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Abstract

Machine Learning-Driven Strategies for Efficient Traffic Congestion Management

Mohammed Khasawneh, Ph.D.

Concordia University, 2025

Urban regions have a notable obstacle in the form of traffic congestion, which results in longer

trip durations, higher fuel usage, and increased pollution levels. This study aims to tackle this is-

sue by presenting a three step approach. The first approach uses Machine learning for Proactive

Traffic Congestion Prediction. We explore multiple machine learning algorithms, such as Long

Short-Term Memory (LSTM), Decision Tree (DT), Recurrent Neural Network (RNN), AutoRe-

gressive Integrated Moving Average (ARIMA), and Seasonal ARIMA (SARIMA), to predict traffic

congestion levels in different zones of the Montreal area. The results indicate that the Decision Tree

approach surpasses other algorithms, attaining faster convergence, lower loss values, and a consid-

erably higher R2 score. After predicting the congestion using one of the prediction algorithms men-

tioned above, metaheuristic optimization algorithms are used to find near optimal cycle time for each

traffic light. In step 2 Enhanced Bat Algorithm (EBAT) is proposed to adaptively modify traffic sig-

nal timings based on expected congestion levels. The EBAT algorithm utilizes adaptive parameter

adjustment and guided exploration techniques that are dependent on the expected congestion. This

results in enhanced performance when compared to the conventional Bat Algorithm. We conduct a

comparative analysis of EBAT with various meta-heuristics, namely Particle Swarm Optimization

(PSO), Cuckoo Search (CS), JAYA, Sine Cosine Optimization (SCO), and Harris Haws Optimiza-

tion (HHO). The evaluation considers three scenarios: fixed-time traffic lights (baseline), dynamic

traffic lights without prediction, and dynamic traffic lights with predicted congestion. The results

demonstrate that EBAT yields substantial enhancements in both the rate at which convergence is

achieved and the quality of the solutions, as compared to fixed and non-predictive scenarios. The

second approach is using Multilevel Learning for Enhanced Prediction Accuracy. The precision of
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predicting traffic congestion depends on the ability to recognize and manage abnormal traffic pat-

terns, especially in highly populated regions. Traditional prediction methods are vulnerable to these

anomalies, as they frequently do not handle or clean the data. This can result in inaccurate forecasts,

as the data may encompass anomalous occurrences such as accidents or unforeseen road closures,

which can greatly distort the underlying trends. The study presents a novel and creative strategy to

learning at several levels, which combines anomaly detection and ensemble learning approaches to

tackle this problem. Anomaly detection techniques are used to find abnormal patterns within the

data, which is then followed by the process of data cleansing. First, a set of initial learner models are

trained. The top-performing models are then selected for an ensemble procedure, which involves

combining their predictions through stacking and voting. Evaluated using a real-world Montreal

traffic dataset, this multilevel methodology demonstrates higher prediction accuracy when com-

pared to traditional approaches. The dataset is subjected to preprocessing techniques, such as win-

dowing, to transform time-series data into frequency patterns in order to create a more generalized

model. To leverage the detected anomalies, we utilized clustering algorithms, specifically K-Means

and Hierarchical Clustering, to segment these anomalies. Each clustering algorithm was used to

determine the optimal number of clusters. Subsequently, we characterized these clusters through

detailed visualization and mapped them according to their unique characteristics. This approach not

only identifies traffic anomalies effectively but also provides a comprehensive understanding of their

spatial and temporal distributions, which is crucial for traffic management and urban planning. In

summary, this study showcases the efficacy of a synergistic method that combines machine learning

for proactive prediction of traffic congestion with metaheuristics for dynamic regulation of traffic

lights. This method has the capacity to mitigate urban traffic congestion and enhance traffic flow

efficiency. In addition, the use of a multilevel learning strategy to improve forecast accuracy is a

noteworthy contribution to intelligent transportation systems. An application for city of Montreal is

provided.
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Chapter 1

Introduction

1.1 Motivation

There are many factors that have compelled us to investigate the issue of traffic congestion, as it

has the potential to impact various aspects of our daily routines. The primary motivation is to alle-

viate traffic congestion in the road network, thereby reducing the waiting time for both drivers and

pedestrians. This will have a direct impact on the productivity of each individual in their daily lives.

While the effect may seem insignificant for each person individually, when viewed holistically, it

will have a substantial impact on society as a whole.

Another incentive is to reduce the emissions of CO and CO2 gases from automobiles, which

significantly contributes to one of the prevailing global issues, namely the depletion of the ozone

layer. This depletion has direct implications for human health and must be addressed. Furthermore,

the use of this approach leads to a decrease in fuel consumption, allowing scientists an extended

duration to explore alternative choices, such as renewable energy, to replace the existing energy

sources that are projected to deplete in the foreseeable future. The implementation of congestion

mitigation measures will significantly enhance user satisfaction with the roads and improve overall

quality of life. Additionally, it will lead to a reduction in the number of car accidents, thereby saving

lives globally[1].

Traffic congestion is a complex issue, and traditional prediction models frequently face difficul-

ties in including unexpected events. Anomaly detection techniques provide a solution by accurately
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identifying these disruptions within the traffic data. This enables the prediction algorithm to adapt

its predictions for enhanced precision and potentially identify the source of congestion (such as

accidents or road closures).

Moreover, anomaly detection functions as a mechanism that filters out abnormal data points,

which have the potential to distort the outcomes of the model. The process of ”cleaning” the data

enhances the accuracy of predictions by specifically targeting common traffic flow patterns. Ulti-

mately, the utilization of anomaly detection aids in the development of a more resilient and flexible

traffic prediction model, hence facilitating smoother traffic flow and enhancing traffic management

tactics.

However, despite the data being cleaned by anomaly detection, the nature of traffic flow can still

be complex. traffic flow during rush hour are distinct from weekend traffic, and seasonal fluctuations

might additionally influence these patterns. Here’s where windowing techniques come in. The data

is divided into smaller time intervals, enabling the model to accurately capture the subtle variations

in traffic patterns at different levels of detail.

Ultimately, even possessing a thorough and subtle comprehension of traffic patterns, relying

solely on one prediction model may prove insufficient. This is when the combination of multilevel

learning and ensemble learning becomes dominant. Consider the scenario of training numerous

models using data from various time intervals, such as hourly, daily, and weekly. By combining

forecasts from different models, the system exploits the advantages of each and enhances the overall

resilience and precision of the traffic congestion prediction. Essentially, this sequential methodology

facilitates the development of a more refined comprehension of the movement of vehicles, resulting

in improved traffic flow and enhanced tactics for traffic management.

Our study is motivated by the necessity to enhance current anomaly detection methods through

the utilization of clustering techniques that can segment and characterize identified anomalies. Vi-

sualizing and mapping these clusters allows transportation planners and managers to get significant

insights into the spatial and temporal distributions of traffic anomalies. These insights are essential

for making well-informed decisions in urban planning and traffic management, as they enable the

identification of precise regions or time periods that require targeted interventions.

2



1.2 Existing Problems in Congestion Modeling

Metropolitan areas across the globe are confronted with an enduring and escalating challenge of

traffic congestion. The continuous increase in the number of vehicles on the road exceeds the

capacity of the current infrastructure. This disparity leads to a series of adverse consequences, such

as extended travel times for motorists, elevated rates of traffic collisions, and intensified levels of air

pollution. These problems highlight the urgent requirement for more efficient traffic management

methods. Nevertheless, existing methods are impeded by constraints that restrict their capacity to

successfully tackle these problems.

Problem 1: Inefficiencies in Traffic Management Systems

Current algorithms employed for optimizing traffic signal management frequently encounter

difficulties with slow execution times. They take a significant amount of time to identify the best

solutions for congestion control, limiting their effectiveness in real-world applications. Moreover,

machine learning algorithms assigned with the responsibility of forecasting traffic congestion can

exhibit inaccuracies. This poses a challenge for authorities to implement preemptive steps and mit-

igate the occurrence of congestion. The existing constraints in present traffic management systems

greatly exacerbate the escalating issue of traffic congestion.

Problem 2:Challenge of Data Anomalies and Single Model Limitations in Traffic Forecast-

ing.

Precisely predicting traffic congestion, especially in heavily populated locations, is crucial for

efficient traffic light management. Nevertheless, traffic data obtained from real-world sources may

be subject to noise and anomalies. These anomalies, such as unforeseen mishaps or meteorological

occurrences, can greatly distort forecasts and make them unreliable. The presence of data anomalies

poses a significant obstacle to accurately predicting traffic congestion, hence reducing the efficiency

of existing traffic management systems.

Even with clean data, depending exclusively on a single machine learning model for predicting

traffic encounters additional difficulties. The movement of traffic is an intricate occurrence that is

affected by various elements, including weather conditions, special occasions, and the accidents. A
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single model may not be suitable for accurately capturing all of these complex relationships. Fur-

thermore, certain machine learning models are susceptible to significant variability. Consequently,

even minor alterations in the training data might result in substantial variations in forecasts, thereby

diminishing the overall dependability of the forecast.

Problem 3:Identification and Characterization of Traffic Flow Anomalies.

The study of identifying and characterizing traffic flow anomalies is important because they

have a major influence on transportation efficiency and urban mobility. Traffic anomalies, such as

sudden increases or decreases in traffic volume, have the potential to cause congestion, delays, or

accidents, hence interrupting the efficient functioning of transportation networks. These disruptions

affect daily commuting, economic productivity, and public safety. Through the identification and

characterization of these anomalies, authorities responsible for traffic management can promptly

adopt interventions to mitigate congestion and solve safety issues. Analyzing the spatial and tempo-

ral patterns of traffic anomalies is crucial for informing long-term urban planning and infrastructure

development. This analysis enables more efficient traffic signal regulation, optimization of road net-

works, and allocation of resources. Addressing traffic flow irregularities fundamentally enhances

the efficiency, safety, and sustainability of transportation networks, a crucial aspect in rapidly ex-

panding urban regions.

1.3 Thesis Objectives

In this section, we provide our main research objectives:

• Intelligent Meta-Heuristic Based Optimization of Traffic Light Timing Using Artificial

Intelligence Techniques: We propose in this study the following solutions:(i) Design a ma-

chine learning algorithm to predict traffic congestion levels proactively. (ii) Design a meta-

heuristic algorithm for dynamic traffic light control based on these predictions.

• Multilevel Learning for Enhanced Traffic Congestion Prediction using Anomaly Detec-

tion and Ensemble Learning: We manipulate in this study the challenge of data anomalies

and single model limitations in traffic forecasting so we propose the following solutions: (i)

implementing of diverse anomaly detection approaches to remove outliers from the traffic
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data. (ii) employing a multilevel learning technique that incorporates anomaly detection to

improve data quality for prediction.

• Clustering Based Approach for Enhanced Characterization of Anomalies in Traffic Flows:

In this study we enhance our analysis by employing clustering techniques, namely K-Means

and Hierarchical Clustering, to further investigate the attributes of the found anomalies. By

utilizing sophisticated windowing approaches, we achieved reliable anomaly identification,

and by subsequently applying clustering, we obtain comprehensive understanding of their

geographical and temporal patterns.

These objectives are described in detail as follow:

1.3.1 Traffic Congestion Prediction Using Machine Learning Approaches

1.3.1.1 Design a machine learning algorithm

This section outlines the initial phase of our machine learning approach for proactive traffic conges-

tion prediction. Here is a detailed analysis of the process:

• Data Collection: We collect comprehensive traffic data, including information on traffic

volumes, vehicle speeds, and road occupancy. The purpose of collecting this data is to capture

historical trends and seasonal variations.

• Model Training and Evaluation: We employ different machine learning algorithms like

Recurrent Neural Networks, LSTM, DT, ARIMA, and SARIMA are used to forecast traffic

congestion.These models are trained using historical data to learn knowledge about the cor-

relations between traffic features and levels of congestion. The accuracy of these prediction

algorithms is then assessed by comparing the projected values to real-world congestion data

and use metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE). After

the models have been verified, they are used to make predictions about traffic congestion,

which can provide insight on how the situation will unfold in the future.
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The model’s possesses an ability to adjust to dynamic traffic situations. As further data be-

comes accessible, the model may be utilized to continuously provide predictions that accu-

rately represent the changing traffic patterns.

1.3.2 Intelligent Meta-Heuristic Based Optimization of Traffic Light Timing

1.3.2.1 Design a meta-heuristic algorithm

The results of these forecasts are saved in a special Congestion Database, which is subsequently used

for analysis and decision-making in the future. In the second solution, meta-heuristic algorithms are

used to improve traffic flow by optimizing the green time for each traffic light. The green time for

traffic lights at various junctions can be strategically adjusted with the help of algorithms like the

BAT Algorithms, Particle Swarm Optimization, Cuckoo Search algorithm, and the Jaya algorithm.

The ultimate goal is to reduce the amount of time cars spend waiting at these junctions. Congestion

will be reduced, traffic flow will be improved, and a more effective transportation system will be

created thanks to this optimization process.

1.3.3 Multilevel Learning for Enhanced Traffic Congestion Prediction using Anomaly

Detection and Ensemble Learning

1.3.3.1 Implementing of diverse Windowing and anomaly detection approaches

Traffic data is partitioned into smaller time windows using windowing techniques.The windowing

technique is a data preprocessing stage that involves transforming time series data of vehicle fre-

quencies into sequence patterns using fixed intervals. This technique facilitates the analysis of data

collected from city intersections, creating more structured and systematic sequence patterns. These

patterns can be used to incorporate trends and frequency routines in the data based on given window

settings in the learning process, gaining valuable insights into the behavior of vehicles at city inter-

sections, which can lead to more accurate predictions. This enables the examination of short-term

traffic patterns and the detection of anomalous events within certain time periods. Afterwards,we

evaluate different anomaly detection techniques(Isolation Forest, Elliptic Envelope, and Local Out-

lier Factor) to identify unusual traffic patterns in different locations over time. After predicting the
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anomaly, the data pattern is cleaned.

1.3.3.2 Employing a multilevel learning technique

Our study involved using an ensemble learning strategy to improve the accuracy of our predictions.

In this framework, we examine the application of both the voting model with equal weights and

stacking models. Ensemble learning techniques strive to improve predictive accuracy by combining

the outputs of many base models. This approach allows for the utilization of the strengths of individ-

ual models while minimizing their limitations. In order to guarantee the strength and durability of

our ensemble, we carefully chose the top six performing models from the baseline linear regression

models to be included in the ensemble architecture.

1.3.4 Clustering Based Approach for Enhanced Characterization of Anomalies in

Traffic Flows

We investigated anomalies in traffic patterns using the anomalies determined in our previous study[1],

where three anomaly detection techniques:Elliptic Envelope, Isolation Forest, and Local Outlier

Factor—were employed. These methods were applied to a dataset that had been pre-processed us-

ing windowing techniques with different configuration settings to enhance the detection process. In

this research, to leverage the detected anomalies, we utilized clustering algorithms, specifically K-

Means and Hierarchical Clustering, to segment these anomalies. Each clustering algorithm was used

to determine the optimal number of clusters. Subsequently, we characterized these clusters through

detailed visualization and mapped them according to their unique characteristics. This approach

not only identifies traffic anomalies effectively but also provides a comprehensive understanding of

their spatial and temporal distributions, which is crucial for traffic management and urban planning.

1.4 Interrelations Among Research Contributions

The three research contributions are closely integrated, each addressing critical aspects of traffic

congestion management, as shown in Figure 1.1. Together, they create a comprehensive framework

for predicting traffic congestion, optimizing signal timing, and generating actionable insights for
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decision-makers.

The first contribution, depicted on the left side of the figure, focuses on traffic congestion predic-

tion using machine learning models such as RNN, LSTM, Decision Tree, ARIMA, and SARIMA,

combined with meta-heuristic algorithms for optimizing traffic flow. However, this phase has no-

table limitations. The data is used directly for prediction without segmenting it into time windows,

which limits the model’s ability to capture short-term or periodic fluctuations (e.g., rush hours) in

traffic patterns. Additionally, there is no mechanism for detecting or handling anomalies, such as

accidents or traffic spikes, which reduces the system’s ability to adapt to irregular traffic patterns.

This could lead to inaccurate predictions, as outliers are not filtered out.

The second contribution, illustrated on the right side of the figure, addresses these limitations by

introducing essential data preprocessing steps. The data is segmented into time windows to capture

temporal variations in traffic patterns, such as rush hour trends, which improves the accuracy and

granularity of predictions. This phase also incorporates techniques to identify and remove anomalies

from the dataset. By filtering out outliers like accidents and unusual traffic events, the system

ensures that only reliable data is used for prediction, making the models more robust and accurate

in real-world scenarios. Additionally, ensemble learning methods (e.g., stacking and voting) are

employed to reduce bias and further improve prediction accuracy. This contribution enhances the

foundation established by the first phase, resulting in a more reliable traffic congestion forecasting

system.

As part of the second contribution, after the final prediction phase, meta-heuristic optimization

is applied to find a near-optimal solution for signal timing (e.g., adjusting green light durations).

This future work, as indicated in the figure, aims to optimize traffic light timings using the predicted

congestion data, further improving traffic flow efficiency.

The third contribution, shown on the right side of the figure, involves clustering detected anoma-

lies using techniques such as K-Means and Hierarchical Clustering. This phase provides valuable

insights into the spatial and temporal patterns of traffic anomalies, enabling decision-makers to

make informed adjustments to traffic signals, optimize resource allocation, and plan infrastructure

improvements. By transforming the raw anomaly data into actionable insights, this contribution

enhances long-term traffic management and urban planning strategies.
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In conclusion, these three contributions work in harmony: the first establishes the predictive

framework, the second improves prediction accuracy and robustness by addressing the limitations

of the first, and the third provides decision-makers with practical insights to optimize traffic flow

and improve urban mobility.

1.5 Thesis Organization

This thesis is organized into six chapters.Chapter 1 introduces this thesis work. Chapter 2 reviews

the related literature. Chapter 3 focuses on the application of intelligent meta-heuristic optimization

techniques for traffic light timing, utilizing Machine learning methods. Chapter 4 presents our

research work on a multilevel learning approach for traffic congestion prediction, highlighting the

use of anomaly detection and ensemble learning techniques. Chapter 5 presents a clustering-based

approach for the characterization of anomalies in traffic flows. Finally, we conclude our thesis in

Chapter 6.
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Figure 1.1: Overall Architecture of The Thesis
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Chapter 2

Background and Literature Review

Traffic congestion presents a significant challenge in urban environments, where the demand for

roadway space frequently surpasses the available capacity. This disparity leads to reduced speeds,

longer travel times, and increased vehicle congestion. Congestion impairs the efficiency of the

transportation system, resulting in delays that impact both individual commuters and the economy,

as well as the environment. Congestion typically results from a confluence of elevated vehicle

density and inadequate road infrastructure, frequently exacerbated by unforeseen incidents such as

accidents or adverse weather conditions.

Many different kinds of traffic congestion exist, each characterized by unique causes and effects.

Recurring congestion is the most prevalent, occurring during peak periods when road utilization is

at its highest, namely during morning and evening rush hours. It is predominantly foreseeable and

arises from everyday traffic patterns surpassing road capacity. Conversely, non-recurring congestion

arises from transient disturbances, such accidents, road construction, or weather conditions. This

form of congestion is unpredictable and can result in significant delays, even in regions where traffic

typically flows smoothly.

Another type of congestion is bottleneck congestion, which occurs at specific points on the road

network where the capacity is reduced, like toll plazas, constricted crossroads, or lane cutbacks. Lo-

calized difficulties generate traffic congestion when vehicles navigate through constrained segments

of the roadway. Moreover, congestion associated to incidents arises from particular occurrences

such as accidents or vehicle malfunctions that abruptly interrupt the standard traffic flow, frequently
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leading to significant delays that spread well beyond the site of the incident.

To manage and mitigate congestion, various approaches to modeling traffic have been devel-

oped. Deterministic models rely on established correlations among traffic flow, speed, and density.

A crucial tool in this methodology is the Fundamental Diagram of Traffic Flow, which forecasts

congestion by examining the impact of variations in speed and vehicle density on traffic flow. De-

terministic models are beneficial for understanding fundamental congestion dynamics; yet, they

may inadequately represent the complexity of real-world traffic situations.

Stochastic models, conversely, integrate randomization to address uncertainty in traffic patterns.

These models employ probabilistic techniques to forecast traffic patterns, especially during un-

foreseen occurrences.Queueing theory can be utilized to evaluate the effects of stochastic vehicle

arrivals at intersections or toll booths, offering insights into wait times and congestion development

under unknown circumstances. Stochastic models provide a more adaptable method for predicting

congestion, particularly in contexts where unpredictability is a crucial factor.

As traffic data becomes increasingly accessible, simulation models and machine learning al-

gorithms have emerged as vital tools for traffic management. Simulation models, including mi-

croscopic and mesoscopic simulations, replicate the movement of individual cars to offer intricate

depictions of traffic flow. These models are proficient in capturing the dynamic characteristics of

traffic and identifying possible congestion hotspots. Machine learning algorithms, such as Decision

Trees (DT), Long Short-Term Memory (LSTM), and AutoRegressive Integrated Moving Average

(ARIMA), utilize historical and real-time data to forecast future congestion patterns, facilitating

proactive traffic management strategies. Together, these approaches offer an extensive framework

for understanding, forecasting, and alleviating traffic congestion in urban environments.

This chapter provides a comprehensive analysis of previous research conducted on the specific

problem areas that we have identified.The review of literature is organized in the following manner.

In Section 2.1, we conduct a literature study in the field of proactive traffic management. In Section

2.2, we conduct a literature analysis in the field of addressing data anomalies and single model

limitations.In Section 2.3, we conduct a literature study in the field of traffic anomaly detection,

clustering, and prediction techniques.
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2.1 Proactive Traffic Management

Urban areas have significant challenges due to traffic congestion. Traditional traffic signal control

systems, which rely on fixed timings, prove ineffective when confronted with fluctuating traffic

situations. This section explores different methodologies aiming at enhancing traffic flow through

proactive management.

Below is an analysis that is structured according to the methods and problems being discussed:

2.1.1 Machine Learning for Traffic Flow Prediction

Urban areas continue to face significant challenges in the way of traffic congestion, resulting in

longer travel times, annoyance, and pollution of the environment. Traditional traffic signal con-

trol systems depend on predetermined timings, which face difficulties in adjusting to current traffic

conditions. This section examines recent advances in machine learning, particularly Deep Rein-

forcement Learning (DRL), for the purpose of forecasting traffic flow and enhancing traffic light

control.

2.1.1.1 Deep Reinforcement Learning for Traffic Light Control

DRL presents a highly favorable method for intelligent traffic light control. The system employs an

agent that observes traffic patterns, such as the number of vehicles and the length of queues, and

adapts traffic light cycles (red, green, yellow) in order to accomplish certain objectives. The ob-

jectives can vary from reducing the average waiting times for all vehicles to prioritizing emergency

vehicles [2].

The DRL agent operates by employing a method of trial and error. The system is rewarded for

successful actions, such as reducing congestion, and learns from its mistakes, such as causing long

waits. The DRL model utilizes deep neural networks to identify complex relationships between

traffic patterns and optimal light timings.This allows the agent to predict future traffic patterns and

modify traffic light timings accordingly.

In [3] authors present a DRL method for real-time traffic light control.The system takes into
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account various factors such as queue lengths, delays, travel time, and throughput. This system ex-

hibits significant enhancements in decreasing wait times and congestion as compared to traditional

methods.

Reinforcement learning [4]–[6] has been used to dynamically adapt traffic lights to current traffic

conditions. Both representing the environment and modeling the relationship between the environ-

ment and the decision provide significant obstacles to the practical use of traditional reinforcement

learning. In order to overcome these obstacles, researchers [5] have recently applied deep reinforce-

ment learning methods, such as Deep Q-Learning (DQN), to the traffic light management problem.

