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Abstract

Scaling up Machine Learning Models for fMRI Brain Encoding
Sana Ahmadi, Ph.D.
Concordia University, 2024

This thesis investigates techniques for optimizing brain encoding models, emphasizing com-
putational efficiency and the scalability of both data and models within the framework of
large-scale functional magnetic resonance imaging (fMRI) datasets. Brain encoding aims to
predict neural responses to complex stimuli, such as video frames, by utilizing latent feature
representations from artificial neural networks. The first study explores the acceleration of
ridge regression, a widely used predictive model in brain encoding, particularly when ap-
plied to large fMRI datasets like the CNeuroMod Friends dataset. By implementing a novel
batch-parallelization strategy using Dask, we achieved significant computational speedups
of up to 33× with 8 compute nodes and 32 threads compared to a single-threaded scikit-learn.

The second study investigates how dataset size and model scaling affect brain encoding per-
formance using vision Transformers. To do so, the VideoGPT model was trained end-to-end
to extract spatiotemporal features from the Shinobi video game dataset with varying sample
sizes (10K, 100K, 1M, and 6M) and model size (number of training parameters). Ridge
regression is then used to predict brain activity based on fMRI data and the extracted fea-
tures from video games. Our results show that larger datasets lead to significantly improved
encoding accuracy, with the 6M-sample dataset producing the highest Pearson correlation
coefficients across subjects. Additionally, while increasing hidden layer dimensions in the
transformer model greatly enhances performance, the number of attention heads appears to
have a minimal effect. These findings emphasize the importance of data scaling for improv-
ing brain encoding, offering practical insights for optimizing neural network architectures in
the context of large-scale stimuli data.
This research advances the field of computationally efficient brain encoding, which is crucial
for enhancing both computational speed and accuracy. These advancements are essential not
only for improving our understanding of brain function but also for enabling scalable machine
learning models on high-dimensional data and sophisticated stimuli, including applications
in neuroprosthetics and clinical neuroscience.
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Chapter 1

Introduction

The human brain is a hierarchical computing system comprising billions of neurons that
function as computational units. Cognitive neuroscience seeks to understand the intricate
workings of brain function, with functional magnetic resonance imaging (fMRI) emerging
as a pivotal tool in this research. A significant challenge within this field is to delineate
how complex stimuli perceived through various senses, particularly vision, are represented
across different brain regions. Artificial neural networks (ANNs), including deep convolu-
tional networks and transformers, have proven to be effective in learning representations that
align with neural data. These architectures, characterized by a vast number of parameters,
necessitate substantial datasets for effective training.
A common methodology involves utilizing pre-trained networks, followed by the training of
a linear readout layer to predict brain activity from the model features. More recently, there
has been a shift towards end-to-end training of ANNs using the same stimuli presented
to human subjects. However, training these sophisticated brain encoding models poses
significant computational challenges, particularly with large-scale fMRI datasets.
In this thesis, we aim to establish best practices for scaling up brain encoding models using
one of the largest fMRI datasets currently available, specifically the CNeuroMod dataset.
Our research focuses on three critical aspects: data scaling, model scaling, and computational
resources. In terms of computational resources, we investigate parallelization techniques such
as multi-threading and distributed training for ridge regression, one of the most well-known
approaches for brain encoding. Furthermore, we explore the impact of the varying dataset
and vision transformer model sizes on the performance of brain encoding models, emphasizing
the importance of leveraging large datasets to enhance encoding accuracy.
The overall aim of this thesis is to explore effective strategies for scaling brain encoding
models in terms of data, model, and computational resources. By doing so, the aim is to
improve both the speed and accuracy of these models, making it feasible to use them in
neuroscience applications. This research not only contributes to our understanding of brain
function by revealing how the brain encodes complex stimuli but also serves as a guide for
practitioners in the field of cognitive neuroscience. It highlights the importance of scalable
solutions in brain encoding research and sets a foundation for future innovations in using
computational models to decode brain activity from neuroimaging data.
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1.1 Functional MRI

There are many methods for brain imaging, with the most commonly used including func-
tional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), Magnetoen-
cephalography (MEG), and functional Near Infrared Spectroscopy (fNIRS). This thesis fo-
cuses on fMRI, which is the technique with the best spatial resolution amongst those listed
above. The fMRI activity is measured in tens of thousands of 3D voxels covering the grey
matter of the brain, where neuronal bodies are located. Each voxel represents a small cube in
space of approximately 2-3 mm size along each dimension. The value at each voxel directly
reflects the relative concentration in oxygenated hemoglobyn, which is itself coupled with
neuronal activity through metabolism [56]. As fMRI is a space-time acquisition a series of
3D images are recorded in a given session, separated by a sampling time called TR, typically
of 1-3 seconds [81, 18].

1.2 Brain encoding and decoding

Figure 1.1: Brain encoding and decoding

Thanks to its high spatial resolution, the fMRI data helps cognitive neuroscience researchers
to understand which brain networks underpin cognitive processes with more details. There
are two common questions in research at the intersection of cognitive and computational
neuroscience: (1) determine how the activity inside a specific region can inform us on the
behavior or perception of a subject, (2) describe how the stimuli feature space is represented
inside a specific region of brain. Brain encoding and decoding analyses are designed to help
researchers address these two questions, respectively. An encoding model aims to predict
the brain responses in a given area using features extracted from the stimuli. Conversely, a
decoding model aims to predict the stimuli features based on measured brain activity patterns
[12]. Figure 1.1 illustrates the process of brain encoding and decoding tasks, which are mirror
of each other. An example of a brain decoding model would be a situation where a subject is
presented with a large number of images depicting objects from different categories, and the
model is a classifier where the voxel values are the input of the classifier and the category
of an image stimulus is the target of prediction. Conversely, the inputs of a brain encoding
model are the features extracted from an image (either raw pixel values, and representation
of these values by an artificial neural networks) and the brain response is predicted. A large
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number of computational methods have been proposed for brain encoding and decoding
in the literature, using stimuli from various domains such as audition [27], language [46],
emotion [75], and either static (images) or dynamic (videos) image stimuli [32]. This study
focuses on brain encoding models, and state-of-the-art approaches commonly rely on two
types of techniques: deep ANNs trained with gradient descent, and ridge regression to map
latent representations of the ANNs to brain activity.

1.3 Artificial neural networks as a model of brain rep-

resentations

Among different types of ANN architectures, transformer based models [73] lead to state-of-
the-art performance in diverse applications, such as computer vision and natural language
processing. Transformers transform a given token embedding into a new representation
that incorporates a relevant context in video or language. The attention mechanism is key
to the transformer architecture. Attention is implemented by computing a weighted sum
of the embedding of a collection of vision or language tokens where the weights represent
the importance of each token with respect to the current position. In the last few years,
efficient contextual representations of stimuli have been used to predict brain responses.
The results of brain encoding using transformers [53, 51, 19, 36] show improved prediction
accuracy when compared to CNN and RNN models [77, 63, 58, 65]. In other words, the
attention mechanism seem to produce representations of the stimuli that better align with
brain activity. One of the key challenge in brain encoding with transformers is that this
type of ANN typically involves a massive amount of parameters which translate in large
computations to train brain encoding models. Furthermore, over the past few years, the
quantity and quality of fMRI datasets have increased rapidly. The size of fMRI datasets
increases along multiple dimensions, such as increasing the number of subjects, scanning
hours for each subject, spatio-temporal resolution [4, 48], as well as the diversity of measures
collected concurrently with fMRI data (such as eye tracking and biosignals, amongst others).
Such deep datasets open the possibility of training ANNs directly on the stimuli used in a
neuroimaging experiment, rather than reuse pretrained networks trained by the artificial
intelligence research community. Consequently, there is an urgent need to develop scalable
approaches for end-to-end brain encoding models, both in terms of computation time and
memory requirements.

1.4 Ridge regression

After extracting latent space representations of a stimulus using an ANN, a ridge regression
model [23] is trained using pairs of {brain response, stimuli feature} to predict brain activity.
Compare to other linear regression models ridge provides better generalization to unseen data
through regularization of coefficient estimates [23, 37]. Even though ridge regression utilizes
some optimized linear algebra computations, this model still has an intensive computational
cost in large-scale brain encoding tasks. Hence, the training process of this linear brain

3



encoding layer still requires scaling up techniques due to intensive matrix computations over
the whole dataset [37].

1.5 Scaling up brain encoding

1.5.1 Increasing the size of fMRI datasets

The traditional fMRI datasets (pairs of fMRI and stimuli) have three weaknesses: covering
limited feature space of visual stimuli, poor spatio-temporal resolution, and low Signal-to-
Noise Ratio (SNR). These defects lead to poor modeling of brain mechanism and functions.
Recently, researchers in cognitive neuroscience have focused on a collective comprehensive
dataset to yield significant progress toward a next generation of brain encoding model. Two
main trends of the comprehensive datasets are increasing the number of the subjects and
expanding the stimuli feature space. Fig. 1.2 shows these two trends where x-axis and y-axis
are the number of fMRI scanning hours and the number of the subjects respectively. It is
worth to mention that the number of scanning hours indicates the variation of the stimuli
and the conditions during the experiments. In Fig. 1.2, the traditional fMRI datasets are
illustrated with gray box where the number of the subjects is above 20 and the scanning
time is less than 1 hour. In contrast, the top right corner of the figure illustrates an ideal
comprehensive dataset, featuring both a large number of subjects and a large number of
hours of data per subject. A brain encoding model in that regime requires generalization
between subjects and experimental conditions. However, due to the resource limitations (e.g.
scanning time for each subject) datasets are able to grow in one dimension rather than both
directions that restrict the generalization power. It means that there is a trade-off between
the number of subjects and the scanning hours.
Finding the correlation between the huge feature space of natural images and brain activity
is complicated. Therefore, understanding the brain hierarchical visual system requires an
intensive stimuli set of outdoor and indoor images. For instance, it is possible that the voxels
that are correlated with the yellow color were incorrectly correlated with the fruit banana.
It is a common issue in previous brain encoding works because of the lack of comprehensive
training dataset.
In computer vision studies, researchers have achieved a statistical structure model with
human-level accuracy because of existing intensive datasets such as ImageNet [15], COCO
[40]. The gap between Neuroscience and Computer vision refers to needing large scale data in
the brain encoding and decoding tasks. Datasets BOOlD 5000 [11], Natural Scenes Dataset
(NSD)[4] and CNeuroMod dataset [68] provide long fMRI scanning time for a few subjects.
The motivation behind these works is that next-generation brain encoding models must be
trained using extensive stimuli space. Training purely individual brain models also by-pass
the challenges of modelling inter-individual variations in brain organization.
The CNeuroMod research group [68] has released the largest fMRI dataset for individual
brain modeling currently available. The large-scale CNeuromod dataset provides a great
opportunity to train complex DL-based brain encoding models. For some information about
CNeuroMod tasks visit the CNeuroMod web page
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Figure 1.2: fMRI datasets are expanding along two key dimensions: number of the subjects and
and number of scanning hours per subject

1.5.2 Increasing model complexity

In addition to increasing the size of datasets, some strategies can be used to improve the
quality of brain models, which also increase the computational and memory overhead in
brain encoding tasks. In the following, we present some of these strategies.
In most brain encoding studies, the analysis was restricted to voxels in a limited number of
ROIs, for example in the visual system. This neglects fMRI signals outside of these specific
ROIs, which may be missing significant part of the information. A whole brain encoding
approach can uncover a convergence with ANN representations without needing specific
assumptions about the location of certain functions in brain activity, and this is particularly
important for complex cognitive processes engaging extensive parts of the brain, such as
language.
Another strategy is to train brain encoding with full time series instead of the evoked signal.
Encoding models can be trained using signal averaged across multiple trials of presentations
of a stimuli, in order to increase the signal-to-noise ratio. This approach is common for
example when working with presentation of fixed natural images [4]. But it may not be
easily applicable to dynamic stimuli such as movies. In this case, brain encoding models can
be trained directly from all time samples collected in an fMRI experiment, which greatly
increases the number of data points available as target for training.
Furthermore, recently, transformer models with a huge number of parameters trained on
massive amounts of data have shown impressive results in NLP and computer vision tasks.
The outstanding extracted features (spatial and dynamic) encourage neuroscience researchers
to leverage these models in brain encoding studies, such as the ones reviewed in the previous
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section. Figure 1.3 illustrates the dramatic growth in the number of parameters in NLP
models during the last 5 years: Bert-large (0.3B), GPT-2 (1.5B), Megatron-LM (8.3B), and
T5 (11B). One of the key challenges in extracting features through Transformers is thus
the large number of parameters to train a brain encoding model due to the large number
of features. Training such brain encoding models also requires large amount of brain data.
Then, using large-scale transformers in brain encoding tasks due to the limited available
memory in the current AI hardware technologies, as out-of-memory issues can clearly occur
during the training process with a single GPU or TPU.
Finally, neuroscience researchers have typically relied on pretrained networks developed by
AI researchers, reusing the weights of these networks without modification. However, with
the increasing availability of large-scale neuroimaging datasets such as NSD [4] and CNeu-
roMod [68], it is now possible to train moderately sized Transformers directly on the stimuli
presented to human subjects. This end-to-end training approach can be advantageous for
certain neuroscience experiments, where controlling both the nature and volume of data
available to artificial neural networks is crucial. Consequently, neuroscientists must adopt
computational tools from the AI community and address the same computational bottlenecks
encountered when training large-scale Transformers.
In summary, recent trends in brain encoding studies highlight the growing necessity for
researchers to leverage scaling techniques to train large artificial models, including Trans-
formers. This raises the central question of this thesis: how can we overcome the limitations
of large-scale brain encoding and train large models more efficiently?

Figure 1.3: Landscape of large-scale models and hardware capabilities. This figure was extracted
from Microsoft Blog.
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1.6 Outline of the thesis

In this chapter, we reviewed key concepts in brain encoding, emphasizing the significance
of scalability in brain representation analysis. We addressed the critical question of why
enhancing scalability is essential for accurate and effective brain encoding, considering the
growing complexity of neural data and the demands of modern machine learning approaches.
In Chapter 2, we provide a detailed review of state-of-the-art brain encoding methods, with
particular focus on transformer models and ridge regression techniques, both applicable
to a wide range of stimuli. Additionally, Chapter 2 explores high-performance computa-
tional techniques, such as parallelism and mixed precision, which enhance the efficiency of
model training and deployment. The challenges of scaling brain encoding models are tackled
through two primary projects. The first project, discussed in Chapter 3, focuses on scal-
ing up the ridge regression model by optimizing computational resources and distributed
training.
The second project, presented in Chapter 4, centers around scaling the VideoGPT model,
specifically addressing challenges related to both the size of the dataset and the complex-
ity of the model. This includes strategies for handling larger datasets, increasing model
capacity, and optimizing training for more efficient spatio-temporal feature extraction from
video data. In Chapter 5, which discusses conclusions and future work, we reflect on the
implications of these advancements for the field of neuroscience and outline future directions
for further scaling brain encoding approaches. Together, these projects represent signifi-
cant steps toward making brain encoding models more scalable, efficient, and practical for
real-world applications.
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Chapter 2

Related works

The study of brain encoding aims to map brain activity to cognitive processes using machine
learning models. This chapter delves into the various approaches used in this field, with a
particular focus on ridge regression and transformer-based architectures. Additionally, key
techniques for scaling neural network training are reviewed, highlighting their importance in
enhancing performance for complex brain encoding tasks.

