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Abstract

Enhancing Automated Testing With GUI Rendering Inference for Mobile
Applications

Ehsan Abdollahi

Increasingly complex mobile applications require more accurate methods of automated GUI testing.
Traditional testing frameworks relying on fixed delays or pixel-based image comparison methods
have a lot of limitations. Most of the time, these methods misclassify GUI rendering states, which
leads to false positives. This thesis proposes a new approach to these issues by the inference of the
rendering state of GUIs. Drawing on large-scale pre-trained image classification models like Vision
Mamba, it enables the accurate classification between rendered GUIs. It does this through a fine-
tuning process of a large model. It also involves more sophisticated model-training techniques to
ensure that the best is obtained. Instead, this system architecture’s semantic examination of GUI
elements goes deep into more meaningful matches of context and visual information well beyond
anything at the level of pixels.

The efficiency and accuracy of GUI testing will increase significantly with the proposed approach.
That is different from fixed throttles that introduce unnecessary delays: it guarantees automated
tests execute on fully rendered GUIs, which, in turn, reduces false positives. With this enhancement,
development teams will save time and resources. Deep learning-based classification introduces a
dynamic system that changes according to various GUI rendering scenarios; therefore, it is also
more robust than what is already available.

The contributions of this thesis are three-fold: it proposes a new deep learning-based approach
for inferring GUI rendering states, develops a high-quality dataset to support fine-tuning models,

and performs an in-depth comparative analysis of large image classification models for GUI testing.

iii



Statement of Originality

I hereby declare that I am the sole author of this thesis. All ideas and inventions attributed
to others have been properly referenced. I understand that my thesis may be made electronically

available to the public.

iv



Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr. Yang
Wang and my co-supervisor, Dr. Tse-Hsun (Peter) Chen, for your exceptional guidance, patience,
insights, and encouragement. Without your supervision and invaluable support, this thesis would

not have been possible.

Special thanks to my thesis examiners, Dr. Xinxin Zuo and Dr. Shin Hwei Tan for their extremely

valuable and constructive suggestions.

Lastly, I want to thank my family for their constant support and understanding during this

period. Your love and encouragement have been my driving force.



Contents

List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Imtroduction . . . . . . . . . L 1
1.2 Research Hypothesis . . . . . . . .. .. . 2
1.3 Thesis Overview . . . . . . . . . o e e 2
1.3.1 Chapter 2: Background and Literature Review . . . . . ... ... ... ... 3

1.3.2 Chapter 3: Infer the GUI Rendering State . . . . . .. ... ... ... .... 3

1.3.3 Chapter 4: Results of the Study . . . . .. ... ... .. ... ....... 4

1.3.4 Chapter 5: Thesis Contributions and Future Work . . . . . ... .. ... .. 4

1.4 Thesis Organization . . . . . . . .. .. . L e 4

2 Background and Literature Review 5
2.1 Introduction to GUI Testing . . . . . . . . . . . . . .. 5
2.2 Literature Review . . . . . . . . . L 7
2.2.1 Automated GUI Test Generation . . . . . . . . . .. .. ... ... ...... 7

2.2.2 GUI Test Record & Replay . . . . . . . . .. ... . ..., 9

2.2.3 GUI Testing Framework . . . . . . ... .. ... ... ... ... 11

2.2.4  Element Detection in GUI Testing . . . . . . . . ... ... ... ... .... 12

2.2.5 Challenges of Vision-based GUI Testing . . . . . ... ... ... ....... 13

2.3 Conclusion . . . . . . .. 15

3 Infer the GUI Rendering State 16
3.1 Imtroduction . . . . . . . . . . . L 16
3.2 GUI Rendering and Testing . . . . . . . . . ... . 17
3.2.1 Categorizing GUI Rendering State . . . . . . ... ... .. ... .. ..... 19

vi



3.2.2 Adaptive Throttle . . . . . . . . . . ...
3.2.3 AdaT Approach . . . . . . . .. .
3.3 Data Preparation . . . . . . . . .. L
3.3.1 RICO Dataset . . . . . . . . .
3.3.2 Transiting Frame Identification . . . . . .. .. ... ... 0oL
3.3.3 Analyzing SSIM for Auto-labeling . . . .. .. ... ... ... ... . ...
3.4 Model Fine-tuning . . . . . . . . . oL Lo
3.4.1 Vision Mamba . . . . ...
3.4.2 Vision Transformers . . . . . . . . .. ..
343 ResNet . . . . e
3.4.4 Workflow of the Research . . . . . ... ... ... ... ... .. ...
3.5 Conclusion . . . . . . L e

4 Results of the Study

4.1 Introduction . . . . . . . . . L
4.2 RQ1: SSIM’s Labeling Accuracy . . . . . . . . . . o
4.3 RQ2: How to prepare a high quality dataset? . . . . . . ... ... ... . ......
4.4 RQ3: Accuracy of Large Models on Classifying GUI Images . . . . . ... ... ...
4.4.1 Analysisof Models . . . . . . . ..
4.4.2 Comparative Analysis of Models . . . . .. .. ... ... ... .. ...
4.4.3 How the new result will replace existing component in AdaT . .. ... ...
5 Thesis Contributions and Future Work
5.1 Conclusion . . . . . . . . e
5.2 Future Work . . . . . . .
Bibliography

vii

40
40
40
42
43
44
a0
92

53
93
54

56



List of Figures

© 0 N O Tt e W N

e e e e e e e T
N O U e W NN = O

General workflow of GUI test generation. . . . . . ... ... ... ... ....... 8
General workflow of GUI test record and replay. . . . .. .. ... ... ... .... 10
General workflow of GUI testing framework. . . . . . . .. ... .. ... ... ... 11
Element detection with different algorithms . . . . . . .. .. ... ... ... .. .. 13
Automated GUI testing with various throttles . . . . . . . . .. ... .. ... .... 18
Examples of partially rendered state. . . . . . .. ... oo oL 19
GUIs and activity coverage across various Droidbot throttle settings . . . . ... .. 20
Overview of AdaT approach. . . . . . . . . . ... ... .. ... ... . ... ... 22
Pipeline for automated data collection . . . . . . . .. ... ... ... .. 25
Vision Mamba model overview . . . . .. ... Lo L o 30
Vision Transformer model overview . . . . . . . .. .. ... Lo 35
Residual learning: A building block. . . . . . ... .. o000 o 37
The workflow of the research. . . . . . . ... ... ... . 39
Training process of Vision Mamba model . . . . . .. .. .. ... ... ... .. .. 44
Training process of Vision Transformers model . . . . ... ... ... ... ..... 46
Training process of ResNet model . . . . . . . . .. ... ... ... ... ..., 48
Training process of MobileNetV2 model . . . . . . .. ... ... ... ... 49

