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Abstract

Refining Optimization Methods for Training Machine Learning Models: A Case Study in Robotic
Surgical Procedures

Francis Boabang, Ph.D.

Concordia University, 2024

Machine learning is a technology that builds predictive models from data, allowing generalization to

unseen cases. At the core of every learning problem lies an optimization challenge, and solving these prob-

lems reliably is crucial to resolving the obstacles surrounding machine learning. Primarily, conventional

optimization algorithms employed for training machine learning frequently are often ill-suited for various

applications. Concerted efforts are needed to refine and optimize various components of machine learning

training. This thesis explores fundamental optimization algorithms across various machine learning appli-

cations. By enhancing optimization schemes, including optimizers and model compression techniques, the

resilience and effectiveness of machine learning applications can be improved.

The first segment of the thesis introduces an innovative low-rank matrix factorization scheme aimed at

enhancing the scalability of machine learning. Gaussian Process Regression is used as the machine learning

model to scale with low rank matrix factorization in this section of the thesis due to its lightweight na-

ture, which enables the incremental updating of model parameters online prior to prediction. A nonconvex

formulation of a low-rank matrix factorization (SRLSMF) with convex formulation of a low-rank matrix fac-

torization initialization (ℓ1-SRLSMF), is advocated to scale Gaussian Process Regression (GPR). Thus, by

employing convex nonconvex low rank matrix factorization to scale a given the Gaussian Process Regres-

sion model, the model can avoid local minima and converge to a solution with smaller recovery residuals.

Also, the running time of convex nonconvex low rank matrix factorization is expected to be smaller than

that of applying nonconvex low rank matrix factorization alone under the same stopping criterion. To the

best of our knowledge, the machine learning method proposed in this thesis is the first to exploit nonconvex

formulation of a low-rank matrix factorization (SRLSMF) with convex formulation of a low-rank matrix fac-

torization initialization (ℓ1-SRLSMF) to scale machine learning in machine learning domain. Recognizing

the cost-prohibitive nature of standard eigen decomposition for online Gaussian Process Regression covari-

ance update, we implement incremental eigen decomposition within the ℓ1-SRLSMF and SRLSMF Gaussian
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Process Regression methodologies. Finally, an illustration of the potential applications in suturing, knot-tying

and needle passing task using kinematic dataset is provided.

In the latter part of the thesis, a novel adaptive stochastic gradient descent (ASGD) method, which lever-

ages the non-uniform p-norm concept to train machine learning is presented. The proposed ASGD assigns

distinct categories of coordinate values with varying base learning rates, thereby enabling the training of ma-

chine learning models. Additionally, theoretical guarantees for the efficacy of the proposed ASGD method in

convex and nonconvex settings is discussed. The ability of the proposed ASGD approach to detect suturing

gestures within the remote surgical gesture recognition task is discussed.

Finally, potential avenues for future research are outlined.
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Chapter 1

Introduction

1.1 Overview

Machine learning has rapidly expanded, drawing a diverse group of researchers and practitioners. It has

emerged as a leading research area, significantly impacting various domains, including machine translation,

speech recognition, image recognition, and recommendation systems. A fundamental aspect of machine

learning is optimization, which involves constructing models to learn parameters from data. To enhance

machine learning development, numerous effective optimization methods have been introduced, boosting the

performance and efficiency of these techniques. Common optimization approaches can be categorized into

three areas: loss functions, model compression, and stochastic gradient descent.

Low-rank matrix factorizations have also gained popularity for projecting high-dimensional data into

lower-dimensional latent spaces, improving data understanding and prediction accuracy. These methods are

increasingly utilized to scale machine learning applications. Most existing low-rank matrix factorization

approaches for scaling machine learning either rely on convex or nonconvex formulations. The convex for-

mulation serves as an approximation of the nonconvex formulation, often resulting in suboptimal solutions

for scaling machine learning. Conversely, the nonconvex formulation requires good initial points to achieve

optimal results. Furthermore, most methods for scaling machine learning are non-incremental, meaning they

struggle to incorporate new data or information in real time. This limitation can hinder their ability to enhance

model generalization performance as fresh data becomes available.

Recently, adaptive stochastic gradient descent methods and their variants have gained traction, evolving

quickly. However, many researchers treat these methods as black box optimizers, often neglecting their

specific characteristics and application contexts. This can lead to suboptimal convergence rates, limiting their

1



effectiveness.

In this thesis, advanced optimization schemes to optimize machine learning methods to provide algo-

rithmic solutions for machine learning applications is proposed. The first contribution is a low rank matrix

factorization for machine learning training. Then, the result, a two-step convex nonconvex (CNC) sparse and

low rank matrix factorization [5] scheme is exploited to scale Gaussian process regression. The resulting

machine learning framework is used to conduct reactive predictions in remote robotic surgery. The benefit

of using the convex nonconvex sparse and low-rank matrix factorization is that the model can converge to

a quality solution even under random initialization, thus ensuring the stability of the many systems. Addi-

tionally, the proposed model employs incremental eigen decomposition to update the model parameters in

real time, enhancing generalization performance. The outcome of this contribution was published in IEEE

Transactions on Network and Service Management.

The second contribution is a novel adaptive stochastic gradient descent for training machine learning. By

dynamically adjusting the learning rate during training based on the size of coordinate value of the surgical

data, the proposed ASGD enables navigation through complex and noisy optimization landscapes. Moreover,

the proposed ASGD’s ability to optimize learning rates based on the size of the coordinate values contributes

to expedited convergence of the machine learning algorithm, crucial for real-time decision-making. Faster

convergence of the proposed ASGD facilitates prompt adaptation to changing environments. The combina-

tion of effective optimization, resilience to variability, accelerated convergence, and decreased sensitivity to

hyperparameters ultimately enhances the performance of many systems. The outcome of this contribution is

to be submitted.

1.2 Background Information

1.2.1 Machine Learning

Machine learning endows systems with the ability to actively learn and improve their behavior, without the

need to be programmed. The learning process is generally performed by analyzing input data to detect pat-

terns or regularities. Machine learning can be divided into three categories, namely supervised, unsupervised

and semi-supervised learning. Supervised learning utilizes data labels to build the learning model. It finds

a mapping between the input and output (labels) in the training data. The output is finite and discrete for

classification and continuous for regression problems [6]. Classification finds discriminators to distinguish

multiple classes in data, while regression finds the function that maps the input to the output [6]. Both are
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used for prediction of unseen data namely, testing data. Data is unlabeled in unsupervised paradigm and the

machine learning methods capture pattern occurrences in data based on the similarity among data instances.

Unsupervised learning can be used for tasks like Density Estimation (DE), clustering, Dimensionality Reduc-

tion/Feature Extraction (DR/FE), and sample generation [7]. DE estimates the distribution of data occurrence.

Clustering partitions data into groups, such that the data inside a group are similar to each other, while groups

are different from each other [6]. DR/FE maps the data from the current space to a new space with lower

dimension. In semi-supervised learning methods, both labeled and unlabeled data are used to improve the

learning process [8]. However, in many machine learning applications, sufficient labeled data are available

for training the model.

Shallow machine learning methods are also either supervised or unsupervised. Shallow learning methods

is where the entire learning process is organized in a single layer of processing without any hierarchical or

step-wise processing on data [9]. An example of a shallow learning model is Gaussian Process Regression.

Gaussian Process Regression addresses the challenges of high dimensionality by approximating the function

to be learned [10]. It uses a set of Gaussian, or normal, distributions to describe and approximate the function,

fitting the approximation globally across the entire data space. In contrast, Locally Weighted Projection Re-

gression (LWPR) decomposes the high-dimensional function into a set of single-dimensional functions fitted

on spatially localized data spaces. This is done by projecting the input data space along a few selected di-

mensions, thereby reducing the number of dimensions. Each projection is then used to approximate the local

function in the neighborhood of the queried data point. Gaussian Process Regression is known for achiev-

ing high performance with minimal parameter tuning, but it suffers from significantly high computational

complexity.

Deep learning performs learning that can be used for both supervised and unsupervised learning paradigms.

It processes the input in several layers such that the output of each layer is injected as input to the subsequent

layer, with the final result at the last layer [9]. An example of a deep learning network approach is a feedfor-

ward neural network (FNN), where data flows from input to output units without any feedback connections

between them [11]. Training FNNs is slow due to the gradient-based learning algorithms they use and the

iterative nature of the training process. To accelerate FNN training, Extreme Learning Machine (ELM) meth-

ods propose a mechanism with a single hidden layer. In ELM, hidden nodes are randomly selected, and the

output weights are determined analytically [11]. ELM methods exhibit extremely fast learning speeds and

require less memory, but they are outperformed by recurrent neural networks (RNNs) in terms of generaliza-

tion accuracy. RNNs are designed for time-series problems where predictions depend on both current and

previous observations. They are trained using Back Propagation Through Time (BPTT) [12]. RNNs can be
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considered a form of deep learning since they can be viewed as several nonlinear layers of neurons when un-

folded in time [12]. Standard RNNs suffer from the vanishing gradient problem, which hampers the learning

of long data sequences, such as those required for knot-tying tasks [12]. Long Short-Term Memory (LSTM)

networks address the vanishing gradient problem by using special linear memory cells that maintain their

activation over extended periods. LSTMs produce more accurate and robust predictions than RNN methods,

even with a high number of hidden layers. However, as the number of hidden layers increases, LSTM net-

works operate more slowly and with higher computational costs. Convolutions Neural Networks (CNNs) are

another type of deep learning model that has become prevalent in computer vision applications and has gained

significant attention in remote robotic surgery. CNNs consist of several neural network blocks, pooling lay-

ers, and fully connected layers. They are designed to automatically and adaptively learn spatial hierarchies of

features through a backpropagation algorithm. CNNs have been used to design much deeper models such as

WideResNet [13], ResNet [13], and VGGNet [14]. ResNet and VGGNet are designed by stacking CNN lay-

ers to increase depth, with VGGNet being much deeper than ResNet. WideResNet, on the other hand, focuses

on using broader CNN layers to increase width, aiming to reducing the computational complexity of ResNet

without sacrificing accuracy. Recently, deep learning methods have been combined with reinforcement learn-

ing (RL) to form Deep-reinforcement learning, which is required in highly dimensional environment where

standard reinforcement learning does not apply.

Offline training eliminates the time required to update the model parameters online [15]. These strate-

gies are generally not well suited for bilateral teleoperations where commands and sensor data are received

in sequential streams and model parameters must be updated on-the-fly. Offline training may cause signifi-

cant inaccuracies in prediction for a multitude of reasons [15]. Notably, given that it is not possible to learn

the complete state space beforehand, models that have learned offline can only approximate the model cor-

rectly in the area of the state space that is covered by the sample; the trained model would not be able to

generalize beyond that region. In contrast, online learning creates a more general model for a larger space,

as it is capable of adapting for time-dependent virtual or real object dynamics. Online model learning is

known to be computationally expensive. Locally Weighted Projection Regression (LWPR) is a widely used

method to manage the computational burden associated with online model learning [15]. LWPR partitions

the state space into local regions, approximating local models that do not account for the global behavior of

the embedded functions. The advantages of robust locally weighted projection methods can be combined

with well-established regression techniques such as support vector regression and Gaussian process regres-

sion [10]. This hybrid approach would enable real-time learning of a robot’s inverse dynamics. However, a

major drawback of LWPR is the need for manual parameter tuning to achieve optimal performance.
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In robotics and machine learning, continuous data streams cause the training dataset to grow indefinitely.

To adhere to memory and computational constraints, many approaches limit the number of training samples

using a fixed buffer size [16]. As new samples arrive, older samples must be discarded to maintain the

buffer size. Typically, the oldest samples are discarded based on the assumption that they are the most

outdated [16]. This method, however, can result in the model losing important regression information. To

address this issue, a framework is needed to effectively incorporate previously trained model information into

subsequent updates without retraining on the entire dataset from scratch.

Optimization is a fundamental and essential tool for training machine learning applications. Convex op-

timization is a significant subclass of optimization problems where both the objective function and the con-

straints are convex [17]. While many real-world applications may not be inherently convex, reformulating or

approximating these problems as convex programs, known as convex relaxation has been a common strategy,

though it often yields suboptimal solutions [5,17]. In addition, relying on these relaxations and convex solvers

can lead to reduced performance, as they may compromise solution quality. In contrast, non-convex solvers

frequently outperform their convex counterparts in terms of both solution quality and convergence speed.

This advantage arises from non-convex methods’ ability to effectively leverage the underlying structure of

the problem, which is often obscured in convex reformulations. As a result, the development of non-convex

solvers has become a compelling research focus. Numerous algorithms have been proposed to address non-

convex constrained optimization problems. Although these algorithms are generally applicable and easy to

implement, their convergence can be excessively slow for many machine learning applications [17] lead-

ing to low solution quality. Therefore, there is an urgent need to investigate machine learning performance

in the context of non-convex programs. This thesis presents an alternative optimization method aimed at

overcoming these limitations, particularly regarding solution quality.

Central to every supervised, semi-supervised, online, and offline learning process are optimization tech-

niques such as model compression and loss functions which ensure the machine learning algorithm performs

well. Moreover, for machine learning to be effective in applications, achieving good generalization perfor-

mance is crucial. Good generalization performance means that the machine learning model performs well

on both training and testing data. Model compression, for example, uses regularization strategies to impose

a penalty on the model’s complexity and smoothness, promoting good generalization on unseen haptic data

even when trained on a limited dataset. Regularization helps prevent overfitting.

Another optimization strategy that enhances machine learning performance for machine learning applica-

tions is adaptive stochastic gradient descent [18]. ASGD helps machine learning models escape local minima

and converge to a good solution with sufficient iterations. It starts by initializing basic parameters such as
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momentum, loss function, and step-size. The descent direction is determined by these parameters. If the loss

function is convex, the function reaches a good solution with fewer iterations compared to a non-convex loss

function. The loss function measures the discrepancy between system observations and the output of the pre-

diction function. SGD and model compression can work together to enhance machine learning performance;

for instance, SGD can serve as the training algorithm for model compression techniques.

In the upcoming subsections, the challenges posed by current optimization schemes in training supervised

learning models are discussed, then key contributions in addressing these issues are highlighted. Lastly, an

outline of the thesis structure is presented.

1.2.2 Challenges

Non-convex optimization algorithms are essential in modern machine learning and deep learning. This raises

the question: how can an optimization algorithm be systematically designed, analyzed, and interpreted? This

thesis aims to provide a robust theoretical framework for non-convex optimization, developing and analyzing

algorithms specifically for training machine learning models across various applications.

The first challenge of the thesis focuses on developing mathematical techniques to analyze non-convex

low-rank matrix factorization optimization algorithms for various machine learning problems. A family of

functions with favorable landscape properties that facilitate efficient optimization are explored, demonstrating

that the objectives of several machine learning problems fall within this family. There are two main challenges

for analyzing and designing non-convex optimization algorithms: a) finding a coarse approximate solution

first, followed by local improvement algorithms, and b) applying local improvement algorithms from any type

of initialization. The first paradigm allows for the use of precise mathematical tools and often yields strong

theoretical guarantees, while the second is more practical, applicable to problems where coarse solutions

are difficult to determine without local improvements. This thesis aim to address both challenge: first, by

providing effective initialization to reach good solutions, and second, by allowing for incremental updates to

model parameters online using incremental eigen decomposition. This enables coarse solutions to effectively

enter the basin of attraction of some global minimum of the non-convex optimization landscape. Gaussian

Process Regression is selected as the underlying model due to its lightweight nature and ease of updating the

model parameter updates on-the-fly prior to inference.

Stochastic Gradient Descent (SGD) algorithms are widely used in many stochastic optimization prob-

lems, including machine learning. Despite their empirical success, the theoretical understanding of SGD
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convergence properties remains limited, particularly due to the challenging non-convex optimization land-

scape. Classical machine learning methods often lead to convex and smooth optimization problems, for

which gradient descent can efficiently find solutions. In contrast, modern methods, such as deep neural net-

works, frequently involve non-smooth and non-convex problems that cannot be solved efficiently in theory.

The second challenge of the thesis is how to find the effective performance of Adaptive Stochastic Gradient

Descent algorithms through theoretical analysis and empirical results, utilizing a base learning rate adaptation

strategy to be able to escape local optima and converge to good solution.

Key Challenges

1. One major concern with non-convex functions is the presence of poor local minima. In many cases,

these functions contain multiple local minima that are not global minimum, and if they fail to meet

specific regularity conditions, it can be challenging to optimize them effectively. To identify a local

minimum that is also a global minimum, local improvement algorithms are often required.

2. The inability of a model to adapt to new data and incorporate new classes on the fly can significantly

impact its generalization performance. Addressing this challenge is crucial to ensure that the model

can integrate and adapt to new information without losing previously acquired knowledge. An efficient

online incremental model should be lightweight and maintain high generalization performance to sup-

port real-time applications. It would be insightful to increase the number of instances and categories

to observe how overall accuracy evolves, specifically, whether it stabilizes or declines below the cur-

rent level. The challenge of incremental learning is dealt with by developing models that can adapt

to sequential (non-stationary) data, allowing them to adjust their parameters to reflect the current data

distribution.

1.2.3 Overview of Machine Learning for Robotic Surgery

Robotic surgery improves precision, increases surgeon’s dexterity, reduces tremor and improves ergonomic

conditions [19, 20]. Patients also benefit since it involves less blood loss and pain, and therefore reduced

trauma, and shorter recuperation time. Robotic surgery occurs in close proximity between a surgeon and

a patient. The Da Vinci Surgical system (Intuitive Surgery Inc) has been used in many surgeries since its

introduction in 2000. In 2016, a total of 753, 000 surgeries were reported worldwide, which represents a

yearly increase of 15% [21] from its launch.

Haptic feedback is crucial to help surgeons feel the sensations they need to feel during surgical procedures.
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Haptic feedback incorporates the sense of touch to improve soft tissue manipulation and avoid damage due to

excessive applied force. Haptic sensation experienced by a skilled hand exceeds auditory and visual feedback

when controlling a surgical robot. On top of that, provision of haptic feedback during surgery could help a

surgeon to decide on the amount of force and torque, and the direction and orientation of the force and torque

to exert on a soft tissue under consideration.

Needle insertion, suturing, knot-tying and needle passing are common procedures in robotic surgery.

Needle insertion provides the mode for delivering local anesthetic drugs, to take blood sample and to perform

procedures such as suturing, neurosurgery and brachytherapy [22]. In the suturing task, the surgeon picks up

the needle and approaches the incision, marked as a vertical line on the bench-top model [4]. The surgeon

then threads the needle through the tissue, entering at the dot on one side of the incision and exiting at the

corresponding dot on the other side. After the first needle pass, the surgeon removes the needle, transfers it

to the right hand, and repeats the process three more times [4]. In the knot-tying task, the surgeon takes one

end of a suture attached to a flexible tube anchored at both ends to the bench-top model, and ties a single loop

knot [4]. For the needle passing task, the surgeon picks up the needle and passes it through four small metal

hoops positioned slightly above the surface of the bench-top model, moving from right to left [4].

Utilizing machine learning in robotic surgery realm holds promise for enhancing telehealth applications.

Specifically, in the context of robotic surgery, machine learning stands to improve patient safety by ensuring

accurate predictions. However, to effectively leverage machine learning models for robotic surgery appli-

cation, a solid foundation of domain knowledge is imperative to enhance model performance and address

the reality-model mismatch. Furthermore, machine learning applications for robotic surgery scenarios must

be equipped to facilitate robust online learning, particularly for datasets with inherent uncertainty or limited

size. The following publicly available data such as JIGSAW, dataset on force measurements on needle inser-

tion into two ex-vivo human livers [23], and force measurements for needle insertions into SEBS soft tissue

mimicking simulants with and without waterjet running through the needle [24] are used for training machine

learning model for robotic surgery.

Three key challenges in applying machine learning to robotic surgery are expected. First, learning and

prediction times must be sufficiently short to facilitate incremental model updates. This constraint may limit

the applicability of machine learning models in certain scenarios, even though they offer the advantage of

adapting dynamically to changing environments. Additionally, the prediction time can be adversely affected

by the dimensionality of the data. The second challenge is accuracy. Applications in robotic surgery are

highly sensitive to prediction errors, which can have life-threatening consequences. Striking an optimal bal-

ance between latency and accuracy is crucial, yet highly challenging. The third challenge involves the online

8



updating of model parameters. The thesis focuses on addressing these issues in remote robotic surgery, partic-

ularly regarding latency and reliability. To tackle these challenges, we propose the use of supervised machine

learning models, which inherently involve optimization tasks. Effectively overcoming these optimization

challenges is vital for improving machine learning algorithms in this field. The goal of this thesis is to im-

prove various optimization schemes for training machine learning models applied to remote robotic surgery,

thereby enhancing reliability. Each aspect of these optimization schemes is critical for the success of robotic

surgery. By implementing these innovative optimization strategies, patient outcomes can be improved. The

advantage of utilizing optimization schemes to train machine learning models for robotic surgery is that

they can converge to quality solutions even from random initializations, thereby ensuring system stability.

Accuracy is essential in robotic surgery, and stability directly correlates with accuracy. Consequently, low

prediction accuracy can destabilize the predictive framework, making convergence of the algorithm crucial

for improving model generalization performance in robotic procedures. Moreover, it is important to create a

basin of attraction that ensures the predictive framework converges to a quality solution, even from random

initializations. In a nutshell, by enhancing the performance of modern optimization schemes, an improved

accuracy in machine learning models for robotic surgery procedures can be achieved.

1.3 Thesis Contribution

The examination of the challenges in machine learning reveals that the existing optimization methods in

modern machine learning fellshort of meeting the reliability standards necessary for remote robotic surgery.

