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Abstract

Deep Transformational Calibration of Soft Embedded Sensors for Soft Surgical Robots

Navid Masoumi

In this thesis, a novel soft sensor calibration method is proposed for minimally invasive surgery

(MIS), based on a gelatin-graphite sensor with high compliance and adaptability developed in previ-

ous studies. This approach uses convolutional deep learning that accounts for a sensor’s non-linear

behavior and reduces noise amplification. This technique offers a smaller minimum detectable force

than other approaches and is particularly useful in sensitive surgical scenarios. The sensor’s per-

formance is characterized by its fine resolution (≤1mN) and accurate force estimation, especially

for forces below 400 mN of amplitude. The best calibration (Morse) scheme provides high per-

formance, with a Mean Absolute Error of ≤7.9 mN. This work was validated through comparison

among other representative studies and offered a path toward future directions for optimizing and

implementing soft robotic sensors in minimally invasive surgeries. The application of this sensor

can revolutionize surgical procedures and capitalize on the benefits of soft robotics, potentially en-

hancing precision and reducing trauma in surgeries. Building on the established capabilities of this

calibration method, the thesis further explores its integration with the surgical applications. This in-

tegration aims to provide surgeons with a tactile sense that mimics natural touch, thereby improving

the control and safety of surgeries. Future studies will aim to enhance the sensor’s performance in

minimally invasive surgeries by extending the force sensing range through optimization of material

properties and structural design, implementing precise micro-fabrication techniques, developing ad-

vanced real-time calibration methods, and integrating the sensor into surgical robotics to evaluate

its performance in controlled, simulated MIS scenarios where sensor’s accuracy is validated using

physical phantoms to mimic endoluminal procedures.

.
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Chapter 1

Introduction

1.1 Background

Minimally invasive surgery (MIS) has gained significant attention due to its potential advan-

tages over traditional open surgery. Studies show that MIS offers benefits such as reduced operative

trauma, faster recovery times, and better cosmetic outcomes [2, 3, 4, 5, 6]. MIS can be performed

through endoluminal tissues, through the body’s natural orifices or small incisions to access the

body’s lumens. As shown in Fig. 1.1, flexible surgical instruments are essential for endoluminal

navigation, as they enable precise control, navigation, and contact-force estimation during endo-

luminal surgeries [7, 8]. The flexible nature of these instruments allows for spatial flexibility and

dexterity, making endoluminal surgery faster and safer compared to conventional minimally inva-

sive interventions with rigid instruments [9]. Therefore, the development and advancement of soft

robots for surgical procedures have been crucial in ensuring instrumental flexibility for safe access

and navigation to lesions over long distances in endoluminal and intravascular procedures [7, 8].

Force sensing in the range of 0 to 2N is crucial in MIS procedures such as bronchoscopy and

cardiac surgeries where force sensing is constrained, posing challenges to optimal recovery and sur-

gical precision [10, 11]. In cardiac surgery, force sensing is crucial for interventional procedures,

demonstrating the effectiveness and potential of robotic systems[12, 1]. Studies demonstrate a lack
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of proper force-displacement synchronization in telerobotic surgical systems which can lead to sig-

nificant motion-tracking error [13, 14]. In addition, soft robots have exhibited excellent compati-

bility with functional and physical requirements of intraluminal procedures, such as bronchoscopy

and cardiovascular interventions [15, 3].

The development of force sensing capabilities has been a focus, with studies proposing algo-

rithms and new instruments with force sensing capabilities to enhance surgical precision and safety

[10, 11, 16]. Additionally, the loss of haptic feedback in minimally invasive surgery due to resistance

inside trocars and the use of long laparoscopic instruments hinders the estimation of applied forces

in instrument±tissue interaction, highlighting the importance of force sensing in these procedures

[17]. Moreover, the development of force detection and feedback control for follower manipula-

tors has been identified as critical to the operation, emphasizing the significance of force sensing

in surgical robotics [18, 19, 20, 21, 22, 23, 24, 25]. Traditional force sensors such as piezoelectric,

piezoresistive, and optical sensors play a crucial role in various applications, including force impact

sensing, microscale force measurement, and robotic surgery. Piezoelectric sensors, which generate

an electric charge in response to applied mechanical stress, are widely used due to their high sensitiv-

ity and ease of integration. For example, piezoelectric sensors have been integrated into smart glass

applications to monitor force impact, with a response range reaching up to 10 kPa [26]. Addition-

ally, piezoelectric sensors have been utilized in microscale applications, offering advantages such as

low power dissipation and high sensitivity [27]. Piezoresistive sensing materials have been popular

due to their ease of development, low cost, and electronic readout [28, 29]. These sensors change

their electrical resistance when subjected to mechanical stress, making them suitable for force, dis-

placement, and chemical sensing. Furthermore, piezoresistive sensors have been prototyped for

microscale applications, offering high measurement dynamics and easy integration [30]. Optical

sensors, including fibre Bragg grating-based sensors, offer high resolution and accuracy for force

measurement. These sensors have been used in various applications, such as high-voltage sensing

and dynamic scanning force microscopy [31]. In addition, carbon-nanotube-coated 3D microspring

force sensors have been developed for medical applications, providing advantages over other tactile

force sensors based on film-type polymer-based materials or MEMS structures [32, 33]. On the

other hand, optimal mechanical compliance, scalability design, and proper integration of miniature

2



Figure 1.1: Concept application of soft robots in force-sensitive surgical procedures.
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rigid force sensors on soft robots are still cumbersome [2]. Despite their superior performance,

integrating rigid sensors with soft robots is challenging and they provide limited information only

about the installation site. Thus, embedded distributed sensors that are easy to integrate and provide

information about the length of the robot are technically needed and of utmost importance for force-

sensitive applications, such as endoluminal surgery. In addition, large mechanical deformation of

soft robots (i.e. flexures) may push measurements out of sensors’ linear range [3], and calibration

or characterization of soft sensors beyond their linear response has been minimally explored.