The deep reinforcement learning strategy [7], one of the machine learning techniques widely

recognized to handle these kinds of issues, is utilized to model brain behavior for the processing

phase. To optimize rewards, such as reducing average waiting times in traffic control scenarios,

reinforcement learning encourages agents to learn the best course of action by observing and in-

teracting with their surroundings [8]. For dynamic traffic signal control systems, research on the

reinforcement learning technique, which defines the states by the waiting line length [9], [10], is

sparse. However, the queue length does not always reflect actual traffic conditions. More accurate

traffic light management, taking into account variations in vehicle types including ambulances, fire

trucks, school buses, and police cars, is possible due to the proliferation of high-definition cameras

and sensors made possible by technological progress [11]. In [12], the authors propose an Intelli-

gent Vehicle Pedestrian Light (IVPL) system using deep reinforcement learning to optimize traffic

signals for both vehicles and pedestrians, minimizing total user delays. Tested in Melbourne, the

model outperforms traditional systems by adapting to real-world scenarios, including jaywalking,

and balancing green time allocation for mixed traffic flows. In [13], a distributed deep reinforce-

ment learning system for traffic light control that employs CNN-based deep Q-networks as well

as a global update consensus mechanism is presented. In SUMO simulations, the model performs

similarly to centralized learning while outperforming fixed-time and local learning strategies in

controlling both homogeneous and heterogeneous traffic flows.
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2.1.1.2 Dynamic and Intelligent Traffic Light Control System (DITLCS)

DITLCS utilizes DRL to make accurate predictions about the flow of traffic in real-time. The

DRL model utilizes real-time data on vehicle count and types to make predictions about future

traffic conditions[14]. DITLCS has the ability to adaptively adjust traffic signal timings in order to

maximize the efficiency of traffic movement, as indicated by these forecasts. The system has the

capability to function in several modes, giving priority to particular types of vehicles or emergency

vehicles depending on the real-time situation .

In [14] DITLCS was presented as a solution, which uses inputs such as real-time traffic data

to address these problems and improve the system’s overall efficiency. In addition, the proposed

DITLCS can operate in three distinct modes: Fair Mode (FM), Priority Mode (PM), and Emergency

Mode (EM), where the first prioritizes all vehicles equally, the second prioritizes vehicles based on

their category, and the third prioritizes emergency vehicles above all others. Additionally, a deep

reinforcement learning model was presented to change the traffic lights between phases (red, green,

and yellow), and a fuzzy inference system chooses one of three modes (FM,PM, and EM) based

on the data. The researchers used an open-source simulator (the Simulation of Urban Mobility

(SUMO) systems) to test DITLCS by simulating it on a map of the city of Gwalior, India.

2.1.2 Optimization Algorithms and Scheduling

Urban Traffic Light Scheduling Problems (UTSLPs) are studied by some authors, and they aim

to minimize the sum of all vehicle and pedestrian delays within a specified time window. The

UTLSP is first described using a centralized model that presents the cost functions and constraints

of the two objectives [15]. To evaluate and rank approaches in terms of the two objectives, we

use a metric that does not rely on a dominance strategy. Second, meta-heuristics like Harmony

Search (HS) and Artificial Bee Colony (ABC) are used to find a solution to the UTLSP. There

are four distinct approaches to managing traffic lights: fixed-time versus adaptive, and standalone

versus collaborative.Some of the more prominent plans put forth in recent decades are TRANSYT,

SCOOT [16], OPAC [17], PRODYN [18], CRONOS [19], and RHODES [20].
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The enormous computational cost of optimization becomes the key challenge for realtime schedul-

ing because of the massive size of a typical traffic network, which can have thousands of road links

and hundreds of intersections. Many researchers have presented different optimization strategies

for the traffic light control problem. Case studies have been conducted to evaluate the proposed

architecture in a real-world traffic network , and an architecture for optimizing traffic light cycles

using a Genetic Algorithm (GA) and Cellular Automata Simulators (CAS) has been developed [21].

Case studies in real-world traffic networks have confirmed the substantial benefits of the suggested

approach [22], and a PSO-based approach was proposed and deployed, coupled with a microscopic

traffic simulator [23]. A model of a traffic network with continuous flow is discussed in [24], with

the decision to change traffic lights being depicted as a discrete event. Meta-heuristic optimization

techniques, such as the Genetic GA, PSO, Differential Evolution DE, HS, and the ABC algorithm,

are among the most promising new methods for addressing traffic light management issues [25].

In [26] create advanced techniques using meta-heuristics to enhance the management of traffic at

a single traffic light in Dhahran, Saudi Arabia. The work attempts to optimize signal timing plans

in order to enhance the level of service (LOS) at intersections, using the GA and DE. The findings

indicate that both the GA and DE generate a methodical schedule for signal timings, resulting in a

notable decrease in travel time delay ranging from 15 to 35% as compared to the current conditions.

While DE exhibits faster convergence to the target function, GA surpasses DE in terms of solu-

tion quality, specifically in minimizing vehicle delay. The validation results showcase the sufficiency

and resilience of the proposed approaches, highlighting the significance of traffic signal control in

intelligent transportation systems.

The use of an Adaptive Neuro-Fuzzy Inference System (ANFIS) is a viable approach to tackle

the problem of traffic signal optimization. In [27] the ANFIS traffic signal controller employs meta-

heuristic algorithms to determine the optimal duration for green lights at traffic signals, thereby

minimizing both the queue length and the delay. The controller was simulated and implemented on

intersections, showcasing exceptional efficacy in traffic prediction and control.

Another study in [28] presents the Meta-Heuristic Robust plan Approach (MHRA), which is

a framework for fixed-time traffic lights that operates in an offline scenario-based manner. The
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MHRA evaluates the most effective signal schemes for different demand scenarios. The effective-

ness of the framework was confirmed through numerical experiments. These experiments demon-

strated that the framework surpasses nominal plans and consistently performs well even when

faced with changing demand. Comparing MHRA with other scenario-based methodologies through

benchmarking demonstrates its superior efficiency.

Another research paper in [29] discussed how to create an advanced traffic control protocol

utilizing the Non-dominated Sorting Genetic Algorithm II (NSGA-II) at isolated signalized inter-

sections in Dhahran, Saudi Arabia. The Measures of Effectiveness (MOEs) taken into account

encompassed mean vehicle latency, overall vehicle stops, mean fuel consumption, and vehicular

emissions. The simulations demonstrated that the proposed strategy effectively optimized perfor-

mance metrics, resulting in a 16% to 23% improvement in MOEs compared to the current settings.

A Synchro traffic light simulation and optimization program was used to conduct an optimization

analysis. The results indicated that the proposed approach performed better than the Synchro opti-

mization results in terms of the percentage reduction in MOE values [29].

In [30], the paper showcases a case study of a significant intersection in Timisoara, where the

synchronization of traffic lights is accomplished by the utilization of firefly algorithms. Although

these algorithms are effective, the study demonstrated that more enhancements to traffic flow are

still possible. In [31], the authors provided a thorough analysis of the most recent developments in

swarm intelligence and evolutionary approaches as they are applied to traffic control and optimiza-

tion in metropolitan networks.

In [32], the authors propose a Discrete Sine-Cosine Algorithm (DSCA) and its derivatives to

optimize urban traffic light scheduling for mixed pedestrian-vehicle networks. The technique im-

proves traffic flow efficiency and decreases delays by balancing vehicle and pedestrian circulation.

This metaheuristic-based approach enhances signal timing methods in complex metropolitan set-

tings.

Table 2.1.1 provides a comprehensive summary of previous research efforts in the field of traffic

prediction techniques. It details various methods that have been utilized in past studies, highlighting

their strengths and drawbacks.

17



Table 2.1.1: Comprehensive Analysis of Traffic Prediction Techniques

References Methods Strength Drawback

Kumar et al. (2021) [14] Deep Reinforcement Learning (DRL) Effective in learning complex traffic pat-
terns; Real-time adaptability; Combines
fuzzy logic for enhanced decision mak-
ing

High computational cost; Requires large
datasets for training

Gupta et al. (2022) [12] Deep Reinforcement Learning (IVPL) Optimizes signals for both vehicles and
pedestrians; adapts to jaywalking

Requires real-world calibration and
complex data collection

Chengula et al. (2024) [13] Distributed Deep Q-Networks (DQN) Effective for heterogeneous traffic
flows; decentralized control

High computational demand; requires
consensus mechanism

Kuyer et al. (2008) [4] Multi-Agent Reinforcement Learning Handles multi-agent interactions; Effec-
tive for complex traffic scenarios; Scal-
ability

Coordination among agents can be chal-
lenging; High computational complex-
ity

Van der Pol & Oliehoek (2016) [5],
Wiering (2000) [6]

Multi-Agent Reinforcement Learning,
Coordination Graphs

Improved coordination among traffic
signals; Higher efficiency in real-time
traffic control; Early demonstration of
RL feasibility

Requires large training data; High com-
putational requirements; Less efficient
compared to modern techniques

Shen et al. (2014) [7], Wang et al.
(2010) [10]

Particle Swarm Optimization (PSO) Effective for multicast routing; Balances
exploration and exploitation; Hierarchi-
cal approach

Specific to communication networks;
Not directly applied to traffic light con-
trol

Taherkhani & Pierre (2016) [8], Kumar
& Kumar (2016) [9]

Machine Learning Clustering Algo-
rithm, Position-Based Routing

Efficient data congestion control; Maxi-
mizes network lifetime

Primarily focused on vehicular ad hoc
networks; Limited direct application to
traffic lights

Hunt et al. (1982) [16], Gartner (1983)
[17]

SCOOT On-Line Optimization, OPAC
(Demand-Responsive Strategy)

Real-time adaptability; Continuous op-
timization; Responsive to real-time de-
mand

High initial setup cost; Requires contin-
uous monitoring and adjustment

Farges et al. (1983) [18], Boillot et al.
(1992) [19]

PRODYN Real-Time Algorithm, Opti-
mal Signal Control

Real-time adaptability; Effective in
complex urban networks

High computational requirements; Im-
plementation complexity

Sen & Head (1997) [20] Phase Optimization, Evolutionary Opti-
mization

Systematic approach to phase optimiza-
tion; Applicable to real-world scenarios

Limited adaptability; Fixed timing
plans; Computationally intensive

Sanchez et al. (2004) [21], Garcı́a-Nieto
et al. (2012) [22], Garcia-Nieto et al.
(2013) [23]

Genetic Algorithms, Cellular Automata,
Swarm Intelligence (PSO)

Combines GA with cellular automata;
Effective for large-scale optimization;
Continuous adaptation

High computational requirements;
Complexity in implementation

Göttlich et al. (2015) [24], Cheng et al.
(2017) [25]

Modeling and Optimizing Traffic Light
Settings, Fuzzy Group-Based Intersec-
tion Control

Continuous flow modeling; Effective
optimization strategies; Effective for
smart transportations

High computational cost; Requires de-
tailed and continuous data

Jamal et al. (2020) [26], Shirke et al.
(2022) [28]

Meta-Heuristic Search Algorithms,
MHRA

Delay optimization; Significant reduc-
tion in travel time delay; Effective for
varying traffic demand

High computational requirements;
Complex implementation

Shahkar et al. (2023) [27], Al-Turki et
al. (2020) [29]

ANFIS, Meta-Heuristic Algorithms,
NSGA-II

Effective traffic prediction and control;
Minimizes queue length and delay; Sig-
nificant improvement in performance
metrics

Requires continuous data; Computa-
tionally intensive

Tang et al. (2023) Discrete Sine-Cosine Algorithm
(DSCA)

Balances pedestrian and vehicle flow;
improves traffic efficiency

Optimization results depend on parame-
ter tuning

Szatmari et al. (2022) [30], Jamal et al.
(2023) [31]

Firefly Algorithms, Swarm Intelligence,
Evolutionary Approaches

Effective synchronization of traffic
lights; Continuous optimization; Thor-
ough analysis; Effective for traffic
control and optimization

Computationally intensive; Complexity
in implementation; High computational
requirements

2.2 The Challenge of Data Anomalies and Single Model Limitations

This section delves into the most recent studies that focused on predicting traffic patterns and de-

tecting anomalies. We highlight the importance of windowing techniques and ensemble learning

algorithms in achieving accurate forecasts. Additionally, we discuss the potential of these tech-

niques in improving traffic management within Intelligent Transportation System(ITS). In order to

provide a comprehensive understanding, we have classified previous research based on the tech-

niques employed. Further information is presented in the following sections.
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2.2.1 Traffic Flow Prediction using Windowing Techniques with Deep Learning Mod-

els

Traffic congestion at intersections continues to be a significant bottleneck in urban transportation

networks. Several studies have investigated methods for forecasting and controlling traffic conges-

tion by combining windowing techniques with Deep Learning models. These techniques involve

dividing historical traffic data, such as speed and volume, into smaller intervals, known as windows,

to capture the temporal patterns of traffic flow and enhance the precision of predictions.

2.2.1.1 Deep Learning Models for Windowing-based Prediction

Deep learning demonstrates remarkable proficiency in analyzing sequential data through the uti-

lization of windowing-based prediction. This technique involves segmenting the data into fixed-

size windows, allowing the model to focus on relevant patterns within each timeframe [33]. This

approach is prevalent in time series forecasting, signal processing, and other tasks that involve

sequential data analysis, enabling the model to capture complex relationships and make accurate

predictions.

In [34], the authors introduced LSTM recurrent neural networks as a method for predicting

short-term traffic flow. A windowing-based prediction approach was used, where historical traffic

flow data was divided into fixed-size windows. Each window consisted of a series of past traffic

flow measurements and different data, such as traffic flow values, time of day, day of the week, and

maybe weather conditions, that have been gathered. Subsequently, the LSTM network underwent

training utilizing these windows as input, allowing it to scrutinize patterns in the training data and

generate forecasts for forthcoming traffic flow values.

In a similar manner, [35] presented a technique for forecasting short-term traffic patterns uti-

lizing networks based on LSTM. They implemented a prediction approach based on windowing,

where they divided the past traffic flow data into chunks of a fixed size. It is that important at-

tributes, such as the amounts of traffic flow and temporal characteristics, were taken out from each

window. The LSTM network was then trained using these windows as input, enabling it to acquire

temporal correlations in the data and produce accurate predictions for future time points.
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A specific design of recurrent neural network (RNN) was suggested in [36] to accurately antici-

pate traffic flow over long durations. They have employed windowing-based prediction by dividing

previous traffic flow data into overlapping or non-overlapping windows. the features that capture

long-term interdependence in traffic flow data were obtained from each window. The RNN model

was trained using these windows as input, allowing it to comprehend temporal patterns in traffic

flow and make predictions for extended time periods.

In a similar manner, spatiotemporal recurrent convolutional networks(SRCNs) were created by

[37] for the purpose of predicting traffic patterns. The utilization of a windowing-based prediction

methodology have been implemented by partitioning spatiotemporal traffic flow data into windows

of a predetermined size.the features that encompass both the spatial and temporal aspects of traffic

flow were retrieved from each window. The SRCN model was subsequently trained using these

windows as input, allowing it to understand the geographical and temporal linkages in the data and

produce accurate forecasts for future time periods.

Furthermore, the study conducted in [38] delved into the application of deep learning techniques

for the purpose of predicting short-term traffic flow. The primary emphasis of this research was on

the analysis of time series data. Windowing-based prediction involved dividing past traffic flow

data into fixed-size windows or time frames. In [39] the researchers examined the prediction of

immediate demand for online car-hailing services using sequential data. They suggested the use of

windowing-based prediction, which involves breaking past demand data into predetermined-sized

windows.

In a similar manner, in [40], the authors employ a windowing strategy to improve the precision

of their models. This method entails dividing a continuous stream of data into smaller, fixed-size

parts or ”windows.” The model can examine and find patterns inside each segment individually

as each window has a specific period of data. This approach facilitates the handling of extensive

datasets and enhances the identification of temporal trends that are vital for forecasting traffic ac-

cidents. By successively analyzing these frames, the model can accurately and promptly forecast

traffic events by capturing the dynamic changes in traffic circumstances over time.

In [41], the authors present a robust multi-modal pedestrian detection method using a deep con-

volutional neural network and ensemble learning.The model achieves 99.30% accuracy, exceeding

20



typical CNNs, making it ideal for video monitoring in smart transportation systems.

In [42], a Dynamic Factor Model (DFM) for multi-step traffic performance prediction in metropoli-

tan road networks. The model accurately forecasts traffic states by incorporating spatial-temporal

correlations between road segments, as measured by the Traffic Performance Index. This strategy

promotes proactive traffic management and congestion reduction, hence improving decision-making

in urban transportation networks is presented.

2.2.2 Anomaly Detection in Traffic Data with Advanced Techniques

Traffic anomalies are variations from normal traffic patterns, usually induced by accidents, weather

conditions, or other interruptions. As previously mentioned, windowing approaches can serve as

a basis for detecting anomalies. However, more sophisticated methods harness the capabilities of

specialized models.

2.2.2.1 Causal Discovery for Anomaly Detection

Causal discovery for anomaly detection refers to the process of identifying and understanding the

causal relationships among variables in a dataset to detect anomalies or unusual patterns [43]. This

approach leverages causal inference techniques to uncover the underlying structure and dynamics

of the data, which can improve the accuracy and interpretability of anomaly detection.

The authors in [44] utilized causal discovery techniques to ascertain causal links among vari-

ables in the data. They used techniques like Bayesian networks or causal inference algorithms to

deduce causal structures from the available data. Through comprehending these causal connections,

the authors were able to detect anomalous patterns or anomalies that diverge from the anticipated

causal relationships.

In the same way, the authors in [45] employed causal discovery techniques to reveal the fun-

damental reasons behind traffic abnormalities. They have utilized techniques such as structural

equation modeling or Granger causality analysis to ascertain causal connections between traffic

variables and probable contributing factors. By doing this study, the authors successfully identified

the fundamental factors responsible for traffic anomalies, which in turn facilitated the process of

root cause analysis and improved the effectiveness of anomaly detection.
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In [46], the authors propose a novel method for detecting traffic flow outliers based on Stochastic

Differential Equations (SDEs) and Gaussian Process Regression (GPR). The strategy increases real-

time detection by collecting dynamic changes in traffic data, resulting in greater robustness and

adaptability than existing methods.

2.2.2.2 Spatial-Temporal Graph Neural Networks (GNNs)

GNNs are a type of neural network specifically designed to handle data that has both spatial and

temporal components. The authors in [48] concentrated on detecting aberrant patterns or abnor-

malities in remote sensing data. Although GNNs were not explicitly utilized, their approach could

potentially gain advantages by integrating these models in future studies. GNNs are particularly

suitable for processing spatial-temporal data that is represented as graphs. This capability makes

GNNs useful for discovering intricate patterns and abnormalities in Earth observation data.

a Temporal Graph Convolutional Network (T-GCN) was introduced as a method for predict-

ing traffic patterns T-GCN utilizes graph convolutional layers to exploit the spatial and temporal

relationships in traffic data, which is represented as spatio-temporal graphs. This allows T-GCN

to capture the spatial correlations between distinct traffic regions and the temporal dependencies

across time. Utilizing GNNs in T-GCN allows the model to efficiently acquire knowledge about

intricate spatial and temporal patterns in traffic data, resulting in enhanced predictive capabilities.

In a similar manner, In [50] the researchers presented a Bi-directional Graph Recurrent Con-

volutional Network(Bi-GRCN), as a method for predicting spatio-temporal traffic flow. Bi-GRCN

employs a graph neural network structure to capture the geographical relationships between traffic

regions and the temporal changes in traffic flow over time. Bi-GRCN successfully captures the in-

tricate spatio-temporal correlations in traffic data by combining graph convolutional and recurrent

layers. This allows for precise prediction of traffic flow patterns.

2.2.2.3 Informer for Anomaly Score Generation

The Informer model for anomaly score generation refers to the use of the Informer architecture, a

specific type of transformer-based neural network, to identify and score anomalies in time-series

data[51], where the Informer architecture is a scalable and efficient transformer model designed
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for long-sequence time-series forecasting. Traditional transformers struggle with long sequences

due to their quadratic complexity with respect to sequence length. In [51], the Informer tool was

employed for the purpose of anomaly identification, where it had a vital function in producing scores

for anomalies. The authors utilized Informer to calculate anomaly scores by measuring prediction

errors or differences between real traffic data and model predictions. By utilizing the features of

Informer, the authors sought to detect irregular patterns or abnormalities in traffic data. This method

facilitated prompt identification and reaction to probable traffic problems or irregularities.

Similarly, in [52], the Informer model was shown as a highly effective transformer architecture

specifically designed for accurately predicting long sequence time-series activities. By utilizing the

predictive capabilities of Informer, anomaly scores can be computed by comparing anticipated and

actual time series values for differences. The anomaly scores functioned as markers of atypical

patterns or deviations from typical behavior in the time series data, thereby aiding in the detection

of anomalies.

In a similar manner,In [49] the researchers utilized Graph Convolutional Networks (GCNs) to

use the natural connections within traffic networks. Nevertheless, these techniques usually depend

on fixed associations among network nodes, disregarding the fluid nature of traffic patterns. This re-

search introduces a novel approach called Coupled Generative Graph Convolutional Network (CG-

GCN) to overcome this drawback by effectively capturing the changing connections across various

regions in the traffic network. The utilization of CGGCN has the potential to enhance the precision

of traffic flow estimates in comparison to conventional GCN-based techniques.

2.2.2.4 Spatio-Temporal K-Nearest Neighbors (KNN)

KNN is an extension of the traditional KNN algorithm designed to handle data that varies across

both space and time. Traditional KNN is a simple and widely used machine learning algorithm for

classification and regression tasks, where the classification or regression is based on the ”k” nearest

data points in the feature space. In [57] the authors presents a new method for detecting anomalies,

which utilizes a modified version of the KNN algorithm in a spatio-temporal framework.

In [53] the authors highlights the constraints identified in techniques that only consider either

the spatial or temporal aspects of traffic data separately.By utilizing the adapted KNN method, it is
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possible to successfully detect aberrant traffic patterns that differ substantially from the anticipated

distribution of traffic movement at particular sites. this integrated strategy, which combines both

spatial and temporal elements, improves the system’s ability to identify unusual patterns in traffic

data. This, in turn, leads to better traffic management and faster reaction to incidents.

The ”Multi-level Spatial-Temporal Fusion Neural Network” developed by [47] aims to enhance

forecasting abilities by combining spatial and temporal information. Both methodologies in [47],

[53] emphasize the significance of integrating spatial and temporal aspects in traffic flow prediction

in order to attain more precise outcomes.

2.2.3 Multilevel Ensemble Learning for Enhanced Traffic Flow Prediction

Multilayer ensemble learning techniques provide an extra level of enhancement. Ensemble learning

is a method that combines predictions from numerous models to get more reliable and precise

results, in contrast to utilizing just one model [54], [58].

Multiple research has examined the efficacy of multilevel ensemble algorithms in predicting

traffic flow. These studies highlight the potential of ensemble algorithms to improve prediction

accuracy by utilizing a variety of models and efficiently merging their predictions.

• Consensus Ensemble System: A Consensus Ensemble System refers to a machine learning

approach that combines multiple models to improve overall performance. The idea is that by

aggregating the predictions of several models [59], the ensemble can produce more accurate

and robust results than any single model. This technique leverages the diversity among the

individual models to reduce the likelihood of errors and overfitting.

