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Abstract

Data-driven Security Monitoring System for Cyberattacks on SSDCs in DFIG-Based
Wind Parks

Zeinab Oladi

The massive integration of wind parks (WPs) in the modern power grid resulted in a signif-

icant concern regarding the security of the entire grid. These concerns are more important in the

presence of WPs with inherent stability issues, e.g., when doubly-fed induction generators (DFIGs)

are connected to series-compensated transmission systems. This thesis presents a novel real-time,

data-driven security monitoring system to detect false data injection (FDI) and denial of service

(DoS) cyberattacks targeting the subsynchronous damping controller (SSDC) in DFIG-based WPs.

A detailed and realistic electromagnetic transient (EMT) model of a DFIG-based WP is devel-

oped, along with the design of an SSDC to mitigate the subsynchronous control interaction (SSCI)

phenomenon. The cyber vulnerabilities within the WP system, based on IEC 61400 standards, are

analyzed to identify potential attack vectors in its cyber layer. It is demonstrated that such attacks

can render the performance of SSDC ineffective, resulting in instability and sustained oscillations.

To counter these issues, a real-time security monitoring system leveraging a customized recurrent

neural network (RNN)-long short-term memory (LSTM) networks model is proposed to identify

FDI and DoS attacks against the SSDC. The performance of the developed RNN-LSTM model

is benchmarked against well-known classifiers, including random forest (RF), k-nearest neighbors

(KNN), and multilayer perceptron (MLP), demonstrating superior detection accuracy. The effec-

tiveness of the proposed model is further validated using unseen data, ensuring its effectiveness and

generalization capability. Additionally, the proposed model exhibits low latency, making it suitable

for near real-time operations in WPs.
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Chapter 1

Introduction

1.1 Problem Definition

Among various renewable energy sources, wind-based units have gained significant attention in

recent decades. Wind energy production has emerged as a fundamental component of renewable en-

ergy solutions globally, playing a critical role in reducing greenhouse gas emissions and combating

climate change. According to the global wind Energy council (GWEC), wind power is essential for

achieving international commitments to triple renewable energy capacity by 2030, contributing to

energy security, economic growth, and job creation. Canada’s wind energy sector exemplifies this

potential, leveraging its vast wind resources to transition to a sustainable energy future. Between

2024 and 2028, North America is projected to add approximately 71.5 gigawatts (GW) of onshore

wind capacity, with 91% of this expansion occurring in the United States and 9% in Canada [1].

Additionally, statistics from the international energy agency (IEA) predict that global wind capacity

will nearly double between 2024 and 2030 compared to 2017-2023 [2].

The increasing integration of renewable energy into modern power grids has made wind-based

energy systems, particularly wind parks (WPs), a cornerstone of sustainable energy development.

A WP typically comprises wind turbines (WTs), medium voltage (MV) feeders, transformers, and

a wind park controller (WPC).

Numerous technologies have been established to effectively capture wind energy. Among the
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various WT technologies, types 3 and 4 are the most widely utilized due to their ability to maxi-

mize wind energy utilization by operating in the maximum power point tracking (MPPT) mode [3],

[4]. The doubly-fed induction generator (DFIG) technology (type 3) is particularly favored for its

ability to operate under variable wind speeds and its reduced converter size, making it economically

efficient [5]. To efficiently deliver the maximum power generated by DFIG-based WPs, series-

compensated transmission lines have been adopted. These lines enhance transient stability, increase

transmission capacity, enable load-sharing control, and accommodate voltage drops. However, they

can impose resonance conditions on the power system, potentially leading to stability issues. De-

spite the advantages of DFIG-based systems, integrating WPs into power grids poses challenges,

particularly subsynchronous control interactions (SSCI).

To mitigate SSCI, techniques such as passive damping, FACTS-based devices, and active damp-

ing controllers like subsynchronous damping controllers (SSDCs) have been proposed. SSDCs are

widely adopted due to their cost-effectiveness and ability to provide efficient damping. Their inte-

gration within the WP supervisory control and data acquisition (SCADA) system— SCADA sys-

tem, along with the energy management system (EMS), is essential for monitoring, operating, and

safeguarding both WP generators and the power system[6]—involves the extensive use of the cyber

layer and information and communications technology (ICT) [5]. However, this dependence on

cyberinfrastructure introduces significant vulnerabilities to cyberattacks, such as false data injection

(FDI) and denial of service (DoS). These threats underscore the critical need for advanced attack

detection mechanisms to ensure the resilience and security of WP-integrated grids.

This thesis presents a data-driven security monitoring system designed to detect FDI and DoS

cyberattacks targeting SSDCs in DFIG-based WPs, aiming to enhance system resilience.

1.2 Objectives

The main objectives of this thesis are as follows:

• To identify FDI and DoS cyberattacks on SSDC and analyze the impact of these cyberattacks

on the WP operation system.

• To demonstrate the performance degradation of SSDC during the FDI and Dos cyberattacks
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• To propose a real-time security monitoring system based on a customized recurrent neural

network (RNN)-long short-term memory (LSTM) architecture to detect FDI and DoS cyber-

attacks on SSDC in DFIG-based WPs.

1.3 Methodology

This thesis employs a data-driven approach to develop a security monitoring system for DFIG-

based WPs operating in series-compensated transmission lines. The methodology is structured into

the following key steps:

• System modeling: A state-space model is developed to represent the detailed and realistic

electromagnetic transient (EMT) model of the DFIG-based WP. This state-space model is

used to design an SSDC based on the linear quadratic regulator (LQR) technique to mitigate

SSCI.

• Cyber vulnerability analysis: Attack vectors are identified in the WP cyber layer based on the

IEC 61400-25 standard. The impacts of FDI and DoS attacks are simulated to demonstrate

their disruptive effects on SSDC operation.

• Development of the data-driven security monitoring system: a real-time security monitoring

system based on the proposed RNN-LSTM model is developed to detect FDI and DoS at-

tacks. The model is trained on datasets representing various operating conditions, including

fluctuating wind speeds, varying in-service WTs, and changing grid impedances.

• Performance evaluation: The RNN-LSTM model is benchmarked against other well-established

classifiers. The effectiveness of the proposed system is also validated using an unseen dataset.

1.4 Contributions

The main contributions of this thesis are as follows:

• Developing models for FDI and DoS cyberattacks targeting the SSDC in WPC,
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• Proposing an RNN-LSTM-based security monitoring system to identify and classify DoS and

FDI cyberattacks targeting the SSDC in WPC, and

• Benchmarking the performance of the developed RNN-LSTM model against other commonly

used classifiers, such as random forest (RF), k-nearest neighbors (kNN), and multilayer per-

ceptron (MLP).

1.5 Thesis Structure

The thesis is structured into six chapters, each addressing a specific aspect of the research. The

second chapter reviews the related works in the field of existing techniques for mitigating SSCI in

DFIG-based WPs. It also examines various detection methods for identifying cyberattacks such as

FDI and DoS in WP control systems.

The third chapter develops a cyber-physical model of a DFIG-based WP, focusing on mitigating

SSCI through a designed SSDC. It includes detailed modeling of the physical layer, such as the WP

configuration, system parameters, and fault scenario, using EMTP-RV simulations. The cyber layer

addresses SCADA system architecture, communication protocols, and related cyber vulnerabilities.

The SSDC is designed using a linearized model with an LQR controller and observer, integrated

into the WT control loops via communication links.

Chapter four presents a threat model highlighting cyberattacks on SSDC communication links,

with a particular focus on FDI and DoS attacks. It underscores vulnerabilities in the communication

protocols of WP SCADA systems, emphasizing the susceptibility of SSDC signals to cyber threats

and the critical need for advanced cybersecurity measures to ensure system security and stability.

This chapter proposes an RNN-LSTM-based framework for real-time security monitoring system

to detect these cyberattacks. The data generation process includes simulating various operational

scenarios and cyberattacks, and capturing time-series features from WP telemetry data for model

training and validation. The design of the RNN-LSTM network is detailed, including its architec-

ture, sliding window approach, and hyperparameter tuning using Bayesian optimization to enhance

detection accuracy.

4



The fifth chapter includes a detailed analysis of the performance metrics, latency, and compari-

son with well-known classifiers such as RF, kNN, and MLP. It presents the results of the simulation

studies, validating the performance of the proposed security monitoring system under various nor-

mal and cyberattack scenarios by an unseen dataset.

The final chapter, chapter six, concludes the thesis by summarizing the key contributions and

findings. It outlines potential directions for future research.
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Chapter 2

Literature Review

This chapter reviews the challenges of subsynchronous control interactions (SSCI) and cyber-

security in DFIG-based WPs. It explores SSCI mitigation techniques, emphasizing subsynchronous

damping controllers (SSDCs), and examines cyberattack detection methods, categorized into model-

based and data-driven approaches. The chapter highlights vulnerabilities in WP-integrated power

systems, particularly targeting SSDCs, and identifies key research gaps, setting the stage for devel-

oping a robust, data-driven security monitoring framework.

This chapter analyzes the DFIG-based WP challenges and solutions. It begins by exploring

the susceptibility of DFIG-based WPs to SSCI when connected to series-compensated transmission

lines. Various mitigation strategies for addressing SSCI are critically reviewed. Next, it examines

the cybersecurity vulnerabilities in the communication links and supervisory control and data acqui-

sition (SCADA) networks of WPs, highlighting how these systems are exposed to potential cyber-

attacks, including DoS and FDI attacks. The chapter further compares model-based and data-driven

methods for detecting such cyber threats, evaluating their effectiveness and limitations. Finally, it

identifies existing research gaps, emphasizing the need for advanced real-time security monitoring

systems to ensure the secure and stable operation of wind-integrated power systems.
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2.1 Subsynchronous Phenomenon

The subsynchronous interaction (SSI) phenomenon is a frequent stability issue for wind-integrated

power systems that can result in substantial power generation losses. The subsynchronous phe-

nomenon can generally be classified into three types:

(1) subsynchronous resonance (SSR) occurs when a series-compensated system oscillates at the

natural frequencies of the power system, potentially causing mechanical failures [7], [8].

