time 

prediction framework for one 

of the workstations of modular 

construction production line. 

Various machine learning 

models, including ANN were 

trained to estimate the cycle 

time. 

Prediction method was not created 

for all workstations along the 

production line. 

 

Manual tuning was employed to 

determine the optimal parameters 

for the neural networks. This 

method introduces subjectivity 

into the parameter tuning process 
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and does not guarantee optimal 

neural network configuration. 

 

The dataset used to train the 

prediction models covers only a 

shorter period of operation. This 

may not yield better prediction 

performance for projects with 

complex designs and larger 

datasets. 

 

2 Mohsen et al. 

(2022) 

 

Predicted the cycle time of 

wall panels in a production 

line using ML models and 

utilizing RFID based 

historical data.  

Predictive method was not 

developed for every workstation 

along the production line. 

 

Manual tuning was used to 

identify the parameters for the 

neural networks. This approach 

introduces subjectivity into the 

tuning process and does not 

ensure optimal parameters. 

3 Bhatia et al. 

(2022) 

 

 

Applied MLR models to 

predict the processing time of 

wall panels at each 

workstation of the production 

line  

 

The dataset used to train the 

model was small (i.e., 200), which 

may not yield better prediction 

performance for projects with 

complex designs and larger 

datasets. 

4 Altaf et al. 

(2018)  

Predicted wall panel process 

time using probability 

distribution functions (e.g., 

beta, triangular and gamma 

distributions) 

 

Probability distributions can yield 

misleading results as they do not 

consider design variations arising 

from clients' customization 

requirements, which are unique to 

module components when 

predicting production durations. 

 

5 Taiwo et al. 

(2022) 

 

Developed multiple linear 

regression model to predict the 

productivity of installing 

modules in modular integrated 

construction projects 

The regression results were not 

compared with other machine 

learning algorithms. 

 

The dataset used to train the 

prediction models covers only a 

shorter period of operation. This 

may not yield better prediction 

performance for projects with 
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complex designs and larger 

datasets. 

 

6 

 

Rashid et al. 

(2020) 

Predicted duration at each 

workstation using triangular 

distribution with 15% upper 

and lower bound. 

Probability distributions can yield 

misleading results as they do not 

consider design variations arising 

from clients' customization 

requirements, which are unique to 

module components when 

predicting production durations. 

 

7 Moon et al. 

(2023) 

 

Developed multilayer 

perceptron artificial neural 

network to predict the 

production days for the cable 

manufacturing production 

line.  

Manual tuning was employed to 

determine the optimal parameters 

for the neural networks. This 

method introduces subjectivity 

into the parameter tuning process 

of neural networks and does not 

guarantee optimal parameters. 

 

8 

 

Barkokebas et. 

(2018) 

Predicted task durations at 

workstations using the 

coefficient of variation (i.e., 

ratio of standard deviation to 

mean). 

Relying on average times can 

yield to misleading results as they 

do not account for variations 

arising from clients’ 

customization requirements (i.e., 

different design specifications). 

 

9 Aghajamali et al. 

(2022) 

Applied linear regression and 

artificial neural networks to 

predict cycle time of fitting 

and welding workstations at 

steel fabrication production 

line. 

Manual tuning was employed to 

determine the optimal 

hyperparameters for the neural 

networks. This method introduces 

subjectivity into the parameter 

tuning process of neural networks 

and does not guarantee optimal 

hyperparameters. 

 

The dataset used to train the 

model was small, which may not 

yield better prediction 

performance for projects with 

complex designs and larger 

datasets. 

 

10 Mohsen et al. 

(2023)  

Developed a data-driven 

machine-learning model using 

Random forest and gradient 

Manual tuning was employed to 

determine the optimal 

hyperparameters for the neural 
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boosted decision trees to 

predict the total duration of 

prefabricating pipe spool  

networks. This method introduces 

subjectivity into the parameter 

tuning process of neural networks 

and does not guarantee optimal 

hyperparameters. 

 

11 Rashid and 

Louis (2020) 

Developed a framework to 

identify different manual 

activities (e.g., nailing and 

hammering) performed in 

modular construction 

production line using audio 

signals and machine learning 

(e.g., SVM).  

The method did not consider 

predicting the cycle time required 

to complete the module 

components at the workstations of 

the production line. 

 

The method did not identify which 

manual activities (e.g., nailing and 

hammering) have the most 

significant impact on the cycle 

time completion of module 

components. 

12 Backus et al. 

(2006) 

Implemented regression trees 

in order to predict factory 

cycle time. 

The dataset used to train the 

model was small. 

 

Prediction algorithms like neural 

networks, which perform well 

with non-linear data, were not 

tested and compared. 

 

2.3 Planning in Modular Construction Using Lean Manufacturing  

The construction industry is moving towards industrialized construction (i.e., modular and off-site 

construction) by increasingly embracing the principles of mass production and standardization 

(Lee and Hyun 2019). Modular construction closely resembles the philosophy of the 

manufacturing industry, but encompassing both mass production and customization to meet 

specific customer requirements. Moreover, the objective of integrating manufacturing into 

construction is to introduce the concept of continuous flow, emphasizing the movement of module 

components through the workstations of the production line with waiting time minimized or 

eliminated (Gann 1996). In keeping with this concept, MCM production facilities often feature the 

simultaneous prefabrication of the module components for two to three projects in their production 
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lines. In this regard, ensuring synchronization between the sequences of module components at 

each workstation and their on-site installation is critical. However, due to customization 

requirements from clients, the use of conventional construction methods for planning and 

scheduling (i.e., sequencing of jobs) in MCM poses challenges for production managers (as 

discussed above). Moreover, since the process times and release dates of the jobs in the production 

lines are uncertain at the planning stage, scheduling in MCM resembles a stochastic scheduling 

problem. In this respect, researchers have proposed methods based on lean manufacturing 

principles to enhance the process of planning in MCM (Zaalouk et al. 2023). The objective of 

applying lean manufacturing principles in construction is to reduce waste, achieve continuous 

improvement and increase value for the customer. While various lean principles and tools from 

manufacturing industry are applicable in the construction, but a number of lean principles and tools 

are developed specifically for construction industry. Koskela (1992) was the first to implement the 

concepts of lean production in the construction industry. The study introduced a new production 

philosophy, which served as a guideline to create continuous process flow in the production line. 

Later, last planner system (LPS) was introduced by Ballard (2000), which served as a system for 

project planning and control the process of production line. LPS supports the pull system and 

continuous improvement, which helps in creating smooth production line process. Given that, the 

implementation of lean principles has substantially enhanced the efforts in process improvement 

by identifying and eliminating non-value-added activities, it was implemented in the production 

line to improve planning in MCM (Yu et al. 2011). For example. Zhang et al. (2020) integrated 

the production line breakdown structure (PBS) with value stream mapping (VSM) to assess the 

status of the production line, identify the current issues and propose the solutions for future 

implementation. Salama et al. (2021) integrated BIM, LSM, and critical chain project management 
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(CCPM) in a novel scheduling method for modular construction projects, incorporating the 

concepts of Takt time and just-in-time (JIT) to increase productivity. Moghadam et al. (2012) 

integrated BIM and lean manufacturing principles in order to identify and eliminate bottlenecks 

(e.g., idle time of workers) in the production line and develop the production line schedules. Yu et 

al. (2009) used a value stream mapping (VSM) tool to determine steady production flow for 

productivity improvement by analyzing the production process and controlling fluctuation of 

sources. Yu et al. (2013) implemented lean production principles and techniques such as 5s and 

standardized work in the real case study. Future state maps were developed in order to implement 

these principles and improvement in terms of production line productivity was observed. However, 

based on these techniques, designing plans without validating and understating their effects on the 

production line can be costly and time-consuming. Also, lean based plans are required to be 

adjusted at regular basis in order to keep production line balanced. Considering the high amount 

of variation in design specification of modules and its effect on process times of workstations, 

manual adjustment is difficult and time consuming. Therefore, computer simulation can be 

employed as a validation tool for future planning by imitating production line processes as a way 

of assessing the effect of proposed solutions prior to incurring the cost and disruption of actual 

implementation (Han et al. 2012). 

2.4 Application of Simulation in Modular Construction 

The modular construction industry has complex processes, which consist of multiple module 

components and various production lines. In order to deal with these complex processes, a reliable 

technique and/or tool is required, which is capable of: (i) performing 'what if' analysis by 

generating multiple scenarios and assessing the effectiveness of these scenarios in terms of 

productivity improvement; (ii) generating multiple performance statistics; and (iii) efficiently 
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model the interaction between processes and resources (Abourizk 2010). Due to advancements in 

the field of computer software, the above stated requirements are often achieved through 

simulation modelling. Abourizk et al. (2016) defined simulation as “the use of computer software 

(e.g., Simphony) to represent the dynamic responses of a construction system by the behaviour of 

a model made to represent it. A simulation uses mathematical descriptions, graphical constructs, 

computer algorithms (as well as other means) that are generally encapsulated in a simulation 

software model to represent the real system”. The application of simulation is applied for decision 

making in the construction and manufacturing industry as it helps in understanding the process of 

complex systems. In this respect, previous researchers (Altaf et al. 2018; Azimi et al. 2011) have 

used the simulation technique in: (i) planning and scheduling the sequences of the modules 

produced in the production line based on the 'what if analysis'; and (ii) allocating resources at 

workstations. There are various types of simulation techniques depending on the nature of the 

dependent variables. As one of simulation techniques, discrete event simulation (DES), which is 

defined as the change of the dependent variables taking place at the specific event points. On the 

other hand, continuous simulation takes place when dependent variable changes continuously 

during the process being modeled (Marzouk 2003). To support the simulation, considerable efforts 

are made to introduce simulation applications, such as Cyclone, Stroboscope, Simphony.NET, 

AnyLogic and Arena. Cyclone as a foundation of various construction simulation applications 

(Halpin 1997) is deployed to model and analyse the construction process. CYCLONE, which 

stands for CYCLic Operations Network, is introduced by Halpin (1977) as a construction 

simulation tool. It follows the concept that construction operations can be considered in the form 

of cyclic networks of modelling elements that characterize the change of construction resources 

between an active state (productive) and an idle state (waiting). Later, special-purpose simulation 
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is proposed by Hajjar and Abourizk (1999) for the experts in the area of construction simulation. 

Abourizk and Mohamed (2000) introduced a powerful and user-friendly simulation tool called 

Simphony.NET as a discrete event simulation (DES) system that evaluates various scenarios of 

the production line operation before implementing in the real production. While developing 

models using Simphony. NET, users have access to a domain-specific set of modelling elements 

library with names that users can relate. Figure 2.4 shows the various modelling elements of 

Simphony. NET that allows the users to mimic the system using process interaction concepts. For 

example, icon for ‘create’ element represents the entities (e.g., wall panels), icon for ‘task’ element 

represents an activity (e.g., assembly workstation) in the model, icon for ‘resource’ element allows 

representation of various real-world resources (e.g., crane) and icon for ‘condition’ element routes 

entities by evaluating true or false condition (e.g., if wall panel is exterior, then condition is true 

and the wall panel will move to framing workstation, if false then if will go to sheathing 

workstation). 

              

 

 

Figure 2.3: Modeling elements in Simphony. NET (Abourizk et al. 2016) 
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The outputs of the simulation model include statistical averages, utilization of resources and time 

graph. All these simulation systems in general focus on process-oriented concepts to reflect the 

characteristics of construction process and its working environment. Previous research (Hong et 

al. 2011) have contributed in advancing the production line planning in MCM using simulation 

platforms. For instance, Senghore et al. (2004) developed a simulation model to improve the 

production process of manufactured housing plants. Altaf et al. (2018) utilized RFID technology, 

data analysis and simulation-based optimization for planning and controlling the production line.  

Barkokebas et al. (2021) applied BIM with simulation and lean principles for planning in off-site 

construction and suggested production line process improvements. Bhatia et al. (2022) and 

Mohsen et al. (2008) developed a simulation model using Simphony.NET to predict the 

productivity of the production line. Azimi et al. (2011) integrated data acquisition and simulation 

for developing a decision support tool for production managers to take corrective actions ahead of 

time. Lee and Kim (2017) used BIM based 4D simulation method in order to improve the process, 

material, and quality management for manufacturing modules in the factory. Wei et. al. (2024) 

developed a pull-based hybrid simulation planning method for the modular and off-site 

construction supply chain. In general, simulation have been applied individually or integrated with 

lean and BIM to develop plans and schedules, thereby improving the performance of MCM. 

However, there are the following issues: (i) a limited number of scenarios were tested; therefore, 

not giving optimal sequences of module components (e.g., wall panels) to be prefabricated in the 

production line; (ii) these methods do not provide a systematic way to identify significant impact 

factors affecting process times of workstations, which can improve the accuracy of predictive 

results in a simulation model; and (iii) these methods do not simultaneously schedule the sequences 

of modules and allocation of resources for further productivity improvement. The simulation 
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models are developed based on data collection which is generally implemented by manual tasks 

leading to error-prone and time-consuming. To address these limitations, some researches 

introduced radio-frequency identification (RFID) based data collection (Altaf et al. 2018; Azimi 

et al. 2011). Figure 2.4 illustrates the typical RFID system consists of an RFID tags (passive), 

stationary readers and database in order to store the data. 

 

Figure 2.4: RFID system description (pictures provided by Dr. Sadiq Altaf) 

2.5 Production Line Scheduling  

Production line scheduling involves organizing a given number of predefined operations (i.e., jobs) 

in a specific sequence and time frame allocated to particular machines (i.e., workstations) within 

the production line (Varela et al. 2022). The most common production line scheduling problem is 

flow-shop scheduling (permutation flow shop model), where the machines (i.e., workstations) are 

arranged in series, and each job (i.e., module component) must pass through all the workstations 

in the predefined sequence (Framinan et al. 2014). In this respect, a modular construction 

production line, resembling the flow shop model and necessitating optimal sequencing of module 

components at workstations, is defined as a production line scheduling problem. This scheduling 

problem belongs to the class of non-deterministic polynomial-time hard (NP-hard) problem. In 

such problems, there are multiple sequences (nm) in which the modules can be scheduled to pass 
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through the different workstations, and, with an increase in the number of combinations, the 

complexity of the problem (i.e., the search space) increases, making it increasingly difficult for 

existing techniques to effectively find the optimal sequence within a reasonable model runtime 

(Baker and Trietsch 2013). For example, Alsakka et al. (2024) integrated computer vision, machine 

learning-based prediction models, and simulation in order to estimate cycle times, simulate 

operations, generates schedules for the wall panel production line. Barkokebas et al. (2023) 

integrated statistical and machine learning with the digitalization techniques in order to balance 

the production line and hence make process improvements. However, these method does not apply 

optimization algorithms in order to find optimal production sequences which can minimize the 

production duration. 

As such, in order to find the optimal solution within a reasonable computational time, researchers 

in industrial engineering have applied metaheuristic optimization techniques—e.g., GA, particle 

swarm optimization (PSO), and SA—to address scheduling problems (e.g., flow-shop scheduling). 

For example, Chen et al. (2019) proposed a GA-based method to generate schedules for a hybrid 

flow shop, dynamically considering order arrivals. Their study demonstrated the effectiveness of 

GA in reducing job waiting time and meeting order deadlines. Meanwhile, An et al. (2014) 

illustrated the application of GA in minimizing the production time and cost for a metal-cutting 

production process. Ji et al. (2009) applied SA to find the optimal sequencing of jobs in terms of 

minimizing total duration in the flow shop. Previous studies have shown that optimization is a 

promising approach in developing schedules and minimizing the duration in the manufacturing 

industry's flow shop production lines. Modular construction production line problems, which 

resemble the flow-shop scheduling problem, can be solved using optimization techniques. In this 

respect, as shown in Table 2.2 various researchers have developed optimized schedules for 
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modular and off-site construction. For example, Altaf et al. (2018) developed a simulation-based 

optimization model using PSO/SA to minimize the production line's cycle time and determine the 

optimal sequences of wall panels in the production line. Rahman and Han (2024) integrated linear 

scheduling method and multi objective optimization model to balance the off-site construction 

production line and minimizes project completion time, work in progress and workstation idle 

time. Hyun et al. (2021) developed a multiobjective optimization model for modular unit 

production line using a genetic algorithm. Various performance indicators such as minimization 

of cost, makespan, resource consumption and idle time, are used in multiobjective optimization. 

Lee and Hyun (2019) developed a multi-objective optimization model based on GA to reduce both 

duration and cost in modular construction production lines. Rashid and Louis (2020) integrated 

GA and discrete-event simulation to minimize the makespan (i.e., completion time) for a modular 

construction production line by optimizing the allocation of workers to the various workstations. 

Liu et al. (2015) developed optimized schedules for panelized construction projects by integrating 

BIM, discrete-event simulation, and PSO. However, these methods have the following limitations: 

(i) they do not account for the sequence of on-site installation of module components; (ii) the 

optimization does not account for multiple projects being carried out simultaneously; and (iii) they 

assume that the durations of workstations on a production line follow a triangular distribution, 

meaning that they do not consider unique design factors in predicting duration. In this respect, 

there is a need for scheduling methods that utilize historical production data to develop predictive 

models for scheduling the sequences of module components in the production line. 