This thesis is dedicated to tackling these challenges head-on with the goal of establishing a dependable

framework for remote robotic surgery procedures. It should be noted that, all the research, formulation, and

experiments presented in this thesis, which amalgamate findings from the published papers, were conducted

by Francis Boabang under the supervision of Dr. Roch Glitho. Francis Boabang authored the manuscript

with occasional proofreading by the co-authors including Dr. Elbiaze Halima, Dr. Martin Maier, Dr. Wessam

Ajib, Dr. Amin Ebrahimzadeh, Dr. Omar Alfandi, and Dr. Fatna Belqasmi, and incorporating feedback

from them. Furthermore, we received abundant feedback and insightful comments from anonymous journal

reviewers, which greatly contributed to shaping the published and unpublished papers utilized for this thesis.
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1.3.1 An Improved Low Rank Matrix Factorization

In the first contribution, an improved low rank matrix factorization method to scale machine learning and ap-

plication to remote robotic surgery is proposed [25]. In this contribution, a scalable Gaussian Process Regres-

sion to scale machine learning is advocated. Given that the standard eigen decomposition for online Gaussian

Process Regression covariance update is cost-prohibitive, computationally effective matrix separation algo-

rithms called a sequential norm regularized randomized low-rank and sparse matrix factorization (SRLSMF)

and a sequential ℓ1 norm regularized randomized low-rank and sparse matrix factorization (ℓ1-SRLSMF) to

update the covariance matrix in Gaussian Process Regression are proposed. Specifically, SRLSMF and ℓ1-

SRLSMF to scale the Gaussian Process Regression and address the issue of delayed/lost data in the training

dataset in 5G-enabled Tactile Internet remote robotic surgery are utilized. The symmetric positive semidefi-

nite constraint explicitly during the learning of SRLSMF and ℓ1-SRLSMF to ensure the positive definiteness

of the associated solutions are enforced. This allows us to find a robust low-rank approximation of the kernel

matrix while maintaining its structure of positive semi-definiteness [26]. We also include a theoretical proof

to show that the costs of SRLSMF and ℓ1-SRLSMF are smaller than those of direct robust matrix factoriza-

tion (DRMF) [5] and RPCA [27] in a sequential setting. Specifically, the proof that using the decomposition

results of the previous iteration to compute the decomposition of the current iteration step can minimize the

computational costs of DRMF [5] and robust principal component analysis (RPCA) [27] in a sequential set-

ting is presented. By means of extensive simulations, the theoretical perspective of using both ℓ1-SRLSMF

and SLRSMF Gaussian Process Regression is justified. The simulation results show that the proposed meth-

ods can effectively recover the true low-rank matrix from the corrupted data, and thereby to predict the next

action of the surgeon with minimal computational burden in Tactile Internet remote robotic surgery. The

outcome of the contribution was published in IEEE transaction on Network and Service Management.

Francis Boabang, A. Ebrahimzadeh, R. Glitho, H. Elbiaze, M. Maier and F. Belqami, ”A Machine Learn-

ing Framework for Handling Delayed/Lost Packets in Tactile Internet Remote Robotic Surgery,” in IEEE

Transactions on Network and Service Management, doi: 10.1109/TNSM.2021.3106577.

1.3.2 An Improved Stochastic Gradient Descent Algorithm

The partially adaptive momentum estimation method (PADAM) [3, 28, 29] is reformulated to develop a

new and better ASGD method capable of overcoming the small learning rate dilemma problem by as-

signing different base learning rates to different categories of coordinate values. The theoretical proper-

ties of the proposed ASGD in a convex and nonconvex setting following the authors in [30], and replacing
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the base learning rate with a linear function to achieve an improved convergence rate O
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)
is rigorously analyzed, which represents an improvement over Amsgrad, Padam, and

Adam algorithms [3,28,31,32]. Then, the theoretical properties of the proposed ASGD method through thor-

ough evaluations conducted on CIFAR-100 and CIFAR-10 datasets utilizing WideResNet and VGG16-Net

architectures are justified. The proposed ASGD is applied to surgical gesture recognition task with JIGSAW

dataset to ameliorate their detection performance against state-of-the-art optimizers. The results illustrate

that the proposed optimizer surpasses state-of-the-art approaches in terms of generalization performance.

The outcome of this contribution ” is to be submitted [33].

1.4 Thesis Outline

The remainder of the thesis is structured as follows: Chapter 2 presents the literature review. Chapter 3

introduces enhanced low-rank matrix factorization schemes designed to scale machine learning and their

application to remote robotic surgery. Chapter 4 delves into an enhanced stochastic gradient descent method

for training machine learning models and its application to surgical gesture recognition. Finally, the findings,

the limitations of the proposed solution, and potential directions for future research are summarized.
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Chapter 2

Literature Review

In machine learning, optimization algorithms like stochastic gradient descent, low-rank matrix factorization,

and a range of loss functions are fundamental. Following this, an overview of these optimization schemes

necessary for refining machine learning performance is discussed. This review aims to scrutinize the limita-

tions of these models as potential optimization schemes. Finally, cutting-edge machine learning algorithms

employed in robotic surgery and their limitations are examined.

2.1 Preliminaries of Low Rank Matrix Factorization

Matrices is data representation which is made up of numbers, symbols, or expressions, arranged in rows

and columns used particularly in regression and classification tasks [5]. Each entry in a matrix is called an

element, each row corresponds to a sample and each column represents a feature [5]. Matrices are widely

used in various fields of mathematics, science, engineering, and computer science to represent and solve linear

equations, perform transformations, and store data, among other applications [34]. Let’s denote G = [gi,j ]

as a matrix, where g = [gi] is a column vector and g is a scalar. Additionally, let In be the m ×m identity

matrix, with diagonal entries being ones and off-diagonal entries being zeros. The column space of G refers

to the set encompassing all possible linear combinations of its column vectors. Also, let [m] denote the set

{1, 2, ...., n, ...,m}, and nnz(G) represent the number of nonzero entries of G.

The squared vector ℓ2 norm, denoted as ||g||22, is defined as:

||g||22 =
∑
i

g2i (1)
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The squared matrix Frobenius norm, denoted as ||G||F , is defined as:

||G||F =
∑
ij

g2ij (2)

And the matrix l1 norm, denoted as ||G||1, is defined as:

||G||1 = max
x ̸=0

||Gx||1
||x||1

(3)

Low-rank matrix factorization serves to acquire a low-dimensional representation of a high-dimensional

kernel matrix in terms of the ℓ2 norm. This factorization aims to minimize a cost function, measuring the

disparity between matrix G and an approximation of the kernel Llowrank, while imposing a constraint that

the approximated matrix has a reduced rank [34]:

min
L

||G− Llowrank||F ,

subject to rank(Llowrank) ⩽ r,

(4)

Here, ||.||F represents the Frobenius norm. Singular value decomposition (SVD) stands out as the one

of the predominant approach for low-rank matrix factorization analysis. Given a matrix G ∈ ℜm×m and a

column V ∈ ℜm×1 and U ∈ ℜm×1, and Σ ∈ ℜd been the diagonal matrix, we assume SVD of G is

G = UΣV T . (5)

Eigen decomposition positive definite version of SVD can be used for low-rank matrix factorization

analysis. Given a matrix G ∈ ℜm×m and a column V ∈ ℜm×1, eigen decomposition of G is assumed.

G = UΣUT . (6)

Also, QR decomposition is computed for a matrix G with dimension m×m. The QR decomposition of

G is computed as

G = QG ×RG (7)

The matrix QG has orthonormal columns meaning QGQ
T
G = In is orthonormal. The matrix RG is upper
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triangular matrix meaning all elements below the main diagonal are zero. Specifically, for all i < j, the

(i, j)-th of RG is zero.

The matrix factorization technique discussed above is nonconvex, which implies that without an appropri-

ate starting point, it might struggle to reach an optimal solution. This limitation makes it unfit for employment

in remote robotic surgery, where precision and reliability are crucial.

Recent advancements in the nuclear norm have led to the emergence RPCA as a method for matrix fac-

torization [26]. RPCA stands as a significant tool for robustly recovering a low-rank matrix from corruption,

such as packet loss or delay, and it facilitates the use of low-rank regularization [27]. Packet loss and delay

are explicitly addressed by introducing a corruption term in the objective function and constraints. RPCA de-

composes matrix G into a low-rank matrix Llowrank and a corruption matrix S by minimizing the ℓ1-norm.

Mathematically, the RPCA problem can be formulated as:

min
Llowrank,S

||Llowrank||∗ + λ||S||1,

subject to G = Llowrank + S,

(8)

Here, ||.||∗ denotes the nuclear norm, ||.||1 stands for the ℓ1-norm, and λ serves as a penalty parameter

for balancing the low-rank term and the reconstruction fidelity.

2.2 Low-rank Matrix Factorization Methods in Machine Learning

Convex and nonconvex approximation methods have been studied to reduce the computational demand faced

in Bayesian model while preserving its performance. Given a matrix of rank r and m data points, the sparse

approximation can be represented by Gaussian Process Regression using a set of r << m basis vectors,

which can reduce the computational complexity to O(r2m) [16]. Low-rank matrix approximation offers an

alternate solution to scale down the computational complexity of Gaussian proccess Regression [35]. A direct

factorization technique was employed in [36] for a special class of kernel functions, where the covariance

matrix was hierarchically factored into a product of block low-rank updates of the identity matrix, which

requires O(m log2m) operations to invert the matrix. Existing robust low-rank approximation in Gaussian

Process Regression with a positive semi-definite guarantee focus on batch training the model and then using

it for the autonomous navigation of a robot [27]. The kernel approximation techniques in Gaussian Process

Regression have failed to account for the lost data in the training data in a sequential setting.
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Both convex [37] and nonconvex [38] low-rank matrix factorization techniques have been employed to

enhance the scalability of deep learning models across various tasks. For instance, Wu et al. [37] used

a convex formulation of low-rank matrix factorization to scale deep learning for addressing local optima

challenges in nonlinear proximal mapping between original and infrared images in small target detection.

This involves optimization steps integrating proximal networks and neural layers constrained by sparsity,

facilitating effective scaling. However, convex relaxed low-rank approximation, although a surrogate of the

original nonconvex function, may sometimes fail to achieve the optimal solution. On the other hand, Li et al.

[38] utilized the nonconvex low-rank and sparse matrix factorization method to approximate neural network

weight matrices, ensuring that neural network neurons maintain their expressive capabilities. Nonetheless,

nonconvex low-rank matrix factorization requires a well-chosen initial point to converge to a satisfactory

solution, which can be challenging to find.

In summary, many efforts to scale machine learning models rely on nonconvex optimization techniques.

Yet, these methods frequently encounter suboptimal solutions, unable to surpass the dominance of poor min-

ima over good ones. Without good initialization conditions, achieving high-quality solutions is not possible.

Consequently, such approaches are ill-suited for most machine learning applications. Moreover, even using

a convex approximation of the nonconvex formulation does not yield optimal solutions, as it merely approx-

imates the original nonconvex optimization. The proposed algorithm has a better initialization, achieving a

low-rank recovery rate of O( 1
rג ). This depict the best recovery rate among methods that used low-rank ap-

proximations to scale machine learning [25]. On the otherhand, nonconvex PCA models showed a recovery

rate of O( 1
ϱ2rג ) while the convex relaxed PCA (RPCA) exhibits the worst recovery rate at O( 1

r2ג ) [1, 2, 25].

We denote ϱ as the condition number of the low rank matrix, ג as the incoherence of the low rank matrix and

r as the rank of the matrix.

2.3 Preliminaries on Stochastic Gradient Descent

Batch gradient descent involves computing the cost function concerning the parameters across the complete

dataset in a single update. Moreover, this method calculates the gradient for the entire dataset simultaneously.

While it ensures convergence to a local minimum for convex functions and a local minimum for nonconvex

functions, it can be slow and impractical for datasets that exceed memory capacity. Given the gradient

zt = ▽g(Wt), weight matrix W and learning rate α, batch gradient descent is formulated as

Wt+1 = (Wt − α ∗ zt) . (9)
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Table 2.1 Summary of the related work. Our proposed algorithm boasts a superior initialization, achieving a low-rank
recovery rate of O( 1

rג ).This represents the best recovery rate among methods that leverage low-rank approximations to
scale machine learning. In comparison, nonconvex PCA models attain a recovery rate of O( 1

ϱ2rג ) whilst the convex
relaxed PCA exhibits the poorest recovery rate at O( 1

r2ג ) [1, 2].Batch represents offline and incremental denotes online.

Method Training Time
Complexity

Low Rank
Matrix
Recovery
Rate

Address on-
line lost data

Mode Reference

Sparse Gaussian Process
Regression

O(r2m) O( 1
r2ג ) No Incremental [16]

RPCA Gaussian Process Re-
gression

O(r2m) O( 1
r2ג ) No Batch [27]

RPCA Deep Learning O(r2m) O( 1
r2ג ) No Batch [37]

PCA Gaussian Process Re-
gression

O(r2m) O( 1
ϱ2rג ) No Incremental [35]

PCA Deep Learning O(r2m) O( 1
ϱ2rג ) No Batch [38]

Proposed O(rm) O( 1
rג ) Yes Incremental [25]

SGD stands out as one of the most widely utilized optimizers for training machine learning models. Its

popularity stems from several advantages, notably its effectively utilization of a small sub-sample to update

model parameters per iteration. This characteristic renders SGD computationally cost-effective, as its perfor-

mance is independent of the training size, enabling scalability to large datasets and models. Consequently,

SGD methods have emerged as the dominant approach for training various types of models, including deep

learning, shallow learning, and non-parametric kernel models [18]. Therefore, we considered it as the opti-

mization scheme for training machine learning models in our remote robotic surgery application.

However, despite their widespread adoption and success, SGD methods encounter challenges, particularly

in terms of convergence speed [18]. While they excel in scalability and effectiveness, their convergence can

be relatively slow compared to other optimization algorithms. Stochastic gradient descent uses the same

learning rate for all the coordinate values as shown below

Wt+1 =
(
Wt − α ∗ zt(W,xi, yi)

)
. (10)

Adaptive stochastic gradient descent uses different effective learning rate for different coordinate values.

The idea is to vary the step-size for different coordinate values. Additionally, tuning ASGD method param-

eters such as step-size can prove to be challenging, requiring careful consideration and experimentation to

achieve optimal performance [18]. These complexities highlight areas where further research and optimiza-

tion efforts can enhance the effectiveness of ASGD methods in machine learning applications such as remote

robotic surgery. Given the adaptive parameter β, the momentum nt = βt
1nt−1 + (1 − βt

1)zt, z
2
t represents
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the sum of squares of the gradient and small constant 0 < ϵ << 1, the adaptive gradient descent in [30] is

given as

Wt+1 =

(
Wt −

α√
(z2t + ϵ)

nt

)
. (11)

In adaptive stochastic gradient descent (SGD) [30], momentum behaves much like a ball rolling down a

hill. It speeds up in dimensions where gradients align, aiding descent, while it slows down in dimensions

with changing directions. This momentum parameter, denoted as β, captures the inertia-like behavior of the

optimization process. The first order momentum term is computed as

nt = β1nt−1 + (1− β1)zt. (12)

Adaptive stochastic gradient descent know as adagrad eliminates the need to manually tune the learning

rate. However, the learning rate can become increasing small. To resolve this issue, Adadelta and RMSProp

[39] introduce second order momentum term, which is computed as the preconditioner Ht = β2z
2
t−1 + (1−

β2)z
2
t . The sum of squares is calculated recursively as a decaying average of all previous squared gradients.

Therefore, Adadelta and RMSProp method is formulated as

Wt+1 =

(
Wt −

α√
(Ht + ϵ)

nt

)
. (13)

Adam [30] extends upon Adadelta and RMSProp by maintaining an exponentially decaying average of

past squared gradients, denoted asHt, similar to those methods. Additionally, it incorporates an exponentially

decaying average of past gradients, denoted as Ht, akin to momentum, as illustrated below,

nt = β1nt−1 + (1− β1)zt. (14)

and

Ht = β2Ht−1 + (1− β2)z2t . (15)

2.4 Stochastic Gradient Descent Algorithms in Machine Learning

SGD has been widely used for many applications. Still, its convergence is slow, in consequence limiting its

applications. Contrary to SGD, which uses the same base learning rate for all the coordinates, adaptive SGD

methods derive different effective learning rates for different coordinate values from the approximation of
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Table 2.2 Summary of works related to adaptive stochastic gradient descent, where ’Diff1 ’ denotes a base learning
rate, ’Diff2’ denotes another base learning rate, and ’s’ characterize the gradient growth rate of the cumulative stochastic
gradient. Diff1 and Diff2 can be selected from {10, 1, 0.1, 0.01, 0.001, 0.0001}

Optimizer ADAM [30] PADAM [28] AMSGRAD
[40]

Wada [41]

Large Ht Diff1 Diff1 Diff1 Diff1

Small Ht Diff1 Diff1 Diff1 Diff1

Rate of Convergence in
Convex Setting

O
(

1

T
1
2

)
O

(
1

T
3
4
− s

2

)
O

(
1

T
1
2

)
O

(
1

T
1
2

)
Ĥt = max(Ĥt−1, Ht) No Yes Yes No

Rate of Convergence in
Nonconvex Settings

O
(

d
1
2

T
1
2
+ d

T

)
O

(
d

1
2

T
3
4
− s

2
+ d

T

)
O

(
d

1
2

T
1
2
+ d

T

)
O

(
d

1
2

T
1
2
+ d

T

)
Non-Ergodic Conver-
gence Analysis

No No No No

first and second-order momentum of the gradient [30]. Momentum’s ability in accelerating convergence is

primarily observed in the realm of strongly convex functions, thus it may not yield accelerated convergence

rates for nonconvex objectives. Moreover, addressing the nonconvergence challenges inherent in nonconvex

scenarios with adaptive stochastic gradient descent can be achieved by employing exponential moving av-

erages of historical gradient squares. Nevertheless, the moving average approach is hindered by the short

memory problem, potentially leading to failures in specific circumstances such as nonconvex setting. Ad-

dressing the short memory constraint of adaptive SGD can be achieved by integrating long-term memory

mechanisms [40]. While momentum-based algorithms have attempted to address the convergence issue, the

problem of a small base learning rate leading to low generalization error in the later stages of training remains

unresolved.

The base learning rate selection affects the convergence rate of adaptive learning rate of ASGD. For

instance, some coordinate values are small, so to avoid those coordinate values from overshooting and re-

ducing the model’s generalization performance, ADAM [30] and AMSgrad [40] selected small base learning

rates [28]. Choosing a small base learning rate makes the algorithm make less impact at the later stage of

training [28]. Chen et al. [28] sought to address this issue by opting for a small partially adaptive parameter

alongside a large base learning rate. But, the coordinate values still overshoot since the partial adaptive value

was not adapted during training, leading to poor generalization performance. Moreover, when examining

different adaptive SGD methods, it is important to recognize that partially adaptive parameters below 0.5

often lead to performance outcomes devoid of any predictable pattern [28, 29]. On top of that, Sun et al. [3]

introduced a method to address the challenge of small learning rates by advocating for the selection of a par-

tially adaptive parameter greater than 0.5. Nonetheless, opting for a partially adaptive parameter exceeding
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one frequently results in uncertain outcome. AdaBelief algorithm in [39] scales the learning rate in adaptive

function by utilizing the difference between the predicted and observed gradient. Recently, Zhou et al. [42]

modified the second-order momentum of AdaBelief [39] to boost its convergence under strong convexity

condition. Nevertheless, the improved AdaBelief does not exhibit the optimal rate of convergence especially

for weakly convex and nonconvex objective functions. We need an approach that is independent of a partic-

ular objective function. Furthermore, an approach capable of handling both weakly convex and nonconvex

objective functions can substantially enhance the convergence rate of any model. Recently, Huang et al. [43]

presented an angle-calibrated moment technique that leverages the benefits of a second-order moment while

updating first order moment. They compared its convergence rate with that of Adam and Padam, and the

result showed a close convergence rate to Adam and Padam. Although this approach reduces the number of

update parameters, it may entail a loss in model effectiveness. Chen et al. [44] implemented a mechanism

which aims to enhance the empirical performance of models by gradually diminishing the cumulative impact

of a gradient on all subsequent updates. Verma et al. [45] suggested employing a trigonometric function on

the exponential moving average of weight parameters to calculate the step size. This approach only targets the

vanishing gradient issue in nonconvex scenarios, particularly prominent when employing sigmoid activation

functions. Zhong et al. [41] endeavored to address the non-convergence problem present in Adam by intro-

ducing a novel approach: a linearly growing weighted strategy that assigns varying weights to past gradients.

Their method demonstrated heightened efficacy, notably when the gradient experienced rapid decreases. The

limitation of Wada [41] lies in its tendency to diverge on non-convex and slowly decaying gradient problems.

The authors in [46] introduced a novel adaptive gradient framework called SUPERADAM, designed to be

faster and more versatile. This framework was based on a universal adaptive matrix encompassing various

existing adaptive gradient forms, allowing it to integrate with momentum and variance reduction techniques

seamlessly. The downside of SUPERADAM [46] lies in its variance reduction technique, necessitating a

larger batch size for optimal performance.

In summary, all the above mentioned works have improve the convergence rate of ASGD to a certain

extend. However, they continue to face constraints stemming from poor accuracy, resulting in high general-

ization error during advanced training stages. I contend that this issue primarily arises from the fact that the

base learning rate in these algorithms can either become excessively small or excessively large in the later

stages of training depending on the network architecture. Consequently, Adam, ASGD2 [3], Padam [28],

Amsgrad [40], Wada [41] and SUPERADAM [46] are adopted as the benchmark methods. A summary of

works related to ASGD in Table 2.2 and 2.3 are presented.
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Table 2.3 Summary of works related to adaptive stochastic gradient descent, where ’Diff1 ’ denotes a base learning rate,
’Diff2’ denotes another base learning rate and ’Ψ’ characterize the gradient growth rate of the cumulative stochastic
gradient. Diff1 and Diff2 can be selected from {10, 1, 0.1, 0.01, 0.001, 0.0001}. In the ASGD2 algorithm, as discussed
in [3], the parameter δ was set to 10−8, which is very close to zero. Selecting a larger value causes divergence of
the ASGD2 method. Therefore, for practical purposes, δ = 0 can be assumed, ensuring both convex and nonconvex
convergence rates.