(2) subsynchronous torsional interaction (SSTI) arises from interactions between the turbine-

generator mechanical system and devices like compensated lines and HVDC systems [9],

[10].

(3) subsynchronous control interaction (SSCI) a purely electrical interaction between type 3 WTs

and series-compensated lines, can result in rapidly growing oscillations due to negative damp-

ing from control systems, leading to potential equipment damage [11]. SSCI frequency of

oscillations is below the nominal frequency of the power system. SSCI events have caused

global instability incidents, such as in the U.S. and China [12, 13, 14]. This interaction, if not

mitigated, can result in damaging oscillations that lead to power system stability.

Unstable SSCI between the power system and the current control loops of the WP control system

can be triggered by various faults or disturbances [15]. If adequate preventive actions are not im-

plemented, SSCI can cause significant consequences, including equipment damage from transient

overvoltages, power generation loss due to generator trips and oscillating voltages, and degraded

power quality [16], [17]. Consequently, several SSCI mitigation strategies have been proposed in

the literature, aimed at ensuring grid stability and protecting system components. These methods

emphasize enhancing control mechanisms, implementing supplementary damping controllers, and

exploring advanced power electronic solutions.

2.2 Mitigation Techniques for SSCI

The major techniques used in the literature to mitigate SSCI can be summarized as follows: (i)

passive damping components such as resistors, damping circuits, and tunable filters. However, they
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have limitations such as cost and adaptive tuning complexity [18]. (ii) FACTS and converter-based

devices such as static var compensators (SVC) [17], static synchronous compensators (STATCOM)

[19], and shunt-voltage sourced converters (SVSC) [20]. These methods also suffer from high in-

stallation costs and grid integration complexity; (iii) Subsynchronous damping controllers (SSDCs)

which are deployed in DFIG or WP control schemes to provide damping in frequency of oscillations

[21]. For instance, linear quadratic regulator (LQR) [22], µ-synthesis [23], multiple-model adaptive

control (MMAC) [24], PD controller [25], feedback linearization theory and sliding mode control

(SMC) [26], active disturbance rejection control (ADRC) [27], model-free adaptive control (MFAC)

[28], Energy-Shaping Controller [29], a generalized harmonic compensation control strategy [30],

partial feedback linearization [31], two-degree-of-freedom damping control loops [32], and lead-

lag scheme [33] are used among others to mitigate SSCI. Due to the low cost of deployment and

effectiveness, these schemes are the preferred solution in the literature and industry.

2.3 Cyberattacks on SSDC

As large-scale WPs grow, cybersecurity for their integrated control systems has become a

paramount concern. The deployment of mitigating controllers in a WP heavily relies on the integra-

tion of internet of things (IoT) devices within the WP’s SCADA system, ICTs, and communication

links, making it susceptible to cyberattacks [5]. The main reason for this integration is to transfer

the measurements from the DFIGs to the WPC and send the control commands back to the WTs.

Moreover, the use of various communication protocols, e.g., IEC 61400-25, IEC 60870-5, DNP 3.0,

Modbus, and IEC 61850-7, as well as multi-level control loops make the WP even more dependent

on its cyber layer. This reliance, on the other hand, makes the WP prone to cyberattacks, such as

FDI and DoS. In [6] cyberattack scenarios concerning cyber components or networks within the

integrated WP SCADA/EMS system architecture are investigated, focusing on the vulnerabilities in

the communication network of WPs. According to attack targets, the cyberattack against power sys-

tems can be classified into destroying the availability, integrity, and confidentiality of information.

The availability destruction is embodied in unavailable information resulting from communication

interruption, whose typical methods are DoS attacks, black hole attacks, and attacks modifying
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network topology. The integrity destruction is embodied in incorrect information resulting from

FDI, man-in-the-middle (MITM) attack, and replay attack[34]. Among the existing cyberattacks,

FDI and DoS attacks have received a high level of attention in the literature due to their ease of

implementation and severe consequences on the operation of power systems.

Over the past decade, adversaries have exploited these vulnerabilities, leading to significant WT

outages in several incidents. A DoS attack in 2019 targeted the communication between a control

center and wind generation sites, in Utah, USA. This attack exploited vendor firewall vulnerabili-

ties, causing unexpected device reboots [35]. Another cyberattack in 2022 disrupted approximately

30,000 satellite communication terminals, affecting modems in 5,800 turbines operated by ENER-

CON, with a combined capacity of over 10 gigawatts [36]. Moreover, in 2022, the Nordex Group

SE was hit by a ransomware attack, prompting the precautionary shutdown of IT systems across var-

ious locations and suspending remote communication with the turbines [37]. Additionally, in 2022,

Deutsche Windtechnik faced a comparable cyberattack, resulting in the loss of remote connectivity

and control for 2,000 WTs throughout Germany [38]. These events emphasize the critical need

for effective security monitoring systems and advanced attack detection mechanisms to safeguard

WP-integrated grids.

Despite its significance, only a limited number of studies have specifically addressed the security

analysis of WPs. These approaches can be divided into model-based and data-driven techniques.

Regarding the model-based approaches, in [39], [6] WP cyber and physical layers are discussed

and various attack entry points that can result in sending false shutdown commands to the WTs

are studied. Moreover, in [40], [41], the FDI attacks against the setpoint of WT controllers are

discussed and possible implications of such attacks on WP operation are investigated. The perfor-

mance of such model-based techniques is dependent on the operating condition of the system and

their deployment requires detailed parameters of the system, which may not be fully available. For

data-driven approaches, in [42], a time-sequence machine learning (ML)-based methodology was

proposed to detect DoS, signal tampering, and stealthy data injection attacks in voltage source con-

verters (VSCs) used in combination with WP. These discussed research works are, however, general

and do not focus on attacks targeting SSDCs. In the case of attacks against SSDCs, there are only

a few studies in the literature. For instance, reference [43] presents a mitigation scheme for attacks
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that target an SSDC that stabilizes a series compensated DFIG-based WP. In that study, attacks

aiming to create SSCI instability are classified into (i) internal attacks in which internal WP cyber

layers are compromised and (ii) external attacks where the cyber layer of the neighbor substation

is compromised. Then, a robust static-output-feedback observer and an adaptive mechanism are

designed for attack detection and mitigation. A cyber-resilient event-triggered control framework

for large-scale WPs is proposed in [5] to mitigate DoS and FDI attacks against SSDC by utilizing an

observer-based fuzzy control scheme. Moreover, a model-based mitigation technique based on the

Smith predictor is developed in [44] for delay attacks targeting SSDC in DFIG-based WPs. Similar

to general attacks on WPs, current countermeasures for threats against SSDCs are limited to identi-

fying cyberattacks at a single operating point of the system and often require precise grid and WP

parameters. This information may not always be available for security monitoring schemes. Addi-

tionally, existing data-driven methods focus solely on attacks targeting setpoints, neglecting those

against measurements. Thus, there is a need to develop detection techniques capable of identifying

attacks on SSDC measurements under various operating conditions. To the best of the authors’

knowledge, developing such a data-driven security monitoring system remains an open gap in the

literature.

2.4 Cyberattack Detection Methods

Despite its significance, only a limited number of studies have specifically addressed the security

analysis of WPs. In securing WP-integrated power systems, cyberattack detection methods are

generally classified into two main categories: model-based and data-driven techniques. Model-

based approaches use detailed mathematical models to identify deviations, making them effective

when system parameters are well-defined but less adaptable in dynamic scenarios. In contrast,

data-driven methods employ ML-based methods to analyze real-time data, offering flexibility and

adaptability to evolving cyberattacks. These methods utilize data from SCADA systems to detect

subtle anomalies, making them ideal for complex and variable environments in the presence of WP

uncertainties. This section provides an in-depth description of these two categories.
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• Model-based methods use mathematical models to detect cyberattacks by relying on a cyber-

physical system (CPS) model that captures the normal behavior of the system. This under-

standing allows these methods to identify deviations that may signal potential cyber threats.

For example, in [39], [6] WP cyber and physical layers are discussed and various attack entry

points that can result in sending false shutdown commands to the WTs are studied. More-

over, in [40], [41], the FDI attacks against the setpoint of WT controllers are discussed and

possible implications of such attacks on WP operation are investigated. The performance of

such model-based techniques is dependent on the operating condition of the system and their

deployment requires detailed parameters of the system, which may not be fully available.

A cyber-resilient event-triggered control framework for large-scale WPs is proposed in [5]

to mitigate DoS and FDI attacks against SSDC by utilizing an observer-based fuzzy control

scheme. Moreover, a model-based mitigation technique based on the Smith predictor is de-

veloped in [44] for delay attacks targeting SSDC in DFIG-based WPs. Similar to general

attacks on WPs, current countermeasures for threats against SSDCs are limited to identifying

cyberattacks at a single operating point of the system and often require precise grid and WP

parameters. This information may not always be available for security monitoring schemes.