Hybrid optimization, which can solve complex optimization problems, has been employed in a 

number of research studies to obtain optimal and efficient solutions. The most prevalent approach 

has been to combine the strengths of two metaheuristic algorithms (e.g., GA and SA) and thereby 
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overcome the shortcomings of each. For example, GAs converge prematurely and slowly, lacking 

local search capability, whereas SA excels at avoiding local optima by searching around the initial 

solution (Hassani et al., 2021). As such, combining these algorithms results in a more efficient 

hybrid approach, especially for solving large-scale scheduling problems (Mehdi 2011). Various 

researchers have applied this hybrid optimization approach to solve job/flow-shop scheduling 

problems, to reduce production costs for turning operations in metal, and to solve aggregate 

production planning problems. For instance, Hassani et al. (2021) implemented a hybrid SA/GA 

approach to minimize cost in a flow-shop context. Rameriz et al. (2019) developed a novel hybrid 

algorithm combining the Ant Colony System (ACS), SA, and GA to minimize the makespan in a 

flow-shop scheduling environment. Ganesh and Punniyamoorthy (2005) combined GA and SA to 

solve the production planning problem. In their study, GA was implemented to find a global 

solution while allowing SA to optimize each solution locally. Uslu et al. (2022) applied a hybrid 

algorithm combining GA and Ant colony optimization to minimize makespan in the context of 

flow-shop scheduling. Their results showed that hybrid optimization performed better than either 

GA and SA applied individually for small-scale problems.  

The application of hybrid optimization (i.e., GA + SA) in sequencing module components (e.g., 

wall, floor, and roof panels) has yet to be explored. As illustrated through various studies, hybrid 

optimization algorithms have been effectively implemented in the manufacturing industry, 

yielding better results compared to those of individual metaheuristic algorithms. However, 

modular construction presents distinct challenges and differs from traditional manufacturing in 

terms of: (i) the high degree of customization of module components and (ii) the dynamic nature 

of production lines, necessitating frequent adjustments to production schedules to meet on-site 

demands. It is worth noting that, to the best of the authors’ knowledge, no study has applied a 
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hybrid optimization approach in MCM for production scheduling. Therefore, in the present study, 

a hybrid optimization technique is utilized to address the modular construction manufacturing 

scheduling problem (MCMSP). Although the effectiveness of optimization algorithms varies 

depending on the scheduling problem and objective, the positive reviews of GA and SA 

algorithms, known for providing effective solutions and good computing capabilities in solving 

production line scheduling problems, justifies their selection to solve MCMSP in this study. 

Priority rules are a common approach for addressing the multi-project scheduling problem and are 

used in the manufacturing industry to determine the sequence of jobs on machines (ElFiky et al., 

2020). These rules can be applied as constraints when developing production schedules for 

multiple projects to minimize total duration and tardiness (Kruger and Scholl, 2010). While 

numerous priority rules are available for multi-project scheduling in the literature, the challenge 

lies in selecting the rule that performs best under specific conditions. According to Kolisch (1994) 

and ElFiky et al. (2020), there are 17 priority rules categorized into activity-based, project-based, 

and resource-based groups: (i) the earliest due date rule, where projects with earlier due dates are 

given higher priority and processed first; (ii) the modified due date rule, where the project with the 

least modified due date is prioritized and processed next; and (iii) the shortest processing time rule, 

used to break ties among projects with the same due date, to minimize total tardiness. In this 

context, various studies have effectively implemented these priority rules for project scheduling. 

For example, Chen et al. (2019) applied 20 priority rules to address the multi-project scheduling 

problem, incorporating new project arrivals into their existing schedule to enhance practicality. 

Similarly, Pickardt et al. (2010) integrated genetic algorithms with discrete event simulation to 

generate dispatching rules, reducing tardiness for multiple projects in the semiconductor industry. 

Mizrak and Bayhan (2006) developed various dispatching rules to ensure projects were completed 



29 
 

within their due dates, aiming to minimize assembly line lead time. Existing scheduling methods 

in modular construction manufacturing generally focus on single projects, which is unrealistic for 

actual factory settings where modular construction companies frequently undertake multiple 

projects at the same time. Therefore, it is crucial to develop a method that incorporates various 

priority rules along with optimization algorithms (i.e., the sequence in which wall panels of 

different projects should be prefabricated) to minimize project duration, and meet contractual 

obligations. 

Table 2.2: Research gaps for production line scheduling 

Number Author and 

Year 

Method 

 

Gaps 

1 Altaf et al.  

(2018) 

Developed a simulation-based 

optimization model using 

PSO/SA to minimize the 

production line cycle time  

• The optimization does not 

account for multiple projects 

being carried out simultaneously. 

• Not utilized a hybrid 

optimization approach and 

compared it with other algorithms 

2 Rahman and Han  

(2024) 

Integrated linear scheduling 

method and multi objective 

optimization model to balance 

the off-site construction 

production line and minimizes 

the completion time of wall 

panels 

• Do not account for the sequence 

of on-site installation of module 

components 

• Not considered all the 

workstations of the production 

line 

3 Alsakka et al. 

(2024) 

Integrated computer vision, 

machine learning and 

simulation to estimate cycle 

times and generates schedules 

for the wall panel production 

line 

• Does not apply optimization 

algorithms in order to find 

optimal production sequences 

• Not considered all the 

workstations of the production 

line 

5 Hyun et al. 

(2021) 

Developed a multiobjective 

optimization model for 

minimizing cost, makespan, 

and resource consumption in 

modular unit production line 

using a genetic algorithm 

• Do not account for the sequence 

of on-site installation of module 

components 

• Not utilized a hybrid 

optimization approach and 

compared it with GA 



30 
 

6  Lee and Hyun 

(2019) 

Developed a multi-objective 

optimization model based on 

GA to reduce both duration 

and cost in modular 

construction production lines 

• The optimization does not 

account for multiple projects 

being carried out simultaneously 

• Does not consider practical case 

of parallel workstations aimed at 

reducing makespan in the 

optimization algorithms 

7 Rashid and Louis 

(2020) 

Integrated GA and discrete-

event simulation to minimize 

the makespan for a modular 

construction production line 

by optimizing the allocation 

of workers 

• Assume that the durations of 

workstations on a production line 

follow a triangular distribution, 

meaning that they do not consider 

unique design factors in 

predicting duration 

• Does not apply optimization 

algorithms in order to find 

optimal production sequences 

that highly affect the makespan 

 

2.6 Summary of Research Gaps 

In summary, the following limitations are identified: 

1. The developed simulation lacks a systematic way to identify the SIFs affecting process 

times at workstations, which provides critical information that can improve the accuracy 

of the simulation results. 

2. The analysis of the allocation of workers at workstations for the purpose of productivity 

improvement in MCM is not considered in the previous simulation-based planning 

methods. 

3. Manual tuning was used to find the optimal parameters for the neural networks. This 

approach leads to subjectivity in the process of tuning the parameters and does not ensure 

optimal hyperparameters. 

4. The predictive method to forecast the process time of module components were not 

developed for all the workstations in the production line. 
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5. Assumed the durations of workstations on a production line as only triangular distribution, 

which can lead to misleading results because it does not consider design factors in 

predicting duration, which are unique for module components. 

6. Lean based plans are required to be adjusted at regular basis in order to keep production 

line balanced. Considering the high amount of variation in design specification of modules 

and its effect on process times of workstations, manual adjustment is difficult and time 

consuming. 

7. There is a lack of practical methods for optimized production line scheduling that consider 

the installation sequences of module components on-site (e.g., interior wall panels should 

be prefabricated, delivered and installed before exterior wall panels) 

8. The existing methods for planning and scheduling do not adequately consider the status 

(i.e., workload) of production lines, where multiple module components for multiple 

projects are managed and prefabricated simultaneously. 

9. Previous study has not utilized a hybrid optimization approach (e.g., GA and SA) and 

compared it with other algorithms to identify the optimal algorithm that is best fitted for 

planning and scheduling of MCM.    

10.  No previous study has considered practical case of parallel workstations (i.e., a 

workstation capable of prefabricating two wall panels at the same time), aimed at reducing 

makespan in the optimization algorithms. 

 

 

 

 

 



32 
 

CHAPTER 3: DEVELOPED METHOD 
3.1 General      

The aim of this chapter is to introduce a framework composed of three modules regarding the 

developed method. The three modules include: (i) simulation-based statistical method for 

planning; (ii) deep neural network-based method for predicting the process times of module 

components at workstations; and (iii) optimized scheduling method based on metaheuristic 

algorithms (e.g., GA, SA and Hybrid GASA). Figure 3.1 depicts the details for automated planning 

and scheduling method for modular construction manufacturing (MCM) production line using 

historical and near real-time data. The process of simulation- based planning method in the first 

module, starts with work and time study in order to understand the standard operating procedures 

and collect near real time data of module components at each workstation in the production line. 

Based on this historical data, probability distribution functions and cycle time formula (CTF) using 

statistical techniques are developed to predict the process times, which are later input into the 

simulation method to plan the sequences of module components and allocation of workers at 

workstations. It should be noted that the simulation method helps to balance the production line 

by assigning the sequences of module components and allocation of workers. In the second 

module, a Deep Neural Network (DNN), based predictive method is developed. The predictive 

method is trained on large dataset (i.e., 416950 timestamps), which is collected using RFID based 

system to predict the process times of module components at each workstation of the production 

line. Artificial Neural Network (ANN) and multiple linear regression (MLR) are also utilized for 

predicting production process time spent at each workstation in a manufacturing plant. Also, 

genetic algorithm (GA) based optimization is used to optimize the architecture of the DNN and, 

as such, finds a near optimum number of hidden layers and nodes in each layer. In the third module, 

the production line schedules (i.e., optimal sequences of module components) are generated by 
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utilizing genetic algorithm (GA), simulated annealing (SA) and Hybrid Genetic Algorithm 

Simulated Annealing (HGASA). These developed methods collectively provide the following 

outputs: (i) predictive method for MCM; (ii) lists the sequence of module components; (iii) 

allocation of workers at workstations; and (iv) minimum makespan. The details description of each 

developed method is provided in the following sections: 

 

Figure 3.1: Main components of the developed method 

3.2 Module 1: Simulation- Based Planning 

Figure 3.2 depicts the components of the developed method and its simulation-based planning 

process for MCM lines using historical and near real-time data. The process encompasses three 

phases: (i) data collection; (ii) data analysis; and (iii) simulation-based planning. Input parameters 

such as process times of workstations, design specifications of modules, and the number of 

workers at workstations are housed in a central database. The criteria are workflow of the 
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production line, availability of resources, working hours, and the capacity of workstations in terms 

of the module length they can accommodate (e.g., the capacity of a framing workstation may be a 

length of 20 ft). In the data collection phase, work and time studies are performed in order to gain 

understanding of the SOPs at workstations as well as collect historical and near real-time 

workstation production data. The data collected includes the start and finish times of modules, 

design specifications, and the number of workers assigned to various workstations. This data is 

stored in a database via a cloud-based time-track application called “C-track”. The database is used 

in: (i) the data analysis phase to identify SIFs, develop the probability distribution functions and 

cycle time formula (CTF) using statistical method, and select the best predictive method by 

comparing the performance of the cycle time formula with that of the probability distribution 

functions; and (ii) the simulation of the production line developed in Simphony.NET. Both cycle 

time formula (CTF) and probability distribution functions are used in the simulation as a way of 

capturing the unique nature of production lines (e.g., facility layout and number of workstations). 

In this respect, the outputs (productivity) from the simulation method using cycle time formula 

(CTF) and probability distribution functions are compared with historical productivity data in 

order to determine which is most accurate. The output, it should be noted, lists the sequence of 

modules and allocation of workers at workstations, and can be used to determine the total duration 

for completing a module in the multiple scenarios generated by the simulation. The simulation 

method also helps to balance the production line by assigning an optimal sequence of modules and 

allocation of workers. 
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Figure 3.2: Main components of the simulation-based statistical method 

3.2.1 Data Collection 

The purpose of the data collection phase is to understand the performance of production lines by 

conducting work and time studies. The work study involves: (i) reviewing the SOPs of 

workstations in order to gain a high-level understanding of the sequences of activities at 

workstations prior to direct observation; (ii) classifying the types of modules (e.g., interior and 

exterior wall panels) and their components (e.g., number of window openings per module) using 

the shop drawings; and (iii) determining the breakpoints, i.e., the start and finish points for the 

various work processes at the workstations, in order to ensure that the process times are collected 

efficiently and accurately. In a typical time-study, a series of time data in the production line is 

collected and recorded manually using a stopwatch and timesheets, but this approach is time-
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consuming and inaccurate. Therefore, to achieve more accurate results in a more efficient manner, 

a C-track app is used in the present study in order to: (i) improve the accuracy of the data collection 

process by recording near real-time data of modules at workstations; and (ii) improve 

communication by providing efficient information transfer between the production line and the 

production planning department. Figure 3.3 (a and b) illustrates the details of the C-track app that 

consists of a desktop-based production management system (used in the production planning 

department) and an iPad-based system (installed at the workstations). The key users in the desktop-

based system are the project manager and the project coordinator. The desktop-based system 

encompasses: (i) representation of the production line for the purpose of defining the workflow; 

(ii) management of the assignment of modules to workstations (i.e., sequence); and (iii) data 

organization (e.g., productivity of specific workstations and of the production line overall) based 

on the historical and near real-time recorded by the iPad-based system. The iPad-based system 

receives the information related to modules and their workflow from the desktop-based system. 

The workers at workstations follow the information concerning sequencing of modules assigned 

under the list of module names in order to record the process times. For collecting the time records, 

the ‘Track App’ features start, pause, and finish buttons. The worker first selects a ‘module name’ 

from the list, then presses ‘start’ to record the process start-time. In case of a disruption due to an 

error in the drawings or a work stoppage for a scheduled break, the worker uses the ‘pause’ button 

to stop the time record. After completing a module, the worker selects the ‘finish’ button. The 

timestamp is then recorded and transferred automatically in the ‘production management system’ 

and the database. Along with this, the ‘module name’ of the finished module is updated 

automatically in the ‘product item’ list of the next workstation. Although workers are still required 

to manually start/stop the time recordings, this semi-automated data collection application 
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efficiently and accurately tracks modules at workstations and allows the productivity of the 

production line to be monitored in real-time. Based on the app's data organization feature, 

production managers can monitor bottlenecks on the production line in near real-time by 

comparing current and historical production rates. 

 

(a) 
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(b) 

Figure 3.3: (a) C-track application; and (b) detail flow of information in cloud-based tracking 

application 

3.2.2 Data Analysis 

Figure 3.4 provides a flowchart of the data analysis used to develop the method for predicting 

process times. To address the effect of missing data and outliers on the accuracy of the predictive 

method, the first step of the data analysis is to identify any missing values in the dataset due to 

human error (e.g., incorrect keystrokes on the app.) or technical issues such as temporary internet 

disconnection. The most common method to deal with missing values in the data is substitution 

through linear interpolation or regression (Piryonesi and El-Diraby, 2019). Furthermore, outliers, 

i 



39 
 

a set of data points that follow a pattern inconsistent with the rest of the data points, must be 

removed to improve the accuracy of the predictive method. Outliers can be identified and removed 

either by drawing scatter plots or by using residuals, which measure differences between observed 

and estimated durations. Residual analysis proceeds with: (i) fitting a regression to the dataset; (ii) 

finding the estimated durations; and (iii) calculating the residuals and adjusted residuals. In this 

research, the standardized residuals (individual residual divided by the standard deviation of 

residuals) are found to fall within the range of ±1.64, where data points outside of this range are 

considered outliers, as per Cottrell (2006). After detecting the outliers, normalization is 

implemented using Equation 3.1 to: (i) reduce the sizes of variables and thereby reduce 

computation time for calculating the process times; and (ii) improve the accuracy of the predictive 

method. 

                                                         𝑉 ′ = (𝑉 − 𝑚𝑖𝑛𝐴) / (𝑚𝑎𝑥𝐴 − 𝑚𝑖𝑛𝐴)                     Equation 3.1 

where minA and maxA are the minimum and maximum values, respectively, of the independent 

variable, A, and V represents the original value of A. 

The dataset having been cleaned, statistical techniques such as PCA, t-test, and PCC are applied 

in order to identify the SIFs affecting the process times. These feature selection techniques enhance 

the performance of the predictive method and provide deeper understanding of the underlying 

process (Guyona and Elisseeff., 2003; Chanmeka et al., 2012). These techniques, it should be 

noted, are selected for the present study by virtue of (i) their wide use in investigating prediction 

and variable selection problems in manufacturing and pipe fabrication; and (ii) their simplicity, 

empirical accuracy, and generic applicability. To avoid overfitting, machine learning algorithms 

such as random forest and decision tree, as alternative methods for variable selection, are not 

considered because of the small size of the dataset, i.e., less than 1,000 observations. According to 
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Makridakis et al. (2018), the use of such methods for small datasets can yield a “black box 

solution”, which may not be acceptable to industry practitioners. Below is a brief description of 

statistical techniques used: 

1) t-test: The sample t-test is a statistical analysis technique used to determine the probability value 

of rejecting the hypothesis, which, in this research, is the statistical significance of the selected 

factors that affect the process times at MCM workstations. In this research, a sample t-test (Gerald, 

2018) is deployed based on Equation 3.2, where n is the sample size, �̅�is the mean of the sample 

data, µ is the population mean, and 𝜎 is the standard deviation. The SIFs are selected by evaluating 

the p-value—defined as p-value ≤ 0.01 in this research. 

