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Abstract

Climatic Drivers of Biodiversity: Influence on Ecophylogenetics and Specialization Across
Spatial Scales

Pedro Henrique Pereira Braga, MSc. in Ecology and Evolution, Ph.D. Candidate in Biology

Concordia University, 2024

Climate plays a critical role in shaping the diversity, structure, and evolutionary history of ecolog-
ical communities across spatial and temporal scales. In my thesis, I investigate how three dimen-
sions of climate—average, variability, and frequency across space—determine the phylogenetic
structure and climatic specialization of biological communities worldwide, first focusing on bats
and then on tetrapods more broadly. In the first chapter, I explore how historical and contemporary
processes, such as palaeoclimatic stability, geographical isolation, and local diversification rates,
influence the global phylogenetic structure of bat communities. The findings reveal that stable cli-
mates since the Last Glacial Maximum have promoted phylogenetic clustering, while geographical
isolation and varying diversification rates further shape community structure across different scales.
In the second chapter, I examine the underexplored role of the spatial frequency of climate—how
often specific climatic conditions occur across space—on specialization within ecological commu-
nities. Through a combination of global empirical analyses of tetrapod distributions and theoretical
simulations, I demonstrate that rare climates limit specialization, favouring the coexistence of gen-
eralists and specialists, whereas common climates promote specialization in tetrapod communities.
Finally, in the third chapter, I investigate how climatic commonness and rarity influence the phy-
logenetic structure and suitability of tetrapod communities. Rare climates are less supportive of
closely related species, with recent ecological dynamics playing a more significant role than deep
evolutionary constraints. Overall, my thesis provides a comprehensive understanding of the multi-
faceted role of climate in shaping biodiversity, offering valuable insights into biodiversity responses
to climatic variation, including ongoing rapid climate change.

Keywords: scale-dependence, phylogenetic structure, community assembly, climate variability,
climatic specialisation, climatic frequency, geographical isolation, phylogenetic scales, spatial
scales, paleoclimate, comparative methods, Chiroptera, Tetrapoda
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Résumé

Effets climatiques sur la biodiversité : L’influence sur l’écophylogénétique et la spécialisation
à travers des échelles spatiales

Pedro Henrique Pereira Braga, MSc. en Écologie et Évolution, Candidat au Ph.D. en Biologie

Université Concordia, 2024

Le climat joue un rôle crucial dans le façonnement de la biodiversité, la structure et l’histoire évo-
lutive des communautés écologiques à différentes échelles spatiales et temporelles. Dans ma thèse,
j’étudie comment trois dimensions du climat—la moyenne, la variabilité et la fréquence spatiale
des conditions climatiques—déterminent la structure phylogénétique et la spécialisation climatique
des communautés biologiques à l’échelle mondiale, en me concentrant sur les chauves-souris et les
tétrapodes. Dans le premier chapitre, j’explore l’influence des processus historiques et contempo-
rains, tels que la stabilité paléoclimatique, l’isolement géographique et des taux de diversification
locale, sur la structure phylogénétique globale des communautés de chauves-souris. Les résultats
montrent que les climats stables depuis le dernier maximum glaciaire favorisent le regroupement
phylogénétique, tandis que l’isolement géographique et les taux de diversification variables modu-
lent la structure des communautés à différentes échelles. Dans le deuxième chapitre, j’examine le
rôle sous-estimé de la fréquence spatiale du climat—c’est-à-dire la récurrence de certaines condi-
tions climatiques dans l’espace—sur la spécialisation au sein des communautés biologiques. Grâce
à une combinaison d’analyses globales des tétrapodes et de simulations théoriques, je démontre que
les climats rares limitent la spécialisation, favorisant la coexistence d’espèces généralistes et spécial-
istes, tandis que les climats communs favorisent la spécialisation. Enfin, dans le dernier chapitre,
j’étudie comment la fréquence et la rareté climatiques influencent la structure phylogénétique et
l’aptitude écologique des communautés de tétrapodes. Je constate que les climats rares sont moins
favorables aux espèces étroitement apparentées, les dynamiques écologiques récentes jouant un
rôle plus déterminant que les contraintes évolutives. Ma thèse approfondit notre compréhension du
rôle complexe du climat dans la formation de la biodiversité, apportant des perspectives précieuses
sur les réponses de la biodiversité aux variations climatiques, y compris le changement climatique
en cours.

Mots-clés : structure phylogénétique, assemblage communautaire, variabilité climatique, spé-
cialisation climatique, fréquence climatique, isolement géographique, échelles phylogénétiques,
échelles spatiales, paléoclimat, méthodes comparatives, Chiroptera, Tetrapoda
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climates allow for increased variation in niche breadth while rare climates favour
decreased niche breadth (i.e., specialisation). The calculation of climatic frequency
derived from contemporary climatic conditions was done for each hemisphere. The
continuous and dashed lines respectively represent mean and dispersion fits for ef-
fects of climatic frequency on community average niche breadth using double gen-
eralized additive model with Gamma log-link functions (see Methods). We credit
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3.9 The spatial frequency of climatic conditions measured at the biome scale con-
strains specialisation in tetrapods worldwide. The spatial frequency of climatic
conditions negatively predicted the average of niche breadth in amphibian, bird,
mammal, and reptilian communities. Each point represents a community. Across
all four groups of tetrapods and their communities, common climates allow for
increased variation in niche breadth while rare climates favour decreased niche
breadth (i.e., specialisation). The calculation of climatic frequency derived from
contemporary climatic conditions was done for each biome. The continuous and
dashed lines respectively represent mean and dispersion fits for effects of climatic
frequency on community average niche breadth using double generalized additive
model with Gamma log-link functions (see Methods). We credit the animal silhou-
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square regression coefficient of the spatial frequency of the environment in each
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3.14 Partial coefficients from the models containing the environmental conditions
besides environmental frequency. Each point represents a different simulation
under a combination of ecological scenarios, with varying rates of disturbance, ex-
ternal dispersal, internal dispersal, and environmental mediation in competition,
and with the exponential decay parameter. Here, 𝛽 denotes the ordinary least
square regression partial coefficient of the spatial frequency of the environment
after controlling for environmental conditions in each community on the commu-
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4.4 Phylogenetic signals for species-specific average climatic frequencies com-
puted across geographical scales using different evolutionary models.
Parameters were estimated with maximum-likelihood evaluation using phyloge-
netically independent contrasts and included species-specific standard errors in
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lower and upper limits of maximum-likelihood 95% confidence intervals for
parameter estimates. Blomberg’s K values nearing zero indicate that closely
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the phylogenetic tree resembles what would be expected by a Brownian motion
model of evolution, while K values above one indicate that close relatives retain
similar climatic frequencies. Pagel’s λ values nearing zero demonstrate minimal
phylogenetic signal, while values approaching one suggest that traits evolved
in accordance with a Brownian motion model or random genetic drift. Pagel’s
δ values between zero and one indicates that trait values slowly changed in the
recent past, while δ values greater than one indicate rapid trait variation nearing
the tips of phylogeny. Ornstein-Uhlenbeck stationary α nearing zero indicates no
adaptation towards an optimum trait, while large values of α indicate that climatic
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& Mixed Forests; Tundra = Tundra; TmprtGSS = Temperate Grasslands, Savan-
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5.1 Art by Roger Winkler (2019). This is a partial representation from the artwork,
created by RogerWinkler as part of the 2019 Creative Reactions and Pint of Science
events in Montréal, draws inspiration from the research presented in the Chapter 2
of this thesis. In the Creative Reactions project, scientists were paired with local
artists who interpreted their scientific work through art. These artistic interpreta-
tions were then showcased in a vernissage. . . . . . . . . . . . . . . . . . . . . 223
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Glossary

Community An assemblage of species found together in a specific area or a habitat at a given time,
usually interacting with each other.

Evolutionary rates The rate at which genetic changes accumulate in a population or species over
time, reflecting adaptations to environmental pressures or neutral evolutionary changes.

As in: Pagel (1997)

Geographical ranges The spatial extent or distribution of a species, encompassing all the areas
where it is found.

In situ diversification Species diversification occurringwithin a specific geographical areawithout
external immigration, driven by local ecological and evolutionary processes.

Net diversification rates The net outcome of speciation and extinction rates within a clade or com-
munity over a given period.

As in: Ricklefs (2007); Rabosky (2014)

Palaeoclimatic stability The extent to which climate has remained stable over geological time pe-
riods, affecting species distributions and community structure.

Niche breadth The range of environmental conditions or resources that a population or species can
utilize; similar to ‘niche tolerance’.

As in: Hutchinson (1957); Macarthur & Levins (1967); also see Devictor et al. (2010)

Niche marginality The position of a species’ realized niche in relation to the centroid of the envi-
ronmental conditions available in its habitat.

As in: Doledec et al. (2000); Hurlbert (1978)

Niche overlap The extent to which two or more species share the same resources or environmental
conditions, potentially leading to competition.

As in: Macarthur & Levins (1967)

Niche tolerance The ability of a species to endure environmental conditions outside its optimal
range.; similar to ‘niche breadth’.

As in: Doledec et al. (2000); Hurlbert (1978)

Metacommunities A set of multiple local communities in an area or region, linked by the dispersal
of several interacting species from those local communities.
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As in: Leibold et al. (2004)

Phylogenetic clustering The tendency for closely related species to co-occur within a community.

As in: Webb (2000); Webb et al. (2002); Cavender-Bares et al. (2009)

Phylogenetic extent The total range of phylogenetic diversity included in an analysis, encompass-
ing varied evolutionary histories and lineage diversities.

As in: Graham et al. (2018)

Phylogenetic grain The resolution at which phylogenetic differences among taxa are examined,
capturing fine evolutionary distinctions within a specific phylogenetic extent.

As in: Graham et al. (2018)

Phylogenetic overdispersion The pattern in which species within a community are more distantly
related to each other than expected by chance.

As in: Webb (2000); Webb et al. (2002); Cavender-Bares et al. (2009)

Phylogenetic scale The spatial or temporal scale over which phylogenetic relationships among
taxa are analyzed, integrating aspects of phylogenetic grain and extent.

As in: Graham et al. (2018)

Phylogenetic signal The tendency of closely related species to exhibit similar traits, consistent
with expectations from an evolutionary model.

As in: Blomberg & Garland Jr (2002); Losos (2008); Pagel (1997); Crisp & Cook (2012)

Phylogenetic structure The arrangement and distribution of species’ phylogenetic relationships
within a community.

As in: Webb (2000); Webb et al. (2002); Cavender-Bares et al. (2009)

Realm Also, “biogeographical realm”. A large-scale biogeographical division of the Earth’s sur-
face, characterized by distinct sets of flora, fauna, and ecological processes that have evolved
over time due to geological, climatic, and evolutionary histories. Realms are often delineated
based on major barriers to species dispersal, such as oceans, mountain ranges, or deserts

As in: Udvardy (1975); Wallace (1876); Holt et al. (2013)

Scale dependence The phenomenon where ecological or evolutionary processes and patterns vary
depending on the spatial, temporal, or phylogenetic scale at which they are studied.

As in: Levin (1992); Chave (2013)

Spatial extent The total area or size over which ecological data are collected or ecological pro-
cesses are studied, representing the broadest dimension of spatial scale.

As in: Levin (1992); Chave (2013)

Spatial frequency of climate The commonness or rarity of specific climatic conditions across a
geographical area.
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Spatial grain The resolution used in a spatial analysis, determining the level of detail of the data.

As in: Wiens (1989); Levin (1992); Chave (2013)

Spatial scale The scale at which ecological or geographical data are analyzed or interpreted, en-
compassing both spatial extent (the area covered) and spatial grain (the resolution of the data).
It ranges from narrow (local) to broad (global) scales.

As in: Wiens (1989); Levin (1992); Chave (2013)

Trait conservatism The tendency of certain traits to remain unchanged over evolutionary time.

As in: Wiens & Graham (2005)

Trait divergence The evolution of differences in traits among populations or species, typically in
response to divergent selection pressures or ecological niches.

As in: Wiens & Graham (2005)

Trait evolution The changes in species’ traits over time, driven by natural selection, genetic drift,
and other evolutionary forces.

As in: Pagel (1997); Blomberg & Garland Jr (2002); Crisp & Cook (2012)
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List of Abbreviations and Acronyms

ANOVA Analysis of Variance
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Chapter 1

General Introduction

1.1 The study of climate-biodiversity interactions appeals to
pluralism

“In this great chain of causes and effects, no single fact can be considered in isolation.”
— Alexander von Humboldt, Cosmos: A Sketch of the Physical Description of the
Universe, Volume 1, 1845.

The intricate relationship between climate and biodiversity has long fascinated naturalists and sci-
entists. Early pioneers such as Alexander von Humboldt and Alfred RusselWallace laid the founda-
tion for understanding these interactions. Humboldt’s influential work, Cosmos (Humboldt 1845),
emphasized the interconnectedness of nature, documenting plant distributions in relation to climate.
His observations in the Andes, where he recorded altitudinal zonation, highlighted how tempera-
ture and moisture gradients influenced vegetation patterns (Wulf 2015; Pausas & Bond 2019). A
few years later, Wallace’s travels in the Malay Archipelago led to the formulation of the Wallace
Line, a significant biogeographical demarcation that underscores the role of geographical barriers
and climate in species distribution (Wallace 1869).

These early works were not merely descriptive but carried substantial philosophical weight, urging
the scientific community to view Earth as a dynamic system where climate plays a pivotal role in
shaping life. Humboldt’s holistic approach, considering factors from geology to human activity,
was an early precursor to modern interdisciplinary studies. His assertion that “everything is inter-
connected” resonates with today’s integrative models, which incorporate climate data to analyze
biodiversity patterns (see Wulf 2015). Wallace’s contributions further underscored the complexity
of biogeographical patterns, emphasizing the role of climate in evolutionary processes and species
distribution (see Hortal et al. 2023).

The transition from descriptive natural history to analytical biogeography marked a significant
paradigm shift in understanding biodiversity. This shift was driven by the development of the-
ories and methods to quantify relationships between the environment and species distributions.
Key theoretical advancements include Arrhenius’ (1921) species-area relationship, Mayr’s (1942)
mechanisms of allopatric speciation, Hutchinson’s (1957) niche theory, MacArthur and Wilson’s
(1963) equilibrium theory of island biogeography, and Levins’ (1966, 1969) metapopulation theory.
These theories fundamentally changed how ecologists and biogeographers approached the study of
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species diversity, laying the foundation for mechanistic thinking in macroecology (see McGill et
al. 2019).

Technological advancements in recent decades, such as Geographic Information Systems (GIS),
molecular phylogenetics, big data, and other computational tools, have further transformed bio-
geography and biodiversity and climate research. These innovations have enabled spatial analysis
at unprecedented scales and the reconstruction of phylogenetic trees, providing deeper insights into
speciation and extinction dynamics within clades and across space (Heads 2009; see Millington et
al. 2013; Farley et al. 2018; Oyston et al. 2022, and references therein). Such tools have fostered a
more holistic and interdisciplinary approach, allowing researchers to synthesize data across various
scientific domains.

Despite these technological strides, the study of climate-biodiversity dynamics is often character-
ized by underdetermination, implying empirical data alone cannot conclusively determine theo-
retical explanations due to the complex interplay of multiple factors and plausible theories1. For
instance, observed patterns in species’ distributions may be concurrently explained by present cli-
matic conditions (e.g., Salces-Castellano et al. 2019; Harrison et al. 2020), historical climatic
events (e.g., Antão et al. 2022; Braga et al. 2023b), and biotic interactions (e.g., Martorell &
Freckleton 2014; Brazeau & Schamp 2019), each underpinned by substantial empirical support.
Addressing these epistemic challenges necessitates a pluralistic approach in ecological research,
advocating for the simultaneous exploration and refinement of multiple hypotheses and models to
develop a comprehensive understanding of natural systems (see Diniz-Filho et al. 2023). For exam-
ple, combining present climatic conditions (such as averages across space) with their variability can
offer insights into how climatic stability and fluctuations influence community assembly processes
and species coexistence (e.g., Delgado-Baquerizo et al. 2017, 2018; Saladin et al. 2020; Qian et al.
2024). Integrating this approach with phylogenetic data can further elucidate how historical and
evolutionary processes contribute to current biodiversity patterns, offering a more comprehensive
understanding of these complex dynamics (Mouquet et al. 2012; Davies 2021).

The integration of diverse methodological approaches is crucial for developing robust explanations
that account for the multifaceted nature of climate-biodiversity interactions. Throughout this the-
sis, I address these complexities by employing pluralistic and integrative frameworks to elucidate
selected questions addressing geological, environmental, and climatic controls on biodiversity pat-
terns. These frameworks use empirical data, theoretical models, comparative phylogenetic meth-
ods, and consider several taxa and climatic components to answer questions on climate-biodiversity
dynamics. By acknowledging the inherent uncertainty and complexity in ecological research, these
approaches advocate for a comprehensive and nuanced understanding of natural systems. Through
this work, I aim to contribute to the broader scientific discourse on climate-biodiversity interactions,
providing insights that are both theoretically rigorous and empirically grounded.

1Underdetermination highlights the challenge of attributing observed patterns to specific causal mechanisms when
multiple theories can explain the same data. There are different types of underdetermination: (1) Transient un-
derdetermination occurs when current data supports multiple theories, but future data might resolve the ambiguity
(Stanford 2001). (2) Permanent underdetermination implies that no amount of data can decisively favour one theory
over another (Laudan & Leplin 1991). (3) Holistic underdetermination suggests that theories are evaluated within
a broader network of assumptions and hypotheses, making it difficult to isolate individual theories (Quine 1951;
Duhem 1954).
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In the following sections, I set the stage by providing a comprehensive overview of the role of
climatic components in shaping ecological communities, drawing on both classical theories and
modern empirical studies. I then further discuss potential frameworks using phylogenetic informa-
tion for understanding the evolutionary and ecological processes governing species distributions
and community structures. Then, I delve into the implications of these processes for understand-
ing the historical and contemporary patterns of biodiversity. By integrating these dimensions, I
propose a holistic view of climate’s role in driving ecological and evolutionary dynamics across
different spatial and temporal scales.

1.2 Climate as a driver of biodiversity patterns

1.2.1 The role of averages and variability in climate

Climate—the long-term patterns of temperature, precipitation, and other meteorological
variables—profoundly influences the distribution, abundance, and diversity of life on Earth (Hum-
boldt 1893; Hutchinson 1957). The interaction between climate and species-specific adaptations
dictates where and when species thrive, influencing their phenology, population dynamics, and
interactions with other species (Gaston 2009b; Sexton et al. 2009), ultimately shaping the structure
and dynamics of biological communities (Currie & Paquin 1987; Rohde 1992).

Historically, studies on climate-biodiversity relationships have focused on how the climatic con-
ditions themselves (usually, in the form of averages across specific extents) and their variability
influence ecological patterns, in both temporal and spatial scales.

Climatic conditions primarily set environmental spaces within which species operate, contributing
to their fundamental and realized climatic niches (Hutchinson 1957; Pulliam 2000; Soberón 2007).
These conditions determine the availability of resources such as light, water, and nutrients, setting
the baseline for primary productivity and energy flow within ecosystems (Brown et al. 2004).
Areas with climatic conditions that support higher primary productivity and are favourable for a
wide range of species generally provide greater resource availability, often resulting in increased
biodiversity (Hawkins et al. 2003; Field et al. 2009). While some species may thrive in specific
climatic regimes where their physiological processes such as growth, reproduction, andmetabolism
are optimized (Angilletta 2009), others may face constraints that limit their fitness in the same
conditions. Regions where climatic conditions align closely to the physiological optima of the
resident species may foster higher fitness and competitive abilities leading to denser populations
and more persistent communities (Chesson 2000b).

Climatic variability, encompassing both spatial and temporal fluctuations in climatic conditions,
also structures ecological communities (Fagre et al. 2003; Jackson et al. 2009; Vázquez et al.
2017; Terry et al. 2022). Spatially heterogeneous climatic conditions provide diverse habitats and
microclimates, accommodating different species’ requirements. This leads to increased opportu-
nities for niche differentiation and reduced interspecific competition, enabling the coexistence of
more species (Kerr & Packer 1997; Chesson 2000b; Rahbek & Graves 2001). Conversely, spa-
tially homogeneous climates may promote competitive exclusion, where few well-adapted species
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dominate (Connell 1978)2.

Variability in climatic conditions manifests across diverse temporal scales and spatial extents
(Mitchell Jr 1976; see Franzke et al. 2020; Stuecker 2023), driving significant changes in regional
and local biodiversity. Climatic events such as abrupt shifts (e.g., the Younger Dryas cold
interval3, the Paleocene–Eocene thermal maximum), gradual orbitally driven climate changes
(e.g., glacial-interglacial cycles), the current rapid human-induced climate change, along with
intra- and inter-annual fluctuations (e.g., seasonal variations, the El Niño-Southern Oscillation),
all prompting transient or enduring shifts in diversity patterns (e.g., Svenning & Skov 2007;
Kissling et al. 2012; Burrows et al. 2014; Zhang et al. 2018; Xu et al. 2020; Khattar et al. 2021;
Antão et al. 2022). Climatic variability inherently leads to extreme events, such as heatwaves,
droughts, and storms (van der Wiel & Bintanja 2021), which can cause abrupt shifts in ecosystem
structure and function, leading to rapid species turnover, local extinctions, and altered community
compositions (Ma et al. 2015; Rammig & Mahecha 2015; see Buckley & Huey 2016; De Boeck
et al. 2018; Latimer & Zuckerberg 2019).

Conversely, decreased variability in climatic conditions over time is often associated with environ-
mental stability, which favours specialized adaptations that maximize resource use efficiency and
optimize interactions within communities (Futuyma & Moreno 1988; Leigh 1990; also see Terry
et al. 2022). This stability can foster niche differentiation and species packing within ecosystems,
enhancing biodiversity by reducing niche overlap and minimizing competitive exclusion (Tilman
1982; Chesson 2000b).

Together, the average and variability of climatic conditions jointly drive both the spatial and tempo-
ral dynamics of biodiversity. However, the influence of climate on biodiversity dynamics extends
beyond these determinant factors.

1.2.2 The frequency of climate across space: an overlooked, but important
component

The frequency of climatic conditions across space, a less studied component, also plays a significant
role in shaping biodiversity dynamics. Climatic conditions can range from rare (also referred to as
“scarce,” “less frequent,” or “marginal”) to common (equally referred to as “abundant” or “more
frequent”). Similar to climatic averages and variability, climatic frequency should influence bio-
logical communities. The frequency of a particular climatic condition across space could influence
species distribution and community composition by affecting the availability and predictability of
2This relationship assumes that niche differentiation outweighs fitness dominance within specific environment-trait
relationships. If fitness dominance prevails, competitive exclusion could still occur in heterogeneous environments,
complicating the interpretation of community patterns. For a detailed discussion on this issue, see Cadotte and
Tucker (2017).

3The Younger Dryas (~12,870 years before present) was one of the most abrupt climatic events in recent history,
lasting approximately 1,300 years. A series of events leading to slowdowns and shifts in ocean circulation caused a
reduction in northward heat transport, which reversed the course of the global warming that had been ending the last
Ice Age (Pearce et al. 2013). At the termination of the Younger Dryas cold event, between one-third and one-half
of the 10,000-year deglacial warming in Greenland occurred in less than 15 years (Severinghaus et al. 1998). This
rapid shift to cooler and drier conditions during the Younger Dryas is closely associated with a significant decline
in both plant and animal diversity (see Seersholm et al. 2020).
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suitable habitats. Rare climates, by definition, occur in limited geographic areas, and thus species
occupying themmay face significant trade-offs. While rare climates can offer unique selective pres-
sures, they may also impose substantial costs on species attempting to specialize in such conditions
(van Tienderen 1997). Specialization to rare climates often requires highly specific adaptations,
which can be energetically expensive to maintain and may reduce a species’ ability to adapt to
changes or exploit alternative resources (Kassen 2002). As a result, species in rare climates might
be more prone to extinction if these climates shift or disappear because of environmental changes.
Consequently, rather than leading to high specialization, rare climates may support more generalist
species that can tolerate a broader range of conditions, or species with flexible phenotypes that can
survive in fluctuating environments (see Fournier et al. 2020).

High variability in climatic conditions, whether spatial or temporal, can amplify the challenges asso-
ciated with rare climates. In highly variable environments, the predictability of climatic conditions
can be reduced (Boer 2009), limiting the success of specialized species (Moldenke 1975; Tonkin
et al. 2017; Riotte-Lambert & Matthiopoulos 2020). This increased variability might favour traits
that enhance ecological flexibility, such as broader physiological tolerance or phenotypic plasticity,
over traits that promote narrow specialization (see Moldenke 1975). For species inhabiting rare cli-
mates, this variability may further exacerbate the costs associated with specialization, potentially
leading to a greater reliance on generalist strategies or adaptive behaviours that allow them to cope
with a wider range of conditions.

Conversely, in regions characterized by frequent and stable climates, species may have more oppor-
tunities to specialize, as both the predictability of conditions and decreased frequency of extreme
climatic events reduce the risks associated with narrow ecological adaptation (Tonkin et al. 2017).
Such environments are likely to support higher niche differentiation, where species can fine-tune
their interactions with both the environment and other species within a more stable climate frame-
work (Chesson 2000b; see Terry et al. 2022). Even in these frequent and stable climates, some
degree of climatic variability can mitigate competitive exclusion and promote temporal niche par-
titioning, thereby sustaining species coexistence (Chesson 2000b).

The interaction between climatic frequency and variability can then be expected to shape the com-
plex mosaic of ecological strategies across landscapes. In regions with frequent and stable climates,
communities may be structured by intense competitive interactions and fine-scale niche partition-
ing, resulting in high local diversity and beta diversity across the landscape (Tilman 1982; see
Leibold et al. 2004). In contrast, regions with rare and highly variable climates may support com-
munities that are characterized by more generalized strategies, where species must balance the
trade-offs between specialization and adaptability. These areas could function either as ecological
refugia or as regions of high species turnover (e.g., Ordonez & Svenning 2015), depending on the
interplay between climatic stability and variability.

Despite playing a crucial role in biodiversity dynamics, the study of climate frequency across space
has been surprisingly rare, particularly in biogeographical contexts (but see Meyer & Pie 2018;
Fournier et al. 2020; Cutts et al. 2023). My thesis explores this gap by providing insights into how
these three dimensions of climate—the conditions themselves, their variability, and frequency—
influence the structure of biological communities.
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1.3 Using phylogenetic information to link evolutionary processes
to community patterns

The study of biodiversity responses to climate has evolved considerably beyond the traditional met-
rics of taxonomic diversity. Contemporary approaches integrate methods that capture the outcomes
of other processes, including the interplay of ecological interactions, evolutionary histories, and
environmental factors within communities. One such approach comes through the integration of
phylogenetic information into community ecology, which has revolutionized our understanding of
the evolutionary relationships among species and their interactions within ecological communities.
By analyzing the evolutionary relationships among species within a community, community phylo-
genetics allows for the inference of historical biogeographical patterns, ecological interactions, and
adaptive evolution that collectively shape current biodiversity patterns (Cadotte et al. 2010; Davies
& Cadotte 2011; Tucker et al. 2017). This approach offers a robust framework for examining how
historical processes, such as vicariance and dispersal, interact with contemporary ecological pro-
cesses, such as competition and environmental filtering, to drive community assembly (Webb 2000;
Webb et al. 2002; Cavender-Bares et al. 2009; Kembel 2009).

Traditional expectations about the phylogenetic structure of communities have centred on three key
mechanisms: habitat filtering, competitive exclusion, and neutrality. Habitat filtering posits that
abiotic factors select for species with similar ecological niches, leading to phylogenetically clus-
tered assemblages (Webb 2000; Ackerly & Renner 2004; Cavender-Bares et al. 2004b). Competi-
tive exclusion, conversely, suggests that closely related species are less likely to coexist due to over-
lapping niches, resulting in phylogenetically overdispersed assemblages (Hardin 1960; Roughgar-
den 1983; Tilman 1994). Lastly, the neutrality model assumes that species are ecologically equiva-
lent, leading to randomly structured communities (MacArthur &Wilson 1963, 2001; Hubbell 2001;
Kembel & Hubbell 2006).

Nevertheless, these traditional expectations are built upon assumptions that have been continuously
challenged, as demonstrated by accumulating evidence (Mouquet et al. 2012; Godoy et al. 2014;
Pastore & Scherer 2016; Wilcox et al. 2018). For instance, the anticipation that closely related
species are more likely to exclude each other has been refuted in numerous taxa, where it has been
argued that shared traits among close relatives may enhance their fitness by balancing competi-
tive abilities, thereby facilitating coexistence (Grime 2006; Mayfield & Levine 2010; Godoy et
al. 2014; see opinion from Wilcox et al. 2018). Additionally, community phylogenetic cluster-
ing driven by environmental selection is predicated on the assumption that species retain niche
requirements across evolutionary time and geographical space, a concept known as ‘phylogenetic
niche conservatism’ (Webb et al. 2002; Cavender-Bares & Wilczek 2003). However, Webb et al.
(2002) and Cavender-Bares and Wilczek (2003) have shown that environmental selection within
clades that have experienced convergent niche evolution can lead to phylogenetically overdispersed
assemblages. Convergent evolution may not only affect niche requirements but also influence com-
petitive abilities, leading to scenarios where distantly related species are less likely to coexist than
closely related species with similar competitive traits (Mayfield & Levine 2010; Kunstler et al.
2012; Weber & Strauss 2016; Germain et al. 2019; but see Anderson et al. 2011).

Beyond environmental filtering, species interactions and neutral effects, other processes influence
the phylogenetic structure of communities (see Note 1), including—but not limited to—variation in
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net diversification rates (Cardillo 2011), time since divergence (Cavender-Bares et al. 2006), local
and regional saturation in richness (Machac et al. 2013; Machac &Graham 2016; but see Stohlgren
et al. 2008; Szava-Kovats et al. 2013), vicariant events and their historical context (Brooks et
al. 1991), secondary contact following vicariance (Johnson & Stinchcombe 2007), adaptive radia-
tion and dispersal limitation (Horner-Devine & Bohannan 2006). Even where communities appear
randomly structured, phylogenetic relatedness can vary along with environmental gradients, under-
scoring the dynamic interplay of historical and ecological factors in shaping biodiversity (Liang et
al. 2017). Additionally, abrupt and strong climatic shifts during past geological periods have left
lasting imprints on community phylogenetic structure, away from the patterns expected for given
contemporary conditions (e.g., Hortal et al. 2011; Kissling et al. 2012; Svenning et al. 2015).
Note 1: The phylogenetic structure of communities can be determined by processes and
mechanisms different than competitive exclusion, habitat filtering and neutrality

Phylogenetic structure within assemblages can be influenced by processes beyond competi-
tive exclusion and habitat filtering (see Emerson & Gillespie 2008). For instance, increased
speciation rates or decreased extinction rates (i.e., higher net diversification rates) can lead
to a higher proportion of closely related species within regional assemblages (Cardillo 2011).
However, as clades and regional assemblages become species rich, saturation may occur, po-
tentially leading to a decline in diversification rates (Rabosky 2009, 2013, 2014; see Graham
et al. 2018). This saturation can subsequently increase extinction rates, resulting in longer
apparent branches in the phylogeny and promoting phylogenetic overdispersion.
The formation and disappearance of dispersal barriers, along with the timing of these events,
can also shape phylogenetic community structure. For example, distantly related species are
less likely to co-occur in regions where speciation has been driven by ancient vicariance, such
as continental separation. Conversely, speciation driven by the isolation of islands during in-
terglacial periods can result in negative co-occurrence among close relatives, due to insuffi-
cient time for competitive pressure to drive ecological divergence (see Emerson & Gillespie
2008). Alternatively, vicariant speciation may lead to greater co-occurrence among close rel-
atives if these species inhabit different communities or regions (Anacker & Strauss 2014).
However, intense recolonization (e.g., following island reconnection during periods of low
sea level) may disrupt this pattern, leading to either positive or negative co-occurrence among
distantly related species (Emerson & Oromi 2005).
Phylogenetic community structure may also vary across ecological (environmental and spa-
tial) gradients, even if random structure is observed within regions (Cavender-Bares et al.
2009). For instance, increased environmental heterogeneity within a region may allow the
persistence and co-occurrence of distantly related species (Keddy 1992; Urban et al. 2008).
Regions with cold, arid, and seasonal climates are expected to exert stronger selective pres-
sures on species, resulting in phylogenetic community structures more influenced by climatic
gradients. Moreover, significant changes in past climatic and habitat conditions can drive phy-
logenetic structure away from patterns expected under stable conditions (Hortal et al. 2011;
Kissling et al. 2012; see Svenning et al. 2015).
Finally, the dynamics of phylogenetic community structure are scale-dependent, both spatially
and temporally (Kembel & Hubbell 2006; Swenson et al. 2006, 2007; Kraft & Ackerly 2010).
Different ecological and historical-evolutionary processes influence community assembly at
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different scales (Ricklefs & Schluter 1993; McPeek 1996; Ricklefs 2007; Jenkins & Ricklefs
2011; Ricklefs & Jenkins 2011). For example, at larger scales, historical and evolutionary
processes are expected to determine diversity structure through speciation and biota exchange.
In contrast, at smaller scales, ecological processes may limit species diversity through mecha-
nisms such as predation and competition (Ricklefs & Schluter 1993). Evolutionary processes
not only generate diversity but also influence ecological processes by restricting phenotypes
(e.g., through conservatism in adaptive traits), thereby affecting species’ abilities to integrate
into ecological interactions (Ricklefs & Schluter 1993; Ackerly 2003). Ecological processes
may simultaneously lead to phylogenetic clustering at larger spatial and taxonomic scales,
while promoting overdispersion within more recent clades at smaller scales (e.g., Cavender-
Bares et al. 2006; Kembel & Hubbell 2006; Swenson et al. 2006) or clustering species pairs
with significant ecological differentiation (e.g., Parmentier & Hardy 2009).

Alongside the assessment of phylogenetic relatedness within communities, the processes driving
biodiversity across geographical and environmental gradients can be further elucidated with evo-
lutionary models and estimates of evolutionary rates. These include species diversification rates,
which reflect the balance between speciation and extinction (Ricklefs 2006; Mittelbach et al. 2007),
and shifts in traits across diversification events (Ackerly et al. 2006; Kraft et al. 2007; Vamosi et
al. 2009; Title & Rabosky 2019). These rates provide insights into how species and clades emerge,
persist, and adapt to their environments, thereby complementing our understanding of the processes
underlying biodiversity patterns.

For instance, high diversification rates, when coupled with evidence for stable or slowly evolving
traits (i.e., phylogenetic niche conservatism), suggest that certain lineages have successfully ex-
ploited broad ecological opportunities, maintaining resilience across varying climates (Wiens &
Graham 2005; Fine & Ree 2006). This resilience may lead to phylogenetic clustering within com-
munities, where ancestral traits confer broad adaptability, allowing related species to persist across
diverse environments (Webb et al. 2002; Helmus et al. 2010). Conversely, lower diversification
rates may coincide with rapid ecological and trait differentiation during speciation, reflecting the
evolution of lineages to specific niches over extended periods, often in response to newly available
ecological opportunities or changing environments (Rundell & Price 2009; Weiss-Lehman et al.
2017).

These complexities in mapping ecological mechanisms onto phylogenetic patterns underscore the
necessity of integrating multiple methods and biodiversity into ecological studies to infer under-
lying ecological and evolutionary processes (Davies 2021). Throughout this thesis, I rely on this
perspective to investigate how climatic frequency, variability, and extremes influence the assem-
bly, persistence, and diversification of biological communities. By integrating diversification rates,
trait evolution, and phylogenetic structure, I aim to provide a comprehensive understanding of how
communities are assembled and maintained over time, particularly in response to varying climatic
components and geological and historical contexts.
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1.4 Scale dependencies in ecological and evolutionary processes

Over 40 years ago, MacArthur (1984) recognized the hierarchical nature of habitats and introduced
the concept of “scale” as a critical lens through which to understand ecological phenomena. His
insights laid the groundwork for a deeper examination of how ecological processes operate across
different spatial scales, influencing not just the structure of ecological communities but also the
evolutionary processes that shape biodiversity. Two decades later, Levin (1992) profoundly influ-
enced the field by emphasizing the interdisciplinary nature of scale, pattern, and ecology, urging
ecologists to consider the implications of scale more rigorously.

Since then, an increasing number of studies have bridged different spatial scales, leading to rich
discussions on some of the most central issues in ecology. These studies have explored how scale
influences both ecological patterns and evolutionary processes, yielding insights from species di-
versity to ecosystem function (Morris 1987; Ricklefs & Schluter 1993; Whittaker et al. 2001;
Diffenbaugh et al. 2005; McGill 2010; Chase 2014; Cohen et al. 2016; e.g., Chase et al. 2018;
Guisan et al. 2019; Colwell 2021; Fletcher Jr. et al. 2023; Lu & Jetz 2023; Zelnik et al. 2024). The
traditional view that ecological processes act over much smaller timescales than evolutionary ones
has evolved to recognize that ecosystems are not only shaped by but also shape their environments
through evolutionary processes. This perspective emphasizes the intertwined nature of historical,
temporal, and spatial components in ecosystem dynamics (Chave 2013). Despite advances, the
relative importance of ecological and evolutionary processes across scales remains underexplored,
particularly in studies that integrate phylogenetic methods (Cavender-Bares et al. 2009; Lessard et
al. 2012).

Ecological and evolutionary processes generate species diversity at local and regional scales (Rick-
lefs & Schluter 1993; McPeek & Miller 1996; Ricklefs 2007). Locally, negative interspecific in-
teractions (e.g., predation, competition) and deterministic environmental factors are expected to be
the main constraints to diversity. Regionally, diversity increases through speciation, long-distance
dispersal, and historical events that enrich local assemblages (Ricklefs & Schluter 1993; McPeek
& Miller 1996; Willis & Whittaker 2002). These processes do not operate in isolation; their inter-
play across scales determines community structure, with no community shaped solely by local or
regional processes (Loreau 2000; Zelnik et al. 2024).

Importantly, numerous patterns in ecology and evolution depend on the phylogenetic scale at which
they are examined. Large phylogenetic grains (e.g., orders or families) often highlight the role of
deterministic abiotic processes, such as environmental filtering, which tend to dominate at broader
evolutionary extents (Cavender-Bares et al. 2009). Conversely, smaller phylogenetic grains (e.g.,
genera or species) may reveal the influence of biotic interactions, including competition and mu-
tualism, that operate more strongly at finer scales. Additionally, different phylogenetic extents—
spanning clades with varying life-history traits and strategies—can uncover distinct responses to
environmental factors, potentially leading to contrasting interpretations of ecological and evolu-
tionary processes depending on the scale of analysis (Chalmandrier et al. 2013). This variability
across scales underscores the importance of carefully considering phylogenetic scale in studies of
biodiversity, as the processes shaping community assembly and diversification may differ signif-
icantly across phylogenetic grains and extents, reflecting the interplay of multiple ecological and
evolutionary mechanisms (see Graham et al. 2018).
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These insights underscore the critical importance of considering both spatial and phylogenetic
scales when studying ecological and evolutionary processes. By integrating these concepts, we
can infer the complex interplay between historical legacies, environmental conditions, and biotic
interactions. As the following chapters will demonstrate, this multi-scale approach provides a ro-
bust framework for elucidating the relationships between climate and evolutionary dynamics and
their outcomes in biodiversity patterns.

1.5 Aims and scope

Scientific disciplines often oscillate between phases of empirical research and theoretical develop-
ment, as well as between reductionist and holistic approaches4. This thesis navigates both empiri-
cal and theoretical terrains, employing a variety of approaches and spanning multiple geographical
scales.

The overall aim of this thesis is to investigate how three dimensions of climate—average, variabil-
ity, and frequency across space—influence community assembly through changes in phylogenetic
structure and climatic specialization.

In the first research chapter, Chapter 2, I investigated the phylogenetic structure of bat communi-
ties worldwide, focusing on the role of historical and contemporary processes in shaping their cur-
rent configurations. By estimating phylogenetic relatedness across multiple geographical extents—
from global scales to ecoregions—I assess the influence of palaeoclimatic stability, local diversifi-
cation rates, and geographical barriers. This chapter reveals that the phylogenetic structure of bat
communities varies strongly with geographical scale, highlighting the scale-dependent nature of
dispersal barriers, historical climate stability, and in situ diversification as key drivers of commu-
nity assembly. These findings provide novel insights into how historical processes have left lasting
imprints on the evolutionary dynamics of highly mobile taxa like bats, suggesting that both past
and present climatic conditions must be considered when evaluating contemporary biodiversity
patterns.

In Chapter 3, I shift the focus from bats to a broader taxonomic scope, examining how the spa-
tial frequency of climatic conditions affects climatic specialization in biological communities of
tetrapods. Using a combination of global empirical data on over 25,000 species of tetrapods (in-
cluding amphibians, birds, mammals, and reptiles) and theoretical simulations, I examine how the
spatial frequency of climatic conditions affects the distribution and dominance of specialist and
generalist species within communities. In both empirical analyses and theoretical simulations, I
find that rare environments tend to limit specialization by favouring generalist species that can
thrive across a range of conditions. Conversely, in more common climates, specialist species often

4Scientific progress is often driven by the integration of empirical discoveries and theoretical frameworks, where basic
principles and idealized models provide generalized insights across various domains. While reductionist research
unravels the underlying components and processes at limited extents and scales, it is through holistic approaches
that we understand how these elements coalesce to form and sustain complex systems at higher levels of organiza-
tion. Typically, these theoretical and empirical, reductionist and holistic investigations are undertaken by different
researchers, each motivated by distinct questions and methodological preferences. Nevertheless, both approaches
are indispensable for advancing our scientific understanding and creating a cohesive body of knowledge.
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outcompete generalists due to their adaptations. This chapter offers a novel perspective on how the
spatial distribution of climatic conditions drives ecological strategies and community assembly.

The final research chapter, Chapter 4, addresses how the spatial frequency of climatic conditions
influences the phylogenetic structure of tetrapod communities across geographical scales. Build-
ing on the findings of the previous chapters, I test the hypothesis that communities in rare climates
exhibit less phylogenetic clustering than those in more common climates. By integrating phyloge-
netic data with climatic and geographical variables, this chapter reveals that the rarity of certain
climates disrupts typical patterns of phylogenetic relatedness across phylogenetic and geographi-
cal scales, suggesting that species co-occurrence in these environments is more shaped by recent
ecological dynamics than by deep evolutionary histories.

Recognizing the persistent challenge of underdetermination in biogeography, I have undertaken a
critical examination of underlying assumptions through both the theoretical frameworks and em-
pirical analyses presented herein. Collectively, these chapters advance our understanding of how
climate shapes biodiversity through both direct and indirect mechanisms. By integrating empiri-
cal data, phylogenetic analyses, and theoretical models, these chapters provide a comprehensive
framework for examining the multifaceted effects of climate on species distributions, community
structures, and evolutionary processes. Moreover, they highlight the significance of historical cli-
matic legacies, the variability and frequency of climatic conditions across spatial scales, and the
evolutionary strategies at play in these dynamics.
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Chapter 2

Historical and contemporary processes drive
global phylogenetic structure across
geographical scales: Insights from bat
communities

2.1 Abstract

Aim

Patterns of evolutionary relatedness among co-occurring species are driven by scale-dependent con-
temporary and historical processes. Yet, we still lack a detailed understanding of how these drivers
impact the phylogenetic structure of biological communities. Here, we focused on bats (one of the
most species-rich and vagile groups of mammals) and tested the predictions of three general biogeo-
graphical hypotheses that are particularly relevant to understanding how palaeoclimatic stability,
local diversification rates and geographical scales shaped their present-day phylogenetic commu-
nity structure.1

Location

World-wide, across restrictive geographical extents: global, east–west hemispheres, biogeographi-
cal realms, tectonic plates, biomes and ecoregions.