1.2 Related studies

Flexible soft sensors have been developed with various materials and sensing capabilities, and

one major factor of interest in their fabrication is the flexibility of the sensing material, as this char-

acteristic can widely impact the range, stability, and usability of the sensor. In a previous research,

a novel sensing method with soft sensors embedded in flexures was introduced, exhibiting less than

10mN error in measuring external 3D tip forces for bronchoscopy and cardiovascular applications

[34]. This flexible sensor comprised a gelatin-based matrix filled with graphite nano-particles that

exhibited stable piezoresistivity under extensive deformations. It was shape-agnostic but presented

viscoelastic properties[35]. Soft sensors present a high complexity of their piezoresistivity and large

intrinsic deformation of the sensing elements, and they are often calibrated based on rate-dependent

features, i.e. the rate of change in output voltage for a given input [36].To compensate for their

non-linear behaviours, a proper calibration method is needed. Machine learning techniques have

shown the potential to address many challenging problems with nonlinear behaviours [37], such as

multi-layer perceptron (MLP) models. However, the accuracy of sensors is adversely affected in

noisy environments, e.g. near robotic devices or in clinical operation rooms, where rate-dependent

features and neural calibrations amplify electromagnetic interference, decreasing the signal-to-noise

ratio [1].

4



Table 1.1: Comparison of flexible piezo-resistive soft sensors

Study Functional Material Range Sensitivity

Cassa et al.[28]

(2022)
PDMS / PEDOT:PSS 0 - 12 N ∆R/R0 = 70%

Wang et al.[38]

(2016)
PDMS / MWCNT 0 - 2.51 mN / 0 - 62.8 mN -1.10 kPa−1

Ma et al.[39]

(2017)
MXenes 0 - 750 mN Gauge Factor ∼ 180.1

Xu et al.[40]

(2018)
3D graphene 66 kPa Gauge Factor ∼ 584.2

Liu et al.[41]

(2017)
Graphene / TPU 0 - 100 kPa / 100 - 400 kPa Gauge Factors ∼ 2.45 / 12.24

Jia et al.[42]

(2019)
Graphene oxide (rGO) 42±3000 Pa 7.94 - 178.1 kPa−1

RadÂo et al.[43]

(2018)
Si / PDMS 0.01 - 2 N Loss: ±3± 10%∆V/∆F

Zhao et al.[44]

(2019)
HPM / PDMS ≤ 140 Pa 83.9 kPa−1

Lim et al.[45]

(2019)
AgNWs 20% of strain -

Hessinger et al.[46]

(2016)
Si 1 mN - 10 N -
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Researchers have used machine learning techniques for soft sensor calibration. Kim et al.[47,

48] applied various methods for contact localization and force estimation of soft sensors: one be-

ing a simple artificial neural network composed of two fully connected layers of 25 and 12 hidden

nodes, another was a supervised-learning method based on K-Nearest Neighbours (K-NN), a third

approach was logic combinations, and their last method was a Recurrent Neural Network (RNN).

Their results show that the RNN was the best for contact localization and force estimation. How-

ever, their latest approach included a Time-Delay Artificial Neural Network (TDNN) for fast online

calibration. In another study, Han et al.[49] investigated a deep learning method for characterizing

soft sensors. They also applied an RNN for contact localization and force estimation and achieved

over 93.2% accuracy (above 100 kPa) on every sensor’s part. Since large data collection has been a

concern, Kim et al.investigated a new approach for calibrating soft sensors using transfer learning

techniques. These deep learning methods reduced data size by 25%, decreasing processing time and

computational cost. They also implemented pre-trained networks to address these issues and were

able to apply this method for long-term sensor use [48]. The previous and current work includes

Deep Convolutional Neural Network (DCNN). Table 1.2 compares these approaches to soft sensor

calibration.
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Table 1.2: Neural network approaches for soft sensor calibration and their advantages

Study Type of Neural Network Advantages

Han et al.[49]

(2018)
RNN

Contact Localization

Force Estimation

Kim et al.[47]

(2018)
RNN

Contact Localization

Force Estimation

Kim et al.[48]

(2020)
TDANN

Contact localization

Force Estimation

Nonlinearity Compensation

Hysteresis Compensation

Pre-trained

Online Estimation

Torkaman et al.[1]

(2023)
MLP

Contact Localization

Force Estimation

Nonlinearity Compensation

Hysteresis Compensation

Masoumi et al.[50]

(2023)
DCNN

Contact Localization

Force Estimation

Nonlinearity Compensation

Hysteresis Compensation

Online Estimation

Pre-trained

Masoumi et al.[51, 52]

(2024)
DCNN

Contact Localization

Force Estimation

Nonlinearity Compensation

Hysteresis Compensation

Online Estimation

Pre-trained

Noiseless

RNN: Recurrent Neural Network

TDANN: Time-Delay Artificial Neural Network

MLP: Multi-Layer Perceptron

DCNN: Deep Convolutional Neural Network
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1.3 Motivations

Researchers have tried to use soft embedded sensing for real-time status awareness in intralumi-

nal interventions. However, technical challenges such as hysteresis, rate-dependency, and viscoelas-

ticity of sensing elements have limited the accuracy and usability of such embedded sensors. In this

thesis, the main motivation was to eliminate the need for derivation-based features to compute tem-

poral effects such as hysteresis and rate-dependency and to propose a calibration framework to use

those derivative-free time-frequency features in soft force sensing.

1.4 Research Objectives

To address the identified knowledge gaps outlined in Section 1.3, the specific aims of this study

were:

(1) To investigate the feasibility of using computational signal transformers, such as Wavelets as

calibration features for soft sensors,

(2) To investigate the performance of pre-trained deep neural net transformers such as LeNet for

pattern recognition and calibration of soft sensors based on derivative-free time-frequency

transformation features,

(3) To compare performance of soft sensor calibration based on derivative-free time-frequency

transformations.

1.5 Thesis layout

This thesis is prepared in manuscript-based style according to the ºThesis Preparation and The-

sis Examination Regulations (version-2022) for Manuscript-based Thesisº of the School of Grad-

uate Studies of Concordia University. This dissertation includes four chapters with the following

contents:

Chapter 1 presents the results of a critical literature review of force and shape sensors for soft robots

with regard to the state-of-the-art modeling approaches, methods, and knowledge gaps.

8



Chapter 2 presents the design, modeling, calibration and signal processing of the sensor using two

transformations. This chapter is based on the author’s following publications:

(1) Masoumi, Navid, Negar Kazemipour, Sarvin Ghiasi, Tannaz Torkaman, Amir Sayadi, Javad

Dargahi, and Amir Hooshiar. ºWaveLeNet: Transfer Neural Calibration for Embedded Sens-

ing in Soft Robots.º (No. 10507) [50]

(2) Masoumi, Navid, Andres C. Ramos, Tannaz Torkaman, Javad Dargahi, Jake Barralet, Liane

S. Feldman, and Amir Hooshiar. ºEmbedded Force Sensor with Deep Transformation Cali-

bration for Interventional Soft Robots.º In 2024 46th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1-4. IEEE, 2024. [52]

The author’s contribution was primarily in the data pre-processing, machine learning developments,

post processing, interpretation, and drafting. The contribution of the second author was in pro-

totyping and initial data acquisition. The contribution of the third and forth authors were in data

pre-processing, data acquisition and drafting. The contribution of the sixth to ninth authors were in

supervision, funding, final drafting and review.