2.1 Brain encoding with ridge regression and Trans-

former models

2.1.1 Vision transformers

Colin Conwell and colleague [13] discuss how computer vision models can help us under-
stand how the human visual system works. In this paper, the authors analyze a large-scale
benchmarking based on 85 modern deep-learning models to see how differences in model
architecture (ConvNets, MLP-Mixers, and Transformers) and training tasks (2D, 3D, Se-
mantic, and Geometric) contribute to the prediction of brain activity. The benchmarking
results show that even when the architecture of the models was very different, they still
performed similarly. Importantly, they found that even though convolutional neural net-
works are based on operations believed to mimic early layers of the human visual cortex,
transformer architectures performed as well without featuring such inductive biases on the
model representations. They also found that models trained to categorize images (semantic
tasks) were more efficient at predicting brain activity.

2.1.2 Language transformers

Pasquiou and colleagues [53] compared several types of NLP models in terms of their ability
to encode brain activity. The NLP models included word embedding such as GloVe, recur-
rent architecture (LSTM) and transformer-based architectures (GPT-2 and BERT). Figure
2.1 illustrates the proposed brain encoding model. Subjects were presented with “The Lit-
tle Prince” audio storybook while their fMRI brain activity was recorded. NLP models
were trained using different text corpus (a curated corpus matching the audiobook, and a
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Figure 2.1: Brain encoding using NLP models while subjects were presented with an audiobook of
the story “The Little Prince”. Figure taken from [53].

non-curated corpus from Wikipedia). Pairs of fMRI brain data and corresponding layer ac-
tivations of NLP models were considered as the training data of the Ridge-regression model.
Finally, brain maps were computed based on correlation coefficients between ridge model
predictions and actual fMRI data. The authors investigated the impact of several factors
of NLP models on the brain encoding results, such as model architecture, model perplexity,
and type of training data. The perplexity of an NLP model is a statistical measure that
indicates how accurately a model can predict either the next word in a sentence or masked
words within a sentence, which is a common type of self-supervised learning task in NLP.
The results of this paper show that the untrained versions of these models are able to pre-
dict a significant amount of signal in the brain by capturing identical words present in the
stimuli text. Training these NLP models leads to improving the prediction of brain encoding
independently of the model’s architecture (Figure 2.2). Models that integrate contextual
information, such as LSTMs predict brain activity more accurately than static models such
as GloVe. The perplexity measure was not found to be an efficient predictor of the quality of
brain encoding. And finally, the training data have a large impact on brain encoding results.
The authors compared a carefully curated text corpus with a Wikipedia corpus, and noted
that the non-curated Wikipedia corpus led to poorer brain encoding.
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Figure 2.2: Impacts of trained and untrained three types of NLP models on brain encoding. There
is a significant overlap in brain areas identified with LSTM, GPT2 and BERT in the brain encoding
task [53].

2.1.3 Layer-wise encoding with language transformers

In [19], Goldstein and colleagues proposed a GPT-2 layerwise brain encoding model. The
proposed approach is a standard ridge regression, quite similar to the previous study. In this
work for each word in the story and from each layer of GPT-2, a contextual embedding was
extracted. The dimensions of this embedding was reduced to 50 through a principal com-
ponent analysis. Pairs of {extracted embedding, brain activity} were presented as training
data for a ridge regression. After this training step, the ridge regression model was able to
predict brain activity using word embeddings as inputs, in a held-out test set. To evaluate
the performance of the proposed model, a Pearson correlation (r) was derived between the
predicted brain activity values and the actual value.

Figure 2.3: GPT2 layer-wise brain encoding [19]

This work confirmed the lack of correlation between Transformer model accuracy and brain
encoding efficiency. Figure 2.4 shows the performance of brain encoding for all hidden layer

10



(1-48) individually. This result is based on mean brain encoding performance across all brain
regions for each individual layer.

Figure 2.4: Brain encoding analysis for each individual hidden GPT-2 layer (1-48) [19]

A similar result was derived in [36], where fMRI data were recorded while subjects listened
to naturalistic spoken stories. In the brain encoding task, multiple types of features are used
to predict brain activity. These features are extracted through classical linguistic models,
static models and Transformer model (BERT-base). Pairs of extracted features and fMRI
data are presented as training data to a banded ridge regression [37]. This work broke down
the computations of transformers into individual layers to gain more information about
linguistic computations in the human brain. Through layer-wise brain encoding, for each
region the preferred layer was determined regarding to the predict correlation values. Figure
2.5 shows the preferred embedding and transformations layers for each region of the brain.
Most brain regions prefer the last embedding layers while the transformations layers discover
a hierarchy of brain maps across layers.

Figure 2.5: Brain maps based on BERT layer preferences. [36].

2.1.4 Multimodal transformers

Oota and coll. [51] used multimodal (visual and text) transformers to extract features from
rich stimuli. The authors extracted activations of Transformers such as ViT, VisualBERT,
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and LXMERT and used these activations as inputs to the ridge model to predict the brain
responses to the same stimuli as those presented to the Transformers. Figure. 2.6 illus-
trate the proposed brain encoding approach in this work. The brain encoding results were
evaluated by computing Pearson’s correlation between actual time courses of brain activi-
ties and predicted time courses generated by the ridge regression. The main contributions
of the Lanq-vision study were twofold. First, the authors developed a multimodal brain
encoding mixing visual and text inputs instead of separate models of each input type sep-
arately, as was done for example by [13] for vision and [10] for language. This multimodal
model may capture more variance in human brain activity as the brain constantly receives
information about the environment across multiple modalities. Second, the authors mapped
a hiercharchical organization in brain processing by testing different brain encoding mod-
els, starting from activations with different layers of the Transformer models. The study
applied brain encoding to two large established datasets, BOLD5000 [11] and Pereira [55]
. Results showed that multimodal Transformers significantly outperformed single-modality
models such as convolutional neural networks. Furthermore, the results illustrated that spe-
cific regions such as LPTG, LMTG, LIFG, and STS were better encoded using multimodal
models. In the following we provide more details about this brain regions: 1) LPTG is a
brain region for attention, memory, and space-time integration and located in the parietal
and temporal lobes, 2) LMTG is located in temporal lobe associated with language, meaning,
and visual perception, 3) LIFG is located frontal lobe for speech production and language
comprehension and 4) STS is located in temporal lobe with a role in social perception and
communication cues.

Figure 2.6: Mimicking the human brain behavior using multi-modal vision and languages Trans-
formers. The co-attentive stimuli features was considered as input of ridge regression [51]

2.2 Scaling up techniques

The main techniques to scale-up the training of artificial neural networks include parallelism-
based approaches and memory-based approaches. This section gives an overview of the main
current techniques in each category.
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2.2.1 Parallelism-based approach to ANN training

In the DL training process, the computations involve many matrix multiplications which
leads to opportunities for parallelization. In this section, we review the main parallelism
approaches to scale up DL models and we investigate their strengths and weaknesses with
respect to DL-based brain encoding. We consider that the training is parallelized over a set
of workers that may represent cores of a CPU or GPU and are potentially distributed over
multiple computing nodes.

2.2.1.1 Data parallelism

In data parallelism, each worker loads a copy of the DL model and trains it using a non-
overlapping block of data. Two approaches exist to implement data parallelism: the cen-
tralized approach and the decentralized approach. In the centralized approach, each worker
computes the gradient of the loss function on its block of data and sends it to a central mod-
ule. The central module receives gradients from all workers, computes the gradient average,
updates the model using back-propagation, and sends the updated model to the workers. In
the decentralized approach, the workers communicate with each other to update their pa-
rameters, which can lead to substantial communication overheads in the default ”all to all”,
fully-connected communication strategy. The ring-allreduce strategy reduces the overhead
significantly [44]. In this approach, each worker communicates only with two other workers:
each worker sends data to its left neighbor, and receives data from its right neighbor. Both
the centralized and the decentralized approach introduce substantial synchronization over-
heads. Indeed, the model needs to be updated periodically, for instance at the end of every
batch, which requires all the workers to pause until the updated model is available.

2.2.1.2 Model parallelism

In model parallelism, the layers of the DL model are distributed among the workers. The
training data is presented to the worker holding the input layer. In the forward pass, each
worker computes the activation of its assigned layer(s) and send it to the worker that holds the
next layer. Conversely, the backpropagation starts with the worker holding the output layer,
the gradients are computed in each worker, and the results are propagated toward the worker
holding the input layer [44]. This approach results in substantial synchronization overheads
as layers cannot be concurrently evaluated. The main advantage of model parallelism is to
distribute memory contraints among compute nodes.

2.2.1.3 Pipeline parallelism

Pipeline parallelism is a combination of data parallelism and model parallelism. In this
technique, both data and model are divided between workers. Each worker trains a specific
set of layers of the DL model using a non-overlapping part of the dataset. Pipeline parallelism
improves scalability compared to data and model parallelism by reducing synchronization
overheads. Training different parts of the model with multi-batches leads to increasing the
utilization of cores significantly. For instance, Fig.2.7 shows a pipeline parallelism to train
a DL model with multiple-batches across four cores. In this figure, terms Fn,k and Bn,k
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represent the computations of kth batch size on nth core in the forward and backward pass
respectively. It is worth mentioning that, in this process, Bk,n is dependent on both Fk,n and
BK,n+1 [28].
However, pipeline parallelism comes at an increased communication cost since layers have to
repeatedly transmit activations during the forward pass and gradients during the backward
pass, which are constant in size. Overall, the trade-off between reduced synchronization
delays and increased communication costs is usually beneficial to pipeline parallelism [44].

Figure 2.7: Forward and backward steps in the pipeline parallelism for four cores. This figure was
extracted from [28]

2.2.2 Memory-based scaling up of ANN training

In the forward pass, the layer activations are computed and stored in memory to update the
parameters during the backpropagation phase. Layer activations represent a substantial
amount of memory. For instance, training ResNet50 on the ImageNet dataset requires
about 40GB of memory [21]. Mixed-precision approaches have been used to reduce memory
consumption and communication overheads, leading to important reductions of the training
time [45].
The main idea of mixed precision is to use 16-bit floating-point formats instead of 32-bit
formats. Three advantages of this method are: reducing the memory usage, reducing the
communication delays, and accelerating floating-point computations. During the training
process, parameters, activations and gradient values are stored in memory with a 16-bit
format. Then, all the computations in the forward and backward pass are performed with 16
bits. To preserve accuracy, it is necessary to maintain a copy of parameters in FP32 format.
Consequently, after each iteration, parameters are updated from their values expressed in
FP32 format. The NVIDIA research group reported that training a large scale natural
language model (RNN-NLP) using mixed precision approach is 4.2 times faster than FP32
on the same platform [57]. In addition, the Facebook research group showed that an RNN
model can converge 5 times faster than baseline when using mixed precision [52].
Representing the gradient values in FP16 creates an issue called Gradient Underflow. When
gradient values are too small (negative exponents), they are represented as zeros in the
FP16 format while a large range of FP16 remain unused. In [45], the authors proposed
a solution to address this problem by shifting the gradient values through a scaling factor
of 8, 32, 64, or 128, or tuned automatically during the training process. In the automatic
approach, the scaling factor is initialized with a large number, for instance 128. During the
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training process, the scaling factor is decreased when gradient values are Inf or NaN, and it
is increased otherwise.

2.3 Conclusion

In this chapter, we explored a range of innovative approaches in the field of brain encoding
using ridge regression and transformer models. The reviewed literature highlights the signif-
icant role that both vision and language transformers play in understanding and predicting
brain activity. Importantly, the research indicates that the training tasks and data quality
significantly influence the brain encoding outcomes, with models that integrate contextual
information proving to be more effective. These findings pave the way for further investi-
gation into optimizing model architectures and training data selection for improved brain
activity prediction.
Moreover, this chapter also delved into scaling techniques essential for enhancing the training
of artificial neural networks, particularly in the context of brain encoding. By examining
parallelism-based approaches, including data and model parallelism, we gained insights into
how these methods can effectively distribute computational workloads while addressing the
inherent synchronization and communication challenges. Techniques like pipeline parallelism
emerged as promising strategies to balance computational efficiency with communication
costs, showcasing the importance of optimizing training frameworks for the next generation
of deep learning models.
Overall, the integration of transformer architectures and effective scaling techniques holds
great potential for advancing our understanding of neural mechanisms underlying human
cognition and behavior.
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Chapter 3

Scaling up ridge regression for brain
encoding in a massive individual
fMRI dataset
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Abstract

Brain encoding with neuroimaging data is an established analysis aimed at predicting human
brain activity directly from complex stimuli features such as movie frames. Typically, these
features are the latent space representation from an artificial neural network, and the stimuli
are image, audio or text inputs. Ridge regression is a popular prediction model for brain
encoding due to its good out-of-sample generalization performance. However, training a ridge
regression model can be highly time-consuming when dealing with large-scale deep functional
magnetic resonance imaging (fMRI) datasets that include many space-time samples of brain
activity. This work evaluates different parallelization techniques to reduce the training time
of brain encoding with ridge regression on the CNeuroMod Friends dataset, one of the largest
deep fMRI resources currently available. With multi-threading, our results show that the
Intel Math Kernel Library (MKL) significantly outperforms the OpenBLAS library, being
1.9 times faster using 32 threads on a single machine. Yet, the performance benefits of multi-
threading are limited, and reached a plateau after 8 threads in our main experiment. We
then evaluated the Dask multi-CPU implementation of ridge regression readily available in
scikit-learn (MultiOutput), and we proposed a new “batch” version of Dask parallelization,
motivated by a time complexity analysis. With this Batch-MultiOutput approach, batches
of brain targets are processed in parallel across multiple machines, and multi-threading is
applied concurrently to further accelerate computation within a batch. In line with our
theoretical analysis, MultiOutput parallelization was found to be impractical, i.e., slower
than multi-threading on a single machine. In contrast, the Batch-MultiOutput regression
scaled well across compute nodes and threads, providing speed-ups of up to 33× with 8
compute nodes and 32 threads compared to a single-threaded scikit-learn execution. Batch
parallelization using Dask thus emerges as a scalable approach for brain encoding with
ridge regression on high-performance computing systems using scikit-learn and large fMRI
datasets. These conclusions likely apply as well to many other applications featuring ridge
regression with a large number of targets.