Time period

Last Glacial Maximum (~22,000 years ago) to the present.

Major taxa studied

Bats (Chiroptera).

Methods

1This study has been published in Global Ecology and Biogeography as:
Braga, P. H. P., Kembel, S., & Peres-Neto, P. (2023). Historical and contemporary processes drive global phylo-
genetic structure across geographical scales: Insights from bat communities. Global Ecology and Biogeography,
32, 747–765.
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We estimated bat phylogenetic community structure across restrictive geographical extents and
modelled it as a function of palaeoclimatic stability and in situ net diversification rates.

Results

Limiting geographical extents from larger to smaller scales greatly changed the phylogenetic struc-
ture of bat communities. Themagnitude of these effects is less noticeable in thewestern hemisphere,
where frequent among-realm biota interchange could have been maintained through the adaptive
traits of bats. Bat communities with high phylogenetic relatedness are generally more common in
regions that have changed less in climate since the Last Glacial Maximum, supporting the expecta-
tion that stable climates allow for increased phylogenetic clustering. Finally, increased in situ net
diversification rates are associated with greater phylogenetic clustering in bat communities.

Main conclusions

We show that the world-wide phylogenetic structure of bat assemblages varies as a function of
geographical extents, dispersal barriers, palaeoclimatic stability and in situ diversification. The
integrative framework used in our study, which can be applied to other taxonomic groups, has not
only proved useful to explain the evolutionary dynamics of community assembly, but could also
help to tackle questions related to scale dependence in community ecology and biogeography.

2.2 Introduction

One of the most striking patterns in ecology is the non-random distribution of species across space.
This unevenness in species compositions is determined by the interplay of spatial, temporal and
historical processes (Ricklefs 1987). In the past decades, our understanding about how species as-
semblages are structured and maintained through space and time has advanced significantly owing
to the field of “community phylogenetics” (Webb 2000; Webb et al. 2002; Cavender-Bares et al.
2009; Kembel 2009; Peres-Neto et al. 2012; Davies 2021). The core basis of this field is to quantify
the phylogenetic relatedness of co-occurring species (i.e., the community phylogenetic structure)
to infer ecological patterns and associated mechanisms of species assembly (Webb 2000; Ackerly
& Renner 2004; Cavender-Bares et al. 2004a; Emerson & Gillespie 2008; Kembel 2009; for a
recent review, see Davies 2021). Notwithstanding, we still have fragmented knowledge about how
history itself, including palaeoclimatic legacies, spatial scale dependence and local diversification
rates, influenced the contemporary phylogenetic structure of communities (Kissling et al. 2012;
but see Calatayud et al. 2019), despite their potential role increasingly being highlighted (Kembel
& Hubbell 2006; Swenson et al. 2006; Kraft & Ackerly 2010; Graham et al. 2018). Considering
the fingerprints of historical and contemporary processes together should improve our ability to un-
derstand the complexities underlying the structure of species assemblages. For instance, the spatial
structure of historical climatic gradients can vary within and across geographical scales, which, in
turn, can affect how species interact and are sorted into species assemblages at smaller geographi-
cal extents (Peres-Neto et al. 2012). Here, we set out to quantify the legacies of different historical
and contemporary processes globe-wise on the present-day phylogenetic community structure of
bats (Chiroptera), which are one of the most successful and geographically widespread groups of
mammals.
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Variation in phylogenetic community structure across large geographical extents is driven by eco-
logical and evolutionary processes linking immigration, species interactions, speciation and extinc-
tion (Lomolino et al. 2017 and references therein). Given that species abilities to adapt and/or to dis-
perse in response to environmental variation are often phylogenetically conserved, strong turnover
of lineages across geographical and environmental gradients is observed (Harvey & Pagel 1991).
Historical climatic fluctuations, such as glacial—interglacial oscillations, are thus expected to drive
patterns of phylogenetic community structure and niche differences via changes to species disper-
sal routes, speciation and extinction dynamics. This arises not only directly from clade-dependent
responses to the environment (i.e., through common ancestry), but also from increased speciation
rates driven by allopatry in species fragmented ranges and increased extinction rates associated
with extensive disturbances in deep time (Wiens & Donoghue 2004; Hortal et al. 2011; Svenning
et al. 2015; Saladin et al. 2020). Furthermore, post-disturbance periods have not always been as-
sociated with immediate and/or extensive regional recolonization by previously excluded lineages,
especially if those were poor dispersers and stress intolerant (Svenning & Skov 2004; Normand
et al. 2011; Kissling et al. 2012; Rebelo et al. 2012). As such, the phylogenetic structure of
contemporary biological communities should exhibit the accumulated imprints of the strength and
stability of past climatic changes (Kissling et al. 2012; Delgado-Baquerizo et al. 2017).

The phylogenetic structure of communities can also be determined strongly by the maintenance of
geographical isolation (mediated by geological barriers to dispersal), both through clade-specific
responses to these geographical processes and through dramatic changes in net diversification rates
(e.g., Hortal et al. 2011; Kissling et al. 2012; see Svenning et al. 2015). Speciation driven by early
geographical separation and isolation of regions during interglacial periods can promote negative
co-occurrence among closely related species (see review byEmerson&Gillespie 2008). In contrast,
less phylogenetically related species should co-occur less where speciation has been driven bymore
ancient vicariance (e.g., separation between continents and realms) because closely related species
might establish across different communities and regions (Anacker & Strauss 2014). Nevertheless,
intense subsequent regional recolonization and lower in situ speciation might produce regionally
similar communities independent of their phylogenetic associations (see Emerson & Oromi 2005).

Finally, the ecological and evolutionary processes underlying species assembly in communities are
commonly scale dependent in space (Wiens 1989; Levin 1992; Kembel & Hubbell 2006; Swenson
et al. 2006; Chave 2013; Chase et al. 2018; Graham et al. 2018). The nature of community phy-
logenetic patterns in space often varies as a function of the species pool and geographical extents
used to quantify metrics of interest, because different species pools reflect different underlying eco-
logical and evolutionary processes (Peres-Neto et al. 2001). Larger geographical scales contribute
with species pools having a greater potential number of species assumed to be able potentially to
colonize and successfully establish in small-scale (local) species assemblages (Lessard et al. 2012;
Carstensen et al. 2013). Species composition at broader geographical scales is often defined by
major geological and historical events that could have influenced clade dispersal and diversifica-
tion, such as orogenesis, land-mass separation through tectonics, island isolation and palaeoclimatic
changes favouring the expansion or contraction of biomes (Cornell &Harrison 2014; Fukami 2015).
As such, communities can appear phylogenetically clustered at larger spatial scales owing to lim-
ited dispersal and isolation of their species pools and local radiation mediated by biogeographical
processes (Pennington et al. 2006). Alternatively, species composition at local spatial scales is
expected to be more associated with local biotic processes and abiotic differences across communi-
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ties (Wiens 1989; Levin 1992; McGill 2010). Taken together, an explicit consideration of different
geographical scales in the phylogenetic structuring of communities should assist in revealing the
relative importance of finer- and broader-scale ecological and evolutionary processes that have
contributed to form present-day species assemblages (Graham et al. 2018).

Here, we quantify the phylogenetic relatedness of bat communities world-wide across multiple
spatial scales (here, in the form of hierarchically nested geographical extents) as a function of
multiple potential historical influences. Bats (Chiroptera) are a good model system because their
geographical distributions are known to have been influenced by multiple historical drivers (Jones
et al. 2005; Teeling et al. 2005; Carstens et al. 2018; López-Aguirre et al. 2018). They are the only
mammals with real flight capability, which, along with their echolocation ability, has allowed them
to occupy most of the globe (Simmons 2005). Phylogenetically structured bat communities have
been found across different ecosystems and associated with environmental variation (Grimshaw
& Higgins 2017), seasonal changes (Presley et al. 2018), geological context and diversification
regimes (López-Aguirre et al. 2018), and species pools (Patrick & Stevens 2014). Diversification
rates in bats are known not to be constant across clades, a finding that has been linked to innovations
in adaptive traits (Monteiro & Nogueira 2011; Rojas et al. 2012; Santana et al. 2012), vicariance
and migration events (Rojas et al. 2016), and diversity-dependent diversification events (Shi &
Rabosky 2015; Upham et al. 2020).

To focus on a subset of a potentially extensive set of results, we selected three key biogeographical
hypotheses and related predictions underlying the phylogenetic structure of bat communities glob-
ally (Table 2.1). First, because long-term isolation mediated by strong dispersal barriers between
biogeographical realms leads to dispersal limitations and within-realm diversification [hypothesis
H1; Cavender-Bares et al. (2009); Crisp et al. (2011); Kissling et al. (2012)], we predict that
bat communities should become less phylogenetically clustered when restricting the geographical
extent of the regions containing species that could have colonized these communities historically
(e.g., from global to east-west hemispheres, from east-west hemispheres to realms). However, be-
cause of the greater vagility of bats owing to their capacity for flight, we predict that biogeographical
realms that have been isolated recently or that are connected through islands should be more similar
in their phylogenetic structure owing to more frequent biota exchange (MacArthur &Wilson 2001;
see Peixoto et al. 2014), and thus vary less as geographical extents become restricted. Second,
regions with a history of climatic instability should have constrained the dispersal and colonization
dynamics of climate-sensitive species [hypothesis H2; Eiserhardt et al. (2015); Hortal et al. (2011);
Normand et al. (2011); Svenning et al. (2015)]. Given this process, we predicted an increase in
phylogenetic clustering in regions where climate has remained more stable during recent geological
times [i.e., the regions where the climate remained stable in relationship to the Last Glacial Maxi-
mum (LGM)]. Given that climatic legacies are thought to drive and leave signatures in community
assembly and composition patterns from large to small geographical scales (Ricklefs 1987; Warren
et al. 2014; Pollock et al. 2015; Delgado-Baquerizo et al. 2018), we expected to observe these ef-
fects on community phylogenetic relatedness across varying geographical scales. Finally, because
variation in regional historical, geographical and environmental conditions influences community
assembly through changes in both in situ speciation and extinction rates [hypothesis H3; Cardillo
et al. (2008); Emerson & Gillespie (2008)], we predicted that increased in situ net diversification
rates should foster communities with greater phylogenetic clustering independent of geographical
extent (or geographical scale) restriction.
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Table 2.1: Biogeographical hypotheses and related predictions for the phylogenetic structure of bat communities across geograph-
ical extents (spatial scales).

Spatial scale Hypothesis Predictions References Representation

Broader to
local

H1: Strong dispersal
barriers between
regions limit dispersal
and lead to
within-region
diversification

1.1 Co-occurring species in bat
communities should be more
phylogenetically related at
broader geographical scales
(e.g., hemispheric extent
vs. realm extent). These
communities should become
less phylogenetically structured
when restricting the
geographical extent of the
regions encompassing species
that could have colonized these
communities historically

Kissling et al.
(2012), Crisp et
al. (2012),
Peixoto et al.
(2014)
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Spatial scale Hypothesis Predictions References Representation

1.2 Owing to the high vagility
of bats, biogeographical realms
that have been isolated recently
or that are connected through
islands should have fewer
striking differences in their
phylogenetic structure, and thus
be less sensitive to variation in
geographical extent
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Spatial scale Hypothesis Predictions References Representation

Broader to
local

H2: Climatic
disturbances during
glaciation cycles
exclude species and
limit the dispersal and
the colonization
dynamics of clades

2.1 Bat communities located in
climatically stable regions (here,
the difference between the
contemporary period and the
Last Glacial Maximum) should
be more phylogenetically
related than in regions that
underwent large fluctuations in
the climate during geological
epochs across geographical
scales

Svenning et al.
(2015),
Eiserhardt et al.
(2015), Kissling
et al. (2012)
Normand et al.
(2011)
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Spatial scale Hypothesis Predictions References Representation

Broader to
local

H3: Historical,
geographical and
environmental factors
drive community
assembly through
changes in
diversification rates

3.1 Increased in situ
diversification rates create
clusters of closely related
species, leading to high levels of
phylogenetic clustering
independent of geographical
scale

Emerson and
Gillespie (2008)
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To test these hypotheses, we devised a framework that explicitly integrates phylogenetic commu-
nity relatedness across a hierarchically restrictive gradient of geographical extents based on bio-
geographically relevant regional separations. We then quantified rates of palaeoclimatic stability
and local net diversification and estimated the effects of long-term isolation, relating these to the
present-day phylogenetic structure of bat communities across geographical extents. This approach
can be extended to tackle more specific hypotheses about the historical legacies on current pat-
terns (phylogenetic or not) of species assemblages. Our results provide strong evidence for the
predictions underlying these three hypotheses, highlighting strong effects of scale dependence, ge-
ographical extent and isolation, recent glacial-interglacial climatic oscillations and diversification
in the phylogenetic structure of contemporary bat communities.

2.3 Methods

2.3.1 Study area: Restricting geographical extents from larger to smaller scales

To estimate the influence of spatial scale dependence in the phylogenetic structure of bat communi-
ties, we applied a framework that computed and compared the phylogenetic relatedness of ecolog-
ical communities relative to a gradient of hierarchically restrictive geographical extents (or spatial
extents): global, east–west hemispherical (New World and Old World), biogeographical realms
[Palaearctic, Indo-Malaya, Afrotropics, Australasia, Nearctic and Neotropics; Olson et al. (2001)],
tectonic plates [14 large plates; Bird (2003)], within-realm biomes [14 biomes; Olson & Dinerstein
(1998)] and within-realm terrestrial ecoregional scales [867 ecoregions; Olson et al. (2001)].

We used the species found within each geographical extent for estimating standardized effect sizes
of phylogenetic relatedness within any given local community in relationship to that in the region
delimited in that extent. The geographical extents we adopted have often been used while study-
ing the causes underlying spatial scale dependence in the structure of ecological communities (e.g.,
Kissling et al. 2012; Thuiller et al. 2020). Each of these discrete separations is known to be re-
lated to eco-evolutionary mechanisms that regionalize flora and fauna and underlie their diversity
patterns (Ricklefs & Latham 1992; Jenkins & Ricklefs 2011; Mazel et al. 2017; Smith et al. 2018,
2020). Moreover, the hierarchical nature of this set of biogeographical separations allows infer-
ence concerning the ecological and evolutionary mechanisms driving the phylogenetic structure
of bat communities across geographical scales. These mechanisms and their effects range from
clade origin and species responses to long-term dispersal barriers (such as tectonics and realm or
continental isolation). They also include changes to regional colonization and diversification dy-
namics owing to climate change, and biotic regionalization that biomes and their nested ecoregions
promote through their geographically segregated climatic domains and vegetational types, all con-
tributing to variation in the geographical distribution of species and clades (e.g., Cox 2000; Peixoto
et al. 2014; Descombes et al. 2017; Mazel et al. 2017; Smith et al. 2018, 2020) (see Table 2.1).

2.3.2 Species geographical ranges

We compiled species distributional data of bat assemblages from expert-drawn maps of the Interna-
tional Union for Conservation of Nature (IUCN) database (IUCN 2019). We overlaid these species
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distributions on a spatial polygon equal-area projection grid of 50 km × 50 km cells (c. 0.5° × 0.5°
along the Equator line) and converted them into site-per-species incidence matrices.z As in other
studies, we referred to the species within these cells as “local communities”. Species ranges had
to cover ≥50% of a given cell to be considered present. The spatial grain (2500 km2) we chose
has been shown to distinguish between local communities and to be sensitive to the scale of biodi-
versity patterns emerging from bionomic and biogeographical determinants relevant to our study
(Whittaker et al. 2001; Ricklefs 2004; Barton et al. 2013; Loiseau et al. 2020).

2.3.3 Phylogenetic relationships and divergence time data

We used the recent time-calibrated phylogenetic hypothesis for all 5020 extant and late Quater-
nary extinct mammals by Faurby and Svenning (2015) to extract bat evolutionary relationships. To
avoid polytomies and negative branch lengths, we computed an ultrametric maximum clade credi-
bility (MCC) tree from the 1000 posterior distributions of the mammal trees. We then pruned the
phylogenetic tree to match our species distributions dataset, ending up with 954 bat species.

To account for phylogenetic uncertainty, we repeated the analyses of our study on 100 randomly
sampled trees from the posterior distribution of phylogenetic trees from Faurby and Svenning
(2015) and compared the results with the ones obtained from the MCC tree. These comparisons
yielded very similar results, supporting the robustness of our inferences to the uncertainty of phy-
logenetic trees (Supporting Information in Section 2.10, Figure 2.14, Figure 2.15, Figure 2.16,
Figure 2.17).

2.3.4 Phylogenetic community structure

We quantified the phylogenetic community structure of bat communities by calculating the net
relatedness index (NRI) and the nearest taxon index (NTI) for each community across each geo-
graphical extent (Webb 2000; Webb et al. 2002). The NRI represents the overall phylogenetic
structure of communities using mean pairwise phylogenetic distances (MPDs) among all taxa per-
sisting in each community, whereas the NTI is based on the mean nearest-taxon distances (MNTDs)
among co-occurring taxa. Given that the latter is more sensitive to the community structure driven
by phylogenetic tips [i.e., reflecting more recent processes; Webb et al. (2002)], the combined use
of NRI and NTI can inform about community structuring mechanisms working across different
phylogenetic scales (Cavender-Bares et al. 2009; Graham et al. 2018). To assess how phylo-
genetic community structure changed as a function of geographical extent restriction, we applied
null models to estimate standardized effect sizes for both metrics (MPDSES and MNTDSES, respec-
tively) (Kembel et al. 2010). Each null model simulated random assemblages by permuting species
names across the phylogeny tips 999 times within each geographical extent (i.e., the spatial extent
from which species were sampled to compose random assemblages): global (all species in the phy-
logeny); east-west hemispherical (also referred as Old World and New World); biogeographical
realms; tectonic plates; within-realm biomes; and within-realm terrestrial ecoregion scales. The
NRI and NTI were obtained by multiplying MPDSES and MNTDSES, respectively, by minus one.
Larger values of NTI and NRI indicate that MPDSES and MNTDSES are lower than expected for its
spatial extent, hence that local communities are composed of species more phylogenetically similar
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(or clustered) than what would be expected from random assemblages. Conversely, negative NTI
and NRI values indicate phylogenetic evenness.

The magnitude of standardized effect sizes of indices for phylogenetic community structure can in-
crease artificially as a function of the geographical or phylogenetic extents (because of the greater
number of species in larger biogeographical regions) used to estimate the null distributions under-
lying community phylogenetic metrics (Sandel 2018). We assessed whether our results held after
adjusting for this potential bias by repeated random subsampling (rarefying) of any given local com-
munity matrix to have the same number of species as the immediately inferior nested geographical
extent. Community phylogenetic indices for any given local community were then estimated as the
average indices across subsamples. We reproduced all figures (with the exception of Figure 2.1)
and analyses from our study using the rarefied NRI and NTI indices (Supporting Information in
Section 2.8, Figure 2.7, Figure 2.8, Figure 2.9, Figure 2.10), and they all had patterns similar to
those depicted in the figures using the original (unrarefied) values (Figure 2.2, Figure 2.3, Fig-
ure 2.4, Figure 2.5). For the purposes of simplification and to avoid any small but potential loss of
information introduced by the rarefaction procedure, we use the original values for NRI and NTI
in the main study.

2.3.5 Measurement of historical climatic stability

To represent the effects of climatic legacies on the phylogenetic community structure of bats, we
compiled global bioclimatic variables for temperature and precipitation from the contemporary
period [yearly averages between 1960 and 1990; Karger et al. (2017)] and the LGM period [i.e.,
c. 22,000 years ago; PaleoClim; Brown et al. (2018)]. These bioclimatic variables were projected
and aggregated (by calculating the average of all pixels occurring in each cell) to fit the 50 km ×
50 km equal-area grid cells.

To assess the influence of historical changes in climate on the present-day phylogenetic assem-
blage structure of bats, we calculated two indices of climatic stability, based on temperature
and precipitation, by subtracting values for mean annual temperature (MAT) and mean annual
precipitation (MAP) in the contemporary period from those of the LGM for each site (i.e.,
MATcontemporary−MATLGM and MAPcontemporary−MAPLGM), respectively. Our approach to mea-
surement of climatic stability is based on the differences in two temporally distant snapshots
and could potentially not directly represent the climatic variability in between the LGM and the
contemporary period. Nevertheless, although climatic anomalies (such as rapid cooling or rapid
warming events) happened across varying temporal and spatial scales (e.g., Goslar et al. 2000;
Hemming 2004), climatic changes during the last ~20,000 years have been demonstrated to have
a coarsely linear unidirectional nature, and our approach for measuring historical climatic stability
has been shown to be correlated strongly with the rates of change in climate at time-scales of
thousands of years (see Delgado-Baquerizo et al. 2017).

To provide an additional metric for historical climatic stability, we also calculated gradient-based
change velocities in temperature and in precipitation from the LGM to the contemporary period and
assessed how they influenced the phylogenetic relatedness of bat communities across geographical
scales (Supporting Information in Section 2.9).
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2.3.6 Average community-weighted estimates of diversification rates

To assess the relationship between community phylogenetic structure and local net diversification
rates, we estimated speciation and extinction rates using Bayesian analyses of macroevolutionary
mixtures [BAMM; Rabosky (2014); Rabosky et al. (2013)], which accommodates heterogeneous
mixtures of evolutionary speciation and extinction rates. BAMM has been demonstrated to provide
more robust, less biased estimates for net diversification rates under incomplete taxon sampling
(Sun et al. 2020) and offers an advantage over constant-rate models by allowing extinction to be
higher than speciation, allowing for complex patterns of discrete shifts and among-clade variation
in speciation and extinction rates (Rabosky 2014).

Combining the estimated species-level speciation and extinction rates and the community species
occurrencematrix, we computed community-weightedmeans on the weighted, standardized specia-
tion and extinction tip rates (as in the study by Peres-Neto et al. 2017). Weights were computedwith
respect to both species richness per community and the total number of occurrences per species. As
such, we restricted the contribution of both geographically widespread taxa and diverse sites when
estimating community means. Finally, we calculated local net diversification rates for each bat
community by subtracting both community-weighted speciation and extinction means (for further
details, see Supporting Information in Section 2.6).

2.3.7 Statistical analyses

When performing the statistical analyses for our study, we started by applying general and gener-
alized linear and linear mixed-effects models to test our predictions and hypotheses and inspected
their residuals and the data for violations of any underlying parametric assumption (on both raw
and ln-transformed data). Whenever these assumptions were violated, we tested our hypothesis
using alternative non-parametric and robust statistical methods, which are specified below.

2.3.7.1 Effects of spatial extent restriction on phylogenetic community structure (H1)

To test the effects of geographical extent restriction on bat phylogenetic community structure (H1),
we performed separate robust heteroscedastic repeated-measurement ANOVAs based on 20%
trimmed means (Wilcox 2012b). This non-parametric method is designed to handle violations
of the assumption of sphericity (as found in the parametric versions using standard repeated
measures) associated with standard parametric tests (Wilcox 1993; Wilcox et al. 2000; Wilcox
2012a). To account for regional effects when testing the predictions of this hypothesis, we repeated
our tests for each biogeographical realm. For each realm, we estimated whether the NRI and
NTI (response variables, in separate analyses) of bat communities (block levels; random effects)
differed across our discrete gradient of geographical extents (group levels; fixed effects). Finally,
we performed post-hoc comparisons using Hochberg’s approach to control for family-wise type I
error (Hochberg 1988; Wilcox 2012b) (see Supporting Information in Section 2.7, Table 2.6).

We also supplemented the analyses for the prediction that broader geographical extents are asso-
ciated with phylogenetically related bat communities (H1) with combined probability tests. For
this, to focus on the evidence of phylogenetically clustered communities, we first replaced the p-
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values for the indices of phylogenetic relatedness in phylogenetically overdispersed communities
(NRI and NTI less than zero) by their complement (i.e., subtracting the p-value from one). Then,
separately for NRI and NTI and for each biogeographical realm, we applied Stouffer’s probability
combination tests (Stouffer et al. 1949), whereby we subset the p-values of the independent null
models performed at each geographical extent and divided them by the square root of the number
of null models we performed (communities). Among other probability combination approaches,
Stouffer’s meta-analytical method has been shown to have high power, precision and type I error
control rates (Rice 1990; Whitlock 2005). The resulting combined probabilities that were <.05
were then used as evidence for phylogenetic clustering in bat communities to that geographical
extent (see Figure 2.2; Supporting Information in Section 2.7, Table 2.3).

2.3.7.2 Effects of historical climatic stability and in situ diversification rates on phylogenetic
community structure (H2 and H3)

We used two complementary approaches (one descriptive and the other inferential) to assess the
predictions that phylogenetically clustered communities are more frequent in historically climati-
cally stable regions (H2) and that increased in situ diversification rates generate regional clusters
of closely related species (H3).

To describe how phylogenetic relatedness of bat communities (for both NRI and NTI) changed
as a function of historical change in temperature, historical change in precipitation and in situ net
diversification rates, we plotted the mean phylogenetic relatedness of bat communities (for both
NRI and NTI) across each percentile (100 quantiles) of the predictor variables of interest (i.e.,
historical change in temperature, historical change in precipitation and in situ net diversification
rates; see Figure 2.3, Figure 2.4). This representation allowed us to describe how phylogenetic
structure varies as a response to the predictors of interest.

To test hypotheses H2 and H3 inferentially, we tested explicitly how changes in historical climatic
stability and in situ diversification rates independently increased (or decreased) the likelihood of
a community being composed of species with a high degree of phylogenetic relatedness. For this,
we used two upper conditional proportional percentiles of community phylogenetic relatedness,
the 90th and the 75th percentiles, as thresholds to consider whether a community exhibited a high
degree of phylogenetic relatedness. These values were chosen somewhat arbitrarily; however, se-
lection of these percentiles allowed us to focus on the effects of historical climatic stability and
local net diversification affecting long-term persistence of species, and thus influencing communi-
ties exhibiting a high degree of phylogenetic relatedness. We started by attributing a value of one
to a community if its phylogenetic structure (either NRI or NTI) was greater than its upper condi-
tional quantile (either the 90th or the 75th percentile) across all communities. If smaller, a value
of zero was assigned instead. Based on this classification (of whether the community exhibited a
high degree of phylogenetic relatedness or not), we then applied conditionally unbiased, bounded
influence robust logistic regressions [i.e., robust to reduce the influence of potential outliers; see
Kunsch et al. (1989)], in which the response variable was the vector of binary outcomes (ones and
zeros) representing relatively high or low phylogenetic structure (separately for NRI and NTI) and
the predictors were z-score standardized values (i.e., to have a mean of zero and variance of one)
of historical change in temperature, historical change in precipitation and in situ net diversification
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rates. As such, we were able to estimate the relative importance of each predictor. To estimate
confidence intervals for each predictor, we took a bootstrap approach based on 1000 resamples of
2500 random communities each. These logistic regressions allowed us to describe how changes
in historical climatic stability and in situ diversification rates independently affected the log-odds
(the logistic response) of a community exhibiting a high degree of phylogenetic relatedness.

We repeated these analyses for each geographical extent to assess whether the influence of historical
changes in temperature and precipitation and in situ net diversification rates on the phylogenetic
structure of bat communities was consistent across spatial scales. For simplicity, we report the
figures containing the bootstrapping partial coefficients for the 90th percentile (i.e., communities
with bat species exhibiting a high degree of phylogenetic relatedness) in the main manuscript (see
Figure 2.5; Table 2.2) and include the results from the 75th percentile in the Supporting Information
(Section 2.12, Figure 2.19; Table 2.9). We also applied the same analyses when assessing the
robustness of our results across the size of spatial extents (Supporting Information in Section 2.8)),
to phylogenetic uncertainty (Supporting Information in Section 2.10) andwhen assessing the effects
of temperature and precipitation change velocities since the LGM on the phylogenetic relatedness
of bat communities (Supporting Information in Section 2.9).

2.3.8 Computational tools

All data manipulation and analyses were performed in R and RStudio (R Core Team 2021; RStudio
Team 2021). The data and code necessary to reproduce the analyses and figures, BAMMset-up files
and information on tools used in this manuscript are available in the Supporting Information (Tools)
and within the Open Science Framework (accessible at osf.io/amvp5) and the Dryad (accessible at
10.5061/dryad.rjdfn2zgj) repositories for this study.

2.4 Results

2.4.1 Geographical extent restriction determines bat phylogenetic community
structure (H1)

Limiting the geographical extent from larger to smaller scales (in a hierarchical fashion) signifi-
cantly affected the phylogenetic structure of bat communities, at different extents, for both NRI and
NTI (Figure 2.1, Figure 2.2; Supporting Information in Section 2.7), Table 2.3, Table 2.4; Figure 2.6
and Figure 2.18). The NRI decreased with the restriction of geographical extents in the Neotropi-
cal, Nearctic and Australasian regions, and NTI consistently decreased with the geographical extent
across all biogeographical realms, revealing distinctions between deep time and more recent effects
of spatial and environmental isolation and within-region diversification on the phylogenetic com-
munity structure of bats (hypothesis H1). The Afrotropical, Indomalayan and Palaearctic realms
had local assemblages with an overall phylogenetic structure (NRI) independent of the size of the
geographical extent but had their tip-level phylogenetic structure (NTI) decreasing with geographi-
cal extent restriction (Figure 2.2; Section 2.7, Table 2.4; Figure 2.6 and Figure 2.18). A contrasting
pattern to the invariance or to the decrease in phylogenetic relatedness with geographical extent ap-
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peared in the Nearctic realm, where NRI values increased when restricting the geographical scale
from the hemispheric to the realm extent (Figure 2.2).
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Figure 2.1: The geographical distribution of the phylogenetic structure of bat assemblages,
measured through the net relatedness index (NRI; left) and the nearest taxon in-
dex (NTI; right), across a gradient of geographical (or spatial) extent restrictions
(seeMethods). Geographical extents were restricted for (from top to bottom) the global,
east–west hemispheric, biogeographical realm, tectonic plate, within-realm biome and
ecoregional extents. Bat communities with positive values of NRI and NTI (red) indi-
cate that co-occurring species in these communities are more phylogenetically related
in relationship to a given geographical extent. On the contrary, negative values of NRI
and NTI (in blue) indicate that bat communities are composed mainly of less phyloge-
netically related species in relationship to that given geographical extent.
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Figure 2.2: Realm comparison of the phylogenetic structure of bat assemblages, measured through (a) the net relatedness index
(NRI) and (b) the nearest taxon index (NTI), across a gradient of geographical extent restrictions (see Methods). Ge-
ographical extents were restricted for the global, east–west hemispheres (New World versus Old World), biogeographical
realms, tectonic plates, within-realm biomes and ecoregions. Positive values of NRI and NTI indicate that co-occurring
species in bat communities are phylogenetically related in relationship to a given geographical extent, whereas negative val-
ues of NRI and NTI are indicative of phylogenetic evenness in relationship to that geographical extent. Boxes represent
interquartile ranges, with the upper edge representing the 75th percentile, the middle line the median, and the lower edge the
25th percentile. Upper and lower whiskers represent values 1.5 times above and below the interquartile range, respectively.
Black-filled circles represent outliers. Dotted horizontal lines represent the confidence interval (at 95% or ±1.96 units) for
community phylogenetic structure. Within-realm geographical extents found to be significantly composed of phylogeneti-
cally related bat communities (with p < .01 in Stouffer’s combined probability tests) are annotated with asterisks. Statistical
tests and post-hoc comparisons for the differences between within-realm spatial extent restriction groups are displayed in the
Supporting Information (Table S2).
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2.4.2 Strong palaeoclimatic legacies restrict bat phylogenetic community
structure across geographical extents (H2)

Historical changes in both temperature and precipitation had strong and independent influences on
the phylogenetic structure of bat communities (see Figure 2.3, Figure 2.4, Figure 2.5; Table 2.2).
The relationship between historical change in climate (in temperature and in precipitation) and the
phylogenetic relatedness of bat communities was highly nonlinear and spatial scale dependent (i.e.,
it varied across geographical extents).

Historical stability in precipitation was consistently associated with increased phylogenetic related-
ness in bat communities across all geographical extents, for both shallow (NTI) and overall (NRI)
phylogenetic structures (Figure 2.3, Figure 2.4, Figure 2.5). The probability of a local community
being composed of species with relatively high phylogenetic relatedness (i.e., those belonging to
the 90th percentile of phylogenetic relatedness) increased with historical precipitation (Figure 2.5;
Table 2.2), regardless of geographical extent.

The effects of historical stability in temperature on bat community phylogenetic relatedness varied
strongly across geographical extents. At the global extent, bat communities located in regions that
were much colder in relationship to the contemporary period showed a general lack of phylogenetic
clustering (Figure 2.3, Figure 2.4). At this geographical extent, the probability of a local community
being composed of species with relatively high phylogenetic relatedness increased with historical
precipitation (see Figure 2.5; Table 2.2). However, in all other geographical extents, phylogenetic
structure weakened as a function of historical stability in temperature (see Figure 2.5; Table 2.2).
Climate change velocities had, in general, qualitatively similar effects to their corresponding mea-
sures of historical change in climate on the phylogenetic relatedness of bat communities across
geographical scales (Supporting Information in Section 2.9, Figure 2.11, Figure 2.12, Figure 2.13;
Table 2.7).

These strong effects of palaeoclimatic legacies on the phylogenetic relatedness of bat communities
support our prediction that regional communities located in palaeoclimatically stable regions con-
tain more phylogenetically clustered assemblages than regions that underwent large fluctuations in
climate between geological periods (hypothesis H2), but the magnitude of effects depended on the
variable and on the geographical scale.

2.4.3 In situ net diversification increases phylogenetic clustering in bat
communities (H3)

In situ net diversification strongly drove the contemporary phylogenetic structure of world-wide
bat communities across all geographical extents (Figure 2.3, Figure 2.4, Figure 2.5; Table 2.2). The
average values of NRI and NTI generally increased across the percentiles of community-weighted
means of local net diversification rates in bat communities (Figure 2.3, Figure 2.4). In bat com-
munities exhibiting high phylogenetic relatedness (at the 90th percentile), increases in community-
weighted means of local net diversification rates were always associated with increases in NRI
and NTI, independently from historical changes in temperature and in precipitation (Figure 2.5;
Table 2.2). Taken together, these results corroborate the expectation that increased local diversifi-
cation rates lead to more phylogenetically clustered communities (hypothesis H3).
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Figure 2.3 (preceding page): Average net relatedness index (NRI) of bat communities across
percentiles of historical change in temperature, historical change
in precipitation and in situ net diversification rates across geo-
graphical extents. In situ net diversification rates were obtained
from the differences between community-weighted means weight
standardized for speciation (λ) and extinction (μ) rates. Palaeocli-
matic legacies for each bat community were obtained as the histor-
ical change in climate since the last glacial maximum (LGM); specif-
ically, the mean annual temperature (MAT) or logarithm of the mean
annual precipitation (MAP) from the contemporary period minus the
estimated mean annual temperature or logarithm of the mean annual
precipitation from 22,000 years ago. Vertical bars on points represent
the mean ± 1.96 times the SE for the percentile of NRI. Dotted hori-
zontal lines represent the confidence interval (at 95% or ±1.96 units)
of NRI.
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Figure 2.4 (preceding page): Average nearest taxon index (NTI) of bat communities across the
percentiles of historical change in temperature, historical change
in precipitation and in situ net diversification rates across geo-
graphical extents. In situ net diversification rates were obtained
by subtracting the difference between community-weighted means
weight standardized for speciation (λ) and extinction (μ) rates. Palaeo-
climatic legacies for each bat community were obtained as the histori-
cal change in climate since the Last Glacial Maximum (LGM); specif-
ically, the mean annual temperature (MAT) or logarithm of the mean
annual precipitation (MAP) from the contemporary period minus the
estimated mean annual temperature or logarithm of the mean annual
precipitation from 22,000 years ago. Vertical bars on points represent
the mean ± 1.96 times the SE for the percentile of NTI. Dotted hori-
zontal lines represent the confidence interval (at 95% or ±1.96 units)
of NTI.
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Figure 2.5: Influence of historical legacies on phylogenetic structure of bats across different geographical extents. Distributions
represent boxplots of bootstrapped logistic regression coefficients using binary outcomes (at the 90th percentile) for the in-
dices of phylogenetic community relatedness [Pr (NRIQ 90=1) and Pr (NTIQ 90=1)] as response variables (in separate models)
and the z-score standardized (with values transformed to have a mean of zero and one-unit variance) historical change in
temperature, historical change in precipitation and in situ net diversification rates as predictive variables. The phylogenetic
structure of bat communities was measured through the net relatedness index (NRI) and the nearest taxon index (NTI) at
each geographical extent. In situ net diversification rates were obtained by subtracting the difference between community-
weighted means weight standardized for speciation and extinction rates. Palaeoclimatic legacies for each bat community
were obtained as the historical change in climate since the Last Glacial Maximum (LGM); specifically, the mean annual
temperature or logarithm of the mean annual precipitation from the contemporary period minus the estimated mean annual
temperature or logarithm of the mean annual precipitation from 22,000 years ago.
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2.5 Discussion

Our results provide evidence that geographical scales, palaeoclimatic legacies and variation in the
in situ diversification rates contributed differently to the phylogenetic structure of bat communities
world-wide. The framework we present here should be useful while studying any taxa, regardless
of their geographical distribution and not only for the case of the widely distributed bats.

2.5.1 Effects of geographical extent restriction on phylogenetic community
structure (H1)

The general tendency for co-occurring bats in local assemblages to be less evolutionarily related
when restricting geographical extents revealed the existence of strong effects of long-term spatial
and environmental isolation and within-region diversification in the assembly of bat communities
(hypothesis H1). How phylogenetic community structure responded to the gradient in geographical
extent restriction varied between bothmetrics (NRI andNTI) and across different realms (Figure 2.1
and Figure 2.2; Supporting Information in Section 2.7, Table 2.3). As discussed next, this variation
suggests that realms vary historically either in the challenges and opportunities they provided for
immigration or in the lack of time for dispersal to overcome historically challenging geographical
and environmental barriers (Losos & Glor 2003; Svenning & Skov 2004).

The incongruency in the phylogenetic structuring patterns among the New World and Old World
adjacent realms (Figure 2.2) indicates the role of distinctive historical evolutionary processes in
the regional formation of assemblages. Primarily, the separation between the Old World and New
World is a strong longitudinal barrier for dispersal in many taxa [including bats; Procheş (2006)]
and has been associated with differences in biogeographical histories and contemporary diversity
patterns (Davies & Buckley 2012; Peixoto et al. 2014). Moreover, despite the existence of geo-
logical and historical climatic barriers between the adjacent Old World realms [i.e., the Himalayan
chain, and the African and Arabian deserts; Edgell (2006); Matthews et al. (2016); Zhang et al.
(2014)], the increased vagility to overcome barriers through flight probably allowed for continuous
historical dispersal and establishment of major bat lineages among these regions, contributing to
the decreased and less differentiated broader phylogenetic structure of bat communities (Procheş
& Ramdhani 2013; see Gerhold et al. 2015).

Nearctic bat assemblages are more phylogenetically clustered in relationship to the hemispheric,
realm and plate spatial extents. However, this was not the case for Neotropical bat communities
(Figure 2.2). The absence of phylogenetically structured Neotropical bat assemblages (in relation-
ship to the New World geographical scale) is aligned with the lack of dispersal limitation, whereas
the predominance of phylogenetically structured Nearctic bat assemblages highlights the existence
of distinct biogeographical mechanisms allowing for more structured assemblages in relationship to
the Neotropics. The existence of long-term geological barriers for southward (or even bidirectional)
cross-realm sustained dispersal of NewWorld bat clades has been disputed (Arita et al. 2014; Rojas
et al. 2016; Alroy 2019). First, Palaeogene fossils of noctilionoid, molossid and emballonurid bats
found in the Nearctic support the case that bats were not greatly affected by the historical isolation
between North and South America before the rise of the isthmus of Panama (c. 3 Ma) and the
Great American Biotic Interchange (Procheş 2006; López-Aguirre et al. 2018). Second, Nearctic
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and Neotropical bat species pools present low phylogenetic turnover rates (Peixoto et al. 2014).
The distinctive phylogenetic structure patterns of Nearctic bat communities could be explained by
the combination of the following factors: (1) the predominance of basal lineages in the Nearctic
realm and more derived bat lineages in the Neotropics (Ramos Pereira & Palmeirim 2013); (2) mul-
tiple diversification events in the bat evolutionary history across both realms (Arita et al. 2014);
and (3) the evolutionary conservatism of climatic preferences among bat clades occurring in the
Nearctic (Peixoto et al. 2017).

2.5.2 Palaeoclimatic stability shapes phylogenetic community structure (H2)

Palaeoclimatic changes driven by glacial–interglacial transitions from warm to cold phases are
expected to decrease the phylogenetic relatedness of biological communities through changes in
colonization and diversification dynamics (e.g., Dynesius & Jansson 2000; Normand et al. 2011;
Kissling et al. 2012; Eiserhardt et al. 2015; Xu et al. 2020). Palaeoclimatically stable regions,
on the contrary, are thought to enable the long-term persistence and accumulation of species and
thus allow for increased phylogenetic relatedness (Svenning & Skov 2007). We show that since
the LGM, historical stability in both temperature and precipitation has had strong and independent
influences on the present-day phylogenetic structure of bat communities. Importantly, our study
reveals that these effects of palaeoclimatic stability on bat communities can exhibit high spatial
scale dependence.

On the one hand, historical stability in precipitation had the clearest and most consistent effects on
the phylogenetic relatedness of bat communities, whereby it strongly favoured phylogenetic clus-
tering (especially in the gradient of the most phylogenetically related communities), regardless of
geographical extent (Figure 2.3, Figure 2.4, Figure 2.5; Table 2.2). The strong effect of precipi-
tation stability is consistent with previous observations for higher intraspecific genetic diversity,
phylogenetic diversity, taxonomic diversity and phylogenetic relatedness across spatial scales and
spatial extents in a broad range of taxa, such as plants, terrestrial mammals and bats (e.g., Rowan et
al. 2020; Theodoridis et al. 2020). Bats are sensitive to precipitation levels, with drought causing
direct water balance stress and physiological stress and changing their energy costs and phenology
(Adams 2010; Frick et al. 2012; Geipel et al. 2019; Piccioli Cappelli et al. 2021). Indirectly,
drought can also modulate bat feeding resources [i.e., by changing the abundance or flight activ-
ity of insects or the distribution of angiosperms, and thus their availability to bats; Anthony et al.
(1981); Bush et al. (2004)], and therefore, presumably, cause variation in trophic guilds to adapt
to changing conditions (Voigt et al. 2011; Stevens 2013; Pettit & O’Keefe 2017).

