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Abstract

Crowd Counting with Wi-Fi Probe Requests: A Selective Information Elements-based
Approach Supported by Generative Data Augmentation

Mohamed Chaaben

Crowd monitoring is essential for smart city applications, particularly for optimizing public
transit systems. To address this need, we propose a privacy-conscious crowd-counting pipeline
using Wi-Fi probe requests. This pipeline is designed to adapt to the challenges posed by the
randomization of Media Access Control (MAC) addresses, which serve as unique identifiers for
devices on a network. Our approach leverages a random forest-based feature selection process
to identify key Information Elements and frame attributes then applies DBSCAN clustering with
adaptive parameter optimization for device counting. A diffusion model generates synthetic tabular
data to mitigate the limited availability of labelled data, enhancing model robustness. Experimental
results demonstrate improved accuracy in device counting, achieving a V-measure of 0.952, an

average silhouette score of 0.789, and reliable clustering counts.
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Chapter 1

Introduction

This introductory chapter sets the stage for the study by providing its context and highlighting
the key gaps that motivated our work. It then defines the objectives of the research and elaborates

on the contributions made. The chapter concludes with a concise outline of the thesis structure.

1.1 Problem Statement

Crowd monitoring has become increasingly important for local administrators seeking to en-
hance city services and create safer and more responsive urban environments. Nowadays, its ap-
plications reach far and wide, covering a range of different sectors. For instance, in intelligent
buildings, monitoring systems are employed to enhance energy efficiency by adjusting lighting,
ventilation, and heating according to real-time occupancy data, contributing to more sustainable
management practices (Agarwal et al., 2010; Zou et al., 2018). In commercial settings like shop-
ping malls and restaurants, customer queues and seating are monitored in order to allow for dy-
namic staffing adjustments, improving both service delivery and operational efficiency (Y. Wang et
al., 2014). In safety-critical environments like stadiums, monitoring crowd density and movement,
along with behavioural responses, is essential for anticipating risks of congestion or sudden surges
(Dong et al., 2023). Such advances not only elevate safety but also enrich the shared experiences of

those gathered.



To support these varied applications, computer vision-based solutions have proven effective
(Junior et al., 2010), yet their real-world implementation often comes with high costs and privacy
concerns. Indeed, significant expenses can arise from the need for extensive camera networks and
the infrastructure to support them, especially when complex deep learning models are in use, re-
quiring substantial power and processing resources. These technologies also facilitate the tracking
of individual identities and locations, pushing against regulatory frameworks such as the European
General Data Protection Regulation (European Parliament & Council of the European Union, 2016)
and Quebec’s Law 25 (Editeur officiel du Québec, 2024). Additionally, practical challenges posed
by variable lighting, viewpoint shifts, and occlusions further complicate deployment.

As smartphones have become ubiquitous, with 90% of adults in the United States owning one as
of 2023 (Pew Research Center, 2024), Wi-Fi-based crowd monitoring has emerged as an alternative
to vision-based solutions. For this purpose, it can rely on Wi-Fi device capabilities to broadcast
probe requests.

Probe requests are management frames emitted by devices that perform active scanning to
discover nearby Wi-Fi networks that are available for connection. This exchange is part of the
larger communication process—illustrated in Figure 1.1—that helps devices and networks establish
a handshake before connecting.

Assuming a one-to-one mapping between passengers and devices, catching probe requests has
allowed for counting people and analyzing their permanence and return times. This approach proved
effective until manufacturers implemented MAC address randomization for security and privacy
reasons (Fenske et al., 2021). Rather than transmitting the real physical MAC address in probe re-
quests, modern devices now send randomized virtual addresses at irregular intervals. Consequently,
probe requests from a Wi-Fi device no longer retain a static MAC address but instead cycle pseudo-
periodically through different random addresses. The adoption of MAC address randomization has
been sporadic and varies across manufacturers and operating systems, making device monitoring
more challenging still.

To work around MAC address randomization, probe requests are clustered based on the assump-
tion that those from the same device exhibit enough intrinsic similarities to be grouped together.

Various studies have investigated distinct features to assess this similarity. Some have focused on
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Figure 1.1: Tllustration of the handshake process between Wi-Fi devices and an access point

patterns in the Received Signal Strength Indicator (RSSI), while others have examined timestamps
or sequential numbering of probe request captures. However, RSSI and time-based approaches re-
main highly sensitive to signal path variations and can be easily distorted by obstacles, reflective
surfaces, and interference. As for the sequence number, it is no longer reliable since it also is
randomized.

In crowd monitoring, traditional methods typically depend on syntactic features that capture
basic details, such as timestamps, RSSI values, or sequence numbers. The challenge, however,
is to discern the semantic relationships within Wi-Fi probe requests. Semantic features, such as
Information Elements (IEs), hold the potential to reveal behavioural context and user intent, of-
fering valuable insights into crowd patterns—particularly when data fields have been randomized
or obscured. IEs within probe requests have been proposed as an alternative feature, and several
studies have leveraged the length or content of all available IEs to enhance device differentiation.
Despite this, interpretability and generalizability issues remain problematic. The variability in IE
usage—since they are optional and differ across devices—adds complexity to analysis, constraining

consistency and weakening model robustness.



To improve crowd size estimation, scholars have commonly combined multiple features, such
as MAC addresses, RSSI values, and IEs, rather than relying on only one feature. Despite this,
challenges persist in verifying the exact number of devices due to MAC address randomization,
which complicates efforts to confirm whether multiple probe requests originate from the same de-
vice. Some studies have attempted validation through manual counts or filtering based on RSSI, but
these approaches lack precision. Consequently, many studies have relied on multiple Wi-Fi access

points to enhance accuracy, though this approach adds complexity to the setup.

1.2 Contributions

In this study, we examine the use of a select subset of Information Elements (IEs) as features for
crowd counting, focusing specifically on estimating passenger numbers at bus stops. This subset was
identified through a random forest-based feature selection analysis, which demonstrated that certain
IEs carry more significance than others, reducing the need to include all IE fields as previously
done by Vanhoef et al. (2016). Our findings indicate that accurate counting is achievable using
only four features: the probe request length and three specific IE fields. Additionally, we note the
diminishing reliability of sequential numbering, likely due to randomization. We also introduce the
use of “presence flags”, a novel feature that, to our knowledge, has not been previously used.

Moreover, our study introduces a unique clustering metric by employing the Hamming distance
rather than the commonly used Euclidean distance for probe request analysis, a choice that improves
counting accuracy in our specific context.

The limited availability of probe request data presents an additional challenge to accurate crowd
counting, prompting us to investigate generative models, specifically diffusion models and Genera-
tive Adversarial Networks (GANSs), for data augmentation. By simulating realistic probe requests,
this approach seeks to enhance model performance. Of particular interest is the fact that diffusion
models and GANs remain underexplored for tabular data, which is the type of data used in our study.
To our knowledge, this is the first application of deep generative models for data augmentation in

the context of probe requests.



It is noteworthy that this thesis on Wi-Fi passenger counting at bus stops is an integral part of
a project in collaboration with BusPas Inc. (2024), a company specializing in smart city solutions.
For context, it has developed the “SCiNe”, a smart device designed for installation at bus stops,
equipped with dual cameras, a passive infrared sensor, a display screen, a Wi-Fi card, and other
smart features. Our project is intended to be implemented within the SCiNe to enable counting
functionality. Beyond the motivations identified in the literature, this research is closely aligned
with the company’s specific need for effective crowd-counting solutions. In fact, using Wi-Fi in
particular offers unique advantages, as the SCiNe is solar-powered and operates with limited energy
resources. Wi-Fi-based crowd-counting can be selectively activated during low battery conditions
or when weather affects the reliability of computer vision. Moreover, because the device operates
outdoors with a single Wi-Fi card, using Wi-Fi probe requests is more practical than alternative
Wi-Fi options such as Channel State Information (CSI).

Finally, it is also worth highlighting that some of the literature on MAC address randomization
has focused on MAC address “derandomization”. Derandomization involves identifying a device’s
actual MAC address by defeating randomization techniques designed to conceal its true identity.
However, in this work, our aim is neither to perform derandomization nor to identify individual
devices, which ensures a privacy-preserving and responsible solution aligned with the legal and

ethical standards.

