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Abstract

Retrieval Augmented Chatbots powered by Large Language Models for

Semantically Structured Data

Omijkumar Pravinbhai Mangukiya

Recent advancements in Large Language Models (LLMs) have transformed Natural

Language Processing, yet challenges such as factual inaccuracies and inadequate reasoning

over structured data persist. Retrieval-Augmented Generation (RAG) systems address these

issues by grounding LLMs in external knowledge. However, conventional RAG methods typ-

ically treat knowledge sources as unstructured text, overlooking the semantic relationships

vital in domains like enterprise data and healthcare. This thesis introduces a Graph-based

RAG approach that leverages the structured nature of graph data to enhance both retrieval

and response generation by preserving these semantic relationships. The research focuses

on developing conversational question answering systems over semantically structured data,

specifically targeting JIRA Issues and Knowledge Graphs through two distinct applications.

The core innovation lies in maintaining the inherent data relationships during both retrieval

and generation phases by employing structured queries and graph traversal techniques. This

method not only allows for domain-specific optimization but also demonstrates improved

performance and efficiency compared to traditional RAG methods.
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Chapter 1

Introduction

1.1 Overview

Recent advancements in Large Language Models (LLMs) have pushed the frontier of the

field of natural language processing (NLP), especially the evolution of conversational ques-

tion answering systems like OpenAI’s ChatGPT(OpenAI (2022)) and Google DeepMind’s

Gemini(Google (2023)), which has changed the way we retrieve and explore new informa-

tion. Among many impressive capabilities, these models excel at generating coherent and

contextually relevant text, understanding complex and ambiguous queries, and translat-

ing between numerous languages(Minaee et al. (2024)). However, despite their remarkable

performance, LLMs inherit several limitations. Among these are the factual inaccuracies,

challenges of hallucinations, difficulties in handling evolving knowledge, and an inability to

perform robust reasoning over complex and semantically structured domain specific infor-

mation(Kandpal, Deng, Roberts, Wallace, and Raffel (2023)).

Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to over-

come some limitations of LLMs(Gao et al. (2024)). RAG systems enhance LLMs by

leveraging external, continuously updating knowledge sources. These sources can be e.g.,

databases, knowledge graphs, documents. In a typical RAG setup, user queries are enriched

with relevant information retrieved from the external knowledge sources, which makes the
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generated responses more relevant and factually grounded, improving the accuracy and rel-

evancy. This approach makes it more suitable for real-time applications and domain-specific

tasks, where factual accuracy and up-to-date information are necessary.

Traditional RAG systems treat external knowledge sources as unstructured flattened

plain text or simple document(X. Ma, Gong, He, Zhao, and Duan (2023b)), overlooking

the underlying semantic relationships and inherent structures in complex datasets. This

approach maybe sufficient for many simple question-answering tasks, it may lead to sub-

optimal performance, especially for domains that require the preservation of underlying

semantic relationships(Gao et al. (2024)). Which are crucial for effective reasoning and ac-

curate response generation. For example, in knowledge-rich environments such as enterprise

data management, customer service & technical support, and healthcare information sys-

tems, the inter-dependencies and relationships between data points are as important as the

data points themselves. Ignoring such relationships can lead to document fragmentation,

inaccurate lower quality generations (Xu et al. (2024)).

Knowledge Graphs (KGs) have emerged as structured representations of interlinked

data, integrating it with RAG systems has created new opportunities in advancing it fur-

ther (Li et al. (2023)). KGs organize the information as nodes and edges, capturing entities

and their relationships. Recent research and practical implementations, such as Microsoft’s

advances in Graph-RAG(Edge et al. (2024)) and LinkedIn’s exploration of RAG for cus-

tomer service QA(Xu et al. (2024)), underscore the potential benefits of leveraging KGs

in complex query scenarios. Their findings highlight that RAG systems optimized for se-

mantically structured knowledge sources can outperform traditional flat-document based

approaches, particularly while dealing with multi-layered information.

Compared to traditional RAG, where retrieval solely relies on text-based heuristics, in

Graph-based RAG systems, query understanding and context retrieval must be treated dif-

ferently. Graph RAG systems can utilize specialized retrieval mechanisms that consider

the semantic graph structure. For example, identifying the entities and intent from query

and utilizing it for retrieving paths, subgraphs, or triplets that represents the relationships

between entities in the query and provides a richer and more meaningful context(Peng et al.
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(2024)). In addition, managing and storing intermediate or pre-processed graph-structured

knowledge efficiently which can scale easily, while maintaining semantic connections, is

essential. Hybrid techniques such as using query languages like SPARQL for KGs, or

embedding-based search in vector databases are being explored to optimize this process.

1.2 Contributions

This thesis presents applying RAG for conversational question answering (or chatbot)

over semantically structured data from two distinct domains: Knowledge Graph Ques-

tion Answering (KGQA) and Project Management using JIRA issues. To address various

domain-specific challenges, two applications employing the Graph RAG framework were

developed. The key contributions of this work are as follows:

(1) Preserving Semantic Structure: Our approach emphasizes the importance of main-

taining the inherent relationships in underlying data during the retrieval and response

generation phases. Instead of reducing the graph structured knowledge data to flat

plain text documents, I explore methods that retain the semantic integrity, such as

utilizing structured queries and graph traversal techniques.

(2) Domain-Specific Optimization: Our approach can be extended to other domains with

similar characteristics, making it versatile and domain independent.

(3) Performance and Efficiency: Our approach is more efficient because of preservation of

semantic relationships and cost effective than traditional RAG. By optimizing data

retrieval and leveraging structured representations, the methods achieves faster re-

sponse times and reduced computational overhead.

1.3 Outline

This thesis comprises five chapters, each exploring different aspects of two Retrieval

Augmented Generation (RAG) applications I developed in distinct domains: Knowledge

Graph Question Answering (KGQA) and Project Management using JIRA issues. Chapter

3



2 presents a comprehensive review of related literature, covering key areas such as RAG,

Large Language Models (LLMs), and Conversational Question Answering (CQA). Chapter

3 details the architecture, implementation, and evaluation of the KGQA-RAG Chatbot,

while Chapter 4 focuses on the system architecture and implementation of the JIRA-RAG

Chatbot, including a taxonomy that compares it with existing market solutions. Chapter

5 concludes the thesis detailing the limitations and future work.
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Chapter 2

Background

2.1 Large Language Models

Large Language Models (LLMs) represent a pivotal advancement in conversational

AI, showcasing exceptional capabilities in understanding and generating natural language.

Their evolution has roots in statistical language models, which are effective within limited

contexts, lacks the robustness to handle complex language patterns. Neural language models

marked a breakthrough, and the introduction of pre-trained language models (PLMs) en-

abled substantial improvements across diverse natural language tasks. Scaling these PLMs

has led to today’s LLMs (LLAMA, Gemini, GPT) models with tens to hundreds of billions of

parameters, trained on vast text corpora to achieve unprecedented language understanding

and generation abilities (Minaee et al. (2024)).

2.1.1 Types of LLMs

Most modern LLMs are built upon the Transformer architecture (Vaswani et al. (2017)),

which introduced a self-attention mechanism, allowing models to dynamically weigh the im-

portance of different words within a sequence. This capability is central to learning complex
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and long-range dependencies in a sequence, which are essential for both language under-

standing and generation. The self-attention function can be mathematically represented as:

Attention(Q, K, V ) = softmax



QKT

√
dk



V

where Q, K, and V represent the query, key, and value matrices, respectively, and dk is the

dimensionality of the key vectors. This formulation enables efficient parallelization and is

foundational in scaling LLMs. LLMs can be categorized into three main types, each suited

for different types of tasks based on their architecture and pre-training objectives:

Model Name Type Parameters (Size) Fine-tuned Variants Accessibility

BERT Encoder-only Base (110M), Large (340M) Foundation Public

T5 Encoder-Decoder Base (220M), Large (770M) Foundation Public

FLAN-T5 Encoder-Decoder Base, Large, XL Instruction Public

GPT-3 Decoder-only Up to 175B Foundation, Instruction OpenAI API

LLaMA 2 Decoder-only 7B, 13B, 70B Foundation, Chat Gated (Meta)

PaLM Decoder-only Up to 540B Foundation, Instruction Private (Google)

GPT-4 Decoder-only Undisclosed Chat OpenAI API

Claude Decoder-only Undisclosed Chat Anthropic API

Gemini Decoder-only Undisclosed Chat Gemini API

Table 2.1: Overview of notable large language models categorized by architecture type,
parameter size, fine-tuning approaches, and availability. Model details are sourced from
their respective publications: BERT Devlin et al. (2019), T5 Raffel et al. (2020), GPT-
3 Brown et al. (2020), LLaMA 2 Touvron et al. (2023), PaLM Chowdhery et al. (2022),
FLAN-T5 Chung et al. (2022), GPT-4 OpenAI (2023), Claude Anthropic (2023) and Gemini
Team (2024).

(1) Encoder-Only Models: Models like BERT are optimized for understanding tasks, such

as text classification and question answering. These models process input sequences as

a whole, generating contextualized embeddings that capture the relationships between

tokens. Pre-training tasks for these models often include Masked Language Modeling

(MLM), where certain tokens are masked and predicted by the model to enhance

contextual understanding.

6



(2) Decoder-Only Models: Models in the GPT family are designed primarily for text

generation tasks. They employ autoregressive generation, predicting each token se-

quentially based on previous tokens in the sequence. Pre-training for these models

often involves tasks like Next Token Prediction, which encourages them to generate

coherent and contextually appropriate continuations for a given text prompt.

(3) Encoder-Decoder Models: Also known as sequence-to-sequence models, these models

combine encoder and decoder structures, making them ideal for tasks like machine

translation and summarization, where an input sequence is transformed into a different

output sequence. Pre-training objectives typically involve learning the relationships

between source and target sequences, as seen in models like T5 and BART, which

are trained on denoising tasks to improve the ability to rephrase, summarize, and

translate text.

2.1.2 LLM’s Capabilities

LLMs have transformed the landscape of Natural Language Processing (NLP) by offer-

ing a diverse range of capabilities that extend from fundamental NLP tasks to sophisticated

reasoning abilities (Minaee et al. (2024)). In this section, we discuss the primary capabilities

of LLMs:

(1) Basic NLP Tasks: These include text classification, sentiment analysis, named entity

recognition, question answering, and text generation. LLMs are highly effective in

these foundational NLP tasks due to their ability to capture contextual semantics

from large pre-training corpora.

(2) Emergent Abilities: LLMs exhibit remarkable emergent capabilities that arise from

their training scale and structure, despite not being explicitly programmed. These

abilities include in-context learning, where the model learns new tasks from a

few examples provided in the input prompt; instruction following, enabling it to

perform tasks based on natural language instructions without requiring explicit re-

training; and multi-step reasoning, which allows the model to break down complex

7



tasks into smaller steps to derive accurate answers—an essential skill for question

answering and problem-solving.

(3) Augmented Capabilities: LLMs can be combined with external data sources or tools

(such as knowledge bases) for enhanced capabilities, creating systems that use retrieval

mechanisms to ground their responses in factual knowledge or interact with structured

data to improve accuracy.

2.1.3 Prompt Engineering

Prompt engineering is an emerging field. It focuses on creating and refining prompts for

LLMs. This approach boosts performance on tasks like question answering, sentiment clas-

sification, and named entity recognition. As LLMs became capable of zero-shot learning,

the approach allowed downstream tasks to be reformulated using specialized prompts in-

stead of designing task-specific training objectives. This shift has popularized the ’pre-train,

prompt, and predict’ model, in contrast to the older ’pre-train, fine-tune’ approach.

Introduced by (Wei et al. (2022)), Chain-of-Thought (CoT) prompting enhances complex

reasoning in language models by breaking down problems into intermediate reasoning steps.

When combined with few-shot prompting, CoT improves performance on tasks that require

structured reasoning before generating responses. However, for more complex problems

requiring exploration or strategic foresight, traditional prompting techniques often fall short.

To address this, (Yao et al. (2023)) proposed Tree of Thoughts (ToT), a framework that

extends CoT by encouraging exploration across multiple reasoning paths, enabling more

effective problem-solving. Beyond these techniques, self-consistency, introduced by (Wang

et al. (2022)), further refines CoT by replacing naive greedy decoding with a strategy that

samples multiple diverse reasoning paths. By selecting the most consistent answer from

these sampled solutions, self-consistency significantly boosts performance in tasks involving

arithmetic and commonsense reasoning.
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2.2 Knowledge Graphs

A knowledge base (KB) is a structured information repository used for knowledge shar-

ing and management purposes. Large-scale graph-structured knowledge bases, known as

the Knowledge Graphs (KGs), such as Freebase (Bollacker, Evans, Paritosh, Sturge, and

Taylor (2008)), DBpedia (Lehmann et al. (2015)), YAGO (Suchanek et al. (2007)) and

Wikidata (Vrandečić and Krötzsch (2014)), represent real-world information in a graph

format. Nodes and edges in this graph represents the real world entities and relationship

between them. Entities in a knowledge graph captures objects, events, situation, or con-

cepts. The relationship between them captures the context and the meaning of how they

are connected. The underlying graph-based data model makes it particularly suited for

capturing real-world knowledge (Zaib, Zhang, Sheng, Mahmood, and Zhang (2021)). KGs

are applied in various domains due to its impressive capabilities. Examples include KGs

about scientific publishing (e.g., Microsoft Academic Graph Sinha et al. (2015), DBLP Ley

(2009)), general facts representation (e.g., YAGO, DBPedia, and Wikidata), health-science

(e.g., BioKG Walsh et al. (2020)).