On the other hand, temperature stability since the LGM was associated with strong increases in
phylogenetic relatedness, but only at the broadest, global geographical extent. These effects we ob-
served in bats coincide with similar effects of recent climatic cooling found in many taxa, including
beetles (Calatayud et al. 2019), vascular plants (Mienna et al. 2020) and angiosperms (Ma et al.
2016). Interestingly, at the more restrictive geographical extents, historical stability in temperature
was even associated with marginal decreases in the phylogenetic relatedness of bat communities.
Multiple factors can explain the decreased phylogenetic clustering in bats observed in regions with a
historically stable climate, and at the more restrictive geographical scales, such as with the presence
of old lineages, lags in niche filling and recolonization dynamics, recent diversification pulses sus-
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tained by the long-term stability, within-clade competition and increased regional extinction rates
(Gerhold et al. 2015; Svenning et al. 2015). For instance, at the global geographical scale, clades
could have been selected in relationship to historical temperature changes, but at more restrictive,
smaller geographical scales, community-wide adaptive responses to palaeoclimate change could
have been more phylogenetically widespread, favouring the long-term establishment and diversifi-
cation of well-adapted related taxa (Maguire et al. 2016; Carstens et al. 2018; Williams & Blois
2018). Moreover, these effects could also have been buffered by the adaptation of bats to other
feeding resources, glacial refugia and postglacial colonization dynamics and/or hindered by rela-
tively increased influence of historical changes in temperature in the phylogenetic structuring of
bat assemblages.
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Table 2.2: Influence of climatic legacies and in situ diversification rates on the phylogenetic structure of bat communities across
different geographical extents

Response Predictor Global
sampling

Hemispheric
sampling

Realm
sampling

Plate
sampling

Biome
sampling

Ecoregion
sampling

Intercept
-3.45 (-3.69;
-3.20)

-2.63 (-2.83;
-2.43)

-3.60 (-3.89;
-3.32)

-3.34 (-3.60;
-3.09)

-2.67 (-2.87;
-2.46)

-2.56 (-2.75;
-2.37)

Historical change in
temperature

1.05 (0.56;
1.55)

-0.40 (-0.51;
-0.30)

-1.61 (-1.85;
-1.37)

-1.57 (-1.80;
-1.33)

-0.63 (-0.75;
-0.52)

-0.33 (-0.45;
-0.21)

Historical change in
precipitation

1.10 (0.80;
1.40)

0.76 (0.53;
0.99)

2.48 (2.13;
2.83)

2.28 (1.93;
2.63)

1.12 (0.86;
1.37)

0.39 (0.14;
0.64)

Pr(NRI(Q90) = 1)

In situ diversification rates
1.33 (1.19;
1.46)

0.93 (0.73;
1.13)

0.97 (0.75;
1.19)

0.65 (0.50;
0.81)

0.73 (0.51;
0.96)

0.92 (0.72;
1.12)

Intercept
-4.20 (-4.60;
-3.80)

-2.48 (-2.66;
-2.30)

-2.52 (-2.69;
-2.34)

-2.70 (-2.87;
-2.52)

-2.42 (-2.58;
-2.26)

-2.29 (-2.43;
-2.14)

Historical change in
temperature

2.72 (2.00;
3.44)

-0.02 (-0.18;
0.14)

-0.61 (-0.72;
-0.49)

-0.95 (-1.12;
-0.78)

-0.49 (-0.60;
-0.37)

-0.07 (-0.21;
0.07)

Historical change in
precipitation

0.90 (0.55;
1.25)

0.89 (0.69;
1.09)

1.10 (0.85;
1.34)

1.48 (1.20;
1.77)

1.07 (0.87;
1.27)

0.54 (0.36;
0.72)

Pr(NTI(Q90) = 1)

In situ diversification rates
1.30 (1.16;
1.44)

0.44 (0.27;
0.60)

0.29 (0.13;
0.45)

0.21 (0.06;
0.36)

0.11 (-0.03;
0.25)

0.20 (0.02;
0.38)
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Overall, the patterns we observed support our prediction that climatically stable regions should
harbour more phylogenetically clustered assemblages than regions that have undergone large cli-
matic fluctuations during geological times (hypothesis H2). These findings are consistent with the
increasing evidence of glacial extinction dynamics and postglacial colonization lags in bats and in
the main woodland taxa that provide them with foraging and roosting habitats [McLachlan et al.
(2005); Rebelo et al. (2012). However, the importance of climatic legacies to the phylogenetic
structure of bat assemblages was not uniform and varied across spatial scales, being in accordance
with previous research affirming the role of large-scale palaeoclimatic legacies in driving both
local-scale community patterns and assembly processes (see Svenning et al. 2015).

2.5.3 Influence of in situ net diversification rates on phylogenetic community
structure (H3)

The increase in both deep (NRI) and shallow (NTI) scales of phylogenetic relatedness in bat assem-
blages with increasing quantiles of local net diversification rates (Figure 2.3, Figure 2.4, Figure 2.5),
regardless of spatial extent, is consistent with the expectation that biogeographical patterns of phy-
logenetic clustering are driven by spatial variation in net diversification rates (hypothesis H3). This
corroborates the well-known expectation that in situ net diversification is a fundamental compo-
nent of the phylogenetic structuring of biological communities (Emerson & Gillespie 2008). Al-
though support for this expectation is often inferred from heuristic associations between physical
and bioclimatic geographical characteristics and phylogenetic community structure metrics (Webb
et al. 2002), the direct association between in situ diversification rates and phylogenetic commu-
nity structure has rarely been addressed explicitly (but see Eme et al. 2020), especially in a scale-
dependent perspective. The extension of our reconstruction of net bat diversification rates across
a geographical context provides a way to disentangle their contribution to the formation of phylo-
genetic patterns in their communities, while avoiding the potential caveat with failing to estimate
variation in diversification rates from latent biogeographical drivers of speciation and extinction
rates alone.

2.5.4 General implications

There is broad interest in assessing the phylogenetic structure of ecological communities from local
to regional spatial scales and from ecological to evolutionary temporal scales (Emerson & Gille-
spie 2008; Cavender-Bares et al. 2009). In line with a more integrative approach, we related the
modern-day phylogenetic structure of bat assemblages to processes and mechanisms acting across
geographical and historical scales, as explained by geological barriers and the tectonic arrange-
ment of biogeographical regions, historical climatic stability and local diversification rates. We
showed widespread effects of geographical extents in driving the phylogenetic assembly of ecolog-
ical communities. However, the magnitude of these effects varied across different biogeographical
realms and evolutionary scales, invoking a complicated historically and geographically contingent
explanation for the assembly of bat communities. Future studies should investigate the extent to
which these spatial scale-dependent patterns could be associated with the different functional, eco-
logical adaptations and life-history strategies that bat clades possess. We add that during the post-
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glaciation period, colonization from refugia to colonizing regions might have been a major driving
force shaping the phylogenetic structure of communities in relationship to in situ diversification.
This highlights the role of recent historical events (such as the Quaternary ice age) rather than only
deep-time evolutionary processes in leaving strong imprints in the evolutionary structure of biolog-
ical communities. Further research should focus on estimating the time and location of ancestral
ranges across bat communities and the contribution of environmental constraints and of the conser-
vatism of environmental requirements to elucidate their contribution to the spatial structuring of bat
lineages during glacial–interglacial cycles. Finally, we also showed that local diversification rates
play a strong role in shaping assemblage structure. The integrative framework built in the present
study, which can be applied to other taxonomic groups, has proved useful not only to further our
knowledge about the evolutionary dynamics of species assemblages, but also to reveal the effects
of historical dispersal limitations and thus, potentially, solve well-known problems related to scale
dependence in community ecology and biogeography.

2.6 Supporting Information 1

2.6.1 Extended methods

2.6.1.1 Estimating species speciation and extinction rates and computing community-weighted
means to obtain in situ net diversification rates

The Bayesian analyses for macroevolutionary mixtures (BAMM) were performed on the time-
calibrated phylogenetic hypothesis containing the 953 bat-species available for this study. We
performed BAMM runs for 50 million generations using default Metropolis-coupledMarkov-chain
Monte Carlo operators and relevant shift, speciation and extinction rates priors estimated under a
pure birth model (Rabosky et al. 2014). Because BAMM has been criticized to be overly sensitive
to the prior on the number of shifts (Moore et al. 2016), we evaluated the effect of different priors
(1, 5 and 10) on the posterior distribution of the shifts, and ultimately did not find meaningful differ-
ences on the final results. We kept 1 prior expected shifts to facilitate model convergence (Mitchell
& Rabosky 2017). Because incomplete taxon sampling can bias estimations of diversification rates
(Pybus & Harvey 2000; Cusimano & Renner 2010), we accounted for missing taxa by incorporat-
ing genus-specific sampling fractions in the estimations (Table S2.3). We discarded the first 10% of
each run as ‘burn-in’ and tested the distribution for convergence by computing the effective sample
size in the number of evolutionary rate regimes. We then computed the mean of the marginal poste-
rior distribution of speciation and extinction rates for each tip in the phylogeny across all sampled
rate shift configurations, which were used to obtain community-weighted extinction and speciation
means (see Methods).

2.6.1.2 Tools

All data manipulation and analyses were performed in R and RStudio (R Core Team 2021; RStu-
dio Team 2021). Parallelized computations were done using snowfall and doSNOW (Knaus
2015; Corporation & Weston 2022). Geospatial manipulation was done using the sf, raster,
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terra, and exactextractr packages (Pebesma 2018; Hijmans 2021, 2022). Velocity of cli-
mate change, local spatial and long-term climatic gradients were calculated using the VoCC pack-
age (García Molinos et al. 2019). Phylogenetic manipulation and analyses were done using the
packages ape, picante, PhyloMeasures and phangorn (Kembel et al. 2010; Schliep
2011; Tsirogiannis & Sandel 2016, 2017; Paradis & Schliep 2019). Diversification rate estimation
and posterior manipulation were done using BAMM2.5.0 and theBAMMtools package (Rabosky
et al. 2014). Effective sizes and diagnostics for MCMC chains were performed using the coda
package (Plummer et al. 2006). Robust analyses of variance for repeated measurements were per-
formed using the WRS2 package (Mair & Wilcox 2020). Robust generalized linear models were
performed with the robust package (Wang et al. 2022). Quantile regressions were performed
using the quantreg package (Koenker 2021). General data manipulation was done with the
tidyverse package suite (Wickham et al. 2019). Figures were generated using the ggplot2
package (Wickham 2016).

2.7 Supporting Information 2

Table 2.3: Per realm averages for net relatedness index [NRImean (± NRISD)] and nearest taxon
index [NTImean (± NTISD)] of bat communities for each spatial extent and geograph-
ical extent. Within-realm geographical extents found to be significantly composed of
phylogenetically related bat communities (with p < 0.01 in Stouffer’s combined proba-
bility tests; see Methods in the main manuscript) are annotated with asterisks.

Spatial extent Sampling Pool Phylogenetic relatedness

NTImean (± NTISD) NRImean (± NRISD)
Global Global 1.79 (±1.36)* 3.54 (±3.99)*
Neotropical Global 2.84 (±1.22)* 9.06 (±4.13)*

Hemispheric 0.74 (±0.97)* 0.27 (±1.06)*
Realm 0.75 (±0.99)* 0.02 (±0.97)
Plate 0.21 (±0.88)* -0.65 (±1.03)
Biome 0.68 (±0.99)* -0.17 (±1.02)
Ecoregion 0.48 (±1.05)* -0.24 (±1.08)

Nearctic Global 2 (±0.74)* 5.38 (±2.38)*
Hemispheric 1.11 (±0.81)* 1.83 (±1.09)*
Realm 1.1 (±0.96)* 3.34 (±1.95)*
Plate 1.59 (±0.86)* 3.66 (±1.89)*
Biome 0.38 (±0.95)* 1.18 (±1.77)*
Ecoregion 0.2 (±0.98)* 0.36 (±1.13)*

Afrotropical Global 1.94 (±1.71)* 0.34 (±0.97)*
Hemispheric 1.09 (±1.48)* 0.09 (±0.94)*
Realm 0.43 (±1.02)* 0.06 (±0.85)
Plate 0.23 (±0.94)* -0.33 (±0.82)
Biome 0.13 (±0.95)* 0.14 (±0.92)*
Ecoregion 0.01 (±0.97) -0.18 (±0.89)
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Spatial extent Sampling Pool Phylogenetic relatedness

Palearctic Global 1.39 (±1.21)* 2.75 (±2.86)*
Hemispheric 0.98 (±1.04)* 2.58 (±2.89)*
Realm 0.79 (±1.12)* 1.08 (±1.55)*
Plate 0.86 (±1.1)* 1.49 (±2)*
Biome 0.36 (±1.16)* 0.45 (±1.36)*
Ecoregion 0.06 (±0.95)* 0.15 (±1.08)*

Indomalay Global 1 (±1.04)* -0.1 (±1.44)
Hemispheric -0.15 (±1.05) -0.46 (±1.44)
Realm -0.09 (±1.11) -0.41 (±1.82)
Plate -0.1 (±1.19) -1.03 (±1.23)
Biome -0.06 (±1.09) -0.38 (±1.81)
Ecoregion 0.14 (±1.03)* -0.56 (±1.14)

Australasian Global 1.44 (±0.7)* 3.69 (±2.08)*
Hemispheric 0.67 (±0.79)* 3.26 (±1.99)*
Realm 0.13 (±0.83)* 2.09 (±1.55)*
Plate 0.02 (±0.85)* 1.9 (±1.41)*
Biome -0.11 (±0.88) 0.65 (±1.09)*
Ecoregion -0.17 (±0.92) 0.49 (±1.3)*
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Table 2.4: Summary statistics for per-realm tests on whether the net relatedness index or the nearest taxon index (response vari-
ables, in separate tests) of bat communities (dependent groups) differed across the discrete sampling pool restriction
gradient (group-levels). Results reflect independent robust heteroscedastic repeated measurement analyses of variance based
on 20% trimmed means and post-hoc comparisons using Hochberg’s approach to control for family-wise error.

NRI NTI

Realm Comparison Ψ̂ CIlower CIupper P Pcrit Ψ̂ CIlower CIupper P Pcrit
NeotropicalGlobal

sam-
pling

vs. Hemispheric
sam-
pling

9.879 9.726 10.032 <
0.001

0.025 *** 1.891 1.866 1.916 <
0.001

0.017 ***

vs. Realm
sam-
pling

10.115 9.956 10.274 <
0.001

0.017 *** 1.883 1.858 1.907 <
0.001

0.013 ***

vs. Plate
sam-
pling

10.834 10.641 11.027 <
0.001

0.013 *** 2.496 2.456 2.536 <
0.001

0.010 ***

vs. Biome
sam-
pling

10.387 10.225 10.550 <
0.001

0.010 *** 1.984 1.962 2.007 <
0.001

0.009 ***

vs. Ecoregion
sam-
pling

10.277 10.081 10.473 <
0.001

0.009 *** 2.406 2.364 2.447 <
0.001

0.007 ***

Hemispheric
sam-
pling

vs. Realm
sam-
pling

0.241 0.235 0.247 <
0.001

0.007 *** 0.004 0.002 0.006 <
0.001

0.025 ***

vs. Plate
sam-
pling

1.089 1.063 1.116 <
0.001

0.006 *** 0.684 0.671 0.698 <
0.001

0.006 ***

vs. Biome
sam-
pling

0.550 0.540 0.559 <
0.001

0.006 *** 0.060 0.050 0.069 <
0.001

0.006 ***
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NRI NTI

vs. Ecoregion
sam-
pling

0.561 0.521 0.600 <
0.001

0.005 *** 0.616 0.592 0.640 <
0.001

0.005 ***

Realm
sam-
pling

vs. Plate
sam-
pling

0.856 0.836 0.876 <
0.001

0.005 *** 0.693 0.678 0.708 <
0.001

0.005 ***

vs. Biome
sam-
pling

0.264 0.259 0.269 <
0.001

0.004 *** 0.060 0.050 0.069 <
0.001

0.004 ***

vs. Ecoregion
sam-
pling

0.330 0.295 0.365 <
0.001

0.004 *** 0.610 0.586 0.634 <
0.001

0.004 ***

Plate
sam-
pling

vs. Biome
sam-
pling

-
0.572

-
0.592

-
0.553

<
0.001

0.004 *** -
0.515

-
0.538

-
0.492

<
0.001

0.004 ***

vs. Ecoregion
sam-
pling

-
0.428

-
0.455

-
0.400

<
0.001

0.003 *** 0.003 -
0.020

0.025 0.729 0.050

Biome
sam-
pling

vs. Ecoregion
sam-
pling

0.076 0.044 0.108 <
0.001

0.050 *** 0.429 0.399 0.460 <
0.001

0.003 ***

NearcticGlobal
sam-
pling

vs. Hemispheric
sam-
pling

3.563 3.478 3.648 <
0.001

0.050 *** 0.812 0.804 0.820 <
0.001

0.050 ***

vs. Realm
sam-
pling

1.826 1.784 1.868 <
0.001

0.025 *** 0.822 0.805 0.840 <
0.001

0.025 ***

vs. Plate
sam-
pling

1.614 1.574 1.654 <
0.001

0.017 *** 0.428 0.420 0.436 <
0.001

0.017 ***
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NRI NTI

vs. Biome
sam-
pling

4.118 4.031 4.205 <
0.001

0.013 *** 1.479 1.460 1.498 <
0.001

0.013 ***

vs. Ecoregion
sam-
pling

5.145 5.060 5.229 <
0.001

0.010 *** 1.699 1.669 1.730 <
0.001

0.010 ***

Hemispheric
sam-
pling

vs. Realm
sam-
pling

-
1.479

-
1.524

-
1.435

<
0.001

0.009 *** 0.042 0.031 0.054 <
0.001

0.009 ***

vs. Plate
sam-
pling

-
1.677

-
1.723

-
1.632

<
0.001

0.007 *** -
0.389

-
0.391

-
0.386

<
0.001

0.007 ***

vs. Biome
sam-
pling

1.140 1.089 1.190 <
0.001

0.006 *** 0.630 0.611 0.650 <
0.001

0.006 ***

vs. Ecoregion
sam-
pling

1.731 1.685 1.778 <
0.001

0.006 *** 0.868 0.831 0.905 <
0.001

0.006 ***

Realm
sam-
pling

vs. Plate
sam-
pling

-
0.182

-
0.194

-
0.170

<
0.001

0.005 *** -
0.435

-
0.446

-
0.424

<
0.001

0.005 ***

vs. Biome
sam-
pling

2.270 2.178 2.361 <
0.001

0.005 *** 0.617 0.590 0.644 <
0.001

0.005 ***

vs. Ecoregion
sam-
pling

3.168 3.081 3.255 <
0.001

0.004 *** 0.856 0.813 0.900 <
0.001

0.004 ***

Plate
sam-
pling

vs. Biome
sam-
pling

2.458 2.373 2.543 <
0.001

0.004 *** 1.031 1.012 1.050 <
0.001

0.004 ***
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NRI NTI

vs. Ecoregion
sam-
pling

3.351 3.264 3.438 <
0.001

0.004 *** 1.255 1.219 1.291 <
0.001

0.004 ***

Biome
sam-
pling

vs. Ecoregion
sam-
pling

0.620 0.572 0.668 <
0.001

0.003 *** 0.159 0.126 0.191 <
0.001

0.003 ***

AfrotropicalGlobal
sam-
pling

vs. Hemispheric
sam-
pling

-
0.149

-
0.152

-
0.145

<
0.001

0.050 *** 0.049 0.047 0.051 <
0.001

0.050 ***

vs. Realm
sam-
pling

0.158 0.153 0.162 <
0.001

0.025 *** 1.138 1.109 1.166 <
0.001

0.025 ***

vs. Plate
sam-
pling

0.540 0.519 0.561 <
0.001

0.017 *** 1.271 1.237 1.306 <
0.001

0.017 ***

vs. Biome
sam-
pling

0.063 0.059 0.068 <
0.001

0.013 *** 1.462 1.422 1.503 <
0.001

0.013 ***

vs. Ecoregion
sam-
pling

0.401 0.375 0.428 <
0.001

0.010 *** 1.646 1.590 1.702 <
0.001

0.010 ***

Hemispheric
sam-
pling

vs. Realm
sam-
pling

0.322 0.315 0.329 <
0.001

0.009 *** 1.087 1.058 1.115 <
0.001

0.009 ***

vs. Plate
sam-
pling

0.692 0.669 0.715 <
0.001

0.007 *** 1.216 1.182 1.251 <
0.001

0.007 ***

vs. Biome
sam-
pling

0.226 0.221 0.232 <
0.001

0.006 *** 1.413 1.372 1.453 <
0.001

0.006 ***
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NRI NTI

vs. Ecoregion
sam-
pling

0.560 0.531 0.589 <
0.001

0.006 *** 1.593 1.537 1.649 <
0.001

0.006 ***

Realm
sam-
pling

vs. Plate
sam-
pling

0.403 0.386 0.421 <
0.001

0.005 *** 0.169 0.162 0.176 <
0.001

0.005 ***

vs. Biome
sam-
pling

-
0.071

-
0.075

-
0.066

<
0.001

0.005 *** 0.321 0.310 0.332 <
0.001

0.005 ***

vs. Ecoregion
sam-
pling

0.257 0.234 0.279 <
0.001

0.004 *** 0.506 0.477 0.536 <
0.001

0.004 ***

Plate
sam-
pling

vs. Biome
sam-
pling

-
0.449

-
0.468

-
0.429

<
0.001

0.004 *** 0.158 0.149 0.166 <
0.001

0.004 ***

vs. Ecoregion
sam-
pling

-
0.103

-
0.120

-
0.087

<
0.001

0.004 *** 0.361 0.336 0.386 <
0.001

0.004 ***

Biome
sam-
pling

vs. Ecoregion
sam-
pling

0.331 0.306 0.355 <
0.001

0.003 *** 0.197 0.175 0.219 <
0.001

0.003 ***

PalearcticGlobal
sam-
pling

vs. Hemispheric
sam-
pling

-
0.079

-
0.083

-
0.076

<
0.001

0.050 *** 0.010 0.009 0.012 <
0.001

0.050 ***

vs. Realm
sam-
pling

1.463 1.423 1.503 <
0.001

0.025 *** 0.774 0.767 0.782 <
0.001

0.025 ***

vs. Plate
sam-
pling

1.193 1.154 1.232 <
0.001

0.017 *** 0.696 0.680 0.711 <
0.001

0.017 ***
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NRI NTI

vs. Biome
sam-
pling

2.033 1.975 2.091 <
0.001

0.013 *** 1.040 1.025 1.055 <
0.001

0.013 ***

vs. Ecoregion
sam-
pling

2.268 2.192 2.345 <
0.001

0.010 *** 1.313 1.275 1.352 <
0.001

0.010 ***

Hemispheric
sam-
pling

vs. Realm
sam-
pling

1.531 1.490 1.573 <
0.001

0.009 *** 0.774 0.767 0.781 <
0.001

0.009 ***

vs. Plate
sam-
pling

1.272 1.230 1.314 <
0.001

0.007 *** 0.685 0.670 0.700 <
0.001

0.007 ***

vs. Biome
sam-
pling

2.102 2.042 2.162 <
0.001

0.006 *** 1.023 1.008 1.037 <
0.001

0.006 ***

vs. Ecoregion
sam-
pling

2.333 2.254 2.412 <
0.001

0.006 *** 1.311 1.273 1.349 <
0.001

0.006 ***

Realm
sam-
pling

vs. Plate
sam-
pling

-
0.356

-
0.367

-
0.346

<
0.001

0.005 *** -
0.094

-
0.098

-
0.089

<
0.001

0.005 ***

vs. Biome
sam-
pling

0.434 0.418 0.451 <
0.001

0.005 *** 0.214 0.207 0.220 <
0.001

0.005 ***

vs. Ecoregion
sam-
pling

0.783 0.741 0.825 <
0.001

0.004 *** 0.542 0.511 0.574 <
0.001

0.004 ***

Plate
sam-
pling

vs. Biome
sam-
pling

0.789 0.760 0.818 <
0.001

0.004 *** 0.323 0.315 0.330 <
0.001

0.004 ***
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NRI NTI

vs. Ecoregion
sam-
pling

0.954 0.907 1.001 <
0.001

0.004 *** 0.549 0.522 0.576 <
0.001

0.004 ***

Biome
sam-
pling

vs. Ecoregion
sam-
pling

0.135 0.107 0.162 <
0.001

0.003 *** 0.102 0.076 0.128 <
0.001

0.003 ***

IndomalayGlobal
sam-
pling

vs. Hemispheric
sam-
pling

-
0.099

-
0.102

-
0.095

<
0.001

0.017 *** 0.068 0.064 0.072 <
0.001

0.025 ***

vs. Realm
sam-
pling

0.496 0.474 0.518 <
0.001

0.013 *** 1.635 1.613 1.658 <
0.001

0.017 ***

vs. Plate
sam-
pling

0.888 0.831 0.946 <
0.001

0.010 *** 1.407 1.347 1.466 <
0.001

0.013 ***

vs. Biome
sam-
pling

0.493 0.468 0.518 <
0.001

0.009 *** 1.712 1.682 1.743 <
0.001

0.010 ***

vs. Ecoregion
sam-
pling

0.479 0.425 0.532 <
0.001

0.007 *** 1.330 1.258 1.403 <
0.001

0.009 ***

Hemispheric
sam-
pling

vs. Realm
sam-
pling

0.578 0.554 0.601 <
0.001

0.006 *** 1.563 1.541 1.584 <
0.001

0.007 ***

vs. Plate
sam-
pling

1.000 0.941 1.058 <
0.001

0.006 *** 1.334 1.274 1.393 <
0.001

0.006 ***

vs. Biome
sam-
pling

0.579 0.552 0.606 <
0.001

0.005 *** 1.643 1.614 1.672 <
0.001

0.006 ***
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NRI NTI

vs. Ecoregion
sam-
pling

0.585 0.529 0.641 <
0.001

0.005 *** 1.257 1.186 1.328 <
0.001

0.005 ***

Realm
sam-
pling

vs. Plate
sam-
pling

0.223 0.158 0.288 <
0.001

0.004 *** -
0.131

-
0.171

-
0.090

<
0.001

0.005 ***

vs. Biome
sam-
pling

-
0.015

-
0.019

-
0.011

<
0.001

0.004 *** 0.104 0.096 0.112 <
0.001

0.004 ***

vs. Ecoregion
sam-
pling

-
0.135

-
0.193

-
0.077

<
0.001

0.050 *** -
0.268

-
0.320

-
0.217

<
0.001

0.004 ***

Plate
sam-
pling

vs. Biome
sam-
pling

-
0.207

-
0.265

-
0.149

<
0.001

0.004 *** 0.038 -
0.002

0.077 0.006 0.050 **

vs. Ecoregion
sam-
pling

-
0.452

-
0.476

-
0.428

<
0.001

0.003 *** -
0.163

-
0.194

-
0.132

<
0.001

0.004 ***

Biome
sam-
pling

vs. Ecoregion
sam-
pling

-
0.138

-
0.190

-
0.087

<
0.001

0.025 *** -
0.203

-
0.249

-
0.157

<
0.001

0.003 ***

AustralasianGlobal
sam-
pling

vs. Hemispheric
sam-
pling

-
0.232

-
0.246

-
0.219

<
0.001

0.050 *** 0.085 0.082 0.088 <
0.001

0.013 ***

vs. Realm
sam-
pling

1.364 1.340 1.387 <
0.001

0.025 *** 1.399 1.382 1.415 <
0.001

0.010 ***

vs. Plate
sam-
pling

1.502 1.475 1.529 <
0.001

0.017 *** 1.551 1.528 1.574 <
0.001

0.009 ***
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NRI NTI

vs. Biome
sam-
pling

2.530 2.463 2.597 <
0.001

0.013 *** 1.614 1.588 1.640 <
0.001

0.007 ***

vs. Ecoregion
sam-
pling

3.081 2.977 3.184 <
0.001

0.010 *** 1.774 1.732 1.816 <
0.001

0.006 ***

Hemispheric
sam-
pling

vs. Realm
sam-
pling

1.590 1.564 1.616 <
0.001

0.009 *** 1.318 1.301 1.335 <
0.001

0.006 ***

vs. Plate
sam-
pling

1.745 1.713 1.778 <
0.001

0.007 *** 1.472 1.448 1.496 <
0.001

0.005 ***

vs. Biome
sam-
pling

2.804 2.734 2.875 <
0.001

0.006 *** 1.532 1.504 1.561 <
0.001

0.005 ***

vs. Ecoregion
sam-
pling

3.329 3.223 3.436 <
0.001

0.006 *** 1.694 1.653 1.734 <
0.001

0.004 ***

Realm
sam-
pling

vs. Plate
sam-
pling

0.139 0.128 0.149 <
0.001

0.005 *** 0.169 0.162 0.176 <
0.001

0.004 ***

vs. Biome
sam-
pling

1.146 1.090 1.201 <
0.001

0.005 *** 0.170 0.152 0.187 <
0.001

0.004 ***

vs. Ecoregion
sam-
pling

1.747 1.662 1.833 <
0.001

0.004 *** 0.293 0.253 0.333 <
0.001

0.003 ***

Plate
sam-
pling

vs. Biome
sam-
pling

1.074 1.015 1.132 <
0.001

0.004 *** 0.010 0.000 0.020 0.005 0.050 **
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NRI NTI

vs. Ecoregion
sam-
pling

1.649 1.570 1.728 <
0.001

0.004 *** 0.116 0.074 0.158 <
0.001

0.017 ***

Biome
sam-
pling

vs. Ecoregion
sam-
pling

0.286 0.235 0.336 <
0.001

0.003 *** 0.044 0.003 0.086 0.002 0.025 **

*p <
0.05;
**p <
0.01;
***p
<
0.001
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Table 2.5: Sampling proportions at the genus-level used to account for missing taxa when es-
timating speciation and extinction rates in BAMM. The sampling fraction for each
genus was calculated by dividing the number of species included in the final phylogeny
used in this study by the number of species available within the American Society of
Mammalogists (ASM) Mammal Diversity Database (Burgin et al., 2018; Mammal Di-
versity Database, 2021).

Clade (Genus)

Species kept from
Faurby & Svenning
(2015) Species within ASM Sampling fraction

Acerodon 4 5 80.00 %
Aethalops 2 2 100.00 %
Alionycteris 1 1 100.00 %
Ametrida 1 1 100.00 %
A morphochilus 1 1 100.00 %
Anoura 6 10 60.00 %
Anthops 1 1 100.00 %
Antrozous 1 1 100.00 %
Arielulus 3 5 60.00 %
Ariteus 1 1 100.00 %
Artibeus 10 11 90.91 %
Asellia 2 4 50.00 %
Aselliscus 2 3 66.67 %
Austronomus 2 2 100.00 %
Balantiopteryx 3 3 100.00 %
Balionycteris 1 1 100.00 %
Barbastella 2 5 40.00 %
Bauerus 1 1 100.00 %
Brachyphylla 2 2 100.00 %
Cardioderma 1 1 100.00 %
Carollia 6 9 66.67 %
Casinycteris 1 3 33.33 %
Centronycteris 2 2 100.00 %
Centurio 1 1 100.00 %
Chaerephon 15 21 71.43 %
Chalinolobus 7 7 100.00 %
Cheiromeles 2 2 100.00 %
Chilonatalus 2 3 66.67 %
Chiroderma 4 6 66.67 %
Chironax 1 1 100.00 %
Choeroniscus 3 3 100.00 %
Choeronycteris 1 1 100.00 %
Chrotopterus 1 1 100.00 %
Cloeotis 1 1 100.00 %
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Clade (Genus)

Species kept from
Faurby & Svenning
(2015) Species within ASM Sampling fraction

Coelops 2 2 100.00 %
Coleura 1 3 33.33 %
Cormura 1 1 100.00 %
Corynorhinus 3 3 100.00 %
Craseonycteris 1 1 100.00 %
Cynomops 5 6 83.33 %
Cynopterus 7 7 100.00 %
Cyttarops 1 1 100.00 %
Dermanura 9 12 75.00 %
Desmodus 1 2 50.00 %
Diaemus 1 1 100.00 %
Diclidurus 3 4 75.00 %
Diphylla 1 1 100.00 %
Dobsonia 10 13 76.92 %
Dyacopterus 2 3 66.67 %
Ectophylla 1 1 100.00 %
Eidolon 2 2 100.00 %
Emballonura 7 8 87.50 %
Enchisthenes 1 1 100.00 %
Eonycteris 3 3 100.00 %
Epomophorus 7 10 70.00 %
Epomops 3 2 100.00 %
Eptesicus 17 28 60.71 %
Erophylla 2 2 100.00 %
Euderma 1 1 100.00 %
Eumops 10 17 58.82 %
Falsistrellus 5 5 100.00 %
Furipterus 1 1 100.00 %
Glauconycteris 8 11 72.73 %
Glischropus 1 4 25.00 %
Glossophaga 5 5 100.00 %
Glyphonycteris 3 3 100.00 %
Haplonycteris 1 1 100.00 %
Harpiocephalus 1 1 100.00 %
Harpiola 1 2 50.00 %
Harpyionycteris 2 2 100.00 %
Hesperoptenus 4 5 80.00 %
Hipposideros 58 80 72.50 %
Histiotus 7 8 87.50 %
Hylonycteris 1 1 100.00 %
Hypsignathus 1 1 100.00 %
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Clade (Genus)

Species kept from
Faurby & Svenning
(2015) Species within ASM Sampling fraction

Ia 1 1 100.00 %
Idionycteris 1 1 100.00 %
Kerivoula 19 24 79.17 %
Laephotis 4 4 100.00 %
Lampronycteris 1 1 100.00 %
Lasionycteris 1 1 100.00 %
Lasiurus 15 19 78.95 %
Latidens 1 1 100.00 %
Lavia 1 1 100.00 %
Leptonycteris 3 3 100.00 %
Lichonycteris 1 1 100.00 %
Lionycteris 1 1 100.00 %
Lissonycteris 1 4 25.00 %
Lonchophylla 7 16 43.75 %
Lonchorhina 5 6 83.33 %
Lophostoma 5 7 71.43 %
Macroderma 1 1 100.00 %
Macroglossus 2 2 100.00 %
Macrophyllum 1 1 100.00 %
Macrotus 2 2 100.00 %
Megaderma 2 2 100.00 %
Megaerops 4 4 100.00 %
Megaloglossus 1 2 50.00 %
Melonycteris 3 3 100.00 %
Mesophylla 1 1 100.00 %
Micronycteris 8 11 72.73 %
Micropteropus 2 2 100.00 %
Mimetillus 1 1 100.00 %
Mimon 4 4 100.00 %
Molossops 4 4 100.00 %
Molossus 7 10 70.00 %
Monophyllus 1 2 50.00 %
Mops 15 17 88.24 %
Mormoops 2 2 100.00 %
Mormopterus 7 18 38.89 %
Mosia 1 1 100.00 %
Murina 12 38 31.58 %
Musonycteris 1 1 100.00 %
Myonycteris 2 5 40.00 %
Myopterus 2 2 100.00 %
Myotis 85 139 61.15 %
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Clade (Genus)

Species kept from
Faurby & Svenning
(2015) Species within ASM Sampling fraction

Mystacina 1 2 50.00 %
Myzopoda 2 2 100.00 %
Nanonycteris 1 1 100.00 %
Natalus 5 8 62.50 %
Neonycteris 1 1 100.00 %
Neopteryx 1 1 100.00 %
Neoromicia 13 18 72.22 %
Noctilio 2 2 100.00 %
Notopteris 2 2 100.00 %
Nyctalus 7 8 87.50 %
Nycteris 14 16 87.50 %
Nycticeinops 1 1 100.00 %
Nycticeius 2 3 66.67 %
Nyctiellus 1 1 100.00 %
Nyctimene 14 15 93.33 %
Nyctinomops 4 4 100.00 %
Nyctophilus 7 16 43.75 %
Otomops 2 8 25.00 %
Otonycteris 1 2 50.00 %
Otopteropus 1 1 100.00 %
Paratriaenops 2 3 66.67 %
Paremballonura 2 2 100.00 %
Penthetor 1 1 100.00 %
Peropteryx 4 5 80.00 %
Philetor 1 1 100.00 %
Phoniscus 3 4 75.00 %
Phylloderma 1 1 100.00 %
Phyllonycteris 1 2 50.00 %
Phyllops 1 1 100.00 %
Phyllostomus 4 4 100.00 %
Pipistrellus 38 54 70.37 %
Platalina 1 1 100.00 %
Platymops 1 1 100.00 %
Platyrrhinus 15 21 71.43 %
Plecotus 10 19 52.63 %
Plerotes 1 1 100.00 %
Promops 2 3 66.67 %
Ptenochirus 2 2 100.00 %
Pteralopex 3 6 50.00 %
Pteronotus 6 15 40.00 %
Pteropus 36 66 54.55 %
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Clade (Genus)

Species kept from
Faurby & Svenning
(2015) Species within ASM Sampling fraction

Pygoderma 1 1 100.00 %
Rhinolophus 66 103 64.08 %
Rhinonicteris 1 1 100.00 %
Rhinophylla 3 3 100.00 %
Rhinopoma 3 6 50.00 %
Rhogeessa 8 13 61.54 %
Rhynchonycteris 1 1 100.00 %
Rousettus 8 9 88.89 %
Saccolaimus 4 4 100.00 %
Saccopteryx 5 5 100.00 %
Sauromys 1 1 100.00 %
Sc leronycteris 1 1 100.00 %
Scoteanax 1 1 100.00 %
Scotoecus 3 5 60.00 %
Scotomanes 1 1 100.00 %
S cotonycteris 2 3 66.67 %
Scotophilus 13 21 61.90 %
Scotorepens 4 4 100.00 %
Scotozous 1 1 100.00 %
Sphaerias 1 1 100.00 %
Sph aeronycteris 1 1 100.00 %
Stenoderma 1 1 100.00 %
Sturnira 12 23 52.17 %
Styloctenium 1 2 50.00 %
Syconycteris 2 3 66.67 %
Tadarida 8 8 100.00 %
Taphozous 14 14 100.00 %
Thoopterus 1 2 50.00 %
Thyroptera 4 5 80.00 %
Tomopeas 1 1 100.00 %
Tonatia 2 2 100.00 %
Trachops 1 1 100.00 %
Triaenops 2 4 50.00 %
Trinycteris 1 1 100.00 %
Tylonycteris 2 6 33.33 %
Uroderma 2 5 40.00 %
Vampyressa 3 5 60.00 %
Vampyriscus 3 3 100.00 %
Vampyrodes 1 2 50.00 %
Vampyrum 1 1 100.00 %
Vespadelus 9 9 100.00 %
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Clade (Genus)

Species kept from
Faurby & Svenning
(2015) Species within ASM Sampling fraction

Vespertilio 2 2 100.00 %
Xeronycteris 1 1 100.00 %

Figure 2.6: Effects of species pool scaling on (a) NRI and (b) NTI within biogeographic realms.
Each bar represents the change in phylogenetic structure between the immediately re-
stricted sampling and the broader sampling pools (e.g., NRIglobal – NRIhemispheric). Val-
ues above 0 indicate stronger phylogenetic clustering with the geographically more
extensive sampling pool.

2.8 Supporting Information 3

2.8.1 Adjusting for the artificial influence of geographical extent size on indices
of community phylogenetic relatedness through rarefactions

The magnitude of standardized effect sizes of indices for phylogenetic community structure can
artificially increase as a function of the geographical or phylogenetic extents (because of greater
number of species in larger biogeographical regions) used to compute the null models pertinent to
these metrics (Sandel 2018). This bias requires that studies comparing standardized effect sizes of
phylogenetic relatedness between biological communities to assess whether these comparisons hold
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after adjusting for this problem. One possible approach to adjust for this potential bias is to repeat-
edly randomly subsample (i.e. rarefy) the community composition matrix to smaller geographical
extent sizes, and then to calculate the average indices for phylogenetic community structure [here,
the net relatedness index (NRI) and the nearest taxon index (NTI); see Methods] across the rarefied
subset (see Sandel 2018). The resulting index from this procedure should show a negligible rela-
tionship with the size of the geographical extent or the phylogeny. Because the original size of the
geographical extent is decreased, this correction comes at the expense of losing power intrinsic to
the rarefaction procedure (Sandel 2018). The information from geographical extents that have less
species than the size chosen for the subsampling procedure is also lost.

2.8.1.1 Implementation

We assessed whether our results held after adjusting for this potential bias by: (i) randomly sub-
sampling (rarefying) the community presence-absence matrix to the lowest species richness of the
geographical extent of the subsequently nested region (up to a minimum of 10 species); (ii) cal-
culating the indices for phylogenetic community structure at this subsampled data; (iii) repeating
the previous procedures 1,000 times and calculating the average rarefied net relatedness index and
nearest taxon indices (NRIraref and NTIraref) across the rarefied data sets; and, (iv) reproducing the
figures describing the patterns underlying our predictions.

The interpretation of the rarefied indices follow the same ones for NRI and NTI [see Methods in
the main document; Webb (2000)].

2.8.1.2 Results

As expected, the rarefied net relatedness index (NRIraref) and nearest taxon index (NTIraref) for bat
communities were closer to zero, but highly correlated with their respective unrarefied indices for
phylogenetic relatedness (Pearson’s 𝑟 of 0.83, and Pearson’s 𝑟 0.69, respectively).
All figures we reproduced with the rarefied NRI and NTI indices (Figure 2.7, Figure 2.8, Figure 2.9,
Figure 2.10) had similar patterns to those we observed in the figures from themain study (Figure 2.2,
Figure 2.3, Figure 2.4, Figure 2.5).