1.3 Thesis Overview

The rest of the thesis is structured as follows:

* Chapter 2 offers a comprehensive review of Wi-Fi techniques for crowd monitoring, pre-
senting a novel taxonomy that differs from the conventional framework seen in most Wi-Fi
monitoring studies, which typically focus on passive versus active scanning. This chapter
also examines relevant datasets and delves into deep learning methods for generating tabular

data, which is the type of data used in this context.

* Chapter 3 outlines the methodology used to develop the pipeline, starting with an explanation

of the feature selection process based on random forest techniques. This is followed by a



description of the density-based clustering approach and concludes with a detailed account of

the diffusion-based method for data generation.

* Chapter 4 details the structure and composition of the dataset, examines feature distributions,

and presents the results along with the evaluation metrics used to assess model performance.

* Chapter 5 concludes the thesis with a summary of the findings, the limitations of the solution,

and a discussion of potential future research directions.



Chapter 2

Literature Review

This literature review is organized into four sections. The first section provides an overview
of crowd-monitoring technologies that do not rely on Wi-Fi. The second section examines Wi-Fi-
based crowd-monitoring methods, with a particular emphasis on crowd-counting key approaches
and methodologies. In the third section, we review the datasets used in the context of Wi-Fi probe
requests, noting the significant limitations in their availability. Finally, the fourth section discusses
the challenges of generating synthetic tabular data to address these dataset limitations and enable

more robust model development.

2.1 Non-Wi-Fi-based Crowd Monitoring

In the dynamic landscape of crowd-counting technologies, vision-based methods have tradi-
tionally been at the forefront, leveraging either single or multiple camera setups, whether standard
or thermal. For instance, thermal imaging solutions, like those proposed by Gade and Moeslund
(2014), have proven essential in scenarios where visibility is compromised, enhancing the ability to
monitor and manage crowds under various conditions.

In recent years, deep learning has become fundamental to these methods, with ongoing ad-
vancements significantly enhancing accuracy and improving crowd-counting performance in com-
plex environments. Notably, context-aware crowd-counting has emerged as a pioneering approach

that dynamically adapts to environmental factors, allowing for more precise density estimations by



tackling challenges such as scale variation and occlusion (Liu et al., 2019). Another frontier in this
domain is marked by vision-language models, with state-of-the-art tools like CrowdCLIP (Liang
et al., 2023) leading the way. By incorporating text as an auxiliary modality through unsupervised
learning, these models enable refined crowd pattern recognition without requiring extensive labelled
data, which greatly alleviates the constraints of dataset dependency. More recently, the introduc-
tion of transformer-based models, exemplified by VMambaCC (Ma et al., 2024), has pushed the
boundaries even further. With the ability to capture long-range dependencies, these models ex-
cel in handling densely packed scenes with intricate spatial layouts, making them indispensable in
real-world applications where high precision is paramount.

While vision-based models perform well, they still depend on labelled data, which are costly
and difficult to gather. They also face notable challenges, as pointed out by Singh et al. (2021). The
primary one is related to rising privacy concerns, making it challenging to deploy freely in everyday
environments. On top of that, cameras encounter technical hurdles like line-of-sight obstructions,
adverse weather, low light, and high contrast. To tackle these limitations, researchers are exploring
alternative people-counting technologies, particularly those that make use of radio frequency (RF)
signals. RF-based counting is significantly more likely to perform effectively in low-light, smoky,
or dusty environments, such as during fires or earthquakes, not to mention its ability to count people
without compromising privacy.

Across the radio frequency spectrum, technologies such as ultra-wideband radars (J. W. Choi
et al., 2012), wireless sensor networks (Yuan et al., 2013), and Zigbee communications (Lim et
al., 2015) have been employed to monitor and count individuals. Recently, attention has turned
to LiDAR sensors, which, unlike RF technologies, use laser light to distinguish individuals based
on temperature variations within scanned areas. Pioneering work, including that of (Hasan et al.,
2022), highlights the considerable promise of LiDAR for this purpose, while also noting the chal-
lenges—such as high hardware costs and the complexity of managing these advanced sensors. An-
other avenue involves aggregated mobile phone data, which can provide time series data on the
number of people within specific geographical cells (Calabrese et al., 2014). However, such data are

highly centralized, often lack privacy safeguards, and require special access to proprietary datasets.



2.2 Wi-Fi-based Crowd Monitoring

Wi-Fi-based crowd monitoring refers to the use of Wi-Fi signals to observe and analyze the
presence, movement, and behaviour of crowds. With the ubiquity of Wi-Fi-enabled devices, such as
smartphones, this method becomes increasingly appealing, especially given the ease of leveraging
already existing Wi-Fi infrastructure. Additionally, its nature as a relatively energy-efficient and

cost-effective solution makes it attractive for crowd monitoring.

Device-free crowd monitoring

In this approach, crowd dynamics are captured without requiring individuals to carry any device.
It works by analyzing how people’s movements disturb the Wi-Fi signal. The captured signal distur-
bances are then processed to infer crowd behaviour. For example, Xi et al. (2014) have developed a
device-free crowd-counting method based on Channel State Information'.

Similarly, Li et al. (2015) proposed a method for indoor crowd-counting using fluctuations in
Wi-Fi signal strength (RSSI). As the number of people increases, the RSSI values drop and fluctuate.
A five-layer neural network is then used to model the relationship between these RSSI variations
and the presence of people.

Device-free monitoring, however, faces a major issue of scalability, limiting its use mainly to
indoor settings. In fact, as the number of people increases, interpreting Wi-Fi signal variations
becomes more challenging, especially in dense environments. Another factor that limits scala-
bility is the interference from other nearby devices, which introduces noise and disrupts the sys-
tem’s accuracy (J. Wang et al., 2018). Additionally, device-free monitoring reliance on infrastruc-
ture—requiring the deployment of multiple Wi-Fi access points—makes it a costly approach. Those
are the very limitations that corroborate forgoing this technology for crowd counting on the device

of Buspas Inc.

!Channel State Information describes how a wireless signal propagates from the transmitter to the receiver, capturing
variations in amplitude and phase across different antennas.



Device-based crowd monitoring

Beyond device-free approaches, the literature reflects a substantial body of research on device-
based crowd monitoring. The ubiquity of mobile devices has increasingly drawn attention to this
method, offering more possibilities for capturing crowd dynamics. Device-based monitoring can be

categorized into active-intervention methods versus free-intervention methods.

Active-intervention monitoring

This approach requires direct and proactive human interaction during the monitoring process,
such as users connecting to a specific access point or installing a mobile application.

J.-g. Park et al. (2010) explored how Wi-Fi signals can be used for indoor localization by creat-
ing a database of signal strengths captured from nearby Wi-Fi access points. To improve accuracy,
users contribute by sharing their location data through a mobile app. This allows the system to link
specific Wi-Fi signal patterns—also called fingerprints—to precise locations, making the system
more reliable. In addition, Chon et al. (2013) extended this concept by designing a more com-
prehensive crowd-sensing approach, where mobile devices collect large-scale Wi-Fi data alongside
other contextual information like pictures. Users actively participated by capturing images and other
environmental data to further enhance the system’s accuracy.

Active-intervention monitoring has a few real-world applications yet, as users are typically re-
luctant or disinterested in installing mobile applications or connecting to a specific network for
monitoring, especially without incentives or benefits. Privacy and data collection concerns make
voluntary participation even less likely. Free-intervention monitoring could, accordingly, be more
practical. It leverages existing Wi-Fi systems to collect data passively, requiring no active involve-

ment from users as they go about their daily routines.

Free-intervention monitoring

In this approach, crowd dynamics are captured and processed without the need for individual
involvement. In fact, Wi-Fi-enabled devices automatically and sporadically send out Wi-Fi probe

requests “in the air”. By capturing these signals, we can analyze crowd patterns without requiring
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manual intervention. Assuming a one-to-one correlation between passengers and devices, catching
probe requests has allowed for counting people and analyzing their permanence and return times.

In the work of Yaik et al. (2016), an estimation of crowd size is presented via counting Wi-Fi
probe requests emitted by smartphones. The authors captured these probes and identified unique
MAC addresses to deduce the number of people. Tested at a public event, the method has shown a
high alignment with manual counting, proving its reliability in tracking crowd size.