A Knowledge Graph can be defined as a directed, labelled graph KG = (V, E, L) ,

where V is the set of vertices (nodes), can represent entities or concepts. Each vertex v ∈ V

can also have associated properties or attributes. E ⊆ V × V is the set of edges, directed

relationship between vertexes. An edge e = (vi, vj) ∈ E is a direct link from vi to vj . L is

the set of labels that annotates the edges. KGs are typically stored in RDF stores, which

provides a powerful query language for querying it. SPARQL is one of the query languages,

which allows for efficient inferencing and reasoning.

At the heart of the knowledge graph, it consists of a set of triples (s, p, o), where:

s (subject) is the focused entity of a statement. p (predicate) is the relationship between

subject and object. o (object) is the associating entity for subject through predicate. Figure

2.1 illustrates a graph-based representation of facts about “Justin Bieber” and SPARQL

queries to retrieve information about his profession, nationality, and sibling. The graph

includes nodes representing entities such as “Justin Bieber”, “Changes”, and “Canada” and
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2.3 Retrieval Augmented Generation(RAG)

RAG is an emergent approach within NLP that enhances the performance of LLMs by

integrating external knowledge retrieval with generative capabilities. Traditional LLMs,

despite their capacity for generating coherent and contextually appropriate text, are often

limited by their finite training data, leading to incomplete or outdated information es-

pecially in domain-specific or knowledge-intensive tasks, notably generating “hallucinated”

content (Minaee et al. (2024)). RAG merges information retrieval with generative models to

create dynamic, knowledge-rich responses and cuts down on factual errors. Its use in LLMs

has driven widespread adoption, making it a key technology for chatbots and real-world

applications Gao et al. (2024).

2.3.1 Different RAG Techniques

The Naive RAG (see Figure 2.2) approach follows a traditional “Retrieve-Read” (X. Ma

et al. (2023b)) framework, encompassing indexing, retrieval, and generation. In the indexing

phase, raw data in various formats (Markdown, PDF, HTML, Doc) is cleaned, extracted,

and converted to plain text. To accommodate language model context limitations, the text

is segmented into fixed-size chunks (e.g., 100, 128, 256 tokens), which are then encoded into

vector embeddings and stored in a vector database. Retrieval involves identifying relevant

documents based on the similarity between the query vector and document embeddings.

The retrieved documents, along with the original query, are synthesized into a prompt for

the frozen LLM to generate a response. The quality of the generated response depends

on the specific task, model parameters, and the information contained within the retrieved

documents.

However, Naive RAG faces challenges, including precision and recall issues in the re-

trieval phase, leading to the selection of irrelevant documents and the omission of crucial

information. The generation phase is prone to hallucination, where the model produces

content not supported by the retrieved context, and may also suffer from bias and toxicity

in the outputs (Gao et al. (2024)).
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into specialized modules for distinct tasks, these frameworks offer better customization and

flexibility, enabling adaptation to domain-specific requirements and various scenarios.

2.3.2 Core Components of RAG

RAG systems comprise three main components: Retrieval, Generation, and Augmenta-

tion, which work together to enhance the quality and relevance of generated content. This

section reviews existing work on these core components in detail.

Retrieval

Generation Augmentation

Data Structure Types

Un-Structured Text data

Semi-Structured Text data

Structured Text data

Retrieval Granularity

phrase, sentence, chunk, 

document

Entity, Triplet, Sub-Graph

Index Optimization

Chunking Strategies

metadata attachments

structural index - 

heirarchical index or 

knowledge graph index

Query Optimization

query expansion - 

multi-query / sub-query

query transformation - 

query rewrite

query routing - metadata 

router / semantic router

Context Curation

Re-ranking 

context selection / 

compression

LLM Alignment

finetuning - adapt 

input/output style

optimize retrieval 

process

iterative - N times

recursive - step by step

adaptive - on-demand 

retrive and generate

Figure 2.3: Stage-wise decomposition of Retrieval-Augmented Generation (RAG) compo-
nents: (1) Retrieval with multi-granular data acquisition and query refinement, (2) Augmen-
tation with recursive retrieval optimization processes, and (3) Generation through curated
contextual knowledge integration and language model adaptation.
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Retrieval Phase

The retrieval phase constitutes the foundational stage of Retrieval-Augmented Genera-

tion (RAG) systems, determining both the relevance and contextual adequacy of subsequent

generation outputs. It can be understood by exploring various tricks and methods used in

this phase, wether its because of the characteristics of the data sources, retrieval granularity,

or smart and optimized querying/indexing required (Gao et al. (2024)).

Data Sources & Granularity Retrieval Source and Granularity can be attributed to

three kind of data sources. The granularity of retrieved data varies based on the source data

structure. For unstructured text, granularity ranges from phrases and sentences to larger

chunks or entire documents. In contrast, for structured sources like knowledge graphs, the

granularity can be an entity, a triple, or a subgraph represented as a set of triples.

• Unstructured Text: For open-domain question-answering (ODQA), techniques like

embedding based retrieval are used for efficiently extracting relevant passages from

vast text collections like Wikipedia Dump.

• Semi-Structured Data: When dealing with a combination of text and tabular

data, specialized approaches are required to handle potential misalignment and ensure

semantic coherence. Hybrid techniques that combine text-based search with table

querying are commonly employed.

• Structured Data: For structured formats like knowledge graphs, sophisticated

querying mechanisms are used to extract precise answers. Advanced systems, such

as KnowledgeGPT (Wang et al. (2023)), leverage program-of-thought prompting to

generate queries that can effectively execute on these knowledge bases.

Critical trade-offs emerge between granularity levels: smaller chunks reduce noise but risk

contextual fragmentation, while larger segments preserve coherence at computational cost.

Contemporary systems mitigate this through sliding window techniques and dynamic chunk

merging. The indexing architecture ultimately determines retrieval precision, with hybrid
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approaches (vector and graph indices) showing particular promise for multi-modal knowl-

edge recall (Gao et al. (2024)).

Indexing Strategies & Query Optimization During indexing, source documents are

processed and segmented. They are then converted into embeddings and stored in vector

databases. Various chunking strategies are employed to split documents into fixed-length

chunks (e.g., 100, 512 tokens) and generate embeddings for each chunk. While smaller

chunks can mitigate noise, they may not fully capture the necessary context. To address this,

recursive splitting and sliding window methods can be used to merge related information

across multiple chunks. To enhance retrieval quality, metadata information (e.g., paragraph

titles, page numbers) can be attached to chunks. This metadata can be used to implement

time-aware RAG, assigning higher weights to more recent data.

Hierarchical and structural indexing can be applied to establish parent-child relation-

ships between chunks, with summaries stored at each node. This facilitates efficient data

traversal and helps the RAG system determine which chunks to extract. Knowledge graph

indexing can further enhance knowledge retrieval and reasoning by linking concepts and

entities, enabling the LLM to generate more coherent and contextual responses.

User-provided queries often lack clarity and precision, particularly for complex ques-

tions or specialized vocabulary. To address this, various query optimization techniques are

employed. One approach involves expanding a single query into multiple queries to provide

additional context. This expansion can be achieved through LLM-generated queries or by

breaking down the original query into sub-questions. Additionally, query rewriting using

LLMs can help improve retrieval effectiveness by transforming the query into a more opti-

mal form. Finally, routing techniques based on query metadata can be used to filter and

reduce the search scope, leading to more accurate and efficient retrieval (Gao et al. (2024)).

Generation Phase

Once the retrieval stage has yielded relevant information, the generative model processes

this content in conjunction with the original user query to produce an informative and
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coherent response. Directly feeding all retrieved information to the LLM can lead to the ”lost

in the middle” problem (Liu et al. (2023)), where the LLM prioritizes the beginning and end

of long texts, neglecting the middle content. To mitigate this, the generation phase requires

careful processing of the retrieved documents through content curation or LLM adaptation.

LLM Adaptation To ensure consistent output style and format, LLM fine-tuning can

be employed. This involves training the LLM on specific data formats and styles to align

its responses accordingly. Targeted fine-tuning, tailored to the specific scenario and data

characteristics, can further enhance the quality of generated responses.

The generation phase presents several challenges that impact the reliability and quality

of outputs. One major issue is hallucination, where the model generates factually incorrect

or fabricated content, leading to misinformation. Additionally, ensuring coherence and

fluency is crucial, as the generated text must maintain consistency, clarity, and contextual

relevance to provide meaningful and accurate responses.

Augmentation Phase

The augmentation step refines the generative output by incorporating additional con-

text or feedback. Techniques like iterative refinement and user-driven feedback loops help

improve the accuracy and coherence of the final text. This stage aims to mitigate errors

and enhance the overall response quality (Gao et al. (2024)).

Iterative refinement searches the knowledge base multiple times. It uses both the initial

query and generated text. This process helps the LLM build a deeper understanding of

the context. ITER-RETGEN (Shao et al. (2023)) leverages a synergistic approach combin-

ing “retrieval-enhanced generation” and “generation-enhanced retrieval” for tasks requiring

precise information reproduction.

Recursive retrieval enhances search depth and relevance by iteratively refining queries

using previous results. This technique is widely used in information retrieval and NLP.

IRCoT (Trivedi, Balasubramanian, Khot, and Sabharwal (2023)) utilizes chain-of-thought

reasoning to guide the retrieval process and refines the chain of thought with the retrieved
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information.

Adaptive retrieval lets LLMs decide when and what to retrieve, improving efficiency

and relevance. Self-RAG (Asai, Wu, Wang, Sil, and Hajishirzi (2023)) enhances quality and

accuracy by combining retrieval with self-reflection. It retrieves passages on demand and

generates reflective responses.

2.4 Chatbots and Conversational Question Answering

Conversational AI which focuses on developing intelligent dialogue systems that not

only can interpret user prompted natural language queries and respond with factual correct

and context-aware answers but also carrying out interactive conversation given a topic (e.g.,

”Election in the USA” to ”Origins of Universe”). The advancements in this field can be

broadly grouped into three research directions (see Figure 2.4): 1. task-oriented dialogue

systems that perform the task given user input, for example doing flights ticket booking,

2. chat-oriented dialogue systems that carry out interactive conversation with user for

example ChatGPT. 3. QA dialogue systems that respond with fact-based and context-

aware answers extracted or retrieved from the different information sources such as text

documents or knowledge bases.

2.4.1 Categorization of CQA Systems

The evolution of question answering systems (CQA) over the years has shifted the

focus from the single-turn qa: which processes individual questions without considering

the prior context; multi-turn qa: which retains the session-specific information to handle

follow-up questions to conversational QA which mimics the human-like dialogues, adapting

to dynamic and long-term interactions. The evolution of QA systems has been fueled by

advancements in LLMs (e.g., GPT, Gemini, LLAMA) and large-scale datasets like SQuAD

(Rajpurkar, Zhang, Lopyrev, and Liang (2016)) and HotpotQA (Yang et al. (2018)). Con-

versational Question Answering can be further categorized based on different aspects, types

of data domains, types of questions and types of data sources. (Zaib et al. (2021)). Figure
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Sure! What should I name 

this alarm?

Could you help me set an 

alarm for 7:00 AM?

Morning workout.

Got it! I?ve set a ?Morning 

workout? alarm for 7:00 AM.

Hey there! Not much, just 

here to chat with you. How 

about you?

Hey ChatGPT, what?s up?

Oh, nothing much. Just 

winding down after a long 

day.

That sounds nice. Busy day 

at work? Or just one of 

those days where 

everything feels like a 

marathon?

Yeah, work was hectic. But I 

managed to complete a big 

project, so that feels good.

That?s awesome! Congrats 

on finishing it. You deserve 

some time to relax. Any fun 

plans for the evening?

Yeah, work was hectic. But I 

managed to complete a big 
project, so that feels good.

That?s awesome! Congrats 
on finishing it. You deserve 

some time to relax. Any fun 
plans for the evening?

Donald J. Trump is the 

projected winner of the 2024 

U.S. presidential election, 

according to recent reports. 

[POLITICO]

Who won the 2024 U.S. 

presidential election?

What was the voter turnout 

like this year?

The voter turnout in 2024 

showed a decline in major 

urban areas, especially in 

battleground states, which 

analysts attribute to reduced 

enthusiasm among specific 

voter groups. [POLITICO]

Were there significant 

challenges in the election 

process?

Election officials reported 

fewer technical issues than 

in prior years, but concerns 

about voter suppression and 

misinformation campaigns 

remained prominent. 

[POLITICO]

What does this mean for 
future elections?

Analysts suggest both 
parties will likely focus on 

addressing key voter 
concerns, like economic 

issues, to improve turnout in 

future elections. [POLITICO]

Sure! What time should I set 

the meeting for?

Can you help me schedule a 

meeting with my team 

tomorrow?

Let?s do 3:00 PM.

Noted. Is this for the same 

online platform as usual, or 

should I create a new link?

Please create a new link.

Done! I?ve scheduled the 

meeting for tomorrow at 
3:00 PM and sent out invites 

with the new link. Let me 
know if there?s anything 

else!

