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Abstract

Advanced Anomaly Detection and Quality Control in PCB Manufacturing

Marzieh Hashemzadeh Saadat

Printed Circuit Boards (PCBs) are essential in electronic devices, where even minor defects

can significantly impact products and the environment. Thus, rigorous quality control is imperative

in PCB manufacturing. This thesis tackles critical challenges by developing robust strategies for

defect detection and accurately predicting repair needs. It begins with an extensive background on

current fault detection and repair strategies. Central to this study is the use of advanced machine

learning (ML) and deep learning (DL) techniques to enhance the accuracy of the PCB labeling pro-

cess, integrating data from Solder Paste Inspection (SPI) and Automatic Optical Inspection (AOI)

datasets. The research is structured into distinct phases, each addressing different aspects of the

PCB manufacturing process. The initial phase focuses on improving the prediction of human in-

spection labels using advanced ML and DL techniques, particularly addressing the challenges of

imbalanced datasets with synthetic data augmentation techniques like Synthetic Minority Oversam-

pling Technique (SMOTE) and Conditional Tabular Generative Adversarial Network (CTGAN).

The subsequent phase expands ML algorithms to refine the process of assigning ”RepairLabel” to

PCBs, incorporating ensemble methods and sophisticated feature engineering to boost accuracy and

efficiency. The proposed methods have shown promising results, demonstrating their substantial po-

tential for real-world applications. The thesis concludes with a summary of findings and discusses

the implications for PCB manufacturing. It also outlines potential directions for future research,

suggesting further enhancements in fault detection techniques and the development of more intelli-

gent and efficient systems.
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Chapter 1

Introduction

Printed circuit boards, commonly known as PCBs are essential elements in electronic gadgets,

serving as the foundation for electronic circuits. Their importance, in guaranteeing the efficiency,

effectiveness, and dependability of devices, cannot be overstated (Farkas, Géczy, Kovács, & Bonyár,

2022). PCBs are ubiquitous and found in numerous applications across various industries. In the

medical sector, PCBs are vital in equipment such as pacemakers, defibrillators, anesthetic machines,

ECG devices, and electrosurgical units, where precise and reliable operation is critical (Adamson

et al., 2020). In industrial settings, PCBs are crucial, for powering equipment like power supplies,

CNC machines, and solar power systems to ensure they work efficiently. Additionally, PCBs are

integral to vehicles, aircraft, and marine systems, supporting navigation systems and circuits for sen-

sors and actuators that need to function in diverse environments (Perdigones & Quero, 2022). The

consumer electronics sector, encompassing cell phones, computers, appliances, and video games,

also relies heavily on PCBs. These boards play a role in meeting the demand for compact and high-

performance designs that modern consumers expect (Dervišević, Minić, Kamberović, Ćosović, &

Ristić, 2013). The versatile use of PCBs across various applications underscores their crucial role

in modern electronics. PCBs excel in supporting circuits while ensuring top-notch performance and

dependability, making them a vital component of contemporary electronic design and production.

(Worden, 2024).

Given the pivotal role of PCB quality in ensuring the functionality, safety, and reliability of elec-

tronic devices, it is crucial to effectively identify defects. In today’s intelligent industry landscape,
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the ability to detect even minor flaws on the surface of PCBs is essential. Common manufacturing

issues such as open circuits, missing components, and misplacement of parts can decrease produc-

tion yield and compromise device reliability (Nguyen & Bui, 2022). Defects in PCBs can lead

to device malfunctions or complete failures. High-quality PCBs that meet all specifications from

design through assembly not only fulfill consumer expectations but also significantly boost a com-

pany’s reputation and market share (Verna, Genta, Galetto, & Franceschini, 2023). Furthermore,

the environmental and economic advantages of defect-free manufacturing are becoming increas-

ingly important. With the rapid growth in electronic device demand over the past five decades, the

scale of PCB production has expanded, contributing to a rise in electronic waste. This waste con-

tains harmful substances that pose risks to both health and the environment (Chakraborty, Kettle, &

Dahiya, 2022; C. Wu, Awasthi, Qin, Liu, & Yang, 2022). Effective quality control and early defect

detection in PCB manufacturing not only ensure the production of reliable devices but also help

reduce environmental pollution and promote sustainable practices (Cui & Anderson, 2016). Effec-

tive and cost-efficient inspection procedures are also critical in reducing expenses linked to quality

problems. Flaws in products can impact both quality and costs, underscoring the need for businesses

to enforce quality assurance practices to remain competitive. The creation of defect identification

models is essential in manufacturing to anticipate defects strategize quality control and streamline

production operations. These models enhance the monitoring of production, predict trends in qual-

ity fluctuations, and provide early warnings, which ultimately reduces resource wastage, optimizes

yield, and minimizes losses (Verna, Puttero, Genta, & Galetto, 2023).

Traditional inspection techniques such as visual inspection, Automatic Optical Inspection (AOI),

and X-ray inspection are fundamental in maintaining the quality and integrity of PCBs (Zhou, Yuan,

Zhang, Ding, & Qin, 2023). Visual inspection relies on the expertise of trained personnel to identify

visible defects like missing components and soldering errors, although this method is labor-intensive

and prone to human error (Galetto, Verna, Genta, & Franceschini, 2020). While visual inspection

depends largely on human skill and is susceptible to mistakes, the progression of inspection tech-

nologies has led to the introduction of more automated solutions such as AOI. These systems help

to mitigate some of the inherent challenges associated with manual inspection. AOI systems are

integral to the PCB production process, tasked with the detection and diagnosis of surface defects.
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These systems utilize advanced cameras and algorithms to identify a range of issues including open

circuits, absent components, and misplacements, offering increased speed and consistency in in-

spections. Despite their importance in ensuring product reliability, especially in the smart electron-

ics sector, AOI systems may struggle with complex or densely populated boards. X-ray inspection

provides a means to detect hidden defects such as internal solder joint issues but requires expensive

equipment and specialized knowledge. Although these conventional methods are effective, they

encounter challenges related to accuracy, efficiency, and scalability (Houdek & Design, 2016; Silva

et al., 2019). This analysis highlights the ongoing need for innovations in PCB inspection tech-

niques to address these challenges, ensuring high-quality electronics production in an increasingly

demanding market.

As the complexity and miniaturization of PCBs advance, the limitations of conventional inspec-

tion methods highlight the need for more advanced solutions. The adoption of Artificial Intelligence

(AI) and ML in detecting defects on printed circuit boards has transformed traditional quality control

into more sophisticated, efficient, and reliable operations (Ural & Sezen, 2024). AI-driven methods

enable rapid and precise analysis of extensive datasets, pinpointing subtle defects that might elude

traditional techniques. These approaches bring multiple advantages, such as enhanced accuracy, ex-

emplified by systems that achieve high precision in defect detection (Jun & Jung, 2023); heightened

efficiency, as shown by systems that deliver efficiency coefficients above 95 percent and processing

times below two seconds (Ong, Mustapha, Ibrahim, Ramli, & Eong, 2015); scalability, demon-

strated by AI models that manage large data volumes and complex inspection tasks (Chaudhary,

Dave, & Upla, 2017); and cost-effectiveness, through reducing the reliance on manual inspection

and decreasing the occurrence of defects (Sundaram & Zeid, 2023).

1.1 Objectives and Contributions of the Study

The primary aim of this study is to thoroughly evaluate the dataset from the Prognostics and Health

Management (PHM) challenge provided by Bitron Spa, a leader in the production of mechatronic

devices (PHM Society, 2022). The research specifically focuses on developing tailored ML and

DL techniques to identify faults at two different stages of the PCB production line. This thesis

3



addresses critical challenges in data processing and model performance within defect detection

systems for PCB manufacturing. It aims to provide a comprehensive evaluation of how various

machine learning and deep learning strategies can significantly enhance fault detection capabilities

within the manufacturing process. The significant contributions of this research are outlined as

follows:

(1) Innovative Application of CTGAN for Imbalanced Data: This research pioneers the use of

Conditional Generative Adversarial Networks to address the challenge of imbalanced datasets

within PCB manufacturing. By generating synthetic data that mimics rare defect types, CT-

GAN has been crucial in balancing the dataset, which enhances the model’s training process

and overall accuracy. This methodological innovation not only improves the reliability of

fault detection but also sets a new standard for handling dataset imbalance in industrial appli-

cations.

(2) Synthetic Data Volume and Its Effects on Model Performance: The key aspect of this

study is the exploration of the impact of synthetic data volume on the performance of machine

learning and deep learning models to identify the optimal threshold of data augmentation for

our model training. This analysis provides valuable insights into how different volumes of

synthetic data can optimize the learning process and model performances, contributing to

more effective and efficient predictive systems.

(3) Feature Engineering and model enhancement: In this study, we developed innovative fea-

ture engineering methods such as feature transformation, feature extraction and feature aggre-

gation to enhance model predictions for PCB defect detection. These features were meticu-

lously analyzed and integrated, resulting in significant improvements in accurately predicting

defect repair labels. This contribution demonstrates the practical benefits of feature engi-

neering in improving model outcomes and underscores the role of advanced data processing

techniques in complex manufacturing environments. Our approach achieved notable enhance-

ments in performance metrics, marking a substantial methodological advancement in the field

of machine learning.

(4) Leveraging Ensemble Learning Strategies: This thesis makes a significant contribution to
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the field of PCB defect detection by leveraging ensemble learning techniques. Specifically,

through the application of bagging, we were able to improve model stability and reduce vari-

ance, which is crucial for handling the inherently noisy data from PCB inspections. The use of

these techniques, including detailed implementations of algorithms like K Nearest Neighbors

(KNN) and Light Gradient Boosting Machine (LGBM), has not only optimized the defect de-

tection process but also substantially minimized the rate of false negatives and false positives.

This approach has proved to be effective in ensuring that PCBs meet the stringent quality stan-

dards required for sophisticated electronic applications, thereby significantly contributing to

the enhancement of manufacturing practices and the reduction of costly production errors.

1.2 Thesis Organization

The rest of the structure of the thesis is laid out as follows:

• Chapter 2, encompasses a detailed review of existing literature relevant to the thesis topic. It

also outlines the foundational concepts that will be essential for understanding the analyses

and discussions in the upcoming chapters.

• Chapter 3, introduces the datasets and tools utilized in this study, detailing the critical steps in

dataset preparation. This includes addressing data imbalances and implementing innovative

techniques such as CTGAN. The chapter also presents experimental results from applying

machine learning and deep learning models for anomaly detection in PCBs during the AOI

stage.

• Chapter 4, concentrates on automating the determination of repair status for PCBs using en-

semble models. This includes a specific focus on various preprocessing approaches, partic-

ularly feature engineering. This effort aims to replace manual evaluations and significantly

enhance both the efficiency and sustainability of PCB manufacturing processes.

• Chapter 5, concludes the thesis by summarizing the main findings and contributions of the re-

search. The chapter also explores potential avenues for future research in this field, suggesting

5



how subsequent studies could build on the presented work to further advance knowledge and

understanding in the area.
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Chapter 2

Background and Literature Review

2.1 PCB Manufacturing and Quality Control

This section provides a comprehensive overview of PCBs, detailing their components and the man-

ufacturing processes. It also describes common types of faults or defects that can occur during the

electronics board production line. This foundation highlights the critical issues in PCB manufactur-

ing and underscores the necessity of exploring effective quality control techniques.

PCBs are critical components in modern electronic devices, serving as the foundation for as-

sembling electronic circuits. Their manufacturing process involves several stages, each generating

specific types of data that are crucial for defect detection and quality control. Understanding these

stages and the associated data types is essential for implementing effective inspection and defect

detection strategies (Zhou et al., 2023). The production line for circuit boards can vary significantly

based on factors such as the board’s complexity, the technology employed, and specific application

requirements. Complex boards may require processes like multi-layer lamination or specialized

coating procedures, whereas simpler boards may undergo a more streamlined production process.

Despite these variations, the standard PCB production process generally consists of five core stages.

As illustrated in Figure 2.1, the production line begins with the printing machine and Solder Paste

Inspection, followed by Surface Mount Device (SMD) placement. Precision in placement is essen-

tial to avoid misalignments that can lead to defects. Next, the components pass through a reflow

oven, where the solder paste is melted to create solid solder joints. Then they are subjected to

7



Automatic Optical Inspection. The complexity and variability inherent in these production stages

highlight the critical importance of robust quality control methods. Throughout these stages, var-

ious faults or defects can arise, either during the manufacturing process or due to environmental

influences over time. According to (Sankar, Lakshmi, & Sankar, 2022), there are approximately

34 prevalent fault types in PCBs that are commonly focused on surface issues; problems such as

soldering issues (e.g., insufficient or excessive solder) or component and joint flaws; issues such as

open circuits (where connections are interrupted) and short circuits (where unintended connections

occur). These defects necessitate sophisticated techniques and algorithms to accurately differentiate

between normal and faulty behavior, highlighting the importance of robust quality control methods.

Figure 2.1: Printed circuit board production line (Gore et al., 2022)

2.2 Traditional Fault Detection Techniques

This section explains traditional fault detection methodologies in PCBs. These methodologies are

divided into several primary categories, each characterized by its unique advantages and inherent

limitations. By comprehensively understanding these methods, this analysis assesses their integra-

tion into existing production workflows. Furthermore, it underscores the imperative for adopting

more sophisticated and automated strategies to address the dynamic requirements of the industry.

8



2.2.1 visual inspection

• Human inspection

Human inspection has traditionally played a critical role in PCB defect detection and general

industrial sorting processes. In these systems, trained technicians visually examine prod-

ucts for defects such as soldering issues, misaligned components, and other abnormalities.

This method, although fundamental, is inherently limited by human error, fatigue, and the

inability to maintain high accuracy and consistency over prolonged periods. Repeated and

long-term manual sorting actions are not only labor-intensive but also fail to meet the in-

creasing demands for precision and efficiency in modern manufacturing (C. Wu, 2020). The

shortcomings of manual inspection highlight the necessity of adopting AOI systems.

• Automated Optical Inspection

AOI leverages computer vision technology and advanced image processing algorithms to de-

tect defects with higher accuracy and reliability. This method employs specialized cameras

and algorithms to find anomalies like misplaced components or poor soldering. Unlike man-

ual methods, AOI can handle large volumes of products, providing real-time detection and

classification of defects without the limitations imposed by human factors. This automa-

tion not only improves production efficiency but also ensures a more consistent and reliable

quality control process, essential for meeting the stringent standards of modern electronics

manufacturing. Thus, the shift from manual visual inspection to AOI is crucial for advancing

the capabilities and performance of industrial production lines (Singh, Kharche, Chauhan, &

Salvi, 2024). Some studies, concentrate on surface defect detection. According to (Chauhan

& Bhardwaj, 2011), the authors implemented a subtraction algorithm that compares a refer-

ence image to identify defective regions, including over-etchings, under-etchings, and holes.

On the other hand, (Dai, Mujeeb, Erdt, & Sourin, 2018) presented an automatic optical in-

spection for Soldering Defect detection, introducing an active learning framework that starts

with a small labeled subset, expanded using K-means clustering and active user input to train a

Support Vector Machine (SVM) classifier. This method achieves high accuracy with minimal

user input, outperforming other sampling methods and reducing annotation costs. Although
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AOI inspection significantly improves the detection of surface defects, offering faster and

more consistent results, it can struggle with complex PCB layouts. This limitation under-

scores the need for more advanced methods such as X-ray inspection, which can identify

internal defects that optical systems might miss.

2.2.2 X-ray Inspection

PCB X-ray inspection involves capturing precise images of the board’s interior using X-ray technol-

ogy. After the PCB is set up on a platform, X-rays are emitted by an X-ray machine and penetrate

the board. These X-rays are detected by a detector, which produces images that may be examined

for flaws. In the next step, trained inspectors or automated systems examine these images to identify

any faults and ensure the PCB’s quality (Neubauer & Hanke, 1993). (Neubauer, 1997) states that

this work underscores the importance of X-ray inspection in solder joint quality control. This study

introduces a hierarchical approach that employs a combination of 2-D and 3-D inspection methods

for fast and precise fault detection. For solder joint evaluation, Neural network-based classifiers

are employed to identify anomalies. This method offers a robust solution for real-time process

monitoring and defect classification.

2.2.3 In-Circuit Testing

In-Circuit Testing (ICT) is a vital methodology for assessing the integrity and functionality of PCB

components by identifying potential defects in components or connections that could affect the

overall performance and reliability of the board. The process involves placing the PCB on a fixture

equipped with numerous probes that touch specific test points on the board. These probes deliver

electrical signals to the components, and the responses are measured and compared against expected

outcomes. Any discrepancies can signal issues such as incorrect component values, faulty compo-

nents, or poor soldering. This testing strategy is crucial for ensuring that PCBs meet quality stan-

dards before being deployed in final products. The effectiveness of ICT has been further enhanced

through the development of sophisticated software tools that automate the generation of in-circuit

tests based on the product design files, even in scenarios where probe access is not available for

every net. This software can also highlight areas on the PCB where fault coverage is suboptimal,
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suggesting where additional probe points could enhance test quality. The application of graph-based

algorithms facilitates more efficient analysis of the board’s design, enabling the transformation of

complex, unreachable structures into simpler, testable units while maintaining precise control over

the testing environment. This advanced approach not only improves the scope and accuracy of

ICT but also adapts to the evolving complexities of modern PCB designs (Albee, 2013; Houdek &

Design, 2016).

2.2.4 Flying Probe Testing

The previously mentioned methods did not allow for complete PCB testing due to the complex

structures of PCBs and physical access. This led to the development of the automated, non-contact

flying probe inspection method. In this technique, movable probes, also known as ”flying probes,”

navigate across the PCB to test various points. Unlike traditional ”bed-of-nails” testers, flying probe

systems do not require custom fixtures, making them highly flexible and cost-effective for low to

medium-volume production and prototype testing. These systems can precisely measure electri-

cal parameters such as voltage and current, allowing for the detection of defects like open circuits,

shorts, and incorrect component placements. The versatility and reduced setup time make flying

probes particularly advantageous for educational purposes and environments with frequent design

changes. For example, (Jurj, Rotar, Opritoiu, & Vladutiu, 2020) explored this method by detail-

ing the implementation of an affordable, sensorless in-circuit tester. The tester operates on three

main axes (X, Y, Z) using stepper motors and mechanical components controlled by an Arduino mi-

crocontroller. This setup allows precise measurement of voltage and current at specific test points

on the PCB, enabling the detection of various defects. The sensorless approach reduces costs by

eliminating the need for expensive optical sensors, instead using Cartesian coordinates to calculate

the required steps for probe movement from a reference point. On the other hand, the paper (Tsai

& Huang, 2018) discusses an alternative approach for PCB defect detection, focusing on Fourier

image reconstruction. This method compares the Fourier spectra of a template and a test image

to identify local anomalies. By retaining only the suspicious frequency components and applying

the inverse Fourier transform, the technique reconstructs the test image, highlighting defects while

removing the common background pattern. This Fourier-based approach is invariant to translation
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and illumination, making it robust for detecting subtle defects in complex pattern surfaces.