viil



List of Tables

N O Ot s W N =

The summary of dataset statistics for 8 apps . . . . . .. .. ... .. ... 41
The manually labeled dataset . . . . . . . ... .. .. ... . 42
The classification performance of the Vision Mamba model . . . . . . ... ... .. 45
The classification performance of the Vision Transformers model . . . ... ... .. 47
The classification performance of ResNet model . . . . . . . . ... ... .. ..... 49
The classification performance of MobileNetV2 model . . . . . . .. ... ... ... 50
Comparison of test results for Vision Mamba, Vision Transformers, and ResNet. . . 51

ix



Chapter 1

Introduction

1.1 Introduction

Automated testing represents one of the core activities of the software development life cycle
due to its ability to detect defects much faster, help in improving code quality, and allow smoother
development flows. However, with the increase in mobile applications getting so feature-rich and
graphically complex, the importance of GUI testing has also evolved to be very significant. Unlike
traditional software testing, GUI testing allows confirmation that all visible screen controls, such as
buttons, text boxes, and images, all work as they should. It ensures that the users will have proper
navigation, correct visual appearance, and error-free interaction with the application.

However, GUI rendering has been considered as one of the key challenges in GUI testing. Ren-
dering here refers to visually displaying the user interface on a screen. In a mobile application, GUIs
can either be fully or partially rendered and depend on network speed, hardware limitations, and
software performance [14]. If automated testing on a partially rendered GUI proceeds, it may miss
critical bugs or fail due to the partial loading of elements [44], [10]. This challenge calls for more
enhanced mechanisms to infer the rendering state of GUIs before testing.

This thesis is motivated by the general inefficiency of the existing GUI testing frameworks, which
either depend on fixed time delays known as throttles or simplistic image comparison methods, such
as the Structural Similarity Index [34], [14].

The SSIM has been chosen as the baseline for GUI rendering state classification because it is one
of the most used metrics in image quality assessment. SSIM is a metric designed to compare the
structural similarity between two images, making it suitable for detecting differences in rendering
states. Another work [14] employed SSIM for GUI testing, classifying completely and partially

rendered GUIs; thus, arguing that the presence of a structural difference in pixel-level composition



within images may point out to its rendering state.

However, SSIM has the limitation of over-dependence on pixel-level similarities that cannot
provide much semantic difference between fully and partially rendered GUIs. For instance, rendering
artifacts or suboptimal lightning conditions can trigger minor changes of pixel values that are leading
to SSIM self-miscategorization, unable to interpret by SSIM for a deeper visual context in which
such pixel values should relate. Moreover, SSIM does not provide higher-level analysis related to
structural relationships among various GUI elements, basic for valid inference of the correctness of
the rendering states.

These limitations further indicate that a more sophisticated approach is required. This thesis
leads to a new direction of GUI rendering inference, which attempts to classify full and partial GUI
renderings precisely. That would prevent the early runs of tests by a method perhaps proposed
in this work that could improve testing efficiency and further ensure the reliability of automated
tests. The core contribution of this thesis is developing a system that leverages the most recent
deep learning models and advances in computer vision to classify GUI rendering states accurately.
Unlike SSIM, which relies on pixel similarity, the proposed approach uses models analyzing semantic
features in GUI images, thus enabling more precise classification.

It leverages large-scale image classification pre-trained models-Vision Mamba, Vision Transform-
ers, and ResNet-trained on huge image datasets and fine-tuned on a selected dataset of GUI images
from RICO, one of the largest public datasets on mobile application user interfaces. It would be
desirable to develop, through a carefully designed fine-tuning process, a model that could classify

GUI images as either fully or partially rendered with high precision and recall.

1.2 Research Hypothesis

Thesis Statement: This thesis hypothesizes that deep learning-based methods can signifi-
cantly enhance the accuracy, efficiency, and reliability of automated GUI testing by accurately
inferring GUI rendering states. By addressing the limitations of traditional approaches like SSIM
and fixed throttling, this research aims to improve testing workflows and outcomes through the

use of advanced computer vision techniques.

1.3 Thesis Overview

This section presents an overview of the thesis, including a summary of each chapter.



1.3.1 Chapter 2: Background and Literature Review

This chapter summarizes several of the basic concepts and approaches used as the basis for
GUI testing. The importance of GUI testing for delivering the best possible user experience is
underlined. How increased complexity of GUI rendering, device fragmentation, and missing objects
in layout files are imposing new challenges to conventional ways of testing. The chapter covers
a wide spectrum of automated GUI testing techniques, from random and model-based to system-
and learning-based methods. The discussions involve record-and-replay frameworks, vision-based
testing, and the integration of state-of-the-art technologies like large language models. These will
empower better, more efficient, scalable, semantically richer testing strategies that come closer to
human perception, handle diverse GUIs, and adapt to ever-evolving app ecosystems.

This chapter will go into detail about the challenges of classic test tools, particularly with re-
gard to cross-device and cross-platform, introduce the emergence of vision-based and Al-driven
approaches, and strongly emphasize how such methods based on vision analysis, object detection,
and large language models solve some of the challenges presented by pure pixel-level approaches.
That is, such developments provide a higher degree of accuracy in context-aware GUI testing, hence
extending the scope of testing and enhancing reliability and adaptability. Jointly, they form the
path for test frameworks to be increasingly more robust, keeping pace with rapid development and

diversity seen in today’s mobile apps.

1.3.2 Chapter 3: Infer the GUI Rendering State

This chapter presents the challenges to be resolved with the precise measurement of GUI ren-
dering states in tests; the limitations of having a fixed throttling period are also discussed, aside
from the SSIM-based method called ADAT. While ADAT uses a light CNN for extracting full and
partial render results from screenshots, this approach suffer from incorrect automatic dataset la-
beling to train its network. The chapter addresses this with a better approach: fine-tuning Vision
Mamba, a deep-learning model that exhibits much better robustness, accuracy, and generalization
when trained on a manually curated subset of RICO. This approach does not only remove the need
to label a large dataset but also outperforms alternative models such as Vision Transformers and
ResNet.

By demonstrating the performance of Vision Mamba on complicated rendering cases, it shows
how semantically rich models, coupled with data-driven metrics, hold a superior edge over pure pixel
similarity-based metrics. The section wraps up with an assurance of more resilient, scalable GUI
state classification using the architectural abilities of Vision Mamba in testing for both efficiency

and reliability.



1.3.3 Chapter 4: Results of the Study

This chapter presents a comprehensive evaluation of the proposed GUI rendering state classi-
fication approach by comparing the performance metrics of Vision Mamba, Vision Transformers,
and ResNet. In contrast to an SSIM-based approach, such as ADAT, which is shown to be capable
of producing a high labeling error rate, Vision Mamba significantly reduces misclassifications with
its fine-tuned, manually curated dataset. This refined dataset and advanced architectural features
of the model together help it to generalize better on complex GUI states and outperform Vision

Transformers and ResNet on accuracy and stability.