In [55] the authors presents a specialized Consensus Ensemble System designed specifically

for predicting traffic flow. The main objective of the system is to predict the flow of traffic

on major roads many steps in advance. The work seeks to improve the practical usability

of traffic flow predictions by employing ensemble learning, which combines the strengths of

many prediction models.

• Seamless Multilevel Ensemble Transform Particle Filter (SMETPF): The SMETPF is a
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sophisticated method used in data assimilation, combining aspects of ensemble-based filter-

ing and particle filtering to improve the accuracy and efficiency of state estimation in complex

systems, particularly those with high-dimensional state spaces. In [56] investigates the appli-

cation of a SMETPF for the purpose of predicting traffic flow.

Table 2.2.1 provides a concise summary of various techniques used in traffic flow prediction and

anomaly detection studies, along with key details and research gaps identified in each paper.

2.3 Clustering Based Approach for Enhanced Characterization of Anoma-

lies in Traffic Flows

In the field of urban traffic management, it is crucial to detect anomalies in the frequency patterns

of congestion in order to enhance traffic flow and minimize bottlenecks. These anomalies may

suggest unusual occurrences such as accidents, road closures, or unforeseen fluctuations in traffic

volume. By employing sophisticated data analysis methods, these outliers can be identified by

continuously monitoring congestion data in real-time. After identification, clustering techniques

are utilized to categorize related abnormalities, enabling a more methodical and effective approach

to traffic disruption management. This approach not only improves the capacity to promptly address

current traffic problems but also facilitates long-term strategic planning and improvement of urban

transportation networks. The article examines recent studies on the prediction of traffic patterns and

the identification of anomalies. It utilizes clustering techniques to segment these detected anomalies.

Furthermore, it examines the ability of these techniques to improve understanding of their spatial

and temporal patterns, which is essential for efficient traffic control and urban development. Current

research is focused around incorporating advanced methods, such as improved Gated Recurrent

Unit(GRU) models, spatiotemporal clustering, and joint clustering and prediction approaches, to

forecast traffic patterns, identify anomalies, and divide these anomalies using clustering algorithms

in intelligent transportation systems. To ensure a thorough comprehension, we have categorized

previous studies according to the approaches utilized and the issues tackled. Additional information

is provided in the subsequent sections.
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2.3.1 Traffic Anomaly Detection

Traffic Anomaly Detection using clustering-based methodologies use algorithms like K-means, the

Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and EFMS-Kmeans to

detect and analyze abnormal traffic patterns, hence improving the accuracy and efficacy of anomaly

detection in traffic systems.

[60] propose a traffic anomaly detection method based on an improved GRU for traffic predic-

tion and EFMS-Kmeans clustering. This approach combines the techniques of traffic prediction and

clustering to improve the accuracy and efficiency of anomaly detection.

[61] proposes a marine traffic anomaly detection approach by combining the DBSCAN cluster-

ing algorithm with k-nearest neighbors analysis. This method efficiently detects anomalies in vessel

traffic using historical marine data by utilizing spatial clustering algorithms.Furthermore, in the do-

main of condition monitoring in a marine engine system, researchers have investigated the use of

cluster-based anomaly detection techniques. These techniques involve the application of algorithms

such as K-means clustering, Mixture of Gaussian models, density-based clustering, self-organizing

maps, and spectral clustering.

[62] compares two clustering methods (density-based and representative-based), for the purpose

of detecting anomalies in traffic data. The study seeks to enhance the detection of congestion, ac-

cidents, or other traffic difficulties by categorizing data points based on density and selecting repre-

sentative points within clusters to identify normal traffic patterns and identify substantial departures

as anomalies.

Traffic Anomaly Detection using Graph Neural Networks utilizes the interconnected nature of

traffic data to recognize unusual patterns, hence enhancing the accuracy and promptness of traffic

detection.

[63] presents a new method for detecting traffic anomalies by utilizing a graph autoencoder

with mirror temporal convolutional networks. This technique utilizes graph structures to capture the

relationships between traffic data points, while the mirror temporal convolutions address the time-

dependent character of network flow. The model’s objective is to find unusual patterns in encoded

traffic data by comparing it to the original data. This can potentially enhance the identification of

26



traffic anomalies such as congestion or accidents.

[64] proposes an approach that employs spatial-temporal graph neural networks. These net-

works have the ability to acquire knowledge from the spatial relationships between road segments

(spatial) and the fluctuations in traffic patterns over time (temporal). The method seeks to automati-

cally find unusual traffic patterns by examining the acquired representations of the traffic data. This

can potentially enhance the identification of congestion, accidents, or other anomalies on the road

network.

In [65], a cluster-guided denoising graph auto-encoder (CG-DGAE) for traffic data imputation

and fault detection. The method leverages spatial-temporal context to achieve 99.09% accuracy in

fault detection, enhancing data integrity in sensor networks is presented.

2.3.2 Traffic Prediction and Forecasting

For traffic prediction and forecasting employ spatiotemporal clustering algorithms to analyze pat-

terns of spatial and temporal data. The goal is to develop accurate predictions about future traf-

fic conditions and enhance traffic management.Clustering-based methods in traffic prediction and

forecasting utilize algorithms to analyze traffic patterns and improve the accuracy of traffic flow

and travel time forecasts. [66] propose a high-performance traffic speed forecasting approach by

spatiotemporal clustering of road segments. This method utilizes non-parametric clustering to ac-

curately predict traffic patterns based on traffic data dynamics.[67] presents a prediction model for

short-term traffic flow. The approach combines K-means clustering with a GRU. This model seeks

to enhance the accuracy of short-term traffic flow forecast by analyzing different traffic flow pat-

terns.[68] propose a method that combines clustering and prediction to accurately estimate travel

times. This methodology effectively models real-world traffic scenarios by forming clusters based

on their travel times.

2.3.3 Anomaly Detection in Various Domains

Anomaly Detection in Various Domains employs sophisticated techniques to detect abnormal pat-

tern in several sectors, including industrial systems, network traffic, and maritime operations, thereby

enhancing safety and operational effectiveness.
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[69] investigates the utilization of clustering algorithms to detect anomalous data from sensors

installed on a ship’s engine, which monitor aspects such as temperature and pressure. The approach

involves the clustering of similar sensor readings into clusters, which are then used to compare

new readings. If a new reading measurement considerably diverges from the existing clusters, it

is identified as an anomaly, which could suggest a problem in the engine. This technique allows

for ongoing surveillance and prompt identification of possible problems, so preventing failures and

enhancing the overall well-being of the engine.

[70] investigates the application of Graph Neural Networks (GNNs) in identifying abnormal

patterns in industrial environments. GNNs utilize the interconnected structure of Industrial Internet

of Things (IIoT) systems, in contrast to traditional approaches that evaluate sensor data from in-

dividual units.GNNs can analyze data from individual devices and the relationships between them

by modeling equipment and sensors as nodes in a graph. This methodology captures intricate in-

terconnections and detects anomalies that could be overlooked by analyzing individual sensor mea-

surements. As a result, GNNs can increase the accuracy of anomaly detection and allow for earlier

identification of problems, hence enhancing the reliability and efficiency of the system.

[71] introduces a novel method for detecting anomalies in network traffic. It combines two

methodologies. The X-means clustering algorithm has been enhanced to automatically estimate the

best number of traffic patterns. Additionally, the Isolation forest algorithm has been developed to

rapidly identify anomalies by isolating them from the data.

[72] proposes a technique for consistently detecting abnormal network behavior. This approach

is highly likely to adjust to evolving network activity over time, making it well-suited for real-world

scenarios. Traditional anomaly detection techniques may have difficulties in detecting changing

network patterns. To fully understand the model, one would need to refer to the complete study.

However, it is probable that the model employs strategies that can acquire knowledge and adapt to

new network data, enabling it to accurately identify anomalies in dynamic network settings.

[73] investigates a unique technique for identifying anomalies in network traffic. Instead of

depending on traditional statistical approaches, it utilizes principles from catastrophe theory. This

theory examines how systems with multiple variables can undergo sudden, drastic shifts in behavior.

The study proposes that this theory can be utilized for analyzing network traffic data. The method
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seeks to discover locations of considerable deviation from usual patterns in network traffic by ex-

amining specific properties of the data that are related to catastrophe theory. This has the potential

to enable the detection of abnormalities that could be missed by traditional methods.

[74] present a methodology for Anomaly Detection in IIoT environments using Graph Neural

Networks. The objective of this framework is to enhance the identification of abnormal behavior in

IoT contexts by offering capabilities for explainable artificial intelligence.

In [75] an Advanced Driver Assistance Systems (ADAS) by utilizing Explainable AI (XGBoost)

to detect driver abnormalities and evaluate driver behavior. This method promotes road safety by

recognizing unsafe activities and provides interpretable insights for real-time anomaly detection in

transportation systems is presented.

[76] improve the dissemination of information in large-scale vehicular networks by forecasting

traffic patterns in specific geographical areas, such as traffic hotspots, in order to boost the efficiency

of the network.

A cluster of anomalies in intelligent transportation systems is a crucial factor that greatly affects

the efficiency and safety of the transportation system. Anomaly detection is crucial for mitigating

congestion, improving safety, and offering useful insights for traffic prediction and road infrastruc-

ture planning. [77].

The studies together enhance anomaly detection approaches in intelligent transportation systems

by stressing the use of sophisticated techniques such as graph neural networks and explainable AI

frameworks for efficient anomaly detection and analysis.

Table 2.3.1 provides a summary of the related work, highlighting the strengths and drawbacks

of various traffic anomaly detection, clustering, and prediction techniques.

29



Table 2.2.1: Comprehensive Analysis of Traffic Prediction Techniques and Anomaly Detection
Studies

Methods Strength Drawback

LSTM [34], [35], [38], [47] Effective Handling of Time
Series Data, Potential for
High Accuracy, Applicability
in Real-World Scenarios

Data Dependency and Com-
putational Complexity, Over-
fitting, Limited Generaliza-
tion

RNNs for long-term traffic
flow [36], [39]

Potential for Capturing Com-
plex Patterns, Applicability to
Urban Environments

Computational Complexity,
Generalization to Diverse
Conditions

SRCNs [37] Ability to Handle Multidi-
mensional Data, Robustness
to Noise and Variability

Interpretability, General-
ization Across Different
Networks

Causal sliding windows [44] Applicability to Various Do-
mains

Computational Overhead

Uneven diffusion model [45] Practical Implications Model Complexity, General-
ization

T-GCN [48], [49] Robustness to Dynamic Traf-
fic Patterns

Computational Complexity

Deep Convolutional Neural
Network (CNN) integrated
with an Ensemble Learning
Model[41]

Effectively detects pedestrians
under varying conditions

Requires significant process-
ing power due to the complex-
ity of multi-modal data and
ensemble models

Dynamic Factor Model
(DFM) [42]

Effectively forecasts traffic
performance over multiple fu-
ture time steps

The DFM requires significant
computational resources for
processing large-scale urban
traffic data

Bi-GRCN [50] Integration of Temporal Com-
ponents

Model Complexity, Inter-
pretability

Informer model [51], [52] Applicability in Intelligent
Transport Applications

Dependency on Training
Data, Interpretability

KNN algorithm [53] Simple Implementation Scalability, Imbalanced Data
EEMD-ANN method [54] Multiscale Prediction, Adapt-

ability to Varied Time Scales
Complexity and Computa-
tional Cost, Generalization
Across Traffic Conditions

Ensemble learning approach
[55]

Robustness, Adaptability to
Diverse Traffic Conditions

Complexity, Training and
Maintenance Costs

ETPF [56] Adaptability to Nonlinear and
Non-Gaussian Systems, Effi-
cient Sampling and Resam-
pling

Computational Complexity,
Sampling and Propagation
Errors

Gaussian Process Regression
(GPR),Stochastic Differential
Equations (SDE)[46]

Effectively identifies anoma-
lies in traffic flow data, im-
proving smart mobility sys-
tems

GPR and SDE are computa-
tionally intensive, especially
for large datasets
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Table 2.3.1: Comprehensive Analysis of Traffic Anomaly Detection, Clustering, and Traffic Predic-
tion Techniques

Methodology Strength Drawback
Improved GRU for traffic pre-
diction and EFMS-Kmeans clus-
tering [60]

Combines traffic prediction with
clustering for enhanced accu-
racy and efficiency.

May require significant compu-
tational resources.

DBSCAN with k-nearest neigh-
bors analysis [61]

Efficiently detects anomalies in
vessel traffic using spatial clus-
tering algorithms.

Limited by quality of historical
data.

Density-based clustering [62] Enhances detection of conges-
tion and other traffic difficulties.

May struggle with high-
dimensional or complex traffic
patterns.

Data imputation and fault de-
tection using a Cluster-guided
Denoising Graph Auto-Encoder
(CDGAE)[65]

The CDGAE demonstrates su-
perior performance in traffic
data imputation compared to ex-
isting methods, especially in
scenarios with missing data and
noise

The CDGAE, like other deep
learning models, is susceptible
to overfitting, especially when
trained on limited data

Graph autoencoder with mir-
ror temporal convolutional net-
works [63]

Captures relationships between
traffic data points and addresses
time-dependent network flow.

Complex to implement and in-
terpret.

Spatial-temporal graph neural
networks [64]

Gains knowledge from spatial
and temporal fluctuations, im-
proving anomaly detection.

High computational complexity
and data requirements.

Spatiotemporal clustering for
traffic speed forecasting [66]

Accurately predicts traffic pat-
terns based on data dynamics.

Non-parametric methods may
not generalize well.

K-means with GRU for short-
term traffic prediction [67]

Enhances short-term traffic flow
accuracy.

K-means may not handle non-
linear patterns well.

Clustering and travel time esti-
mation [68]

Effectively models real-world
traffic scenarios by clustering
travel times.

Requires extensive historical
data.

Clustering for marine anomaly
detection [69]

Allows surveillance and prompt
identification of problems.

Sensor data quality affects
anomaly detection accuracy.

Proposes an Explainable Artifi-
cial Intelligence (XAI) approach
to enhance Advanced Driver As-
sistance Systems (ADAS) by de-
tecting driver anomalies [75]

The XAI-based approach can
improve the safety of ADAS
by proactively detecting and re-
sponding to driver anomalies

raining and deploying deep
learning models can be compu-
tationally expensive, especially
for real-time applications

Graph Neural Networks in IIoT
[70], [74]

Analyzes data from individual
devices and relationships.

High complexity and scalability
issues.

Enhanced X-means and Isola-
tion Forest for network anoma-
lies [71]

Estimates best traffic patterns
and rapidly detects anomalies.

Sensitive to parameter tuning.

Adaptive model for network be-
havior [72]

Adapts to evolving network ac-
tivity, suitable for real-world
scenarios.

Challenges in model training
and adjustment periods.

Catastrophe theory for anomaly
detection [73]

Analyzes locations of major de-
viation from usual patterns.

Complex theory, hard to imple-
ment practically.

Forecasting traffic patterns in ve-
hicular networks [76]

Improves efficiency by forecast-
ing traffic patterns.

Requires extensive data for ac-
curacy.
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Chapter 3

Intelligent Meta-Heuristic Based

Optimization of Traffic Light Timing

Using Artificial Intelligence Techniques

3.1 Introduction

The rapid increase in the number of automobiles has contributed to congestion, pollution, and logis-

tical delays. The financial toll of gridlock is rising. Specifically, Forbes reported in [78] that traffic

congestion costs the United States economy $124 billion annually. Around one percent of the Gross

Domestic Product (GDP) [79] of the European Union is lost due to traffic congestion costs. A major

obstacle to creating smart cities is the exponential rise in vehicle ownership despite inadequate pub-

lic transportation facilities. Increased traffic congestion and fuel costs are just two of the numerous

negative consequences of dense vehicle numbers, which also include air and noise pollution, stress

and disease, accidents, and high fuel costs. An increase in the number of individual vehicles is a

result of the development of a nation on the other side of the globe. This has led to heavier traffic in

major urban centers. yearly, traffic jams get worse in Indonesia. Indonesia, which in 2015 ranked

No. 11 on the list of the world’s most jammed countries behind only Brazil and Argentina, had an

estimated jamming time of 40.58 minutes on average. With a time index of 49.44 minutes in 2017,
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the position moves up to second in 2017 [80]. We need a better traffic management system as a

result. Time and money could be saved with efficient and trustworthy traffic management and con-

trol. With the advent of the IoT, we are one step closer to completely automated, highly controlled

processes and systems. In order to detect, gather, and transmit data, IoT-based ITM sensors are put

in autonomous vehicles and smart devices. Machine Learning (ML) has the potential to improve

transportation in other ways as well. Traffic congestion, delays, and fatalities are all too common

due to the various flaws in the current transportation management systems. Long waiting times,

unnecessary fuel consumption, and rising carbon emissions are only some of the problems with

the current vehicle traffic light signal control system. Drivers experience a great deal of stress as a

result, and emergency and other high priority vehicles, are delayed in their arrivals. Congestion can

be alleviated through the smart management of traffic lights. Controlling traffic lights intelligently

is essential for a smooth running transportation network [81]. An intelligent traffic signal control

system would automatically adapt to the current flow of traffic, as opposed to the static regulations

used by the current system. Most traffic signals today are still programmed to operate on a pre-

determined schedule [82], [83] rather than being based on observations of actual traffic patterns.

Some recent research has proposed custom-made criteria based on actual traffic data [84], [85] .

Unfortunately, these rules remain statically specified, making them inflexible in the face of fluctu-

ating traffic conditions. Existing research, however, has not yet validated the methodology using

real-world traffic data and has instead focused solely on analyzing incentives without interpreting

policy. An improved deep reinforcement learning model for managing traffic lights is proposed in

this paper. To ensure the efficacy of our method, we use a massive collection of actual traffic data

captured. Intriguing case studies of policies gleaned from actual data are also presented. Reinforce-

ment learning [4]–[6] has been used to dynamically adapt traffic lights to current traffic conditions.

Both representing the environment and modeling the relationship between the environment and the

decision provide significant obstacles to the practical use of traditional reinforcement learning. In

order to overcome these obstacles, researchers [5], [86] have recently applied deep reinforcement

learning methods, such as Deep Q-Learning (DQN), to the traffic light management problem. Many

reasons have urged us to study the traffic congestion problem, since it might affect various sectors

in our daily life. The first incentive is to reduce the congestion in the road network and hence the
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waiting time for roads users (drivers and pedestrians), which will directly affect each user produc-

tivity in their daily life, it might be a small effect for each individual alone but if we examine the

change in a holistic manner, it will be a huge effect on a society level. Another motivation is to

decrease the CO gas emissions from the vehicles, which is also have a massive impact on one of

the main problems in the world at the current time, which is the destruction of the ozone layer that

directly affects people’s health if not solved. In addition to that, a reduced fuel consumption is

achieved which gives scientists a longer time to look for other options such as renewable energy

to replace the current energy sources that will run out in the near future. The congestion mitiga-

tion will also drastically increase the roads user satisfaction and the quality of life, decrease the

number of car accidents which saves lives around the world [14]. Many research papers are using

the meta-heuristics techniques to solve different problems in different fields, the researchers in [87]

introduces a Two-level Particle Swarm Optimization (TLPSO) for managing credit portfolios, with

the goal of reducing losses while staying below financial limits. Comparative investigations show

that TLPSO, with its novel dual searching mechanism, outperforms conventional methods like the

Genetic Algorithm and the Particle Swarm Optimization. Another paper [88] presents a strategy

for improving disaster response logistics by balancing facility placement and transportation routes.

Discrete Particle Swarm Optimization and Harris Hawks Optimization are combined into a new hy-

brid algorithm that is introduced to solve this difficult issue. A COVID-19 case study conducted in

Wuhan validates the method’s efficacy, showing that it is both more accurate and more efficient than

alternative approaches. Other problems have used meta-heuristic algorithms to find near optimal

solution [89], [90]. According to No Free Lunch (NFL) theory, there is no single meta-heuristic

that is suitable for any problem, that is why in this paper, we investigated many meta-heuristics and

compared them together to determine which one is better as shown in the results section below.

After studying the literature of intelligent traffic lights, many research gaps have been discovered

as explained in more details in the related work section below, the problems that we are going to

address are briefly summarized as follows:

• Increased road traffic congestion due to the increasing numbers of road users and the limited

capacity for the current road infrastructure that could not be extended easily, where this main

problem could cause many subproblems such as increased waiting time, increased number of
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accidents and increased levels of CO and CO2 gas emissions[91].

• Current problem exists in the proposed meta-heuristics algorithms in the literature concerning

both the execution time and convergence speed, which are two important factors that should

be minimized/improved when designing a meta-heuristic algorithm. This will help us in

making faster decisions and better solutions that are more near to the optimal solution.

• Current problem exists in the proposed machine learning models in the literature when it

comes to the prediction accuracy of the solution. Better predictions will enable us to make

more wise future decision and help solve the problem before occurring. This section may

be divided by subheadings. It should provide a concise and precise description of the ex-

perimental results, their interpretation as well as the experimental conclusions that can be

drawn.

The selected algorithms in our proposed solution are renowned for their ability to achieve a

balance between exploration (seeking out new regions) and exploitation (improving known good

areas), which is essential in traffic light optimization where both new solutions and improvement

of old solutions are required. Additionally, they provide a favorable combination of randomization

and deterministic principles, which aids in adjusting to the unpredictable characteristics of traffic

patterns. The improved BAT algorithm, specifically, may provide a distinct benefit in terms of

speed and convergence, rendering it more appropriate for real-time applications such as traffic signal

optimization.

3.2 Motivation and Preliminaries

Many reasons have urged us to study the traffic congestion problem, since it might affect various

sectors in our daily life. The first incentive is to reduce the congestion in the road network and

hence the waiting time for roads users (drivers and pedestrians), which will directly affect each user

productivity in their daily life, it might be a small effect for each individual alone but if we examine

the change in a holistic manner, it will be a huge effect on a society level. Another motivation is to

decrease the CO and CO2 gas emissions from the vehicles, which is also have a massive impact on
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one of the main problems in the world at the current time, which is the destruction of the ozone layer

that directly affects people’s health if not solved. In addition to that, a reduced fuel consumption

is achieved which gives scientists a longer time to look for other options such as renewable energy

to replace the current energy sources that will run out in the near future. The congestion mitigation

will also drastically increase the roads user satisfaction and the quality of life, decrease the number

of car accidents which saves lives around the world.

3.3 Background

3.3.1 Prediction Algorithms

3.3.1.1 Recurrent Neural Network (RNN)

Traditional neural network is class of artificial neural networks (ANN) and are a series of algorithms

which is very much closely and derived from human brain working.where they interpret sensory data

whether historical or live data (offline or online data) by a type of machine perception, labeling or

clustering raw input to recognize the patterns. An ANN usually contains many processors which

is working in parallel and arranged in layers. Where the first layer receives the input information.

And each layer receives the output from the layer that preceding it [92]. Recurrent Neural Network

(RNN) is type of feedforward neural network that has an internal memory. RNN is recurrent in

nature as it performs the same function for every input of data while the output of the current input

depends on the past one computation. After producing the output, it is copied and sent back into the

recurrent network. For making a decision, it considers the current input and the output that it has

learned from the previous input.

As shown in 3.1.it takes the X(0) from the sequence of input and then it outputs h(0) which

together with X(1) is the input for the next step. So, the h(0) and X(1) is the input for the next

step. Similarly, h(1) from the next is the input with X(2) for the next step and so on. Due to can

be difficult to train RNNs to solve problems which need learning long-term temporal dependencies

and this their reason that the gradient of the loss function vanish exponentially with time (called the

vanishing gradient problem) where RNN has short term memory so the LSTM is used to solve this
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Figure 3.1: The Recurrent Neural Network.

problem.