2.2.5 Boundary Scan Testing

In the ICT method, due to the high costs of testing, there arose a need for an acceptable and cost-

effective defect detection method that allows for the design of smaller PCBs. The solution of JTAG,

or the Joint Test Action Group, notably leads to shrinking PCBs. It is a standardized method for test-

ing and verifying the integrity of electronic circuits at both the chip and PCB levels. This technique

utilizes a boundary scan architecture (BSA) where each pin of an IC is connected to a boundary

scan cell, which can be controlled and monitored via test access ports (TAPs). This allows for the

detection of structural defects such as open circuits, shorts, and incorrect placements without the

need for physical probes. JTAG is highly versatile, supporting in-system programming and real-

time PCB functionality monitoring. In (Paul & Bhunia, 2021), the authors use JTAG to prevent

counterfeiting and tampering by leveraging the BSA to measure dynamic current variations during

test pattern transmissions. This process generates unique digital signatures for each PCB and its

components, which are then used to verify authenticity and detect in-field modifications. Similarly,

(Shashidhara, Yellampalii, & Goudanavar, 2014) discusses using JTAG for efficient PCB defect

detection. It highlights how the boundary scan method facilitates the detection of structural issues

such as shorts, opens, and stuck-at faults. This is a low-overhead, high-precision approach to ensure

the integrity and reliability of PCBs in various stages of their lifecycle, from manufacturing to field

deployment.

2.2.6 Thermal Imaging

Another major challenge in PCB production lines is the excessive heat generated in the Integrated

Circuits (ICs), which can lead to reduced performance or even failure of the PCBs. Thermal imaging

involves capturing thermal images of PCBs and processing these images to detect hotspots that in-

dicate faults helping to identify and address these thermal issues promptly. This method is effective

for non-contact and non-invasive detection, offering high accuracy in distinguishing between faulty

and non-faulty ICs, thus improving the reliability and safety of electronic systems. According to
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(Sarawade & Charniya, 2019), this efficient prototype method identifies faulty ICs with 100 % ac-

curacy in classifying test images and requires minimal computational time. By integrating thermal

cameras with the SURF algorithm, the system can alert users to circuit faults.

2.2.7 Ultrasonic Testing

Ultrasonic Testing involves a laser-induced ultrasound scanning imaging system, where a pulsed

laser is utilized to excite ultrasonic waves on the PCB surface. Sensors then capture and analyze

the interaction of these waves with the PCB. A key advantage of this technique is its capability

to detect minute defects that traditional methods might miss, making it particularly useful for high-

density PCBs where defect detection is crucial for ensuring reliability and performance. The system

employs advanced signal processing techniques, such as wavelet transform denoising and principal

component analysis (PCA), to enhance the signal-to-noise ratio (SNR) and accurately identify de-

fects (X. Chen, Tao, Shang, & Liu, 2022). A comparison of this method with traditional infrared

thermal wave imaging demonstrates that laser-induced ultrasound provides superior resolution and

defect detection, especially for small-scale defects. This approach holds significant potential for

enhancing quality control processes in PCB manufacturing, enabling early detection of potential

failures and reducing the risk of defective products reaching the market (F. Wang et al., 2022).

2.2.8 Automated Functional Testing

In the evolving landscape of automotive technology, functional testing is a critical process designed

to evaluate the performance of electronic modules against predefined criteria, without the neces-

sity to delve into the internal architecture of the modules. This innovative approach leverages the

LabVIEW programming environment to streamline the testing process by integrating a suite of pro-

grammable instruments, including multimeters, oscilloscopes, electronic loads, and waveform gen-

erators, all connected via the General Purpose Interface Bus (GPIB). By utilizing script files with

predefined commands, the system can automatically configure these instruments, execute a series

of tests, and meticulously record the results. This method excels in accurately simulating various

operational scenarios and assessing the performance of electronic modules under different condi-

tions. The automation not only drastically reduces the time and manual effort involved in repetitive
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testing but also enhances the reliability and precision of the test outcomes. Furthermore, it generates

comprehensive reports for in-depth analysis, thus offering a highly efficient and robust solution for

functional testing in complex electronic systems (Ana-Maria, Georgiana, & Ioan, 2018).

2.3 Artificial Intelligence and Machine Learning

As the size of joints and components decreases and the number of potential flaws increases, the limi-

tations of traditional inspection methods, including manual inspection and classical computer vision

(CV), are becoming increasingly evident (Dai, Mujeeb, Erdt, & Sourin, 2020). Therefore, due to the

development of modern production lines and the presence of large data sets, artificial intelligence

strategies and machine learning algorithms have emerged as powerful tools for automating the defect

detection process and providing substantial success in addressing problems in the field of industry.

They have clear advantages in terms of cost-savings, rapid detection, and high accuracy and preci-

sion (Putera & Ibrahim, 2010; Yang et al., 2020). Over time, advanced machine learning techniques

such as SVM (Zhang, Shi, Li, Zhang, & Liu, 2018), Neural Networks (NN) (Anoop, Sarath, & Ku-

mar, 2015; Ng et al., 2011), Decision Trees (DT), and Genetic Algorithms (GA) (Mashohor, Evans,

& Erdogan, 2006) were adopted for PCB defect detection, enhancing the sophistication of these

systems. For instance, the authors (Vafeiadis et al., 2018) proposed a framework utilizing SVM

with polynomial and radial basis function kernels to detect defects on PCBs. The results of the

study indicate that using the full set of features maximizes classification performance, suggesting

minimal advantages in reducing features for this application, needed further exploration into deep

learning techniques to enhance these outcomes. In another study (J. Chen, Zhang, & Wu, 2021)

developed a novel approach utilizing SVM to identify wire bonding defects in IC chips, surpassing

other techniques like Vision Detection Systems (VDS) and Convolutional Neural Networks (CNN)

in sensitivity, accuracy, and speed. Furthermore, integrating semi-supervised methods and advanced

machine-learning techniques has also shown promise. For instance, a semi-supervised defect detec-

tion method combining SVM classifiers and K-mean clustering has been introduced for soldering

anomaly detection by (Dai et al., 2020). In parallel, advancements in object detection algorithms,

such as You Look Only Once (YOLO) and its derivatives YOLOV3-Mobilenet (Huang, Gu, Sun,
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Hou, & Uddin, 2019), and YOLO-v5 (Adibhatla et al., 2021; Parlak & Emel, 2023), have enhanced

the identification of electronic components and soldering joint defect detection on circuit boards.

2.4 Deep Learning Techniques in PCB Defect Detection

The incorporation of advanced machine learning techniques has significantly enhanced the effi-

ciency of PCB defect detection systems. As the field has progressed, deep learning methods have

emerged as powerful tools to further enhance detection capabilities. This shift from conventional

machine learning to deep learning represents a major advancement in accurately identifying and

classifying PCB defects. Various forms of Artificial Neural Networks have been employed, includ-

ing Feedforward Neural Network (FNN), Recurrent Neural Network (RNN), CNN, and Modular

Neural Network (MNN) (Gaber, Hussein, & Moness, 2021). Among these neural network archi-

tectures, CNNs have gained prominence due to their superior ability to perform precise feature

extraction without the need for manually defined features. This capability allows CNNs to detect

subtle and complex defects more effectively. For instance, CNNs have been successfully applied in

IC component defect recognition (Lin, Wang, & Lin, 2019), feature extraction, and feature fusion

(Jin et al., 2021), providing robust solutions for real-time inspection in Surface Mount Technology

(SMT) (H. Wu, Lei, & Peng, 2022). Further advancements in deep learning have led to the develop-

ment of sophisticated methods such as skip-connected convolutional autoencoders. These models

have achieved remarkable results, with up to 98% accuracy in defect detection and a false pass rate

below 1.7% (Kim, Ko, Choi, & Kim, 2021). Such methods not only detect defects but also assist

in repairing them by highlighting discrepancies between input and output data (Khalilian, Hallaj,

Balouchestani, Karshenas, & Mohammadi, 2020). The integration of machine learning and artifi-

cial intelligence into PCB manufacturing has yielded substantial benefits, notably in cost reduction

and manufacturing efficiency. These technologies have significantly accelerated defect detection,

minimizing waste and enhancing the reliability of electronic products. However, the integration

of these advanced technologies into existing systems has introduced challenges, primarily due to

high computational demands and the extensive data required for training. To mitigate these issues,

various solutions have been implemented, including the optimization of algorithms to improve both
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speed and accuracy, as well as the adoption of transfer learning strategies to decrease dependency

on large volumes of labeled training data (Ling & Isa, 2023).
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Chapter 3

Automating Human Operator Label in

PCB Production Inspection Using

ML/DL Models: The Critical Role of

Synthetic Data Volume on Model

Performance

In the literature review (Chapter 2), we discussed the role of inspection stations in ensuring the

reliability and functionality of the final products during PCB manufacturing. It is important to

acknowledge that defects can arise at various stages of the production line, each process carrying

its inherent risks. To elaborate, each change made to an electronic item is followed by an inspection

step such as Automated or manual Inspection to prevent defective boards from moving to the next

step in the process.

In this chapter, we explore the manual inspection stage where human operators play a critical

role in ensuring the quality of PCBs. Our focus is on predicting the human label generated using

state-of-the-art machine learning and deep learning methods during the AOI stage of PCB produc-

tion. By accurately predicting these labels, we aim to automate the manual inspection process,
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thereby enhancing the efficiency and accuracy of defect detection in PCB production.

The subsequent sections of this chapter are structured as follows: Section 3.1 addresses the

problem statement, while Section 3.2 provides an overview of the dataset employed in developing

the proposed models in this chapter. Section 3.3 discusses the various steps taken in data prepara-

tion, such as data aggregation, cleaning, encoding, and feature selection. Additionally, the methods

used for handling imbalanced data and their implementation are completely explained. Section 3.4

introduces the ML and DL models proposed for defect detection, along with a discussion of the

implementation process. The evaluation of the model’s effectiveness is presented in Section 3.5.

Finally, Section 3.6 presents a summary and the concluding remarks for this chapter.

3.1 Problem Statement

As previously discussed, The PCB assembly journey is a complex, multi-stage operation that begins

with printing the Panel Identification Number (PanelID) on each board. Following this initial step,

a precisely measured amount of solder paste is applied to designated areas known as solder pads.

This step is critical and demands meticulous accuracy; any deviation, such as applying an incorrect

amount of solder paste or misalignment can compromise the functionality of the entire PCB, as

depicted in Figure 3.1. To this end, upon completion of the solder paste application, the Printed

Circuit Board undergoes Solder Paste Inspection to verify and ensure the quality of the soldering

process. During the solder paste application, sensors collect data on various physical characteristics

of the applied paste, which is then organized into tabular data displaying the quantity and precise

placement of the solder paste on the pads.

While the AOI stage uses advanced imaging techniques to identify potential defects, it is not

infallible. Hence, following this step, human operators manually examine PCB components to val-

idate the AOI-generated labels and assign a new label referred to as ”OperatorLabel.” This manual

step is essential to mitigate the risks of incorrect labeling, leading to significant costs if a good PCB

is erroneously flagged as defective or if a faulty PCB progresses further down the production line.

Given the critical nature of this step, we aim to automate this process by predicting the ”Operator-

Label” in our dataset. This target variable has two possible values: ”Good” and ”Bad.” The ”Good”
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Figure 3.1: Common Defect Types of the PCB Board (Li et al., 2020)

label indicates that the AOI mistakenly detected a defect, and the component should not have pro-

ceeded to the inspection stage. Conversely, the ”Bad” label confirms a genuine defect identified by

AOI.

Although human inspection offers unique benefits in defect detection and operators can differ-

entiate between false alarms and actual defects, leveraging ML and DL models provides significant

advantages. These techniques can rapidly and consistently analyze vast amounts of data, reducing

the likelihood of human error. These models can learn from patterns and anomalies, potentially

identifying defects that might be missed by human operators, while maintaining continuous moni-

toring. This combination of speed, consistency, and the ability to detect minor variations makes ML

and DL models invaluable for efficient and accurate defect detection.

The objective of the study in this phase is to develop ML and DL models capable of predicting

the OperatorLabels, thereby enhancing the defect detection process. Integrating human expertise

with automated inspection methods can bridge the gap between manual assessments and AOI sys-

tems, improving overall manufacturing efficiency and ensuring a more reliable PCB production

process. Ultimately, this chapter assesses the effectiveness of ML and DL models compared to

human operators in identifying PCB defects. This comparison will determine the viability of sub-

stituting human inspectors with automated systems, potentially yielding a more cost-effective and

time-efficient quality control process in PCB manufacturing.
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3.2 Dataset Overview

As previously outlined in Figure 2.1, the PCB production line we are analyzing consists of five

stages. However, our data collection for defect detection specifically targets the SPI and AOI stages.

The SPI dataset contains information about the solder paste applied by the machine, aiming to

identify potential issues such as excess or missing paste and short circuits. This dataset includes

key identifiers and quantifies specific attributes of the solder paste application. In parallel, the AOI

dataset contains similar identifiers to the SPI dataset and provides three types of defect labels, each

corresponding to different kinds of defects detected during the inspection process.

In the subsequent sections of this chapter, we will be delving deeper into both the SPI and AOI

datasets, detailing their respective features and the significance of each in the defect detection pro-

cess. By integrating and analyzing these datasets, we aim to enhance our understanding of the defect

detection mechanisms and improve the overall efficiency and accuracy of the PCB production line.

This thorough examination will facilitate the development of robust models capable of predicting

and addressing defects at various stages, thereby ensuring high-quality PCB manufacturing.

3.2.1 SPI Dataset

The SPI dataset serves as a valuable source of information that can be effectively utilized in quality

control, process improvement, and defect detection. It is used to examine the quality of solder

paste applications. This step is essential for ensuring that the appropriate amount of solder paste

is correctly applied to specific locations, which is crucial for forming reliable solder joints. In our

study, the SPI dataset comprises 21 columns including categorical and numerical, each capturing

distinct attributes pertinent to the inspection and testing of PCBs. A detailed explanation of each

feature is presented in Table 3.1.

As shown in the table, the dataset includes identifiers such as PanelID, FigureID, ComponentID,

and PadID. The combination of PanelID and FigureID forms the BoardID, representing the PCB.

This valuable information can be effectively utilized in quality control, process improvement, and

defect detection.
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Table 3.1: Detailed Feature Overview of the SPI Dataset

Feature Unit Description Type

1 PanelID - Denotes the specific panel. Categorical

2 FigureID - Denotes the specific Figure. Categorical

3 ComponentID - Denotes the specific Component. Categorical

4 PinNumber - Component’s associated pin number. Numerical

5 PadID - Unique ID for pin’s supporting pad. Categorical

6 Date MM/DD/YYYY Shows the SPI operation date. Numerical

7 Time HH:MM:SS Time of SPI operation in seconds. Numerical

8 PosX mm X coordinate of pin from bottom left. Numerical

9 PosY mm Y coordinate of pin from bottom left. Numerical

10 PadType - Specifies the type of pad. Categorical

11 Volume % Percentage of the paste volume. Numerical

12 Height um Height of the paste in micrometers. Numerical

13 Area % Percentage of the paste area. Numerical

14 OffsetX % X-axis offset percentage. Numerical

15 OffsetY % Y-axis offset percentage. Numerical

16 SizeX mm Size of the paste in the X direction. Numerical

17 SizeY mm Size of the paste in the Y direction. Numerical

18 Volume um3 Paste volume in cubic micrometers. Numerical

19 Area um2 Paste area in square micrometers. Numerical

20 Shape um Shape of the paste. Numerical

21 Result - Outcome of SPI inspection. Categorical

3.2.2 AOI Dataset

The AOI dataset serves as an additional crucial source of information, enhancing the data provided

by the SPI dataset. It plays a crucial role in process monitoring, yield analysis, and traceability,
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ensuring that each PCB meets the required quality standards before proceeding to the next stage

of production. Similar to the SPI dataset, the AOI dataset includes PanelID, FigureID, and Com-

ponentID identifiers. These common identifiers, along with PinNumber, facilitate merging the two

datasets and allow for a more comprehensive analysis. Additionally, the AOI dataset includes three

unique labels assigned to PCBs during various manufacturing stages, offering valuable insights for

defect identification and classification. The details of the AOI dataset and its features can be found

in Table 3.2.

Table 3.2: Detailed Feature Overview of the AOI Dataset

Feature Description Categories

1 PanelID Denotes the specific panel. -

2 FigureID Denotes the specific Figure. -

3 ComponentID Denotes the specific Component. -

4 PinNumber Component’s associated pin number. -

5 MachineID
Denotes the machine performing

the AOI operation.

1) A

2) B

6 AOILabel

The label applied by the AOI

machine based on the type of

the defect.

1) Broken

2) Coplanarity

3) Jumper

4) LeanSoldering

5) Misaligned

6) Soldered

7) Translated

8) UnSoldered

7 OperatorLabel
The label applied by the human

operator after visual inspection.

1) Good

2) Bad

8 RepairLabel

The label applied by the repairment

operator after an inspection with a

microscope.

1) Not Available

2) NotYetClassified

3) NotPossibleToRepair

4) FalseScrap
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As indicated in the Table, machines, as optical inspection systems assess each PCB. They cate-

gorize the boards by assigning one of eight specific labels, known as AOI labels, based on how well

each board adheres to predefined standards. Further details on AOI labels are elaborated below:

• Broken: This label is used when a pin has suffered physical damage or is completely de-

tached, making it incapable of forming any electrical connections.

• Coplanarity: When pins are not level with one another, this can lead to inconsistent and

unreliable electrical connections.

• Jumper: This refers to an accidental link between two pins, usually caused by solder bridg-

ing, which might lead to electrical shorts.

• Lean Soldering: Indicates insufficient solder or a suboptimal soldering process, resulting in

a fragile mechanical or electrical bond.