Optimizer ASGD2 [3] Super-Adam [46] Proposed(Improved
Adam)

Proposed(Improved
Amsgrad)

Large Ht Diff1 Diff1 Diff1 Diff1

Small Ht Diff1 Diff1 Diff2 Diff2

Rate of Convergence in
Convex Setting

O
(

1

T
1
2

)
O

(
1

T
1
2

)
O

(
1

T
1
2
+Ψ

)
O

(
1

T
1
2
+Ψ

)
Ĥt = max(Ĥt−1, Ht) No No No Yes

Rate of Convergence in
Nonconvex Setting

O
(

lnT+d2

T
1
2

)
O

(
lnT+d2

T
1
2

)
O
(

d
1
2

T
1
2
+ d

T
+Ψ

)
O

(
d

1
2

T
1
2
+ d

T
+Ψ

)
Non-Ergodic Conver-
gence Analysis

Yes No Yes Yes

2.5 Review of State-of-the-Art Machine Learning Models in Robotic

Surgery

In telesurgery, variants of probabilistic and non-probabilistic models have been proposed to assist the sur-

geon in performing a surgical task in the presence of data loss and delay. Ashirwad et al. [47] used the

Gaussian mixture model/Gaussian mixture regression (GMM/GMR) to improve reliability in remote robotic

surgery. Specifically, the GMM was adopted to encode a set of force/torque profiles and their correspond-

ing parameters, followed by GMR, which was used to retrieve a generalized version of the force/torque

profile for Trocar insertion1 [47]. Delayed/lost haptic feedback information was successfully predicted via

this GMM/GMR model in a local area network setting. In our recent work [20], we showed that the hid-

den Markov model/Gaussian mixture regression (HMM/GMR) makes better predictions compared to the

GMM/GMR for remote needle insertion procedure. Specifically, the hidden Markov model was used to en-

code a set of force, torque, and corresponding parameters. GMR was then used to reproduce the generalized

version of the force, torque, and corresponding parameters. Our work concluded that prediction of under

1 ms can be achieved with a minimal error by selecting a small number of states k. Both the GMM and the

HMM have a computational complexity of O(mk). The K-nearest neighbor regression (KNNR) was used

in [11] to train a tendon-driven serpentine surgical manipulator to perform a trans-oral surgical task. How-

ever, KNNR suffers from the problem of dimensionality for extremely high dimensional space (i.e., robots

1Trocar insertion is a type of laparoscopic surgery involving small incisions into the abdominal skin.
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with multiple arms) without dimensionality reduction as a pre-processing step. The weighted KNNR in [11]

has complexity ofO(mk). Osa et al. [10] employed Gaussian Process Regression with a conditional distribu-

tion of demonstrations, normalization in the time domain, and estimation concerning a reference trajectory to

learn a surgical task. Gaussian Process Regression complexity increases cubicallyO(m3) with the number of

training data points m. Learning from demonstrations frameworks, such as the Gaussian Process Regression,

the GMM, the KNNR, and the HMM, is dependent upon the surgeons’ demonstrations to initialize the surgi-

cal task dynamics. In contrast, the reinforcement learning framework in [48] does not require initialization.

reinforcement learning immediately learns and manipulates the tissue dynamics. Nieto et al. [49] developed

a surgical system integrating virtual reality, enabling users to generate 3D virtual representations of patients

for pre-surgery practice. The data collected from the virtual headset is then utilized by a reinforcement learn-

ing algorithm learn to autonomously execute surgical procedures, including tasks like needle picking. The

drawback of using reinforcement learning in remote robotic surgery is that it requires a long timeframe for

the robot to effectively perform the task. reinforcement learning has a complexity of O(m3).

Neural-based methods in remote robotic surgery are discussed next. Xu et al. [11] employed an extreme

learning machine to automate a trans-oral surgical task. Mayer et al. [12] used long short term memory neu-

ral network to learn the knot-tying procedure, while, Sneath et al. [50] applied the LSTM NN to simulate a

semi-autonomous robotic surgery for a space exploration mission to the Moon and Mars. The computational

complexity of LSTM NN and ELM is dependent upon the number of neurons h in each layer. Neural-based

methods, such as ELM and LSTM NN, are known to have good accuracy, though they tend to overfit when

the hidden neurons and the activation function are not selected correctly. Thanajeyan et al. [51] combined

the advantages of LSTM NN and RL to develop an autonomous tensioning policy. All of the above men-

tioned works are offline and utilize fixed-parameter non-linear regressors, which are not suitable for online

adaptation to unforeseen situations or new scenarios.

The work in [52] on remote robotic surgery focuses on online model learning and prediction. Fichera

et al. [52] employed a locally weighted projection regression to train soft-tissue dynamics during laser ex-

posure to predict the effects of laser-tissue interaction during surgery. The complexity of each local model

of LWPR was O(m). LWPR parameters need to be tuned manually to arrive at an optimal solution, which

is time-consuming. From the literature, the naive deployment of the machine learning frameworks in an

online setting would incur a significant cost when there is high number of datapoints. Also, there may be

delayed/lost data resulting from communication disruptions and sensor failure making the dataset incom-

plete. Therefore, suitable techniques to address the scalability and delayed/lost data issues in online learning

are needed. Also, it failed to address the small learning rate dilemma, thus compromising the attainment of

21



the optimal convergence rate. Additionally, all the aforementioned works relied on kinematic datasets for

model training. A summary of the related work is presented in Table 2.1, which illustrates the complexities

of various machine learning frameworks.

A model for gesture classification utilizes trimmed video clips, kinematic data, or a combination of both

to classify gestures, aiming to enhance patient outcomes [53]. For example, Haro et al. [54] used multiple

kernel learning to combine a Linear dynamic system (LDS) with a bag of features. The LDS model learns

each gesture and video clip and exploits the distance between the model’s parameters to classify new video

clips. Also, Haro et al. used a bag of features to learn a dictionary of space-time words using the space-time

features obtained from all the video clips to classify new gestures. Luongo et al. [55] also seek to enhance

patient outcomes by classifying and identifying needle suture activity and gesture using a deep learning model

on a video dataset.

Unlike gesture classification, which typically uses trimmed videos, surgical gesture recognition relies on

the entirety of the video and/or kinematic dataset to identify specific gestures. It utilizes the start and end

times of the gestures for recognition purposes [53]. Huynhnguyen et al. [53] used deep learning model to

classify surgical gesture using the entire video data with modest success. Also, Selvam et al. [56] used a

deep learning model to detect surgical activity in the surgical site. Both Selvam et al and Huynhnguyen et

al. fallshort at improving the learning phase of surgical recognition model to boost the convergence rate of

their model. Improving the training phase of machine learning for remote robotic surgery holds immense

significance in improving surgical outcomes and ensuring patient safety.

In summary, the existing work on applying machine learning in remote robotic surgery is crippled by the

following shortcomings: first, most of the existing works assign a fixed expert-predefined value for the ma-

chine learning model, and therefore, they do not generalize well on new data, and second, the computational

complexities associated with existing machine learning methods in remote robotic surgery with parameter

tuning schemes are costly. Furthermore, none of the discussed methods can used in real-time due to the high

computational complexity of the algorithms as shown in Figure 2.4. An ideal machine learning model should

have a low computational complexity of O(rm) and a recovery rate of O( 1
rג ) to meet the requirements of

robotic surgery application [1, 2, 25]. Also, the convergence rate of the optimizer for training the machine

learning should be O( d
1
2

T
1
2
+ d

T +Ψ).
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Table 2.4 Summary of the related work. Batch represents offline and incremental denotes online.

Method Training Time
Complexity

Low Rank
Matrix
Recovery
Rate

Address on-
line lost data

Mode Reference

GMM/GMR O(mk) N/A No Batch [47]
HMM/GMR O(mk) N/A No Batch [20]
LWPR O(m) N/A No Incremental [15, 52]
ELM O(mhlayers) N/A No Batch [11]
KNNR O(mk) N/A No Instance

Based
[11]

RL O(m3) N/A No Batch [48]
DeepRL O(m3hlayers) N/A No Batch [51]
LSTM O(m5hlayers) N/A No Batch [12, 50]
Gaussian
Process
Regression

O(m3) N/A No Batch [10]
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Chapter 3

Improved Low-Rank Matrix

Factorization for Scaling Machine

Learning: A Case Study in Robotic

Surgery

3.1 Introduction

With the advent of smart sensors and actuators enabled by the Internet of Things (IoT), a wide variety of

machine-centric applications are becoming part of our everyday lives [57]. In 5G settings [58], the IoT aims

to realize the connectivity of a large number of devices via massive machine-type communications (mMTC)

with its inherent machine-to-machine (M2M) communications paradigm [59]. A natural evolutionary leap

of the IoT is the so-called Tactile Internet, which aims to enable the remote control of real and/or virtual

objects via haptic communications [60]. Haptic communication is geared towards human-to-machine (H2M)

communications and envisions the transmission of haptic signals in addition to conventional audiovisual data

and machine-centric traffic [61]. This development can help shift the emphasis towards humans, allowing for

a more human-centric design approach [62]. Leveraging on haptic feedback, humans will play more active

roles in future IoT settings and will be more involved in a group of immersive, human-in-the-loop (HITL)

applications enabled by the transmission of multi-sensory traffic, including the sense of touch [63]. An
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interesting example of HITL-based Tactile Internet applications is remote robotic surgery, which can be

viewed as a system consisting of several dependable and controllable tools that enable a skillful surgeon to

execute surgery on a remotely-located patient.

Robotic surgery offers a wide range of benefits including improved precision, enhanced surgeon dexterity,

reduced tremor, and improved ergonomic conditions [19]. Patients may also benefit especially since robotic

surgery incurs less blood loss and pain, and therefore can result in reduced trauma and shorter recuperation

time. Conventional robotic surgery occurs locally with a surgeon and a patient in close proximity. As an

example, the Da Vinci Surgical system (Intuitive Surgery Inc.) has been used in many surgeries since its

introduction in 2000. In 2016, a total of 753,000 surgeries were reported worldwide, which represents an

annual increase of 15% [21].

Unlike conventional robotic surgery, remote robotic surgery enables a surgeon to perform surgery on

a remotely located patient via the transmission of command and feedback signals through a communication

network [64]. Typically, a transparent, immersive Tactile Internet telesurgery requires an ultra-high reliability

of 99.999% as well as a very low latency of ∽ 1 ms [65]. Ideally, transparency requires that the positions and

forces on the patient side domain and the surgeon side domain are equal. However, in reality, it is difficult

to achieve true transparency due to communication-induced artifacts such as delay and packet loss [66].

According to [67], current deployments of 5G mobile networks can only partly meet the stringent latency

and reliability requirements of the Tactile Internet, and so, communication-induced artifacts (e.g., delay,

packet loss, and jitter) may have a detrimental impact on the stability and safety of a remote robotic surgery

system [68]. To cope with excessive delays and/or packet loss, machine learning has recently proven to be a

promising approach towards compensating for excessive delay and/or packet loss [20, 47, 65].

To supply the delayed/lost data in Tactile Internet-based remote robotic surgery, Gaussian Process Re-

gression is a promising approach, especially given that it has shown promising results in 5G-enabled wireless

traffic prediction [58] and in the modeling the inverse dynamics of robotic systems [69]. More specifically,

Gaussian Process Regression can deal well with high dimensional data as it explicitly optimizes hyperparam-

eters and encapsulates expert knowledge into the kernel function based on the Bayes theorems to maximize

the marginal likelihood of getting explainable results [58, 70]. Despite their potential to enhance prediction

accuracy, the computational complexity of Gaussian Process Regression is centered around the kernel ma-

trix inversion, which increases with an increasing number of data points. Therefore, if Gaussian Process

Regression are to be applicable in 5G-enabled Tactile Internet remote robotic surgery, the model update and

prediction process must be able to be performed with both precision and rapidity.

Online and offline machine learning frameworks have been proposed for remote robotic surgery [10,
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12]. Most of the frameworks in robotic surgery focus on offline training [12, 47], which eliminates the time

required to update the model parameters online. These strategies are generally not well suited for robotic

surgery where commands and sensor data are received in sequential streams and model parameters must

be updated on-the-fly. We note, however, that in robotic surgery, the data generated by surgical robots are

extremely diverse [4]. Offline training may cause significant inaccuracies in prediction for a multitude of

reasons [71]. Notably, given that it is not possible to learn the complete state space beforehand, models that

have learned offline can only approximate the model correctly in the area of the state space that is covered by

the sample; the trained model would not be able to generalize beyond that region. In contrast, online learning

creates a more general model for a larger space, as it is capable of adapting for time-dependent surgical robot

dynamics.

The need to detect inaccuracies and changes creates the opportunity to adopt an intelligent, context-aware

approach with the capability of dynamically determining an optimal strategy; thereby achieving tradeoff

between reliability and latency [71]. In turn, this calls for an online model learning approach, a crucial

method that allows a predictive model in changing environmental conditions to generate predictions with

high accuracy. Online model learning is known to be computationally expensive [71]. Low-rank matrix

factorization [35], an example of subspace learning, can be used to computationally scale online model learn-

ing [35]. Even though the low-rank matrix factorization methods can scale the machine learning frameworks

computationally, they perform poorly in the presence of lost data [27]. In a fully online setting, there may be

random delayed or lost data in the training dataset due to communication disruptions. Delayed/lost data from

communication disruption or sensor failure can cause surgical robots to operate beyond their safe region,

which could lead to the application of an excessive amount of force that may rupture vital organs.

Sparse and low-rank matrix factorization techniques and their variants, such as direct robust matrix fac-

torization [5], randomized sparse low-rank matrix decomposition [72], and robust PCA [26], among others,

have been widely explored and exploited to scale machine learning and recover corruptions in various clas-

sification and regression tasks such as image classification [73, 74], monaural speech enhancement [75],

autonomous robotic control [27], and ultrasound imaging [76]. However, to the best of our knowledge, most

of the recent solutions either exploit non-convex formulation [73–75] or convex formulation [76] of low-rank

matrix factorization to scale machine learning. Multiple experiments have proven that non-convex formula-

tions of low-rank matrix factorization are known to achieve a higher accuracy with a smaller computational

burden than convex nuclear norm formulation (i.e., a convex envelope of the rank function) of low-rank ma-

trix factorization machine learning models [73, 76]. However, without a good initial point, the number of the

local minima of a non-convex formulation of low-rank matrix factorization machine learning models [73–75]
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grows so fast that it is effectively impossible to find a sufficiently good solution [5]. Such incorrect estimation

of the kernel matrix can lead to an unstable situation when a surgical robot operates on a patient using an

machine learning-driven non-convex formulation of a low-rank matrix factorization machine learning model.

As a remedy, we exploit a two-step technique; a nonconvex formulation of a low-rank matrix factorization

with convex formulation of a low-rank matrix factorization initialization [5] to scale machine learning models.

To be more specific, according to [5], we can initialize DRMF (i,e., a non-convex RPCA) by running RPCA

(a convex relaxation) for a few iterations, which should make it possible to get better results than using DRMF

or RPCA alone to scale a given model. Thus, by employing DRMF (with convex relaxed RPCA initialization

included [76]) to scale a given machine learning model, we can avoid being stuck at the local minima and

converge to a solution with smaller recovery residuals. Also, the running time of DRMF (including the

initialization time) is expected to be smaller than that of applying RPCA alone under the same stopping

criterion [5]. Therefore, machine learning driven DRMF models with convex relaxed RPCA initialization

can deliver accurate predictions in a timely manner to ensure the stability of surgical robots and patient

safetys.

The network requirements of Tactile Internet-based remote robotic surgery [65] can be incorporated into

the DRMF [5, 72], used for scaling Gaussian Process Regression and for dealing with delayed/lost data in

remote robotic surgery.

The naive version of DRMF [5] and RPCA [27] are suitable for batch mode operation. Specifically,

DRMF and RPCA are intrinsically transductive methods [72, 77], and are thus inappropriate for latency-

sensitive, remote robotic surgery applications, that require online computation (i.e., online model updates).

For RPCA [27] and DRMF [5] to support sequential scenarios, we propose a sequential ℓ1 norm regularized

randomized low-rank and sparse matrix factorization and a sequential randomized low-rank and sparse ma-

trix factorization, that use the eigen decomposition of the preceding results together with the incremental data

to compute the next eigen decomposition. Essentially, SRLSMF and ℓ1-SRLSMF machine learning models

are inductive methods, having the ability to handle out-of-sample problems [72,77,78]. These models can be

beneficial for remote robotic surgery, especially given that they allow for planning and updating dexemes [79]

(e.g., velocity, position, and orientation information) contained in the gesture of a surgical task according to

the change in conditions during a surgery to improve the accuracy of the model in a computationally efficient

manner. Further, we constrain the kernel matrix to be symmetric positive-definite in order to guarantee the

positive semi-definiteness of its solution. The symmetric positive-definite guarantee is required to ensure

the stability of surgical robots. We provide a theoretical analysis of the proposed matrix separation algo-

rithms. The proposed incremental eigendecomposition for handling delayed/or lost data is motivated by the
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incremental singular value decomposition (SVD) for handling uncertain data with missing values [80].

The novelty of this work is to exploit sparse and low-rank matrix factorization in Gaussian Process Re-

gression to build an online model learning method to support latency-sensitive remote robotic surgery appli-

cations. While individual components of our proposed framework may have been studied extensively in the

context of machine learning, their combination gives rise a computationally efficient, robust online learning

method, which has the potential of being applicable in real-world Tactile Internet deployments.

The rest of the chapter are discussed as follows: First, we introduce the system model and outline the

problem definition. Next, we present a scalable and robust Gaussian Process Regression framework. Follow-

ing this, we detail our simulations and the results obtained. Finally, we provide conclusions.

3.2 System Model, Motivating Scenario and Problem Definition

In this section, we start by presenting the system model, followed by a motivating scenario, and then, we

present our problem definition. For completeness, a list of notations is provided in Table 2.

3.2.1 System Model

Figure 3.1 illustrates the generic architecture of the bilateral remote robotic surgery system enabled by a 5G

Tactile Internet wide area network (WAN). A typical remote robotic surgery system contains the following

three domains: (i) the surgeon-side domain, (ii) the patient-side domain, and (iii) the network domain. The

surgeon side domain consists of the surgeon along with the surgeon console, and the patient-side domain

consists of the patient and a patient-side robot. The surgeon manipulates the surgeon console to generate

haptic commands, which are then taken by the patient-side robot to perform the corresponding action on

the patient [81]. The patient side robot interprets and uses the commands from the surgeon console in the

form of position, orientation, and velocity to perform operations on the patient [81]. The network domain

is responsible for offering a low latency and ultra-reliable connectivity between the patient and surgeon

domains [64]. The edge/edge connector interconnects the domains via the 5G-enabled Tactile Internet WAN.

We deploy a machine learning model hosted in the patient side domain for haptic command prediction.

3.2.2 Motivating Scenario

Let us focus on the knot-tying task, which is typically carried out during tissue reconstruction [4]. The knot-

tying task is segmented into various gestures. Knot-tying is achieved by executing a sequence of the following
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Figure 3.1 Generic architecture of our 5G-enabled Tactile Internet remote robotic surgery system.

Figure 3.2 Motivating scenario.
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Table 3.1 Knot tying gesture vocabulary [4].

Gesture Index Gesture Description

Ω1 The surgeon picks up needle with right hand
Ω12 The surgeon picks up needle with left hand
Ω13 The surgeon makes a C loop around right hand
Ω14 The surgeon picks up suture with right hand
Ω15 The surgeon pulls suture with both hands to tie a

knot

five sub-tasks [4]: a surgeon (Ω1) picks up a needle with her right hand, (Ω12) picks up the needle with her

left hand, (Ω13) makes a so-called C loop around her right hand, (Ω14) picks up the suture with the needle

in her right hand, and (Ω15) pulls the suture with both hands to tie a knot. The process is repeated until the

knot-tying task is completed. Table 3.1 provides a brief description of these gestures. Surgemes are further

segmented into dexemes, which are numerical versions of the sub-gestures needed to execute a surgeme [79].

Dexemes are kinematic data, such as the tool tip position, rotation matrix, gripper angle velocity, rotational

velocity [4], among others. These dexemes arrive sequentially and newly arrived dexemes append to old

dexemes of a surgeme. In the scenario diagram shown in Fig. 3.2, the complete dexemes contained in Ω1

are successfully sent via the 5G-enabled Tactile Internet to the patient side robot. Based on the dexemes

contained in Ω1, a sequence of actions is performed by the patient-side robot on the patient. Upon receiving

Ω1, the patient-side robot sets a waiting threshold, which is the period within which the complete dexemes

of the next surgeme should be received. The dexemes contained in Ω12 are sent via the 5G-enabled Tactile

Internet to the patient-side robot. When a content of Ω12 fails to reach the patient side robot within the pre-set

threshold, the patient-side robot asks the machine learning model to send the predicted content of Ω12. Any

failure of Ω12 implies the loss of certain content of Ω12, as depicted in Fig. 3.2. The dexemes in the predicted

Ω12 are then used to execute the surgeon’s requested action on the patient. The closeness to a real-time haptic

command is dependent upon the prediction accuracy of the content of Ω12, considering that the maximum

permissible deadline is 1 ms [81].

3.2.3 Problem Definition

A surgeon in the surgeon domain manipulates a patient-side robot to generate multiple demonstrations of

the knot-tying task. Each knot-tying session dknot is composed of R-dimensional spatial information (i.e.,

position, orientation, velocity, etc.) and 1-dimensional temporal information (i.e., time), where dknot ∈

{1, ..., Dknot} and Dknot represents the total number of demonstrations. We are given Dknot examples
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of a surgeon performing a knot-tying task with an input ϕ(dknot)
m per step m and output ξ(dknot)

m per step

m of length M (dknot), where m ∈ {1, ...,M (d)}. We denote n as the index of another step of the knot

tying session. Each knot-tying session is a vector ψ, composed of temporal ϕ(dknot)
m and spatial information

ξ
(dknot)
m per step. The dataset is represented as ψ = {ϕ(dknot)

m , ξ
(dknot)
m }M(dknot)

m=1 . The temporal information

vector ϕ(d) ∈ ℜ serves as the input to the regression function and the spatial information vector ξ(dknot) ∈ ℜR

serves as the output of the knot-tying task. The Cartesian position−→p = (px, py, pz), Cartesian linear velocity

−→v = (vx, vy, vz), Cartesian angular velocity
−→
v′ = (φ′, π′, ε′), 9-variable rotational matrix Z, and a gripper

angle θ are the samples outputs ξ(dknot) being sent in the command path to the patient side robot and which

are subject to delay and packet loss. This set of samples is used to train the machine learning model.