Chapter 3 reports the implementation and comparison of performance for the proposed calibra-

tion method with six different temporal-frequency signal transformers. This chapter was drafted

based on the following manuscript:

(1) Masoumi, Navid, AndrÂes C. Ramos, Tannaz Torkaman, Liane S. Feldman, Jake Barralet,

Javad Dargahi, and Amir Hooshiar. ºEmbedded Force Sensor for Soft Robots With Deep

Transformation Calibration.º IEEE Transactions on Medical Robotics and Bionics (2024).

[51]

The main contribution of the author was in data pre-processing, machine learning developments,

post-processing, interpretation, and drafting. The second author’s contribution involved prototyp-

ing and initial data acquisition. The contributions of the third and fourth authors included data

pre-processing, data acquisition, and drafting. Contributions from the sixth to ninth authors encom-

passed supervision, funding, final drafting, and review.
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1.6 Contributions

This study was, to the best of the author’s knowledge, the first to address the limits of rate-

dependent calibration methods for embedded soft sensors for the application of interventioanal soft

robots, by proposing an innovative approach to have a derivative-free, transfer learning-based cal-

ibration approach that minimizes noise amplification and improves precision in the measurement

of subtle forces, particularly in the mentioned applications requiring high sensitivity at low force

ranges.

The results of this research have been published as two conference papers and a journal paper:

(1) Masoumi, Navid, Negar Kazemipour, Sarvin Ghiasi, Tannaz Torkaman, Amir Sayadi, Javad

Dargahi, and Amir Hooshiar. ºWaveLeNet: Transfer Neural Calibration for Embedded Sens-

ing in Soft Robots.º (No. 10507)

(2) Masoumi, Navid, Andres C. Ramos, Tannaz Torkaman, Javad Dargahi, Jake Barralet, Liane

S. Feldman, and Amir Hooshiar. ºEmbedded Force Sensor with Deep Transformation Cali-

bration for Interventional Soft Robots.º In 2024 46th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1-4. IEEE, 2024

(3) Masoumi, Navid, AndrÂes C. Ramos, Tannaz Torkaman, Liane S. Feldman, Jake Barralet,

Javad Dargahi, and Amir Hooshiar. ºEmbedded Force Sensor for Soft Robots With Deep

Transformation Calibration.º IEEE Transactions on Medical Robotics and Bionics (2024)

10



Chapter 2

TransLeNet: Transfer Neural

Calibration for Embedded Sensing in

Soft Robots

2.1 Background

Soft robots have exhibited excellent compatibility with functional and physical requirements of

intraluminal procedures such as bronchoscopy and cardiovascular intervention [15, 53]. Despite

their favourable mechanical compliance and scalable design, integrating miniature force and shape

sensors on them is cumbersome [2]. Also, large mechanical deformation of such robots, i.e., flex-

ures, may push traditional rigid sensors out of their linear range [3]. As an alternative approach, a

previous study have introduced a novel soft sensing method and soft embedded sensors for flexures

that exhibited less than 10mN error in measuring external 3D tip forces on soft robots for bron-

choscopy and cardiovascular applications [34, 1]. Fig. 2.1 depict a representative interventional

application. The proposed soft sensor was comprised of a gelatin-based matrix filled with graphite

nano-particles that exhibited stable piezoresistivity under extremely large deformation. Despite its

accuracy, the accuracy of the proposed sensor was adversely affected in noisy environments, e.g.,

operation rooms. The reason was that the rate-dependent features used in its neural calibration

11



Figure 2.1: Conceptual application of the proposed soft sensor in cardiovascular procedures.[35]

12



would amplify the peripheral noise which would diminish the accuracy. In this chapter, an alter-

native deep-learning-based method is proposed and validated for calibration of the mentioned soft

sensor that is derivative-free thus does not amplify the peripheral noise and is versatile. Concep-

tually, the proposed calibration methods can be used to assemble an array of sensor readings for

distributed sensing on soft robots. The proposed method is based on generating a scalogram from

the temporal-frequency content of the measured voltages using real-time transforms such as Short-

Time Fourier and Constant-Q and using transfer learning technique to infer rate-dependent and

deformation-dependent features from the voltages’ scalogram.

The STFT, introduced by Dennis Gabor, operates by segmenting a signal into overlapping

frames and applying the Fourier Transform to each frame. This method provides a time-frequency

representation that captures both temporal and spectral information, making it suitable for analyzing

non-stationary signals [18]. However, the STFT is limited by its fixed window size, which can lead

to a trade-off between time and frequency resolution. A larger window provides better frequency

resolution but poorer time resolution, while a smaller window offers the opposite [54, 55]. This

limitation has prompted the development of adaptive techniques, such as the Adaptive Short-Time

Fourier Transform (ASTFT), which adjusts the window size based on local signal characteristics,

albeit at the cost of increased computational complexity [54, 56].

Figure 2.2: Time-frequency analysis of a signal in a representative study [57] using STFT and CQT,

demonstrating differences in frequency resolution.

In contrast, the Constant-Q Transform (CQT) is designed to provide a frequency resolution that

is proportional to the frequency itself, which is particularly advantageous for musical and audio sig-

nals where lower frequencies require higher resolution [58]. The CQT uses logarithmically spaced

13



frequency bins, allowing it to maintain a consistent quality factor (Q) across the frequency spec-

trum. This characteristic makes the CQT especially effective for applications in music information

retrieval and audio analysis, where the perception of pitch and harmonic content is crucial [59]. Ad-

ditionally, the CQT can be computationally intensive due to its non-uniform frequency sampling, but

it offers superior performance in scenarios where frequency resolution is paramount [60]. Fig. 2.2

illustrates a comparative analysis of STFT and CQT to elucidate the distinct frequency resolution

characteristics of these transformations.