Task Oriented

Generic Chat
Question 

Answering
Task Oriented

Figure 2.4: Various types of conversational systems: the leftmost represents a task-oriented
system, the middle illustrates a general-purpose system, and the rightmost showcases a
question-answering system with web search capabilities.

2.5 represents categorization of CQA systems. The rest of the section covers details on each

category.

Types of Data Sources Based on the underlying data sources on which question an-

swering systems operate, it can be categorized into the following types:

(1) Structured Data Sources: These sources store data in a well-defined, tabular format.

Entities within these tables possess multiple attributes, which are metadata defined

in a schema. Query languages are employed to access and retrieve information from

these structured schemas. Examples of structured data sources include SQL databases

and RDF graphs. Datasets like QALD, LC-QuAD, and KGQAn utilize RDF graphs

as their data source.

(2) Semi-Structured Data Sources: While semi-structured data sources lack a rigid schema
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or finance. Normally, it contains fewer questions due to its narrowed focus on the

specific domain compared to Open Domain.

Types of Questions In Question Answering systems, questions are categorized based on

the nature of the question, its answer, and the techniques used to answer different types of

questions.

(1) Factoid Questions: All WH-questions whose answers result in a short fact phrase

or sentence are factoid questions. e.g, “Who is the current President of the United

States?”. To answer such questions, systems first identify their latent meaning and

then look for the answer using deep neural networks or the sentence structure from the

text passage. The process of finding an answer to a simple question consists of three

basic steps: i) question analysis; ii) relevant documents/knowledge graphs retrieval;

and iii) answer extraction.

(2) Boolean Questions: Questions whose answer is in a binary format, i.e., Yes/No or

True/False, e.g., “Is the Earth flat?” Since these types of questions do not follow the

text span extraction for the answer, they require strong inference from the underlying

system.

(3) Reasoning Questions: Questions that begin with “why” or “how” require detailed ex-

planations and are not straightforward. The step to get answers to such questions

involves a multi-level understanding of the semantic meaning from the questions, e.g.,

“Why is the sky blue?”

(4) Listing Questions: Listing questions require a list of facts as an answer, e.g., “List the

names of all the former presidents of the United States.” Question answering systems

consider such questions as a list of factoid questions asked iteratively.
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Chapter 3

KGQA RAG Chatbot

3.1 System Overview

3.1.1 Introduction

Knowledge Graph Question Answering (KGQA) systems enable users to explore and re-

trieve information from knowledge graphs by providing answers to natural language queries

(Omar, Dhall, Kalnis, and Mansour (2023)). These systems have seen substantial advance-

ments in recent years, significantly improving their ability to handle a variety of stand-alone

or self-contained questions. Such questions are independent of any prior conversational con-

text and are typically free of pronouns or references to earlier entities in the conversation

(e.g., ”Who is the author of the Harry Potter series?”).

However, traditional KGQA systems lack the necessary mechanisms to support conver-

sational interactions. This limitation hinders user engagement and restricts the exploration

capabilities of knowledge graphs in scenarios where context-dependent or conversational

queries arise. Addressing these challenges requires extending the capabilities of current

KGQA systems to facilitate a more dynamic and engaging user experience Omar, Man-

gukiya, Kalnis, and Mansour (2023).
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3.1.2 Motivation

Despite the progress in KGQA systems, their inability to effectively manage conversa-

tional question answering (CQA) presents a significant gap. Non-stand-alone or context-

dependent questions often include pronouns or references to entities mentioned in previous

conversational turns. Understanding and resolving such references are critical for provid-

ing accurate answers in conversational settings. Existing systems are not well-equipped to

handle this complexity, which limits their applicability in real-world scenarios.

Moreover, current KGQA systems (e.g, KGQAn Omar, Dhall, et al. (2023), EDGQA

Hu, Shu, Huang, and Qu (2021)) primarily interact with the knowledge graph by generating

a list of top-k SPARQL queries that may contain answers to stand-alone questions. While

this approach works for retrieving structured information, it lacks the capability to produce

human-friendly answers directly. Conversational systems must address this limitation by

incorporating post-processing mechanisms to transform retrieved answers into coherent and

natural language responses.

To overcome these challenges, we propose a Conversational KGQA RAG Chatbot sys-

tem for knowledge graphs. This system extends existing KGQA architectures by integrating

Large Language Model(LLM) powered pre-processing and post-processing modules in RAG

based KGQA pipeline. The pre-processing module reformulates ambiguous or incomplete

questions to ensure clarity and contextual relevance, while the post-processing module gen-

erates natural and human-friendly responses from the retrieved answers. Additionally, a

conversational history or context memory module is introduced to maintain the dialogue

context. This module updates dynamically after each conversational turn and provides

contextual references for question reformulation.

By addressing these limitations, our proposed system enhances the user experience and

extends the applicability of KGQA systems to conversational and dialogue-driven scenarios,

thereby bridging the gap between traditional QA and conversational AI for knowledge

graphs.
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3.1.3 System Architecture

The proposed system architecture consists of several key components designed to enable

conversational question answering over knowledge graphs. These components work together

to classify, reformulate, retrieve, and generate human-friendly answers. The overall archi-

tecture and its interactions are illustrated in Figure 3.1, providing a visual representation

of the system’s workflow and data flow. Below, we describe each component in detail.

Question Reformulator

The Question Reformulator is responsible for transforming the input question Qt into a

self-contained format. As illustrated in Figure 3.1, the Question Reformulator is positioned

at the top left of the system architecture diagram, serving as the entry point to the system.

It is represented by a yellow box, highlighting its role in preprocessing user queries before

passing them to subsequent components. This process is divided into two steps:

(1) Classification: The input question Qt is classified as either a self-contained question

or a non-self-contained question. Self-contained questions are complete and do not

rely on any prior conversational context, whereas non-self-contained questions may

include pronouns, co-references, or ellipsis to previous conversational history.

(2) Reformulation: If the question is classified as non-self-contained, the reformulator

resolves pronouns and anaphora using the conversational history. This step transforms

Qt into a self-contained question Q′

t, ensuring that it includes all necessary contextual

information to retrieve an accurate answer from the system.

The system assumes that the first question in the conversation is always self-contained.

This assumption is critical, as without an initial reference entity, the conversation would

lack meaningful context and coherence.

Raw Answer Retrieval

Once the reformulated question Q′

t is generated, it is used to retrieve raw answers from

the underlying KGQA system. As depicted in the blue box on the top right in Figure 3.1,
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the KGQA system is a component responsible for interpreting and answering queries. Most

KGQA systems, including KGQAn, accept self-contained questions and return answers in

the form of SPARQL queries and extracted triples. These systems can be accessed through

an API interface with a well-defined input format, which includes the reformulated question

along with configurable parameters such as the maximum number of answers and the target

knowledge graph. The KGQA system typically processes the input through multiple stages,

including query understanding, entity-relation linking, and filtering. After these steps, the

system produces either a ranked list of SPARQL queries or a structured set of nodes and

edges representing the extracted knowledge.

LLM Answerer

The Answerer component, depicted in the bottom green box of Figure 3.1, refines the

raw KGQA output into human-readable responses suitable for conversational interactions.

While the extracted triples from SPARQL queries provide valuable structured information,

they must be processed into coherent, context-aware answers. This transformation involves

the following steps:

(1) Input Handling: The Answerer receives the reformulated question Q′

t and the re-

trieved triples from the KGQA system as input.

(2) Prompt Construction: It constructs a structured prompt incorporating the ques-

tion, extracted triple labels, and predefined answer guidelines for answer generation.

(3) Response Generation: Using this prompt, the Answerer formulates a natural lan-

guage response while minimizing hallucination by strictly adhering to retrieved knowl-

edge.

(4) Context Maintenance: Updates the conversational history with the current question-

answer pair and relevant metadata, maintaining context for future interactions
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Conversational History

The conversational history, depicted as the center component in Figure 3.1 serves as

a dynamic context memory, capturing the flow of dialogue. It plays a crucial role in en-

abling context-aware question answering by providing essential references for reformulating

non-self-contained questions. This component is actively utilized by the Question Refor-

mulator 3.1.3 to reconstruct queries with missing context and updated by the LLM An-

swerer 3.1.3 after each turn. By continuously evolving with each interaction, it ensures

seamless and coherent multi-turn conversations.

3.2 Implementation Details

3.2.1 Question Reformulator

The Question Reformulator operates in two steps: classification and reformulation, both

of which are powered by a prompt-based interaction with a LLM. We adopted a prompt

template design pattern for better generalization and adaptability to various LLM capa-

bilities. This approach allows for the flexible construction of dynamic prompts by filling

predefined template variables at runtime. Furthermore, our design is extensible to advanced

prompting techniques such as Chain-of-Thought (CoT) or Self-Consistency, ensuring future

scalability. The reformulator processes an input question Qt in following two steps:

(1) Classification: Qt is classified as either self-contained or non-self-contained using a

Question Classification Prompt Template. The classification determines whether the

question can be answered without additional context.

(2) Reformulation: For non-self-contained questions, the reformulator resolves pro-

nouns, anaphora, and co-references by utilizing the conversation history Ht and con-

structs a self-contained question Q′

t using a Reformulation Prompt Template.

Algorithm 1 describes the process of question reformulation. Given an input question Qt,

the algorithm attempts to reformulate it into a self-contained question Q′

t by verifying its

classification up to three times.
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First, the algorithm checks whether Qt is already self-contained by sending it to a

language model (LLM) using a classification prompt. If the classification result confirms

that the question is self-contained, it is returned as Q′

t without modification.

If the input question is not self-contained, the algorithm proceeds with a reformula-

tion process. It initializes a retry counter and iterates up to three times to generate a

reformulated version of the question. During each iteration, the algorithm constructs a

reformulation prompt using the input question Qt and the conversational history Ht. The

reformulated question Q′

t is then sent for verification using the same classification prompt.

If any reformulated version of the question is classified as self-contained, the algorithm

returns it immediately. Otherwise, it continues the reformulation attempts until the retry

limit is reached. If none of the reformulated versions satisfy the verification criteria after

three attempts, the algorithm returns a fallback message indicating ambiguity and request-

ing further clarification from the user. This approach ensures that user queries are reformu-

lated in a way that makes them independent of prior conversation context while minimizing

unnecessary retries.

3.2.2 Raw Answer Retrieval

The KGQA system is responsible for retrieving the answers to the reformulated, self-

contained question Q′

t provided by the reformulator component. KGQA systems are typi-

cally designed to interpret natural language queries and translate them into SPARQL queries

to extract information from the target knowledge graph. In our implementation, we inte-

grate the KGQAn system (see Section 3.3.3), which provides an HTTP API endpoint for

answering questions. The system processes input questions and retrieves SPARQL queries

ranked by their likelihood of answering the given question accurately. The details of the

request structure and configuration are described below.

API Request Details

To interact with the KGQAn system, the reformulated self-contained question Q′

t is sent

via an HTTP POST request to the KGQAn system’s API endpoint. The required fields in
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Algorithm 1: Question Reformulation Process with Verification and Retries

Input: Qt: Input question, Ht: Conversational history
Output: Q′

t: Reformulated self-contained question or fallback message
1 Initialize classification prompt using Classification Prompt Template;
2 Fill classification prompt with Qt;
3 Send classification prompt to LLM and get classification result;
4 if classification result is ”self-contained” then
5 Set Q′

t ← Qt;
6 return Q′

t;

7 Set retry count ← 0;
8 while retry count < 3 do
9 Increment retry count;

10 Initialize reformulation prompt using Reformulation Prompt Template;
11 Fill reformulation prompt with Qt and Ht;
12 Send reformulation prompt to LLM and get reformulated question Q′

t;
13 Initialize verification prompt using Classification Prompt Template;
14 Fill verification prompt with Q′

t;
15 Send verification prompt to LLM and get verification result;
16 if verification result is ”self-contained” then
17 return Q′

t;

18 return ”Too much ambiguity, can you clarify more?” ;

the request body are as follows:

• question: The reformulated, self-contained question Q′

t in natural language.

• knowledge graph: The specific knowledge graph on which the query is intended to

operate. This allows the system to select the relevant dataset.

• max answers: The maximum number of SPARQL queries to return, ordered by

descending probability of relevance.

The request is constructed as a JSON Body in the following format:

1 {

2 "question": "What␣is␣the␣capital␣of␣France?",

3 "knowledge_graph": "yago",

4 "max_answers": 3

5 }

28



API Request Workflow

The reformulated question Q′

t is packaged into the request body along with other re-

quired parameters and sent to the API endpoint. The server processes this request and

generates a list of SPARQL queries corresponding to the input question. The HTTP server

expects the following:

• A valid and meaningful self-contained natural language question (Q′

t).

• A specified knowledge graph to be used by KGQAn for the query scope.

• A numerical limit (max answers) for the number of queries returned.

The response from the KGQAn system contains the retrieved SPARQL queries and/or

extracted triples, which are passed to the next component for further processing.

3.2.3 LLM Answerer

The final step in the pipeline is constructing a human-readable answer from the retrieved

list of SPARQL queries. This process is crucial because the raw representation of the answer

in the form of SPARQL queries or triples is not easily interpretable by end-users. The

answer builder addresses this by performing two key operations: extracting and labeling

triples from SPARQL queries, and generating a natural language response.