3.1 Introduction

The human brain is a computing system with billions of neurons as computing units. Cog-
nitive neuroscience aims to discover functional principles of brain organization by leveraging
large-scale neuroimaging data. One of the key methods used for this purpose is brain en-
coding [50], in which a model predicts brain responses directly from rich stimuli such as
natural images or videos, using the internal representations of an artificial neural network
as a feature space for prediction.
Among the regression methods used in brain encoding to predict brain activity, ridge regres-
sion [23] has become popular and well-accepted [76, 53, 13, 19, 51, 36, 38, 35, 30, 77] due to
its two key features: 1) ridge regression tends to be generalizable to new stimuli and avoids
overfitting, and 2) efficient implementations of ridge regression are available [37] which are
less computationally intensive than other approaches.
For brain encoding of visual tasks, ridge regression is often applied to the activations pro-
duced by various neural networks architectures in response to visual stimuli, such as convo-
lutional neural networks (CNN) and transformers [63, 33, 34, 26, 7, 58, 65]. For instance,
in [77], the authors compared the activation of CNN units with brain response to a dynamic
visual stimulus (movie frames) and found that these representations were able to accurately
predict fMRI data collected with human subjects watching movies.
Even though linear algebra optimizations exist for ridge regression [37], the training process
still requires compute-intensive matrix computations over the whole dataset. This compu-
tational cost is especially substantial for brain encoding models trained separately for each
spatial measurement sample (voxel), as the number of voxels can range from tens to hun-
dreds of thousands in a full brain fMRI acquisition with high spatial resolution. Thus, full
brain encoding using ridge regression remains a challenge, even with modern computational
resources.
Furthermore, the computational requirements of ridge regression are exacerbated by the need
to train brain encoding tasks on large datasets. Indeed, finding the correlation between the
huge feature space of natural images and brain activity requires to explore a large space of
visual stimuli [49]. Over the past few years, the quantity and quality of fMRI datasets have
increased rapidly in terms of the number of human subjects, the number of scanning hours
available for each subject, as well as spatio-temporal resolution. In particular, datasets such
as BOLD5000 [11], Natural Scenes Dataset (NSD)[4] provide so-called deep fMRI datasets,
with long scanning time for a few subjects and an extensive stimuli space to properly estimate
the generalization of brain encoding to different types of stimuli, e.g. images from many
different categories. Training purely individual brain models also by-pass the challenges of
modelling inter-individual variations in brain organization, which is substantial [61]. As a
consequence of increased spatial resolution and volume of time samples available for a single
subject with the advance of simultaneous multislice fMRI [6], there is thus an urgent need to
understand the efficiency of various implementations of ridge regression for brain encoding
with large fMRI datasets.
The CNeuroMod research group [68] has released the largest fMRI dataset for individual
brain modeling currently available, featuring up to 200 hours of fMRI data per subject
(N=6). The CNeuromod dataset provides an opportunity to train complex brain encoding
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models based on artificial neural networks, but also raises substantially the computational
costs of brain encoding. This work investigates several parallelization techniques for ridge
regression, using the CNeuroMod Friends dataset to predict brain activity from video stimuli.
We focus on a standard brain encoding pipeline using an established pretrained network
(VGG16), and we used the scikit-learn library [54] for brain encoding, that provides efficient
implementations of various machine-learning models, including ridge regression.
We benchmarked the efficiency of different types of parallelization, namely multi-threading
(multiple cores on a single CPU) and multi-processing (distributing computations across
multiple CPUs in a high performance computing environment). For multi-threading, scikit-
learn can leverage the BLAS (Basic Linear Algebra Subprograms) specification for linear
algebra implemented using the open-source OpenBLAS library [78] or the proprietary Intel
oneAPI Math Kernel Library (MKL) [74]. Both of these linear algebra libraries support
multi-threading on a single CPU. Moreover, scikit-learn models rely on the Joblib library to
interface with various parallelization backends including Dask [62], which can be used to dis-
tribute computations across multiple compute nodes. Specifically, We utilized scikit-learn’s
MultiOutput regressor (MOR), which by default trains individual ridge regression models for
each target variable (here, each location in the brain) independently. The MultiOutput how-
ever comes with substantial overhead, as it introduces many redundant computations across
brain targets. To reduce the amount of redundant computations happening with MultiOut-
put ridge regression, we also introduced Batch MultiOutput (B-MOR) to train a series of
models on batches of brain targets, using one compute node per batch and multi-threading
execution within each batch. We conducted a theoretical complexity analysis to motivate
the choice of this approach. We also repeated our benchmark for both MultiOutput and
the batch MultiOutput by assessing the efficiency of parallelization with varying number of
threads per node and the number of compute nodes.
Taken together, this study will provide concrete guidelines for practitioners who want to
run brain encoding efficiently with ridge regression and large fMRI datasets, using high-
performance computing infrastructure and CPUs.

3.2 Materials and Methods

3.2.1 fMRI dataset

We used the 2020-alpha2 release of the Friends fMRI dataset collected by the Courtois
project on neuronal modeling, CNeuroMod [9]. Some of the text in this section is adapted
from the Courtois NeuroMod technical documentation (https://docs.cneuromod.ca).

3.2.1.1 Friends TV show stimuli

Participants watched three seasons of the Friends TV show while their brain activity was
recorded using fMRI. Each episode was divided into two segments (a/b) to provide shorter
scanning runs and allow participants to take a break. There was a slight overlap between
the end of each video segment and the beginning of the next video segment to provide an
opportunity for participants to catch up with the story line.
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3.2.1.2 Participants

The Friends dataset includes fMRI time series collected on six participants in good general
health, 3 women (sub-03, sub-04, and sub-06) and 3 men (sub-01, sub-02, and sub-05). Three
of the participants reported being native francophone speakers (sub-01, sub-02, and sub-04),
one as being a native anglophone (sub-06), and two as bilingual native speakers (sub-03 and
sub-05). All subjects had a good comprehension of English, which was used in the sound
track of the Friends videos. All subjects also provided written informed consent to participate
in this study, which was approved by the local research ethics review board (under project
number CER VN 18-19-22) of the CIUSSS du Centre-Sud-de-l’̂Ile-de-Montréal, Montréal,
Canada.

3.2.1.3 Magnetic resonance imaging

Magnetic resonance imaging (MRI) was collected using a 3T Siemens Prisma Fit scanner
and a 64-channel head/neck coil, located at the Unit for Functional Neuroimaging (UNF)
of the Research Centre of the Montreal Geriatric Institute (CRIUGM), Montréal, Canada.
Functional MRI data were collected using an accelerated simultaneous multi-slice, gradient
echo-planar imaging sequence [64, 79] developed at the University of Minnesota, as part of the
Human Connectome (HCP) Project [72]. The fMRI sequence used the following parameters:
slice acceleration factor = 4, TR = 1.49s, TE = 37 ms, flip angle = 52 degrees, 2 mm
isotropic spatial resolution, 60 slices, acquisition matrix 96x96. The structural data was
acquired using a T1-weighted MPRAGE 3D sagittal and the following parameters: duration
6:38 min, TR = 2.4 s, TE = 2.2 ms, flip angle = 8 deg, voxel size = 0.8 mm isotropic, R=2
acceleration. For more information on the sequences used or information on data acquisition
(including fMRI setup), visit the CNeuroMod technical documentation page.

3.2.1.4 Preprocessing

All fMRI data were preprocessed using the fMRIprep pipeline version 20.2.3 [17]. We ap-
plied a volume-based spatial normalization to standard space (MNI152 NLin2009cAsym).
Furthermore, a denoising strategy was applied to regress out the following basic confounds:
(1) a 24-degrees of freedom expansion of the motion parameters, (2) a basis of slow time
drifts (slower than 0.01 Hz). This step was implemented with the Nilearn maskers (see be-
low) and the load confounds tool1 (option Params24). A spatial smoothing with a 8 mm
field-width-at-half-maximum and a Gaussian kernel was also applied with Nilearn prior to
time series extraction. For each fMRI run, time series were also normalized to zero mean
and unit variance (over time, for each voxel independently).

3.2.1.5 Multiresolution time series extraction

Functional MRI data takes the form of a 3D+t array, where the 3D spatial dimensions
encode for different spatial locations on a regular 3D sampling grid (with 2 mm isotropic
voxels for this dataset) within the field of view of acquisition, and the time axis (t) encodes

1https://github.com/simexp/load_confounds
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Table 3.1: Brain datasets summary: number (t×s) of time x space samples and size (in MB or GB)
of fMRI time series in three resolutions. MOR and B-MOR indicate the Multioutput Regression
and Batch Multioutput Regression, respectively.

Resolution Subject t s Size (float64)

Parcels sub-0(1-6) 69,202 444 244 MB
ROI sub-0(1-6) ” 6,728 2.6 GB
Whole-Brain sub-01 ” 264,805 138 GB

sub-02 ” 266,126 142 GB
sub-03 ” 261,880 136 GB
sub-04 ” 266,391 142 GB
sub-05 ” 263,574 138 GB
sub-06 ” 281,532 148 GB

Whole-Brain (B-MOR) sub-01 10,000 264,805 21 GB
sub-02 ” 266,126 21.2 GB
sub-03 ” 261,880 20.8 GB
sub-04 ” 266,391 21.2 GB
sub-05 ” 263,574 21 GB
sub-06 ” 281,532 21.8 GB

Whole brain (MOR) sub-0(1-6) 1,000 2,000 16 MB

brain samples recorded at different times, again on a regular sampling grid (with the time
interval TR=1.49s for this dataset). It is common practice to translate this 3D+t array into
a 2D array, where the first dimension encodes time, and the second dimension encodes space.
There are multiple ways to perform this translation, which corresponds to different spatial
resolution choices for the analysis. In this work, we used the so-called maskers of the Nilearn
library [1] to perform this operation, and we considered three common spatial resolutions to
investigate the scalability of different implementations of ridge regression. These approaches
vary markedly in the size of the resulting spatial dimension: parcel-wise, ROI-wise, and
whole brain. These three resolutions are further described below:

1. Parcels: The preprocessed BOLD time series were averaged across all voxels in each
parcel of a parcellation atlas, using the NiftiLabelsMasker masker from Nilearn. We
used the Multiresolution Intrinsic Segmentation Template (MIST) [70]. MIST provides
a hierarchical decomposition of functional brain networks in nine levels (7 to 444), and
we used here the largest available resolution (444 brain parcels). As the parcels are
based on a group template, and the cneuromod fMRI is high spatial resolution with 2
mm isotropic voxels, there are sometimes marked discrepancies between the location of
individual gray matter and parcels of the MIST atlas, even after non-linear wrapping
in the MNI template space. This issue, common in group parcellation analyses, is
mitigated through spatial smoothing. We thus implemented spatial smoothing for the
preprocessing of fMRI data, as is standard practice for generating time series for group
parcels. Although this may not be an optimal strategy, our aim here was not to push
the boundary of quality in brain encoding, but rather demonstrate the scalability of a
standard brain encoding workflow.
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2. ROI: In this approach, a binary mask of the visual network was extracted from MIST
at resolution 7. Voxel-wise time series were extracted for all voxels present in this mask,
using the NiftiMasker masker from Nilearn. Note that the location of the mask was
based on non-linear registration only, and did not use subject-specific segmentation
of the grey matter. Our primary motivation was to use the same dimensions across
subjects to harmonize the amount of spatial smoothing, in order to make brain encod-
ing scores more comparable. Overlapping group regions with individual gray matter
segmentation is also non-trivial, and we wanted to apply a standard, straightforward
preprocessing strategy. The exact same number of voxels (6728) was thus present in
the mask for all subjects’ data, after realignment in stereotaxic space.

3. Whole-Brain: In this approach, the brain mask generated by the fMRIprep pipeline
based on the structural scans of each participant was resampled at the resolution of
the fMRI data. This mask included both grey matter, white matter, cerebro-spinal
fluid but excluded all tissues surrounding the brain. Voxel-wise time series of all
voxels included in the mask were extracted, again using the NiftiMasker masker from
Nilearn. As the brain mask was subject specific, the number of voxels in the mask
varied slightly across subjects.

Table 3.1 presents the shape of the brain data array Y with these three levels of resolution
and six subjects, where the number of rows and columns indicate the number of volumes (t
time sample) and targets (s spatial targets) respectively. The temporal dimension is identical
for all three approaches, while the spatial dimension of ROI is one order of magnitude larger
than Parcels, and the spatial dimension of Whole-Brain is three orders of magnitude larger
than Parcels. We also introduce two truncated versions of the whole-brain resolution, marked
as MOR and B-MOR in Table 3.1, which represent subsets of the dataset. We truncated
the number of time samples and brain target from the whole-brain data, to accommodate
memory requirements in the benchmark infrastructure. In this table, memory sizes are
presented in the float64 format used in Scikit-learn for ridge regression.

3.2.2 Brain encoding

Figure 3.1 recapitulates the two main steps of brain encoding: extracting features from
movie frames through a pretrained artificial network (here VGG16) and predicting brain
response using a regularized linear regression model, called ridge. The ridge regression is
trained through pairs of prediction targets (fMRI data Y ) and dynamic visual stimuli features
(predictors X), and experiments are implemented at several levels of resolution, see Table
3.1 to test the scaling efficiency of different implementations of the ridge regression.

3.2.2.1 VGG16 artificial vision network

In this work, we used the approach of [77, 14], and applied a VGG16 model [66] pretrained
for image classification to extract visual features from the movie frames. The VGG16 model
was trained on a dataset of over 2 million images belonging to 1000 classes from the Ima-
geNet database [16], and the weights of the models were retrieved through TensorFlow. This
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Figure 3.1: The two main steps of brain encoding: Extracting features from movie frames using
VGG16 pretrained model and predicting brain response using ridge regression.

model achieved 92.7% top-5 test accuracy for image-object classification. The VGG16 ar-
chitecture [67] is a widely-used convolutional neural network (CNN) known for its simplicity
and effectiveness in image classification tasks [14]. The network comprises 16 layers, includ-
ing 13 convolutional layers and 3 fully connected layers. The convolutional layers use small
3x3 filters with a stride of 1 and employ rectified linear unit (ReLU) activation functions.
Max-pooling layers with 2x2 filters are applied for spatial down-sampling. The architecture
is characterized by a large number of trainable parameters, summarized in Appendix 3.8
(based on the TensorFlow summary of the model), making it suitable for various computer
vision applications.

3.2.2.2 Extracting VGG16 features of dynamic visual stimuli

For each of the n = 69, 202 fMRI time samples, we extracted the stimulus video frames
corresponding to the 4 TRs immediately preceding each fMRI samples (equivalent to a
window of 4 x 1.49 = 5.96s duration). This operation was done to take into account the
known delayed, convolutional nature [41] of the relationship between the visual stimulus and
the hemodynamic response. Each frame was resampled to a (224, 224, 3) array and fed into
VGG16 to extract 4096 features from the last layer. We concatenated VGG16 features
across four TRs, starting with the TR preceding the image frame of the video, resulting
into a single feature vector of length p = 16384. Our feature space thus approximately
covers the interval [-7.5 sec, -1.5 sec] (the sequence TR=1.49, close to 1.5). This is the
time window which achieves strong hemodynamic effects, at least using canonical models of
the hemodynamic response function. We also explored the impact of the size of the time
window on brain encoding accuracy (results not shown) and found that a window length of
4 TRs maximized the quality of brain encoding. In total, the array of features X used for
brain encoding had a size of (n = 69202, p = 16384) (number of time samples x number of
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features), or 8.5 GB (in float32 precision).

3.2.2.3 Ridge regression

Ridge regression was first proposed by Hoerl and Kennard [23] as a generalization of or-
dinary least-square regression. In comparison with ordinary least squares regression, ridge
regression provides better generalization to unseen data through regularization of coefficient
estimates, particularly in the presence of a large number of predictor variables. Ridge re-
gression is expressed as the following optimization problem solving for regression coefficients
b∗ independently at each spatial location:

b∗ = arg min
b∈RP

(
∥Y −Xb∥22 + λ∥b∥22

)
, (3.1)

where X ∈ Rt×p is the matrix of stimuli features with t time samples and p features, ∥.∥2 is the
ℓ2 norm of a vector, and Y ∈ Rt×s is the target matrix obtained from fMRI data at a single
spatial location (at either Parcels, ROI, or Whole-Brain resolutions). The hyper-parameter
λ is used to control the weighting of the penalty in the loss function. The best value for λ is
estimated among a set of candidate values through cross-validation, as explained below. If
the value of λ is too low, the training process may overfit, and if the value of λ is too high,
then the brain encoder model may underfit [37].

3.2.2.4 Brain encoding performance and hyper-parameter optimization

For a given subject, the samples X were split into training (90% random) and test (10%
remaining) subsets. The coefficients of the ridge regression were selected through Eq. 3.1
based on the training set only. Table 3.2 presents the memory size and number of ridge
training parameters with three levels of resolution across six subjects.

Table 3.2: Number of training parameters (rounded to closest M) and size of weight matrices in
three resolutions for brain encoding. MOR and B-MOR indicate the Multioutput Regression and
Batch Multioutput Regression, respectively.