A study [45] explores a nonlinear virtual inertia control (VIC) method to mitigate the impact

of FDI, hijack attack (HjA), and DoS attacks on DFIGs, improving active power and fre-

quency stability. The authors of [46] proposed an adaptive control approach based on a fuzzy

reference model to mitigate the effects of FDI attacks on the active power profile in WPs. The

detection mechanism incorporates real-time monitoring and a firewall. In the case of attacks

against SSDCs, there are only a few studies in the literature. For instance, reference [43]

presents a mitigation scheme for attacks that target an SSDC that stabilizes a series compen-

sated DFIG-based WP. In that study, attacks aiming to create SSCI instability are classified

into (i) internal attacks in which internal WP cyber layers are compromised and (ii) exter-

nal attacks where the cyber layer of the neighbor substation is compromised. Then, a robust

static-output-feedback observer and an adaptive mechanism are designed for attack detection

and mitigation. A cyber-resilient event-triggered control framework for large-scale WPs is

proposed in [5] to mitigate DoS and FDI attacks against SSDC by utilizing an observer-based
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fuzzy control scheme. Moreover, a model-based mitigation technique based on the Smith

predictor is developed in [44] for delay attacks targeting SSDC in DFIG-based WPs.

• Data-driven techniques have emerged as a powerful approach to enhancing cybersecurity in

modern power systems, effectively addressing various uncertainties. These techniques are

widely favored for their ability to efficiently scale to larger systems while maintaining low

computational costs. Reference [47] discussed data-driven techniques that are more flexi-

ble and can adapt to changes in the system being monitored. They leverage their ability to

learn from patterns in large datasets, making them particularly effective in dynamic environ-

ments like power grids with increasing WP integration, where conditions and potential threats

can vary frequently. Advancements in data processing technology have increased the focus

on data-driven methods for detecting cyberattacks in smart grid systems [48]. The review

[49] highlights the importance of data-driven techniques in detecting cyberattacks in power

systems, especially as WPs become more integrated. It notes that the digitalization and com-

plexity of such integration introduce new cybersecurity challenges, necessitating advanced

methods like ML and deep learning (DL) to identify anomalies and secure the power grids.

These techniques’ ability to adapt to evolving conditions and process real-time data makes

them effective in maintaining the stability and security of power systems with renewable en-

ergy sources. These methods leverage ML and advanced neural network (NN) architectures

to detect and mitigate various cyber threats. For instance, a hybrid power system study [50]

highlights the use of a transformer NN-based (TNN-based) classifier for detecting FDI cyber-

attacks targeting frequency sensors of the hybrid electric system. The method outperforms

traditional classifiers like support vector machine (SVM) and KNN based on performance

metrics, emphasizing the effectiveness of data-driven approaches for securing WP-integrated

power systems. A study on the Sri Lankan power system proposes data-driven detection of

cyberattacks, leveraging NN models like convolutional neural networks (CNNs), transformer

models, and LSTMs. Synthetic datasets were generated using solar farm models and demand-

supply curves, analyzing attacks such as data injection and spoofing. The approach aims to
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mitigate energy theft and grid destabilization, emphasizing enhanced cybersecurity for renew-

able energy-integrated systems [51]. Additionally, a study on cyber-physical power systems

(CPPS) emphasizes the importance of detecting data integrity attacks (DIAs) for grid security.

The impact of DIAs on wide area control (WAC) applications is analyzed, with a focus on

data-driven detection methods. RF outperforms SVM and KNN in anomaly detection, high-

lighting its effectiveness in enhancing CPPS resilience [52]. The authors of [53] proposed a

detection approach for FDI attacks in grid-connected WPs. The detection process utilizes a

margin setting algorithm (MSA). The experimental results indicated that the proposed MSA

outperformed traditional SVM and ANN algorithms in detecting FDI attacks, delivering su-

perior accuracy with minimal error. The authors in [42] proposed a time-sequence ML-based

methodology to detect DoS, signal tampering, and stealthy data injection attacks in voltage

source converters (VSCs) used in combination with WP. These discussed research works are,

however, general and do not focus on attacks targeting SSDCs.

2.5 Research Gap

Despite significant advancements in the literature on detecting cyberattacks and stability issues

in WP-integrated power grids, several critical gaps remain, particularly in the context of cyberattacks

targeting SSDCs. Similar to general attacks on WPs, current countermeasures for threats against

SSDCs are limited to identifying cyberattacks at a single operating point of the system and often re-

quire precise grid and WP parameters. Data-driven techniques are widely favored for their ability to

efficiently scale to larger systems while maintaining low computational costs. This information may

not always be available for security monitoring schemes. Additionally, existing data-driven meth-

ods focus solely on attacks targeting setpoints, neglecting those against measurements. Thus, there

is a need to develop detection techniques capable of identifying attacks on SSDC measurements

under various operating conditions. The application of data-driven security monitoring systems for

detecting cyberattacks on SSDCs in WP-integrated power grids has not been studied, representing

a significant gap in the existing literature.
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This thesis seeks to address these gaps by developing a data-driven, real-time security monitor-

ing framework based on the RNN-LSTM model, explicitly focusing on FDI and DoS cyberattacks

targeting SSDCs in DFIG-based WPs.

14



Chapter 3

Cyber-Physical Modeling and Control of

DFIG-Based WPs

This chapter presents a comprehensive cyber-physical model of a DFIG-based WP, emphasizing

the role of SSDCs in mitigating SSCI. The chapter begins with a detailed exploration of the physical

layer including the configuration and parameters of the WP, transmission lines, and control systems.

This benchmark system based on a realistic WP model will be developed using the EMTP-RV

simulation software.

A simplified model of the WP is then developed for SSDC design, incorporating linearization

and state-space representations to capture the system’s dynamic behavior. The SSDC is imple-

mented using an LQR controller and an observer, which enhance SSCI mitigation by adapting to

WT outages and improving damping performance.

The cyber layer is subsequently addressed, focusing on the SCADA system architecture. It

outlines the hierarchical control level, communication protocols, and vulnerabilities associated with

the integration of ICTs and communication links in the WP control system. The chapter underscores

the importance of robust cyber-physical modeling for ensuring the secure and stable operation of

WP-integrated power grids, particularly in the context of growing cybersecurity threats.
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Figure 3.1: Physical layer connection of a WP grid-connected system.

3.1 Physical Layer

The physical layer of the WP-integrated power system under study is depicted in Fig. 3.1. It

comprises a WP with a maximum of 268 low-voltage DFIG WTs with 1.5 MW capacity each op-

erating at 575 V and 60 Hz. The WP is subdivided equally into four clusters, with each cluster

comprising a maximum of 67 WTs. In this WP, the WTs are connected through step-up transform-

ers to the medium voltage (MV) 34.5 kV collector grid. The WTs of each cluster and their internal

transformers are represented using their aggregated model behind an RLC branch. At the point of

interconnection (POI), each cluster is connected to the power system through a 500/34.5/34.5 kV

delta-delta-grounded star three-winding transformer. The WPC monitors the current and voltage at

the POI and regulates the reactive power, voltage, or power factor depending on the operator’s se-

lected function. This study examines the WPC operating under the reactive power control function,

which independently controls the injected reactive power.

The power system includes two transmission lines, line A and line B, which link the WP to other

parts of the power grid, designated as systems A and B. Line A is a 100 km short transmission line,
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Table 3.1: Wind park parameters in the EMTP model.

Parameter value Description

Mean wind speed 11.24
m

s
Nominal mean wind speed

WPC mode select 1 1(Q-control) 2(V-control) 3(PF control)
QPOI 0 Reactive power at POI
PFPOI 1 Power-factor at POI

fn 60 Nominal frequency
Ngen 268 Number of WTs in the Wind park

Ngen in service 268 Number of WTs in service
Pgen 1.5 MW Rated active power of one wind generator
Sgen 1.667 MVA Rated apparent power of one wind generator

VgenKV RMSLL 0.575 kV Generator nominal voltage kV RMS line to line
VcollectorKV RMSLL

34.5 kV Collector grid nominal voltage kV RMS line to line
VPOIKV RMSLL

500 kV Transmission grid voltage kV RMS line to line
Sdfigtrans 1.75 MVA Rated apparent power of DFIG transformer
Xdfigtrans 0.06 pu DFIG transformer inductance in pu
Rdfigtrans 0.002 pu DFIG transformer resistance in pu
Rcollector 0.083Ω Equivalent collector resistance in Ohms
Lcollector 2.39× 10−4 H Equivalent collector inductance in H
Ccollector 2.55× 10−6 F Equivalent collector capacitance in F
SWPtrans 224 MVA Rated apparent power of wind park transformer
XWPtrans 0.12 pu Wind park transformer inductance in pu
RWPtrans 0.003 pu Wind park transformer resistance in pu
TapWPtrans 1 Wind park transformer tap ratio
fsamplingRSC

11.25KHz Sampling rate at RSC
fsamplingGSC

22.5KHz Sampling rate at GSC
fPWMRSC

2250Hz PWM frequency at RSC
fPWMGSC

4500 Hz PWM frequency at GSC
TrisetimeRSC 20ms RSC rise time
TrisetimeGSC 10ms GSC rise time

Kv 2 Voltage regulation gain
Kp 1 Proportional gain of P control loop

Tip 0.1 Integral gain of P control Ki =
Kp

Tip

Table 3.2: Internal wind park parameters.

Ht 4 s Ktg 1.2 pu
Dtg 1.5 pu npp 3
Hgen 0.9 s Dgen 0
Rs 0.033 pu Lls 0.18 pu
Rr 0.026 pu Llr 0.16 pu
Lm 2.9 pu Ktg 1.2

Rchoke 0.015 pu Lchoke 1.5 pu
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Table 3.3: Cables data.