For the purposes of simplification and to avoid the loss of information introduced by the rarefaction
procedure, we use the unrarefied values for NRI and NTI in the main manuscript.
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Figure 2.7: Realm-comparison of the geographical extent size bias-corrected phylogenetic structure of bat assemblages – mea-
sured through the (A) rarefied net relatedness index (NTIraref) and (B) nearest taxon index (NRIraref) – across a gradi-
ent of geographical extent restrictions (see Methods). Geographical extents were restricted for the (i) global, (ii) east-west
hemispheric (NewWorld versus Old World), (iii) biogeographical realm, (iv) tectonic plate, (v) within-realm biome, and (vi)
ecoregional extents. Bat communities with positive values of NRIraref and NTIraref indicate that co-occurring species in these
communities are phylogenetically related in relation to a given geographical extent. Conversely, negative values of NRI and
NTI indicate that bat communities are mainly composed of distantly-related species in relation to that given geographical
extent. Boxes represent interquartile ranges, with the upper hinge being the 75th percentile, the middle the median, and the
lower hinge, the 25th percentile. Upper and lower whiskers represent values 1.5 times above and below the interquartile
range, respectively. Black-filled circles represent outliers. Within-realm geographical extents found to be significantly com-
posed of phylogenetically related bat communities (with p < 0.01 in Stouffer’s combined probability tests) are annotated with
asterisks.
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Figure 2.8 (preceding page): Average bias-corrected rarefied net relatedness index (NRIraref)
of worldwide bat communities across the percentiles of historical
change in temperature, historical change in precipitation and in
situ net diversification rates across geographical extents. In situ
net diversification rates were obtained by subtracting the difference
between community-weighted means weight-standardized for specia-
tion and extinction rates. Paleoclimatic legacies for each bat commu-
nity were obtained as the historical change in climate since the last
glacial maximum (LGM); specifically, the mean annual temperature
(MAT) or logarithm of the mean annual precipitation (MAP) from
the contemporary period minus the estimated mean annual tempera-
ture or logarithm of the mean annual precipitation from 22,000 years
ago (see Methods). NRIraref was measured at the (A, B and C) global,
(D, E and F) east-west hemispheric (New World vs. Old World), (G,
H and I) biogeographical realm, (K, L and M) tectonic plate, (N, O
and P) within-realm biome, and (Q, R and S) ecoregional geographi-
cal extents. Bat communities with positive values of NRIraref indicate
that co-occurring species in these communities are phylogenetically
related in relation to a given geographical extent. Conversely, nega-
tive values of NRI indicate that bat communities aremainly composed
of distantly-related species in relation to that given geographical ex-
tent. Vertical lines represent the mean plus or minus 1.96 times the
standard error for the percentile of NRI.
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Figure 2.9 (preceding page): Average bias-corrected rarefied nearest taxon index (NTIraref) of
worldwide bat communities across the percentiles of historical
change in temperature, historical change in precipitation and in
situ net diversification rates across geographical extents. In situ
net diversification rates were obtained by subtracting the difference
between community-weighted means weight-standardized for specia-
tion and extinction rates. Paleoclimatic legacies for each bat commu-
nity were obtained as the historical change in climate since the last
glacial maximum (LGM); specifically, the mean annual temperature
(MAT) or logarithm of the mean annual precipitation (MAP) from
the contemporary period minus the estimated mean annual tempera-
ture or logarithm of the mean annual precipitation from 22,000 years
ago (see Methods). NTIraref was measured at the (A, B and C) global,
(D, E and F) east-west hemispheric (New World vs. Old World), (G,
H and I) biogeographical realm, (K, L and M) tectonic plate, (N, O
and P) within-realm biome, and (Q, R and S) ecoregional geographi-
cal extents. Bat communities with positive values of NTIraref indicate
that co-occurring species in these communities are phylogenetically
related in relation to a given geographical extent. Conversely, nega-
tive values of NTI indicate that bat communities aremainly composed
of distantly-related species in relation to that given geographical ex-
tent.
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Figure 2.10: Partial bootstrapped coefficients for the effects of paleoclimatic legacies and in situ diversification rates in the phylo-
genetic structure of bat communities across spatial geographical extents. The phylogenetic structure of bat communities
is measured through the net relatedness index (NRI) and the nearest taxon index (NTI) at each geographical extent. In situ net
diversification rates were obtained by subtracting the difference between community-weighted means weight-standardized
for speciation and extinction rates. Paleoclimatic legacies for each bat community were obtained as the historical change in
climate since the last glacial maximum (LGM); specifically, the mean annual temperature or logarithm of the mean annual
precipitation from the contemporary period minus the estimated mean annual temperature or logarithm of the mean annual
precipitation from 22,000 years ago (see Methods). Bootstrapped partial coefficients were extracted from robust logistic
generalized linear models using binary outcomes (at the 90-th percentile) for the indices for phylogenetic community re-
latedness (𝑃𝑟(NRIraref−Q90 = 1)) and 𝑃𝑟(NTIraref−Q90 = 1)) as response variables (in separate models) and the z-score
standardized historical change in temperature, historical change in precipitation and in situ net diversification rates as pre-
dictive variables (with 2,500 random samples drawn with replacement for 1,000 repetitions).
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Table 2.6:Model-averaged bootstrapped coefficients for the effects of historical change in temperature and in precipitation and
in situ diversification rates in the rarefied phylogenetic structure of bat communities across geographical extents. The
phylogenetic structure of bat communities is measured through the net relatedness index (NRI) and the nearest taxon in-
dex (NTI) at each geographical extent. In situ net diversification rates were obtained by subtracting the difference between
community-weighted means weight-standardized for speciation and extinction rates. Bootstrapped partial coefficients (and
their 95% confidence intervals) were extracted from robust logistic generalized linear models using binary outcomes (at the
90th percentile) for the indices for phylogenetic community relatedness (NRIraref and NTIraref) as response variables (in sep-
arate models) and the z-score standardized historical change in temperature, historical change in precipitation and in situ net
diversification rates as predictive variables (with 2,500 random samples drawn with replacement for 1,000 repetitions).

Characteristic Global sampling, N = 1,0001 Hemispheric sampling, N = 1,0001 Realm sampling, N = 1,0001 Plate sampling, N = 1,0001 Biome sampling, N = 1,0001 Ecoregion sampling, N = 1,0001

NRI

Intercept -4.21 (-4.61; -3.80) -3.04 (-3.27; -2.81) -3.60 (-3.88; -3.31) -2.67 (-2.86; -2.48) -3.12 (-3.37; -2.88) -2.75 (-2.98; -2.52)
Historical change in temperature 2.78 (2.06; 3.50) -0.99 (-1.16; -0.81) -1.81 (-2.07; -1.56) -0.62 (-0.75; -0.49) -0.80 (-0.96; -0.63) -0.52 (-0.65; -0.39)
Historical change in precipitation 0.81 (0.46; 1.15) 1.97 (1.66; 2.28) 2.81 (2.41; 3.21) 1.36 (1.07; 1.65) 1.66 (1.35; 1.97) 0.33 (0.08; 0.58)
In situ diversification rates 1.34 (1.18; 1.49) 0.61 (0.45; 0.77) 0.42 (0.27; 0.57) 0.55 (0.41; 0.69) 0.95 (0.75; 1.16) 1.15 (0.92; 1.39)

NTI

Intercept -2.44 (-2.59; -2.29) -2.83 (-3.03; -2.63) -3.47 (-3.76; -3.19) -2.54 (-2.72; -2.35) -2.77 (-2.99; -2.56) -2.49 (-2.69; -2.28)
Historical change in temperature -0.02 (-0.19; 0.15) -0.82 (-0.98; -0.67) -1.75 (-1.99; -1.52) -0.59 (-0.71; -0.48) -0.77 (-0.92; -0.61) -0.43 (-0.53; -0.33)
Historical change in precipitation 0.92 (0.73; 1.10) 1.55 (1.28; 1.83) 2.53 (2.14; 2.92) 1.23 (0.97; 1.49) 1.17 (0.91; 1.44) 0.07 (-0.14; 0.28)
In situ diversification rates 0.30 (0.17; 0.43) 0.56 (0.40; 0.72) 0.45 (0.30; 0.61) 0.34 (0.17; 0.50) 0.58 (0.37; 0.80) 0.81 (0.54; 1.07)
1Mean (Lower CI; Upper CI)
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2.9 Supporting Information 4

2.9.1 Assessing the effects of climate change velocity on the phylogenetic
relatedness of bat communities

2.9.1.1 Implementation

The approach we used for calculating climatic historical stability comes with several assumptions.
An important one is that changes in climate between the last glacial maximum (LGM) and the
contemporary period are constant, so that the differences between climate estimates between both
periods are informative. Delgado-Baquerizo et al. (2017) have shown that climatic changes during
the last 21,000 years were indeed largely unidirectional and often linear at the resolution of hundreds
of years, supporting that calculating differences between the climate from the last glacial maximum
and the contemporary period can account for the largest changes in temperature and precipitation
over the last 21,000 years.

To further support our approach, we assessed if the patterns we observed for the effects of climatic
historical stability (measured as the difference between the snapshots of climate estimates for the
last glacial maximum (LGM) and climate observations for the contemporary period; see Methods)
on the phylogenetic community structure of bats would be congruent to those expected using an
alternative metric for climatic stability, the index for velocity of climate change proposed by Loarie
et al. (2009). This index combines spatial and temporal gradients of change in climate to provide
information on how much local climate changes in space across time periods (see examples of its
usage in Sandel et al. (2011).

We started by downloading high-resolution rasters containing worldwide bioclimatic variables for
mean annual temperature and mean annual precipitation for every 500 years before present (BP) un-
til the LGM from the CHELSA-TraCE21k paleoclimatic data base (Karger et al. 2021). CHELSA-
TraCE21k provides downscaled averages from global monthly climatologies for temperature and
precipitation at the resolution of 30 arc-seconds in 100-year time steps for the last 21,000 years
(Karger et al. 2021).

We projected and aggregated each raster (by calculating the average of all pixels occurring in each
cell, weighted by the coverage overlapping area of cells) to the 50 km × 50 km equal-area cell-grid
we used in this study (see Methods). Our final data set consisted of 45 geographical raster layers
for each climatic variable, with each layer containing the climatic data estimated at every 500-year
step, from the 2,000s to the 21,000 years BP. We log-transformed precipitation values to decrease
its skewness and to improve the resolution of dry and very dry climates.

We then computed gradient-based change velocities in temperature and in precipitation following
Loarie et al. (2009) and Burrows et al. (2011). For each cell, we: (i) calculated the long-term
temporal trend in climate by extracting the coefficients of simple linear regressions performed be-
tween each climatic variable and the time period; (ii) calculated the local spatial gradient in climate
for each cell by determining the magnitude of the differences in each climatic variable over its sur-
rounding neighbouring cells (3 × 3); and, then (iii) obtaining the climate change velocity for each
variable by dividing its temporal trend by its spatial gradient.

This climate change velocity index derived from both spatial and temporal gradients informs how
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much climate change in space across time, i.e. here, in metres (m) per year. Attractively, this index
can be both negative and positive, as the temporal trend provides the direction for the magnitude
of climate change velocity.

To make the interpretation congruent to our initial measure of historical change in climate using
differences between the climate from the contemporary period and the LGM, we multiplied the cli-
mate change velocity index by minus one. With this, large negative values of temperature change
velocity represents an accelerated increase in temperature since the LGM, while large positive tem-
perature change velocities indicate accelerated decreases in temperature since the LGM. Similarly,
low negative values of precipitation change velocity represent an slow increase in precipitation
since the LGM, while low positive precipitation change velocities indicate slow decreases in pre-
cipitation since the LGM.

Finally, we applied the same approaches used to test the predictions that phylogenetically clustered
communities are more frequent in historically climatically stable regions (H2) and that increased in
situ diversification rates generate regional clusters of closely-related species (H3) (see Methods).

We independently represented the average phylogenetic relatedness of bat communities [i.e. for
both the net relatedness index (NRI) and the nearest taxon index (NTI)] across each one of the 100-
quantiles (percentiles) of temperature change velocity, precipitation change velocity and in situ net
diversification rates (see Figure 2.11, Figure 2.12).

We also applied bootstrapping robust logistic generalized linear models using binary outcomes for
the indices for phylogenetic community relatedness as response variables (NRI andNTI; in separate
models; at the 90% percentile cut-off), and the z-score standardized temperature change velocity,
precipitation change velocity and in situ net diversification rates as predictive variables (i.e., NRI
or NTI ~ temperature change velocity + precipitation change velocity + community-weighted net
diversification rates means) (see Figure 2.13).

2.9.1.2 Results

Temperature change velocity was highly correlated with the measure of historical climatic stability
in temperature we used in our study (Pearson’s 𝑟 of 0.86), while precipitation change velocity was
marginally correlated with the measure of historical change in precipitation (Pearson’s 𝑟 of 0.24).
Both velocities of change in temperature and in precipitation drove the phylogenetic relatedness of
bat communities at both overall phylogenetic structure (net relatedness index; NRI) and tip-level
phylogenetic structure (nearest taxon index; NTI) of bat communities. Departures in precipitation
change velocity from stability (i.e. slow or zero velocity of change in climate) generally caused NRI
and NTI values to decrease. Nevertheless, the effects of increases in temperature change velocity
towards stability in NRI and NTI was less uniform and varied across the gradient of velocity of
change and across spatial scales (see Figure 2.11, Figure 2.12, Figure 2.13).

At the global scale, increases in temperature change velocity towards climatic stability (i.e. towards
no or zero velocity of change in temperature) were associated with increases in the odds of highly
phylogenetically related bat communities. At the more restricted geographical extents, increases in
temperature change velocity towards stability were associated with decreases in the odds of highly
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phylogenetically related bat communities (see Figure 2.13).

Increases in precipitation change velocity consistently increased the odds of highly phylogenetically
related communities (those belonging to the 90th-percentile of both NRI and NTI); except at the
global geographical extent, where it was associated with marginal decreases in the odds of NRI
(see Figure 2.13).

The effects of velocities of climate change generally coincided with the ones we observed using
historical climatic change.
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Figure 2.11 (preceding page): Average net relatedness index (NRI) of bat communities across
the percentiles of temperature change velocity, precipitation
change velocity and in situ net diversification rates across ge-
ographical extents. In situ net diversification rates were obtained
by subtracting the difference between community-weighted means
weight-standardized for speciation and extinction rates. Climate
change velocities were derived from spatial gradients rates of cli-
mate change over time from the contemporary period until 21,000
years before present (BP).
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Figure 2.12 (preceding page): Average net relatedness index (NTI) of bat communities across
the percentiles of temperature change velocity, precipitation
change velocity and in situ net diversification rates across ge-
ographical extents. In situ net diversification rates were obtained
by subtracting the difference between community-weighted means
weight-standardized for speciation and extinction rates. Climate
change velocities were derived from spatial gradients rates of cli-
mate change over time from the contemporary period until 21,000
years before present (BP).
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Figure 2.13: Influence of paleoclimatic legacies and in situ diversification rates in the phylogenetic structure of bat communities
across spatial geographical extents. The phylogenetic structure of bat communities is measured through the net relatedness
index (NRI) and the nearest taxon index (NTI) at each geographical extent. In situ net diversification rates were obtained
by subtracting the difference between community-weighted means weight-standardized for speciation and extinction rates.
Climate change velocities were derived from spatial gradients rates of climate change over time from the contemporary
period until 21,000 years before present (BP) (see Methods). Bootstrapped partial coefficients were extracted from robust
logistic generalized linear models using binary outcomes (at the 90th percentile) for the indices for phylogenetic community
relatedness (𝑃𝑟(𝑁𝑅𝐼𝑄90 = 1)) and 𝑃𝑟(𝑁𝑇 𝐼𝑄90 = 1)) as response variables (in separate models) and the z-score
standardized velocity of change in temperature, velocity of change in precipitation and in situ net diversification rates as
predictive variables (with 2,500 random samples drawn with replacement for 1,000 repetitions).
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Table 2.7:Model-averaged coefficients for the influence of velocities of change in temperature and in precipitation and in situ
diversification rates in the phylogenetic structure of bat communities across geographical extents. The phylogenetic
structure of bat communities is measured through the net relatedness index (NRI) and the nearest taxon index (NTI) at each
geographical extent. In situ net diversification rates were obtained by subtracting the difference between community-weighted
means weight-standardized for speciation and extinction rates. Bootstrapped partial coefficients were extracted from robust
logistic generalized linear models using binary outcomes (at the 90th percentile) for the indices for phylogenetic community
relatedness (𝑃𝑟(𝑁𝑅𝐼𝑄90 = 1)) and Pr(𝑁𝑇 𝐼𝑄90 = 1)) as response variables (in separate models) and the z-score standard-
ized velocity of change in temperature, velocity of change in precipitation and in situ net diversification rates as predictive
variables (with 2,500 random samples drawn with replacement for 1,000 repetitions).

Characteristic Global sampling, N = 1,0001 Hemispheric sampling, N = 1,0001 Realm sampling, N = 1,0001 Plate sampling, N = 1,0001 Biome sampling, N = 1,0001 Ecoregion sampling, N = 1,0001

NRI

Intercept -3.25 (-3.59; -2.91) -2.50 (-2.68; -2.32) -2.69 (-2.87; -2.51) -2.61 (-2.78; -2.44) -2.36 (-2.53; -2.20) -2.46 (-2.64; -2.28)
Temperature change velocity 1.76 (1.11; 2.42) -0.49 (-0.58; -0.40) -1.14 (-1.31; -0.96) -1.23 (-1.42; -1.03) -0.46 (-0.56; -0.36) -0.29 (-0.41; -0.16)
Precipitation change velocity -0.05 (-0.27; 0.16) 0.22 (0.09; 0.35) 0.60 (0.45; 0.75) 0.61 (0.45; 0.76) 0.23 (0.12; 0.35) 0.11 (-0.03; 0.25)
In situ diversification rates 1.43 (1.25; 1.61) 0.85 (0.65; 1.05) 0.56 (0.39; 0.73) 0.34 (0.21; 0.47) 0.61 (0.41; 0.80) 0.82 (0.63; 1.00)

NTI

Intercept -2.68 (-2.88; -2.48) -2.20 (-2.34; -2.06) -2.35 (-2.50; -2.20) -2.45 (-2.61; -2.30) -2.26 (-2.41; -2.12) -2.35 (-2.51; -2.20)
Temperature change velocity 1.47 (1.08; 1.86) -0.05 (-0.22; 0.11) -0.63 (-0.75; -0.52) -0.92 (-1.07; -0.78) -0.38 (-0.50; -0.27) -0.13 (-0.31; 0.06)
Precipitation change velocity 0.30 (0.14; 0.46) 0.18 (0.08; 0.29) 0.38 (0.25; 0.50) 0.39 (0.26; 0.53) 0.32 (0.19; 0.46) 0.53 (0.36; 0.70)
In situ diversification rates 0.36 (0.24; 0.48) -0.11 (-0.24; 0.02) 0.18 (-0.01; 0.38) 0.15 (-0.05; 0.35) 0.27 (0.09; 0.45) 0.24 (0.07; 0.42)
1Mean (Odds Ratio)
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2.10 Supporting Information 5

2.10.1 Robustness to phylogenetic uncertainty

To account for phylogenetic uncertainty, we recalculated the phylogenetic relatedness and the in
situ diversification rates of bat communities on a subset of randomly sampled trees from the pos-
terior distribution of phylogenetic trees from Faurby and Svenning (2015) (see Donoghue & Ack-
erly 1996). The phylogenetic relatedness of bat communities was calculated across 50 randomly
sampled phylogenetic trees, while diversification rates were estimated on 100 randomly sampled
phylogenetic trees. We were limited from including higher sample sizes because of restrictions
in computational resources. We then computed the average net relatedness index, average nearest
taxon index and average community-weighted net diversification rates across the calculations done
with the sampled phylogenetic trees and used these averages to reproduce the figures testing each
hypothesis from our study.

These results were qualitatively similar to the ones computed on themaximum credibility clade phy-
logenetic tree (see Figure 2.2, Figure 2.3, Figure 2.4, Figure 2.5, and Figures S5.1, S5.2, S5.3 and
S5.4), providing evidence that our inferences are robust the uncertainty of phylogenetic hypotheses
from the posterior distribution of the phylogenetic relationships we used in our study.

76



Neotropical Nearctic Afrotropical Palearctic Indomalay Australasian

−4

0

5

10

15

19
N

R
I r

o
b

A

Neotropical Nearctic Afrotropical Palearctic Indomalay Australasian

−3

−2

0

2

4

5

N
T

I r
o

b

B

Lower  ...  Geographical Extent Restriction  ...  Higher

Global sampling Hemispheric sampling Realm sampling Plate sampling Biome sampling Ecoregion sampling

77



Figure 2.14 (preceding page): Realm-comparison of the phylogenetic structure of bat assemblages – measured through the aver-
ages of (A) net relatedness index (NRIrob) and (B) nearest taxon index (NTIrob) across computations
on a subset of 50 phylogenetic trees sampled from the posterior distribution of phylogenetic trees
available in Faurby and Svenning (2015) – across a gradient of geographical extent restrictions (see
Methods). Spatial extents were restricted for the (i) global, (ii) east-west hemispheric (NewWorld vs. Old
World), (iii) biogeographical realm, (iv) tectonic plate, (v) within-realm biome, and (vi) ecoregional ex-
tents. Bat communities with positive values of NRI and NTI indicate that co-occurring species in these
communities are phylogenetically related in relation to a given geographical extent. On the other hand,
negative values of NRI and NTI indicate that bat communities are mainly composed of distantly-related
species in relation to that given geographical extent. Boxes represent interquartile ranges, with the upper
hinge being the 75th percentile, the middle the median, and the lower hinge, the 25th percentile. Up-
per and lower whiskers represent values 1.5 times above and below the interquartile range, respectively.
Black-filled circles represent outliers.
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Figure 2.15 (preceding page): Average net relatedness index (NRIrob) of worldwide bat com-
munities across the percentiles of historical change in temper-
ature, historical change in precipitation and average in situ net
diversification rates across geographical extents. Average in situ
net diversification rates were obtained by subtracting the difference
between community-weighted means weight-standardized for speci-
ation and extinction rates. Paleoclimatic legacies for each bat com-
munity were obtained as the historical change in climate since the
last glacial maximum (LGM); specifically, the mean annual temper-
ature (MAT) or logarithm of the mean annual precipitation (MAP)
from the contemporary period minus the estimated mean annual tem-
perature or logarithm of the mean annual precipitation from 22,000
years ago (see Methods). NRIrob was measured at the (A, B and
C) global, (D, E and F) east-west hemispheric (New World vs. Old
World), (G, H and I) biogeographical realm, (K, L and M) tectonic
plate, (N, O and P) within-realm biome, and (Q, R and S) ecore-
gional geographical extents. Bat communities with positive values
of NRIrob indicate that co-occurring species in these communities are
phylogenetically related in relation to a given geographical extent.
Conversely, negative values of NRIrob indicate that bat communities
are mainly composed of distantly-related species in relation to that
given geographical extent.
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Figure 2.16 (preceding page): Average bias-corrected rarefied nearest taxon index (NTIrob) of
worldwide bat communities across the percentiles of historical
change in temperature, historical change in precipitation and in
situ net diversification rates across geographical extents. In situ
net diversification rates were obtained by subtracting the difference
between community-weighted means weight-standardized for speci-
ation and extinction rates. Paleoclimatic legacies for each bat com-
munity were obtained as the historical change in climate since the
last glacial maximum (LGM); specifically, the mean annual temper-
ature (MAT) or logarithm of the mean annual precipitation (MAP)
from the contemporary period minus the estimated mean annual tem-
perature or logarithm of the mean annual precipitation from 22,000
years ago (see Methods). NTIrob was measured at the (A, B and
C) global, (D, E and F) east-west hemispheric (New World vs. Old
World), (G, H and I) biogeographical realm, (K, L and M) tectonic
plate, (N, O and P) within-realm biome, and (Q, R and S) ecore-
gional geographical extents. Bat communities with positive values
of NTIrob indicate that co-occurring species in these communities are
phylogenetically related in relation to a given geographical extent.
Conversely, negative values of NTI indicate that bat communities
are mainly composed of distantly-related species in relation to that
given geographical extent.
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Figure 2.17: Partial bootstrapped coefficients for the effects of paleoclimatic legacies and in situ diversification rates in the phylo-
genetic structure of bat communities across spatial geographical extents. The phylogenetic structure of bat communities
is measured through the net relatedness index (NRI) and the nearest taxon index (NTI) at each geographical extent. In situ net
diversification rates were obtained by subtracting the difference between community-weighted means weight-standardized
for speciation and extinction rates. Paleoclimatic legacies for each bat community were obtained as the historical change
in climate since the last glacial maximum (LGM); specifically, the mean annual temperature or logarithm of the mean an-
nual precipitation from the contemporary period minus the estimated mean annual temperature or logarithm of the mean
annual precipitation from 22,000 years ago (see Methods). Bootstrapped partial coefficients were extracted from robust
logistic generalized linear models using binary outcomes (at the 90-th percentile) for the indices for phylogenetic commu-
nity relatedness (NRIrob and NTIrob) as response variables (in separate models) and the z-score standardized historical change
in temperature, historical change in precipitation and average in situ net diversification rates as predictive variables (with
2,500 random samples drawn with replacement for 1,000 repetitions).
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Table 2.8:Model-averaged bootstrapped coefficients for the effects of historical change in temperature and in precipitation and in
situ diversification rates in the rarefied phylogenetic structure of bat communities across geographical extents. The phy-
logenetic structure of bat communities is measured through the net relatedness index (NRI) and the nearest taxon index (NTI)
at each geographical extent. In situ net diversification rates were obtained by subtracting the difference between community-
weighted means weight-standardized for speciation and extinction rates. Bootstrapped partial coefficients (and their 95%
confidence intervals) were extracted from robust logistic generalized linear models using binary outcomes (at the 90th per-
centile) for the indices for phylogenetic community relatedness (NRIrob and NTIrob) as response variables (in separate models)
and the z-score standardized historical change in temperature, historical change in precipitation and in situ net diversification
rates as predictive variables (with 2,500 random samples drawn with replacement for 1,000 repetitions).

Characteristic Global sampling, N = 1,0001 Hemispheric sampling, N = 1,0001 Realm sampling, N = 1,0001 Plate sampling, N = 1,0001 Biome sampling, N = 1,0001 Ecoregion sampling, N = 1,0001

NRI

Intercept -3.08 (-3.44; -2.73) -2.55 (-2.74; -2.35) -3.48 (-3.75; -3.20) -3.17 (-3.41; -2.93) -2.58 (-2.77; -2.39) -2.45 (-2.62; -2.28)
Historical change in temperature 1.86 (1.14; 2.59) -0.52 (-0.63; -0.41) -1.69 (-1.93; -1.46) -1.54 (-1.76; -1.31) -0.70 (-0.82; -0.57) -0.37 (-0.50; -0.24)
Historical change in precipitation 0.73 (0.48; 0.98) 0.74 (0.51; 0.96) 2.46 (2.09; 2.82) 2.20 (1.86; 2.54) 1.16 (0.90; 1.41) 0.42 (0.17; 0.68)
In situ diversification rates -0.07 (-0.17; 0.03) 0.80 (0.62; 0.99) 0.79 (0.61; 0.98) 0.40 (0.26; 0.55) 0.50 (0.33; 0.67) 0.72 (0.57; 0.88)

NTI

Intercept -3.88 (-4.30; -3.45) -2.30 (-2.44; -2.15) -2.36 (-2.51; -2.22) -2.42 (-2.59; -2.26) -2.40 (-2.57; -2.23) -2.30 (-2.45; -2.15)
Historical change in temperature 3.55 (2.80; 4.29) 0.15 (-0.06; 0.37) -0.01 (-0.23; 0.21) -0.76 (-0.89; -0.63) 0.49 (0.16; 0.83) 0.29 (0.04; 0.54)
Historical change in precipitation 0.52 (0.28; 0.77) 0.48 (0.29; 0.67) 0.64 (0.45; 0.83) 0.60 (0.40; 0.81) 0.54 (0.35; 0.73) 0.18 (0.01; 0.35)
In situ diversification rates -0.25 (-0.37; -0.13) 0.09 (-0.03; 0.21) 0.01 (-0.10; 0.12) 0.03 (-0.13; 0.18) -0.08 (-0.20; 0.03) -0.06 (-0.19; 0.08)
1Mean (Lower CI; Upper CI)
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2.11 Supporting Information 6

2.11.1 Raw data representation
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Figure 2.18 (preceding page): Realm-comparison of the geographical extent size bias-corrected phylogenetic structure of bat as-
semblages – measured through the (A) rarefied net relatedness index (NRI) and (B) nearest taxon
index (NTI) – across a gradient of geographical extent restrictions (see Methods). Geographical ex-
tents were restricted for the (i) global, (ii) east-west hemispheric (New World versus Old World), (iii)
biogeographical realm, (iv) tectonic plate, (v) within-realm biome, and (vi) ecoregional extents. Bat com-
munities with positive values of NRI and NTI indicate that co-occurring species in these communities are
phylogenetically related in relation to a given geographical extent. Conversely, negative values of NRI
and NTI indicate that bat communities are mainly composed of distantly-related species in relation to
that given geographical extent. Boxplots overlay raw data values with added horizontal jitter for visibil-
ity. Dotted lines represent the confidence interval (at 95% or ±1.96 units) of the indices for phylogenetic
community structure.

87



2.12 Supporting Information 7

2.12.1 Effects of historical climatic stability and in situ diversification rates in
the odds of phylogenetic community structure from the upper quartile

When testing hypotheses H2 and H3 inferentially, we also used the upper unconditional quartile
(i.e., the 75th percentile) to obtain the binary outcomes for the phylogenetic structure (either NRI
or NTI) in each community (see Methods). With this, a value of one was assigned to a given com-
munity if it belonged to the 75th percentile of phylogenetic relatedness, otherwise a value of zero
was assigned to them. We then applied conditionally unbiased bounded influence robust logistic
regressions in which the response variable was the vector of binary outcomes (ones and zeros)
representing relatively high or low phylogenetic structure (separately for NRI and NTI) and the
predictors were z-score standardized values (i.e., to have mean zero and variance one) of historical
change in temperature, historical change in precipitation and in situ net diversification rates. With
this, we could estimate the relative importance of each predictor within a single model. To estimate
confidence intervals for each predictor, we used a bootstrap approach based on 1,000 resamples of
2,500 random communities each. This approach allowed us to explicitly test how changes in his-
torical climatic stability and in situ diversification rates independently increased (or decreased) the
log-odds (the logistic response) of a community being composed of highly phylogenetically related
species (in relation to the 75th percentile).

These results were highly qualitatively similar to the ones using the 90th percentile of phylogenetic
relatedness as cut-off, with the exception for the effects of historical change in temperature at the
global sampling geographical extent (see Figure 2.5 and Figure 2.19, and Tables 2 and Table 2.9).
This highlights the variation in importance of temperature stability across different portions of the
gradient of phylogenetic relatedness in biological communities.
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Figure 2.19: Influence of historical legacies on phylogenetic structure of bats across different geographical extents. Distributions
represent boxplot of bootstrapped logistic regression coefficients using binary outcomes (at the 90th percentile) for the
indices of phylogenetic community relatedness (𝑃𝑟(NRIQ75 = 1)) and 𝑃𝑟(NTIQ75 = 1)) as response variables (in separate
models) and the z-score standardized (with values transformed to have mean zero and one-unit variance) historical change
in temperature, historical change in precipitation and in situ net diversification rates as predictive variables. Phylogenetic
structure of bat communities was measured through the net relatedness index (NRI) and the nearest taxon index (NTI) at
each geographical extent. In situ net diversification rates were obtained by subtracting the difference between community-
weighted means weight-standardized for speciation and extinction rates. Paleoclimatic legacies for each bat community
were obtained as the historical change in climate since the last glacial maximum (LGM); specifically, the mean annual
temperature or logarithm of the mean annual precipitation from the contemporary period minus the estimated mean annual
temperature or logarithm of the mean annual precipitation from 22,000 years ago.
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Table 2.9: Influence of climatic legacies and in situ diversification rates on the phylogenetic structure of bat communities across
different geographical extents. Regression coefficients (and ± 95% bootstrap-based confidence intervals) for the robust
logistic generalized linear models using binary outcomes (at the 90th percentile) for the indices of phylogenetic community
relatedness (𝑃𝑟(NRIQ975 = 1)) and 𝑃𝑟(NTIQ75 = 1)) as response variables (in separate models) and the standardized (mean
zero and variance one) historical change in temperature, historical change in precipitation and in situ net diversification rates
as predictive variables. The phylogenetic structure of bat communities was measured through the net relatedness index (NRI)
and the nearest taxon index (NTI) at each geographical extent. In situ net diversification rates were obtained by subtracting the
difference between community-weighted means weight-standardized for speciation and extinction rates. Historical change in
climate for each bat community was obtained as the difference between the contemporary climate (either temperature or the
logarithm of precipitation) from the estimated climate from the last glacial maximum (22,000 years ago).

Characteristic Global sampling, N = 1,0001 Hemispheric sampling, N = 1,0001 Realm sampling, N = 1,0001 Plate sampling, N = 1,0001 Biome sampling, N = 1,0001 Ecoregion sampling, N = 1,0001

NRI

Intercept -1.94 (-2.10; -1.79) -1.34 (-1.46; -1.21) -1.79 (-1.96; -1.62) -1.65 (-1.80; -1.50) -1.33 (-1.45; -1.21) -1.24 (-1.35; -1.14)
Historical change in temperature -0.36 (-0.49; -0.23) -0.60 (-0.75; -0.44) -1.56 (-1.75; -1.36) -1.54 (-1.73; -1.36) -0.57 (-0.71; -0.43) -0.22 (-0.31; -0.12)
Historical change in precipitation 1.91 (1.65; 2.16) 0.63 (0.46; 0.81) 1.64 (1.41; 1.87) 1.28 (1.05; 1.50) 0.68 (0.52; 0.84) 0.40 (0.24; 0.56)
In situ diversification rates 1.23 (1.10; 1.37) 0.88 (0.74; 1.01) 1.18 (1.00; 1.36) 1.11 (0.97; 1.26) 0.80 (0.66; 0.94) 0.66 (0.55; 0.78)

NTI

Intercept -1.50 (-1.63; -1.36) -1.15 (-1.24; -1.06) -1.21 (-1.32; -1.11) -1.26 (-1.38; -1.14) -1.20 (-1.30; -1.09) -1.16 (-1.26; -1.07)
Historical change in temperature 0.85 (0.59; 1.11) -0.17 (-0.28; -0.07) -0.45 (-0.54; -0.35) -1.11 (-1.26; -0.96) -0.11 (-0.22; -0.01) 0.06 (-0.06; 0.19)
Historical change in precipitation 0.78 (0.61; 0.95) 0.46 (0.34; 0.59) 0.55 (0.41; 0.68) 0.70 (0.52; 0.88) 0.51 (0.37; 0.65) 0.25 (0.12; 0.38)
In situ diversification rates 0.31 (0.21; 0.40) 0.21 (0.11; 0.32) 0.36 (0.24; 0.47) 0.38 (0.25; 0.50) 0.39 (0.28; 0.51) 0.29 (0.18; 0.41)
1Mean (Lower CI; Upper CI)
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Chapter 3

Climatic frequency drives specialisation in
biological communities: insights from
simulations and tetrapods worldwide

3.1 Abstract

Climate profoundly shapes biological communities, dictating their diversity, structure, and func-
tion. Although spatial heterogeneity in climatic conditions is often associated with more generalist
species, the role of climatic frequency has been largely ignored. We identify that a critical, yet
underexplored dimension of this relationship, the spatial frequency in climate—how often certain
climatic conditions recur across space—strongly affects climatic specialisation in biological com-
munities. We first analyzed global climatic conditions and the geographical distributions of more
than 30,000 species belonging to four major taxa of tetrapods: amphibians, birds, mammals, and
reptiles. We then used an array of theoretical simulations, we demonstrate that rare environments
can limit the specialisation within communities regardless of the characteristics of the environ-
ment itself. Our findings reveal that common environments put generalist species at a competitive
disadvantage as they are outcompeted by specialists. Conversely, rare environments hinder spe-
cialization, facilitating the prevalence of generalists. Our conclusions demonstrate that beyond
within-community environmental averages and variation, the frequency of a given set of environ-
mental conditions also affects how specialist and generalist species are selected to inhabit local
communities.

3.2 Introduction

Climate—the long-term trends of temperature, precipitation and other meteorological variables—
profoundly shapes ecosystem structure and dynamics (Currie & Paquin 1987; Parmesan 2006; Fine
2015; Rammig &Mahecha 2015). Through its interaction with species-specific adaptations, which
confer varying tolerances to specific conditions (Hutchinson 1957), climate determines the spatial
and temporal success of individuals and populations (Holt 2009). Consequently, climate delineates
geographical boundaries of species distributions (Sexton et al. 2009), regulates their population
abundances (Gaston 2009b), influences their phenological timing (Forrest & Miller-Rushing 2010;
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Lamers et al. 2023), and shapes their interactions with other species (Englund et al. 2011). These
factors collectively contribute to the unique composition of biological communities (Zhang et al.
2018; Oita et al. 2021; Terry et al. 2022), underpinning global biodiversity patterns (Hawkins et
al. 2003; Wang et al. 2009; Vázquez-Rivera & Currie 2015).

The consensus that rapid anthropogenic climate change is profoundly altering Earth’s ecosystems
(IPCC 2014; Cook et al. 2016; Pecl et al. 2017; Díaz et al. 2019) has catalysed extensive research
into the ecological responses to climate. Most studies have focused on the effects of average con-
ditions, and to a lesser extent, variability and extremes, in climate on biodiversity (e.g., Easterling
et al. 2000; Craine et al. 2012; Solow 2017; Zhang et al. 2018; Terry et al. 2022). However, few
have recognized how spatially common and rare climates influence patterns of biodiversity (but see
Parmesan 2006; Meyer & Pie 2018; Fournier et al. 2020; Coelho et al. 2023; Cutts et al. 2023).

In this study, we established the spatial frequency of climatic conditions as a critical, yet overlooked,
driver of species occurrence and assembly patterns. By analyzing empirical data from over 26,000
species of tetrapods (four-limbed vertebrates) and using theoretical models of ecological dynam-
ics, we demonstrated that the frequency of climate across space significantly influences species
distributions and coexistence based on their climatic specializations. These effects are beyond di-
rect climatic controls on climatic specialisation along the specialisation gradient. Our findings not
only highlight an essential factor in community assembly, but also have significant implications
for understanding ecological responses to climate change. Alterations to spatially rare climatic
conditions, such as contraction or disappearance, across geographical scales have the potential to
profoundly alter biological communities (Saxon et al. 2005; Williams et al. 2007).

Every species has a realized ecological niche, representing the set of environmental conditions that
allow its persistence, as conceptualized by Hutchinson (1957). The breadth of the niche describes
the range of habitats or resources a species utilizes. Species with narrow niche breadths are termed
‘specialists’, and are specialized on (or constrained to) exploiting reduced sets of environmental
conditions (Smith 1982; Brown 1984). Conversely, species with wide niche breadth are termed
‘generalists’ and are adapted to exploit a broader spectrum of environments, often at the cost of
reduced efficiency in any particular niche dimension or component (Wilson & Yoshimura 1994;
see McPeek 1996; Morris 1996; Chase & Leibold 2003).

Climate, in terms of both spatial average and variability (e.g., within patches, combinations of
patches, or regions), not only imposes physiological constraints that filter specialists from regions
with non-optimal conditions but also influences the strength and outcomes of species interactions
(Pither 2003; Fauteux et al. 2021; Antão et al. 2022). While generalists can persist across broader
climatic gradients, it is widely assumed they may be outcompeted by specialists within their opti-
mal conditions (MacArthur & Levins 1964; Morris 1996). This dynamic suggests a potential for
competitive exclusion of generalists, where antagonistic interactions among overlapping niches pre-
clude stable coexistence (Hardin 1960). However, empirical evidence often contradicts this simplis-
tic expectation (e.g., Wilson & Yoshimura 1994; Morris 1996; Abrams 2006; Bar-Massada 2015;
Brazeau & Schamp 2019). Sustained coexistence between generalists and specialists is known to
be possible due to temporal variation and spatial heterogeneity in environmental conditions (Kassen
2002; Nagelkerke &Menken 2013), resource partitioning (Schoener 1974; Chase & Leibold 2003),
colonization-extinction trade-offs (Wilson & Yoshimura 1994; Egas et al. 2004), mutualistic inter-
actions (Bastolla et al. 2009), fitness variation (Chesson 2000b), dispersal limitation (Büchi &
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Vuilleumier 2014), evolutionary rescue (Bono et al. 2015), all of which act to mitigate competition
and promote community diversity.

The spatial frequency of climate, reflecting the commonness or rarity of climatic conditions over
spatial extents, may significantly influence species distributions and their co-occurrences, particu-
larly based on their specialization strategies. Specialization on scarce resources is typically infre-
quent (Kassen 2002). Rare climates, which are often spatially fragmented and more unstable, may
favour generalist species because of their resilience to edge effects and environmental instability
(Holway 2005; Magura et al. 2017). Specialists, on the other hand, may be especially susceptible
to environmental and demographic fluctuations and face restricted movements in rare, unstable, or
highly variable climates (Lotterhos et al. 2021). Conversely, common climates could enable the
dominance of specialist species if they outperform generalists under stable environmental condi-
tions (Futuyma & Moreno 1988; Kassen 2002).

It is therefore intuitive to expect that extensive climatic specialisation is uncommon in rare climates.
However, this assumption has been challenged by findings of increased variability in specialisation
strategies with climatic rarity in angiosperm communities across the contiguous United States (see
Fournier et al. 2020). The mechanisms proposed to underlie these effects—namely, dispersal limi-
tation, environmental heterogeneity, and source-sink dynamics—provide a compelling explanation
for increased coexistence among generalist and specialists in rare climates. Despite the few studies
on the isolated effects of climatic frequency on diversity patterns across ecological communities
(e.g., Fournier et al. 2020; Coelho et al. 2023), a comprehensive empirical and theoretical approach
that integrates these mechanisms is still missing.

We investigate how the spatial frequency of environmental conditions drives environmental special-
isation through both empirical and theoretical lenses. First, we analyze global climatic conditions
alongside the geographical distribution of tetrapods, assessing how the climatic niche breadth of
amphibians, birds, mammals, and reptiles is influenced by the commonness of climatic conditions
across space. Second, leveraging the theory of metacommunities—where communities are spa-
tially linked by the dispersal of multiple potentially interacting species (Hanski 1999; Leibold et
al. 2004)—, we conduct mechanistic simulations of minimal population dynamics under explicit
spatial and environmental structure. Metacommunity simulations, which are well-established for
reproducing and elucidating the mechanisms that maintain biodiversity patterns across spatialized
landscapes (Thompson et al. 2020), provided us a controlled framework to understand how the
spatial frequency of environmental conditions, environmental heterogeneity, disturbance, and dis-
persal influence species distributions and coexistence dynamics along specialisation gradients. The
combined theoretical and empirical allowed us to test predictions that rare environments (here, ‘cli-
mates’) constrain specialization while enabling the coexistence of both generalists and specialists.
We found that climatic frequency strongly regulated species distributions and coexistence along
the specialisation gradient, consistently across taxonomic groups, geographical scales, and sim-
ulated communities. Our empirical observations from tetrapod communities globally align with
our theoretical models, suggesting a generalizable pattern governing ecological specialization and
community assembly through environmental frequencies across space.
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3.3 Results

3.3.1 The distribution of climatic frequency worldwide

We first investigated the distribution of climatic frequency across terrestrial regions worldwide and
its impact on the specialization of tetrapods and their communities.

We began with overlaying Earth’s terrestrial landscapes onto a hexagonal tessellation, with each
hexagon representing an ecological community. This tessellation, superior to square-grid cells
(Birch et al. 2007), formed the basis of our analyses of climatic conditions and species distri-
butions (see Methods). Recognizing the scale-dependence of climatic and ecological processes
(Levin 1992; Ricklefs & Schluter 1993; Chase 2014; Chase et al. 2018), we calculated the spatial
frequency of climatic conditions across three hierarchical geographical scales: global, hemispheri-
cal, and biome. These scales, commonly used in studying spatial scale-dependence in community
ecology, are closely linked to eco-evolutionary mechanisms shaping regional biodiversity (Ricklefs
& Latham 1992; e.g., Jenkins & Ricklefs 2011; Mucina 2019). For simplicity, we present findings
at the global scale in the main manuscript and provide detailed analyses for the other scales within
the Supporting Information (see Supporting Information at Section 3.8 and Section 3.10).