3.3.1.2 Long Short Term Memory (LSTM)

LSTM is similar to control flow in RNN and it has internal mechanisms called gates that can regulate

the flow of information and these gates can learn which data in a sequence is important or not to

keep it or throw it way. As shown in 3.2 the LSTM from three gates: forget gate, input gate, and

output gate. Forget gate which used to decide which information keep or forget.information from a

previous hidden state and information from the current input is passed through the sigmoid function

that decide which values will be updated by transforming values to be between [0,1],values between

[0,1] the closer to 0 will be removed and values closer to 1 will be kept [93].

Cell state acts as transport highway that transfer relevant information all the way down to the

sequence chain and it can be considered as memory of the network.

3.3.1.3 Decision Tree

A decision tree algorithm is a popular machine learning technique used for both classification and

regression tasks. It’s a type of supervised learning algorithm that takes a set of input features and

produces a decision tree as its output. This decision tree is essentially a flowchart-like structure

where each internal node represents a decision based on a particular feature, each branch represents

the outcome of that decision, and each leaf node represents a class label or a predicted value[94].
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Figure 3.2: The Long Short Term Memory.

The primary goal of a decision tree algorithm is to create a model that can make accurate pre-

dictions or classifications by learning patterns and relationships within the input data. Here’s a

simplified overview of how a decision tree algorithm works:

1. Data Splitting:

The algorithm starts with the entire dataset at the root node of the tree.

2. Feature Selection:

It selects the best feature from the dataset to split the data into subsets. The ”best” feature

is typically chosen based on criteria that aim to maximize the separation between different

classes or minimize the variance within each subset. Common criteria include Gini impurity,

entropy, or mean squared error.

3. Recursive Process:

The algorithm recursively applies the same process to each subset of data, creating child

nodes for each split. This process continues until a stopping condition is met. This condition

could be a certain depth of the tree, a minimum number of samples in a node, or other similar
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criteria.

4. Leaf Node Labeling:

Once the recursive process is complete, the leaf nodes are assigned class labels (for classifi-

cation tasks) or predicted values (for regression tasks), usually based on the majority class in

a classification problem or the average value in a regression problem.

5. Prediction:

To make predictions for new data, you start at the root node and traverse the decision tree by

following the path that corresponds to the feature values of the new data. You end up at a

leaf node, and the class label or predicted value associated with that leaf node becomes the

model’s prediction.

3.3.1.4 Auto-Regressive Integrated Moving Average(ARIMA)

The AutoRegressive Integrated Moving Average (ARIMA) is a popular time series forecasting ap-

proach. It is well suited to time series data such as stock prices, sales figures, and weather patterns

since it predicts links between observations and lagged values.

3.3.1.5 Seasonal ARIMA(SARIMA)

SARIMA (Seasonal ARIMA), an extension of ARIMA, can be used to model seasonal patterns

in time series data. It adds additional terms to model seasonal fluctuations, increasing prediction

precision for repeating data.

3.3.2 Meta-heuristics Algorithms

3.3.2.1 Phases in Meta-heuristics Algorithms

The phrases ”exploration” and ”exploitation” refer to two basic features of the behavior of meta-

heuristic algorithms like evolutionary algorithms, swarm intelligence, and simulated annealing as

they search for optimal solutions in a complex search space.
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• Exploration: First, we have exploration, which is the process of examining a large portion of

the solution space for novel and varied solutions. The algorithm places a premium on trying

out fresh solutions, even if they don’t look promising at first. By searching for other regions

of the solution space, exploration aims to prevent getting stuck in local optima (suboptimal

solutions). In other words, the goal of exploration is to keep the population of solutions

diverse and to stop it from settling too quickly into a suboptimal zone.

• Exploitation: The second strategy, ”exploitation,” is a thorough investigation of proven meth-

ods in order to hone and enhance them. The algorithm’s focus throughout the exploitation

phase is on using the insights acquired from previously found optimal solutions to further

enhance and perfect them. This is usually done through local search techniques that center on

making minor adjustments close to probable solutions. The goal of exploitation is to improve

upon already promising solutions so that they converge on the optimal solution.

3.3.2.2 BAT Meta-heuristic algorithm

The Bat Algorithm (BA) is an optimization technique that mimics the way bats use echolocation.

In 2010, Xin-She Yang introduced it as a metaheuristic optimization technique for dealing with

difficult optimization issues. Applications of BA can be found in many different fields, including

engineering, economics, medicine, and more due to BA’s versatility and effectiveness with continu-

ous and discrete optimization issues.

The Bat Algorithm, at its core, is a simulation of bat foraging behavior; each ”bat” stands for a

possible answer to an optimization issue. The program is modeled after the way bats fly by sending

out ultrasonic pulses, listening for echoes, and altering their flight path accordingly. A series of

mathematical equations and operators are developed to include this behavior into the optimization

procedure.

Each bat in the Bat Algorithm’s population represents a possible solution, and the algorithm

works by moving these bats throughout the solution space. In order to identify the best possible or

nearly best possible solution, the algorithm iteratively improves upon these candidates. The main

parts and procedures of the Bat Algorithm are as follows:
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• The algorithm begins by creating a population of bats with uniformly distributed initial po-

sitions in the solution space (referred to as ”initialization”). Each bat has a unique pulse

emission rate and loudness value that influences how it flies.

• Emission and Movement: From their current locations, bats emit ultrasonic pulses, with the

intensity of the pulse decreasing with each repetition. Bats make course corrections using

information from the radiated pulses as well as their own past positions and velocities. By

flying about, bats can test out many strategies and eventually settle on the most effective one.

• Pulse Frequency and Velocity: A bat’s search radius surrounding its current position is de-

termined by the frequency of its pulses. More global exploration is encouraged by bats with

higher pulse frequencies, whereas local exploitation is prioritized by those with lower fre-

quencies. Each bat’s speed is revised every time its pulse frequency or volume is detected.

• Local Search and Global Search: When looking for interesting regions in the solution space,

bats undertake local search around their current places. They also alter their speeds in the

direction of the greatest solution identified so far in the population, which aids in worldwide

research.

• The Loudness and Pulse Frequency of each bat are adjusted to reflect their current perfor-

mance. Bats with better solutions have their volume and frequency settings preserved, while

bats with worse solutions have their settings lowered to promote more research.

• At each iteration, the objective function of the optimization problem is used to assess the fit-

ness of each bat’s solution. Bats who come up with superior solutions contribute to improving

the overall best one.

• Termination: The algorithm repeats this process until a convergence condition is fulfilled or a

predetermined number of iterations have passed. In the end, you’ll have the optimal solution

discovered by any bat.

Because it strikes a good balance between exploration and exploitation, the Bat Algorithm can

be applied to a wide variety of optimization problems. Its flexibility and durability come from

41



Algorithm 1 Bat Algorithm
Data: Objective function f(x), Population size N , Number of generations G, Frequency scaling

factor α, Pulse emission rate γ, Lower bound L, Upper bound U
Result: Optimal solution x∗

Initialize population X with random solutions Initialize pulse rates ri and loudness Ai for each bat
Initialize best solution x∗

for t← 1 to G do
for i← 1 to N do

Generate a new solution xi by adding random step to Xi if rand() < ri then
Generate a new solution xi by adding a random step and a fraction of the current best
solution

end
Evaluate the fitness of xi if rand() < γ and f(xi) < f(x∗) then

Accept xi as the new best solution x∗

end
Update ri and Ai using equations

end
end

the fact that it can dynamically modify bats’ search behavior via pulse frequency and loudness

adjustments. The efficiency of the Bat Algorithm, like that of any optimization algorithm, might

shift based on the details of the problem and the values chosen for its parameters. Researchers are

still looking at new ways to tweak and refine the algorithm so that it can more quickly and accurately

address difficult optimization challenges.

The Bat Algorithm (BA) is a nature-inspired optimization algorithm that mimics the echoloca-

tion behavior of bats. It is often used for solving optimization problems. The key equations of the

Bat Algorithm are as follows:

1. Position Update

The position of each bat is updated based on its current position, velocity, and the pulse rate

of the bat. The updated position xi of the i-th bat is given by:

xt+1
i = xti + ϵ · (xbest − xti) + α ·A · rand() (1)

Where:

• xt+1
i is the updated position of the i-th bat at time t+ 1.
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• xti is the current position of the i-th bat at time t.

• xbest is the current best solution found by any bat.

• ϵ is a random scaling factor.

• α is the loudness of the bat.

• A is the pulse rate of the bat.

• rand() generates a random number between 0 and 1.

2. Velocity Update

The velocity vi of each bat is updated to move towards the updated position. The velocity

update equation is given by:

vt+1
i = vti + (xt+1

i − xti) (2)

Where:

• vt+1
i is the updated velocity of the i-th bat at time t+ 1.

• vti is the current velocity of the i-th bat at time t.

3.4 Methodology

As shown in the Figure 3.3 The Road Congestion Prediction procedure begins with Phase 1. The

initial step is data gathering, which includes recording information about things like traffic volumes,

vehicle speeds, road occupancy, and other characteristics over time. Different prediction methods

are implemented on top of this dataset. Data collection and processing algorithms like Recurrent

Neural Networks, Long Short-Term Memory networks, Decision Trees, AutoRegressive Integrated

Moving Average, and Seasonal ARIMA are used to forecast traffic congestion. The accuracy of

these prediction algorithms is then assessed by comparing the projected values to real-world con-

gestion data and use metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE).

After the models have been verified, they are used to make predictions about traffic congestion,
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which can provide light on how the situation will unfold in the future. Adaptability to shifting

traffic circumstances is ensured by repeating this forecasting method throughout several instances

or time periods (N instances)[95]. The results of these forecasts are saved in a special Congestion

Database, which is subsequently used for analysis and decision-making in the future. In the second

phase, metaheuristic algorithms are used to improve traffic flow. The green time for traffic lights at

various junctions can be strategically adjusted with the help of algorithms like the BAT Algorithms,

Particle Swarm Optimization, Cuckoo Search algorithm, and the Jaya algorithm. The ultimate goal

is to reduce the amount of time cars spend waiting at these junctions. Congestion will be reduced,

traffic flow will be improved, and a more effective transportation system will be created thanks to

this optimization process. When Phase 1 predictions are combined with Phase 2 optimization ef-

forts, a unified system is produced that can not only anticipate congestion but also take proactive

steps toward its reduction by optimizing traffic signal timings. Transportation systems, in general,

and traffic management in particular, stand to benefit greatly from this all-encompassing strategy.

The success of both stages is dependent on the accuracy of the data acquired, the efficacy of the

prediction algorithms, and the efficacy of the optimization process.

3.5 Experimental Setup and Evaluation

The experimental setup evaluates the proposed methodology, which combines traffic congestion pre-

diction using machine learning models and traffic signal optimization via metaheuristic algorithms.

In the first phase, real-world traffic data is used to train models such as RNN, LSTM, Decision

Trees, ARIMA, and SARIMA, with predictive accuracy assessed through metrics like MSE and

MAE over multiple time periods. In the second phase, the predictions guide the optimization of

traffic light timings using algorithms like BAT, PSO, Cuckoo Search, and Jaya, aiming to reduce

vehicle waiting times and improve traffic flow. The system’s effectiveness is analyzed by comparing

prediction accuracy, congestion reduction, and computational efficiency, providing a comprehensive

evaluation of the integrated approach.
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Figure 3.3: The Proposed Methodology
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3.5.1 Performance Metrics

In this study, we evaluated the prediction precision using various commonly used metrics. As

outlined in [96], each metric offers a unique perspective on the prediction’s accuracy and the errors’

dispersion. Below are more details about each metric, assuming that ŷi represents the predicted

value for the i-th pattern, yi represents its actual value, and n represents the size of the data set.

3.5.1.1 Mean Absolute Error

Mean Absolute Error(MAE) metric takes the magnitude of the difference between the predicted and

actual values, regardless of whether it is an overestimation (positive difference) or an underestima-

tion (negative difference). In addition, the units of MAE are the same as the units of the examined

data, which makes it easy to understand the average amount of error. This metric can be calculated

using the following equation.

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

3.5.1.2 Mean Squared Error

Mean Squared Error(MSE) is a metric that computes the average squared difference between the

predicted and actual values. This error metric penalizes more significant errors, making it more

sensitive to outliers than the MAE metric. It also provides information about the model’s bias, as a

consistently positive MSE can be a clue. However, it does not definitively tell the direction of the

bias (overestimation or underestimation). This error metric is calculated as follows.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

3.5.1.3 Root Mean Squared Error

Root Mean Squared Error(RMSE) is derived from MSE by calculating the square root of the mean of

the squared mistakes. RMSE, like MSE, is similarly susceptible to outliers because of the squaring

operation. However, it presents the error in the same units as the original data, facilitating the
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assessment of the error’s magnitude. Mathematically, it is represented as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3)

3.5.1.4 Coefficient of Determination

Coefficient of Determination (R2) is metric reveals the model’s goodness of fit to the data. It is a

quantified score that represents the proportion of variance in the dependent variable explained by

the independent variables. The value of 1 signifies a perfect prediction, which means that the model

explains all the variance in the dependent variable. The value of 0 indicates that the model does

not improve the prediction over the mean of the target value, which means that the model does not

explain any of the variances. These characteristics make this metric a valuable score for evaluating

the performance of regression models. However, using R2 alone is not enough to evaluate the

quality of a regression model. It is essential to use other metrics, such as MAE and MSE, alongside

R2 to get a complete picture of the performance of the regression models. This quantified metric is

calculated using the following equation.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4)

3.5.2 Zone Based Analysis

As discussed earlier,there are many options for studying the road congestion problem. The first

option is to study this problem in a local manner, which means that each traffic light only considers

the congestion level at its intersection without any consideration of the congestion level at other

traffic lights, and adjust its green timing for each traffic light accordingly. The other option, is to

have a global view of all the congestion levels at each traffic light and then adjust the green timing

for each traffic light according to the local congestion level at the specific traffic light and according

to the congestion level at other traffic lights in the city of Montreal as shown in 3.4. In our study,

we divided the simulation area for different zones and studied our problem for each zone separately,

each traffic light should adjust their green timing dynamically according to the congestion level at

this specific traffic light and the congestion levels at all the neighboring traffic lights in the same
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Figure 3.4: Simulation area in Montreal [97].

zone.

No matter how big the network is, even if it is a large-sized networks, it will be divided into

zones and the prediction algorithm will be separately applied on each zone, in our simulation each

zone will have 19 traffic lights in it, this makes our proposed algorithm scalable.

3.6 Results and Analysis

3.6.1 Result for the Road Congestion Prediction(Phase 1)

We divided our extensive case study into several zones, each of which contained 19 traffic signals.

Our focus was on using advanced machine learning algorithms to predict and address congestion

before it occurred. This proactive strategy enabled us to make educated judgments based on the

algorithms’ forecasts. As shown in the 3.5, we applied our methodology and demonstrated the

results to a smaller zone containing 4 traffic lights. This allowed us to focus on a more detailed

analysis of traffic behavior and validate the effectiveness of our predictions and optimizations in a
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Figure 3.5: Simulation of a Sub-Area in Montreal

controlled environment before scaling it to larger zones.

We thoroughly analyzed the efficacy of our machine learning algorithms in the ensuing graphical

representations. We used key measures including the Mean Square Error (MSE), Mean Absolute

Error (MAE), and Coefficient of Determination (R2) to quantify their performance. We separated

the dataset into two portions to thoroughly validate our models: an 80% training subset and a 20%

testing subset. Using this method, we were able to effectively analyze the model’s predictive skills

throughout 300 iterations.

Figures 3.6 to 3.9 depict the congestion level forecasts provided by each separate machine learn-

ing method, along with the related MSE, MAE, and R2 values. The results clearly show that the

Decision Tree algorithm performed better than the other machine learning approaches. This supe-

riority was demonstrated by its faster convergence rate, lower loss values, and significantly greater

coefficient of determination.
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Figure 3.6: Traffic Light 1

Figure 3.7: Traffic Light 2

3.6.2 Result for the optimization of traffic light timings using meta-heuristic algo-

rithms(Phase 2)

One of our contributions is to develop an enhanced approach for BAT algorithm, in order to achieve

this, we modified on the exploration phase of the algorithm. In BAT algorithm, there is an ex-

ploration phase, where the solution is generated randomly and then their fitness is calculated and
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Figure 3.8: Traffic Light 3

Figure 3.9: Traffic Light 4

compared with the best solution obtained so far and update it accordingly. In our modified version

of the BAT algorithm, the exploration phase is not fully random but it is semi-random exploration

phase, which means that the algorithm is directed to obtain better solution by taking into consider-

ation the congestion status, as shown in the equation below:

xi ← xi + C × (x∗ − xi)
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Other enhancement is to tune the parameters in the BAT algorithm to have a better results in

terms of convergence rate or the quality of the solution. Below is the algorithm of our proposed

enhanced BAT algorithm.

Algorithm 2 Enhanced Bat Algorithm
Data: Objective function f(x), Population size N , Number of generations G, Frequency scaling

factor α, Pulse emission rate γ, Lower bound L, Upper bound U
Result: Optimal solution x∗

Initialize population X with random solutions Initialize pulse rates ri and loudness Ai for each bat
Initialize best solution x∗ for t← 1 to G do

for i← 1 to N do
Generate a new solution xi by adding random step to Xi if rand() < ri then

Generate a new solution xi by adding a random step and a fraction of the current best
solution

Enhanced exploration term: xi ← xi + C × (x∗ − xi)
end
Evaluate the fitness of xi if rand() < γ and f(xi) < f(x∗) then

Accept xi as the new best solution x∗

end
Update ri and Ai using equations

end
end

Figures 3.10 and 3.11, we compare different meta-heuristic algorithms in terms of convergence

rate. As shown in the results, Figure 3.10, categorized under high congestion show that Enhanced

BAT algorithms outperforms other algorithms in terms of solution quality and minimize the ob-

jective function and converges to the near optimal solution after 25 iterations, which is defined as

the average waiting time for each vehicle in the road network. The second best algorithm is the

BAT algorithm which converges to its local minimum solution after almost 30 iterations. In this

specific scenario, where the exploration phase is semi-random, which means that the exploration

phase benefits from the predicted congestion status at each traffic light before adjusting the green

timing for each traffic light in the zone, the initial solution is around 9 for both BAT and EBAT.

Figure 3.11, categorized under low congestion show that Enhanced BAT algorithms outperforms

other algorithms in terms of solution quality and minimize the objective function and converges to

the near optimal solution after 25 iterations, which is defined as the average waiting time for each

vehicle in the road network. The second best algorithm is the BAT algorithm which converges to its

local minimum solution after almost 28 iterations. In this specific scenario, where the exploration
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Figure 3.10: The Convergence Curves with Prediction - High Congestion

phase is semi-random, which means that the exploration phase benefits from the predicted conges-

tion status at each traffic light before adjusting the green timing for each traffic light in the zone, the

initial solution is around 6.5 for both BAT and EBAT.

.

Figures 3.12 and 3.13 show the results of the other scenario, which is also a dynamic scenario,

where the timing for the traffic lights are changing dynamically based on the current congestion

status and not the predicted congestion status as in the previous scenario. We compared different

meta-heuristic algorithms in terms of convergence rate. As shown in the results, Figure 3.12, cat-

egorized under high congestion show that Enhanced BAT algorithm outperforms other algorithms

in terms of solution quality and minimize the objective function and converges to the near optimal

solution after 30 iterations. The second best algorithm is the BAT algorithm which converges to its

local minimum solution after almost 37 iterations. In this specific scenario, nothing has changed

on the exploration phase, the initial solution is around 15.5 for both BAT and EBAT. We noticed

that the solution quality for the EBAT and BAT algorithms are almost the same, this is because the

enhanced BAT algorithm in this case has only one improvement which is the parameter tuning but
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Figure 3.11: The Convergence Curves with Prediction - Low Congestion

there is no improvement on the exploration phase as in the previous scenario. Figure 3.13, cate-

gorized under low congestion show that Enhanced BAT algorithm outperforms other algorithms in

terms of solution quality and minimize the objective function and converges to the near optimal

solution after 30 iterations. The second best algorithm is the BAT algorithm which converges to its

local minimum solution after almost 30 iterations. In this specific scenario, nothing has changed

on the exploration phase, the initial solution is around 13.8 for both BAT and EBAT. We noticed

that the solution quality for the EBAT and BAT algorithms are almost the same, this is because the

enhanced BAT algorithm in this case has only one improvement which is the parameter tuning but

there is no improvement on the exploration phase as in the previous scenario.

Figures 3.14 and 3.15 show the results of the third scenario, which is the fixed approach scenario,

where the timing for the traffic lights are fixed at all times. We compared different meta-heuristic

algorithms in terms of convergence rate. As shown in the results,Figure 3.14, categorized under high

congestion shows that Enhanced BAT algorithms outperforms other algorithms in terms of solution

quality and minimize the objective function and converges to the near optimal solution after 30

iterations. The second best algorithm is the BAT algorithm which converges to its local minimum
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Figure 3.12: The Convergence Curves without Prediction-High Congestion

Figure 3.13: The Convergence Curves without Prediction-Low Congestion

solution after almost 37 iterations. In this specific scenario, nothing has changed on the exploration

phase, the initial solution is around 19 to 19.5 for both BAT and EBAT. We noticed that the solution
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Figure 3.14: The Convergence Curves - Fixed Time Traffic Light - High Congestion

quality for the EBAT and BAT algorithms are almost the same, this is because the enhanced BAT

algorithm in this case as well has only one improvement which is the parameter tuning but there is

no improvement on the exploration phase as in the first scenario. Figure 3.15, categorized under low

congestion shows that Enhanced BAT algorithms outperforms other algorithms in terms of solution

quality and minimize the objective function and converges to the near optimal solution after 30

iterations. The second best algorithm is the BAT algorithm which converges to its local minimum

solution after almost 35 iterations. In this specific scenario, nothing has changed on the exploration

phase, the initial solution is around 6 to 6.5 for both BAT and EBAT. We noticed that the solution

quality for the EBAT and BAT algorithms are almost the same, this is because the enhanced BAT

algorithm in this case as well has only one improvement which is the parameter tuning but there is

no improvement on the exploration phase as in the first scenario.

As you can see from the convergence rate in all the investigated scenarios, the initial solution is

the key for a better solution and fast convergence as shown from Figures 3.16 to 3.21.

For example, in the fixed approach scenario because of the bad initial solution due to the fixed

green timing regardless of the congestion at each traffic light, the EBAT algorithm converges after
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Figure 3.15: The Convergence Curves - Fixed Time Traffic Light - Low Congestion

44 iterations and 29 iterations for BAT algorithm and with the initial solutions to be 19 for both of

them.

On the other side, the dynamic with no prediction approach converges after 42 iterations for the

EBAT and 27 iterations for the BAT algorithm and with the initial solutions to be 15 for both EBAT

and BAT algorithms.

In the third scenario, which is the dynamic with prediction approach, it converges after 37 iter-

ations for the EBAT algorithm and 24 iterations for the BAT algorithm and with the initial solutions

to be 9 for both EBAT and BAT algorithms.

In terms of execution time, there is slight difference between different algorithms with a reason-

able execution time except for the JAYA, SCO and HHO algorithms as shown on the Figures above.