2.2 Materials and Methods

2.2.1 Sensor Design and Working Principle

In a recent research, a novel soft sensing method with soft sensors embedded in flexures was

introduced, exhibiting less than 10mN error in measuring external 3D tip forces for bronchoscopy

and cardiovascular applications [34]. As shown in Fig. 2.3, the sensor was composed of gelatin-

based matrix filled with graphite nano-particles with piezoresistive properties [35]. The schematic

shows the electrode wiring inside the sensing element’s flexure and a streamlined equivalent electri-

cal model of the sensor’s voltage-splitting setup for data collection. The voltage V2 and resistance

Re represent the voltage at the sensor tip and the sensing element’s total electrical resistance. More-

over, Rc is a constant resistor required for voltage splitting, and V1 is the pull-up voltage used to

trigger the voltage splitter circuit. The electrical resistance of the gelatin and graphite composites

change when they deform due to their piezoresistive properties. This behaviour results from vari-

ations in the effective diameter and length of the sensing element within the soft body caused by

deformation due to external excitation, which can be generated by applying force or pressure on the

soft sensor. As shown in Fig. 2.3, the helically shaped force sensor, with three degrees of freedom

of detection, is positioned along the cylindrical chamber in the flexural body. Such chambers also

function as a mold for the suggested gelatin-based sensing element. To produce the soft body, a 3D

printer and PLA filaments (Replicator+, MakerBot, NY, USA) were used to make cylindrical molds

that hold the sensing material in place. Ecoflex 00-50 was combined in a 1 to 1 ratio, stirred for 5

minutes, and then allowed to degas under a vacuum of 101 kPa. After being injected into the molds,
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Figure 2.3: Top: the structural design of the sensor with a gelatin/graphite sensing element. Bottom:

simplified electrical model of the sensor and voltage splitter circuit.
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the mixture was allowed to settle for 24 hours at 25°C. The sensing component was fabricated by

incorporating graphite micro platelets into the gelatin. The gelatin sachets were dissolved by stir-

ring them after being immersed in cold water for two minutes. This emulsion was injected into the

chamber of the soft body, after mixing it with graphite micro platelets.

2.2.2 Experimental Setup and Data Acquisition

Fig. 2.4 depicts the fabricated flexural robot with the embedded sensing element and the ex-

perimental validated setup used in this study[34], consisting of a Gamma force and torque sensor

(ATI Industrial Automation, NC, USA) to measure the ground truth force values acting on the flex-

ural robot and sensing element. An Arduino Uno was used to measure V1 and V2 raw data at a

250 Hz refresh rate and transfer the data to a PC. A user interface software for data acquisition,

curation, storage, and post-processing was developed in C# programming language, integrating the

software on the PC, the firmware on Arduino Uno, and the hardware (sensor and flexure). The data

post-processing and calibration were performed in Matlab 2023a (Mathworks, MA, USA).

2.2.3 Data Transformation

Data is comprised of two sets of voltage signals, namely z(t) hereinafter, collected over time.

In a previous research[1], such voltage signals were kept in the time domain and fed to a neural

network, so no information containing frequency components was processed. However, the focus

in this study is to enhance the calibration process by considering the features in the frequency

domain while the temporal data is still being processed. For extracting such frequency components

from the voltage signals in the form of a time series, two types of transforms are implemented. The

first approach is a short-time Fourier transform (STFT) which represents a sort of trade-off between

time and frequency-based views of a signal with limited accuracy, where the size of the frames

determines that accuracy. These functions were studied to find the best candidates for input data

that achieve the best regression results. The STFT is based on the fundamental continuous form[61]

as defined in Eq. 4.

Z(τ, w) =

∫ ∞

−∞
z(t)w(t− τ)e−iwtdt (1)
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Figure 2.4: The fabricated sensor and flexural robot prototype, and the experimental setup used in

data acquisition of this study.
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where z(t) denotes the original signal which is being investigated, while Z(τ, w) represents the

outcome of applying the STFT at a specific time window function of τ . The second approach is

based on a Constant-Q Transform that is intuitive for time-frequency analysis. The ratio of the

filter’s center frequency to bandwidth is known as the ºQ factorº, indicating the selectivity of a filter

when used in time-frequency analysis. It can be defined as in Eq. 2:

Q =
fk

fk+1 − fk
(2)

where k = 1, 2, . . . ,K is the frequency bin index and fk is the centre frequency of bin k [62]. The

CQT has an optimal temporal resolution for higher frequencies but a larger frequency resolution at

lower frequencies when compared to the STFT. The CQT of a discrete signal x(n) is as found in

Eq. 3:

XCQ(k, n) =

n+⌊Nk/2⌋∑

J=n−⌊Nk/2⌋

x(j)a∗k(j − n+Nk/2) (3)

where ak(n) are basis functions, ∗ is the complex conjugate, and Nk is a variable window length

[62].

2.2.4 Transfer Learning Calibration

As an alternative and derivative-free calibration method for the soft embedded sensor developed

in [1], the utilization of a deep-learning-based calibration schema is investigated. To this end, first

the transformation scalograms of two voltages V1 and V2 recorded during the sensor calibration

were obtained using Matlab Signal Processing Toolbox. As shown in Fig. 2.5 scalograms were 2D

images in red-green-blue (RGB) colorspace. The images were of 224× 112 px size and were hori-

zontally concatenated in the form of [V1 V2] to form a 224× 224 px input image for the transferred

neural network. Also, the synchro-squeezing, which is a signal processing technique that improve

the clarity and accuracy of time-frequency analyses, was utilized to refine the temporal resolution of

the scalogram. A total of 70 pairs of STFT and CQT scalograms were obtained from the calibration

dataset obtained in [1]. Considering the small size of the dataset and to perform accurate feature
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extraction on scalogram images, GoogLeNet (Alphabet Inc.) pre-trained network was used. It had

a total of 22 layers (including convolutional and max-pooling. To perform force estimation (regres-

sion), the last layer of GoogLeNet (classifier) was replaced with eight fully-connected layers with

250,200,150,100,50,25,10, and 3 neurons with the rectified linear unit (ReLU) activation function.
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Figure 2.5: Dataflow-gram of the proposed transfer-learning-based calibration method.
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The restructured convolutional calibration model was denoted as TransLeNet in this study.

For better accuracy, the training forces were normalized. In training, ’adam’ optimizer with

20 epochs and goal function of mean-absolute error was used. The training was performed in

Matlab Deep Learning Tool Box (Mathworks, MA, USA). The dataset was split (70:15:15 for

train:validate:test).

2.2.5 Validation Protocol

In a different study, forces were predicted by transferring the calibration model to the developed

user interface. Concurrently, the ground-truth force measurements of ATI sensor were acquired.