Resolution Subject # of training Size(float64)
parameters

Parcel sub-0(1-6) 7 M 58 MB
ROI sub-0(1-6) 110 M 1.2 GB
Whole brain and Whole brain (B-MOR) sub-01 4338 M 34.6 GB

sub-02 4360 M 34.8 GB
sub-03 4290 M 34.2 GB
sub-04 4364 M 34.6 GB
sub-05 4318 M 34.6 GB
sub-06 4612 M 34.8 GB

Whole brain (MOR) sub-0(1-6) 32.7 M 262.0 MB

We measured the final quality of brain encoding as the Pearson’s correlation coefficient
between the actual fMRI time series and the time series predicted by the ridge regression
model on the test set. A leave-one-out validation was used inside the training set to estimate
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the hyper-parameter value λ with optimal performance (based on the cost function defined
in Eq. 3.1), based on the grid:

λ ∈ {0.1, 1, 100, 200, 300, 400, 600, 800, 900, 1000, 1200} .

The choice of λ can either be made separately for each of the s brain targets, or a common
value can be selected for all brain targets based on the average performance of the model
across all s brain targets. In this work, a single λ is used for all targets.

3.2.3 Ridge regression implementations

3.2.3.1 Scikit-learn efficient ridge implementation

In large-scale brain encoding tasks, the computational cost of ridge regression increases
linearly with the increasing number of targets. To reduce computing time when multiple
targets are used, formulations of ridge regression have been proposed to mutualize compu-
tations among the targets. The formulation described below was presented in [37] and is
implemented in the scikit-learn library.
In a multi-target regression problem, the matrix Y in Equation 3.1 is of size t × s where s
is the number of spatial targets. Matrix X is still of dimension t× p. The weight matrix W
can be calculated as follows:

W = MY (3.2)

where
M = (XTX + λIp)

−1XT (3.3)

and Ip is the identity matrix of size p × p. The key point is that M is independent of Y
and can therefore be reused for all s targets. This strategy reduces the time complexity of
multi-target ridge regression from O(p3s+ p2ts) to O(p3 + p2t+ pts) [37], see Section 3.3 for
details.
Scikit-learn also mutualizes computations among subsequent estimations of M for different
λ values, typically encountered during hyper-parameter optimization. To do so, it relies on
the SVD decomposition of X:

X = USV T , (3.4)

where U ∈ Rt×p and V ∈ Rp×p are orthonormal matrices, and S ∈ Rp×p is diagonal. Then,
the matrix M can be rewritten as:

M(λ) = V (S2 + λIp)
−1SUT (3.5)

Computing (S2 + λIp)
−1S is inexpensive as this matrix is diagonal. SVD decomposition of

feature matrix X reduces complexity of computing M from O(p3r + tpr) to O(p2tr) [37],
where r is the number of tested hyper-parameter values (see Section 3.3 for details).

3.2.3.2 Computational environment

Brain encoding experiments were run on Beluga, a high-performance computing (HPC)
cluster of Canada Digital Alliance, providing researchers with a robust infrastructure for
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advanced scientific computations. Beluga features numerous compute nodes, high-speed
interconnects, and parallel processing capabilities, visit the Beluga technical documentation
page for details.
All benchmarking experiments were run on a high-performance computing cluster called
“slashbin”, fully dedicated to benchmarking, without concurrent users accessing the platform
during tests. This cluster was located at Concordia University Montreal, and featured 8
compute nodes. Each compute node featured an Intel®Xeon®Gold 6130 CPU @ 2.10GHz
with 32 physical cores (64 hyperthreaded cores), 250 GB of RAM, Rocky Linux 8.9 with Linux
kernel 4.18.0-477.10.1.el8 lustre.x86 64. Input and output data were located on a 960GB
Serial-Attached SCSI (SAS) 12GBPS 512E Solid State Drive that was network mounted to
each compute node using NFS v4.

3.2.3.3 Multi-threading parallelism

Multi-threading is a mechanism to parallelize executions on multi-core CPUs. In the case of
ridge regression, multi-threading is available mainly for linear algebra routines implemented
through the Basic Linear Algebra Subprograms (BLAS) specification. Two well-known BLAS
libraries are Intel Math Kernel Library (MKL) [74] and OpenBLAS [78]. These BLAS
libraries incorporate optimized implementations that leverage multi-threading parallelism for
efficient execution. In particular, the OpenBLAS and MKL libraries enable multithreaded
execution of ridge regression over the CPU cores in a single machine for a faster execution
time, see [29] for a benchmark using MKL. Note that the optimization we investigated
here with MKL is only available for Intel(c) hardware. Figure 3.2 summarizes the different
parallelization modes benchmarked by our experiments.

3.2.3.4 Distributed parallelism

In ridge regression, predicting one target is independent of the values of other targets due to
the way the model is structured. Therefore, ridge regression can be easily parallelized into
multiple sub-models addressing different targets. For a given matrix X, scikit-learn’s Mul-
tiOutputRegressor class subdivides the set of all target values Y into s sub-problems, each
corresponding to a single spatial target. Ridge regression can now be expressed as solving
s independent estimations of the weights matrix W , as illustrated in Figure 3.3. This sub-
division is repeated for each value of the regularization parameter λ. As all the targets and
λ values are independent, no communication is required between the sub-problems. Scikit-
learn’s MultiOutputRegressor class parallelizes the resolution of the sub-problems using a
configurable number of concurrent processes c executed with the joblib library. Joblib
supports multiple execution backends including single-host thread-based or process-based
parallelism, and distributed parallelism using the Dask [62] or Ray [47] engines. We used
the Dask backend and launched its distributed scheduler that simultaneously manages the
computation requests and tracks the compute node statuses.
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Figure 3.2: Multithreading and Distributed Parallelism in Scikit-learn’s Ridge Regression. MOR
and B-MOR indicate the Multioutput Regression and our proposed version of Batch Multioutput
Regression, respectively

3.2.3.5 Proposed distributed ridge regression: Batch Multi-Output Regression
(B-MOR)

This approach reduces the amount of redundant computations by partitioning the problem
into a number of sub-problems equal to the number of available compute nodes in the
distributed system, denoted as c (Figure 3.3). This strategy preserves maximal parallelism
while reducing computational overheads.
Algorithm 1 describes the approach. It consists of a main parallel for loop where the target
output matrix Y is partitioned into n sub-problems, where n is the minimum value between
the number of targets and the number of compute nodes. Each sub-problem represents a
batch of targets Y1, · · · , Yn. The algorithm uses the following helper functions:

• split returns training and validation sets associated with a given cross-validation split.

• svd computes the singular-value decomposition of a matrix.

• eval score computes the regression performance score from predicted and true values.
Higher scores denote better performance.
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Algorithm 1: Batch Multi-Output Regression (B-MOR)

input : X—Input stimuli feature matrix
input : Y—Target matrix
input : s—Number of targets
input : λ—Candidate hyper-parameters
input : c—Number of concurrent jobs
output: B—List of trained weight matrices for each sub-problem

1 n← min(s, c);
// Main parallel for loop

2 parfor i = 0 to n− 1 do
// Divide the target matrix Y into n sub-problems

3 Yi ← Sub-matrix of Y with columns
[
i·s
n
, (i+1)·s

n

]
;

4 for all cross-validation splits s do
5 Xtrain, Xval, Ytrain, Yval ← split(s,X, Yi);
6 USV T ← svd(Xtrain);
7 for all λ do
8 Mλ ← V (S2 + λIP )−1SUT ;

9 Ŷval ← XvalMλYtrain;

10 score[i, s, λ]← eval score(Ŷval, Yval);

// Calculate mean score across cross-validation splits

11 for all λ do
12 mean score[i, λ]← 1

|s|
∑

s score[i, s, λ];

// Find the best hyperparameter λ for each sub-problem

13 best λ[i]← arg maxλ{mean score[i, λ]};
14 B[i]←Mbest λ[i]Yi;

15 return B;
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Figure 3.3: Matrix computations in Multi-threading ridgeCV, MOR, and B-MOR model fitting.
Assuming X ∈ Rt×p, Y ∈ Rt×s, and X = USV T , then the weight matrix B ∈ Rp×s equals
B = V (S2 + λIp)

−1SUTY .

3.3 Complexity analysis

3.3.1 Ridge regression with a single thread

Ridge regression for a given hyper-parameter λ is computed by:

Ŷλ = XMλY.

In this section, we outline the time complexity TM of computing Mλ as well as the time
complexity TW of computing the multiplications XMλY . Matrix notations as well as their
dimensions are summarized in Table 3.3. Time complexities are expressed in the number of
floating-point multiplications.
The cost TW of computing XMλY independently over r values of hyper-parameter λ is:

TW = O(ptsr).

Regarding TM , Equation 3.3 requires inverting a square matrix of size p — time complexity
O(p3) — and multiplying the resulting inverted matrix with matrix XT of size p × t —
time complexity O(p2t). Matrix Mλ is computed once for all the targets. With a single
hyper-parameter value (r = 1), Equation 3.3 thus gives a complexity of O(p3 + p2t).
If we were to naively iterate this approach for r hyper-parameter values, the resulting time
complexity would be O(p3r+p2tr). However, expressing matrix Mλ from the SVD of matrix
X as in Equation 3.5 reduces the time complexity of computing M to:

TM = O(p2tr + pr)

Indeed, computing the SVD of X has time complexity O(p2t) since p ≤ t, the computation
of (S2 + λIp)

−1SUT has time complexity O(p) since S is diagonal, and the multiplication of
V with (S2 + λIp)

−1SUT has time complexity O(p2t).
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Finally, the overall time complexity Tridge of ridge regression iterated on r hyper-parameter
values, including computation of Mλ and multiplication by matrix Y is:

Tridge = TM + TW = O(p2tr + pr + pnsr)

Table 3.3: Matrix Sizes. t: number of time samples; p: number of features; s: number of brain
targets. Other important notations include c: number of concurrent distributed executions and r:
number of hyper-parameters.

Matrix Dimensions Description
X t× p Feature matrix
Y t× s Brain target matrix
Mλ p× t Resolution matrix
U t× p Left singular matrix
S p× p Singular values matrix
V p× p Right singular matrix

3.3.2 Ridge regression with MOR

In the case of MOR, the matrix multiplication MλY is replaced by s multiplications of M
with a vector y, which does not change the time complexity. Provided that the number
of targets s is larger than the number of concurrent computing nodes c — which is the
case in our application — all these matrix-vector multiplications happen in parallel, and the
resulting time complexity on the application critical path is c−1TW .
By contrast, the computation of matrix Mλ is repeated independently for each brain target,
resulting in a massive overhead computation sTM distributed over c concurrent processes.
Overall, the computational cost of ridge regression implemented with MOR is:

TMOR = c−1(TW + sTM). (3.6)

3.3.3 Ridge regression with B-MOR

B-MOR scales better than the previous approach due to the use of c sub-problems instead of
s. The computation of the matrix multiplication costs c−1TW , similar to MOR. However, the
overhead of recomputing matrix Mλ for each sub-problem is only cTM , which is distributed
across c concurrent executions. The computational cost of ridge regression implemented with
B-MOR is thus:

TB-MOR = c−1TW + TM . (3.7)

Comparing Equations 3.6 and 3.7, we observe that the time complexity of the B-MOR
implementation is much lower than for the MOR implementation, as TMOR − TB-MOR =
(c−1s − 1)TM . This difference may be massive when c ≪ s. We also observe that when
c > 1, B-MOR has lower time complexity than single-threaded ridge regression. However,
the parallel efficiency of B-MOR is limited by the term TM which is not reduced by c.
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3.4 Results

We report on a series of benchmark experiments for brain encoding, using scikit-learn’s
multithreaded, MOR and B-MOR implementations of ridge regression with hyper-parameter
optimization across 11 values of λ . The benchmarks were applied to the Friends CNeuroMod
dataset (N=6 subjects) at multiple spatial resolutions to investigate the scalability of different
implementations of ridge regression (parcel-wise, ROI-wise, and truncated versions of whole-
brain voxel-wise time series).

3.4.1 Brain encoding models successfully captured brain activity
in the visual cortex

Figure 3.4: Brain encoding results, with performance based on Pearson Correlation Coefficient (r)
between real and predicted time series in the friends dataset (N=6 subjects).

We first aimed to validate that our brain encoding model performed in line with recent
studies, at the individual level and for different resolutions of target brain data.
We extracted features of dynamic visual stimuli, by selecting a subset of images in the video,
and feeding these images independently into an established vision pretrained network called
VGG16 [66]. We used 3 seasons of Friends TV show, where 10% of data was set aside as
the test data. Brain encoding was implemented using ridge regression, and the best value of
hyper-parameter λ was selected through cross-validation.
Figure 3.4 shows the functional alignment between the features of the last fully connected
layer (FC2) of VGG16 brain activities and brain activity for six subjects. In all cases, a
moderate correlation, up to 0.5, was observed in the visual cortex between the real fMRI
time series and the time series predicted by the brain encoding model. For the analysis
that included the full brain, moderate accuracy for brain encoding was observed in other
brain areas as well, such as temporal cortices involved in high level visual processing as well
as language. Analysis at the voxel level brought more anatomical details but were overall
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consistent with brain encoding maps at the parcel level. Brain encoding maps were highly
consistent across subjects and resolutions of analysis. Specifically, the spatial Pearson’s
correlation between brain encoding maps of different subjects ranged from 0.79 to 0.87
(mean 0.83 across 15 distinct pairs of subjects), see supplementary material Figures 3.12a
and Figure 3.12b.
Overall, brain encoding models successfully predicted activity in expected brain regions, for
all subjects and resolutions.

3.4.2 Brain encoding was significant compared to a null distribu-
tion

Next, we wanted to assess the significance of the brain encoding, compared to a null dis-
tribution were the movie frames used as input to the model did not correspond with brain
data time series. We repeated the brain encoding procedure presented in the previous sec-
tion for one subject (sub-01), after random shuffling of the image features and brain images.
Figure 3.5 compares the original brain encoding results (panel a) with brain encoding based
on shuffled features (panel b). While the original brain encoding results reached moderate
accuracy, up to 0.5 correlation between real and predicted brain activity, the performance
using shuffled features was dramatically lower. The correlation values were typically an or-
der of magnitude smaller, less than 0.05. The quality of brain encoding using original image
frames thus appeared as significant compared to a null distribution where image features
were randomly shuffled. The dummy model produces predictions that are no better than
random noise, resulting in a mix of positive and negative correlations. As brain activity
is structured, the dummy model’s inability to capture this structure can lead to negative
correlations by chance. Additionally, the dummy models cause negative correlations because
the predicted values systematically deviate from the true values in an opposite manner. We
believe this is a reflection of over-fitting the training set, which could have been mitigated
through more aggressive regularization.

(a) Actual performance (b) Shuffled performance

Figure 3.5: Brain encoding predictions for a single individual (sub-01) in two cases. Panel a:
corresponding pairs of {fMRI time series and stimuli} were presented to the ridge regression models.
Panel b: random permutations of fMRI time series and stimuli data were presented to the ridge
regression model.
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(a) Sub-01 (b) Sub-02

(c) Sub-03 (d) Sub-04

(e) Sub-05 (f) Sub-06

Figure 3.6: Comparison of MKL and OpenBLAS implementations for multithreaded execution.

