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Abstract

Artificial intelligence, and especially deep learning, have had a major spotlight shined on
them in recent years. Our goal is to mathematically and computationally explore some of
its potential limits - specifically, those related to identity effects and generalization. Iden-
tity effects refer to the ability to recognize specific patterns, such as checking whether two
sounds are identical, something human brains are very adept at handling from a very young
age. It has been observed that depending on how the input data is “encoded”, that is what
type of vectors differentiate the pair of objects to be classified a deep neural net might fail
to generalize identity effects outside the training set. Namely, given that matching objects
are valid pairs, and non-matching objects are not, some types of encodings will allow the
network to generalize to inputs it has never seen before, and some will not. Previous re-
search shows that the existence of a specific orthogonal transformation on the encodings can
predict impossibility of generalization. We explore mathematically and then test numeri-
cally whether approximate orthogonality leads to predictable loosening of the impossibility,
eventually finding that approximate orthogonality leads to approximate impossibility. In
particular, adding random noise to traditional encodings such as the “one-hot” encoding can
help neural networks generalize outside the training set.
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Chapter 1

Introduction

“Artificial intelligence (AI) plays a crucial role in shaping the modern world, trans-
forming industries and impacting daily life in unprecedented ways. By enabling
machines to process vast amounts of data, learn from it, and make decisions, AI
powers innovations in fields ranging from healthcare and finance to transporta-
tion and entertainment. In healthcare, AI aids in diagnosing diseases, predicting
patient outcomes, and personalizing treatment plans, thus improving patient care
and outcomes. In finance, it strengthens fraud detection, optimizes trading, and
enhances risk management. Self-driving vehicles and smart city planning show-
case how AI can make transportation safer and more efficient, while AI-driven
recommendation systems in media and retail create more personalized experiences
for users. Moreover, AI is increasingly used to tackle complex global challenges,
such as climate change and energy optimization. As AI continues to advance, its
responsible and ethical use becomes essential to ensure it benefits society while
addressing concerns around privacy, bias, and security.”

— ChatGPT

Artificial intelligence (AI) has been a topic of great importance as of late. We can see in
Figure 1.1 that Artificial Intelligence research has been growing incredibly fast over the last
decade, with a specific focus on machine learning [17]. Even people with no knowledge or
interest in the field are exposed to it through the electronic devices and applications they use
every day. Facebook, one of the most popular social networks, has an AI ChatBot to “help”
by making suggestions about what to search for or even what to type in a conversation.
Multiple popular conversation-able Chatbots are used for leisure and even for education.
Some graduate students even use AI as a replacement for Google or StackExchange for finding
which commands and how to use them exist while coding. The incredibly popular search
engine Google often suggests AI-written answers to queries, sometimes deeply inappropriate
- for example, touting the health benefits of running with scissors [9].

It is not trivial to determine exactly when this “AI revolution” began. Humans have
been curious about thinking and artificial thinkers for a very long time - even as far back
as Ancient Greek Mythology there were writings of Talos, often described as an artificial
life form designed by Hephaestus [25]. Jewish folklore has the Golem, an artificial thinking
being made from some simple building material such as clay or mud [8]. AI has been a
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Figure 1.1: Number and field of AI publications in the world, 2010-22 (found in [17])

mainstay in science fiction for decades, often as an existential threat to human existence
such as in popular films Terminator or the Matrix (which somehow has little to do with
linear transformations).

Linear regression and the method of least squares appeared around the year 1800, which
could be considered the first true artificial neural network - albeit a simple, linear one [24].
The preceptron, the first true (however simple) neural network for binary classification, dates
back to the 1943 [18]. The first Feedforward Neural Networks (FNNs, see Section 2.2.2) deep
learning systems appeared in the 1960s and early 1970s [24]. From there, many more types
of neural networks were proposed, some of which are explored in Section 2.2.3.

It is difficult to overstate the impact AI is having on modern life. Apple’s AI assistant Siri
was used many times during this thesis to set reminds and alarms. AlphaGo has finally done
the unthinkable, and has grown able to defeat even the best Go players (a popular abstract
board game with a famously massive decision space) with some consistency [6]. Popular
streaming service Netflix uses an AI driven recommendation system to direct viewers to
media they might enjoy [20].

AI has even begun to encroach on fields many were not expecting to be possible - the
visual arts. There are great controversies forming as to what is considered art and whether
AI driven art is naturally infringing on artists’ intellectual property through training sets.
These controveries have begun to have a significant impact on some industries: particularly,
board and video games with AI created art have become more and more common, a fact that
many artists and consumers are not happy with.

It is easy to take for granted that machine learning is capable of a great deal, especially
as it begins to seep into the consciousness of society. It becomes natural to ask what kinds
of limits these powerful tools might have. In fact, mathematician Steven Smale, writer of
“Mathematical Problems for the Next Century” ([26]), included as his 18th problem: “What
are the limits of intelligence, both artificial and human?” For example, it is well known that
deep neural networks have major vulnerabilities to “adversarial attacks” [12]. These “attacks”
refer largely to specifically chosen inputs which lead to outputs that are very distant from
the ground truth. For example, the DeepFool algorithm is put forth in [19], where very small
changes to a picture, nearly invisible to the naked eye, completely change the categorization
of an image for a specific learner. A picture of an elephant with a few discoloured pixels in
the corner might suddenly be read as a whale. If this type of extreme failure is possible,
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what other types of failures are there?

1.1 Thesis Objectives

In this thesis we will explore one particular example of another issue that may arise in the
training and use of neural networks - that of identity effects (described in great detail below
and in Section 2.3). Here we try to mathematically study one particular limitation of AI
through theorems, then by reinforcing the theorems with numerical experiments.

Children learn to tell whether two sounds are identical at a very young age - even while
still babies, they begin to develop the ability [16]. Because of the similarity between biological
brains and neural networks, it seems reasonable to ask if a neural net has the same ability.

Instead of checking for identical sounds, though, for simplicty of the testing itself we will
create two-letter (and eventually three-letter) “words” to see if a deep neural network has the
ability to recognize whether or not both letters are the same. So an example “good” word
might be ‘AA’ or ‘BB’, and a “bad” word could be ‘AB’ or ‘CA’. For a human observer, it is
trivial to guess that the proper pattern is probably about matching letters, and assume that
‘XX’ is good and ‘ZY’ is bad, even though none of those letters have been seen before. The
question becomes: can a deep neural net generalize the matching letter pattern to letters it
hasn’t seen before?

This is not the first study into the topic of neural networks and identity effects. In fact, in
Gary Marcus’ book [16] strong claims were made empirically showing that neural networks
can’t generalize this kind of pattern.

It turns out that the answer is slightly more complicated than a simple “yes” or “no”.
Because of the structure of a neural net, one cannot simply input a letter, and must instead
“encode” the information into vectors - and the generalization ability of the network depends
on exactly how that data is encoded. We wish to study a specific relationship between how
the data is encoded and how well the learner can generalize the pattern from limited data.

1.2 Thesis Outline

We begin in Chapter 2 by introducing the basic concepts of neural networks and encodings.
We then flesh out the meaning of “Identity Effects” and explore several types of encodings
and a specific transformation we call τ that appears linked to the issues with generalization.
We also touch briefly on relevant modifications of τ and on patterns other than the simple
two-letter-matching.

In Chapter 3 we then explore and confirm many of the experiments in [3] to establish
a basis for the work. We then explore different types of encodings and the patterns that
might cause some to allow some degree of generalization, exploring different types of what
are known as “distributed” encodings and “noisy one-hot” encodings. Our main result is
Theorem 3.4, which is a large inequality that places a limit on the ability of a neural network
to generalize in certain common cases.

We conclude with Chapter 4, in which we review what has been found and then posit
some open problems and how this research might best be continued into broader topics.
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Chapter 2

Background

In this chapter, we describe the general setting and explore previously published theorems
in order to properly set the stage for our own results. We also prove some minor auxiliary
results.

To begin, we give some basic notation in Section 2.1. We then follow with a larger section
expanding on deep neural networks and deep learning in Section 2.2, within which we explore
the basic definition of a Neural Network in Section 2.2.1 and give an example of the type
of network we use in this paper (Feedforward Neural Nets) in Section 2.2.2. We’ll discuss
some common activation functions and optimization methods (SGD and Adam) in Section
2.2.5, then go into the specifics of Identity Effects throughout Section 2.3, giving an overview
and basic theorems in Sections 2.3.2 through 2.3.6. Then we proceed to stochastic methods,
a relevant transformation (τ), and several of its variants in Sections 2.3.7-2.3.11. Section
2.3.9-2.3.11 contain original results stemming from the work done in this thesis.

2.1 Basic Notation

Throughout this thesis, several norms will be used, including:

The Frobenius matrix norm, for an m× n matrix M : ||M ||F =

√
m∑
i=1

n∑
j=1

|mij|2.

The Lp function norm, for f : X → V , where V is a vector space equipped with norm
∥ · ∥: ||f ||Lp(X) = (

∫
X
∥f∥p)1/p.