• Misaligned: This label is assigned when a pin does not properly line up with its designated

footprint or pad on the PCB, complicating or preventing a stable connection.

• Soldered: Normally indicates that a pin is correctly soldered; however, if marked as a defect,

it suggests the quality of soldering is inadequate.

• Translated: Used when a pin has moved from its original position, either sideways or verti-

cally, potentially compromising the connection’s integrity.

• UnSoldered: This label is given when a pin has not been soldered, leaving it disconnected

both electrically and mechanically from the board.

Given that there is always a potential for errors at each stage and results are not definitive,

products proceed to the next stage which is operator inspection for further and more detailed

inspection. In this stage, a specialist is responsible for re-evaluating the products. Ultimately, two

labels—either ”Good” or ”Bad”—are assigned based on the product’s condition. Products labeled

as ”Good” when the AOI machine mistakenly marks them as defective, though it is in good condition

and does not need any repairs, are removed from the process, while those labeled as ”Bad” move on

23



to the repair stage. Following precise assessments by the specialist in the repair stage, each PCB is

assigned one of four specific labels that describe its condition and dictate the next steps in the repair

process. These labels are crucial for streamlining the repair operations and ensuring each board is

treated appropriately. Below is a detailed explanation of each repair label:

• Not Available (NA): This label is applied to components that were initially misidentified as

defective by the AOI machine but are later confirmed as compliant with quality standards by

the Operator Label. As a result, these components are exempt from further repair assessments

and are directly assigned the ’NA’ label, indicating no further action is required.

• Not Yet Classified: Assigned to components for which repair data is still pending, this label

signifies that the components have not yet been evaluated for repairability. It serves as a

placeholder until further classification can be determined based on subsequent inspections or

additional information.

• Not Possible to Repair: This label is used when it is determined that the damage to a pin is

irreparable, leading to a recommendation to discard the entire panel. It highlights components

that are beyond economic repair, underscoring the necessity of quality control in minimizing

production losses.

• False Scrap: This label is designated to components that were originally flagged for defects

by the operator; however, further evaluations indicate that no repair is necessary. It is a critical

label that helps to reduce unnecessary waste and optimize resource use by ensuring that only

genuinely defective components are reprocessed or discarded.

The data analyzed in this chapter consists of a combination of SPI and AOI datasets. Merging

SPI and AOI data offers an integrated view of PCB manufacturing, highlighting how solder paste

application impacts solder joint quality. By exploring the linkage between SPI metrics and AOI-

detected defects, manufacturers can refine processes to decrease defect rates. Utilizing historical

data supports predictive strategies to prevent potential production issues, enhancing both product

quality and manufacturing efficiency.
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3.2.3 Descriptive Analysis of The SPI-AOI Dataset

1. Statistical Summary of Feature Variables: Table 3.3 provides a comprehensive analysis of

the employed dataset. As can be observed, the feature Volume(%) exhibits significant variability,

with a standard deviation of almost 14% against a mean of 80%. This indicates that volume ap-

plication is not uniform across different solder pads, potentially affecting the consistency of the

final products. Conversely, Area(%) displays a tighter distribution around its mean, with a standard

deviation of only 4.8 %, suggesting more consistent area coverage across the production line.

Critical insights arise from OffsetX(%) and OffsetY(%) features. The stretching ranges of these

features from negative to positive indicate significant misalignments and outliers in solder paste

placement. These deviations not only highlight the need for precise alignment in the manufacturing

process but also pinpoint specific areas where process controls can be tightened to enhance prod-

uct quality. Furthermore, the skewness in the distribution of Volume(um3) and Area(um2) with

outlier values, suggests that while the majority of components meet standard specifications, a few

of them exhibit exceptional variations. These anomalies could stem from unique manufacturing

conditions or measurement errors, underscoring the importance of robust quality control measures.

Such findings warrant further investigation to ensure these extremes do not compromise the overall

production efficacy.

Table 3.3: Statistical Summary of Features

Volume(%) Height(um) Area(%) OffsetX(%) OffsetY(%) SizeX
mean 80.054 106.23 99.43 0.56 0.27 3.04
std 14.53 10.71 4.87 1.70 4.91 2.07
min 0.00 35.00 0.00 -16.70 -48.83 0.22
median 76.91 104.71 99.95 0.38 -0.14 3.30
max 289.22 313.99 166.01 37.52 52.36 5.10

SizeY Volume(um3) Area(um2) Shape(um) PosX(mm) PosY(mm)
mean 2.89 1323132 1299217 23.90 126.47 63.03
std 2.14 1254871 1230087 24.95 67.29 33.32
min 0.22 0 0 -35.00 9.90 14.70
median 2.80 5276616 4838858 28.50 132.50 55.10
max 5.10 7714679 22720260 332.00 236.10 125.80
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2. Correlation Matrix: To enhance the understanding of the correlation among variables and

potential predictive powers, an analysis of the correlation matrix was performed using the Pear-

son correlation coefficient. This statistical measure, which varies between -1 and 1, quantifies the

degree of linear correlation between pairs of continuous variables. Coefficients approaching 1 sig-

nify a strong positive correlation, while those approaching -1 denote a strong negative correlation.

Coefficients near zero imply an absence of linear correlation. As revealed in Figure 3.2, there

Figure 3.2: Continuous features correlation matrix

is a significant correlation among the attributes such as” sizeX,” ”sizeY,” ”Volume,” and ”Area”,

likely due to geometric dependencies. These variables displayed exceptionally high correlation co-

efficients, underscoring a robust linear relationship driven by the geometrical properties of PCB

components. SizeX and SizeY, fundamental to the layout and spatial requirements of components,

directly influence the calculated Volume and Area. Volume, is conceptualized as the product of

26



SizeX, SizeY, and height. Similarly, Area derived from SizeX multiplied by SizeY, shows nearly

perfect correlations due to these geometric dependencies.

Interestingly, despite the strong correlations among Size and Volume metrics, OffsetX(%) and

OffsetY(%) exhibit low correlations with these dimensions, suggesting that positional deviations

are influenced by factors unrelated to component size, such as placement machinery precision or

variability in component handling.

This nuanced understanding of feature correlations is pivotal for refining predictive models and

optimizing production algorithms, ensuring they are both effective and computationally efficient.

The detailed correlation study not only reinforces the geometrically proportional nature of the vari-

ables but also provides crucial insights into the physical structure of the dataset and the real-world

processes it represents, thereby enhancing our capability to optimize production parameters for im-

proved consistency and reliability in PCB assemblies.

3.2.4 Categorical Variables Exploration

Following the analysis of continuous variables, this section offers an in-depth examination of the

distribution of categorical features within the SPI-AOI dataset. This analysis concentrates on three

pivotal categorical columns—AOILabel, Result, and MachineID—along with essential target labels,

including OperatorLabel and RepairLabel. Visual depictions clarify the proportional distribution of

each category, exposing inherent patterns and potential biases within the data. Such an analysis is

crucial as it highlights categorical features that provide substantial insights into outcomes, subse-

quently guiding our predictive modeling techniques and operational strategies.

As discussed earlier in Section 3.2, the AOI dataset comprises various unique labels that denote

different types of defects. The AOILabel and Result distributions, as showcased in Figure 3.3, are

characterized by high cardinality, posing challenges for modeling. The AOILabel pie chart reveals

that a large portion of the PCB components are labeled as ’Soldered’, while notable quantities are

classified as ’UnSoldered’ and ’Lean Soldering’. The infrequency of categories such as ’Jumper’,

representing only 0.2% of the data, underscores the issue of high cardinality, where many categories

contain very few samples. Similarly, the Result distribution predominantly features defect-free

components, with other defect categories like ’W.InSuffi.’ and ’EPosition’ appearing less frequently.
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Figure 3.3: Categorical Features Labels

Figure 3.4: Target Features Distribution
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On the other hand, the examination of target variables, as shown in Figure 3.4, reveals sig-

nificant class imbalances critical for steering the predictive modeling process. The OperatorLabel

distribution is highly skewed, with nearly 96% of components categorized as ’Good’ and only about

4% as ’Bad’. Furthermore, the RepairLabel distribution indicates that the majority of components

are categorized as ’NotPossibleToRepair’, suggesting that a significant portion of defects are con-

sidered irreparable. The categories ’NotYetClassified’ and ’FalseScrap’ account for approximately

17% and 10% of the data, respectively, highlighting less frequent outcomes. This skewed distribu-

tion calls for sophisticated modeling strategies capable of effectively detecting the rarer defective

cases, to improve the accuracy and robustness of predictions related to the outcomes.

3.3 Data Preparation and Pre-processing

This section meticulously outlines the essential steps required to prepare our datasets for compre-

hensive machine learning and deep learning analysis. We detail a series of crucial data prepara-

tion and preprocessing techniques, including data aggregation to prepare unified data to use, data

cleaning to ensure the accuracy and consistency of our datasets, data augmentation for handling

imbalanced data, encoding categorical data to make it suitable for analysis, and scaling features

to standardize the range of independent variables. Additionally, we emphasize the importance of

feature selection to identify the most significant variables and ensure that our models can learn

effectively from the data. These preparatory measures are foundational, setting the stage for pro-

posed models to perform precise, robust, and efficient analyses, ultimately enhancing our research

outcomes’ reliability and predictive power.

3.3.1 Data Aggregation

Since the SPI dataset is massive, it has been divided into four CSV files associating train sets and

two test sets. Hence, as an initial step for making a singular training and testing SPI dataset, we

began by combining the CSV files. After merging these files, the SPI dataset available for our study

includes 21 features, split into almost 6,000,000 data points for training and 2,500,000 for testing.

The AOI dataset, on the other hand, is relatively smaller and consists of one CSV file each for the
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train and test sets, comprising eight features with approximately 31,600 entries for training and

13,600 for testing.

As noted earlier in Section 3.1, our primary objective at this stage is the accurate prediction of

operator labels. Given that the AOI dataset primarily contains labels without additional descriptive

features, it is necessary to combine it with the SPI dataset, which is rich in features. To this end,

a crucial merging of the SPI and AOI datasets was executed during the data preparation phase to

create unified datasets for both training and testing purposes. In this process, identifiers such as

PanelID, FigureID, ComponentID, and PinNumber were concatenated to form a unique identifier

for each entry across both datasets. This unique identifier served as a common key, facilitating the

dataset’s merging by aligning them based on these four shared attributes. Following the merging,

non-informative columns such as Date, Time, and ConcatenatedID were removed from the dataset

to streamline the data further. Additionally, the ’Repair Label’, which represents the final inspection

stage, was identified as irrelevant for this analysis phase and consequently excluded from the dataset.

This strategic exclusion allowed us to focus solely on variables that directly impact the primary

objective of predicting the ’Operator Label’.

Noteworthy, it is crucial to consider the role of identifier features such as PanelID, PadID, and

FigureID carefully. Due to their high cardinality, PanelID and PadID were excluded from the dataset

as their inclusion would substantially increase its dimensionality, complicating the analysis within

an already extensive dataset. Preliminary evaluations revealed that PanelID lacked significant pre-

dictive power or relevance to the target variable, potentially introducing noise and misleading the

model training process. Consequently, the exclusion of these identifiers mitigates the risk of overfit-

ting and simplifies the interpretability of the results, allowing the models to concentrate on features

that more directly affect the quality and characteristics of the PCBs. Conversely, FigureID was re-

tained as a primary key because of its perceived relevance in analyzing component-specific trends

and quality assessments within the dataset. To empirically validate this decision, we conducted ad-

ditional experiments where FigureID was removed from the dataset. This resulted in a noticeable

reduction in model performance, confirming the feature’s predictive importance. Its inclusion is in-

tended to enhance the model’s ability to identify subtle patterns and variations among different PCB

components, which is crucial for effective defect detection. This selective retention underscores the
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strategic nature of our data preprocessing efforts, ensuring that each step is aligned with the overar-

ching objectives of the study and tailored to the specific nuances of our dataset. Each preprocessing

decision, including the removal and retention of specific features, was validated through rigorous

testing to observe their impact on the predictive performance of our models, further grounding our

approach in empirical evidence.

This refinement resulted in a consolidated dataset comprising 20 distinct features across 22,532

records. By integrating critical features from both inspection processes, this dataset provides a

robust foundation for subsequent machine learning and deep learning analyses aimed at detecting

quality issues in PCB manufacturing.

3.3.2 Data Cleaning and Integrity Verification

During the data verification phase, our first action is to ensure the dataset is devoid of extrane-

ous and duplicate records, and that all entries are complete. This initial scrutiny confirmed there

were no missing values, thus eliminating the need for imputation. However, 43 duplicate records

were discovered and promptly removed to maintain the dataset’s uniqueness and integrity. The

dataset indices were then refreshed, promoting a systematic organization that enhances the reliabil-

ity of subsequent data manipulations. In addition, Further measures were implemented to ensure

all features were appropriately prepared for effective data analysis. A key adjustment was made to

the ’PinNumber’ feature, which typically indicates the number of pins for each component type.

Notably, PinNumbers labelled as ”THERMAL1” during the soldering process represent an incom-

patible format with the numeric requirements of our machine learning models. To rectify this, we

converted all ”THERMAL1” entries into a numeric value of ”0”. This change not only preserved

the unique status of these PinNumbers but also ensured numeric consistency throughout the dataset,

further solidifying our data’s foundation for accurate analysis.

3.3.3 Feature Consistency Adjustments

Critical to the robustness of the predictive models is the prevention of data leakage, which necessi-

tates the separation of data into distinct training and testing sets with identical variables. This mea-

sure is fundamental to avoiding the inadvertent blending of training and testing data, which could
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compromise model evaluations. Detailed examination identified inconsistencies in the ’Result’ and

’ComponentID’ columns between the training and testing datasets. To align these sets accurately,

specific modifications were applied: entries such as ‘E.Bridging’, ‘W.Position’, ‘W.Excessive’, and

‘E.Height’ were removed from the ”Result” column of the training set. Additionally, the ’Compo-

nentID’ column observed the removal of entries such as C12, C3, D8, DZ1, L3, R41, TR2, TRB2,

and TRB7 in the training set, and C32, C4, and R8 in the testing set. These modifications ensure

uniformity across both datasets, crucial for the seamless functioning of machine-learning models.

The adjustments made for harmonizing the feature values resulted in the removal of only 0.3 percent

of the training data and 0.08 percent of the test data. These percentages are considerably low and

are deemed negligible, thus maintaining the substantial bulk of data for effective machine-learning

applications.

3.3.4 Feature Scaling

Data standardization is a pivotal preprocessing step in machine learning. It ensures that features

within a dataset are normalized to a uniform scale, significantly enhancing the accuracy and effi-

ciency of state-of-the-art algorithms (Żbikowski & Antosiuk, 2021). This section explores several

scaling methods—MaxAbs Scaling, Min-Max Scaling, Standard Scaling, and Robust Scaler—each

tailored for different dataset characteristics and offering unique benefits.

(1) MaxAbs Scaling: This method normalizes each feature by scaling the data to the range of

[-1, 1], as represented in Formula 1. MaxAbs Scaling is especially beneficial for algorithms

like k-Nearest Neighbors (k-NN), where it enhances overall performance by maintaining the

data’s original layout and preserving any inherent sparsity (Ahsan, Mahmud, Saha, Gupta, &

Siddique, 2021). This property makes it a suitable choice for sparse datasets.

Xscaled =
X

max(|X|)
(1)

where x is the original value and max(|X|) represents the maximum absolute value within

the feature column.

(2) Min-Max Scaling: Min-Max Scaling linearly adjusts the data, normalizing feature values
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to a predetermined range, typically [0, 1], as shown in Formula 2. This method is highly

susceptible to outliers, which can compress the bulk of the data into a narrow range (Nkik-

abahizi, Cheruiyot, & Kibe, 2022). It is important to carefully consider this characteristic

when applying Min-Max Scaling, particularly in datasets with significant outliers.

Xscaled =
X −Xmin

Xmax −Xmin
(2)

where Xmin and Xmax are respectively minimum and maximum values.

(3) Standard Scaling (Z-score Normalization): Standard Scaling adjusts data by removing the

mean and scaling to unit variance, as indicated in Formula 3. This scaling method transforms

the data distribution into a zero mean and a variance of one (Cao, Stojkovic, & Obradovic,

2016). However, the presence of outliers can significantly distort the mean and standard

deviation, rendering this method less effective for outlier-rich datasets.

Xscaled =
X − µ

σ
(3)

where x is the original value, µ is the mean and σ is the standard deviation.

(4) Robust Scaler: The Robust Scaler modifies feature values by subtracting the median and

dividing by the interquartile range (IQR), making it less susceptible to outliers, as shown in

Formulas 4 and 5. This method is particularly advantageous for datasets with extreme values.

Xscaled =
X − median

IQR
(4)

IQR = Q3−Q1 (5)

where median is the middle value, and IQR is the difference between the third and first quar-

tiles.

Given the significant presence of outliers and the varied data distributions in our PCB dataset,
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a careful selection of the scaling method is necessary. After reviewing different techniques and

considering the specific properties of our data, the Robust Scaler was selected as the most suitable

method. Its ability to diminish the impact of outliers by using the median and IQR ensures that

it effectively normalizes data without distorting crucial outlier effects. This characteristic, coupled

with its robustness, makes the Robust Scaler superior to Min-Max and Standard Scaling for our

dataset, and even more suitable than MaxAbs Scaling, which, while preserving sparsity, does not

specifically address outlier sensitivity. The implementation of the Robust Scaler in our preprocess-

ing pipeline has significantly enhanced the performance of the machine learning models employed

in this study. Such standardization proves particularly advantageous prior to the introduction of

data into data augmentation, the subsequent phase of preprocessing. It facilitates improved model

convergence and reduces the impact of outliers, thus optimizing the quality of the inputs fed into

the generative model.

Furthermore, using CTGAN for generating fake data, with its proficiency in handling complex

data structures, obviates the need for traditional data transformations such as one-hot encoding for

categorical variables. Differing from conventional models, this method can inherently process cat-

egorical columns, such as ’ComponentID’, ’Result’, and ’AOILabel’, by internally transforming

them into numerical formats. This attribute highlights the critical need for ensuring the cleanliness,

consistency, and correctness of categorical data before it is introduced into any modeling process.

The integrity of these data types is paramount, as it significantly influences the quality of the syn-

thetic data generation. By diligently preparing our data through scaling and ensuring robust handling

of categorical data within CTGAN, we establish a strong foundation for the crucial subsequent data

augmentation phase.