3.3 A Scalable and Robust Gaussian Process Regression Framework

In this work, we employ robust low-rank matrix factorization methods to achieve computationally efficient

Gaussian Process Regression to facilitate haptic command prediction in a 5G-enabled Tactile Internet remote

knot tying procedure. After describing the background on Gaussian Process Regression model compression

via low rank and sparse matrix factorization, we present two variants of sequential randomized low-rank and

sparse matrix factorization methods.

3.3.1 Background on Gaussian Process Regression Model Compression

A Gaussian Process Regression is a distribution over functions characterized by a mean µ(ϕ(dknot)) and

covariance T (ϕ(dknot)) function [10, 82]. We consider Gaussian Process Regression function f(ϕ(dknot))

given by

f(ϕ(dknot)) ∼ GP
(
µ(ϕ(dknot)), G(ϕ(d), ϕ(d

′))
)
,

µ(ϕ(dknot)) = E
[
f(ϕ(dknot))

]
,

G(ϕ(dknot), ϕ(d
′
knot)) =

E
[(
f(ϕ(dknot))− µ(ϕ(dknot))

)(
f(ϕ(d

′
knot))− µ(ϕ(d

′
knot))

)]
,

(16)

where G is the kernel function. The mean is centered at the origin because any change in actuation requires

a zero mean. In Gaussian Process Regression, the target ξ(d) can be modelled by a Gaussian distribution as
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follows:

ξ(dknot) = f(ϕ(dknot)) + ϵ,

ξ(dknot) ∼ N (0, G(ϕ(dknot), ϕ(dknot)) + σ2
nI),

(17)

where ϵ is the Gaussian noise, which is an independent and identically distributed random variable with zero

mean and variance σ2
nI [70]. A popular kernel choice is the square exponential (SE) kernel also known as the

Radical basis function. Typically, an SE kernel is chosen in most Gaussian Process Regression applications,

as it requires computing relatively few parameters. The formula for SE is given by

G
(
ϕ(dknot), ϕ(d

′
knot)

)
= σ2

sexp
(
1

2

(
ϕ(dknot) − ϕ(d

′
knot)

)T
W
(
ϕ(dknot) − ϕ(d

′
knot)

))
, (18)

where σ2
s denotes the variance of the kernel function itself and W is a diagonal matrix. The joint distribution

of the observed target values ξ(dknot) and predicted values ξ(dknot∗) for a query point ϕ(dknot∗) can be modeled

as a multivariate Gaussian as follows:

℘

 ξ(dknot)

ξ(dknot∗)

 ∼
N

0,

G (ϕ(dknot), ϕ(dknot)
)
+ σ2

nI G
(
ϕ(dknot), ϕ(dknot∗)

)
G
(
ϕ(dknot∗), ϕ(dknot)

)
G
(
ϕ(dknot∗), ϕ(dknot∗)

)
+ σ2

nI


 ,

(19)

where ϕ(dknot) and ϕ(dknot∗) represent all the input points and predicted values of the query points,G(ϕ(dknot), ϕ(dknot))

denotes the covariance function, also known as the kernel function, and G(ϕ(dknot), ϕ(dknot∗)) represents the

covariance matrix between the test points and full training points. The parameters estimated via the maximum

likelihood approach are the parameters of the kernel function: the variance σ2
n and the diagonal components

of the matrixW , such that the marginal log-likelihood is maximized [7]. The conditional distribution of the

Gaussian demonstration (19) produces the predicted mean µ∗ and covariance T ∗
cov as follows:

µ∗ = G
(
ϕ(dknot∗), ϕ(dknot)

)(
G
(
ϕ(dknot), ϕ(d)knot

)
+ σ2

nI
)−1

ξ(dknot), (20)

T ∗
cov = G

(
ϕ(dknot∗), ϕ(dknot∗)

)
+ σ2

nI −G
(
ϕ(dknot∗), ϕ(dknot)

)
(
G
(
ϕ(dknot), ϕ(dknot)

)
+ σ2

nI
)−1

G
(
ϕ(dknot), ϕ(dknot∗)

)
,

(21)
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ϑ−1 = σ−2
n I − σ−4

n U
(
Σ−1 + σ−2

n I
)−1

UT (22)

where ϑ = G
(
ϕ(d), ϕ(d)

)
+ σ2

nI is the regularized covariance matrix. Typically ϑ is dense, causing the

standard direct inversion and determinant evaluation to require O(m3) operations [82]. Gaussian Process

Regression is known to achieve higher performance with minimal parameter tuning. However, it suffers from

significantly higher complexity. Next, we propose to explore two variants of robust kernel low-rank matrix

factorization methods to address the scalability and delayed/lost data issues of Gaussian Process Regression

in sequential setting under varying latency.

Kernel low-rank matrix factorization is used to obtain a low-dimensional representation of a high di-

mensional kernel matrix in an ℓ2 norm sense. Kernel low rank matrix factorization can be interpreted as

minimizing a cost function, measuring the fit between the kernel matrix G and an approximation of the

kernel Llowrank subject to the constraint that the approximated matrix has a reduced rank:

min
Llowrank

||G− Llowrank||F ,

subject to rank(Llowrank) ⩽ r,

(23)

where ||.||F is a Frobenius norm. Based on the recent advances made in the nuclear norm, a method for

kernel matrix factorization known as robust kernel principal component analysis has emerged [26]. RKPCA

is one of the most significant tools for robustly recovering a low-rank matrix from corruption (packet loss/

delay), and it opens the door for using low rank regularization [27]. Packet loss and delay are considered

explicitly introducing a corruption term in the objective function and in the constraints. RKPCA decomposes

the kernel matrix G into low-rank matrix Llowrank and corruption matrix S by minimizing the ℓ1-norm.

Mathematically, the problem of RKPCA can be solved by using the following formulation:

min
Llowrank,S

||Llowrank||∗ + λ||S||1,

subject to G = Llowrank + S,

(24)

where ||.||∗ is the nuclear norm, ||.||1 is the ℓ1-norm, and α is a penalty parameter for balancing the low-

rank term and the reconstruction fidelity. For some orthogonal matrix U ∈ ℜm×r and diagonal matrix

Σ ∈ Dr with entries ϱi, problem (24) is transformed into problem (33) to ensure the symmetric positive
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semi-definiteness of the kernel matrix [26, 27].

min
U,Σ,Σ̂,P

||G− U Σ̂UT ||1 + λ||Σ||∗,

subject to Σ ≥ 0, UUT = Ir,

Σ̂ = Σ, P = U Σ̂UT ,

(25)

where Σ̂ and P are two auxiliary variables. More details about the framework are presented below. Using

augmented Lagrangian framework [83], we transformed the constrained problem (33) into an unconstrained

Lagrangian problem below:

L(G,P,U,Σ, Σ̂) = ||G− P ||1 + λ||Σ||∗ + tr
(
ΛT
1

(
P − U Σ̂UT

))
+

tr
(
ΛT
2

(
Σ̂− Σ

))
+
β

2

(
||P − U Σ̂UT ||2F + ||Σ̂− Σ||2F

)
,

(26)

where Λ1,Λ2 ∈ Rm×m are Lagrange multipliers and β > 0 is a weight parameter. We solve for Σ by fixing

the other variables and solving the optimization problem below

Σ∗ = argmin
Σ

λ

β
||Σ||∗ +

1

2
||Σ̂− Σ+

Λ2

β
||2F , (27)

whose solution takes the form

Σ∗ = Qdiag

[
max

(
ζ − λ

β
, 0

)]
QT , (28)

where Q is some orthogonal matrix and max(., .) should be understood as element-wise. Given Hgpr =

Σ̂− Λ2

β , then the eigendecompositon of Hgpr is Hgpr = QΓQT for Γ = diag(ζ).

Next, we update Ueigen by fixing the other variable and solving the problem below

U∗ = argmin
U

tr
((

ΛT
1

(
P − U Σ̂UT

)))
+
β

2
||P − U Σ̂UT ||2F , (29)

and then, we update Σ̂ by solving the problem below

Σ̂∗ = argmin
Σ̂

tr
(
ΛT
1

(
P − U Σ̂UT

))
+

tr
(
ΛT
2

(
Σ̂− Σ

))
+
β

2

(
||P − U Σ̂UT ||2F + ||Σ̂− Σ||2F

)
.

(30)
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Next, we update P by solving the optimization problem below

P ∗ = argmin
P
||G− P ||1 + tr

(
ΛT
1

(
P − U Σ̂UT

))
+

β

2
||P − U Σ̂UT ||2F .

(31)

Finally, we update Lagrange multipliers Λ1,Λ2 as follows

Λ1 ← Λ1 + β
(
P − U Σ̂UT

eigen

)
,

Λ2 ← Λ2 + β
(
Σ̂− Σ

)
.

(32)

The process is repeated until convergence occurs and the corruption is minimized.

The scheme in [27] relies on some relaxation approaches to relax the rank constraint to the trace norm

and the ℓ0-norm constraint to the ℓ1-norm, which may have a significant effect on the prediction accuracy.

In contrast, the DRMF scheme proposed in [5] minimizes the error of the low-rank matrix approximation by

considering the fact that delayed/lost data are small, and does so without using any relaxation approaches.

By assuming a small amount of delayed/lost data in the observation matrix G, the authors of [5, 84], and

[72] disregarded some data, classifying it as delayed/lost data by solving the following direct robust matrix

factorization problem:

min
Llowrank,S

||(G− S)− Llowrank||F ,

subject to rank(Llowrank) ⩽ r,

||S||0 ⩽ γ,

(33)

where γ represents the limit of the matrix of packet loss/delay. The above assumption that we can ignore some

data as delayed/lost data by solving Eq. (33) can be used to incorporate packet loss/delay knowledge from the

5G-enabled Tactile Internet [85] into the model. The optimization problem (33) can be solved alternatively

by solving the following the matrix factorization problem and the delayed/ lost data detection problem, until

convergence occurs [72]:



L = argmin
rank(L)⩽r

||Xclean − L||F , Xclean = G− S,

L = UΣUT , UUT = Ir

S = argmin
card(S)⩽γ

||E − S||F , E = G− L

(34)
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where Ir is an r× r identity matrix. The DRMF problem above consists of a kernel low-rank approximation

and a packet loss/delayed data detection problem, both needs to be solved until convergence. The packet

loss/delay data detection problem detects the delayed/lost packets per iteration step until convergence occurs.

When convergence occurs, the abnormally large data values are detected as lost packets and are discarded

from the kernel matrix Xclean = G − S. The number of packets that can be discarded is constrained by

the packet loss/delay requirement γ. To solve the kernel low-rank approximation problem, the cleared kernel

matrix Xclean is subject to eigen decomposition to repeatedly separate the kernel matrix into an orthogonal

matrix U and a diagonal matrix Σ. The eigen decomposition of the cleared kernel matrix Xclean is used to

update the covariance matrix of the Gaussian Process Regression.

From a computational perspective, there are various cutting edge algorithms for minimizing the DRMF

problem (34) that outperform popular off-the-shelf algorithms. The work in [5] employ a block coordinate

strategy [86] to iteratively solve the problem (34). With a priori knowledge about the rank r, the steps of the

algorithm are described below.

To update Σ, we fix the other variables and solve the following problem:

Σ∗ = argmin
Σ
||Xclean − UΣUT ||F , (35)

and then, we update U by fixing Σ and solving the following problem:

U∗ = argmin
U
||Xclean − UΣUT ||F . (36)

Next, we solve for E as follows:

E = G− UΣUT , (37)

and update S by solving the packet loss/delay problem:

S∗ = argmin
card(S)⩽γ

||E − S||F . (38)

Finally, the eigen decomposition of X can be computed.

X = UΣUT . (39)

The process is repeated until convergence occurs.
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Figure 3.3 Flowchart of the proposed algorithm

Remark 1. The performance of Algorithm 2 is guaranteed when the packet losses and delays are not too

high. In case of a very high packet loss and delay scenario, the imputation of the missing entries of the

training dataset while performing the matrix factorization must be added.

Remark 2. The figure 3.3 illustrates the flowchart of the proposed algorithm, detailing its sequence of oper-

ations. The algorithm begins with a convex formulation of low-rank matrix factorization as the initialization

scheme to prevent the model from getting stuck in a local optima. This is followed by a nonconvex formula-

tion of the low-rank matrix factorization, which serves as the main optimization technique for updating the

covariance matrix of Gaussian Process Regression in tactile internet applications. The goal of this proposed

algorithm is to meet the stringent requirements of tactile internet, specifically for remote robotic surgery.

3.3.2 Robust Incremental Eigen Decomposition

Online model learning for remote robotic surgery requires models to continuously adapt to new training

examples over time. Incremental eigen decomposition provides a means to incorporate new data into old data

without computing the matrix from scratch at every iteration. This effort and time-savings allows the dexemes

of a gesture in remote robotic surgery under dynamic conditions to be planned in real time. It should be noted

that we exploit incremental versions of RPCA and DRMF (i.e., SRLSMF [72] and ℓ1 SRLSMF [77]) to scale

Gaussian Process Regression. SRLSMF and ℓ1 SRLSMF are inductive, meaning that they can cooperate

with a subject with incremental eigen decomposition and work with movable and flexible objects such as
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Figure 3.4 Flowchart of the offline and online stages of updating eigen decomposition. In the offline stage, a kernel
matrix G is approximated by an orthogonal matrix U and a diagonal matrix Σ. In the online stage, a new matrix B is
appended to the original kernel matrix G which is approximated by using the previous decomposition result of G together
with the newly incorporated matrix B to approximate the resultant matrix by means of an orthogonal matrix U1 and a
diagonal matrix Σ1.

threads and soft tissues during operations. For instance, the surgical knot-tying task involves creating loops

around a surgical instrument with a surgical thread [10]. When a surgeon manipulates a surgical instrument

to be looped and it is moving the dexemes of a gesture (i.e., the model parameters) must be recomputed in a

computationally efficient manner to adapt the learned model according to the motion of the instrument. The

inductive behavior of the proposed models ensures that the topological features of the gesture are maintained.

Summaries of the exploited sequential ℓ1 norm regularized low-rank and sparse matrix factorization and

low-rank and sparse matrix factorization are presented in Algorithm 1 and 2, respectively.

Given a matrix G ∈ ℜm×m and a column B ∈ ℜm×1, we assume eigen decomposition of G is

G = UΣUT . (40)

After appending the newly arrived data B, the larger outer matrix G1 is built by appending columns to U .

The updated matrix G1 becomes

G1 = [G|B]. (41)

The eigenvalue and eigenvector of G1G
T
1 is required to compute the eigen decomposition of G1. Let

us denote the column matrix by B = UF , where F is a representation of B with U basis matrix. Given
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the orthogonal matrix U , the matrix F can be computed as F = UTB. With Σ2 + FFT being a positive

symmetric matrix, we can derive the following

G1G
T
1 = [G|UF ][G|UF ]T ,

= GGT + UF (UF )T ,

= U(Σ2 + FFT )UT ,

= UQΣ2
1Q

TUT ,

= U1Σ
2
1U

T
1 .

(42)

where U1 is a rotation of U by Q.

By applying the well-known spectral theorem [87], matrix Σ2+FFT can be diagonalized using a unitary

U . If the arrived data does not span the column space U then G1G
T
1 becomes

G1G
T
1 = [G|UF +B1][G|UF +B1]

T ,

= GGT + (UF +B1)(UF +B1)
T ,

= [U |Q1]

Σ2 + FFT FRT
1

R1F
T R1R

T
1


UT

QT

 ,
= [U |Q1]Q2Σ

2
1Q

T
2

UT

QT

 ,
= U1Σ

2
1U

T
1 ,

(43)

where B = UF + B1 and the orthogonal matrix B1 = Q1R1 is the QR decomposition of B1. The cost of

QR decomposition of B1 is O(ml2), where l is the rank of a subset matrix. The cost of rotating U to U1 is

O(m(r+ l)2), the cost of obtaining F and B isO(mlr) and the cost to obtain Σ2
1 isO((r+ l)3). The overall

run time to compute SVD(G1) is (O(ml2) +O(m(r+ l)) +O((r+ l)3) +O(mlr)), which is smaller than

SVD in DRMF [5] and naive RKPCA in [26] which has a complexity of O(min{mn2, nm2}).

As the matrix G grows, it becomes computationally expensive to compute the eigen decomposition of

G1. The theorem below summarizes the approximate solution to minimize the computational cost.

Theorem 1. Let G = UΣUT with G1 = [G|B] where B has no components in i-th column of U for i > r.

The eigen decomposition of G1 has the same spectrum ϱi and eigen vector ui for i > r.

Given U1 as the first r column of U with B having U with no component U2 and B = UF for some F .
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Algorithm 1 Sequential ℓ1 norm regularized randomized low-rank and sparse matrix factorization

1: Input: G: the kernel matrix, rank r, λ = 10−3, β = 10−5, and ρ = 2
2: j: iterative step
3: j = 1, Ueigen,1 = Σ1 = Σ̂1 = P1 = 0, βmax = 1010, eigen decomposition(Gj) = Ueigen,1Σ1U

T
eigen,1

4: Output: U , Σ, Σ̂, P
5: WHILE not converged
6: WHILE not converged 

Update Σj+1 by (27),

Update Ueigen,j+1 by (29),

Update Σ̂j+1 by (30),

Update Pj+1 by (31),

Update eigen decomposition of

Gj+1 by applying Theorem 1.

7: ENDWHILE 
Update the Lagrange multiplier

Λ1 and Λ2 by (32),

Update β = min(ρβ, βmax)

j = j + 1;

8: ENDWHILE

Algorithm 2 Sequential randomized low-rank and sparse matrix factorization
1: Input: G: the kernel matrix
2: γ: the maximal acceptable delay/ packet loss
3: S: matrix of delay/packet loss
4: j: iterative step
5: j = 1, Sj = S, Xj = Gj − S, eigen decomposition (Xclean,j) = U1Σ1U

T
1

6: Output: Ueigen, Σ, S
7: WHILE not converged 

Σj+1 = argmin
Σ

||Xclean,j − Ueigen,jΣjU
T
j ||F ,

Uj+1 = argmin
U

||Xclean,j − UjΣjU
T
j ||F ,

Ej = Gj − Uj+1Σj+1U
T
j+1,

Sj+1 = argmin
card(S)⩽γ

||Ej − S||F ,

Update eigen decomposition of

Xclean,j+1 by applying Theorem 1.

8: j = j + 1;
9: ENDWHILE

Proof. From the definition of eigen decomposition in Eq. (40) we have

G =

(
U1 U2

)Σ1 0

0 Σ2


UT

1

UT
2

 . (44)
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We can derive G1G
T
1 as follows:

G1G
T
1 = [G|B][G|B]T ,

= GGT +BBT ,

=

(
U1 U2

)Σ2
1 + FFT 0

0 Σ2
2


UT

1

UT
2

 ,

=

(
U1 U2

)QΣ̄1Q
T 0

0 Σ2
2


UT

1

UT
2

 ,

=

(
U1Q U2

)Σ̄2
1 0

0 Σ2
2


QTUT

1

UT
2

 ,

=

(
Ū1 U2

)Σ̄2
1 0

0 Σ2
2


ŪT

1

UT
2

 ,

(45)

where U is considered unitary. From Eq. (45), Σ2 and U2 remain unchanged provided that UT
2 B = 0. For

i > r, the spectrum ϱi, eigen vectors ui of eigen decomposition of G1 remain the same.

3.3.3 Sequential Robust Randomized Gaussian Process Regression

As the data arrives continuously in an online setting, it is necessary to devise an intelligent way to update

the kernel matrix to ensure that the computational power of the 5G-enabled Tactile Internet remote robotic

surgery system is not exceeded, and real-time constraints are not violated. Therefore, we further developed a

sequential robust randomized Gaussian Process Regression to update the kernel function. We update U and

Σ using Algorithm 1 or Algorithm 2, which consider delayed/lost data in the training set. The approach is to

use the eigen decomposition from the previous iterations Gj to compute the corresponding decomposition in

the next iteration Gj+1. Given the initial kernel matrix as Gj ≈ UjΣjU
T
j , the covariance matrix of ϕ(dknot)

j+1

with itself and training asG(ϕ(d)j+1, ϕ
(d∗)
j+1 ) andG

(
ϕ
(dknot∗)
j+1 , ϕ

(dknot∗)
j+1

)
+σ2

nI respectively,Gj+1 is computed

as follows:

Gj+1 :=

G
(
ϕ
(dknot)
j , ϕ

(dknot)
j

)
+ σ2

nI G
(
ϕ
(dknot)
j+1 , ϕ

(dknot∗)
j+1

)
G
(
ϕ
(dknot∗)
j+1 , ϕ

(dknot)
j+1

)
G
(
ϕ
(dknot∗)
j+1 , ϕ

(dknot∗)
j+1

)
+ σ2

nI

 . (46)
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Algorithm 3 Sequential Robust Randomized Gaussian Process Regression

1: Input: For j = 1, compute the kernel matrix G1 using a kernel function and the intial input ϕ(dknot)
1

2: Compute U1, Σ1 using Algorithm 1
3: for j ∈ {2, 3, .....J} do
4: Compute cross covariances G(ϕd, ϕdknot∗) and G(ϕdknot∗, ϕdknot∗) + σ2

nI
5: Form

Ḡj :=

 Uj−1Σj−1U
T
j−1 G

(
ϕ
(dknot)
j , ϕ

(dknot∗)
j

)
G
(
ϕ
(dknot∗)
j , ϕ

(dknot)
j

)
G
(
ϕ
(dknot∗)
j , ϕ

(dknot∗)
j

)
+ σ2

nI


6: Using Algorithm 1 or 2, compute Uj , Σj

7: Compute ϑ−1 by Eq. (22)
8: Predict outputs for the new input ϕ(dknot)

j using Eqs. (20) and (21)
9: end for

Table 3.2 Parameter settings and default values.

Simulation Parameters Values
Environment Intel (R) Core i7-7700 CPU @3.6GHz

Minimum contention Window 16
Maximum backoff 6

Empty slot duration 9 µs
SIFS 16 µs
DIFS 34 µs

PHY header 20 µs
MAC header 36 Bytes

RTS 20 Bytes
CTS 14 Bytes
ACK 14 Bytes
FCS 4 Bytes

To compute Gj+1 = Ūj+1Σ̄j+1Ū
T
j+1, we use the following matrix:

Ḡj+1 :=

 UjΣjU
T
j G

(
ϕ
(dknot)
j+1 , ϕ

(dknot∗)
j+1

)
G
(
ϕ
(dknot∗)
j+1 , ϕ

(dknot)
j+1

)
G
(
ϕ
(dknot∗)
j+1 , ϕ

(dknot∗)
j+1

)
+ σ2

nI

 . (47)

A summary of the procedure is presented in Algorithm 5.