L∞ is a special case defined as ∥f∥L∞(X) = supX ∥f∥.

2.2 Deep Learning

Machine learning is a huge topic in modern literature, and it spreads itself across many
academic and corporate fields. Though it has many subfields, in this paper we will focus
on neural networks - specifically deep neural networks, the training of which is called deep
learning [15]. For a more thorough introduction to the topic, see for example [13] or [2].

4



2.2.1 Introduction to Neural Networks

A neural network is a mathematical object which can be thought of as a function, which
takes in some input and gives an output in a precise way. The input is usually a vector, or
a vectorized piece of data, and the output can be thought of as a vector as well - though
the specific form the vector takes can be very different from problem to problem. Our main
focus will be supervised learning, the most common scenarios therein being classification
(differentiating inputs between different categories) and regression (analogous to function
approximation). The underlying structure of neural networks made for classification and
those made for regression are fundamentally the same, with only slight variations.

Neural networks were designed with direct inspiration from how the biological brain works
[11] - hence the name. In a brain, a neuron is either firing (on) or not (off), and then that
information is transmitted to the next set of neurons, and then so on and so forth. In an
(artificial) neural net, a very similar process takes place over several of what are known as
“hidden layers” between the input layer and the output layer. First, we will describe in detail
how a neural net functions, specifically a feedforward network (the simplest). Second, we will
describe in broad detail the adapting of a network to a problem, known as training. Finally,
other examples of neural networks will be briefly mentioned, but they are not the focus of
this paper.

2.2.2 Feedforward Neural Networks

The first and simplest form of a neural network is a feedforward network [24]. It begins by
taking in some (ideally vectorized) input and running multiple affine transformations on it -
one per node in the first hidden layer - and then some non-linear transformation is applied to
it, known as an “activation function”. These affine transformations have coefficients known
as “weights” and the constant additive terms are known as “biases”. There are many types
of activation functions, to begin let us examine those most similar to what happens in the
actual human brain - they take in some data, and then the neuron either fires, or it doesn’t.
This can be seen as a step function - it fires (1) for certain input values, and doesn’t fire (0)
for others.

So for one layer, we have our input x, our weights W , our biases b, and our activation
function σ. Note that together, Wx + b is an affine function of x. A single layer is given
explicitly by

A(x) = σ(Wx+ b),

where the activation function σ is applied component-wise.
A multilayer network comes from composing multiple layers. It is common for each

activation function other than the last one to be the same, then the final function forces the
data into a more appropriate shape. For example, if one is attempting to classify data into n
categories, the final activation function will convert the previous layer’s output into a vector
of n probabilities using the softmax function (the softmax function takes a vector of values
v ∈ Rk and creates a vector of probabilities z: zi = evi/

∑k
j=1 e

vj). In sum, the full neural
network is a function of the form Atot below:

Atot(x) = σn(Wn(...(σ2(W2(σ1(W1(σ0(W0x+ b0)) + b1)) + b2)) + ...)) + bn).
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Figure 2.1: Step function compared to popular activation functions

It was very common early to use the sigmoid function as it acts as an approximation to
a smooth step function: sigmoid(x) = 1

1−exp (−x)
. See Figure 2.1 for a comparison to a step

function. There are many activation functions, but the one we use the most often in this
paper is the “Rectified Linear Unit” (ReLU), a simple function that acts as a linear function
when x ≥ 0, but is 0 elsewhere:

ReLU(x) =

{
x x ≥ 0
0 x < 0.

We now have enough to put together a toy network. Let’s imagine a neural network that
takes in three-dimensional data and outputs a simple binary (either 0 or 1). Our toy network
has 3 hidden layers, with 2, 4, and 3 neurons each, respectively. See Figure 2.2 for a visual
representation. At each node in the first hidden layer, the three inputs are each multiplied
by a weight and summed with a bias. Then the ReLU above is applied. Note that since
there are 2 neurons with 4 parameters each, that gives us 8 parameters in the first hidden
layer. Now since we have two outputs in the first layer, any specific neuron in the second one
will sum their weighted outputs and add a bias - making 3 parameters per neuron and 12
total in the second layer. The activation function (ReLU for us) is then applied once more,
giving us four new outputs for the third layer to take in in a similar manner, so each neuron
has 5 parameters, giving us a total of 15 in this layer. Lastly, we have our final layer, which
will act similarly to any other neuron - taking in the previous outputs, multiplying them by
weights, adding them to a bias - but won’t have an activation function in the same sense. In
our case, we might have a final output of 0 if the value of the final affine transformation is
negative, and a final output of 1 otherwise. This final layer has a total of 4 parameters itself.

This small toy network has 8+12+15+4 = 39 parameters. As one can imagine, a neural
net in actual applications has far more layers and neurons, and hence many more parameters.
This can cause major problems when it comes to a network “learning” what these parameters
should be - and this is largely the topic of interest in neural networks. We discussed how a
feedforward network takes in inputs and gives an output, but a far more interesting question
is how to create a neural net to approximate some ground truth function - and to do that
we must discuss loss functions and two very popular methods of learning based on gradient
descent.
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Figure 2.2: Example network

2.2.3 Other Common Network Types

There are many types of deep neural networks outside of the FNNs. Throughout the rest of
this thesis we use FNNs due to their computational accessibility, but we provide descriptions
for two other particularly relevant network types.

Recurrent Neural Networks, or RNNs, are neural networks that do not simply pass through
their input data all at once, but instead do it in multiple steps. This allows them to be
more powerful for processing sequential data. This is achieved by allowing neurons to pass
information to one another even in a single hidden layer. In particular, Long Short-Term
Memory (LSTM) networks are a particular type of RNN that allow promoting long term
memory storage when it is useful, and forgetting data otherwise. For a more complete view
of RNNs and LSTMs, see [10] and [22].

Graph Neural Networks [23], or GNNs, are neural nets that learn functions on graphs.
Succinctly, a graph is a mathematical object made up of nodes (V ) and edges (E) connecting
some, all, or none of those nodes. In GNN terms we also require node features on each vertex
- so in total, a graph can be written G(V,E, α). GNNs encode the data in graphs into vectors
before learning, and so can have similar questions to our own FNN networks.

Identity effects and how they appear in LSTM networks and GNNs are explored specifi-
cally in [3] and [4], respectively.

2.2.4 Learning and Backpropagation

We consider a “loss function”, which represents how well (or poorly) the neural network
fulfills our criteria. Different loss functions exist, and can be used for different purposes, but
each assigns a value to the output of the neural net when compared to the desired output.

Using this loss function, one applies “backpropagation” to calculate gradients (the details
of which are beyond the scope of this thesis, but an extensive explanation can be found in
[13]), and an iterative optimization algorithm is applied to reduce the loss and increase the
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accuracy of the model.

2.2.5 SGD and Adam

Stochastic Gradient Descent (see [2]), or SGD, was once one of the most important tools
used in deep learning. It has since been replaced with similar, more effective tools such as
Adam (introduced in [14], but many operate on the same framework, so SGD is important
to understand.)

SGD is an algorithm for optimization, and an evolution of Gradient Descent. The idea
of Gradient Descent is that the gradient points in the direction of greatest increase, so if one
were to move in the opposite direction, it would be towards a (local) minimum.

Let us begin by defining Gradient Descent. Say there is some differentiable function,
F (Θ), F : Rn → R, and and a minimum is desired. We begin with a random input Θ0. At
each iteration i we compute:

Θi+1 = Θi − αi∇F (Θi)

where αi > 0 is the preset learning rate (which can vary from iteration to iteration). We
continue this process until some stopping point has been reached - for example, if F (Θi) is
below some threshold, or after some preset maximum number of iterations. It is worth noting
that if the goal is to instead maximize, there is also Gradient Ascent - the same process, but
we add the gradient instead of removing it (Θi+1 = Θi + αi∇F (Θi)).

Algorithm 1 (Gradient Descent)

Require: F (Θ): Objective function with input Θ
Require: αi: Learning Rate Sequence
Require: Θ0: Initial input
1: procedure GD
2: while Θi not converged do
3: Θi+1 ← Θi − αi∇F (Θi)
4: end while
5: return Θi

A common use of Gradient Descent is the case where the function is a loss function of some
kind - a sum of functions over some data points D = (di)

n
i=1. Since we are in the supervised

case, each datapoint has had its output measured and can be written as di = (xi, yi). In this
case, the objective is to optimize the parameters of the function by “descending” towards
the lowest total loss. Let us define a model

ŷ = f̂(x,Θ)

and a general loss function

FD(Θ) =
1

n

n∑
i=1

ℓ(f̂(xi,Θ), yi),

8



Algorithm 2 (Stochastic Gradient Descent)

Require: F (Θ): Objective function with parameters Θ of the form FD(Θ) =
∑

d∈D F{d}(Θ)
Require: D: Dataset
Require: αi: Learning Rate Sequence
Require: Θ0: Initial parameters
1: procedure SGD
2: while Θi not converged do
3: Select batch (see below) Di ⊂ D
4: Θi+1 ← Θi − αi∇

∑
d∈Di

F{d}(Θ)
5: end while
6: return Θi

where Θ represents all trainable parameters. Common loss functions include the ever present
Mean Squared Error (MSE) [7], often seen even in elementary statistics, and binary cross-
entropy, which we use in all experiments [3]. The mean squared error corresponds to the
choice

ℓ(y, ŷ) = (y − ŷ)2,

and the binary cross-entropy loss is

ℓ(y, ŷ) = −y log (ŷ)− (1− y) log (1− ŷ).