We first extracted contemporary climatic conditions for each hexagon from a set of high-resolution
eight bioclimatic variables derived from monthly temperature and precipitation (Fick & Hijmans
2017). These bioclimatic variables are often associated with species’ physiological limits, and con-
strain their distributions and ecosystem dynamics (e.g., Garcia-Porta et al. 2019). To condense cli-
mate data while preserving covariance among climatic variables, we applied a principal component
analysis, selecting the first principal components that cumulatively accounted for more variation in
climate than expected by a broken-stick model (see Jackson (1993); see Table 3.1).

Next, we described the spatial commonness of climate by computing multivariate binned kernel
density estimates on the selected climatic principal components (Duong & Hazelton 2003). Mul-
tivariate approaches are preferred over simpler univariate analyses of climatic conditions because
it integrates the interplay among multiple climatic factors and their spatial heterogeneity (Zscheis-
chler & Seneviratne 2017; Abatzoglou et al. 2020). This analysis yielded estimates of the spa-
tial frequency distribution of climatic conditions, ranging from exceedingly rare to very common,
across terrestrial communities worldwide (excluding Antarctica; see Figure 3.1, Figure 3.5).

We revealed that abrupt transitions from common to infrequent climates typically occur near major
mountain ranges, such as the Andes, the Alaska and Saint Elias ranges, the Himalayas, and the
Caucasus chains (see Figure 3.1, Figure 3.5). Arid deserts and polar climates emerged as the rarest
climates, whereas tropical savannas, rain forests, and monsoon climates were the most common
(see Table 4.1, and Figure 3.6).

The predominance of rare climates in mid- to high-elevation and coastal regions aligns with pre-
vious studies on climatic frequency across various geographical extents (e.g., Batllori et al. 2014;
Wang et al. 2018; Fournier et al. 2020; Cutts et al. 2023). Our analysis also revealed that rare
climates have higher densities at broader geographical scales compared to narrower ones (details
in Figure 3.5, and Figure 3.6). Because environmental (climate) isolation and fragmentation can
lead to reduced dispersal, increased vulnerability to local extinctions, and limited gene flow among
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Figure 3.1: The distribution of global-scale climatic frequency across space. Climatic frequency
was calculated via multivariate kernel density estimates on the principal components of
eight bioclimatic variables representing precipitation and temperature.

populations (Quinn & Harrison 1988; Tilman et al. 1994; Fahrig 2003), which affect community
structure and specialisation dynamics (see Gamboa et al. 2024), we also investigated the extent to
which common climatic conditions are better geographically connected and widespread in relation
to rare climates. By computing the average climatic distances weighted by geographical distances
of each geographical cell (i.e., ecological community) in relation to all others, and contrasting these
with the frequency of climate across space, we observed that communities withing rare climates
are climatically distinct and isolated, while communities withing common climates are better con-
nected and exhibit more similar climatic conditions (see Figure 3.2, Figure 3.10; Section 3.9). This
pattern suggests that common climates promote higher connectivity and stability within ecological
communities, while rare climates contribute to fragmentation and ecological isolation.

3.3.2 Climatic frequency restricts specialisation in tetrapod communities
globally

Using geographical distribution data of 26,971 terrestrial four-limbed vertebrate species — includ-
ing 4,409 amphibians, 10,384 birds, 4,994 mammals, and 7,184 reptiles — we investigated the
effects of climatic frequency on climatic specialization. Our analysis considered both the climatic
conditions themselves and the heterogeneity of climate within each community (geographical cell).

We measured climatic specialization for each species by calculating their climatic tolerances (i.e.,
climatic niche breadth) using the outlying mean index (Dolédec et al. 2000), which describes the
hypervolumetric space of a species’ niche across environmental variables (sensu Hurlbert 1978;
also see Thuiller et al. 2005). Here, the climatic niche breadth of each species was computed
based on the same principal components from our prior analyses to estimate the spatial frequency
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Figure 3.2: Rarer climates are more climatically distinct and geographically isolated than
common climates globally. The average climatic (Mahalanobis) distance was
weighted by the average geographical distance between all geographical cells
(hexagons) across percentiles of climatic frequency across global terrestrial landscapes
(n = 2424 geographical cells per percentile; see Methods and Supporting Information
in Section 3.9). Vertical bars represent 95% confidence intervals.
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of climates (Figure 3.1, Figure 3.5).

To assess the effects of climatic frequency on climatic specialization across taxonomic groups and
geographical scales in tetrapod communities, we performed a series of double generalized linear
models [DGLMs; Smyth (1989); Smyth & Verbyla (1999)]. DGLMs extend the generalized linear
model framework by simultaneously modelling the mean and dispersion (variance) of the response
variable. This approach is particularly suitable when the variance in the response variable is not
constant (Smyth 1989). By capturing both the effect of mean climatic frequency and its variabil-
ity across ecological contexts, we can make inferences about the dynamics of co-occurrence and
specialization within communities.

Our results provide strong evidence that climatic frequency significantly influences community
specialization across all tetrapod taxa. On a global scale, we found that the spatial frequency of
climatic conditions reduces the average niche breadth within tetrapod communities (see Figure 3.3,
and Table 3.2). Communities in very common climates harbour mostly specialist species, while
communities in rare climates harbour more generalist species (see Figure 3.3, Figure 3.7). We also
observed that the variability in community mean niche breadth decreases with climatic frequency,
suggesting that communities in rare climates favour the co-occurrence of specialist and generalist
species while specialists dominate in common climates (see Figure 3.3). These models explained
29% of the variation in community average niche breadth in amphibians, 38% in birds, 44% in
mammals, and 19% in reptiles (see Table 3.2).

The responses of climatic specialisation in tetrapods to climatic frequency were qualitatively consis-
tent for climatic frequency measured across more geographically restricted extents (see Figure 3.8
and Figure 3.9). Interestingly, in amphibian and reptilian communities, higher climatic frequency
was associated with reduced variability in specialisation across all scales, reflecting more special-
ized niche adaptations in response to frequent climatic conditions. In birds and mammals, while the
global and hemispheric scales showed similar trends, the effect was less pronounced at the biome
scale (see Table 3.2).

Climatic frequency continued to negatively influence climatic specialization in tetrapod communi-
ties in our statistical models accounting for the influence of climatic heterogeneity (see Table 3.3).
When considering climatic heterogeneity along with climatic frequency within communities, our
models explained 30% of the variation in average niche breath for amphibians, 40% for birds, 47%
for mammals, and 32% for reptiles (see Table 3.3). Notably, the effect sizes for climatic frequency
were often stronger than those of climatic heterogeneity, which is one of the strongest predictors of
environmental generalisation in ecological communities (Levins 1968; Futuyma & Moreno 1988;
Kassen 2002; Ackermann & Doebeli 2004). This pattern remains evident across hemispheric and
biome scales, although the strength of the relationship varies among taxonomic groups (see Ta-
ble 3.3).
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Figure 3.3: The spatial frequency of climatic conditions strongly constrains specialisation in tetrapods worldwide. The spatial fre-
quency of climatic conditions negatively influenced the average of niche breadth in amphibian, bird, mammal, and reptilian
communities. Each point represents a community (geographical cell). Across all four groups of tetrapods and their communi-
ties, common climates allow for increased variation in niche breadth while rare climates favour decreased niche breadth (i.e.,
specialisation). The calculation of climatic frequency for each community at the global scale was based on contemporary
climatic conditions across the globe. The continuous and dashed lines respectively represent mean and dispersion fits for
effects of climatic frequency on community weighted average niche breadth using double generalized additive model with
Gamma log-link functions (see Methods). We credit the animal silhouette icons to PhyloPic (phylopic.org).
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3.3.3 Simulations of ecological dynamics demonstrate that environmental
frequency influences ecological specialization

To elucidate the ecological mechanisms and dynamics behind throughwhich climatic frequencyme-
diates and shape large-scale ecological dynamics, we employed a theoretical simulation approach
that allows for a controlled exploration of ecological processes (Huston et al. 1988; see Levin 1992).
We used a process-based metacommunity framework to simulate population dynamics across a spa-
tially explicit landscape (detailed inMethods). This model, which integrates both deterministic and
stochastic elements, encompassed metacommunities undergoing reproduction, competition, disper-
sal among patches (hereafter “internal dispersal”), and dispersal from the regional pool (hereafter
“external dispersal”), population limit regulation, and disturbance. Our model draws heavily from
well-established studies (Büchi & Vuilleumier 2014; e.g., Thompson et al. 2020).

Each metacommunity in our simulation consisted of a network of patches, or local communities,
situated along a spatially autocorrelated, normally distributed and temporally static environmental
gradient, such as temperature or precipitation (sensu Hanski 1999). We initiated communities with
individuals randomly sourced from a regional pool, where species varied among themselves in
terms of environmental niche breadth and optima.

Our simulations explored three ecological scenarios that cumulatively incorporated more complex-
ity in the responses of populations to environmental conditions during reproduction and competi-
tion (see Methods). This design enabled us to assess the extent to which the modulation of spatial
frequency of climate on specialisation arises from different environmental controls on population
dynamics and species coexistence.

The first and most basic ecological scenario, the “equal competition” scenario, relates population
growth rates to environmental suitability. Here, the closer species and populations were to their pre-
ferred environmental conditions (i.e., the overlap of their niche breadth and proximity to their niche
optima), the higher was their population growth (Hutchinson 1957). This scenario disregarded the
direct effects of environmental conditions on species’ competitive performances and the intensity
of interspecific competition, thereby assuming that individuals of all species competed equally.
Here, coexistence was unstable and primarily driven by stochastic processes (Hubbell 2001).

The second and third scenarios progressively incorporated environmental influences into competi-
tive interactions. In the “niche overlap competition” scenario, species whose environmental optima
were closer to the patch’s condition had superior competitive performance (Tilman 1982, 1994). In
the more complex “niche overlap and environmental proximity” scenario, in addition to varying
competitive effectiveness based on proximity to optimal environmental conditions, species with
overlapping environmental niches faced more intense competition (Chesson 2000b, a). These dy-
namics ensured that competition coefficients dynamically adjusted in response to environmental
suitability and species’ specialisation strategies (see Amarasekare 2003 and references therein).

Alongside deterministic environmental controls on population dynamics, dispersal and disturbance
significantly impact community composition by altering immigration, extinction, and growth rates
of individuals and species across patches (Vellend 2016). Dispersal can counteract the effects of
local environmental selection and competitive exclusion on population dynamics, thereby promot-
ing local species diversity and community homogenization through the influx of individuals that

99



might otherwise face extinction in a metacommunity (Leibold et al. 2004). Conversely, stochastic
disturbances reshape community assembly at both local and regional scales by driving extinction-
colonization dynamics, mass effects, and dispersal, thereby introducing variability into community
composition (Altermatt et al. 2011; Vanschoenwinkel et al. 2013; Ojima & Jiang 2017).

To further examine the mechanisms behind effects of climatic frequency on specialisation, we sim-
ulated scenarios with varying rates of internal (among-patch) and external (from the regional pool)
dispersal, alongside stochastic disturbances (see Fukami 2005). If our prediction holds that spe-
cialization in rare environments is infrequent, then under decreased disturbance and internal and
external dispersal rates, specialists should outperform their co-occurring generalists and thus dom-
inate spatially common environments. Conversely, when disturbance and dispersal rates increase,
generalists—assumed to be more resilient, better colonizers, and prolific dispersers (Futuyma &
Moreno 1988; Devictor et al. 2008; Verberk et al. 2010; Büchi & Vuilleumier 2016)—would
thrive alongside or potentially outperform specialists in their optimal environments.

We ran each simulation for 1,400 steps, which provided sufficient variation in community dynamics
to establish equilibrium states. At the conclusion of our simulations, we computed the spatial fre-
quency of environmental conditions using a univariate kernel density estimation approach (Duong
& Hazelton 2003; see Chacón & Duong 2018), and investigated how it influenced ecological spe-
cialisation in the simulated metacommunities.

Across scenarios, we fitted ordinary least square regressions, with response variables describing
niche breadth and predictive variables for the spatial frequency in environmental conditions across
communities. This was done separately for each combination of internal dispersal, external disper-
sal, disturbance, and ecological competition scenarios.

The spatial frequency of environmental conditions was strongly associated with specialization
within the communities we simulated (see Figure 3.4). How strongly species and communities
responded to environmental frequency varied with the regimes of dispersal, disturbance and com-
petition we implemented.
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The abundance-weighted average of niche breadth across communities strongly decreased with
the spatial frequency of environmental conditions when species competitive performance and the
intensity of competition were mediated by the environment (i.e., through niche overlap and en-
vironmental matching) (see Figure 3.4). These effects were especially stronger under decreased
disturbance, internal and external dispersal rates (see Figure 3.4).

the responses of community niche breadth to the spatial frequency of environmental conditions
(Figure 3.4). Importantly, the tendency for niche breadth to decrease with spatial frequency of
the environment was less evident in scenarios with decreased or absent environmental controls on
competition (equal competition and niche overlap competition scenarios; Figure 3.4). Increasing
internal dispersal (or between-patch dispersal) and disturbance also homogenized environmental
frequency, but their effects were lower than the ones of external dispersal.

We assessed the robustness of these findings through simulations of metacommunity dynamics
spanning a broad range of parameters to reflect a diverse array of ecological scenarios see 3.4.
Varying the number of patches, the diversities of the local community and of the species pool, and
the intensity of the dispersal decay for internal dispersal produced qualitatively similar negative
influence of climatic frequency across space on specialisation see Supporting Information in 3.13,
Figure 3.12.

Taken together, these results suggest that environmental specialisation increases with the spatial
frequency of environmental conditions in simulated metacommunities. They demonstrate the ten-
dency of communities in rarer climates to favour increased co-occurrence of generalists and special-
ists, aligning with the observations from our empirical analyses. This pattern suggests that the rarity
of environmental conditions creates a niche space where both generalists and specialists can find
suitable conditions to thrive, potentially because of reduced competitive pressures for specialists.

3.4 Discussion

Our study demonstrates that the spatial frequency of climatic conditions significantly influences
ecological communities. By analysing results from mechanistic simulations and empirical data
on tetrapods within global climates, we identified consistent patterns showing that common envi-

Figure 3.4 (preceding page): Community-level environmental specialisation responses to the
spatial frequency of environmental conditions in simulated meta-
communities under different ecological competition scenarios,
and varying rates of disturbance, external dispersal and internal
dispersal. Each point represents a different simulation under a com-
bination of ecological scenarios, with varying rates of disturbance,
external dispersal, internal dispersal, and environmental mediation in
competition. Here, 𝛽 denotes the ordinary least square regression co-
efficient of the spatial frequency of the environment in each commu-
nity on the community’s abundance-weighted average of environmen-
tal niche breadth.
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ronments promote specialization. In contrast, rare environments support the coexistence of both
specialists and generalists. These findings have important implications for understanding commu-
nity assembly and species distribution patterns in response to varying climatic conditions.

Ecological theory posits that environmental specialization is driven by the availability and distribu-
tion of suitable habitats, mediated by competition, dispersal, and disturbance dynamics (Hutchinson
1957; Chesson 2000b; Leibold et al. 2004; Büchi & Vuilleumier 2014). Our findings indicate that
these dynamics are significantly influenced by the spatial frequency of climatic conditions. Our
theoretical simulations revealed that the impacts of environmental frequency on specialization are
most pronounced when both the intensity of competition and competitive performance are envi-
ronmentally driven. Specifically, in scenarios where niche overlap and environmental suitability
govern competitive interactions, communities in common environments exhibit higher levels of
specialization compared to those in rare environments. This pattern supports the competitive ex-
clusion of generalists by specialists in stable, common climates and suggests that niche differenti-
ation mechanisms are at play in these frequent environments (MacArthur & Levins 1964; Tilman
1982). Consequently, species in common environments should show greater differences in their
niche optima compared to species in rare climates, resulting in reduced niche overlap and increased
specialization (Chesson 2000b).

Decreased external dispersal (immigration or invasion from the species pool) and internal disper-
sal (between-patch dispersal), along with reduced disturbance, amplified the effects of climatic fre-
quency on specialization in our simulations. Reduced dispersal and disturbance rate led to stronger
negative correlations between niche breadth and climatic frequency. This is because limited immi-
gration restricts the influx of generalist species that might otherwise persist through mass effects,
while decreased disturbance minimizes the opportunities for competitive release, allowing special-
ists to dominate in common climates (Hanski 1999; Chesson 2000a; Büchi & Vuilleumier 2014).
Conversely, increased dispersal and disturbance rates buffer the specialization-promoting effects
of climatic frequency. Higher external dispersal rates facilitate the continuous influx of species
with varying niche breadths, promoting species diversity and reducing the dominance of special-
ists (see Vellend 2016 and references therein). Similarly, frequent disturbances create opportunities
for generalists to recolonize and persist, thereby mitigating competitive exclusion and promoting
coexistence (Altermatt et al. 2011).

Our empirical findings closely align with the predictions of our theoretical simulations, providing a
mechanistic demonstration of the influence of climatic frequency on the selection of species to form
local communities on the basis of their ecological specialization. Specifically, the mechanisms we
identified can explain the observed patterns in tetrapods globally. Common climates tend to favour
specialists among tetrapods due to increased environmental stability, allowing these specialists to
exploit their niche optimally and out-compete generalists, who are less efficient in any specific
niche (Chesson 2000b).

In common climates, where similar climatic conditions are spatially widespread (i.e., better con-
nected and more homogeneous), communities are often composed of species with narrow niche
breadths (i.e., specialists) that minimize niche overlap (Chesson 2000b). This high level of niche
segregation is suggestive of competitive exclusion, where specialists, through effective resource
partitioning and competitive superiority, dominate their preferred environments and exclude gen-
eralist species (Tilman 1994). Such niche segregation in common climates is further supported

103



by the high beta diversity of their communities relative to their geographical proximity, indicating
increased spatial turnover among communities with different species composition (see Supporting
Information in Section 3.10; see Figure 3.11).

In contrast, rare climates, characterized by their spatial fragmentation and environmental variability,
diminish the competitive advantage of specialists. Increased geographical and climatic isolation in
rare climates (Figure 3.2, Figure 3.10) limits the dispersal opportunities for species, further influ-
encing specialization patterns. Reduced internal dispersal hinders the spread of both specialists
and generalists between communities (Leibold et al. 2004), leading to unique local community
compositions and high beta diversity weighted by geographical distance (see Figure 3.11). These
patterns are consistent across different spatial scales, emphasizing the broad applicability of our
findings and the importance of spatial climatic frequency in shaping biodiversity patterns.

Our study also sheds light on how biodiversity might respond to climate change. As climatic condi-
tions shift (Easterling et al. 2000; see IPCC 2014), the spatial frequency of environments changes,
potentially leading to the contraction or disappearance of rare climates. These changes can alter the
balance between specialists and generalists in ecosystems, affecting the coexistence among these
groups, and driving the homogenization of communities towards specialization, impacting biodi-
versity (Saxon et al. 2005; Williams et al. 2007). Conversely, the emergence of new, rare climates
(Radeloff et al. 2015) might create opportunities for generalists to thrive, likely shifting diversity
patterns in communities.

We acknowledge the simplicity of our model framework and recognize that incorporating factors,
such as evolutionary adaptation and temporal variations in environmental conditions, could add
further complexities to these dynamics. Despite this, our study provides a solid foundation for
understanding how climatic frequency influences community assembly across spatial scales. By
linking our theoretical model to empirical patterns, we highlighted the importance of including
spatial climatic frequency as a driver in ecological and biodiversity research. This approach should
also deepen our understanding of species and community responses to climate change and aid in
forecasting the impacts of shifting climatic conditions on biodiversity.

3.5 Methods

3.5.1 Empirical assessment

3.5.1.1 Study area

To spatially aggregate all biodiversity and climate data for our study, we established an equal-area
flat-topped hexagonal tessellation covering Earth’s terrestrial lands, compiled from Natural Earth
(naturalearthdata.com) and projected to a Behrmann cylindrical equal-area projection. We opted
for a hexagonal tessellation instead of a traditional square cell grid, because hexagons provide
equidistant connections to neighbouring geographical cells. This feature ensures a more accurate
representation of local movements and connectivity in ecological studies(Birch et al. 2007; White
& Kiester 2008). Each hexagon covered an area of 541.3 km2 with a short-diagonal length of 25
km. After eliminating hexagons with less than 50% terrestrial land coverage, we retained 248,139
hexagons (globally) for analysis.
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3.5.1.2 Species data

We gathered geographical distributions for amphibians, birds, mammals, and reptiles from the
IUCN Red List of Threatened Species database (IUCN 2022). We created presence-absence matri-
ces for each tetrapod group by intersecting species ranges with our hexagonal tessellation, ensur-
ing all data were aligned to the same equal-area projection. A species was considered present in a
hexagon if it occupied at least half of its area.

3.5.1.3 Climate data

We compiled nineteen bioclimatic variables from WorldClim version 2.1 (Fick & Hijmans 2017),
which are derived from monthly temperature and precipitation data averaged between 1970 and
2000. These variables underline the impact of temperature, precipitation, and energy constraints on
species distributions. We projected and aggregated these variables from their original resolution of
30 arc-seconds resolution to our equal-area hexagonal tessellation by computing the mean values of
the pixels contained within each hexagon. We then log-transformed non-symmetrically distributed
variables, primarily precipitation-related, to minimize data heteroscedasticity. Subsequently, we
identified and removed highly correlated bioclimatic variables using the variance inflation factor,
determined from iterations of 10,000 randomly selected hexagons.

Our refined dataset included eight bioclimatic variables: mean annual temperature (BIO 1), mean
diurnal range (BIO 2), temperature seasonality (BIO 4), mean temperature of the wettest quarter
(BIO 8), logarithm of 1 plus annual precipitation) (BIO 12), precipitation seasonality (BIO 15), log-
arithm of 1 plus precipitation of the warmest quarter (BIO 18), and logarithm of 1 plus precipitation
of the coldest quarter) (BIO 19).

3.5.1.4 Spatial climatic frequency

We characterized the spatial frequency of climatic conditions across communities using a probabil-
ity density estimation approach.

We first reduced the dimensionality of the climatic dataset through principal component analysis (as
in Graham 2003). We retained the principal components that captured a significant portion of the
climatic variation as determined by comparison of eigenvalues against the broken-stick distribution
(see Jackson 1993). These orthogonal principal components summarised 89.78% of the global
variation in climate (see Table 3.1), and were then used to calculate indices of spatial climatic
frequency and spatial climatic heterogeneity.

The probability density estimation approach was based on a multivariate kernel density applied to
the retained principal components, using a multivariate generalisation plug-in for bandwidth matrix
selection (see Jones 1994; Duong & Hazelton 2003; Chacón & Duong 2018).

To facilitate the interpretation of the density distribution, we scaled values to a range of zero and one.
These scaled values correspond to the frequency (or commonness) of climatic conditions across
the geographical space. Communities inhabiting geographical cells with lower climatic frequency
values experience rarer combinations of climates, while those with higher encounter more common
climatic conditions.
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3.5.1.5 Species climatic niche breadth, average community climatic niche breadth

We estimated climatic niche breadth for each species with the outlying mean index ordination
method [OMI; Doledec et al. (2000)]. OMI derives species niche position, breadth, and inertia
within a hypervolumetric space defined by a set of environmental variables [sensu the Hutchinso-
nian multidimensional niche; Hutchinson (1957)]. This method provides equal weight to species-
rich and species-poor sites. Within the OMI framework, species tolerances are derived by measur-
ing the dispersion of each species across their realized niches (sensuHurlbert 1978). Here, we used
the same principal components retained from the earlier principal component analysis on climatic
variation. Species with high tolerance values are considered generalists, occurring across a range of
wide climates, while those with low tolerance values are specialists, restricted to a narrower range
of climatic conditions. We used the average of climatic niche breadth within a geographical cell as
a measure of community specialisation.

3.5.1.6 Statistical analyses

To evaluate the impact of climatic frequency (predictor) on community mean climatic niche breadth
(response), we performed a series of double generalized linear models (DGLMs) (Smyth 1989;
Smyth & Verbyla 1999), across taxonomic groups and geographical scales in tetrapod communi-
ties. DGLMs extend the generalized linear model framework by jointly modeling the mean and
dispersion of the response variable, making them particularly suitable when the variance is not con-
stant (Smyth 1989). By capturing the direct effects of climatic frequency on average community
specialisation and the dispersion of niche specialization within communities, we could assess how
climatic frequency lead to specialisation, as well as whether rarer conditions lead varying niche
breadths, i.e., a mix of specialists and generalists. We specified the models with a Gamma family
distribution and a log-link function to account for the non-normal distribution of community mean
climatic niche breadth.

3.5.2 Theoretical simulations and model specifications

3.5.2.1 Landscape construction

To simulate the heterogeneity observed in natural landscapes, we constructed a spatial environment
composed of 400 discrete, equally spaced square cells. This structure enabled our process-based
metacommunity simulation of large-scale population dynamics and captures ecological dynamics
with manageable complexity (Weinstein & Shugart 1983; see Bowers & Harris 1994).

To mitigate boundary-induced anomalies (i.e., edge effects) typical in spatial simulations, we ap-
plied a toroidal structure to our landscape, wrapping the space around both horizontal and vertical
axes. This procedure allows for spatial dynamics (e.g. migration) to cross over from the edges to
their opposing sides of the landscape (see Supporting Information in Section 3.11).

A single variable of environmental conditions (𝑒𝑥) characterized all patches, and ranged between
0 and 1, with mean and variance of 0.5, following a normal distribution, as it is relevant for repre-
senting a broad range of ecological scenarios (Macarthur & Levins 1967; Chesson 2000b).
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We conditioned environmental conditions to be positively auto-correlated so that neighbouring cells
are more environmentally similar, a common feature in real environments (see Supporting Infor-
mation in Section 3.11).

3.5.2.2 Regional pool and local populations

We created a regional species pool consisting of 1,000 species, each characterized by a randomly
assigned environmental niche optimum, ranging from 0.05 to 0.95, which represents the ideal en-
vironmental condition for each species. Additionally, each species was given an environmental
niche breadth, ranging from 0.01 to 0.5. These attributes facilitate examining species’ responses
to varying environmental conditions (Hutchinson 1957; Chesson 2000b). From this regional pool,
we sampled 200 species along with their corresponding environmental niche optima and breadths
and distributed them across the landscape. Mirroring natural systems where species are introduced
sequentially and at low abundances, we placed a random number of individuals, up to a maximum
of 250, on 10 randomly chosen patches for each selected patch. These parameters were chosen to
strike a balance between computational efficiency and ecological realism.

3.5.2.3 Model dynamics

Our model simulates species population dynamics across the landscape over generations, incor-
porating the following phases: (1) reproduction and competition, (2) internal dispersal between
patches and external dispersal from the regional pool, (3) population regulation and (4) disturbance.
Throughout these phases, populations changes within each patch are driven by stochastic and de-
terministic events that influence the relative fitness of taxa.

We incorporated demographic stochasticity into all phases to reflect the unpredictability of natural
ecosystems, consistent with previous demographical models used in studying competitive com-
munities and metacommunities (Vellend 2016; Levins & Culver 1971; e.g., Fournier et al. 2017;
Shoemaker et al. 2020; Thompson et al. 2020; Khattar et al. 2021; Khattar et al. 2024).

3.5.2.3.1 Reproduction and competition phases

To simulate reproduction and interspecific competition dynamics within patches, we integrated the
Beverton-Holt discrete time population growth with generalized Lotka-Volterra, which are spatially
explicit for competition and dispersal. The Beverton-Holt model captures population reproduc-
tion dynamics (Beverton & Holt 1957), while the generalized Lotka-Volterra framework elucidates
the mathematical conditions under which competing species either coexist or exclude one another
based on competition intensity (Lotka 1925; Volterra 1926). These models are widely recognized
for their ability to simplify the complex dynamics of ecological interactions (Shoemaker et al. 2020;
e.g., Thompson et al. 2020; Guzman et al. 2022; Khattar & Peres-Neto 2023).

The population𝑁𝑡+1 of species 𝑖 at time 𝑡+1 in any given patch 𝑥, prior to dispersal is determined
by:
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𝑁𝑖,𝑡+1 = 𝑟𝑖,𝑡 × 𝑁𝑖,𝑡
1 + ∑𝑗 𝛼𝑖𝑗 × 𝑁𝑗,𝑡

,

where the numerator represents the population growth for 𝑁𝑡, while the denominator accounts for
the effects of interspecific competition from all species present in that patch on𝑁𝑡. In the numerator,
𝑟𝑖,𝑡 denotes the effective (or intrinsic) growth rate of species 𝑖 at time 𝑡, and in the denominator,
𝛼𝑖𝑗, the competition coefficient, quantifies the impact of species 𝑗 on species 𝑖 (see Shoemaker et
al. 2020).

The final population of each patch 𝑥 in any given time step as a positive number drawn from a
Poisson distribution ranging from 0 to 𝑁𝑡+1.

Intrinsic growth mediated by environmental niche matching-mismatching

Wemodelled population growth across patches as a function of species-specific niche preferences—
namely, their environmental optima and breadth, which strongly influence species reproductive suc-
cess across different habitats (see Holt & Gaines 1992) and the environmental conditions of each
patch, incorporating stochasticity. To ensure that reproductive fitness is influenced by environmen-
tal conditions, we adjusted species intrinsic growth rates based on the environmental conditions of
the patch, the species’ environmental optima, and species’ niche breadth using:

𝑟𝑖,𝑡 = 𝑟𝑚𝑎𝑥 × 𝑒− (𝑢𝑖−𝑒𝑥)2
2×𝑠2

𝑖 ,

where, 𝑟max represents the maximum potential growth rate of species, 𝑢𝑖 denotes the species’ niche
optimum, which is the environmental condition at which the species achieves maximum growth
rate, 𝑟max, 𝑒𝑥 the environmental condition of patch 𝑥, and 𝑠𝑖 is the species’ niche breadth, with
larger values reflecting a broader environmental tolerance.

This equation, derived from the Gaussian function (sensu Macarthur & Levins 1967), models the
species’ response to the environmental gradient, determining that the growth rate of a species de-
clines as the environmental conditions move away from the species’ niche optimum Thompson et
al. (2020).

Regulating density-dependent competition by environmental nichematching-mismatching and
by environmental niche overlap

To investigate how spatial climate frequency and variability influences specialization, population
dynamics, and species coexistence, we incorporated three ecological scenarios, progressively
adding complexity to the population responses to environmental conditions during competitive
interactions:

1. The “equal competition” scenario represents the most basic scenario, where reproductive
rates are tied to environmental suitability. In this scenario, a species’ reproductive success
is proportional to its proximity to preferred environmental conditions, determined by the
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overlap of its niche breadth with other species and closeness to its niche optima (Hutchinson
1957). Importantly, this scenario disregards the direct impact of environmental conditions on
interspecific competition and competitive performance, assuming equal competition among
all species. As a result, coexistence is unstable and primarily driven by stochastic processes
(Hubbell 2001);

2. The second scenario, the “niche overlap competition” scenario, incorporates the influence of
environmental optima on competitive performance (Tilman 1982, 1994). Here, species that
are more closely aligned with a patch’s environmental conditions become stronger competi-
tors;

3. The third and most complex scenario, the “niche overlap and environmental proximity” sce-
nario, further considers both the proximity to environmental optima and the intensity of com-
petition among species with overlapping niches. In this scenario, species with environmental
niches closer to the patch’s environment not only have higher competitive performance but
also experiencemore intense competition (Chesson 2000a). These dynamics ensure that com-
petition coefficients dynamically adjust in response to environmental suitability and species’
specialization strategies (see Amarasekare 2003 and references therein).

These dynamics ensured that competition coefficients dynamically adjusted in response to environ-
mental suitability and species’ specialisation strategies (see Amarasekare 2003; Chase & Leibold
2003).

To implement these different ecological scenarios, we allowed the competition coefficient of
species pairs, 𝛼𝑖𝑗, to be defined by two factors 𝜃𝑖𝑗, which define environmental niche matching
(or mismatching), and 𝛽𝑖𝑗 , which represents the environmental niche overlap between species 𝑖
and 𝑗, as detailed below.

Regulating density-dependent competition by environmental niche matching-mismatching

Considering that species are more competitive when they are closer to their optimal environments
(Hutchinson 1957; Macarthur & Levins 1967), we define 𝜃𝑖𝑗 as:

𝜃𝑖𝑗 = 𝑒
−(𝑑𝑖+𝑑𝑗)2

2×(𝑠2
𝑖 +𝑠2

𝑗 ) ,

where 𝑑𝑖 and 𝑑𝑗 denote the difference between the environmental value 𝑒 of the patch 𝑥 and the
species’ optimal environment 𝑢𝑖 and 𝑢𝑗, respectively. Species pairs whose environmental optima
are closer to the patch’s environmental conditions should exhibit higher 𝜃𝑖𝑗, and, consequently,
greater competitive ability.

This adjustment implies that species 𝑖 will be a stronger competitor when within its environmental
preferences, particularly against any given species 𝑗 whose environmental preferences do not align
with the local conditions.

Regulating density-dependent competition by environmental niche overlap
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Because species with similar niches compete more against each other (Hardin 1960), we also mod-
ulated 𝛼 by:

𝛽𝑖𝑗 = 𝑒
−(𝑢𝑖−𝑢𝑗)2

2×(𝑠2
𝑖 +𝑠2

𝑗 ) .

3.5.2.3.2 Internal dispersal phase

We assumed that the probability of individuals, 𝑃𝑚, moving from one patch to another decreases
exponentially with the spatial distance between patches, as follows:

𝑃𝑚 = 𝑒−𝛼×𝑑𝑡,𝑠,

where 𝑑𝑡𝑠 is the Euclidean spatial distance between the target patch 𝑡 and the source patch 𝑠, while
𝛼 is a decay parameter that adjusts the sensitivity (or strength) of dispersal to distance. This de-
cay function, based on empirical observations, reflects the tendency of organisms to migrate more
readily to nearby patches than those far away (Ovaskainen & Hanski 2001).

3.5.2.3.3 Population limit regulation phase

Population sizes can temporarily exceed their respective carrying capacities because of environ-
mental variability and species interactions (see Chapman & Byron 2018). Our model incorporates
density-dependent regulation by setting the carrying capacity𝐾 at 500 individuals per species. The
population size for species 𝑖 in patch 𝑗 at time 𝑡 + 1, 𝑁 𝑡+1

𝑖𝑗 , is calculated as:

𝑁 𝑡+1
𝑖𝑗 = {𝑁𝑖𝑗 if 𝑁𝑖𝑗 ≤ 𝐾

𝐾 otherwise

3.5.2.3.4 External dispersal phase

Each species 𝑗𝑟 in the regional pool has a probability 𝜌 to immigrate to the local landscape. To
prevent complete extinction across any given landscape, we allowed for non-zero probabilities that
individuals of any species in the regional pool arriving to the landscape.

Given a species’ environmental response, characterized by its environmental niche optimum 𝑢𝑗𝑟
and niche breadth 𝑠𝑗𝑟

(which can originate from either the local landscape 𝑢𝑖, 𝑠𝑖 or the regional
pool 𝑢𝑖regional, 𝑠𝑖regional), the likelihood that species establishing in a new patch depends on both the
regional immigration rate and stochastic events.

The immigration of species 𝑗𝑟 from the regional pool was implemented as:

𝐼𝑗𝑟
(𝜌) = {1, if a randomly drawn number < 𝜌

0, otherwise

110



If 𝐼𝑗𝑟
(𝜌) = 1 and species 𝑗𝑟 is not already present in the local landscape, it is then added to the

local population (and its species pool):

𝑗 ← 𝑗 ∪ 𝑗𝑟

After this, irrespective of whether species 𝑗𝑟 is newly introduced or was already present, a random
subset of patches 𝐼𝑗 is selected for this species to settle in. The populations’ matrix 𝑁 is updated
for species 𝑗 in patches 𝐼𝑗:

𝑁𝐼𝑗,𝑗 ← 𝑁𝐼𝑗,𝑗 + random integer between 1 to 5

Simultaneously, the environmental niche optima 𝑢𝑖 and niche breadth 𝑠𝑖 in the local landscape
species list are updated:

𝑢𝑖 ← 𝑢𝑖 ∪ {𝑢𝑖regional[𝑗𝑟]}

𝑠𝑖 ← 𝑠𝑖 ∪ {𝑠𝑖regional[𝑗𝑟]}

3.5.2.3.5 Disturbance phase

Since disturbances rarely affect all patches in a landscape uniformly (Turner et al. 1989), we defined
𝑃𝑑 as the probability that any patch 𝑖 will experience a disturbance event at any given time step in
our simulation.

When a patch is marked for disturbance, the resident species undergo a population decline pro-
portional to the disturbance intensity 𝐼𝑑, which represents the proportion of species populations
reduced in affected patches, as below:

𝑁 𝑡+1
𝑖𝑗 = floor (𝑁 𝑡

𝑖𝑗 × (1 − 𝐼𝑑))

We defined 𝐼𝑑 = 0.9, consistent with evidence showing that severe disturbances, such as wildfires
or catastrophic habitat destruction, can drastically reduce population size (Hughes 1994; e.g., Dale
et al. 2001; Dornelas 2010; Cunillera-Montcusí et al. 2021).

3.5.2.4 Simulation runs

We ran our simulations for 1,400 time steps (generations), which were sufficient to establish dy-
namic equilibrium states in species distributions and abundances.

Ourmodels contained a combination 1,209 different models (see Table 3.4 for a detailed description
of the parameters used in the simulations), each with 10 replicates, resulting in a total of 12,090
simulations.
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3.5.2.5 Statistical analysis

We fitted ordinary linear regressions to determine how environmental specialisation changed as
a function of the spatial frequency in environmental conditions (computed using the same kernel
density estimation approach as used with the empirical dataset; see Section 3.5.1.4) across the
different ecological scenarios (parameters) implemented in our simulation models.

3.5.3 Computational tools

All data manipulations and analyses were performed in R and RStudio (Posit Team 2023; R Core
Team 2023). Extended information on software and hardware used is available within the Support-
ing Information in Section 3.7.

3.6 Data Availability and Reproducibility Statement

All code and data necessary to reproduce the analyses and figures from this study are respectively
available within the Open Science Framework (accessible at osf.io/zcedg) repository for this study.

3.7 Supporting Information 1

3.7.1 Computational resources and tools

All data manipulation and analyses were performed in R (versions 4.0.4 and 4.3.0) and RStudio
Server (versions between 2022.07.2 and 2024.10.0) (Posit Team 2023; R Core Team 2023) on an
Ubuntu Bionic server with Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz, with 192 cores and
1.62 TB of RAM.While the meta-community simulations of ecological dynamics require few com-
putational resources and can be executed on an ordinary last-gen personal computer, the dimensions
of the empirical data are large (e.g., 248,139 rows, and up to 10,384 columns for the bird dataset,
making 2,576,675,376 elements), and its analysis and manipulation require large availability of
RAM (> 650 GB) and disk storage space (> 2 TB).

Parallelized computations were done using snowfall and doSNOW (Knaus 2015; Corporation
&Weston 2022). Geospatial manipulation was done using the sf, raster, terra, and exac-
textractr packages (Pebesma 2018; Hijmans 2022, 2023). Kernel density estimations were
performed using the ks package (Duong 2007, 2022). Multivariate niche analysis and decompo-
sition was performed using the ade4 package (Dray & Dufour 2007). Robust generalized linear
models were performed with the robust package (Wang et al. 2022). Quantile regressions were
performed using the quantreg package (Koenker 2021). Double generalized models were per-
formed and diagnosed with the dglm package (Smyth et al. 2023). General data manipulation was
done with the tidyverse package suite (Wickham et al. 2019). Figures were generated using
the ggplot2, ggpubr, and patchwork packages (Wickham 2016; Pedersen 2022; Kassam-
bara 2023). Tables were generated using the flextable package (Gohel & Skintzos 2024).
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Figure 3.5 (preceding page): Global distribution of climatic frequencies across geographical
scales. Three geographical scales are depicted: (a) global, (b) east-
west hemispheric, and (c) biomes. Climatic frequencies were calcu-
lated using probability density estimation methods based on the prin-
cipal components derived from eight bioclimatic variables represent-
ing precipitation and temperature (see Methods).
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Figure 3.6: Density distributions of climatic frequencies computed across geographical scales
for the (a) global, (b) hemispheric, and (c) biome scales. The shaded colour of
the curves denotes the hierarchical geographical extent from which climatic conditions
were subset and then used to compute climatic frequencies, being them: global (rose),
east-west hemispheric (blue), and biome (green), extents (see Methods). Acronyms
denominate worldwide biomes, and signify as follows: TmprtBrMF = Temperate
Broadleaf &Mixed Forests; Tundra = Tundra; TmprtGrSS = Temperate Grasslands, Sa-
vannas & Shrublands; MntnGrssS = Montane Grasslands & Shrublands; MdtrrnFWS
= Mediterranean Forests, Woodlands & Scrub; TrpclSGSS = Tropical & Subtropical
Grasslands, Savannas & Shrublands; FlddGrssS = Flooded Grasslands & Savannas; Tr-
pclSMBF = Tropical & Subtropical Moist Broadleaf Forests; DsrtsXrcS = Deserts &
Xeric Shrublands; Mangroves = Mangroves; TrpclSDBF = Tropical & Subtropical Dry
Broadleaf Forests; TrpclSbCF = Tropical & Subtropical Coniferous Forests; TmprtC-
nfF = Temperate Conifer Forests; BrlFrstsT = Boreal Forests/Taiga.

116



Table 3.1: Explained variation and correlations between bioclimatic variables and principal components. Correlations between
each bioclimatic variable and the first eight principal components (PC1 to PC8), alongside the explained variation (%) and
the cumulative explained variation (%) for each principal component. The bioclimatic variables correspond to: annual mean
temperature (BIO1), mean diurnal range (BIO2), temperature seasonality (BIO4), mean temperature of wettest quarter (BIO8),
annual precipitation (log-transformed) (log(1+BIO12)), precipitation seasonality (BIO15), precipitation of warmest quarter
(log-transformed) (log(1+BIO18)), and precipitation of coldest quarter (log-transformed) (log(1+BIO19)). The table also
includes the .