Cable Resistance (
Ω

Km
) Inductance (

H

Km
) Capacitance (

F

Km
)

3/0 AWG 0.3815 44× 10−5 8× 10−8

350 kcmil 0.164 38× 10−5 10.5× 10−8

500 kcmil 0.125 37× 10−5 11.5× 10−8

750 kcmil 0.0778 35× 10−5 14× 10−8

while line B spans 500 km and is 50% compensated [22, 54]. This benchmark is commonly used

in the study of the SSCI phenomenon [5, 22, 23, 43, 44, 54]. In this system, a three-phase metallic

fault (F1) occurs at t=1.2 s and is cleared by circuit breaker CB1 at t=1.26 s and CB2 at t=1.28 s,

resulting in the disconnection of line A. This disconnection can potentially trigger unstable SSCI

between the power grid and the WP, providing an opportunity to evaluate the performance of the

SSDC under different scenarios.

The benchmark system developed in Fig. 3.1 will reflect real-world power systems subject to

SSCI phenomena. The WP is modeled with four clusters, corresponding to four MV feeders, which

aligns with practical WP configurations. This detailed and realistic modeling approach not only en-

hances the applicability of the WP-based power system but also provides a foundation for localizing

attack points in future studies. In future studies, telemetry data from each cluster can be analyzed

independently, enabling the identification and isolation of specific clusters affected by FDI and DoS

cyberattacks. This capability is essential for the development of WP advanced security monitoring

frameworks capable of detecting and mitigating the impact of attacks while maintaining WP sta-

bility and security performance. Therefore, this configuration not only enhances the benchmark’s

realism but also facilitates the exploration of localized cybersecurity measures in future research,

which are vital for safeguarding WP-integrated power systems.

The performance of the WP under normal operation and during cyberattack scenarios will

be evaluated through detailed EMT simulations. This detailed modeling considers the fault-ride-

through (FRT) function, the WPC, and all nonlinear functions required to obtain the precise tran-

sient behavior of the system. The input parameters of the EMTP-RV model and the WP parameters

are summarized in Tables 3.1 and 3.2, 3.3.
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Figure 3.2: Simplified model of a radially compensated WP in eigenvalue analysis.

Ht and Hg represent the inertia constants of the turbine and the induction generator (IG), re-

spectively. Similarly, Dt and Dg are the mechanical damping coefficients of the turbine and the

IG, while Dsh and Ksh denote the damping coefficient and shaft stiffness of the flexible coupling

between the turbine and the IG. Additionally, Ls, Lr, and Lm represent the stator, rotor, and mutual

inductance matrices, respectively. Detailed information regarding the control system of DFIG WTs

can be found in [55].

3.1.1 Simplified WP Model for SSDC Design

A simplified model of a series compensated WP is shown in Fig. 3.2. In this figure, the wound

rotor is connected to a back-to-back converter allowing bidirectional power flow, while the stator is

directly connected to the grid. This converter comprises two VSCs, namely, the rotor side converter

(RSC) and the grid side converter (GSC). By utilizing a DC bus, the back-to-back converter effec-

tively decouples the RSC and the GSC. To protect the RSC from over-currents and the DC capacitor

from over-voltages, a crowbar, and a chopper are respectively, placed in the model. When the crow-

bar is activated, the RSC is blocked, and the WT begins to consume reactive power. Additionally,

a DC resistive chopper is used to keep the DC voltage within acceptable limits during faults, pre-

venting unnecessary crowbar operation [56]. The power quality of the GSC is enhanced by one

choke filter and two shunt harmonic filters as depicted in Fig. 3.2 [56]. The collector grid, WT

transformer, WP transformer, and series compensated transmission line are modeled with a series
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Figure 3.3: Control architecture of DFIG wind turbine incorporating SSDC.

RLC impedance, i.e., RL, XL, and XC . Both the RSC and the GSC are controlled using vector con-

trol techniques—in the dq-frame based on either the AC flux or the AC voltage—allowing for the

decoupled control of active and reactive powers. Currents and voltages are projected onto a rotating

reference dq-frame based on either the AC flux or the AC voltage. The DFIG WT control scheme

is illustrated in Fig. 3.3, where idr, iqr are RSC currents in d- and q-axes, respectively. Moreover,

idg and iqg indicate the d-axis and q-axis currents of the GSC, respectively. The currents used in the

current control loops are IConv = [idr, iqr, idg, iqg]. The positive-sequence component of the

DFIG terminal voltage (V mea
dfig ) and the active power output of the DFIG (Pmea

dfig ) are controlled using

idr and iqr, respectively. Meanwhile, idg regulates the DC bus voltage (V mea
DC ), and iqg provides the

necessary reactive power to the grid during faults. Additionally, V mea
DC is the DC bus voltage and

the superscript ’ref’ indicates reference values. Both the RSC and GSC feature two control loops,

namely the outer loop and the inner loop. The slow outer loop generates reference signals for the

currents I ref
Conv = [iref

dr , iref
qr , iref

dg , iref
qg ]. The fast inner loop control generates the control signals

that align with the converter’s terminal voltages, which are then used to generate the modulated
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switching pattern. The reference signals for the DFIG’s active power output P ref
dfig is determined by

the maximum power point tracking (MPPT) algorithm and its reference positive-sequence voltage

(1 + ∆V ref
dfig) is calculated by the WPC. At the primary level, the WTC monitors and controls its

own positive sequence terminal voltage (V mea
dfig ) with a proportional (P ) voltage regulator. The WP

reactive power control is based on the secondary voltage control concept. At the secondary level, the

WPC modifies the WTC reference voltage values (∆V ref
dfig) via a proportional-integral (PI) reactive

power regulator to achieve the desired reactive power flow at POI when operating under reactive

power control function [57], [58]. In Fig. 3.3, idrm is the compensating term for the reactive current

absorbed by the IG and approximated by

idrm =
V mea
dfig

Xm
(1)

where Xm is the IG magnetizing reactance. During normal operation, GSC operates at unity power

factor (irefqg = 0) and the RSC controller gives the priority to the active current, i.e.,

iref
dr < I lim

dr , I lim
dr = 1 pu,

iref
qr < I lim

qr =

√
(I lim

r )2 −
(
iref
dr

)2
, I lim

r = 1.1 pu
(2)

where I limdr , I limqr and I limr are the limits for d-axis, q-axis and total RSC currents, respectively [22].

For more details on DFIG-based WP modeling, readers may refer to [22]. Grid code requirements

stipulate that WTs must sustain a stable response to sudden voltage changes, requiring the inte-

gration of a fault ride-through (FRT) function to adjust the active and reactive current references

generated by the WTC’s outer loop to comply with grid codes [59]. This paper considers the DFIG

WT equipped with an FRT function that adheres to the grid code requirements and when the FRT

function is activated, the RSC controller gives the priority to the reactive current by reversing the d-

and q-axis current limits given in (2).

The RSC and GSC control systems play a crucial role in managing the DFIG under different

operating conditions. However, in the presence of SSCI oscillations, relying solely on these con-

trollers may not be sufficient to guarantee the stability of the system. Therefore, an SSDC should

be designed and added to the control scheme of WP to mitigate the SSCI phenomenon.
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3.1.2 Linearization and SSDC implementation

This section presents a brief overview of the linearized model for the proposed system, including

the implementation of the SSDC in the WP-integrated power grid.

A simplified series compensated DFIG-based WP, as shown in Fig. 3.2, is linearized to design

SSDC. The obtained linearized state-space equations can be expressed as:

ẋ = Ax+Bu

y = Cx+Du

(3)

where x, u, and y represent the vectors of the system’s states, inputs, and outputs, respectively.

The matrices A, B, C, and D determine the small-signal behavior of the system. The state vector x

is defined as:

x =

(
xDC, xIG, xmech, xsys, xHF, xCNTL, xIVF

)T

(4)

In (4), xDC , xIG, xmech, xsys, xHF , xCTNL, and xIV F represent the states of the DC link, the

induction generator, the mechanical system, the power system, the harmonic filters, the control sys-

tems, and the voltage/current filters, respectively. The output vector of the system, which is the con-

troller input, consists of the measurements of the converter currents, i.e., y = [idr, iqr, idg, iqg]

as shown in Fig. 3.3.

The SSDC’s output signals, u = [udr, uqr, udg, uqg], are transmitted back into the current

control loops of the DFIGs as input signals of the WTC through the communication links between

WPC and WTC. Finally, an LQR controller and its associated observer are designed using the

developed linear model to dampen oscillations.
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Figure 3.4: Cyber layer connection of a WP grid-connected system.

3.2 WP Cyber Layer with the Designed SSDC

The WP’s SCADA system typically consists of monitoring and control mechanisms, along with

a communication framework. These mechanisms are generally implemented across three hierarchi-

cal levels: (i) the primary level (WT level), (ii) the secondary level (WP level), and (iii) the tertiary

level (grid level). Additionally, the communication architecture of the SCADA system, as illustrated

in Fig. 3.4, manages the transmission of data and commands and is divided into five distinct sub-

networks, as outlined below [5, 6]: (i) The WP LAN, connected to the WPC through ethernet, are

set up using WTCs and other field devices, such as the METEO function, which collects meteoro-

logical data like wind speed and temperature. The WTC is responsible for managing and monitoring

each WT, including its electrical and mechanical components. (ii) The WPC, which functions as a
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standalone SCADA network, performs monitoring and control tasks for the WTs. The communica-

tion protocols used in the WPC networks are based on the international electrotechnical commission