In much the same way, Pattanusorn et al. (2016) estimated the number of passengers on shuttle
buses at Thammasat University, Thailand. They used a Raspberry Pi microprocessor equipped
with a Wi-Fi adapter to sniff probe requests, from which they extracted the RSSI and duration of
transmission to filter out non-passengers. If a device’s MAC address continued to appear while the
bus was moving, they assumed the device belonged to a passenger.

The probe request-based approach was broadly successful until manufacturers introduced MAC
address randomization for security and privacy reasons (Fenske et al., 2021). This shift was par-
ticularly driven by growing concerns about privacy and data protection. In the European Union,
for example, MAC address randomization became unavoidable with the enforcement of the Gen-
eral Data Protection Regulation (GDPR), which mandates stringent protections for user-related data
(European Parliament & Council of the European Union, 2016).

Rather than transmitting the actual physical MAC address in probe requests, modern devices
now use randomized virtual addresses at irregular intervals. Consequently, probe requests from
a single device no longer retain a static and universally unique MAC address but instead change
pseudo-periodically to different random addresses. The adoption of MAC address randomization
has been sporadic, varying across manufacturers and operating systems, and its implementation is
undocumented, making device monitoring even more challenging. Hence, some researchers have
sought to study Wi-Fi device behaviour in relation to MAC address randomization. For instance,
Fenske et al. (2021) conducted an extensive analysis of various solutions to assess the extent of
randomization, the conditions under which it is applied, and whether tracking vulnerabilities are

effectively mitigated.
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As traditional probe request-based tracking methods have become outdated, researchers have
shifted their focus toward defeating MAC address randomization, often referred to as derandom-
ization. Early efforts, such as the work by Matte et al. (2016), explored the use of timing patterns.
In their approach, inter-frame arrival times of probe requests were analyzed to group frames orig-
inating from the same device, even when different virtual MAC addresses were being used. Their
method uses several timing-based distance metrics to group these frames.

Relying on signal travel time as a distinguishing feature can be unreliable in real-world environ-
ments, where random delays often occur due to factors like signal reflections and interference from
multiple paths. These effects introduce variations that make timing-based measurements less pre-
cise and harder to interpret accurately (Uras et al., 2020). Alternatively, some studies have turned
to crowd monitoring by relying on the RSSI values embedded in probe requests. For example,
Fuada et al. (2020) presents an RSSI-based system for indoor monitoring, estimating the distance
between devices and Wi-Fi nodes to construe their locations, making it possible to track people.
The study by Hong et al. (2018) focused on tracking crowd trajectories in a multi-level museum.
The authors were gathering over 1.7 million probe requests to deduce visitor trajectories. A Hidden
Markov model was used to model visitor movements, with MAC addresses (both randomized and
non-randomized) and RSSI fingerprints as features.

While the signal strength is more commonly used in indoor environments, it also finds appli-
cations in outdoor settings. Guillen-Perez and Cano (2019) tried to count and locate pedestrians at
traffic intersections. The focus is classifying pedestrians as either moving or stationary (waiting)
and pinpointing the location of stationary pedestrians at intersections by analyzing the RSSI from
the captured probe requests.

Relying on RSSI has been shown to provide limited accuracy, with the scientific literature pro-
viding convincing evidence that it shows low reliability, at least when used as the primary or sole
feature. This is mainly due to its instability and susceptibility to path loss, fading, and interference
(Heurtefeux & Valois, 2012). An illustrative example of RSSI’s limitations is found in the work
by Groba (2019), which aimed to count participants in public demonstrations using a distance filter
based on RSSI. The solution could capture only a small fraction of the actual attendance, underscor-

ing the failure of RSSI-based methods in real-world applications.
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The literature then shifted towards exploring other features, such as sequence number, which
initially appeared promising. The sequence number assigned to each Wi-Fi packet is an incremental
value initially intended to ensure data transmission order. Cai et al. (2021) used it as a key feature
to distinguish devices with randomized MAC addresses, with the assumption that the same device
sends probe requests with consecutive or closely related sequence numbers. They grouped probe
requests with consecutive sequence numbers, with the number of groups corresponding to the count
of unique devices. However, the sequence number is no longer a very reliable feature, as it has been
almost systematically randomized since 2018 for privacy purposes (Fenske et al., 2021).

In recent years, the literature has seen the emergence of new methods aimed at overcoming the
challenges posed by MAC address randomization in Wi-Fi-based monitoring. One such approach
involves leveraging Information Elements (IEs) embedded in Wi-Fi probe requests, which carry data
about device capabilities. For instance, Vanhoef et al. (2016) introduced the concept of generating
unique device signatures using IEs to track Wi-Fi devices. Their method, although focused on Wi-Fi
security rather than crowd monitoring, successfully tracked up to 50% of devices within a 20-minute
window. Interestingly, their approach also utilized the sequence number in probe requests, which
then had not yet been randomized.

To improve the accuracy of crowd size estimation, scholars have also combined multiple features
rather than relying on just one. For example, Vega-Barbas et al. (2021) developed a method that
estimates crowd size via a footprinting mechanism that circumvents MAC address randomization.
They generated unique identifiers by leveraging a combination of MAC addresses, RSSI, and some
IEs. To test the method, they collected data from two scenarios: an outdoor event and an indoor
concert. Likewise, Tan and Chan (2021) conducted a study in a shopping mall in Hong Kong.
Their approach uses a flow network to model probe requests as nodes and optimize associations by
finding minimum-cost flows between frames. For validation, real MAC addresses were used in some
instances as ground truth, while high RSSI values were employed to infer the proximity of devices
with randomized MAC addresses. However, their validation was limited in scope and carried out
in a highly controlled setting, raising questions about the method’s scalability. In another study,
Pérez-Hernandez et al. (2024) clustered probe requests based on IEs and RSSI to create unique

device fingerprints. Their system, tested on a university campus with six access points, successfully
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detected 181 devices with an accuracy rate of 92.3%.

People-counting using Wi-Fi probe requests under MAC address randomization comes with a
notable challenge: model validation. The difficulty lies in confirming whether two probe requests
come from the same device. To address this, researchers often rely on manual counting or apply
coarse-grained assumptions like RSSI filtering, though these methods tend to be imprecise. As a
result, many studies use multiple Wi-Fi access points to improve accuracy, which helps but also
adds considerable complexity to the setup.

A more refined approach to address the challenge of model validation involves using anechoic
chambers. An anechoic chamber is an isolated space, shielded from external interference and en-
gineered to prevent echoes of electromagnetic waves. When a device is placed inside, we can be
certain that all detected signals originate solely from that device in a direct line of sight to the snif-
fer. Therefore, if two probe requests are received, we can confidently conclude that they originate
from the same device—the only device in the chamber. To explore the potential of anechoic cham-
bers, Uras et al. (2020) developed an approach to fingerprint devices by combining the IDs and
lengths of IEs—though not the full IE content. A set of 23 smartphones was individually placed in
a semi-anechoic chamber, which generated 15,151 probes employing randomized MAC addresses.
However, this dataset was not yet publicly available.

Fortunately, the release of a labelled dataset in 2022 has fuelled further research and provided
a stronger foundation for model validation (Pintor & Atzori, 2022b). The dataset was created in
a semi-anechoic chamber, and each smartphone’s probe requests were categorized individually,
addressing the scarcity of labelled data. In their study, Pintor and Atzori (2022a) used this dataset to
analyze Wi-Fi probe requests and compared the potential of various IE fields to improve clustering
outcomes. Uras et al. (2022) also used this dataset to de-randomize MAC addresses for crowd-
counting purposes. They grouped probe requests originating from the same device by combining
frame arrival times with IE lengths and RSSI. Their approach employs only the IE identifier and
length, excluding their content. Additionally, they propose a method for detecting pseudo-random
MAC addresses, which only change when the device’s Wi-Fi is toggled on or off.

The same dataset was as well explored in the work by Simoncic et al. (2023), where a method

for detecting crowd presence and movement is proposed. This method essentially clusters probe
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requests based on RSSI values, frames arrival time, and various IEs. The authors further validated
their approach using probe requests collected in different environments: a semi-controlled rural
setting, another dataset from the JoZef Stefan Institute, and an uncontrolled urban environment in
Catania, Italy.