Step 1: Resolving Labels from SPARQL Queries

The Knowledge Graph Question Answering (KGQAn) system provides a list of SPARQL

queries as its output, each representing a possible answer. However, these SPARQL queries

often include URIs (Uniform Resource Identifiers) or triples containing predicates and ob-

jects in URL form, which are not user-friendly. To resolve this, the following sub-steps are

performed:

• Extract Triples from SPARQL Queries: Each SPARQL query is executed against

the knowledge graph’s SPARQL endpoint to retrieve a list of triples that represent

the answer.
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• Label Metadata Resolution: For each URI in the retrieved triples, a label meta-

data resolution query is executed. This involves querying the knowledge graph for

English language labels or annotations associated with the URIs. The resulting labels

provide a more interpretable representation of the entities and predicates.

By the end of this step, the system has a set of labeled triples in English that are ready to

be used for generating a human-friendly answer.

Step 2: Generating the Human-Friendly Answer

Once the triples are labeled, the system utilizes a prompt-based approach to generate

the final answer in natural language. A Large Language Model (LLM) is leveraged for

this purpose. The labelled triples and the original user query are provided as inputs to

the LLM using a predefined prompt template. The template ensures the model focuses on

the relevant information and produces coherent answers. The prompt template used is as

follows:

Prompt Template : Answer Generation Prompt

You are an expert assistant that converts structured KGQA results into human-

readable answers.

Given the question and the raw answer list, follow these steps:

1. Extract values from the ”value” fields in the answer list.

2. Format values appropriately (e.g., dates, URIs).

3. Synthesize a concise, grammatically correct answer.

4. **Do not add information not present in the answer list**.

Question: ¶question♢

Answer List: ¶answers♢

Response:

The placeholders in the template are filled dynamically:

• {question}: The original question asked by the user.

30



• {answers}: The list of triples with their labels resolved in English.

3.2.4 Conversation History/Memory

The system maintains a conversation history stored as a temporary list in memory. This

history plays a crucial role in managing the context for conversational question answering,

especially when resolving non-self-contained questions.

Structure of Conversation History

The conversation history is implemented as a list of tuples, with each tuple representing

a single turn in the conversational flow. Each tuple contains the following fields:

• Original Query: The exact question asked by the user in natural language.

• Reformulated Query: The transformed self-contained question generated by the

reformulator. If the original question is already self-contained, this field will match

the original query.

• Final Answer: The human-readable answer formed by the system, utilizing the LLM

and the labeled triples from the KGQA system.

• Label Triples: The intermediate list of labeled triples retrieved from the KGQA

system, which were used to construct the final answer.

The conversation history serves as a dynamic context memory, capturing the flow of

dialogue and ensuring continuity throughout interactions. At the end of each conversational

turn, before returning the final answer to the user, the system appends a new tuple for the

current turn, keeping the history up-to-date with the latest interactions. This updated

history is then utilized by the Question Reformulator, particularly when processing non-

self-contained questions. By leveraging previously stored context, the reformulator resolves

pronouns, anaphora, or co-references to construct a well-formed query. The process of

maintaining and utilizing conversation history is formalized in Algorithm 1, ensuring robust

context-aware question answering.
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3.3 Related Work

3.3.1 CONVEX

CONVEX (Christmann, Saha Roy, Abujabal, Singh, and Weikum (2019)) is an un-

supervised method for answering incomplete questions over a knowledge graph (KG) by

maintaining conversational context through previously seen entities and predicates. It au-

tomatically infers missing or ambiguous information in follow-up questions using a graph

exploration algorithm that expands a frontier to identify candidate answers. To evaluate

CONVEX, the authors introduced ConvQuestions, a crowdsourced benchmark with 11,200

distinct conversations spanning five domains.

A key system limitation of this approach arises from its reliance on an expanding context

subgraph, which can lead to a combinatorial explosion of candidate nodes as the conver-

sation context broadens. Although CONVEX mitigates this critical issue by judiciously

controlling subgraph expansion through a combination of look-ahead, weighting, and prun-

ing techniques, these measures only partially address the inherent challenge. As a result, the

method still faces theoretical and computational constraints when dealing with ambiguous

or incomplete queries that span multiple topics, impacting both efficiency and precision.

3.3.2 CONVINSE

CONVINSE (Christmann, Saha Roy, and Weikum (2022)) is an end-to-end conversa-

tional question answering pipeline over heterogeneous sources. It operates in three stages:

(i) learning a structured representation of the incoming question and its conversational con-

text, (ii) leveraging this representation to retrieve relevant evidence from knowledge bases,

text, and tables, and (iii) using a fusion-in-decoder model to generate the final answer. It

is limited to adapting a new domain or dataset, which requires the training of the model.

3.3.3 KGQAn

KGQAn (Omar, Dhall, et al. (2023)) is a universal question-answering system that

does not require customization for each target KG. Instead of relying on curated rules, it
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frames question understanding as a text generation problem, converting questions into an

intermediate abstract representation via a neural sequence-to-sequence model. At query

time, a just-in-time linker maps the abstract representation to a SPARQL query, retrieving

answers from the KG using only publicly available APIs and RDF store indices, without

any pre-processing.

3.3.4 Chatty-Gen

Chatty-Gen (Omar, Mangukiya, and Mansour (2025)) is a retrieval-augmented gener-

ation (RAG) platform for automatically generating high-quality dialogue benchmarks tai-

lored to specific domains using KGs. It follows a four-stage pipeline: (i) extracting and

summarizing relevant subgraphs, (ii) generating questions linked to specific KG triples, (iii)

using zero-shot learning to generate SPARQL queries for retrieving answers, and (iv) con-

structing coherent dialogues. The final dataset consists of dialogue sequences, independent

questions, and corresponding SPARQL queries.

3.4 Evaluation and Experiments

3.4.1 Dialogue Generation and Curation Process

To assess our KGQA RAG Chatbot pipeline, We conducted experiments at multiple

levels, including individual module evaluations, prompt effectiveness, and an end-to-end

system evaluation. This required an evaluation dialogue benchmark aligned with our sys-

tem, for which we considered two options:

• ConvQuestions 3.3.1: A crowdsourced dialogue benchmark containing 11,200 dis-

tinct conversations from five domains, where all questions are formed using Wikidata.

• Chatty-Gen 3.3.4: A novel multi-stage retrieval-augmented generation platform that

generates high-quality dialogue benchmarks tailored to specific domains and knowl-

edge graphs (KGs).

We chose the Chatty-Gen platform over ConvQuestions for the following reasons:
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(1) Alignment with our KGQA system: Unlike ConvQuestions, which is tied to

Wikidata, Chatty-Gen supports multiple KGs, including YAGO, DBLP, DBpedia,

and MAG.

(2) Comparable question quality: Chatty-Gen’s LLM-generated dialogues are indis-

tinguishable from human-annotated ones in 70% of cases, demonstrating its effective-

ness as a benchmark generator (Omar et al. (2025)).

Chatty-Gen (see 3.3.4) is a flexible framework that allows users to generate customized

benchmarks using various parameters. Chatty-Gen can create dialogue benchmarks from

seed node URLs, supporting two modes of entity selection: automatic sampling and manual

entity selection. In the latter mode, users can supply a text file containing seed entity

URLs from the KG for generation. The automatic sampling method leverages the weighted

distribution of node types in the KG.

Here are the key set of configurable parameters for Chatty-Gen:

• Knowledge graph source and SPARQL endpoint.

• Number of dialogues and questions per dialogue.

• Language model endpoint.

• Generation approach (single-step or multi-step).

• Seed Nodes (Optional)
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configuration for benchmark generation

{

"dbpedia_endpoint": "<add_endpoint_version>",

"dialogue_size": 5,

"pipeline_type": "multi-step",

"approach": "subgraph-summarized",

"language_model": "gpt-4o",

"seed_nodes_file": "sample_seed.txt"

}

Below is the generated dialogue benchmark’s json file, it contains the seed, dialogue

questions and original questions along with sparql answer queries for each dialogues.

1 // JSON Scema of Generated Dialogue

2 {

3 "data": [

4 {

5 "seed_entity": "<url >",

6 "seed_label": "<entity_label >",

7 "dialogue": ["transformed_questions"],

8 "original": ["original_questions"],

9 "queries": ["sparql_queries"],

10 "triples": [("subject", "predicate", "object")]

11 },

12 ...

13 ]

14 }

15

16 // Example Dialogue

17 {

18 "seed_entity": "http :// dbpedia.org/resource/Friends",

19 "seed_label": "Friends",
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20 "dialogue": [

21 "How␣many␣episodes␣does␣Friends␣have?",

22 "Who␣created␣it?",

23 ...

24 ],

25 "original": [

26 "How␣many␣episodes␣does␣Friends␣have?",

27 "Who␣created␣Friends?",

28 ...

29 ],

30 "queries": [

31 "SELECT␣?count␣WHERE␣{␣<http :// dbpedia.org/resource/Friends >

␣<http :// dbpedia.org/ontology/numberOfEpisodes >␣?count␣}"

,

32 "SELECT␣?creator␣WHERE␣{␣<http :// dbpedia.org/resource/

Friends >␣<http :// dbpedia.org/ontology/creator >␣?creator.␣

}",

33 ...

34 ],

35 "triples": [

36 [

37 [

38 "http :// dbpedia.org/resource/Friends",

39 "http :// dbpedia.org/ontology/numberOfEpisodes",

40 ""

41 ]

42 ], ...

43 ]

44 }
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3.4.2 Seed Selection Process for Comparison

To compare our KGQA-RAG system with the baseline system CONVINSE across two

knowledge graphs (DBpedia and YAGO), we randomly selected 20 seed entities from the

ConvQuestions 3.3.1 benchmark. This manual seed selection was used instead of automatic

to ensure we evaluate both systems fairly, as baseline system CONVINSE only works Wiki-

data, whereas our system works with KGs (YAGO, DBPedia, DBLP, MAG). Each chosen

seed was required to meet the following criteria:

(1) The seed must have associated URL predicates linking it to both DBpedia and YAGO.

(2) The set of facts (i.e., properties and relations) for the seed in Wikidata must also be

present in DBpedia and YAGO.

To perform this selection, we followed a two-step process:

Step 1: Mapping via SPARQL Queries. For each seed, we first identified its

corresponding entries in DBpedia and YAGO using SPARQL queries. For example, the

mapping for DBpedia was obtained with the following query:

DBpedia Mapping SPARQL Query

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?dbpedia

WHERE {

?dbpedia owl:sameAs <http://www.wikidata.org/entity/Q937>.

}

Similarly, the mapping for YAGO was identified using this SPARQL query:
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YAGO Mapping SPARQL Query

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?yago

WHERE {

?yago owl:sameAs <http://www.wikidata.org/entity/Q937>.

}

Step 2: Fact Verification. After obtaining the mappings, we manually verified that

all facts associated with each seed in Wikidata were also present in the corresponding

DBpedia and YAGO entries. This ensured consistency across the knowledge graphs for

each seed entity. Using the verified seed nodes, we then generated an evaluation set of

dialogues by employing GPT-4o with a dialogue size of 5 turns.

3.4.3 Question Reformulator Experiments

The question reformulation process in the KGQA-RAG pipeline involves a two-step,

prompt-based approach that transforms user queries into formats that are optimally pro-

cessed by the underlying KGQA system. To evaluate the robustness of prompt wording and

its impact on the later stages of the pipeline, we conducted several experiments focused on

prompt engineering.

User Question Classification Classifying user questions as independent/self-contained

or dependent/non-self-contained is critical to system accuracy. Misclassification can lead to

errors, as dependent questions require reformulation for accurate answers.

Prompt Template : Classification Prompt 1

Classify a given question as either ’independent’ or ’dependent.’ In this context,

’independent’ questions are those that can be understood and answered without need-

ing additional context or information, while ’dependent’ questions require additional

context or information to be answered. It’s crucial for the model to identify ambigu-

ity and resolve unknowns to determine the classification correctly.
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Question: ¶question♢

Classification:

Question: When was Granada District founded?

Classification: dependent // True Label : independent

Prompt Template : Classification Prompt 2

Classify a given question as either ’self-contained’ or ’non-self-contained’ while

considering the context of resolving pronouns and references.

In this task, ’self-contained’ questions are those that can be understood and answered

without needing additional context or information, even when they refer to entities or

concepts mentioned in prior conversation. ’Non-self-contained’ questions are those

that, due to the presence of pronouns or references to prior conversation, require

additional context or information to be answered correctly.

Question: ¶question♢

Classification:

Question: When was Granada District founded?

Classification: self-contained // True Label : self-contained

To evaluate prompt variations, we used the set of 40 questions from the evaluation

benchmark 3.4.1 (20 original and 20 dialogue-based), each with ground truth labels. As

shown in Table 3.1, Classification Prompt 1—using the terms ”independent” vs. ”depen-

dent”—achieved an accuracy of 60%, while Classification Prompt 2—using ”self-contained”

vs. ”non-self-contained”—attained a 95% accuracy. These results suggest that the choice

of terminology in the prompt templates can significantly improve classification performance

and reduce hallucinations.