Stochastic Gradient Descent (Algorithm 2) is a very similar process, but instead of using
the entire dataset at every iteration, the dataset is looked at one random data point or set
of data points at a time. This speeds up the process dramatically by reducing the number
of computations that needs to be done, as since ∇FD =

∑n
i=1∇f{di} we need only compute

∇F{di} for the datapoints in question. It is also possible to use batching to instead process
the data more than one data point at time. Algorithm 2 refers to SGD with batching, for
SGD without batching the batches Di would instead be single datapoints di.

A selected batch can be random or on a pretedermined schedule, so long as the selection
is independent of the parameters in question Θ. An epoch is said to have been completed
when each datapoint has been included in some Di since the last epoch ended.

Lastly, one of the most common modern stochastic optimization processes is Adam, short
for Adaptive Moments (see [14]). The precise details are beyond the scope of this paper, but
seeing as Adam is the process used for the numerical experiments in this paper, we provide
an overview.

Adam requires a step-size αi, but it also requires two decay rates, β1 and β2. It begins as
Gradient Descent, but instead of updating the parameters directly, it instead stores estimates
of the biased first and second moments of the function FD(Θ). At each step, it calculates
them using the gradient, stores them, corrects the biases, then calculates the new parameters
using the corrected biases. Then it begins anew. Once the estimates converge, the process
stops. The algorithm is omitted for brevity.
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2.3 Identity Effects

In this section the idea of Identity Effects in Neural Networks will be explored. “Identity
effects” refers to a learner attempting to “learn” whether two things are identical, as described
in the introduction. We will discuss basic identity effects and present an impossibility theorem
(proving that for some learners and datasets the learner cannot truly distinguish between
things being identical and not), and then expand that into more general situations. We define
several encodings and describe how the they influence the impossibility, and then progress
into the idea of “approximate” impossibility.

2.3.1 Introduction to Identity Effects - Literature Review

In natural learning situations, it turns out that humans have a really easy time distinguishing
where or not two sounds are “identical” from a very young age [16]. Somewhat surprisingly,
the same is not true of neural networks. This paper will focus on some specific situations in
which neural networks fail to distinguish whether two things are identical - hence the name
“Identity Effects”.

2.3.2 The Setting

First, let us define a notation for the general setting. Let us define W as the vector space
of all possible inputs w, where the choice of the letter “w” here is meant to invoke the idea
of “words”. For most purposes, including ours, W = Rd, though we only use a small subset
of it for viable inputs, as we only have a finite number of relevant objects. As our task is
currently a simple binary classifier, each input has a rating r ∈ [0, 1], describing how likely
it is to be in the class “1”.

We then have a dataset D, a finite list of individual data points that are comprised of a
“word” and its rating (w, r), w ∈ W, r ∈ [0, 1]. For our dataset, the ratings are confined to
the set {0, 1}, as they are created and sorted without the use of any learner. We define D as
the set of all possible datasets.

Next we will consider a learning algorithm L : D ×W → R, and what it learns given a
given dataset D, and then apply it to an input w. This will give us a rating r. For consistency
with the literature, we will refer to this whole function as L(D,w). Note that we can also
see this as a function f(Θ, w) that takes in some parameters, which we will define in total as
Θ, as well as a datapoint in order to give us that data point’s rating. In other words:

L(D,w) = f(Θ, w) = r.

2.3.3 A Simple Impossibility Theorem

A given algorithm trained on such a dataset D should ideally be able to recognize whether or
not objects are identical, even pairs of objects it has not seen before - those w in W but not
in D. We now show that at least in one very specific instance, it is impossible for a learner
to ever be able spot differences.

The method to approach this is to find some linear transformation τ : W → W (with
corresponding matrix T ) we can apply to the data so that the learner cannot distinguish
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between the original data and the transformed data. There are two relevant properties the
pair of a learner L(D,w) and a τ can have, and as we’ll see in Theorem 2.1 any learner-dataset
pair for which there exists a transformation with those properties will lead to impossibility.

1) Invariance of the Data: Simply, τ(D) = D. As one might imagine, this means that the
dataset and the transformed dataset are completely equivalent. For example, if our dataset
includes all possible strings of 4 letters, and we were to swap each instance of letter A to the
letter B, and each instance of the letter B to the letter A, it would still contain all possible
strings of 4 letters, and thus be indistinguishable and hence invariant to the transformation.

2) Invariance of the Algorithm: L(τ(D), τ(w)) = L(D,w) ∀w ∈ W . The learning algo-
rithm, when trained on the transformed dataset, assigns the same rating to the transformed
input as it would have assigned to the original input when trained on the original dataset.

This brings us to our first theorem, the proof of which is so concise that it is being listed
in the same matter as in the original text.

Theorem 2.1 ([3, Theorem 1]). For any learning algorithm that satisfies both property 1
and property 2, the algorithm will not be able to differentiate between the transformed τ(w)
and the original datapoint w, that is

L(D, τ(w)) = L(D,w).

Proof. L(D, (τ(w)) = L(τ(D), τ(w)) = L(D,w).

As a toy example, one can consider W to be the set of words that are two letters long,
taken from the first seven letters of the alphabet (A through G) with a rating of 1 if the two
letters are identical, and 0 otherwise. (Note: this cannot be run through a neural network,
as it is not a vector in Rn, but our setting is still more general.) Our dataset D will be the
set of all pairs that only contain the first five letters (A through E). To ease visualization,
some example datapoints are (A, A, 1), (E, C, 0), and similar.

Next our transformation τ will replace any instances of the letter F with the letter G, and
vice versa. It is easy to see that D = τ(D), as there are no Fs or Gs in D. The Invariance
of the Algorithm is a much more complex topic and will be studied further deeper in this
thesis.

2.3.4 τ as an Adversarial Attack

It is possible to view this τ as a form of adversarial attack (as mentioned in the Introduction).
τ allows one to find specific examples τ(w) that lead to misclassification.

Let us take the toy example above, with no Fs or Gs present in the datase, and assume
invariance of the algorithm. We see that τ(FF) = FG, so since L(D, τ(w)) = L(D,w) →
L(D,FF) = L(D,FG) either FF or FG must be misclassified. Clearly, τ has generated an
adversarial example, and is therefore an adversarial attack.

2.3.5 Encodings

The purpose of an encoding is to take data and turn it into some form a neural net can take
as an input - in other words, a simple numerical vector. Each encoding explored in this paper
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is a matrix where each column corresponds to one letter’s encoding, and where each letter’s
encoding is unique. To create a “word” encoding, we concatenate the letter encodings. The
dimension of each encoding is largely independent from the number of letters, so long as
there is enough information (see distributed encodings immediately below), and so we define
this dimension to be n. There are several types of encodings used in this paper, including:

• One-Hot : A one-hot encoding assigns each input to a position in a vector. The vector
that represents a single input has a 1 in that position, and a 0 in all others. This
requires a vector of dimension at least equal to the number of inputs.

Example: A = (1, 0, 0, ...)⊤, B = (0, 1, 0, ...)⊤, ..., Z = (0, 0, ..., 1)⊤

• Distributed : A distributed encoding involves having a vector of some dimension, and
each letter is encoded using a combination of “activated bits” (ie bits set to 1, where all
others are set to 0). If you have N different objects, an ambient dimension of da, and b
activated bits, it is clear that one requires daCb ≥ N . Which activated bits correspond
to which letter are decided at random, while ensuring that no two letters have identical
encodings. How different values of da and b affect the encodings are explored later.

Example with b = 3, da = 7: A = (1, 0, 1, 1, 0, 0, 0)⊤, B = (0, 0, 1, 0, 1, 0, 1)⊤, ..., Z =
(1, 1, 0, 0, 0, 1, 0)⊤

• Noisy One-Hot : Noisy One-Hot encodings are similar to One-Hot encodings, but each
encoding has a random Gaussian vector added to it. The way different variances
influence the encoding is also explored later.

Example with variance µ2 = 0.1: A = (1.03,−0.2, 0.1, ...)⊤, B = (0.2, 0.84,−0.3, ...)⊤,
..., Z = (−0.5, 0.4, ..., 1.1)⊤

Note that one-hot encodings are a special case of distributed encodings where da equals the
number of possible letters and b equals 1, and are a special case of noisy one-hot encodings
where µ = 0.

One-hot and distributed encodings are both examples of “binary encodings”, as each of
their entries is either 0 or 1.

Matrices corresponding to a few random encodings are included in Figure 2.3 to aid in
visualization. Here each column represents 1 letter’s encoding.