3.3.5 Data Augmentation

Imbalanced datasets, characterized by a predominant number of non-defective samples relative to

defective ones, tend to bias classifiers towards predicting the more frequent class. This bias can

compromise the detection of the minority class, which is often crucial for identifying defects (Park,

Kwon, & Jeong, 2023). As illustrated in Figure 3.4, the distribution of classes within the ”Opera-

tor Label” target variable in our dataset is highly uneven, with healthy samples far outnumbering
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defective ones. Such imbalance heightens the risk of overfitting, whereby models excel on training

data but falter on new, unseen datasets. To mitigate this, balancing the dataset is critical to bolster

the model’s capacity to generalize across diverse testing environments.

To rectify this imbalance, various techniques can be employed, broadly classified into data-level

interventions and more sophisticated methods like those involving GANs. Reflecting the specific

characteristics of our dataset, we have opted for two distinct approaches including SMOTE and

CTGAN. These strategies will be detailed in subsequent sections, emphasizing their importance in

developing models that deliver consistent and reliable predictions across all classes, thus enhancing

both the robustness and the credibility of the outcomes.

1. Synthetic Minority Oversampling (SMOTE): The Synthetic Minority Oversampling Tech-

nique is a pivotal method devised to tackle the issue of imbalanced datasets. Unlike conventional

oversampling methods that merely replicate existing minority instances, SMOTE generates new

synthetic samples by interpolating between existing instances. This approach fosters a more varied

and generalized representation of the minority class, thus enhancing the performance of classifica-

tion algorithms (S. Wang et al., 2023). This method operates by first selecting an instance xi from

the minority class and identifying its k nearest neighbors xzi within the same class. For each se-

lected instance xi, synthetic samples are created by interpolating between xi and one of its nearest

neighbors xzi. This is achieved using the following formula:

s = xi + λ · (xzi − xi) (6)

where λ is a random value between 0 and 1. This ensures the synthetic samples are positioned along

the line segment connecting xi and xzi. Figure 3.5 visually illustrates this process, showing how

synthetic samples are generated between existing minority class instances. Using This technique,

we investigated the impact of the amount of synthetic data on the ultimate performance of the

modeling process. The results are documented in Section 3.5.2, illustrating how varying levels of

synthetic data influence model outcomes.
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Figure 3.5: SMOTE Oversampling Process

2. Conditional Tabular Generative Adversarial Network (CTGAN): Although traditional

methods such as SMOTE have effectively balanced datasets and enhanced model performance,

recent advances in GANs offer new possibilities for improving PCB defect detection through the

creation of realistic synthetic defect images. These innovative approaches have proven to be effec-

tive solutions for addressing data imbalance challenges within machine learning contexts. GANs

are capable of generating high-quality synthetic data, often outperforming conventional oversam-

pling techniques. However, the deployment of GANs involves certain challenges; issues like model

collapse (Yeom, Gu, & Lee, 2024), poor quality (Laria, Wang, van de Weijer, & Raducanu, 2022;

Ye, Wang, & Chen, 2023), and intensive computational resources (Verma, Arora, & Perumal, 2023)

represent significant obstacles. Despite these challenges, the latest developments in GAN technol-

ogy have demonstrated considerable promise in enhancing the detection of defects in PCB manu-

facturing. In response to these developments, this part is dedicated to a thorough evaluation and

exploration of CTGAN application, assessing their ability to address the problems associated with

imbalanced datasets.

In this section, we will initially provide an overview of how the CTGAN model functions, estab-

lishing a foundational understanding of its architecture. Subsequent to this theoretical introduction,

we will detail the implementation of the model, discussing how it was applied to our dataset. The

discussion will include the specific libraries utilized, the analytical methods employed, including
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illustrative charts, and a comprehensive evaluation of the generated data’s validity. This detailed

presentation is designed to offer a clear insight into the model’s effectiveness and its practical utility

in addressing real-world data challenges.

(1) CTGAN Architecture

GAN architecture, as illustrated in Figure 3.6, is composed of two key deep neural network

components: the generator (G) and the discriminator (D). The generator functions as a gen-

erative model that produces data from a noise input, while the discriminator acts as a clas-

sification model that determines whether the input data is real or generated (Mendikowski

& Hartwig, 2022). Traditional GANs often encounter difficulties when dealing with diverse

data types, non-Gaussian distributions, multimodal data, sparse matrices resulting from one-

hot encoding, and categorical variables with significant imbalances. To overcome these chal-

lenges, the CTGAN model was developed, which harnesses the power of GANs specifically

for structured data environments.

Figure 3.6: Structure of GAN (Eom & Byeon, 2023)

This model combines elements from both conditional GANs and tabular GANs to form a

powerful model designed to manage the complexities of tabular data. This is achieved through

two primary techniques: mode-specific normalization and training-by-sampling.

• Mode-specific normalization: This technique addresses challenges associated with non-

Gaussian and multimodal distributions in numerical data by applying a variational Gaussian

mixture model (VGM) to normalize the data. This normalization ensures that the input

provided to the generator accurately reflects the statistical properties of the dataset, making
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it more suitable for the generative process.

• Training-by-sampling: This technique tackles issues related to categorical features by en-

suring a balanced representation of categories. It modifies the sampling process according

to the logarithmic frequency of the categories, which allows the model to thoroughly ex-

plore and learn from all possible discrete values in the dataset. The specific process is illus-

trated in Figure 3.7. By employing these approaches, CTGAN can generate synthetic data

that is diverse and representative of the original dataset, thereby improving model training

and overall performance.

Figure 3.7: Training-by-sampling of CTGAN (L. Xu et al., 2019)

Given the specific characteristics of our dataset, which includes both categorical and con-

tinuous features, non-Gaussian distributions, multimodality, and a high level of imbalance,

the advantages of this model make it an ideal choice for our needs. CTGAN’s ability to

effectively model complex data distributions and generate high-quality synthetic data while

handling the inherent challenges of our dataset is why we selected it for this study. Following

this rationale, we now proceed to the implementation phase.

(2) CTGAN Implementation

In the implementing phase, we leveraged the Synthetic Data Vault (SDV) library (Patki,

Wedge, & Veeramachaneni, 2016), which provides a robust framework for generating syn-

thetic data through various generative models, including CTGAN. SDV library is particularly
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suited for handling complex data structures and distributions, making it an excellent choice

for our dataset’s specific challenges. We also incorporated the ’SingleTableMetadata’ to effi-

ciently manage dataset metadata, which is crucial for the model’s understanding of different

column types and roles within the data. Upon loading the dataset, metadata was automati-

cally extracted from the data frame, converted into a dictionary format for easier inspection,

and then validated against the actual data to ensure accuracy and consistency, thus preventing

discrepancies during the data generation.

In the training architecture of the model, two fully connected hidden layers are utilized for

both the generator and discriminator components, enhancing the model’s ability to learn and

synthesize complex data patterns effectively. Notably, the activation functions play a piv-

otal role in regulating the flow of gradients through the network, thus aiding the optimization

process. In the generator, ReLU (Rectified Linear Unit) activation function is employed

for its simplicity and efficiency, which facilitates a faster and more effective training pro-

cess by allowing only positive values to pass through, thus mitigating the vanishing gradient

problem. Additionally, Leaky ReLU is implemented in discriminator to prevent the ’dying

ReLU’ problem by allowing a small, non-zero gradient when the unit is inactive, ensuring

that all neurons remain functional and contribute to the learning process. Conditional sam-

pling was strategically employed within the CTGAN framework, ensuring the model could

produce data under predefined conditions. This was particularly crucial for aligning the num-

ber of defective labels with the normal ones in our preprocessed dataset which comprised

21,551 normal labels and only 858 defective labels. To rectify this imbalance and enhance

the model’s predictive accuracy, we generated an additional 20,693 defective labels with 20

features, thus ensuring a balanced training environment. To optimize the hyperparameters

and ensure it is precisely adapted to the specific characteristics of our dataset, we utilized

GridSearch. This method involved testing a range of values for critical parameters such as

learning rate, batch size, and the number of training epochs. The ranges for these parameters

were determined based on preliminary tests and insights drawn from the literature. Ulti-

mately, the best-identified hyperparameters are ’embeding dim’: 128, ’discriminator steps’:

2, ’epochs’: 594 with ’batch size’: 500. To further assess the effectiveness of the training
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process, a detailed loss analysis for both the generator and discriminator will be presented in

the subsequent part.

• Training Dynamics and Loss Analysis: Fundamentally, the dynamics between the gen-

erator and discriminator in CTGAN training reflect the continuous adversarial interactions

described by (Liu & Hsieh, 2019). The efforts of the generator to produce increasingly

realistic data and the discriminator’s role in differentiating real from synthetic data lead

to the observed fluctuating loss patterns. These fluctuations, common in GAN training as

noted by (Mescheder, Geiger, & Nowozin, 2018), indicate ongoing adjustments and learn-

ing within the model rather than failures. Further, the stabilization methods applied by

(K. Xu, Li, Zhu, & Zhang, 2019) using control theory underscore the intrinsic nature of

these fluctuations as part of the iterative learning process between G and D.

Building on these insights, Figure 3.8 in our study provides a detailed analysis of the CT-

GAN training dynamics, showcasing the significant impact of varying hyperparameter con-

figurations on the model’s operational efficacy. This figure includes a series of loss graphs

for different settings, vividly illustrating typical patterns of loss fluctuations and their con-

vergence. Notably, the configuration resulting in the most stable and effective training out-

comes demonstrates an ideal balance between the losses of the generator and discriminator,

smoothly converging to a consistent mean. Initially, significant fluctuations stabilize as

training progresses. This stabilization around a consistent mean indicates effective mutual

adaptation and learning between the components, essential for achieving a Nash equilib-

rium.

Furthermore, the loss oscillations remain confined within a predefined range, showing no

signs of extreme volatility or divergence, thereby avoiding complications such as mode col-

lapse—where the generator might fail to produce more than a limited array of outputs. This

stability suggests that the chosen hyperparameters are finely tuned to foster an environment

conducive to effective training. The discriminator updates at a carefully moderated pace,

enhancing the generator’s ability to produce diverse and realistic data, crucial for generating
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Figure 3.8: Loss values of CTGAN training process

high-quality synthetic data. These empirical findings underscore the importance of strate-

gic hyperparameter tuning in optimizing model performance and output quality, confirming

the critical role of fine-tuning hyperparameters to achieve stable training outcomes.

(3) CTGAN Synthatic Data Evaluation
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After generating synthetic data, it is essential to evaluate how closely this data replicates

the real dataset’s statistical properties, distributions, and correlations. This evaluation step is

crucial for ensuring that the synthetic data can be reliably used for further analysis, testing,

or training machine learning models without introducing biases or significant deviations from

real-world data.

• Diagnostic Report: The diagnostic validation process was conducted with meticulous at-

tention to the validity and structural integrity of the data, including stringent checks to

ensure that continuous columns conformed to the minimum and maximum values of the

real data. Similarly, categorical columns were verified to contain the same categories as

those present in the actual dataset. This thorough examination resulted in an overall score

of 100%, confirming that the synthetic data adheres flawlessly to the real data and precisely

replicates its structural intricacies.

• Quality Report: As Table 3.4 illustrates, the quality report for the synthetic data gener-

ated yielded an overall score of almost 84%, reflecting a strong replication of the origi-

nal dataset’s characteristics while also highlighting areas for improvement. The evaluation

measures the statistical similarity and focuses on two key aspects: Column Shapes and Col-

umn Pair Trends. The Column Shapes score close to 88%, indicates that the synthetic data

effectively captures the univariate distributions and statistical properties of most columns in

the original dataset. However, the Column Pair Trends score of 80 %, reveals a few discrep-

ancies in accurately modeling the bivariate interactions and correlations between columns.

This suggests that while the synthetic data is reliable for analyses and applications that are

less sensitive to inter-variable dependencies, further refinement may be necessary to en-

hance the accuracy of these complex relationships for tasks that depend heavily on such

correlations. Improving these aspects could involve refining the CTGAN model’s train-

ing process or experimenting with different configurations to better capture the nuanced

dynamics of the dataset.

To better understand the discussed results and visual comparison, the distribution plots for

some selected continuous and categorical variables are provided in Figures 3.9 and 3.10.
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Table 3.4: Synthetic Data Quality Report

Column Shape Column Pair Trends Overall Quality Score
87.74 80.01 83.87

Figure 3.9: Continious Features Comparison of the generated data and actual data

As can be observed in the above histograms, the distributions in the synthetic data closely

match those of the real data, which is a good indicator. The key is that even without com-

plete loss convergence, the CTGAN model generated high-quality synthetic data, capturing

the underlying distributions of the real dataset. Further analysis was conducted using Total

Variation Distance and Kolmogorov-Smirnov complement metrics to evaluate the quality

of augmented data for categorical and numerical features, respectively.

• Total Variation Distance Metric: Total Variation Distance (TVD) is a robust metric ex-

tensively utilized for assessing the congruence between the distributions of synthetic cat-

egorical data and their real counterparts (Corander, Remes, & Koski, 2021). This metric

is widely applied across different fields to ensure that synthetic data accurately mirrors the

distributional characteristics of real data. For instance, (Regol, Kroon, & Coates, 2023)
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Figure 3.10: Categorical Features Comparison of the generated data and actual data

and (Ackerman, Kour, & Farchi, 2023) have explored the application of this metric in as-

sessing generative models that produce categorical data. They emphasize the significance

of TVD in diminishing the disparities between the distributions of real and synthetic data

across various use cases. The formula for calculating TVD between two discrete probability

distributions, P and Q, over a discrete variable X is expressed as follows:

TVD(P,Q) =
1

2

n∑
x∈X

|P (x)−Q(x)| (7)

• Kolmogorov-Smirnov Metric: The Kolmogorov-Smirnov (KS) test is a non-parametric

statistical technique designed to assess the degree of similarity either between a sample

and a reference distribution or between two independent samples. It quantifies this similar-

ity by measuring the maximum deviation between their empirical cumulative distribution

functions (ECDFs). The KS test is especially valuable for verifying how well synthetic data

replicate the distribution of real data. Higher KS values suggest a closer match between the

distributions (Bai & Kalaj, 2021). The formula for the KS statistic, known as D statistic, is
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given by:

Dn = supx |Fn(x)− F (x)| (8)

where Fn(x) is the ECDF of the sample, F (x) is the CDF of the reference distribution and

sup denotes the maximum value of the set of distances |Fn(x)− F (x)|.

Table 3.5 outlines the scores for the KS test and TVD metrics across various attributes of

the datasets. Higher scores suggest a greater congruence between the synthetic and real

data distributions. Notably, the attribute “FigureID” registers a high TVD score of 0.95,

demonstrating a strong match. Similarly, “PinNumber” and “Volume(%)” attain high KS

scores of 0.95 and 0.94, respectively, indicating a close resemblance between the synthetic

and actual data distributions for these attributes. Conversely, attributes such as “SizeX” and

“Shape(um)” display lower scores of 0.68 and 0.69, respectively, signalling potential areas

for enhancement in the synthetic data generation process.

Overall, these metrics provide a quantitative analysis of how well the synthetic data repli-

cates the real data across different features, highlighting areas where the synthetic data

generation aligns closely with the real data and areas where improvements might be neces-

sary. This analysis is crucial for validating the utility of synthetic data in applications where

accurate reproduction of real-world data distributions is critical.

Table 3.5: KS and TVD Metrics and Scores

Metric Feature Name Score Metric Feature Name Score
KS PinNumber 0.95 KS Shape(um) 0.69
KS Volume(%) 0.94 KS PosX(mm) 0.91
KS Height(um) 0.92 KS PosY(mm) 0.86
KS Area(%) 0.90 TV FigureID 0.95
KS OffsetX(%) 0.91 TV ComponentID 0.83
KS OffsetY(%) 0.88 TV PadType 0.90
KS SizeX 0.68 TV Result 0.89
KS SizeY 0.73 TV MachineID 0.90
KS Volume(um3) 0.80 TV AOILabel 0.90
KS Area(um2) 0.86 TV OperatorLabel 0.88
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3.3.6 Data Encoding

Following the initial data preparation and data generation, transforming data into a format that is

interpretable by ML models is critical. This is especially true for categorical variables, which inher-

ently lack a numerical representation and thus pose a unique challenge for ML models. To address

this, two predominant methods are employed: label encoding and one-hot encoding. Label encod-

ing assigns a distinct integer to each unique category within a variable, effectively transforming

categorical data into a numerical format. However, this method may inadvertently imply an ordinal

relationship among the categories, which might not exist in reality. To prevent such potential mis-

interpretations, one-hot encoding is often utilized. One-hot encoding involves creating a separate

binary column for each category, thus eliminating any implied order or hierarchy among them. By

integrating both techniques, categorical data is converted into a numerical format that preserves the

integrity of the original categories. This dual approach enhances the accuracy and efficacy of model

training and analysis, ensuring that the categorical distinctions remain impactful without introduc-

ing artificial ordinal associations.

In the current phase of our research, the ”Operator Label” values, categorized into ”Good” and

”Bad,” were encoded numerically as 0 and 1, respectively, through Label Encoding. This numeri-

cal transformation is crucial for their effective incorporation into machine learning models, thereby

enhancing prediction accuracy. Additionally, OneHot Encoding was applied to other categorical

features within the dataset, including ”ComponentID,” ”Result,” ”MachineID,” and ”AOILabel.”

This approach expanded the feature space from 20 to 120 dimensions, providing a more compre-

hensive representation for the analytical model. Furthermore, it was necessary to perform data-type

conversions for several features initially typed as ”object” within the dataset. To ensure full compat-

ibility with the computational requirements of machine learning algorithms, these features—namely

”ComponentID,” ”Result,” ”MachineID,” and ”AOILabel”—were converted to float data types. This

conversion is vital for optimizing model performance and ensuring the robustness of subsequent

analyses.

46



3.3.7 Feature Selection

Feature selection is a crucial preprocessing step in machine learning, particularly for managing

datasets with high dimensionality and complexity. This process is essential for improving model ef-

fectiveness by reducing complexity, increasing accuracy, and decreasing the training time required.