(IEC) 61400-25 standard which enables the SCADA system to communicate with any device in a

standardized manner. IEC 60870-5-101, DNP 3.0 over the TCP/IP framework, and Modbus are also

used for communicating control commands and measurements between control rooms and substa-

tions. This integration enables measurement transfers from WTs to the WPC and sends control

commands to WTs, relying on protocols such as IEC 61400-25, IEC 60870-5, DNP 3.0, Modbus,

and IEC 61850-7. In the WP SCADA system, real-time command and measurement information

are displayed on the workstation, while long-term data from measurement components is stored in a

historian database. The SCADA system acquires grid data, including electrical variables from WTs

and meteorological data like wind speed and temperature via the METEO function. The SCADA

server processes this data and transmits it to the application server. The application server stores

measurement data in the real-time database and sends control commands to the workstation. The

communication server processes information exchanged with the control center and is restricted

from directly communicating with the workstation [60]. Meanwhile, the application server stores

measurement data in a real-time database and transmits control commands to the workstation. If an

attacker gains control over the workstation, the WTs within the compromised WP can receive fab-

ricated trip commands, forcing them to shut down. As shown in Fig. 3.4, the SSDC is implemented

in the application server. Thus, the WTCs send the required signals (y) as the input of the SSDC

through the routers and receive the control commands (u) from the SSDC to use in the inner control

loop of the WTCs. (iii) The wide area controller manages multiple WPs across the grid, ensuring

coordinated control and stability. (iv) The backup remote controller can provide redundancy for

managing the SCADA system, offering backup capabilities in case the WPC is not functional. (v)

POI Substation operates under the IEC 61850-7 standard, handling communications and automa-

tion for monitoring and controlling physical substation components. The human-machine interface

(HMI) facilitates the operation and supervision of the substation [61]. The intelligent electronic de-

vices (IEDs) in the substation communicate with the control center and can also be polled by local

remote terminal units (RTUs). The data collected from the IEDs is then transmitted to the control

center [62].
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Chapter 4

Threat Modeling and Data-Driven

Security Monitoring Framework

This study proposes an RNN-LSTM network for real-time security monitoring to detect the de-

veloped cyber threats targeting the SSDC. The proposed network utilizes a sliding window approach

to analyze the time-dependent features of WP telemetry data, enabling the differentiation between

normal operations, FDI attacks, and DoS attacks. By continuously monitoring data streams, the net-

work provides timely alerts to the security monitoring framework within the WPC upon detecting

any cyberattacks.

This section introduces a threat model to highlight potential cyberattacks, focusing on FDI and

DoS attacks targeting SSDC control signals. The rationale behind selecting the LSTM architecture

is then discussed, followed by an explanation of the dataset development process for training and

validation. Finally, the design procedure for the RNN-LSTM network is presented.

4.1 Threat model

This study simulates FDI and DoS cyberattacks on the SSDC communication links, aiming

to degrade SSDC performance in WP-integrated power systems. These attacks exploit vulnera-

bilities in the communication links between the WPC and WTs, specifically targeting the SSDC

output/input signals.
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Figure 4.1: Cyberattack on the designed SSDC.

It is important to note that most communication protocols used in the WP SCADA systems, such

as IEC 61400-25 [63], are designed for rapid data exchange but lack essential security features, as

highlighted by the United States department of energy [35]. This reliance on real-time data ex-

change makes the communication links between the WTCs and the WPC, as illustrated in Fig. 4.1,

particularly vulnerable to cyberattacks, including FDI and DoS attacks. Such vulnerabilities under-

score the critical need for robust cybersecurity measures to protect the integrity and availability of

the WP control system.

Since SSDC signals are crucial for the stability of the WP, attackers attempt to manipulate
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these signals to create undamped oscillations. In this threat model, it is assumed that the attackers

possess sufficient knowledge of the WP communication network and its cyber infrastructure to

modify or interrupt the SSDC control commands. This information could be obtained by the insiders

with access to WP data, by external attackers compromising the system’s database [6, 64] or by

conducting reconnaissance activities [36]. The target of the attack in this study is the communication

link between the WPC and WTC, where real-time measurement data and SSDC control commands

are managed. Additionally, it is assumed that the attack was launched from outside networks of

WP, similar to the Utah attack that occurred in 2019 [35]. In the threat model used in this thesis, as

illustrated in Fig. 4.1, data transmitted between routers located in WP LAN and the WPC via internet

protocol (IP) or transmission control protocol/internet protocol (TCP/IP) are considered vulnerable

to man-in-the-middle (MITM) attacks, which can falsify or block the SSDC output control signals.

4.1.1 FDI and DoS attack models

The FDI attack is mathematically formulated as:

u′(t) = α · u(t) (5)

where α determines the magnitude of the attack. u′(t) and u(t) are, respectively, the modified and

original control signals.

On the other hand, the DoS attack can be modeled as:

u′(t) = u(t) · (1−H(t− t1) +H(t− t2)) (6)

where H(t) is the step function, t1 is the start time of the DoS attack, and t2 is its end time.

To illustrate the impact of the attacks, Table 4.1 presents different scenarios used to evaluate

SSDC’s performance with and without discussed attack scenarios. In all the scenarios, the wind

speed is assumed to be minimum—where the SSCI is more severe—and 268 WTs are in service.

Under normal conditions (Scenarios S1 and S2), Fig. 4.2 shows that without SSDC the system is un-

stable, whereas the designed controller can dampen the oscillations successfully. However, during
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Figure 4.2: POI active power, reactive power, and voltage in S1 and S2.

the simulated FDI or DoS cyberattacks (Scenarios S3 and S4), the SSDC’s performance deterio-

rates significantly, leading to sustained oscillations and system instability, as shown in Fig. 4.3 and

Fig. 4.4, respectively. These results underscore that the designed SSDC, which effectively dampens

oscillations under normal conditions, cannot stabilize the system in the presence of cyberattacks.

Thus, robust cybersecurity measures, including advanced detection systems, are needed to effec-

tively monitor and safeguard WP-integrated power systems. Moreover, Figs. 4.2-4.4 also illustrate

the temporal dependencies of the data recorded during both normal and attack scenarios. Features

such as park active power, reactive power, and voltage exhibit fluctuations over time, making it

essential to capture the time-series nature of the data to identify evolving patterns of instability.

Table 4.1: Analysis of the SSDC performance under normal and attack conditions

Scenario SSDC Wind Speed WT Numbers System Condition
S1 No SSDC 0.6 pu 268 Normal
S2 With SSDC 0.6 pu 268 Normal
S3 With SSDC 0.6 pu 268 FDI attack
S4 With SSDC 0.6 pu 268 DoS attack

To show the impact of the attacks, Table 4.1 presents different scenarios that are used to evaluate

SSDC’s performance. In all the scenarios, the wind speed is assumed to be minimum—where the
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Figure 4.3: POI active power, reactive power, and voltage in S2 and S3.
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Figure 4.4: POI active power, reactive power, and voltage in S2 and S4.

SSCI is more severe—and 268 turbines are in service. Under normal conditions (S1 and S2), Fig. 4.2

shows that without SSDC the system is unstable, whereas the designed controller can dampen the

oscillations. However, during the simulated FDI or DoS cyberattacks (S3 and S4), the SSDC’s

performance deteriorates significantly, leading to sustained oscillations and system instability as
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illustrated in Fig. 4.3- Fig. 4.4, respectively. For instance, in Fig. 4.3 SSDC’s performance sig-

nificantly degrades under FDI cyberattack, resulting in instability of the system due to sustained

oscillation. Additionally, different instability patterns can be observed in the WP’s waveforms in

Fig. 4.4, where the WP is under a DoS attack targeting the SSDC control signals. These results

underscore the importance of robust cybersecurity measures, including advanced detection systems,

to effectively monitor and safeguard WP-integrated power systems against potential cyberattacks.

Figs. 4.2-4.4 show the temporal dependencies of the data recorded in both normal and attack

scenarios. Features such as active power, reactive power, and voltage exhibit fluctuations over time.

Therefore, capturing the time-series nature of the data is essential for identifying evolving patterns

of instability.

Modern WP-integrated power systems exhibit highly dynamic behavior, driven by factors such

as fluctuating wind speeds, varying numbers of in-service WTs, and shifting grid impedance. The

inherent complexity of controlling such systems, combined with their reliance on communication

links for real-time operation, renders them particularly susceptible to cyberattacks, including FDI

and DoS attacks. Consequently, the development of advanced security monitoring and cyberattack

detection systems has become increasingly attractive. These systems aim to ensure system integrity

by continuously monitoring the security state of the power system and enabling real-time detection

of potential cyber threats, thereby safeguarding the stability and reliability of WP-integrated power

systems.

4.2 Motivation for using RNN-LSTM architecture

Unlike traditional model-based systems, ML-based methods excel in identifying sophisticated

attacks by learning intricate patterns from datasets. ML algorithms are broadly categorized into

supervised and unsupervised learning methods. Supervised learning relies on labeled datasets and

feedback mechanisms to predict specific outcomes, while unsupervised learning operates on unla-

beled data to uncover hidden patterns without external guidance. By leveraging these capabilities,

ML methods offer a powerful means to identify subtle anomalies and evolving threats in modern

power systems [65], [66].
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WP-integrated power systems may exhibit time-sequential oscillatory behavior due to uncertain-

ties in operating conditions—e.g., fluctuating wind speeds, varying numbers of WTs in service, and

shifting grid impedance—as well as potential security issues. RNN-LSTM networks, a specialized

variant of RNNs, are particularly well-suited for detection purposes when the data is time-sequential

and oscillatory. Given the inherent uncertainties and the time-sequential nature of WP-integrated

power systems, a method capable of handling sequential data and capturing long-term dependen-

cies is essential. To address these needs, RNNs are well-suited for modeling sequential data as they

retain information across time steps, enabling the capture of dependencies where past states influ-

ence future predictions. While RNNs can model sequential data by retaining information across

time steps, they face limitations in capturing long-term dependencies due to the vanishing gradient

problem [67]. To address this limitation, RNN-LSTMs incorporate memory cells and gating mech-

anisms that effectively manage relevant information over extended sequences, enabling the model

to capture intricate temporal patterns.