                                                        𝑡 = (�̅�− 𝜇)/(𝜎/√𝑛)                                             Equation 3.2 

2) Pearson correlation coefficient (PCC): PCC (Yu and Liu, 2003) is represented by Equation 3.3, 

where 𝑥𝑖 ̅̅̅𝑗 is the mean of independent variable x j and 𝑦̅𝑖 is the mean of dependent variable y 

(duration). 𝑥𝑖 𝑗 and 𝑦𝑖 represent the original values of variables xi and y. The range of R is ±1, 

where values close to 1 are indicative of a strong correlation between the independent variables, 

while values close to 0 signal a weak correlation between independent variables. 

                                                     R =
∑(xi

j
−xi

j̅
)(yi−y̅i)

√∑(x
i
j
−xi

j̅
)2√∑(yi−y̅i)2

                                            Equation 3.3 

where i is the number of observations and j is the number of variables. 

3) Principal component analysis (PCA): PCA is a widely used data reduction technique that 

extracts the small set of variables that accounts for maximum variance in the original dataset. In 

this method, typically the principal components (PCs) accounting for 90% of the dataset's total 

variation are selected for further analysis (Rocchi et al., 2004). These components represent a 

linear combination of original independent variables, where the first PC has the most significant 

variance, and the succeeding PCs are built by reducing the variances of the preceding PCs. The 
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variation is expressed as the factor scores, which are calculated by representing the data into a 

form of a matrix (X) consisting of the J × I matrix where J is a number of observations and I is a 

number of independent variables. The singular value decomposition (SVD) or Eigen-

decomposition is used to decompose the X into two orthogonal matrices and one diagonal matrix. 

Equation 3.4 represents the SVD of the X, where P is the eigenvectors of matrix PTP, Q is the 

eigenvectors of QTQ matrix, which computes the factor scores and Δ is the diagonal matrix. As a 

result, the SIFs are identified by selecting the smallest factor score at each of the PCs.   

                                                                X= PΔQT                                                        Equation 3.4  

 

Figure 3.4: Flowchart of data analysis 
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Before developing the regression, the dataset is divided into training (80%) and testing (20%) 

subsets. Based on the SIFs and the training subset, multiple linear regression (MLR) are developed 

to predict the process times at workstations. To identify and mitigate overfitting, which diminishes 

the generalizability and accuracy of prediction, cross-validation, as a technique that identifies 

overfitting by testing the accuracy of the predictive method (Mahmood and Khan, 2009), is 

applied. The present study adopts K-fold cross-validation, as this is one of the most robust 

approaches for validating and testing the performance of a model, given that it utilizes unseen data. 

The dataset is divided into K folds, where, in turn, (K−1) folds are used to train the predictive 

method, and the remaining fold is used to test the accuracy. This process is repeated for K 

iterations, where the accuracy of the predictive method is determined by calculating the average 

of these K iterations. 

Based on the results of the t-test, PCC, and PCA using different lists of SIFs, there are a few 

different MLR models capable of predicting the process times. There are four evaluation indices 

that can be used to determine which predictive approach is most accurate: (i) R-square (R2); (ii) 

adjusted R-square, (adj. R2); (iii) root-mean-square error (RMSE); and (iv) mean absolute error 

(MAE) (Willmott and Matsuura 2005, Elmousalami 2019). These evaluation indices have been 

shown to be reliable and are used widely in various disciplines such as manufacturing and 

construction (Martinez et al., 2020). 

 Based on the historical time data stored in the database, a probabilistic model is developed to 

predict the process times at workstations. Various functions, including Gamma, Weibull, Uniform, 

and Triangular, are fitted in order to generate the process times based on the parameters of the 

associated distributions, such as moment matching, maximum likelihood, and least squares. A 

given function and associated parameters having been determined, goodness-of-fit tests, including 
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Kolmogorov–Smirnov (K–S) and chi-squared, are performed in order to assess the goodness-of-

fit between the observed and expected distributions (AbouRizk et al., 2016). If the predicted and 

actual process times are in close correlation, the given function is accepted for use as an input in 

the simulation. 

3.2.3 Simulation Method 

In practice, different types of modules, such as interior and exterior wall panels, may be produced 

in the same production line but following different SOPs at the workstations. In this respect, MCM 

typically follows a mixed-production line model, leading to varying process times and, in turn, 

imbalanced production flow and inefficient utilization of resources. Given this, it is important to 

reduce: (i) waiting time of modules between workstations; and (ii) idle time of workers at 

workstations. In this respect, continuous workflow can be achieved by planning efficient 

sequencing of modules and labor allocation through predictive modeling based on historical time 

data. In this regard, in the present study production planning is implemented using a simulation 

method developed in Simphony.NET. Figure 3.5 illustrates the process flow of the simulation-

based planning method, which consists of (i) developing a simulation by mimicking the workflow 

of the production line (i.e., number of workstations and their sequence) based on the work study; 

(ii) importing inputs such as cycle time formula (CTFs), probability distribution functions, labor 

allocation, and module design specifications (e.g., heights of framing components and number of 

frames) from the database into the simulation using structured query language (SQL); (iii) 

comparing the results (productivity) between the cycle time formula (CTFs) and probability 

distribution functions using historical productivity data in order to identify the most accurate 

predictive approach ; (iv) using the most accurate prediction to develop multiple scenarios in the 

simulation by considering various sequences of modules and various labor allocation cases. For 
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example (i) wall panels (exterior and interior) were prefabricated randomly in the production line 

considering floor levels, (ii) exterior wall panels of a given unit were prefabricated first, followed 

by the corresponding interior walls for the unit, (iii) the interior wall panels of a given unit were 

manufactured first, followed by the exterior wall panels, (iv) the interior wall panels of all units 

were produced first, followed by the exterior wall panels of all units and (v) the exterior wall panels 

of all units were produced first, followed by the interior wall panels of all units; and (v) selecting 

the best scenario, that is, the scenario with the minimum total duration to complete the project (i.e., 

to produce the given modules). 

 

Figure 3.5: Flowchart of simulation-based planning 
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3.3 Module 2: Deep Neural Network Based Predictive Method  

Figure 3.6 presents main components of the developed method for time prediction of 

prefabricating modules components in the production line. The method consists of three modules: 

(i) the first is the data input module, designed to facilitate and organize the input data pertinent to 

the unique characteristics of each module component for fabrication. It includes data description 

in order to specify the module components design parameters (e.g., number of studs and doors) 

and timestamps (i.e., start and finish time) from the collected RFID data; (ii) the second is the data 

preprocessing module. In it, the captured data is cleaned and prepared, combining attributes with 

the similar properties (e.g., windows + large windows are combined as ‘windows’) and identify 

and removal of outliers; and (iii) the third is the time prediction module, which houses three tools 

for time prediction and enables a comparative study to select the most suitable tool for predicting 

fabrication process time at each workstation. In this study ANN, DNN and MLR are utilized and 

compared. Later, GA is also used in conjunction with DNN to fine tune the architecture of the 

network (i.e., number of hidden layers, neurons known also processing elements, momentum and 

learning rate). For the ANN it is considered one hidden layer and processing layer with five 

neurons. It is noteworthy that a trial-and-error method is used in this study to determine the number 

of neurons in the single hidden layer of the ANN. The number of neurons is varied (1, 2, 3, 4, 5, 

and 6) with 100 epochs, and the resulting output (mean absolute error) was monitored. This 

procedure is repeated for each neuron count, and the network configuration with the lowest error 

rate (i.e., one hidden layer and five neurons) is chosen. Additionally, multiple linear regression 

(MLR) is selected due to its successful application in previous studies for predicting process time 

and its ease of result interpretation. In MLR, a linear relationship is established between the 

independent variables and the dependent variable. This relationship is a combination of the 
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independent variables with predetermined weights and a bias coefficient, as illustrated in Equation 

3.5 (Hasan and Lu 2022).         

Y = β0 + β1x1 + β2x2 +…………… βkxk                                                                     Equation 3.5                                          

where Y is the dependent variable (process time); Xk = independent variables (number of studs 

and door); β0 = bias value; and βk = weighting coefficients for the independent variable. 

The data used in this study is provided by the case study company from July 2015 and August 

2018. The data captured utilized RFID system, with passive RFID tags attached to each module 

component. In total 416950 timestamps (i.e., start and finish time) for module components along 

the production line is gathered. The captured dataset, after preprocessing, is randomly divided into 

training (80%) and testing (20%) subsets. The criteria in the developed method include the 

availability of materials in the factory, which does not affect the process time, and capacity of 

workstations defined by the maximum module component length they can accommodate (e.g., the 

capacity of a framing workstation may be a length of 40 ft). 
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Figure 3.6: Overview of the Developed Method 

3.3.1 Data Characterizing and Data Preprocessing 

Data characterization involves two steps: (i) understanding the production line, and (ii) extracting 

process time. In the first step, the standard operating procedures (SOPs) of each workstation are 

reviewed to gain a comprehensive understanding of the production line before direct observation 

(e.g., identifying which workstations are fully automated and which are manual). Additionally, 

shop drawings are used to classify module components (e.g., the number of studs and windows in 

interior and exterior wall panels). In the second step, before extracting process time, breakpoints 

(i.e., the start and finish points for the various work processes at the workstations) are identified to 

align RFID antennas and readers with the corresponding workstations. The RFID-based system 

(Bardareh and Moselhi 2022; Altaf et al. 2018) is utilized to collect production line data in order 

to develop predictive method. The system consists of: (i) RFID printer that generates the ID tag 
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number for module components; (ii) RFID tags that are attached to each module component; (iii) 

RFID antennas that are installed at each workstation (i.e., read zone) and picks the tag signals 

thereby ensuring to capture the movement of module components along the production line; and 

(iv) RFID readers to which these Antennas are connected and transfers the timestamps (i.e., initial 

and last read time) into the database. The next critical step is to extract the process times and 

relevant attributes of the module components (e.g., number of studs and doors) at each workstation 

from the RFID raw data file provided by the industrial partner. The process times (i.e., the time 

required to complete one module component at each workstation) is extracted using Equation 3.6:  

                                                  PT m,w = IRT m,w+1 – IRT m,w                                             Equation 3.6      

Where PT is the process time of module component ID 'm’ at current workstation ‘w’, ‘w+1’ is 

the next workstation and IRT represents the initial read time at workstations.  

In this respect, the next essential step is to perform data pre-processing and ensure that the dataset 

is cleaned for prediction purposes. Data pre-processing includes: (i) discarding missing values; (ii) 

removing outliers using data visualization techniques (i.e., pie charts) and 'Mean ± 1.5 SD' (i.e., 

data points that are above and below are considered as possible statistical outliers); (iii) combining 

attributes with the similar properties (e.g., doors + large doors are combined as ‘Doors’ and 

different types of studs such as studs+ Dstud + Lstud + Mstud are combined as ‘Studs’); and (iv) 

data normalization are implemented using Equation 3.7 in order to reduce the sizes of independent 

variables and model computation time.                                              

                                                   𝑣′ =
(𝑣−𝑚ⅈ𝑛𝐴)

(𝑚𝑎𝑥𝐴−𝑚ⅈ𝑛𝐴)
                                                    Equation 3.7 

where minA is the minimum value and maxA is the maximum value of the independent variable A, 

and V represents the original value of A. 
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3.3.2 Predicted Production Time 

Figure 3.7 presents a flowchart of the developed method for predicting production time, which 

integrates a deep neural network (DNN) and a genetic algorithm (GA) to predict the process times 

of module components (e.g., wall panels) at workstations along the production line using historical 

data. A DNN is characterized by having two or more hidden layers (Aggarwal, 2018). In this thesis, 

'deep' refers to the presence of multiple hidden layers, enabling the network to learn complex 

representations from the input data. It should be noted that this study used a deep neural network 

(DNN) due to its features of having multiple hidden layers (i.e., two or more), which can efficiently 

perform complex non-linear transformations. Each layer entails several neurons representing the 

input, transfer, and output variables. The dataset, having been pre-processed, is divided into 

training (80%) and testing (20%) subsets and based on the training subset, a predictive method is 

developed. In this thesis, the rectifier activation function is selected, and the range searched for 

upper bound/lower bound is 3-10 for hidden layers and 6-100 for the number of neurons. 

Additionally, the cross-validation technique in order to prevent overfitting and obtain a better 

evaluation of the predictive method is applied. The present study adopts K-fold cross-validation 

for testing the performance. The dataset is divided into K groups, where, in turn, the predictive 

method is trained using (K−1) groups, and the remaining fold is used to test the accuracy of the 

predictive method. The process is then iteratively repeated, holding a different group for validation 

and using the remaining ones for training. The overall performance is then measured as the average 

performance of each iteration. The parameters of the prediction algorithms were automatically 

tuned based on an optimization procedure aiming to minimize the mean absolute error resulting 

from the 10-fold cross-validation.  
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It should be noted that the parameters of the DNN (i.e., the number of hidden layers, nodes, 

learning rate and momentum) have a significant impact on the model's performance. For instance, 

if there are a small number of nodes, the model cannot be trained well, and with a large number of 

nodes, performance can be enhanced, but a large number of connections will increase the 

computational time. Therefore, it is critical to establish hyperparameters for neural networks which 

can be trained in a reasonable computational time and provide errors within the tolerance limit. 

Therefore, hyperparameter tuning is performed, to determine optimum DNN parameters (i.e., 

number of nodes and hidden layers). This research implements the GA for hyperparameter tuning 

because it is faster and more efficient while finding optimal solution for prediction problem. The 

optimization objective is to minimize the prediction error (i.e., mean absolute error (MAE)) as 

show in Equation 3.8. 

                                                           MAE = 
∑ |𝐴𝑖−𝑃𝑖|𝑛

𝑖=1

𝑛
                                             Equation 3.8 

Where Ai is the actual process time of a module component; and Pi is the predicted process time 

of a wall panel. 

Additionally, error percentage is calculated using the symmetric mean absolute percentage error 

(SMAPE), which is a modified MAPE and involves dividing the absolute error by the average of 

the actual observation and the predicted process time as shown in Equation 3.9. According to 

Makridakis, (1993), MAPE is asymmetric, as it imposes a greater penalty on predictions that 

surpass the actual values compared to those that fall short (i.e., a small actual value in the 

denominator lead to very high percentage errors). To address this limitation, this thesis uses 

SMAPE, which is symmetric and treats overestimation and underestimation errors more equally 

by incorporating both actual and predicted values in the denominator. This ensures a more 

balanced evaluation of both over-predictions and under-predictions. 
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                                                               SMAPE = 
1

𝑁
∑ |

𝐴𝑖−𝑝𝑖

(𝐴𝑖+𝑝𝑖)∕2
|

𝑁

ⅈ=1
                                                     Equation 3.9 

 

Figure 3.7: Flowchart for Deep Neural Network Optimization 

The optimization process involves: (i) creating an initial population, which consists of 

chromosomes that represent various configurations of the number of neurons, hidden layers, 

learning rate, and momentum. This initial population is generated randomly, with the number of 

chromosomes determined by the population size. Each chromosome contains multiple genes, each 

representing a specific aspect of the DNN configuration (i.e., neurons, hidden layers, learning rate, 

and momentum). Notably, the number of neurons and hidden layers are represented as discrete 

values, chosen randomly from the combinatorial range of their upper and lower bounds, whereas 

learning rate, and momentum are represented as continuous values. In this study, neurons have a 
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step size of 2, and hidden layers have a step size of 1. Figure 3.8 (a) illustrates the structure of a 

generated chromosome, which represents a potential solution. For example, in the chromosome 

8,4,0,1,1,1,1,0,0,1, '8' indicates the number of neurons in each hidden layer (a discrete value), '4' 

denotes the number of hidden layers (also a discrete value), and the binary numbers represent the 

learning rate and momentum (continuous values). In this binary chromosome, the first four digits 

correspond to the learning rate, and the remaining digits represent momentum. These binary strings 

are decoded using Equation 3.10, a crucial step for converting the encoded parameters back into 

their real-world values. 

                                             D = (𝛴𝑏𝑖𝑡 × 2ⅈ) × 𝑃 + 𝛼                                               Equation 3.10 

                                           P =  
𝑏−𝑎

2𝑙−1
                                                                   Equation 3.11                                                                                                   

Where D represents the decoding process, and P is the parameter (as shown in Equation 3.11). 

Variables a and b are the lower and upper bounds of the parameter (e.g., learning rate), and l is the 

length of the chromosome. For instance, to decode the variable learning rate, which has lower (a) 

and upper bounds (b) of 0.01 and 0.3 respectively, and a chromosome length of 4 (Figure 3.8 b), 

the decoded value (D) will be 0.15, which falls between 0.01 and 0.3. 