The primary goal of feature selection is to refine models for better clarity and to purify the dataset by

removing redundant and irrelevant features (Jemai & Zarrad, 2023; Zingade, Deshmukh, & Kadam,

2023). Since the employed dataset in this study is suffering from class imbalance, Feature Selection

can help balance class influence by eliminating redundant and irrelevant features that may bias the

model toward the majority class. According to (Thiyam & Dey, 2024) by concentrating on features

significant to both classes, feature selection enables the model to learn more effectively from minor-

ity class instances, thereby indirectly addressing class imbalance. In addition, as detailed in Section

3.2.3, we encountered numerous interrelated features within our dataset. Therefore, employing fea-

ture selection techniques, especially those that consider feature interaction and redundancy, is vital

for improving the efficiency and effectiveness of machine learning models on datasets with inter-

related features. The feature selection named Neighborhood Rough Set method, as demonstrated

by (Wan et al., 2021), offers a powerful tool for achieving these benefits, leading to more accurate,

interpretable, and resource-efficient models.

In the pursuit of refining data for enhanced analysis, several techniques are available for feature

selection, each with distinct methodologies and advantages. Techniques such as PCA, Recursive

Feature Elimination (RFE), LASSO (Least Absolute Shrinkage and Selection Operator), and Ge-

netic Algorithms (GAs) are well-regarded in the field of data science for their efficacy in reduc-

ing dimensionality and isolating the most informative features, highlighting the potential of hybrid

approaches that integrate multiple feature selection techniques (Luque-Rodriguez, Molina-Baena,

Jimenez-Vilchez, & Arauzo-Azofra, 2022). This amalgamation harnesses the strengths of individ-

ual methods to provide a more robust solution for feature selection, thereby potentially improving

model accuracy and interpretability. In related research, a two-stage feature selection process uti-

lizing RFE with Logistic Regression and Gradient Boosting was explored to optimize the analytical
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framework (Mirzaei, 2023). This approach has been shown to enhance model accuracy by effec-

tively narrowing down crucial features and adeptly managing complex non-linear relationships.

The hybrid method has proven superior, significantly refining feature selection and enhancing the

robustness and adaptability of predictive models.

Building upon these insights, we employed a similar two-stage feature selection methodology

using Recursive Feature Elimination coupled with Logistic Regression and Gradient Boosting, tai-

lored with varying feature set sizes of 100, 80, and 60 to evaluate the impact of varying feature quan-

tities on the predictive accuracy and robustness of the model. This strategy was chosen to leverage

their combined strengths in accurately identifying and prioritizing features that significantly impact

model outcomes. By methodically adjusting feature sets and employing a robust validation process,

this approach aims to achieve superior predictive performance and reduce the likelihood of model

overfitting, thus tailoring the model more precisely to the specific dynamics of the dataset at hand.

The detailed findings, including the impact of different feature numbers, are provided in ”Results

and Discussion”, Section 3.5.2.

3.3.8 Data Splitting

In machine learning, the practice of data splitting plays a pivotal role in building models that are

both robust and capable of generalization. This process typically segregates the dataset into distinct

training and testing subsets, essential for assessing a model’s effectiveness on new, unseen data.

Such separation is critical, preventing models from merely memorizing the data—a problem known

as overfitting (Reitermanova et al., 2010).

In our work, the provided dataset was pre-partitioned into distinct training and testing sets. This

preliminary separation ensures that any developed model can be validated on unseen data, thereby

enhancing the reliability of its predictive capabilities. To facilitate validation, the training dataset

was further segmented into a training set and a validation set, with careful attention to maintaining

the original proportion of healthy and faulty classes. This division allows for the evaluation of

models on data that was not used during training and enables early stopping and model tuning.

Specifically, 20% of the total PCB panels were randomly selected to constitute the validation set,

while the remaining 80% were designated for training. This balance was achieved by stratifying the
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class labels, ensuring that the distribution of classes in the subsets mirrors that of the full dataset.

After validation, the developed models were retrained on the entire training dataset to utilize all

available data for learning. Finally, the separate test dataset, comprising 9,339 normal labels and

455 defective labels, was exclusively used to assess the performance of the models.

3.4 Model Implementation

Upon finalizing the data preparation phase, the subsequent step entailed the selection and training

of suitable models utilizing our dataset. This section provides an overview of the machine learning

and deep learning models employed, which are categorized into four distinct groups. The principal

aim of employing these models is to explore the effects of synthetic data volume—generated via

SMOTE and CTGAN techniques—on model performance. The section concludes with an analysis

of the tools and libraries utilized throughout the model training process.

3.4.1 Instance-based Model

• K-Nearest Neighbors (KNN): This algorithm is a simple, non-parametric method used in clas-

sification and regression tasks. It works by identifying the K closest data points in the training

set to a new data point and using these neighbors to predict the classification or value of the new

point. KNN is particularly valued for its simplicity and effectiveness, especially when dealing

with small datasets or cases where the relationship between features and labels is complex or

non-linear. Although the algorithm is simple, selecting an appropriate value for K is crucial for

accurately classifying unlabeled data (Taunk, De, Verma, & Swetapadma, 2019). Additionally,

KNN has been successfully applied in diverse fields such as environmental geology and sentiment

analysis, showing its versatility across different applications(Bullejos, Cabezas, Martı́n-Martı́n, &

Alcalá, 2022).

3.4.2 Tree-based Models

• Random Forest: The Random Forest model is a powerful ensemble learning method widely used

in various fields for classification and regression tasks. It operates by constructing many decision
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trees during training and outputs the mode of the classes (classification) or mean prediction (re-

gression) of the individual trees. This approach helps reduce overfitting and improve accuracy by

leveraging multiple decision trees’ diversity (Cutler, Cutler, & Stevens, 2012).

• Extra Tree: The Extra Trees (or Extremely Randomized Trees) algorithm is an ensemble machine

learning method that aggregates the results of multiple de-correlated decision trees to improve the

predictive accuracy and control over-fitting. The method differs from classic decision trees and

random forests in the way it splits nodes. It uses random thresholds for each feature rather than

searching for the best possible thresholds like a traditional decision tree does. This randomization

typically increases the model variance reduction at the cost of a slight increase in bias, with the

trade-off often leading to better model performance on complex datasets. Extra Trees can be

particularly effective for large datasets and useful for classification and regression tasks (Geurts,

Ernst, & Wehenkel, 2006).

• Decision Tree: The Decision Tree algorithm is a popular and powerful tool used for both classifi-

cation and regression tasks in machine learning. It works by splitting the data into smaller subsets

based on certain criteria, which are visualized as a tree structure. Each node in the tree represents

a test on an attribute, each branch represents the outcome of that test, and each leaf node repre-

sents a class label (in classification) or a continuous outcome (in regression). The paths from root

to leaf represent classification rules or regression paths. Decision trees are valued for their ease

of interpretation and visualization, making them popular for exploratory data analysis. They can

handle both numerical and categorical data and do not require data normalization. However, they

can be prone to overfitting, especially with complex trees, but techniques such as pruning, setting

the minimum number of samples required at a leaf node, or setting the maximum depth of the tree

are commonly used to avoid this issue (Breiman, 2017).

3.4.3 Boosting-based Models

• Gradient Boosting: Gradient boosting is a versatile machine learning technique that incremen-

tally constructs an ensemble of weak prediction models, typically decision trees, to enhance ac-

curacy. Each new model in the ensemble sequentially corrects the errors of its predecessors by
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focusing on the residuals, and continuously updating the loss function to minimize errors. This

technique is flexible, supporting various loss functions and adaptable to both regression and clas-

sification tasks, making it widely applicable. Key parameters such as the number of trees, tree

depth, and learning rate help control overfitting, allowing for a balanced approach between model

complexity and generalization (Friedman, 2001). Gradient boosting is especially effective for

structured data and remains popular in competitive machine-learning environments.

• Light Gradient Boosting: Light Gradient Boosting Machine is a fast and efficient gradient boost-

ing framework developed by Microsoft that stands out for its use of a histogram-based algorithm

which buckets continuous values into discrete bins to speed up training and reduce memory us-

age. It features Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling

(EFB) which improve model efficiency by focusing on more informative instances and bundling

exclusive features, respectively. These innovations make LightGBM particularly suited for large

datasets and scenarios demanding high computational performance (Ke et al., 2017).

• XG Boost: eXtreme Gradient Boosting is an advanced gradient boosting algorithm known for

its efficiency and effectiveness in handling large and sparse datasets, developed by (T. Chen &

Guestrin, 2016). XGBoost incorporates several innovative features such as L1 and L2 regulariza-

tion to prevent overfitting, sparsity awareness that optimizes performance with missing data, and

a weighted quantile sketch algorithm to manage weighted and imbalanced data effectively. It also

supports parallel processing, enhancing its speed, and includes built-in cross-validation at each

iteration, which aids in optimizing hyperparameters for improved model accuracy. It has been

widely adopted in various data science applications due to its robustness and versatility.

• Cat Boost: Categorical Boosting is a powerful gradient boosting algorithm developed by Yandex,

specifically optimized to handle categorical data seamlessly. Unlike other boosting algorithms that

require extensive pre-processing to convert categorical values into numerical formats, CatBoost

processes categorical features using its algorithmic approach, which reduces the risk of overfitting

and enhances model performance. Key features of CatBoost include its use of ordered boosting

to combat target leakage and improve generalization and symmetric trees that ensure balanced

tree structures for more efficient predictions. This approach results in significant improvements in
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handling categorical data, making CatBoost a preferred choice for models where categorical data

is predominant (Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin, 2018).

3.4.4 Hybrid/Deep Learning-based Model

• TabNet: TabNet is a novel deep learning architecture designed by (Arik & Pfister, 2021) that in-

troduces a transformative approach to handling tabular data through a sequential attention mech-

anism. This architecture enables the model to selectively focus on the most salient features at

each decision step, thereby optimizing both the interpretability and efficiency of learning. TabNet

not only achieves superior performance across various datasets by using self-supervised learning

to enhance model capabilities with unlabeled data, but it also offers both local and global in-

terpretability. This dual-level interpretability—where local insights detail feature importance for

individual predictions and global insights quantify overall feature contributions—makes TabNet

particularly valuable in sectors like healthcare and finance, where understanding model reasoning

is crucial. Building on this innovative design, TabNet has been adapted for specific applications

that demonstrate its versatility and precision. For instance, in geosciences (Ta et al., 2023), it has

been used to classify rock facies and extract feature embeddings from well-log data. Additionally,

its application in remote sensing (Shah, Du, & Xu, 2022) for hyperspectral image classification

highlights its effectiveness in managing spatial-temporal features.

TabNet’s architecture incorporates several innovative elements that enhance its performance in

processing tabular data. It is designed with an emphasis on an attention mechanism, a decision-

making process similar to that of decision trees, advanced feature transformation methods, and a

tailored loss function to optimize training. These features collectively allow TabNet to identify

and leverage complex nonlinear patterns within data, offering both scalability and interpretability.

1. Attention Mechanism: At the heart of TabNet is its attention mechanism which focuses

selectively on the most crucial features at each decision step. This is achieved through the gener-

ation of attention weights wi, which are assigned to each feature based on their importance. The

attention weights are determined using the formula:
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Figure 3.11: TabNet Model Architecture (Arik & Pfister, 2021)

wi =
exp(si)∑
j exp(sj)

(9)

Here, si represents a score reflecting the importance of the i-th feature, calculated through a

trainable part of the network.

2. Split Decision: The split decision determines how the data is partitioned at each step of the

decision process, mimicking the decision-making paths of traditional decision trees. It utilizes a

specialized neural network layer to create splits in the data:

M = Relu(b+W · previous output) (10)

Where, M denotes the mask used to decide the data split, with W representing the weight matrix,

b as the bias, and ReLU providing the necessary nonlinearity for learning intricate data patterns.

3. Feature Transformation: Before attention processing, TabNet often transforms features to

enhance their compatibility with the model structure. This transformation typically involves a
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linear adjustment followed by a nonlinear activation function. This could be represented by:

F = Relu(W · x+ b) (11)

In this equation,F stands for the transformed feature, xis the input feature, with W and b as the

transformation’s weights and bias, respectively.

4. Loss Function: The training of TabNet involves minimizing a specific loss function that

reflects how closely the model’s predictions match the actual data labels. In binary classification

tasks, this function could be the binary cross-entropy loss:

L = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)] (12)

where N is the total number of samples, yi is the true label, and ŷi is the predicted label by the

model.

These components make TabNet a powerful tool in the arsenal of modern machine learning, ca-

pable of handling a variety of tasks with high efficiency and interpretability.

3.4.5 Tools and Libraries

In this study, machine learning model development was facilitated by using PyCaret (PyCaret —

pycaret 2.3.5 documentation, n.d.), an accessible, low-code library in Python designed for ma-

chine learning automation. This platform streamlines numerous tasks within the machine learning

pipeline such as data preprocessing, model training, hyperparameter optimization, and model eval-

uation. The choice of PyCaret was motivated by its user-friendly interface and its efficiency in

experimenting with various models and techniques.

Additionally, for the deployment of the TabNet model, the PyTorch (PyTorch, n.d.) framework

was employed. PyTorch, known for its powerful computing capabilities and flexibility, supports

detailed model architecture customization and comprehensive control over the training process. The

TabNet model, which is tailored for structured data, benefits from the extensive features of PyTorch,
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allowing for precise adjustment of the model’s parameters to enhance performance.

3.5 Experimental Results

In this section, we begin by defining the essential metrics required for the accurate evaluation and

refinement of our ML/DL models. The selection of appropriate metrics is paramount, as choos-

ing unsuitable ones can result in misleading interpretations of model performance. Acknowledging

the importance of this selection, we will explore both Class-level and Model-level metrics in detail.

Furthermore, we thoroughly investigate the impact of varying volumes of synthetic data—generated

using SMOTE and CTGAN techniques—on the performance of our proposed models. This anal-

ysis is conducted separately for each technique, aiming to understand how different quantities of

synthetic data influence model efficacy. By examining these effects in detail, we aim to provide

insights into optimizing machine learning workflows through data augmentation and identify the

most effective strategies for enhancing model performance within the context of this project.

3.5.1 Metrics and Indicators

Choosing the right metrics to evaluate our model depends critically on the characteristics of our

dataset and the goals we aim to achieve. As previously discussed in Section 3.1, our primary ob-

jective in this chapter is to classify defects effectively along the PCB operator label to minimize

subsequent costs. Given this focus, class-level metrics are especially pertinent due to the high cost

associated with false negatives. These metrics help us gauge the reliability of our model in identi-

fying defective components, which is crucial for preventing costly errors.

Moreover, model-level metrics are crucial in situations involving imbalanced data sets or when

different errors carry different costs. In our case, incorrectly classifying a functional PCB compo-

nent as defective can lead to unnecessary expenses, either through further inspections or by discard-

ing a functional board. Therefore, model-level metrics provide a holistic evaluation of our model’s

performance by considering various aspects of its accuracy and the implications of errors. Further

details on these metrics and their application are discussed below.

(1) Class-level Metrics
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Class-level metrics offer a detailed assessment of model performance by measuring how accu-

rately it predicts each class (defective and non-defective) (B. J. Erickson & Kitamura, 2021).

These metrics, along with their formulas, are outlined below:

• Precision: This is calculated as the ratio of true positive predictions to the total number of

positive predictions. It reflects the proportion of predicted positive instances that are correctly

identified.

Precision =
TP

TP + FP
(13)

• Recall: This is determined by the ratio of true positive predictions to the total number of

actual positive instances. It assesses the model’s effectiveness in identifying all positive cases.

Recall =
TP

TP + FN
(14)

• F1 Score: The F1 score is the harmonic mean of precision and recall, offering a balanced

measure that is particularly useful for datasets with class imbalance. The closer it is to 1, the

better the model’s performance in accurately classifying the minority class.

F1 = 2 · Precision ·Recall

Precision+Recall
=

2TP

2TP + FP + FN
(15)

(2) Model-level Metrics

Model-level metrics provide an overall evaluation of the model’s performance. These metrics

include:

• Accuracy: The ratio of correctly predicted instances to the total number of instances. While

accuracy provides a simple measure of performance, it may not be sufficient for imbalanced

datasets.

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

• AUC: The area under the ROC curve (AUC) quantifies the model’s discriminatory power,

with values nearer to 1 indicating better performance. The ”receiver operating characteristic
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(ROC) curve” displays the results of a model’s classification predictions by plotting the true

positive rate (recall) on the vertical axis against the false positive rate (FPR, which is one

minus the specificity) on the horizontal axis (Eom & Byeon, 2023). AUC is computed as the

average of the true positive rate and the true negative.

Specificity =
TN

TN + FP
= TNR (17)

AUC =
TPR+ TNR

2
(18)

3.5.2 Results and Discussion

In this section, we assess the impact of varying volumes of synthetic data, generated through

SMOTE and CTGAN techniques, on the efficacy of the models delineated in Section 3.4. Given

the pronounced imbalance within our dataset, where classifiers typically yield high accuracy yet

low recall, the F1-score—particularly with an emphasis on the minority class representing defective

PCBs—serves as a critical metric for evaluating classifier performance. Additionally, each algo-

rithm is trained using 5-fold cross-validation to ensure reliability and robustness.