Prompt Template Accuracy Correct Total Hallucinations

Classification Prompt 1 60% 24 40 0

Classification Prompt 2 95% 38 40 1

Table 3.1: Evaluation results for user question classification using ”independent vs. depen-
dent” (Prompt 1) and ”self-contained vs. non-self-contained” (Prompt 2) terminologies.
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Question Reformulation A core challenge in question reformulation for non-self-contained

queries is accurately resolving pronouns and coreferences by leveraging the relevant conver-

sational context. Our approach addresses this by integrating the active focal entity. To

validate the quality of our LLM-driven reformulation method, we employed BLEU and

ROUGE metrics, assessing both the similarity to human-annotated reformulations and the

accuracy of entity integration. We chose two established question rewriting datasets, Con-

vQuestions 3.3.1 and QReCC Anantha et al. (2021), known for their diversity in dialogue

structure. ConvQuestions represents dialogues with short question sets, whereas QReCC

provides longer, multi-turn conversations (up to 10+ turns). This diversity allowed us

to investigate how conversation length impacts coreference resolution. Our evaluation set

included 20 dialogues from ConvQuestions (100 questions) and 20 from QReCC (188 ques-

tions). By comparing different variations of context history during reformulation within

this set, we aimed to specifically measure the effect of complex and extended conversation

history on the accuracy of coreference resolution in reformulated questions.

Here are used two variations of representing Context History:

(1) Immediate Context Approach: Using only the previous self-contained question-

answer pair to reformulate the next non-self-contained question.

(2) Full History Approach: Incorporating all previous question-answer pairs as context

for the reformulation.

Table 3.2 summarizes the evaluation results for both prompt templates.

Results indicate that the Full History Approach (represented by Question Reformula-

tion Prompt 2) consistently outperformed the Immediate Context Approach (Prompt 1).

The lower performance of the first approach is attributed to extra stop words introduced

by the LLM during reformulation, likely due to bias or error propagation in long-depth

conversations. For example, in the mlqrcc dataset:

• Depth 4: The actual question ”Are boer goats good for meat?” was reformulated as

”Can you provide more information about Boer goats?”
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• Depth 6: The actual question ”What is the best goat for fiber production?” was

reformulated as ”What breed of goat is generally considered the best for fiber produc-

tion?”

Prompt Template : Reformulation Prompt 1

Rephrase the follow-up question to be self-contained using ONLY given context items.

1. Previous Reformulated Question: Previous turn self-contained question

2. Previous Answer: Answer to previous turn self-contained question

Follow these rules:

- Resolve pronouns/anaphora (it, they, he, she, them) using the previous QA pair

- Preserve the original question’s intent and focus completely

- Never introduce new information or assumptions

- Maintain the focal entity from previous context unless explicitly changed

- Keep questions concise but fully unambiguous

Previous Reformulated Question: ¶previous reformulated♢

Previous Answer: ¶previous answer♢

Follow-up Question: ¶current question♢

Rephrased Self-Contained Question:

Prompt Template : Reformulation Prompt 2

Rephrase the given follow-up question to make it self-contained by resolving any

pronouns, anaphora, or coreferences using the provided context. Do not add, modify,

or extend the meaning of the original question. The rephrased question must strictly

retain the original intent and focus.

Conversation Context:

¶chat history♢

Follow-up Question: ¶question♢

Rephrased Self-Contained Question:
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Prompt Template Dataset BLEU ROUGE-1 ROUGE-2 ROUGE-L

Question Reformulation
Prompt 1

convex 0.302 0.619 0.456 0.598

mlqrcc 0.302 0.669 0.497 0.643

Question Reformulation
Prompt 2

convex 0.384 0.714 0.551 0.678

mlqrcc 0.499 0.822 0.700 0.809

Table 3.2: Evaluation results for question reformulation prompts. Metrics (BLEU, ROUGE-
1, ROUGE-2, ROUGE-L) for two datasets (convex and mlqrcc) indicate that Prompt 2
yields higher similarity to the ground truth.

3.4.4 Overall System Evaluation

Experimental Setup and Results To assess the performance of our developed KGQA-

RAG system, we conducted experiments using a custom evaluation dialogue benchmark

(see Section 3.4.1 for details on dialogue generation). In this benchmark, each dialogue

consists of a SPARQL query that returns a list of bindings for the unknown variable in

the question. For every query, the underlying KGQA system (KGQAn) produces multiple

ranked answers. We compute performance using the metrics Precision at 1 (P@1), Mean

Reciprocal Rank (MRR), and Hit@5.

The evaluation involves comparing three systems:

(1) KGQA-RAG: Our developed system, which integrates conversational context while

leveraging the KGQA component.

(2) KGQAn: The baseline KGQA system, representing the theoretical performance

limit.

(3) CONVINSE: A second baseline conversational question answering system over het-

erogeneous sources. Due to resource constraints and reproducibility issues with local

dependencies, we used the hosted version available at https://convinse.mpi-inf

.mpg.de/. This version is accessed via an API call with a request body structured as

follows:

body = {
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"question": question,

"history_questions": history_questions_list or [],

"history_answers": history_answers_list or []

}

To calculate the evaluation metrics, we used the implementation provided by the CON-

VINSE framework. This implementation compares the list of answer label values produced

by each system against the list of ground truth labels generated for each dialogue in the

benchmark. The post-processing of each retrieved binding involves normalizing literal-typed

values and retrieving the rdf:label (in English) for URI types via an additional SPARQL

request.

System
DBPedia YAGO

P@1 MRR Hit@5 P@1 MRR Hit@5

KGQAn 0.2765 0.2787 0.2872 0.5813 0.5918 0.6046
KGQA RAG Chatbot 0.2447 0.2589 0.2766 0.5262 0.5201 0.5279
CONVINSE 0.2447 0.2447 0.2447 0.3372 0.3372 0.3372

Table 3.3: Overall performance comparison of KGQA system variants and CONVINSE on
DBpedia and YAGO benchmarks.

Table 3.3 summarizes the experimental results on two benchmarks, DBpedia and YAGO.

As seen in the table, while the KGQA-RAG system performs slightly below the underly-

ing KGQAn baseline, it significantly outperforms CONVINSE across all three metrics for

YAGO.
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Chapter 4

JIRA RAG Chatbot

4.1 System Overview

4.1.1 Introduction

JIRA ( Atlassian (2025a)) is a widely used project management tool that allows orga-

nizations to store critical data related to tasks, projects, and workflows. It has become a

vital part of modern companies for managing and tracking initiatives, features, epics, and

associated tasks. However, as the volume of data in JIRA grows, navigating and analyzing

it becomes increasingly challenging, especially for users unfamiliar with JQL (JIRA Query

Language)( Atlassian (2025b)). This challenge intensifies as organizations grow, making

manual tracking and review inefficient and increasing the risk of errors and oversights.

The JIRA RAG Chatbot System addresses this problem by leveraging large language

models (LLMs) to assist users in navigating, querying, and understanding JIRA data effec-

tively. The system aims to improve productivity and decision-making by offering precise,

context-aware responses to queries about JIRA issues, summaries, and linked issue relation-

ships.

4.1.2 Motivation

The motivation behind the JIRA RAG Chatbot System stems from the limitations of

naive approaches to JIRA data retrieval and analysis. Traditionally, a simple approach
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involves retrieving data, serializing it, and using it directly for question-answering (QA).

While straightforward, this method is less scalable nor accurate due to several drawbacks:

• Context Length Problems: Large language models (LLMs) struggle with extensive

context lengths, leading to incomplete or inaccurate responses.

• Hallucination Risks: Unconstrained access to data increases the likelihood of gener-

ating irrelevant or fabricated answers.

• Inefficient Token Usage: Processing excessive context wastes computational resources.

• Continuously Evolving Data: JIRA data is dynamic, requiring a system that can

handle frequent updates efficiently.

To address these challenges, we developed an advanced, modular Retrieval-Augmented

Generation (RAG) Conversational QA system with an intent-based query understanding

module. This module performs a pre-retrieval step to generate precise input for the retrieval

process. The retrieval mechanism then selects relevant, partial data to minimize unnecessary

context. This modular approach improves accuracy, optimizes token usage, and reduces

hallucinations. The system provides significant benefits, especially in two primary use cases:

(1) Higher-Management Assistance: For individuals in senior organizational roles, the

system can:

(a) Summarize multiple JIRA issues efficiently.

(b) Analyze and derive insights from linked issues (e.g., epics and features with

associated tasks).

(c) Support critical tasks such as sprint planning and identifying potential resource

dependencies or deadlocks between teams.

(2) Information Bot (Wiki Bot): For team members or stakeholders seeking information,

the chatbot serves as an efficient query tool to:

(a) Navigate and retrieve information on specific JIRA issues.
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(b) Answer detailed questions such as issue status, priority, summaries over specific

periods, domain, responsible teams, deliveries, and deadlines.

4.1.3 System Architecture

The proposed system architecture is designed to enable conversational question an-

swering over structured project management data, particularly within a JIRA data. This

architecture is composed of several core components that work together to interpret user

intent, retrieve relevant information, and generate contextually accurate responses. The

system architecture comprises three main components:

(1) Natural Language Query (NLQ) Parsing: Transforms user input into a struc-

tured representation by classifying intent, extracting JIRA Issue IDs, and resolving

contextual dependencies.

(2) Context Retrieval: Dynamically retrieves relevant JIRA Issue data using struc-

tured query generation, leveraging conversation history and JIRA metadata to ensure

accurate results.

(3) Answer Generation: Synthesizes human-readable responses by grounding them in

retrieved data, ensuring consistency, coherence, and factual correctness.

The overall architecture and its interactions are illustrated in Figure 4.1, providing a vi-

sual representation of the system’s workflow and data flow. A key aspect of this architecture

is its ability to maintain conversation continuity, allowing users to ask follow-up questions

without repeating context. By integrating a structured conversation history module, the

system ensures that responses remain relevant even in multi-turn dialogues. Additionally,

by leveraging both graph-based retrieval mechanisms and JQL query execution, the archi-

tecture balances efficiency with real-time data accuracy. Each component is designed to

be modular and operate independently, allowing for easier development and maintenance,

while their seamless integration ensures a cohesive end-to-end conversational experience.

The following sections provide a deeper dive into each stage of the pipeline, detailing how

the system processes and answers user queries efficiently.
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Natural Language Query (NLQ) Parsing

The NLQ Parsing component serves as the system’s entry point, transforming raw user

queries into structured representations suitable for retrieval and response generation. Since

users often express queries in an unstructured and ambiguous manner, this component is

responsible for interpreting intent, extracting JIRA Issue IDs, and resolving contextual

dependencies before passing the query forward for processing. To achieve this, As depicted

in the yellow box on the top left of Figure 4.1, the NLQ Parser categorizes queries into

predefined intent types, ensuring that downstream components receive a structured and

predictable input format. The primary query types include:

• Direct Metadata Questions: Queries seeking specific metadata properties of an

issue (e.g., “What is the priority of ISSUE-123?”).

• Reasoning Questions: Requests for summarized insights or analytics (e.g., “Sum-

marize the current status of ISSUE-456.”).

• Changelog Questions: Queries about historical changes within a specific timeframe

(e.g., “What updates were made to ISSUE-789 last week?”).

• Structure-Related Questions: Inquiries regarding relationships, dependencies, or

hierarchical issue structures (e.g., “Which features are linked to INITIATIVE-001?”).

Since user queries may lack explicit references to issue keys or relevant metadata, the

NLQ Parser incorporates conversation history to resolve ambiguities. For example, in a

multi-turn conversation, if a user asks “What is its status?” after a prior query referencing

ISSUE-123, the system infers the missing JIRA Issue Id based on stored context. This

ensures that extracted intents are mapped to a well-defined schema before moving to the

next phase. The process can be formalized as:

PQt = LLM(Qt + Gp)
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where Qt is the user’s natural language query, and Gp is a predefined guideline that stan-

dardizes intent classification and JIRA Issue IDs extraction. By enforcing structured JSON

schema adherence and integrating contextual resolution mechanisms, this module ensures

that the system can handle both explicit and implicit queries while maintaining accuracy

and efficiency. The parsed representation serves as a foundation for retrieval planning and

structured query generation, ensuring that subsequent components receive well-formed in-

puts.

Context Retrieval

The Context Retrieval component plays a critical role in ensuring that the system fetches

relevant information to accurately respond to user queries. Since queries may reference spe-

cific issues, require historical insights, or depend on contextual factors from prior interac-

tions, this component is responsible for dynamically identifying and retrieving the necessary

data while minimizing redundant lookups. To achieve this, As depicted in the blue box on

the top right in Figure 4.1, Context Retrieval leverages structured retrieval planning and

query execution to fetch relevant issue details from JIRA. It ensures that responses are

generated based on the most up-to-date and comprehensive data available while optimizing

retrieval efficiency.

Retrieval Query Planner The Retrieval Query Planner (RQP) serves as the core mech-

anism for constructing structured retrieval queries based on the parsed intent and extracted

entities from the NLQ Parsing stage. Its primary function is to translate natural language

intent into a well-defined retrieval query that adheres to the JIRA Query Language (JQL)

syntax. The planner generates a structured representation called the Retrieval Query (RQt),

which consists of:

• JQL Query Formulation – A structured query for fetching relevant issue data from

JIRA.

• Sub-schema Field Selection – A specification of the exact fields to retrieve (e.g.,
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”a pre-defined subset of the JIRA issue data schema”), ensuring that only necessary

data is fetched.