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

BIO1:
Annual
Mean
Temperature

0.545 -0.765 0.306 -0.034 -0.029 0.044 0.090 0.107

BIO2: Mean
Diurnal
Range
(Mean of
monthly
(max temp -
min temp))

0.781 0.053 -0.014 0.486 0.383 -0.061 -0.009 -0.010

BIO4:
Temperature
Seasonality
(standard
deviation *
100)

-0.210 0.847 -0.261 0.266 -0.154 0.260 0.078 0.053

BIO8: Mean
Temperature
of Wettest
Quarter

0.546 -0.667 -0.064 0.239 -0.412 0.148 -0.034 -0.062
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Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

log(1+BIO12):
Annual
Precipitation
(log-
transformed)

-0.627 -0.678 -0.275 0.028 0.191 0.069 0.161 -0.054

BIO15:
Precipitation
Seasonality
(Coefficient
of Variation)

0.688 -0.141 -0.566 -0.312 0.190 0.222 -0.058 0.013

log(1+BIO18):
Precipitation
of Warmest
Quarter (log-
transformed)

-0.595 -0.519 -0.532 0.200 -0.075 -0.193 -0.078 0.066

log(1+BIO19):
Precipitation
of Coldest
Quarter (log-
transformed)

-0.771 -0.363 0.356 0.110 0.190 0.294 -0.113 0.012

Explained
Variance
(%)

38.31 32.88 12.15 6.45 5.69 3.41 0.79 0.32

Cumulative
Explained
Variance
(%)

38.31 71.19 83.34 89.79 95.48 98.89 99.68 100
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Figure 3.7: Global distribution of average climatic niche breadth in tetrapod communities.
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Table 3.2:Model coefficients for the effects of climatic frequency on niche breadth across tetrapod communities at multiple geo-
graphical scales. The table presents mean and dispersion model coefficients from double generalized linear models (DGLMs)
fitted separately for amphibians, birds, mammals, and reptiles. Climatic frequency is calculated as the spatial frequency of
climatic conditions, while climatic heterogeneity is based on environmental variability within geographical cells. Nagelk-
erke’s R2 values indicate the proportion of explained variation for each model, and p-values less than 0.05 are highlighted in
bold. Models were fitted using the Gamma distribution with log-link functions for both the mean and dispersion structures.
Coefficients are presented for three spatial scales: global, hemispheric, and biome.
Taxonomic Group N Scale Nagelkerke’s R2 Null Deviance Residual Deviance Model Type Parameter Estimate Std. Error t Value P-value

(Intercept) -0.818 0.003 -291.282 0.000Mean

Clim. Frequency -1.134 0.007 -168.293 0.000

(Intercept) -0.331 0.008 -40.107 0.000

Global 0.295 267,494 217,782

Dispersion

Clim. Frequency -2.827 0.022 -130.051 0.000

(Intercept) -0.919 0.003 -283.381 0.000Mean

Clim. Frequency -0.727 0.008 -96.174 0.000

(Intercept) -0.384 0.009 -43.393 0.000

Hemisphere 0.157 243,039 219,362

Dispersion

Clim. Frequency -1.979 0.022 -88.439 0.000

(Intercept) -1.015 0.003 -374.767 0.000Mean

Clim. Frequency -0.481 0.006 -82.995 0.000

(Intercept) -0.542 0.008 -71.796 0.000

Amphibians 206,616

Biome 0.117 236,897 219,672

Dispersion

Clim. Frequency -1.615 0.019 -85.907 0.000

(Intercept) 0.299 0.002 170.594 0.000Mean

Clim. Frequency -1.273 0.006 -216.388 0.000

(Intercept) -1.247 0.007 -190.274 0.000
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Taxonomic Group N Scale Nagelkerke’s R2 Null Deviance Residual Deviance Model Type Parameter Estimate Std. Error t Value P-value

Global 0.380 332,048 251,214

Dispersion

Clim. Frequency -0.944 0.018 -52.322 0.000

(Intercept) 0.130 0.002 65.331 0.000Mean

Clim. Frequency -0.593 0.006 -106.800 0.000

(Intercept) -1.141 0.006 -181.183 0.000

242,359

Hemisphere 0.106 270,843 252,864

Dispersion

Clim. Frequency -0.655 0.017 -39.538 0.000

(Intercept) 0.048 0.002 28.259 0.000Mean

Clim. Frequency -0.342 0.005 -76.044 0.000

(Intercept) -1.228 0.006 -211.268 0.000

Birds

242,375 Biome 0.061 263,101 253,143

Dispersion

Clim. Frequency -0.299 0.014 -20.750 0.000

(Intercept) -0.255 0.002 -166.862 0.000Mean

Clim. Frequency -1.195 0.005 -262.739 0.000

(Intercept) -1.412 0.007 -203.145 0.000

Global 0.443 348,108 248,224

Dispersion

Clim. Frequency -1.729 0.019 -90.233 0.000

(Intercept) -0.340 0.002 -194.219 0.000Mean

Clim. Frequency -0.816 0.005 -177.680 0.000

(Intercept) -1.252 0.008 -162.165 0.000

242,055

Hemisphere 0.295 307,008 249,346

Dispersion

Clim. Frequency -1.589 0.020 -78.010 0.000

(Intercept) -0.473 0.002 -299.131 0.000Mean

Clim. Frequency -0.387 0.004 -103.694 0.000

(Intercept) -1.331 0.006 -213.007 0.000
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Taxonomic Group N Scale Nagelkerke’s R2 Null Deviance Residual Deviance Model Type Parameter Estimate Std. Error t Value P-value

Mammals

242,070 Biome 0.116 269,746 250,148

Dispersion

Clim. Frequency -1.020 0.016 -65.416 0.000

(Intercept) -0.390 0.002 -167.325 0.000Mean

Clim. Frequency -2.139 0.010 -210.025 0.000

(Intercept) -1.048 0.007 -153.615 0.000

Global 0.194 257,230 225,974

Dispersion

Clim. Frequency -0.023 0.018 -1.300 0.194

(Intercept) -0.633 0.003 -243.734 0.000Mean

Clim. Frequency -1.040 0.006 -165.473 0.000

(Intercept) -0.365 0.007 -54.989 0.000

Hemisphere 0.287 275,960 226,043

Dispersion

Clim. Frequency -2.406 0.017 -140.585 0.000

(Intercept) -0.777 0.002 -340.073 0.000Mean

Clim. Frequency -0.632 0.005 -115.738 0.000

(Intercept) -0.621 0.006 -107.937 0.000

Reptiles 213,723

Biome 0.184 256,204 226,832

Dispersion

Clim. Frequency -1.427 0.015 -98.062 0.000
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3.8.1 Accounting for the influence of climatic heterogeneity in the relationship
between climatic frequency and climatic specialisation

We performed double generalized linear models (DGLMs) to account for the effects of climatic
heterogeneity (as a covariate) in the relationship between climatic frequency and niche breadth
in tetrapod communities. These models were fitted using a Gamma distribution with a log-link
function to account for the positively skewed nature of the niche breadth data. The mean structure
of the model captured the central tendency of niche breadth, while the dispersion structure modelled
its variability.

Climatic frequency, defined as the spatial frequency of climatic conditions (see Methods for details
on the calculations), and climatic heterogeneity, defined as the mean Euclidean distance of climatic
conditions within geographical cells, were standardized across taxonomic groups and spatial scales
(global, hemispheric, and biome). Separatemodels were run for each taxonomic group (amphibians,
birds, mammals, and reptiles) to examine the effects across scales.

The negative relationship between climatic frequency and community mean niche breadth (for both
mean and dispersion) was still strong after controlling for the effects of climatic heterogeneity (see
Figure 3.8, Figure 3.9, and Table 3.3).
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Table 3.3:Model coefficients for the partial effects of climatic frequency and climatic heterogeneity on niche breadth across
tetrapod communities at multiple geographical scales. The table presents mean and dispersion model coefficients from
double generalized linear models (DGLMs) fitted separately for amphibians, birds, mammals, and reptiles. Climatic frequency
is calculated as the spatial frequency of climatic conditions, while climatic heterogeneity is based on environmental variability
within geographical cells. Nagelkerke’s R2 values indicate the proportion of explained variation for each model, and p-values
less than 0.05 are highlighted in bold. Models were fitted using the Gamma distribution with log-link functions for both the
mean and dispersion structures. Coefficients are presented for three spatial scales: global, hemispheric, and biome.

Taxonomic Group N Scale Nagelkerke’s R2 Null Deviance Residual Deviance Model Type Parameter Estimate Std. Error t Value P-value

(Intercept) -1.190 0.001 -794.496 0.000

Clim. Frequency -0.235 0.001 -164.415 0.000

Mean

Clim. Heterogeneity -0.049 0.001 -34.371 0.000

(Intercept) -1.256 0.004 -279.718 0.000

Clim. Frequency -0.577 0.005 -126.184 0.000

Global 0.293 267,061 217,721

Dispersion

Clim. Heterogeneity -0.028 0.004 -6.319 0.000

(Intercept) -1.168 0.002 -689.113 0.000

Clim. Frequency -0.149 0.002 -91.306 0.000

Mean

Clim. Heterogeneity -0.062 0.002 -38.237 0.000

(Intercept) -1.065 0.005 -223.733 0.000

Clim. Frequency -0.411 0.005 -84.979 0.000

Hemisphere 0.160 243,518 219,246

Dispersion

Clim. Heterogeneity -0.059 0.005 -12.529 0.000

(Intercept) -1.165 0.002 -674.905 0.000

Clim. Frequency -0.130 0.002 -83.188 0.000

Mean

Clim. Heterogeneity -0.077 0.002 -46.530 0.000
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Taxonomic Group N Scale Nagelkerke’s R2 Null Deviance Residual Deviance Model Type Parameter Estimate Std. Error t Value P-value

(Intercept) -1.061 0.005 -209.808 0.000

Clim. Frequency -0.458 0.005 -89.109 0.000

Amphibians 206,616

Biome 0.139 240,233 219,517

Dispersion

Clim. Heterogeneity -0.108 0.005 -21.521 0.000

(Intercept) -0.089 0.001 -82.028 0.000

Clim. Frequency -0.251 0.001 -203.589 0.000

Mean

Clim. Heterogeneity -0.088 0.001 -131.755 0.000

(Intercept) -1.549 0.004 -405.338 0.000

Clim. Frequency -0.169 0.004 -43.527 0.000

Global 0.400 337,826 251,015

Dispersion

Clim. Heterogeneity 0.027 0.004 6.997 0.000

(Intercept) -0.065 0.001 -58.215 0.000

Clim. Frequency -0.108 0.001 -91.854 0.000

Mean

Clim. Heterogeneity -0.106 0.001 -142.038 0.000

(Intercept) -1.381 0.004 -384.836 0.000

Clim. Frequency -0.107 0.004 -29.425 0.000

Hemisphere 0.152 279,010 252,504

Dispersion

Clim. Heterogeneity 0.003 0.004 0.705 0.481

(Intercept) -0.063 0.001 -55.454 0.000

Clim. Frequency -0.084 0.001 -71.317 0.000

Mean

Clim. Heterogeneity -0.117 0.001 -152.475 0.000

(Intercept) -1.367 0.004 -359.664 0.000

Clim. Frequency -0.074 0.004 -19.269 0.000
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Taxonomic Group N Scale Nagelkerke’s R2 Null Deviance Residual Deviance Model Type Parameter Estimate Std. Error t Value P-value

Birds 242,358

Biome 0.129 274,902 252,620

Dispersion

Clim. Heterogeneity -0.022 0.004 -5.678 0.000

(Intercept) -0.619 0.001 -696.847 0.000

Clim. Frequency -0.239 0.001 -249.472 0.000

Mean

Clim. Heterogeneity -0.083 0.001 -132.023 0.000

(Intercept) -1.954 0.004 -481.465 0.000

Clim. Frequency -0.331 0.004 -80.059 0.000

Global 0.471 357,392 248,035

Dispersion

Clim. Heterogeneity 0.017 0.004 4.196 0.000

(Intercept) -0.604 0.001 -629.651 0.000

Clim. Frequency -0.158 0.001 -161.514 0.000

Mean

Clim. Heterogeneity -0.094 0.001 -127.024 0.000

(Intercept) -1.790 0.004 -403.101 0.000

Clim. Frequency -0.301 0.005 -66.591 0.000

Hemisphere 0.321 313,212 249,059

Dispersion

Clim. Heterogeneity -0.023 0.004 -5.069 0.000

(Intercept) -0.597 0.001 -591.155 0.000

Clim. Frequency -0.098 0.001 -101.391 0.000

Mean

Clim. Heterogeneity -0.113 0.001 -144.006 0.000

(Intercept) -1.705 0.004 -384.789 0.000

Clim. Frequency -0.283 0.004 -63.276 0.000

Mammals 242,054

Biome 0.193 284,206 249,650

Dispersion

Clim. Heterogeneity -0.067 0.004 -15.292 0.000

(Intercept) -1.039 0.002 -630.153 0.000
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Taxonomic Group N Scale Nagelkerke’s R2 Null Deviance Residual Deviance Model Type Parameter Estimate Std. Error t Value P-value

Clim. Frequency -0.396 0.002 -206.504 0.000

Mean

Clim. Heterogeneity -0.098 0.001 -155.427 0.000

(Intercept) -1.154 0.004 -300.514 0.000

Clim. Frequency -0.118 0.004 -30.255 0.000

Global 0.318 281,700 224,946

Dispersion

Clim. Heterogeneity 0.086 0.004 22.095 0.000

(Intercept) -0.985 0.001 -701.069 0.000

Clim. Frequency -0.212 0.001 -154.775 0.000

Mean

Clim. Heterogeneity -0.119 0.001 -138.886 0.000

(Intercept) -1.190 0.004 -302.914 0.000

Clim. Frequency -0.489 0.004 -121.848 0.000

Hemisphere 0.325 283,911 225,555

Dispersion

Clim. Heterogeneity 0.028 0.004 6.976 0.000

(Intercept) -0.978 0.001 -656.010 0.000

Clim. Frequency -0.161 0.001 -113.469 0.000

Mean

Clim. Heterogeneity -0.144 0.001 -155.165 0.000

(Intercept) -1.113 0.004 -269.998 0.000

Clim. Frequency -0.397 0.004 -94.645 0.000

Reptiles 213,723

Biome 0.264 270,956 226,089

Dispersion

Clim. Heterogeneity -0.044 0.004 -10.827 0.000
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Figure 3.8: The spatial frequency of climatic conditions measured at the east-west hemisphere scale constrains specialisation
in tetrapods worldwide. The spatial frequency of climatic conditions negatively predicted the average of niche breadth in
amphibian, bird, mammal, and reptilian communities. Each point represents a community. Across all four groups of tetrapods
and their communities, common climates allow for increased variation in niche breadth while rare climates favour decreased
niche breadth (i.e., specialisation). The calculation of climatic frequency derived from contemporary climatic conditions
was done for each hemisphere. The continuous and dashed lines respectively represent mean and dispersion fits for effects
of climatic frequency on community average niche breadth using double generalized additive model with Gamma log-link
functions (see Methods). We credit the animal silhouette icons to PhyloPic (phylopic.org).
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Figure 3.9: The spatial frequency of climatic conditions measured at the biome scale constrains specialisation in tetrapods world-
wide. The spatial frequency of climatic conditions negatively predicted the average of niche breadth in amphibian, bird,
mammal, and reptilian communities. Each point represents a community. Across all four groups of tetrapods and their com-
munities, common climates allow for increased variation in niche breadth while rare climates favour decreased niche breadth
(i.e., specialisation). The calculation of climatic frequency derived from contemporary climatic conditions was done for each
biome. The continuous and dashed lines respectively represent mean and dispersion fits for effects of climatic frequency on
community average niche breadth using double generalized additive model with Gamma log-link functions (see Methods).
We credit the animal silhouette icons to PhyloPic (phylopic.org).
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3.9 Supporting Information 3

3.9.1 Geographical distance-weighted average climatic distance across
climatic frequency gradients

We investigated whether frequent climatic conditions are better connected and widespread com-
pared to rare climates.

To begin, we described how communities differ from each other because of climatic conditions
by computing the pairwise Mahalanobis distances (Mahalanobis 2018) between all communities
worldwide. This computation was based on the eight standardized climatic variables used in our
study, which allowed us to account for correlations between variables and the different scales of
measurements.

Next, we computed the Vincenty geodetic distance (Vincenty 1975) to describe the geographical
distance among all communities.

For each community, we computed the average climatic distance from all other communities,
weighted by the geographical distances from all other communities. This approach ensures that
closer sites have a greater influence on the average climatic distance, capturing the influence of
geographical proximity on climatic connectivity. Communities with high geographical distance-
weighted average climatic distances are more climatically isolated, indicating that they are sur-
rounded by communities experiencing significantly different climatic conditions. In contrast, com-
munities with low values are more climatically integrated, suggesting that communities experi-
encing similar climatic conditions surround them, reflecting better connectivity and widespread
distribution of those climatic conditions.

To represent how climatic conditions of different spatial frequencies are geographically intercon-
nected, we plotted the geographical distance-weighted average climatic distances against the cli-
matic frequency across space divided into percentiles (i.e.,each containing a similar number of
communities; see Figure 3.2), and against climatic frequency divided into 100 equally spaced inter-
vals (Figure 3.10). Both figures demonstrate that climatic conditions with higher spatial frequencies
are more geographically connected and widespread compared to rare climatic conditions.
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Figure 3.10: Distribution of climatic distances weighted by geographical distances across
equally spaced intervals of climatic frequency across space measured across the
globe. The average climatic Mahalanobis distance was weighted by the average geo-
graphical distance between all hexagons into across 100 intervals of climatic frequency
across global terrestrial landscapes (see Methods and Supporting Information 6). Ver-
tical bars represent 95% confidence intervals.
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3.10 Supporting Information 4

3.10.1 Geographical distance-weighted average beta diversity across climatic
frequency gradients

To demonstrate how sites are varying in composition across the climatic frequency gradient, we
computed the average beta diversity weighted by the geographical distances of these sites so that
closer sites have a greater influence on the average dissimilarity measure. By adjusting our metric
to the geographical proximity of sites, we acknowledge the influence of more similar environmen-
tal conditions and biotic interactions because of geographical proximity alone, more accurately
representing local beta diversity patterns (Nekola & White 1999; Soininen et al. 2007).

Given 𝛽𝑆𝑜𝑟𝑖𝑗
is the Sørensen’s dissimilarity between sites 𝑖 and 𝑗 (Sørensen 1948), and 𝐺𝑖𝑗 is the

Vincenty’s geodetic geographical distance between sites 𝑖 and 𝑗 (Vincenty 1975), we computed the
geographical distance-weighted average beta diversity 𝛽𝑆𝑜𝑟𝐺𝑊

for each site 𝑖 as:

𝛽𝑆𝑜𝑟𝐺𝑊𝑖
=

∑
𝑗≠𝑖

𝛽𝑆𝑜𝑟𝑖𝑗
⋅ 𝑤𝑖𝑗

∑
𝑗≠𝑖

𝑤𝑖𝑗
,

where the weight 𝑤𝑖𝑗 is defined by the exponential decay function 𝑒−𝐺𝑖𝑗 , gradually capturing the
influence of medium-distance interactions that might be overlooked with a steeper decay function
(see Soininen et al. 2007).

We then plotted the average beta diversity weighted by geographical distances separately for am-
phibians, birds, mammals, and reptiles against each percentile (100 quantiles) of the climatic fre-
quency gradient, separately for each geographical scale (see Figure 3.11).
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3.11 Supporting Information 5

3.11.1 Simulating a Spatially Auto-Correlated Environment

Upon defining the gridded landscape for the simulations, we introduced a spatial autocorrelation
structure to the environmental values, 𝐸′, generated from one of three frequency distributions:
normal, uniform, or mixed. To maintain spatial continuity, we computed toroidal distances among
patches in our landscape using the following equation:

𝑑𝑡𝑜𝑟𝑢𝑠 = √min(|𝑥1 − 𝑥2|, 𝐿𝑥 − |𝑥1 − 𝑥2|)2 + min(|𝑦1 − 𝑦2|, 𝐿𝑦 − |𝑦1 − 𝑦2|)2

where 𝑥1 and 𝑥2 are the positions of the patches along the x-axis, 𝑦1 and 𝑦2 are the positions along
the y-axis, and 𝐿𝑥 and 𝐿𝑦 are the dimensions of the landscape, typically the square root of the total
number of patches 𝑁 .

We then obtained a spatial correlation matrix for all patches by taking the negative exponent of the
multiplication of the toroidal distance matrix 𝐷𝑡𝑜𝑟𝑢𝑠 by a spatial autocorrelation coefficient 𝜃:

𝑊 = 𝑒−𝜃×𝐷𝑡𝑜𝑟𝑢𝑠

This ensures higher correlations for patches that are closer together. Finally, we multiplied the
spatial correlation matrix with the environmental values, yielding a vector of spatially correlated
environmental values:

𝐸 = 𝑊 × 𝐸′

This simulation of environmental conditions that exhibit realistic spatial autocorrelation is crucial
for understanding how organisms respond to spatially structured environments in our simulations.

Figure 3.11 (preceding page): Community-average beta diversity weighted by geographical
proximity separately for amphibians, birds, mammals, and rep-
tiles across each percentile (100 quantiles) of climatic frequency
across space measured across different geographical scales. Er-
ror bars describe confidence intervals computed from standard errors
for each quantile.
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3.12 Supporting Information 6

Table 3.4: Parameters used in the metacommunity simulations. They include the number
of patches, carrying capacity, richness levels, dispersal probabilities, and disturbance
regimes. The parameters are categorized into ecological and environmental settings,
dispersal dynamics, disturbance scenarios, and different types environmental-dependent
interspecific competition scenarios. The values are presented as unique combinations
(totalling 1,209 different combinations) to represent the different simulation settings ex-
plored.

Parameter Values

Number of patches 400

Carrying capacity (K) 500

Richness in the metacommunity (S) 200

Number of generations 1500

Richness in the regional pool 1000

Distribution type for the environment Spatial autocorrelation, Normal

Maximum number of offspring 10

Disturbance probability 0.00, 0.10, 0.20, 0.30, 0.40

Disturbance intensity 0.90

Strength of exponential distance decay during dispersal 0.50, 1.00, 1.50

Internal dispersal probability 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30

Max. dispersal distance 10

External dispersal probability 0.00, 0.10, 0.20, 0.30

Number of patches receiving immigrant populations 10

Max. number of immigrants 10

Equal competition

Niche overlap competitionSimulation scenario

Niche overlap and environmental proximity competition
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3.13 Supporting Information 7

3.13.1 Robustness of parameters within the metacommunity simulations
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3.13.2 Accounting for the influence of environmental conditions in the
relationship between environmental frequency and community weighted
niche breadth

Figure 3.12 (preceding page): Community-level environmental specialisation responses to the
spatial frequency of environmental conditions in simulated
metacommunities under different ecological competition sce-
narios, and varying rates of disturbance, external dispersal and
internal dispersal. Each point represents a different simulation un-
der a combination of ecological scenarios, with varying rates of dis-
turbance, external dispersal, internal dispersal, and environmental
mediation in competition, and with the exponential decay parameter,
𝛼, of 0.5. 𝛽 denotes the ordinary least square regression coefficient
of the spatial frequency of the environment in each community on
the community’s average of environmental niche breadth.
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Figure 3.13 (preceding page): Community-level environmental specialisation responses to the
spatial frequency of environmental conditions in simulated
metacommunities under different ecological competition sce-
narios, and varying rates of disturbance, external dispersal and
internal dispersal. Each point represents a different simulation un-
der a combination of ecological scenarios, with varying rates of dis-
turbance, external dispersal, internal dispersal, and environmental
mediation in competition, and with the exponential decay parameter,
𝛼, of 1.5. Here, 𝛽 denotes the ordinary least square regression coeffi-
cient of the spatial frequency of the environment in each community
on the community’s abundance-weighted average of environmental
niche breadth.
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Figure 3.14 (preceding page): Partial coefficients from the models containing the environmen-
tal conditions besides environmental frequency. Each point rep-
resents a different simulation under a combination of ecological sce-
narios, with varying rates of disturbance, external dispersal, inter-
nal dispersal, and environmental mediation in competition, and with
the exponential decay parameter. Here, 𝛽 denotes the ordinary least
square regression partial coefficient of the spatial frequency of the
environment after controlling for environmental conditions in each
community on the community’s abundance-weighted average of en-
vironmental niche breadth.
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Chapter 4

Climatic commonness and rarity shape
phylogenetic structure and suitability in
tetrapod communities

4.1 Abstract

Climate shapes ecological communities across space and time. It sets physiological limits for or-
ganisms, driving population dynamics, species distributions, community assembly and ultimately,
biodiversity patterns. Among the various aspects of climate, an underexplored dimension is its
frequency distribution—how common or rare climatic conditions are across space. To uncover
the mechanisms driving community-level responses to climatic frequency, we addressed three key
questions: Does climatic frequency influence the phylogenetic structure of ecological communities
across geographical scales? Are rare climates less suitable for supporting the diversity of closely
related species than common climates? Do species with relatively recent ancestors exhibit similar
preferences for climatic frequencies? We analyzed global data on climate, geographical distribu-
tions, and phylogenetic relationships of extant terrestrial tetrapods – amphibians, birds, mammals,
and squamate reptiles. Globally, we found that ecological communities are less phylogenetically
clustered in rare climates. Our results reveal that communities in rare climates exhibit lower phylo-
genetic clustering, reflecting greater phylogenetic diversity. Additionally, species co-occurring in
both exceedingly rare and highly common climates tend to depart from their climatic optima. Our
findings suggest that climate frequency plays a more influential role in recent ecological dynamics
and evolutionary adaptations than deep ancestral constraints in shaping these communities.1

4.2 Introduction

Every species experiences environmental variation across space and time. Such fluctuations cre-
ate conditions that either facilitate or impede the survival, persistence, and reproductive success
of individuals and populations, ultimately shaping the biodiversity patterns observed today (von

1This study is under peer-review, and a preprint is available in Authorea as:
Braga, P. H. P., Kembel, S., & Peres-Neto, P. (2024). Climatic commonness and rarity shape phylogenetic structure
and suitability in tetrapod communities. Authorea, October 31, 2024.

143



Humboldt 1849; Hutchinson 1957; Soberón 2007; Soberón & Nakamura 2009). Among a myriad
environmental factors, climate —the long-term patterns of weather—emerges as a predominant
factor underlying species distributions. Its influence extends to the composition and structure of
ecological communities, significantly affecting ecological and evolutionary dynamics (e.g., Lieth
1975; Currie 1991; Rohde 1992; Currie et al. 2004; Araújo & Pearson 2005; Svenning & Skov
2007; Rakotoarinivo et al. 2013; Eiserhardt et al. 2015; Vázquez-Rivera & Currie 2015; Barreto
et al. 2021). As such, understanding the ecological effects of climate has long been an attractive
area of study, now receiving much increased attention due to the challenges posed by ongoing
contemporary climate change.

In the study of biodiversity patterns, both average climate conditions and their spatial variability
(heterogeneity) have been extensively explored. Differences in mean climate across localities and
regions drive variation in species compositions and abundance through direct physiological and
metabolic constrains (e.g., Easterling et al. 2000; Sunday et al. 2012; Buckley & Huey 2016),
influencing population phenology, behaviour, and ecological optima (e.g., González 1974; Magnu-
son et al. 1979; Sunday et al. 2012; Sunday et al. 2014). At the same time, spatial variability in
climatic conditions promotes species coexistence by facilitating niche partitioning (Kerr & Packer
1997; Chesson 2000a; Currie 2001). However, beyond spatial differences, the availability of cli-
mate conditions across localities and regions is uneven (Fournier et al. 2020), and their ecological
effects on biodiversity remain poorly understood.

Climatic conditions vary from rare (also ‘marginal’ or ‘scarce’) to common. As with average con-
ditions and spatial heterogeneity, the frequency of climatic conditions is expected to shape bio-
diversity. Rare climates may favour climatic generalists (Fournier et al. 2020) because speciali-
sation and adaptation to rare resources can be excessively costly (Kassen 2002). These climates
are also less predictability, often spatially disjunct or fragmented (Fournier et al. 2017), limiting
dispersal and population fitness (Kawecki et al. 1997; see Hoffmann 2005), further constraining
the establishment of climatic specialists. In contrast, generalists, with their broader climatic toler-
ances, are more likely to thrive in rare climates. Nonetheless, there is evidence of specialization
through evolutionary radiation in rare environments, where species exploit vacant niches (Gaston
1994), as observed in endemic taxa on islands and at higher elevations (e.g., Steinbauer et al. 2013;
Fernández-Palacios et al. 2021).

Climatic frequency is expected to shape species co-occurrences patterns within communities.
Species co-distributions are often influenced by geographical and historical variations in inter-
actions, habitat preferences, dispersal, and speciation processes (e.g., Peres-Neto 2004; Kembel
2009; Svenning et al. 2015; Braga et al. 2023b). Ecologically similar species are expected to
compete more intensely when they rely on overlapping resources, limiting their co-occurrence
(Darwin 1859; Macarthur & Levins 1967; Szabó et al. 2006). Rare climatic conditions may
generate unique ecological niches that favour specialized species or facilitate coexistence among
generalists. However, the scarcity of rare climates may constrain opportunities for specialists
to co-occur and establish stable populations, potentially promoting the dominance of generalist
species in more rare climates. Conversely, species with similar niche requirements may accumu-
late in common environments, leading to either positive or negative co-occurrence patterns among
specialists.

Our study employs an ecophylogenetics framework (see Davies 2021) to investigate how climatic
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frequency shapes community structure across global scales, revealing patterns beyond species com-
position by accounting for the evolutionary diversity of communities, even when they share no
species in common. From an evolutionary perspective, species with similar traits and niches are ex-
pected to respond similarly to environmental variation across speciation events—a process known
as ‘phylogenetic niche conservatism’ (see Harvey & Pagel 1991). As a result, the phylogenetic
relatedness within communities vary strongly across geographical climatic gradients (e.g., Webb
2000; Cavender-Bares et al. 2009; Kembel 2009; Stevens et al. 2012). Harsh or stressful climatic
conditions, such as cold or arid environments, as well as rare environments, may promote the coex-
istence of closely related species that share stress-tolerant traits, leading to phylogenetic clustering
(Wiens & Donoghue 2004; Qian & Sandel 2017).

Disentangling the effects of climate frequency, averages, and heterogeneity on ecological com-
munities is challenging, as these factors may not operate in isolation. Climatic heterogeneity, for
example, can increase ecological opportunities by offering diverse environments and resources,
promoting species and lineage coexistence (MacArthur & MacArthur 1961; Stevens et al. 2012).
At the same time, it can constrain species ranges and elevate extinction risks, followed by recol-
onization by newly diversified taxa (e.g., Colville et al. 2020). Since both climate heterogeneity
and frequency can shape species composition during community assembly and influence evolution-
ary trajectories, studies of climatic frequency must also consider the role of climatic heterogeneity
(i.e., changes in average conditions across regions). Moreover, the impact of climatic frequency on
phylogenetic community structure is further complicated by spatial and phylogenetic scale depen-
dencies, reflecting the interplay of ecological and evolutionary processes across multiple (Wiens
1989; Levin 1992; Whittaker et al. 2001; Chave 2013; Graham et al. 2018).

To investigate how climatic frequency shapes the phylogenetic structure and ecological suitability
of ecological communities, we addressed three complementary questions, each grounded in specific
hypotheses:

Q1. Does climatic frequency influence the phylogenetic structure of biological communities across
geographical scales? Assuming that specialization in rare climatic conditions is detrimental to
population performance and persistence (Kawecki et al. 1997), co-occurring species should belong
to clades capable of tolerating both rare and common climates. In contrast, communities in common
climates are expected to consist of well-adapted specialist species, resulting in a higher degree of
phylogenetic relatedness among them than among species found in rare climates.

Q2. Are rare climates less suitable for ecological communities than common climates? Populations
generally thrive in habitats where they are well-adapted. If long-term adaptation to rarer climates
is less likely than to common ones (Kawecki et al. 1997), making colonization more challenging,
species in communities within rare climates are expected to deviate further from their climatic
optima, becoming ecologically marginal.

Q3. Do closely related species exhibit similar climatic frequencies? If climatic frequency shapes
phylogenetic community structure through long-term evolutionary processes, we would expect
strong similarity in the climatic frequencies of species’ distributional ranges, indicating a phyloge-
netic signal. Phylogenetic clustering along the climatic frequency gradient (from rare to common)
would suggest phylogenetic conservatism in climatic frequency (sensu Keddy 1992; Kraft et al.
2007; Cavender-Bares et al. 2018). Conversely, the absence of phylogenetic signal in climatic fre-
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quencies across taxa might indicate that species assembly in communities occurs through stochastic
processes such as genetic drift or divergence, phenotypic plasticity or coexistence mechanisms (see
Crisp & Cook 2012).

We adressed these questions by analyzing global data on the distributions and phylogenetic re-
lationships of 22,125 species across four major four-limbed terrestrial vertebrates (Tetrapoda)—
amphibians, birds, mammals, and squamate reptiles—in relation to global cliomate. Using eight
high-resolution bioclimatic variables representing temperature and precipitation, we calculated cli-
matic frequencies at found geographical scales: global, hemispheric (east-west), realm, and biome.
We evaluated the phylogenetic structure of communities by computing the standardized effect sizes
of mean phylogenetic distances and mean nearest-taxon distances. We also quantified climatic
marginality as the extent to which co-occurring species deviate from their preferred climatic con-
ditions. Next, we used statistical models to assess how climatic frequency influences phylogenetic
community structure (Q1) and climatic marginality (Q2), accounting for climatic heterogeneity and
average climatic conditions. Finally, we examined phylogenetic signals in species-specific climatic
frequencies using evolutionary models (Q3). Our results demonstrate that climatic frequency plays
a critical role in shaping tetrapod community structure across diverse geographical scales and phy-
logenetic levels.

4.3 Methods

4.3.1 Study area and geographical scales

We created an equal-area flat-topped hexagonal tessellation that covered Earth’s terrestrial lands,
which we compiled from Natural Earth (naturalearthdata.com; projected to the Behrmann cylin-
drical equal-area projection). We used hexagonal tessellation for aggregating all biodiversity and
climate data used in our study, which better represents local connectivity factors that are relevant
for ecological studies (Carr et al. 1992; Birch et al. 2007; White &Kiester 2008). The hexagons we
used had an area of 541.3 km2 with a short-diagonal length of 25 km. After eliminating hexagons
that covered less than 50% of their terrestrial land area, we were left with 248,139 hexagons.

To determine whether scale dependencies in climatic spatial frequency influence patterns of phy-
logenetic relatedness and the average deviation of species in a community from their climatic op-
tima (hereafter also referred to as “climatic marginality”) in ecological communities, we applied a
framework for identifying, regionalizing and computing climatic frequencies for three hierarchical
geographical scales: (i) global, (ii) east-west hemispherical (New World and Old World), (iii) bio-
geographical realms [Palaearctic, Indo-Malaya, Afrotropics, Australasia, Nearctic and Neotropics;
Olson et al. (2001)], and (iv) biomes (Olson & Dinerstein 1998; Mucina 2019). We selected these
geographical scales for calculating climatic frequencies based on several considerations. Climate
regimes are known to vary with spatial scales (Franzke et al. 2020), exhibiting differences between
the Eastern and Western hemispheres. The Eastern hemisphere contains more climate zones, and
while theWestern hemisphere experiences steeper temperature gradients (e.g., Latonin et al. 2022).
Sensible heat transport dominates the Western hemisphere, whereas latent heat transport systems
dominating the Eastern hemisphere –which contribute to heat excess andmoist patterns. In addition
to these distinctions in east-west meridional atmospheric internal energy transport systems, North
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Atlantic and El-Niño-Southern oscillations contribute to climate in the Western hemisphere, while
Asian monsoon systems influence the Eastern hemisphere, contributing to the observed east-west
climate asymmetries (see Latonin et al. 2022). Biogeographical realms represent large regions
with ecosystems sharing similar biotic histories shaped by geological, climate, and evolutionary
processes (Udvardy 1975; Lomolino et al. 2017). Lastly, biomes are distinct climatic and vege-
tation domains (Whittaker 1975; Colin Prentice et al. 1992; Mucina 2019). These geographical
extents have also been used to study the causes underlying spatial scale dependence in community
structure (e.g., Kissling et al. 2012; Thuiller et al. 2020; Braga et al. 2023b).

4.3.2 Species distributions

We obtained species presence-absence records for amphibians, birds, mammals, and reptilian squa-
mates from distributional range maps available within the International Union for Conservation of
Nature Red List of Threatened Species database (IUCN 2022).

We projected each species’ range onto a Behrmann cylindrical equal-area projection and overlaid
it onto the hexagonal tessellation.

A species was considered present in a hexagon only if it occupied a minimum of 50% of its area.
To minimize false occurrences, we only retained species that were present in at least two hexagons.

4.3.3 Species phylogenetic relationships and divergence time data

We obtained dated evolutionary relationships from phylogenetic hypotheses for amphibians [Jetz
& Pyron (2018); 7,406 species], birds [Jetz et al. (2012); built on the backbone phylogeny from
Ericson et al. (2006); 9,993 species], mammals [Upham et al. (2020); 5,991 species], and squamate
reptiles [Tonini et al. (2016); 9,754 species] from the Vert Life database (vertlife.org). These
datasets collectively included 33,144 extant and recently extinct species.

To ensure there were no polytomies and no negative branch-lengths, we computed ultrametric max-
imum clade credibility trees for each of the four tetrapod groups from a random subset of 100
posterior distributions trees.

Next, we pruned the resulting phylogenetic trees to match the species distribution data, resulting in
dated phylogenetic trees that included 3,627 amphibians, 7,498 birds, 4,565 mammals, and 6,435
squamate reptiles.

To account for the uncertainty associated with phylogenetic relationships, we conducted identical
analyses on 30 trees randomly selected trees from the posterior distributions of the phylogenetic hy-
potheses. The comparisons of these results with those obtained using themaximum clade credibility
trees yielded very similar outcomes, supporting the robustness of our findings to the uncertainty in
phylogenetic hypotheses (see Supporting Information 3).
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4.3.4 Phylogenetic community structure

For each tetrapod group, we quantified the degree of relatedness among co-occurring species within
their communities (i.e., co-occurring species within each hexagon) using two complementary in-
dices of community phylogenetic structure: the mean phylogenetic distance (MPD) and the mean
nearest taxon distance (MNTD) (Webb 2000; Webb et al. 2002).

MPD provides an overall estimate of community phylogenetic structure, whereas MNTD is more
sensitive to the community structure driven by phylogenetic tips [i.e., reflecting more recent pro-
cesses; Webb et al. (2002)]. The use of both MPD and MNTD allows one to gain insights into
the mechanisms underlying community structure across phylogenetic scales (Cavender-Bares et al.
2009; Graham et al. 2018).

To make phylogenetic community structure comparable among communities, we applied null mod-
els to estimate standardized effect sizes for both metrics (MPDSES and MNTDSES, respectively)
(Webb et al. 2002; Kembel 2009). We simulated random assemblages by permuting species’ names
across the phylogenetic tips 999 times in relation to the worldwide communities for that taxonomic
group. Note that the observed value (MPD or MNTD) was considered as one possible value within
the null distribution, resulting in 1,000 random values, as is common in null model applications.
Lower values of MPDSES and MNTDSES indicate that the phylogenetic relatedness of co-occurring
species is greater than expected for a given geographical extent, suggesting that local communities
are composed of species that are more phylogenetically similar than what would be expected from
random assemblages. Conversely, positive MPDSES and MNTDSES values indicate phylogenetic
evenness, meaning that species are more distantly related than expected by random chance.

4.3.5 Climate

We compiled nineteen bioclimatic variables derived from monthly temperature and precipitation
data (averaging between 1970 and 2000) from the WorldClim (version 2.1) database (Fick & Hij-
mans 2017). These variables, at a resolution of 30 arc-seconds—equivalent to nearly 1 km × 1 km
at the Equator—, are known to reflect ecosystem processes, imposing physiological constraints,
and influencing species survival (Title & Bemmels 2018).

To align the climatic data with our spatial analysis framework, we projected it onto the same res-
olution and projection as the hexagonal tessellation. We also applied a log transformation to non-
symmetrical variables, primarily precipitation variables, to reduce heteroskedasticity.

Given the potential for biased results due to collinearity among bioclimatic variables, we iteratively
computed variance inflation factors [VIF; following Marquardt (1970); Chatterjee & Hadi (1977)]
on 10,000 randomly-drawn observation units (hexagons) to identify and remove highly colinear
variables from our dataset. Variables with a VIF exceeding 15, indicative of substantial collinearity,
were sequentially removed from the dataset until no further variables met this threshold.

The final set of bioclimatic variables, which were then used in further analyses, included mean
annual temperature (BIO 1), mean diurnal range (BIO 2), temperature seasonality (BIO 4), mean
temperature of the wettest quarter (BIO 8), loge(1+ annual precipitation) (BIO 12), precipitation
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seasonality (BIO 15), loge(1+ precipitation of the warmest quarter) (BIO 18), and loge(1+ precipi-
tation of the coldest quarter) (BIO 19).

4.3.6 Spatial climatic frequency

We characterized the spatial frequency of climatic conditions across communities using a probabil-
ity density estimation approach.

To calculate climatic frequency across all communities, we started by decreasing the dimensional-
ity of the climatic dataset using a principal component analysis based on a correlation matrix (stan-
dardized to have mean zero and standard deviation one). We retained the principal components that
captured the variation in climate better than expected by chance [i.e., based on the broken-stick rule;
see Jackson (1993) for an explanation on the rule]. These orthogonal principal components were
then used to calculate indices of spatial climatic frequency and spatial climatic heterogeneity.

We computed the multivariate kernel density on the retained climate principal components using
a multivariate generalisation plug-in for bandwidth matrix selection (see Jones 1994; Chacón &
Duong 2018; and Duong & Hazelton 2003).

To facilitate the interpretation of the density distribution, we normalized the frequency values by
scaling them to range between zero (rarest) and one (most frequent). These resulting values cor-
respond to the frequency (or commonness) of climatic conditions across the geographical space.
Communities located within less frequent climates experience rarer combinations of contemporary
climates and communities with larger climatic frequency have common climatic conditions.

Because climatic frequencies are relative to the geographical extent of climatic conditions, we
computed climatic frequency across four different geographical scales (extents): global, east-west
hemispheres (also referred to as Old World and New World), biogeographical realms, and biomes,
and performed separate analyses for each of these scales.

4.3.7 Spatial climatic heterogeneity

To quantify climatic heterogeneity within each community (hexagon), we used the eight selected
bioclimatic variables (see above) in their original, high resolution of 30 arc-seconds. First, we stan-
dardized these variables to zero mean and unit variance. We then projected the standardized data to
the same principal component space used to compute climatic frequencies, ensuring the framework
was comparable and consistent. We then recalculated the standardization for these principal com-
ponent scores to maintain normalization across scales, we further standardized the high-resolution
climatic principal components. Using these principal component scores, we estimated climatic
heterogeneity within each community by averaging the pairwise Euclidean distances between all
scores within each community. This measure reflects the extent of climatic variation, with higher
values indicating greater variability in climatic conditions within the community.
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4.3.8 Spatial climatic marginality

To characterize how far species occurring in a community are from their preferred climate, we
began by calculating the climatic optimum of each species. This involved computing the average
of each standardized climate principal component value across all communities where each species
occurs. Then, we used the resulting climatic optima of each species to compute the weighted
average marginality (i.e., the deviation from their climatic optima) of each community, separately
for each tetrapod group.

High climatic marginality values in a community suggest that co-occurring species of that taxo-
nomic group are, on average, located far from their preferred climate. Conversely, low values
indicate species in that community are generally closer to their climatic optima.

4.3.9 Statistical analyses

We assessed the effects of climatic frequency on community phylogenetic structure (Q1) and
on community climatic marginality (Q2) using a series of generalized additive models (GAMs).
GAMs are advantageous for their flexible semi-parametric capability to model both linear and
non-linear relationships between response and explanatory variables (Hastie & Tibshirani 1987;
Hastie & Tibshirani 1990). Smoothing parameters were estimated using restricted maximum
likelihood, and we inspected all resulting models for assumption violations and selected smoothing
basis dimensions that were less restrictive (sensuWood 2004).