In the quest for the most potential features, our study extends beyond a simple comparison of
IEs by examining the relevance of all promising options, including RSSI, sequence numbers, and
probe request length. We aim to show that only a specific subset of IEs is genuinely necessary.
We also employ a new feature, which we call “presence flags”, with the goal of achieving greater

accuracy.

2.3 Data for Wi-Fi Probe Requests

Before the introduction of MAC address randomization, device tracking and analysis were rela-
tively straightforward, with little need for ground-truth datasets. This ease had arisen from the static
nature of MAC addresses, which were consistently linked to individual devices. Two public datasets

were used in the literature and had deemed sufficient for research requirements.

» Sapienza Dataset
The Sapienza dataset (Barbera et al., 2013) is a publicly available resource widely used for
studies involving probe requests. Collected during large-scale measurement campaigns, it
has supported numerous related studies and includes data from five distinct environments: a

university campus, a shopping mall, a train station, the Vatican City area, and political rallies.

* Hasselt Dataset
The Hasselt dataset (Robyns et al., 2015) contains about 123,000 probe requests captured by
eight monitoring stations at the Glimps 2015 music festival in Ghent, Belgium. Only a few
studies have utilized this dataset, likely because the Sapienza dataset was widely available
and deemed adequate for research at the time, and also due to specific limitations within the
Hasselt dataset itself. In particular, the Hasselt dataset records only one probe request per
unique MAC address, assigns a sequence number of zero to each request, and obscures the

SSIDs. These constraints severely limit its potential for in-depth analysis.
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As device addresses are no longer static, datasets like Sapienza and Hasselt have become out-
dated. This shift has led researchers to collect their own data, though only a few have made them
publicly available. Nevertheless, these datasets are often limited in scope and scale because the
data collection process is labour-intensive, challenging, and costly. As a result, they fail to meet the
growing demand for more comprehensive data, which is particularly important for deep learning
applications. The following two datasets were created and used after the widespread adoption of

MAC address randomization

* Nile dataset
This dataset (Abdulrahem, 2021) was collected at night in a shopping centre and is the only
publicly available one without anonymization, making it ideal for analysis. However, the

brief 40-minute capture window significantly limits the scope of the analysis.

» IPIN dataset
The IPIN dataset (Bravenec et al., 2022) was released as supplementary material for a case
study carried out in Lloret de Mar, Spain, during the 2021 Indoor Positioning and Indoor
Navigation conference. It was collected over only four days, and the capture device could not

store radio information.

Beyond the above-mentioned datasets, most others remain proprietary and inaccessible to the re-
search community (Cunche et al., 2014; Matte et al., 2016; Vanhoef et al., 2016), creating a sig-
nificant barrier to developing generalizable solutions. The challenge extends even further when it
comes to model validation, as with MAC address randomization, accurately determining whether
two probe requests originate from the same device becomes difficult without proper labelling. In
uncontrolled environments, where interference from other Wi-Fi signals is common, reliably linking
signals to specific devices becomes highly problematic.

Fortunately, the Pintor dataset, a labelled one created by Pintor and Atzori (2022b), can help
address this matter. Indeed, the creators tested each device individually in an anechoic chamber,
ensuring precise signal identification. The dataset comprises 22 smartphones, with only five devices
lacking MAC address randomization implementation. It encompasses a total of 315 PCAP (Packet

CAPture) files of probe request captures. Using a Raspberry Pi 3, each individual device was sniffed
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either within an empty anechoic chamber or a noisy environment, concurrently using three non-

overlapping channels (1, 6, and 11).

2.4 Synthetic Data for Crowd Monitoring

2.4.1 Challenges of tabular data generation

Considering the importance of a labelled dataset for model validation and the inherent chal-
lenges of collecting representative data, generating synthetic data may provide a practical and cost-
effective solution to expand probe request datasets. The growing field of synthetic data generation
could provide a promising approach by training machine learning models to accurately learn and
replicate the statistical patterns embedded in original datasets, thus generating new representative
samples. This process would not only enable more rigorous validation but also function as an effec-
tive data augmentation technique, enhancing model robustness and improving the performance of
deep-learning applications during training.

That said, much of deep learning research remains largely centred around image data. Although
images are high-dimensional and complex, they typically contain uniform and structured features,
with pixel values arranged in grids that follow consistent patterns and distributions. In contrast,
tabular data, like the kind we work with, has often been overlooked despite its broad use and im-
portance across many fields (Borisov et al., 2022). Tabular data differs from images in several key

ways:

* Mix of discrete and continuous features:
Real-world tabular data commonly includes a blend of categorical and numerical columns, which
require specialized preprocessing before use in neural networks, typically designed to handle nor-
malized floating-point values. These preprocessing steps, however, can introduce biases, disturb
feature relationships, and create data sparsity, all of which may hinder model performance and
reduce the quality of synthetic data generated (Xu et al., 2019). Additionally, it’s essential that

preprocessing is reversible to accurately reconstruct the original data from synthetic samples.
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* Non-Gaussian distribution:
Unlike image data, where pixel values generally follow a Gaussian-like distribution and are
straightforward to normalize, continuous features in tabular datasets often deviate from this. They
can exhibit complex patterns such as multimodal distributions with multiple peaks, long-tailed
distributions with many outliers, or skewed distributions with an asymmetric shape. Since neural
networks are optimized for Gaussian inputs (Borisov et al., 2022), this creates a challenge, re-
quiring custom preprocessing and post-processing methods to ensure accurate representation of

non-Gaussian data.

* Imbalanced categories and sparse values:
In many real-world scenarios, categorical data is often imbalanced, with certain classes appear-
ing much more frequently than others. Generative models frequently struggle to capture these
under-represented classes due to mode collapse. This challenge is further exacerbated by missing
values or sparse features in tabular datasets, where most entries may be zeros. Additionally, com-
mon methods for encoding discrete features, like one-hot encoding, increase the sparsity of the

transformed data, adding yet another obstacle for generative models (Xu et al., 2019).

2.4.2 Generative models for data generation

Generative models are a class of machine learning models that aim to capture the underlying
data distribution of a training set, allowing for the generation of new data points from that distri-
bution. The main types of deep generative models are variational autoencoders (VAEs), generative
adversarial networks (GANSs), and diffusion models (DMs). Figure 2.1 illustrates the architectural

differences between them.

Variational autoencoders

VAEs generate data by learning a latent representation and applying a regularization term that
keeps this representation close to a defined distribution. In other words, the input data z is encoded

into a latent space z. After training, we can draw samples from the latent distribution p(z) and
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‘Variational autoencoder Generative adversarial network Diffusion model

Figure 2.1: Tllustrations of the three types of generative models relevant to tabular data synthesis.
Coloured blocks indicate the Encoder (enc), Decoder (dec), Generator (G), and Discriminator (D)
networks. A real dataset z is used to train the models, generating a synthetic dataset Z. The latent
space from which the models sample is denoted by z.

decode these into new data Z. VAEs consist of two neural networks: an encoder network g4 param-
eterized by weights ¢ and a decoder network pg parameterized by weights 8. The VAE’s objective,

the Evidence Lower Bound (ELLBO), is optimized by maximizing the following expression:

Eqgy (21 [108 Po(2]2)] — D 1.(g(2|2) || p(2)) (1)

where Dk, denotes the Kullback-Leibler divergence. The first term promotes similarity between
the reconstructed data # and the original data x, while the second term enforces a prior distribu-
tion on z, typically a standard Gaussian. This formulation ensures stable training and approximate
likelihood estimation. However, it inherently limits the model’s ability to capture complex data
distributions, often producing less realistic samples (Bond-Taylor et al., 2021).

While some research has explored VAEs for generating tabular data (Abay et al., 2019; Acs
et al., 2017; Xu et al., 2019), the notable success of GANs in image generation has shifted much
of the focus to GAN-based models (Jordon et al., 2022). Even when used, VAEs are frequently
integrated within GAN frameworks (Torfi & Fox, 2020; Torfi et al., 2022).

Generative adversarial Networks

Unlike VAEs, GANSs rely on adversarial training between a generator and a discriminator, al-
lowing the model to implicitly learn the data distribution. However, this adversarial setup often

causes instability, as the training process can become imbalanced, leading to challenges such as
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mode collapse and non-convergence (Bond-Taylor et al., 2021).