3.4.3 Brain encoding captures both low-level and high level visual
cognitive functions

In this study, we utilized early visual ROIs derived from retinotopy and higher visual ROIs
derived from fLoc tasks. For the early visual ROIs, regions of interest (ROIs) such as V1,
V2, V3, V3a, V3b, VO1, VO2, hV4, LO1, LO2, TO1, and TO2 were identified for four
subjects (sub-01, sub-02, sub-03, and sub-05) who completed a retinotopy task. These ROIs
were derived from their population receptive fields and group priors using the Neuropythy
toolbox [8], with masks available in both MNI and native (T1w) space.
For the higher visual ROIs, regions such as the extrastriate body area (body-EBA), fusiform
face area (face-FFA), occipital face area (face-OFA), posterior superior temporal sulcus (face-
pSTS), medial place area (scene-MPA), occipital place area (scene-OPA), and parahippocam-
pal place area (scene-PPA) were identified for three subjects (sub-01, sub-02, and sub-03)
who completed the fLoc task. These higher-level visual area ROIs, reflecting preferences for
faces, scenes, and bodies, were identified using a combination of group priors and individual
data, with binary ROI masks available in both MNI and native (T1w) space. Additionally,
group parcels of regions with face, scene, and body preferences identified by the Kanwisher
lab [31] were also transformed into single-subject space and are available in MNI space in a
standardized format fitting all subjects
Figure 3.7a presents the average correlation for voxel-level maps in each brain region across
multiple subjects (sub-0[1-6]) using a trained model. Each color represents a different sub-
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ject, and the bars show significantly higher correlation coefficients compared to the untrained
model. This indicates that the trained model successfully captures the underlying patterns
in the data, leading to better predictions. The trained model shows consistently high correla-
tions across various brain regions for all subjects, demonstrating its effectiveness in general-
izing across different individuals. The improvement in correlations from the untrained to the
trained model underscores the impact of model training on enhancing predictive performance
in brain imaging data.
Figure 3.7b illustrates the average correlation for voxel-level maps in each brain region for
Subject 1 using a dummy (untrained) model. The bar plot shows the average correlation
coefficient (r) for various brain regions, including early visual areas (e.g., V1, V2, V3) and
higher-level visual areas (e.g., bodyEBA, faceFFA, scenePPA). The correlations are generally
low, indicating that the untrained model does not capture the patterns in the data effectively.
This serves as a baseline, showing the initial performance before any training or optimization
is applied. The low correlations across most regions highlight the need for model training to
improve prediction accuracy.

(a) Trained brain encoding

(b) Shuffled (dummy) brain encoding

Figure 3.7: Average correlation for voxel-level maps in each brain region
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(a) Parcel-wise (b) ROI-wise

Figure 3.8: Parallel efficiency of RidgeCV execution time for MKL and OpenBLAS across different
numbers of threads. The plot on the right shows parcel-wise brain encoding, while the plot on the
left shows ROI-wise brain encoding.

3.4.4 Multithreaded execution with Intel MKL provided signifi-
cant speedup compared to OpenBLAS

After establishing the quality of our multiresolution brain encoding benchmark, we proceeded
to compare the performance and scalability of ridge regression using scikit-learn on a 32-
core compute node, and comparing the libraries underlying multithreaded parallelization,
i.e. MKL and OpenBLAS. Figure 3.6 illustrates the comparison between OpenBLAS and
MKL multi-threading for two different resolutions (parcel-wise and ROI-wise), six subjects,
and varying numbers of parallel threads. The experiments with whole-brain resolution could
not be completed due to out-of-memory limitation with our benchmark system. The results
consistently demonstrated that the MKL library outperformed the OpenBLAS library for
all subjects and thread configurations. Specifically, when using 32 threads, the MKL library
exhibited a speedup factor of 1.90 and 1.98 compared OpenBLAS for parcel-wise and ROI,
respectively, on average across all subjects. This indicates a substantial improvement in
processing time with the MKL library compared to OpenBLAS.

3.4.5 Speed-up of multi-threading quickly reached a plateau with
an increasing number of threads

We also observed a sharp decrease in the efficiency of parallelization with an increasing
number of threads. Figure 3.8 represents the parallel efficiency performance of two libraries
MKL and OpenBLAS for parcel-wise and ROI-wise brain encoding across different numbers
of threads. The parallelization efficiency is calculated as follows:

SU =
TR

TP

PE =
SU

N
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Where N , SU and PE represents the number of threads, speedup and parallel efficiency
respectively. TR is the execution time with 1 thread, and TP is the execution time with
N(2, 4, 8, 16, or32) threads. The parallel efficiency measures how effectively the parallel re-
sources are being used.
A consistent observation across subjects was that, as the number of threads increased, the
parallel efficiency decreased. Parallel efficiency consistently decreases below 0.4 as the num-
ber of threads exceeds 20, for both MKL and OpenBLAS. These diminishing returns in
parallel efficiency highlight the need for careful selection of thread count to balance compu-
tational resources with performance.

(a) Sub-01 (b) Sub-02

(c) Sub-03 (d) Sub-04

(e) Sub-05 (f) Sub-06

Figure 3.9: MultiOutput ridgeCV training time for 6 subjects using whole brain (MOR) data de-
scribed in Table 3.1. The MOR implementation scales across threads and Dask compute nodes,
however, it has a massive overhead: multi-threaded scikit-learn implementation with a single com-
pute node and 32 threads takes approximately 1s.
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3.4.6 MultiOutput ridge regression scales across compute nodes
and threads, but is much slower than multi-threading with
RidgeCV

In this next experiment, we implemented scikit-learn’s original MultiOutput ridge regression
(MOR) within a Dask-based distributed parallelism setting for brain encoding tasks. As
this approach results in a slow training process, we created a custom truncated version of
whole-brain resolution, called whole-brain (MOR), as seen in Table 3.1. Figure 3.9 reports on
the parallelization of MultiOutput across six subjects using this dataset, where the training
process was distributed across multiple compute nodes and threads.
Figure 3.9 shows a substantial reduction in training time with an increasing number of
threads and compute nodes, for all subjects, which illustrates the good scalability of MOR
parallelization. However, compute time was massively increased compared to the multi-
threaded scikit-learn implementation on a single compute node. For example, using 8 com-
pute nodes and 32 threads, compute time with MOR is in the order of 1000s, whereas
the multi-threaded scikit-learn implementation with a single compute node and 32 threads
takes approximately 1s. This overhead directly results from the increase in time complexity
reflected in Equation 3.6.

3.4.7 Batch multi-output regression leads to efficient speed-up
across multiple compute nodes and threads

In the next experiment, we benchmarked our B-MOR implementation of ridgeCV, that
divides the brain targets into batches, and runs scikit-learn’s multi-threaded RidgeCV on
each batch independently with different compute nodes. Figure 3.10 shows that, as the
number of threads and compute nodes increased, substantial speed-up in training time was
achieved compared to scikit-learn’s multithreaded implementation (labelled “RidgeCV” in
the figure), which demonstrates the practical value of the B-MOR implementation. To
quantify this observation, we computed the distributed speed-up ratio as follows:

DSU =
TR

TP

where TR indicates the execution time of scikit-learn original ridge regression on a single
compute node and 1 thread, and TP indicates computation time with B-MOR for a given
number of compute nodes and threads. Overall, the distributed speed-up ratio increased
as the number of threads or compute nodes increased (Figure 3.11). The training time for
B-MOR was approximately 30− 33 times less than the original scikit-learn ridge regression
with 1 thread and 1 compute node. As it was the case with the multi-threaded implemen-
tation, the DSU reached a plateau beyond a certain number of compute nodes and threads,
with diminishing performance returns as parallelization overheads and the time spent in
unparallelized code sections started to outweigh parallelization benefits.
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(a) Sub-01 (b) Sub-02

(c) Sub-03 (d) Sub-04

(e) Sub-05 (f) Sub-06

Figure 3.10: B-MOR ridgeCV training time 6 subjects with whole brain (B-MOR) data described
in Table 3.1. B-MOR scales across compute nodes and threads, and provides substantial speed-up
compared to scikit-learn’s multi-threaded implementation (labelled as “RidgeCV”).

3.5 Discussion

The most important property of B-MOR is its applicability to scenarios involving large
datasets, typically exceeding 100,000 targets. This is crucial, as the division is based on the
number of targets. By dividing the problem into subproblems, the size of the subproblems
should differ significantly from the size of the data in the main problem. However, there
are no conceptual limitations on the number of training samples, except the amount of
memory available per worker. In this work, we focus on a truncated dataset version of B-
MOR, which uses the same number of targets (whole-brain voxels) but a smaller number of
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(a) Speed-Up vs Number of Threads (b) Speed-Up vs Number of Compute Nodes

Figure 3.11: Speed up in B-MOR training time for truncated B-MOR data across 6 subjects with
varying numbers of threads and compute nodes in the Dask distributed system.

training samples, as this is the only approach feasible within our local laboratory cluster.
Furthermore, it is worth noting that a larger number of training samples has the potential
to further illustrate the efficiency of B-MOR for whole-brain encoding.
MOR, independent of the dataset size, is inefficient due to the significant computational
overhead involved. In this work, to make the training time feasible, we applied it to a
smaller dataset. Even for this truncated dataset, the training time for Scikit-learn was
less than 1s, while the training time for MOR was the order of 1000. As the dataset size
increases, the computational overhead and differences in training time would become even
more significant. Our results highlight the differences in computational efficiency between
B-MOR and MOR in handling whole-brain encoding. B-MOR divides the problem into
subproblems, where the number of subproblems (c) corresponds to the number of workers,
while MOR handles s independent ridge regressions, with s representing the number of
voxels. These approaches demonstrate distinct impacts on scalability. However, due to the
constraints on computational resources, it was not feasible to train both B-MOR and MOR
on datasets of the same size. To account for this, we compared B-MOR with RidgeCV and
MOR with RidgeCV using separate figures and datasets of varying sizes.
In this chapter, our research primarily focuses on CPU-based implementations. However, it
is important to note that GPUs provide significant advantages for machine learning tasks by
offering access to a higher number of computation nodes, enabling faster parallel processing
on large datasets. This leads to substantial speedups over traditional CPU implementations.
Despite these benefits, GPUs come with limitations, particularly in terms of memory capac-
ity, which requires careful management to avoid bottlenecks. Among the various available
GPU-based approaches, we have explored the Himalaya [37] implementation for efficient
ridge regression for brain encoding. Himalaya offers several advantages, such as the ability
to estimate linear models on large numbers of targets (e.g., > 100k), compatibility with GPU
hardware, and the provision of estimators that integrate seamlessly with scikit-learn’s API.
Given that GPU memory is often smaller than CPU memory, careful management is es-
sential to prevent running out of memory during computations. For instance, Himalaya
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addresses this by implementing several options to limit GPU memory usage, often trading
off computational speed for memory efficiency. For instance, some solvers in the Himalaya
library perform computations in batches, such as n targets batch or n alphas batch to
manage the size of intermediate arrays. These considerations are crucial for researchers de-
ciding between CPU and GPU resources, as they must balance the need for speed with the
constraints of memory capacity.
Our preliminary experiments (not shown) suggested that memory constraints would prevent
us from implementing the large-scale brain encoding experiments performed in this work us-
ing Himalaya on a single GPU, specifically one NVIDIA Tesla T4 GPU (with CUDA Version
12.3) equipped with 15,360 MB of memory and 2,560 CUDA cores. These experiments were
limited in scope, and further research is needed to clarify the data regimes and hardware
constraints where GPU-based approaches achieve a better performance than CPU-based
approaches.
While our results are presented within the context of brain encoding, it is crucial to emphasize
that the approach we have developed for speeding up and scaling ridge regression is broadly
applicable, especially in scenarios involving a large number of target vectors (e.g., > 100k).
For instance, in genomics, researchers often use ridge regression to predict gene expression
levels across various conditions. In this context, each gene’s expression level in different
samples or under different conditions can be treated as a separate target variable. Given
that the number of genes in an organism can exceed 100,000, managing and processing such
a vast number of target vectors requires efficient computational techniques like the one we
propose.
It is worth mentioning that distributed Ridge regression can be applied to problems where the
matrix X is combined with different feature spaces. For example, in banded ridge regression
[37], the matrix X is created based on the combination of activations of 7 layers, where
each feature space has a specific value for the normalization hyperparameter (λ). In these
cases, the training process can be divided among multiple Ridge regressions, each trained
independently in parallel. This approach significantly assists in selecting the feature space
among neural network layers.

3.6 Conclusion

In this chapter, we evaluated the efficiency of different implementations of ridge regression for
a specific application: brain encoding using a vision model (VGG16) during movie watching.
We found that the multithreaded parallelization available in scikit-learn could be used to
reduce substantially computation time, and that the BLAS implementation provided by the
proprietary Intel oneAPI Math Kernel Library (MKL) substantially outperforms the open-
source OpenBLAS implementation. For increased scalability, the Dask-based scikit-learn
MultiOutput implementation can parallelize computations across multiple compute nodes,
but this comes with massive redundancy in some of the computations, which we found to
be impractical when using high-resolution brain targets (tens to hundreds of thousands).
Therefore, we implemented a more efficient version of the MultiOutput method (B-MOR),
that parallelizes ridge regression across batches of brain targets. Our B-MOR method scales
well, both in terms of the number of compute nodes and the number of threads used by nodes.
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This approach allowed us to generate brain encoding maps with high spatial resolution and
whithin a reasonable time. Our method could be useful for fMRI researchers who want
to process high-resolution deep datasets with high-performance computing clusters. Our
conclusion likely applies to any ridge regression for data arrays with a very large number of
targets (up to the order of 100k) and a large number of predictors (in the order of thousands).
As our proposed method is straightforward to implement, it may become available in scikit-
learn in the future.

3.7 Availability of code and data

The code to reproduce our experiments is available at https://github.com/Sana3883/

Scaling-up-Ridge. The CNeuroMod dataset is available at https://www.cneuromod.ca/

gallery/datasets.

3.8 Appendix

Table 3.4: Key Parameters of VGG16 (Keras Model)

Layer Num. of Activation Size of Parameters
Kernels Size Kernels (M)

Input - 224x224x3 - -

block1 conv1 64 224x224x64 3x3 1792
block1 conv2 64 224x224x64 3x3 36928
block1 pool - 112x112x64 2x2 -

block2 conv1 128 112x112x128 3x3 73856
block2 conv2 128 112x112x128 3x3 147584
block2 pool - 56x56x128 2x2 -

block3 conv1 256 56x56x256 3x3 295168
block3 conv2 256 56x56x256 3x3 590080
block3 conv3 256 56x56x256 3x3 590080
block3 pool - 28x28x256 2x2 -

block4 conv1 512 28x28x512 3x3 1180160
block4 conv2 512 28x28x512 3x3 2359808
block4 conv3 512 28x28x512 3x3 2359808
block4 pool - 14x14x512 2x2 -

block5 conv1 512 14x14x512 3x3 2359808
block5 conv2 512 14x14x512 3x3 2359808
block5 conv3 512 14x14x512 3x3 2359808
block5 pool - 7x7x512 2x2 -

Flatten - 25088 - -
FC1 - 4096 - 102764544
FC2 - 4096 - 16781312

predictions - 1000 (output) - 4097000

Total - - - 138,357,544
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(a) Scatter plots showing the relationship between r brain encoding values across all brain parcels
for a pair of distinct participants. In total 15 pairs of subjects are presented, in the group of 6
subjects.

(b) Correlation between r brain encoding values across all brain parcels for each pair of distinct
participants. In total 15 pairs of subjects are presented, in the group of 6 subjects.