Where the execution time for the third approach which is the dynamic with prediction approach is

the highest and the execution time for the fixed approach is the lowest.
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Figure 3.16: Execution Time with Prediction - High Congestion

Figure 3.17: Execution Time with Prediction - Low Congestion
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Figure 3.18: Execution Time without Prediction - High Congestion

Figure 3.19: Execution Time without Prediction - Low Congestion
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Figure 3.20: Execution Time - Fixed Time Traffic Light - High Congestion

Figure 3.21: Execution Time - Fixed Time Traffic Light - Low Congestion
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3.7 Summary

In our study the road Congestion Prediction is a process that involves two phases: Phase 1 and

Phase 2. Phase 1 involves gathering comprehensive data on traffic-related variables, such as traf-

fic volumes, vehicle speeds, and road occupancy, which have been taken from the data set, and

then we used sophisticated prediction methodologies like Recurrent Neural Networks, Long Short-

Term Memory networks, Decision Trees, AutoRegressive Integrated Moving Average, and Seasonal

ARIMA. The effectiveness of these algorithms is assessed using metrics like Mean Squared Error

(MSE) and Mean Absolute Error (MAE), ensuring precision in prediction.

Phase 2 presents a proactive approach to traffic optimization using metaheuristic algorithms,

such as the EBAT, BAT Algorithm, Particle Swarm Optimization, Cuckoo Search, and Jaya Algo-

rithm. The vehicle waiting times have been reduced, mitigating congestion and promoting more

efficient traffic movement. The integration of these insights with the optimization efforts in Phase 2

results in an integrated framework that not only predicts congestion but also helps in development

of proactive strategies to mitigate it through traffic signal timing optimization.

The successful completion of both phases depends on the precision of data, the efficacy of

prediction algorithms, and the efficiency of the optimization process. The proposed technique has

significant implications for contemporary contexts, and we aimed to address congestion issues using

advanced machine learning techniques and conducting a comprehensive case study. The optimiza-

tion targets involve minimizing total and average waiting times for all vehicles, including emergency

vehicles. The optimization model incorporates time budgets, phase cycle lengths, smoothness of

phase transitions, and maximum green times to ensure feasibility and safety.

There are other areas we could pursue for future work. These directions not only enhance our

current research but also tackle emerging difficulties and opportunities in traffic management and

urban development. As an illustration, we can focus on investigating the incorporation of real-

time traffic data from IoT devices, social media, and other sources to improve the accuracy and

responsiveness of our algorithm. A further avenue of research is expanding our investigation to

encompass optimization for multi-modal traffic networks, encompassing pedestrians, motorcycles,

and public transportation, so guaranteeing a more comprehensive approach to urban mobility. An
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additional improvement could involve prioritizing the enhancement of the resilience and security of

the traffic management system, protecting it against cyber threats and guaranteeing its reliability.

In conclusion, this study provides a thorough investigation that forms the foundation of a com-

plete approach to managing congestion and optimizing traffic, which has the potential to signifi-

cantly transform transportation systems and rethink traffic control principles.
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Chapter 4

Multilevel Learning for Traffic

Congestion Prediction using Anomaly

Detection and Ensemble Learning

4.1 Introduction

The persistence of traffic congestion poses a significant obstacle in contemporary transportation

systems, resulting in issues such as prolonged commuting, heightened fuel use, and air pollution.

Innovative prediction models based on multi-level learning approaches are required to tackle these

challenges for highly precise traffic congestion forecasting strategies. The precise models in place

facilitate the implementation of proactive traffic management measures to dynamically control traf-

fic signals [98]. This method of traffic regulation involves altering the duration of signal phases at

intersections to optimize traffic flow, informing signal timing based on pre-trained models, resulting

in a more efficient and safe traffic system [97].

It is imperative to incorporate sophisticated Machine Learning (ML) algorithms into multi-level

learning approaches, combining various tasks such as anomaly detection, data segmentation, and

ensemble strategies. This integration aims to enhance prediction accuracy and cluster quality, yield-

ing more robust models [99]. The multi-level learning approaches are founded on the premise that
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the combined strength of multiple methods in data analysis is better than using a single process

to obtain the final predictions [100]. These approaches are essential in domains where accurate

predictions are critical, such as proactive traffic management.

In this paper, Multilevel learning denotes a systematic method that encompasses several separate

phases of learning, with each phase contributing a role in the final prediction model. More precisely,

it encompasses:

• Anomaly detection: involves the identification and removing of unusual traffic patterns in

order to clean the dataset and ensure robust baseline model training

• Baseline Model Training: Utilizing the cleaned dataset to train multiple machine learning

models in order to establish initial predictive capabilities.

• Ensemble Learning: refers to the process of improving the overall accuracy of predictions by

combining the predictions from multiple baseline models. This is achieved using techniques

like stacking and voting.

This structured, multistage methodology enables gradual enhancements at each stage, leading

in a final model that leverages the strengths of various machine learning techniques.

This research presents an innovative multi-level learning strategy specifically tailored to predict

traffic congestion in highly populated urban regions. We employed various techniques, including

time series windowing[101], anomaly detection, and multi-level ensemble-based regression, exam-

ining various settings. The windowing technique is a data preprocessing stage that involves trans-

forming time series data of traffic flow into sequence patterns using fixed intervals. This technique

facilitates the analysis of data collected from city intersections, creating more structured and sys-

tematic sequence patterns. These patterns can be used to incorporate trends and frequency routines

in the data based on given window settings in the learning process, gaining valuable insights into

the behavior of vehicles at city intersections, which can lead to more accurate predictions.

However, removing outliers from these collected patterns is essential for stable and robust pre-

diction models. The unsupervised anomaly detection process involves determining abnormal traffic

patterns based on a small contamination threshold as a first learning process[102]. The determined
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patterns are removed from the data before the second learning process, guaranteeing that the learn-

ing models are concentrated on acquiring knowledge from the dominated traffic flow patterns. The

second learning process involves training a set of regression models, and the most performing ones

are subject to ensemble learning as a third learning process, producing the final predictions resulting

in greater forecast accuracy. The following pivotal points encapsulate the present study’s primary

contributions:

• A multi-level learning model is proposed for traffic congestion prediction that incorporates

time series windowing, anomaly detection, and multi-level ensemble-based regression. This

approach aims to enhance the precision of the prediction models.

• The study examines various windowing settings alongside dimensionality reduction based

on Principal Component Analysis (PCA) in the preprocessing stage and three unsupervised

anomaly detection methods in the first learning stage. The benefit of employing PCA resides

in its function during the preprocessing phase to achieve dimensionality reduction. PCA

is utilized to reduce the amount of features by retaining only the most significant ones, so

simplifying the dataset while maintaining the necessary volatility in the data. This is espe-

cially advantageous for traffic congestion data, as it reduces computational complexity and

improves the efficacy of machine learning models by removing irrelevant or redundant infor-

mation. In our study, PCA enhances anomaly detection efficiency and enhances prediction

accuracy by ensuring that the data input into the model is both concise and indicative of the

underlying patterns. The accuracy of the prediction of the second learning stage is compared

to determine the impact of these settings and methods using a real dataset[103].

• The study also examines baseline linear regression models in the second learning stage and

two advanced learning methods (voting and stacking) in the final learning stage. These meth-

ods are evaluated to determine their effectiveness in enhancing the accuracy of the prediction

models.

This research presents a comprehensive multi-level learning approach integrating different tech-

niques to predict traffic congestion with high precision. The proposed approach enables proactive

traffic management by controlling traffic signal delay time dynamically. This method aims to alter
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the duration of signal phases at intersections based on the study of traffic flow patterns and behaviors

to optimize traffic flow in big cities, resulting in a more efficient and safe traffic system. The results

indicate that the proposed approach outperforms traditional linear regression models, making it a

promising solution for traffic congestion prediction.

4.2 Methodology

This section introduces a machine learning framework designed for forecasting traffic patterns and

identifying anomalies within ITS. The framework utilizes a combination of data preprocessing ap-

proaches, anomaly detection methods, to attain resilient and reliable outcomes.

Figure 5.1 describes the multi-stage process proposed in this study to forecast traffic congestion.

The procedure comprises several distinct stages:

1. Data Acquisition and Preprocessing: Historical traffic data is gathered from several sources

like loop detectors, cameras, sensors, and GPS. Preprocessing approaches are utilized to han-

dle probable missing values, discrepancies, and anomalies in the data, guaranteeing its appro-

priateness for machine learning algorithms.

2. Windowing and Anomaly Detection: Traffic data is partitioned into smaller time windows

using windowing techniques. This enables the examination of short-term traffic patterns and

the detection of anomalous events within certain time periods. Afterwards, anomaly detection

techniques are used to identify any anomalies or outliers that may be present in the dataset.

3. Multi-Level Learning: the next step is Training Multiple Models, where a set of baseline

learner models are trained. The models that exhibit the best performance on a validation

set are chosen for further processing. In the next level, Ensemble Learning is employed to

combine the most effective models from the previous step. Ensemble learning techniques,

such as stacking or voting, are used to create a more robust model.

4. Final Prediction: In the Final Prediction phase, the ensemble model is used to generate

forecasts with the expectation that these forecasts will be more accurate than predictions

made by individual models.
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Figure 4.1: Integrated framework for traffic flow prediction: anomaly detection and ensemble learn-
ing.

Essentially, this machine learning system converts unprocessed data into a formatted and en-

hanced structure. Subsequently, it conducts training on several models and amalgamates them to

generate a conclusive prediction model that exhibits improved accuracy.

In Algorithm 3 introduces the preparation of accurate data and the selection of appropriate

baseline models for predicting traffic congestion. This will be achieved through the use of a multi-

level learning method.

According to the information provided Algorithm 3 are further elaborated upon in subsequent

sections:

Data Acquisition and Preprocessing Initially, we gather traffic congestion data (V) from ev-

ery intersection inside the designated study area. The data is segmented into temporally consistent

chunks using a sliding window approach, with a window size (W) and step size (S). In order to

enhance the data, we integrate supplementary attributes such as longitude, latitude, and spatial co-

ordinates (X, Y). A data anomaly detection technique (A) is utilized to find and remove outliers from
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the dataset, using a predetermined threshold (C). This guarantees that the model acquires knowl-

edge from trustworthy data. Data preprocessing techniques, such as data transformation (T) and

normalization (N), are utilized to prepare the data for machine learning models. These strategies

enhance the performance of the model by rescaling the data and converting it into a suitable format

for training the model.

Multi-Level Learning with Baseline Selection and Ensemble Modeling We create a base-

line Multi-level models by training and testing a varied collection of machine learning models (B).

The performance of each linear model is assessed using a predetermined metric (M), such as mean

squared error (MSE) or R-squared. These metrics measure the degree to which the model’s predic-

tions correspond to real traffic circumstances. From the initial set (B) is used to choose models from

a chosen metric (M) that surpass a given performance threshold (t). The top-performing models

(B’) selected.

An ensemble method (E), such as voting or stacking, is then applied to the selected models in

B’. In the voting process, each model makes a prediction about the class (congested or uncongested)

for a given data point. and the final forecast is determined by the majority vote among the models.

Stacking is the process of training a meta-model using the outputs of individual models in B’. The

selected ensemble approach (E) is subsequently employed to train the ultimate prediction model (P)

for forecasting traffic congestion.

The implementation of this hierarchical ensemble technique, which incorporates anomaly de-

tection, presents a new and efficient strategy for forecasting traffic congestion. It harnesses the

combined power of several models, removes anomalies, and use data pretreatment techniques to

improve the accuracy of predictions.

4.3 Experimental Setup and Evaluation

The proposed methodology, which is based on a wide range of multi-output regression models,

undergoes thorough evaluation using a real dataset. This evaluation uses a number of performance

metrics to carefully examine the accuracy of predictions within a specific goal timeframe. The next

sections offer detailed information on the selection and use of these performance measurements,
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Algorithm 3 Multilevel Learning Approach with Anomaly Detection Model for Traffic Congestion
Prediction.

Input:
V : Set of traffic flow data,
W : Window size ,
S : Step size,
A : Anomaly detection algorithm ,
C : Contamination threshold ,
T : Transformation method ,
N : Normalization method ,
B : Set of base learner models ,
M : Performance metric ,
t : Threshold for selecting top models ,
E : Ensemble method ,
Output:
P : Final Congestion prediction model
1. Data Collection and Preprocessing:
1.1 Collect Congestion data from all intersections V H .
1.2 Apply sliding window technique with window size W and step size S.
1.4 Add additional information (longitude , latitude,X,Y for location information).
1.5 Apply anomaly detection algorithm A with threshold C to remove outliers.
1.6 Apply transformation T and normalization N to the data.
2. Baseline Multi-level Learning:
2.1 Train and validate a set of baseline linear models B.
2.2 Evaluate each model’s performance using metric M .
2.3 Select top-performing models B′ exceeding threshold t.
3. Final Ensemble Model:
3.1 Apply ensemble method E (Voting or Stacking) on models B′.
3.2 Train the final model P using the selected ensemble method.
Return: Final Congestion prediction model P .

outline the experimental setup, and provide a complete discussion and analysis of the experimental

outcomes.

4.3.1 Performance Metrics

In this study, several performance metrics—such as Mean Absolute Error (MAE), Mean Squared

Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²)—were used

to evaluate the prediction accuracy of the machine learning models. These metrics provide insights

into error magnitudes, model bias, and overall prediction quality. For a detailed explanation of these

metrics see Section 3.5.1.
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4.3.2 Experimental Setup

This section establishes the framework for an empirical evaluation of our proposed methodology.

We will carefully design an experimental arrangement that includes three essential elements: dataset

description, windowing setups, and model architectures.

First, we examine the attributes of the dataset used to train and test the model. A thorough

explanation will be given, encompassing information about the data source, types of features, and

any necessary pretreatment processes taken to ensure the data is appropriate for modeling.

Additionally, we examine the windowing setups used for segmenting data where the selection

of window size and type, such as sliding window or fixed window, is of utmost importance in

capturing temporal dependencies and impacting the performance of the model. We explore the

reasoning behind the chosen windowing solutions and the possible alternatives that were considered

for further examination.

Ultimately, we shall thoroughly outline the specific model structures utilized in our research.

This involves describing the precise type of model, such as linear regression or ensemble approach,

together with its hyperparameter settings and any customized configurations designed for our unique

goal. By thoroughly delineating these three elements, we build a strong experimental framework

for assessing the efficacy of our suggested approach.

4.3.2.1 Dataset

Our study utilizes a dataset containing information about intersections and their corresponding at-

tributes (as shown in Table 5.1). Every intersection in the dataset is distinguished by a unique

identifier called ”INT ID” (Intersection Number), ensuring unambiguous differentiation. The ”Inter-

section Name” field contains descriptive labels for each intersection, typically including the names

of the two intersecting streets. The ”ARRONDISSEMENT” field indicates the region in which each

intersection is situated, offering more context for classification purposes [104].

Moreover,the dataset incorporates geographical coordinates for every intersection. The ”Lon-

gitude” and ”Latitude” fields precisely indicate the east-west and north-south coordinates, respec-

tively. These coordinates are essential for geographic analysis and visualization applications and
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congestion level field contains information regarding the number of vehicles observed at the in-

tersection within a specified time frame. The data is gathered through regular observations of the

vehicle count at the intersection, with measurements taken every five minutes.

In order to assess the ability of our model generalizing to unseen data, we utilized a compre-

hensive method that involved both cross-validation and a hold-out set. We adopt a 5-fold approach

for cross-validation. The process involves splitting the dataset into five folds of equal size, each

serving as a sub-dataset. The model underwent training using a four-fold cross-validation technique

and assess thereafter on the remaining fold in a rotating manner. The method iterates five times,

ensuring that each fold utilizes for validation once. Ultimately, a hold-out set including a distinct

subset of the data is employed to conduct a final assessment of the model’s ability to generalize.

4.3.2.2 Region-Based Analysis

As illustrated in Figure 3.4, our investigation focuses in particular on a chosen simulated region

located inside the city of Montreal. We partition the simulation area into distinct zones and analyze

the problem for each zone independently. Regardless of the network’s size, even if it is extensive,

it will be subdivided into zones, and the prediction algorithms will be applied separately to each

zone. In our simulation, each zone contained 19 traffic lights, demonstrating the scalability of our

proposed algorithm.

4.3.2.3 Windowing setups

This study thoroughly examines several windowing setups in combination with different anomaly

detection algorithms. We provide three separate scenarios to carefully examine the effect of varying

window sizes and step sizes on the predicted accuracy.

In the first scenario, we utilize a window size of 1 hour and a step size of 30 minutes. The

purpose of this arrangement is to accurately capture and analyze the detailed temporal changes

within the dataset, enabling a thorough examination of traffic patterns.

In the second scenario, we increase the window size to 2 hours and simultaneously increase

the step size to 1 hour. This modification allows for a wider range of observation, which could

potentially aid in the detection of longer-term patterns or variations in traffic behavior.
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Table 4.1: Dataset Description

Field Name Description

INT ID A unique identifier assigned to each intersection within
the dataset collected from the city of Montreal. This
identifier ensures that each intersection can be dis-
tinctly recognized and referenced for analysis pur-
poses.

Intersection Name A descriptive label that typically includes the names of
the streets that intersect at this point within Montreal.
This helps in identifying the specific location within the
city, facilitating easier reference and analysis.

ARRONDISSEMENT (Region Name) The administrative region or district within Montreal
where the intersection is situated. This information is
crucial for regional traffic analysis and management,
allowing for targeted interventions and resource allo-
cation.

Longitude The east-west geographic coordinate of the intersec-
tion, represented in decimal degrees. It is used in con-
junction with latitude to pinpoint the exact location on
a map within Montreal.

Latitude The north-south geographic coordinate of the intersec-
tion, represented in decimal degrees. This, combined
with longitude, determines the precise geographic lo-
cation within the city.

Number of Vehicles The count of vehicles observed at the intersection
within a five-minute interval. This measure is repeat-
edly recorded to provide time-series data on traffic flow
and congestion levels across Montreal.

Finally, in the third scenario, we increase the window size to 3 hours and the step size to 1

hour and 30 minutes. This setup seeks to achieve a compromise between collecting extensive traffic

patterns and retaining computing performance by increasing the time intervals for both the window

and step sizes.

The purpose of this organized investigation into windowing setups is to offer valuable infor-

mation on the most efficient arrangement for effectively using anomaly detection techniques in the

examination of traffic data.
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4.3.2.4 Model setups

For each of the scenarios described in the Windowing setups section, we perform a thorough cleans-

ing of data procedure as the first step in setting up the model. This entailed the application of sophis-

ticated anomaly detection methods, specifically local outlier factor, elliptic envelope, and isolation

forest. The techniques use to accurately detect and reduce outliers in the dataset, hence improving

the reliability of subsequent studies.

Afterwards, we explore the construction of basic regression models by examining fundamental

linear regression models. The selection of these 15 baseline models, was based on their simplicity

and interpretability. They serve as a fundamental element in our analytical framework.

In addition, our research involved using an ensemble learning strategy to improve the accuracy

of our predictions. In this framework, we examine the application of both the voting model with

equal weights and stacking models. Ensemble learning techniques strive to improve predictive

accuracy by combining the outputs of many base models. This approach allows for the utilization

of the strengths of individual models while minimizing their limitations. In order to guarantee the

strength and durability of our ensemble, we carefully chose the top 6 performing models from the

baseline linear regression models to be included in the ensemble architecture.

All models used in this investigation are evaluated using time series cross-validatora with five

folds, and are configured according to the default settings provided by scikit-learn [105], an open-

source Python machine learning package. By implementing this standardized design, we guarantee

uniformity and the capacity to make comparisons in our analyses. This, in turn, makes it easier to

reproduce and rely on our findings.

4.3.3 Experimental Results and Analysis

This section focuses on the results and analysis of our advanced multilevel ensemble approach with

anomaly detection, designed to improve the accuracy of traffic congestion prediction. We begin by

explaining the prepossessing methods, which involve using sliding windowing with different con-

figurations. Then, for each scenario, we show the results associated with various anomaly detection

algorithms as a first stage in the learning process to identify abnormal events in traffic patterns.
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The comparison results of our study demonstrate that the suggested multilevel learning tech-

nique considering baseline models in terms of prediction accuracy, emphasizing the significance of

the multilevel learning strategy on prediction accuracy.

4.3.3.1 Scenario One (window size=1 hour and step size=30 minutes)

We explicitly define the duration of the window as 1 hour and the interval between each step as 30

minutes.

Table 4.2 compares the performance of baseline regression models. These models were trained

on preprocessed data sets cleaned using various anomaly detection approaches, namely Elliptic

Envelope, Isolation Forest, and Local Outlier Factor, respectively, Table 4.2 (a), Table 4.2 (b), and

Table 4.2 (c) as part of the data cleaning process.

Table 4.2 shows that the Support Vector Regression (SVR) model typically demonstrates strong

performance. Among the three anomaly detection approaches (Elliptic Envelope, Isolation Forest,

Local Outlier Factor), SVR consistently exhibits the lowest MAE,MSE, and RMSE values. This

suggests that it possesses the lowest overall margin of error compared to the models examined in

this study. The SVR model has the longest duration for training. Nevertheless, SVR exhibits the

most extended duration for training when compared to any other models. Consequently, although it

may yield greater precision, the process of training is also more computationally demanding.

Table 4.3 presents a comparison of the performance of the top six linear regression models,

evaluated using the cross-validation data. These models are selected from the baseline linear models,

shown in Table 4.2.

Table 4.4 presents a comparison of the performance of two regression models: Stacking Regres-

sor and Voting Regressor and shows that the Stacking Regressor demonstrates superior performance

than the Voting Regressor on three out of the five metrics (MAE, MSE, and RMSE) for each all out-

lier approach (Elliptic Envelope, Isolation Forest, and Local Outlier Factor) and the difference is

insignificant when considering the other two parameters, R² and MAPE.

Table 4.5 compares the performance of two regression models, Stacking Regressor and Voting

Regressor, on the testing data set for Scenario one.