 

(a)                                           (b) 

Figure 3.8: (a) Structure of the chromosome; and (b) Decoding of chromosome (learning rate) 
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(ii) performing the process of evaluation, where fitness values of each chromosome are evaluated 

based on the optimization criteria (i.e., minimum error rate); (iii) the selection process involves 

choosing the best chromosomes (i.e., potential parents) from the population as the best solution 

(i.e., the best combination of the number of hidden layers, neurons, learning rate, and momentum) 

based on their fitness value. This thesis uses tournament selection for this purpose. Tournament 

selection is chosen due to its efficiency, ease of implementation, and relatively low computational 

time compared to methods like roulette wheel selection, as it requires fewer comparisons (Razali 

and Geraghty 2011). In this approach, k (i.e., tournament size) number of chromosomes are 

randomly selected from the population, and the chromosome with the best fitness score among the 

k chromosomes is selected as parent 1. This process is repeated until the desired number of parents 

for crossover is selected. For example, in a population of 10 with a tournament size (k) of 3, 

chromosomes 1, 2, and 3 with fitness values of 0.75 min, 0.82 min, and 0.68 min are randomly 

picked. The chromosome with the best fitness (i.e., minimum error rate), in this case, chromosome 

3 (fitness 0.68), is selected as the first parent, and the process continues to find the second parent; 

and (iv) after selecting two parents, crossover is performed to create new chromosomes for the 

next generation. The number of hidden layers and neurons are exchanged between parent 1 and 

parent 2, while for continuous variables (i.e., learning rate and momentum), a two-point crossover 

is used. This method is preferred due to its effectiveness and successful application in various 

optimization problems (Murata 1996).  For each pair of parents, a crossover point is chosen 

randomly. Figure 3.9 demonstrates the crossover process, where offspring one inherits the number 

of neurons (8), number of hidden layers (5), and continuous values for learning rate and momentum 

from parent 2. Later mutation process is performed, and this process (i.e., the sequence of selection, 

crossover, and mutation) continues, with each DNN configuration being trained, tested, and 
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evaluated using the fitness function, until the termination criteria (i.e., maximum number of 

generations) are met. The developed method uses: (i) a population size of 20; (ii) a maximum of 

50 generations; (iii) a mutation probability of 0.1; (iv) a crossover probability of 1; (v) a 

tournament size of 3; (vi) momentum ranging from 0.01 to 0.99; and (vii) a learning rate ranging 

from 0.01 to 0.3.  

 

Figure 3.9: Two-point crossover 

The DNN results are compared with those of ANN and MLR to determine the best tool for 

predicting the process time of prefabricating module components at each workstation of the 

production line. The input layer of the neural networks (both ANN and DNN) comprises a number 

of independent variables, which vary according to the standard operating procedures at the 

workstations. For example, as indicated in Table 3.1, the framing station has five variables 

(number of studs, doors, windows, length, and height), whereas the window/door installation 

station includes four variables (number of doors, windows, length, and height). It is worth 

mentioning that process time at workstations largely depends on the type of module components 

(interior and exterior wall panels) and its design specifications (e.g., number of doors, windows 

and studs) (Altaf et al. 2018). Therefore, this research primarily focuses on considering module 
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components design specifications as input variables into the prediction model. The number of 

hidden layers and neurons in the DNN is chosen using the GA optimization technique. Each hidden 

layer and number of neurons in hidden layer is formed as a weighted sum of all input features 

based on the connection weights. During this feed-forward step, the output layer receives the 

values from neurons and calculates their weighted sum to produce a predicted result. The output 

layer provides the predicted dependent variable, which is process time (duration) in this study. The 

ReLu (Rectified linear unit) is used as an activation function to introduce non-linearity into the 

network. It should be noted that input factors (i.e., independent variables) used to train the MLR, 

ANN and DNN varies according to workstations. 

Table 3.1:Input variables at workstations 

Input Layer 

Variables 

Framing 

Station 

Sheathing 

Station 

Nailing 

Station 

Butterfly 

Table 

Window Door 

Installation 

 

Number of Studs 

 

✓ X X X X 

Length (ft) 

 

✓ ✓ ✓ ✓ ✓ 

Height (ft) 

 

✓ ✓ ✓ ✓ ✓ 

Number of Doors 

 

✓ ✓ ✓ ✓ ✓ 

Number of  

Windows 

 

✓ ✓ ✓ ✓ ✓ 

SheetPartial 

 

X ✓ ✓ X X 

SheetFull 

 

X ✓ ✓ X X 

Area 

 

X ✓ ✓ X X 

Nailcount 

 

X X ✓ X X 

Nailline X X ✓ X X 
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It should be noted that MAE is selected as a measure of performance, which according to various 

studies is a better alternative to R square while evaluating the performance of model in respect to 

non-linear data. According to Lseth (1983), utilization of R square for evaluating model 

performance in non-linear data, leads to misinterpretations and produces misleading conclusions. 

Moreover, in the mathematical literature, it has been concluded that the R-square generally do not 

increase even for better non-linear predictive models (Spiess and Neumeyer 2010). 

3.4 Module 3: Optimized Planning and Scheduling Method 

Figure 3.10 presents the components of the developed method and its scheduling process for 

modular construction manufacturing (MCM) production lines. The developed procedures include 

three steps: (i) creating a work planning structure (WPS), which involves grouping panels by type 

and location (i.e., precedence relationships for sequencing and installing panels based on types and 

locations within the building), namely work-packages that serve as fundamental elements of the 

developed scheduling method; (ii) developing optimal sequences of panels in the production line 

using optimization algorithms; and (iii) validating the effectiveness of the developed hybrid 

optimization algorithm by comparing the results between GA, SA, and HGASA. The input 

parameters include the process times of panels at workstations and the layout of the production 

line. Additionally, input parameters include the specifications of panels (e.g., length (ft), height 

(ft), number of studs, number of doors and windows) collected by extracting quantities of panels 

from BIM to support panel component-centric planning and scheduling by providing essential 

information (e.g., total number of wall panels) for downstream factory production lines. At this 

juncture, it should be noted that this thesis uses the process times of panels at workstations 

generated by a predictive method, which is a result of previous study (Bhatia et al. 2023). The 
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criteria are the working hours and the capacity of workstations (i.e., the maximum length of panels 

the workstation can accommodate).  

 

 

Figure 3.10: Developed method for optimized planning and scheduling 

3.4.1 Work Planning Structure 

Although the aforementioned study (Zhang et al. 2020) introduced a production line breakdown 

structure (PBS) that supports production managers in analyzing, diagnosing, and solving problems 

to enhance the performance of MCM. However, it is not suitable for planning and scheduling the 

sequences of panels to be fabricated in the production line, since it does not support: (i) grouping 

of panels according to types (e.g., interior versus exterior wall panel) and locations of the panels 

on the building (e.g., 1st storey versus 2nd storey); and (ii) the requisite fabrication processes (i.e., 

number of workstations required to prefabricate the panels in the production line can be different 

in accordance with panel types). For example, the required number of tasks varies for interior wall 
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panels with and without openings. Three workstations (i.e., framing, sheathing and nailing) are 

required for interior wall panels without openings, while, for those with openings, four 

workstations (i.e., framing, cutting, sheathing and nailing) are required. This information is 

essential for planning and scheduling the sequences of panels for multiple projects. In practice, 

based on work dependencies and engineering logic, interior wall panels need to be installed on site 

before exterior wall panels on any given floor. Therefore, interior wall panels on the 1st storey 

must be prioritized over exterior wall panels for prefabrication in the production line. To efficiently 

plan and schedule the sequencing of panels across multiple projects: (i) these panels (e.g., interior 

and exterior wall panels) should be grouped according to their type, location and required number 

of tasks (i.e., workstations); and (ii) assigning priority to these groups of panels (i.e., work-

packages) based on the practical rule of installing wall panels on-site. In this respect, as shown in 

Figure 3.11, this thesis develops a WPS that involves five levels: (i) level 1 represents the project 

type (e.g., residential multi-storey or single storey); (ii) level 2 involves total number of floors; 

(iii) level 3 contains the different types of panels (e.g., wall, floor and/or roof panels) and total 

number of panels at each floor; (iv) level 4 represents the type of panel component, such as interior 

versus exterior wall panels with or without doors/windows; and (v) level 5 is the number of 

workstations required to prefabricate these panels in the production line. Accordingly, this WPS 

provides the following benefits: (i) grouping the panels with practical rules as work-packages leads 

to the development of precise project schedule estimates (i.e., makespan) for multiple projects 

since these work packages are manageable components; and (ii) information regarding the amount 

of work required (i.e., total number of panels) facilitates the clear identification of work 

dependencies (e.g., on-site installation sequence) and enables effective tracking of the project 

progress. It is worth mentioning that, in this thesis, the practical rules are defined as heuristic-



59 
 

based guidelines to assign a priority to the work packages (e.g., group of module components 

needed for initial on-site installation should be prioritized in production line over other groups of 

module components).  

 

 

Figure 3.11: Work Planning Structure 

3.4.2 Scheduling Method  

3.4.2.1 Modular Construction Manufacturing Scheduling Problem (MCMSP) 

In the workstations of the production line, the panels are prefabricated in a sequence predefined 

by production managers. As such, the MCMSP is modeled as an operation sequencing 

optimization problem, where M = {1, 2…… m} and W = {1, 2…… w}, 'm' being the number of 

panels to be scheduled at a set of 'w' workstations. Based on the sequencing process, constraint 1, 

as outlined in Equation 3.12, ensures that the start time of a given panel at a workstation will be 

greater than the completion time of the previous panel at the workstation (i.e., ‘m−1’). The 
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completion time of the previous panel is calculated as the sum of the start time (S) of the previous 

panel and the process time (P) of the previous panel at the workstation. 

 

                                   Sm, w ≥ S (m-1), w + P (m-1), w; ∀ m ∈ M, w ∈ W                             Equation 3.12   

Constraint 2, represented in Equation 3.13, ensures that the start time of a given panel at a given 

workstation will be greater than the completion time of that panelat the previous workstation (i.e., 

‘w−1’). For instance, if the start time of panel 2 at the framing workstation is 8:30 a.m., then panel 

2 must be finished at the previous workstation before 8:30 a.m. It should be noted that Sm, w is the 

maximum value in constraints 3.12 and 3.13.  

 

                                   Sm, w ≥ S m, (w-1) + P m, (w-1);  ∀ m ∈ M, w ∈ W                          Equation 3.13   

Equation 3.14 represents Constraint 3, which has to do with workstation capacity (X), ensuring 

that each workstation can process a maximum of one single panel at a time. 

                                                     Max Xw =1                                                              Equation 3.14   

In practice, when bottlenecks appear, temporary manual workstations (i.e., parallel workstations) 

are added to not only eliminate the bottleneck but also meet the on-site delivery date requested by 

sites. Therefore, to reflect this practical case of capturing parallel workstations (i.e., a workstation 

that can prefabricate two wall panels simultaneously) in the optimization algorithms, Equation 

3.15 outlines the 4th constraint concerning workstation capacity (X), which stipulates that a 

maximum of two wall panels can be prefabricated at parallel workstations during any given time. 

                                                Max X2 ≤ 2;      ∀ Sm,2                                                      Equation 3.15 
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Equation 3.16 outlines the 5th constraint, which stipulates that the start time of a wall panel (i.e., 

panel ‘m’) at parallel workstation must be equal to the completion time of the same wall panel at 

previous workstation. This can reduce the waiting times of wall panels between workstations, and 

allows the parallel workstation to work on two wall panels simultaneously. It is important to be 

noted that if the workstation is still processing the previous two wall panels (i.e., max two wall 

panels can be prefabricated simultaneously at parallel workstation) and the next wall panel is 

finished at the earlier workstation, the next wall panel will have to wait in the queue. In this 

situation, it is crucial to identify which of the two wall panels at the parallel workstation completed 

first. This is determined using Equation 3.17, which states that the start time of the next wall panel 

at the parallel workstation should be equal to the earliest completion time of the previous two wall 

panels (i.e., m-1 and m-2) at the parallel workstations.  

 

                                                                 Sm, 2 = Cm, 1                                                                  Equation 3.16                                                                   

                                                  Sm, 2 ≥ min (Cm-1, 2 ;   Cm-2, 2 )                                 Equation 3.17                             

Based on these constraints, the objective of the optimization problem examined in this study is to 

find a near-optimal schedule (i.e., sequences of panels) in order to minimize the makespan (i.e., 

the minimum time to complete all panels in the production line), represented by Equation 3.18: 

                                              Min (Max Cm, w; ∀ m ∈ M, w ∈ W)                                  Equation 3.18  

                                               Cm, w = Sm, w + Pm, w                                                        Equation 3.19  

where Cm, w is the completion time of a module component at a workstation; S is the start time of 

a module component, and P is the processing time of a module component. It is worth mentioning 

that Max Cm, w involves determining the maximum completion time among all module components, 
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which is computationally faster than calculating and summing up the completion times for every 

wall panel. This reduces the number of operations needed during optimization. 

3.4.2.2 Genetic Algorithm Optimization 

As shown in Figure 3.14, GA is selected as a fundamental algorithm for the development of the 

optimized scheduling method in this research, as it has been widely adopted in optimization 

problems in the construction industry. The process begins with extracting and pre-processing the 

RFID-based data provided by the modular fabricator. This data is used to develop a predictive 

method in order to forecast the process times of module components. Additionally, the module 

component information from a BIM is used to categorize module components based on type (e.g., 

interior versus exterior wall panels) and the required fabrication process (i.e., number of 

workstations required). This involves during the process of production initialization to determine 

precedence relationships for installing module components according to on-site locations. For 

example, during production initialization, ‘job type’ is checked. If the component is identified as 

‘Int wall panel’ on a floor, the work-package associated with this ‘Int wall panel’ type is prioritized 

for prefabrication ahead of the work-package for the ‘Ext wall panel’ type. Consequently, the ‘Ext 

wall panel’ remains queued until all int wall panels are completed. Prior to the implementation of 

the optimization algorithms, the matrix that contains the predicted process times of module 

components at each workstation of the production line for the given work-package is developed. 

This is used as an input in the optimization algorithm. The critical elements of the GA are 

initialization, selection, crossover, and mutation. These elements function as follows: (i) First, an 

initial population (i.e., comprising chromosomes representing a list of module components) is 

generated randomly. Figure 3.12 (a), shows the structure of the generated chromosome, which 

represents a possible solution (i.e., sequence of module components). This study uses a 
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permutation of module components (i.e., arranging the number of module components in different 

orders) as a chromosome, where a primary module component is assigned first, followed by the 

succeeding module component. The number of chromosomes in a population is determined based 

on the population size. Each chromosome in the population contains the number of genes, and 

each gene represents a module component number (these being linked to the workstations of the 

production line). For instance, the permutation 4, 1, 15, 12, 2, 10, 3, 14, 9, 11, 7, 5, 13, 6, 8 is a 

chromosome that represents a sequence in which module component # 4 is prefabricated first on 

all of the workstations, followed by module components #1 and #15. (ii) Second, the process of 

evaluation is performed, where fitness values of each chromosome are evaluated based on the 

optimization criteria (i.e., minimum makespan). (iii) Third, the best chromosomes (i.e., potential 

parents) from the population are selected as the best solution (i.e., optimal sequence of module 

components) based on their fitness value. In this research, the selection process is performed using 

roulette wheel selection. The rationale for this choice is that it is the most suitable selection strategy 

for flow-shop scheduling problems due to its ease of implementation and lower computational 

time compared to other selection strategies (Anand et al. 2015; Chen et al. 2009). Moreover, 

roulette selection ensures that individuals with higher fitness have a higher likelihood of being 

chosen, while still allowing individuals with lower fitness to have a chance of selection. This helps 

to maintain diversity in the population and prevents premature convergence of solutions (Yadav 

and Sohal 2017). In this respect, chromosomes are chosen according to their fitness score relative 

to the entire population (i.e., a chromosome with a higher score has a greater chance of selection). 

Each chromosome is assigned a probability (p) of being selected, where p equals the fitness of the 

chromosome divided by the sum of the fitness scores of all chromosomes in the population (Xei 

2001). It should be noted that the goal of the selection process is to retain the favorable and remove 
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the unfavorable chromosomes in order to produce offspring (i.e., new schedules) and, ultimately, 

the next generation of the population. (iv) Fourth, following the selection of two parents, crossover 

is implemented in order to generate new chromosomes for the next generation. In order for each 

pair of parents to be mated, a crossover point is chosen using a two-point crossover. The two-point 

crossover is selected due to its effectiveness and successful implementation in various flow-shop 

problems (Murata 1996). Figure 3.12 (b) illustrates the two-point crossover process, where a set 

of module components between two randomly selected points is inherited from parent 1 to the 

offspring and the other module components are placed in order of their appearance from parent 2. 

For example, offspring 1 is obtained by taking genes 1, 2, and 5 from parent 1 and the rest (i.e., 6, 

3, 4, and 7) from parent 2. In the mutation process, to introduce variability and diversity, some of 

the genes in the offspring are exchanged. In the present study, swap mutation is implemented, 

where mutation involves randomly selecting two genes in a chromosome and swapping their 

positions. Figure 3.12 (c) shows the positions of genes 12 and 3 being swapped. It should be noted 

that mutation occurs only when the mutation rate is met. This selection, crossover, and mutation 

process continues until the termination criteria (i.e., the maximum number of generations) are met. 

The developed method considers a generation size of 200, a population size of 30 chromosomes 

(i.e., schedules), and crossover and mutation rates of 0.8, and 0.2, respectively. These values are 

determined by experimenting with various values and selecting the one yielding the best results. 