Consequently, RNN-LSTMs are ideal for WP-integrated systems due to their ability to handle

sequential data, capture long-term dependencies, and adapt to dynamic conditions. Additionally,

their real-time processing capability ensures timely detection of cyberattacks, allowing for immedi-

ate interventions to maintain system stability and operational reliability.

4.3 Data generation for training and validation of the model

The data generation process is vital for effectively training the RNN-LSTM model under varying

system conditions. To ensure comprehensive coverage of potential operational states, this study sim-

ulates system uncertainties in wind speed (Ws), number of WTs (NWT ) in-service, grid impedance

(ZGrid) under normal operation, FDI attacks, and DoS attacks. The data generation process involves

multiple steps (i) system behavior is captured through EMT simulation of the understudy system in

the presence of different uncertainties in Ws, NWT , and ZGrid under normal operation, FDI attacks,

and DoS attacks. (ii) the feature set of the simulation results (F ) are recorded including Ws, NWT ,

park active power (PPOI ), park reactive power (QPOI ), park voltage (VPOI ), park current (IPOI ),
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Figure 4.5: RNN-LSTM model structure for the security monitoring system under different uncer-
tainties in WP system.

DC link voltage (VDC), WPC reference signal (∆V ref
dfig), SSDC input signals (y), SSDC output sig-

nals (u), and grid impedance (ZGrid). (iii) considering the assumption regarding the time of attack

and disturbances, these features are extracted over a pre-determined period and stored in a dataset.

(iv) The dataset is divided into two parts, one part is used for model training, while the other is

reserved as an unseen dataset for validation. (v) The simulated data is processed for offline train-

ing of the RNN-LSTM model by cleaning, handling missing values, normalization, and scaling.

Standardizing the data by removing the mean and scaling to unit variance ensures compatibility and

enhances the model’s efficiency [68].

This comprehensive dataset equips the RNN-LSTM model to effectively learn and detect pat-

terns across varying operational states and cyberattack conditions, significantly enhancing the secu-

rity monitoring and detection capabilities of the WP-integrated power system.

4.4 Designing the RNN-LSTM network detection model

In this section, we focus on designing an RNN-LSTM network by determining activation func-

tions, selecting the optimization algorithm, and optimizing hyperparameters of the customized

model (such as the number of hidden units, dropout rate, learning rate, batch size, and the num-

ber of training epochs) using Bayesian optimization [69]. This approach enables the model to

effectively capture long-term dependencies in sequential data, crucial for identifying cyberattacks

in WP-integrated power systems.
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4.4.1 Structure of customized RNN-LSTM network

The structure of the customized RNN-LSTM network is shown in Fig. 4.5. As illustrated in

this figure, the input of the proposed RNN-LSTM network model ( 1⃝ in Fig. 4.5) reshaped into a

3-D matrix containing nsc 2-D matrices of dimensions T ×nF to accommodate multiple scenarios.

Each 2-D matrix has T rows and nF columns, representing the dataset of the number of features

in the length of T time steps. A sliding window method ( 2⃝ in Fig. 4.5) is applied to capture

temporal dependencies and patterns, with window size (W ) and step size (S). This method creates

overlapping segments, where the first segment includes time steps t0 to tW−1, and the k-th segment

includes time steps tKS to tKS+W−1. Thus, the total number of segments nseg is given by:

nseg =

⌊
T −W

S

⌋
+ 1 (7)

Each segment is treated as an independent input Xi for training the RNN-LSTM model, enabling

it to capture sequential patterns and classify different scenarios. When the input data is reshaped as

discussed above, the next step is to send it to the LSTM layer, which is composed on nseg × nsc

LSTM cells, each with a number of hidden units optimized through hyperparameter tuning. These

cells are specifically designed to capture long-term dependencies and temporal patterns within the

reshaped input data, enhancing the model’s ability to detect subtle changes over time. The LSTM

cell architecture as illustrated in Fig. 4.6 manages the flow of information through three main gates,

which helps retain relevant information and discard unnecessary data at each time step. These gates

allow the model to learn and remember important temporal patterns across the time steps, which are

essential for detecting subtle attack-related changes in WP-based power system variables. The three

gates are described as follows [70]:

• The forget gate helps the LSTM decide which information to discard from the cell state, based

on the previous hidden state (ht−1) and the current input (xt). This ensures that the model

keeps only the most relevant data. Mathematically, the forget gate is defined as:

ft = σ(Wf · [ht−1, Xt] + bf ) (8)
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Figure 4.6: LSTM cell architecture.

The output ft is multiplied with the previous cell state Ct−1 to update the cell’s memory.

• The input gate determines what new information to add to the cell state. It combines a sigmoid

activation for input selection and a hyperbolic tangent function to generate the candidate cell

state update:

it = σ(Wi · [ht−1, Xt] + bi) (9)

C̃t = tanh(Wc · [ht−1, Xt] + bc) (10)

Ct = ft ∗ Ct−1 + it ∗ C̃t (11)

This combination allows the LSTM to update the cell state (Ct) based on both past memory

and new information. This process ensures that important new information is stored, while

irrelevant information is discarded.

• The output gate controls what information from the updated cell state is passed to the next

hidden state (ht), enabling the network to propagate relevant information through time steps:

Ot = σ(Wo · [ht−1, Xt] + bo) (12)

ht = Ot ∗ tanh(Ct) (13)

It uses the current input and the previous hidden state to decide which parts of the cell state

are relevant for the output. It should be noted that in Fig. 4.6, σ is the activation function.
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To prevent overfitting, a dropout layer with a tuned dropout rate is then applied. During training,

dropout randomly deactivates neurons, ensuring the model doesn’t rely too heavily on any specific

pattern, thereby improving its generalization ability across different scenarios. Following the LSTM

layer, a dense layer or fully connected (FC) with a tuned number of units is added. FC layer is a

type of neural network layer where each neuron is connected to every neuron in the previous layer.

This layer takes the output of the LSTM layer and applies a weighted sum, followed by a rectified

linear unit (ReLU) activation function. The ReLU function enables the model to learn nonlinear

representations of the input data, which is crucial for distinguishing between normal operations and

cyberattacks effectively. It should be noted that the output dataset of the RNN-LSTM model is a

matrix with nseg × nsc rows and the three columns correspond to the predicted probabilities for

considered three classes (i.e., normal, FDI, and DoS attacks) that classify each input using the last

time step label in each window. Each row contains a probability distribution over these classes, with

the predicted class determined by the highest probability. The output layer uses a softmax activation

function, which converts the model’s outputs into a probability distribution over the three classes.

The softmax function ensures that the outputs sum to 1, allowing the model to predict the most

likely class for each input.

4.4.2 Hyperparameter Tuning

The performance of DL models relies significantly on precise hyperparameter tuning, which

influences the model’s capacity to learn complex patterns and achieve high accuracy. Hyperparam-

eters are the configurations that are set before the learning process begins, and finding the opti-

mal values can significantly improve model accuracy and efficiency. To optimize the RNN-LSTM

model, Bayesian optimization was used for its efficiency in exploring the hyperparameter search

space [69]. This methodology uses a probabilistic model to estimate the performance of differ-

ent hyperparameter configurations and uses an acquisition function to balance exploration (testing

new hyperparameter values) and exploitation (refining promising configurations). Its iterative ap-

proach ensures an efficient search for optimal hyperparameters, particularly in complex models like

LSTMs.

The tuned critical hyperparameters include the number of hidden units, dropout rate, learning
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rate, batch size, the number of training epochs, and optimizer. Hidden units were adjusted to im-

prove the model’s ability to capture long-term dependencies, while dropout was applied to prevent

overfitting and enhance generalization. The learning rate, controlling the step size during optimiza-

tion, and the batch size, determining the number of samples per update, were both fine-tuned for ef-

ficient training. The number of epochs balances training time and performance, and the optimizer’s

objective is to adjust weights and learning rates during the training of DL models, minimizing loss

and enhancing accuracy.

The categorical cross-entropy loss function, which is detailed in [71], was utilized for our mul-

ticlass classification task. This function penalizes incorrect predictions, encouraging the model to

assign high probabilities to the correct class. For three classes (normal, FDI, and DoS), the cross-

entropy loss is:

L = − 1

N

N∑
i=1

3∑
c=1

yi,c log(ŷi,c), (14)

where N is the number of training samples, yi,c is a binary indicator for whether class c is the correct

label for sample i, and ŷi,c is the predicted probability for class c.

In addition to hyperparameters, Bayesian optimization selected the Adam optimizer as the best-

performing optimizer. Adam’s adaptive learning rate, which adjusts dynamically based on the first

and second moments of gradients, ensures efficient convergence and handles the nonlinear patterns

in WP-integrated power system data effectively.

Integrating Bayesian optimization, categorical cross-entropy, and the Adam optimizer enables

the RNN-LSTM model to achieve high accuracy and low latency. This configuration supports the

continuous monitoring of incoming data streams, providing timely alerts to the WPC security mon-

itoring system and ensuring the security of the WP-integrated power system.
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Chapter 5

Simulation Results and Analysis

In this section, the simulations of the system under study (discussed in Section 3) were per-

formed in EMTP-RV. The process of dataset generation and analysis of the collected results were

performed in MATLAB. The SSDC is designed so that it can stabilize the system in the worst-case

condition of the grid using the LQR technique. All simulations were performed on a Windows per-

sonal computer equipped with a 64-bit Intel i7 processor running at 2.9 GHz and 16 GB of RAM.

Additionally, Google Colab with Python 3.8 was utilized to execute ML tasks. The RNN-LSTM

model was developed using the TensorFlow library. Bayesian optimization was conducted using the

Optuna framework for hyperparameter tuning.