Table 4.5,shows that the Stacking Regressor demonstrates superior performance compared to the
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Table 4.2: Comparison results of linear baseline models across various anomaly methods using
cross-validation data for Scenario one.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE TT (Sec)

Linear Regression 2.85403 11.87791 3.44571 0.92075 0.16917 18.176
Ridge Regression 2.85398 11.87763 3.44567 0.92075 0.16919 17.530
Least Angle Regression 2.85403 11.87791 3.44571 0.92075 0.16917 17.584
Bayesian Ridge 2.85403 11.87790 3.44570 0.92075 0.16917 17.790
Automatic Relevance Determination 2.85405 11.87810 3.44573 0.92075 0.16917 17.310
Huber Regressor 2.85351 11.89083 3.44752 0.92064 0.16645 18.518
TheilSen Regressor 2.85596 11.89681 3.44845 0.92062 0.16837 29.172
Support Vector Regression 2.83899 11.96072 3.45750 0.92019 0.15983 1148.626
Random Sample Consensus 2.93447 12.71166 3.56397 0.91530 0.17494 18.002
Passive Aggressive Regressor 3.31320 17.23769 4.11763 0.88396 0.17595 17.348
Orthogonal Matching Pursuit 4.84055 36.70200 6.05805 0.75556 0.30104 18.032
Lasso Regression 4.96265 37.89910 6.15586 0.74792 0.33949 18.000
Lasso Least Angle Regression 4.96265 37.89909 6.15586 0.74792 0.33949 17.570
Elastic Net 6.22099 57.97724 7.60912 0.61652 0.49655 17.612
Kernel Ridge 11.68482 346.24103 11.76732 -1.94001 0.58842 719.960

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE TT (Sec)

Support Vector Regression 2.82083 11.66587 3.41490 0.92227 0.16967 1157.728
Linear Regression 2.85993 11.79312 3.43352 0.92141 0.17932 6.402
Ridge Regression 2.85988 11.79288 3.43348 0.92141 0.17935 5.552
Least Angle Regression 2.85993 11.79312 3.43352 0.92141 0.17932 5.630
Bayesian Ridge 2.85992 11.79311 3.43352 0.92141 0.17932 5.574
Automatic Relevance Determination 2.85990 11.79293 3.43349 0.92141 0.17932 5.560
Huber Regressor 2.85965 11.79826 3.43426 0.92138 0.17938 6.128
TheilSen Regressor 2.86269 11.81798 3.43712 0.92124 0.17889 18.616
Random Sample Consensus 2.94681 12.73916 3.56699 0.91520 0.18408 5.558
Passive Aggressive Regressor 3.27398 16.42730 4.01199 0.88767 0.17495 5.552
Orthogonal Matching Pursuit 4.85238 36.79045 6.06533 0.75501 0.31064 5.554
Lasso Regression 5.03461 38.94793 6.23988 0.74122 0.36271 5.634
Lasso Least Angle Regression 5.03461 38.94793 6.23988 0.74122 0.36271 5.562
Elastic Net 6.49682 63.96199 7.98748 0.57795 0.54432 5.606
Kernel Ridge 12.11152 371.54491 12.18943 -2.11169 0.60685 949.534

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE TT (Sec)
Support Vector Regression 2.79619 11.52388 3.39383 0.92312 0.15403 1219.452
Linear Regression 2.85745 11.82155 3.43774 0.92121 0.17364 76.948
Ridge Regression 2.85741 11.82136 3.43772 0.92121 0.17367 74.848
Least Angle Regression 2.85745 11.82155 3.43774 0.92121 0.17364 76.288
Bayesian Ridge 2.85745 11.82154 3.43774 0.92121 0.17364 75.168
Automatic Relevance Determination 2.85746 11.82164 3.43776 0.92121 0.17365 76.320
TheilSen Regressor 2.85983 11.83371 3.43954 0.92115 0.17419 87.248
Huber Regressor 2.85692 11.83419 3.43956 0.92111 0.17160 75.142
Random Sample Consensus 2.92898 12.63470 3.55367 0.91558 0.16777 76.332
Passive Aggressive Regressor 3.58894 20.03340 4.40361 0.86530 0.22327 76.660
Orthogonal Matching Pursuit 4.85228 36.85105 6.07033 0.75459 0.30498 77.004
Lasso Regression 4.97293 38.08433 6.17072 0.74678 0.34606 76.372
Lasso Least Angle Regression 4.97293 38.08433 6.17072 0.74678 0.34606 76.254
Elastic Net 6.25354 58.95595 7.67187 0.61034 0.50908 76.306
Kernel Ridge 11.86210 356.71482 11.94278 -2.01305 0.59642 743.500
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Table 4.3: Comparison results of selected linear baseline models across various anomaly methods
using hold-out data for Scenario one.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE

Linear Regression 2.86515 11.95538 3.45766 0.92141 0.17261
Ridge Regression 2.86515 11.95536 3.45765 0.92141 0.17262
Least Angle Regression 2.86515 11.95538 3.45766 0.92141 0.17261
Bayesian Ridge 2.86515 11.95538 3.45765 0.92141 0.17261
Automatic Relevance Determination 2.86515 11.95533 3.45765 0.92141 0.17261
Huber Regressor 2.86436 11.96897 3.45962 0.92132 0.16970

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE

Support Vector Regression 2.80405 11.50042 3.39123 0.92440 0.16688
Linear Regression 2.86858 11.83845 3.44070 0.92218 0.18481
Ridge Regression 2.86857 11.83848 3.44071 0.92218 0.18482
Least Angle Regression 2.86858 11.83845 3.44070 0.92218 0.18481
Bayesian Ridge 2.86858 11.83845 3.44070 0.92218 0.18481
Automatic Relevance Determination 2.86853 11.83812 3.44066 0.92218 0.18480

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE

Support Vector Regression 2.77918 11.34930 3.36887 0.92539 0.15314
Linear Regression 2.85881 11.78880 3.43348 0.92251 0.17751
Ridge Regression 2.85880 11.78885 3.43349 0.92251 0.17752
Least Angle Regression 2.85881 11.78880 3.43348 0.92251 0.17751
Bayesian Ridge 2.85881 11.78880 3.43348 0.92251 0.17751
Automatic Relevance Determination 2.85881 11.78880 3.43348 0.92251 0.17751

Table 4.4: Performance results of Stacking Regressor versus Voting Regressor using cross-
validation data for Scenario one.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE

Voting Regressor 2.85382 11.87872 3.44581 0.92074 0.16871
Stacking Regressor 2.85967 11.93050 3.45339 0.92042 0.17265

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.81562 11.55922 3.39927 0.92297 0.17110
Voting Regressor 2.84077 11.65015 3.41265 0.92236 0.17697

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.79562 11.46311 3.38491 0.92353 0.15765
Voting Regressor 2.83580 11.66908 3.41547 0.92221 0.16959
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Table 4.5: Performance results of Stacking Regressor versus Voting Regressor on the testing data
set for Scenario one.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE

Voting Regressor 2.86489 11.95625 3.45778 0.92140 0.17211
Stacking Regressor 2.86556 11.96055 3.45840 0.92138 0.17260

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.80609 11.46212 3.38558 0.92465 0.17110
Voting Regressor 2.84505 11.65776 3.41435 0.92337 0.18102

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.78152 11.30747 3.36266 0.92567 0.15847
Voting Regressor 2.83324 11.60496 3.40661 0.92371 0.17255

Voting Regressor. The Stacking Regressor demonstrates superior performance than the Voting Re-

gressor in three out of the five metrics (MAE, MSE, and RMSE) for Isolation Forest and Local Out-

lier Factor approaches (Elliptic Envelope, Isolation Forest, and Local Outlier Factor).Interestingly,

this trend does not hold true for the Elliptic Envelope method, where the Voting Regressor appears

to have a slight advantage. This suggests that the choice of outlier detection technique may influence

the optimal regression model selection.

Figure 4.2 presents a comparison of the performance of two distinct regression models, namely

the Stacking Regressor and the Voting Regressor, in the context of a traffic flow prediction job. The

performance is evaluated using the R² metric. Both the Stacking Regressor and Voting Regressor

yield a significantly high R² value, approaching 0.92, when used to all three anomaly detection tech-

niques (Elliptic Envelope, Isolation Forest, Local Outlier Factor). This indicates that both models

well represent the general pattern of traffic flow, irrespective of the strategy employed to identify

outliers. The Stacking Regressor consistently attains a marginally superior R² value in compari-

son to the Voting Regressor for every outlier identification approach. The discrepancy is negligible

(about 0.001-0.003), but consistently present in all three approaches.
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Figure 4.2: Evaluating Compression Efficiency of Stacking and Voting Ensemble Methods using
Three Different Anomaly Detection Algorithms for Scenario One

4.3.3.2 Scenario Two (window size=2 hours and step size=1 hour)

In the scenario two,we once again utilize the sliding window technique, but with a different con-

figuration. the window duration is specifically specified as two hours, with a step interval of one

hour.

Table 4.6 evaluates the effectiveness of baseline regression models. The models were trained

using a preprocessed dataset. data sets cleaned using various anomaly detection approaches, namely

Elliptic Envelope, Isolation Forest, and Local Outlier Factor, respectively, Table 4.6 (a), Table 4.6

(b), and Table 4.6 (c) as part of the data cleaning process.

Table 4.6, shows that (OMP, Elastic Net, Kernel Ridge) models typically exhibit elevated

levels of MAE, MSE, and RMSE in all evaluations. This occurs because they give priority to

minimizing variance by reducing the coefficients of the model, which might potentially generate

bias.

Table 4.6, shows that SVR model regularly exhibits slower performance, as indicated by greater
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Figure 4.3: Evaluating Compression Efficiency of Stacking and Voting Ensemble Methods using
Three Different Anomaly Detection Algorithms for Scenario Two

Total Time (TT) values, in comparison to other models. The reason for this is that it is a more

intricate model that necessitates additional computational resources for training. Table 4.6, shows

that Ridge Regression model consistently attains the lowest MAE, MSE, and RMSE compared to

various anomaly detection methods. Therefore, it is an excellent option when prioritizing accuracy.

Linear Regression model Similar to Ridge Regression, it demonstrates strong performance with

low error in the majority of scenarios. If interpretability is a crucial factor alongside accuracy,

this model should be considered due to its simplicity and ease of understanding. Based on our

investigation, the optimal choice for anomaly detection model is based on your specific goals. Ridge

Regression places a higher emphasis on accuracy, while Random Sample Consensus(RANSAC)

places a higher emphasis on speed. Simpler models such as Ridge Regression or Linear Regression

favor interpretability.

Table 4.7 displays a comparison of the performance of the top six linear regression models,

which were chosen from a potentially larger set of models as depicted in Table 4.6. This selection

ensures that we are evaluating models that exhibit a high level of initial performance.
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Table 4.6: Comparison results of linear baseline models across various anomaly methods using
cross-validation data for Scenario two.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE TT (Sec)

Ridge Regression 2.93874 12.99353 3.60270 0.91151 0.17805 13.422
Linear Regression 2.93877 12.99407 3.60277 0.91150 0.17800 13.188
Least Angle Regression 2.93877 12.99407 3.60277 0.91150 0.17800 13.076
Bayesian Ridge 2.93877 12.99400 3.60276 0.91150 0.17800 13.382
Automatic Relevance Determination 2.93878 12.99412 3.60278 0.91150 0.17800 13.066
TheilSen Regressor 2.93793 13.00569 3.60445 0.91141 0.17548 19.358
Huber Regressor 2.93608 13.04076 3.60879 0.91110 0.17185 13.534
Support Vector Regression 2.93509 13.21567 3.63289 0.90994 0.16879 321.224
Random Sample Consensus 3.00916 13.88877 3.72477 0.90541 0.16784 12.992
Passive Aggressive Regressor 3.46844 18.41031 4.28031 0.87496 0.22362 13.094
Lasso Regression 5.05996 39.12001 6.25380 0.73532 0.35276 13.302
Lasso Least Angle Regression 5.05996 39.12001 6.25380 0.73532 0.35276 13.296
Elastic Net 6.19130 57.97262 7.61051 0.60907 0.47138 13.052
Orthogonal Matching Pursuit 6.15558 59.11820 7.68856 0.59927 0.40409 13.230
Kernel Ridge 29.67189 893.51732 29.88938 -5.06796 1.48609 1497.224

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE TT (Sec)

Linear Regression 2.95033 12.84300 3.58228 0.91270 0.18941 4.594
Ridge Regression 2.95026 12.84240 3.58220 0.91270 0.18947 3.788
Least Angle Regression 2.95033 12.84300 3.58228 0.91270 0.18941 3.820
Bayesian Ridge 2.95032 12.84293 3.58227 0.91270 0.18942 3.812
Automatic Relevance Determination 2.95031 12.84277 3.58225 0.91270 0.18941 3.774
Huber Regressor 2.94917 12.84979 3.58316 0.91263 0.18812 4.252
TheilSen Regressor 2.95550 12.89661 3.58978 0.91233 0.18986 9.704
Support Vector Regression 2.93130 12.94596 3.59640 0.91201 0.18303 306.270
Random Sample Consensus 3.04543 13.94481 3.73184 0.90536 0.18093 3.804
Passive Aggressive Regressor 3.67285 21.07906 4.54010 0.85877 0.23911 3.762
Lasso Regression 5.05972 39.21306 6.26039 0.73508 0.36993 3.868
Lasso Least Angle Regression 5.05972 39.21305 6.26039 0.73508 0.36993 3.782
Orthogonal Matching Pursuit 6.17468 59.46657 7.71093 0.59714 0.41674 3.778
Elastic Net 6.33541 61.39914 7.82842 0.58707 0.50868 3.784
Kernel Ridge 30.94403 970.47458 31.15011 -5.59319 1.54067 1698.738

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE TT (Sec)

Ridge Regression 2.95151 12.97082 3.59990 0.91174 0.18381 22.312
Automatic Relevance Determination 2.95157 12.97138 3.59997 0.91174 0.18376 21.932
Linear Regression 2.95157 12.97156 3.60000 0.91173 0.18376 22.796
Least Angle Regression 2.95157 12.97156 3.60000 0.91173 0.18376 22.440
Bayesian Ridge 2.95157 12.97147 3.59999 0.91173 0.18376 22.234
Huber Regressor 2.94992 13.00226 3.60403 0.91147 0.17973 22.950
TheilSen Regressor 2.95372 13.01618 3.60611 0.91140 0.18164 29.518
Support Vector Regression 2.91494 13.02575 3.60652 0.91122 0.16617 314.924
Random Sample Consensus 2.99686 13.54716 3.67878 0.90779 0.17754 22.156
Passive Aggressive Regressor 3.40930 18.61324 4.27944 0.87160 0.18101 22.342
Lasso Regression 5.04770 39.01150 6.24412 0.73625 0.35980 22.612
Lasso Least Angle Regression 5.04770 39.01150 6.24412 0.73625 0.35980 22.684
Elastic Net 6.22489 58.99409 7.67528 0.60269 0.48643 22.228
Orthogonal Matching Pursuit 6.17328 59.45611 7.71043 0.59709 0.41236 22.448
Kernel Ridge 30.28623 930.61963 30.49891 -5.32469 1.51230 1934.114
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Table 4.7: Comparison results of selected linear baseline models across various anomaly methods
using hold-out data Scenario two.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE

Ridge Regression 2.92966 12.78439 3.57553 0.91457 0.17924
Linear Regression 2.92966 12.78438 3.57552 0.91457 0.17921
Least Angle Regression 2.92966 12.78438 3.57552 0.91457 0.17921
Bayesian Ridge 2.92966 12.78438 3.57553 0.91457 0.17922
Automatic Relevance Determination 2.92968 12.78454 3.57555 0.91457 0.17922
TheilSen Regressor 2.92967 12.83779 3.58299 0.91422 0.17595

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE

Linear Regression 2.94933 12.73257 3.56827 0.91492 0.19193
Ridge Regression 2.94933 12.73265 3.56828 0.91492 0.19196
Least Angle Regression 2.94933 12.73257 3.56827 0.91492 0.19193
Bayesian Ridge 2.94933 12.73258 3.56827 0.91492 0.19194
Automatic Relevance Determination 2.94932 12.73257 3.56827 0.91492 0.19193
Huber Regressor 2.94747 12.73231 3.56824 0.91492 0.19092

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE

Ridge Regression 2.94513 12.78511 3.57563 0.91457 0.18646
Automatic Relevance Determination 2.94516 12.78524 3.57565 0.91457 0.18644
Linear Regression 2.94514 12.78515 3.57563 0.91457 0.18644
Least Angle Regression 2.94514 12.78515 3.57563 0.91457 0.18644
Bayesian Ridge 2.94514 12.78514 3.57563 0.91457 0.18644
Huber Regressor 2.94254 12.80621 3.57858 0.91443 0.18298

Table 4.8, shows that the Voting Regressor performs better than Stacking Regressor in this spe-

cific scenario, especially when assessing metrics like MAE, MSE, and RMSE. Figure 5.6 Compares

the performance of two different regression models, the Stacking Regressor and the Voting Regres-

sor, in the specific task of predicting traffic flow. The performance is assessed using the R² metric.

Both the Stacking Regressor and Voting Regressor produce a remarkably high R² value, nearing

0.91, when used to all three anomaly detection approaches (Elliptic Envelope, Isolation Forest, Lo-

cal Outlier Factor). Both models accurately depict the overall traffic flow pattern, regardless of the

method used to detect unusual data points. The Voting Regressor consistently achieves a slightly

higher R² value compared to the Stacking Regressor for each outlier identification method.
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Table 4.8: Performance results of Stacking Regressor versus Voting Regressor using cross-
validation data Scenario two.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE

Voting Regressor 2.93816 12.99084 3.60233 0.91152 0.17756
Stacking Regressor 2.94112 13.02265 3.60664 0.91130 0.17789

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.95228 12.88261 3.58758 0.91240 0.18774
Voting Regressor 2.95006 12.84333 3.58231 0.91269 0.18920

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.95789 13.07890 3.61441 0.91095 0.18250
Voting Regressor 2.95104 12.97380 3.60027 0.91171 0.18308

Table 4.9: Performance results of Stacking Regressor versus Voting Regressor on the testing data
set Scenario two.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE

Voting Regressor 2.92915 12.78755 3.57597 0.91455 0.17865
Stacking Regressor 2.93112 12.84044 3.58336 0.91420 0.17627

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.96087 12.80848 3.57889 0.91441 0.19818
Voting Regressor 2.94897 12.73203 3.56820 0.91492 0.19177

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.94511 12.81544 3.57987 0.91436 0.18322
Voting Regressor 2.94455 12.78684 3.57587 0.91456 0.18586

4.3.3.3 Scenario Three (window size=3 hours and step size=1.5 hours)

For scenario three, we employ the sliding window technique once more, but with a distinct config-

uration. The window duration is precisely defined at three hours, with a step interval of 1.5 hours.

This configuration differs from scenario one and two, maybe to capture specific traffic patterns with

a specific amount of time detail.

Table 4.10 explicitly investigates the efficacy of various linear baseline models in identifying
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Table 4.10: Comparison results of linear baseline models across various anomaly methods using
cross-validation data for Scenario three.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE TT (Sec)

Linear Regression 2.75661 10.50387 3.24092 0.92916 0.15715 11.328
Ridge Regression 2.75640 10.50371 3.24090 0.92916 0.15722 11.494
Least Angle Regression 2.75661 10.50387 3.24092 0.92916 0.15715 11.494
Bayesian Ridge 2.75659 10.50383 3.24092 0.92916 0.15716 11.508
Automatic Relevance Determination 2.75657 10.50391 3.24093 0.92916 0.15715 11.402
Huber Regressor 2.75566 10.50784 3.24153 0.92913 0.15774 11.484
Support Vector Regression 2.74671 10.52528 3.24401 0.92907 0.15313 155.228
TheilSen Regressor 2.76157 10.54600 3.24742 0.92885 0.15663 16.346
Random Sample Consensus 2.90379 12.05698 3.47098 0.91874 0.16718 11.406
Passive Aggressive Regressor 3.35135 16.77588 4.07523 0.88756 0.16979 11.224
Lasso Regression 5.34997 43.69405 6.60972 0.70585 0.36929 11.264
Lasso Least Angle Regression 5.34997 43.69404 6.60972 0.70585 0.36929 11.454
Orthogonal Matching Pursuit 5.35961 44.77540 6.69122 0.69796 0.32990 11.288
Elastic Net 6.37847 60.82949 7.79727 0.59174 0.48132 11.334
Kernel Ridge 29.71303 893.47341 29.88915 -5.02635 1.51215 502.048

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE TT (Sec)

Linear Regression 2.77088 10.61480 3.25783 0.92851 0.17080 4.104
Ridge Regression 2.77077 10.61515 3.25788 0.92851 0.17089 3.274
Least Angle Regression 2.77088 10.61480 3.25783 0.92851 0.17080 3.228
Bayesian Ridge 2.77086 10.61483 3.25784 0.92851 0.17081 3.312
Automatic Relevance Determination 2.77087 10.61490 3.25785 0.92851 0.17082 3.274
Huber Regressor 2.77162 10.64099 3.26179 0.92836 0.17253 3.698
TheilSen Regressor 2.77474 10.64179 3.26200 0.92832 0.16949 8.164
Support Vector Regression 2.76453 10.69677 3.27011 0.92808 0.16951 155.200
Random Sample Consensus 2.95620 12.55492 3.53978 0.91550 0.17864 3.314
Passive Aggressive Regressor 3.05193 13.56227 3.68018 0.90853 0.15761 3.288
Lasso Regression 5.41637 44.71503 6.68478 0.69991 0.40294 3.348
Lasso Least Angle Regression 5.41637 44.71503 6.68478 0.69991 0.40294 3.264
Orthogonal Matching Pursuit 5.42169 45.57345 6.75036 0.69294 0.35310 3.270
Elastic Net 6.57768 65.31575 8.07517 0.56321 0.52781 3.278
Kernel Ridge 30.87519 963.97754 31.04612 -5.50358 1.55795 491.776

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE TT (Sec)

Support Vector Regression 2.73046 10.36492 3.21916 0.93018 0.15282 161.780
Linear Regression 2.76764 10.59154 3.25432 0.92863 0.16374 12.654
Ridge Regression 2.76745 10.59151 3.25431 0.92863 0.16381 12.570
Least Angle Regression 2.76764 10.59154 3.25432 0.92863 0.16374 12.536
Bayesian Ridge 2.76761 10.59152 3.25431 0.92863 0.16375 11.804
Automatic Relevance Determination 2.76762 10.59180 3.25436 0.92863 0.16375 12.030
Huber Regressor 2.76704 10.60139 3.25581 0.92858 0.16473 12.410
TheilSen Regressor 2.77108 10.63317 3.26070 0.92835 0.16416 17.064
Random Sample Consensus 2.86350 11.62139 3.40803 0.92181 0.16405 12.080
Passive Aggressive Regressor 3.54857 19.70329 4.32617 0.86381 0.18286 12.048
Lasso Regression 5.30694 42.93366 6.55085 0.71147 0.38207 12.824
Lasso Least Angle Regression 5.30694 42.93366 6.55085 0.71147 0.38207 12.202
Orthogonal Matching Pursuit 5.39909 45.27710 6.72852 0.69481 0.34432 12.048
Elastic Net 6.43171 62.14299 7.87882 0.58373 0.50145 12.796
Kernel Ridge 30.16363 920.80056 30.33853 -5.20941 1.52847 491.076
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Table 4.11: Comparison results of selected linear baseline models across various anomaly methods
using hold-out data for Scenario three.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE

Linear Regression 2.76482 10.58453 3.25339 0.93000 0.16291
Ridge Regression 2.76478 10.58454 3.25339 0.93000 0.16294
Least Angle Regression 2.76482 10.58453 3.25339 0.93000 0.16291
Bayesian Ridge 2.76481 10.58453 3.25339 0.93000 0.16291
Automatic Relevance Determination 2.76479 10.58437 3.25336 0.93000 0.16291
Huber Regressor 2.76441 10.59233 3.25459 0.92995 0.16363

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE

Linear Regression 2.78049 10.70021 3.27112 0.92923 0.17869
Ridge Regression 2.78047 10.70048 3.27116 0.92923 0.17873
Least Angle Regression 2.78049 10.70021 3.27112 0.92923 0.17869
Bayesian Ridge 2.78048 10.70025 3.27112 0.92923 0.17870
Automatic Relevance Determination 2.78048 10.70021 3.27112 0.92923 0.17870
Huber Regressor 2.78263 10.73770 3.27684 0.92899 0.18081

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE

Support Vector Regression 2.71617 10.19717 3.19330 0.93256 0.15414
Linear Regression 2.78248 10.74726 3.27830 0.92892 0.17297
Ridge Regression 2.78246 10.74735 3.27831 0.92892 0.17301
Least Angle Regression 2.78248 10.74726 3.27830 0.92892 0.17297
Bayesian Ridge 2.78248 10.74727 3.27830 0.92892 0.17298
Automatic Relevance Determination 2.78247 10.74718 3.27829 0.92892 0.17298

anomalies in scatter plots. The models are evaluated based on their performance using different

anomaly detection techniques, including Elliptic Envelope, Isolation Forest, and Local Outlier Fac-

tor.4.10, we have noted the following observations:

The efficacy of the models varies according on the anomaly detection technique employed.

There is no singular optimal model that outperforms all measurements and methods for anomaly

identification. in Table 4.10 (a) Ridge Regression exhibits the lowest MAE, MSE, and RMSE. while

in Table 4.10 (b) shows that SVR exhibits the lowest MAE, whereas Linear Regression achieves the

lowest . Mean squared error (MSE) and root mean squared error (RMSE). In addition 4.10 (c) SVR

achieves the lowest MAE, MSE, and RMSE.

Table 4.11 presents a comparison of the performance of the top six linear regression models.