As in training evaluation demonstrated in Fig. 2.4, the soft body was manually deformed at its

tip throughout the test. Following that, an analysis of the inaccuracy was conducted by comparing

the anticipated forces with the actual values. The time variations in the predicted and ground-truth

forces in the validation experiment are reported in the results section. In the validation experi-

ment, discrepancies between the predicted forces and the actual measurements were thoroughly

analyzed to assess the calibration model’s performance. This analysis involved observing the tem-

poral changes between the two sets of forces and evaluating the robustness and reliability of the

predictive model under various operational conditions.

2.3 Results and Discussion

Fig. 2.6 shows a representative performance of the proposed calibration for unseen data for

predicting tip force in x−direction, i.e. Fx. To assess the accuracy, maximum and mean absolute

errors between predicted force and ground truth (reference) were analyzed and compared with the

previous rate-dependent calibration proposed in [1]. In addition, the minimum detectable force

observed with TransLeNet and that of [1] were compared. Table 2.1 summarizes the performance

of TransLeNet with the rate-dependent calibration proposed in [1]. The results showed that the

Mean Absolute Error (MAE) of the proposed network was less than 5% of full range. Although the

MAE over full range was larger than the previous rate-dependent calibration it was still below the

5% error level. Most importantly, the error for small force ranges were analyzed, where the previous
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rate-dependent calibration was most erroneous (due to noise amplification). The results showed that

not only the proposed TransLeNet calibration was more accurate than the rate-dependent calibration,

but it was also more accurate compared to itself at full range. Also, the more in-depth analysis

showed that at force ranges> 100mN, the scalograms become quite bright and the temporal gradient

of WaveLet scalograms diminishes. Based on the observations in accuracy assessment studies of

this chapter, the proposed calibration led to lower accuracy at high forces compared to Torkaman et

al.[1].
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Figure 2.6: Representative performance of the calibration in the x axis.

Table 2.1: Performance of the calibration in comparison with Ref. [1].

Force

MAE

TransLeNet

(mN)

MAE

[1]

(mN)

MDF

TransLeNet

(mN)

MDF

[1]

(mN)

Fx (full-range) 7.5 3.3 < 1 < 1
Fy (full-range) 7.1 2.6 < 1 < 1
Fz (full-range) 12 8.0 < 1 < 1

Fx < 20mN 3.3 12.0 < 1 < 1
Fy < 20mN 3.7 13.1 < 1 < 1
Fz < 20mN 5.4 14.4 < 1 < 1

MAE: Mean Absolute Error

MDF: Minimum Detectable Force
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The goodness of fit (R2) and Root Mean Squared Error (RMSE) metrics were used to assess

TransLeNet’s performance, after 20 epochs and 800 iterations. The R2 score of the representative

transform (CQT) for Fx, Fy, and Fz was determined to be 92.0%, 97.1%, and 97.0%, respectively,

which proves that it is a remarkable fit for the model and target variable. The RMSE, which mea-

sures the average squared difference between the predicted and actual values, was 0.346. This

means the model has a relatively low error and predicts the target variable well. Overall, as seen by

its significant R2 score and low RMSE, TransLeNet performs high force estimation based on these

tests. A performance comparison of the suggested transforms is shown in Fig. 2.7. To this end, we

illustrate the calibration method for unseen data from tip force prediction in the X direction, i.e. Fx.

For each transform, the Mean Absolute Error (MAE) and Maximum Absolute Error (MaxAE) of

the predicted force are shown in Table 3.2.

Table 2.2: Performance metrics for the proposed transformations.

Transformation Measurand Range MAE⋆ MaxAE⋆⋆

(mN) (mN) (mN)

CQT

Fx

Fy

Fz

-180 , 260

-140 , 120

-80 , 380

4.3

2.7

11.2

25.7

14.2

37.8

STFT

Fx

Fy

Fz

-390 , 210

-350 , 280

-150 , 650

6.7

5.9

24.1

39.5

35.0

65.1

⋆ MAE: Mean Absolute Error, ⋆⋆ MaxAE: Maximum Absolute Error
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Figure 2.7: Comparison of estimated and reference forces between transformations and their corre-

sponding scalograms.
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2.4 Summary

A novel calibration method for gelatin-graphite-based soft sensors utilizing convolutional deep

learning has been introduced to account for sensor non-linearity and reduce noise. This technique

offers improved force sensitivity, particularly beneficial in delicate surgical contexts, with a mean

absolute error as low as 11.2 mN. The study underscores the importance of minimally invasive

surgery (MIS) and addresses challenges with integrating conventional force sensors in flexible

surgical instruments. The proposed embedded and distributed sensors are crucial for accurately

sensing interaction forces during procedures like endoluminal surgery. The research introduces

’TransLeNet’, an advanced calibration model employing time-frequency signal transformations to

refine force estimation in soft sensors. This model incorporates convolutional neural networks and

uses transfer learning to improve calibration with limited data. Results showed an excellent fit with

an R2 of over 92% and a low root mean squared error, indicating high accuracy in force estimation.

Constant-Q Transform (CQT) provided better results than Short-Time Fourier Transform (STFT)

in comparison tests. The study concludes that integrating piezoresistive gelatin-graphite sensors in

soft robots offers significant potential for enhancing surgical precision. The use of deep learning

in calibration effectively handles non-linearities of such sensors, providing reliable force feedback

crucial for surgical success.
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Chapter 3

Embedded Force Sensor for Soft Robots

With Deep Transformation Calibration

3.1 Background

Soft shape sensors play a crucial role in enhancing the capabilities of surgical interventional

robots by providing real-time feedback on the robot’s configuration and interaction with soft tis-

sues. These sensors, often integrated into soft robotic structures, utilize their deformability to cap-

ture complex shapes and movements, which is essential in delicate surgical procedures. Calibration

methods for these sensors are vital to ensure accurate readings and reliable performance. Various

approaches have been proposed, including vision-based calibration techniques that leverage RGB-D

cameras to establish the relationship between the robot’s coordinate system and the sensor outputs,

as demonstrated by Zhang et al.[63]. Additionally, kinematic calibration methods, such as those

explored by Wei-Dong et al.[64], utilize optical position sensors to enhance the precision of sur-

gical robots, ensuring that the robot’s movements correspond accurately to the intended actions.

Furthermore, the integration of machine learning techniques has been shown to improve calibration

processes, allowing for adaptive recalibration in response to changes in the surgical environment or

instrument configurations, as discussed by Kim et al.[65] and Truby et al.[66].