1.3.4 Chapter 5: Thesis Contributions and Future Work

In this chapter, we summarize the contributions of this thesis and discuss several potential

directions for future work.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses this thesis’s background and
literature review. Chapter 3 presents our study on GUI rendering state classification for Android
applications. Chapter 4 describes the results of our approach. Chapter 5 concludes the thesis and

discusses the potential directions for future work.



Chapter 2

Background and Literature Review

In this chapter, we first present the foundational concepts related to GUI testing, the role of
GUI rendering in software development, and the various approaches to automated GUI testing. We
also present a detailed literature review of previous works and highlight gaps in the current state of

research that this thesis aims to address.

2.1 Introduction to GUI Testing

Background of Graphical User Interface Testing. The Graphical User Interface (GUI) has
become a crucial component of mobile applications, serving as the primary connection between apps
and end users and directly influencing user experience. Poor quality in the GUI can diminish the
overall value and functionality of the mobile app. Extensive research has focused on GUI testing
as a reliable approach to maintaining app quality. Through thorough GUI testing, developers can
confirm that mobile apps’ visual and interactive aspects fulfill functional requirements while offering
a smooth and intuitive user experience.

As mobile applications evolve rapidly, their inherently GUI-intensive and event-driven charac-
teristics make the Graphical User Interface of a mobile app critically important [4]. The mobile
devices’ inherent limitations, such as small screen sizes and limited user attention, demand intuitive
and efficient interfaces. A robust mobile app GUI enhances user experience and facilitates the exe-
cution of complicated tasks with minimal friction and cognitive load [28]. A well-designed GUI, a
crucial bridge between apps and end users, becomes critical in improving user satisfaction, reducing
potential errors in user operations, and ultimately determining the app’s success in a competitive
marketplace [2]. In this context, the GUI serves as a visual layer and an essential intermediary

between user intent and app functionality. As a result, even a single bug in the GUI of mobile apps



can lead to significant consequences. A faulty GUI undermines the overall user experience and can
cause potential misbehavior within the app [30]. In some cases, a GUI bug can even expose users
to security risks, potentially putting sensitive data in jeopardy [47]. Thus, ensuring GUI quality is
a significant part of the whole mobile app quality assurance.

The software testing community has long been dedicated to enhancing the effectiveness and
efficiency of mobile app GUI testing in all aspects, with efforts since the previous century [33]. GUI
testing is a vital aspect of mobile app testing, primarily aimed at verifying that the app’s GUI meets
specified design requirements. This involves checking that essential information is displayed in the
correct locations, and that test events trigger the intended responses by simulating real user actions
[2, 28, 38]. GUI testing generally includes examining the functionality, appearance, and interactivity
of GUI elements (such as buttons, text boxes, and menus) to confirm the smooth operation of the
user interface and maintain a consistent user experience. GUI testing is challenging due to the
intricate interactions between various GUI components, fragmented operating environments, custom
widget designs, and the need for accurate simulation of user operations. As various app analysis
technologies have advanced, GUI testing has progressively shifted from manual to automated testing,
with automated techniques now playing a central role.

The integration of intelligent algorithms has significantly advanced mobile app GUI testing.
Traditional GUI testing methods primarily rely on the source code or layout files of the app under
test to gather information for generating or executing tests. However, these conventional methods
encounter several challenges. First, the well-known “fragmentation problem” [46] of mobile plat-
forms—referring to the variety of operating environments for mobile apps—requires GUI testing
to adapt to diverse environments. This adaptation is challenging due to different implementations
and underlying system support across platforms. Second, traditional techniques for GUI element
detection rely on obtaining the runtime layout structures from the apps [9]. However, certain GUI
elements are absent from layout files [50]. For instance, Canvas widgets, commonly used to cus-
tomize widget styles and content, often do not appear in these layout files. Canvas widgets may
contain elements like buttons, text fields, and others, but these embedded widgets are not displayed
in the GUI layout files. Additionally, some widgets frequently refresh their content, posing a chal-
lenge for GUI testing techniques that attempt to locate preset targets after they’ve been updated.
This requires deciding whether to identify these targets by content or location. Inaccurate widget
identification can ultimately lead to failures in accurately simulating user actions.

In short, there is a significant gap between the information retrieved from layout files and what is
displayed at the GUI level. Based on the mental model [7], which underpins visual metaphor design
in mobile apps, a more effective approach in GUI testing is to gather information from a visual

perspective [3]. This “what you see is what you get” approach aligns with how users perceive the



interface. With advancements in computer vision technologies, vision-based GUI testing approaches
have emerged to address these challenges. These methods analyze and interpret the GUI of the
app under test from a visual perspective, using app GUI screenshots for understanding. They
offer several advantages: First, app developers often design similar GUI content and layouts across
different environments, facilitating universal analysis and comprehension of the app GUI. Second,
GUI element detection improves by directly analyzing app GUI screenshots like human testers do.

Third, user operations can be simulated based on this vision-based detection of GUI elements.

2.2 Literature Review

Automated GUI testing involves using automated tools and scripts to execute GUI tests. This
automates the testing process, including tasks such as test generation, interaction execution on the
GUI, and checking whether the system’s responses align with expected outcomes. In this section, we
review these aspects: 1) GUI test generation, 2) GUI test record & replay, 3) GUI testing framework
4) Fundamental for GUI testing, 5) Challenges in GUI Testing.

2.2.1 Automated GUI Test Generation

As software applications have become increasingly complex, the manual creation of test cases
presents a significant challenge, often resulting in a labor-intensive and time-consuming process.
The advent of automated GUI test generation has, therefore, gained substantial importance in the
software development field. Automated test generation aims to streamline the testing process, en-
abling developers to address software’s multifaceted and evolving aspects with greater efficiency and
consistency. This approach reduces the time required to create and execute test cases. It enhances
the reliability of the tests, as they are less prone to oversights or inconsistencies that can arise in
manual processes. Through automated GUI test generation, developers can maintain rigorous qual-
ity control standards, ultimately supporting delivering high-quality software applications that meet
user expectations and functional requirements.

This section examines approaches introduced over recent years, all aimed at automating the
creation of test cases that effectively capture a wide range of GUI interaction scenarios. These
automatically generated test cases play a dual role: they significantly enhance test coverage while
also serving as powerful tools for detecting hidden errors and flaws within the application. For
testing professionals, this automated approach provides a more efficient and exhaustive method of
identifying latent issues, ultimately contributing to improved software quality and reliability. Figure
1 illustrates the general workflow involved in GUI test generation.