 

(a) 
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                                        (b) 

 

                                        (c) 

Figure 3.12:(a) Chromosome for module components; (b) two-point Crossover; and (c) swap 

mutation 

3.4.2.3 Simulated Annealing Optimization  

In this research, as illustrated in Figure 3.14, SA is implemented to find global minima for the 

MCMSP within a reasonable computational time. The SA process begins with an initial solution 

‘S’ (i.e., random sequence of panels). Prior to the process of generating neighbor solution, the 

initial temperature (T) and cooling rate (C) are determined. It should be noted that determining an 

appropriate initial T and C are critical to the performance of the SA algorithm. A higher initial 

temperature causes the SA algorithm to spend a long period of time evaluating inferior solutions; 

on the other hand, a lower initial temperature leads the SA algorithm to a local optimal value. In 

this respect, the temperature and cooling rate value employed in the present study (1,000 and 0.95, 

respectively) are selected based on experimentation with various parameter values. The neighbor 

solution is created by randomly swapping the positions of two distinct panels in the solution string. 

This means that two components are randomly selected, and their sequence order is exchanged, 

thus forming a neighbor solution by making a small adjustment to the current solution. For 

example, Figure 3.13 shows the swapping of module component 2 and 1 to generate the neighbor 

solution. 
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Figure 3.13: Module components defined as an array and neighborhood generation. 

A neighbor solution having been generated by making a small change to the current solution, the 

difference in the objective function (i.e., makespan) between the current (S) and neighbor (Sn) 

solutions (i.e., delta = Sn − S) is calculated. When Sn is found to be superior to S, it is designated 

as the current best solution. However, if neighbor solution ‘Sn’ is not better than the current 

solution (S), Sn is not immediately rejected to allow the algorithm to explore a broader solution 

space. Instead, the algorithm uses the probability of acceptance (P) criterion to determine whether 

to accept this inferior solution (i.e., the neighbor solution), this being expressed in Equation 3.20:  

                                          P (accept) =  𝑒𝑥𝑝 −
(𝑆𝑛−𝑆)

𝑇
 w                                           Equation 3.20 

As an illustration, we suppose that S has a sequence of panels, 3, 2, 4, 1, resulting in a makespan 

of 20 min. After randomly swapping panels 2 and 1, Sn, with a sequence of 3, 1, 4, 2, has a 

makespan of 23 min and a T-value of 100. Although Sn has a longer makespan than S, however, it 

is not rejected, and the probability (P) of accepting this Sn is calculated to be 0.97. After calculating 

P, its value is compared to a randomly generated number between 0 and 1. It should be noted that 

this number is generated using a pseudo-random number generator, which provides a uniformly 

distributed value between 0 and 1 (i.e., every number in this range is equally likely to be produced). 
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This random number is crucial for the acceptance criterion step, since it is used to determine 

whether to accept an inferior solution (i.e., neighbor solution) based on the probability. The 

purpose of comparing the acceptance probability to a randomly generated number is to introduce 

a probabilistic acceptance mechanism that allows the algorithm to escape local optima. By 

occasionally accepting inferior solutions, the algorithm explores the solution space more 

thoroughly and avoids becoming stuck in local minima. If the acceptance probability is superior 

to the random value, Sn updates the current solution. It is worth noting that the temperature (T) is 

updated after every iteration, where an inferior solution can be accepted. The temperature is 

updated based on a cooling rate, which is crucial for the algorithm's performance, as it determines 

how quickly the temperature decreases over time, in turn influencing the probability that an inferior 

solution will be accepted. At higher temperatures, the probability of an inferior solution being 

accepted is higher, whereas, as the temperature decreases, the probability an inferior solution being 

accepted diminishes. The most common method of updating the temperature is to multiply the 

current temperature by a cooling factor (in the present study, 0.95), which controls the rate at which 

the temperature decreases over the number of iterations. For example, with a cooling factor of 0.95 

and a current temperature (T) of 100, then the updated temperature (UT) is 95 for subsequent 

iterations and the probability of an inferior solution being accepted decreases. The process 

continues until the specified number of iterations is met. The number of iterations is finalized after 

experimenting with a number of different iteration values (e.g., 1,000, 1,500, and 2,000) and 

selecting the value that provides the best solution. 
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Figure 3.14: Flowchart for scheduling based on GA and SA 
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3.4.2.4 Hybrid GASA Optimization 

GA can reserve excellent individuals for the next generation in the genetic operation process and 

maintain the population's diversity. However, GA is liable to converge prematurely (i.e., trapped 

in local optimal solutions). On the other hand, while the SA algorithm has strong local search 

ability, it also has a greater computational burden. As such, a hybrid algorithm combining the two 

(i.e., HGASA) is developed to solve the MCMSP. As shown in Figure 3.15, a sequential approach 

of hybrid optimization is developed in which GA and SA are used in a sequential manner (i.e., the 

best solution from the final population of GA is selected as the starting point for the SA phase) to 

solve the MCMSP. The sequential approach leverages the strengths of both algorithms GA 

providing diverse solutions and SA providing further refinement (i.e., fine-tuning the scheduling 

by exploring various small adjustments to the sequences of module components) in order minimize 

the makespan. First, a global search is performed by GA to explore the wide solution space. Global 

search, it should be noted, refers to the algorithm exploring a wide and diverse range of potential 

solutions across the entire solution space. GA randomly generates the initial solution, as explained 

in section 3.3.2, then evaluates the initial population and operates on the population using three 

genetic operators (i.e., selection, crossover, and mutation) to produce a new population, which 

allows the algorithm to select better solutions. Once the termination condition is met (generation 

size is defined as 200 in the present study) and the GA has identified an optimal solution, it sends 

the best individual solution (sequence of module components) to SA for further improvement (i.e., 

reducing the makespan duration). In other words, a local search is carried out through SA in order 

to fine-tune the solution provided by GA. Local search in the context of the present study refers to 

the process of exploring and refining the solutions within the immediate neighborhood of a current 

solution. A probabilistic acceptance criterion, described in detail in section 3.3.3, is used to decide 
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whether to move to a new solution. It is worth noting that the initial steps of the HGASA are 

similar to those in GA (i.e., generating a random initial solution and using selection crossover and 

mutation to find the optimal solution). The main difference is that SA, rather than starting with a 

random initial solution, starts with the optimal solution generated by GA and performs a local 

search on this solution rather than searching all individuals. This process continues until the 

termination condition of the SA algorithm (i.e., the maximum number of iterations) has been met. 

 

Figure 3.15: Flowchart for scheduling based on Hybrid GASA 
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3.4.3 Comparison Matrix 

A comparison matrix is developed to evaluate and compare different algorithms based on specific 

performance metrics. These matrices help in understanding the effectiveness of GA, SA and 

Hybrid GASA, making them useful in selecting the best optimization algorithm for planning and 

scheduling in panelized construction manufacturing. In this respect, this thesis used the following 

metrics (Shavari et al. 2022; Jain and Meeran 1999): (i) makespan, which is the total time required 

to complete all panels of the multiple projects; (ii) computational speed, which shows convergence 

time of the algorithm in order to provide optimal solution, which can be defined as slow, medium 

and fast; (iii) complexity, which is ease of implementing the algorithm and depends on the number 

of parameters in the algorithm, the less number of parameters the ease in implementation; (iv) 

production load balancing (PLB) represented in Equation 3.21, which reflects how the algorithm 

handles the work packages consisting of different number of wall panels across the production line 

and a ratio closer to 1 indicates better load balancing. It is worth mentioning that PLB developed in 

this thesis is modified based on the load balancing formula available in the literature (Pinedo 

2016); and (v) parallel workstation (Pw) represented in Equation 3.22, which measures the 

percentage reduction in makespan after adding parallel workstation, for the GA, SA and hybrid 

algorithm. 

                                                        PLB = 
𝑀𝑎𝑥 (𝑊𝑃𝑚𝑡)

𝑀ⅈ𝑛 (𝑊𝑃𝑚𝑡)
                                                   Equation 3.21 

where WPmt = makespan of a work package 

 

                                                       Pw =  
(𝐼𝑚𝑡−𝑃𝑚𝑡)

𝐼𝑚𝑡
*100                                                 Equation 3.22 

where Imt and Pmt = makespan before and after adding parallel workstation, respectively. 
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CHAPTER 4: CASE STUDY AND RESULTS 

4.1 Introduction 

This chapter outlines the implementation of the developed method in two modular construction 

factories, each using different material (i.e., wood and light gauge steel) for their module 

components. Additionally, the production line in these prefabrication factories consist of a varying 

number of workstations. These differences introduce complexities due to distinct design 

specifications required to meet client demands, necessitating different standard operating 

procedures (SOPs) at each workstation. This variation results in different process times, leading to 

various types of lean manufacturing wastes (e.g., waiting and overproduction) in the production 

line. Table 4.1 presents two types of case studies: (i) case study I focus on a production line that 

prefabricates light gauge steel-based wall panels featuring 4 workstations (i.e., assembly, framing, 

sheathing and exterior finishing); and (ii) case study II involves a production line that manufactures 

wood-based wall panels with 6 workstations (i.e., framing, sheathing, nailing, cutting, 

window/door and wall magazine). Given the changing SOPs and design specifications, 

implementing the developed method on just one type of prefabrication factory and production line 

is insufficient. In this respect, to generalize the developed method, two different type of production 

lines are utilized. This chapter presents an overview of the two-wall production process, followed 

by details of data collection process, development of predictive method, discrete event simulation 

method creation and implementation of optimization algorithms for the purpose of planning and 

scheduling. 
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Table 4.1: Production line and module components 

Production line and material 

type 

Number of workstations Module components  

(wall panel) 

Case study I- Wall panel 

production line 

Light gauge steel-based wall panel 

4 workstations (assembly, 

framing, sheathing and 

exterior finishing) 

 

Case study II- Wall panel 

production line 

Wood-based wall panel 

6 workstations (framing, 

sheathing, nailing, cutting, 

window/door and wall 

magazine) 
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4.2 Case Study I 

4.2.1 Description of the Case Study 

The developed method was implemented on a wall panel production line of a modular fabricator 

in Edmonton, Canada as shown in Figure 4.1. The industry partner produces both interior and 

exterior light gauge steel (LGS) wall panels on a production line consisting of three main 

workstations: (i) assembly station; (ii) framing station; (iii) sheathing station and; (iv) exterior 

finishing. Additionally, the production line consist of a rim tracks sub-station where track studs 

are installed on the panels to secure the wall studs. The industry partner produces various types of 

LGS wall panels for six-storey residential buildings, each comprising 120 units and more than 

1,500 wall panels with varying design specifications. Workstation process times (200 series of 

time data for each three workstation) were collected and stored in a database using the C-track 

app. The names of wall panels, the number of workers at workstations, and module design 

specifications such as the number of studs and total area of windows and doors (in sq. ft) were 

stored manually into the database. 
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Figure 4.1: Light gauge steel (LGS) wall panel production line 

Assembly workstation  

The wall panel production starts at the assembly workstation (Figure 4.2). Workers begin by 

reviewing shop drawings to verify wall panel components such as types and numbers of studs, 

cripples, and tracks. Next, they take wall panel components from the floor stock and place them 

on the workstation table. The process includes marking, aligning, installing clips, cutting studs for 

connections, and assembling components for king studs, king tracks, sills, and cripples as specified 

in the shop drawings. These prepared components are marked with their wall panel numbers (e.g., 

Int 301), wrapped, and moved as bundles to the framing station. The assembly workstation also 

features a cutting machine for cutting cripples and bracings to the sizes specified in the shop 

drawings. 
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Figure 4.2: Assembly workstation 

Framing workstation 

At the framing station, workers manually fasten wall components together to form wall panels 

(Figure 4.3). They start by using measuring tape and a triangular ruler to mark the locations of 

vertical studs on the top and bottom tracks. The tracks and studs are placed on a framing table, and 

the tracks are closed after positioning the studs to align with the marked locations. Workers 

measure the dimensions from the top to the bottom tracks to ensure the studs are correctly 

positioned. Studs are then erected between the top and bottom tracks, and nail guns are used to 

secure the studs to the tracks. Since the work is done manually, workers use leveling tools to check 

for any fastening errors. 
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Figure 4.3: Framing workstation 

Sheathing workstation 

Figure 4.4 illustrates the sheathing workstation where gypsum drywall is manually cut and 

installed on exterior walls, secured using nail guns. For openings such as doors and windows, a 6-

inch clearance is maintained between the tracks of the opening area and the drywall. Workers 

ensure the drywall is leveled around the corners of the panel and the opening spaces. Additionally, 

any exterior wall panels requiring angles are prepared at the sheathing workstation before the 

drywall installation begins. 
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Figure 4.4: Sheathing workstation 
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Exterior Finishes workstation 

At the exterior finishing workstation, finishing tasks are performed on the exterior wall panels 

(Figure 4.5). The process includes: (i) applying a thin layer of cement paste for waterproofing and 

installing electrical back boxes; (ii) fixing foam panels, cutting out holes for utilities, milling 

grooves, and applying spray foam to seal gaps between foams; (iii) applying a base coat and 

primer; and (iv) applying the final coat and allowing it to dry for 3-4 hours. This workstation also 

functions as a temporary storage area where wall panels are held before being delivered to 

construction sites. 

 

Figure 4.5: Exterior finishing and storage workstation 
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4.2.2 Analysis and Discussion of Results  

The 200 series of time data and impact factors of each of the three main workstations (i.e., the 

assembly station, the framing station, and the sheathing station) were used for the data analysis. 

The time-series data collected, though it would be considered a relatively small dataset, provided 

useful insights about the production line, as illustrated below. Looking at the results of the data 

analysis, the workstation process times were found to vary depending on the wall panel design 

specifications, even when the allocation of tasks and workers at workstations did not change. For 

example, as shown in Figure 4.6 (a), the process times at the assembly workstation ranged from 7 

to 99 minutes depending on the number of wall panel design factors (e.g., the number of studs, 

plates, and clips). The data in the figure also indicates that at this particular workstation all the 

listed wall panel design factors affected the process times. For example, the number of plates in 

the wall panels ranged from 5 to 80, and this factor, as the figure clearly shows, strongly affected 

the process times. However, as shown in Figure 4.6 (b) and Figure 4.6 (c), it was found that some 

design factors (e.g., number of tracks and window area) did not affect the process times at some 

workstations. In other words, these factors do not have a significant relationship with the 

workstation process times. For instance, as shown in Figure 4.6 (b), the number of tracks required 

was 2 to 3 for all types of wall panels; however, the process times were found to vary from 11 to 

102 minutes. As illustrated in Figure 4.6 (d), there was found to be a high level of variance in the 

process times at workstations due to the influence of these design factors. For example, although 

there was an SOP at the assembly workstation, the process times ranged from 23 to 100 minutes, 

leading to reduced productivity due to an imbalanced production line. As described above, this 

imbalance can be reduced by planning more efficient sequencing of modules and allocation of 
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labor based on historical production data. In this respect, the next critical step in the case study 

would be to identify the SIFs among the design factors that highly influence the process times. 

 

Figure 4.6: (a,b,c): Effect of design specifications on process time, and (d) average productivity 

of workstation 

Prior to identifying the SIFs, though, data pre-processing was implemented to identify and remove 

the outliers from the raw dataset based on the scatter plot and the standardized residual test. Based 

on the expert opinion of the industry partner’s production manager, process times >80 minutes 

were removed from the scatter plot, given that such data points are indicative of a work disruption 

such as a delay due to errors in the shop drawings. After this, the standardized residuals test was 

implemented to identify hidden outliers. The data points with standardized residuals outside the 

range of ±1.64 were considered outliers and were removed from the dataset. As a result of the pre-

processing task, the datasets numbered 178, 180, and 178 for the assembly, framing, and sheathing 

workstations, respectively. These data were normalized using a min–max normalization technique 
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to transform the integer values into values ranging between 0 and 1. A t-test, PCC, and PCA were 

implemented to find the SIFs, with these, in turn, serving as the primary input in the development 

of the MLR. The results of the t-test and PCC are represented in Table 4.2. With the significance 

level (p-value) defined as 1%, the different workstations were found to have different SIFs. For 

example, for the assembly workstation, six design factors (number of: header foam, studs, stud’s 

foam, plates, clips, and openings) were identified as SIFs. However, the SIFs at the sheathing 

station were track length, number of angles, and window and door area. In terms of PCC, the 

design factors were selected by examining the correlation coefficient, which represents the 

relationship between the dependent variable (duration) and the independent variables. Design 

factors with a correlation coefficient >0.65 as defined by the experiments were deemed to be SIFs. 

Based on this, for the assembly workstation, four factors (number of: studs, studs’ foam, cripples, 

and openings) had a coefficient >0.65 and thus were identified as SIFs. 

Table 4.2: Results of t-test and Pearson correlation coefficient 

Assembly Station Framing Station Sheathing Station 

Factors P value Corr. Factors P 

value 

Corr. Factors P 

value 

Corr. 