2.3.6 “Factorizable” Models

Recall that we can see our model that pairs each datapoint with its rating, given as a function
of some parameters and our datapoint (f(Θ, w) = r). Let us consider a model in which we
can “factor” these functional inputs such that we can write f(Θ, w) = f(B,Cw), where
C is a matrix which contains all multiplicative coefficients on w and B contains all other
parameters. Though this type of setting appears to be quite specific, on the surface, it turns
out that most neural network models use this structure, as the initial operation is nearly
always a linear transformation, as discussed in Section 2.2.2.

Now we must discuss where B and C originate. We have a useful result if they arise from
some loss function with no regularization term (see (2.2) below for the alternative), that is,
one of the form:
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Figure 2.3: Matrix visualizations for select encodings

F (B,C) = L(f(B,Cwi), ri|i = 1, 2, ...n) (2.1)

A common example of this type of loss function could be the mean squared error as seen
in statistics, in our case: F (B,C) =

∑n
i=1(ri − f(B,Cwi))

2.

Theorem 2.2 ([3, Theorem 2]). For any learning algorithm based on the form f(B,Cw)
optimized with parameters set by loss function of the form (2.1) that has and attains a unique
minimizer (B̂, Ĉ) for a given dataset D, i.e.,

L(D,w) = f(B̂, Ĉw),

we have that L is invariant to all invertible linear transformations τ :

L(τ(D), τ(w)) = L(D,w), ∀w ∈ W.

Proof. As discussed earlier, we have that τ(x) = Tx, for some matrix T , which has an inverse
T−1 by hypothesis. Then, upon optimizing for our transformed dataset we have

L(τ(D), τ(w)) = f(B′, C ′(Tw))

for some B′ and C ′ obtained by minimizing the loss L(f(B,CTwi), ri, i = 1, 2, ...n). Now
since we had a unique minimizer, we have that

Ĉ = C ′T =⇒ C ′ = ĈT−1

and B′ = B̂.

Therefore
L(τ(D), τ(w)) = f(B′, C ′Tw) = f(B̂, Ĉw) = L(D,w).

Remark 2.3. It is worth noting that the ambient space is not relevant in this theorem - it
applies even to non-linear spaces.

13



Next, let us consider a similar case except where our loss function has a regularization
term:

FReg(B,C) = F (B,C) + λR(B,C) = L(f(B,Cwi), ri, i = 1, 2, ...n) + λR(B,C) (2.2)

Where λ ≥ 0 is a tuning parameter which decides how much the regularization term
“penalizes” the loss function: where λ = 0, there is no penalty, but as λ increases, what-
ever our regularization term is will penalize more and more . There are several forms this
regularization term can take, the simplest of which is similar to ridge regression [7]:

R(B,C) =
∑
i

B2
i +

∑
i,j

C2
ij.

Here, the regularization term penalizes large parameters. As λ goes to 0, the penalty
for large parameters becomes small (and becomes non-existent at λ = 0, removing the reg-
ularization term), but as it goes to ∞, the magnitude of the parameters is penalized and is
driven towards 0.

For the remainder of this section, we will refer to FReg(B,C) as F (B,C), for convenience.

Theorem 2.4 ([3, Theorem 3]). Consider the same setting as Theorem 2.2, but where the loss
function follows form (2.2) instead, and the transformation matrix T , when right-multiplied
by the second input of R, has no effect on the regularization term: R(B,CT ) = R(B,C).
We have that L is invariant to all invertible linear transformations τ :

L(τ(D), τ(w)) = L(D,w) ∀w ∈ W

Proof. As in Theorem 2.2, we transform the data and optimize once again, finding optima
B′ and C ′. Then we have:

F (B′, C ′) = L(f(B′, C ′Twi), ri, i = 1, 2, ...n) + λR(B′, C ′)

But since, B̂ and Ĉ are unique minimizers, we must also have:

F (B̂, Ĉ) = L(f(B̂, Ĉwi), ri, i = 1, 2, ...n) + λR(B̂, Ĉ)

So then, combining these and the fact that R(B′, C ′T ) = R(B′, C ′) by hypothesis, we have:

B′ = B̂, C ′ = ĈT−1.

The rest of the proof continues as in Theorem 2.2.

2.3.7 Stochastic Methods

So far, we have only shown that invariance of the algorithm occurs in the case of unique
minimizers, which is an idealized scenario. Now we will enter into more realistic applications
- such as Stochastic Gradient Descent (SGD, see Algorithm 2). We will also need the concept
of equality in distribution. We continue to assume that our learning algorithm input is
“factorizable” as f(B,Cw), as in Section 2.3.6. We assume our loss function to have the
form:

F (B,C) = L(f(B,Cw), r|(w, r) ∈ D) + λ(R1(B) + ∥C∥2F ) (2.3)

Where here λ ≥ 0 (the weak inequality allows for unregularized loss functions) and ∥ · ∥F
is the Frobenius norm, defined in Section 2.1.
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Definition 2.5. Two real-valued random variables are considered to be equal in distribution

(denoted “
d
= ”) when their distribution functions are equal, that is to say

X
d
=Y ⇐⇒ P (X ≤ x) = P (Y ≤ x)∀x

Theorem 2.6 ([3, Theorem 4]). Let T be an orthogonal matrix (i.e., one such that T⊤T =
TT⊤ = I.) Suppose one uses SGD (as defined in Algorithm 2) with a pre-determined step size
sequence {αi}ki=1 and a loss function in the same form as (2.3), where F (B,C) is differentiable
with respect to B and C, to generate a sequence of parameters starting at (B0, C0) and ending

at (Bk, Ck). Next, assume that C0
d
=C0T and that the random initialization of B0 and C0 were

independent. Such learners, L(D,w) = f(Bk, Ckw), are invariant to such transformations,
that is

L(τ(D), τ(w))
d
=L(D,w).

Proof. Let us find (B′
k, C

′
k). Since the initialization is random and independent of our dataset,

(B′
0, C

′
0T )

d
=(B0, C0). We will use mathematical induction on the sequence (B′

i, C
′
i)

k
i=0. Next,

defining FX as the loss function when applied only on data in X, and Di to be the data in
the i’th batch we can see that

Fτ(Di)(B,C) = L(f(B,Cw), r|(Tw, r) ∈ Di) + λ(R1(B) + ∥C∥2F )
= L(f(B,CTw), r|(w, r) ∈ Di) + λ(R1(B) + ∥CT∥2F )
= FDi

(B,CT ).

Next, we use the chain rule

∂Fτ(Di)

∂B
(B,C) =

∂FDi

∂B
(B,CT )

∂Fτ(Di)

∂C
(B,C) =

∂FDi

∂C
(B,CT )T⊤. (2.4)

To see that B′
i+1 = Bi+1, using the inductive hypothesis B′

i
d
=Bi and the definition of SGD:

B′
i+1 = B′

i − αi

∂Fτ(Di)

∂B′ (B′, C)

= B′
i − αi

∂FDi

∂B′ (B
′, CT )

d
=Bi − αi

∂FDi

∂B
(B,CT )

= Bi+1.

Similarly, for C ′
i+1:

C ′
i+1 = C ′

i − αi

∂Fτ(Di)

∂C ′ (B′, C ′)

= C ′
i − αi

∂FDi

∂C ′ (B
′, C ′T )T⊤

d
=CiT

−1 − αi
∂FDi

∂C
(B,CT )T⊤

= Ci+1T
−1.
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Combined, and plugging into our basic equation for L, we have

L(τ(D), τ(w)) = f(B′
k, C

′
kTw)

d
= f(Bk, Ckw).

An Example Transformation τ

A commonly useful example transformation that many learner-encoding-datasets are invari-
ant to simply swaps two “letters” (or analogues) that weren’t included in the dataset, and
leaves the dataset as it was. So if our set W is a pair of objects, (x, y), and we have two
specific objects A and B that are left out of our dataset D, our transformation τ does the
following:

τ(x, y) =


(x,B) if y = A,

(x,A) if y = B,

(x, y) otherwise.

(2.5)

Let us define this τ ’s transformation matrix in the one-hot case TOH : R52 → R52. First,
we define S, a matrix that swaps the final two components. Without loss of generality, we
assume that the final two letters are the ones that are not seen in the dataset.

S =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 0


∈ R26×26 (2.6)

Now TOH just applies S to the second “letter” in our encoding, and the first letter is
unchanged:

TOH =

(
I26 0
0 S

)
,

where In denotes the n × n identity matrix and 0 denotes a zero matrix of suitable
dimension.

This is an orthogonal matrix: and so Theorem 2.6 applies even in many real world settings
when using SGD. Adam is beyond the scope of this paper, but behaves similarly, as seen in
the Appendix of [3].