The workflow illustrates the iterative process of automated GUI test generation, starting with
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Figure 1: General workflow of GUI test generation.

Demand Analysis, where testing requirements are identified based on system needs. These insights
inform the Generation Strategy, where a detailed plan for generating test cases is formulated. This
strategy is then implemented during the Test Generation phase, creating specific test cases. The
generated tests proceed to the Test Execution stage, where they are run against the application to
evaluate its behavior. Results from the execution are processed in the Result Analysis phase, where
findings are reviewed for accuracy and insights. Based on the analysis, iterative updates refine the
test generation strategy to improve the process, ensuring the system meets evolving requirements
effectively and efficiently.

GUI test generation methodologies can be categorized into four primary approaches: random-
based, model-based, system-based, and learning-based[51]. Each approach brings distinct methods

for generating test cases tailored to different testing needs.

Random-based approaches utilize test generation by randomly selecting input values or sequences
of operations. This method is particularly effective for uncovering unexpected exceptions and iden-
tifying boundary conditions within a system. Additionally, random-based strategies enable rapid
and comprehensive testing, allowing developers to assess system responses across a broad range of
scenarios without predefined parameters. Owing to its inherent randomness, random testing proves
valuable in identifying issues that application developers may not have anticipated. This approach
facilitates the discovery of previously unknown potential problems, thereby enhancing the robustness
and reliability of the application. Zeng et al. [53] conducted an industry case study on the widely
used Monkey tool. This study applied random-based GUI test generation to WeChat and high-
lighted several limitations of the Monkey tool when deployed in an industrial environment. While
random testing effectively explores a wide range of possible test paths, it also introduces the issue of
test case redundancy. The lack of inherent structure in this approach often results in the generation
of test cases that are imprecise and insufficiently targeted, diminishing their overall accuracy and

efficiency in identifying specific issues within the system.

Model-based strategies use abstract models to depict the interactions, behavior, or structure of



an application under test. Test cases are systematically created using these models. Code coverage
and path analysis were examples of static and dynamic analysis approaches that were the mainstay
of early model-based test-generating systems. Although these techniques work well for identifying
simple mistakes, they usually don’t produce test cases with extensive coverage, which restricts their

ability to assess complicated systems fully.

System-based techniques for creating test cases are gaining popularity, especially in extensive
application projects since the complexity of mobile applications necessitates a more significant focus
on system-level issues in GUI test-generating techniques. With an emphasis on tracking system-
wide changes and interactions, this method thoroughly evaluates the application’s functionality,
performance, and security. System-based testing provides a strong foundation for assessing the
stability and integrity of the program overall since it can be used in a range of scenarios, such as

sensor data leaks, crash testing, and code update impacts.

Learning-based techniques have been increasingly included in many testing methodologies due
to the quick development of machine learning and deep learning technologies and the increasing
complexity of application systems. As a result, learning-based methods for creating GUI tests have
become more popular. These techniques use ongoing data collection to improve and optimize GUI
test production over time, enabling them to adjust to applications’ changing features and structure.
This flexibility improves GUI testing’s long-term efficacy. Additionally, as GUIs have advanced in
sophistication, GUI images include a wide range of information, such as layouts, color schemes, icons,
and other visual components. Learning-based techniques overcome the drawbacks of conventional

code and text analysis methods by enabling vision-based GUI testing.

2.2.2 GUI Test Record & Replay

The main goal of all the recording and replaying techniques is to capture user interactions with
the graphical user interface. To verify how the software behaves in various situations, these exchanges
are captured as test scripts that may be played back. Introducing such techniques has significantly
simplified creating test scripts by reducing the technical skill requirements for testing experts and
enabling non-technical users to participate in GUI testing. The main workflow of the GUI test
record-and-replay procedure is shown in Figure 2 [51].

This workflow begins with Script Record, where user interactions with the application are cap-
tured to create a test script. The recorded script then moves to the Saving and Editing phase, where
it can be stored and modified as needed to address specific testing scenarios. Next, the script is
executed during the Script Replay stage, simulating the recorded interactions on the application.
Finally, in the Verification and Reporting phase, the test results are analyzed to verify application

behavior, and detailed reports are generated to document any identified issues or confirm successful
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Figure 2: General workflow of GUI test record and replay.

outcomes.

Initially, the primary purpose of GUI test record-and-replay was to support regression testing
within the same application and platform environment, typically assuming similar external con-
ditions and overlooking the issue of mobile app fragmentation [46]. These approaches have been
refined to minimize the number of recorded events, manage replay errors through image process-
ing, and integrate GUI exploration with record-and-replay functionalities. However, the increasing
variety of mobile devices and platforms has highlighted the fragmentation problem, necessitating ad-
vancements in GUI test record-and-replay methods to facilitate cross-device and even cross-platform

migration.

Cross-device approaches aim to address variations across different types of devices—such as smart-
phones, tablets, and desktops—as well as across brands (e.g., Huawei, Samsung, Xiaomi) and OS
versions (e.g., Android 7, Android 9, Android 10) within the same operating system environment.
This enables developers to create test scripts on one device and replay them on various other devices

within the same OS to verify app functionality across device types.

Cross-platform approaches, in contrast, extend the capability to record and replay across disparate
operating systems, such as Android, i0OS, and Web-based platforms. This allows the creation of test
scripts on one OS and their deployment across different platforms to ensure app consistency and
compatibility [51].

Additionally, with the growth of mobile applications, there is growing interest in extending test
migrations to different applications with analogous functionalities. Cross-app approaches facilitate
record-and-replay functionality between different applications, particularly when apps share similar
features. This capability enables capturing and simulating user interactions across multiple apps,

making it helpful in validating standard scenario-based tests across diverse applications.

10



2.2.3 GUI Testing Framework

In the progression of GUI testing, while targeted research focusing on specific components such as
test script debugging, test generation, and expected outcome evaluation has yielded valuable insights,
practitioners increasingly seek a holistic framework that allows for the independent execution of
the entire GUI testing process. Rather than manually integrating disparate testing procedures,
professionals are inclined toward a comprehensive solution that streamlines the process from start
to finish. Consequently, this section on testing frameworks presents a selection of notable frameworks
developed in recent years, each designed to provide a cohesive, all-in-one approach that supports
the efficient execution of the complete GUI testing workflow. Figure 3 [51] illustrates the general

workflow of a GUI testing framework.

~ o o¥S
' | l I — o{(v) — — — —
— o L) =
Demand Analysis Test Generation Execution & Verification Test Maintenance Coverage Evaluation

Figure 3: General workflow of GUI testing framework.