The Continuous Wavelet Transform (CWT) is an effective method for analyzing non-stationary

signals by decomposing them into wavelets that are localized in both time and frequency. Among the
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Figure 3.1: Comparison of continuous wavelet transforms in Time-Frequency Domain

various wavelet functions, the Morlet, Morse, and Bump wavelets are particularly noteworthy. The

Morlet wavelet, characterized by a Gaussian envelope modulated by a complex sinusoid, is widely

used for its balanced time-frequency resolution, making it suitable for applications in seismic signal

analysis and mechanical fault detection [67, 68]. The Morse wavelet offers flexibility in its shape,

allowing for adjustments in frequency and bandwidth, which is beneficial for analyzing signals with

varying frequency content, such as climate data in [69]. Conversely, the Bump wavelet is compactly

supported and smooth, making it ideal for localized analysis without introducing artifacts associated

with infinite support wavelets [70]. In signal processing and calibration, the choice of wavelet

depends on the specific characteristics of the signal; the Morlet wavelet is favored for its resolution,

the Morse wavelet for its adaptability, and the Bump wavelet for its localized nature, each enhancing

the analysis of complex signals as shown in 3.1.

In this chapter, the process of design and fabrication of the soft sensor in [1] is briefly described.

In addition, five transformations (including CQT and STFT from last chapter) are being investigated

and compared all together for the neural calibration. The optimal tranformation is chosen for the
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previously discussed application, based on various metrics such as linearity (R2 score), mean ab-

solute error (MAE), and maximum absolute error (MaxAE). Therefore, an improved and extended

calibration architecture, ’TransLeNet’ is proposed, to compare a total of five candidates as time-

frequency signal transformations, i.e., Morse, Morlet, Bump, Constant Q (CQT), and Short-Time

Fourier Transform (STFT), demonstrating their high performance in resolution and range of sensing

with the utilized soft sensor and identifying the corresponding best model.

3.2 Sensor Design and Working Principle

3.2.1 Modeling and Fabrication

The fabrication process of the soft sensor is described in detail in a previous work by Torkaman

et al.[1]. As shown in Fig. 3.2, the developed soft sensor is built from two merged structures. One is

the sensing material, which is based on gelatin and graphite filaments, and the second structure, or

soft body, surrounds the sensing elements to provide mechanical support and acts as a flexible vessel

sensitive to mechanical deformation. The schematic shows the electrode wiring inside the sensing

element’s flexure and a streamlined equivalent electrical model of the sensor’s voltage-splitting

setup for data collection.

V1 represents the voltage at the middle of the sensor, V2 the voltage at the sensor’s tip, and the

resistanceRe represents the sensing element’s total electrical resistance. In addition,Rc is a constant

resistor required for voltage splitting, and Vout is the pull-up voltage used to trigger the voltage

splitter circuit. The electrical resistance of the gelatin and graphite composites change when they

deform due to their piezoresistive properties. This behaviour results from variations in the effective

diameter and length of the sensing element within the soft body caused by mechanical deformation

due to external forces applied to the soft sensor. For proof of concept, the developed sensor has a

diameter that allows practical manipulation and excitation, and thus a calibration process with ease.

As shown in Fig. 3.3, the curved force sensing element, with three degrees of freedom of detection,

is positioned along the cylindrical chamber in the flexural body. Such a chamber also functions as

a mold for the suggested gelatin-based sensing element. For the soft body, a 3D printer and PLA

filaments (Replicator+, MakerBot, NY, USA) were used to make cylindrical molds that hold the
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Figure 3.2: Fabrication process of the soft sensor.
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Figure 3.3: Top: the structural design of the sensor with a gelatin/graphite sensing element. The

sensor tip is at the left end. Bottom: a simplified electrical model of the sensor and voltage splitter

circuit.
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Table 3.1: Composition and contents of the fabricated gelatin-based sensor

Volume Fraction (%)

Sensing

Element

Water Gelatin Graphite

70.1 14.1 15.8

Soft Body

Components

Ecoflex 00-50 (Part A) Ecoflex 00-50 (Part B)

50 50

sensing material in place. Ecoflex 00-50 was combined in a 1 to 1 ratio, stirred for 5 minutes, and

then allowed to degas under a vacuum of 101 kPa. After being injected into the molds, the mixture

was allowed to settle for 24 hours at 25°C. The sensing component was fabricated by incorporating

graphite micro platelets into the gelatin. The gelatin sachets were dissolved by stirring them after

being immersed in cold water for two minutes. This emulsion was injected into the chamber of the

soft body, after mixing it with graphite micro platelets, as is illustrated in Fig. 3.2. A summary of

the materials and percentages of the composition of the fabricated sensing composite is presented

in Table 3.1.

3.2.2 Experimental Setup and Data Acquisition

Fig. 3.4 depicts the fabricated flexural robot with the embedded sensing element and the exper-

imental validated setup used in this study [34], consisting of a Gamma force and torque sensor (ATI

Industrial Automation, NC, USA) to measure the ground truth force values acting on the flexural

robot and sensing element. In a single trial of the experiment, arbitrary forces were applied to the

tip of the sensor in all directions (X , Y and Z), and they were complex in nature, potentially com-

prising normal, shear, and other force components. An Arduino Uno was used to measure V1 and

V2 raw data at a 250 Hz refresh rate and transfer the data to a PC. A user interface software for data

acquisition, curation, storage, and post-processing was developed in C# programming language,

integrating the software on the PC, the firmware on Arduino Uno, and the hardware (sensor and

flexure). The data post-processing and calibration were performed in Matlab 2023a (Mathworks,

MA, USA).
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Figure 3.4: The fabricated sensor and flexural robot prototype, and the experimental setup used in data acquisition of this study.
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3.2.3 Data Transformation

Data comprises two sets of voltage signals, namely z(t), collected over time. In a previous

work [1], such voltage signals were kept in the time domain and fed to a neural network, so no

information containing frequency components was processed. However, the focus in this study is

to enhance the calibration process by considering the features in the frequency domain while the

temporal data is still being processed. Three types of transforms are implemented to extract such

frequency components from the voltage signals in the form of time series. The first approach is

based on three generalized wavelets: the morse wavelet, morlet wavelet, and bump wavelet [71].

The second method uses a real-time constant Q parameter where the center frequency to bandwidth

ratio is constant, even though distinct time frames have variable center frequencies and bandwidths

[61]. The third technique is a short-time Fourier transform (STFT) which represents a sort of trade-

off between time and frequency-based views of a signal with limited accuracy, where the size of the

frames determines that accuracy. These functions were studied to find the best candidates for input

data that achieve the best regression results.

The STFT is based on the fundamental continuous form as defined in Eq. 4 [61, 72].