Our analysis commenced with KNN model, leveraging the SMOTE and CTGAN augmentation

methods. As observed in Tabel 3.6, the F1-score on the test set was initially 42% without the

use of balancing techniques. Further exploration into the impact of synthetic data volume on the

F1-score demonstrated an improvement to 50% after augmenting the dataset by 40% with SMOTE-

generated synthetic data. When deploying CTGAN-generated data, as illustrated in Tabel 3.7, a

threshold augmentation of 60% improved the F1-score to 54%. However, any additional increase in

synthetic data proved counterproductive, leading to a decrement in model performance.
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Table 3.6: KNN Performance Metrics at Different Levels of SMOTE Oversampling

SMOTE(k=10) Number of Data Accuracy AUC Precision Recall F1 Score
Sampling Strategy Defectives

None 858
Valid 0.984±0.001 0.902±0.013 0.903±0.034 0.657±0.031 0.76±0.023
Test 0.959 0.723 0.62 0.323 0.424

0.2 4310
Valid 0.972±0.003 0.98±0.004 0.939±0.011 0.889±0.021 0.913±0.011
Test 0.956 0.769 0.529 0.472 0.497

0.4 8620
Valid 0.972±0.002 0.989±0.002 0.954±0.005 0.938±0.004 0.946±0.004
Test 0.952 0.774 0.489 0.500 0.499

0.6 12930
Valid 0.970±0.003 0.992±0.001 0.96±0.005 0.960±0.004 0.960±0.005
Test 0.946 0.773 0.435 0.503 0.466

0.8 17240
Valid 0.971±0.003 0.993±0.0009 0.964±0.005 0.97±0.003 0.967±0.002
Test 0.942 0.77 0.406 0.518 0.455

Minority 21551
Valid 0.974±0.003 0.993±0.0008 0.967±0.003 0.980±0.003 0.974±0.001
Test 0.94 0.769 0.393 0.516 0.446

Table 3.7: KNN Performance Metrics at Different Levels of CT-GAN Synthetic Data

Imbalance Number of Data Accuracy AUC Precision Recall F1 Score

Technique Defectives

None 858
Valid 0.984±0.001 0.902±0.013 0.903±0.034 0.657±0.031 0.760±0.023

Test 0.9594 0.723 0.62 0.323 0.424

4310
Valid 0.976±0.003 0.965±0.006 0.979±0.009 0.877±0.017 0.925±0.010

Test 0.962 0.765 0.64 0.435 0.518

8620
Valid 0.973±0.002 0.977±0.003 0.990±0.003 0.915±0.011 0.95±0.005

Test 0.963 0.777 0.657 0.439 0.527

CT-GAN 12930
Valid 0.971±0.003 0.983±0.002 0.992±0.003 0.930±0.006 0.960±0.004

Test 0.963 0.779 0.66 0.45 0.54

17240
Valid 0.971±0.001 0.986±0.002 0.994±0.001 0.941±0.004 0.967±0.002

Test 0.964 0.777 0.671 0.448 0.537

21551
Valid 0.97±0.002 0.987±0.001 0.995±0.002 0.845±0.006 0.969±0.003

Test 0.964 0.776 0.674 0.446 0.537
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Table 3.8: LGBM Performance Metrics at Different Levels of SMOTE Oversampling

SMOTE(k=10) Number of Data Accuracy AUC Precision Recall F1 Score
Sampling Strategy Defectives

None 858
Valid 0.987±0.001 0.947±0.012 0.933±0.024 0.715±0.027 0.812±0.02
Test 0.960 0.793 0.691 0.285 0.404

0.2 4310
Valid 0.982±0.002 0.990±0.004 0.979±0.007 0.915±0.017 0.946±0.007
Test 0.963 0.775 0.713 0.367 0.484

0.4 8620
Valid 0.981±0.002 0.994±0.001 0.985±0.004 0.947±0.007 0.966±0.005
Test 0.964 0.757 0.709 0.391 0.504

0.6 12930
Valid 0.979±0.003 0.996±0.001 0.989±0.003 0.956±0.007 0.972±0.004
Test 0.961 0.755 0.644 0.378 0.476

0.8 17240
Valid 0.979±0.002 0.996±0.001 0.989±0.003 0.963±0.005 0.976±0.003
Test 0.962 0.749 0.648 0.408 0.501

Minority 21551
Valid 0.979±0.003 0.997±0.0006 0.99±0.003 0.968±0.004 0.979±0.003
Test 0.959 0.748 0.597 0.384 0.467

A parallel evaluation of the LightGBM model, with a random state of 123, echoed these findings.

This model demonstrated optimal results with a 40% enhancement using SMOTE data and a 60%

increase with CTGAN-generated data, as detailed in the respective Tables 3.8, and 3.9. When

comparing with the KNN model, LightGBM displayed a 4% decrease in performance with CT-

GAN sourced data.
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Table 3.9: LGBM Performance Metrics at Different Levels of CT-GAN Synthetic Data

Imbalance Number of Data Accuracy AUC Precision Recall F1 Score

Technique Defectives

None 858
Valid 0.987± 0.001 0.947± 0.012 0.939± 0.027 0.715± 0.024 0.812± 0.020

Test 0.960 0.793 0.692 0.285 0.404

4310
Valid 0.987± 0.002 0.987± 0.005 0.988± 0.006 0.936± 0.013 0.962± 0.006

Test 0.960 0.811 0.671 0.305 0.419

8620
Valid 0.989± 0.001 0.994± 0.001 0.993± 0.002 0.979± 0.003 0.987± 0.002

Test 0.960 0.809 0.656 0.327 0.437

CT-GAN 12930
Valid 0.990± 0.001 0.996± 0.012 0.995± 0.027 0.715± 0.024 0.812± 0.020

Test 0.962 0.834 0.688 0.340 0.455

17240
Valid 0.992± 0.003 0.997± 0.006 0.997± 0.009 0.985± 0.017 0.991± 0.010

Test 0.960 0.833 0.646 0.329 0.436

21551
Valid 0.992± 0.001 0.997± 0.0007 0.997± 0.001 0.987± 0.002 0.992± 0.001

Test 0.961 0.818 0.682 0.320 0.436

Furthermore, trials involving the XGBoost model (See Tabel 3.10, and 3.11), reaffirmed the

limitations of excessive synthetic data augmentation. Specifically, a threshold of 40% in synthetic

data augmentation was identified beyond which no further improvements in model performance

were discernible.
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Table 3.10: XGBoost Performance Metrics at Different Levels of SMOTE Oversampling

SMOTE(k=10) Number of Data Accuracy AUC Precision Recall F1 Score

Sampling Strategy Defectives

None 858
Valid 0.987±0.001 0.944±0.012 0.945±0.020 0.724±0.029 0.819±0.020

Test 0.960 0.782 0.697 0.252 0.371

0.2 4310
Valid 0.983±0.003 0.991±0.003 0.979±0.006 0.922±0.020 0.949±0.010

Test 0.963 0.78 0.71 0.3451 0.464

0.4 8620
Valid 0.982±0.003 0.995±0.001 0.986±0.004 0.951±0.007 0.968±0.005

Test 0.962 0.770 0.674 0.364 0.473

0.6 12930
Valid 0.982±0.003 0.997±0.001 0.988±0.003 0.963±0.005 0.975±0.004

Test 0.962 0.761 0.676 0.363 0.473

0.8 17240
Valid 0.982±0.002 0.997±0.005 0.988±0.003 0.970±0.005 0.979±0.002

Test 0.961 0.764 0.648 0.36 0.463

Minority 21551
Valid 0.982±0.002 0.998±0.005 0.990±0.002 0.973±0.005 0.982±0.002

Test 0.960 0.761 0.609 0.386 0.473
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Table 3.11: XGBoost Performance Metrics at Different Levels of CT-GAN Synthetic Data

Imbalance Number of Data Accuracy AUC Precision Recall F1 Score

Technique Defectives

None 858
Valid 0.987± 0.001 0.944± 0.012 0.945± 0.029 0.726± 0.020 0.819± 0.020

Test 0.960 0.782 0.697 0.252 0.371

4310
Valid 0.987± 0.002 0.987± 0.004 0.987± 0.006 0.936± 0.014 0.961± 0.008

Test 0.959 0.810 0.656 0.285 0.398

8620
Valid 0.989± 0.001 0.994± 0.001 0.993± 0.003 0.970± 0.005 0.993± 0.002

Test 0.961 0.807 0.650 0.338 0.446

CT-GAN 12930
Valid 0.990± 0.001 0.996± 0.001 0.996± 0.002 0.979± 0.003 0.987± 0.002

Test 0.961 0.805 0.679 0.307 0.423

17240
Valid 0.991± 0.001 0.997± 0.0008 0.996± 0.001 0.985± 0.002 0.990± 0.001

Test 0.960 0.823 0.648 0.307 0.417

21551
Valid 0.993± 0.001 0.997± 0.0006 0.997± 0.001 0.988± 0.002 0.992± 0.001

Test 0.960 0.790 0.653 0.314 0.424

To corroborate our results further, we extended our validation efforts to encompass additional

machine learning models such as Extra Trees, Random Forest, Decision Tree, Gradient Boosting,

and CatBoost. The consistency in results across these models validated the efficacy of our synthetic

data volume threshold. The comprehensive details and tables of these findings are meticulously

cataloged in the Appendix A.

Transitioning to the deep learning spectrum, the performance metrics of the TabNet model are

delineated in Tables 3.12 and 3.13. Throughout the model deployment phase, Grid Search method-

ology was employed to meticulously fine-tune TabNet’s hyperparameters, ensuring optimal config-

uration tailored to the dataset’s unique characteristics. The optimal hyperparameters were identified

as follows: number of decision steps (n d) at 63, number of attention units (n a) at 40, a step size
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Table 3.12: TabNet Performance Metrics at Different Levels of SMOTE Oversampling

SMOTE(k=10) Number of Data Accuracy AUC Precision Recall F1 Score
Sampling Strategy Defectives

None 858
Train 0.949±0.006 0.966±0.010 0.427±0.034 0.882±0.019 0.574±0.031
Valid 0.947±0.006 0.939±0.008 0.409±0.029 0.829±0.028 0.547±0.022
Test 0.926 0.783 0.316 0.507 0.389

0.2 4310
Train 0.973±0.004 0.994±0.001 0.898±0.020 0.946±0.008 0.921±0.013
Valid 0.964±0.006 0.986±0.003 0.873±0.023 0.923±0.018 0.897±0.017
Test 0.950 0.703 0.454 0.452 0.453

0.4 8620
Train 0.972±0.003 0.995±0.0007 0.951±0.010 0.953±0.001 0.952±0.005
Valid 0.968±0.003 0.992±0.001 0.942±0.008 0.946±0.006 0.944±0.005
Test 0.951 0.640 0.473 0.393 0.429

0.6 12930
Train 0.967±0.006 0.994±0.002 0.962±0.011 0.949±0.010 0.955±0.009
Valid 0.963±0.006 0.992±0.002 0.956±0.012 0.945±0.012 0.950±0.009
Test 0.942 0.645 0.381 0.375 0.378

0.8 17240
Train 0.969±0.001 0.995±0.0006 0.976±0.004 0.955±0.008 0.965±0.002
Valid 0.966±0.003 0.994±0.001 0.970±0.006 0.952±0.009 0.961±0.003
Test 0.944 0.667 0.401 0.415 0.408

Minority 21551
Train 0.970±0.004 0.996±0.001 0.986±0.003 0.953±0.009 0.969±0.004
Valid 0.966±0.004 0.994±0.001 0.982±0.004 0.951±0.011 0.966±0.005
Test 0.951 0.678 0.470 0.417 0.442

of 10, a decay rate (gamma) of 0.84, a learning rate (lr) of 0.001, batch size of 256, and virtual

batch size of 128, with ’entmax’ selected as the mask type. An early stopping mechanism with a pa-

tience setting of 10 epochs was also implemented to prevent overfitting, thus enhancing the model’s

stability and generalization capabilities.

Regarding performance, without any synthetic data augmentation, TabNet achieved an F1-score

of 54% on the validation set and approximately 39% on the test set, highlighting its stability in

contrast to traditional machine learning models. With a modest 20% increase in SMOTE data,

the optimal F1-score was observed at 45%. The model’s ability to discriminate between classes

also improved, with the AUC metric rising from 78% to 83%, as depicted in Figure 3.12. This

multi-model validation approach not only underscores the generalizability of our conclusions across

different frameworks but also emphasizes the nuanced balance required in synthetic data utilization

to optimize model performance within PCB production line datasets.
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Table 3.13: TabNet Performance Metrics at Different Levels of CT-GAN Synthetic Data

Imbalance Number of Data Accuracy AUC Precision Recall F1 Score
Technique Defectives

None 858
Train 0.949±0.006 0.966±0.010 0.427±0.034 0.882±0.019 0.574±0.031
Valid 0.947±0.006 0.939±0.008 0.409±0.029 0.829±0.028 0.547±0.022
Test 0.926 0.783 0.316 0.507 0.389

4310
Train 0.986± 0.009 0.990± 0.001 0.989± 0.004 0.930± 0.005 0.959± 0.002
Valid 0.984± 0.001 0.987± 0.003 0.984± 0.002 0.919± 0.009 0.950± 0.004
Test 0.962 0.759 0.679 0.353 0.465

8620
Train 0.988± 0.001 0.995± 0.001 0.994± 0.002 0.964± 0.004 0.979± 0.002
Valid 0.985± 0.001 0.993± 0.001 0.990± 0.004 0.958± 0.006 0.974± 0.002
Test 0.964 0.765 0.753 0.356 0.483

CT-GAN 12930
Train 0.990± 0.008 0.996± 0.003 0.996± 0.001 0.978± 0.001 0.987± 0.001
Valid 0.988± 0.002 0.995± 0.009 0.995± 0.001 0.973± 0.005 0.984± 0.002
Test 0.96 0.827 0.634 0.351 0.452

17240
Train 0.992± 0.0009 0.997± 0.0002 0.997± 0.001 0.985± 0.001 0.991± 0.001
Valid 0.990± 0.0006 0.997± 0.0004 0.995± 0.0008 0.982± 0.001 0.989± 0.0007
Test 0.960 0.776 0.645 0.351 0.455

21551
Train 0.992± 0.001 0.998± 0.0004 0.997± 0.001 0.986± 0.001 0.992± 0.001
Valid 0.990± 0.001 0.997± 0.0002 0.996± 0.001 0.983± 0.001 0.989± 0.001
Test 0.960 0.758 0.662 0.340 0.449

Figure 3.12: ROC curves for TabNet Model

According to sensitivity analysis from the test dataset, among the ML algorithms, the KNN clas-

sifier demonstrated superior performance, achieving an F1-score of 54%. In comparison, the deep

learning-based TabNet model achieved an F1-score of 48%, both with 40% of the data augmented

using CT-GAN. The relatively low performance of the models on the test dataset can primarily be
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attributed to an imbalance in the class distribution within the test data.

Oversampling was a critical component of our data preprocessing strategy. However, a sig-

nificant risk associated with this method is the potential for overfitting. Consequently, there was

a noticeable disparity between the performance metrics during the training and testing phases, at-

tributable to the different balance ratios in these datasets.

3.5.3 Comparing Our Approaches to Similar Solutions

As we explore the intricacies of ML and DL techniques in PCB manufacturing, it is essential to

contextualize our methods within the broader landscape of existing research. This section provides a

comparative analysis, aimed at demonstrating how our work aligns with, and diverges from, parallel

studies in the field. By examining the key similarities and differences, we aim to underscore the

distinct contributions and advantages of our approach.

Table 3.14 provides a comparative analysis of F1-scores for Operator Label prediction across

our methods and four related studies. Our KNN model, which achieved an F1-score of 0.96 during

training and 0.54 during testing, demonstrates strong learning capabilities with comparable test

performance to Case 3 (Tang et al., 2022). Although our TabNet model achieved the highest F1-

score during training (0.97), its performance dropped to 0.48 on the test set, due to ongoing label

imbalance, similar to the performance of Case 2 (Gore et al., 2022).

Table 3.14: F1-score Comparison for OperatorLabel Prediction

Comparison Cases Train Test
Our Method
(TabNet Result)

0.97 0.48

Our Method
(KNN Result)

0.96 0.54

Case 1
(Gaffet, Roa, Ribot, Chanthery, & Merle, 2022)

0.66 0.67

Case 2
(Gore et al., 2022)

0.71 0.48

Case 3
(Tang et al., 2022)

0.68 0.54

Case 4
(Schmidt, Dingeldein, Hünemohr, Simon, & Weigert, 2022)

0.81 0.38

However, despite this drop in performance, our approach strategically utilizes a 40% CTGAN
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oversampling threshold, which remains competitive and particularly advantageous. This methodol-

ogy not only sustains robust training performance but also effectively manages the challenges posed

by the highly imbalanced dataset. This suggests that with further refinements, such as additional

regularization or adjusted data preprocessing techniques, our models could close the gap between

training and testing performance more effectively. Our approach, therefore, offers a promising foun-

dation that aligns with existing methodologies’ ability to learn from and generalize across diverse

PCB data.

3.6 Summary of The Chapter

This chapter focuses on automating the quality control process in PCB manufacturing, particularly

during the AOI stage, by utilizing machine learning and deep learning models for defect detection.

It also compares the effectiveness of these models with human operators, highlighting how ML

and DL models offer significant advantages in speed, consistency, and reducing human error. It

details the steps involved in data preparation, including data cleaning, aggregation, and handling

imbalanced data, and introduces various ML and DL models such as instance-based models, tree-

based models, boosting-based models, and TabNet model. The implementation of these models is

discussed with a focus on optimizing performance through synthetic data augmentation, particularly

using techniques like SMOTE and CTGAN.

The experimental results are presented and analyzed in depth, with the performance of the mod-

els evaluated using various metrics. The chapter discusses the impact of synthetic data volume on

model performance, highlighting the trade-offs between different levels of data augmentation. A

comparison is made between the proposed approaches and existing solutions in the literature, em-

phasizing the advantages of the proposed methods, particularly in handling data imbalances and

improving the accuracy of PCB defect detection. The chapter concludes by summarizing the key

findings, reiterating the importance of synthetic data volume in enhancing the performance of ML

and DL models in PCB defect detection.
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Chapter 4

Prediction of Human Repair Labels in

PCBs: Leveraging Feature Engineering

and Ensemble Learning Techniques

In the preceding chapter, we explored the effects of imbalance handling techniques and synthetic

data volumes on the predictive accuracy of machine learning and deep learning models in assessing

the health status of PCBs post-component replacement. This assessment is vital for determining

the boards’ suitability for subsequent manufacturing stages, where PCBs in good condition are

advanced in the production line, while defective ones are earmarked for repair or disposal. Building

on these insights, this chapter seeks to further optimize PCB manufacturing by automating the

assignment of repair labels using data analytics and ML models.

The traditional process involves manually inspecting PCBs labeled ”Bad” during the ”Opera-

torLabel” stage to determine their repair potential. Automating this evaluation process could sig-

nificantly enhance the efficiency and accuracy of decisions, thus reducing dependency on manual

intervention. By implementing an automated repair label generation system that leverages advanced

ML algorithms, we aim to accelerate the production process, ensure consistent and precise board

evaluations, and minimize labor and material costs. The data-driven nature of machine learning

also facilitates continuous improvements and compliance with stringent manufacturing standards,
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offering an efficient, precise, and cost-effective solution for PCB quality control.

The remainder of this chapter is structured as follows: Section 4.1 introduces the problem under

investigation. Section 4.2 details the data preprocessing and preparation steps undertaken. This sec-

tion also explains the feature engineering processes involved. Section 4.3 discusses the ML models

used for ”RepairLabel” classification and the specific libraries used for implementation. Section

4.4 evaluates the performance metrics of ML models, and reviews the implementation process, out-

comes, and feature importance. It concludes with a comparative analysis of the models, discussing

their strengths and weaknesses. Finally, Section 4.5 provides a summary of the chapter, encapsulat-

ing the major insights and contributions of the research.