This workflow begins with Demand Analysis, where testing requirements and objectives are iden-
tified based on the system’s specifications and user needs. Next is the Test Generation phase, where
specific test cases are developed to address the identified requirements. These tests are then executed
and verified during the Execution and Verification stage to ensure the application’s functionality and
performance meet expectations. Following this, the Test Maintenance phase focuses on updating
and refining test cases to accommodate changes in the application. Finally, the Coverage Evaluation
step assesses the extent and effectiveness of the testing process, ensuring that all critical components
and scenarios have been adequately addressed.

GUI testing frameworks are developed to automate and streamline the process of GUI testing for
mobile applications. These frameworks enable testers to create, execute, and manage test cases to
verify the functional accuracy of the app’s GUI, identifying potential issues while ensuring the app’s
stability, functionality, and performance. By incorporating features such as recording and replaying,
script automation, and cross-platform and cross-browser compatibility, GUI testing frameworks
assist development teams in delivering a high-quality user experience.

From a technical standpoint, GUI testing frameworks can be classified into several types based

on traditional methodologies.

11



e Module- or library-based frameworks focus on encapsulating operations across different mod-
ules of the tested application, or they employ a library structure to support cross-module

business functionalities.

e Data-driven frameworks distinguish data from test cases, facilitating rapid generation of test

cases by varying input data independently.

e Keyword-driven frameworks utilize a tabular or structured format for test case design, trans-

lating specific keywords into executable functions.

e Behavior-driven development frameworks prioritize testing based on clearly defined expected

behaviors, aligning development and testing with the application’s functional requirements.

2.2.4 Element Detection in GUI Testing

This section focuses on two primary areas: GUI element detection and GUI testing evaluation
criteria. Image recognition technology, for instance, aids automated testing tools in accurately
identifying and interacting with elements on an app’s GUI during the testing process. Meanwhile,
testing evaluation assists developers in efficiently selecting suitable testing methods. Together, these
auxiliary techniques hold the potential to significantly improve the efficiency and precision of GUI
testing, ultimately reducing the workload for app developers.

The role of GUI element detection and localization is fundamental in the creation, automated
generation, and execution of test scripts. In recent years, various tools and algorithms have been de-
veloped to enhance the accuracy of identifying and locating diverse GUI elements—such as buttons,
text fields, and drop-down menus—by leveraging technologies like image recognition and positioning
algorithms. These tools and algorithms facilitate test generation and record-and-replay processes,
empowering testing professionals to efficiently manage and test various mobile applications.

With the rapid expansion of mobile applications, the visual content within these apps has become
increasingly complex and central to the testing process. Testers frequently engage in GUI element
detection to effectively capture essential information. In GUI test record-and-replay processes, it is
often necessary to record the specific GUI elements involved in user actions during the recording
phase and to match replay interface elements with recorded interface elements during the replay
phase. V28, developed by Bernal-Cardenas et al. [20], leverages computer vision technology. It
utilizes advanced object detection and image classification techniques to identify and categorize user
actions recorded in video format, transforming them into replayable test scenarios.

In the field of GUI testing frameworks, specific automated testing methods frequently depend on
the detection of visual information. Yu et al. [52] propose an automated GUI testing approach that

leverages image recognition to identify components within GUT images and simulates input signals to
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the System Under Test through various input devices. Additionally, element recognition techniques
are commonly employed in GUI test report analysis, where test reports often include substantial
screenshot data. For instance, Yu [48] introduced CroReG, a tool that utilizes image understanding
technology to generate crowdsourced error reports by analyzing error screenshots submitted by
crowdsourced workers. Consequently, GUI element detection has emerged as a significant auxiliary
technique within GUI testing, generating substantial research.

Chen et al. [9] present an innovative approach to GUI element detection that integrates tradi-
tional computer vision techniques for detecting non-text element areas with deep learning models.
This combination effectively capitalizes on the strengths of both methodologies, resulting in highly
accurate detection outcomes. Figure 4 provides examples illustrating the application of the algo-

rithms described in [9] and [50].
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Figure 4: Element detection with the algorithm in [9] and [50]. This figure is taken from Figure 10
of [51].
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2.2.5 Challenges of Vision-based GUI Testing

This section explores the challenges associated with vision-based GUI testing. Key topics include
GUI widget detection and semantic understanding and the application of large language models in

GUI testing.

GUI widget recognition is a fundamental aspect of vision-based GUI testing, enabling the ac-
curate localization and interaction with GUI elements such as buttons, text boxes, and menus.
Despite its importance, challenges persist, including adapting to diverse GUI frameworks, dynamic
and asynchronous elements, varying resolutions, and display issues like occlusion and overlap [50].
Current recognition techniques—attribute-based, image-based, and Al-based—each face limitations.
Attribute-based methods rely on stable attribute values in layout files but struggle with unstable
or duplicated attributes, leading to errors [55]. Image-based methods are affected by image quality,
similarity, and deformation, resulting in mismatches. Al-based approaches, while promising, require
significant labeled data and computational resources. Additionally, integrating GUI widget recogni-

tion into testing tools remains complex, requiring careful consideration of compatibility and ease of

13



integration for end-to-end automation [37].

Semantic analysis of GUI widgets focuses on understanding their meaning, functionality, and in-
terrelationships to enable intelligent test case generation, execution, and verification. However, this
process is complicated by the dynamic and asynchronous nature of GUI elements, platform variabil-
ity, and the inherent ambiguity in user interactions. Methods such as rule-based, model-based, and
learning-based approaches have been explored, but they face challenges, including difficulty covering
all scenarios, handling exceptions, and adapting to evolving user requirements and feedback [49].

Opportunities for innovation lie in leveraging multimodal fusion to process diverse GUI informa-
tion simultaneously and establish connections between elements. Knowledge graph technology can
map GUI elements and their relationships, enhancing testing intelligence when combined with Al
techniques like recommender systems and dialogue systems. Furthermore, big data and cloud com-
puting provide resources for collecting diverse training samples and accelerating model training and
inference, meeting real-time and large-scale testing demands. These advancements can significantly

improve the robustness, adaptability, and efficiency of GUI testing frameworks.

Large Language Models such as GPT and LLaMA, are high-capacity models with extensive
parameters and sophisticated architectures, excelling in both natural language processing (NLP)
and multimodal tasks like image classification and segmentation. These capabilities enable LLMs
to analyze and understand app GUIs, thereby supporting automated GUI testing. However, chal-
lenges remain in their application to GUI testing. LLM outputs, often complex, can be difficult
for automated systems to interpret. Additionally, LLMs’ generalized pre-training may not meet the
domain-specific requirements of GUI testing. Effective test case design—ensuring high coverage,
diverse behavior capture, and alignment with expected GUI outputs—presents another significant
challenge.