5.1 Data Generation for Training and Validation

The dataset consists of 550 scenarios, with 480 scenarios allocated for training and 70 scenarios

reserved as an unseen dataset for validation purposes. The training dataset comprises 160 scenarios

each for normal, FDI, and DoS conditions and is divided into training and testing subsets using an

80:20 split. The unseen dataset consists of 30 normal, 20 FDI, and 20 DoS scenarios. This structured

dataset generation ensures a comprehensive evaluation of the model’s ability to generalize to new

and unseen operational conditions.

To capture the normal behavior of the system, we changed operating conditions within a con-

ventional range of wind speed, number of in-service WTs, and grid impedance. For instance, wind
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speed (Ws) was varied between 0.6 p.u. and 0.96 p.u., while the number of in-service WTs (NWT )

was changed from 161 (60%) to 268 (100%). Moreover, grid impedance (ZGrid) was also varied

across four levels to represent different grid operating conditions by multiplying the grid impedance

by coefficients {0.8, 0.9, 1, 1.1}. It should be noted that such ranges are selected so that we have a

diverse and possible operating range for the WP-integrated grid.

To create a wide range of attack scenarios and form the dataset, FDI and DoS attacks were

simulated with varying severities.

For FDI attacks, the attack magnitudes (α) in the training and validation datasets were set to

{0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6}. Similarly, for DoS attacks, interruption durations (t2 −

t1) were chosen as {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85} seconds for training and validation

datasets. In this study, the DoS attack is assumed to be launched concurrently with the occurrence

of a fault (F1) and the activation of the FRT mechanism. This timing represents the worst-case

scenario, as it blocks the SSDC precisely when it is most critical for damping oscillations and main-

taining system stability.

All scenarios were simulated in EMTP-RV over a 0.5-second time window from t=1 s to t=1.5

s to capture the most relevant data for accurate attack detection. The data was sampled at a rate of

250 µs, producing 2001 time steps (T ) per scenario.

The training dataset used in this study is inherently imbalanced, reflecting the attack timing.

Moreover, considering the time steps T and the number of scenarios nsc, we have 449,068 samples

for normal operations, 320,160 for FDI attacks, and 191,252 for DoS attacks, all reported before

applying the sliding window method. Similarly, the unseen dataset contains 76,050 samples for

normal operations, 40,020 for FDI attacks, and 24,000 for DoS attacks, also before the employment

of the sliding window method. This imbalance mirrors real-world conditions, where DoS attacks

typically occur over shorter durations compared to normal operation or FDI scenarios.

A total of 91,680 inputs from normal and attack scenarios were generated for the training dataset

after utilizing the sliding window method, while 13,370 inputs were created for the unseen dataset,

considering the related nseg and nsc. The number of normal samples is higher than expected because

the system’s behavior before the initiation of a DoS attack is also considered normal operation,

thereby contributing additional normal samples to the dataset.
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5.2 Hyperparameter tuning

The hyperparameter tuning process focused on optimizing key parameters and selecting an ap-

propriate optimizer from the defined search space using Bayesian optimization. The search space

included LSTM layers with hidden units ranging from 32 to 128, dropout rates between 0.2 and 0.5,

learning rates within the range of [10−4, 10−2], number of epochs between 30 and 100, and batch

sizes ranging from 16 to 32. Among the optimizers, RMSprop and Adam were evaluated. The best

configuration included the Adam optimizer with 70 hidden units, a dropout rate of 0.37, a learning

rate of 0.00077, a batch size of 32, and 60 epochs.

5.3 Benchmark Classifiers for Comparative Analysis

This section presents the reasons for choosing the other classifiers for benchmarking with the

proposed RNN-LSTM model. The chosen classifiers are well-suited for the cyberattack classifi-

cation task in the WP-based power system, which involves WP telemetry data and requires distin-

guishing intricate patterns. Each classifier brings unique strengths that make it applicable in this

context:

• Random Forest:

RF is a powerful ensemble learning method that combines the predictions of multiple decision

trees (DTs), using techniques like bootstrap aggregation and random feature selection, making

it particularly effective for classification tasks in intrusion detection systems due to its abil-

ity to handle high-dimensional data, imbalanced datasets, and categorical features efficiently

[72]. As highlighted in [73], RF can handle large feature spaces effectively by construct-

ing multiple DTs and aggregating their outputs. This makes it ideal for analyzing telemetry

data from WP systems, where numerous parameters such as voltage, current, and wind speed

contribute to system behavior. Its ability to manage nonlinearity and decision boundary com-

plexities makes it an effective baseline for distinguishing cyberattacks in the WP-based power

system.

• k-Nearest Neighbors:
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kNN method, highlighted in [74], is known for its simplicity and classifies data points based

on the majority of their nearest neighbors, making it ideal for easily interpretable applications.

kNN has the flexibility of being able to predict multiclass target variables. While it lacks

an explicit mechanism for modeling temporal dependencies, its strength lies in identifying

localized patterns, which can serve as a complementary baseline for detecting cyberattacks in

such systems.

• Multilayer Perceptron:

The references [75], [76] describes the MLP as a deep learning model capable of capturing

complex, nonlinear data relationships, making it effective for analyzing intricate patterns in

power systems. Its flexibility in learning intricate patterns makes it highly suitable for this

task, particularly in capturing interactions between features influenced by WP-based system

dynamics.

These diverse strengths make them ideal benchmarks for evaluating the efficacy of the pro-

posed model.

5.3.1 Hyperparameter Optimization for Benchmark Classifiers

To ensure a fair and rigorous comparison, the hyperparameters of all the above-mentioned clas-

sifiers were fine-tuned using Bayesian optimization. This approach efficiently explores the search

space to identify the optimal configuration for each model, enhancing their performance on the

given dataset. The specific hyperparameters tuned for each classifier are as follows:

• RF:

◦ Number of estimators (trees): [5, 500].

◦ Maximum depth: [10, 50].

◦ Minimum samples split: [2, 10].

◦ Minimum samples leaf: [1, 5].

◦ Maximum features: [sqrt, log2].
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The best RF parameters determined through Bayesian optimization are as follows: 167 esti-

mators, a maximum depth of 34, a minimum of 2 samples required for a split, 5 samples per

leaf node, and the square root of the total number of features considered for the best split.

• kNN:

◦ Number of neighbors (k): [1, 30].

◦ Weighting scheme: [Uniform, distance-based].

◦ Distance metric: [Euclidean, Manhattan, Jaccard].

The kNN classifier is tuned with 13 numbers of neighbors, using a distance-based weighting

scheme, and the Euclidean distance metric to calculate distances.

• Multilayer Perceptron (MLP):

◦ Hidden layer sizes: [32, 256].

◦ Learning rate: [10−5, 10−1].

◦ Activation functions: [ReLU, tanh]

◦ Dropout rate: [0.2, 0.5].

◦ Batch size: [16, 64]

◦ Number of epochs: [20, 100]

The MLP classifier is tuned, resulting in hidden layer sizes set to [64, 32], a learning rate of

10−3, the ReLU activation function, a dropout rate of 0.3, a batch size of 32, and the number

of epochs set to 50.

5.4 Performance of customized RNN-LSTM model

This section evaluates the performance of the proposed RNN-LSTM model in classifying cyber-

attacks to monitor the security status of the WP-integrated power grid. The model’s effectiveness is
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Figure 5.1: Accuracy and loss function for training and testing dataset plot.

assessed using multiple metrics. A comparative analysis with other well-established classifiers high-

lights the advantages of the proposed RNN-LSTM model for the WP security monitoring system.

The model is also evaluated using a previously designed unseen dataset.

The accuracy and loss function plots for the training and testing data in the proposed model are

illustrated in Fig. 5.1. These plots show the accuracy of training/testing and loss curves over 60

epochs. The model demonstrates a high level of accuracy on both the training and testing data, with

a low and stable loss for both. The difference between training and testing accuracy is negligible,

suggesting that the model is not overfitting and generalizes well to unseen data. From epochs 50

to 60, both training and testing accuracy remain consistently high without significant fluctuations,

indicating stability in the model’s performance.

The performance of the proposed model is evaluated in comparison with other established clas-

sifiers, such as RF [77, 73, 72], kNN [74], and MLP [75, 76].

The classification performance of the proposed RNN-LSTM model is evaluated using several

criteria, including balanced accuracy (BACC), precision, recall, F1 score, and confusion matrix.

These metrics for the multiclass classification task in this study are calculated as follows [78]:

• Balanced accuracy is particularly well-suited for addressing the class imbalance observed

in our simulations, ensuring a fair evaluation across all classes. This metric highlights the

model’s performance in detecting normal and cyberattack scenarios and provides a compre-

hensive measure of its effectiveness, especially given the imbalanced dataset structure where
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interactions between classes are critical.

BACC =
1

3

(
TPDoS

DDoS
+

TPFDI

DFDI
+

TPn

Dn

)
(15)

Where TPDoS, TPFDI, TPn is true positives (TPs) for DoS, FDI, and normal, respectively. The

denominators are defined as follows:

DDoS = TPDoS + FNFDI, DoS + FNn, DoS (16)

DFDI = TPFDI + FPDoS, FDI + FNn, FDI (17)

Dn = TPn + FPDoS, n + FPFDI, n (18)

In these equations, DDoS represents the sum of TPs for the DoS class and false negatives (FNs)

where DoS is misclassified as FDI or normal. DFDI is the sum of TPs for the FDI class and

false positives (FPs) where DoS instances were incorrectly classified as FDI, as well as FNs

where FDI instances were misclassified as normal. Dn includes the TPs for the normal class

along with the FPs where other classes (DoS or FDI) were incorrectly classified as normal.

• Precision and Recall are particularly useful for assessing model performance where the dataset

is imbalanced. Precision quantifies the proportion of TPs among all positive predictions made

by the model, while recall quantifies the proportion of TPs instances that the model correctly

identified. High precision means the model has few FPs, making it accurate in its predictions.