2.3.8 Modifying TOH

It is clear that for other types of encodings, τ ’s transformation matrix TOH must be modified,
in that each letter’s encoding is non-zero in more than one component. We assume that the
encoding matrix is invertible.
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The process is similar, but with an additional step. We define R′ ∈ R26×26 so that each
letter’s encoding is transformed into the simple one-hot’s case using elementary linear algebra.
We then create a larger matrix R ∈ R52×52:

R =

(
R′ 0
0 R′

)
For another encoding, denote the new τ ’s transformation matrix T̃ . By transforming

our vector input into a one-hot encoding by multiplying by R, then transforming it through
TOH , then transforming it back into the original, we can apply τ to any dataset. When our
encoding is a basis, R is invertible and we have:

T̃ = R−1TR.

This matrix will not be orthogonal in most non-one-hot cases.

2.3.9 Properties of τ

A relevant question one might ask is whether the τ defined in equation 2.5 is linear or not.
We prove that it is, under necessary and sufficient conditions on the encoding vectors. We
will require a quick definition to aid in the proof.

Definition 2.7 (Tensor Product of Linear Maps). The tensor product of linear maps, denoted
⊗, is defined as follows, where F1, F2, ..., Fn are linear maps and x1, x2, ..., xn are vectors:

(F1 ⊗ F2 ⊗ ...⊗ Fn)(x1, x2, ..., xn) = (F1(x1), F2(x2), ..., Fn(xn)).

Proposition 2.8 (Linearity of τ). For a given encoding, we list the columns vA through vZ
(all unique by the definition of an encoding, see Section 2.3.5), where vY and vZ are not seen
in the dataset, τ (as defined in equation 2.5) can be extended to a linear transformation if
and only if all of the following conditions are met:

1. vY /∈ Span(vA, vB, ..., vX)

2. vZ /∈ Span(vA, vB, ..., vX)

3. vY /∈ Span(vZ) or vY = −vZ

Proof. τ takes in a concatenated pair of encodings. Since it has no effect on the first encoding,
we can write its input as xV, where x represents an arbitrary letter’s encoding and V
represents the specific second vector that may change.

τ(xV) = T (xV) =


xvZ if V = vY ,

xvY if V = vZ ,

xV otherwise.

We now prove the two implications of the “if and only if”.
⇐ We have that vA, vB, ...vZ ∈ Rn.
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Consider the subspaces S1 = Span(vA, vB, ..., vX) ⊂ Rn and S2 = Span(vY , vZ) ⊂ Rn. Let
b1, b2, ..., bk be a basis of S1. We define k := dim(S1).

Now, given assumption 3, we have two cases.
• Case 1: vY /∈ Span(vZ). Here, by assumption vY /∈ Span(vA, vB, ..., vX) (and similar

for vZ), we have k + 2 unique basis vectors for S1 + S2 in Rn. We then add arbitrary
linearly independent vectors bk+1, ..., bn−2 to Rn to complete this set to be a basis of Rn:
B1 = {b1, b2, ..., bk, bk+1, ..., bn−2, vY , vZ}. Now we consider the change of basis transformation
S ∈ Rn×n from B1 to B2 defined by B2 = {b1, b2, ..., bk, bk+1, ..., bn−2, vZ , vY }. This is a linear
transformation by definition.
• Case 2: vY = −vZ . We proceed similarly, though here as dim(Span(vY , vZ)) =

1 we require an additional basis vector: B1 = {b1, b2, ..., bk, bk+1, ..., bn−1, vY }. Now be-
cause if τ(vY ) = vZ = −vY , we have that τ(vZ) = τ(−vY ) = −τ(vY ) = −vZ = vY ,
we can consider the change of basis matrix S ∈ Rn×n from B1 to B2 defined by B2 =
{b1, b2, ..., bk, bk+1, ..., bn−1,−vY }, again, a linear transformation by definition.

In either case, τ can be extended to a linear transformation on all of R2n as follows

τ(x, y) = (x, Sy).

⇒ We prove Condition 1. Condition 2 is analogous.
Observe that τ is of the form τ = I ⊗ τ2, that is to say τ(x, y) = (x, τ2(y)). Note that τ2

is linear, as otherwise τ would not be.
We use proof by contradiction and assume otherwise: vY ∈ Span(vA, vB, ..., vX). Then

there exists some cjs such that:

vZ = τ2(vY ) = τ2

 ∑
j∈{A,B,...,X}

cjvj

 =
∑

j∈{A,B,...,X}

cjτ2(vj) =
∑

j∈{A,B,...,X}

cjvj = vY

which contradicts the uniqueness assumption that vZ ̸= vY .
For condition 3: We use contradiction again, assuming that vY ∈ Span(vZ) and vY ̸= −vZ .

vZ = τ2(vY ) = τ2(cZvZ) = cZτ2(vZ) = cZvY = c2Zvz which implies c2 = ±1, so vZ = vY , which
again contradicts the uniqueness assumption.

Remark 2.9. Note that the second part of condition 3 is impossible in the case of a binary
encoding, such as the one-hot or distributed encodings that we encounter.

Remark 2.10. Though we use two unseen letters, these theorems and proof generalize fairly
trivially to other counts.

2.3.10 More General Patterns: AAB

We have discussed the idea of attempting to train a model to check for matching components,
but what about other patterns? There are many interesting ones that seem like they might
have the same “identity effects”, even if there is more than just an identity involved.
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Say for example we consider words of the form “xxy” to be ”good” words, that is two
matching letters then one non-matching. It turns out that a very similar τAAB has the same
properties:

τAAB(xVy) = T (xVy) =


xvZy if V = vY ,

xvY y if V = vZ ,

xv?y otherwise.

Since one can view τ as τAB = I⊗τ2, it is analogous to say that τAAB = I⊗τ2⊗I, and as
such τAAB’s matrix representation is orthogonal for encodings in which τ ’s were orthogonal,
and that the dataset is invariant to it. Numerical results about τAAB are included in Section
3.2.2.

There are many other possible patterns, but for any similarly simple “identity with a
twist”, a similar strategy for finding an appropriate τ will work.

2.3.11 A Specific Encoding: One-Cold Encoding Orthogonality

We now discuss a specific encoding that will appear again in the distributed encoding part
of Section 3.2.5. It is of particular note as it exhibits numerical properties analogous to the
one-hot encoding case.

It turns out that one-cold encodings (i.e., distributed encodings with n − 1 active bits)
always lead to orthogonal transformation matrices T . We prove it directly, though first we’ll
require a quick lemma.

Lemma 2.11. Define A ∈ Rn×n

A =



0 1 1 · · · 1 1
1 0 1 · · · 1 1
1 1 0 · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · 0 1
1 1 1 · · · 1 0


and S ∈ Rn×n as an appropriately sized swap matrix first mentioned in equation (2.6).

Then A2S = SA2.

Proof. For each component of A2 we see that

(A)2ij =
n∑

k=1

aikakj =
n∑

k=1

(1− δik)(1− δkj)

where δ represents the Kronecker delta. Then each summand is 1, unless i = k or j = k. On
the diagonal:

(A)2ii =
n∑

k=1

(1− δik)(1− δki) = n− 1,
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because of the fact that k = i only in one summand. When not along the diagonal, it is
necessarily in two, as we instead have, for ı ̸= j

(A)2i ̸=j =
n∑

k=1

(1− δik)(1− δkj) = n− 2.

So,

A2 =



n− 1 n− 2 n− 2 · · · n− 2 n− 2
n− 2 n− 1 n− 2 · · · n− 2 n− 2
n− 2 n− 2 n− 1 · · · n− 2 n− 2

...
...

...
. . .

...
...

n− 2 n− 2 n− 2 · · · n− 1 n− 2
n− 2 n− 2 n− 2 · · · n− 2 n− 1


.

As we know from elementary linear algebra, left multiplying by S swaps the final two
rows, whereas right multiplying swaps the final two columns. So,

SA2 =



n− 1 n− 2 n− 2 · · · n− 2 n− 2
n− 2 n− 1 n− 2 · · · n− 2 n− 2
n− 2 n− 2 n− 1 · · · n− 2 n− 2

...
...

...
. . .

...
...

n− 2 n− 2 n− 2 · · · n− 2 n− 1
n− 2 n− 2 n− 2 · · · n− 1 n− 2


= A2S,

as desired.

Theorem 2.12. Consider any square matrix B where each column has one 0 entry, and all
other entries as 1. Our standard transformation τ , defined by its associated block matrix

T =

[
B 0
0 B

] [
I 0
0 S

] [
B−1 0
0 B−1

]
is orthogonal. (Here I is the appropriately-sized identity matrix and S is in Lemma 2.11.)

Proof. First, define A as as above and note that A⊤ = A and that S−1 = S:
Then for some permutation matrix P (where P−1 = P⊤, by the definition of a permutation

matrix),

B = PA.

Now:

T⊤T =

[
B−⊤ 0
0 B−⊤

] [
I 0
0 S

] [
B⊤ 0
0 B⊤

] [
B 0
0 B

] [
I 0
0 S

] [
B−1 0
0 B−1

]
=

[
B−⊤IB⊤BIB−1 0

0 B−⊤SB⊤BSB−1

]
=

[
I 0
0 B−⊤SB⊤BSB−1

]
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So if B−⊤SB⊤BSB−1 = I, then T⊤T = I. Now, observe that

B−⊤SB⊤BSB−1 = (PA)−⊤S(PA)⊤(PA)S(PA)−1

= P−⊤A−⊤SA⊤P⊤PASA−1P−1

= PA−1SAP−1PASA−1P−1

= PA−1SAASA−1P−1

= PA−1SA2SA−1P−1

So now we manipulate:

PA−1SA2SA−1P−1 = I

A−1SA2SA−1 = P−1P

SA2SA−1 = A

SA2S = A2

SA2 = A2S−1

SA2 = A2S.