In the context of tabular data, E. Choi et al. (2017) introduced medGAN, an approach that
combines an autoencoder with a GAN framework to generate synthetic health records, focusing
specifically on discrete data types. N. Park et al. (2018) expanded on this concept with table-GAN,
designed to handle mixed-type tabular data. Built upon DCGAN (Radford, 2015), table-GAN in-
corporates an auxiliary classifier to enhance performance. It is important to note that in these ap-
proaches, categorical variables were often represented as integers, which could lead to misinter-
pretation by suggesting ordinal relationships in non-ordinal data. In the work of Xu et al. (2019),
Conditional Tabular GAN was introduced to address challenges in generating mixed-type tabular
data. It effectively handles non-Gaussian, multimodal distributions and uses fully connected layers
in its generator and discriminator to capture complex feature correlations. It also employs Wasser-

stein loss with gradient penalties for improved training stability.

Diffusion models

Diffusion Models (DMs) have since emerged as a more stable alternative for generative mod-
elling. They gradually add noise to the data and then learn to reverse this process. By dividing the
sampling process into smaller sequential steps, DMs enable smoother training. They have gained
significant attention in image synthesis due to their high sample quality and reliability (Croitoru
et al., 2023; Yang et al., 2023), yet their application to tabular data synthesis remains largely un-
derexplored (Yang et al., 2023). In the study by Kotelnikov et al. (2023), the TabDDPM model is
applied to generate privacy-preserving synthetic data and is evaluated across various datasets. How-
ever, this approach implements only a direct denoising model. In our work, we fine-tune a different
diffusion model, TableDiffusion (Truda, 2023), to predict noise rather than just denoise, enabling

us to reconstruct the data more effectively.
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Chapter 3

Methodology

This section begins with the methodology for Random Forest feature selection, followed by
an exploration of density-based clustering using DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) for data grouping, and concludes with details on the diffusion model

applied for data generation.

3.1 Random Forest Feature Importance

We adopt a selective approach to assess the relative importance of each feature, considering
both its relationship to other features and the target label. By applying feature selection, we focus
on a subset of the most informative features, which helps reduce noise from irrelevant data and can
improve the robustness (Tirelli & Pessani, 2011) and explainability of the device counting model.

Using feature selection techniques also reduces the dimensionality of our data, enhancing model
usability and improving processing speed—both essential for deployment on an edge device. While
dimensionality reduction methods like Principal Component Analysis (PCA) also lower dimension-
ality, PCA has certain drawbacks that make it less suitable to our context.

First, PCA sacrifices interpretability. By transforming original features into principal components,
which are linear combinations of the original features, PCA produces abstract features that are
harder to interpret. This lack of interpretability is a significant limitation, particularly in our context,

where understanding distinct and non-standardized features is important.
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Second, PCA assumes linear relationships among features, which may not accurately reflect real-
world data patterns. If the relationships among features are non-linear, PCA is unlikely to capture
this structure effectively, leading to potential loss of information.

Third, PCA maximizes variance in the dataset, assuming that components with the highest vari-
ance contain the most informative content. However, in supervised learning, high variance doesn’t
necessarily correspond to high relevance for the target variable. This could result in discarding
low-variance features that are, in fact, valuable predictors of our target outcomes.

Finally, PCA may face challenges when applied to sparse datasets (Zou & Xue, 2018), such as
ours, where a significant proportion of features contain zero values. This sparsity can undermine
the effectiveness of PCA by distorting the variance-capturing process and potentially leading to less
accurate or meaningful results.

Since some features in 802.11 frames are optional and their presence may vary, accounting for
commonly included features is essential to ensure data consistency and enhance the model’s gen-
eralizability. Random Forest-based feature selection can efficiently identify important subsets of
features while considering those with high prevalence (Nicodemus, 2011). As an ensemble of deci-
sion trees, Random Forest (RF) estimates feature importance based on how well a feature increases
the purity of leaf nodes in decision trees during training (Breiman, 2001).

Gini importance evaluates the significance of the features by measuring the reduction in node
impurity, using the Gini impurity as the criterion. Leaf purity, often measured by Gini impurity,
reflects the homogeneity of data points in a node after a split, where more important features lead
to purer leaves and better data separation. For a node S containing records from k classes, the Gini

impurity is computed as follows in (2):
k
G(S)=1-> P? 2)
i=1

where P; is the proportion of samples in class i at node S. The higher the Gini impurity, the less
pure the node is, indicating more mixed classes and less information gained from the split. At each
split in a decision tree, the Gini impurity is calculated for both the parent node .S and its two child

nodes. The importance of a feature is then determined by the weighted reduction in impurity for all
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the splits that involve the feature across the forest. The Gini importance of feature j is given by (3):

Ic() =) > AG(t,9) (3)

teT ses;

where T represents all the trees in the forest, and S; represents the nodes in a tree where splits on
feature j occur. In a tree ¢, AG(t, s) is the reduction in impurity at node s € S; after splitting based
on feature j. It results from splitting the samples into two children nodes S; and S, with respective

samples p; = % and p, = % as shown in (4):

AG(S) = G(S) — P G(Sl) — Dr - G(Sr) 4)

3.2 Density-based Clustering

Probe requests originating from the same device should exhibit enough similarity to be grouped
into the same cluster, eventually resulting in the number of clusters corresponding to the number
of devices. Density-based clustering algorithms are particularly suited to this purpose, as they do
not require predefining the number of clusters, unlike partitioning methods such as k-means and k-
medoids. Furthermore, density-based methods are more flexible in identifying clusters of arbitrary
shapes, while partitioning and hierarchical clustering methods tend to perform best for spherical
clusters, making them less adaptable in complex scenarios.

The traditional use of clustering methods often relies on syntactic features, like proximity in a
feature space, which alone may not be sufficient in the context of Wi-Fi probe requests. Due to
MAC address randomization, significant noise is introduced, complicating reliance on surface-level
syntactic features. Therefore, it becomes critical to base clustering on semantic features—those
that capture device behaviour and intrinsic properties. By leveraging Information Elements (IEs),
our approach seeks to uncover latent semantic structures within the probe requests, ensuring that
clusters are not merely the result of syntactic similarity but are driven by meaningful behavioural
patterns.

DBSCAN (Ester et al., 1996) is a widely used density-based clustering algorithm known for its

ability to handle noise. It has two primary parameters:
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» Epsilon (¢): the maximum distance between two probe requests in order to be considered in

the same neighbourhood. It essentially determines the radius of the cluster around each probe.

* Minimum Points (min-points): the minimum number of probe requests required to form a
dense region. If there are at least min-points probe requests within an € radius of a particular

probe, the latter is considered a core point, and a cluster is formed around it.

DBSCAN initiates by selecting an arbitrary point and identifying all neighbouring points within
a distance e. If the number of neighbouring points is greater than min-points, a cluster is established.
The point and its neighbours are subsequently added to the cluster, and the point is marked as visited.
If the number of neighbouring points is less than the specified min-points, the point is classified as
noise. The algorithm continues iteratively until all points have been visited.

The selection of € and min-points is often informed by empirical knowledge, with iterative
adjustments performed through trial and error to achieve optimal clustering outcomes (Song et al.,
2018). For data of dimensionality d, a commonly used heuristic suggests setting min-points to d+1.

The vanilla version of DBSCAN detects clusters using a single global density threshold, which
limits its effectiveness for datasets with diverse intrinsic density levels. This drawback is especially
pertinent to our situation, as probe requests are not uniformly standardized and can differ consider-
ably between manufacturers and even across operating system versions.

Adapting to different density levels can be achieved by adjusting € using a k-distance graph,
where we compute the average distance to each point’s k-nearest neighbours. Averaging these
distances smooths the k-distance graph, reducing noise and helping to identify appropriate density
thresholds. The k-distance dj, for a probe request p in the dataset D is the distance to its k-th nearest

neighbours in terms of a chosen distance metric d. It is expressed in (5) as:

d(p) = min _, mean d(p,q) (5)

By sorting these average distances, we can observe patterns related to the dataset’s density
levels. Points associated with noise tend to exhibit larger k-distances, whereas sharper transitions
suggest density changes. These transitions — often called knees— correspond to potential e values.

Mathematically, if the k-dist plot is viewed as a function f of the sorted points, a knee point is where
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the second derivative tends to zero. In the case of multiple density levels, the k-distance plot would
typically feature smooth curves connected by regions of sharp variation.