3.4 Simulations and Results on Real-World Dataset

In this section, we present our simulation results to illustrate the potential use of the various algorithms to

support latency-sensitive H2M applications. We evaluated the streaming sparse Gaussian Process Regres-

sion (SparseGPR) [16], the proposed ℓ1-SRLSMF Gaussian Process Regression-(GPR-ℓ1) 1, the proposed

1We applied Theorem 1 in updating the covariance matrix of structured low-rank approximation in Gaussian Process Regression
in [27]
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SRLSMF Gaussian Process Regression (DirectGPR), LWPR, and PCA Gaussian Process Regression ( GPR-

ℓ2) [35].

3.4.1 Metrics

We considered two metrics to evaluate the various algorithms in 5G-enabled Tactile Internet remote robotic

surgery.

1. Relative error: We use the relative error to examine the generalization capability of the methods under

consideration by comparing the sent and received data during remote robotic surgery in 5G-enabled

Tactile Internet networking infrastructure. In our considered scenarios, the relative error is computed

as follows:

Relative error =
||ξ̂dm − ξdm||
||ξdm||

(48)

2. Training and prediction time: The training and prediction times of the methods under evaluation were

considered to determine their adaptability in predicting delayed and/or lost data when performing the

knot-tying gestures while considering the 1 ms deadline of remote robotic surgery in 5G-enabled Tactile

Internet.

3.4.2 Robotic Surgery Dataset

We ran our simulations using the JIGSAW dataset [4], created by a cooperative project between Johns Hop-

kins University and Intuitive Surgical, Inc. using the Da Vinci surgical system. The JIGSAW dataset contains

the kinematics of eight subjects. The dataset consists of three surgical tasks: suturing, needle passing, and

knot-tying, which were collected from eight human subjects. Our goal is to predict the knot-tying gesture

kinematic data that do not meet the 1 ms deadline during a remote robotic surgery. The dataset is comprised of

time series of 76 kinematic data bytes that contains the numeric variables of four manipulators: master/slave

and left/right manipulators. Each manipulator has 19 kinematic variables, comprised of the variables for the

3-variable Cartesian position, a 9-variable rotation matrix, the 3-variable linear velocity, the 3-variable angu-

lar velocity, and a gripper angle. These were collected at a sampling rate of 30 Hz. The kinematic dataset

contains detailed information on position, velocity, orientation, etc.
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Figure 3.5 (a) Relative error and (b) training time vs. basis points for gesture 12 dataset.
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3.4.3 Trace-based Simulation Results

We compare how well the variants of the low-rank matrix predict the next action of a surgeon by evaluating

the relative error vs basis points. The SparseGPR [16] learns the hyperparameter and pseudo inputs in the

same joint optimization while the proposed DirectGPR and GPR-ℓ1 obtain hyperparameters from full GPR

and the hyperparameters are fixed. We randomly split the dataset 10 times, each time with 90% of the points

as the training set and the remaining 10% as the test set each time.The relative error for the various methods

decreases almost linearly with increasing basis points, as shown in Figure 3.5a. The proposed DirectGPR

outperforms the proposed GPR-ℓ1 and SparseGPR [16] as shown in Figure 3.5a. The proposed DirectGPR

achieves such a high accuracy because it learns the basis points appropriately to control the smoothness prop-

erty of its fit, which contributed to the quality of its solution. We first compute the rank (L) using convex

relaxed low-rank approximation and then used it to initialize nonconvex low-rank approximation. Hence, the

proposed DirectGPR is more robust because we can obtain almost the exact rank of the matrix. This error

reduction property ensures that, in practice, the iterations converge to a reasonable solution. Moreover, the

proposed DirectGPR solves the underestimation problem of the proposed GPR-ℓ1. SparseGPR is less accu-

rate in Figure 3.5a because learning pseudo inputs by evidence maximization results in nonlinear optimization

problem in which the solution often gets stuck in local optima.

Next, we compared the training time of the algorithms under a varying number of basis points, as depicted

in Figure 3.5b. As the basis points increase, the training times increase almost linearly, as shown in Figure

3.5b. Generally, the proposed DirectGPR has a computational advantage over the SparseGPR. However, it

should be noted that the training time of SparseGPR includes the time taken to infer the hyperparameters.

In addition, SparseGPR takes a longer time to converge as it often gets stuck in local optima. The proposed

DirectGPR outperforms the proposed GPR-ℓ1, which we attribute to the fact that using least square mini-

mization with regularized least square initialization to fit the data is faster than using regularized least square

minimization alone under the same stopping criteria.

3.4.4 Online vs Offline Predictors

In the following, we evaluate the efficiency of our proposed online prediction against the offline prediction

schemes. Figure 3.6 illustrates the relative error vs. time for the proposed scaled DirectGPR online predictor,

the offline scaled DirectGPR predictor, and the LSTM-based offline predictor in both in- and out-of-sample

testing on our robotic surgery dataset. The offline DirectGPR does not employ incremental eigen decompo-

sition, while online DirectGPR uses the incremental eigen decomposition to update its training values. We
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Figure 3.6 Relative prediction error vs. time for proposed online DirectGPR, offline DirectGPR and offline LSTM-based
predictors.

randomly split each dataset 10 times; each time 90% of the dataset was used as the training set and the re-

maining data used as the test set. The relative error was averaged over 10 runs for each method. As shown in

Fig. 3.6, for the case of in-sample testing on the suturing dataset, the performance of the offline LSTM-based

predictor is comparable to our proposed online DirectGPR predictor and the offline DirectGPR for t<50 s.

At some point, we observe that the accuracy of the LSTM-based predictor is better than that of our proposed

DirectGPR and offline DirectGPR. This occurs because the proposed scaled online DirectGPR and offline

DirectGPR trade prediction accuracy for speed. For t > 50 s, when the human subject’s task shifts from

suturing to needle passing, the relative error of both offline predictors (i.e., the offline LSTM-based predictor

and the offline DirectGPR) increases. In contrast, our proposed online DirectGPR predictor retains similar

level of accuracy, even when such a shift occurs, because our online scaled DirectGPR predictor can deal

with out-of-sample prediction better than dense offline LSTM-based and offline DirectGPR predictors for the

unseen needle passing dataset. More specifically, unlike the dense LSTM offline predictor and offline Direct-

GPR, our scaled online model is able to update its model parameters in an online manner using incremental

eigen decomposition to improve its prediction accuracy. It is worth mentioning that the dense LSTM-based

predictor can handle out-of-sample prediction better than the offline scaled DirectGPR because it is not a

compressed model.
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3.4.5 Simulation of Real-World Robotic Surgery Dataset with Tactile Internet Net-

working Infrastructure

Although our proposed framework is applicable to any Tactile Internet networking infrastructure, we consider

a fiber-wireless (FiWi) enhanced Long Term Evolution Advanced (LTE-A) Heterogenous Network (HetNets)

in [88] in our simulations and evaluate the performance of the proposed framework. We chose FiWi enhanced

LTE-A HetNets for the following reasons:

1. FiWi access networks combine the coverage-centric LTE-A HetNet with capacity-centric WiFi access

networks to offer low-cost, high-speed mobile offloading, that is achieved through a high capacity next-

generation passive optical network (PON) and Gigabit-class wireless local area networks (WLANs)

that are known to operate at data rates 100 times higher than those of cellular networks. FiWi access

networks rely on heterogeneous network architecture to improve capacity, a multitude of small cells to

improve coverage, and carrier aggregation to achieve high data rates. Such networks have proven to

achieve almost 100-fold gains in area capacity and 10 Gbps peak data rates [64].

2. FiWi enhanced mobile networks offer distributed storage and processing capabilities, which can be

exploited to offer an immersive teleoperation experience for human subjects. Computing and storage

resources such as cloudlets and fog nodes are intentionally placed closer to the end-users to offer low

latency, low jitter, low data transfer cost, and scalability [89].

In the backhaul, we considered a time or wavelength division multiplexing IEEE 802.3ah/av 1 Gb/s

Ethernet passive optical network with a fiber length of 20 km between the central optical line terminal (OLT)

and the remote optical network unit (ONU)/access point (AP) that connects a surgeon domain with a patient

domain [64]. Both the surgeon console and patient-side robot may connect to a cellular network base station

(BS) or an IEEE 802.11n/ac/s WLAN mesh portal point (MPP). The ONU-BS/MPP with artificial intelligence

enhanced multi-access edge computing (MEC) servers are collocated at the patient’s optical-wireless interface

in order to perform the prediction of delayed and/or lost haptic commands. We apply the RTS/CTS, a control

message of the distributed coordination function (DCF) access mechanism of IEEE 802.11, at the nodes

(patient side robot and surgeon console). Both the patient side robot and the surgeon console operate at

56 Mbps. Our experiment had the surgeon on a single communication channel with no competing users to

reduce the impact of delay and guarantee safety. Table 3.2 summarizes our parameter settings and default

values.

To verify the robustness of the proposed framework compared to other incremental algorithms in terms
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Figure 3.7 Regression and Training time results on Gesture 12 dataset under varying dimensions
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of delay and packet loss, we train the various algorithm on the Gesture 12 knot tying dataset under varying

delay and packet loss online in a Tactile Internet environment. We evaluate the performance of our proposed

Direct GPR and GPR-ℓ1 methods in term of relative error compared to incremental learning methods LWPR,

SparseGPR, and GPR-ℓ2. Figure 3.7a depicts the relative error vs. the number of dimensions for Gesture

12 of the knot-tying dataset. As the number of dimensions increase, the relative errors also increases almost

linearly for all method under consideration, because increasing the number of dimensions means there are

more data points to predict. Further, we observe that the proposed DirectGPR algorithm slightly outperforms

the proposed GPR-ℓ1 because of the regularization technique it uses to fit the data. The proposed DirectGPR

achieves such a high accuracy because of the its well designed initialization and because it incorporates the

delay/packet loss condition into the model to ensure robust model fitting. The low delay/packet loss means

that the proposed DirectGPR method can overcome the few instances of delayed/lost data in the training

dataset to predict the surgeon’s next action in a reliable manner, as shown in Figure 3.7a. SparseGPR, GPR-

ℓ2, and LWPR method achieve poor results because the corrupted data are present within the kernel matrix

and distort the kernel matrix inversion. In addition, Sparsity-based GPR methods such as the proposed

DirectGPR, proposed GPR-ℓ1, SparseGPR, and GPR-ℓ2 outperform LWPR on the small amount of gesture

12 datasets because they are easier to train. LWPR requires appropriate clustering of the state space, not a

straightforward process on any dataset.

Next, we evaluate the training time of various algorithms. Fig. 3.7b depicts the training time vs. number of

dimensions for different algorithms. We observe that the training time of the proposed DirectGPR algorithm

is smaller than that of the proposed GPR-ℓ1 algorithm. The reason is that the DirectGPR algorithm ignores

the lost data, as opposed to the GPR-ℓ1 algorithm, which resort to regularization to recover the data. On

the other hand, the LWPR algorithm achieves the smallest training time when the number of dimensions is

below 30. The training time of LWPR gets worse with increasing dimensions. The timing behavior of LWPR

could be refined by adjusting the threshold for the creation and removal of receptive fields. However, tuning

in LWPR is inefficient and will likely deteriorate the generalization performance. While SparseGPR does

not recover the lost data, the pseudo input location selection and hyperparameter optimization are performed

together, thereby having the highest training time. Given that the GPR-ℓ2 algorithm does not perform any

data recovery and so it has the smallest training time between 30 and 70 dimensions.

Next, we compare our proposed algorithms in the presence of packet loss rate for G12 gesture datasets.

Figure 3.8 shows the relative error vs. the packet loss rate. We observe from Fig. 3.8 that for both DirectGPR

and GPR-ℓ1 the relative error grows with increasing packet loss rate. It is also evident from Fig. 3.8 that

DirectGPR outperforms GPR-ℓ1 for small packet loss rates (i.e., 5%-15%) as ignoring the data loss under the
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Figure 3.8 Relative error vs. packet loss rate for DirectGPR and GPR-ℓ1 methods.

assumption that they are small is better than using a regularization scheme to deal with such losses. Further-

more, GPR-ℓ1 performs better than DirectGPR at high packet loss rates (i.e., 15%-30%). This phenomenon

can be attributed to the robustness of the GPR-ℓ1 regularization scheme to fit the data at high packet loss

rates.

In the following, we evaluate the performance of the proposed framework in the presence of delay and

packet loss. We use haptic traces (i.e., G12 gesture datasets) of different surgical tasks. First, we incorporated

packet loss rates of 10−4, 10−3, 10−2, and 10−1 obtained after 50 haptic sessions into the original gesture 12

datasets to represent the estimated randomly lost haptic sample. Then, we initialized the original G12 gesture

datasets with end-to-end delays of 1 ms, 10 ms, 20 ms, 30 ms, 40 ms, 50 ms, and 100 ms also obtained

after 50 haptic sessions, to represent the estimated haptic samples within a particular time interval during

transmission. We consider 1-ms-apart time-steps. Once the delay experienced by a haptic packet exceeds

the given threshold, our proposed DirectGPR model provides the patient-side robot with the predicted haptic

command.

During transmission, a surgeon manipulates the console to send a haptic sample to the patient side robot.

The sent haptic sample is expected to arrive within the 1 ms targeted delay. However, if the patient side robot

fails to receive the sample in time, the edge predictor (i.e., the proposed DirectGPR) performs a single- or

multi-step-ahead prediction depending on the latency. Figure 3.9a illustrates the relative error versus number
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using the proposed DirectGPR.
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(a)

(b)

Figure 3.10 Histogram of (a) update and (b) prediction times (in milliseconds) of the proposed DirectGPR on the patient
side during retraining and prediction phases, respectively.

of dimensions for different values of the end-to-end latency, and Fig. 3.9b shows the relative error versus

number of dimensions for different values of packet loss rate. We observe from Figs. 3.9a and 3.9b that
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for the case of fixed dimensions (1-3), the proposed scheme achieves a relative error within the range of

10−3 − 10−2 for the end-to-end delay of 1-10 ms and a packet loss rate of 10−4 − 10−3. We note the

the obtained relative error by our proposed method falls below the so-called just noticeable different (JND),

which, according to the well-known Weber’s law, is the minimum change in the magnitude of a stimulus that

can be detected by humans. The JND threshold for force perception with hand and arm is 7±1% [90]. The

high reliability achieved at low dimension, low packet loss, and low end-to-end delay can be attributed to the

convex relaxation approach used as the initialization for our proposed framework, allowing convergence to a

good solution by fine-tuning the model parameters, as well as, error resilience of the proposed DirectGPR.

Another interesting observation is that, as the packet loss rate and end–to–end delay grows for a given number

of dimensions, the prediction performance of the proposed framework sometimes deteriorates as seen in

Fig. 3.9a and 3.9b. This is expected since the proposed DirectGPR algorithm does not impute the missing

data but rather ignores it under the assumption that the lost data is very small. Therefore, in the case of

high packet loss rate and end-to-end delay, imputation of the missing data is required to further improve

the prediction accuracy of the proposed DirectGPR. It is possible to achieve high prediction reliability (i.e.,

10−3-10−2) for the case of low packet loss rate (i.e., 10−4− 10−3), low end-to-end delay (i.e., 1-10 ms), and

a low dimension of gesture datasets (i.e., 1-3). The achieved reliability is less than the expected reliability of

99.999% even after fine tuning the model parameters and recovering the lost data. This lowered reliability

can be attributed to the inherent packet loss rate and end-to-end delay due to communication malfunction

and hardware impairment of the da Vinci robotic surgery system used in gathering the dataset [4], which

compounded the lost data. To further improve reliability, the use of network slicing and advanced edge traffic

management techniques are suggested.

In the following, we examine the update and prediction times of our proposed methods on gesture 12

3-dimension datasets of a human subject performing a knot-tying task. Our results were obtained in a local

PC with Intel (R) Core i7-7700 CPU @3.6GHz. Histogram of model update times are illustrated in Figure

3.10a, where we observe that the update times of the model are centered around 10 ms on the gesture 12

3-dimension datasets. The y-axis (i.e., the frequency) in Figs. 3.10a and 3.10b represents the number of

occurrences of a prediction and/or update time of our proposed DirectGPR while predicting delayed/lost data

in remote robotic surgery. It should be noted that the haptic session was non-local, but the prediction by

trained DirectGPR was done locally in the patient domain. The histogram of the prediction and the update

times were obtained based on an average of 50 interaction haptic sessions between the human subject domain

and the patient domain during which the proposed DirectGPR performed predictions of the delayed/lost data.

These longer update times occurred because updating/re-training the model parameters is a computationally
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intensive task. To reduce these times, we could incorporate our proposed DirectGPR into a federated or

distributed learning scheme that can be run on a more powerful set of edge servers in practical scenarios. The

histogram of the prediction times of the proposed DirectGPR is presented in Fig. 3.10b, and indicates that the

proposed DirectGPR can make predictions that are well under 1 ms. This advantageous performance can be

attributed to the exploitation of the scalability of low-rank matrix factorization.

3.5 Conclusion

In this chapter of the thesis, to offer an immersive and transparent teleoperation experience for a surgeon, we

developed an efficient and lightweight framework for predicting haptic commands in a remote knot-tying task

for 5G-enabled Tactile Internet remote robotic surgery. Numerical simulation results show that the proposed

model offers a good trade-off between performance and computational costs. Specifically, the proposed

DirectGPR optimizes a smooth and nonconvex proxy for the original cost function by alternating between

two steps: convex relaxation initialization in the first step followed by nonconvex optimization in the second

step. With a fixed hyperparameter obtained from a full Gaussian Process Regression, the proposed framework

utilizes previous decomposition results to compute the next decomposition result after new data is appended.

The proposed DirectGPR gave a sparser model than the proposed GPR-ℓ1 and SparseGPR. Therefore, the

proposed DirectGPR reduced the underestimation problem of the proposed GPR-ℓ1 and SparseGPR.

On a data lost recovery experiment in a Tactile Internet environment, the proposed DirectGPR predictive

performance exceeds that of the proposed GPR-l1 because the proposed DirectGPR incorporates the network

conditions of 5G-enabled Tactile Internet, which makes it both lightweight and more robust to delayed/lost

data than the proposed GPR-ℓ1, which uses a regularization technique to compensate for lost data. Both the

proposed DirectGPR and GPR-ℓ1 outperformed SparseGPR, LWPR, and GPR-ℓ2 , none of which recover

lost data. In addition, LWPR performed the worse because it is not able find the appropriate balance between

the creation and removal of receptive fields to improve it prediction performance.
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Chapter 4

Enhanced Stochastic Gradient Descent

Algorithm for Machine Learning

Training and Its Application in Remote

Surgical Gesture Recognition

4.1 Introduction

Remote robotic surgery enhances patients’ quality of experience by guaranteeing shorter hospital stays, min-

imizing bleeding and incision size, lowering the risk of infection, and expediting recovery. [20]. In remote

robotic surgery, the surgical process can be decomposed into predefined units called surgeme or gesture [12]

as shown in Table 4.1. Surgemes serve as the foundational building block in understanding robotic surgery.

Surgical gestures can be recognized from videos and kinematic datasets [4]. The ability to recognize sur-

gical gestures from video and the kinematic dataset is vital for automating surgical activities like surgical

gesture recognition. The kinematic dataset is made up of the robot’s movement design and its movement

in space whiles robot video dataset represents the whole operating room. Both datasets, provide essential

knowledge about the interaction between surgical tools and body tissue. Furthermore, they provide useful

discriminating features that can serve as an elementary unit for surgical data science (i.e., surgical gesture

recognition) [53, 91].
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Encouraged by computer vision, pattern recognition and machine learning translation, surgical gesture

recognition has become a rapidly thriving field [91]. Unlike computer vision, pattern recognition and machine

translation, surgical gesture recognition datasets are limited [4]. Nevertheless, a commonly available dataset,

JHU-ISI gesture and skill assessment working set [4], has made the study of surgical gesture recognition and

classification [53] easy. Many surgical data scientists depend on the JIGSAW dataset for developing their

automated recognition and classification algorithms [91]. JIGSAW dataset has both video and kinematic

datasets. The video and kinematic dataset both present the same discriminate ability when the right features

are used for training the model [91].

Recognizing surgical gestures is a complicated task due to the dataset’s lack of variability and fine-grained

structure [91]. Several machine learning techniques have been used for surgical gesture recognition, namely

hidden markov model and Markov/Semi-markov conditional random field (MsM-CRF) [91] to deal with this

issue. The hidden Markov-based models for surgical gesture recognition have short term temporal depen-

dencies of the surgical motion [91]. Lately, deep learning has attracted a lot of attention as a main force in

surgical gesture recognition domain because deep learning models can learn long term temporal dependen-

cies of surgical motion [91]. Nevertheless, deep learning models are crippled by poor convergence rate of the

model due to the several nonlinear functions in the model.

Convergence of the surgical gesture recognition model is important for increasing patient quality of ex-

perience. If the model does not converge to a good solution, the gesture recognition model will have poor

accuracy leading to wrong estimation of the surgical gesture. Such wrong estimation of the surgical gesture

can be life threatening in remote robotic surgery. Thus, we have decided to enhance the learning phase of

surgical gesture recognition to boost their convergence rate. Several researchers have attempted to settle this

problem using dropout [92], optimizers [93], data-augmentation [94], batch normalization [95] and efficient

model compression techniques [25] for optimizing networks for recognition applications. Yet, convergence

rate of these machine learning models is only almost optimal. This suggests that while the machine learn-

ing models are approaching their best possible performance in terms of how quickly they reach an optimal

solution, they are not quite achieving the ideal convergence rate. In other words, they are close to being as

efficient as possible, but there is still some room for improvement.