The last equation holds thanks to Lemma 2.11. This concludes the proof.
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Chapter 3

Approximate impossibility in theory
and practice

Now we will explore cases where we do not have true orthogonality of τ (as defined in Section
2.3.7), but instead approximate orthogonality. We begin with a theoretical analysis in Section
3.1, setting up prerequisites for and explaining the main theorem of this thesis (Theorem 3.4),
and then show many numerical experimentations exploring the idea further in Section 3.2.
We reproduce the results from [3] in Section 3.2.1 and explore another possible pattern in
Section 3.2.2. We discuss noisy one-hot encoding experiments in Section 3.2.3, then a variety
of different distributed encodings in Section 3.2.4. We move on to examining the broader view
of distance from orthogonality in Section 3.2.5 and finally test some preselected encodings
with particularly high and low distances from orthogonality in Section 3.2.6.

3.1 Theoretical Analysis

We have shown that identity effects, when one uses encodings that have a transformation that
the dataset is invariant to (with an orthogonal transformation matrix), cannot be properly
learned by a learner, under specific (but common) conditions. That leads to the next question
quite naturally: what happens when the transformation matrix is not precisely orthogonal,
but not very distant from it? The study of this sprang from the idea of studying “noisy
one-hot” encodings, as described in Section 2.3.5.

To begin, we’ll need to reference a basic definition in analysis: Lipschitz Continuity and
Lipschitz Constants.

Definition 3.1 (Lipschitz Continuity). A function with a vector or matrix output, that
isf : X → Rn×m (where m is 1 in the case of a vector output) is Lipschitz Continuous if, for
an appropriate norm (we use ∥ · ∥ = ∥ · ∥2 for vectors and ∥ · ∥ = ∥ · ∥F for matrices),

∃C > 0 : ∀x, y ∈ D, ∥f(x)− f(y)∥ ≤ C∥x− y∥.

Intuitively, this states that the growth of the function is bounded in absolute growth -
there is some constant that limits how much it can change for any given change in inputs.
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Definition 3.2 (Lipschitz Constants for Real-Valued Functions). Each C in Definition 3.1
is a “Lipschitz Constant”. For a function f and an input x, we define the infimum of such
values to be Lip(f, x).

Proposition 3.3. For any F : X → Rm, Lip(F, x) ≤ ∥∂F
∂x
∥L∞(x).

Proof. This is a standard result (seen for example in [5, Section III, Theorem 2]), but the
proof is included for competeness. First, note that F = [F1, F2, ..., Fm]

⊤. Next, we apply the
Mean Value Theorem (MVT) from calculus to the functions g1, g2, ..., gm defined by

gi(t) = Fi(tx+ (1− t)y).

Now, g′i(t) = ∂Fi

∂x
(tx + (1 − t)y)(x − y), and by the MVT we have gi(1)−gi(0)

1−0
= g′i(ξ) for all

i = 1, 2, ...,m for some ξ in the line segment xy. This gives

F (x) = F (y) +
∂F

∂x
(ξ)(x− y),

where ∂F
∂x

is the Jacobian matrix [
∂F

∂x

]
ij

=
∂Fi

∂xj

.

Here we assume that x, F (x) are vectors so ∥x∥2 = ∥x∥F and ∥F (x)∥2 = ∥F (x)∥F (and
otherwise, we reshape them to be as such). We also require [27, Theorem 5.3] which states

∥A∥2→2 = supx̸=0
∥Ax∥2
∥x∥2 ≤ ∥A∥F . This leads to

∥F (x)− F (y)∥2 =
∥∥∥∥∂F∂x (ξ)(x− y)

∥∥∥∥
2

≤
∥∥∥∥∂F∂x (ξ)

∥∥∥∥
2→2

∥(x− y)∥2

≤ max
ξ∈X

∥∥∥∥∂F∂x (ξ)

∥∥∥∥
F

∥x− y∥2

=

∥∥∥∥∂F∂x
∥∥∥∥
L∞(X)

∥x− y∥2.

We thus know the smallest of these
∥∥∂F

∂x

∥∥
L∞(X)

values is the Lipschitz constant, and this

completes the proof.

We will also require a simple arithmetic inequality and several of the norms defined in
Section 2.1. We use the same notation as chapter 2.

We now introduce the main theorem of this thesis: the connection between approximate
orthogonality and ratings impossibility.

Theorem 3.4 (Approximate Rating Impossibility). Let us consider a learner L(D, x) whose
model takes the form r = Φ(B,Cw) and a linear transformation τ with corresponding matrix
T and invariance of the dataset (τ(D) = D). We proceed using SGD, starting with initial
parameters all equal to zero (i.e. C0 = 0 and B0 = 0 in all components) and a bounded
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learning rate (0 < θi ≤ θmax∀i). Assume also that all partial derivatives of the loss function
with respect to the parameters up to second order are bounded and that the learner is Lipschitz
continuous with respect to said parameters.

Then for some constant CΦ,k,FD,θmax depending on the model Φ, the number of iterations
k, the loss function for the specific dataset FD, and a learning rate bound θmax we have

|L(D, τ(x))− L(D, x)| ≤ CΦ,k,FD,θmax∥T⊤T − I∥F

with probability 1. (It is key to note that CΦ,k,FD,θmax does not depend on the specific T , so
all relevant information about T is contained in ∥T⊤T − I∥F .)

Proof. Recall the notation of Chapter 2. Let us consider the learned functions Φ(Bk, Ckx) =
L(D, x) and Φ(B′

k, C
′
kTx) = L(τ(D), τ(x)). Here Θ = (B,C) represents the set of all pa-

rameters in our model Φ and Lip(Φ,Θ) represents the Lipschitz constant of the function
Φ(B,Cw) with respect to Θ. Assume, up to vectorization, that Θ ∈ Rp.

First, we observe that

|L(D, τ(x))− L(D, x)| = |L(τ(D), τ(x))− L(D, x)|
= |Φ(B′

k, C
′
kTx)− Φ(Bk, Ckx)|

≤ Lip(Φ,Θ)
√
(∥B′

k − Bk∥2F + ∥C ′
kT − Ck∥2F )

≤ Lip(Φ,Θ)
√
2(∥B′

k − Bk∥F + ∥C ′
kT − Ck∥F ) (3.1)

where here we used the inequality
√

x2 + y2 ≤
√
2(|x|+ |y|).

Now let us define some constants MXY and MX , as they will appear commonly for the
rest of the section.

MXY :=

∥∥∥∥ ∂2FD

∂X∂Y

∥∥∥∥
L∞(RP )

,MX :=

∥∥∥∥∂FD

∂X

∥∥∥∥
L∞(RP )

which are bounded by assumption. Now, using the partial derivatives from equation 2.4,
we obtain

B′
i+1 − Bi+1 = B′

i +Bi − θi

(
∂Fτ(D)

∂B
(B′

i, C
′
i)−

∂FD

∂B
(Bi, Ci)

)
= B′

i − Bi − θi

(
∂FD

∂B
(B′

i, C
′
iT )−

∂FD

∂B
(Bi, Ci)

)
.

Taking the norm and using the matrix chain rule, and using Proposition 3.3:

∥B′
i+1 − Bi+1∥F ≤ ∥B′

i − B′
i∥F + θi

∥∥∥∥∂FD

∂B
(B′

i, C
′
iT )−

∂FD

∂B
(Bi, Ci))

∥∥∥∥
F

≤ ∥B′
i − Bi∥F + θi

(∥∥∥∥∂2FD

∂B2

∥∥∥∥
L∞(RP )

∥B′
i − Bi∥F +

∥∥∥∥ ∂2FD

∂B∂C

∥∥∥∥
L∞(RP )

∥C ′
iT − Ci∥F

)
= (1 + θiMBB)∥B′

i − Bi∥F + θiMBC∥C ′
iT − C ′i∥F (3.2)
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Now for C, which will require an extra step to handle the matrices T and T⊤, we have

C ′
i+1 = C ′

i − θi
∂Fτ(D)

∂C
(B′

i, C
′
i) = C ′

i − θi
∂FD

∂C
(B′

i, C
′
iT )T

⊤

which implies

C ′
i+1T − Ci+1 = C ′

iT − Ci − θi

(
∂FD

∂C
(B′

i, C
′
iT )T

⊤T − ∂FD

∂C
(Bi, Ci)

)
.