For instance, consider the user query: “What are the features with high priority under

ISSUE-XYZ?”, the Retrieval Query Planner generates a JQL query that retrieves all feature-

type issues under ISSUE-XYZ and selects relevant fields such as:

1 {

2 "jql": "project␣=␣XYZ␣AND␣type␣=␣Feature␣AND␣priority␣=␣High",

3 "select_fields": ["name", "priority", "status"]

4 }

One of the key challenges in retrieval planning is handling queries without explicit issue

references. If a user omits an issue key—such as in a follow-up query (“List the remaining

tasks”)—the planner infers the missing context by referencing the conversation history. This

enables the system to maintain continuity in multi-turn interactions and retrieve relevant

data even when queries are phrased ambiguously. The retrieval planning process can be

formalized as:

RQt = RQP(PQt + ConvHt−1)

where:

• PQt represents the parsed query output from the NLQ Parser.

• ConvHt−1 is the structured conversation history at the previous turn.

• RQt is the final structured retrieval query.

Retriever The Retriever component is responsible for executing the retrieval query (RQt)

to fetch the required data from JIRA. It operates by:

• Retrieving raw data from the JIRA Graph Manager, by utilizing the JQL query

in received RQt.

• Post processing the retrieved raw data from JIRA, by applying sub-schema selection

defined in the RQt.
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The final output is structured Retrieved Data (RDt), formatted as a JSON response,

ensuring that the extracted information is structured and ready for downstream processing.

JIRA Graph Manager The JIRA Graph Manager provides CRUD operations on a

database that stores processed JIRA issue data. Instead of always querying JIRA’s APIs,

this component allows for optimized access by maintaining a graph-structured representa-

tion of JIRA issues, their relationships, and metadata. It processes JQL queries received

from the Retriever and either serves data from the database or routes the query to the

JQL Processor when when the requested data is not available in the database or needs to

be updated. This caching mechanism helps reduce API call latency and enhances system

performance.

JQL Processor The JQL Processor serves as an interface to JIRA’s server APIs, respon-

sible for executing JQL queries. It is designed for high-efficiency data retrieval using:

• Asynchronous request handling – Optimizes performance by executing multiple

queries in parallel.

• Batch processing – Groups related JQL queries into batch requests, reducing API

overhead.

• Error handling and retry mechanisms – Ensures resilience against transient fail-

ures in API responses.

The combined retrieval operation can be formalized as:

RDt = JDR(RQt)

where JDR represents the unified execution process JIRA Data Retriever involving the

Retriever, JIRA Graph Manager, and JQL Processor. This ensures that the system can

efficiently retrieve, process, and structure relevant JIRA issue data while optimizing for

both speed and accuracy.
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Answer Generation

The Answer Generation component, as depicted in the green box at the bottom in

Figure 4.1, is responsible for synthesizing a coherent and contextually relevant response to

the user query (Qt). It leverages the retrieved data (RDt) obtained from the JDR retrieval

pipeline and intent-based answer guidelines (Ga), which defines response formatting, detail

prioritization, and phrasing conventions. To ensure the generated answer is accurate and

aligned with JIRA issue structures, an LLM prompt is dynamically constructed using Qt,

RDt and Ga.

Answer Generation Example

User query (Qt): What is the status of high-priority features under ‘ISSUE-XYZ‘?

Retrieved Data (RDt):

ID: ISSUE-ABC, User Authentication – Priority: High, Status: In Progress

ID: ISSUE-PQR, Payment Gateway Integration – Priority: High, Status: Blocked

Guidelines (Ga): Summarize the retrieved information concisely.

Generated Response:

There are two high-priority features under ‘ISSUE-XYZ‘. ‘User Authentication‘ is

currently ‘In Progress‘, while ‘Payment Gateway Integration‘ is ‘Blocked‘. Let me

know if you need further details.

This response is then:

• Returned to the user as the final answer.

• Appended to the conversation history to maintain context for follow-up queries.

By structuring responses with both retrieved data and answer guidelines, the Answer

Generation component ensures that responses are precise, informative, and easy to under-

stand.

52



4.2 Design and Implementation

4.2.1 NLQ Parsing

The NLQ Parsing component is designed to process user-provided natural language

queries (NLQ) and transform them into a structured format suitable for downstream pro-

cessing. This transformation is achieved through the utilization of a pre-defined natural

language understanding (NLU) prompt template, which incorporates parsing guidelines,

intent definitions, and examples from the intent map to understand the user’s query and

intent.

Intent Map The Intent Map defines the available intents for user queries and provides

associated query examples, a sub-schema selector function, and answer guidelines. It is

defined as python dataclass, which is a convenient way to define classes primarily for data

storage and used by different components in the system as follows. The Parser consults

the Intent Map to interpret and identify the user’s intent by matching query patterns with

the defined examples and intent definitions. The Retriever leverages the Intent Map to

guide the post-processing of the retrieved JIRA data, using the sub-schema selector function

to ensure the correct data subset is selected. Finally, the Answerer utilizes the answer

guidelines provided in the Intent Map to construct and format the final response in a

manner consistent with the predefined instructions. The Intent Map includes the following

properties:

• intent-name: The name of the intent.

• intent-description: The description of the intent.

• examples: A list of query examples associated with the intent.

• sub-schema-selector: The post-processing function.

• answer-guideline: Instructions for forming the answer.
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NLU Prompt Template The NLU prompt template is a carefully crafted textual prompt

that guides the parsing process. It defines the Parsing Guidelines (Gp), and ensures consis-

tency in extracting structured information from NLQs. The prompt template is designed

to handle queries within the context of JIRA issue management, with explicit placeholders

for user queries and descriptions of intents. It also incorporates examples for consistency

across various queries. The structure of the prompt template includes:

• Intent Definitions: Enumerated set of predefined intent types, each representing

a distinct class of query, such as METADATA, CHILDREN, and RELATED. All

the intents are defined in the IntentMap 4.2.1, which are used to fill the prompt

dynamically described in algorithm 2.

• Issue Key Recognition: A strict format (e.g., ISSUE-abc) to identify issue keys

within the query, enforced through a regular expression pattern.

• Parsing Guidelines (Gp): Detailed instructions embedded within the prompt to

guide the identification and extraction of intents and associated information.

• Examples: Query examples for each intent type to improve consistency and accuracy.

Parsed Query Representation The output of the NLQ Parsing component is referred

to as the Parsed Query (PQt). It encapsulates the structured representation of the user’s

intent and associated information, which simplifies downstream data retrieval and process-

ing by encapsulating high-level intent and relevant attributes in a standardized format. The

PQt is implemented as a dataclass in Python, with the following fields:

• issue key: Extracted identifier of the JIRA issue, adhering to the defined format.

• intent type: Enum value derived from the IntentMap, representing the user’s intent.

Parsing Workflow The NLQ parsing workflow begins with the injection of the user

query Qt into the prompt template T . The template is dynamically populated with the

intent definitions and examples from the Intent Map (IM), as well as the parsing guidelines
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(Gp). This populated template is then processed by a Large Language Model (LLM) to

generate a parsed output. From this output, key information such as the issue key and

intent type is extracted using regular expressions and predefined mappings. Finally, the

extracted data is validated against the PQt schema to ensure correctness, and the validated

data is encapsulated as a Parsed Query object. The detailed steps of this workflow are

summarized in Algorithm 2.

Algorithm 2: NLQ Parsing Algorithm

Input: Qt: User Query, T : Prompt Template, IM : Intent Map, Gp: Parsing

Guidelines

Output: PQt: Parsed Query

Step 1: Dynamically fill template T with:

• Intent definitions and examples from IM ,

• Parsing Guidelines Gp, and

• The user query Qt.

Step 2: Process the filled template using an LLM to generate the parsed output.

Step 3: Extract issue key and intent type from the output using regular

expressions and mappings.

Step 4: Validate the extracted data against the PQt schema.

return PQt.

Design Considerations and Challenges The primary challenge in NLQ Parsing is

ensuring disambiguation between overlapping intents, particularly when the user’s query is

vague or incomplete. This was addressed by:

• Providing clear and non-overlapping intent definitions in the IntentMap.

• Including diverse and representative examples in the prompt template.

• Relying on a robust schema validation mechanism to ensure the correctness of the

parsed output.
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NLQ Parsing Prompt The following prompt guides the NLQ Parsing process:

Prompt Template : NLQ Parsing Prompt

Task: You are an assistant trained to classify queries about JIRA server issues

into one of the following intents based on the user query. Each intent has a clear

definition and associated examples. Your job is to:

1. Identify the intent of the query.

2. Extract the mentioned issue ID(s) using the regex pattern ‘ISSUE-[a-zA-Z0-9]+‘.

### Intents and Definitions:

1. **Direct Metadata Query (MetadataIntent):**

Queries seeking information directly about the metadata or fields of a specific issue.

For example:

- ”What is the status of initiative ‘ISSUE-abc‘?”

- ”Who is the assignee of ‘ISSUE-xyz‘?”

- ”When was ‘ISSUE-def‘ created?”

2. **Children Issues Query (ChildrenIntent):**

Queries asking about the child issues of a specific parent issue. For example:

- ”What is the status of all epics under project ‘ISSUE-abc‘?”

- ”List all features under initiative ‘ISSUE-xyz‘.”

3. **Linked Issues Query (LinkedIssuesIntent):**

Queries about issues that are explicitly linked to a given issue, such as related risks

or blocked issues. For example:

- ”Are there any risks associated with ‘ISSUE-abc‘?”

- ”List all issues blocked by ‘ISSUE-xyz‘.”

### Regex Pattern for Issue ID:
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Use the regex pattern ‘ISSUE-[a-zA-Z0-9]+‘ to extract issue IDs from the user query.

### Examples:

Query: ”What is the status of initiative ‘ISSUE-abc‘?”

Intent: MetadataIntent

Extracted Issue ID(s): ‘ISSUE-abc‘

Query: ”What is the status of all epics under project ‘ISSUE-xyz‘?”

Intent: ChildrenIntent

Extracted Issue ID(s): ‘ISSUE-xyz‘

Query: ”Are there any risks associated with ‘ISSUE-abc‘?”

Intent: LinkedIssuesIntent

Extracted Issue ID(s): ‘ISSUE-abc‘

—

Given the user query: ¶query♢

1. Identify the intent.

2. Extract the mentioned issue ID(s) using the regex pattern.

4.2.2 Context Retrieval

The Data or Context Retrieval component is responsible for extracting relevant informa-

tion from the JIRA server, utilizing the Parsed Query (PQt) generated in the NLQ Parsing

step. It outputs the Retrieved Data (RDt), which encapsulates the requested information

in a structured format. This component consists of multiple submodules, each with distinct

roles to ensure efficient and accurate data retrieval.

Retrieval Query Planner The Retrieval Query Planner is the first step in the data

retrieval process. Its primary function is to form the Retrieval Query (RQt) by leveraging

57



the Parsed Query (PQt), the conversation history and IntentMap. If the current query lacks

an issue key and is in continuation of the previous conversation, the planner retrieves the

issue key from the conversation history. Based on these inputs, the planner formulates the

RQt as:

RQt = {issue_key, jql_query, post_processing_fn}

The planner categorizes retrieval queries into four primary types, depending on the intent type:

(1) Issue Metadata: Retrieves core attributes of an issue, such as its status, priority,

description, and custom fields.

JQL: "issueKey = {issue_key}"

(2) Issue Changelog: Fetches the historical changes of an issue, including updates to

status, assignees, and custom fields.

JQL: "issueKey = {issue_key} ORDER BY updated DESC"

(3) Issue’s Children of Specific Type: Retrieves child issues based on a predefined

hierarchy (e.g., stories under an epic).

JQL: "'Parent' = {issue_key} AND type = {child_type}"

(4) Issue’s Linked Issues: Extracts issues that are related via JIRA link types (e.g.,

”blocks”, ”is blocked by”).

JQL: "issue in linkedIssues({issue_key})"

The appropriate post processing fn is selected from the IntentMap using the sub-schema-selector

associated with the given intent type. This function will be utilized by Retriever to do

schema-selection from retrieved data from JiraGraphManager.
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JQLProcessor The JQLProcessor executes JQL queries asynchronously against the JIRA

REST API and is implemented in Python using the aiohttp and asyncio libraries. Its

design incorporates batch processing, pagination, and robust error handling to efficiently

retrieve large datasets.

• Initial Query and Metadata Retrieval: The first query retrieves search meta-

data, including the total number of matching issues, startAt, and maxResults. This

metadata determines the batch size and the number of subsequent paginated requests

required.

• Batch Processing and Concurrency: Following the initial query, subsequent re-

quests are grouped into batches and executed concurrently using asyncio.gather.

This parallel execution minimizes overall query time and reduces API overhead.

• Pagination: The processor utilizes the startAt and maxResults parameters to man-

age pagination. It incrementally retrieves data until all matching issues have been

fetched.

• Error Handling and Retry Mechanisms: The implementation includes a retry

mechanism with exponential backoff. In case of transient failures or non-200 HTTP

responses, the processor retries the request up to a configurable maximum number of

attempts, ensuring resilience against temporary issues.

• Asynchronous Session Management: A persistent aiohttp.ClientSession is

maintained during batch execution to optimize resource usage and minimize the over-

head associated with creating multiple sessions.