Adaptive SGD enjoys fast convergence and works effectively in optimizing many networks for recogni-

tion applications [39]. Nevetheless, it is observed that ASGD does not function well when the dataset under

consideration has a combination of large and small coordinate values [28]. For this reason, in this chap-

ter, we focus on building a new adaptive stochastic gradient descent optimizer to address this issue to boost

the convergence rate of surgical gesture recognition. We propose to exploit a non-uniform p-norm-based
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concept [96] to build an ASGD to train machine learning model for surgical gesture recognition with high

convergence rate. To be more specific, we fix the small learning rate dilemma problem [28] associated with

ASGD by setting a threshold to divide the system into large and small categories, and each category is given

different system requirements [96]. The proposed ASGD can achieve fast convergence rate and good gen-

eralization performance by setting a base learning rate according to the system requirement. Our approach

is fundamentally different from adagrad’s [97] update rule since adagrad [97] updates frequently occurring

features with low learning rates and infrequently occurring features with high learning rate.

The remainder of the chapter is organized as follows: machine learning solution for surgical task is

described. Then, experiments on image processing and remote surgical gesture recognition is provided.

Finally, chapter is concluded. Provided in Table 3 is the abbreviation list.

4.2 A Machine Learning Approach for Surgical Gesture Recognition

The objective of this chapter is to construct a framework for surgical gesture recognition in remote robotic

surgery. The problem definition is presented, followed by background information on 2D CNN and Convolu-

tional LSTM models. Then, the proposed adaptive method for enhancing the convergence rate of the machine

learning models and application to remote robotic surgery are discussed. Also, the convergence analysis of

the Proposed ASGD in convex and nonconvex settings are presented.

4.2.1 Problem Definition

The main problem we are trying to address is predicting the gestures of a surgical task. We formulate the

video-based gesture recognition problem as follows. We would like to predict the first gesture y1 ∈ Y which

was executed at time t = 1 for each t = 1, ...., T , where y = {1, ....Y }. We denote i as the index of the

sample, t as the iteration, d as the number of video parameters, xi as d-dimensional video features of surgical

gesture recognition and yi as a gesture of a surgical task as the labels.

4.2.2 Background on 2D CNN and Convolutional LSTM model for Gesture Classi-

fication

We formulate the problem as gesture recognition problem, where an 2D CNN and LSTM model are trained

to predict the gesture of surgical task [53].
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Table 4.1 Gesture Vocabulary [4].

Abbreviation Surgical gesture discription

y1: Reaching for needle with right hand
y2: Positioning needle
y3: Pushing needle through tissue

Suturing y4: Transferring needle from left to right
y5:Moving to center with needle in grip
y6:Pulling suture with left hand
y8:Orienting needle
y9: Using right hand to help tighten suture
y10: Loosening more suture
y11: Dropping suture and moving to end points

Following the methodology outlined in [53], albeit with with slight adjustments, we employ a Convolu-

tional LSTM network architecture for the gesture classification task. Each input frame undergoes five passes

through a 2D convolutional layer, accompanied by a max pooling layer after each convolutional operation.

Subsequently, the outputs from these convolutional layers are flattened before being inputted into the LSTM

with 16 layers. The last output of the LSTM block is then forwarded into a dense layer comprising 8 nodes.

Finally, another dense layer with 10 nodes is utilized to generate the classification results, representing the 10

surgemes defined in the JIGSAWS suturing dataset [53]. Details of the LSTM models are as follows.

Let ci, ii, fi, and oi denote the cell state, input state, forget gate, and output gate of an incoming packet

i, respectively. Let Wc, WINPUT , Wf , and Wo denote the weight matrix of the cell state, input gate, forget

gate, and output gate of an incoming packet i, respectively. Let bc, bi, bf , and bo denote the bias vector of

the cell state, input gate, forget gate, and output gate, respectively [98]. The cell state records the recent

state. Input gate is the amount of the input of an incoming packet i is saved. Forget gate aids the network in

forgetting past input information and resets the memory cells [99].

the general formulation for gate of LSTM was defined by Shi et al. [98] as

g = σ(W.[xi, yi−1] + b). (49)

Given sigmoid activation function σ(xi) = 1/(1 + e−xi), the cell state ci which is the addition of the

output of input gate and tanh layer is given below

ci = fi.ci−1 + ii.tanh(Wc.[xi, yi−1] + bc). (50)

The selection of the activation function can be based on the gating mechanism of the neural network model
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under consideration [100]. The activation functions most frequently utilized include the rectified linear unit

(ReLU) and sigmoid [100]. Compared to sigmoid activation function, ReLU activation can handle vanishing

gradient problem in other deep neural networks but diverges on LSTM. Therefore, ReLU activation function

does not perform well empirically on LSTM. When sigmoid activation is used with LSTM, vanishing gradient

problem is mitigated by the network structure of LSTM [100]. Therefore, sigmoid activation function is the

preferred choice for most LSTM models [98]. Tripathi et al. [98] defined the following steps for computing

the forget gate, output gate and output of LSTM unit for the classification problem. At step i, the input gate

of LSTM unit is computed as

ii = σ(WINPUT .[xi, yi−1] + bi). (51)

At step i, the forget gate of LSTM unit [98] is computed as

fi = σ(Wf .[xi, yi−1] + bf ). (52)

At step i, the output gate of LSTM unit [98] is computed as

oi = σ(Wo.[xi, yi−1] + bo). (53)

At step i, the output of LSTM unit [98] is computed as

yi = oi.tanh(ci). (54)

4.2.3 The Proposed Adaptive Method for Enhancing the Convergence Rate of ASGD

The main contribution of this chapter is to improve the accuracy of adaptive SGD by adapting the stepsize of

the model in the remote robotic surgery system. Taking inspiration from p-norm adaptive filtering algorithms

[96, 101–103], we propose to improve the step-size selection scheme in ASGD to promote fast convergence

for our robotic surgery model. In particular, given the gradient zt = ▽g(Wt), the adaptive parameter β, the

momentum nt = βt
1nt−1 + (1 − βt

1)zt, the preconditioner Ht = β2Ht−1 + (1 − β2)z2t , and small constant

0 < ϵ << 1, the adaptive gradient descent in [30] is given as

Wt+1 =

(
Wt −

α√
(Ht + ϵ)

nt

)
. (55)

We exploit the non-uniform p-norm concept [96] and introduce the large and small coordinate values idea
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into ADAM [30]. For small coordinates with expected value [|(Ht)|] = 1
d

∑
l hl, the update rule is [96]

fsmall =
sgn ([|(Ht)|]− [Ht]) + 1

2
. (56)

and then, for large coordinates the update rule is [96]

flarge =
sgn ([Ht]− [|(Ht)|]) + 1

2
. (57)

The base learning rate is based on whether ht,l coordinate values are small or large. Given an auxiliary

variable u and constant value C, the base learning rate is defined as a linear function for small and large

coordinate values

αbase = ufsmall(H) + C (58)

and

αbase = uflarge(H) + C. (59)

For learning the small and large base learning rate αmin and αmax, we defined a piece-wise function

αbase =


αsmall if Ht is small

αlarge if Ht is large
(60)

If ht,l values are small, the effective learning rate αbase√
ht,l

will be large, and if ht,l values are large, the

effective learning rate αbase√
ht,l

will be small [28, 42]. Therefore, we assigned a large base learning rate αmax

when majority of the coordinate values are larger than the mean value and a small base learning rate αmin

when majority of the coordinate values are smaller than the mean value. In summary, we can avoid small

learning rate dilemmas [28,42] in both learning situations by selecting a good base learning rate that improves

the model’s empirical results of the surgical gesture recognition task.

The proposed ASGD update rules for small and large coordinate are

Wt+1,small =

(
Wt −

αmin√
(Ht + ϵ)

nt

)
(61)

and

Wt+1,large =

(
Wt −

αmax√
(Ht + ϵ)

nt

)
. (62)
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We can incorporate the improvised equations 56, 57 [96] and 59 into different ASGD methods to improve

their performance compared to the standard ASGD methods for certain finite number of epochs (fast conver-

gence).

4.2.4 Convergence Analysis of the Proposed ASGD in Convex Setting

The convergence of the proposed algorithm in convex setting is guaranteed by Theorem 2 below. The details

of Theorem 2 follow AMSgrad [40], with the base learning rate αbase modified to (uf(H) + C). We define

the following assumption from [30] with the epsilon value ϵ dropped ,

Assumption 1. [30] 1: let function g : ℜd → ℜ be convex, then x, y ∈ ℜd, g(x) ∈ ∇g(x)T (y − x), then

g(y) ≥ g(x) +∇g(x)T (y − x). (63)

Theorem 2. : Given {Wt}T1 and {Ht}T1 are sequence generated by algorithm 1 and 2. Suppose αt =

u.f(H)+C√
(t)

, γ ≜ β2
1√
β2
β1,t = β1λ

t−1, and λ ∈ (0, 1), then if the set χ has a bounded diameter D∞, i.e.,

||Wt −Wt′ ||∞ ≤ D∞ for all W ∈ χ and zt has the bounded gradient, i.e., ||∇gt(W )||∞ ∈ Z∞, we have

the upper bound of the regret of the proposed algorithm as

RT ≤
D2

∞
2(uf(H) + C)(1− β1)

d∑
l=1

√
Th

1
2

T,l

+
uf(H) + C(β1 + 1)Z

(1)
∞ ×

√
1 + log T

(1− β1)(1− β2)
1
2 (1− γ)2

T∑
t=1

||z1:T,l||2+

d∑
l=1

D2
∞Z

1
∞β1

(uf(H) + C)(1− β1)(1− λ)2
.

(64)

Then, we summarize the following lemma in the convex analysis needed to prove Theorem. The subse-

quent steps closely resemble the proof outlined in Theorem 2 in AMSgrad [40].

Lemma 1. : This lemma follows the assumption in Theorem 2 [30, 40] and we have

T∑
t=1

d∑
l=1

(u.f(H) + C).n2
t,l

(ht,l)
1
2

≤ (uf(H) + C)Z
(1)
∞
√
1 + logT

(1− β1)(1− γ)(1− β2)
1
2

.
d∑

l=1

||z1:T,l||2. (65)

We would like to clarify that this lemma is a minor modification of the version of AMSgrad [40].

Lemma 2. [30]: Suppose H ∈ S+
d is a symmetric positive definite matrix, p ∈ (0, 12 ], a1 =

∏
{W}Hp(b1)
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and a2 =
∏

{W}Hp(b2), then we have

||H 1
2 (a1 − a2)||2 ≤ ||H

1
2 (b1 − b2)||2. (66)

Fundamentally, our method shown in Algorithms 4 and 5 is different from Adagrad’s method [97]. Ada-

grad [97] updates the frequently occurring features with low learning rates and less frequently occurring

features with high learning rates. In contrast, we define a small base learning rate when many of the coordi-

nate values are smaller than the mean and a large base learning rate when a large portion of the coordinate

values are larger than the mean.

4.2.5 Ergodic Convergence Analysis of the Proposed ASGD in Nonconvex Setting

In this subsection, we establish the convergence proof in a nonconvex setting by following the methodology

outlined in Zhou et al. [32] and substituting the base learning rate with a linear function uf(H) + C.

Theorem 3. Under the following assumptions:

Assumption 2. [32] For a differentiable function g, there exists a constant L such that ||∇g(x)−∇g(y)|| ≤

L|||x− y|| for all x, y, and g is lower bounded.

and

Assumption 3. [32]: The function g(W ) = Eξ g(W ; ξ) has a Z∞-bounded stochastic gradient, meaning

that for any ξ, g(W ; ξ) ≤ Z∞, β1 < β
1
2
2 , αt = (u.f(H) + C)t, and a sequence {Qi}3i=1 where ||z1:T,i||2 ≤

Z∞ for t = 1, ....., T ,

the iteration Wt of the proposed ASGD satisfies the

1

T − 1

T∑
t=2

E[|| ▽ g(Wt)||22] ≤
R8

T.(u.f(H) + C)
+
R9d

T
+

(u.f(H) + C)R10d

T
1
2

(67)

where

R8 = 2Z∞∆g, (68)

R9 =
2Z3

∞ϵ
− 1

2

1− β1
+ 2Z2

∞, (69)
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R10 =
2LZ2

∞

ϵ
1
2 (1− β2)

1
2 (1− β1

β
1
2
2

)

(
1 +

2β2
1

1− β1

)
, (70)

and

∆g = g(W1)− inf
W
g(W ). (71)

In this context, we establish the convergence theory of Algorithms 4 and 5 within the framework of

stochastic nonconvex optimization. Chen et al. [31] examined the convergence behavior of the AdaFOM

algorithm with a fixed second-order momentum in non-convex optimization scenarios. Their findings suggest

an ergodic convergence rate of approximatelyO
(

log T+d2

√
T

)
, where T represents the number of iterations and

d denoting the dimensionality of the problem.

In a related study, Zhou et al. [32] expanded upon this research by exploring the convergence proper-

ties of adaptive gradient methods in non-convex optimization. They specifically investigated the ergodic

convergence utilizing AMSGrad with a varying maximum second-order momentum parameter, achieving a

convergence rate of O( d
1
2

T
1
2
+ d

T )

Given the similarity between AMSGrad and PADAM, which is a slight variation thereof, and the emphasis

on maintaining a partially adaptive parameter below 0.5, one could adopt Zhou et al.’s approach. By replacing

the base learning rate with the proposed linear function (u.f(H)) + C, and keeping the partially adaptive

parameter fixed at 0.5, an improved convergence rate could be attained. To be more specific, by incorporating

a constant value C of our linear function base learning, αbase = u.f(H) + C from the convergence rate of

Amsgrad in nonconvex O( d
1
2

T
1
2
+ d

T ), we can achieve an improved convergence rate of O( d
1
2

T
1
2
+ d

T +Ψ) for

the proposed ASGD in non-convex setting.

4.2.6 Non-Ergodic Convergence Analysis of the Proposed ASGD

The non-ergodic convergence rate of the proposed ASGD is guarantee by theorem 3 below.

Theorem 4. The theorem follows the theorem in [3, 104] with the base learning rate replaced with a linear

function uf(H) + C and the partially adaptive parameter set at 0.5.

Suppose assumption 2 and 3 are satisfied, we have the bound

min
0≤t≤T

E [|| ▽ g(Wt)||] ≤
I1 + I2

∑T−1
t=1 (uf(H) + C)2t∑T

t=1(uf(H) + C)2t
(72)

where
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Algorithm 4 Proposed ASGD (Improved Adam)

1: Input:Base learning rate {αbase} of the ASGD update, adaptive parameter β1, β2, preconditioner construction H ,
small constant 0 < ϵ << 1 and weight W .

2: Initialize: Wo, Ho, no

3: for t = 1, ......, T do
4: zt = ▽g(Wt)
5: nt = β1nt−1 + (1− β1)zt
6: Ht = β2Ht−1 + (1− β2)z

2
t

7: fmin = sgn([|(Ht)|]−[Ht])+1
2

8: fmax = sgn([Ht]−[|(Ht)|])+1
2

.
9: if number of nonzeros(fmax) < 2 ∗ number of nonzeros(fmin)

10: Wt+1,small =

(
Wt − αmin√

(Ht+ϵ)
nt

)
11: else:
12: Wt+1,large =

(
Wt − αmax√

(Ht+ϵ)
nt

)
13: end
14: end for
15: Return: Wt+1

Algorithm 5 Proposed ASGD (Improved Amsgrad)

1: Input:Base learning rate {αbase} of the ASGD update, adaptive parameter β1, β2, preconditioner construction H ,
small constant 0 < ϵ << 1 and weight W .

2: Initialize: Wo, Ho, Ĥo, no

3: for t = 1, ......, T do
4: zt = ▽g(Wt)
5: nt = β1nt−1 + (1− β1)zt
6: Ht = β2Ht−1 + (1− β2)z

2
t

7: Ĥt = max(Ĥt−1, Ht)

8: fmin =
sgn([|(Ĥt)|]−[Ĥt])+1

2

9: fmax =
sgn([Ĥt]−[|(Ĥt)|])+1

2
.

10: if number of nonzeros(fmax) < 2 ∗ number of nonzeros(fmin)

11: Wt+1,small =

(
Wt − αmin√

(Ĥt+ϵ)
nt

)
12: else:
13: Wt+1,large =

(
Wt − αmax√

(Ĥt+ϵ)
nt

)
14: end
15: end for
16: Return: Wt+1

I1 = [Z2 + ϵ]
1
2 (g(Wt)−min g) + [Z2 + ϵ]

1
2 ∗(

(uf(H) + C)1Z
2
√
d

ϵ
1
2 (1− β1)

+
(uf(H) + C)1β1Z

2

ϵ
1
2 (1− β1)

)
+

[Z2 + ϵ]
1
2

(
(uf(H) + C)TZ

2

ϵ
1
2 (1− β1)

) (73)

and
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I2 =
[
Z2 + ϵ

] 1
2
1 + β1
1− β1

LZ2

2ϵ
(74)

If we suppose
∑

t(uf(H) + C)t = +∞, then the nonergodic convergence of the gradient sequence can

be derived as

lim
t
▽g(Wt) = 0 a.s., lim

t
E
[
|| ▽ g(Wt)||2

]
= 0. (75)

In the next sections, we evaluate the performance of our proposed adaptive SGD method against the state-

of-the-art methods. We present image classification experiment followed by surgical gesture recognition

experiment.

4.3 Image Classification Experiment

We evaluate the strength of our proposed algorithm by comparing it to various baseline methods during the

training of the specified network for image classification on CIFAR-100 dataset.

4.3.1 Dataset for Image Classification

The CIFAR-10 [105] dataset is a widely used benchmark in machine learning and computer vision. It consists

of 60,000 32x32 color images divided into 10 classes, with each class containing 6,000 images. The dataset is

split into 50,000 training images and 10,000 test images. The classes include airplane, automobile (excluding

truck or pickup truck), bird, cat, deer, dog, frog, horse, ship, and truck (excluding pickup truck).

The CIFAR-100 dataset [105] features 100 classes, each containing 600 images. For every class, there

are 500 training images and 100 testing images. The 100 classes in CIFAR-100 are organized into 20 su-

perclasses. Each image is labeled with both a ”fine” label, indicating its specific class, and a ”coarse” label,

denoting the superclass to which it belongs [105].

4.3.2 Network Architecture

We examine two distinct neural network architectures: WideResNet and VGG16-net. WideResNet [13] rep-

resents a deep convolutional neural network framework devised to enhance the ResNet (Residual Network)

model. It tackles the challenge of training exceedingly deep neural networks by introducing broader layers,

capable of capturing more intricate feature representations. Unlike conventional ResNet models that focus
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on increasing depth, WideResNet prioritizes widening the layers, resulting in a more efficient parameter con-

figuration. The fundamental concept of WideResNet revolves around employing wider convolutional layers

with reduced depth, allowing the model to grasp a wider array of features without significantly escalating

computational complexity. This strategy aims to mitigate issues such as vanishing gradients and overfitting,

commonly encountered in excessively deep networks [13]. On the other hand, VGG16-net [14] is a profound

convolutional neural network architecture crafted by the Visual Geometry Group (VGG) at the University of

Oxford. It stands out for its simplistic and uniform design, comprising 16 layers, including 13 convolutional

layers and three fully connected layers. The convolutional layers utilize compact 3x3 filters with a stride of

1, supplemented by max-pooling layers implemented after every two convolutional layers. VGG16-Net has

garnered substantial success in image classification tasks and has served as a foundational model for sub-

sequent advancements in deep learning [14]. At every iteration, the weights of all optimizers are updated,

resulting in varying weights for each optimizer across iterations. I did not decouple the weight decay or apply

regularization to the weight decay.

4.3.3 Results

Parameter Setting

I perform grid searches to determine optimal parameters for all algorithms, including the base learning rate

chosen from {0.0001, 0.001, 0.01, 0.1, 1}, the partially adaptive parameter (p) from {1/4, 1/8, 1/16}, and

the second-order momentum parameter (β2) from {0.9, 0.99, 0.999}. In the case of Adam and Amsgrad, a

base learning rate of 0.001 is employed. For Padam, the base learning rate is established as 0.1, and the

partially adaptive parameter (p) is chosen as 0.125. We fine-tune the momentum parameters for all adaptive

gradient methods. Following the tuning process, the momentum parameters for Adam and Amsgrad are fixed

at β1 = 0.9 and β2 = 0.99. For Padam, the first-order and second-order momentum parameters are set

to 0.9 and 0.999. Regarding our proposed ASGD (Improved Amsgrad and Adam), I select the minimum

base learning rate as 0.001 and the maximum base learning rate as 0.01. The first-order and second-order

momentum parameters for the proposed algorithm are set to 0.9 and 0.999, respectively. In the regard to

SUPERADAM [46], I set the parameters as follows: k′=0.1, m′=100, c′=4, γ′=0.04 and τ ′=0. I use version

3 for Wada and set the learning rate to 0.001. For both SuperADAM and Wada, the first-order moment

value is set to 0.9, respectively. Our assessment of Wada [41] on WideResNet with the CIFAR 100 dataset

reveals NAN (Not a Number) values at the initial epoch, indicating divergence due to non-convexity and

encountering large gradient problems. Consequently, it was excluded from the results depicted in the Figures
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Figure 4.1 Train loss vs. number of epochs with batch size of 32 using WideResNet

Table 4.2 Final accuracy for the various adaptive stochastic gradient descent algorithms at 200 epochs with a batch size
of 32 using WideResNet.

SGD method ADAM [30] PADAM [28] ASGD2 [3] AMSGRAD
[40]

SUPERADAM
[46]

Improved
Adam

Improved
Amsgrad

Accuracy (Top
1)

56.22 48.87 19.37 52.85 6.15 58.23 55.64

Accuracy (Top
5)

83.50 79.75 43.49 80.61 20.90 85.94 82.69

4.1, 4.2a, 4.2b, 4.3, 4.4a, and 4.4b. Also, It should be noted that Wada [41] is tailored for models with rapid

gradient decay, making them less effective for shallow models like WideResNet. For ASGD2, the learning

rate is set to 0.001, the partially adaptive parameter is fixed at 1× 10−8, and the first-order momentum value

is set to 0.9.