Although our primary objective was to explore how climatic frequency influenced tetrapod com-
munities, our analyses also addressed the influence of climatic heterogeneity in community phylo-
genetic structure. Consequently, we present additional analyses that consider the effects of both
climatic heterogeneity and average climatic conditions (in the form of the selected principal com-
ponents representing climate) in the relationships we explored (Supporting Information 2). Finally,
to aid the interpretation of results, we also partition the linear from the non-linear effects of climatic
frequency on community phylogenetic structure (Supporting Information 2).

4.3.9.1 Effects of climatic frequency on community phylogenetic structure (Q1)

To assess the effects of climatic frequency on the phylogenetic structure of tetrapod communities
(Q1), we employed separate GAMs with MPDSES and MNTDSES, respectively, as response vari-
ables and penalized thin-plate splines for climatic frequency and climatic heterogeneity, separately
for each geographical scale and each taxonomic group combination.

4.3.9.2 Effects of climatic frequency on community climatic marginality (Q2)

To test whether climatic frequency modulates community climatic marginality (Q2), we also per-
formed GAMs with climatic marginality as a response variable and penalized thin-plate splines
of climatic frequency and climatic heterogeneity, separately for each geographical scale and each
taxonomic group combination.
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4.3.9.3 Phylogenetic signal in climatic frequency (Q3)

To determine if closely related species exhibit similar climatic frequencies (Q3), we assessed the
degree to which species’ evolutionary relatedness correlated with ecological similarity. This in-
volved assessing the strength of the phylogenetic signal in the average climatic frequency across
the distributional range of each species, for each geographical scale and each tetrapod group.

Because evolutionary differences in traits structuring species co-occurrence do not consistently cor-
relate with phylogenetic distances (see Cadotte et al. 2017), it is important to compare alternative
models of trait evolution to ensure accurate ecophylogenetic interpretations.

We applied four maximum-likelihood-based phylogenetic comparative models to assess phyloge-
netic signals in climatic frequency. The first three were Pagel’s λ (lambda), Pagel’s δ (delta), and
Blomberg’s K (Pagel 1997, 1999; Blomberg & Garland Jr 2002), and are based on a Brownian mo-
tion model of evolution, where differences in trait values along branches of a phylogeny are drawn
from a normal distribution with a mean equal to the ancestral state and variance proportional to a
constant rate of change and time (Cavalli-Sforza & Edwards 1967; Felsenstein 1973). The fourth
model, the stationary-peak model, focuses on the average duration required for a trait value to reach
halfway toward an optimal trait value. It assumes an Ornstein–Uhlenbeck (OU) model of evolution,
which accounts for the strength of attraction of a trait toward an optimum trait value (Lande 1976;
Hansen 1997).

Because within-species trait variation can bias the estimation of phylogenetic signals, we used the
standard error in climatic frequency across the geographical distribution of each species to account
for uncertainty in the models we performed (see Ives et al. 2007; Silvestro et al. 2015).

4.3.10 Computational tools

All data manipulation and analyses were performed in R and RStudio (Posit Team 2023; R Core
Team 2023). The description of R libraries and software versions we used, and the necessary code
and data to fully reproduce the analyses and figures from this study are respectively available within
the Supporting Information 1 and the Open Science Framework (https://osf.io/3hkn7/) repository.

4.4 Results

4.4.1 The worldwide distribution of frequent climates

Climatic frequency varies considerably worldwide, ranging from broader, global scales, to more
localized, biome scales (see Figure 4.1, and Figure 4.5). Across scales, abrupt transitions from
common to rarer climates are particularly marked by mountain ranges. Arid desert and polar cli-
mates were the rarest across scales, while tropical savannas, rainforest, and monsoon climates were
the most common climates (see Table 4.1). This concentration of rare climates near mid- and high-
elevational, and coastal regions is aligns with previous depictions of climatic frequency across dif-
ferent geographical extents (e.g., Batllori et al. 2014; Wang et al. 2018; Fournier et al. 2020). The
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density of rare climatic conditions is higher at broader scales compared to narrower geographical
scales (Figure 4.1, and Figure 4.5).
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4.4.2 Climatic frequency as a driver of phylogenetic community structure (Q1)

After accounting for climatic heterogeneity, we observed that tetrapod communities were increas-
ingly phylogenetically clustered as climatic conditions become more common. This trend is par-
ticularly notable at the global, east-west hemispheric, and biome scales (see Figure 4.2; Table 4.2
and Table 4.3). These effects are more pronounced for MNTDSES compared to MPDSES, underscor-
ing differences between deep time and more recent effects of climatic frequency on phylogenetic
community structure (see Figure 4.2; Table 4.2 and Table 4.3). Despite being less pronounced at
certain geographical scales, the negative relationship between climatic frequency and phylogenetic
community structure remained evident after controlling for the effects of climatic conditions and
climatic heterogeneity using residualization (see Supporting Information 2; Figure 4.6, Table 4.6
and Table 4.7).

The relationship between climatic frequency and phylogenetic community structure also varied
across taxonomic groups as well as geographical scales. Generally, climatic frequency had stronger
influence on the community phylogenetic relatedness more strongly within amphibian and squa-
mate communities, compared to those of birds and mammals (see Figure 4.2, Figure 4.6, Table 4.2
and Table 4.3).

4.4.3 Community-level species climatic marginality is lower in very common
and in very rare climates (Q2)

Climatic frequency significantly influenced climatic marginality in tetrapod communities. Across
geographical scales, co-occurring species tend to be farther from their optima in exceedingly rare
or exceedingly common climates (see Figure 4.3; Table 4.4). These patterns were remarkably
consistent across the major tetrapod lineages we investigated.

Figure 4.1 (preceding page): Global distribution of climatic frequencies across geographical
scales. It depicts climatic frequency related to four geographical
scales: (a) global, (b) east-west hemispheric, (c) biogeographical
realm, and (d) biomes. Climatic frequencies were calculated using
a probability density estimation methods based on the principal com-
ponents derived from eight bioclimatic variables representing precip-
itation and temperature (see Methods).
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Figure 4.2: Partial effect plots depicting the influence of climatic frequency on the phylogenetic structure of worldwide commu-
nities (248,139 geographical hexagons, in total) of four tetrapod groups: amphibians (3,627 species), mammals (4,565
species), birds (7,495 species), and reptilian squamates (6,435 species). Phylogenetic community structure was assessed
using standardized effect sizes of (A) mean phylogenetic distances and (B) mean nearest taxon distances for each tetrapod
group. Climatic frequency was calculated for each community at four geographical scales (global, hemispheric, realm, and
biome), and was based on contemporary climatic conditions across the globe (see Methods). The lines represent thin-plate
spline smooths estimated for the partial effects of climatic frequency from GAMs with both climatic frequency and climatic
heterogeneity as predictors of standardized effect sizes of mean phylogenetic distances and mean nearest taxon distances (in
separate models). The shaded region around the curves denotes the 95% confidence intervals.
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Figure 4.3: Partial effect plots of climatic frequency on average climatic marginality in worldwide tetrapod communities. Lines
represent thin-plate regression spline smooths estimated for the effects of climatic frequency from GAMs, with both climatic
frequency and climatic heterogeneity as predictors of climaticmarginality for each tetrapod taxa (amphibians, birds, mammals,
and squamate reptiles) and each geographical scale. Climatic marginality was measured as the average departure of each co-
occurring species from their average preferred climatic conditions. Climatic frequency was estimated in each community
for each one of four geographical scales (global, hemispheric, realm, and biome), and was based on contemporary climatic
conditions across the globe. Shaded regions around the curves indicate 95% confidence intervals and describe uncertainty in
model predictions (see Methods).
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4.4.4 Lack of phylogenetic similarities in average climatic frequency (Q3)

Overall, there were no to weak phylogenetic similarities in climatic frequency across tetrapods,
irrespective of geographical extent from which climatic frequency was calculated (see Figure 4.4,
and Table 4.5).

Blomberg’s K estimates for climatic frequency being closer to zero for all taxa across geographical
scales suggest no tendency in climatic frequency similarities among closely-related species. Pagel’s
λ estimates approached one, indicating that phylogenetic resemblance in climatic frequency across
taxa does not strongly deviate from evolutionary expectation under Brownian motion. Pagel’s δ
values were much greater than one, suggesting high variation in climatic frequency nearing the
tips of the phylogenies. Ornstein-Uhlenbeck stationary α values remained close to zero, indicating
there is no tendency for climatic frequencies to converge towards an optimal value among clades.

These findings suggest that associations between the average climatic frequency across tetrapod
communities were evolutionary labile across geographical scales.
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Figure 4.4: Phylogenetic signals for species-specific average climatic frequencies computed across geographical scales using dif-
ferent evolutionary models. Parameters were estimated with maximum-likelihood evaluation using phylogenetically in-
dependent contrasts and included species-specific standard errors in climatic frequency to account for within-species varia-
tion. Vertical lines denote lower and upper limits of maximum-likelihood 95% confidence intervals for parameter estimates.
Blomberg’s K values nearing zero indicate that closely related species are not more similar in climatic frequency than distant
relatives. K values closer to one suggest that the distribution of climatic frequency across the phylogenetic tree resembles
what would be expected by a Brownian motion model of evolution, while K values above one indicate that close relatives
retain similar climatic frequencies. Pagel’s λ values nearing zero demonstrate minimal phylogenetic signal, while values
approaching one suggest that traits evolved in accordance with a Brownian motion model or random genetic drift. Pagel’s
δ values between zero and one indicates that trait values slowly changed in the recent past, while δ values greater than one
indicate rapid trait variation nearing the tips of phylogeny. Ornstein-Uhlenbeck stationary α nearing zero indicates no adapta-
tion towards an optimum trait, while large values of α indicate that climatic frequency is strongly pulled towards an optimal
value along the phylogeny (see Methods).
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4.5 Discussion

Our study revealed global patterns in the distribution of climatic frequencies across geographical
scales and examined their ecological and evolutionary impacts on biological communities of four
major terrestrial vertebrate groups. Firstly, we elaborate on the pervasive relationship between cli-
matic frequency and community phylogenetic structure. We observed that species co-occurring
in rarer climates are less phylogenetically related, whereas tetrapod communities in common cli-
mates accumulated greater evolutionary history. We then discuss how co-occurring species tend to
be further from their climatic optima in both exceptionally rare and exceptionally common climates.
Additionally, we discuss the lack of phylogenetic similarities in climatic frequency across tetrapod
clades.

4.5.1 Climatic frequency as a driver of phylogenetic community structure

Consistent with the hypothesis that adaptation to rare environments is costly and less common
(Kawecki et al. 1997) (Q1), we observed that tetrapod communities in rare climates tended to be less
phylogenetically clustered (Figure 4.2). This pattern held true irrespective of local heterogeneity
and average climatic conditions (see Figure 4.6).

Marginal environmental conditions are often linked to increased vulnerability for environmental
fluctuations and disturbances, which are known to influence co-occurrence patterns (e.g., Verdú &
Pausas 2007; Cavender-Bares & Reich 2012). Therefore, spatially rare climates are expected to be
more susceptible to disturbance (including from paleoclimatic change), making them potential hot
spots for the extinction of local populations of climate specialists (see Ohlemüller et al. 2008; also
see Fournier et al. 2020). Unlike stable ecosystems, environments characterized by rapid changes,
frequent disturbances, and regular local extinctions tend to lead to either phylogenetically random
or phylogenetically overdispersed communities (e.g., Dinnage 2009; Braga et al. 2023b; but see
Helmus et al. 2010). Our observation of decreased phylogenetic clustering in communities within
rare climates aligns with this perspective (see Figure 4.2).

The influence of climatic frequency on phylogenetic community structure varies in strength across
tetrapod taxa. Amphibians and reptiles exhibited a stronger response in their phylogenetic struc-
ture to climatic frequency than birds and mammals (see Figure 4.2). We attribute the differences
among tetrapod groups in how climatic frequency drives their community phylogenetic structure to
a few interrelated factors. First, ectotherms (amphibians and squamate reptiles) are more sensitive
to climate variations than endotherms (birds and mammals) due to the influence of environmental
temperatures on their basic physiological functions, such as locomotion, growth, metabolism, and
reproduction (e.g., Paaijmans et al. 2013; see McNab 2002). The ability of endotherms to regu-
late their own body temperature enables them to be more active across a wider range of climatic
conditions (Angilletta 2009). Second, birds and mammals are known be better dispersers than am-
phibians and reptiles (Carrier 1987; McNab 2002; Dingle 2014). Increased dispersal abilities may
have allowed endothermic tetrapods to effectively occupy both rare and common environments,
contributing to the homogenization of community phylogenetic relatedness along the climatic fre-
quency gradient (see Olden & Rooney 2006; Cavender-Bares et al. 2009). While climatic fre-
quency had similar weak effects on the deep-scale phylogenetic structure (MPDSES) of bird and
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mammal communities, it had stronger effects on the shallow-scale phylogenetic structure in mam-
mal communities, along with squamate and amphibian communities (MNTDSES; see Figure 4.2).
These variations in the effects of climatic frequency across phylogenetic scales of community struc-
ture suggest that climatic frequency have played a pronounced role in recent times.

4.5.2 Deviation from climatic optima in the extremes of climatic frequency

Our findings indicate that co-occurring species in rare climates are, on average, further from their
climatic optima (see Figure 4.3, Table 4.4), supporting our expectation that local adaptation to cli-
matic rarity is both costly and infrequent (Q2). Populations on the fringes of their species’ environ-
mental tolerances face greater risks of fragmentation and decline (e.g., Perez-Navarro et al. 2022),
largely due to increased abiotic stress, both temporarily and spatially, and increased interspecific
competition (Aitken et al. 2008), which can ultimately result in population decline, reduced rela-
tive fecundity, and local extinctions (Soulé 1973; Lawton 1993; e.g., Case & Taper 2000; Thomas
et al. 2004; Nicastro et al. 2013).

Additionally, we found that tetrapods in communities located in both extremely rare and very com-
mon climates deviated from their optimal (or preferred) climate (see Figure 4.3, Table 4.4). This
trend is especially evident in communities in common climates, characterized by increased phylo-
genetic relatedness and greater phylogenetic diversity (see Figure 4.2).

Intense competition for similar resources may force populations to inhabit sub-optimal conditions
Chesson (2000b). At evolutionary scales, phylogenetically closely-related species with similar
ecological requirements may undergo competition-induced differentiation in their characteristics,
including climatic preferences, as a way to stabilize coexistence by decreasing niche overlap and
competition intensity, and thus leading them to occupy regions more marginal to their climatic
optima (Brown &Wilson 1956; Dayan & Simberloff 2005). Furthermore, ecological character dis-
placement can drive the evolution of specialization among competitor species (Egas et al. 2004),
suggesting that rare climates favour climatic generalists, while specialists are more likely to estab-
lish in common climates (Fournier et al. 2020).

4.5.3 Lack of strong phylogenetic similarities in climatic frequencies

The finding that rare climates limit community phylogenetic relatedness contrasts with the lack of
strong phylogenetic similarity in climatic frequency among tetrapod groups (Q3) (see Figure 4.4,
Table 4.5). While phylogenetic clustering in ecological communities along environmental gradients
has been linked to species sharing similar key fitness traits (Cavender-Bares et al. 2009; Mayfield
& Levine 2010), the lack of strong phylogenetic signals in climatic frequency across tetrapods and
geographical scales suggests factors other than shared ancestry in climatic frequency also contribute
to the formation of less phylogenetically related communities in rare climates.

The role of niche mechanisms may depend on the phylogenetic signal in traits that contribute to
community assembly (Webb 2000; Cavender-Bares et al. 2009). The absence of phylogenetic sim-
ilarities in climatic frequency suggests the possibility that rare climates might act as “filters” of
species with labile functional traits rather than through shared ancestry. This could allow for the
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possibility of distantly-related species with convergent functional traits coexisting in rare climates,
resulting in the less phylogenetically related communities we observed. This might indicate a preva-
lence of generalist species from different clades in rare climates. Fournier et al. (2020) observed
decreased functional diversity in rare climates over a large geographical extent, while Cutts et al.
(2023) found no functional trait distinctiveness between species in rarer versus common climates
in oceanic islands. Moreover, the colonization of rare climates could occur as new niche spaces be-
come available, allowing species to occupy available niches without strong environmental filtering
or evolutionary innovations. However, it is worth acknowledging that adaptation to rare climates
is not implausible. Species radiating into vacant niches might specialize in geographically scarce
(rare) habitats (Gaston 1994).

The lack of phylogenetic similarities in climatic frequency remained consistent across all studied
geographical scales. However, it is plausible that a mosaic of microclimates, at much finer geo-
graphical scales than those explored, within a given macroclimate, could facilitate multiple evo-
lutionary pathways towards similar preferences for the spatial frequency of climate. This could
lead to convergence in these preferences among distantly related species (Losos 2011). In this sce-
nario, rare climates might be used by species that are less phylogenetically related, owing to the
availability of diverse niches within these climates.

4.5.4 Synthesis, limitations, and concluding remarks

Frequency, or rarity, has long intrigued ecologists, yet most studies have focused on the frequency
of species and organisms instead of the diversity of their environmental conditions. While the
macroecological and macroevolutionary biodiversity patterns related to climate frequency we iden-
tified are robust, our study assumes a deterministic nature of ecological and evolutionary processes.
However, rarer climates often correspond to smaller, fragmented habitats, which may dispropor-
tionately expose species to stochastic processes such as genetic drift, demographic fluctuations, and
local extinctions (see Lande 1993; Adler & Drake 2008; Ord et al. 2017). These microevolution-
ary dynamics, driven by smaller effective population sizes, can amplify ecological instability and
decouple community assembly from deterministic forces, potentially driving shifts in community
composition (e.g., opportunistic or generalist species over specialists). If the spatial frequency of cli-
mates shifts rapidly with climate change, such stochasticity could exacerbate community reassem-
bly dynamics, with species sortingmechanisms dominating over long-term evolutionary forces (see
Parmesan 2006). Given the significant past changes in climate and predictions that certain contem-
porary climates will disappear in the next seventy years (Saxon et al. 2005; Williams et al. 2007;
Ackerly et al. 2010), future research incorporating temporal trends in climatic frequency and its
interplay with stochastic forces will offer deeper insights into its effects on community assembly
and persistence.

Interpreting ecological and evolutionary dynamics from community phylogenetic structure is chal-
lenging, as multiple processes can lead to similar patterns (see Münkemüller et al. 2020). Our
framework is based on an ‘ecophylogenetics redux’ approach (see Davies 2021) and moves be-
yond simple extrapolations of ecological and evolutionary mechanisms from community phyloge-
netic structure (i.e., competitive exclusion versus environmental filtering) or phylogenetic signals
in traits (i.e., trait conservatism versus trait convergence). By focusing on phylogenetic community
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structure, deviations from species climatic optima across communities, and contrasting evolution-
ary models in climatic frequencies, we provide a novel framework to shed light on the dynamics
of climate, including its heterogeneity and frequency, as key drivers of the phylogenetic structure
in biological communities.

4.6 Supporting Information 1

4.6.1 Computational tools

All data manipulation and analyses were performed in R and RStudio (R Core Team 2019; Posit
Team 2023). Parallelized computations were done using snowfall, doSNOW, and future
(Bengtsson 2021; Corporation & Weston 2022; Knaus 2022). Geospatial manipulation was done
using the sf , raster, terra, and exactextractr packages (Pebesma 2018; Hijmans
2022, 2023). Phylogenetic manipulation and phylogenetic comparative analyses were done using
the packages ape, picante, PhyloMeasures, motmot, phytools, and phangorn
(Kembel et al. 2010; Schliep 2011; Revell 2012; Tsirogiannis & Sandel 2016, 2017; Paradis &
Schliep 2019; Puttick et al. 2020). Kernel density estimations were performed using the ks pack-
age (Duong 2007, 2022). Generalized additive models were performed and diagnosed with the
mgcv and gratia packages (Wood 2003, 2004; Wood 2017; Simpson 2023). General data ma-
nipulation was done with the tidyverse package suite (Wickham et al. 2019). Figures were
generated using the ggplot2, ggpubr, and patchwork packages (Wickham 2016; Peder-
sen 2022; Kassambara 2023). Tables were generated using the flextable package (Gohel &
Skintzos 2024).

4.6.2 Figures and Tables
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Figure 4.5: Density distributions of climatic frequencies computed across geographical scales for the (A) global, (B) hemispheric,
(C) biogeographical realm, and (D) biome scales. The shaded colour of the curves denotes the hierarchical geographical
extent from which climatic conditions were subset and then used to compute climatic frequencies, being them: global (rose),
east-west hemispheric (green), realm (blue), and biome (purple) extents (see Methods). Acronyms denominate worldwide
biomes, and signify as follows: TmprtBMF = Temperate Broadleaf & Mixed Forests; Tundra = Tundra; TmprtGSS = Tem-
perate Grasslands, Savannas & Shrublands; MntnGrsS = Montane Grasslands & Shrublands; MdtrrFWS = Mediterranean
Forests, Woodlands & Scrub; TrpcSGSS = Tropical & Subtropical Grasslands, Savannas & Shrublands; FlddGrsS = Flooded
Grasslands & Savannas; DsrtsXrS = Deserts & Xeric Shrublands; Mangrovs = Mangroves; TrpcSDBF = Tropical & Subtrop-
ical Dry Broadleaf Forests; TrpclSCF = Tropical & Subtropical Coniferous Forests; TmprtCnF = Temperate Conifer Forests;
TmprtCnF = Temperate Conifer Forests; and, BrlFrstT = Boreal Forests/Taiga.
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Table 4.1: Distribution of average spatial climatic frequencies across contemporary Köppen-
Geiger climate classes and subtypes. Climatic frequencywasmeasured across three ge-
ographical scales: global, east-west hemisphere, and biogeographical realm extents (see
Methods). The Köppen-Geiger system classifies contemporary climate (from 1980 to
2016) into five main classes and 30 sub-types, based on threshold values and seasonality
of monthly air temperature and precipitation. For each scale of climatic frequency, we
calculated the average climatic frequency across the Köppen-Geiger system (obtained
from Beck et al. 2018), and ordered the values in ascending order to reveal the most
common and the rarest climates across the world’s climatic system.

Geographical scale Köppen-Geiger climate classification Average climatic frequency

Polar frost 0.024

Temperate, no dry season, cold summer 0.059

Arid desert, hot 0.157

Temperate, no dry season, warm summer 0.160

Polar tundra 0.177

Temperate, no dry season, hot summer 0.178

Arid desert, cold 0.185

Cold dry winter, very cold winter 0.188

Cold dry winter, hot summer 0.195

Temperate, dry summer, warm summer 0.202

Cold, no dry season, very cold winter 0.210

Temperate, dry winter, warm summer 0.213

Temperate, dry summer, hot summer 0.217

Cold, no dry season, hot summer 0.252

Temperate, dry winter, cold summer 0.253

Arid steppe cold 0.259

Cold dry winter warm summer 0.260

Cold dry winter cold summer 0.265

Arid steppe hot 0.271

Cold dry summer, cold summer 0.282

Cold dry summer, very cold winter 0.284
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Geographical scale Köppen-Geiger climate classification Average climatic frequency

Cold dry summer, hot summer 0.305

Temperate, dry summer, cold summer 0.332

Cold, no dry season, cold summer 0.332

Temperate, dry winter, hot summer 0.347

Cold dry summer warm summer 0.392

Cold, no dry season, warm summer 0.399

Tropical Savannah 0.525

Tropical Rainforest 0.554

Global

Tropical Monsoon 0.624

Polar frost 0.035

Temperate, no dry season, cold summer 0.068

Temperate, dry winter, cold summer 0.082

Temperate, dry summer, warm summer 0.180

Cold dry winter, hot summer 0.184

Polar tundra 0.184

Temperate, no dry season, warm summer 0.189

Temperate, no dry season, hot summer 0.200

Temperate, dry winter, warm summer 0.200

Cold, no dry season, hot summer 0.210

Arid desert, cold 0.215

Arid desert, hot 0.223

Cold dry summer, cold summer 0.237

Temperate, dry summer, hot summer 0.243

Temperate, dry summer, cold summer 0.247

Cold, no dry season, very cold winter 0.264

Cold dry winter, very cold winter 0.271

Arid steppe cold 0.273

Cold dry winter warm summer 0.279
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Geographical scale Köppen-Geiger climate classification Average climatic frequency

Cold, no dry season, cold summer 0.314

Cold dry summer, very cold winter 0.315

Arid steppe hot 0.329

Cold dry winter cold summer 0.348

Cold dry summer warm summer 0.348

Cold dry summer, hot summer 0.377

Temperate, dry winter, hot summer 0.397

Cold, no dry season, warm summer 0.415

Tropical Rainforest 0.475

Tropical Savannah 0.487

Hemispheric

Tropical Monsoon 0.563

Polar frost 0.074

Temperate, dry summer, cold summer 0.134

Temperate, dry winter, cold summer 0.166

Temperate, no dry season, cold summer 0.221

Arid desert, hot 0.310

Arid desert, cold 0.314

Polar tundra 0.370

Temperate, dry summer, warm summer 0.401

Arid steppe cold 0.417

Cold, no dry season, hot summer 0.421

Cold dry winter, hot summer 0.472

Temperate, no dry season, hot summer 0.473

Temperate, dry winter, hot summer 0.485

Arid steppe hot 0.487

Cold dry summer, hot summer 0.495

Temperate, no dry season, warm summer 0.501

Cold dry summer, cold summer 0.510
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Geographical scale Köppen-Geiger climate classification Average climatic frequency

Temperate, dry summer, hot summer 0.513

Cold dry winter warm summer 0.527

Tropical Rainforest 0.561

Cold dry summer warm summer 0.574

Cold dry winter cold summer 0.590

Temperate, dry winter, warm summer 0.597

Cold, no dry season, cold summer 0.654

Cold, no dry season, warm summer 0.703

Tropical Savannah 0.718

Tropical Monsoon 0.721

Cold dry summer, very cold winter 0.767

Cold, no dry season, very cold winter 0.902

Realm

Cold dry winter, very cold winter 0.922

Temperate, dry summer, cold summer 0.022

Cold dry summer, hot summer 0.050

Temperate, no dry season, cold summer 0.064

Cold dry winter, hot summer 0.069

Temperate, dry summer, hot summer 0.081

Temperate, dry winter, cold summer 0.086

Temperate, dry summer, warm summer 0.093

Temperate, no dry season, warm summer 0.096

Cold dry winter warm summer 0.112

Polar frost 0.112

Cold dry winter, very cold winter 0.120

Cold dry summer, very cold winter 0.124

Cold, no dry season, very cold winter 0.135

Arid desert, cold 0.138

Cold, no dry season, hot summer 0.151
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Geographical scale Köppen-Geiger climate classification Average climatic frequency

Arid steppe cold 0.171

Cold dry summer warm summer 0.172

Temperate, no dry season, hot summer 0.182

Cold dry winter cold summer 0.185

Arid desert, hot 0.275

Cold dry summer, cold summer 0.290

Tropical Monsoon 0.304

Temperate, dry winter, hot summer 0.305

Cold, no dry season, warm summer 0.316

Cold, no dry season, cold summer 0.318

Temperate, dry winter, warm summer 0.339

Polar tundra 0.345

Tropical Rainforest 0.358

Arid steppe hot 0.406

Biome

Tropical Savannah 0.546
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Table 4.2: Parameter estimates and model summaries from thin-plate regression smooth splines for the effects of climatic fre-
quency and climatic heterogeneity on mean phylogenetic distances of tetrapod communities. Climatic frequency was
measured across four geographical scales: global, east-west hemisphere, biogeographical realm, and biome extents. Mean
phylogenetic distances (MPD) denote how closely-related co-occurring taxa are in a given community, and was estimate for
each tetrapod group separately, being them: amphibians, birds, mammals, and squamate reptiles. Effective estimated degrees
of freedom (edf) are taken as number of data minus model degrees of freedom (df) (see Methods).
Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(Climatic Frequency) 8.947 8.999 4,036.315 0.001 ***Amphibians 0.175 0.039

s(Climatic Heterogeneity) 8.245 8.848 69.791 0.001 ***

s(Climatic Frequency) 8.944 8.999 1,759.881 0.001 ***Birds 0.077 0.038

s(Climatic Heterogeneity) 8.043 8.764 262.706 0.001 ***

s(Climatic Frequency) 8.597 8.954 1,443.429 0.001 ***Mammals 0.053 0.007

s(Climatic Heterogeneity) 6.910 8.030 194.454 0.001 ***

s(Climatic Frequency) 8.961 9.000 8,955.419 0.001 ***

Global

Squamates 0.295 0.017

s(Climatic Heterogeneity) 8.599 8.955 92.035 0.001 ***

s(Climatic Frequency) 8.966 9.000 2,002.689 0.001 ***Amphibians 0.098 0.026

s(Climatic Heterogeneity) 8.310 8.872 74.588 0.001 ***

s(Climatic Frequency) 8.984 9.000 1,780.030 0.001 ***Birds 0.079 0.031

s(Climatic Heterogeneity) 8.231 8.844 322.540 0.001 ***

s(Climatic Frequency) 8.903 8.997 1,165.528 0.001 ***Mammals 0.045 0.007

s(Climatic Heterogeneity) 6.864 7.992 200.430 0.001 ***

s(Climatic Frequency) 8.974 9.000 3,622.233 0.001 ***

Hemispheric

Squamates 0.154 0.036

s(Climatic Heterogeneity) 8.691 8.973 223.319 0.001 ***
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Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(Climatic Frequency) 8.959 9.000 622.826 0.001 ***Amphibians 0.037 0.025

s(Climatic Heterogeneity) 8.437 8.913 123.845 0.001 ***

s(Climatic Frequency) 8.971 9.000 1,695.439 0.001 ***Birds 0.076 0.018

s(Climatic Heterogeneity) 8.176 8.822 301.777 0.001 ***

s(Climatic Frequency) 8.945 8.999 1,757.596 0.001 ***Mammals 0.065 0.017

s(Climatic Heterogeneity) 6.583 7.754 203.782 0.001 ***

s(Climatic Frequency) 8.978 9.000 3,445.816 0.001 ***

Realm

Squamates 0.148 0.035

s(Climatic Heterogeneity) 8.726 8.979 222.048 0.001 ***

s(Climatic Frequency) 8.882 8.996 2,850.339 0.001 ***Amphibians 0.132 0.027

s(Climatic Heterogeneity) 8.390 8.899 108.262 0.001 ***

s(Climatic Frequency) 8.928 8.998 1,616.335 0.001 ***Birds 0.074 0.008

s(Climatic Heterogeneity) 8.180 8.824 449.583 0.001 ***

s(Climatic Frequency) 8.449 8.914 343.438 0.001 ***Mammals 0.016 0.015

s(Climatic Heterogeneity) 6.679 7.836 98.364 0.001 ***

s(Climatic Frequency) 8.944 8.999 1,751.096 0.001 ***

Biome

Squamates 0.089 0.031

s(Climatic Heterogeneity) 8.721 8.978 340.924 0.001 ***

Signif. codes: 0 <= ’***’ < 0.001 < ’**’ < 0.01 < ’*’ < 0.05 < ’.’ < 0.1 < ” < 1

Thin-plate regression splines with formula: MPD ~ s(Clim. Frequency) + s(Clim. Heterogeneity)
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Table 4.3: Parameter estimates and model summaries from thin-plate regression smooth splines for the effects of climatic fre-
quency and climatic heterogeneity on mean nearest taxon distances of tetrapod communities. Climatic frequency was
measured across four geographical scales: global, east-west hemisphere, biogeographical realm, and biome extents. Mean
phylogenetic distances denote how closely-related co-occurring taxa are in a given community, and was estimate for each
tetrapod group separately, being them: amphibians, birds, mammals, and squamate reptiles. Effective estimated degrees of
freedom (edf) are taken as number of data minus model degrees of freedom (see Methods)
Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(Climatic Frequency) 8.956 8.999 1,877.661 0.001 ***Amphibians 0.092 0.028

s(Climatic Heterogeneity) 8.035 8.758 75.015 0.001 ***

s(Climatic Frequency) 8.980 9.000 1,481.468 0.001 ***Birds 0.056 0.027

s(Climatic Heterogeneity) 8.197 8.830 120.784 0.001 ***

s(Climatic Frequency) 8.884 8.996 6,994.934 0.001 ***Mammals 0.213 0.011

s(Climatic Heterogeneity) 6.905 8.026 53.070 0.001 ***

s(Climatic Frequency) 8.952 8.999 4,468.980 0.001 ***

Global

Squamates 0.184 0.020

s(Climatic Heterogeneity) 8.535 8.941 242.997 0.001 ***

s(Climatic Frequency) 8.968 9.000 859.482 0.001 ***Amphibians 0.048 0.030

s(Climatic Heterogeneity) 8.132 8.802 87.548 0.001 ***

s(Climatic Frequency) 8.973 9.000 373.810 0.001 ***Birds 0.018 0.018

s(Climatic Heterogeneity) 8.228 8.843 135.750 0.001 ***

s(Climatic Frequency) 8.909 8.998 2,358.529 0.001 ***Mammals 0.088 0.008

s(Climatic Heterogeneity) 7.097 8.176 93.736 0.001 ***

s(Climatic Frequency) 8.984 9.000 1,979.527 0.001 ***

Hemispheric

Squamates 0.102 0.027

s(Climatic Heterogeneity) 8.613 8.958 329.233 0.001 ***
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Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(Climatic Frequency) 8.904 8.997 378.791 0.001 ***Amphibians 0.025

s(Climatic Heterogeneity) 8.230 8.842 136.506 0.001 ***

s(Climatic Frequency) 8.945 8.999 489.101 0.001 ***Birds 0.023

0.014

s(Climatic Heterogeneity) 8.158 8.815 121.093 0.001 ***

s(Climatic Frequency) 8.980 9.000 3,259.549 0.001 ***Mammals 0.116 0.018

s(Climatic Heterogeneity) 6.760 7.905 56.320 0.001 ***

s(Climatic Frequency) 8.949 8.999 1,943.195 0.001 ***

Realm

Squamates 0.101 0.034

s(Climatic Heterogeneity) 8.652 8.966 412.492 0.001 ***

s(Climatic Frequency) 8.922 8.998 1,058.645 0.001 ***Amphibians 0.057 0.026

s(Climatic Heterogeneity) 8.205 8.832 108.491 0.001 ***

s(Climatic Frequency) 8.677 8.969 343.803 0.001 ***Birds 0.017 0.010

s(Climatic Heterogeneity) 8.250 8.851 140.465 0.001 ***

s(Climatic Frequency) 8.886 8.996 366.640 0.001 ***Mammals 0.022 0.008

s(Climatic Heterogeneity) 7.244 8.284 224.391 0.001 ***

s(Climatic Frequency) 8.884 8.996 2,665.944 0.001 ***

Biome

Squamates 0.127 0.011

s(Climatic Heterogeneity) 8.604 8.956 423.392 0.001 ***

Signif. codes: 0 <= ’***’ < 0.001 < ’**’ < 0.01 < ’*’ < 0.05 < ’.’ < 0.1 < ” < 1

Thin-plate regression splines with formula: MNTD ~ s(Clim. Frequency) + s(Clim. Heterogeneity)
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Table 4.4: Parameter estimates and model summaries from thin-plate regression smooth splines for the effects of climatic fre-
quency and climatic heterogeneity on the climatic marginality of tetrapod communities. Climatic frequency was mea-
sured across four geographical scales: global, east-west hemisphere, biogeographical realm, and biome extents. Mean phylo-
genetic distances denote how closely-related co-occurring taxa are in a given community, and was estimate for each tetrapod
group separately, being them: amphibians, birds, mammals, and squamate reptiles. Effective estimated degrees of freedom
(edf) are taken as number of data minus model degrees of freedom (see Methods).

Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(Climatic Frequency) 8.989 9.000 13,220.192 0.001 ***Amphibians 0.380 0.073

s(Climatic Heterogeneity) 8.766 8.985 1,227.888 0.001 ***

s(Climatic Frequency) 8.991 9.000 13,262.339 0.001 ***Birds 0.381 0.085

s(Climatic Heterogeneity) 8.760 8.984 1,202.376 0.001 ***

s(Climatic Frequency) 8.991 9.000 13,266.189 0.001 ***Mammals 0.383

s(Climatic Heterogeneity) 8.757 8.983 1,233.913 0.001 ***

s(Climatic Frequency) 8.993 9.000 13,070.463 0.001 ***

Global

Squamates 0.377

0.094

s(Climatic Heterogeneity) 8.752 8.983 1,097.237 0.001 ***

s(Climatic Frequency) 8.979 9.000 5,146.282 0.001 ***Amphibians 0.227 0.044

s(Climatic Heterogeneity) 8.801 8.989 1,768.875 0.001 ***

s(Climatic Frequency) 8.981 9.000 5,199.751 0.001 ***Birds 0.229 0.047

s(Climatic Heterogeneity) 8.797 8.988 1,773.925 0.001 ***

s(Climatic Frequency) 8.981 9.000 5,091.717 0.001 ***Mammals 0.049

s(Climatic Heterogeneity) 8.796 8.988 1,836.850 0.001 ***

s(Climatic Frequency) 8.983 9.000 5,296.446 0.001 ***

Hemispheric

Squamates

0.228

0.048

s(Climatic Heterogeneity) 8.790 8.987 1,675.270 0.001 ***
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Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(Climatic Frequency) 8.973 9.000 5,242.163 0.001 ***Amphibians 0.229 0.036

s(Climatic Heterogeneity) 8.792 8.988 1,677.314 0.001 ***

s(Climatic Frequency) 8.968 9.000 4,907.986 0.001 ***Birds 0.222

s(Climatic Heterogeneity) 8.790 8.987 1,695.548 0.001 ***

s(Climatic Frequency) 8.965 9.000 4,934.855 0.001 ***Mammals 0.224

0.032

s(Climatic Heterogeneity) 8.786 8.987 1,760.222 0.001 ***

s(Climatic Frequency) 8.966 9.000 4,290.490 0.001 ***

Realm

Squamates 0.204 0.027

s(Climatic Heterogeneity) 8.785 8.987 1,622.787 0.001 ***

s(Climatic Frequency) 8.930 8.999 2,304.424 0.001 ***Amphibians 0.058

s(Climatic Heterogeneity) 8.774 8.986 2,246.410 0.001 ***

s(Climatic Frequency) 8.927 8.998 2,288.517 0.001 ***Birds

0.152

0.055

s(Climatic Heterogeneity) 8.772 8.985 2,265.904 0.001 ***

s(Climatic Frequency) 8.926 8.998 2,158.814 0.001 ***Mammals 0.053

s(Climatic Heterogeneity) 8.767 8.985 2,345.851 0.001 ***

s(Climatic Frequency) 8.924 8.998 2,339.256 0.001 ***

Biome

Squamates

0.150

0.052

s(Climatic Heterogeneity) 8.768 8.985 2,166.906 0.001 ***

Signif. codes: 0 <= ’***’ < 0.001 < ’**’ < 0.01 < ’*’ < 0.05 < ’.’ < 0.1 < ” < 1

Thin-plate regression splines with formula: Clim. Marginality ~ s(Clim. Frequency) + s(Clim. Heterogeneity)
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Table 4.5: Parameter estimates and model summaries from maximum-likelihood-based phylogenetic comparative models assess-
ing the phylogenetic signal in climatic frequency across geographical scales for tetrapod communities. The analysis
was conducted across four geographical scales: global, east-west hemisphere, biogeographical realm, and biome extents. The
table includes parameter estimates for Pagel’s λ (lambda), Pagel’s δ (delta), Blomberg’s K, and the Ornstein-Uhlenbeck (OU)
stationary-peak model (α). These parameters were evaluated to determine how evolutionary relatedness correlates with eco-
logical similarity in climatic frequency. The table also provides the effective degrees of freedom (edf), Brownian variance,
root-state estimates, and model fit statistics, including AIC and AICc, for each tetrapod group (amphibians, birds, mammals,
and squamate reptiles) at different geographical scales. Uncertainty in parameter estimates is accounted for by incorporating
the standard error of climatic frequency across species distributions.