We experimented with both Euclidean and Hamming distances as metrics for determining the
k-nearest neighbours. Ultimately, we selected the Hamming distance for the final approach, as
it produced superior clustering outcomes. Given n features, the Hamming distance between two

probes p and g is defined in (6) as:
1 k3
ditamming (P, 4) = — > Lpra) (6)
i=1

3.3 Diffusion-based Data Generation

Diffusion models represent a recent class of implicit generative models that generate data by
gradually injecting noise into data over T" discrete time steps and then reversing this process to re-
construct the original data distribution. The diffusion model in this work is based on the formulation
of Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020), where the noise injection
and data recovery processes are modelled through two Markov chains. In the forward process,

Gaussian noise z; is introduced to the data z; at each time step ¢, as shown in (7).
Tygp1 = T + 2, With z, ~ N (0,5 1) (7N

As f3; increases over time, the noise variance grows, ensuring a smooth transition. Instead of the
linear noise schedule from DDPM by Ho et al. (2020), we adopt a trigonometric noise schedule

defined in (8) as:

B = sinQ(;—; (8)

The trigonometric space provides a smoother noise schedule compared to the linear one, leading to
more gradual data degradation, especially near the end of the process (Nichol & Dhariwal, 2021).
In contrast, the linear schedule injects too much noise early on, potentially destroying information

prematurely. As a result, fewer steps would be needed in the reverse process.



In the reverse process, starting from the fully noised state =, the aim is to recover the original
data zy. This is achieved by training a neural network My to minimize the mean squared error
between the predicted and actual noise, thereby estimating the noise added during the forward pro-
cess. Specifically, the model learns to predict the noise z; at each step, aiming to reconstruct Zg, as
expressed in (9):

T

B0 = a7 — Z %;, where 2; ~ My(z;) 9)

t=1

For generating synthetic tabular data, we first map the raw mixed-type data into a latent space
where it is represented homogeneously. The diffusion process is then applied within this latent
space, which facilitates the generation of high-quality synthetic tabular data.

Unlike traditional generative models, diffusion models allow for the gradual reconstruction of
data, ensuring that the semantic integrity of the original probe requests is maintained throughout
the generation process. This characteristic makes diffusion models particularly well-suited for tasks
requiring a deep understanding of latent semantic relationships between features, as is the case
in Wi-Fi probe request clustering. By preserving these semantic relationships, diffusion models
provide a robust foundation for clustering probe requests in scenarios where maintaining device

behaviour characteristics is crucial.
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Chapter 4

Data and Results

In this chapter, we present the data used for testing and validating our proposed Wi-Fi probe
request-based crowd-counting model and discuss the results of our experiments. The analysis begins
with an overview of the dataset composition, including key characteristics of the Pintor dataset. The
unique features and limitations of each dataset are highlighted, demonstrating the challenges in

modelling probe requests under MAC address randomization.

4.1 Dataset Overview

In this study, we use the Pintor dataset (Pintor & Atzori, 2022b) to validate our findings. This
labelled dataset associates each probe request to the label of its generating device. It consists of
capture files containing the transmitted messages over Wi-Fi channels. Multiple captures were taken
for each device under various settings. These settings are divided into two main categories: active-
screen modes (A, PA, and WA), in which the device’s screen remained on during capture while
playing a video, and inactive-screen modes (S, PS, and WS), where the screen was on standby.
In power-saving modes (PA and PS), the device’s power-saving setting was enabled, whereas in
all other captures, it was disabled. Additionally, WA and WS modes indicate captures where the
device’s Wi-Fi interface was off; in all other modes, the Wi-Fi interface remained on but was not
connected to any access point. A summary of the data exploration for the Pintor dataset is provided

in Table 4.1, presenting an overview of its settings.
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Number of devices

Android 17
Operating system

i0S 5

Anechoic chamber 8
Environment setup

Noisy environment 14

YES 17
MAC randomization

NO 5

Table 4.1: Device distribution in the Pintor dataset across different experiment settings

The importance of this dataset lies in its labelled nature. While our approach is unsupervised,
specifically focused on calibrating a clustering algorithm, we could typically only use unsupervised
metrics for model validation. However, we plan to leverage the available labels for an additional
validation layer, in a manner similar to how supervised models are tested (without using the labels
for learning or calibration). We contend that relying exclusively on unsupervised metrics, like
the silhouette score, for evaluating clustering performance is insufficient. These metrics primarily
assess the internal structure of the clusters, such as cohesion (how closely related the points within
a cluster are) and separation (how distinct the clusters are from each other). While these aspects are
important and can provide valuable insights, they may not fully capture the practical or intended
purpose of the clusters, particularly in real-world applications where the clusters need to correspond
to meaningful and domain-specific categories. Moreover, unsupervised metrics are susceptible to
biases that can distort the assessment of clustering quality. This is particularly evident when clusters
overlap or when the data exhibit varying densities across different regions. Some metrics prioritize
compactness, which might cause them to miss subtler, yet semantically significant, distinctions
between data points within a cluster.

The Pintor dataset predominantly includes devices with MAC address randomization enabled,
which can be identified by examining the MAC address. A MAC address consists of two 6-byte
sections. The first part, known as the Organizationally Unique Identifier (OUI), identifies the man-
ufacturer or organization responsible for producing the device. The second part uniquely identifies

each device within that manufacturer’s product line. A 1 value in the seventh most significant bit
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(B1) implies a random MAC address, whereas a value of 0 indicates a real physical MAC address.

Figure 4.1 illustrates the structure of a MAC address.

3 bytes 3 bytes

Organizationally Unique Identifier

(OU) Network Interface Controller (NIC)

B7| B6 | B5| B4 | B3 |B2 | Bl | BO

Figure 4.1: The structure of MAC address with the functional bits

Our primary focus in this project lies in the analysis of the IEs within the dataset. As previously
noted, not all the IE fields are mandatory. Table 4.2 provides an overview of each IE’s frequency
within the dataset, detailing the percentage presence of each. To prepare the IEs for analysis, we
extract their content from the dataset and convert it into numeric values. If an IE is missing or
empty, we assign it a value of zero. If the IE is already numeric, we leave it unchanged. For arrays,
we reduce them to a single numeric value by summing their elements. If the IE is a string, we cal-
culate a numeric equivalent by adding up the ASCII values of each character. Prior to applying the
machine learning algorithms, we applied min-max normalization. Notably, a single Probe Request
can include multiple 221 and 127 IEs with distinct contents. To account for this, we combine the
values of all instances of these IEs by summing them. Next, we add presence flags IE X* each con-
taining a binary value to indicate whether the corresponding IE X is present and used in the probe
request. These flags are intended to provide additional information about the probe request, helping
to characterize it more clearly.

We initiated the development of a custom dataset, termed the “Concordia Dataset”, with the
aim of creating a labelled dataset specifically designed to address the challenges in device count-
ing validation. This dataset project was launched to evaluate the process of dataset creation, which
proved to be labour-intensive, time-consuming, and costly. The Concordia dataset is distinct from

the Pintor dataset in that it is specifically tailored for device counting. Unlike the Pintor dataset
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IEID Name Description Presence

0 Service Set Identify (SSID) Name of the wireless network 100%

1 Supported Rates Supported Data rates for communication  100%

50 Extended Supported Rates  Identical to supported rates, but used when 99.9%
the supported rates exceed 8 rates

3 DS Parameter Set Channel number 97.8%

45 HT Capabilities Details on the High Throughput capabili- 96.8%
ties of the network (802.11n)

221 Vendor Specific Proprietary information unique to each 90.9%
manufacturer

127 Extended Capabilities Features beyond core standard capabili- 83.5%
ties, e.g., Wi-Fi Direct

255 Element ID Extension Allowing additional IEs to be used 14.3%

191 VHT Capabilities Details on the Very High Throughput ca- 11.1%
pabilities of the network (802.11ac)

107 Interworking Types of access networks, associated 3.3%

costs, and the type of venue.