Figure 3.12: spatial correlation between brain encoding maps of different subjects
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Chapter 4

Training Compute-Optimal Vision
Transformers for Brain Encoding
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Abstract

The optimal training of a vision transformer for brain encoding depends on three factors:
model size, data size, and computational resources. This study investigates these three pil-
lars, focusing on the effects of data scaling, model scaling, and high-performance computing
on brain encoding results. Using VideoGPT to extract efficient spatiotemporal features from
videos and training a Ridge model to predict brain activity based on these features, we con-
ducted benchmark experiments with varying data sizes (10k, 100k, 1M, 6M) and different
model configurations of GPT-2, including hidden layer dimensions, number of layers, and
number of attention heads. We also evaluated the effects of training models with 32-bit vs
16-bit floating point representations. Our results demonstrate that increasing the hidden
layer dimensions significantly improves brain encoding performance, as evidenced by higher
Pearson correlation coefficients across all subjects. In contrast, the number of attention
heads does not have a significant effect on the encoding results. Additionally, increasing the
number of layers shows some improvement in brain encoding correlations, but the trend is
not as consistent as that observed with hidden layer dimensions. The data scaling results
show that larger training datasets lead to improved brain encoding performance, with the
highest Pearson correlation coefficients observed for the largest dataset size (6M). These
findings highlight that the effects of data scaling are more significant compared to model
scaling in enhancing brain encoding performance. Furthermore, we explored the impact of
floating-point precision by comparing 32-bit and 16-bit representations. Training with 16-bit
precision yielded the same brain encoding accuracy as 32-bit, while reducing training time
by 1.17 times, demonstrating its efficiency for high-performance computing tasks.



4.1 Introduction

Brain encoding aims to predict neural responses to stimuli by leveraging computational mod-
els. Traditionally, Convolutional Neural Networks (CNNs) such as AlexNet[16], VGG16 [67],
and ResNets [22] have been employed to mimic brain activity patterns, extracting semantic
information from visual stimuli [33, 34, 26, 7, 58, 65]. However, deeper CNN architectures
have not consistently replicated brain-like responses across all regions and recent advance-
ments highlight the potential of transformers [53, 36, 19]. Transformer-based architecture
[73] offer several distinct advantages for brain encoding, including superior performance in
capturing spatial and temporal features compared to CNNs, RNNs and LSTMs. The atten-
tion mechanisms in transformers enhance the selective integration of visual inputs, which
is crucial for understanding neural activity. Furthermore, generative self-supervised models
demonstrate predictive capabilities comparable to supervised models. Finally, multi-modal
architectures, such as VisualBERT [39] and CLIP [59], effectively leverage semantic cor-
relations across different modalities, offering robust performance in visio-linguistic tasks.
Inspired by these advancements, neuroscientists have developed transformer-based brain en-
coding models that significantly improve the accuracy of fMRI encoding across the entire
brain [55, 53, 36, 19, 51].
In the pursuit of developing compute-optimal models, the interplay among computational
resources, model dimensions, and dataset sizes holds paramount importance [24, 3, 2, 82].
Scaling laws serve as fundamental frameworks elucidating the dynamics between a model’s
efficacy and these three pillars. For instance, the authors in [24] delve into the optimal
configuration of model size and training data for transformer language models based on
computing resources budget. Their findings highlight that large-scale models often undergo
undertraining due to an emphasis on scaling model sizes while keeping the training dataset
size constant. By scaling both model size and training data size, the proposed model, Chin-
chilla, surpasses larger counterparts in performance metrics while utilizing fewer computa-
tional resources. Similarly, in [3], the authors advance scaling laws for vision transformers to
propose compute-optimal model architectures regarding width and depth instead of solely
focusing on the number of parameters.
Recent research has extended scaling laws to brain encoding tasks, mirroring discussions
found in studies of end-to-end language and vision models (trained from scratch on stim-
uli) alongside their brain encoding correlates. These studies aim to address fundamental
questions such as: (1) How does the sample size to train transformers impact on brain en-
coding prediction accuracy? (2) How does brain encoding prediction accuracy vary with
the parameter size (model size) of transformer? For example, a recent study [5] explored
the effectiveness of larger language models, such as those from the OPT [83] and LLaMA
[69] families (30B parameters), in predicting brain responses compared to traditional model
GPT-2 (125M parameters). The results indicated a logarithmic relationship between brain
prediction performance and model size. Similarly, scaling laws were observed with increas-
ing training dataset, demonstrating that brain encoding prediction accuracy increases on a
logarithmic scale with both the size of the training samples and the parameter size of the lan-
guage models employed. The study in [43] explores the construction of a high-performance
vision encoding model, assessing how changes in the sample size of the fMRI training set and
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the parameter size of vision models affect prediction accuracy. Various vision models with
parameter sizes ranging from 86M to 4.3B were employed to extract features from stimuli
presented to the subjects. Results demonstrate that increasing the training sample size and
the parameter size of vision models enhances prediction accuracy of brain encoding according
to the scaling law.
In this study, we investigate the optimization of vision transformers for brain encoding us-
ing the Shinobi dataset [20], which includes approximately 10 hours of fMRI data collected
as subjects engaged with the Shinobi video game. This dataset provides a diverse range
of cognitive engagements across different game levels, offering a rich foundation for brain
encoding experiments. To extract efficient spatiotemporal features from this dataset, we
train an end-to-end VideoGPT [80] model with tens of millions of parameters. VideoGPT
is able to capture complex spatial and temporal patterns in video data, which are essential
for understanding brain responses to visual stimuli. The extracted features from VideoGPT
are then paired with corresponding fMRI data, and we train a Ridge regression [23] model
on these pairs to predict brain activity for unseen frames, enabling the decoding of neural
responses to new visual stimuli. Our investigation is structured to address several key as-
pects: 1) exploring the effects of varying dataset sizes (10k, 100k, 1M, 6M) on brain encoding
performance, 2) examining different model configurations such as hidden layer dimensions,
number of layers, and attention heads, 3) assessing the impact of mixed precision on model
training time and brain encoding accuracy.

4.2 Materials and Methods

4.2.1 fMRI datasets

The fMRI Shinobi videogame dataset was collected in the context of the Courtois Neuromod
Project. This game has been selected to effectively engage subjects with multiple cognitive
components simultaneously, such as perception of the environment, strategic planning, de-
cision making and taking action. In the Shinobi dataset, about 10 hours of fMRI data was
recorded while the subjects play the Shinobi video game. In each run, subjects played 3
levels in cycles and in the same order each time. These levels were: Level-1) corresponded
to round 1 of the original game which included one mini-boss and one boss fight. Level-4)
corresponded to the beginning of round 4 of the original game which included no mini-boss
or boss fight. Level-5) corresponded to the beginning of round 5 of the original game, which
included one mini-boss fight and no boss fight. Subject moved to the next level in two
cases: they successfully completed a level, or lost three lives. The duration of each run is a
minimum of ten minutes. A run was completed as soon as its duration exceeded 10 minutes
and the participant completed a level, as was just defined. The duration of each run was
thus variable, depending on the individual gameplay of the participant. As there are fixed
order in the levels, Level-1 was repeated more frequently than Level-4 and Level-5. For more
information on this dataset, visit the CNeuroMod dataset documentation page(CNeuroMod
web page).
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4.2.1.1 Participants

The Shinobi dataset includes fMRI time series collected on four participants in good general
health, 2 women (sub-04, and sub-06) and 2 men (sub-01, sub-02). All subjects also provided
written informed consent to participate in this study, which was approved by the local
research ethics review board (under project number CER VN 18-19-22) of the CIUSSS du
Centre-Sud-de-l’̂Ile-de-Montréal, Montréal, Canada.

4.2.1.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) was collected using a 3T Siemens Prisma Fit scanner
and a 64-channel head/neck coil, located at the Unit for Functional Neuroimaging (UNF)
of the Research Centre of the Montreal Geriatric Institute (CRIUGM), Montréal, Canada.
Functional MRI data were collected using an accelerated simultaneous multi-slice, gradient
echo-planar imaging sequence [64, 79] developed at the University of Minnesota, as part of the
Human Connectome (HCP) Project [72]. The fMRI sequence used the following parameters:
slice acceleration factor = 4, TR = 1.49s, TE = 37 ms, flip angle = 52 degrees, 2 mm
isotropic spatial resolution, 60 slices, acquisition matrix 96x96. The structural data was
acquired using a T1-weighted MPRAGE 3D sagittal and the following parameters: duration
6:38 min, TR = 2.4 s, TE = 2.2 ms, flip angle = 8 deg, voxel size = 0.8 mm isotropic, R=2
acceleration. For more information on the sequences used or information on data acquisition
(including fMRI setup), visit the CNeuroMod technical documentation page.

4.2.1.3 Preprocessing

All fMRI data were preprocessed using the fMRIprep pipeline version 20.2.3 [17]. We ap-
plied a volume-based spatial normalization to standard space (MNI152 NLin2009cAsym).
Furthermore, a denoising strategy was applied to regress out the following basic confounds:
(1) a 24-degrees of freedom expansion of the motion parameters, (2) a basis of slow time
drifts (slower than 0.01 Hz). This step was implemented with the Nilearn maskers (see be-
low) and the load confounds tool1 (option Params24). A spatial smoothing with a 8 mm
field-width-at-half-maximum and a Gaussian kernel was also applied with Nilearn prior to
time series extraction. For each fMRI run, time series were also normalized to zero mean
and unit variance (over time, for each voxel independently).

4.2.1.4 Brain parcellation

The preprocessed BOLD time series were averaged across all voxels in each parcel of a parcel-
lation atlas, using the NiftiLabelsMasker masker from Nilearn. We used the Multiresolution
Intrinsic Segmentation Template (MIST) [70]. MIST provides a hierarchical decomposition
of functional brain networks in nine levels, and we used here the largest available resolution
(MISTAtOM). For each subject, the validation data is the data from the session 004, the
test data is from session 005 and the training is the rest of the sessions. Details of fMRI
data representation using MISTAtOM parcellation is presented in Table 4.1.

1https://github.com/simexp/load_confounds
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Table 4.1: Shinobi fMRI data representation using MISTAtOM parcellation

fMRI data representing parcel-wise train parcel-wise test

shape of sub-01 data (15313, 1095) (1513, 1095)

shape of sub-02 data (17996, 1095) (829, 1095)

shape of sub-04 data (14046, 1095) (1867, 1095)

shape of sub-06 data (13966, 1095) (1479, 1095)

Size ∼ 151M ∼ 12M

4.2.2 Generating Video Data

The generation of video data for the CNeuromod Shinobi gameplay recordings involved
transforming keypress logs into visual frames that represent the gameplay experience. This
process is pivotal for creating a dataset that captures not only the player’s actions but
also the corresponding visual responses from the game environment. The method employed
integrates game emulation with keypress playback to achieve a structured dataset suitable
for subsequent analysis.
The process begins with the setup of the emulator using the retro library, which facil-
itates the playback of Sega Genesis games. Specifically, the emulator is configured to
run ”ShinobiIIIReturnOfTheNinjaMaster-Genesis” leveraging custom integrations to ensure
compatibility with the CNeuromod dataset. This step is critical as it establishes the founda-
tion for accurately replaying gameplay sessions based on recorded inputs. Once the emulator
is set up, the keypress logs, stored in .bk2 files, are loaded into the system. Each log file
contains a sequential record of player inputs, and the emulator is reset to its initial state,
ensuring it can accurately reflect the gameplay as originally experienced. This resetting pro-
cess allows for the emulator to start from the exact point in the game where the recorded
session began, thereby preserving the integrity of the gameplay dynamics.
As the emulator replays each log, it simulates the exact sequence of actions taken by the
player, advancing frame by frame. The gameplay environment’s visual output is captured at
each step, resulting in a series of images that represent the game state over time. To ensure
consistency, the captured frames are resized to a standard resolution of 64×64 (or 128×128
) pixels, maintaining their visual quality while fitting within the requirements of the dataset.

4.2.3 Brain encoding

In this work, an end-to-end VideoGPT model was trained on the Shinobi dataset, which
consists of more than 6 million frames totaling 309GB and includes 10-hours video recording
of Shinobi gameplay across 4 subjects. After training the VideoGPT model, we used the
trained model to extract spatio-temporal features from stimuli for brain encoding.
We specifically used the “attn stack.attn nets.4.post fc dp” layer to represent the activations
of VideoGPT. This layer was selected because the model includes 8 blocks, and we chose the
fourth block to extract mid-level features, compare to the high-level features in later layers or
low-level features in earlier layers. Additionally, we conducted a benchmark analysis among
the layers in the 4th block and found that the 11attn stack.attn nets.4.post fc dp” layer had
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Figure 4.1: Two main steps of brain encoding: Extracting features from movie frames using GPT-2
model and predicting brain response using ridge regression

lower activation size compared to other layers and provided a higher correlation for brain
encoding (see Figure 4.7 and Table 4.5 in 4.6).
After extracting features from VideoGPT, we applied a 3TR (4.5s) delay. These final features
were then used to train ridge model using ridge regression on pairs of extracted features, brain
activity. Figure 4.1 illustrates the two main steps of brain encoding: extracting intricate
patterns and temporal dependencies in the video sequences and predicting brain responses
using ridge regression.

4.2.3.1 VideoGPT model

The architecture of the VideoGPT model is an adaptation of VQ-VAE [71] and GPT-2
[60] architectures. In the first phase of VideoGPT, we trained VQ-VAE to reconstruct 16
sequences of frames. In the second phase, we train GPT to predict the next 16 sequence of
frames based on the previous 16 sequences of frames. In the second phased, we use VQ-VAE
as a pretrained network to represent sequences of frames with the codebook as the input for
GPT.
Training VQ-VAE The VQ-VAE [71] architecture further extends Autoencoders [25] using
discrete latent variables, inspired by vector quantization (VQ). In this approach, the posterior
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and prior distributions are considered categorical (discrete). The output of the encoder is
compared to all vectors in a (learned) codebook, then the closest codebook vector in the
Euclidean distance is selected as input to the decoder. The parameter set of VQ-VAE
includes parameters of the encoder, decoder, and the embedding space e.
In the first phased of Video GPT, a set of discrete latent codes will be trained for the Shinobi
dataset through the VQ-VAE, in effect downsampling windows of video frames (sequence
length of 16) into a discrete space-time codebook. The encoder of the VQ-VAE will include
a series of 3D convolutions followed by attention residual blocks (a replacement for standard
residual blocks) to better capture complex spatiotemporal dependencies within video data.
In this architecture, each attention residual block includes Convolution, LayerNorm, position
embedding and axial attention layers. The position embedding is shared between all axial
attention layers in the encoder and decoder. The architecture of the decoder starts with
attention residual blocks which are then followed by a series of 3D transposed convolution
(reverse of encoder) to upsample the video frames across space-time.
Multi-Head Attention: Multi-Head Attention works by projecting the input tensor X into
multiple subspaces using separate attention heads, each computing queries Qi, keys Ki, and
values Vi with distinct linear transformations. For each head i, the attention is calculated
as:

Attentioni(X) = softmax

(
QiK

T
i√

dk

)
Vi

where dk is the dimensionality of the keys. The outputs from all attention heads are con-
catenated and projected to obtain the final multi-head attention result:

MultiHeadAttention(X) = Concat(Attention1(X), . . . ,AttentionH(X))WO

This multi-head attention allows the model to process various aspects of the shinobi video
data simultaneously, improving its capacity to learn complex patterns.
Axial Attention: Axial Attentionis then applied to efficiently manage the high-dimensional
video data. Instead of processing the entire tensor at once, axial attention operates along
different dimensions separately—width, height, and temporal—allowing the model to focus
on specific aspects of the data. Attention is computed separately along each dimension:
- Width Attention:

Attentionwidth(X) = softmax

(
QwidthK

T
width√

dk

)
Vwidth

- Height Attention:

Attentionheight(X) = softmax

(
QheightK

T
height√

dk

)
Vheight

- Temporal Attention:

Attentiontemporal(X) = softmax

(
QtemporalK

T
temporal√

dk

)
Vtemporal
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The combined axial attention is represented as:

Attentioncombined(X) = Attentionwidth(X) + Attentionheight(X) + Attentiontemporal(X)

This approach allows the model to process different dimensions of the video independently,
enhancing its ability to manage complex spatiotemporal structures. Finally, after the at-
tention mechanism, the input tensor is passed through a series of convolutional layers for
further feature extraction:

X ′ = Conv3D(X)

Axial attention is applied through an axial block:

X ′′ = AxialBlock(X ′)

The output of the axial block is then combined with the original input through a residual
connection:

Y = X + X ′′

This residual connection ensures the retention of the original input features while incorporat-
ing the newly learned ones, facilitating smoother training and improving the model’s overall
ability to capture both spatial and temporal patterns in video data.
Loss Function: In VideoGPT, the VQ-VAE is trained using the following loss function:

L = ∥x−D(e)∥22 + ∥ sg[E(x)]− e∥22 + β∥ sg[e]− E(x)∥22
In the loss function, x represents the input frames, and e denotes the quantized representation
obtained from the codebook. The function D(e) refers to the decoder’s output when given
the quantized representation e, and E(x) represents the encoder output for the input x.
The term ∥ · ∥22 indicates the squared L2-norm, which is used to measure the difference
between two vectors. The operator sg[·] refers to a stop-gradient operation, which prevents
gradients from flowing through the specified term during backpropagation. Finally, β is
a hyperparameter that weights the contribution of the commitment loss in the total loss
function. These notations collectively define the components of the loss function and their
roles in training the VQ-VAE model. Table 4.2 presents the notations ans symbols.