These models were selected from a possibly larger group of models, as shown in Table 4.10. This
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Table 4.12: Performance results of Stacking Regressor versus Voting Regressor using cross-
validation data for Scenario three.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE

Voting Regressor 2.75636 10.50396 3.24094 0.92916 0.15726
Stacking Regressor 2.75695 10.50980 3.24184 0.92911 0.15744

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.77095 10.60964 3.25708 0.92853 0.16988
Voting Regressor 2.77089 10.61834 3.25837 0.92849 0.17111

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.71133 10.13095 3.18288 0.93169 0.15171
Voting Regressor 2.74448 10.39842 3.22459 0.92992 0.16103

Table 4.13: Performance results of Stacking Regressor versus Voting Regressor on the testing data
set for Scenario three.

(a) Outliers Method: Elliptic Envelope

Model MAE MSE RMSE R2 MAPE

Voting Regressor 2.76468 10.58522 3.25349 0.93000 0.16303
Stacking Regressor 2.76499 10.58646 3.25368 0.92999 0.16333

(b) Outliers Method: Isolation Forest

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.78079 10.69987 3.27106 0.92924 0.17859
Voting Regressor 2.78073 10.70549 3.27192 0.92920 0.17905

(c) Outliers Method: Local Outlier Factor

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 2.70823 10.10745 3.17922 0.93316 0.15541
Voting Regressor 2.75500 10.50485 3.24112 0.93053 0.16890

selection guarantees that we are assessing models that demonstrate a high level of initial perfor-

mance.

Table 4.12 (a) shows that the Voting Regressor performs better than the Stacking Regressor

in terms of MAE, MSE, and RMSE when the Elliptic Envelope outlier identification approach is

utilized. Nevertheless, in Tables 4.12 (b) and Table 4.12 (c) exhibit a contrasting pattern, indicating

that the Stacking Regressor may be superior in such situations.
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Figure 4.4: Evaluating Compression Efficiency of Stacking and Voting Ensemble Methods using
Three Different Anomaly Detection Algorithms for Scenario Three

Table 4.13 presents a comparison of the performance of two regression models, namely Stack-

ing Regressor and Voting Regressor, using the testing data set for Scenario Three. It shows that the

Stacking Regressor has a higher level of performance in comparison to the Voting Regressor. The

Stacking Regressor outperforms the Voting Regressor in three out of the five metrics (MAE, MSE,

and RMSE) for the Isolation Forest and Local Outlier Factor techniques.Curiously, the Elliptic En-

velope technique does not exhibit this pattern, as the Voting Regressor seems to possess a little edge.

This implies that the selection of an outlier detection technique can impact the optimal selection of

a regression model.

Figure 5.7 presents a comparison of the performance of two distinct regression models, namely

the Stacking Regressor and the Voting Regressor, in the specific job of predicting traffic flow. The

performance is evaluated using the R² metric.

Both the Stacking Regressor and Voting Regressor yield a significantly high R² value, approach-

ing 0.93, when applied to all three anomaly detection methods (Elliptic Envelope, Isolation Forest,

Local Outlier Factor). Both models effectively represent the general traffic flow pattern, irrespective
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of the approach employed to identify anomalous data points.

The Voting Regressor consistently achieves an identical R² value compared to the Stacking

Regressor for each outlier identification method.

4.4 Summary

Our study investigates the effectiveness of a multilevel ensemble strategy combined with anomaly

detection for predicting traffic flow. We conduct experiments in three different scenarios, each

using a distinct sliding window configuration. Our investigation of comparisons yielded numerous

significant insights, summarized as follows.

The selection of appropriate models is greatly influenced by the choice of anomaly detection

technology. During Scenario 1,SVR demonstrates the lowest error rate for all techniques, but it also

had the longest training time. The Stacking Regressor has proven to be a formidable option for

ensemble learning in this particular scenario.

In Scenario 2, where the importance of interpretability was taken into account, simpler models

such as Ridge or Linear Regression considers as potential alternatives to Ridge Regression, which

placed a higher emphasis on accuracy. While, the Voting Regressor performed better than the Stack-

ing Regressor in this particular scenario.

Ultimately, Scenario 3 demonstrates that the ideal ensemble model relies heavily on the partic-

ular anomaly detection approach used. The Stacking Regressor yield superior results when com-

bined with the Isolation Forest and Local Outlier Factor methods, while the Voting Regressor shows

greater performance when paired with the Elliptic Envelope method.

Although there are variations particular to each circumstance, a similar theme is evident in all

arrangements. Both Stacking and Voting Regressors consistently achieve high R² values (around

0.91-0.93) for all anomaly detection methodologies. This demonstrates their efficacy in captur-

ing the whole traffic flow pattern, irrespective of the selected anomaly detection technique. These

findings emphasize the need of taking into account the interaction between anomaly detection and

model selection to achieve the most effective traffic flow forecast.
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Chapter 5

Clustering Based Approach for

Enhanced Characterization of

Anomalies in Traffic Flows

5.1 Introduction

Effective traffic management is a fundamental aspect of urban planning, with direct implications

for the daily experiences of commuters and the economic prosperity of cities. Traffic anomalies,

characterized by substantial variations from normal traffic patterns, pose significant difficulties in

ensuring smooth traffic flow. These anomalies can manifest as either sudden increases in traffic

volume, resulting in congestion and surpassing the capacity of the route, or sudden decreases in

traffic volume, which could indicate occurrences like accidents, road closures, or faults in traffic

infrastructure[106].

Precise identification and analysis of traffic anomalies are crucial for minimizing their disruptive

impacts and enhancing overall traffic management. By identifying these abnormalities at an early

stage, traffic management systems can promptly implement interventions to reduce traffic conges-

tion and solve any safety concerns. Furthermore, comprehending the nature and distribution of

these anomalies might offer valuable perspectives for long-term urban planning and infrastructure
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development[51], [107].

This work builds on our prior research where we utilized three sophisticated anomaly detec-

tion methods—Elliptic Envelope, Isolation Forest, and Local Outlier Factor—to discover abnormal

traffic patterns. The aforementioned strategies were utilized on a carefully prepared dataset, which

was further improved using several windowing methods in order to optimize the effectiveness of

anomaly identification. After completing the detection phase, we employe clustering methods in

this research, notably K-Means and Hierarchical Clustering, to divide the discovered anomalies into

segments. The utilization of these clustering algorithms played a crucial role in identifying the most

suitable number of clusters, enabling a thorough description of each anomalous cluster through

comprehensive visualization[108].

Our approach not only facilitates the efficient detection of traffic abnormalities but also offers

a comprehensive comprehension of their spatial and temporal patterns. Accurate identification and

analysis of anomalies in the transportation system are essential for developing effective strategies

to control traffic and make informed decisions about urban development. This process ultimately

improves the efficiency and safety of transportation networks.

The importance of employing various anomaly detection techniques resides in their comple-

mentary strengths. The Elliptic Envelope approach is based on the premise that the normal data is

distributed according to a multivariate Gaussian distribution. It aims to detect locations that vary

considerably from this assumption. Unlike profiling normal data, Isolation Forest focuses on iso-

lating anomalies, making it highly effective for discovering anomalies in datasets with complex

distributions. The Local Outlier Factor algorithm measures the extent to which a certain data point

differs in density from its neighboring points. This makes it effective for detecting anomalies in

datasets that have different densities. Through the integration of different methodologies, our re-

search guarantees a strong and all-encompassing identification of anomalies.

Utilizing windowing techniques to preprocess the dataset significantly improved the accuracy of

anomaly identification. Various window sizes and configurations were experimented with to capture

temporal dependencies and patterns in the traffic data, ensuring that both short-term fluctuations

and long-term trends were accurately depicted. This step was important in converting unprocessed

traffic data into a format that is appropriate for efficient anomaly detection.
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After detecting anomalies, the application of K-Means and Hierarchical Clustering allows for

a more in-depth analysis of their characteristics. The K-Means clustering algorithm, with its iter-

ative refinement procedure, efficiently classified anomalies into separate groups according to their

distinctive characteristics. Hierarchical Clustering, a method that constructs a tree-like structure of

clusters, enables us to comprehend the intricate arrangement of anomalies and their relationships.

By employing this dual methodology for clustering, we were able to ascertain the most suitable

quantity of clusters and obtain a comprehensive visualization of the anomalies[109].

The characterization of these clusters through visualization and mapping reveals distinct ge-

ographical and temporal patterns. For example, particular clusters may represent regular traffic

congestion that occurs during certain times of the day or week, while other clusters may reflect

occasional instances. Gaining insight into these patterns enables traffic management authorities to

effectively address present anomalies and proactively prepare for forthcoming disruptions. This

knowledge is crucial for raising the efficiency of traffic, improving road safety, and optimizing the

infrastructure of urban transportation

In conclusion, our comprehensive approach builds on our prior research paper in which we uti-

lized Elliptic Envelope, Isolation Forest, and Local Outlier Factor for identifying anomalies. In this

study, we enhance our analysis by employing clustering techniques, namely K-Means and Hierar-

chical Clustering, to further investigate the attributes of the found anomalies. By utilizing sophis-

ticated windowing approaches, we achieved reliable anomaly identification, and by subsequently

applying clustering, we obtain comprehensive understanding of their geographical and temporal

patterns.

5.2 Motivation and Preliminaries

5.3 Methodology

Figure 5.1 depicts a thorough procedure for managing and examining data, with a particular empha-

sis on identifying unusual patterns and clustering them. The procedure is segmented into multiple
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discrete phases: Data Collection, Preprocessing, Clustering, Characterization, and Insights. Ev-

ery phase signifies a crucial stage in converting unprocessed data into important understandings,

highlighting the methodical approach necessary for efficient data analysis.

The process initiates with Data Collection, when unprocessed data is acquired from several

sources, represented by camera ,sensors and other resources. The unprocessed dataset is subse-

quently subjected to the Preprocessing Phase. In our prior study, we utilized sliding windowing

methods to preprocess data. We employed three distinct scenarios: a window size of 1 hour with a

step size of 30 minutes, a window size of 2 hours with a step size of 1 hour, and a window size of

3 hours with a step size of 1.5 hour. In addition, we utilized three anomaly detection algorithms:

Local Outlier Factor, Elliptic Envelope, and Isolation Forest [1]. By employing these techniques,

the anomalies were successfully identified and isolated, leading to a refined dataset that is now

prepared for additional study. After preprocessing phase, we obtain two datasets for the training

process: the cleaned dataset, which contains only the normal data without any anomalies, and the

dataset specifically for the discovered anomalies. The dataset containing the anomalies is processed

in the Clustering Phase, during which the data is sorted into several groups or clusters, labeled

for example Cluster 1, Cluster 2, Cluster 3, and so on, up to Cluster k. This clustering technique

employs two algorithms, namely K-Means and Hierarchical Clustering, to categorize data points

with comparable characteristics or criteria. Organizing the datasets in this manner is crucial for

facilitating subsequent analysis, as it enhances manageability and meaning. After the data has been

clustered into clusters, the next step is the characterization and analysis of these clusters. During this

phase, a thorough examination is conducted on each cluster to gain a comprehensive understand-

ing of the data’s characteristics and the underlying patterns within it. This step entails employing

statistical analysis, pattern recognition, or other analytical tools to identify common features or

underlying factors. In addition, we provide a visual representation of the clusters on a map.The

objective is to acquire a more profound comprehension of the data and the elements that contribute

to its arrangement and behavior inside each cluster.

The last phase of the process is Insights. By doing a thorough study and characterization of the

clusters, we are able to extract practical and useful insights. These insights can assist in making

well-informed decisions, spotting possible problems, and adopting measures to optimize processes
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Figure 5.1: Proposed Model for Traffic Flow Anomaly Detection and Cluster Characterization.

or resolve observed patterns. The complete procedure, starting from the gathering of data to the

extraction of meaningful conclusions, emphasizes the significance of employing a methodical ap-

proach in data analysis to convert unprocessed data into usable information.

5.4 Experimental Setup and Evaluation

The performance of clustering is crucial as clustered data are usually assessed manually and sub-

jectively to ascertain their significance. When the true clustering data labels are not known, other

intrinsic measures can be employed to assess the efficacy of the clustering technique. In this paper,

we employed the most widely used metrics, which are described as follows [110].
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5.4.1 Silhouette coefficient

The Silhouette coefficient is a quantitative metric utilized to assess the quality of a clustering

method. This analysis considers both the cohesion and separation of clusters, offering an under-

standing of the degree of similarity between an object and its own cluster in comparison to other

clusters. The calculation of the Silhouette coefficient for a single data point comprises two key

components: a and b.

The value a is the mean distance from a point to all other points within the same cluster, indi-

cating the level of cohesion within the cluster. Alternatively,b represents the mean distance from a

point to all points in the closest cluster that the point does not belong to. This metric quantifies the

separation between clusters [111].

The Silhouette coefficient s for a data point is computed using the following formula:

s =
b− a

max(a, b)

The coefficient varies between -1 and 1, with a value near to 1 indicating a strong match between

the data point and its own cluster, but a poor match with neighboring clusters. A value that is

approximately equal to 0 indicates that the data point is located precisely on or in close proximity to

the decision boundary between two adjacent clusters. On the other hand, a value close to -1 suggests

that the data point might have been incorrectly assigned to the cluster.

By averaging the Silhouette coefficients of all data points in a dataset, This helps in evaluat-

ing the appropriateness of the data clustering and provides guidance for enhancing the clustering

strategy if needed.

5.4.2 Calinski–Harabasz Index

The Calinski-Harabasz Index, also known as the Variance Ratio Criterion, is a quantitative metric

utilized to assess the effectiveness of clustering algorithms by measuring the dispersion of the clus-

ters. The term refers to the proportion of the total dispersion between clusters to the total dispersion

within clusters. This index facilitates the assessment of the degree of separation and compactness

of the clusters.
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Mathematically, the Calinski-Harabasz Index CH for a clustering result is calculated using the

following formula:

CH =
trace(Bk)/(k − 1)

trace(Wk)/(n− k)

In this formula, trace(Bk) denotes the trace of the dispersion matrix for between-group differ-

ences, whereas trace(Wk) denotes the trace of the dispersion matrix for within-group differences.

In this context, k represents the number of clusters, while n denotes the total number of data points.

The between-group dispersion matrix Bk quantifies the extent to which the cluster centroids

deviate from the overall centroid of the data. This indicates the level of dissimilarity between the

groups. Conversely, the within-group dispersion matrix Wk quantifies the dispersion of data points

within each cluster, providing information about the tightness of the clusters [112].

Higher values of the Calinski-Harabasz Index indicate better-defined clusters, characterized by

higher between-cluster dispersion and lower within-cluster dispersion. This index is very valuable

for evaluating distinct clustering results and determining the most suitable number of clusters.

5.4.3 Davies–Bouldin Index

The Davies-Bouldin Index is a quantitative metric utilized to assess the effectiveness of a clustering

algorithm. The metric calculates the average similarity ratio between each cluster and its most

similar cluster, which indicates the level of separation between the clusters. A lower Davies-Bouldin

Index value indicates superior clustering results, as it signifies that the clusters are compact and

well-separated.

In order to calculate the Davies-Bouldin Index DB for a clustering result, several steps must

be undertaken. Firstly, the average distance between each point in cluster i and the centroid of the

same cluster is computed. The measure Si indicates the scatter of the cluster. Next, for each pair of

clusters i and j, the distance dij between the centroids of the clusters is computed [113].

Then, for each cluster i, the cluster j that maximizes the ratio

Rij =
Si + Sj

dij
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has been identified. The ratio Rij quantifies the degree of similarity between cluster i and cluster

j. The Davies-Bouldin Index is calculated by taking the average of the maximal ratios Ri across all

of the clusters.

DB =
1

k

k∑
i=1

max
i ̸=j

(
Si + Sj

dij

)
where k is the number of clusters, Si and Sj are the average distances within clusters i and j,

respectively, and dij is the distance between the centroids of clusters i and j.

In summary, the Davies-Bouldin Index quantifies the average similarity between each cluster

and its closest similar cluster. Lower values of this index indicate higher clustering quality, with

clusters being denser and more distinct from one other.

5.4.4 Dataset

The study used a dataset that includes information about intersections and their associated attributes

(as displayed in Table 5.1). Each intersection in the dataset is identified by a unique identifier

known as ”INT ID” (Intersection Number), which guarantees unambiguous differentiation. The

”Intersection Name” field contains informative labels for each intersection, usually comprising the

names of the two streets that intersect. The ”ARRONDISSEMENT” field provides information on

the specific region where each intersection is located, which helps with the clustering process [104].

Furthermore, the dataset includes geographical coordinates for each intersection. The ”Longi-

tude” and ”Latitude” fields precisely indicate the horizontal and vertical coordinates, respectively.

The coordinates are crucial for geographic analysis and visualization applications. The congestion

level field provides information about the number of vehicles seen at the intersection over a specific

time period. The data is collected through systematic monitoring of the number of vehicles at the

intersection, with measurements recorded at five-minute intervals.

Our research utilizes clustering algorithms, notably K-Means and Hierarchical Clustering, to

leverage detected anomalies. These anomalies were obtained from a dataset in our earlier research

[1]. This dataset exclusively consists of frequency pattern features, which were utilized for the

purpose of segmenting these abnormalities.
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Table 5.1: Dataset Description

Field Name Description

INT ID (Intersection Number) Unique identifier for each intersection.
Intersection Name Descriptive label for the intersection.
ARRONDISSEMENT (Region Name) Region where the intersection is located.
Longitude East-west geographic coordinate.
Latitude North-south geographic coordinate.
Congestion Level (Number of Vehicles) Number of vehicles observed at the intersec-

tion measured every 5 minutes.

Our study focuses on a selected simulated region inside the city of Montreal, as depicted in the

Figure 3.4. We divide the simulation area into several zones and examine our challenge for each

zone autonomously. despite the scale of the network, whether it is large or widespread, it will be

separated into zones, and the clustering algorithms will be applied individually to each zone. Our

simulation included 19 traffic lights in each zone, showcasing the scalability of our system.

5.4.5 Clustering pipeline setups

Our research utilizes two clustering techniques, namely K-Means and Agglomerative Clustering, to

evaluate datasets that contain identified anomalies. The justification for utilizing these strategies is

based on their mutually reinforcing advantages and the valuable perspectives they offer.

The K-Means clustering algorithm is selected due to its high efficiency and simplicity in divid-

ing a dataset into several clusters. This approach operates by reducing variance within each cluster,

rendering it particularly efficient for clusters that have a spherical shape. K-Means is computation-

ally efficient, making it particularly suitable for handling large datasets. Additionally, it facilitates

for straightforward implementation and interpretation of results.

Agglomerative Clustering, a kind of hierarchical clustering, is chosen for its capacity to manage

clusters with diverse shapes and sizes. This approach builds a hierarchical structure of clusters

by repeatedly combining or dividing existing based clusters on a chosen linkage criterion(such as

single, complete, or average linkage). Agglomerative Clustering’s flexibility enables it to uncover

complex cluster structures that K-Means may overlook.

Both clustering approaches are implemented using the Scikit-learn library [114], a powerful and
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widely-used machine learning library in Python. Scikit-learn offers efficient and optimized versions

of K-Means and Agglomerative Clustering algorithms, along by a range of hyperparameters that

may be adjusted to maximize performance for our particular datasets.

5.4.6 Determining the optimal number of clusters

One way to evaluate the quality of clustering is by computing performance metrics and then com-

paring the results to determine the best option. Data patterns within the same group will probably

have similar characteristics, while data patterns in other groups are expected to possess significantly

diverse properties and features. However, determining the ideal number of clusters is one of the

most difficult components of the clustering process.

The elbow method can determine the optimal number of clusters for a given data pattern by

executing the clustering algorithm with several initial cluster assignments (ranging from 2 to 18)

and evaluating the distortion score for each cluster assignment. The results are then plotted for

analysis.

The inflection point or the elbow of a curve signifies the stage where the marginal benefits of

adding another cluster no longer outweigh the diminishing returns. The Figures 5.2,5.3,5.4 display

elbow plots of distortion scores for KMeans and Agglomerative clustering. The plots are generated

using three distinct anomaly detection algorithms—Elliptic Envelope, Isolation Forest, and Local

Outlier Factor. The Figures correspond to Scenarios One, Two, and Three. Each plot displays the

distortion score in relationship with the number of clusters (k), with a dotted line indicating the

elbow point that signifies the optimal number of clusters. For example, the Figure 5.2, the ideal

value of k for KMeans clustering is determined to be 6 for Elliptic Envelope, 5 for Isolation Forest,

and 6 for Local Outlier Factor. The corresponding distortion scores are 5396.535, 4185.090, and

5233.685, respectively. The ideal number of clusters (k) for Agglomerative clustering is 6 when

using Elliptic Envelope, 5 when using Isolation Forest, and 5 when using Local Outlier Factor.

The corresponding distortion scores are 5505.354, 4763.874, and 1320.200, respectively. The plots

include green lines that show the run time for clustering. The elbow plots are crucial to deter-

mining the optimal number of clusters, balancing distortion score minimization and computational

efficiency for each anomaly detection method
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Figure 5.2: Distortion Score Elbow Plots for K-Means and Agglomerative Clustering Using Three
Anomaly Detection Algorithms for Scenario One(window size=1 hour and step size=30 minutes)

5.4.7 Evaluation Results

In this section, we present the evaluation results of applying K-Means clustering to datasets that

have been identified for anomalies using three distinct outlier detection techniques: Elliptic En-

velope, Isolation Forest, and Local Outlier Factor, across three different scenarios with varying

configuration settings (window sizes of 1 hour, 2 hours, and 3 hours).
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Figure 5.3: Distortion Score Elbow Plots for K-Means and Agglomerative Clustering Using Three
Anomaly Detection Algorithms for Scenario Two(window size=2 hour and step size=1 hour

The Silhouette analysis, depicted in the Figures 5.5, 5.6, and 5.7, provides a thorough assess-

ment of the clustering performance under various scenarios utilizing K-Means clustering in combi-

nation with three outlier detection techniques: Elliptic Envelope, Isolation Forest, and Local Outlier

Factor. The Silhouette coefficient quantifies the degree of similarity between an object and its own

cluster relative to other clusters, with values ranging from -1 to 1. A high average Silhouette score
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Figure 5.4: Distortion Score Elbow Plots for K-Means and Agglomerative Clustering Using Three
Anomaly Detection Algorithms for Scenario Three(window size=3 hours and step size=1.5 hours

shows that the clusters have a significant degree of separation and cohesion, meaning they are well-

separated and internally cohesive. Conversely, a low or negative score suggests that the clusters

either overlap or lack clear definition.

Figure 5.5, showing Scenario One, demonstrates that the clustering performance is influenced

by the choice of outlier detection method, as indicated by the Silhouette plots. The Elliptic Enve-

lope approach yields a moderately high average Silhouette score, indicating a satisfactory balance
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between cluster cohesion and separation. The Isolation Forest approach achieves a little superior

average Silhouette score, denoting more distinct clusters with minimal overlap among them. The

Local Outlier Factor approach has robust performance, exhibiting a high average Silhouette score,

indicating the presence of clearly defined and well-isolated clusters.

Figure 5.6 displays the Silhouette analysis for Scenario Two. In this case, the Elliptic Envelope

approach remains effective, although the average Silhouette score is somewhat lower compared to

Scenario One, suggesting a slight decrease in the quality of clustering. Comparatively, the Isolation

Forest approach exhibits a decrease in the average Silhouette score when compared to Scenario

One, indicating a minor decrease in the quality of clustering The Local Outlier Factor approach

regularly achieves a high average Silhouette score, demonstrating its robust clustering ability in

different scenarios.