Table 4.2: Description of the information elements present in the Pintor dataset

approach, which involves isolating a single device in an anechoic chamber, our methodology inten-
tionally introduces multiple devices into the chamber, each with an assigned label representing the
device count (e.g., a configuration of five phones corresponds to the label five). Table 4.3 gives an

overview of the Pintor dataset raw data.

sequence

MAC address number length RSSI IEO0 IE1 IE3 IES0 IE45 JE127 IE107 1E221 IE191 1IE255 Label
ec:9b:f3:75:8e:40 4096 123 -35 1] 551 0 414 270 12 0 0 0 717 H
22:8f:aa:fb:bf:51 5248 131 -33 1] 402 0 809 270 20 0 0 0 8001 P
22:8f:aa:fb:bf:51 5264 131 -31 1] 402 0 809 270 20 0 0 0 8001 P
dacal:19:9c:fd:cf 56144 127 -76 0 39 2 414 265 3 0 20730 0 1] B
dacal:19:9c:fd:cf 56432 125 -48 0 39 3 414 265 3 0 20730 0 1] B
da:al:19:b5:fa:fb 128 112 -66 0 39 3 414 269 8 0 20747 0 1] ]
da:al:19:b5:fa:fb 384 112 -50 0 39 6 414 269 8 0 20747 0 1] ]

Table 4.3: Excerpt of raw data rows used in the study

We wanted to create our own dataset, the Concordia dataset, to understand the process behind
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building such particular ones in anechoic chambers. Our goal was to assess how labour-intensive
it is and uncover the specific steps and unique challenges involved. Drawing from the analysis of
the Pintor dataset, we set out to develop ours with the following configuration. Through this exper-
imental design, the dataset attempts to capture real-world complexities, such as signal interference,
device proximity effects, and multi-device interactions, making it highly unique and particularly
valuable for validating device counting algorithms. However, due to resource limitations and the
intensive nature of the data collection process, we were able to compile only a small amount of data.

To ensure that the frames we capture originate exclusively from our devices, the ideal setup
environment would be an isolated room, such as a Faraday cage, completely shielded from external
Wi-Fi signals. Given the unavailability of such a room, we opted for a hemi-anechoic chamber as
an alternative available at Concordia University, where we place a variety of smartphones within
a one-meter line-of-sight from the scanner. Each experiment takes around 10 to 15 minutes. The
scanner is a MacBook Pro M1 equipped with a Wi-Fi chipset supporting monitor mode, essential
for capturing probe requests. We use Wireshark software to capture probe requests and store them
in PCAPng files (Packet CAPture new generation). Table 4.4 gives an overview of the devices used

so far in the Concordia dataset.

Device Name Operating System Version Vendor

iPhone 12 i0S 16.6 Apple

Galaxy A51 Android 13 Samsung
Iphone 5C i0S 10.3.3 Apple

Galaxy S6 Android 7 Samsung
Galaxy Core  Android 4.4.2 Samsung
Nexus 5X Android 8.1 LG Electronics
iPhone 4 i0S7.1.2 Apple

Galaxy S9 Android 9 Samsung
iPhone 48 105 9.3.4 Apple

iPhone 14 i0S 16.6 Apple

Table 4.4: Device names and operating system versions from the Concordia dataset



4.2 Experiments and Results

Figure 4.2 illustrates the Gini Importance of the available features in probe requests. It is clear
that the probe requests length, IE 127, IE 221 contain a substantial amount of information compared
to other features. We also include IE 45 in our analysis to capture any additional, albeit smaller,

informational contributions.
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Figure 4.2: Gini importance scores for all features in the Pintor dataset

The Lorenz curve, depicted in Figure 4.3 further supports these observations by illustrating the
cumulative percentage of features relative to their cumulative importance. If each feature contributes
equally, a given proportion of features would account for the same proportion of cumulative impor-
tance, represented by the red line of equality. However, the observed Lorenz curve deviates below
this line, forming a bowed shape, indicating that a small subset of features contributes dispropor-
tionately to the overall importance.

Based on the preceding analysis, we will proceed using the probe request length along with
Information Elements (IEs) 221, 45, and 127. Our objective is to apply the DBSCAN clustering
algorithm to group probe requests. Clustering is used under the assumption that probe requests
originating from the same device exhibit sufficient intrinsic similarities. Thus, the number of clus-

ters will correspond to the estimated number of distinct devices.
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Figure 4.3: The Lorenz curve illustrating the cumulative importance as the proportion of features
increases

The effectiveness of the clustering approach will be evaluated using 3 metrics:

* Absolute Error: it measures the disparity between the number of clusters generated and the

count of devices contributing to our dataset.

* The average silhouette score: To evaluate clustering quality, we calculate the silhouette
score, which helps determine how well-separated clusters are by quantifying the distance
between each probe request and its surrounding clusters. The silhouette score s(p) for a

probe request p is defined as:

S(p) _ b(p) — a(p) (10)

~ max[b(p),a(p)]
where a(p) is the average distance between the probe request p and all other probe requests
in the same cluster and b(p) is the average distance between the probe request p and the probe
requests in the nearest neighbouring cluster. A silhouette score of 1 means the probe request
is well-clustered, being close to its own cluster and far from others. A score of 0 indicates
the probe request is near the boundary between clusters, with no clear fit to either. A score of
-1 suggests the probe request is likely misclassified, as it is closer to another cluster than its

OWIL.

* V-measure: it is an entropy-based metric used to quantify how successful a clustering is.
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V-measure is computed as the harmonic mean of homogeneity and completeness scores.

A clustering satisfies homogeneity if probe requests within each cluster originate from the

same device. A homogeneity score is calculated as follows:

_,_ H(CK)
h=1- H(C) (1)

where H(C|K) is the conditional entropy of the class distribution given the proposed clus-
tering. In the perfectly homogeneous case, this value is 0.

A clustering satisfies completeness if all probe requests coming from a given device are clus-

tered in the same cluster. A completeness score is calculated as follows:

H(K|C)
- ®) (12)
The V-measure is then expressed in (13) as:
2-h-c
V- = 13
measure Wt (13)

We run DBSCAN with the parameters defined for different (overlapping) subsets of the dataset.

* Subset 1, including data from 12 devices, with two devices not implementing MAC address

randomization.

* Subset 2, including data corresponding to 20 devices, with three devices not implementing

MAC address randomization.

* Subset 3, including data from 17 different devices, all implementing MAC address random-

ization.
* Subset 4, including data from 10 devices, all implementing MAC address randomization.
* Subset 5, including data from all 22 devices.

In Figure 4.4, the silhouette coefficients relative to each subset illustrate intra-cluster cohesion
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and inter-cluster separation for the different subsets. Subset 1, with the highest average silhou-
ette score, has values consistently close to 1, indicating well-separated clusters. This suggests that
the selected features effectively differentiate data points, contributing to the subset’s strong perfor-
mance. The narrow distribution further indicates minimal overlap between clusters, underscoring
the robustness of this clustering. In contrast, Subset 3, which has the lowest average silhouette

score, shows lower values, including some negative scores, reflecting poorer clustering quality.
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Figure 4.4: Comparison of silhouette scores for the clustering subsets

It is important to emphasize that silhouette scores alone do not reliably guarantee effective
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clustering outcomes. To ensure validity, they should be complemented by additional metrics, such
as the supervised V-measure. For example, a high silhouette score does not necessarily indicate
well-defined inter-cluster distinctions. Therefore, a comprehensive evaluation requires combining
multiple metrics, including the silhouette score, V-measure, and absolute error, to provide a more

robust assessment.

Hamming distance Euclidean distance Euclidean dist: without p flags
V-measure  Silhouette score  Absolute error | V-measure  Silhouette score  Absolute error | V-measure  Silhouette score  Absolute error
Subset 1 0.957 0.764 0 0.885 0.917 8" 0.804 0.870 3
Subset 2 0.919 0.692 4 0.867 0.852 6 0.671 0.776 8
Subset 3 0.909 0.691 2 0.873 0.869 1 0.641 0.785 6
Subset 4 0.915 0.701 3 0.878 0.873 1 0.659 0.790 11
Subset 5 0.940 0711 3 0.865 0.851 7 0.564 0.618 9

* including one cluster labelled as noise

Table 4.5: Comparison of clustering metrics across the different subsets

The results in Table 4.5 reveal two key insights: the Hamming distance is more suitable than
the Euclidean distance, and the presence flags contribute to a more robust and binary difference
counting. Indeed, the use of Hamming distance creates a distinct separation between data points,
resulting in a more gradual and stable k-distance curve characterized by multiple potential knees.
This enables the knee point to be identified without interference from abrupt drop-offs. In contrast,
Euclidean distance often produces a sharp, singular drop in the curve, where the transition to near-
zero distances can cause instability, potentially leading to the selection of unrealistically small €
values.