Taxonomic group Geographical scale Evolutionary parameter type Parameter estimate Lower 95% CI Upper 95% CI Brownian variance Root-state estimate Likelihood Type AIC AICc N

Pagel’s λ 0.723 0.675 0.765 0.000 0.323 1,002.688 Maximum-Likelihood -1,999.376 -1,999.369 3,627

Ornstein-Uhlenbeck Stationary α 0.057 0.052 0.063 0.005 0.341 30.375 Maximum-Likelihood -54.751 -54.744 3,627

Pagel’s δ 13.806 12.665 14.973 0.000 0.350 -427.642 Maximum-Likelihood 861.284 861.290 3,627

Global

Blomberg’s K 0.056 0.003 0.326 -718.094 Log-likelihood 1,440.189 1,440.192 3,627

Pagel’s λ 0.689 0.634 0.738 0.000 0.286 1,504.929 Maximum-Likelihood -3,003.858 -3,003.852 3,626

Ornstein-Uhlenbeck Stationary α 0.039 0.036 0.043 0.003 0.307 716.169 Maximum-Likelihood -1,426.337 -1,426.331 3,626

Pagel’s δ 9.754 8.776 10.746 0.000 0.310 358.658 Maximum-Likelihood -711.315 -711.309 3,626

Hemispheric

Blomberg’s K 0.072 0.002 0.288 187.319 Log-likelihood -370.639 -370.636 3,626

Pagel’s λ 0.847 0.824 0.868 0.000 0.525 1,074.790 Maximum-Likelihood -2,143.581 -2,143.574 3,626

Ornstein-Uhlenbeck Stationary α 0.021 0.020 0.023 0.003 0.546 377.323 Maximum-Likelihood -748.646 -748.640 3,626

Pagel’s δ 9.961 9.110 10.821 0.000 0.548 253.746 Maximum-Likelihood -501.492 -501.485 3,626

Realm

Blomberg’s K 0.138 0.002 0.530 34.755 Log-likelihood -65.510 -65.507 3,626

Pagel’s λ 0.702 0.653 0.746 0.000 0.190 1,131.832 Maximum-Likelihood -2,257.664 -2,257.657 3,626

Ornstein-Uhlenbeck Stationary α 0.047 0.043 0.051 0.004 0.206 444.036 Maximum-Likelihood -882.072 -882.066 3,626
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Taxonomic group Geographical scale Evolutionary parameter type Parameter estimate Lower 95% CI Upper 95% CI Brownian variance Root-state estimate Likelihood Type AIC AICc N

Pagel’s δ 14.568 13.395 15.772 0.000 0.218 102.403 Maximum-Likelihood -198.807 -198.800 3,626

Amphibians

Biome

Blomberg’s K 0.068 0.002 0.188 -215.871 Log-likelihood 435.742 435.745 3,626

Pagel’s λ 0.668 0.631 0.702 0.001 0.363 2,803.015 Maximum-Likelihood -5,600.031 -5,600.028 7,495

Ornstein-Uhlenbeck Stationary α 0.234 0.215 0.255 0.016 0.355 1,729.665 Maximum-Likelihood -3,453.331 -3,453.328 7,495

Pagel’s δ 27.749 26.391 29.156 0.000 0.354 1,170.613 Maximum-Likelihood -2,335.227 -2,335.224 7,495

Global

Blomberg’s K 0.051 0.007 0.363 -343.843 Log-likelihood 691.686 691.688 7,495

Pagel’s λ 0.674 0.637 0.707 0.000 0.315 3,738.709 Maximum-Likelihood -7,471.417 -7,471.414 7,473

Ornstein-Uhlenbeck Stationary α 0.206 0.191 0.223 0.011 0.323 2,665.600 Maximum-Likelihood -5,325.199 -5,325.196 7,473

Pagel’s δ 25.994 24.704 27.330 0.000 0.326 2,146.139 Maximum-Likelihood -4,286.277 -4,286.274 7,473

Hemispheric

Blomberg’s K 0.053 0.005 0.316 736.608 Log-likelihood -1,469.216 -1,469.215 7,473

Pagel’s λ 0.819 0.799 0.837 0.001 0.493 1,450.483 Maximum-Likelihood -2,894.965 -2,894.962 7,479

Ornstein-Uhlenbeck Stationary α 0.132 0.124 0.140 0.018 0.508 -64.723 Maximum-Likelihood 135.445 135.448 7,479

Pagel’s δ 23.157 21.986 24.378 0.000 0.505 -346.391 Maximum-Likelihood 698.781 698.784 7,479

Realm

Blomberg’s K 0.063 0.010 0.494 -1,692.649 Log-likelihood 3,389.297 3,389.299 7,479

Pagel’s λ 0.680 0.646 0.712 0.001 0.295 2,632.242 Maximum-Likelihood -5,258.484 -5,258.481 7,478

Ornstein-Uhlenbeck Stationary α 0.331 0.299 0.367 0.023 0.258 1,601.866 Maximum-Likelihood -3,197.732 -3,197.729 7,478

Pagel’s δ 35.434 33.620 37.338 0.000 0.262 1,113.931 Maximum-Likelihood -2,221.862 -2,221.859 7,478

Birds

Biome

Blomberg’s K 0.049 0.008 0.309 -723.649 Log-likelihood 1,451.298 1,451.299 7,478

Pagel’s λ 0.887 0.865 0.905 0.001 0.293 1,931.512 Maximum-Likelihood -3,857.025 -3,857.020 4,565

Ornstein-Uhlenbeck Stationary α 0.153 0.141 0.165 0.010 0.349 1,219.509 Maximum-Likelihood -2,433.018 -2,433.012 4,565
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Taxonomic group Geographical scale Evolutionary parameter type Parameter estimate Lower 95% CI Upper 95% CI Brownian variance Root-state estimate Likelihood Type AIC AICc N

Pagel’s δ 15.080 12.735 17.477 0.000 0.339 635.249 Maximum-Likelihood -1,264.498 -1,264.492 4,565

Global

Blomberg’s K 0.031 0.007 0.289 553.677 Log-likelihood -1,103.353 -1,103.351 4,565

Pagel’s λ 0.877 0.855 0.896 0.000 0.288 2,284.096 Maximum-Likelihood -4,562.192 -4,562.187 4,564

Ornstein-Uhlenbeck Stationary α 0.166 0.153 0.179 0.009 0.321 1,473.677 Maximum-Likelihood -2,941.354 -2,941.349 4,564

Pagel’s δ 19.991 17.447 22.588 0.000 0.321 894.660 Maximum-Likelihood -1,783.321 -1,783.315 4,564

Hemispheric

Blomberg’s K 0.027 0.006 0.290 768.606 Log-likelihood -1,533.213 -1,533.210 4,564

Pagel’s λ 0.934 0.923 0.943 0.002 0.463 765.974 Maximum-Likelihood -1,525.949 -1,525.944 4,564

Ornstein-Uhlenbeck Stationary α 0.140 0.130 0.151 0.020 0.514 22.460 Maximum-Likelihood -38.919 -38.914 4,564

Pagel’s δ 42.789 39.447 46.211 0.000 0.516 -249.562 Maximum-Likelihood 505.123 505.128 4,564

Realm

Blomberg’s K 0.031 0.013 0.467 -637.556 Log-likelihood 1,279.111 1,279.114 4,564

Pagel’s λ 0.876 0.850 0.896 0.001 0.244 1,280.653 Maximum-Likelihood -2,555.306 -2,555.301 4,564

Ornstein-Uhlenbeck Stationary α 0.216 0.199 0.234 0.016 0.256 808.181 Maximum-Likelihood -1,610.361 -1,610.356 4,564

Pagel’s δ 23.585 20.754 26.484 0.000 0.255 134.915 Maximum-Likelihood -263.830 -263.825 4,564

Mammals

Biome

Blomberg’s K 0.024 0.009 0.252 -15.480 Log-likelihood 34.960 34.963 4,564

Pagel’s λ 0.673 0.635 0.708 0.000 0.340 2,391.801 Maximum-Likelihood -4,777.603 -4,777.599 6,435

Ornstein-Uhlenbeck Stationary α 0.099 0.092 0.107 0.007 0.324 1,190.790 Maximum-Likelihood -2,375.580 -2,375.576 6,435

Pagel’s δ 13.087 12.274 13.919 0.000 0.330 446.840 Maximum-Likelihood -887.680 -887.676 6,435

Global

Blomberg’s K 0.060 0.004 0.331 -90.932 Log-likelihood 185.863 185.865 6,435

Pagel’s λ 0.660 0.619 0.698 0.000 0.296 3,011.459 Maximum-Likelihood -6,016.918 -6,016.915 6,421

Ornstein-Uhlenbeck Stationary α 0.091 0.085 0.098 0.005 0.299 1,878.246 Maximum-Likelihood -3,750.491 -3,750.488 6,421
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Taxonomic group Geographical scale Evolutionary parameter type Parameter estimate Lower 95% CI Upper 95% CI Brownian variance Root-state estimate Likelihood Type AIC AICc N

Pagel’s δ 13.980 13.128 14.849 0.000 0.298 1,174.202 Maximum-Likelihood -2,342.404 -2,342.400 6,421

Hemispheric

Blomberg’s K 0.060 0.003 0.291 604.702 Log-likelihood -1,205.404 -1,205.402 6,421

Pagel’s λ 0.858 0.841 0.873 0.001 0.452 1,713.016 Maximum-Likelihood -3,420.032 -3,420.028 6,421

Ornstein-Uhlenbeck Stationary α 0.040 0.037 0.042 0.006 0.505 554.754 Maximum-Likelihood -1,103.509 -1,103.505 6,421

Pagel’s δ 12.003 11.308 12.715 0.000 0.504 378.522 Maximum-Likelihood -751.044 -751.040 6,421

Realm

Blomberg’s K 0.111 0.004 0.444 -195.514 Log-likelihood 395.027 395.029 6,421

Pagel’s λ 0.751 0.722 0.778 0.000 0.245 1,843.397 Maximum-Likelihood -3,680.795 -3,680.791 6,421

Ornstein-Uhlenbeck Stationary α 0.079 0.074 0.084 0.007 0.246 736.134 Maximum-Likelihood -1,466.269 -1,466.265 6,421

Pagel’s δ 13.522 12.690 14.372 0.000 0.243 121.088 Maximum-Likelihood -236.176 -236.172 6,421

Squamates

Biome

Blomberg’s K 0.067 0.004 0.242 -434.211 Log-likelihood 872.421 872.423 6,421
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4.7 Supporting Information 2

4.7.1 Accounting for the influence of average climatic conditions in the
relationship between climatic frequency and community phylogenetic
relatedness

In addition to climatic heterogeneity, the association between climatic frequency and community
phylogenetic relatedness can be confounded by the effects of the climatic conditions in a region
themselves. This is because areas characterized by rare climatesmay also be underpinned by unique
average climatic conditions, which can strongly influence the evolutionary trajectories of species
and, in turn, community structure. For instance, areas with rare climatic conditions but stable mean
temperatures might foster different adaptive strategies compared to those with common climates
and fluctuating average conditions. Such conditions can modulate the influence of climatic rarity
on community assembly, as species’ evolutionary responses to rare climate may be tempered by
the prevailing climates from where they occur (Gaston 2003).

To account for this, we performed generalized additive models (GAMs) incorporating the climatic
principal components as covariates alongside climatic heterogeneity (see Methods for information
on how these variables have been calculated). These models were fitted using penalized thin-plate
splines for the partial effects of climatic frequency, climatic heterogeneity, and climatic principal
components on the community phylogenetic metrics (MPDSES and MNTDSES), in separate models
for each taxa and geographical scale.

Despite being less strong at certain geographical scales, the negative relationship between climatic
frequency and phylogenetic community structure (for both MPDSES and MNTDSES), remained evi-
dent after controlling for the effects of climatic conditions and climatic heterogeneity (see Support-
ing Information 2; Figure 4.6, Table 4.6 and Table 4.7).

4.7.2 Figures and Tables
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Figure 4.6: Partial effects of climatic frequency on the phylogenetic structure of worldwide communities (248,139, in total) of four
tetrapod groups: amphibians (3,627 species), mammals (4,565 species), birds (7,495 species), and reptilian squamates
(6,435 species). Phylogenetic community structure was measured as standardized effect sizes of (A) mean phylogenetic
distances and (B) mean nearest taxon distances for each tetrapod group. Climatic frequency was estimated in each community
for each one of four geographical scales (global, hemispheric, realm, and biome), and was based on the first four principal
components representing contemporary climatic conditions across the globe (see Methods).
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Table 4.6: Parameter estimates and model summaries from thin-plate regression smooth
splines for the effects of climatic frequency, climatic heterogeneity, and principal
components from average climatic conditions on mean phylogenetic distances of
tetrapod communities. Climatic frequency was measured across four geographical
scales: global, east-west hemisphere, biogeographical realm, and biome extents. Mean
phylogenetic distances denote how closely-related co-occurring taxa are in a given com-
munity, and was estimate for each tetrapod group separately, being them: amphibians,
birds, mammals, and squamate reptiles. Effective estimated degrees of freedom (edf)
are taken as number of data minus model degrees of freedom (see Methods).

Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(Climatic Frequency) 8.781 8.986 347.212 0.001 ***

s(Climatic Heterogeneity) 6.154 7.364 44.407 0.001 ***

s(RS1) 8.899 8.997 1,086.237 0.001 ***

s(RS2) 8.987 9.000 16,176.614 0.001 ***

s(RS3) 8.976 9.000 595.288 0.001 ***

Amphibians 0.650 0.079

s(RS4) 8.885 8.996 563.482 0.001 ***

s(Climatic Frequency) 8.643 8.964 1,264.550 0.001 ***

s(Climatic Heterogeneity) 7.594 8.521 91.653 0.001 ***

s(RS1) 8.972 9.000 884.010 0.001 ***

s(RS2) 8.974 9.000 2,515.547 0.001 ***

s(RS3) 8.990 9.000 2,071.478 0.001 ***

Birds 0.267 0.174

s(RS4) 8.917 8.998 634.621 0.001 ***

s(Climatic Frequency) 8.719 8.978 215.609 0.001 ***

s(Climatic Heterogeneity) 6.110 7.320 124.145 0.001 ***

s(RS1) 8.976 9.000 786.291 0.001 ***

s(RS2) 8.894 8.997 996.144 0.001 ***

s(RS3) 8.975 9.000 1,213.409 0.001 ***

Mammals 0.223 0.145

s(RS4) 8.963 9.000 2,788.312 0.001 ***

s(Climatic Frequency) 8.637 8.963 112.840 0.001 ***

s(Climatic Heterogeneity) 8.310 8.873 7.148 0.001 ***

s(RS1) 8.969 9.000 1,840.880 0.001 ***

s(RS2) 8.925 8.998 15,380.145 0.001 ***
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Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(RS3) 8.972 9.000 292.566 0.001 ***

Global

Squamates 0.636 0.104

s(RS4) 8.865 8.995 566.524 0.001 ***

s(Climatic Frequency) 8.734 8.980 39.881 0.001 ***

s(Climatic Heterogeneity) 6.381 7.576 50.141 0.001 ***

s(RS1) 8.924 8.998 1,067.090 0.001 ***

s(RS2) 8.989 9.000 19,183.278 0.001 ***

s(RS3) 8.974 9.000 603.141 0.001 ***

Amphibians 0.645 0.074

s(RS4) 8.887 8.996 521.173 0.001 ***

s(Climatic Frequency) 8.979 9.000 1,259.033 0.001 ***

s(Climatic Heterogeneity) 7.789 8.635 76.352 0.001 ***

s(RS1) 8.957 8.999 491.959 0.001 ***

s(RS2) 8.980 9.000 2,447.730 0.001 ***

s(RS3) 8.989 9.000 2,000.049 0.001 ***

Birds 0.272 0.178

s(RS4) 8.915 8.998 660.720 0.001 ***

s(Climatic Frequency) 8.932 8.999 259.987 0.001 ***

s(Climatic Heterogeneity) 6.126 7.335 132.394 0.001 ***

s(RS1) 8.977 9.000 841.137 0.001 ***

s(RS2) 8.895 8.997 1,200.270 0.001 ***

s(RS3) 8.973 9.000 1,253.597 0.001 ***

Mammals 0.225 0.140

s(RS4) 8.958 9.000 2,700.404 0.001 ***

s(Climatic Frequency) 8.839 8.992 277.893 0.001 ***

s(Climatic Heterogeneity) 2.915 3.708 3.660 0.007 **

s(RS1) 8.971 9.000 2,174.102 0.001 ***

s(RS2) 8.933 8.999 19,245.736 0.001 ***

s(RS3) 8.965 9.000 254.003 0.001 ***

Hemispheric

Squamates 0.641 0.106

s(RS4) 8.839 8.993 466.643 0.001 ***

s(Climatic Frequency) 8.854 8.994 74.733 0.001 ***

s(Climatic Heterogeneity) 6.367 7.563 46.713 0.001 ***

s(RS1) 8.925 8.998 1,072.822 0.001 ***
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Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(RS2) 8.988 9.000 20,081.093 0.001 ***

s(RS3) 8.973 9.000 656.075 0.001 ***

Amphibians 0.646 0.075

s(RS4) 8.890 8.997 467.278 0.001 ***

s(Climatic Frequency) 8.963 9.000 1,112.978 0.001 ***

s(Climatic Heterogeneity) 7.780 8.630 98.403 0.001 ***

s(RS1) 8.927 8.998 850.960 0.001 ***

s(RS2) 8.979 9.000 2,124.966 0.001 ***

s(RS3) 8.989 9.000 1,871.674 0.001 ***

Birds 0.268 0.175

s(RS4) 8.922 8.998 621.336 0.001 ***

s(Climatic Frequency) 8.963 9.000 1,225.531 0.001 ***

s(Climatic Heterogeneity) 5.854 7.069 166.762 0.001 ***

s(RS1) 8.977 9.000 725.379 0.001 ***

s(RS2) 8.915 8.998 1,416.190 0.001 ***

s(RS3) 8.975 9.000 1,281.275 0.001 ***

Mammals 0.252 0.167

s(RS4) 8.961 9.000 2,748.331 0.001 ***

s(Climatic Frequency) 8.901 8.997 193.976 0.001 ***

s(Climatic Heterogeneity) 8.389 8.899 8.369 0.001 ***

s(RS1) 8.976 9.000 1,931.234 0.001 ***

s(RS2) 8.935 8.999 20,322.281 0.001 ***

s(RS3) 8.969 9.000 289.340 0.001 ***

Realm

Squamates 0.640 0.105

s(RS4) 8.869 8.995 565.167 0.001 ***

s(Climatic Frequency) 8.805 8.989 274.543 0.001 ***

s(Climatic Heterogeneity) 6.552 7.728 45.189 0.001 ***

s(RS1) 8.917 8.998 939.544 0.001 ***

s(RS2) 8.989 9.000 19,054.364 0.001 ***

s(RS3) 8.974 9.000 653.999 0.001 ***

Amphibians 0.650 0.078

s(RS4) 8.882 8.996 463.493 0.001 ***

s(Climatic Frequency) 8.880 8.996 713.661 0.001 ***

s(Climatic Heterogeneity) 7.753 8.615 96.761 0.001 ***
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Geographical Scale Taxon Total Adj. R2 Non-linear Adj. R2 Predictor edf df F p-value

s(RS1) 8.814 8.990 340.521 0.001 ***

s(RS2) 8.981 9.000 2,149.787 0.001 ***

s(RS3) 8.991 9.000 1,950.619 0.001 ***

Birds 0.257 0.164

s(RS4) 8.923 8.998 680.642 0.001 ***

s(Climatic Frequency) 8.757 8.983 545.937 0.001 ***

s(Climatic Heterogeneity) 5.928 7.142 103.716 0.001 ***

s(RS1) 8.976 9.000 886.856 0.001 ***

s(RS2) 8.922 8.998 1,467.973 0.001 ***

s(RS3) 8.971 9.000 1,345.575 0.001 ***

Mammals 0.233 0.148

s(RS4) 8.959 9.000 2,927.398 0.001 ***

s(Climatic Frequency) 8.930 8.999 316.802 0.001 ***

s(Climatic Heterogeneity) 8.394 8.901 5.853 0.001 ***

s(RS1) 8.974 9.000 2,093.046 0.001 ***

s(RS2) 8.941 8.999 19,975.092 0.001 ***

s(RS3) 8.962 8.999 248.495 0.001 ***

Biome

Squamates 0.642 0.107

s(RS4) 8.867 8.995 518.618 0.001 ***

Signif. codes: 0 <= ’***’ < 0.001 < ’**’ < 0.01 < ’*’ < 0.05 < ’.’ < 0.1 < ” < 1

Thin-plate regression splines with formula: MPD ~ s(Clim. Freq.) + s(Clim. Het.) + s(Clim. RS1) + s(Clim. RS2) + s(Clim. RS3) + s(Clim. RS4)

Table 4.7: Parameter estimates and model summaries from thin-plate regression smooth
splines for the effects of climatic frequency, climatic heterogeneity, and principal
components from average climatic conditions on mean phylogenetic distances of
tetrapod communities. Climatic frequency was measured across four geographical
scales: global, east-west hemisphere, biogeographical realm, and biome extents. Mean
phylogenetic distances denote how closely-related co-occurring taxa are in a given com-
munity, and was estimate for each tetrapod group separately, being them: amphibians,
birds, mammals, and squamate reptiles. Effective estimated degrees of freedom (edf)
are taken as number of data minus model degrees of freedom (see Methods).

Geographical ScaleTaxon Total Adj. R2Non-linear Adj. R2Predictor edf df Fp-value

s(Climatic Frequency) 8.8238.991 106.420 0.001***

s(Climatic Heterogeneity)5.9667.182 84.051 0.001***
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Geographical ScaleTaxon Total Adj. R2Non-linear Adj. R2Predictor edf df Fp-value

s(RS1) 8.9759.000 775.086 0.001***

s(RS2) 8.9719.00011,417.103 0.001***

s(RS3) 8.8228.991 253.535 0.001***

Amphibians 0.505 0.051

s(RS4) 8.7738.986 741.251 0.001***

s(Climatic Frequency) 8.9518.999 359.690 0.001***

s(Climatic Heterogeneity)7.0408.134 71.279 0.001***

s(RS1) 8.9619.000 4,535.819 0.001***

s(RS2) 8.9859.000 2,640.269 0.001***

s(RS3) 8.9769.000 1,260.804 0.001***

Birds 0.358 0.133

s(RS4) 8.9478.999 705.456 0.001***

s(Climatic Frequency) 8.5608.946 230.480 0.001***

s(Climatic Heterogeneity)6.6267.793 28.303 0.001***

s(RS1) 8.9218.998 1,158.004 0.001***

s(RS2) 8.9859.000 4,787.775 0.001***

s(RS3) 8.9609.000 768.429 0.001***

Mammals 0.433 0.181

s(RS4) 8.9839.000 1,162.573 0.001***

s(Climatic Frequency) 8.6778.971 207.967 0.001***

s(Climatic Heterogeneity)6.8447.976 123.418 0.001***

s(RS1) 8.9779.000 1,525.088 0.001***

s(RS2) 8.8818.99618,756.475 0.001***

s(RS3) 8.9328.998 1,316.387 0.001***

Global

Squamates 0.617 0.068

s(RS4) 8.9238.998 2,922.284 0.001***

s(Climatic Frequency) 8.4548.917 124.303 0.001***

s(Climatic Heterogeneity)5.9677.185 93.003 0.001***

s(RS1) 8.9789.000 764.903 0.001***

s(RS2) 8.9739.00012,699.506 0.001***

s(RS3) 8.8198.991 242.392 0.001***

Amphibians 0.507 0.049

s(RS4) 8.7698.985 689.913 0.001***

s(Climatic Frequency) 8.9649.000 530.370 0.001***
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Geographical ScaleTaxon Total Adj. R2Non-linear Adj. R2Predictor edf df Fp-value

s(Climatic Heterogeneity)7.0848.167 67.871 0.001***

s(RS1) 8.9639.000 5,192.928 0.001***

s(RS2) 8.9909.000 2,868.556 0.001***

s(RS3) 8.9729.000 1,243.180 0.001***

Birds 0.361 0.131

s(RS4) 8.9438.999 594.503 0.001***

s(Climatic Frequency) 8.8828.996 97.272 0.001***

s(Climatic Heterogeneity)6.6877.845 25.036 0.001***

s(RS1) 8.9228.998 1,497.005 0.001***

s(RS2) 8.9859.000 7,150.056 0.001***

s(RS3) 8.9669.000 833.062 0.001***

Mammals 0.428 0.224

s(RS4) 8.9819.000 1,088.207 0.001***

s(Climatic Frequency) 8.8998.997 242.207 0.001***

s(Climatic Heterogeneity)7.1408.209 119.638 0.001***

s(RS1) 8.9829.000 1,546.427 0.001***

s(RS2) 8.8958.99622,672.997 0.001***

s(RS3) 8.9468.999 1,254.856 0.001***

Hemispheric

Squamates 0.619 0.075

s(RS4) 8.9138.998 2,843.412 0.001***

s(Climatic Frequency) 8.9018.997 822.715 0.001***

s(Climatic Heterogeneity)5.6446.863 95.422 0.001***

s(RS1) 8.9839.000 1,075.159 0.001***

s(RS2) 8.9639.00012,904.093 0.001***

s(RS3) 8.8248.991 172.505 0.001***

Amphibians 0.524 0.057

s(RS4) 8.7128.977 578.899 0.001***

s(Climatic Frequency) 8.9468.999 510.049 0.001***

s(Climatic Heterogeneity)6.9078.028 75.767 0.001***

s(RS1) 8.9599.000 5,394.628 0.001***

s(RS2) 8.9899.000 2,394.769 0.001***

s(RS3) 8.9719.000 1,245.745 0.001***

Birds 0.361 0.132

s(RS4) 8.9468.999 579.921 0.001***
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Geographical ScaleTaxon Total Adj. R2Non-linear Adj. R2Predictor edf df Fp-value

s(Climatic Frequency) 8.9619.000 832.690 0.001***

s(Climatic Heterogeneity)6.4327.620 48.392 0.001***

s(RS1) 8.9168.998 1,115.405 0.001***

s(RS2) 8.9869.000 7,554.797 0.001***

s(RS3) 8.9729.000 779.436 0.001***

Mammals 0.443 0.234

s(RS4) 8.9809.000 990.439 0.001***

s(Climatic Frequency) 8.9548.999 584.800 0.001***

s(Climatic Heterogeneity)6.8928.015 123.125 0.001***

s(RS1) 8.9849.000 1,751.255 0.001***

s(RS2) 8.9328.99823,737.453 0.001***

s(RS3) 8.9048.997 1,513.751 0.001***

Realm

Squamates 0.624 0.078

s(RS4) 8.9068.998 2,751.700 0.001***

s(Climatic Frequency) 8.8668.995 82.510 0.001***

s(Climatic Heterogeneity)5.9727.190 83.443 0.001***

s(RS1) 8.9779.000 758.711 0.001***

s(RS2) 8.9679.00012,639.573 0.001***

s(RS3) 8.7918.988 242.927 0.001***

Amphibians 0.506 0.050

s(RS4) 8.7458.982 716.324 0.001***

s(Climatic Frequency) 8.4938.927 148.033 0.001***

s(Climatic Heterogeneity)6.9158.034 72.716 0.001***

s(RS1) 8.9368.999 4,796.526 0.001***

s(RS2) 8.9909.000 2,390.925 0.001***

s(RS3) 8.9739.000 1,166.562 0.001***

Birds 0.352 0.122

s(RS4) 8.9498.999 641.749 0.001***

s(Climatic Frequency) 8.5328.937 154.384 0.001***

s(Climatic Heterogeneity)6.7037.859 24.268 0.001***

s(RS1) 8.9198.998 1,510.962 0.001***

s(RS2) 8.9869.000 7,646.496 0.001***

s(RS3) 8.9669.000 814.765 0.001***
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Geographical ScaleTaxon Total Adj. R2Non-linear Adj. R2Predictor edf df Fp-value

Mammals 0.429 0.245

s(RS4) 8.9819.000 1,106.012 0.001***

s(Climatic Frequency) 8.8108.989 439.377 0.001***

s(Climatic Heterogeneity)6.9258.042 118.993 0.001***

s(RS1) 8.9809.000 1,441.758 0.001***

s(RS2) 8.9098.99721,670.412 0.001***

s(RS3) 8.9378.999 1,294.279 0.001***

Biome

Squamates 0.622 0.070

s(RS4) 8.9238.998 2,721.551 0.001***

Signif. codes: 0 <= ’***’ < 0.001 < ’**’ < 0.01 < ’*’ < 0.05 < ’.’ < 0.1 < ” < 1

Thin-plate regression splines with formula: MNTD ~ s(Clim. Freq.) + s(Clim. Het.) + s(Clim. RS1) + s(Clim. RS2) + s(Clim. RS3) + s(Clim. RS4)

4.8 Supporting Information 3

4.8.1 Robustness of phylogenetic uncertainty

To account for phylogenetic uncertainty, we recalculated the phylogenetic relatedness of tetrapod
communities and the phylogenetic signals on climatic frequencies on subsets of 30 randomly sam-
pled trees from the posterior distribution of phylogenetic trees for each one of the tetrapod groups:
amphibians (Jetz & Pyron 2018), birds (Jetz & Fine 2012), mammals (Upham et al. 2020), and
squamate reptiles (Tonini et al. 2016) (see Donoghue & Ackerly 1996). We were limited from in-
cluding higher sample sizes due to limitations on computational resources. For each tetrapod group,
we then computed the average standardized effect sizes of mean phylogenetic distances and mean
nearest taxon distances for each community as well as the comparative phylogenetic analyses on
the evolution of climatic frequencies across the calculations done with the sampled phylogenetic
trees, and used these averages to reproduce the figures and analyses from our study.

We observed qualitatively similar results to the ones computed using the maximum credibility clade
phylogenetic trees (see Figure 4.2, Figure 4.4), providing evidence that our inferences are robust
to the uncertainty of phylogenetic hypotheses from the posterior distribution of the phylogenetic
relationships we used in our study.
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Chapter 5

Synthesis, conclusions, and future directions

In this thesis, I investigated how climate—through its averages, variability, and frequency across
space—drives patterns in biological communities. By adopting a pluralistic and integrative ap-
proach, I bridged historical perspectives, theoretical advancements, empirical data, and modern
computational methods to provide a nuanced understanding of climate-biodiversity interactions.
Each chapter contributes to this overarching framework, elucidating the distinct roles that different
climatic components play in driving ecological strategies, community assembly, and evolutionary
trajectories. This conclusion synthesizes the findings from the chapters, reflects on their broader
implications, and discusses how this thesis advances ecological research by refining theoretical
frameworks, challenging existing paradigms, and proposing new directions for future studies.

Together, the chapters in this thesis illustrate that a comprehensive understanding of climate-
biodiversity dynamics requires an integrative approach that encompasses multiple dimensions of
climate and their interactions across different spatial and phylogenetic scales. The findings demon-
strattWe how climatic averages, variability, frequency, paleoclimatic stability, and diversification
rates shape community structure and ecological specialisation.

5.1 Climate drives ecophylogenetics and specialisation

Chapter 2 underscores the profound influence of historical climatic legacies on contemporary bio-
diversity patterns. By examining the phylogenetic structures of bat communities across multiple
geographical extents, this chapter highlights paleoclimatic stability as a critical determinant of com-
munity assembly processes. Historical shifts in temperature and precipitation since the last glacial
maximum have left enduring imprints on these communities’ phylogenetic structures, revealing
patterns of relatedness shaped by the stability and change in climatic conditions over millennia.
Regions with more stable climates since the last glacial maximum harbour more phylogenetically
clustered communities, reflecting the persistence of lineages adapted to specific environmental con-
ditions. In contrast, regions that have undergone significant climatic shifts show less phylogenetic
clustering, suggesting that recent ecological dynamics, such as dispersal and colonization, have a
more prominent role than deep evolutionary histories.

These findings resonate with ongoing discussions on how glacial-interglacial cycles have left dis-
cernible imprints on community composition and structure, influencing contemporary biodiversity
patterns (e.g., Kissling et al. 2012; Svenning et al. 2015; Delgado-Baquerizo et al. 2017). The
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evidence supports established ecological theories, such as the “time-stability” (Fine & Ree 2006)
and “climatic-stability” hypotheses (Wiens & Graham 2005), which posit that stable environments
over evolutionary timescales foster phylogenetically clustered communities. However, this chap-
ter also challenges these hypotheses by demonstrating that phylogenetic clustering is not a uniform
outcome; it varies significantly across geographical and phylogenetic scales. The diversity patterns
resulting from climatic legacies are contingent upon the interplay between historical stability and
contemporary ecological dynamics. This nuanced perspective emphasizes that community assem-
bly is shaped by the interaction of both long-term climatic legacies and recent processes, reflecting
a more complex narrative than is typically assumed.

Chapters 3 and 4 then extend the exploration of climatic drivers by investigating the role of climatic
frequencies in shaping community specialisation and phylogenetic structure.

Chapter 3 reveals that communities in rare climatic conditions tend to exhibit increased climatic
niche breadths, with generalist species more likely to occur in less common environments. In
contrast, species in more common climates are more likely to be climatic specialists. These results
align with the outcomes from the process-based metacommunity simulations, which show similar
patterns where rare environments tend to support the co-occurrence between both generalists and
specialists, while specialists dominate in common environments.

The mechanisms through which climatic frequency influences specialisation within communities
are complex. In common climates, relative environmental stability allows specialists to thrive by
optimizing their niche use, out-competing species with broader niches who are less efficient in any
particular environment. Conversely, rare climates, marked by greater spatial fragmentation and
environmental variability, diminish the competitive edge of specialists because of limited oppor-
tunities for dispersal and colonization. Reduced internal dispersal in rare climates further hinders
both specialists and generalists from dispersing between communities, thus affecting local commu-
nity composition. In more connected and common climates, specialists dominate by successfully
colonizing and persisting within their preferred environments.

In many ways, Chapter 4 complements Chapter 3. Chapter 4 further explores the influence of
climatic frequency on the phylogenetic structure of communities across different scales. The find-
ings demonstrate that regions with rare climatic conditions exhibit reduced phylogenetic clustering,
suggesting that these areas are shaped more by recent colonization and adaptation events than by
deep evolutionary histories. These findings add nuance to the traditional understanding of how
climate shapes community assembly by highlighting the distinct ecological and evolutionary dy-
namics in regions characterized by rare climatic conditions. At finer scales, localized evolutionary
radiations or adaptive responses to unique selective pressures can lead to significant phylogenetic
clustering, even in rare environments. This suggests that while climatic rarity tends to promote the
co-occurrence of species with varying evolutionary backgrounds, under specific conditions, it may
also foster specialisation and local adaptation, leading to clustered phylogenetic patterns. These
scale-dependent findings reinforce the importance of context in determining community assem-
bly processes and suggest that different ecological and evolutionary mechanisms may be at play
depending on the spatial scale.

These two last chapters emphasize that ecological specialisation and community structure are not
dictated only by climatic averages or variability. This approach provides a novel perspective that
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moves beyond traditional metrics and opens new avenues for understanding climate-biodiversity
interactions.

5.2 Scale-dependence matters

A unifying thread across all chapters of this thesis is the recognition of scale dependency in eco-
logical research. This emphasis stems from the understanding that ecological and evolutionary
processes operate at different spatial and temporal scales and that their effects can vary depending
on the scale of analysis (Levin 1992; Ricklefs & Schluter 1993; Chave 2013).

Scale-dependent nuances appeared in all research chapters. For instance, in Chapter 2, the analysis
of bat communities across different geographical scales revealed that the phylogenetic structure of
these communities is not uniform but shifts significantly depending on the spatial extent considered.
At broader scales, the dominance of historical biogeographical processes becomes apparent, leading
to patterns of phylogenetic clustering driven by long-term climatic stability and large-scale disper-
sal barriers. Conversely, at more localized scales, the reduced phylogenetic clustering observed
suggests that more recent diversification events, local adaptation, and ecological interactions play
a more prominent role in shaping community structure.

Similarly, Chapters 3 and 4 reveal that the influence of climatic frequency on community structure
and specialisation varies with spatial scale. On the global scale, the general trend is that rare cli-
mates promote generalists, while common climates encourage specialisation. However, when at
finer scales, such as within specific biomes, these patterns can become more complex and context
dependent. This complexity underscores the importance of considering multiple spatial scales in
ecological research to clarify the diverse mechanisms driving community assembly and biodiver-
sity patterns.

Beyond spatial scale dependencies, this thesis also underscores the importance of phylogenetic
scales in ecological research. Different taxonomic and phylogenetic groups—such as ectothermic
reptiles and amphibians versus endothermic mammals and birds—responded differently to climatic
frequency and variability, likely due to distinct physiological and ecological traits, which influence
their sensitivity to climatic variation (Chapter 4). Furthermore, the response of community phyloge-
netic structure to climatic drivers was shown to depend on the sensitivity to phylogenetic distances
of the metrics used. Metrics that emphasized deeper evolutionary distances (e.g., mean phylo-
genetic distances) revealed different patterns of community phylogenetic relatedness compared to
those focusing on more recent evolutionary divergences (e.g., mean nearest taxon distances) (Chap-
ters 2 and 4). These findings highlight the importance of considering phylogenetic scales when
analyzing community assembly processes, as different phylogenetic grains and extents can reveal
varying degrees of influence from historical legacies, ecological interactions, and evolutionary dy-
namics.
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5.3 Assumptions and limitations

This thesis is based on several key assumptions that underpin the analyses and interpretations of
climate–biodiversity interactions. While these assumptions are grounded in well-established the-
ory and empirical evidence, it is essential to acknowledge their potential limitations. By critically
evaluating these points, I aim to clarify the scope of our inferences and highlight possible directions
for future refinement. Nevertheless, the robustness of our conclusions is reinforced by comprehen-
sive empirical analyses across multiple taxa and scales, and the corroboration of empirical findings
through theoretical simulations.

5.3.0.1 Species’ occupied environments reflect their climatic niches and optima

Our analyses assume that the climatic conditions experienced by species at their occupied sites reli-
ably approximate their physiological and ecological climate optima. This assumption implies that
species’ realized niches closely approach their fundamental climatic niches and that environmental
filtering by climate is a dominant mechanism structuring their geographic distributions (Soberón &
Nakamura 2009). Under this view, species are considered to be in equilibrium with current macro-
climatic gradients, and climate is posited as the principal environmental driver over other factors
such as habitat heterogeneity, soil properties, dispersal barriers, or biotic interactions.

However, species distributions arise from the interplay of myriad abiotic and biotic constraints.
Factors such as topographic complexity, microclimatic refugia, land-use patterns, dispersal limi-
tations, phylogenetic history, and interactions such as competition, predation, and mutualism can
restrict species to subsets of their potential climatic space (Hutchinson 1957; Ricklefs 1987, 2004;
Pearson & Dawson 2003; Soberón 2007; Gaston 2009a; Holt & Barfield 2009; Thakur et al. 2022).
Additionally, coarse-scale macroclimatic variables may fail to capture local thermal heterogene-
ity or fine-grained environmental conditions that determine physiological performance [Currie &
Paquin (1987); Hawkins et al. (2003); Harrison et al. (2020); Sears et al. (2011); Buckley & Huey
(2016); Pincebourde et al. (2016); Pateman et al. (2016); Scheffers et al. 2014]. If local micro-
climates and other unmeasured environmental factors strongly shape species’ realized niches, then
our characterization of species as climatic “specialists” or “generalists” may be incomplete or, in
some cases, misleading.

Nevertheless, several aspects reinforce the robustness of our conclusions. First, our analyses encom-
pass over 26,000 tetrapod species worldwide, including amphibians, birds, mammals, and reptiles,
spanning diverse phylogenetic, environmental, and geographical realms. This taxonomic and spa-
tial breadth dilutes the influence of idiosyncratic species-level anomalies and highlights patterns
that are unlikely to be driven solely by local, rare, or lineage-specific constraints. Second, climate
is widely recognized as a primary determinant of broad-scale biodiversity patterns. By employing
multivariate climatic indices and principal component analyses, we reduce the risk that any single
climatic variable or collinearity among them biases our inferences (Graham 2003). Third, theoret-
ical simulations, structured to isolate the role of environmental frequency in driving specialisation,
confirm that climatic patterns alone can generate observed macroecological gradients, bolstering
our empirical conclusions even in the absence of additional environmental complexities.
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5.3.0.2 Climatic niches are static and do not shift over time

We also assume that species’ climatic niches remain relatively stable over the temporal scales of
interest, implying that their current distributions and niche characteristics are a reliable representa-
tion of their longstanding ecological preferences. While niche conservatism has strong empirical
and theoretical underpinnings (Wiens & Graham 2005), evolutionary processes can shift niches
over time (Quintero & Wiens 2013). It is possible that such evolutionary niche shifts have been
extensive, so that the contemporary patterns we document likely do not capture the full dynamics
of past climatic adaptations.

Our analysis targets present-day conditions and current species distributions, which mitigates po-
tential substantial distortions from historical niche evolution toward our conclusions. With this, the
consistent patterns observed across a wide array of taxa and biogeographical contexts suggest that
niche shifts have not fundamentally altered the relationship between climatic frequency and species
specialisation we observed. Parallel outcomes from theoretical simulations, which assume tempo-
rally stable environmental and niche parameters, further substantiate that environmental frequency
can independently shape specialisation patterns, even if evolutionary adjustments occur over longer
timescales.

5.3.0.3 Climatic data as a proxy for environmental conditions

A further assumption is that climate can serve as a robust proxy for the environmental conditions
that govern species distributions and community assembly. While climate is indisputably critical at
macroecological scales, other environmental axes—including disturbance regimes, substrate type,
and land-use intensity—also exert significant pressures (Pearson & Dawson 2003). Because we
focus primarily on climatic gradients, we may underrepresent the importance of these non-climatic
factors. If overlooked variables strongly modulate species’ realized niches, our attribution of spe-
cialisation patterns to climatic frequency could be incomplete.

Multiple lines of evidences support the validity of our approach. The strong and consistent macroe-
cological patterns observed across multiple vertebrate classes and broad spatial extents attest to
a pervasive climatic influence. By complementing the empirical analyses with theoretical mod-
els that incorporate only a single varying environmental dimension, we confirm that variability in
climate frequency alone can induce specialisation patterns that mirror those seen in nature. Thus,
while our framework does not exclude additional environmental gradients, it demonstrates that cli-
mate, as a first-order driver, exerts a significant and independent influence on broad-scale biotic
patterns.

5.3.0.4 Phylogenetic relatedness may not reflect ecological similarity

Finally, our use of phylogenetic metrics to interpret community assembly is founded on the ex-
pectation that phylogenetically related species share traits and thus exhibit ecological resemblance
(Losos 2008). However, convergence in ecological function can arise among distantly related taxa,
and rapid adaptive divergence may occur among close relatives (Blomberg et al. 2003; Cavender-
Bares et al. 2009). In such cases, phylogenetic structure may be a weak indicator of ecological
similarity, potentially confounding inferences drawn from patterns of relatedness.
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Our study mitigates this concern by centering analyses on direct measures of species’ climatic
niches, rather than relying solely on phylogenetic relationships. Using metrics such as the outlying
mean index to quantify niche breadth ensures that the observed patterns are closely tied to measured
environmental tolerances rather than inferred ecological traits. The cross-taxon consistency of our
results suggests that the association between climatic frequency and specialisation is not contingent
on specific phylogenetic assumptions, further underscoring the robustness of our broader findings.

5.4 Future directions

This thesis opens several avenues for future research, particularly in the integration of climatic fre-
quency and variability with ecological and evolutionary theories. One promising direction is to
refine the integrative framework developed in this thesis by incorporating temporal dynamics of
climatic conditions and their variability. As climate change progresses, shifts in spatial climatic fre-
quencies are expected to alter community assembly processes, potentially leading to novel config-
urations of ecological communities. Elucidating how rare climatic conditions may promote or hin-
der species adaptation and diversification could be achieved through high-resolution paleoclimatic
reconstructions and future climatic projections combined with advanced modelling approaches.
These models could aid in inferring the evolutionary trajectories of communities under varying
climatic scenarios, contributing to a clearer understanding of how species respond to changes in
climatic conditions.

Moreover, future research could expand the scope by examining trait-based and phylogenetic ap-
proaches in more detail. Although this thesis has highlighted the role of phylogenetic structure
in understanding community assembly, there is an opportunity to further investigate the specific
traits that mediate species’ responses to climatic variability and frequency. Which functional traits
are most predictive of species’ success in rare versus common climates, and how do these traits
vary across different phylogenetic lineages? Answering these questions could involve combining
trait-based ecology with phylogenetic methods to identify key traits that govern ecological and
evolutionary dynamics under changing climates.

The findings of this thesis suggest that a more holistic and integrative approach is essential for
understanding climate-biodiversity interactions, moving beyond reductionist models that focus on
singular climatic factors or scales. By embracing complexity, acknowledging the underdetermina-
tion of ecological theories by data, and recognizing the context-dependency of processes across spa-
tial and temporal scales, this work aligns with a pluralistic framework in ecological research—one
that incorporates multiple, sometimes competing, explanations to account for the intricate interplay
between climatic components, historical legacies, and biodiversity patterns. The scale-dependent
and context-specific insights presented here challenge the idea that ecological and evolutionary dy-
namics can be fully explained by a single model, underscoring the need for flexible methodologies
and theories that accommodate diverse ecological and evolutionary processes. This perspective
encourages future research to develop more comprehensive models that integrate multiple scales
and contexts to better capture the complexity of climate-biodiversity dynamics.

Finally, in conducting my research, I made a deliberate effort to uphold an open and reproducible
workflow, recognizing the importance of transparency and collaboration in advancing scientific
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knowledge (see Perkel 2020; Gomes et al. 2022; Braga et al. 2023a). I leveraged online plat-
forms such as GitHub and Open Science Framework to ensure my data, code, and protocols were
documented and available for review, replication, and further development by others. I hope that
this approach to conducting research openly inspires other researchers to embrace similar practices,
leveraging these tools to foster a culture of collaboration and reproducibility in their own projects.
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Figure 5.1: Art byRogerWinkler (2019). This is a partial representation from the artwork, created
by Roger Winkler as part of the 2019 Creative Reactions and Pint of Science events
in Montréal, draws inspiration from the research presented in the Chapter 2 of this
thesis. In the Creative Reactions project, scientists were paired with local artists who
interpreted their scientific work through art. These artistic interpretations were then
showcased in a vernissage.
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