LLMs offer transformative potential for GUI testing by enhancing test generation, script main-
tenance, and report analysis. For instance, LLMs can automate the generation of high-quality test
cases, scripts, and reports, reducing manual effort and errors [13, 31]. Traditional GUI testing
separates test exploration and script-based testing migration, but LLMs blur these boundaries by
enabling automated exploration to generate logically robust and migratable test scripts. These ca-
pabilities extend to scenario-based testing, including recognition, segmentation, and understanding,
though practical applications still require script maintenance and optimization.

Additionally, LLMs’ multimodal fusion capabilities combine visual and textual data to enhance
the depth and accuracy of GUI testing. By analyzing screenshots and user feedback, LLMs can iden-
tify layout confusion, color inconsistencies, unclear fonts, functional abnormalities, and performance
degradation in GUIs. For example, GPT-4 demonstrates strong caption generation capabilities for

app GUI screenshots, surpassing non-LLM models. These abilities enable LLMs to identify and
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describe GUI contents precisely, thereby improving defect detection.

2.3 Conclusion

This chapter has reviewed foundational concepts in GUI testing, including the importance of
GUI rendering in software development and the transition from manual to automated methods. It
reviews literature on automated GUI testing methods such as random-based, model-based, system-
based, and learning-based approaches, as well as GUI test record-and-replay techniques and testing
frameworks. Vision-based GUI testing and advanced technologies like Large Language Models are
highlighted as innovative solutions addressing modern challenges. These methodologies enhance effi-
ciency, adaptability, and test coverage, offering robust frameworks for maintaining mobile application

quality and user satisfaction.
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Chapter 3

Infer the GUI Rendering State

3.1 Introduction

This chapter discusses the methodology to be used to achieve the objectives of the thesis. The
objective of the research is to come out with a robust system that will classify fully and partially
rendered GUI screens in mobile applications. Accurate classification of rendered GUIs will ensure
that the system under test is fully loaded before any automation test starts running. This ensures
that testing results are accurate and true to the real state of the application, hence giving better
reliability in the automated testing framework of mobile applications.

Our approach leverages deep learning and computer vision by utilizing powerful pre-trained
models and methods of transfer learning. In this regard, the backbone of this methodology will be
supported by the Rico dataset, which is one of the largest and most diverse collections of GUI screens
from real-world mobile applications. The Rico dataset allows us to develop a robust classification
model because it includes a rich variety of visual features. This thesis thus proposes, with regards to
ensuring accuracy and the ability of our approach for generalization, a multi-step approach entailing
dataset preparation, fine-tuning, and comparative analyses for a variety of state-of-the-art deep
learning models.

The first step in our methodology is to evaluate the performance of the Structural Similarity
Index (SSIM) as a baseline tool for classifying GUI states. The goal is to determine if SSIM can
effectively distinguish between fully and partially rendered GUIs within the Rico dataset. This step
also helps set a performance benchmark against which more sophisticated methods will be compared
later.

With the dataset ready, we finetune Vision Mamba, a competitive computer vision model that has

achieved various state-of-the-art performances on benchmark image classification tasks. We decided
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to use Vision Mamba since the model is able to handle complex visual features, which makes it an
eligible candidate for classifying both fully and partially rendered GUIs. In this work, we thoroughly
investigate the performance of Vision Mamba in recognizing rendered GUIs and gauge its potential
to be applicable in mobile app testing systems.

To further validate our approach, we evaluate Vision Mamba’s performance against two other
popular large-scale models: Visual Transformers (ViT) and ResNet. While Visual Transformers
adopt attention mechanisms that enable their focus on image regions, residual connections in ResNet
allow deeper network architectures without suffering from vanishing gradients. With all the afore-
mentioned settings, we find the most suitable architecture for GUI classification under similar con-
ditions.

Consequently, through such comparisons of the discussed models on a common dataset, we hope
to understand many aspects: how accuracy is traded within the models for computational efficiency
and implementability. This would give insight into how best to develop an effective lite system that
classifies GUI renders states to serve the interests of reliable but efficient automated testing of more
mobile applications.

Therefore, the subsequent sections explain in detail each step involved in this methodology:
GUI rendering, dataset preparation, and model fine-tuning. We follow this structure to develop a
classification system that will obviously outperform traditional methods—Ilike SSIM—Dbut also show

practical benefits in real application testing for mobile applications.

3.2 GUI Rendering and Testing

The impact brought about by GUI rendering has been neglected. GUI rendering is the process
of generating and displaying a visual frame of an application on a screen. It involves a number of
tasks such as page transitions, loading resources from online sources, and conversion of user interface
components into pixel-based visuals. These all act upon a structured view hierarchy to properly layer
and organize Ul elements in a correct manner, as shown in Figure 5. Red bars denote imperfect
throttles which inefficiently stagnate on GUIs, or test in partially displayed states, where green bars
denote the perfect throttle.

This can take considerable time, based on the code quality of the application under test, the
device’s performance, and the internet connection speed. Automated testing usually uses some kind
of fixed delay, also known as a throttle, between the events to be performed because the GUI usually
needs some time to fully render. Optimizing this throttle setting is important, for it will minimize
the idle time that will be needed during an automated test, improving the efficiency of the testing

process.
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Figure 5: GUI testing that is automated using various throttles. The green bar indicate optimal
throttle, while the red bars signify defective throttles that either test partially rendered states or
inefliciently stagnate during GUI operations. This figure is taken from Figure 1 of [14].

A fixed throttle may not work equally well for different testing tools, devices, or even different
pages of the same application since the complexity of rendering each GUI is different. Whereas a
longer throttle will ensure that GUIs are fully rendered, it may lead to inefficiencies by prolonging the
testing process with unnecessary idle waiting times, such as those shown in Figure 5-E. Conversely,
a too-short setting of throttle would result in partially rendered GUIs, defeating the effectiveness of
testing for mainly two reasons.

First, most of the GUI testing tools rely on the visual appearance of the GUI to work cor-
rectly. Examples include tools for usability bug detection [30], robot-based testing [37], reinforce-
ment learning-driven application exploration [1], and cross-platform test case migration [41]. All
these processes require a fully rendered GUI as input if their results are to be accurate.

Second, the runtime view hierarchy usually does not match the one that is rendered, which
introduces mismatches. This can result in a few actions that depend on the view hierarchy to lead
to not being executed, which reduces the amount of test coverage. For instance, querying the view
hierarchy file for the "Screws" image by coordinates and attempting to tap on it fails when the GUI
has not yet been fully rendered, as in Figure 5-C.