# of 

HeaderTrack 

0.02977 0.57 # of 

HeaderTrack 

2.08e-

09 

0.77 TrackLength 1.88e-

11 

0.71 

# of 

SillTrack 

0.05807 0.59 # of 

SillTrack 

2.78e-

12 

0.58 # of Studs 0.697 0.73 

# of 

HeaderFoam 

0.00212 0.40 # of Studs 0.434 0.76 WindowArea 2.17e-

07 

0.42 

# of Studs  1.40e-

05 

0.82 # of 

Bracings 

0.007 0.71 Door Area 0.0002 0.05 

# of 

StudsFoam 

0.00141 0.74 Net Area 6.99e-

05 

0.18 Net Area 0.993 0.68 
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# of Plates 0.00393 0.62 # of 

Openings 

0.69 0.70 # of Angles 1.61e-

09 

0.48 

# of Clips 0.00086 0.36 - - - # of 

Openings 

0.941 0.39 

# of 

Cripples 

0.9381 0.66 - - - - - - 

# of 

Openings 

3.53e-

05 

0.69 - - - - - - 

 

In addition to the t-test and PCC, PCA was applied. The first step in the PCA was to determine the 

percentage of variance for PCs, selecting for further analysis the set of PCs that cumulatively 

accounted for 90% of the dataset's total variation. For example, for the assembly station, the 

minimum set of PCs accounting for ≥90% of the cumulative variance was the set of PC1, PC2, 

PC3, and PC4, representing 61.5%, 14.1%, 9.56%, and 6.9%, respectively, of the variation, for a 

cumulative variation of 92.1%. These components were used as the basis for identifying SIFs, 

where PC1 was found to be highly correlated with the number of openings, PC2 with the number 

of clips, PC3 with the number of studs, and PC4 with the number of plates as shown in Table 4.3. 

Table 4.3: A result of principle component analysis for assembly station 

Factors  PC1 PC2 PC3 PC4 

No. of Header Tracks 0.138 0.334 0.108 0.303 

No. of Sill Tracks 0.177 0.377 0.066 0.282 

No. of Header Foam 0.073 0.348 0.181 0.376 

No. of Studs 0.355 0.288 0.676 0.207 

No. of Studs Foam 0.391 0.113 0.374 0.329 

No. of Plates 0.317 0.098 0.324 0.428 

No. of Clips 0.075 0.535 0.318 0.339 

No. of Cripples 0.305 0.391 0.041 0.019 
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No. of Openings 0.681 0.198 0.381 0.083 

No. of Workers 0.033 0.196 0.022 0.478 

 

Based on the training dataset (80%) and the lists of SIFs generated by the different analyses, MLR 

models were developed and validated using a K-fold cross-validation. The training dataset was 

randomly split into 10 folds, with one-fold used for the testing set and the remaining 9 folds used 

as a training set. The cross-validation process was repeated against all 10 folds in the dataset, and 

the average evaluation indices were calculated. The best predictive model was then selected based 

on four performance indices: R2, adj. R2, RMSEs, and MAE. As observed in Table 4.4, for the 

assembly station, the R2, adj. R2, RMSE, and MAE values in the training and testing datasets were 

80.1%, 74.33%, 79.08%, 71.01%, 7.93 min, 9.83 min, 5.82 min, and 7.16 min, respectively, when 

the SIFs were the number of: header foam, studs, stud’s foam, plates, clips, and openings identified 

by the t-test. The R2 value for testing was 80.1%, meaning that the model was found to predict 

80% of the outcomes. The RMSE value for testing depicted the deviation of 9.83 minutes between 

predicted and actual duration. However, for the framing station, the SIFs identified by the 

correlation test were selected instead of those identified in the t-test, since, for this station, the 

RMSE and MAE values generated by the correlation test were lower than those generated by the 

t-test. 

Table 4.4: Results of multiple regression at workstations 

Model R square (%) Adj. R square (%) RMSE (min) MAE (min) 

Training Testing Training Testing Training Testing Training Testing 

  Assembly Station    

t-test 80.1 74.33 79.08 71.01 7.93 9.83 5.82 7.16 

Correlation 79.86 71.38 78.83 70.07 7.97 9.88 6.32 7.64 
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PCA 74.35 71.23 73.27 69.79 9.00 10.59 7.033 7.95 

 

  Framing Station   

t-test 78.09 76.56 77.36 74.31 7.09 8.10 5.78 6.01 

Correlation 79.13 74.55 78.33 73.48 6.89 6.99 5.56 5.89 

PCA 64.74 57.01 63.87 51.64 8.37 10.20 6.58 8.46 

 

  Sheathing Station   

t-test 74.90 73.35 72.37 71.26 9.04 9.54 7.56  8.19 

Correlation 61.91 49.66 60.56 46.93 11.77 13.80 9.66  11.20 

PCA 57.59 51.7  55.7 50.01 10.88 12.40 8.32  10.66 

 

Table 4.5 represents the cycle time formula (CTF) of workstations, which involves the coefficient 

values of SIFs to predict the process times of workstations. As can be seen, some of the coefficients 

(Coef.) of SIFs had positive values while others were negative. For example, for the assembly 

station, the XHF, XS, and XC coefficients indicate that the process times increased when the XHF, 

XS, and XC in the wall panel increased. Similarly, the coefficient of XW means that the process 

times decreased whenever additional workers were allocated to the station. To improve accuracy, 

probability distribution function-based models were developed based on the time data used in the 

statistical analysis. To identify the most suitable probability distribution functions, as shown in 

Table 4.5, a goodness-of-fit method, consisting of both a Kolmogorov–Smirnov (K–S) test and a 

chi-square test, was performed. Weibull, gamma, and triangular distributions were selected as the 

best fit for the assembly, framing, and sheathing stations, respectively. These distributions, along 

with cycle time formula (CTF), were used as inputs in the simulation model. 
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Table 4.5: Cycle time formula and summary of the goodness-of-fit test 

  Cycle time formula    

Assembly Station Coef. Sheathing Station Coef. Framing Station Coef. 

Number of Header 

Foam (XHF) 

20.54 Track Length 

(XTL) 

70.32 Number of Header 

Track (XHS) 

15.14 

Number of Studs 

(XS) 

38.36 Number of Angles 

(XA) 

15.63 Number of Studs 

(XS) 

20.78 

Number of Plates 

(XP) 

−21.49 Window Area 

(XWA) 

−36.47 Number of 

Bracings (XB) 

7.43 

Number of Clips 

(XC) 

8.74 Door Area (XD) −20.72 Number of 

Openings (Xo) 

0.05 

Number of 

Workers (XW) 

−16.19 Number of 

Workers (XW) 

−7.27 Number of 

Workers (XW) 

−11.3 

Number of Studs 

foam (XSF) 

27.75 - - - - 

 Goodness-of-fit test  

Assembly Station Framing Station Sheathing Station 

Distribution  K-S X2 Distribution K-S X2 Distribution K-S X2 

Weibull 0.0818 45.47 Gamma  0.0543 26.80 Triangular 0.0752 27.59 

Triangular 0.0915 64.26 Triangular 0.0558 30.83 Uniform 0.0849 16.29 

Gamma 0.0916 41.97 Weibull 0.0571 27.35 Normal 0.0891 31.17 

Normal 0.1052 64.26 Lognormal 0.0678 28.82 Weibull 0.0958 22.57 

Lognormal 0.1063 60.21 Uniform 0.0701 35.04 Gamma 0.1074 42.47 

 

Figure 4.7 shows the probabilistic density charts of the panel processing time at the assembly, 

framing and sheathing workstations. For example: (i) Weibull distribution at assembly workstation 

(4.7 a) with parameters: shape (1.75) and scale (33.87); (ii) Gamma distribution at framing 

workstation (4.7 b) with parameters: shape (4.25) and scale (7.79); (iii) Uniform distribution at 

sheathing workstation (4.7 c) with parameters: low (13.36) and high (76.46). 
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(a)                                                                    (b) 

 

(c) 

Figure 4.7: Probabilistic density chart (a) assembly; (b) framing and (c) sheathing workstation 

Based on the process flow of the production line, the simulation model illustrated in Figure 4.8 

was built in Simphony.NET. The simulation uses the ‘database’ element to update wall panel 

information from a central database using SQL. In the simulation model, ‘Database Create,’ ‘task,’ 

and ‘conditional branch,’ ‘resource’, and ‘destroy’ elements from the general template are used to 

mimic the process flow of the actual production line. Depending on the type of wall (interior or 
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exterior), different process flows were required. In the model, the ‘Database Create’ element 

generates the simulation entities (wall panels) and passes them into the next task elements, which 

are the assembly station and framing station. After completing the tasks at the framing station, the 

wall panel components proceed to the ‘conditional branch’, where they are classified as 

components of either interior or exterior walls (since these types of walls require different tasks). 

From the ‘conditional branch element’ pertinent were related to types of wall panels, interior wall 

panel components are directed to ‘storage’ while exterior wall panel components are directed to 

the ‘sheathing station’. Once the process is complete at each workstation, the given entity is 

destroyed using the ‘destroy’ element. The simulation was run using cycle time formula (CTFs) 

and probability distribution functions as inputs, and the results in terms of productivity were 

compared with the historical actual productivity data for validation purposes. It should be noted 

that 2 and 3 workers were allocated to the assembly and framing stations, respectively, for interior 

wall panels, while 3, 2, and 3 workers were allocated to the assembly, framing, and sheathing 

stations, respectively, for exterior wall panels. 

 

Figure 4.8: Simulation of a production line 

Wall Panels Assembly Framing Conditional 

Branch 

Exterior wall 

panels 

Destroy 1 

Destroy 2 

Database Resource 

Crane 
File 1 

Release crane Release crane Capture crane Sheathing 

Storage Interior wall panels 
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Figure 4.9 shows a comparison of the actual(historical) and simulated (cycle time formula and 

probability distribution functions) cycle times for producing interior wall panels. As can be seen, 

the actual cumulative cycle time for the manufacture of 200 interior and exterior wall panels was 

119 hr, compared to 106.38 hr for the cumulative cycle time formula and 90.1 hr for the cumulative 

probability distribution functions. It should be noted that cumulative cycle time is the total sum of 

the process times of all wall panels, while cumulative probability distribution functions is the total 

process time to complete the wall panels with probability distribution as an input in the simulation. 

 

Figure 4.9: Comparison between cumulative actual and simulated cycle time 

These results are indicative of general agreement between the actual and simulated cumulative 

process times generated by the CTF (i.e., 89.39% accuracy). In this respect, the simulation method 

developed and implemented in conjunction with cycle time formula (CTF) in this case study was 

deemed to be a reliable predictive method. After validating the production rate generated, multiple 

simulation-based scenarios were developed and analyzed using cycle time formula (CTF). 

To provide better planning scenarios, the fabrication of 309 wall panels in five different panel-

sequencing scenarios, each with the same labor allocations at the various workstations, was 

simulated. In the first scenario, the units of a residential project were selected in a clockwise 
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direction and manufactured unit-by-unit, and their wall panels (exterior or interior) were 

prefabricated randomly in the production line, which represents as the current state of the case 

study company. In the second scenario, the units of the residential project were again selected in a 

clockwise direction and manufactured unit-by-unit, but this time the exterior wall panels of a given 

unit were prefabricated first, followed by the corresponding interior walls for the unit. In the third 

scenario, the interior wall panels of a given unit were manufactured first, followed by the exterior 

wall panels. In the fourth scenario, the interior wall panels of all units were produced first, followed 

by the exterior wall panels of all units. In the fifth scenario, the exterior wall panels of all units 

were produced first, followed by the interior wall panels of all units. Based on these scenarios, the 

simulation method provided the cumulative duration to prefabricate all wall panels in each of the 

five scenarios, yielding cumulative durations of 93.52 hr, 51.92 hr, 69.76 hr, 59.84 hr, and 60.64 

hr for the five respective scenarios. Thus, Scenario 2 was found to outperform the other scenarios. 

In terms of production planning, finding the optimum allocation of labor to workstations is crucial 

in that it is a critical factor in (i) synchronizing process times; (ii) reducing waiting times along the 

production line, and (iii) increasing productivity. In this respect, as shown in Table 4.6, in the case 

study we experimented with different numbers of workers as an additional decision variable in the 

simulation method built based on Scenario 2. Workers were allocated to workstations according 

to the type of wall panel, and Scenario 2.3 was found to outperform the other labor allocation 

scenarios, with a cumulative duration of 44.42 hr. It is notable that the duration in Scenario 2.4 

was found to be longer than that in Scenario 2.3 even though the number of workers at the framing 

and sheathing station was increased in Scenario 2.4. This may have been attributable to space 

congestion at the framing station disrupting the coordination between the workers completing the 

work. In this regard, Zhang et al. (2020) have demonstrated that space congestion interrupts the 
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workflow in MCM, thereby reducing productivity at the workstation level. As such, this 

simulation-based statistical method for production planning in MCM is a significant tool for 

analyzing the effect of different crew sizes, especially in that it demonstrates that it is not always 

ideal to increase the number of workers at a workstation to reduce process times. 

Table 4.6: Comparison of different crew sizes at workstations 

Scenario Duration 

(hours) 

Number of workers 

Interior Wall Panels Exterior Wall Panels 

Assembly Framing Assembly Framing Sheathing 

2.1 51.92 2 3 3 2 3 

2.2 45.44 2 3 3 3 3 

2.3 44.42 2 4 3 2 2 

2.4 45.42 2 4 3 3 3 

 2.5 51.04 2 2 3 2 3 

2.6 51.04 2 2 3 3 3 

 

The case study demonstrates that optimal sequencing of modules and allocation of workers is 

critical to improving productivity. The method described in this study is also capable of identifying 

the SIFs affecting fabrication process times, thereby removing the guesswork from production 

planning. However, it should be noted that the SIFs in this study are a function of the given product 

design specifications and tasks performed at the workstations of the case study production line. 

For other cases, practitioners would need to modify the data analysis phase based on the given 

design specifications in order to identify the SIFs. In modular construction, due to unpredictable 

demand, production managers must frequently alter their plans to accommodate change orders. As 

an alternative to this challenging and error-prone approach, the method implemented in the case 

study can be deployed to devise different production line scenarios in terms of labor allocation and 
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sequencing to streamline the MCM planning process. However, this method does not provide the 

optimal solutions and the data used to train the prediction method consist of 200 series of time 

data, which is not considered as a large dataset. Also, there is a need to manually test the simulation 

scenarios. Therefore, future work will seek to enhance the performance of the developed method. 

This will include, for one, applying optimization to identify sequencing of modules more 

efficiently and rapidly. Second, to develop generalized predictive method for forecasting process 

time at workstations using large dataset for the industrialized construction. In this respect, the deep 

neural network and optimization-based method was developed and implemented in the wood-

based wall panel production line. 
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4.3 Case Study II 

4.3.1 Description of the Case Study  

The developed method was implemented on a wood frame wall panel production line operated by 

a modular fabricator in Edmonton, Canada. The workstations of the production line are equipped 

with computer numerical control (CNC) machines and some workstations require manual works. 

Figure 4.10 represents the wall panel production line consists of framing, sheathing, nailing, 

window installation and loading. The details of operations regarding each workstation is as 

follows: (i) framing station where the wall components such as studs, cripples, and sill plates are 

fastened together to form an interior and exterior wall panel frame using CNC machine; (ii) 

sheathing station where drywalls are cut manually and placed on wall panels; (iii) multifunction 

bridge where drywalls are nailed using CNC machine and moved to next workstation using transfer 

cart at butterfly station for other activities. It should be noted that interior wall panels are moved 

from the multifunction bridge to the window bypass line to store them at the wall magazine line 

and exterior wall panels are transferred to the window/door line; and (iv) window/door installation 

lines, where windows/doors are installed on the wall panels and transferred to the storage area (i.e., 

wall magazine line) as they await delivery to on-site using trucks and trailers.  

The process times of wall panels at each workstation were collected by the modular fabricator 

company using an RFID system (i.e., RFID printer, tag, antenna and reader). The worker at the 

first workstation (i.e., framing workstation) of the wall panel production line attaches the passive 

tags to each wall panel and the RFID antennas that are located at the entrance of the workstations 

captures the movement of wall panels through the read-zone (i.e., antennas captures the tag signal 

as the given wall panel passes through the workstation). The antennas were connected to the RFID 

reader, which transfers the captured timestamps automatically into the database. The timestamps 
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data for the workstations was received from the case study company in the form of 'RFID raw data' 

file. The data covers the period between July 2015 and August 2018. The data file contains: (i) 

416950 timestamps (i.e., start and finish time) for wall panels along with the workstations. This 

includes total 10 attributes such as tagID, panel number, antenna description; and (ii) design 

attributes of each wall panel (e.g., number of cripples, number of doors, and width of wall panels) 

with total of total 39703 records. This includes total 37 attributes such as floor, Dstud, Mstud and 

Drillhole. Considering the RFID data, the next critical step in the case study was to extract the 

process times of wall panels at the workstation from the ‘RFID raw data’ file based on difference 

between starting time of the wall panel at the consecutive antenna locations (i.e., workstations) as 

expressed in Eq. (3.6). 

 

Figure 4.10: Wood-based wall panel production line 
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Framing workstation 

Wall panel production starts at the framing station, Figure 4.11, where workers load the studs into 

the machine in sequence, after which the machine nails the studs to the top and bottom plates of 

the exterior and interior wall panels. 