Table 4.2: VQ-VAE notations

x input frames

e quantized representation

D(x) decoder

E(x) encoder

The loss function includes reconstruction loss Lrecon, a codebook loss Lcodebook, and a com-
mitment loss Lcommit. The reconstruction loss controls the VQ-VAE training process to learn
efficient representations of frames with minimizing the difference between original and recon-
structed frame features. The codebook loss ensures that the codebook embeddings and their
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corresponding encoder outputs are closely matched based on nearest neighbors lookup. In
the VQ-VAE model, the encoder outputs may oscillate between different code vectors for the
same input sample. To tackle this problem, the commitment loss is employed to encourage
the encoder outputs to commit to a particular code vector. The commitment loss is weighted
by a hyperparameter β to regularise the VQ-VAE training process with penalizes the encoder
for switching between code vectors. In the lost function, by stopping the gradients for e and
pre-trained weights E(x), their values remain fixed. In other words, stop gradient leads to
preserving the representations they have already learned.
Optimizer: The model uses the Adam optimizer (betas=(0.9, 0.999)) for training. The
model starts with a learning rate of 3e-4, and then the CosineAnnealingLR scheduler [42]
gradually reduces this learning rate over time according to a cosine function. CosineAnneal-
ingLR scheduler, defined as:

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
t

Tmax

π

))
(4.1)

where ηmax is the initial learning rate, and Tmax is the maximum number of training steps.
This scheduling allows for a smooth reduction in learning rate, fostering a balance between
fast convergence in the initial training phase and fine-tuning as the model nears convergence.
The codebook in the VQ-VAE model is updated using an Exponential Moving Average
(EMA) [71] method to maintain stable and meaningful learned representations. Specifically,
the counts N and the running average of the embeddings z avg are updated as follows:

N← 0.99× N + 0.01× n total (4.2)

z avg← 0.99× z avg + 0.01× encode sum (4.3)

where n total is the sum of one-hot encoded vectors indicating the frequency of each code
being selected, and encode sum is the sum of the input vectors corresponding to each code.
The embeddings are then normalized based on their frequency:

weights =
(N + 1e− 7)

(
∑

N) + n codes× 1e− 7
×
∑

N (4.4)

embeddings← z avg

weights
(4.5)

Unused embeddings (where N < 1) are reinitialized with randomly sampled vectors from the
data. This EMA-based update mechanism ensures that the codebook embeddings adapt to
new data while remaining stable and representative of the underlying input distribution.
Hyperparameters: As Table 4.3 shows, the main hyperparameters of the VQ-VAE model
include the embedding dimension (embedding dim), the number of codes in the codebook
(n codes), the number of hidden layers (n hiddens), the number of residual layers (n res layers),
and the downsampling factors for the encoder and upsampling factors for the decoder (down-
sample, upsample).
Training autoregressive GPT-2 In time series data such as videos, autoregressive models
train to predict a time step value (frame in the video) using previous time step values.
The VideoGPT autoregressive architecture includes a stack of transformer encoder layers
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to generate videos (predict next frames) from a latent space. In VideoGPT, through the
VQ-VAE (first phase of videoGPT training process), we learn the latent codes, and in the
next step, we leverage GPT-2 to model the prior over the latent space. The input to GPT-2
is a sequence of discrete latent codes, produced by the VQ-VAE encoder. The GPT-2 model
is trained to generate new sequences of latent codes, which are then passed through the
VQ-VAE decoder to produce new video frames.
By employing a self-supervised and autoregressive approach, GPT effectively learns from
Shinobi video data, generating meaningful representations of the spatio-temporal dynamics
present in the video. This capability enables the model to capture not only the visual infor-
mation of individual frames but also the temporal transitions that define the sequence. As
GPT learns to predict future frames based on previously observed content, it produces con-
textualized embeddings that reflect the temporal dependencies inherent in video sequences.
This rich representation allows the model to discern essential characteristics of movement,
object interaction, and scene evolution, making it particularly advantageous for brain en-
coding, where understanding the flow of time and space of stimuli is crucial.
Loss Function: The GPT loss function used in the VideoGPT is Cross-Entropy Loss.
This loss function is used for classification tasks and is well-suited for training models like
GPT, which predict the next token (or codebook in the context of VQ-VAE) in a sequence.
The loss function measures the difference between the predicted probability distribution and
the actual distribution (which is typically a one-hot encoded vector for classification). The
formula for the cross-entropy loss is:

Lcross-entropy = −
C∑
i=1

yi log(pi) (4.6)

where C represents the number of possible latent codes. For each latent code i, yi is a one-
hot indicator (0 or 1) indicating whether latent code i is the correct representation for the
current input. Additionally, pi denotes the predicted probability for latent code i, which is
obtained by applying the softmax function to the logits.
Optimizer: Optimization is performed using the Adam optimizer (betas=(0.9, 0.999)) with
a learning rate of 3e-4. The CosineAnnealingLR scheduler adjusts the learning rate according
to a cosine function over the training steps, starting at a higher value to enable faster
convergence initially, and then decreasing gradually to promote more refined learning as
convergence is approached.
Hyperparameters: As Table 4.3 shows, the GPT-2 model employs several hyperparame-
ters, including a hidden dimension (hidden dim) of 576, 4 attention heads (heads), 8 trans-
former layers (layers), and dropout rates of 0.2 for the attention mechanism (attn dropout)
and 0.3 for other layers (dropout).
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Table 4.3: Model Sizes

(a) VQVAE Model Size

Name Type Parameters

encoder encoder 18.7 M

decoder decoder 17.1 M

pre vq conv SamePadConv3d 30.8 K

post vq conv SamePadConv3d 31.0 K

codebook Codebook 0

Trainable params 35.8 M

Non-trainable params 0

Total params 35.8 M

Total model params size (MB) 143.306

(b) GPT-2 Model Size

Name Type Parameters

vqvae VQ-VAE 35.8 M

resnet ResidualBlock 2.4 M

fc in Linear 73.7 K

attn stack AttentionStack 37.2 M

fc out Linear 589 K

Trainable params 40.3 M

Non-trainable params 35.8 M

Total params 76.2 M

Total model params size (MB) 304.606

(c) Hyperparameters for VQVAE and GPT-2 components

Parameter VQVAE GPT-2

embedding dim 256 -

n codes 2048 -

n hiddens 240 -

n res layers 4 -

downsample (4, 4, 4) -

hidden dim - 576

heads 2 4

layers - 8

dropout - 0.2

attn dropout - 0.3

4.2.3.2 Brain encoding performance and hyper-parameter optimization

For a given subject, the samples X were split into training (90% random) and test (10%
remaining) subsets. The coefficients of the ridge regression were selected through Eq. 3.1
based on the training set only. We measured the final quality of brain encoding as the
Pearson’s correlation coefficient between the actual fMRI time series and the time series
predicted by the ridge regression model, on the test set. A leave-one-out validation was used
inside the training set to estimate the hyper-parameter value λ with optimal performance
(based on cost function defined in Eq. 3.1), based on the grid:

λ ∈ {0.1, 1, 100} .

4.2.3.3 Computational environment

Brain encoding experiments were run on Beluga, a high-performance computing (HPC)
cluster of Canada Digital Alliance, providing researchers with a robust infrastructure for
advanced scientific computations. Beluga features numerous compute nodes, high-speed
interconnects, and parallel processing capabilities, visit the Beluga technical documentation
page for details.

60

https://docs.alliancecan.ca/mediawiki/index.php?title=B%C3%A9luga/en


4.2.4 Scaling up VideoGPT model

4.2.4.1 Scaling up GPT in terms of Dataset Size

The GPT model was trained on datasets of varying sizes: 10k, 100k, 1M, and 6M samples.
These datasets were derived from the entire available dataset collected from four subjects
who played the Shinobi game while the videos were recorded. After training the GPT model
on these different dataset sizes, we extracted activations from the model and compared the
brain encoding results. In all scenarios of varying dataset size, the hyperparameters related
to model size were fixed according to Table 4.3.

4.2.4.2 Scaling up GPT in terms of Model Size

In this study, the scaling of the GPT model size was explored by varying the following
hyperparameters:

• Number of hidden layers: 1, 2, 4, 8

• Dimension of hidden layers: 6, 15, 30, 63, 126, 255, 576, 1024 (note: the hidden
dimension must be a multiple of 3 and greater than 3)

• Number of heads in multi-head attention mechanism: 1, 2, 4, 8

In each scenario, the other model hyperparameters, as detailed in Table 4.3, were kept
fixed. Furthermore, the GPT model was trained on a dataset of 6 million samples across all
scenarios. After training with these configurations, activations were extracted from the GPT
model, and the brain encoding results were compared using actual fMRI data. Specifically,
we used the ”attn stack.attn nets.4.post fc dp” layer to represent the GPT activations for
experiments involving the hidden dimension and the number of heads, but only for the case
of the number of layers. Table 4.4 shows the selected layer for brain encoding:

Table 4.4: Selected GPT layers for brain encoding based on the number of layers

Number of Layers Selected GPT Layer for Brain Encoding

1 attn stack.attn nets.0.post fc dp

2 attn stack.attn nets.1.post fc dp

4 attn stack.attn nets.3.post fc dp

8 attn stack.attn nets.7.post fc dp

4.2.4.3 High Performance computing during GPT training process

In [45], the authors proposed an approach for training deep neural networks based on half-
precision floating-point numbers, without losing model accuracy or modifying the hyperpa-
rameters. In this work, the results show that the mixed-precision approach has two main
advantages: 1) approximately halves the memory requirements, 2) accelerating arithmetic
on GPU. In the proposed approach weights, activations, and gradients are stored in half-
precision format. Updating the parameters contains two key steps: Firstly, a single-precision
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copy of weights is maintained to accumulate the gradients after backpropagation. Secondly,
scaling the loss function to preserve gradient values with small magnitudes. The mixed
precision approach works across a wide variety of modern large scale Deep Learning model
architectures, trained on large datasets.
Two commonly used 16-bit formats are float 16 and bfloat16, each with distinct advantages.
Float 16, adhering to the IEEE 754 standard, uses 1 bit for the sign, 5 bits for the exponent,
and 10 bits for the mantissa. Its compact nature reduces memory usage and accelerates
computations but limits precision and dynamic range. It is widely used in scenarios where
speed and memory efficiency are critical, though it struggles with representing very large or
small numbers. In contrast, bfloat16 allocates 1 bit for the sign, 8 bits for the exponent,
and 7 bits for the mantissa, offering the same dynamic range as float 32 but with reduced
precision. This format is optimized for modern hardware, including Google’s TPUs and
NVIDIA GPUs such as A100, making it a popular choice in machine learning.
Recently, the FP8 format has emerged as a breakthrough for further improving memory and
computational efficiency. With NVIDIA’s H100 (Hopper architecture), two new FP8 formats
are introduced:

• E5M2 (5 bits for the exponent, 2 bits for the mantissa).

• E4M3 (4 bits for the exponent, 3 bits for the mantissa).

These formats strike a balance between performance and precision, allowing for even faster
computations and more efficient memory usage, making them ideal for deep learning work-
loads. Hopper’s dynamic precision capabilities ensure seamless switching between FP8,
FP16, and FP32, adapting to the specific needs of the task at hand and maximizing overall
efficiency.
In this work, we focus on comparing the training of GPT-2 using 32-bit and standard 16-bit
precision format, and we discuss the impacts of these precision levels on brain encoding.

4.3 Results

4.3.1 Scaling up the dataset size for training VideoGPT resulted
in a significant improvement in brain encoding performance

In this work, we explored the impact of varying training dataset sizes of GPT model in brain
encoding tasks. Specifically, we trained the GPT model on datasets of sizes 10K, 100K, 1M,
and 6M samples, derived from video recordings of subjects playing the Shinobi game.
The training loss decreases more rapidly and stabilizes at a lower value with larger datasets,
as shown in Figure 4.2a. Specifically, GPT trained on the 6M dataset (red curve) shows a
rapid decline in cross-entropy loss, reaching a stable point around epoch 40. In contrast, the
models trained on smaller datasets, such as the 10K (green curve) and 100K (blue curve)
datasets, exhibit slower convergence and higher final loss values, with the 100K dataset even
experiencing an upward trend after epoch 60, indicating overfitting. Smaller datasets lack
sufficient diversity and information for the model to generalize well. As training progresses,
the model starts to overfit to the limited data, causing the loss to increase over time. In
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(a) GPT training loss

(b) Brain encoding correlations across subjects

(c) Brain maps across subjects

Figure 4.2: GPT training across different training dataset sizes
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contrast, larger datasets allowing the model to learn more effectively and maintain a stable
or decreasing loss throughout training. The model trained on the 1M dataset (purple curve)
falls in between these extremes, achieving better performance than the smaller datasets but
not reaching the low loss values of the 6M dataset. This trend demonstrates that increasing
the dataset size leads to better GPT convergence, with the larger datasets enabling the model
to generalize better and achieve a lower cross-entropy loss, thus improving overall training
efficiency and effectiveness.
Figure 4.2b demonstrates the impact of training dataset size on brain encoding correlations,
as indicated by the Pearson correlation coefficient (r) between actual and predicted brain
activity across various subjects. The GPT model trained on the 6M dataset (red bars)
generally achieves the highest correlation values across all subjects, highlighting the enhanced
brain encoding predictive accuracy with increased GPT training data.
The brain encoding results of Subject 01 show a noticeable improvement in correlation from
approximately 0.4 with the 10K dataset to nearly 0.6 with the 6M dataset, representing an
increase by a factor of about 1.5. Similarly, Subject 06 exhibits a significant enhancement,
with correlations rising from around 0.15 with the 10K dataset to almost 0.55 with the
6M dataset, leading to an improvement by a factor of approximately 3.7. On the other
hand, Subject 02 shows a modest improvement, where the correlation increases from around
0.35 with the 10K dataset to about 0.4 with the 6M dataset, yielding only a 1.14 times
improvement.
This pattern suggests that while larger training datasets generally lead to more accurate
brain encoding, the extent of improvement varies across subjects. For example, Sub-06
experienced significant gains, while Sub-02 saw less substantial improvements, indicating that
the effectiveness of dataset scaling may differ depending on individual subject characteristics.
Figure 4.2c illustrates brain maps across four subjects.