This modular implementation allows the JQLProcessor to be seamlessly integrated with

components such as the JiraGraphManager, which converts the raw JSON responses into

Node instances for further processing and caching.
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JiraGraphManager The JiraGraphManager is responsible for orchestrating JIRA data

retrieval while leveraging caching mechanisms to optimize performance. It serves as an inter-

mediary between the Retriever and the JQLProcessor, ensuring that redundant queries

are avoided and previously retrieved data is efficiently stored and reused. It employs a

two-layered caching strategy to enhance efficiency:

• JQL Cache: A key-value store where the key is a JQL query string, and the value

is a list of JIRA issue keys (strings). This cache prevents redundant execution of

identical JQL queries.

• JIRA Graph Database: A separate in-memory key-value store that maps issue keys

to Node instances. This structure allows for fast lookups and maintains relationships

between issues.

By separating the storage of query results and issue data, the system minimizes redundant

API calls and ensures quick access to previously retrieved information.

The retrieval process in JiraGraphManager follows a structured sequence:

(1) Cache Lookup: When a request is received from the Retriever in the form of

(issue key, jql query), the manager first checks the JQL cache.

• If the query exists in the cache, the stored list of issue keys is retrieved.

• The issue keys are used to fetch corresponding Node instances from the JIRA

Graph Database, which are returned immediately.

(2) JQL Execution (Cache Miss): If the JQL query is not found in the cache:

• The JQLProcessor is invoked to execute the query on the JIRA server.

• The response provides raw JSON data, from which issue keys are extracted.

• These issue keys are stored in the JQL cache for future use.

• The retrieved data is transformed into Node instances and stored in the JIRA

Graph Database.
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(3) Response Generation: The retrieved Node instances are returned to the Retriever

and stored for future queries.

Node Class and JIRA Graph Database Implementation The Node class encapsu-

lates the structure of a JIRA issue. It includes:

• key: A unique identifier for the JIRA issue.

• link: The direct URL to the issue on the JIRA server.

• nodetype: The type of the issue (e.g., Initiative, Feature, Risk, or Epic).

• metadata: A dictionary containing key-value pairs that describe the issue.

• children: A list of Node instances representing child issues.

• related: A dictionary mapping relation types (e.g., associated risk) to lists of related

Node instances.

The class provides methods to add child nodes via add child and to associate related

nodes via add related, enabling the construction of a graph that mirrors the hierarchical

and relational structure inherent in JIRA data.

JIRA Graph Database The JIRA graph database is implemented as an in-memory key-

value store using Python’s dict type. Each entry in the dictionary maps a JIRA issue’s

unique key to its corresponding Node instance. This design supports:

• Efficient Lookup: Direct access to issue data via the unique issue key.

• Scalable Storage: Management of all retrieved JIRA issues in memory for quick

reference.

• Simple Maintenance: Easy addition, removal, and update of nodes within the

graph.
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The graph database provides methods such as add node to insert a new Node, get node to

retrieve an existing node by its key, and remove node to delete a node. This mechanism is

integral to the system’s caching strategy, avoiding redundant JQL queries by storing and

reusing previously retrieved data.

Together, the Node class and the in-memory graph database form the backbone of our

data storage solution, enabling efficient construction, traversal, and management of the

JIRA issue graph.

Retriever The Retriever class executes the final selection logic. It receives the Retrieval

Query (RQt) from Retrieval Query Planner and interacts with the JiraGraphManager to

retrieve relevant data. Based on the JQL specified in the RQt, the Retriever operates in

two key stages:

(1) Retrieving Raw Data: The Retriever receives a Retrieval Query (RQt) from the

Retrieval Query Planner, which consists of the following elements:

• issue key: The primary JIRA issue key used as an entry point for data retrieval.

• jql query: A structured JQL query used to fetch the necessary data.

• post processing fn: A function that transforms retrieved data into a final

structured format.

The Retriever forwards this query to the JiraGraphManager, which is responsible

for checking the cache, executing the JQL query (if necessary), and returning a list of

Node instances representing the retrieved JIRA issues.

(2) Post-Processing the Retrieved Data: Once the raw data is obtained from JiraGraphManager,

the Retriever applies the specified post processing fn. This function processes the

list of retrieved Node instances and converts them into a structured list of dictionaries

(List[Dict]) that align with the expected output format. Depending on the context,

the function may:

• Extract specific metadata fields from each Node.
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• Filter the list based on issue relationships, types, or user-defined conditions.

• Transform hierarchical structures into flattened or summarized formats.

The overall retrieval process is summarized in Algorithm 3:

Algorithm 3: JIRA Data Retrieval Process

Input: Parsed Query PQt = (issue key, intent type), IntentMap, Conversation
History ConvH

Output: Retrieved Data RDt

Step 1: Generate Retrieval Query
1.1 Access conversation context from ConvH.
1.2 If issue key is missing in PQt, extract it from ConvH.
1.3 Select appropriate JQL template from IntentMap based on intent type.
1.4 Construct JQL query jql query using issue key and template.
1.5 Retrieve associated post-processing function post processing fn from

IntentMap.
1.6 Formulate Retrieval Query:

RQt = (issue key, jql query, post processing fn).
Step 2: Retrieve Data from JIRA Graph Manager

2.1 Invoke Retriever with RQt.
2.2 Extract (issue key, jql query, post processing fn) from RQt.
2.3 Query JiraGraphManager via get data(issue key, jql query).

Step 3: Check and Retrieve from Local Cache
3.1 If jql query exists in cache:

3.1.1 Retrieve list of issue keys associated with jql query.
3.1.2 Fetch corresponding Node instances from JiraGraphDB.
3.1.3 Return retrieved Node instances.

3.2 Else, proceed to Step 4.
Step 4: Query JIRA and Update Cache

4.1 Invoke JQLProcessor to execute jql query.
4.2 Retrieve raw issue data from JIRA.
4.3 Convert raw issue data into Node instances.
4.4 Store retrieved Node instances in JiraGraphDB (keyed by issue key).
4.5 Update cache: Map jql query to retrieved issue keys.

Step 5: Post-Process Retrieved Data
5.1 Apply post processing fn to refine Node instances into structured output.
5.2 Return the final retrieved data RDt.

return RDt

4.2.3 Answer Generation

The Answer Generation step is the final component of the pipeline, designed to produce

a human-friendly response that aligns with the user query (Qt). This step synthesizes the
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retrieved contextual information (RDt), the predefined intent-based answer guidelines (Ga),

and the user query to construct the final answer. This step ensures that the final response is

both informative and aligned with the user’s intent. The core of the Answer Generation step

lies in the Answer Genertation Prompt Template, which serves as a blueprint for forming the

response. It utilizes the identified query intent from (PQt) and answer guideline property

of intent in IntentMap to formulate the prompt.

Prompt Template : Answer Generation

You are an AI assistant that answers user queries concisely and accurately using

the retrieved data. Based on the retrieved information, generate a human-friendly

response that directly addresses the user’s query. Ensure the response is clear, struc-

tured, and aligned with the provided guidelines. If multiple data points exist, sum-

marize them concisely while maintaining clarity. If no relevant data is available, state

that explicitly in a helpful manner. User Query: ”¶user query♢”

Retrieved Data:

¶retrieved data♢

Guidelines: ¶guidelines♢

Answer:

The generated response is also stored in the contextual memory history to support future

queries in the conversation.

Conversation Context History and Feedback The Conversation Context History

module serves as an in-memory structured cache, designed to maintain a record of the

ongoing conversation. This module plays a critical role in enabling coherent multi-turn

interactions by storing and retrieving relevant information from previous queries. The

history facilitates the generation of updated retrieval queries and ensures continuity in the

dialogue.
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Components of Context History The context history is represented as a list of tuples,

where each tuple contains the following elements:

• Active Issue Keys: The issue keys referenced in the current or previous queries.

• User Queries and Corresponding LLM Answers: Captures the natural language

queries provided by the user and the generated answers.

• Retrieved Data: The contextual information fetched from JIRA during the retrieval

step.

• User Feedback: Feedback provided by the user on the generated response, which

includes:

◦ Thumb Up/Down: Indicates positive or negative feedback.

◦ Text Comment: Additional details provided by the user for clarification or re-

finement.

By maintaining this structured cache, the module enables efficient tracking and retrieval

of prior conversation data.

Context History Representation The context history is stored as a list of tuples,

structured as follows:

ConvH = [

(issue_key_1, user_query_1, answer_1, retrieved_data_1, feedback_1),

(issue_key_2, user_query_2, answer_2, retrieved_data_2, feedback_2),

...

]

Each tuple encapsulates all necessary elements to reconstruct the state of the conversation

at any given point.
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4.3 Related Work

Recent advancements in retrieval-augmented generation (RAG) have explored various

strategies to enhance large language models (LLMs) for question answering and summariza-

tion tasks. While conventional RAG methods focus on retrieving relevant text from external

sources, newer approaches have sought to extend RAG capabilities by integrating structured

representations, such as graphs and knowledge bases, to improve retrieval efficiency and an-

swer quality. In this section, we discuss two notable approaches that incorporate structured

knowledge into RAG: graph-based indexing for query-focused summarization and knowl-

edge graph-enhanced retrieval for customer service question answering. We also highlight

how our system builds upon these methods by leveraging a graph-based representation of

JIRA issues for more effective retrieval and answer synthesis.

4.3.1 Graph-RAG for Query-Focused Summarization

Traditional RAG techniques struggle with global queries that require summarization

rather than explicit retrieval. To address this limitation, Edge et al. (2024) propose a Graph-

RAG approach designed for scalable query-focused summarization (QFS). Their method

constructs an entity knowledge graph from the source corpus and generates community-

based summaries, allowing it to effectively handle broad, high-level questions. While this

approach provides a structured way to aggregate information, it relies on a predefined

knowledge graph structure. In contrast, our system operates on JIRA issue data, represent-

ing issues as nodes in a graph where relationships are derived from inter-issue links, such

as parent-child and related issue connections. Unlike Graph-RAG, which generates sum-

maries from community-based entity clusters, our system focuses on retrieving issue-specific

context based on query intent without direct summarization.
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4.3.2 RAG with Knowledge Graphs for Customer Service QA

While standard RAG methods treat historical customer service tickets as plain text,

they often fail to capture the inherent structure and relationships between issues. To over-

come this, Xu et al. (2024) introduce a novel approach that integrates a knowledge graph

(KG) into RAG-based question answering. By constructing a KG from past issue-tracking

data, their method preserves intra-issue structures and inter-issue relations, leading to im-

proved retrieval accuracy and response generation. Similarly, our system also models issue

relationships as a graph structure, but instead of a traditional KG, we utilize a graph data

structure where each node represents a JIRA issue and edges encode issue dependencies.

Our retrieval strategy further refines context selection by mapping query intent to relevant

issue properties and metadata, reducing context length and mitigating hallucination risks.

Moreover, our system is designed for scalability, allowing users to query JIRA issues at vary-

ing granularities, from task-level details to higher-level epic-level insights. Finally, answer

synthesis in our system is guided by intent-specific heuristics to generate human-friendly

responses, ensuring clarity and contextual relevance.

4.4 Evaluation

The JIRA RAG Chatbot system is comprised of three primary components: NLQ Pars-

ing, Retrieval, and Generation. Among these, the NLQ Parsing component is the most

critical, as a correct understanding of the user’s query directly influences the subsequent

retrieval of relevant data and the quality of generated responses. The retrieval step is im-

plemented as rule-based JQL query-based data extraction from JIRA issues and doesn’t

require evaluation. Whereas the Answer Generation step is driven by the capabilities of

the used LLM and answer guidelines to form a cohesive response. In this section, we evalu-

ate the robustness and effects of prompt-based query understanding within the LLM-based

NLQ Parsing component. We first describe our approach to obtaining real-world query data

and then detail the experimental setup.
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4.4.1 Synthetic Data Generation for NLQ Parsing evaluation

Due to the limited availability of domain-specific query data, we constructed a synthetic

dataset that mimics real-world user queries. This dataset is used to evaluate the NLQ

Parsing step, which leverages a predefined set of intents from an IntentMap along with an

issue-key regex pattern. Our synthetic data generation accounts for both single-intent and

multi-intent queries. For example, a query such as

Can you identify the person assigned to ŚISSUE-106Ś?

is treated as a single-intent query (MetadataIntent), whereas a query like

What risks are linked to ŚISSUE-106Ś? Can you identify the person

assigned to ŚISSUE-106Ś?

comprises multiple intents (MetadataIntent and LinkedIssuesIntent).

Two-Step Data Generation Process

Our dataset is generated using a two-step approach that combines deterministic template-

based generation with LLM-driven query variation:

Step 1: Base Query Generation

(1) Issue Key Generation: Generate a random issue key (e.g., using the faker library).

(2) Intent Selection: Randomly select up to two intents from a predefined list.

(3) Template Substitution: For each selected intent, substitute the generated issue

key into the corresponding template to create a base query.

(4) Concatenation: Concatenate all generated base queries to form the final base query.

Step 2: LLM-Based Query Variation

(1) Template Integration: Insert the base query into a Synthetic Query Generation

Template.
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(2) LLM Query: Use a large language model (LLM) with an appropriate prompt to

generate a coherent variation of the base query.