 

Figure 4.11: Framing workstation case study II (picture provided by Dr. Sadiq Altaf) 

Sheathing workstation  

After leaving the framing station, wall panel is moved to sheathing station, as shown in Figure 

4.12, where sheathing boards are placed, correctly positioned, and manually nailed. Additionally, 

here one or more workers perform several manual tasks. These tasks include correcting any errors 

from the framing machine, installing backing and other support materials, and marking the wall 

panel with its name. Finally, the wall panel is moved to the nailing workstation for machine nailing. 
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Figure 4.12: Sheathing workstation case study II (picture provided by Dr. Sadiq Altaf)  

Nailing workstation 

At nailing workstation shown in Figure 4.13, sheathing boards are automatically and securely 

fastened to the wall panel studs by a CNC machine equipped with nail guns mounted on a moving 

bridge. The process requires just one worker to bring the panel from the sheathing station, start the 

nailing process, and move the wall panel to next workstation. 
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Figure 4.13: Nailing workstation (picture provided by Dr. Sadiq Altaf) 

4.3.2 Analysis and Discussion of Results 

The process times of wall panels at each workstation were collected by the modular fabricator 

company using an RFID system (i.e., RFID printer, tag, antenna and reader). The worker at the 

first workstation (i.e., framing workstation) of the wall panel production line attaches the passive 

tags to each wall panel and the RFID antennas that are located at the entrance of the workstations 

captures the movement of wall panels through the read-zone (i.e., antennas captures the tag signal 

as the given wall panel passes through the workstation). The antennas were connected to the RFID 

reader, which transfers the captured timestamps automatically into the database. The timestamps 

data for the workstations was received from the case study company in the form of 'RFID raw data' 

file. The data covers the period between July 2015 and August 2018. The data file contains: (i) 

416950 timestamps (i.e., start and finish time) for wall panels along with the workstations. This 
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includes total 10 attributes such as tagID, panel number, antenna description; and (ii) design 

attributes of each wall panel as shown in table 4.7 (e.g., number of studs, number of doors, and 

width of wall panels) with total of total 39703 records. This includes total 37 attributes such as 

floor, Dstud, Mstud and Drillhole. Considering the RFID data, the next critical step in the case 

study was to extract the process times of wall panels at the workstation from the ‘RFID raw data’ 

file based on difference between starting time of the wall panel at the consecutive antenna locations 

(i.e., workstations). 

Table 4.7: Summary of wall panels data from the production line 

Panel Type Job Length Width Stud LStud MStud DStud Windows Door LargeDoor Duration 

E-

16_30DES-

17-10-11_10 EXT 

30DES-

17-10-11 11919 2467 22 5 0 0 0 0 0 13 

E-

17_30DES-

17-10-11_10 EXT 

30DES-

17-10-11 12175 2467 23 5 0 0 0 0 0 10 

E-

18_30DES-

17-10-11_10 EXT 

30DES-

17-10-11 12168 2467 14 5 0 0 3 0 0 9 

I-2_10GLR-

17-0016_00 INT 

10GLR-

17-0016 12035 2467 24 1 0 0 0 2 0 6 

I-3_10GLR-

17-0016_00 INT 

10GLR-

17-0016 12195 2467 25 1 0 0 0 3 0 6 

I-4_10GLR-

17-0016_00 INT 

10GLR-

17-0016 7329 2467 14 1 0 0 0 2 0 5 

E-

6_10GLR-

17-0016_00 EXT 

10GLR-

17-0016 11576 2467 6 7 0 0 3 0 0 8 

E-

7_10GLR-

17-0016_00 EXT 

10GLR-

17-0016 11475 2467 20 2 0 0 0 0 0 14 

E-

8_10GLR-

17-0016_00 EXT 

10GLR-

17-0016 12192 2467 24 0 0 0 2 0 0 6 

E-

28_10GLR-

17-0016_00 EXT 

10GLR-

17-0016 4407 2467 1 2 0 0 1 0 0 4 
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In addition, initial data visualization was performed in order to enhance the understanding of 

operating procedures of the workstations and their effect on the process times. Table 4.8 briefly 

summarizes the statistics of the design attributes for wall panel. For example, the maximum 

number of studs in a wall panel can be 68 and minimum are 2 studs. This extreme difference is 

resulted due to highly customized nature of wall panels, which effected the processing time of wall 

panels at workstations. Table 4.9 presents the statistical details (i.e., mean and standard deviation) 

for each workstation on the production line. For example, the mean process time at the framing 

workstation is 8.15 minutes, with a standard deviation of 2.98 minutes. 

Table 4.8: Summary of design attributes for wall panels 

Design Attributes Min Max Mean Std. 

Length (ft) 1.93 40.02 12.10 9.91 

Width (ft) 2.55 17.58 8.28 0.79 

Area (sq. ft) 2.69 473.23 100.31 81.63 

Door (number) 0 4 1 1 

Window (number) 0 6 1 1 

Sheathing (number) 0 21 3 3 

Studs 2 68 17 7 

 

Table 4.9: Mean and standard deviation for each workstation 

Workstation 

 

Mean Process Time 

(minutes) 

 

Standard Deviation 

(minutes) 

 

Framing 

 

8.15 2.98 

Sheathing 

 

9.39 2.79 

Nailing 8.35 3.02 
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Butterfly 

 

6.18 2.48 

Window Door 

 

18.5 5.54 

 

Figure 4.14 (a) shows a high level of variance in the process times at workstations. For example, 

at the sheathing station, the processing time of wall panel 3 was 9 minutes, wall panel 4 was 12 

minutes, and wall panel 6 was 2 minutes. Moreover, the process times of cutting station is very 

high compared to other workstations. This is due to the influence of the design factors (i.e., number 

of windows, panel length, and number of studs), which is required to fulfil the requirements of 

clients. This variation in process times affects the daily productivity of the workstations as shown 

in Figure 4.14 (b), which for example illustrates that the daily production on March 30 was 12 

exterior panels at the sheathing station, 22 exterior panels at the framing station, and 6 exterior 

panels at the nailing station, respectively, causing an imbalanced production line. 

 

 

(a) 
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(b) 

Figure 4.14: (a) Process times of wall panels; and (b) Daily production of exterior wall panels 

Prior to the development of a predictive method, data pre-processing was implemented: (i) keeping 

initial reading of the wall panels at the workstation and multiple readings of the specific wall panels 

at that workstation were removed. For example, in Figure 4.15 (a) wall panel E29 initial read time 

(i.e., 2:34 pm) at wall magazine line station (i.e., A12) was kept and other readings of wall panel 

E 29 at wall magazine line station (i.e. 2:35, 2:36, 2:37 and 2:39 pm) were removed; (ii) wall 

panels with missing timestamps and wrong timestamps of wall panels (i.e., wall panels with 

negative process times) were discarded from the dataset; and (iii) TagID, antenna description, 

location source antenna, first and last read date, backing, floor, siding, weight, model and parent 

unit information were also removed before input in the prediction method due to their irrelevance 

to predict the process times of wall panels. Additionally, outliers were removed based on data 

visualization (i.e., pie chart), which helps to visualize the distribution of process times that are 

inconsistent from the data set. For example, Figure 4.15 (b) presents the distribution of process 
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times at cutting workstation (i.e., butterfly workstation), and transfer table. In this respect, the 

process times above 60 minutes (butterfly workstation), and 10 minutes (transfer table) were 

removed. The reason for removing these points is that for example at the butterfly workstation 

around 4% of the wall panel's processing times have excessive times (i.e., 61-410000 minutes). 

Such data points indicated waiting between the workstations resulted due to: (i) errors in the shop 

drawings causing work disruption; or/and (ii) wall panels prefabrication that started on preceding 

day and finished on the succeeding day. In addition, data points above and below 'Mean ± 1.5 SD' 

were marked as possible statistical outliers. As a result of the pre-processing tasks, the datasets 

numbered 7256, 2885, 3035, 19998, and 1868 for the framing, sheathing, nailing, butterfly table, 

and window door, workstations respectively. Moreover, similar physical attributes of a wall panel 

(e.g., studs, window and sheetfull) were combined into a single attribute in order to reduce data 

dimensions and computational time. For example: (i) DStud, LStud, and MStud were combined 

into a 'stud'; (ii) window and large window were combined as a 'window'; (iii) door and large door 

were combined to ‘door’; and (iv) Sheetfull and Sheetpartial were combined as ‘sheet’. The min-

max normalization technique was applied in order to transform values ranging between 0 and 1 

before developing the deep neural network based predictive method. It should be noted that the 

steps in data pre-processing are specific to the case study (i.e., function of given wall panels design 

attributes). For other cases, practitioners require to modify the data pre-processing phase according 

to the given module component design attributes. 
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Figure 4.15: (a) RFID data of wall panels at workstations; and (b) Process times distribution of 

wall panels at: (i) butterfly station; and (ii) transfer table 

The variation in the process times at workstations due to differences in design attributes of 

customized wall panels leads to an imbalanced production line. In this respect a predictive method 

by considering the wall panel design factors was developed in order to provide the optimal 

estimates for the process times for using in the planning and scheduling of production line. The 

DNN in this research was selected due to their successful implementation in construction problems 

as discussed previously. Additionally, the relationship between the independent (e.g., studs, doors) 

and dependent variables (process time) does not follow a straight line; instead, it fluctuates, 

indicating a non-linear pattern. In this respect, DNN are selected as it is well-suited for modeling 

non-linear data. Based on the training dataset (i.e., 80%) and the independent variables (e.g., panel 

length, number of regular studs, number of doors, and number of windows) which were used as 

inputs, the DNN was developed and validated using a 10-fold cross-validation. The developed 

DNN consists of input layer, multiple hidden layers, and output layer (i.e., process times of wall 

panels) and each node element was connected and layered with neurons of the next layer. In 

addition, ANN and MLR were developed to compare the results with DNN. The independent 
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variables such as panel length, number of studs, doors, and windows were used as inputs, while 

the process times of wall panels in minutes were the output variable.  

Table 4.10 presents a comparison of the Mean Absolute Error (MAE) for various numbers of 

neurons in a single hidden layer of the ANN for each workstation. The number of neurons tested 

ranges from 1 to 6, and the best result for each workstation (i.e., the minimum MAE achieved) is 

selected for comparison with the results from DNN and MLR. For instance, at the framing 

workstation, 5 neurons resulted in the lowest MAE of 2.21 minutes. 

Table 4.10: Mean absolute error measurement for ANN 

Neurons Framing  

(MAE) 

Sheathing 

(MAE) 

Nailing 

(MAE) 

Butterfly 

(MAE) 

Window Door 

(MAE) 

 

1 2.48 

 

5.72 4.93 4.12 8.03 

2 2.40 

 

2.30 2.51 3.07 7.76 

3 2.42 

 

2.32 2.48 3.10 6.01 

4 2.37 

 

2.29 4.46 2.58 5.90 

5 2.21 

 

2.36 2.40 2.18 5.12 

6 2.39 

 

2.38 2.56 2.93 5.88 

 

In this thesis, the objective is to minimize the error (i.e., MAE) of the predictive method. The MAE 

is selected to measure the performance of the predictive method based on the relevant literature 

analysis performed on various performance evaluation techniques. The GA optimization algorithm 

was selected to minimize the MAE by identifying the optimal number of hidden layers and 

neurons, which assist in developing a better predictive method. In this respect, for the DNN the 

rectifier activation function was selected, and the range searched for upper bound/lower bound 

was 3-10 for hidden layers and 6-100 for the number of neurons. Additionally, the momentum was 
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varied between 0.01 and 0.99, and the learning rate was adjusted between 0.01 and 0.3. In this 

thesis, the optimization parameters were assigned as follows: (i) population size of 20; (ii) the 

maximum number of generations was 50; (iii) mutation probability of 0.1; (iv) crossover 

probability of 1 and: (v) number of tournaments were 3. As observed in Table 4.11, most of the 

workstations (i.e., framing, sheathing, and nailing station) had MAE of less than 2.50 minutes, 

respectively. As compared to the works of Mohsen et al. (2022) where the MAE of the prediction 

algorithms ranges from 4.4 min – 9.2 min, this research provides better predictive method. 

Additionally, percentage error of the prediction method for the workstations are consistent with 

the previous prediction methods reported in the literature (Mohsen et al., 2022 and Alsakka et al., 

2023). The DNN results were also compared with Artificial Neural Network (ANN) and Multiple 

linear regression (MLR). As these results show, the DNN method was found to have better MAE 

values except for the Nailing workstation, where ANN provide better MAE of 2.40 min, 

respectively. Regarding mean percentage error, Elmousalami (2020), Aydin (2015), and Lewis 

(1982) classify mean absolute percentage error as follows: less than 10% indicates an excellent 

prediction, between 10% and 20% is considered a good prediction, between 20% and 50% is seen 

as acceptable (reasonable) forecasting, and more than 50% is deemed an inaccurate prediction in 

the industrial context. In this respect, based on the SMAPE, the prediction method of this study 

can be considered as reasonable prediction method. Additionally, in the context of scheduling and 

planning, knowing the absolute error in duration is often more important. In this respect, accurate 

prediction of the exact number of minutes it takes to prefabricate the wall panels at each 

workstation is more crucial than the percentage error in respect to this study, as it directly impacts 

production planning.  
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The predictive method exhibits a SMAPE between 22-28% due to the absence of key factors that 

can impact the process time of wall panels at the workstation. For example, according to standard 

operating procedures (SOPs) file provided by industrial partner: (i) workers need to set up the CNC 

machine after completing each wall panel, but the current data lacks any variables related to this 

setup time; and (ii) at the sheathing workstation, workers spend time installing guard wrap on the 

top plate of a wall panel, cutting OSB (oriented strand board) sheets, labelling the wall number on 

the top plate, and conducting a quality check (e.g., ensuring end studs are aligned with the plate); 

these activities are not included as variables in the current dataset. Additionally, the dataset does 

not include variables for worker idle time at workstations due to material shortages or machine 

breakdowns. The RFID system records only the timestamps (start and end times) of wall panels at 

each workstation. However, it doesn't capture the activities that occur between these timestamps, 

such as additional factors affecting process time beyond the design factors previously mentioned. 

In this respect, the current prediction method can be improved by collecting data related to 

activities such as cutting OSB (oriented strand board), inspection and labelling the wall number 

on wall panels. 

Table 4.11: Comparison of DNN, ANN and MLR 

Workstations DNN Selected 

Value 

DNN 

MAE 

(min)  

DNN 

SMAPE 

(%) 

ANN Value ANN 

MAE 

(min)  

ANN 

SMAPE 

(%) 

Reg. 

MAE 

(min) 

Reg 

SMAPE 

(%) Hidden 

Layers 

Neurons Hidden 

layers  

Neurons 

Framing 3 74 2.17min 25.78% 1 5 2.21 27.94% 2.24 28.86% 

Sheathing 3 72 2.11min 22.49% 1 4 2.29 24.87% 2.28 24.81% 

Nailing 3 14 2.41min 28.42% 1 5 2.40 28.31% 2.43 28.68% 

Butterfly  7 70 2.05min 28.87% 1 5 2.18 31.59% 2.24 32.12% 

Window 

Door 

8 42 4.48min 27.62% 1 5 5.12 31.56% 4.61 28.42% 
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Prior to the planning and scheduling phase, the building was designed in Autodesk Revit 2022 and 

comprised two multi-storey residential buildings (Project A: 4 floors and Project B: 2 floors) 

consisting of two units at each floor (i.e., a total of 8 units and 4 units for project A and B, 

respectively). It is noteworthy that wall panels were designed according to the design 

specifications of the case company. For instance, in the wall panels, the stud spacing was 2 ft, and 

header/sill tracks and jack studs (i.e., double studs) were added for the wall panels with 

door/window. The wall panels were of various lengths (e.g., 10.74 ft, 9.4 ft, 10 ft, 12.3 ft, and 6.25 

ft). Based on the wall panel information from the design model, the walls were grouped according 

to type (i.e., exterior versus interior) and used to develop the practical rules (i.e., precedence 

relationships for sequencing and installing wall panels based on type and location) governing the 

prefabrication of wall panels for multiple projects in the production line. Based on the two projects, 

total 390 wall panels need to be prefabricated in the production line—258 wall panels for project 

A and 132 wall panels for project B. These panels are grouped by floor (f) levels to create work 

packages. For example, in project A, 1st, 2nd and 4th floors include 66 wall panels each and, 3rd 

floor includes 60 wall panels. These wall panels were further categorized into interior and exterior 

types. Specifically, project A includes 141 interior panels (f 1: 34, f 2: 39, f 3: 31 and f 4: 37) and 

117 exterior panels (f 1: 32, f 2: 27, f 3: 29 and f 4: 29) while project B comprises 73 interior panels 

(f 1: 34 and f 2: 39) and 59 exterior panels (f 1: 32 and f 2: 27). Additionally, number of 

workstations (i.e., tasks) needed to prefabricate these panels on the production line was used to 

further categorize the interior and exterior wall panels. The rationale behind grouping these panels 

based on the number of workstations is that panels requiring fewer workstations should be grouped 

together. For instance, interior wall panels pass through four workstations- framing, sheathing, 

nailing and butterfly before moving to the storage area via the bypass line. In contrast, exterior 
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wall panels go through five workstations: framing, sheathing, nailing, butterfly and window/door 

installation before reaching storage area. It’s important to note that the number of interior and 

exterior wall panels within the group did not change from the previous step (i.e., types of wall 

panels) since all panels follow same process (i.e., interior wall panels need four workstations and 

exterior wall panels requires five). As represented in Table 4.12, the second floor of project A 

consists of 39 interior and 27 exterior panels. Since the production line handles multiple projects 

simultaneously, interior and exterior wall panels, which are located at the same floors of project A 

and B, are combined into one single work package. For instance, project A and B have 34 interior 

panels on the first floor, respectively. Therefore, 1st work package has 68 interior wall panels and 

2nd work package has 64 exterior wall panels. As a result, there are total eight work packages for 

project A and B which should be scheduled in sequence.  These group of panels (work packages) 

were assigned priority according to practical rule of installing wall panels on-site (i.e., interior wall 

panels should be installed first before exterior wall panels of 1st floor).   