4.3.2 Scaling up the GPT model size in terms of hidden dimen-
sions resulted in a significant improvement in brain encoding
performance

In this section, we investigated the impact of increasing the hidden dimensions in the GPT
model on brain encoding performance. The VideoGPT model was trained with various
hidden dimensions, while other hyperparameters were kept constant, as outlined in Table
4.3.
Figure 4.3a displays the training loss curves across different hidden dimensions. As the hid-
den dimensions increase from 6 to 576, the training loss decreases more rapidly and stabilizes
at lower cross-entropy values. This indicates that models with larger hidden dimensions have
greater capacity, leading to better convergence during training. However, after epoch 30, the
loss for the model with 1024 hidden dimensions begins to increase slightly, suggesting overfit-
ting. Then, the results hint at a slight decline in performance beyond a certain threshold, as
evidenced by the small drop in correlation for some subjects at the highest hidden dimension
tested (1024).
Figure 4.3b shows the Pearson correlation coefficients between the model predictions and
actual brain activity across different subjects. The results demonstrate that models with
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(a) GPT training loss

(b) Brain encoding correlation coefficients across subjects

(c) Brain maps across subjects

Figure 4.3: GPT training across different hidden dimensions65



larger hidden dimensions generally achieve higher brain encoding correlations. Notably, at
a hidden dimension of 576, the highest correlations are observed, particularly for Subjects
01, 04, and 06, where the improvements are significant compared to the hidden dimension
of 126.
However, the pattern is not entirely consistent across all subjects and hidden dimensions.
For instance, at a hidden dimension of 30, Subject 02 exhibits a decrease in brain encoding
performance compared to its performance at a hidden dimension of 6, while other subjects
show an increase. Furthermore, at a hidden dimension of 126, all subjects experience a
decrease in correlation compared to the results at 30. These fluctuations highlight the
nuanced relationship between model complexity and brain encoding accuracy. Figure 4.3c
presents brain activation maps for four subjects across different hidden dimensions.

4.3.3 Effect of increasing layers of GPT on brain encoding perfor-
mance is limited

In this section, we explored the effect of varying the number of layers in the GPT model
on brain encoding performance. The GPT model was trained with 1, 2, 4, 8 and 16 layers,
while all other hyperparameters were kept constant, as detailed in Table 4.3.
Figure 4.4a illustrates the training loss curves across different layer configurations. As the
number of layers increases from 1 to 8, we observe a notable decrease in the training loss, par-
ticularly during the early epochs. This indicates that deeper models have a greater capacity
for capturing complex patterns in the data, leading to more effective convergence. However,
beyond 4 layers, the rate of improvement in the training loss begins to plateau, suggesting
that the benefits of additional layers reduce as the model becomes deeper. Additionally,
the model with 16 layers shows signs of overfitting after epoch 30, as indicated by a minor
increase in the training loss, implying that excessively deep models may lead to overfitting
on the training data.
Figure 4.4b presents the Pearson correlation coefficients between the model predictions and
actual brain activity across different subjects (sub-01, sub-02, sub-04, and sub-06) for vary-
ing numbers of layers (1, 2, 4, and 8). The corresponding GPT layers selected for brain
encoding in each scenario are listed in Table 4.4. The results show that models with 1 layer
generally perform well, with sub-01, sub-04 and sub-06, achieving the highest correlation.
When increasing the number of layers to 2, there is an observable improvement in perfor-
mance across Sub-02. The correlation coefficients do not show consistent improvement with
increases in number of layers. This suggests that there is a point where increasing of GPT
model layer depth does not yield better performance of brain encoding and may even result
in diminishing in correlations. Figure 4.4c illustrate the brain maps across six subjects.

4.3.4 Increasing the number of attention heads does not translate
to better brain encoding performance

In this section, we investigated the effect of changing the number of attention heads in the
GPT model on brain encoding performance. The model was trained with varying numbers
of attention heads (1, 4, and 8), while other hyperparameters were kept constant in Table
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(a) GPT training loss

(b) Brain encoding correlation coefficients across subjects

(c) Brain maps across subjects

Figure 4.4: GPT training across different number of layers
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(a) GPT training loss

(b) Brain encoding correlation coefficients across subjects

(c) Brain maps across subjects

Figure 4.5: Training GPT with FP32 and FP16 precision
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4.3.
Figure 4.5a shows the training loss curves across different numbers of attention heads. The
training loss decreases steadily and converges similarly across all configurations, regardless
of the number of heads. However, there is no significant difference in the rate of convergence
or the final cross-entropy values, suggesting that the number of attention heads does not
have impact on training of GPT efficiency.
Figure 4.5b presents the Pearson correlation coefficients between model predictions and ac-
tual brain activity across different subjects. The results indicate that brain encoding per-
formance is somewhat sensitive to the number of attention heads. Notably, models with
1 attention head exhibit noticeable higher correlation values for Sub-01 compared to mod-
els with 4 and 8 attention heads. However, for Sub-02, models with 2 attention heads show
slightly better performance compared to models with 4 and 8 heads. For Sub-04 and Sub-06,
varying the number of attention heads does not significantly affect brain encoding perfor-
mance. Increasing the number of attention heads does not always translate to better brain
encoding performance.

4.3.5 Training GPT with 32-bit and 16-bit floating-point precision
yields exactly the same results for brain encoding

The training time of GPT with 32-bit floating-point precision was 35 hours, while training
with 16-bit floating-point precision took 30 hours. The computational environment included
5 CPUs and 4x Tesla V100-SXM2-16GB GPUs in the Beluga HPC computing cluster. This
means that using standard 16-bit precision sped up training by 1.17 times.
For this experiment, we leveraged PyTorch Lightning framework to enable mixed precision
GPT training. The model size of GPT is presented in Table.4.3. We utilized the standard
FP16 format, which consists of 1 sign bit, 5 exponent bits, and 10 mantissa bits. The Beluga
dashboard provided execution time and memory statistics, indicating that 16-bit precision
was more efficient.
As shown in Figure 4.6a, training GPT with both 32-bit and 16-bit precision results in
the same loss function behavior over epochs, with identical convergence rates. We then
benchmarked the effects on brain encoding and found that the results were exactly the
same for all six subjects, as depicted in Figure 4.6b. Thus, training with 16-bit floating-
point precision (standard FP16 format) leads to 1.17 times speed-up without any impact on
brain encoding prediction accuracy. The loss values for training GPT were identical in both
scenarios. In terms of brain encoding results, the brain map regions were compatible, and
our findings indicated that the maximum correlation values were the same in both scenarios.

4.4 Conclusion

In this study, we assessed the influence of scaling dataset size, hidden dimensions, layers,
attention heads, and floating-point precision on the performance of the VideoGPT model
in brain encoding tasks. The findings reveal that increasing the training dataset size leads
to substantial improvements in brain encoding performance, as evidenced by lower training
losses and higher Pearson correlation coefficients across subjects. Notably, models trained on
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(a) GPT training loss

(b) Brain encoding correlation coefficients across subjects

(c) Brain maps across across subjects

Figure 4.6: Training GPT with FP32 and FP16 precision
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larger datasets enhanced predictive accuracy, underscoring the importance of data quantity
for effective brain encoding. Similarly, scaling the model’s hidden dimensions improved
performance, with an optimal increase observed at 576 hidden dimensions, while further
increases resulted in diminishing returns and potential overfitting. Conversely, the number
of layers had a limited effect on performance, with noticeable gains up to eight layers, beyond
which the improvements plateaued and overfitting became evident. The investigation into
the number of attention heads revealed that changes in this parameter had little impact
on overall performance, indicating that the effectiveness of attention mechanisms may not
directly correlate with their quantity. Finally, training GPT with both 32-bit and 16-bit
floating-point precision yielded identical results, indicating that the choice of precision does
not significantly impact the model’s performance in this context. This finding enables us
to utilize mixed precision training to accelerate the training time of transformer models on
stimuli without sacrificing brain encoding correlations. Overall, the results highlight the
critical role of dataset size and model complexity in enhancing brain encoding capabilities,
providing insights for future research and applications in neural decoding and cognitive
modeling.

4.5 Availability of code and data

The code to reproduce our experiments is available at https://github.com/Sana3883/

compute-optimal_GPT_brain-encoding .The CNeuroMod dataset is available at https:

//www.cneuromod.ca/gallery/datasets
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4.6 Appendix

Table 4.5: Layers of block 4 and their corresponding activation shapes

Index Name of layer Activation shape

1 attn stack.attn nets.4.pre attn norm [1, 4, 8, 8, 576]

2 attn stack.attn nets.4.post attn dp [1, 4, 8, 8, 576]

3 attn stack.attn nets.4.attn.w qs [1, 4, 8, 8, 576]

4 attn stack.attn nets.4.attn.w ks [1, 4, 8, 8, 576]

5 attn stack.attn nets.4.attn.w vs [1, 4, 8, 8, 576]

6 attn stack.attn nets.4.attn.fc [1, 4, 8, 8, 576]

7 attn stack.attn nets.4.attn.attn [1, 4, 4, 8, 8, 144]

8 attn stack.attn nets.4.pre enc norm [1, 4, 8, 8, 576]

9 attn stack.attn nets.4.post enc dp [1, 4, 8, 8, 576]

10 attn stack.attn nets.4.enc attn.w qs [1, 4, 8, 8, 576]

11 attn stack.attn nets.4.enc attn.w ks [1, 4, 8, 8, 576]

12 attn stack.attn nets.4.enc attn.w vs [1, 4, 8, 8, 240]

13 attn stack.attn nets.4.fc [1, 4, 8, 8, 576]

14 attn stack.attn nets.5.enc attn.attn [1, 4, 4, 8, 8, 60]

15 attn stack.attn nets.4.pre fc norm [1, 4, 8, 8, 576]

16 attn stack.attn nets.4.post fc dp [1, 4, 8, 8, 576]

17 attn stack.attn nets.4.fc block [1, 4, 8, 8, 576]

18 attn stack.attn nets.4.fc block.0 [1, 4, 8, 8, 2304]

19 attn stack.attn nets.4.fc block.1 [1, 4, 8, 8, 2304]

20 attn stack.attn nets.4.fc block.2 [1, 4, 8, 8, 576]

72



Figure 4.7: Pearson correlation prediction values for Sub-01 brain encoding across layers presented
in Table 4.5
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Chapter 5

Conclusions and Future work

Training brain encoding models at high spatial resolution presents a significant challenge,
primarily due to the computational demands arising from both data size and model size.
These models aim to decode brain processes from natural stimuli, such as visual scenes or
language, and require extensive neuroimaging data collected at voxel-based fMRI record-
ings. Capturing neural activity at this level of detail requires massive datasets. The use of
transformers-based architectures, further amplifies the computational requirements, as these
architectures are particularly data-hungry and resource-intensive.
For research labs, the costs associated with necessary computational infrastructure, includ-
ing powerful processors and high-memory storage can be prohibitive. As the field moves
toward more complex brain encoding models capable of mapping fine spatial and temporal
features of neural activity, the gap in computational resources becomes more pronounced.
During this study, we focused on optimizing machine learning models, particularly empha-
sizing computational resource efficiency. My research involved two main projects: scaling up
a Ridge regression model and scaling up the GPT-2 model.

Project 1: Scaling Up Ridge regression
In the first project, we proposed a scalable version of Scikit-learn’s ridge regression, which
is widely used for regression tasks due to its robust optimization techniques for closed-form
solutions. Scikit-learn’s implementation struggles with large-scale datasets, especially in do-
mains like bioinformatics and neuroscience, where datasets can contain over 100,000 targets.
Training on such datasets becomes extremely slow, and loading large matrices is a challenge
even with high-memory resources. To address this issue, we evaluated parallelization tech-
niques to accelerate the training process. Specifically, we compared multi-threading using
Intel’s Math Kernel Library (MKL) with OpenBLAS. The results showed that MKL was
nearly twice as fast due to its optimization for Intel architectures, leveraging features like
vectorization, parallelization, and cache management to improve matrix operation perfor-
mance. However, multi-threading efficiency plateaued after about 32 threads, primarily due
to limited shared resources, thread management overhead, and synchronization complexity,
which diminished the benefits of additional parallelization.
We developed a scalable multi-CPU version of ridge regression using batch-based paralleliza-
tion through the Dask distributed framework. Our approach divided the main problem into
subproblems, each corresponding to a subset of target values. Each worker trained a ridge re-

74



gression model on its assigned subproblem and predicted the subset of targets independently,
as Scikit-learn assumes target independence. The Dask scheduler managed the distributed
workers, efficiently allocating resources across compute nodes and balancing the workload.
The scheduler also handled failures by reallocating tasks, optimizing resource usage during
distributed training. Our results demonstrated that batch ridge regression scaled effectively
across multiple compute nodes and threads, and we plan to integrate this approach into an
upcoming Scikit-learn release.
In future work, we aim to enhance this distributed system by introducing a master node
responsible for performing matrix computations on the input data, particularly computing
matrix M in 3.3 (see Section 3.2.3.1). The master node will then broadcast the result to the
workers, improving training process efficiency. This approach is outlined as follows:

1. Centralized Matrix Computation: Assign one worker (the master node) to com-
pute matrix M, ensuring this operation is performed only once.

2. Broadcasting Results to Workers: Use Dask’s broadcasting functionality to send
the computed matrix M to all workers, enabling them to use it in their computations
without recalculating it.

This planned integration of a master node and optimized matrix computations will con-
tribute to more efficient resource utilization and improved scalability. Additionally, we plan
to extend this implementation for GPU usage, while accounting for the memory limitations
of GPUs.

Project 2: Compute optimal vision transformers for brain encoding
The optimal training of a vision transformer for brain encoding depends on three key fac-
tors: model size, data scale, and computational resources. This study explores these pillars,
focusing on how data scaling, model scaling, and mixed precision high-performance comput-
ing impact brain encoding outcomes. We employed VideoGPT to extract spatiotemporal
features from videos and trained Ridge regression to predict brain activity based on these
features. Benchmark experiments were conducted using varying data sizes (10k, 100k, 1M,
6M) and different configurations of GPT-2, adjusting hidden layer dimensions, number of
layers, and attention heads. We also assessed the impact of 32-bit versus 16-bit floating
point precision on training.
Our findings demonstrate that increasing the hidden layer dimensions consistently enhances
brain encoding performance, as shown by higher Pearson correlation coefficients across all
subjects. In contrast, the number of attention heads showed little influence on the results,
while adding more layers led to marginal improvements, although not as pronounced as with
hidden layer dimensions. Regarding data scaling, larger datasets significantly improved brain
encoding performance, with the best results observed with the 6M dataset. These outcomes
underscore that data scaling plays a more crucial role than model scaling in improving brain
encoding accuracy.
The mixed precision (32-bit vs. 16-bit) experiments indicate minimal loss in performance
when using 16-bit precision, making it a resource-efficient alternative for large-scale training.
For future work, we propose extending this benchmarking approach to evaluate additional
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high-performance techniques and designing computationally optimal models with smaller
architectures. This includes:

1. Parallelism Techniques: Employing techniques such as pipeline, data, and tensor
parallelism to provide distributed training processes.

2. Efficient Model Design: Developing models with smaller architectures that incor-
porate enhanced attention mechanisms, such as flash attention and sparse attention,
to handle longer sequences while reducing resource consumption. Other strategies,
such as pruning unnecessary parameters, model quantization, and knowledge distilla-
tion, can also be utilized to minimize model size without compromising brain encoding
performance, allowing these smaller models to operate on par with larger models.

Smaller models not only require less computational power but also reduce memory usage,
making it feasible for research labs to train and deploy these models on more accessible
hardware. The impacts of these approaches have been largely underexplored in the neuro-
science literature but may hold significant potential for enhancing brain encoding models.
Testing their effects, similar to our investigations of low-precision training, could provide
new insights and further optimize brain encoding efficiency when using transformers and
large fMRI datasets.
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