WideResNet without Data Augmentation

We conducted a comparative analysis, examining the trajectory of train loss and test error (Top 1 and 5) across

epochs for various adaptive stochastic gradient descent methods, all applied with a batch size of 32. Figure 4.1

illustrates the progression of train loss over epochs. Following this, Figure 4.2a and 4.2b respectively display

the evolution of test error (top 1) and top-5 test error over epochs. In Figure 4.1, it is demonstrated that both

the proposed ASGD (Improved Adam) and standard Adam exhibited the lowest training loss among various
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(a) Test error (Top-1) vs number of epochs.
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(b) Test error (Top-5) vs number of epochs.

Figure 4.2 Accuracy of the various algorithm with batch size of 32 using WideResNet
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ASGD methods. Then, we notice that towards the 200th epoch mark, the proposed ASGD (Improved Adam)

demonstrated slightly lower top 1 test error than the state-of-the-art ASGD, as shown in Table 4.2. Moreover,

the proposed ASGD (Improved Adam) exhibited lower top-5 test error compared to all other methods. Also,

Padam’s performance degraded in later training stages due to fluctuating coordinate values. Padam combines

Adam/Amsgrad and SGD, utilizing Adam/Amsgrad initially and transitioning to SGD later. SGD’s is known

to be locally instable hence, Padam showed poor testing performance in later stages, evident in both top-

1 and top-5 test errors. SUPERADAM exhibited inferior performance compared to all other algorithms

because it does not address the small learning rate dilemma problem. Additionally, its poor performance can

be attributed to the small batch size used for the evaluation. For WideResNet, we observed that ASGD2 [3]

does not effectively address the learning rate dilemma, likely resulting in suboptimal outcomes. Additionally,

we had to set the partially adaptive parameter very low to prevent the results from returning NaN values.

Amsgrad maintained stability but suffered from poor generalization later in training due to the maximum

second-order momentum selected. The proposed ASGD (Improved Amsgrad) encountered slow convergence

alongside Amsgrad due to the large coordinate value size of the maximum second-order momentum matrix.

Additionally, AMSGrad’s performance declined later in training due to its small base learning rate becoming

less effective. Our model (proposed ASGD - Improved Amsgrad) builds upon Amsgrad by categorizing the

maximum second-order momentum matrix into large and small components, assigning different base learning

rates to stabilize the model in both initial and final training stages, thus ensuring superior generalization

performance compared to Amsgrad.

Based on our observations, we find that the maximum second-order momentum matrix leads to coordi-

nate value overshooting in later training stages, particularly notable in WideResNet due to its shallower depth.

This phenomenon occurs because the gradient decreases slowly in WideResNet, contributing to poor gener-

alization for both the proposed ASGD (Improved Amsgrad) and standard Amsgrad. Additionally, Adam

demonstrates slight oscillations in later training stages (around 150-200 epochs), resulting in poor testing

performance attributed to its small base learning rate.

The proposed ASGD (Improved Adam) achieved the best generalization performance for batch sizes 32.

By segregating coordinate values into large and small components and assigning different base learning rates,

this approach prevents the model from losing learning power in later training stages as shown in Table 4.2.

Figure 4.3 illustrates the progression of train loss across epochs for various adaptive SGD methods with

a batch size of 64. Subsequently, the evolution of top-1 test error over epochs is presented, followed by the

comparison of top-5 test error over the same period as shown in Figures 4.4a and 4.4b.

Figure 4.3 demonstrates that both the proposed ASGD (Improved Adam) and standard Adam exhibited the
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Figure 4.3 Train loss vs. number of epochs with a batch size of 64 using WideResNet

Table 4.3 Final accuracy for the various adaptive stochastic gradient descent algorithms at 200 epochs with a batch size
of 64 using WideResNet.

SGD method ADAM [30] PADAM [28] ASGD2 [3] AMSGRAD
[40]

SUPERADAM
[46]

Improved
Adam

Improved
Amsgrad

Accuracy (Top
1)

54.83 48.53 22.44 45.23 26.44 55.86 51.89

Accuracy (Top
5)

81.90 79.24 47.82 75.40 58.30 82.74 80.58

lowest training loss compared to state-of-the-art ASGD methods. Also, we observe that the convergence rate

of Amsgrad slows down when transitioning from a batch size of 32 to 64. Additionally, Adam demonstrates

rapid convergence during the initial training stages but exhibits poor testing performance compared to the

proposed ASGD(Improved Adam) in later stages. Significantly, all optimizers exhibited diminished accuracy

during the later stages of training as the batch size increased from 32 to 64. This phenomenon can be

attributed to the trade-off between speed and accuracy that occurs when increasing the batch size. Also,

we observed that as we increased the batch size from 32 to 64, Padam performed less than Amsgrad. This

was due to Padam’s instability at the later stage of training. Moreover, with an increase in batch size, we

note an improvement in the performance of SUPERADAM and ASGD2. This enhancement can be attributed

to the necessity of variance reduction techniques like SUPERADAM and ASGD2 for larger batch sizes to

demonstrate notable improvements, as illustrated in Table 4.3. However, it is notable that SUPERADAM’s
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(a) Test error (Top-1) vs number of epochs.
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(b) Test error (Top-5) vs number of epochs.

Figure 4.4 Test error of the various algorithms with a batch size of 64 using WideResNet
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Figure 4.5 Train loss vs. number of epochs with batch size of 256 using WideResNet with data augmentation on CIFAR-
100 dataset

Table 4.4 Final accuracy for the various adaptive stochastic gradient descent algorithms at 200 epochs with a batch size
of 256 using WideResNet with data augmentation on CIFAR-100 dataset.

SGD method ADAM [30] PADAM [28] ASGD2 [3] AMSGRAD
[40]

SUPERADAM
[46]

Improved
Adam

Improved
Amsgrad

Accuracy (Top
1)

78.97 76.11 41.13 85.31 24.93 84.59 83

Accuracy (Top
5)

97.86 96.04 71.80 98.84 52.47 98.04 98.62

performance fluctuates, indicative of its ineffective resolution of the learning rate dilemma, as depicted in

Figures 4.4a and 4.4b. Our proposed ASGD(Improved Adam) achieved the best testing performance of all

the methods, as shown in Table 4.3. This demonstrated the resilience of our method across varying batch

sizes.

WideResNet with Data Augmentation

A simple mean and standard deviation normalization, sample centering, horizontal flipping, and ZCA whiten-

ing to both the training and test datasets was applied. Additionally, a random cropping on the training dataset

is performed. The dropout rate is set to 0.3. A batch size of 256 on wideresnet with depth set at 16 and width

set at 4 was used. Thee parameter settings is evaluated using the CIFAR-10 and CIFAR-100 datasets.
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(a) Test error (Top-1) vs number of epochs.
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(b) Test error (Top-5) vs number of epochs.

Figure 4.6 Accuracy of the various algorithm with batch size of 256 using WideResNet with data augmentation on
CIFAR-100 dataset
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The figures 4.6a, 4.6b and 4.5 illustrate the top-1 test error, top-5 test error, and training loss plotted

against the number of epochs using WideResNet with cifar 100. The notable improvement across all models

except SuperAdam can be attributed to the data augmentation techniques implemented to raise performance.

Additionally, the impact of the optimizers was diminished by the effects of data augmentation and the intro-

duction of dropout. The improved Adam optimizer, used with the WideResNet model and data augmentation,

demonstrated greater stability in the later stages of training compared to other models. However, the Ams-

grad optimizer achieved the best final top-1 and top-5 accuracy as shown in Table 4.4, albeit with significant

fluctuations in model performance. This variability can be linked to Amsgrad’s inability to effectively address

issues related to the small base learning rate dilemma. SuperAdam struggled because the data augmentation

increased the variability of the dataset, making it difficult for the algorithm to effectively reduce variance,

which occasionally led to high variance overall. Additionally, Superadam is most effective with rapidly

decaying gradient architectures.

The figures 4.8a, 4.8b and 4.7 show the top-1 test error, top-5 test error, and training loss plotted against

the number of epochs using cifar 10 with WideResNet.The significant improvement observed across all mod-

els except SuperAdam is largely due to the data augmentation techniques applied to enhance performance on

the CIFAR-10 dataset as shown in Table 4.5. Furthermore, the influence of the optimizers remained signif-

icant, even with the effects of data augmentation and the introduction of dropout in the WideResNet model.

The proposed improved Adam optimizer surpassed state-of-the-art optimizers in both stability and testing

performance. This achievement can be linked to the strategy of dividing coordinate values and assigning

different base learning rates, effectively addressing the small learning rate dilemma. Additionally, optimiz-

ers like improved AMSGrad, AMSGrad, and Padam, which utilize the maximum second-order momentum

matrix, struggled to perform effectively in WideResNet. This is primarily due to the slow gradient decay,

which diminishes the utility of the maximum second-order momentum matrix. Similarly, ASGD2 and SU-

PERADAM underperformed because they did not adequately tackle the issue of small base learning rates.

Furthermore, data augmentation increased the variance of the dataset, resulting in poor performance from

SuperAdam. Also, the results show that only ASGD2 overfitted the training dataset, which occurred due to

choosing a partial adaptive parameter value either greater than or less than 0.5 as shown in Table 4.5 and 4.6.

VGG16-Net

Figure 4.9 depicts the train loss evolution across epochs for different adaptive SGD methods with a batch size

of 64 using the VGG16-Net. Following this, the progression of top-1 test error over epochs is displayed, and

the comparison of top-5 test error over the same period is illustrated in Figures 4.10a and 4.10b. The contrast
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Figure 4.7 Train loss vs. number of epochs with batch size of 256 using WideResNet with data augmentation on CIFAR-
10 dataset

Table 4.5 Final test accuracy for the various adaptive stochastic gradient descent algorithms at 200 epochs with a batch
size of 256 using WideResNet with data augmentation on CIFAR-10 dataset.

SGD method ADAM [30] PADAM [28] ASGD2 [3] AMSGRAD
[40]

SUPERADAM
[46]

Improved
Adam

Improved
Amsgrad

Test Accuracy
(Top 1)

97.09 94.54 71.14 90.88 52.70 97.83 94.23

Test Accuracy
(Top 5)

99.98 99.94 97.80 99.80 92.98 99.99 99.98

between VGG16-Net and WideResNet lies in their respective depths, with WideResNet being shallower

compared to VGG16-Net. Furthermore, WideResNet prioritizes speed over accuracy. During training with

VGG16-Net, gradients rapidly diminish, resulting in diminished efficacy for many optimizers due to the

small base learning rate, ultimately leading to suboptimal testing performance. While Padam showcases

comparable performance with our proposed method (Improved Amsgrad), indications of overfitting (poor

generalization) emerge from the gap between training loss and testing accuracy, as shown in Figures 4.9,4.10a

and 4.10b. The overfitting arose because, for partially adaptive parameters lower than 0.5, such as in the

case of Padam, ASGD performance lacks any identifiable pattern. For this reason, our proposed ASGD

algorithm adheres to the partially adaptive parameter of 0.5. Our proposed ASGD (Improved Amsgrad)

excels by bolstering generalization through the division of the maximum second-order momentum matrix and
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(a) Test error (Top-1) vs number of epochs.
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(b) Test error (Top-5) vs number of epochs.

Figure 4.8 Accuracy of the various algorithm with batch size of 256 using WideResNet with data augmentation on
CIFAR-10 dataset
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Table 4.6 Final Train accuracy for the various adaptive stochastic gradient descent algorithms at 200 epochs with a batch
size of 256 using WideResNet with data augmentation on CIFAR-10 dataset.

SGD method ADAM [30] PADAM [28] ASGD2 [3] AMSGRAD
[40]

SUPERADAM
[46]

Improved
Adam

Improved
Amsgrad

Train Accuracy
(Top 1)

97.82 96.03 70.65 96.80 54.50 97.78 97.43

Train Accuracy
(Top 5)

99.99 99.97 98.03 99.99 94.55 99.99 99.99
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Figure 4.9 Train loss vs. number of epochs with a batch size of 64 using VGG16-Net

allocation of different base learning rates, as shown in Table 4.7. Adam and Amsgrad display poor testing

performance attributed to their small base learning rates. Conversely, our proposed ASGD (Improved Adam)

fares even worse in testing due to its failure in incorporating the maximum second-order momentum matrix

before assigning differing base learning rates. Given the rapid decay in gradients stemming from the depth of

the VGG16-Net architecture, attempting to categorize values into small and large groups proves futile within

the proposed ASGD (Improved Adam) framework. Also, SuperAdam and Wada encountered challenges due

to the small learning rate dilemma. Additionally, SuperAdam exhibited coordinate value overshooting during

training, as depicted in Figures 4.9, 4.10a and 4.10b. SUPERADAM also experiences overfitting, indicated

by the discernible gap between the training and testing errors. Additionally, the variance reduction technique

such as SuperAdam typically necessitates large batches to yield improved results. For VGGNet, ASGD2

exhibited poor generalization when the partially adaptive parameter was greater than 0.5.

In the case of nonconvex functions, optimizing them may yield infinitely many solutions. Therefore, an
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(a) Test error (Top-1) vs number of epochs.
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(b) Test error (Top-5) vs number of epochs.

Figure 4.10 Test error of the various algorithms with a batch size of 64 using using VGG16-Net
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Table 4.7 Final accuracy for the various adaptive stochastic gradient descent algorithms at 200 epochs with a batch size
of 32 using VGG16-Net.

SGD method ADAM
[30]

PADAM
[28]

ASGD2
[3]

AMSGRAD
[40]

SuperAdam
[46]

Wada [41] Improved
Adam

Improved Ams-
grad

Acccuracy (Top
1)

35.50 57.11 39.80 35.69 48.04 32.96 32.20 58.00

Accuracy (Top
5)

61.65 81.58 67.09 61.57 73.77 60.19 58.45 81.66

efficient optimization scheme is essential to evade local minima and converge towards a favorable solution. In

both WideResNet and VGGNet, we demonstrated that our proposed ASGD method outperforms the current

state-of-the-art for nonconvex loss functions in deep learning in terms of convergence rate and generalization

performance. This is achieved by categorizing coordinate values into large and small groups and assigning

distinct base learning rates, thereby enhancing the learning process. The insights gleaned from this image

classification experiment lay the foundation for further research in remote robotic surgery. By leveraging

the knowledge acquired, we aim to enhance the reliability of surgical operations conducted remotely, thus

advancing the field of robotic surgery. Moreover, in the context of mission critical and tactile Internet appli-

cations such as remote robotic surgery demanding high reliability, the convergence of our proposed ASGD to

a superior solution is crucial for achieving the objective of delivering precise haptic predictions to the patient

domain and accurate feedback predictions to the surgeon domain via the tactile internet connection.

4.4 Remote Surgical Gesture Recognition Experiment

We assess the efficacy of our proposed algorithm by comparing it against various baseline methods during

the training of the 2D CNN LSTM surgical gesture recognition model on JIGSAW datasets.

4.4.1 Dataset Description

We use the publicly available JIGSAW dataset in most surgical gesture recognition tasks [4, 25]. The dataset

is composed of video and kinematic datasets of three surgical tasks, namely, suturing, knot tying, and needle

passing, obtained from the Da Vinci Surgical robot. We focus on suturing tasks with gestures y1, y2, y3, y4,

y6, y8, y9, y,10 and y11, as shown in Table 4.1. The suturing dataset was gathered from 8 surgeons with

different skill levels; based on Huynhuguyen et al. [53] evaluation, the original dataset was compressed from

480 × 640 pixels per frame to 240 × 320 pixel per frame to speed up the training process. The transcripts
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obtained from the suturing dataset was used to indicate the start and end times of a gesture fed into the

recognition model [53]. We compared our proposed optimizer with the state-of-the-art optimizers using a

suturing video dataset. To achieve dataset balance, we resample gestures, with particular emphasis on those

occurring less frequently, such as y1, y5, y8, y9, and y10 [53]. Assigning 10 frames to each surgeme ensures

uniformity, vital given variations in surgeme transcriptions [53]. This standardization is crucial for effective

learning, preventing impediments to adaptive SGD optimizer comparisons due to varying lengths. Leveraging

expert surgeon data from the suturing video JIGSAW dataset, we split our data into 90% for training and

10% for testing purposes. Then, we introduce a synthetic loss probability of 10% to simulate sparse dataset

scenarios and replicate the anticipated poor communication in remote robotic surgery procedures.

4.4.2 Results

Utilizing grid searches, we choose the optimal parameters for all algorithms, encompassing the base learning

rate selected from {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1}, the partially adaptive parameter (p) from

1/4, 1/8, 1/16, and the second-order momentum parameter (β2) from 0.9, 0.99, 0.999. For Adam and Ams-

grad, a base learning rate of 0.0001 is employed. For Padam, the base learning rate is established at 0.001,

and the partially adaptive parameter (p) is selected as 0.125. The momentum parameters are fine-tuned for all

adaptive gradient methods. Following the tuning process, the momentum parameters for Adam and Amsgrad

are set at β1 = 0.9 and β2 = 0.99. In the case of Padam, the first-order and second-order momentum pa-

rameters are assigned values of 0.9 and 0.999. Concerning our proposed ASGD, we designate the minimum

base learning rate as 0.0001 and the maximum base learning rate as 0.001. The first-order and second-order

momentum parameters for the proposed algorithm are set to 0.9 and 0.999, respectively. In the context of

SuperADAM, we establish the parameters as follows: k′=0.1, m′=100, c′=4, γ′=0.04 and τ ′=0. Regarding

Wada, we employ version 3 with a learning rate set to 0.001. For both SuperADAM and Wada, the first

order moment value is configured to 0.9, respectively. For ASGD2 [3], the learning rate is set to 0.001, the

partially adaptive parameter is fixed at 1×10−8, and the first-order momentum value is set to 0.9. We employ

minibatch gradient descent with batches of size 1.

We employ a model, detailed in Section III.B, designed with ample depth to speed up the gradient descent.

In general, class imbalance continues to impact model training even post resampling gestures, as illustrated

in Figures 4.11, 4.12a and 4.12b. We notice from Figures 4.11 and 4.12a that, Padam exhibits the poorest

generalization, attributed to a disparity between training loss and testing error. Also, the lack of adaptation of

the partially adaptive parameter during training may be the reason behind poor generalization performance
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Figure 4.11 Train loss vs. number of epochs with batch size of 1 using 2D CNN LSTM

Table 4.8 Final accuracy for the various adaptive stochastic gradient descent algorithms at 200 epochs with a batch size
of 1 using 2D CNN LSTM.

SGD
method

ADAM
[30]

PADAM
[28]

ASGD2 [3] AMSGRAD
[40]

SuperAdam
[46]

Wada [41] Improved
Adam

Improved Ams-
grad

Acccuracy
(Top 1)

52.63 26.32 14.29 31.58 55.10 6.12 42.11 57.89

Accuracy
(Top 5)

99.999 94.74 93.88 63.15 97.96 99.999 99.999 99.999

of Padam. Moreover, partially adaptive parameters below 0.5 exhibit performance without any identifiable

pattern. While Standard Amsgrad displays greater stability, its testing performance is hindered by a small

base learning rate. Amsgrad showed the worst top-5 testing error, as shown in Figure 4.12b and Table 4.8.

Adam demonstrates slight but noticeable oscillations in later training stages due to the lack of a maximum

second-order momentum matrix. Our proposed ASGD (Improved Amsgrad) yields the highest testing per-

formance. From Figure 4.12a, ASGD (Improved Adam) experiences diminished learning efficacy in later

stages due to the failure to integrate the second-order momentum matrix before segregating coordinate values

into small and large groups and assigning distinct base learning rates. SuperAdam obtained a lower top-1

accuracy compared to the proposed ASGD (Improved Amsgrad) method as shown in Table 4.8. Also, the

drawback of SuperAdam lies in its high instability, stemming from its foundation on Adam, which does not

effectively address the challenge of the small learning rate dilemma. In addition, SUPERADAM being a

81



0 25 50 75 100 125 150 175 200
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 E

rro
r

proposed_ASGD_amsgrad_version
proposed_ASGD_adam_version
wada
ASGD2
padam
super
adam
amsgrad

(a) Test error (Top-1) vs number of epochs.
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(b) Test error (Top-5) vs number of epochs.

Figure 4.12 Test error of the various algorithms with a batch size of 1 using using 2D CNN LSTM

82



variance reduction technique required a large batch size to attain optimal performance. Additionally, Wada’s

performance suffered due to the same issue of the small learning rate dilemma. On the JIGSAW dataset,

ASGD2 demonstrated poor top-1 accuracy due to its inability to handle the small learning rate dilemma and

the uncertainty of results when the partially adaptive parameter was set greater than 0.5, as shown in Table

4.8.

4.5 Conclusions

An ASGD approach for training machine learning models for tasks like image classification and surgical

gesture recognition is introduced. In the experimentation with image classification using WideResNet and

VGG16-Net alongside various optimizers, a significant impact of neural network depth on optimizer design

is noted.

For shallow neural networks, the proposed ASGD technique can be executed without the inclusion of

the maximum second-order momentum matrix, owing to the inherent slowing of gradient decay. This design

choice aims to enhance generalization performance by preventing coordinate overshooting during training af-

ter splitting the coordinate values and assigning different base learning rates. Notably, this design ensured that

our optimizer outperformed Padam, Amsgrad, and Adam on CIFAR-100 using the WideResNet architecture.

Conversely, in deeper neural networks, gradients tend to diminish more rapidly. In such scenarios, it is

advantageous for the optimizer to incorporate the maximum second-order momentum matrix initially before

segmenting coordinate values and assigning varied base learning rates. This strategy enhances the optimizer’s

efficacy in handling deeper networks. Additionally, this design led to our Proposed ASGD outperforming

Padam, Amsgrad, and Adam using VGG16-Net architecture.

The surgical gesture recognition application employed a moderately deep model (2D CNN LSTM), and

as anticipated, the proposed ASGD (Improved Amsgrad) surpassed state-of-the-art optimizers, showcasing

superior performance.

Also, it was observed that SUPERADAM necessitated a large batch size to yield satisfactory results.

Additionally, Wada exhibited divergence on non-convex and slowly decaying problems. Moreover, Padam

suffered from overfitting due to uncertainty surrounding partially adaptive parameters lower than 0.5. Addi-

tionally, ASGD2 demonstrated poor testing performance due to the uncertainty of results when the partially

adaptive parameter was set greater than 0.5. Furthermore, both Adam and Amsgrad employed small learning

rates to mitigate the learning dilemma problem, resulting in suboptimal results. Our proposed ASGD method

achieved the optimal outcome due to our approach to addressing the small learning rate dilemma problem. We
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accomplished this by partitioning the coordinate values into small and large subsets and assigning different

base learning rates, thereby enhancing generalization performance.