Taking the norm and using the triangle inequality and the Lipschitz property, we obtain

∥C ′
i+1T − Ci+1∥F ≤ ∥C ′

iT − C ′
i∥F + θi

(∥∥∥∥∂FD

∂C
(B′

i, C
′
iT )T

⊤T − ∂FD

∂C
(Bi, Ci))

∥∥∥∥
F

)
= ∥C ′

iT − C ′
i∥F + θi

(∥∥∥∥∂FD

∂C
(B′

i, C
′
iT )T

⊤T − ∂FD

∂C
(B′

i, C
′
iT )

+
∂FD

∂C
(B′

i, C
′
iT )−

∂FD

∂C
(Bi, Ci)

∥∥∥∥
F

)
≤ ∥C ′

iT − C ′
i∥F + θi(MC∥T⊤T − I∥F +MBC∥B′

i − Bi∥F +MCC∥C ′
iT − Ci∥F )

= (1 + θiMCC)∥C ′
iT − Ci∥F + θiMBC∥B′

i − B′
i∥F + θiMC∥T⊤T − I∥F .

(3.3)

Now, let us combine (3.2) and (3.3):

∥C ′
i+1T − Ci+1∥F + ∥B′

i+1 − Bi+1∥F ≤ (1 + θiMBB)∥B′
i − Bi∥F + θiMBC∥C ′

iT − C ′
i∥F

+ (1 + θiMCC)∥C ′
iT − Ci∥F

+ θiMBC∥B′
i − B′

i∥F + θiMC∥T⊤T − I∥F
= (1 + θi(MBB +MBC))∥B′

i − Bi∥F
+ (1 + θi(MBC +MCC))∥C ′

iT − Ci∥F + θiMC∥T⊤T − I∥F
≤ (1 + θi(M̃ +MBC))(∥C ′

iT − Ci∥F + ∥B′
i − Bi∥F |)

+ θiMC∥T⊤T − I∥F ,

where M̃ := max(MBB,MCC). Now we define

C := (1 + θmax(M̃ +MBC)) (3.4)

and
Ei := ∥C ′

iT − Ci∥F + ∥B′
i − Bi∥F ,

then use the fact that E0 = 0 by the assumption of all initial parameters being 0 to obtain

∥C ′
i+1T − Ci+1∥F + ∥B′

i+1 − Bi+1∥F = Ei+1

≤ CEi + θiMC∥T⊤T − I∥F
≤ (C(CEi−1 + θiMC∥T⊤T − I∥F ) + θiMC∥T⊤T − I∥F

≤ Ci+1E0 +

(
k∑

j=0

Cj
)
θiMC∥T⊤T − I∥F

≤

(
k∑

j=0

Cj
)
θiMC∥T⊤T − I∥F
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Continuing from (3.1)

|L(D, τ(x))− L(D, x)| ≤
√
2 Lip(Φ,Θ)(∥B′

k − Bk∥F + ∥C ′
kT − Ck∥F )

≤
√
2 Lip(Φ,Θ)

(
k∑

j=0

Cj
)
θiMC∥T⊤T − I∥F

≤ CΦ,k,FD,θmax∥T⊤T − I∥F

The bound holds with probability 1 since the only randomness in the theorem comes
from the choice of datapoints in SGD, and so while L(D,w) and L(D, τ(w)) are both random
variables, the above upper bound holds with probability 1 as P (θi ≤ θmax) = 1 by assumption.

Remark 3.5. An inspection of the proof reveals that

CΦ,k,FD,θmax =
√
2 Lip(Φ,Θ)

(
k∑

j=0

Cj
)
θmaxMC ,

where C is defined in Equation (3.4).

The discussion of Lip(Φ,Θ) goes beyond the scope of this thesis, but one could search
the literature (for example [21]) for more details. Because of the assumption of Lipschitz
Continuity, though, we know that it must exist and be finite - and so for a small enough
∥T⊤T − I∥F , we have approximate impossibility. A detailed study of C is left as a topic of
future investigation.

It is also worth noting that this case generalizes the original impossibility theorem: when
the transformation τ is orthogonal, ∥T⊤T −I∥F = 0 and therefore we have true impossibility.
Now we’ll explore several types of encodings and the corresponding quantity ∥T⊤T − I∥F
compared to how well they generalize experimentally.

3.2 Numerical Results

We begin by reproducing some of the results from [3] in a similar framework and then by
adding several more steps.

We use Keras to implement a multilayer feedforward neural network trained using Adam
(see 2.2.5 for an overview and below for details). In all cases, we use an input layer of
dimension 2n, where n is the length of the encoding vector. We use ReLU as the activation
function for the hidden layers and a sigmoid activation for the final layer. We decided to use
ReLU as it is by far the most commonly used, though technically this precludes Theorem
3.4 from applying as it is not differentiable and as such prevents the loss function from being
so. However, it is differentiable almost everywhere, and so this should not pose too large a
problem. Our weights and biases are all initialized according to individual random Gaussian
distributions: N (µ = 0, σ2 = 0.0025). An architecture with 2 hidden layers was found to
achieve a good balance between accuracy and speed, and so it is used in all experiments.

The Adam optimizer (see Section 2.2.5 and [14] for further details) was used with default
Keras settings: learning rate α = 0.001 and decay rates β1 = 0.9 and β2 = 0.999.
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Figure 3.1: One-hot and distributed encoding results

Each figure represents the mean of 100 runs (except where specified otherwise) and is
presented in the same manner. The bar graph shows the average prediction over some
number of runs for some inputs, where the sample did not contain any Y or Z: AA, xy (a
non-matching word the learner has seen already), YY, ZZ, YZ, ZY, AY, ZB. It is worth noting
here that this set includes 2 examples from the training set, and so isn’t a true validation set
- but their inclusion allows for an easier visualization of the learner’s predictive power. The
line graph underneath shows the validation loss per epoch. The black dotted lines represent
each of the runs, and the blue line represents the mean validation loss at each epoch across
all 100 runs.

The validation loss on the test set over the epochs was also included, to give a general
idea of the tendency to plateau (so more epochs likely would not have been useful).

Here, “Balance Split” refers to the specific words chosen to be a part of the dataset.
A “Balance Split” of X means that for every “good” word (i.e., one matching the desired
pattern), X “bad” words (i.e., those that do not) is added to the dataset. In all cases we
present, a balance split of 2 was used, so exactly one third of the words in the dataset are
good.

3.2.1 Standard Identity Effects

Here we reproduce figures from [3] and explore further into more general patterns than
identity effects and into new encodings not seen in that paper.

One-Hot Encodings

In Figure 3.1, we see the predictions for YY, ZZ, YZ, ZY, AY, and ZB are all approximately
0.5. In fact, over these 100 runs the model on average predicts that YZ is most likely to be
a good word. As predicted, the One-Hot encoding does not allow the learner to generalize
well to new letters, in accordance with results from [3].
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Figure 3.2: AAB one-hot and distributed encoding results

Distributed Encodings

For the 3-bit distributed encodings, again as expected, we can see in Figure 3.1 that the model
does a much better job of generalizing. YY and ZZ are both high, and all the non-matching
words are all given ratings under 0.5, again in accordance with results from [3].

3.2.2 More General Patterns: AAB

Up to now we have just reproduced figures from [3]. Now let us see how well the pattern
continues into the AAB rule, as first discussed in Section 2.3.10. Here we use only 5 runs
with each encoding type, as there are many more three letter words than two and this causes
these experiments to be quite lengthy.

We see in the first plot in Figure 3.2 that in the one-hot case, as expected, the learner is
unable to fully generalize to letters it has never seen before. Interestingly, it appears able to
properly categorize words of repeated letters, plus an unknown letter (AAY) quite well - this
seems logical, as the learner has witnessed many such words (AAB, AAC, etc) with only one
such being a bad word (AAA), so its “priors” lead it to believing AAY is a good word. Still,
it does a very poor job with every other good word, though marginally better with YYB
than the others - maybe due to the fact that the learner has seen many words ending with
B, one third of which are good.

In the second plot in Figure 3.2 we see that the distributed encoding allows the learner to
generalize quite well. It seems that the AAB question seems to have very similar properties
to the simple matching situation.

3.2.3 Noisy One-Hot

Now we begin what may be the most important section of this thesis - how a learner can
generalize while using Noisy One-Hot encodings. As a reminder from section 2.3.5, Noisy One-
Hot encodings are similar to One-Hot encodings, but each encoding has a random Gaussian
vector added to it. This new encoding no longer has an orthogonal transformation matrix,
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Figure 3.3: Noisy one-hot encoding results for standard deviations 0.01, 0.1, and 1

but the smaller the variance of the noise, the closer to orthogonal the transformation matrix
will be. Therefore we have run multiple experiments, going through several variances - though
given Keras’ native language we use standard deviation (σ) instead of the variance itself (σ2).

We see in the first second plot in Figure 3.3 that with a standard deviation of 0.1, the
learner is already doing a significantly better job than with the one-hot encoding. It is not
perfect, but the learner is seeing YY and ZZ as good words, and the others each have ratings
below 0.5 - though ZY is coming a little too close for comfort.

The third plot shows an improvement when our standard deviation is 1, but still not at
the same level as the distributed encodings we’ve seen previously.