Table 4.5 also highlights the significance of incorporating a supervised metric in conjunction
with the silhouette score. Indeed, Subset 1 with Euclidean distance attains a high Silhouette score
but results in inaccurate counting. This is most probably due to the cluster’s compactness and the
spatial distribution of probe requests. This observation also highlights how Hamming distance can
mitigate this compactness, improving counting accuracy.

To assess the performance of the diffusion model, we compare the mean and standard deviation
differences between the real and synthetic data. As we can depict from Figure 4.5, the points
(very often overlapping) are positioned very close to the y = z line in both the mean and standard

deviation plots, indicating that the synthetic data replicates the statistical properties of the real data.
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Figure 4.5: Comparison of the absolute log mean and standard deviations between original and
diffusion-based synthetic data

To evaluate the performance differences between the used GAN model (Xu et al., 2019) and
the diffusion model, we conduct a Principal Component Analysis (PCA) and present the first two
principal components of the real data, GAN-generated synthetic data, and diffusion-generated syn-
thetic data. It is clear in Figure 4.6 that the diffusion model’s synthetic data closely mirrors the real
data in terms of component distribution, scale, and spatial positioning. In contrast, the PCA plot of
the GAN-generated data reveals numerous points that are poorly aligned, indicating a less accurate

representation of the real data structure.
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Figure 4.6: PCA plot of the first two principal components showing the distribution of original,
GAN-generated, and diffusion-generated data
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We further evaluate the differences between the GAN and the diffusion model by plotting the
cumulative sum of real and synthetic data. The cumulative sum plot is important as it helps to visu-
ally assess how well the synthetic data captures the overall trends and distribution of the real data. A
close match indicates good data generation, while significant discrepancies suggest potential issues
with the model’s performance. In both Figure 4.7 and Figure 4.8, we observe that the cumulative

sum of the length feature is notably smoother than that of the other features, which lack a continuous

distribution.
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Figure 4.7: Cumulative sum comparison of real versus diffusion-generated synthetic data across all
features

When synthetic data diverges from real data, this may highlight limitations in the generation
process, potentially due to limited data diversity or sparsity in specific areas of the real dataset. No-
tably, the diffusion model captures non-Gaussian features more accurately, while the GAN performs

better on Gaussian-like distributions, such as the length feature. However, the GAN struggles with
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Figure 4.8: Cumulative sum comparison of real versus GAN-generated synthetic data across all
features

discontinuous features compared to the diffusion model, which shows greater adaptability to non-
continuous data patterns. Figure 4.9 illustrates the distributions of the length feature, IE 45, IE 127,
and IE 221. It is evident that the length feature appears more Gaussian and continuous compared to

the others, which is likely why the GAN performs better with it.
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Once the synthetic data is generated, we integrate 30% of it with the real data and reapply the

DBSCAN clustering algorithm. The clustering results, presented in Table 4.6, demonstrate a notable

improvement, particularly in terms of the average silhouette score and absolute error, indicating an

enhanced clustering performance.

V-measure Silhouette score  Absolute error

Subset 1
Subset 2
Subset 3
Subset 4
Subset 5

0.952
0.931
0.908
0.918
0.920

0.789
0.721
0.701
0.721
0.701

0

3
0
3
3

Table 4.6: Comparison of clustering metrics across the subsets using the mixed (original and
diffusion-generated) data
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Chapter 5

Conclusion & Future Work

5.1 Key Contributions & Insights

This thesis introduces an innovative privacy-preserving approach to crowd counting, using Wi-
Fi probe requests to estimate passenger numbers at bus stops. The research focuses on a strategic
selection of specific Information Elements as features for crowd size estimation, demonstrating
the feasibility of leveraging Wi-Fi probe request data for accurate crowd counting. The primary

contributions of this work are as follows:

* A selective feature set: Through a feature selection analysis, we establish that reliable crowd-
counting can be achieved with a minimal set of features—specifically, four key attributes:
the probe request length, and three distinct IEs: IE 127, IE 221, and IE 45. This selective
approach optimizes computational efficiency while maintaining high accuracy in estimating

crowd size.

* Introduction of presence flags: A novel aspect of our method is the incorporation of pres-
ence flags for each IE. These binary indicators signal whether the corresponding IE is present
in the probe request. Our results showed how their introduction helped with feature represen-

tation, and hence crowd estimation.

* The use of the Hamming distance: The clustering algorithm in our study is configured to

use the Hamming distance for calculating the distance between probe requests. This approach
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outperforms the use of Euclidean distance. The Hamming distance is more suitable for this
purpose because it focuses on binary differences, providing a clear separation between data

points.

* Generative data augmentation techniques: To address the challenge of scarce labelled data
and the difficulty of creating such a dataset, this work leverages generative data augmentation
techniques, significantly improving the model’s performance. Although diffusion models
have been infrequently explored for tabular data, they have demonstrated in our research the
ability to generate realistic tabular samples. When combined with the original data, these

synthetic samples led to enhanced results.

Eventually, our experiments validate the efficacy of the proposed pipeline, with the best-performing
model achieving a V-measure of 0.952, an average silhouette score of 0.789, and a precise crowd
size estimate. While originally intended for passenger counting in transit hubs, our approach is
versatile and should be well-suited for a range of other applications, including event management,

retail settings, and safety-critical environments.

5.2 Limitations

This study is subject to several limitations that have yet to be addressed. Specifically, we did not
consider scenarios where a single individual owns multiple devices, each emitting Wi-Fi probe re-
quests. This could lead to over-counting, as each device would be detected as a separate entity, thus
inflating the estimated crowd size. Another key limitation arises from inherent constraints within
the Pintor dataset, which means that while the results are promising, they should be considered in
the context of this dataset, especially since both the clustering calibration and the resulting findings

are fundamentally dependent on it. The main limitations of this dataset are as follows:

* Most devices use the Android operating system, which, given iOS’s significant market share
(Statista, 2024), introduces a bias toward Android in the dataset. It is also worth noting
that early versions of Android devices typically lack MAC randomization unless explicitly

enabled.
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* Only 8 out of 22 devices were captured in an anechoic chamber, while the rest were recorded
in a "noisy” environment, the nature of which is unclear. If this environment isn’t properly
shielded, such as with a Faraday cage, unintentional probe requests from other devices could

compromise the dataset, conflicting with its primary goal of device counting.

* Analyzing individual smartphones helps understand device behaviour but may not be ideal
for accurate device counting. Merging probe requests from different devices doesn’t repli-
cate real-world behaviour, where message transmission depends on nearby nodes and proto-
cols like CSMA/CA. CSMA/CA attempts to mitigate collisions by having nodes listen to the

communication medium before transmitting.

5.3 Future Work

The limitations identified in this study offer opportunities for further refinement, with the goal
of enhancing the reliability of the proposed crowd-counting pipeline.

Given the importance of data quality in training and calibration, further fine-tuning of the tab-
ular diffusion model could enhance the fidelity of synthetic data generation, which would, in turn,
benefit model performance. Exploring alternative clustering algorithms like OPTICS also presents
a promising direction for improvement.

To address the challenge of over-counting caused by individuals carrying multiple devices, a
practical approach combines statistical adjustments with external data validation. An adjustment
factor could be derived from observed data or pilot studies to estimate the likelihood of individuals
carrying multiple devices. Moreover, if a secondary crowd-counting system, such as a camera-
based solution, is available, it could serve as a baseline for real-time validation. By periodically
cross-referencing Wi-Fi-based counts with camera data, adjustments can be fine-tuned, resulting in
more accurate crowd estimates.

Finally, testing in real-world environments is crucial for evaluating the feasibility of the so-
lution. Recent research by Paradeda et al. (2019) has pointed out the limitations of Wi-Fi-based
crowd-counting systems, particularly in transit applications. The authors argue that inconsistent

detection rates and delays in device recognition can lead to unreliable results in real-time contexts.
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While aggregated data may seem adequate, disaggregated analysis often reveals significant detec-
tion errors. They recommend augmenting Wi-Fi detection with data from sources such as GPS and

refining detection parameters to improve accuracy.
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