In the future, we aim to expand the improvised base learning selection strategy to other models such as

AdaBelief Adadelta and RMSprop to assess their performance. Additionally, an intriguing research avenue

involves evaluating the performance of the proposed ASGD against a wide variety of neural networks. On top

of that, we propose that our ASGD algorithm can be extended and applied across various domains, including

5G/6G networked devices, intelligence cloud, Blockchain, and large-scale networked data centers, to fulfill

the requirements of the tactile internet. This extension involves utilizing the Proposed ASGD algorithm

to train machine learning models for any tactile internet application, thereby evaluating its performance.

Moreover, in the context of tactile internet application, the Proposed ASGD algorithm can be fine-tuned and

deployed as an intelligent solution over Mobile Edge Computing (MEC) to address prediction issues.

Convergence Analysis in Convex Setting

To the best of our knowledge, the difference between our proposed algorithm and the existing methods is the

introduction of (uf(H) + C) linear function to replace the base learning rate αbase. The next steps bear a

close resemblance to the steps of proof of Theorem 2 in FastAdamBrief [42] and AMSgrad [40].

Proof: Suppose that W ∗ ∈ Rd is classified as the optimal point of the problem. Algorithm 4 and 5 is

derived from lemma 2 as follows [42] [40].

||H
1
4
t (Wt+1 −W ∗

t )||22 ≤ ||H
1
4 (Wt − (uf(H) + C)tH

− 1
2

t .nt −W ∗)||22

= ||H 1
4 (Wt − (uf(H) + C)tH

− 1
2

t .nt −W ∗)||22−

2(uf(H) + C)⟨β1tnt−1 + (1− β1t)zt,Wt −W ∗⟩.

(76)

From Theorem 2 and the equation below [40, 42]

gt(Wt)− gt(W ∗) ≤ ⟨zt,Wt⟩ (77)

we have [40, 42]
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R(T ) =
T∑

t=1

gt(Wt)− min
W∈χ

T∑
t=1

gt(Wt)

≤
T∑

i=1

⟨zt,Wt⟩

(78)

SinceHp(W ∗) =W ∗, we can follow AMSgrad [40] and obtain the first inequality and then using Lemma

2 [40, 42], the inequality can be rearranged to obtain [40, 42]

⟨zt,Wt⟩ ≤
1

2((u.f(H) + C))t(1− β1t)
∗[

||H 1
4 (Wt+1 −W ∗)||22 − ||H

1
4 (Wt −W ∗)||22

]
+

T∑
t=2

β1t
2((u.f(H) + C))t−1(1− β1t)

||H
− 1

2
2 (Wt −W ∗)||22+

T∑
t=2

β1((u.f(H) + C))t−1

2(1− β1t)
.||H

−1
4

t−1nt−1||22+

T∑
t=2

β1((u.f(H) + C))t
2(1− β1t)

.||H
−1
4

t nt||22

(79)

and

R(T ) = R1 +R2 +R3

R1 =

T∑
t=1

d∑
l=1

β1t.h
1
4

t,l

2((u.f(H) + C))(1− β1)
[
(Wt+1 −W ∗)2 − (Wt −W ∗)2

]
,

R2 =
T∑

t=1

d=1∑
l=1

β1th
1
2

t,l

2((u.f(H) + C))t(1− β1)

T∑
t=1

√
tλt−1

R3 =
1 + β1

2(1− β1)

T∑
t=1

d∑
l=1

((u.f(H) + C))t.n
2
t,l

h
1
2

t,l

.

(80)

According to AMSgrad [40], with the base learning rate αbase changed to ((u.f(H)+C)), the second in-

equality follows cauchy-schwarz inequality. By applying β1t ≤ β1 ≤ 1 which is monotonically decreasing in

t and satisfying the condition of convergence, i.e., Γt =
∑T

t=1

∑d
l=1

(
h

1
2
l,t

((u.f(H)+C))t
− h

1
2
t−1,l

((u.f(H)+C))t−1)

)
≥
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0, we have

R1 =
1

2(1− β1)

d∑
l=1

h
1
2

t,l(w1,l − w∗
l )

2

((u.f(H) + C))1
+

T∑
t=1

d∑
l=1

 h
1
2

t,l

((u.f(H) + C))t
−

h
1
2

t−1,l

((u.f(H) + C))t−1)

 (wt,l − wl),

(81)

≤ D2
∞

2(1− β1)

d∑
l=1

h
1
2

T,l

((u.f(H) + C))T
,

=
D2

∞
2(1− β1)

d∑
l=1

√
Th

1
2

T,l.

(82)

Next, based on AMSgrad [40], for the second term of the equation, we have

R2 =
T∑

t=1

d=1∑
l=1

β1th
1
2

t,l

2((u.f(H) + C))t(1− β1)

T∑
t=1

√
tλt−1 ≤

β1dD
2
∞Z

1
∞

2((u.f(H) + C))(1− β1)(1− λ)2
.

(83)

Lastly, according to AMSgrad [40], we can utilize geometric series upper bound after relaxing
√
t to t and

we have

R3 =
1 + β1

2(1− β1)

T∑
t=1

d∑
l=1

((u.f(H) + C))tn
2
t,l

h
1
2

t,l

≤

(u.f(H) + C)Z1
∞
√
1 + log T

(1− β1)2(1− γ)(1− β2)
1
2

d∑
l=1

||z1:T,l||2.

(84)

Ergodic Convergence Analysis in Nonconvex Setting

The subsequent procedures resemble those outlined in the proof of Theorem 3 in [32] and [31], albeit with

the base learning rate replaced by a linear function (uf(H) + C). Before delving into the proof of Theorem

3, it is imperative to establish the following lemma

Lemma 3. [32]: We defined an arbitrary sequence qt sequence and using the defined nt we have
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qt =Wt −
β1

1− β1
(Wt −Wt−1)

=
1

1− β1
Wt −

β1
1− β1

Wt −Wt−1.

(85)

Then, for t greater than 2, we can obtain

qt+1 − qt =

β1
1− β1

[
I −

(
(uf(H) + c)tH

− 1
2

t

)(
(uf(H) + c)t−1H

− 1
2

t−1

)−1
]

(Wt−1 −Wt)− (u.f(H) + C)tH
−1/2
t zt.

(86)

Following [32], it should be noted that qt+1 − qt can be represented as nt, zt and 1

H
1
2
t

. We can reduce

qt+1 − qt to

qt+1 − qt =
β1

1− β1

(
(uf(H) + c)t−1H

− 1
2

t−1 − (uf(H) + c)tH
− 1

2
t

)
nt − (u.f(H) + C)tH

−1/2
t zt.

(87)

Proof of Theorem 3(slight modification of [32] )

Based on the steps in [32], considering L is smooth, we have

g(qt+1) ≤ g(qt) +R4 +R5 +R6, (88)

where

R4 =
β1

1 + β1
▽ g(Wt)

T
(
(u.f(H) + C)t−1H

− 1
2

t−1

)
nt−1

−▽g(Wt)
T (u.f(H) + C)tH

− 1
2

t zt.

(89)

Given that
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▽ g(Wt)
T
(
(u.f(H) + C)t−1H

− 1
2

t−1 − (u.f(H) + C)tH
−1
2

t zt

)
nt−1H

− 1
2

t−1

≤ || ▽ g(Wt)||∞.||(uf(H) + c)t−1H
− 1

2
t−1 − (uf(H) + c)tH

− 1
2

t ||

||nt−1||∞,

≤ Z2
∞

[
||(uf(H) + c)t−1H

− 1
2

t−1||1,1 − ||(uf(H) + c)tH
− 1

2
t ||1,1

]
.

(90)

According to generalized Holder inequality expression in [32], for x, y, z ∈ ℜd, we can obtain

xTAy ≤ ||x||∞ ∗ ||A||1,1 ∗ ||y||∞, (91)

then the the bound is found to be

−▽g(Wt)
T (u.f(H) + C)tH

− 1
2

t zt

= −▽ g(Wt)
T (u.f(H) + C)t−1zt

− g(Wt)
T (u.f(H) + C)tH

− 1
2

t − g(Wt)
T (u.f(H) + C)t−1H

− 1
2

t−1,

≤ −g(Wt)
T (u.f(H) + C)t−1H

− 1
2

t−1zt+

Z2
∞

[
||(uf(H) + c)t−1H

− 1
2

t−1||1,1 − ||(uf(H) + c)tH
− 1

2
t ||1,1

]
.

(92)

Following the steps in [31], bound for R5 can be established as

R5 = (▽g(qt)−▽g(Wt))
T
(qt+1 − qt)

= L
β1

1− β1
||(uf(H) + c)tH

− 1
2

t zt||2||Wt −Wt−1||2+

L

(
β1

1− β1

)
||Wt −Wt−1||22,

≤ L||(uf(H) + c)tH
− 1

2
t zt||22 + 2L

(
β1

1− β1

)2

||Wt −Wt−1||22.

(93)
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According to [31], bound for R6 can be computed as

R6 =
L

2
||qt+1 − qt||22

≤ L

2

[
||uf(H) + c)tH

− 1
2

t zt||2 +
β1

1− β1
||Wt−1 −Wt||2

]2
,

≤ L||uf(H) + c)tH
− 1

2
t zt||22 + 2L

(
β1

1− β1

)2

||Wt−1 −Wt||22.

(94)

Based on [31], bound for g(qt + 1)− g(qt) can be expressed as

g(qt + 1)− g(qt) ≤ −▽ g(Wt)
T (uf(H) + c)tH

− 1
2

t zt+

2L||(uf(H) + c)tH
− 1

2
t nt||22

+ 4L

(
β1

1− β1

)2

||(uf(H) + c)t−1H
− 1

2
t−1nt−1||22.

(95)

For t = 2 to T

Z−1
∞

T∑
t=2

(uf(H) + c)t−1 E || ▽ g(Wt)||22

≤ E

[
g(q1) +

Z2
∞||(u.f(H) + C)1H

− 1
2

1 ||1,1
1− β1

]
−[

g(qT+1)−
Z2
∞||(u.f(H) + C)TH

− 1
2

T ||1,1
1− β1

]
+

2L
T∑

t=1

E ||(uf(H) + c)tH
− 1

2
t zt||22

+4L
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t=2

E
(

β1
1− β1

)2

||(uf(H) + c)t−1H
− 1

2
t−1nt−1||22

≤ E

[
▽g + Z2

∞(u.f(H) + C)1ϵ
− 1

2 d

1− β1
+ d(uf(H) + C)1Z∞

]
+

2L
T∑

t=1

E ||(uf(H) + c)tH
− 1

2
t zt||22

+4L
T∑

t=2

E
(

β1
1− β1

)2

||(uf(H) + c)t−1H
− 1

2
t−1nt−1||22.

(96)

Following [32], with γ = β1

β
1
2
2

, we can obtain
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T∑
t=1

(u.f(H) + C)2t E
[
||H− 1

2
t nt||22

]
≤ T

1
2 (uf(H) + C)2t (1− β1)
2ϵ

1
2 (1− β2)

1
2 (1− γ)

E

(
d∑

i=1

||z1:T,i||2

) (97)

and

T∑
t=1

(u.f(H) + C)2t E
[
||H− 1

2
t zt||22

]
≤ T

1
2 (uf(H) + C)2t

2ϵ
1
2 (1− β2)

1
2 (1− γ)

E

(
d∑

i=1

||z1:T,i||2

)
.

(98)

According to [31], given κ ∈ [max{0, 4p− 1}, 1] and after introducing equation (97) and (98) into 88,

we have

E || ▽ g(Wout)||22 =
1∑T

t=2(uf(H) + C)t−1

T∑
t=2

(uf(H) + C)t−1 E || ▽ g(Wt)||22

≤ Z∞∑T
t=2(uf(H) + C)t−1

∗[
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∞(u.f(H) + C)1ϵ
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2 d
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T
1
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2ϵ
1
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4LZ∞
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||z1:T,i||2

)1−κ

≤ 1

T (uf(H) + C)
2Z∞ ▽ g +

2
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− 1
2 d
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∞
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According to [32], since αt = uf(H) +C, we can state theorem 3 with condition ||z1:T,i||2 ≤ Z∞T
s as

1

T − 1

T∑
t=2

E[|| ▽ g(Wt)||22] ≤
R8

T.(u.f(H) + C)
+
R9d

T
+

(u.f(H) + C)R10d

T
1
2

,

(100)

where

R8 = 2Z∞∆g, (101)

R9 =
2Z3

∞ϵ
− 1

2

1− β1
+ 2Z2

∞, (102)

R10 =
2LZ2

∞

ϵ
1
2 (1− β2)

1
2 (1− β1

β
1
2
2

)

(
1 +

2β2
1

1− β1

)
, (103)

and

∆g = g(W1)− inf
W
g(W ). (104)

Non-Ergodic Convergence Analysis

Following the work in [3, 104] with base learning rate modified to a linear function uf(H) + C and the

partially adaptive parameter fixed at 0.5, we begin the proof of Theorem 4 by stating slightly modified lemma

taken from [3, 104].

Lemma 4. : Assuming (Wt)t≤1 is generated by algorithm 4 and 5 as

θt = E
(
⟨−(uf(H) + C)z(Wt),

β1nt−1 + (1− β1)zt
(Ht + ϵ)

1
2

⟩
)
, (105)

then

θt ≤ β1θt−1 − (uf(H) + C)t
(1− β1)
(Z2 + ϵ)

1
2

E ||z(Wt)||2 +R7t, (106)
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where

R7t = ((uf(H) + C)t−1 − (uf(H) + C)t)
β1Z

2

ϵ
1
2

+

β1LZ
2

ϵ
(uf(H) + C)2t+

(uf(H) + C)tZ
2
√
dE

 d∑
j=1

(
1

(hj,t−1 + ϵ)
− 1

(hj,t + ϵ)

) .
(107)

Then, we have

(1− β1)
T∑

t=1

(u.f(H) + C)t
E ||z(Wt)||2

(Z2 + ϵ)
1
2

≤ −θt + (1− β1)
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t=1

(−θt) +
T∑

t=1

(R7t)

≤ (1− β1)
T−1∑
t=1

(−θt) +
T∑

t=1

(R7t) +
(uf(H) + C)TZ

2

ϵ
1
2

.

(108)

Based on the steps in [3, 104], considering the gradient z is Lipschitz continuous at point Wt, we have

g(Wt+1) ≤ g(Wt) + ⟨z(Wt),Wt+1 −Wt⟩+
L

2
||Wt+1 −Wt||2,

= g(Wt)− (uf(H) + C)t⟨z(Wt),
nt

(Ht + ϵ)
1
2

⟩

+
L(uf(H) + C)2t

2
|| nt

(Ht + ϵ)
1
2

||2,

(109)

and the total expectation is computed as

g(Wt+1) ≤ g(Wt) + θt +
LZ2(uf(H) + C)2

2ϵ
. (110)

Given that

(1− β1)
T∑

t=1

(uf(H) + C)
E || ▽ g(Wt)||2

(Z2 + ϵ)
1
2

≤ (1− β1)(g(W1)−min g) +
LZ2

2ϵ
(1− β1)
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t=1

(uf(H) + C)t+

T∑
t=1

R7t + (uf(H) + C)T
Z2

ϵ
1
2

,

(111)
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and

T∑
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2

ϵ
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2

ϵ
1
2

+
(uf(H) + C)1Z

2
√
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ϵ
1
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(112)

we arrive at

T−1∑
t=1

(uf(H) + C)2t E ||z(Wt)||2 ≤

[Z2 + ϵ]
1
2 (g(W1)−min g) + [Z2 + ϵ]

1
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2
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d
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+
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2

ϵ
1
2 (1− β1)

)
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1
2

(
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2

ϵ
1
2 (1− β1)

)
+

[
Z2 + ϵ

] 1
2
1 + β1
1− β1

LZ2

2ϵ
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t=1

(uf(H) + C)2t .

(113)
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Chapter 5

Conclusion, Limitations and Future

Work

5.1 Conclusion

Tactile Internet applications, such as remote robotic surgery, hold the potential to enhance human life sig-

nificantly. However, their implementation is still in its infancy primarily due to demanding performance

prerequisites, notably ultra-low latency and ultra-high reliability. As a result, novel machine learning models

have been devised to bolster reliability, ensure safety, and reduce latency in remote robotic surgery. This

thesis is dedicated to improve safety, reliability and reduce latency in remote robotic surgery. To tackle

this challenges, cutting-edge machine learning techniques designed to efficiently handle delayed or lost data

during real-time surgical procedures is introduced. The algorithmic prerequisites necessary for creating re-

sponsive and predictive solutions in the field of remote robotic surgery, analyzing the latest advancements in

the domain are discussed.

Through our research endeavors, groundbreaking machine learning framework leveraging innovative low-

rank matrix factorization methods to reactively address delayed or lost packets in remote robotic surgery are

unveiled. Subsequently, extensive simulations to evaluate the performance of these algorithms are conducted.

Additionally, the capability of our proposed frameworks to fulfill the stringent requirements of remote robotic

surgery procedures are assessed. Moreover, the low-rank matrix factorization method with a convex formu-

lation results in a suboptimal solution as it approximates the original nonconvex problem are noted. Addi-

tionally, the nonconvex formulation of the low-rank matrix factorization necessitates a favorable initial point
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to achieve optimal results. The proposed approach achieves the best results because we utilize a convex for-

mulation of the low-rank matrix factorization technique as initialization for the nonconvex formulation of the

low-rank matrix factorization method.

Then, a novel adaptive stochastic gradient descent algorithm for training machine learning models in re-

mote robotic surgery using video dataset is proposed. Furthermore, theoretical guarantees of the proposed

ASGD in convex and nonconvex settings are analyzed. Furthermore, the studies have showcased that our

ASGD approach surpasses the current state-of-the-art in deep learning concerning convergence rate and gen-

eralization performance, particularly for nonconvex loss functions. The extensive evaluations have demon-

strated that our proposed method surpasses the performance of state-of-the-art optimizers in surgical gesture

recognition experiment. We observed that SUPERADAM necessitated a large batch size to yield satisfactory

results. Additionally, Wada exhibited divergence on non-convex and slowly decaying problems. Moreover,

Padam suffered from overfitting due to uncertainty surrounding partially adaptive parameters lower than

0.5. Additionally, ASGD2 demonstrated poor testing performance due to the uncertainty of results when the

partially adaptive parameter is set greater than 0.5. Furthermore, both Adam and Amsgrad employed small

learning rates to mitigate the learning dilemma problem, resulting in suboptimal results. The proposed ASGD

method achieved the optimal outcome due to our approach to addressing the small learning rate dilemma

problem. It is accomplished by partitioning the coordinate values into small and large subsets and assigning

different base learning rates, thereby enhancing generalization performance. In addition, the CIFAR-10 and

CIFAR-100 datasets are augmented and compared with various optimizers using the WideResNet architec-

ture. The evaluation demonstrated that the proposed improved Adam optimizer yielded more stable results

compared to the state-of-the-art optimizers.

5.2 Limitations of the Proposed Algorithms

In the evaluation of the proposed algorithm, it has been demonstrated that the algorithms proposed in this

thesis offer numerous potential advantages for remote robotic surgery in the context of 5G. Nevertheless,

certain limitations persist. This subsection delineates those limitations of the proposed algorithms. In our

initial contribution, a predetermined number of iterations was employed to alternate between convex relaxed

low-rank matrix factorization and nonconvex low-rank matrix factorization for scaling machine learning.

Consequently, the model might not adequately respond to the real-time sensitivity of remote robotic surgery,

failing to adapt optimally to data dynamics or surgical contexts.

Regarding our subsequent contribution limitations, our algorithm lacks the capability to automatically
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activate the maximum second-order momentum matrix when utilizing a deep learning model and deactivate

the maximum second-order momentum matrix when employing a shallow learning model to improve the per-

formance of remote robotic surgery. Moreover, in the subsequent contribution, our proposed ASGD does not

adequately address class imbalance issue associated with the JIGSAW robotic surgery dataset. Furthermore,

with the subsequent contribution, the proposed ASGD does not perform effectively when dealing with dense

gradients. On top of that, the limited availability of publicly accessible robotic surgery data for training the

model has impeded our ability to pinpoint limitations in the algorithm for future enhancement.

The proposed algorithm may encounter challenges in meeting stringent latency requirements, particularly

as they become more demanding. This limitation stems from the absence of additional edge resources, such

as a distributed edge or federated learning framework, which could accelerate the processing time of the

machine learning model for remote robotic surgery. Moreover, the algorithm may face difficulties in meeting

reliability requirements, especially as they become more stringent. This limitation is attributed to the need

for enhanced edge resources to ensure accurate data collection within the proposed framework. As a result,

the algorithm lacks an efficient mechanism to satisfy the reliability requirement under stringent constraints.

5.3 Future Work

This thesis provides insights about the future research directions required to meet the requirements of Tactile

Internet. The work discussed here opens up further avenues for research. For the first contribution, we

can combine sparse Gaussian Process Regression with nonconvex regularization and more computationally-

efficient convex preserving strategies to further improve their predictive performance. In addition, edge

servers can used to decrease the update time of the proposed framework. Finally, an interesting future research

avenue would be to evaluate different machine learning methods for a broader range of surgical tasks based

on different experimental setups in a 5G-enabled Tactile Internet setting.

For the second contribution, our objective is to extend the improvised base learning selection strategy

to encompass additional models like FastAdaBelief. This extension entails leveraging strong convexity to

attain accelerated convergence rates. Additionally, an intriguing research avenue involves evaluating the

performance of the proposed ASGD against a wide variety of neural networks. On top of that, we propose

that our ASGD algorithm can be extended and applied across various domains, including 5G/6G networked

devices, intelligence cloud, blockchain, and large-scale networked data centers, to fulfill the requirements of

the tactile internet. This extension involves utilizing the proposed ASGD algorithm to train machine learning

models for any tactile internet application, thereby evaluating its performance. Moreover, in the context of
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tactile internet application, the proposed ASGD algorithm can be fine-tuned and deployed as an intelligent

solution over Mobile Edge Computing to address latency issues.
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