4.1 Problem Identification

In the domain of PCB manufacturing, the development of robust repair strategies and precise pre-

dictive labeling of repair needs are vital for economic and environmental sustainability. Repairing

items instead of replacing them not only reduces operational costs by extending the lifespan of the

boards but also maintains production efficiency critical for industries facing rapid market evolution

such as automotive, aerospace, and consumer electronics. This practice also significantly reduces

electronic waste, thereby aiding environmental conservation. Accurate repair labeling is crucial for

optimizing resource use and promoting sustainable manufacturing practices. However, the process

of determining the specific repair requirements of PCBs is complex and traditionally relies on expert

analysis, which can be error-prone and inconsistent.

To address these challenges, this chapter introduces a predictive model designed to accurately

assign ”RepairLabel” to the products after a detailed post-inspection analysis. PCBs identified

with defects are routed to a specialized section for a reparability assessment conducted by experts.

This manual process is fraught with potential errors due to the intricate nature of components and

the high dependency on the operator’s expertise. The proposed model utilizes ML techniques,

employing predictive variables from SPI and AOI datasets to forecast the repair requirements of

PCBs accurately. The model categorizes products into irreparable, or incorrectly marked as scrap,

enhancing the decision-making process in PCB repair and ultimately improving the efficiency and
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sustainability of manufacturing operations.

4.2 Data Preprocessing

This section delineates the comprehensive methodology applied to data preprocessing, feature engi-

neering, and the evaluative measures implemented during model training. The objective is to clearly

outline the processes involved in converting raw data into a structured format amenable to predic-

tive modeling, thereby facilitating the extraction of actionable insights from the datasets. Consistent

with the approaches described in Chapter 3 ( Section 3.3 ), the data utilized in this study—including

the SPI and AOI datasets—were sourced, merged, and prepared, maintaining the same dataset size

as previously documented. However, this chapter introduces a different approach to data prepro-

cessing, placing a heightened emphasis on feature engineering designed to bolster our predictive

analysis concerning repair label assignments. The subsequent sections will provide an in-depth

exploration of these refined methods.

4.2.1 Data preparation and Cleaning

In this preparation phase, we adopted an approach similar to the one outlined in Section 3.3.1,

providing a unified SPI-AOI dataset comprising 25 attributes. In contrast to the previous chapter,

features such as PanelID, Date, and Time are preserved to be employed for the feature engineering

step. Moreover, we have integrated an additional feature, ”OperatorLabel,” into our dataset. Initially

utilized as a target for prediction, this feature has been reclassified as an input variable to leverage

its significant impact on model decision-making processes.

As detailed in Table 3.2, the target column ”RepairLabel” consists of four classes, including

NA (Not Available), NotYetClassifed, NotPossibleToRepair, and FalseScrap. ”NA,” labels indicate

components previously identified as ”Good” and thereby exempt from further repair scrutiny, re-

ducing its total size to 903 rows. This refinement process not only preserves data integrity but also

enhances the quality of the dataset. Considering that our primary objective is to determine whether

our products are mislabeled as scrap or are truly irreparable, the target column ”RepairLabel” in-

cluded entries labeled as ”NotYet Classified,” which pose ambiguity regarding their condition. The
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presence of such indeterminate labels in the dataset could potentially introduce noise and compro-

mise the accuracy of our predictive analysis. To mitigate this risk, entries with ”NotYet Classified”

labels were excluded from the dataset. This exclusion is crucial as it prevents the model from learn-

ing patterns associated with these non-informative labels, thereby enhancing the overall quality and

reliability of the predictive model. The distribution of the remaining target labels within the training

and testing datasets is visually depicted in Figure 4.1.

Figure 4.1: Repair Labels Distribution

4.2.2 Data Type Standardization

A key step in preparing our data was to standardize the data types across all features in the training

and testing datasets. In this regard, ’FigureID’ and ’PinNumber,’ which were originally in different

formats, both converted to integers.

Following the guidelines in Section 3.3.3, we also took careful steps to maintain the quality

of our training and testing data by addressing any inconsistencies in the ’ComponentID’ feature

between the two sets. To ensure that our models would be tested on completely new, unseen data,

we removed any ComponentIDs that not shared between the datasets. Specifically, we removed

12 entries—9 from the training set and 3 from the testing set. This step is crucial to prevent any

overlap, which is essential for avoiding data leakage that could bias our results. These measures
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help ensure that our evaluation of the model’s performance is both fair and accurate.

4.2.3 Feature Engineering

Feature engineering is a critical process in the analysis of SPI and AOI datasets in PCB circuit

boards. This process involves transforming raw data into meaningful features that can enhance

model robustness and accuracy. Effective feature extraction is essential, as it can significantly im-

prove the predictive performance of machine learning models by emphasizing the most relevant

characteristics of the data. Several studies have highlighted the importance of feature engineering

in the context of PCB inspection and fault detection. For instance, (Tang et al., 2022) demonstrated

that carefully crafted statistical features derived from SPI data could substantially improve model

performance in detecting PCB defects. Similarly, (Gore et al., 2022) explored the pivoting tech-

nique for feature extraction, showing that the integration of domain-specific knowledge in feature

engineering leads to more accurate and reliable predictions. The robustness of models is highly

dependent on the quality of features extracted from the data. Enhanced features facilitate early

anomaly detection, reducing waste and improving yield in PCB manufacturing, thus highlighting

the critical role of feature engineering in optimizing the quality control process (I.-C. Chen, Hwang,

& Huang, 2023).

In our approach, we Initially identified key features and then applied various transformation

techniques to enhance the dataset’s predictive power. We also extracted new features, consider-

ing feature interactions and aggregations, to capture the underlying patterns more effectively. The

detailed methodology for this process is explained in the subsequent sections of this chapter.

(1) Feature Transformation: Given the presence of various categorical features in our dataset,

as detailed in Section 3.3.6 (Data Encoding), transforming these features is crucial since most

machine learning algorithms require numerical input to function effectively. The presence of

high cardinality within categorical columns like ”ComponentID” demands an in-depth un-

derstanding of their structure and composition. In our dataset, this column lists identifiers

for different components on PCB circuit boards, such as C12, D1, R11, and TR2. Here, the
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initial letter indicates the type of component, and the subsequent number denotes the num-

ber of pins. To manage this complexity and boost analytical efficiency, we categorized these

identifiers into distinct groups based on their globally recognized symbols, using a regular

expression function. This function assigns each ComponentID to a category such as Connec-

tor, Transistor, Capacitor, Resistor, IC (Integrated Circuit), Diode, Inductor, and Other. This

preprocessing step introduced a single new column, ’Component Category’, containing eight

unique categories, providing a clear and concise classification of each component.

Further processing involved one-hot encoding technique to this new column, as well as the

’AOILabel’, to numerically encode the various labels, ensuring compatibility with machine

learning algorithms. Additionally, the ’OperatorLabel’ and ’RepairLabel’ were transformed

into a binary format using label encoding. In this process, entries labeled as ’Good’ in Op-

eratorLabel and ’FalseScrap’ in the RepairLabel were assigned a value of 1, while Bad and

NotPossibleToRepair were assigned a value of 0.

Moreover, the ’Result’ column was processed using a new function, which assigns numerical

labels from 1 to 5 based on the type of result and stores the results in a new feature named

’ResultCategory’. In addition, a new ’Result Binary’ column was also created where ’Good’

labels, which constitute the majority, were specifically encoded as 1 and all other few defec-

tive labels as 0. This dual approach of label encoding and binary conversion optimizes the

target features for machine learning applications, significantly enhancing the accuracy and

efficiency of subsequent analyses.

(2) Feature extraction: This step involves generating new variables and performing geomet-

ric feature extraction using basic mathematical operations, which can help quantify complex

relationships between features. Each new feature is developed by leveraging significant inter-

actions among existing variables. The steps taken are outlined as follows:

• Height SizeX and Height SizeY: These two features are created by multiplying the height

with its dimensions in the X and Y directions, respectively. This captures the volumetric

properties of the solder paste, which are critical for identifying defects related to insufficient

or excessive solder application.

72



• AspectRatio: This feature is calculated by dividing SizeX by SizeY, providing valuable

insight into the geometric properties and shape of a PCB component. This metric is crucial

for predicting and preventing defects related to improper shape or alignment.

• Distance from origin: This feature calculates the Euclidean distance from the origin to

the position of the solder paste, indicating its spatial placement on the PCB. It is useful for

identifying placement errors and misalignments. The formula applied is as follows:

Distance from origin =
√
(PosX(mm))2 + (PosY(mm))2 (19)

By implementing these simple mathematical operations, we are able to extract meaningful

interactions between features without relying on unnecessary logarithmic transformations,

helping the model gain a better understanding of the data and leading to improved predictive

performance.

(3) Feature Aggregation: In this phase, which predominantly involves statistical features, we

focused on deriving new features by leveraging various statistical properties. We selected

three key identifiers—‘PanelID’, ‘FigureID’, and ‘ComponentID’—as relevant grouping

variables. Using these identifiers as a group, we integrated three statistical measures, mean,

maximum, and minimum, across several key pin-level features such as ‘Area (um²)’, ‘Shape

(um)’, ‘Volume (um³)’, ‘Height (um)’, ‘OffsetX (%)’, and ‘OffsetY (%)’. This step enabled us

to derive 18 new features that represent the overall characteristics of the components within

each group. These features provide a comprehensive statistical summary of the components,

enhancing our model’s ability to predict outcomes more accurately. The importance of this ap-

proach and its contributions to our model’s effectiveness will be further discussed and demon-

strated in Section 4.4.3, where we will highlight how these aggregated features play a pivotal

role in our predictive analysis.
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(4) Domain-Specific Features: Incorporating domain-specific knowledge into feature engineer-

ing is crucial for developing sophisticated features that are specifically tailored to PCB man-

ufacturing. Recognizing that certain defects are more common in PCB layouts can signif-

icantly inform this process. As demonstrated earlier in Tabel 3.2, ’AOILabel’ variable in-

cludes several labels categorizing types of defects. Focusing on issues such as coplanarity,

misalignment, and solder characteristics and fostering domain-specific knowledge, we aimed

to generate new features to capture nuanced aspects of component quality and defects.

• Coplanarity: In PCB manufacturing, coplanarity refers to the degree to which the surfaces

of components, particularly their pins, are level with one another. It’s a critical measure

in assessing whether all pins of a component make proper contact with the board during

soldering. If the pins are not coplanar, it could result in connection failures (A Measurement

Method that Solves Problems in Coplanarity Inspection, n.d.). In this regard, a new feature

called ’Coplanarity’ was generated by using a lambda function that computes the difference

between the maximum and minimum ’Height(um)’ for each ’ComponentID’. This feature

further enriches our dataset by providing insights into the uniformity of the solder paste

height, which is critical for ensuring the quality and reliability of the solder joints.

• Misalignment: One of the main challenges in PCB assembly is the shifting or misalign-

ment of components, which can arise due to issues such as incorrect solder application or

excessive vibrations during the assembly process. Considering this, we extracted a new fea-

ture, ’Misalignment’, to identify components with significant offsets in the X and Y direc-

tions. This new attribute was defined as any PCB components where the ’OffsetX(%)’ and

’OffsetY(%)’ are greater than 5. This threshold was chosen because an offset greater than

5% can indicate a significant deviation from the intended placement, potentially leading

to connectivity issues or mechanical stress. The misalignment feature is a binary indicator

where a value of 1, signifies that the component is misaligned (offset greater than 5% in

either direction), or a value of 0, indicates proper alignment (Design Mistakes That Cause

PCB Assembly Errors, n.d.). This feature is crucial for identifying and correcting potential

issues in the placement process, ensuring higher precision and reliability.
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• Solder Characteristics: Through careful analysis of the dataset, with particular focus on

the ’Volume’ feature and the associated AOI labels, two additional features were introduced

to monitor the volume of solder paste named ’LeanSolder’ and ’ExcessiveSolder’. The

LeanSolder feature identifies instances where the ’Volume(%)’ is less than 80% , which can

lead to insufficient solder joints, causing weak connections and potential failures. On the

other hand, the ExcessiveSolder feature flags components where the ’Volume(%)’ exceeds

120%, which can result in solder bridging or other defects . These features are essential for

ensuring optimal solder paste application, as deviations from the ideal volume can lead to

defects and reliability issues in the final product.

(5) Temporal Features: Temporal features capture changes in the production process over time,

which can be crucial if defect occurrence is correlated with variations in production param-

eters. The inclusion of temporal features in defect detection models helps identify patterns

and trends that may indicate underlying issues in the manufacturing process. This method

is widely used in anomaly detection and demonstrated significant benefits in enhancing PCB

images and improving defect recognition accuracy (Putera & Ibrahim, 2010; You, 2022).

Temporal information in our dataset extracted from the features ’Date’ and ’Time’, incor-

porated as three additional features to capture temporal patterns in the inspection data. The

extracted feature, ”Day of Week”, captures the day of the week when the inspection occurred,

”Hour of Day” feature, captures the specific hour, and the ”Is Weekend” indicates whether

the inspection took place on a weekend. These temporal features help in understanding pat-

terns and trends in the inspection data and defective labels that could be related to operational

shifts, work schedules, or other time-related factors.

It should be noted that, after extracting all important patterns and creating new features from

the existing ones, all the original features used for feature engineering, including ’Componen-

tID’, ’FigureID’, ’PanelID’, ’PinNumber’, ’PadID’, ’Date’, ’Time’,’ PosX(mm)’, ’PosY(mm)’,

’PadType’, ’Volume(%)’, ’Height(um)’, ’Area(%)’, ’OffsetX(%)’, ’OffsetY(%)’, ’SizeX’,

’SizeY’, ’Volume(um3)’, ’Area(um2)’, ’Shape(um)’, ’Result’, and ’MachineID’ were ex-

cluded from the dataset. As a result, we ended up with 48 features in our dataset that were
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used for model training. This step is crucial for several reasons. By extracting the essential

information from the original features and creating new, more relevant features, we ensure

that the dataset is optimized for the machine learning model. Removing the original features

helps in simplifying the model, making it more interpretable and efficient. By focusing only

on the newly engineered features, we can reduce the dimensionality of the dataset, improve

the model’s training time, and enhance its generalization capability.

4.2.4 Data Spilitig

Moving forward to the final stage of data preprocessing, this task’s approach to data splitting

closely aligns with the methods outlined in the previous chapter (see Section 3.3.8), with

a slight modification in the ratios used. Instead of the 80/20 split mentioned earlier, we

implemented a 90/10 split for this phase. This adjustment in the splitting ratio ensures more

extensive training with a focused validation process, aligning with our specific requirements

for model refinement and testing.

4.3 Model Implementation

Building on the processes described in the previous chapter, once the data is prepared and prepro-

cessed, the subsequent step is to select the models most likely to deliver optimal results. Given

the recognized advantages and effectiveness of instance-based and tree-based models within an en-

semble framework—particularly suited to handling highly imbalanced datasets—we have decided

to continue employing these approaches. As with Chapter 3, we will first discuss the proposed

models, exploring their suitability and the anticipated performance benefits and then conclude with

an explanation of the library utilized for implementing these models, providing a comprehensive

overview of our modeling infrastructure.
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4.3.1 Proposed Models

This study employs advanced ensemble machine learning techniques to tackle the challenges posed

by our dataset, particularly the issue of imbalanced classes. Ensemble models, sophisticated strate-

gies in machine learning, are designed to enhance predictive performance by amalgamating the

outputs of various individual models. The fundamental principle of these models is that a collection

of weak learners can synergize to form a strong learner, thereby increasing the accuracy, robustness,

and generalizability of the predictive model. One of the earliest and most effective ensemble meth-

ods is bagging (Bootstrap Aggregating), introduced by (Breiman, 1996). This technique involves

training multiple models on different subsets of the training data and averaging their predictions to

enhance stability and accuracy. Another influential technique, boosting, detailed initially by (Fre-

und & Schapire, 1997) and further refined by (Friedman, 2001), sequentially trains models to correct

the errors of their predecessors, then combines their outputs to form a robust predictive model.

Furthermore, in the training process, a hierarchical stacking method was employed, where mod-

els are layered sequentially (L1, L2, etc.), with each layer refining its predictions by integrating

outputs from the previous layer’s models. (Wolpert, 1992). This strategy allows the meta-model

to potentially capture complex patterns in the interactions of the models’ predictions. A notable

implementation in our study is the ’DyStack’ feature, which dynamically adjusts the number of

stacking layers, assessing whether adding layers enhances performance or leads to overfitting, This

approach aims to balance model complexity with generalization capabilities, thereby optimizing

overall performance. By effectively leveraging the strengths of individual models, the stacking

approach significantly enhances the ensemble’s accuracy and robustness.

Recent advancements in ensemble methods, especially those that integrate boosting techniques

with tree-based models like LightGBM, have demonstrated considerable success across various ap-

plications, highlighting their robustness and versatility (Bokaba, Doorsamy, & Paul, 2022; Wei et

al., 2022). In our work, the models chosen represent a strategic mix of KNN and LGBM learning al-

gorithms, each augmented within an ensemble framework to optimize their predictive performance

and robustness. As we have thoroughly discussed these models in a previous chapter (Section 3.4),

here we briefly mention their role in the context of our ensemble strategy.
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4.3.2 Tools and Libraries

In this study, we employed the AutoGluon library (N. Erickson et al., 2020), version 1.1.0, running

on Python 3.10.12, to implement the proposed models. AutoGluon is an open-source machine-

learning library designed to automate the creation and optimization of ML models. Traditionally,

training and hyperparameter tuning processes can be labor intensive and time consuming. How-

ever, AutoGluon specializes in handling tabular data and excels at auto-tuning hyperparameters and

autonomously selecting optimal models, significantly reducing the computational time and effort re-

quired. Particularly noteworthy is AutoGluon’s capability to apply advanced ensemble techniques,

which have substantially enhanced our model’s performance and robustness. The results of these

enhancements will be presented in Section 4.4.2.

4.4 Evaluation and Results

In this section, we initially focus on identifying the key metric that is essential for accurately eval-

uating and optimizing our machine learning models. Choosing the correct metric is paramount as

it directly influences our perception of the models’ effectiveness and efficiency. Upon identifying

this metric, we will conduct a thorough analysis of the model training and outcomes from the pro-

posed models, assessing their efficacy to formulate well-substantiated conclusions. Additionally,

an in-depth analysis of feature importance will be performed to provide crucial insights into which

engineered attributes most significantly impact our model’s predictions. This analysis aims to high-

light the predictive power and relevance of individual features, further informing the refinement and

potential enhancements of our modeling approach. Lastly, this section ends with a comparative

analysis of the different models employed, discussing their strengths and weaknesses in the context

of the study.