Table 4.12: Number of work packages for project A and B 

Work 

package 

Floor 

Project A          Project B 

Total 

Interior Exterior Interior Exterior 

1 1 34 - 34 - 68 

2 1 - 32 - 32 64 

3 2 39 - 39 - 78 

4 2 - 27 - 27 54 
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5 3 31 - - - 31 

6 3 - 29 - - 29 

7 4 37 - - - 37 

8 4 - 29 - - 29 

 

Once the work packages were created, these work packages were used in the optimization 

algorithm in order to find optimal sequences of prefabrication in the production line. Prior to the 

start of an optimization, predictive method was developed to forecast the process times of wall 

panels and, the details being reported in a previous study (Bhatia et al. 2023). The predictive 

process times of exterior and interior wall panels were in turn used as inputs in the optimization 

method in the form of a matrix. Figure. 4.16 represents the process times of exterior wall panels at 

workstations for 6th work package, where the first column represents the wall panels Id’s. 

 

Figure 4.16: Examples of process times in workstations for 6th work package  
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Once all input data is ready, GA, SA, and HGASA were implemented in order to schedule wall 

panels of each work package by minimizing the makespan of wall panel prefabrication. The GA 

optimization parameters used in this case study were 200 generations, each generation containing 

30 populations with mutation and crossover rates of 0.2 and 0.8, respectively. These values are 

determined by experimenting with various values and selecting the one yielding the best results. 

Figure 4.17 (a) shows the makespan value (i.e., duration) of 2nd work package which has total 64 

exterior wall panels. The GA started with an initial solution of a makespan of 1,114 min and 

converged to the best solution which has 1,108 min (18.46 hr) in 120 generations. The SA 

parameters used in this case study were 2,000 iterations, a temperature of 1,000, a cooling rate of 

0.95, and the swapping method as the method of choice for neighbor generation. In this respect, 

as shown in Figure 4.17 (b), SA started to schedule 5th work package with an initial solution of a 

makespan of 484 min, converging to the best solution in 255 iterations with a makespan of 479 

min (7.98 hr). The HGASA parameters used in this case study were similar to that were defined in 

the GA and SA. The reason is to ensure that HGASA perform under similar parameter settings and 

the differences in the makespan can be attributed to the algorithm structure rather than the 

influence of different parameter settings. Figure 4.17 (c) shows the respective optimal sequences 

of wall panels in 5th work package generated by the GA, SA, and HGASA. Intuitively, the different 

sequences of wall panels generated by these algorithms resulted in different makespan. For 

example, in the case of GA, the sequence starts with wall panel 24 and requires 13.58 hr, compared 

to starting with wall panel 12 and requiring 7.98 hr (as in the case of SA), and starting with wall 

panel 3 and requiring 7.26 hr (as in the case of HGASA).  
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(c) 

Figure 4.17: (a) Makespan for 2nd work package using GA; (b) Makespan for 5th work package 

using SA; (c) Optimal sequences of wall panels at 5th work package. 

Table 4.13 represents makespan and computation times of work packages in accordance with GA, 

SA, and HGASA. The results show that HGASA provides the best optimal sequences of wall 

panels since total makespan of all work packages is 105.63 hr which is minimum value comparing 

with 108.06 hr in SA and 138.08 in GA. At this junction, it should be noted that HGASA generates 

higher makespan than ones in GA or SA in some work packages. For example, HGASA provides 

higher makespan, which are 19.73 hr and 16.65 hr in 2nd and 4th work packages, respectively, than 
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ones in GA which are 18.46 hrs and 16 hrs. However, these makespan are less than ones resulted 

in SA. In a view of computational time, HGASA requires the highest computation time and SA 

provides the shortest computation time.  

Table 4.13: Makespan of work packages using GA, SA and HGASA 

Work Package 

GA SA HGASA 

Production 

time (hr) 

Comput. 

Time (s) 

Production 

time (hr) 

Comput. 

Time (s) 

Production 

time (hr) 

Comput. 

Time (s) 

1: Int. (68 wall panels) 26.65 40 16.76 22 16.60 61 

2: Ext. (64 wall panels) 18.46 40 20.03 20 19.73 58 

3: Int. (78 wall panels) 29.8 46 18.76 22 18.61 64 

4: Ext. (54 wall panels) 16 34 16.95 19 16.65 52 

5: Int. (31 wall panels) 13.58 23 7.98 15 7.26 37 

6: Ext. (29 wall panels) 9.38 23 9.25 15 8.93 37 

7: Int. (37 wall panels) 14.88 27 9.08 17 8.91 42 

8: Ext. (29 wall panels) 9.33 24 9.25 14 8.94 36 

Total 138.08 217 108.06 144 105.63 387 

 

The optimization algorithms described above were used to schedule optimal sequences of wall 

panels which have minimum makespan in work packages. However, there might be bottlenecks in 

the wall panel sequence due to reasons, such as change orders requested by sites and variation of 



113 
 

process times in workstations. For example, in the process times of sheathing workstation for 5th 

work package, the most wall panels took process times between 7 min and 8 min, but some panels 

(e.g., wall IDs 3, 7, 9, 20, 23, and 29) required between 9 min and 9.5 min. In other words, the 

longer process times of these panels compared to the majority of the panels caused bottlenecks at 

the sheathing workstation. In this respect, in practice, especially industrial partner represented in 

the case study, they have operated an additional sheathing workstation to eliminate the bottleneck 

and improve productivity. As a result, there are parallel workstations which are operated in manual 

and machine-based sheathing stations concurrently. The process times for this manual sheathing 

station were generated based on a triangular distribution provided by the case company. The 

parameters of the triangular distribution were a minimum of 0.72 min, a maximum of 15.92 min, 

and a mean of 7.69 min. To capture parallel sheathing stations (i.e., sheathing workstation that can 

prefabricate two wall panels simultaneously) in the optimization algorithms, constraints (Eq. 

(3.15), (3.16) and (3.17) discussed in section 3.4.3) was developed and applied into optimization 

algorithms.  Table 4.14 represents makespan values of various work packages using GA, SA, and 

HGASA. The results show that the optimal sequences of wall panels generated by HGASA 

provides better (minimum) makespan, since total makespan of all work packages was 103.55 hr 

comparing with 105.92 hr in SA and 136.34 hr in GA. To identify the effectiveness of the parallel 

workstation over a single sheathing workstation, the makespan values were compared. For 

example, 2nd work package was 20.03 hr for SA, 18.46 hr for GA and 19.73hr for HGASA. 

However, with the parallel sheathing workstation, the makespan was reduced to 19.68hr, 18.18 hr 

and 19.34 hr for SA, GA and HGASA, respectively.  

Table 4.14: Makespan of work packages using GA, SA and HGASA after adding parallel 

workstation 
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Work Package 

GA SA HGASA 

Production time (hr) Production time (hr) Production time (hr) 

1: Int. (68 wall panels) 26.43 16.53 16.27 

2: Ext. (64 wall panels) 18.18 19.68 19.34 

3: Int. (78 wall panels) 29.3 18.38 18.25 

4: Ext. (54 wall panels) 15.83 16.58 16.31 

5: Int. (31 wall panels) 13.49 7.81 7.12 

6: Ext. (29 wall panels) 9.21 9.04 8.76 

7: Int. (37 wall panels) 14.72 8.86 8.74 

8: Ext. (29 wall panels) 9.18 9.04 8.76 

Total 136.34 105.92 103.55 

 

To identify the most effectiveness of optimization algorithm in scheduling sequences of wall 

panels, as represented in Table 4.15, a comparison metrics with one linear fashion of the production 

line and parallel workstations (e.g., sheathing workstation can work on two wall panels 

simultaneously) were calculated in GA, SA, and HGASA. The Hybrid algorithm achieves the best 

makespan of 105.63 hr for prefabricating wall panels for two projects; however, its implementation 

is significantly more complex compared to GA and SA. Additionally, the Hybrid algorithm shows 

a 1.96% reduction in makespan after incorporating a parallel workstation, compared to a 1.98 % 

reduction for the SA algorithm. 

Table 4.15: Result of comparison metrics 

Algorithm Makespan for 

multiple projects 

(hr) 

 

Comput. 

Time 

(min) 

Complexity Production 

load balancing 

Parallel 

workstation 
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GA 138.08 4.28 Medium 3.19 1.21 % 

SA 108.06 2.41 Low 2.54 1.98 % 

Hybrid 

GASA 

105.63 6.45 High 2.71 1.96 % 

 

 

The present study is subject to some limitations to be addressed in future research. First, the 

optimization approach presented herein overlooks the logical relationships governing the on-site 

installation of interior walls. Consideration of the logical relationships underlying the installation 

of wall panels within the units will facilitate the efficient implementation of the JIT lean principle 

(i.e., the idea that the factory should fabricate wall panels in the order they are required for on-site 

installation in each unit). Doing so will: (i) prevent overproduction; and (ii) reduce the storage 

space requirements within the factory (and associated costs). In this respect, future research will 

focus on establishing practical rules for work-packages in order to maintain the optimal sequence 

of interior wall panels within each unit, extending beyond just floor-level considerations. Second, 

the hybrid optimization method presented herein employs a sequential hybrid approach, and 

therefore lacks continuous refinement of GA solutions. Rather than waiting until the GA phase is 

complete to begin refining the solution via SA, improvements can be made iteratively, ensuring 

that solutions are progressively enhanced throughout the optimization process, leading to more 

effective exploration of the solution space. In this respect, future research can explore an embedded 

hybrid GASA approach, where SA is used within the GA process to continuously refine individual 

solutions, potentially enhancing optimization outcomes. 
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CHAPTER 5: CONCLUSION 

5.1 Research Summary 

Modular construction provides several advantages, such as improved productivity, quality and 

safety. However, customization arising from owners’ requirements results in different processing 

times for module components at workstations. This poses a challenge for production line managers 

to accurately predict the process times of module components at workstations, leading to 

inefficient production line performance.  

To solve these problems, this thesis introduces a framework composed of three modules. The first 

includes a simulation-based production line planning method that uses near real-time and historical 

data to assist production managers in achieving better productivity and control. This method 

integrates a C-track app, statistical analysis, and simulation for production planning in MCM. As 

an alternative to the experience-based approach implemented in traditional MCM production 

planning, the developed method collects historical and near real-time data using the C-track app 

to enhance decision making; identifies the SIFs affecting fabrication process times using statistical 

techniques that increase the accuracy of the predictive method; and improves productivity by using 

simulation as a production planning tool. It also introduces the concept of developing and 

evaluating multiple production sequencing and labor allocation scenarios using two types of input, 

cycle time formula and probability distribution functions in the simulation process.  The second 

module houses a newly developed method that utilizes historical time data of the manufacturing 

factory as an input in the Deep Neural Network (DNN), Artificial Neural Network (ANN) and 

Multiple Linear Regression (MLR) to predict the process times at workstations. Subsequently, the 

GA optimization is implemented to optimize the architecture of the DNN and, as such, finds a near 

optimum number of hidden layers and nodes in each layer. The third module focuses on the 
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development of an optimized planning and scheduling method for MCM that provides a near 

optimum sequencing of module components at workstations of the production line. The method 

consists of: (a) extracting quantities of module components (e.g., number of studs) from BIM of 

residential projects and then inputting this data into the trained predictive method in order to 

forecast the process time at each workstation; (b) establishing a work planning structure (WPS), 

which involves categorizing module components by type and assigning practical rules to the work-

packages; and (c) utilizing a hybrid algorithm that integrates GA and SA, and validating the 

effectiveness of this hybrid algorithm by comparing their respective results (i.e., the optimal 

sequences of wall panels generated) with those of GA and SA. 

To demonstrate the effectiveness and test the performance of the developed methods, two case 

studies were analyzed: (i) light gauge steel (LGS) wall panel production line, which mainly 

operates manually; and (ii) wood-based wall panel production line, where certain workstations are 

operated by CNC machines. The simulation-based planning method developed in the first module, 

was implemented in the LGS case and demonstrates that this approach leads to improved 

productivity (i.e., reduced durations with the same labor input) and control. In particular, scenario 

2.3 (i.e., exterior wall panels of a given unit were prefabricated first, followed by the corresponding 

interior walls for the unit along with allocation of labor to workstations) was found to outperform 

the other scenarios, with a 44.42 hr duration to produce 309 wall panels. As demonstrated by the 

case study, this method can assist production managers in understanding the effects of proposed 

changes to the production line before implementing them in reality. In this way, production 

managers can plan effectively and reduce project costs. Next, the results of the DNN-based process 

time predictive method (second module) after implementing in the second case, demonstrates that 

the method predicted the process times with a MAE of less than 2.50 minutes for most of the 
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workstations, respectively. It is worth noting that in most cases (workstations) the DNN provided 

better results compared to ANN and multiple linear regression, however in case of Nailing 

workstation ANN performed better. As compared to the works reported in literature where the 

MAE of the prediction algorithms ranges from 4.4 min – 9.2 min, this study reports better MAE 

for the predictive method. The optimized planning and scheduling method of the third module 

shows that it can efficiently generate near optimum production schedules and calculate makespan. 

In particular, the optimal sequences of wall panels generated by HGASA are found to result in a 

reduced makespan compared to those generated by GA and SA with hybrid optimization reduces 

makespan to 105.63 hr from those generated by GA (138.08 hr) and SA (108.06 hr). In particular, 

the optimal sequences of wall panels generated by HGASA resulted in reduced makespan 

compared to those generated by GA and SA.  

5.2 Research Contributions 

The contribution of this research to the body of knowledge include: 

1) The developed simulation-based planning method assist in evaluating the scenarios of: (i) 

sequencing the modules and (ii) allocating resources along the production line, which can reduce 

idle time of workers, waiting time of modules at workstations and duration of prefabricating 

module components. Also, identification of significant impact factors (SIFs) influencing 

fabrication process times at workstations provides deeper understanding of the underlying 

production line process, in this way, production managers can plan effectively. 

2) The contributions of the DNN based process time predictive method include: (i) implement GA 

to determine the optimal hyperparameters of DNN considering number of hidden layers, neurons, 

momentum and learning rate to reduce the prediction error; (ii) develop process time predictive 

method considering all production line workstations, rather than experience-based approach for 
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estimating process times, which is error prone. This assist in making data-driven decisions with 

respect to efficiently plan and schedule sequences of module components; and (iii) helping 

production managers gain insights into the production line, enabling them to shorten the 

prefabrication time of module components at workstations 

3) The contributions of the optimized planning and scheduling method includes: (i) develop  a 

hybrid optimization approach that capitalizes on the strengths of both GA and SA, ultimately 

minimizing the makespan for multiple projects; (ii) provide a practical function in the  optimization 

algorithms which can operate parallel workstations as an effort to eliminate the bottleneck in the 

production line; and (iii) enables production line managers to choose an optimal schedule and 

effectively implement frequent hourly or daily adjustments, adapting to the dynamic nature of the 

production line and leading to continuous improvements in the MCM production lines.    

5.3 Research Limitations 

The main limitations of this research are: 

1) The developed method lacks consideration for optimizing the allocation of workers at 

workstations.  

2) The current hybrid optimization method employs a sequential hybrid approach, which lacks 

continuous refinement of GA solutions. Rather than waiting until the GA phase is complete to 

begin refining the solution via SA, improvements can be made iteratively, ensuring that solutions 

are progressively enhanced throughout the optimization process, leading to more effective 

exploration of the solution space. 

3) Findings of the optimization algorithms can be considered as domain specific (i.e., according to 

case studies utilized in this thesis). Additionally, the on-site installation of interior wall panels first 
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followed by exterior are according to the multi-storey building projects and can be considered as 

case specific.  

4) The developed methods are applicable to other production line cases; however, practitioners 

would need to modify the input factors based on the given design specifications of module 

components. 

5) The RFID system records only the process time of wall panels at each workstation. However, it 

doesn't capture the activities that occur between these process time, such as additional factors 

affecting process time beyond the design factors, which reduces the accuracy of the prediction 

model. 

6) This research primarily emphasizes the development of predictive method with module design 

specifications and number of workers, without focusing on factors such as work shift, material 

availability and on-site change orders that can affect process time. 

5.4 Future Work 

Although this research has investigated the potential for enhancing planning and scheduling 

method using optimization, discrete event simulation and data analytics, there are aspects that 

might need additional study: 

1) Optimizing both the sequence of module components and allocating number of workers at each 

workstation. 

2) Future studies can explore multi-objective optimization for production line schedules, 

considering factors such as cost and makespan simultaneously. 
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3) In the optimization process, the number of neurons in each hidden layer remains constant. To 

introduce more diversity, future research could investigate optimization processes where the 

number of neurons varies in each hidden layer based on optimal results.  

4) Optimizing the design of wall panels to minimize the impact of customization so that project 

completion time can be reduced. 

5) Quality metrics can be integrated into the optimization process by quantifying the rework 

percentage of prefabricating module components at each workstation. 
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