To overcome these challenges, an adaptive throttle—such as a 600ms delay shown in Fig-
ure 5—can provide a practical trade-off between testing effectiveness and efficiency. To study
throttling challenges in automated GUI testing tools, a pilot study on three widely used testing
frameworks has been conducted by evaluating their performances on 32 applications [14]. The key
aim was to investigate the GUI rendering for various throttle settings. Results indicate that, for
a fixed short throttle interval, for example, 200ms, about 24% of events occur while in a partially

rendered state. In addition, most of the partially rendered states are transition states, loading states,
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and implicit loading states.

While increasing the throttle interval can reduce problems related to partially rendered states,
very long throttles drastically lower testing efficiency. For example, these kinds of throttle intervals
reduce testing events by as much as 52.8% during automated exploratory testing, undermining
overall effectiveness in the testing process. These results highlight the critical need for balanced

throttle configurations to optimize the accuracy and efficiency of automated GUI testing.

3.2.1 Categorizing GUI Rendering State

Fully Rendered State. This means a state where the GUI is loaded, with its associated
resources completely displayed and operating. In such a state, it will make sure that the interface is
totally functional and complete in a visual manner, which a user or any automation tool in testing
may use without having anything like a loading or a transitional indicator showing up.

Transiting State. Figure 6-a depicts how a state is transitioning to the next one, and in this
process, two GUI states overlap since the time needed for transition is larger than the throttle interval
set. Such overlaps may be due to basically two reasons: First, the throttle interval may be too small
to get the GUI fully rendered. Second, the reason for longer rendering might be at the application
level due to some development issues. These are issues such as an overdoing of animations or defects
in hardware acceleration, which can cause these unexpected delays in rendering.
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Figure 6: Examples of partially rendered state.

Explicit Loading State. Figure 6-b represents an explicit loading state. If there is any visual
indication, such as a spinning wheel, linear progress bar, or textual hints that show something has

just started or is in an ongoing process—a process or rendering—then it is considered an explicit
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loading state. Explicit loading states usually signify sensitive data operations, which involve account
authentication, money transfers, and file uploads. During this state, the GUI is non-interactive so
that no user actions disturb the processes in progress.

Implicit Loading State. Figure 6-c depicts an implicit loading state in which some resources
are not displayed because of network latency or defects in the resources. Unlike the explicit loading
state, whereby one can clearly identify a loading state, say, through the appearance of a loading bar,
the implicit loading state should be deduced by the users or systems from context. In Figure 6-c,
for example, gray placeholders or layouts of incomplete resources indicate that the resource contents

have not been fully loaded.

3.2.2 Adaptive Throttle

One of the effective approaches to reduce problems with partially rendered GUIs is to increase
the throttle interval. In such a way, the time between events would be longer, and thus most of the
loading or transition processes would be successfully finished. An experiment has also conducted
using Droidbot in order to investigate how different throttle intervals affect the performance of the
testing tool. Accordingly, five different throttle intervals—200 ms, 400 ms, 600 ms, 800 ms, and 1000
ms—have been considered and analyzed for their impact on the working and test results of the tool

[14].
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Figure 7: GUIs and activity coverage across various Droidbot throttle settings. This figure is taken

from Figure 4 of [14].

Figure 7 depicts the number of GUIs versus the activity coverage results. In this case, the growing
throttle intervals clearly reduced the partial rendering states. Concretely, incomplete rendering went
from 17% at 200ms, 15%, 14%, and 9%, to 8% at 1000ms throttle intervals. In particular, the problem

of transitioning states is considerably reduced, which would indicate that longer throttle intervals
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facilitate smoother transitions and loading between events. However, extended throttle intervals
also lead to a reduction in the total number of GUIs explored. For example, the number of GUIs
decreases progressively with throttle intervals from 1,646 at 200ms to 1,299, 1,023, 907, and 776 at
1000ms, reflecting fewer events executed during runtime.

Therefore, the activity coverage always decreases except for 600ms throttle interval. This makes
sense since overly aggressive testing, like 200 or 400ms, will lead to most states being partially
rendered and thus testing becomes inefficient. On the other hand, when throttling at the medium
pace, such as 600ms, the tool can interact more with fully rendered GUI and therefore explores more
activities. However, with higher intervals, for instance, 800ms or 1000ms, the testing will be too
slow and therefore inefficient. An optimum throttle interval has to be chosen for effectiveness and
efficiency.

These results have highlighted the need for throttle settings to be an integral part of automated
testing, pointing toward developing a balanced approach that optimizes effectiveness and efficiency.
Automated testing tools must wait until the GUI finishes rendering before continuing to the next
events, especially when the application is mostly idle. This stresses the need to develop a dynamic
method for adjusting throttle settings during testing. The main challenge is how to tell the difference
between a partial and full rendering of the GUIs. Given that such differentiation can easily be
performed by a human observer, the approach proposed here is to apply visual cognitive methods
for identifying GUI rendering statuses. Image-based approaches are versatile and easy to deploy,

assuming that GUI screenshots would normally be available in most automated testing toolsets.

3.2.3 AdaT Approach

AdaT proposes a simple but effective approach that adaptively adjusts the throttle according to
GUI screenshots. Since each automated testing tool operates directly on the device, GUI screenshots
are synchronously captured to have it detect the current rendering state. Based on the inference
mentioned above, AdaT schedules testing events once the GUI is fully rendered and waits for its
rendering otherwise. Figure 8 [14] provides an overview of the AdaT framework.

The core of AdaT is on the lightweight CNN-based model that classifies GUI rendering state in
three key phases: Data Preparation, GUI Rendering State Classification with the CNN-based model,
and Deployment of the model. A large-scale dataset including partially or fully rendered GUIs shall
be automatically collected in the first stage. The second stage uses the designed CNN-based model

to accurately self-determine the current rendering status.
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Figure 8: Overview of AdaT approach.

3.3 Data Preparation

Extensive datasets are the backbone for understanding GUI rendering states and successfully
training deep learning models. However, this is quite expensive because of the manpower needed
to label such data. To alleviate this, this phase will aim to automatically collect partially rendered
and fully rendered GUIs by utilizing GUI transition screencasts. The purpose is to reduce manual
efforts while keeping the datasets powerful enough to train a model. In the subsequent sections, the
utilized dataset and the approach used to label the dataset automatically are depicted. However,

another question regarding the appropriation of this method will be answered.

3.3.1 RICO Dataset

RICO dataset [11] is one of the most extensive, publicly available datasets of graphical user
interfaces for mobile applications. It acts as a fundamental instrument for advancements in research
in the realms of human-computer interaction, machine learning, and user experience design. RICO
was specifically made to meet the ever-growing demands of structured and scalable datasets within
these domains by providing an elaborative set of mobile app screenshots, semantic information, and
traces of interaction.