We can also see in the first plot that when our standard deviation is 0.01, there is not much
generalization taking place - it appears to be too similar to the normal one-hot encoding.

Although looking at each experiment one at a time is somewhat illuminating, it is also
rather inefficient. Here we introduce a new type of figure: the pixel plot in Figure 3.4 shows
multiple experients in one place. Each column represents one standard deviation of the noise
in a noisy one-hot encoding for 50 runs. Each cell shows what rating that experiment (so a
specific standard deviation of noise) assigns on average to the word on the left. The figure
here shows that as the noise increases, the ability of the model to predict whether a word is
good or bad also increases, as expected. It appears that there is a soft cutoff at a standard
deviation of 0.1, where at σ ≥ 0.1 the ratings assigned to the bad words is visibly lower than
that assigned to the good words, but it appears to be a relatively smooth improvement.

In the second plot of Figure 3.4, we can see the average validation loss at the end of each
experiment.

3.2.4 Other Distributed Encodings

In our 26 ambient dimension world, we have seen two distributed encodings already: 3 active
bits of 26, and 1 active bit of 26 (the one-hot). Now let us see several other encodings,
changing either the number of active bits or the ambient dimension.

This time we skip directly to the full prediction plots.
In Figure 3.5 we can see that as expected, the 1 active bits (one-hot) and the 25 active

bits (“one-cold”, see Section 2.3.11) encodings do not allow the learner to generalize well.
The one-cold encoding is predictably similar to the one-hot, as swapping 1s and 0s in the
initial inputs should not change the final outputs - in fact, one-cold encodings also lead to
similar orthogonalities (see Appendix 2.3.11 for a more detailed study). Between the two
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Figure 3.4: Noisy one-hot predictions

Figure 3.5: Distributed (with differing active bits) predictions

extremes, it does not appear that there is much difference in the ability to generalize from a
given numer of active bits.

In Figure 3.6, we see what happens as we edit the ambient dimension, but leave the
number of active bits at 3. As we have 26 letters, we require at least 7 ambient dimension
(as

(
6
3

)
= 20 < 26, and therefore without an ambient dimension of 7 we cannot uniquely

represent each letter). In this case it appears that the fewer ambient dimensions, the better
the learner can generalize. This aligns with our theory, as with a smaller ambient dimension,
you have more linear dependence (with the same number of active bits), which implies less
orthogonality.

3.2.5 Numerical Study of Distance from Orthogonality

Now, in order to explore theorem 3.4’s assertion about the connection between approximate
impossibility and distance from orthogonality (that is, ∥T⊤T − I∥F ), we will generate a
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Figure 3.6: Distributed (with differing ambient dimensions) predictions

Figure 3.7: Noisy one-hot deviations from orthogonality vs validation losses

sample of encodings. Then we calculate their transformation’s distance from orthogonality
and compare to both mean predictions and mean final validation loss. In each plot we create
a certain number of random encodings of each variable of interest (10,000 for each of the
noisy encodings, 5000 for each of the distributed encodings) and calculate ∥T⊤T − I∥F for
each. Then we take the log of the data (as seen in [1, Appendix A.1.3]), and create box plots
of the data. (To avoid singularities at log 0 when plotting ∥T⊤T − I∥F in a log scale, we take
instead max(10−15, ∥T⊤T − I∥F ).

One might intuit that the higher the standard deviation of the added noise, the higher
the distance from orthogonality. What we see in Figure 3.7 is that while this does appear to
be the case, it only remains true until a standard deviation of 101 - after which the distance
from orthogonality plateaus. We can see that the predictions seem to follow a similar pattern
- as the noise increases, the validation loss largely decreases. After 101, it appears that the
validation loss begins to grow - this is examined further in the Conclusion (Section 4.1,
particularly Figure 4) as a potential avenue for future research.
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Figure 3.8: Distributed (26 dimension) deviations from orthogonality vs validation losses

Figure 3.9: Distributed (3 active bits) deviations from orthogonality vs validation losses

Here in Figure 3.8 we see that outside of the one-hot and the one-cold case, the distance
from orthogonality of the matrices appears to be fairly unchanging. This matches the val-
idation loss: one-hot and one-cold both do fairly poorly, but all others do similarly (given
that the experiments are random).

Lastly, in Figure 3.9 here we see something somewhat unexpected - although the validation
loss goes up with the ambient dimension as one might expect, the distance from orthogonality
does not notably go down. Note that this does not conflict with our major theorem (Theorem
3.4, but it does potentially imply there is another important relationship that is not captured
by it.

3.2.6 Specific Low/High Distance Matrices

During this process, at some point it became clear that one could save the lowest and highest
distance from orthogonality encodings, and then verify if they seem to follow the predictions
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Figure 3.10: Specific encoding experiments (high/low distance)

of the theorem. There were many possible types of encodings one could have chosen, but the
distributed encodings with 3 active bits out of 26 were selected as they were deemed to be
the most iconic of our work. Using the same 3-active-of-26 encodings as referenced in Figure
3.8, we selected the top 10 distance from orthogonality encodings and the bottom 10, and
ran experiments: 10 runs with each encoding, 500 epochs each.

We can see in Figure 3.10 that the results are not as we might have expected. Both
the close matrices and the far matrices have similar validation losses and similarly poor
predictions.

Fully understanding this issue is beyond the scope of this thesis, but we conjecture that
it has to do with the specific transformation T . The original theorem, (Theorem 3.4), stated
that there existed some transformation τ that would limit the distance between the predicted
output of the learner and the true rating: it may be the case that our assumed τ is not
the most effective for some of these encodings, and as such, our calculated distance from
orthogonality is not the smallest possible. It is also clearly possible that our bound is simply
not sufficiently tight for the distance from orthogonality to overcome the other constant in
all cases. In any case, it could be a fruitful area of further research.
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Chapter 4

Conclusions

It appears that identity effects in deep learning have far more to do with the way the network
takes data in than anything else - specifically, which encodings are chosen. Throughout this
thesis we experimented with several types of encodings (namely one-hot, distributed, and
noisy one-hot), and saw that the transformation matrix τ ’s orthogonality is a very important
indicator of identity effect impossibility. When τ is instead only approximately orthogonal,
there still appears to be some degree of approximate impossibility as evidenced by Theorem
3.4, a conclusion reinforced in many experiments in Section 3.2.

That is not to say that the relationship is perfectly described through this distance from
orthgonality of τ , though. There are clearly other effects in play. For true impossibility,
this orthogonality is an extremely strong indicator, but “approximate impossibility”, as one
can tell from the title, is a much more nebulous concept. When specific low and high
distance-from-orthogonality matrices were deliberately chosen, there did not appear to be
any major difference in their ability to generalize, as we saw in Section 3.2.6. We also saw
that the standard deviation of the noise in the noisy one-hot encodings tended to increase
generalization ability up to 101, but after that did not perfectly correspond to the distance
from orthogonality of the related τ . In fact, more experiments were run and as can be seen
in Figure 4.1, the distance from orthgonality remained in the same order of magnitude, but
the generalization ability of the learner dropped significantly - strongly hinting that another
measure will be important to fully understand this approximate impossibility.

4.1 Open Problems

There are many open problems remaining in this study of identity effects.
A major topic for future investigation is the study of the constant CΦ,k,FD,θmax from

Remark 3.5, and in particular the Lipschitz constant Lip(Φ,Θ). Although its apparent
independence from τ allows the theory to hold and have value, there could be a great deal
of insight to be found within it.

We gave theory for initializers starting at 0, and while it seems intuitive that random
initializations would follow the same rules, that remains to be seen through theory and
experimentation.

Though we used SGD during the theory, we used Adam for the experimentation, and so
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Figure 4.1: Extended noisy one-hot figures

finding a way to extend Theorem 3.4 to include Adam as an optimizer would be another
logical next step.

Though we showed results for ReLU, further investigation into other fully differentiable
activation functions is needed.

There are also many other types of architectures one can test. In [3], LSTM models were
touched on and experimented with, and in [4], GNNs were discussed and in both papers it
was found that orthgonality leads to impossibility. It remains to be explored if approximate
orthogonality leads to the same approximate orthogonality as it does in our FNN theories
and experiments. There are other types of neural networks such as Convolutional Neural
Networks (CNNs) where it seems that no identity effect research exists, as of yet, and this
could also be a fruitful next question.

We also touched briefly on patterns other than basic matching in Section 3.2.2, but there
are a great deal more possibile patterns one can explore, including more complex ones. There
is a great deal of research to be done to see if “identity effects” should potentially instead
be known as “pattern effects”, as one might intuit by examining the types of patterns that
cause impossibility.

Lastly, all assumptions in this thesis included this idea of “Factorizable Models” described
in Section 2.3.6. What might be found if this assumption is violated?

As we can see, though many questions were touched about the relationship between
distance-from-orthogonality and approximate ratings impossibility, as always, there are many
more left to explore. It also remains to be seen what the practical effects of these identity
effects might be on major applications of DNNs - what hidden problems are linked to a neural
net’s seeming inability to generalize some major types of patterns?
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