Z(τ, w) =

∫ ∞

−∞
z(t)w(t− τ)e−iwtdt (4)

where z(t) denotes the original signal being investigated, and Z(τ, w) represents the outcome of

applying the STFT at a specific time window function of τ . Wavelet families differ due to the

numerous trade-offs each family provides regarding the wavelet’s appearance, which can be both

smooth and compact. This indicates that a wavelet family may be selected based on how much it

matches the characteristics searched for in the data. Each wavelet type has a unique form, smooth-

ness, and compactness, making it valuable for various applications [73]. Specifically, the three

wavelet transform functions used in this work are the Morlet, Morse, and Bump. The continuous

wavelet transform can help investigate the time-frequency-localized variability of a signal z(t) as

described in Eq. 5.

Z(a, b) =
1√
a

∫ ∞

−∞
ψ(
t− b

a
)z(t)dt (5)
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By changing the parameters a and b, the time and frequency variances of the output can be

adjusted. For example, in the Morlet transform, time and frequency can be tuned to contribute

equally to the output signal while, Morse wavelets can have a greater frequency variance, and for

the Bump wavelets, the time variance can be larger. Here, It is demonstrated that how the general-

ized Morse wavelets combine all of the previously stated wavelet types into a single, wide-ranging

family. These wavelets are defined in the frequency domain as

Ψβ,γ(ω) =

∞∫

−∞

ψβ,γ(t)e
−iωtdt = U(ω)aβ,γω

βe−ωγ

(6)

where aβ,γ is a normalization constant, U(ω) is the unit step function, and β and γ are two

parameters controlling the wavelet form [71],[74].

3.2.4 Transfer Learning Calibration

Same as the approach in the previous chapter, Fig. 3.5 shows an overview of the whole pro-

cess of the proposed calibration method. Convolutional neural networks have been used to address

the significantly high non-linearity and hysteresis of the soft sensor. This research investigates a

calibration method based on deep learning, as an alternative and improved method that offers a

derivative-free approach for calibration of the designed soft embedded sensor.
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Figure 3.5: Dataflow-gram of the proposed transfer-learning-based calibration method.
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A previously trained neural network from GoogLeNet (Alphabet Inc.) was utilized, due to the

small size of the data set, consisting of 22 layers (including convolutional and max pooling). For

input features of the proposed neural model, vectors X and Y were selected as

X =

(
V1

V̂1

V2

V̂2

)T

(7)

Y = (Fx Fy Fz)
T (8)

The input layer of the neural network had two neurons to receive the voltage signals V1 and V2,

and the initial voltages V̂1 and V̂2 measured with no excitation applied to the sensor. The output

layer had three neurons dedicated to generating the estimated forces F in the x, y, and z directions.

The torques were not considered in this work to simplify the network implementation but will be

considered in future experiments. The last layer of the GoogLeNet (classifier) was replaced with

eight fully connected layers of 750, 500, 250, 150, 100, 50, 10, and 3 neurons with a rectified linear

unit (ReLU) activation function to perform the force estimation (regression). This architecture

was chosen empirically based on observation of the performance. In the future works, a complete

hyper-parameter search must be done for optimized architectural design. Beyond this point, the

reconstructed convolutional calibration model is referred as TransLeNet. The force signals were

normalized for improved precision during training, and the ’adam’ optimizer was used with 20

iterations. For training, validation, and test allocation, the training data set was divided with a split

ratio of 70:15:15, using the Matlab Deep Learning Tool Box (Mathworks, MA, USA).

3.2.5 Training Dataset

Scalograms were obtained for the Continuous Wavelet Transform (CWT), Constant Q Trans-

form (CQT), and Short Time Fourier Transform (STFT) of the two voltages V1 and V2 recorded

during sensor calibration. Scalograms were 2D pictures in the RGB color-space, as illustrated in

Fig. 3.5 and 3.7. To be more precise, the CWTs were generated using the Morse, Bump, and Morlet

(Gabor) wavelets with a predetermined Gamma value (γ). The input picture for the transferred neu-

ral network was created by horizontally concatenating the 224 × 112 px CWT images in the form
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of [V1 V2] with the final resolution of 224 × 224. In addition, a Synchrosqueezing technique was

added to the wavelet to enhance the scalogram’s temporal resolution. Synchrosqueezing is a helpful

method for time-frequency analysis of signals with oscillating components, such as physiological

signals and machine vibrations [75, 76, 77]. The calibration process provided a total of 70 pairs of

scalograms.

3.2.6 Validation Protocol

In a previous study, forces were predicted by transferring the calibration model to the developed

user interface. Concurrently, the ground-truth force measurements of the ATI sensor were acquired.

Similar to training evaluation, the soft body was manually deformed at its tip throughout the test.

Following that, the inaccuracy was analyzed by comparing the anticipated forces with the actual

values. The time variations in the predicted and ground-truth forces in the validation experiment are

reported in the results section.
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Figure 3.6: Progress of training the proposed calibration method with the training dataset. The RMSE constantly decreased until no further

improvement was possible through gradient decent on TransLeNet.
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3.3 Results and Discussion

3.3.1 Calibration Verification

The goodness of fit (R2) and Root Mean Squared Error (RMSE) metrics were used to assess

TransLeNet’s performance, after 20 epochs and 800 iterations, as shown in Fig. 3.6. The R2 score

of the representative transform (Morse) for Fx, Fy, and Fz was determined to be 95%, 97%, and

97.3%, respectively, which proves that it is a remarkable fit for the model and target variable. The

RMSE, which measures the average squared difference between the predicted and actual values,

was 0.295 mN. This means the model has a relatively low error and well predicts the target variable.

3.3.2 Experimental Validation

A performance comparison of the five suggested transforms is shown in Fig. 3.7. To this end,

the suggested calibration method for unseen data from tip force prediction in the X direction is

illustrated, i.e. Fx. For each transform, the Mean Absolute Error (MAE) and Maximum Absolute

Error (MaxAE) of the predicted force were obtained based on the ground truth (reference). Error

metrics are shown in Table 3.2.
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Figure 3.7: Sample scalograms as inputs to TransLeNet and output forces for all transformations.

Forces are compared between estimations and references.
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To illustrate the best calibration results, Fig. 3.8 shows the reference and estimated forces using

the Morse transform. Correlation graphs are included to visually perceive the similarity between the

estimated forces from the calibration model and the ground truth. The Morse transform is the best

calibration model as it had a strong correlation with an R2 value greater or equal to 0.95 for all axes

of force. This also indicates that the proposed calibration model was successful in predicting the

correct forces despite large deformation, nonlinearity effects, and noise in the voltage measurement.