(3) Validation: Validate the generated query by ensuring that the issue key remains

unchanged and that the output is a well-formed question. Discard any output that

deviates (i.e., exhibits hallucinations or loses the intended query structure).

4.4.2 Predefined Intents

The NLQ Parsing component relies on a set of predefined intents encapsulated in an

IntentMap. These intents determine the semantic interpretation of user queries and are

defined as follows:

1 Available Intents : [

2 "MetadataIntent": {

3 "definition": "Queries␣seeking␣information␣directly␣about␣

the␣metadata␣or␣fields␣of␣a␣specific␣issue.",

4 "templates": [

5 "What␣is␣the␣status␣of␣initiative␣`ISSUE -abc `?",

6 "Who␣is␣the␣assignee␣of␣`ISSUE -xyz `?",

7 "When␣was␣`ISSUE -def `␣created?"

8 ],

9 },

10 "ChildrenIntent": {

11 "definition": "Queries␣asking␣about␣the␣child␣issues␣of␣a␣

specific␣parent␣issue.",

12 "templates": [

13 "What␣is␣the␣status␣of␣all␣epics␣under␣project␣`ISSUE -

abc `?",

14 "List␣all␣features␣under␣initiative␣`ISSUE -xyz `."

15 ],

16 },

17 "LinkedIssuesIntent": {
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18 "definition": "Queries␣about␣issues␣explicitly␣linked␣to␣a␣

given␣issue ,␣such␣as␣related␣risks␣or␣blocked␣issues.",

19 "templates": [

20 "Are␣there␣any␣risks␣associated␣with␣`ISSUE -abc `?",

21 "List␣all␣issues␣blocked␣by␣`ISSUE -xyz `."

22 ],

23 },

24 "ChangelogIntent": {

25 "definition": "Queries␣about␣the␣change␣history␣of␣an␣issue ,

␣including␣status␣updates␣and␣field␣modifications.",

26 "templates": [

27 "Show␣the␣changelog␣for␣`ISSUE -123`.",

28 "Who␣changed␣the␣status␣of␣`ISSUE -456`␣last?",

29 "When␣was␣`ISSUE -789`␣assigned␣to␣Alice?"

30 ],

31 },

32 "ReasoningIntent": {

33 "definition": "Requests␣for␣summarized␣insights␣or␣analytics

␣about␣an␣issue.",

34 "templates": [

35 "Summarize␣the␣current␣status␣of␣`ISSUE -456`.",

36 "Give␣me␣a␣brief␣overview␣of␣`ISSUE -789 `.",

37 "What␣is␣the␣overall␣progress␣of␣`ISSUE -123`?"

38 ],

39 }

40 ]

4.4.3 NLU Prompt Experiments

The performance of the NLQ parsing pipeline is highly sensitive to the semantics and

structure of the prompt provided to the large language model (LLM). In particular, factors

such as wording, inclusion of examples, prompt length, and ambiguity can significantly
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influence the quality of intent identification. To investigate these effects, we designed a

series of experiments focused on prompt engineering. We evaluated the effectiveness of

three distinct prompt configurations using our synthetic dataset for both single-intent and

multi-intent classification tasks.

Prompt Configurations. We engineered three prompt variants that differ in the level

of detail and guidance provided:

• Prompt1(intent-list) : A minimal prompt that includes only a list of intents with-

out their definitions.

• Prompt2(definition-only): A zero-shot prompt that explicitly provides intent def-

initions.

• Prompt3(full): A comprehensive prompt that includes both explicit intent defini-

tions and illustrative examples.

Experimental Setup. For each prompt variant, we evaluated the NLQ parsing perfor-

mance on two classification tasks:

(1) Single-Intent Classification: Parsing queries associated with a single intent.

(2) Multi-Intent Classification: Parsing queries that combine multiple intents.

The synthetic dataset, generated as described in Section 4.4.1, includes a balanced mix of

single-intent and multi-intent queries to mimic real-world user inputs.

Evaluation Metrics. We employed three standard evaluation metrics to assess the per-

formance of each prompt configuration:

• Precision (P): The fraction of correctly identified intents among all intents predicted.

• Recall (R): The fraction of correctly identified intents among all actual intents.

• F1-score (F1): The harmonic mean of precision and recall, providing a balanced

measure of performance.

72



Results. Table 4.1 summarizes the performance of the NLQ parsing pipeline under the

three prompt configurations for both single-intent and multi-intent scenarios. Table high-

lights key differences in performance across prompt configurations. The minimal prompt

(Prompt1) shows modest scores (around 0.72 for single-intent and 0.81 for multi-intent F1),

while the definition-only prompt (Prompt2) slightly improves single-intent performance to

0.80 with little change for multi-intent. In contrast, the full prompt (Prompt3), which pro-

vides both definitions and examples, dramatically boosts performance—achieving 0.92 for

single-intent and near-perfect score 0.96 for multi-intent scenarios.

Table 4.1: Performance Metrics for NLQ Parsing under Different Prompt Configurations
Prompt Type Single-Intent (P, R, F1) Multi-Intent (P, R, F1)

Prompt1 (intent-list) (0.72, 0.72, 0.72) (0.84, 0.80, 0.81)
Prompt2 (definition-only) (0.80, 0.80, 0.80) (0.79, 0.76, 0.77)
Prompt3 (full) (0.92, 0.92, 0.92) (0.97, 0.96, 0.96)

4.4.4 Taxonomy for Comparing JIRA Plugins with the JIRA RAG Chat-

bot System

This section presents a taxonomy to compare existing JIRA plugins and conversational

tools with the proposed JIRA RAG Chatbot System. The taxonomy highlights gaps in

current solutions and positions our System as addressing these limitations through seman-

tic data interaction, domain-specific intent recognition, and efficient context awareness for

information retrieval. Existing JIRA plugins, as discussed in Botpress (2024a), Botpress

(2024b), Workativ (2024), predominantly function as API wrappers primarily designed for

CRUD operations on JIRA issues. In contrast, the JIRA RAG Chatbot System is en-

gineered to overcome these limitations by leveraging the semantic richness of JIRA data

and providing more intelligent and context-aware functionalities. The key differentiators

between existing plugins and the JIRA RAG Chatbot System are summarized in Table 4.2.

Existing Tools Many JIRA integrations, including chatbots like Botpress and Workativ,

primarily act as API wrappers. These tools facilitate basic CRUD operations such as issue

creation or updates but typically lack deep interaction with JIRA’s underlying semantic
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structured data. For instance, while Botpress can create JIRA issues Botpress (2024b),

its interaction is limited to API calls rather than leveraging the inherent relationships and

context within JIRA’s data. Similarly, workflow automation tools like ScriptRunner Adap-

tavist (2024) automate processes but often operate without real-time data contextualization

at a semantic level.

JIRA RAG Chatbot System The JIRA RAG System distinguishes itself by directly

integrating with JIRA’s semantic data layer. This allows for dynamic and context-aware

decision-making by understanding issue hierarchies, custom fields, and inter-issue relation-

ships. For example, it predicts sprint achievements by analyzing historical changelogs of

it.

Table 4.2: Feature Comparison: Existing JIRA Plugins vs. JIRA RAG Chatbot System

Feature Existing JIRA Plugins JIRA RAG Chatbot Sys-

tem

Data Interaction API wrappers focused on

CRUD operations

Direct, real-time interaction

with semantic data

Semantic Under-

standing

Limited use of structured data Leverages issue relationships

and metadata

Intent Recogni-

tion

Generic, non-domain-specific

actions

Context-aware, domain-

specific intent mapping

User Experience Basic functionality and visu-

alization

Conversational interface with

session management and user

feedback
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, I developed and evaluated two distinct applications that successfully

demonstrate the efficacy and versatility of Graph-based Retrieval Augmented Generation for

conversational question answering over semantically structured data. Through the creation

of the KGQA-RAG Chatbot for knowledge graphs and the JIRA-RAG Chatbot for JIRA

issue tracking data, my research provides compelling evidence for the benefits of leveraging

structured knowledge to enhance RAG based conversational AI systems.

Both applications I developed showcase the core principle of Graph RAG: maintain-

ing the inherent data relationships during retrieval and generation, moving beyond tradi-

tional flat text representations. By employing structured queries and graph traversal in

KGQA-RAG, and an intent-based design that understands JIRA’s semantic data layer in

JIRA-RAG, I demonstrated the power of preserving semantic context. The KGQA-RAG

Chatbot not only outperformed the baseline CONVINSE method but also achieved per-

formance comparable to a stand-alone KGQA system when evaluated on self-contained

questions. Crucially, adding a conversational layer to an existing KGQA approach did not

degrade performance, affirming the feasibility of extending KGQA solutions with multi-turn,

context-aware capabilities. The JIRA-RAG Chatbot established an innovative approach for

creating informative conversational interfaces for complex enterprise data like JIRA issues.
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This application highlighted the significant value of contextually interpreting issue hierar-

chies and custom fields, especially in intricate project management scenarios, through its

intent-based and extensible design.

5.2 Limitations

The KGQA-RAG and JIRA-RAG chatbots developed and evaluated in this thesis show

considerable promise. However, several limitations emerged during their development and

testing, which provide clear opportunities for future improvements. These challenges can

be broadly grouped into three categories: conversational context management, data source

coverage and access, and system-specific constraints.

Conversational Context Management

Both applications faced challenges managing multi-turn conversation complexities. KGQA-

RAG exhibited issues with question reformulation due to focal entity shifts and increasing

context complexity, potentially reducing clarity/accuracy and leading to hallucinations/er-

rors. Similarly, while the JIRA-RAG system can manage user query intents, it struggles

with ambiguous multi-intent queries and extended multi-turn interactions, which degrade

overall dialogue performance. Addressing these issues will require more advanced dialogue

state tracking methods tailored to Graph RAG architectures.

Data Source Coverage and Access

A significant limitation for both systems lies in the completeness and accessibility of

their underlying data sources. The performance of the KGQA-RAG system is closely tied

to the capabilities of its KGQA component, which can become a bottleneck during raw

data retrieval from the knowledge graph. In the case of the JIRA-RAG system, the cur-

rent inability to search within issue attachments restricts its effectiveness, particularly in

fields such as legal, finance, or compliance, where critical information often resides in these

documents. Enhancing data source coverage to include a wider variety of data formats is
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essential for improving the real-world utility and comprehensiveness of KG-RAG systems.

System-Specific Constraints

Beyond the shared limitations, each application also exhibited system-specific con-

straints. In the KGQA-RAG system, the phenomenon of word jumbling with long named

entities during reformulation highlights limitations in the robustness of its natural language

processing components. Addressing this will require further refinement to accurately handle

complex or unusual textual inputs. For the JIRA-RAG system, its current implementation

as a standalone application rather than a native JIRA plugin within the Atlassian ecosystem

can impede seamless deployment and diminish user experience in typical JIRA workflows.

A deeper integration into the target platform would significantly enhance usability and

accessibility for end-users.

5.3 Future Work

Enhancing Conversational Context Management

Future research should focus on overcoming the challenges associated with managing

conversational context. In particular, incorporating more advanced dialogue state track-

ing and enhanced context representation mechanisms could significantly improve system

performance.

Expanding Data Source Coverage and Reasoning

To overcome the limitations related to data access and completeness and to enhance the

reasoning capabilities of KG-RAG systems, future research should explore:

• Integrated Attachment Search: For applications like JIRA-RAG, developing

mechanisms to index and semantically search within attachments, enabling access

to a richer and more complete set of information associated with structured data.
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• LLM-Enhanced KGQA Components: Investigating the integration of more ad-

vanced Large Language Model (LLM) techniques directly into the KGQA component

itself. This could involve using LLMs for more sophisticated knowledge graph traver-

sal, reasoning over implicit relationships, and handling incomplete or noisy knowledge

graphs, potentially leading to more robust and accurate information retrieval.

Improving System Integration and User Experience

For practical deployment and broader adoption of KG-RAG systems, future work should

focus on enhancing system integration and user experience:

• Native Platform Integrations: Developing native plugins or integrations for plat-

forms such as JIRA, enterprise knowledge management systems, and other relevant

environments. This integration would streamline deployment, improve user workflows,

and enhance overall accessibility.

• Personalization and Adaptability: Exploring personalization techniques that al-

low KG-RAG systems to adapt to individual user preferences, roles, and domain

expertise. Such adaptability would create a more tailored and efficient conversational

experience.
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Appendix A

Master’s Coursework and

Contributions

A.1 Master Coursework

Course Course Code Semester Grade

DISTRIBUTED SYSTEM DESIGN COMP6231 Fall 2022 A+
INFO. RETRIEVAL & WEB SEARCH COMP6791 Fall 2022 B+
DEEP LEARNING COMP691 WINTER 2023 A
FOUNDATIONS/SEMANTIC WEB COMP6531 Spring 2024 A+

Table A.1: List of Courses and Grades

A.2 Publications

Omar, R., Mangukiya, O., & Mansour, E. (2025). Dialogue Benchmark Generation from

Knowledge Graphs with Cost-Effective Retrieval-Augmented LLMs.

Omar, R., Mangukiya, O., Kalnis, P., & Mansour, E. (2023). Chatgpt versus traditional

question answering for knowledge graphs: Current status and future directions towards

knowledge graph chatbots. arXiv preprint arXiv:2302.06466.
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