Figure 5.7, which represents scenario Three, demonstrates that the Elliptic Envelope approach

exhibits another decrease in the average Silhouette score. This indicates that the quality of clustering

continues to decrease in this situation. In contrast to Scenarios One and Two, the Isolation Forest

approach exhibits a decrease in the average Silhouette score, suggesting that it is less effective at

producing distinct and cohesive clusters in this particular scenario. Although the Local Outlier

Factor method continues to perform well, there is a little decrease in the average Silhouette score

compared to earlier instances. Nevertheless, it remains an excellent way for clustering.

Upon comparing the Silhouette analysis over the three scenarios, it is evident that the Isola-

tion Forest method, although initially effective in Scenario One, experiences a decrease in average

Silhouette scores by Scenario Three. This implies that the effectiveness of Isolation Forest is con-

tingent upon the specific qualities of the data, and it is not consistently superior in all scenarios. The

Local Outlier Factor approach consistently performs well, maintaining high Silhouette scores in all

scenarios, which makes it a reliable choice for clustering. The Elliptic Envelope approach, although

successful, has more variability in performance across different scenarios, suggesting that it may be

more sensitive to the underlying data characteristics.

In summary, the Isolation Forest method proves to be a robust solution for detecting outliers

in Scenario One, especially when combined with K-Means clustering. Nevertheless, its efficacy

decreases in subsequent scenarios, indicating that although it is efficient in certain scenarios, its
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Figure 5.5: Silhouette Analysis of K-Means Clustering with Different Outlier Detection Methods
for Scenario One(window size=1 hour and step size=30 minutes)

Figure 5.6: Silhouette Analysis of K-Means Clustering with Different Outlier Detection Methods
for Scenario Two(window size=2 hours and step size=1 hour

Figure 5.7: Silhouette Analysis of K-Means Clustering with Different Outlier Detection Methods
for Scenario Three(window size=3 hour and step size=1.5 hours

usefulness may fluctuate depending on the characteristics of the data. The Local Outlier Factor ap-

proach consistently demonstrates superior performance in all scenarios, making it a reliable choice

for clustering in many contexts.
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5.4.8 Discussion

Table 3 presents a comparison of the performance of two clustering algorithms, namely K-Means

and Agglomerative, in Scenario 1. The comparison is performed under three different outlier detec-

tion methods: Elliptic Envelope, Isolation Forest, and Local Outlier Factor. The evaluation relies

on three metrics: Silhouette Coefficient, Calinski-Harabasz Index, and Davies-Bouldin Index. Ta-

ble 3 demonstrates that the Isolation Forest method consistently produces highest values for both

the Silhouette Coefficient and the Calinski-Harabasz Index. This indicates that it effectively de-

tects outliers and enhances the quality of clusters for both K-Means and Agglomerative clustering

algorithms. Moreover, the Elliptic Envelope and Local Outlier Factor exhibit diverse outcomes,

which are dependent upon the clustering algorithm’s effectiveness. K-Means consistently surpasses

Agglomerative clustering in terms of Silhouette Coefficient ,Calinski-Harabasz and Davies-Bouldin

Index for all outlier detection methods. This suggests that K-Means algorithm has a tendency to

generate more compact and well-separated clusters in the Scenario 1.

Table 4 shows a comparison of the performance of two clustering algorithms in Scenario 2.

Table 4 demonstrates that the Local Outlier Factor method consistently produces highest values

for all the Silhouette Coefficient and the Calinski-Harabasz Index. This indicates that it effectively

detects outliers and enhances the quality of clusters for both K-Means and Agglomerative cluster-

ing algorithms. Moreover, Isolation Forest method produces higher values for all the Silhouette

Coefficient and the Calinski-Harabasz Index than the Elliptic Envelope method . K-Means consis-

tently surpasses Agglomerative clustering in terms of Silhouette Coefficient , Calinski-Harabasz and

Davies-Bouldin Index for both outlier detection methods (Elliptic Envelope, Local Outlier Factor).

This suggests that K-Means algorithm has a tendency to generate more compact and well-separated

clusters in the Scenario 2.

Table 5 presents a comparison of the performance of two clustering algorithms in Scenario

3. Table 5 present that the Local Outlier Factor consistently produces the highest values for the

Silhouette Coefficient and Calinski-Harabasz Index with K-Means clustering method. On the other

hand, with Agglomerative clustering method , the solation Forest strategy, yields highest values for

these metrics.
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Figure 5.8: Comparative Analysis of Clustering Performance Across Three Scenarios

Across all evaluation criteria (Silhouette Coefficient, Calinski-Harabasz Index, and Davies-

Bouldin Index), K-Means consistently performs better than Agglomerative clustering for both El-

liptic Envelope and Local Outlier Factor outlier identification approaches. These findings indicate

that K-Means is more effective at producing compact and well-separated clusters within the context

of Scenario 3.

As shown in Figure 5.8 the comparative analysis across three scenarios, show that the K-Means

clustering algorithm constantly surpasses Agglomerative clusteringparticularly when paired with

the Isolation Forest method in Scenario One. This combination proves to be the most effective

for producing well-defined clusters that are both compact and well-separated, making it the rec-

ommended approach for clustering the analyzed data, as indicated by the Silhouette Coefficient,

Calinski-Harabasz , and Davies-Bouldin Index. In summary, the combination of K-Means and Lo-

cal Outlier Factor yields the most promising results for clustering the analyzed data.

5.4.9 Cluster Characterization and Interpretation

Characterizing clusters in the context of traffic anomalies is essential for several reasons. Firstly,

it offers a more profound comprehension of the inherent characteristics and regularities of traffic

anomalies, which have the potential to cause severe disruptions in transportation systems. Traffic

anomalies, which refer to deviations from normal traffic patterns, can lead to congestion, delays,

and potentially accidents. Through the examination of these anomalies, authorities responsible for
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Table 5.2: Comparison of Clustering Methods for Scenario one.

(a) Outliers Method: Elliptic Envelope

KMeans Agglomerative

Silhouette 0.354000 0.301600
Calinski-Harabasz 57347.150700 44815.396500
Davies-Bouldin 0.987100 1.118100

(b) Outliers Method: Isolation Forest

KMeans Agglomerative

0.419700 0.365600
83620.841100 72275.403300
0.888300 1.003500

(c) Outliers Method: Local Outlier Factor

KMeans Agglomerative

Silhouette 0.401300 0.334600
Calinski-Harasz 43948.212900 37548.952300
Davies-Bouldin 0.827900 0.908700

Table 5.3: Comparison of Clustering Methods for Scenario Two.

(a) Outliers Method: Elliptic Envelope

KMeans Agglomerative

Silhouette 0.312000 0.231700
Calinski-Harabasz 15536.666700 12011.187500
Davies-Bouldin 1.094300 1.336500

(b) Outliers Method: Isolation Forest

KMeans Agglomerative

0.306400 0.386800
17311.568000 16720.658400
1.044800 0.845100

(c) Outliers Method: Local Outlier Factor

KMeans Agglomerative

Silhouette 0.400400 0.363100
Calinski-Harabasz 20162.350900 17769.464800
Davies-Bouldin 0.855800 0.902500

Table 5.4: Comparison of Clustering Methods for Scenario Three.

(a) Outliers Method: Elliptic Envelope

KMeans Agglomerative

Silhouette 0.279200 0.265300
Calinski-Harabasz 7488.032000 6837.001600
Davies-Bouldin 1.266300 1.404600

(b) Outliers Method: Isolation Forest

KMeans Agglomerative

0.279900 0.282900
7857.835400 7775.797400

1.198500 1.138400

(c) Outliers Method: Local Outlier Factor

KMeans Agglomerative

Silhouette 0.285300 0.241100
Calinski-Harabasz 8724.303100 7256.889200
Davies-Bouldin 1.118500 1.235100

traffic management can devise more efficient measures to minimize their influence and improve the

overall effectiveness and safety of transportation networks.

Cluster characterisation helps in the identification of particular locations (ARRONDISSEMENTS)

that are prone to specific types of traffic anomalies, as well as the measurement of the frequency and

severity of these anomalies. This information is crucial for urban planners and traffic management
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to make well-informed decisions on the allocation of resources, improvements to infrastructure, and

planning for emergency response.

This study utilized a systematic approach to analyze and describe the clusters generated by

applying clustering algorithms to the identified traffic anomalies. The techniques and criteria em-

ployed for characterization encompass:

Anomaly Frequency Analysis: We performed an analysis of the frequency of anomalies within

each cluster in order to gain insight into the rate at which these deviations occur. This helps in the

identification of clusters exhibiting high anomaly rates, potentially indicating regions experiencing

significant traffic issues.

Geographical Distribution: We analyzed the spatial distribution of traffic abnormalities by

mapping the clusters geographically. This representation facilitates the identification of patterns

related to certain regions and better comprehension of the geographical distribution of traffic prob-

lems.

ARRONDISSEMENT Distribution: We analyzed the distribution of clusters across several

ARRONDISSEMENTS to determine the administrative regions that are most impacted by traffic

anomalies. This analysis is essential for the management and planning of traffic in the region.

Traffic Volume Analysis: We analyzed the median and standard deviation of traffic volumes

within each cluster to get insight into the average traffic conditions and their variability. This helps

in differentiating between clusters exhibiting significant fluctuations in traffic and those displaying

more consistent traffic patterns. Figure 5.9a plot provides a comprehensive overview of the distri-

bution of anomaly frequencies among various clusters. Clusters 1 and 3 show the highest median

frequencies of anomalies, suggesting that intersections inside these clusters encounter traffic ab-

normalities most frequently. These clusters also exhibit the widest ranges and highest number of

outliers, indicating substantial heterogeneity in the occurrence of anomalies within these clusters.

Clusters 0, 2, and 4 have lowered median frequencies, with Cluster 0 displaying the lowest

median and the narrowest range, indicating a higher level of consistency and lower frequency of

anomalies. The existence of outliers inside each cluster indicates that although the majority of inter-

sections conform to the typical pattern of the cluster, there are specific places that exhibit abnormally

high or low frequencies of anomalies. These points may require more investigation.
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(a) Anomaly Frequency for each Cluster (b) Median Traffic Volume by Cluster

(c) Standard Deviation of Traffic Volume by Cluster

Understanding these distributions helps in identifying critical areas that require attention for

traffic management and planning. High-frequency anomaly clusters might indicate problematic

regions needing targeted interventions to improve traffic flow and safety.

Figure 5.9b shows significant differences in median traffic volumes among five clusters. Cluster

1 demonstrates the most highest median traffic volume, approximately 45, indicating regions with

congested traffic movement, most likely urban areas or significant roadways. Clusters 2 and 3

have median volumes ranging from 15 to 30, indicating the presence of mixed-use or secondary

roadways. Clusters 0 and 4 have the lowest median traffic levels, just above 5 and 10, indicating

quieter places that may be residential or suburban.

Figure 5.9c Shows the variation in traffic volumes among five Clusters, highlighting significant

differences in traffic consistency. Cluster 0 exhibits the smallest standard deviation, indicating a high

level of consistency and predictability in traffic patterns. This is typically observed in residential or

low-traffic regions. Clusters 1, 2, and 4 demonstrate a moderate level of variability, indicating that

these locations include a combination of residential and commercial uses and experience moderate

fluctuations in traffic. Cluster 3 exhibits the highest standard deviation, indicating notable variations

107



in traffic volume, most likely occurring in prominent roadways or commercial regions with diverse

traffic patterns.

Figure 5.10a shows the number of intersections in each cluster, organized by ARRONDISSE-

MENT. Cluster 0 comprises more than 20,000 intersections and encompasses many ARRONDISSE-

MENTS such as Villeray - Saint-Michel - Parc-Extension, Ville-Marie, and Saint-Laurent. This

suggests a combination of residential and less densely populated urban regions. Cluster 1, consist-

ing of almost 5,000 intersections, is primarily characterized by regions such as Rivières-des-Prairies

- Pointe-aux-Trembles, indicating locations with significant traffic flow and commercial presence.

Cluster 2, with around 3,000 intersections, and Cluster 4, consisting of roughly 7,500 intersections,

are characterized as mixed-use regions with moderate levels of traffic. Cluster 3, characterized

by a relatively low number of intersections (about 2,500), mostly encompasses Montréal-Nord and

Saint-Léonard, suggesting locations with significant fluctuations in traffic volume. The Figure 5.10a

provides an overview of the varied representation and traffic characteristics in each cluster. Clus-

ter 0 demonstrates consistent conditions, Cluster 1 indicates significant traffic volumes, Clusters 2

and 4 represent areas with a balanced mix of uses, and Cluster 3 necessitates focused traffic man-

agement due to its high variability.The spatial distribution of these clusters is further illustrated in

the Figure5.11 where it illustrates the spatial distribution of several traffic clusters inside a spe-

cific geographic region. Each colored dot represents a distinct cluster type, indicating the locations

where particular traffic patterns or abnormalities are more common. The clustering analysis reveals

distinct traffic patterns in different locations of the city, where certain places are predominantly

characterized by specific clusters.

Figure 5.10b depicts the type of traffic cluster that occurs in each ARRONDISSEMENT. Fig-

ure illustrates the relative occurrence of two distinct clusters (presumably denoted as Max Cluster

0 and Max Cluster 1) throughout different ARRONDISSEMENTS, indicating the dominant clus-

ter in each location. Based on this Figure, it is evident that certain arrondissements constantly

exhibit a dominant cluster type. For instance, the locations of ”Ahuntsic - Cartierville,” ”Côte-des-

Neiges - Notre-Dame-de-Grâce,” and ”Ville-Marie” have a notably greater occurrence of one cluster

type, suggesting that Cluster 0 is the most prevalent in these regions. Conversely, the arrondisse-

ments ”Île-Bizard - Sainte-Geneviève” and ”Pierrefonds - Roxboro” exhibit a greater number of
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(a) Distribution of ARRONDISSEMENT within
Each Cluster

(b) Maximum Cluster Count per ARRONDISSE-
MENT

Figure 5.10: Cluster distribution and counts in each ARRONDISSEMENT.

occurrences for Cluster 1. This statistic is essential for discerning the prevailing traffic patterns or

anomalies inside each arrondissement, aiding in comprehending the particular traffic circumstances

or problems that are most prevalent in distinct areas of the city. These insights can provide guid-

ance for managing traffic and building infrastructure in a way that specifically addresses the most

common or troublesome traffic patterns in each area.

In the conclusion, this research uncovers distinct traffic patterns and abnormal distributions

among various clusters, offering crucial information for managing traffic and planning urban areas.

Figure 5.9a shows that Cluster 1 has the highest incidence of traffic anomalies, indicating regions

with frequent disruptions that require concentrated attention. Cluster 0, in comparison, demonstrates

the lowest frequency of anomalies, suggesting a higher level of stability in traffic circumstances.

The Figure5.9b presents further evidence by illustrating that Cluster 1 has the largest median traffic

volume, suggesting the presence of vibrant urban hubs or significant transportation routes. In con-

trast, Cluster 0 exhibits the lowest median traffic volume, indicating calm residential areas.Cluster

0, however, exhibits negligible change, which further reinforces its categorization as a stable and

low-traffic cluster. These findings underscore the need of adopting tailored traffic control measures.

Clusters exhibiting elevated levels of anomalies and variability would derive advantages from using

dynamic traffic control techniques, while clusters characterized by low traffic and variability can

require routine monitoring to maintain their stability.
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Figure 5.11: Geographical Distribution of Clusters

5.5 Summary

This study emphasizes the crucial importance of identifying and describing anomalies in traffic

flow in order to improve the effectiveness and safety of transportation networks. By utilizing three

different anomaly detection methods Elliptic Envelope, Isolation Forest, and Local Outlier Factor

on pre-processed datasets with different window configurations, we were able to accurately detect

traffic anomalies. By utilizing clustering algorithms, notably K-Means and Hierarchical Clustering,

we were able to segment these anomalies into distinct groups and identify the most suitable number

of clusters for detailed characterization.

The evaluation results clearly show that The Local Outlier Factor approach consistently pro-

duces the highest quality of clustering. This is evident from its superior average silhouette scores

across different scenarios. the Isolation Forest also performs well, especially in maintaining clearly

defined and evenly distributed clusters. Although the Elliptic Envelope exhibits a moderate level of

clustering quality, its performance is less robust when compared to the other approaches.

The comparative analysis, shows that the K-Means clustering method consistently performs

better than the Agglomerative clustering algorithm to generate clusters that are both compact and
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well-separated. This conclusion is verified by metrics such as the Silhouette Coefficient, Calinski-

Harabasz Index, and Davies-Bouldin Index. Local Outlier Factor is the most successful among

the anomaly detection methods, followed by Isolation Forest and Elliptic Envelope. However, the

efficiency of these approaches may vary depending on the scenario.

In conclusion, combining K-Means clustering with Local Outlier Factor anomaly detection is

the most promising method for efficiently handling and comprehending traffic anomalies. This com-

bination not only helps to identify traffic disruptions but also offers vital information about where

and when they occur. This information is important for urban planners and traffic management au-

thorities. These findings emphasize the significance of customized traffic management solutions to

tackle specific anomalies and enhance the overall operation of transportation systems.
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Chapter 6

Conclusions and Future Works

In this thesis,we present a unified and comprehensive strategy for addressing urban transportation

congestion. Chapter 3 presents a sophisticated system aimed at enhancing traffic light timings

through the application of machine learning and metaheuristic techniques. The principal objective

is to reduce vehicle wait times and mitigate congestion in urban environments. This method utilizes

predictive algorithms developed from actual traffic data to anticipate congestion patterns. These

forecasts are subsequently employed to dynamically modify traffic signal timings. Metaheuristic

techniques, such the Enhanced Bat Algorithm (EBAT), which demonstrated superior performance,

and Particle Swarm Optimization (PSO), are utilized to identify near-optimal solutions for traffic

light regulation. The outcome is a more effective traffic management system capable of real-time

responses to congestion, hence enhancing traffic flow and minimizing delays.

Chapter 4 elaborates on the core concepts established in Chapter 3 by examining the complex-

ities of real-world traffic data, which frequently included anomalies such as accidents or sudden

road closures. This chapter presents a multilevel learning approach that combines anomaly detec-

tion and ensemble learning to improve the accuracy of congestion prediction. The application of

Isolation Forest for anomaly detection facilitates data cleansing by finding and eliminating unusual

traffic patterns. Upon data cleansing, various prediction models are trained, and their outputs are

combined through ensemble learning methods such as stacking, yielding the most robust results.

This multilevel methodology yields more reliable and accurate congestion predictions, which can

subsequently guide the traffic signal optimization procedure outlined in Chapter 3.
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Chapter 5 concentrates on the comprehensive characterization of traffic anomalies identified in

earlier chapters. This chapter employs clustering algorithms, specifically K-Means, which proved

most effective, and Hierarchical Clustering, to classify and examine traffic abnormalities, building

upon the prediction and optimization methodologies discussed in Chapters 3 and 4. The objective

is to understand the spatial and temporal distribution of these abnormalities, yielding enhanced

insights into their causes and impacts on traffic flow. By clustering the anomalies, the system can

identify patterns and trends essential for sustainable traffic management and urban planning. This

improved characterization helps traffic authorities in making more informed decisions about where

and when interventions are needed.

The chapters are tightly interconnected, forming a unified structure for addressing urban traffic

congestion. Chapter 3 establishes a framework for optimizing traffic light timings with predictive

models. Chapter 4 enhances the accuracy of predictions using multilevel learning, enabling the

traffic management system to effectively process complex, real-world data. The anomaly detection

and data cleansing mechanisms in Chapter 4 directly inform the optimization techniques in Chapter

3, ensuring that the system operates on high-quality data. Chapter 5 enhances the preceding chap-

ters by presenting a comprehensive analysis of traffic anomalies via clustering, which facilitates

immediate congestion management and yields significant insights for future planning.

Together, these three chapters offer a comprehensive solution to urban traffic congestion The

predicted accuracy achieved in Chapter 4 improves the efficacy of the optimization methods in

Chapter 3, while the clustering and anomaly characterization in Chapter 5 provide a deeper un-

derstanding of traffic patterns. The integration of prediction, optimization, and characterization

guarantees a scalable and efficient traffic management system capable of adapting to the dynamic

characteristics of urban traffic, hence enhancing mobility and alleviating congestion.

For future work, several promising research directions can be considered to extend the contri-

butions of thesis:

Integration of Advanced Machine Learning Models and Real-Time Data: To further en-

hance traffic anomaly detection and prediction accuracy, future research could explore integrating

more sophisticated machine learning models that can capture complex spatial and temporal patterns

in traffic data. Additionally, incorporating real-time data from emerging technologies, such as IoT
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devices and connected vehicle sensors, could provide more granular and up-to-date information

for predictions. This integration would allow the system to adapt more dynamically to changing

traffic conditions and better anticipate anomalies in real time, improving the overall accuracy and

responsiveness of the proposed framework.

Scalability and Generalization Across Different Urban Environments: Scalability and Gen-

eralization Across Different Urban Environments: While this study focuses on the Montreal re-

gion, future work could explore the scalability and generalization of the proposed methodologies

to different cities with varying traffic conditions and infrastructures. This would involve testing

the optimization and multilevel learning frameworks on datasets from other urban environments.

Comparative analyses across diverse urban settings would provide insights into the robustness and

adaptability of the methods.Additionally, factoring in long-term urban growth and changes in trans-

portation infrastructure could improve the models’ ability to predict traffic flow and anomalies over

extended periods, aiding urban planners in different contexts.

Incorporation of Transportation Engineering Principles: Our future work expands the frame-

work to include transportation engineering viewpoints. This could entail simulating the effects of

traffic management interventions such signal timing changes, road extensions, and lane reconfigu-

rations on congestion patterns. Incorporating traffic flow theories, queuing models, and transporta-

tion network optimization approaches might help researchers gain a better understanding of how

proposed strategies interact with actual traffic systems. Collaborations with transportation experts

could help enhance the model to better reflect the physical and operational characteristics of urban

traffic networks. This addition would increase the framework’s practical applicability and help to

generate concrete solutions for traffic management and urban planning.
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Appendix A: Dataset for Traffic Light Congestion Analysis

This appendix references a detailed dataset containing information about traffic lights and conges-

tion metrics across various intersections in Montreal. The dataset includes:

• INT NO: Intersection Number.

• RUE 1, RUE 2: Streets intersecting at the traffic light.

• ARRONDISSEMENT: The arrondissement of the traffic light.

• Longitude, Latitude: Location coordinates.

For more details about the dataset, please visit the following link:

https://donnees.montreal.ca/dataset/feux-tous

Sample of the Dataset (First 19 Rows)

INT NO RUE 1 RUE 2 ARRONDISSEMENT Longitude Latitude

97 Décarie Ferrier Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6582 45.4972

98 Décarie Isabella Est CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6322 45.4853

99 Décarie Isabella Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6325 45.4849

100 Décarie Jean-Talon Est CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6528 45.4946

101 Décarie Jean-Talon Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6534 45.4942

102 Décarie Snowdon Est CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6266 45.4827

103 Décarie Snowdon Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6270 45.4825

104 Décarie Paré Est CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6554 45.4961

105 Décarie Paré Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6559 45.4957

106 Décarie Plamondon Est CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6452 45.4911

107 Décarie Plamondon Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6455 45.4907

108 Décarie Queen-Mary Est CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6290 45.4838

109 Décarie Queen-Mary Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6292 45.4835

110 Décarie Royalmount Est CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6601 45.4991

111 Décarie Royalmount Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6607 45.4988

112 Décarie Van Horne Est CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6421 45.4897

113 Décarie Van Horne Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6424 45.4893

114 Décarie Vézina Est CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6476 45.4921

115 Décarie Vézina Ouest CÃ´te-des-Neiges - Notre-Dame-de-GrÃ¢ce -73.6481 45.4918
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