It was also qualitatively observed that the error was not amplified at near zero forces in contrast

to the recent finding in [1] that suggested otherwise. The reason for this is that the new method

includes derivative-free data, whereas, in the previous study, a derivative-based calibration was

used. Therefore, noise amplification was inevitable, especially in near zero forces where the energy

of the noise in the signal becomes comparable to the total signal’s energy. To portray the proposed

calibration within the context of the current literature, a comparison with a series of representative

studies is summarized in Table 3.3. The major finding of the comparison was that the sensor showed

Table 3.2: Performance metrics based on transformations and degrees of freedom

Transformation DOF Error Ranges MAE⋆ MaxAE⋆⋆

(mN) (mN) (mN)

Morse

Fx

Fy

Fz

-160 , 190

-90 , 190

-70 , 290

4.7

4.5

7.9

194

194

286

Morlet

Fx

Fy

Fz

-190 , 310

-520 , 180

-80 , 470

7.3

11.4

16.8

307

515

467

Bump

Fx

Fy

Fz

-180 , 220

-170 , 260

-120 , 360

5.6

5.2

8.3

217

259

357

CQT

Fx

Fy

Fz

-180 , 260

-140 , 120

-80 , 380

4.3

2.7

11.2

257

142

378

STFT

Fx

Fy

Fz

-390 , 210

-350 , 280

-150 , 650

6.7

5.9

24

395

350

651

⋆ MAE: Mean Absolute Error
⋆⋆ MaxAE: Maximum Absolute Error
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Figure 3.8: Comparison of reference forces and estimated forces with Morse transform. The graphs

on the right show the corresponding correlations.
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Table 3.3: Calibration performance compared to other representative studies

Study Sensing principle Calibration Min. Detectable Range

Rehan et al.[78]

(2022)
Magnetic Hall effect 250 mN 0 - 20 N

Yang et al.[79]

(2022)
Magnetic - 50 mN 0 - 4 N

Massari et al.[80]

(2022)
FBG DNN 35 mN 0-2.5 N

Bandari et al.[36]

(2020)
LIM SVM 50 mN 0-2 N

Atoche et al.[81]

(2022)
PR SPI 39 mN 0.392 - 4.905 N

Torkaman et al.[1]

(2023)
PR MLP ≤1 mN 0 - 0.350 N

Masoumi et al.[50]

(2023)
PR WaveLeNet ≤1 mN 0 - 0.397 N

Masoumi et al.[52]

(2024)
PR TransLeNet ≤1 mN 0 - 0.397 N

FBG: Fiber-Bragg Grating

LIM: Light Intensity Modulation

PR: Piezoresistive

DNN: Deep Neural Network

SVM: Support Vector Regression

SPI: Serial Peripheral Interface

MLP: Multi-Layer Perceptron
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a relatively more limited range while exhibiting a smaller minimum detectable force. This implies

that the proposed sensor has a smaller resolution (≤ 1mN). Another finding of the comparison

was that the proposed calibration schema was the only one that used a convolutional deep-learning

approach. A major contribution of this work was in fusing multiple signals into one image (through

transformation) and using that within a deep-learning model for inference (regression modelling).

The fact that a transfer learning approach is used, saved time in developing feature extraction layers;

whereas without transfer learning one would need to build the entire network from scratch which

might result in suboptimal accuracy due to the need for a high volume of images and training data.

The results show that using the Morse transform, the proposed calibration method resulted in

comparable accuracy and minimum detectable force to the previously proposed calibration model

with derivative-based features [1]. However, compared to the previous results [1], this study indi-

cates that the proposed calibration with Morse transform provides less noise in force estimation and

more accuracy for forces below 100 mN of amplitude. Moreover, the combined sensor and calibra-

tion method showed a lower range of measurement than those of other authors, perhaps due to a

combination of a highly compliant flexure (supporting substrate) and the configuration of the sens-

ing element, which is directly affected by the flexure material. This observation applies to previous

findings as well [1].

3.4 Summary

In this chapter, the design and fabrication process of the soft sensor is described. Additionally,

five transformations, including CQT and STFT discussed in the previous chapter, are examined

and compared. The best transformation is selected for the application in question, based on var-

ious metrics like linearity (R2±score), mean absolute error (MAE), and maximum absolute error

(MaxAE). An enhanced and expanded calibration framework, ’TransLeNet’, is introduced, evalu-

ating five time-frequency signal transformationsÐMorse, Morlet, Bump, Constant Q (CQT), and

Short-Time Fourier Transform (STFT). This comparison highlights their effectiveness in resolution

and sensing range with the soft sensor, and identifies the best performing model.
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Chapter 4

Conclusions and Future Works

4.1 Conclusions

Embedded piezoresistive force sensors for soft robots can be fabricated with gelatin and graphite

materials as sensing elements. A precise calibration procedure is required to compensate for the

nonlinear behaviours of soft sensors. In noisy surroundings, the sensor’s accuracy is drastically

affected, and rate-dependent characteristics applied in the neural calibration amplify electromag-

netic interference and noise. To address these challenges, a novel calibration technique was intro-

duced that utilizes 2D time-frequency signal representations instead of traditional 1D signals (data).

By transforming these signals into two-dimensional scalograms, capturing a richer array of image

features was more feasible. Two signals of voltages were concatenated into one image (through

transformation). These signals were used within a deep-learning model for inference (regression

modelling), saving time in developing feature extraction layers and avoiding the need for a high

volume of images and training data. The proposed calibration technique based on morse trans-

form is derivative-free and included temporal variations of electrical signals from soft sensors by

capturing image features in various transform scalograms. In comparison to the previously veri-

fied rate-dependent calibration, TransLeNet provided high accuracy and minimum detectable force

throughout the whole range of our soft flexural sensor, comparable to the previous derivative-based

method [1], except with less noise in force estimation and more accuracy for forces up to 100 mN

of amplitude.
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4.2 Future Works

To build upon the current research and improve the sensor’s performance in MIS procedures,

future studies could focus on the following areas:

(1) Extending the range of the force sensing to meet the requirements of MIS procedures better

by optimizing the sensor material properties and structural design.

(2) Design improvements and geometric modifications of the sensing element to integrate novel

microfabrication techniques that could allow for more precise force measurements within the

required range.

(3) Advanced calibration techniques to be performed in real-time for the enhancement of the final

outcome.

(4) Integration into surgical robotics models available and evaluating the performance of the sen-

sor in a controlled environment, simulating real MIS scenarios.
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