High recall indicates the model effectively captures the most relevant instances, minimizing

FNs.

Precision =

∑3
j=1 TPj∑3

j=1 TPj + FPDoS, FDI + FPDoS, n + FPn, FDI
(19)

Recall =

∑3
j=1 TPj∑3

j=1 TPj + FNFDI, DoS + FNn, DoS + FNFDI, n
(20)

where j = 1, 2, 3 corresponds to the classes DoS, FDI, and normal.
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Figure 5.2: Confusion matrices for different classification methods.

• F1 Score combines the precision and recall scores by calculating their harmonic mean, pro-

viding a single metric that balances both precision and recall. It is given by:

F1 Score =
2× Precision × Recall

Precision + Recall
(21)

The confusion matrices for our proposed RNN-LSTM model and other well-known classifiers

are illustrated in Fig. 5.2. They provide a detailed breakdown of classification results for each

model, illustrating their ability to distinguish between normal, FDI attacks, and DoS attacks.

Table 5.1: Comparison of different methods for classification performance

Classifier Balanced Accuracy Precision Recall F1 Score
kNN 97.83% 98.72% 98.71% 98.71%
MLP 97.85% 98.92% 98.46% 98.69%
RF 98.13% 99.00% 98.74% 98.87%

Proposed
RNN-LSTM

99.23% 99.85% 99.14% 99.49%
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The proposed RNN-LSTM model demonstrates outstanding classification performance across

all three classes. Notably, it achieves zero FPs and FNs for the DoS class, reflecting its superior

ability to capture temporal dependencies and accurately detect the unique characteristics of DoS

attacks. Similarly, the FDI and normal classes exhibit minimal misclassifications, with only a small

fraction of FDI samples being misclassified as normal. This highlights the model’s strength in

handling imbalanced datasets and distinguishing between closely related classes. Additionally, the

ability of the proposed method to accurately distinguish between DoS and FDI attacks is particularly

valuable, enabling WP operators to take timely preventive actions based on the specific type of

detected attack. Among the classifiers, the RF model demonstrates high accuracy across all classes,

particularly excelling in the classification of the DoS class. However, the MLP and kNN classifiers

exhibit notable misclassification errors, particularly in distinguishing between the FDI and normal

classes with higher FN and FP instances. Table. 5.1 summarizes the comparative performance of the

proposed developed model against kNN, MLP, and RF. The proposed RNN-LSTM model achieves

the highest BACC of 99.23%, indicating its superior ability to correctly classify instances across

all classes, even under the dataset’s inherent imbalance. This is a significant improvement over the

RF, which exhibits a BACC of 98.13%, and the MLP and kNN, which show balanced accuracies of

97.85% and 97.83%, respectively.

In terms of precision, the RNN-LSTM model outperforms the other classifiers with a precision

score of 99.85%. While RF follows closely with a precision of 99.00%, both MLP and kNN show

slightly lower values of 98.92% and 98.72%, respectively.

The recall metric, which measures the model’s ability to identify TPs, also highlights the RNN-

LSTM’s dominance with a recall score of 99.14%. This suggests that the model can effectively

detect even the less frequent cyberattack scenarios (e.g., DoS attacks), minimizing the risk of FNs.

In comparison, RF achieves a recall of 98.74%, whereas MLP and kNN show recalls of 98.46% and

98.71%, respectively.

Finally, F1 score further underscores the RNN-LSTM model’s superiority. Achieving an F1

score of 99.49%, the proposed model balances high precision and recall, making it suitable for

this classification task. RF, MLP, and kNN achieve F1 scores of 98.87%, 98.69%, and 98.71%,

respectively, reflecting their comparatively lower consistency in handling the complex temporal and
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Figure 5.3: Confusion matrix for RNN-LSTM model on the unseen dataset.

class-dependent patterns present in the dataset.

The performance metrics collectively highlight the effectiveness of the customized RNN-LSTM

model, which enables it to capture intricate temporal dependencies in the data. This capability

proves critical in achieving high classification accuracy, particularly in distinguishing between the

DoS and FDI classes, where temporal features play a significant role.

5.4.1 Model Validation on Unseen Data

The developed RNN-LSTM model was validated using the described unseen dataset, demon-

strating strong generalization capabilities. The model achieved a BACC of 94.48%, recall of

98.77%, precision of 95.48%, and an F1 score of 97.09%. It effectively detected DoS attacks,

correctly classifying 2,353 out of 2,400 samples, with only 3 and 44 misclassifications as normal

and FDI as illustrated in Fig. 5.3. However, the model faced difficulty distinguishing between FDI

and normal classes, as 591 normal samples were misclassified as FDI. This reflects the challenge of

separating these two classes due to their similar behavior.

The model exhibited particularly high precision, especially for DoS attacks, achieving a near-

perfect score of 99.74%, indicating its ability to identify TPs and minimize FPs—a critical feature

for security monitoring. However, precision for the FDI class is lower at 86.25% compared to

DoS and normal, indicating more FPs where normal instances are incorrectly classified as FDI. The

recall for FDI (96.01%) was slightly lower than DoS and normal classes, likely due to overlapping

patterns or subtler differences between FDI and normal classes. This performance suggests that the

model can reliably identify FDI attacks, even with subtle data manipulations and variations in the
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mentioned WP-based uncertainties along with different attack vectors within the unseen dataset.

Despite this, the model excels at distinguishing DoS attacks from FDI, ensuring that WP operators

receive timely and reliable alerts for preventive actions.

5.4.2 ROC and AUC Analysis

To further evaluate the model’s performance on the unseen data, receiver operating characteristic

(ROC) curves and their corresponding area under the curve (AUC) metrics were analyzed. The

AUC is a critical metric, particularly in imbalance datasets, as it provides a robust measure of model

performance by summarizing the trade-off between the TP rate and FP rate across different threshold

values [78].

A higher AUC value suggests a stronger performance, as it indicates the model’s ability to main-

tain a high TP rate while minimizing a low FP rate across all decision thresholds. As illustrated in

Fig. 5.4, the AUC values for the DoS, normal, and FDI classes were 0.9964, 0.9917, and 0.99, re-

spectively. The high AUC score of 0.9964 for DoS indicates exceptional accuracy in detecting these

attacks, with minimal risk of FPs. The slightly lower AUC for the FDI class is due to the inherent

challenges of distinguishing FDI from normal operations. FDI attacks often exhibit patterns that

closely resemble normal behavior, resulting in feature overlap, and they introduce only subtle devi-

ations in system parameters, making detection more challenging compared to the more disruptive

DoS attacks.
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Figure 5.5: Time-domain detection of DoS attack using RNN-LSTM model.

5.5 Real-Time Security Monitoring System Implementation

This section evaluates the feasibility of implementing the developed RNN-LSTM-based secu-

rity monitoring system for real-time operations in WP-based power grids. The timely detection of

cyberattacks is critical for WP operators to issue alerts and initiate protective measures.

The average inference time of the RNN-LSTM model is approximately 132 ms per prediction

over 100 iterations. This low latency allows the system to provide frequent updates, meeting the

dynamic operational requirements of WP-based systems. As illustrated in Fig. 5.5, the proposed

system effectively detect the evolving DoS cyberattack in near real-time. The slight prediction

delay of 132 ms remains well within the acceptable operational thresholds for WP-integrated power

systems, allowing operators to take rapid action to maintain system stability and security.

The proposed security monitoring system is integrated within the WPC, utilizing the WP SCADA

architecture to access real-time WP operational data through secure interfaces, such as application

programming interfaces (APIs) or shared databases. The real-time security monitoring system re-

trieves the required data via this interface. Initially, the data is preprocessed and reshaped into

a 3-D format with a 250 µs sampling rate to ensure compatibility with the trained RNN-LSTM

model. Subsequently, a sliding window approach, with a window size of 100 and a step size of 10,

generates overlapping input segments every 25 ms, which allows the system to effectively capture

temporal patterns essential for real-time analysis.

The trained RNN-LSTM model classifies the WP’s security status as either normal, FDI, or

DoS, and generates alerts accordingly. In the event of a detected cyberattack, the system promptly
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notifies WP operators, enabling them to respond with appropriate countermeasures. Predictions

are refreshed approximately every 132 ms, ensuring that the system provides timely and accurate

security updates that align with the operational needs of WP-based power grids.
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Chapter 6

Conclusion

The growing integration of DFIG-based WPs into modern power grids highlights the dual chal-

lenge of addressing inherent stability issues and detecting rising cybersecurity threats. This study

addresses these challenges by proposing a data-driven framework based on an RNN-LSTM model

for detecting FDI and DoS attacks targeting the performance of SSDC in WP-integrated power sys-

tems. The proposed RNN-LSTM model was trained on a simulated dataset that captured diverse

normal operating conditions and various cyberattack scenarios, accounting for uncertainties in the

operation of wind-integrated power grids.

This trained model demonstrated superior classification performance compared to well-known

ML models, including RF, KNN, and MLP. Specifically, the RNN-LSTM model achieved a BACC

of 99.23% on test data and 94.48% on unseen data, significantly outperforming the other classi-

fiers. The model’s superiority is attributed to its ability to capture long-term dependencies and

temporal patterns essential in distinguishing between normal operations and cyberattack conditions.

Furthermore, the proposed model yields low latency, which makes it a suitable option for near

real-time operation of WPs. Future research will focus on extending this framework to address

multi-vector cyberattacks and developing adaptive mitigation strategies to enhance the robustness

of WP-integrated power systems. Moreover, by utilizing the proposed benchmark prone to the SSCI

conditions, future studies can develop detection methods to accurately localize cyberattack points,

enabling more effective preventive measures in WP-based power grids.
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