4.4.1 Metrics

As emphasized in Section 4.2.1, our objective is to predict whether components with confirmed

defects are categorized as ”FalseScrap” or ”NotPossibleToRepair.” This prediction task involves

using the RepairLabel. For predicting these class labels, selecting appropriate metrics is crucial
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for accurately interpreting model performance, especially in scenarios involving imbalanced class

distributions. In this regard, we have adopted the F1 macro metric to assess our models. As de-

tailed in Formula 20, this metric computes the harmonic mean of precision and recall for each class

independently before averaging these values:

F1macro =
1

N

N∑
i=1

(
2 · Precisioni · Recalli
Precisioni + Recalli

)
(20)

where N is the number of classes, and Precisioni and Recalli are the precision and recall for the

i-th class, respectively.

This method ensures that all classes are treated with equal importance, which is particularly

beneficial in our dataset, characterized by uneven class distributions. Utilizing the F1 macro metric

enables a thorough evaluation of the model’s performance across all classes, highlighting its ability

to handle infrequent classes as effectively as the more common ones. In the following section,

we present our training process and results using this macro-averaging method to calculate the

key metric, providing insights into the model’s overall accuracy and robustness across varied class

distributions.

4.4.2 Model Training and Results

As previously discussed, the F1 macro score was selected as the primary metric for evaluating

our predictive models due to its inclusion of both precision and recall—key components that are

crucial given the aims of our study and the nature of our data. In this regard, ensemble models

were configured in AutoGluon to optimize this metric, highlighting its appropriateness for datasets

where class imbalance is present. Our modeling approach involved two stack levels, Level 1 (L1),

where individual models are directly trained on the dataset and Level 2 (L2), where more advanced

models are developed utilizing the predictions from L1 models as inputs. This hierarchical stacking

is designed to enhance predictive accuracy by integrating and refining outputs across model levels.

As we mentioned in Section 4.3.1, during the training phase, we implemented a bagging frame-

work as part of our ensemble strategy. In this framework, each primary model was responsible for
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fitting eight subsidiary models, known as child models. These child models were trained using sub-

sets of the full dataset, selected randomly with replacement. This method of sampling ensures that

each model experiences a variety of data scenarios, thereby incorporating a wide range of data char-

acteristics into the training process. This diversity is crucial for the models to effectively capture

and learn from the complex patterns present in the dataset, enhancing the model’s robustness and

generalizing their predictive capabilities across different data conditions. Combining bagging with

stacking introduces a powerful synergy in the modeling process. While stacking layers are used

to refine and enhance predictions vertically through the model layers, bagging spreads the training

horizontally across multiple versions of the same model level. This dual approach significantly

strengthens the model’s ability to generalize well across different data scenarios and conditions.

The results, detailed in Table 4.1, indicate that the KNN model at L1 achieved notable success.

Specifically, this model employing a uniform weighting strategy where all neighbors contribute

equally, achieved an F1 macro score of 0.811 on the test set. This performance suggests that a uni-

form approach to neighbor weighting can be more effective than distance-based weighting, partic-

ularly in complex classification scenarios. This model demonstrated consistent performance across

both validation and test sets, indicating superior generalization compared to the distance-weighted

variant, which, while performing exceptionally well on the validation set (F1 macro score of 0.892),

showed a 9% drop in performance on the test set. In addition to these advantages, this model showed

the lowest prediction time, making it highly suitable for real-time applications.

Table 4.1: Model Performance Reaults

Model Score Test Score Val Pred Time Test (s) Pred Time Val (s)

KNeighborsUnif BAG L1 0.811 0.819 0.008 0.038

KNeighborsDist BAG L1 0.808 0.892 0.004 0.098

LightGBMXT BAG L1 0.707 0.905 1.950 0.020

LightGBMXT BAG L2 0.701 0.957 2.180 0.112

Switching our focus to the LightGBM models enhanced with Extra Trees (LightGBMXT), this
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model at stack level 1, showed robust pattern recognition and generalization on the validation set

with an F1 macro score of 0.905. This performance was further improved at L2, where it exhibited a

5% increase in the F1 macro score on the validation set. However, the performance of these models

on the test set was significantly lower, scored 0.707 and 0.701 respectively. This result highlights

the challenge of capturing complex patterns present in the test data. These discrepancies between

validation and test performances underscore the necessity of robust cross-validation techniques and

careful model tuning to ensure that models not only perform well in controlled experimental con-

ditions but also maintain their effectiveness in practical, real-world settings. The study’s findings

emphasize the importance of choosing appropriate model configurations and validation strategies to

achieve reliable and generalizable predictive performance.

On the other hand, the analysis of stacking levels indicated that increasing the complexity

through stacking did not consistently yield improvements in performance across the test data, as

seen in the table. This suggests that while stacking can enhance model robustness and general-

ization to validation data, its advantages might not translate as effectively to diverse real-world

conditions as represented on the test dataset. Therefore, a single stack level appears to provide an

optimal balance of performance and computational efficiency.

4.4.3 Feature importance Analysis

In this section, we employed the Permutation method to evaluate the importance of features in pre-

dicting repair labels on PCB circuit boards. This technique assesses feature importance by evaluat-

ing the decrease in a model’s performance when the values of each feature are shuffled randomly.

The shuffling is repeated 5 times to ensure the reliability of the importance estimate, addressing

random fluctuations by averaging the effects. This analysis highlights several key features that sig-

nificantly influence our model’s performance. As shown in Figure 4.2, a bar chart format visually

compares the top ten features based on their importance.

As demonstrated, the volume-related features, particularly those extracted during feature aggre-

gation (see Section 3) emerge as the most critical, with ’Min Volume Component’ alone account-

ing for nearly 25% of the importance in our model. Furthermore, soldering status features such as

’AOILabel Translated’, ’AOILabel UnSoldered’, and ’AOILabel Soldered’ also show considerable
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influence, suggesting that these features directly impact our model prediction. This feature impor-

tance profile underscores the value of focusing on soldering volume and quality in predicting repair

needs, which can guide more targeted quality control measures in PCB manufacturing processes.

Figure 4.2: Feature Importance Analysis

4.4.4 Comparative Review of Our Methods Against Current Works

As we navigate the complexities of ensemble ML approaches in PCB manufacturing, it becomes

crucial to understand how our methods compare to existing research. This section serves as a com-

parative analysis, designed to show how our work fits into the bigger picture of similar research.

Table 4.2 provides a comparative summary with four related studies. Even though the best training

performance in other studies such as Case 1 and Case 2 achieved an F1-score of 0.90, their lower

test set results indicate that their models might not be properly trained.

In stark contrast, our approach not only maintains consistency between training and test per-

formances but also excels in test environments with an F1 score of 0.81. This indicates a robust

model that generalizes well beyond the training data—a critical attribute for practical applications

in the PCB manufacturing sector. Our method not only avoids the pitfalls of overfitting observed in

the comparative cases but also improves upon the highest test scores among the referenced studies.

This improvement is significant, underscoring the effectiveness of our ensemble models and strate-

gic feature engineering techniques. These results highlight our method’s superiority in applying
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Table 4.2: F1-score Comparison for RepairLabel Prediction

Comparison Cases Train Test
Our Method 0.81 0.81
Case 1
(Gaffet et al., 2022)

0.90 0.77

Case 2
(Gore et al., 2022)

0.90 0.78

Case 3
(Tang et al., 2022)

0.83 0.71

Case 4
(Schmidt et al., 2022)

0.87 0.70

learned patterns to new, unseen data, which is essential for deployment in real-world settings where

reliability and accuracy are critical.

4.5 Summary of The Chapter

This chapter explored enhancements in quality control within PCB manufacturing by automating

the assignment of repair labels. Building on the earlier study that assessed PCB condition follow-

ing component replacement through ”OperatorLabel”, this segment concentrates on automating the

”RepairLabel” process, which is currently performed manually. We introduced machine learning

ensemble models designed to predict these labels with high precision, potentially eliminating the

need for human intervention. Additionally, the chapter detailed the dataset employed, emphasizing

specific preprocessing actions and feature engineering techniques used.

The findings from this chapter affirm the viability of ML models such as KNN and LGBM, to

substantially improve the quality control process in PCB manufacturing through automation. The

demonstrated success of uniform weighting strategies in KNN models, coupled with the prudent

use of bagging techniques, offers a promising direction for future research and practical implemen-

tations in the industry. Overall, this chapter not only highlights the technological advancements in

automated systems but also sets a benchmark for future innovations aimed at optimizing manufac-

turing processes.
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Chapter 5

Summary and Future Research

Directions

This chapter serves as the conclusion of the thesis, summarizing its key contributions. Addition-

ally, it will offer insights into potential future research directions in this field, which are discussed

towards the end of the chapter.

5.1 Summary of Thesis Contributions

In this research, we have made several contributions aimed at enhancing the quality and stability

of PCB circuit board production lines. We achieved this by employing a diverse ensemble of ma-

chine learning models, ranging from Instance-Based models to Tree-Based and Boosting models.

Furthermore, we utilized the TabNet model, specifically designed for tabular datasets, to thoroughly

analyze the outcomes.

The exploration began with an initial focus on quality control post-component placement. We

highlighted the comparative advantages of ML/DL models over human operators in AOI defect

detection, noting superior speed, consistency, and reduced error rates of these models, despite the

value added by human insight. In this phase, we addressed several critical challenges associated with

the imbalanced nature of our dataset, particularly in the context of PCB circuit board production.

Our primary focus was on mitigating these challenges through a comprehensive data augmentation

84



strategy. We employed two key techniques, a simpler method like SMOTE and a more sophisticated

GAN-based model such as CTGAN. After overcoming the challenges associated with generating

synthetic data, we introduced a novel perspective on integrating this data into the original dataset.

By systematically adding synthetic data generated by both models in varying volumes, we were able

to assess its impact on model performance and optimization. The strategic integration of synthetic

data, particularly with a 40% to 60% inclusion, led to significant improvements in crucial metrics

like the F1 score, with the KNN Classifier and TabNet model notably excelling in this regard.

The second chapter expanded the narrative to include automation in the repair label assignment

process, traditionally a manual task. In this phase of our research, we proposed a new data prepro-

cessing approach by leveraging advanced feature engineering methods. Through techniques such

as feature extraction, feature transformation, and feature aggregation, we significantly enhanced

the model’s ability to learn complex patterns within the dataset. Ultimately, by employing ensem-

ble methods, we developed a robust and high-performing model, which contributes substantially to

improving the quality control processes in PCB manufacturing. A consistent observation was the

comparative advantage of the KNN Classifier across various applications, affirming its robustness

and versatility as a machine learning model.

5.2 Future Research

The current study opens several avenues for future work in the domain of anomaly detection in

PCB manufacturing. In future research, further exploration into other GAN-based methodologies

presents a promising avenue for enhancing anomaly detection in PCB manufacturing. By develop-

ing and integrating novel GAN architectures, researchers can tailor these models to better handle

the specific challenges presented by the SPI and AOI datasets used in both Operator Label and Re-

pair Label phases. This approach would involve rigorous evaluation to compare the effectiveness

of different GAN configurations in synthesizing realistic, yet diverse, training samples that improve

model robustness.

Additionally, leveraging hybrid ML and DL models could significantly boost performance. By

combining the strengths of traditional machine learning techniques with advanced deep learning
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frameworks, these hybrid models could offer more nuanced feature extraction capabilities and

improved decision-making processes, thereby increasing accuracy and reducing false positives in

anomaly detection tasks.

Another promising avenue could be Investigating multi-task learning approaches that could al-

low simultaneous detection of multiple defect types or tasks, improving overall model performance.

Techniques such as transfer learning could be employed to leverage knowledge from related tasks,

enhancing the model’s adaptability.
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Appendix A

Evaluation of Imbalance Techniques

Using Various Synthetic Data Volumes

for Operator Label Prediction

Table A.1: Cat Boost Performance Metrics at Different Levels of SMOTE Oversampling

SMOTE(k=10) Number of Data Accuracy AUC Precision Recall F1 Score
Sampling Strategy Defectives

858
Valid 0.987±0.001 0.947±0.014 0.931±0.036 0.727±0.022 0.816±0.024
Test 0.963 0.817 0.770 0.309 0.442

0.2 4310
Valid 0.983±0.002 0.990±0.004 0.981±0.008 0.916±0.016 0.947±0.006
Test 0.963 0.780 0.710 0.345 0.464

0.4 8620
Valid 0.982±0.002 0.995±0.001 0.987±0.002 0.950±0.006 0.968±0.004
Test 0.963 0.806 0.696 0.373 0.486

0.6 12930
Valid 0.981±0.003 0.996±0.001 0.991±0.003 0.960±0.008 0.975±0.005
Test 0.963 0.804 0.689 0.371 0.482

0.8 17240
Valid 0.981±0.002 0.997±0.0007 0.990±0.003 0.968±0.005 0.979±0.003
Test 0.960 0.805 0.626 0.375 0.469

minority 21551
Valid 0.981±0.002 0.997±0.0004 0.991±0.002 0.972±0.004 0.980±0.002
Test 0.960 0.804 0.623 0.394 0.482
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Table A.2: Gradient Boosting Performance Metrics at Different Levels of SMOTE Oversampling

SMOTE(k=10) Number of Data Accuracy AUC Precision Recall F1 Score
Sampling Strategy Defectives

None 858
Valid 0.986±0.002 0.943±0.014 0.919±0.046 0.699±0.035 0.794±0.032
Test 0.959 0.864 0.626 0.294 0.400

0.2 4310
Valid 0.966±0.004 0.969±0.009 0.949±0.013 0.840±0.023 0.891±0.014
Test 0.953 0.833 0.496 0.334 0.399

0.4 8620
Valid 0.954±0.004 0.977±0.002 0.964±0.009 0.871±0.009 0.915±0.007
Test 0.951 0.847 0.475 0.389 0.428

0.6 12930
Valid 0.949±0.004 0.980±0.003 0.969±0.006 0.893±0.010 0.930±0.006
Test 0.953 0.847 0.497 0.415 0.452

0.8 17240
Valid 0.946±0.003 0.980±0.003 0.974±0.004 0.902±0.008 0.937±0.004
Test 0.951 0.846 0.473 0.428 0.449

Minority 21551
Valid 0.943±0.003 0.981±0.001 0.974±0.003 0.909±0.005 0.941±0.001
Test 0.947 0.842 0.440 0.452 0.446

Table A.3: Extra Trees Performance Metrics at Different Levels of SMOTE Oversampling

SMOTE(k=10) Number of Data Accuracy AUC Precision Recall F1 Score
Sampling Strategy Defectives

858
Valid 0.986±0.002 0.934±0.016 0.911±0.044 0.707±0.034 0.795±0.034
Test 0.961 0.824 0.669 0.316 0.429

0.2 4310
Valid 0.985±0.002 0.991±0.003 0.973±0.006 0.936±0.015 0.954±0.007
Test 0.960 0.851 0.634 0.369 0.466

0.4 8620
Valid 0.985±0.002 0.995±0.001 0.982±0.003 0.965±0.006 0.973±0.004
Test 0.960 0.844 0.623 0.400 0.487

0.6 12930
Valid 0.985±0.002 0.997±0.0009 0.985±0.003 0.975±0.005 0.980±0.003
Test 0.960 0.840 0.605 0.417 0.494

0.8 17240
Valid 0.985±0.001 0.998±0.0006 0.987±0.003 0.974±0.004 0.984±0.001
Test 0.958 0.844 0.575 0.417 0.484

minority 21551
Valid 0.986±0.002 0.998±0.0005 0.987±0.002 0.984±0.003 0.986±0.002
Test 0.957 0.839 0.561 0.422 0.481
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Table A.4: Random Forest Performance Metrics at Different Levels of CT-GAN Synthetic Data

Imbalance Number of Data Accuracy AUC Precision Recall F1 Score
Technique Defectives

None 858
Valid 0.986±0.001 0.932±0.021 0.943±0.031 0.694±0.026 0.799±0.023
Test 0.961 0.844 0.716 0.294 0.410

4310
Valid 0.988±0.002 0.987±0.004 0.989±0.006 0.940±0.011 0.964±0.007
Test 0.961 0.841 0.689 0.327 0.444

8620
Valid 0.989±0.001 0.993±0.001 0.994±0.003 0.969±0.005 0.981±0.003
Test 0.962 0.850 0.683 0.364 0.475

CT-GAN 12930
Valid 0.990±0.001 0.996±0.001 0.996±0.002 0.979±0.004 0.987±0.002
Test 0.963 0.864 0.706 0.375 0.49

17240
Valid 0.991±0.001 0.996±0.0008 0.996±0.001 0.985±0.002 0.990±0.001
Test 0.963 0.863 0.693 0.373 0.485

21551
Valid 0.992±0.001 0.997±0.0007 0.997±0.001 0.987±0.002 0.992±0.001
Test 0.962 0.858 0.690 0.362 0.475

Table A.5: Decision Tree Performance Metrics at Different Levels of CT-GAN Synthetic Data

Imbalance Number of Data Accuracy AUC Precision Recall F1 Score
Technique Defectives

None 858
Valid 0.977±0.003 0.857±0.022 0.691±0.049 0.727±0.044 0.708±0.044
Test 0.959 0.676 0.595 0.364 0.452

4310
Valid 0.987±0.002 0.986±0.005 0.982±0.006 0.940±0.011 0.960±0.006
Test 0.954 0.658 0.520 0.331 0.405

8620
Valid 0.981±0.002 0.976±0.003 0.968±0.006 0.965±0.004 0.966±0.005
Test 0.956 0.675 0.555 0.364 0.44

CT-GAN 12930
Valid 0.982±0.002 0.981±0.002 0.977±0.004 0.977±0.004 0.977±0.003
Test 0.954 0.658 0.513 0.331 0.403

17240
Valid 0.983±0.002 0.983±0.002 0.982±0.004 0.988±0.002 0.981±0.002
Test 0.953 0.662 0.498 0.340 0.404

21551
Valid 0.984±0.002 0.984±0.002 0.985±0.002 0.985±0.003 0.983±0.002
Test 0.9529 0.6617 0.490 0.340 0.402
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