RICO allows researchers to study mobile application behavior, such as finding patterns in design
and training algorithms to guess user interactions, by capturing diverse app categories and interface
designs. This dataset now includes not only the visual information of interfaces but also detailed

metadata for structural attributes, which gives due insight into the hierarchical representation of
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UI components. It marked something of a turning point in the study of mobile applications, finally
allowing large-scale studies that were previously impossible due to a lack of comprehensive data.

Rico includes 44,418 transition screencasts sourced from over 9,700 distinct Android applications
spanning 27 app categories. The screencasts vary in duration, ranging from 0.5 to 50 seconds, and
each contains one or more user actions (e.g., tap, scroll) interspersed with periods of inactivity. In
this dataset, scrolling actions during transitions are excluded due to their inherent ambiguity. For in-
stance, scrolling within a lazy-loading GUI may result in capturing partially rendered states, whereas
scrolling within a pre-loaded GUI may produce fully rendered states. After these adjustments, the
dataset is refined to include 36,038 transition screencasts.

The RICO dataset comprises screenshots of user interfaces from Android applications, spanning
a wide range of categories such as social media, finance, travel, and gaming. Each screenshot is

accompanied by:

e View Hierarchies: These provide a tree-like structure of all Ul components, detailing their

spatial relationships, sizes, and visibility.

e Semantic Information: Labels, attributes, and metadata that describe the functionality of

each Ul element, such as buttons, text fields, and images.

e Interaction Traces: User interaction paths that show how users navigate through the appli-

cation, offering insights into typical usage patterns.

Additionally, the app-level metadata in the dataset include category labels and text descriptions.
Such a versatile set of data elements provides the ground for multifarious research opportunities,
from unraveling user behavior to understand the training of models for classifying Ul elements and
predicting the usability of an application interface. The breadth of variety in categories ensures
that there is representativeness of real-world, mobile applications, hence enhancing the results’
generalization derived from it.

The RICO dataset is one of the keystones in this thesis for addressing challenges in the fields
of automated mobile application testing and GUI rendering state classification, in particular, the
classification of fully rendered versus partial GUIs to enable a proper performance evaluation of a
mobile application. The RICO dataset provides a foundational ground truth for this.

This dataset is a valuable tool for research, but it does have certain limitations. One key drawback
is its exclusive focus on Android applications, which reduces its relevance for studies involving iOS or
cross-platform analysis. This platform-specific design limits the dataset’s ability to support broader,
comparative research across multiple operating systems.

Another notable limitation is the dataset’s extensive annotations, which, while useful, may fall

short in providing the semantic or contextual details required for specific tasks like classifying GUI
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rendering states. As a result, researchers may need to engage in extra manual labeling or data
preprocessing to make the dataset suitable for these more specialized studies. These challenges point
to the necessity of additional data sources or adjustments in research methods to fully leverage the
potential of the RICO dataset in more comprehensive research settings.

The RICO dataset has been widely adopted in various domains, highlighting its versatility and

importance. Notable applications include:

e Ul Design Analysis: Identifying design patterns, usability issues, and best practices for

mobile app development.

e Machine Learning: Training models for tasks such as Ul element classification, sequence

prediction, and synthetic UI generation.

e Accessibility Improvements: Analyzing design patterns to enhance accessibility for users

with disabilities.

e Automated Testing: Developing tools to test app performance and functionality based on

UI layouts and interaction flows.

3.3.2 Transiting Frame Identification

A GUI transition comprises fully or partially rendered sequences of frames. Image processing
for finding out the rendering state for every frame of a transitioning screencast employs the Y-
Difference or, in short, Y-Diff. This computation measures a perceptual similarity score for two
successive frames using the color space of YUV, normally utilized for encoding video. Unlike RGB
representation, YUV is similar to how this type of transmission error, akin to compression artifacts,
would hide. It is also the closeness to human perceptual efficiency [8], [40]. Y-Diff maps an image’s
Y (luminance) value difference in a UV color space, commonly becoming one of the major inputs
concerning human perception of motion conditions [32].

A transitioning screencast can be represented as a sequence of frames, fy, f1,..., fnv—1, fn, where
fn denotes the current frame and fn_; the preceding frame. To compute the Y-Difference (Y-Diff)
between the current frame fy and the previous frame fy_1, luminance masks Yy_; and Yy are
extracted by converting the RGB color space into the YUV color space.

Subsequently, the Structural Similarity Index (SSIM) [45], a perceptual comparison metric, is
applied to determine the pixel-wise similarity. SSIM evaluates differences based on the local mean,
variance, and correlation of luminance values. The resulting SSIM score ranges from 0 to 1, with
higher values indicating greater similarity between the frames.

To determine whether a frame is fully or partially rendered, the similarity scores of consecutive

frames within the transitioning screencast are analyzed, as illustrated in Figure 9. The initial
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step involves grouping frames that belong to the same atomic state through a customized pattern
analysis. This step is crucial because discrete states displayed on the screen persist across multiple

frames and must be appropriately grouped and segmented.
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Figure 9: Pipeline for automated data collection that is used in ADAT. This figure is taken from
Figure 6 of [14].

The findings indicate that fully rendered GUIs exhibit a steady state characterized by consecutive
frames that remain identical or highly similar over an extended duration. Examples of such states
are shown in Figure 9 (A) and (C).

In contrast, partially rendered GUIs exhibit significant differences between consecutive frames,
indicating a rapid transition from one screen to another. For instance, Figure 9 (B) illustrates a
scenario where a button click initiates the fading out of the current GUI. During this transition,
the similarity score decreases sharply. Subsequently, as the next GUI fades in, the similarity score
increases. The observations reveal that a typical characteristic of partially rendered GUIs is a brief
stabilization of the similarity score between two sharp declines, as depicted in Figure 9 (B).

The brief, steady duration observed is attributed to resource loading within the GUI, consistent
with the earlier observation of the implicit loading state. Two thresholds have been empirically
established to differentiate between fully rendered and partially rendered GUlIs: a similarity score
of 0.992 to determine whether two frames are similar and a sequence of five consecutive frames to

signify a steady state.
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3.3.3 Analyzing SSIM for Auto-labeling

The Structural Similarity Index Measure (SSIM) is a widely used metric for assessing image
quality by comparing structural information between images. While SSIM effectively measures
differences in luminance, contrast, and structure, it has notable limitations that render it inadequate
for distinguishing between fully and partially rendered mobile application screenshots. Therefore,
this section reviews the reasons for SSIM’s inappropriateness for auto-labeling the dataset.

First, SSIM relies on the assumption that the human visual system is highly adapted for extract-
ing structural information from the images. On the other hand, partially rendered images include
complex and various artifacts related to missing elements or incomplete layouts that may not affect
structural components in the way SSIM checks. The consequence may, therefore, be a high similarity
score using SSIM, while such partially rendered images may be incomplete for human observers [36].

Second, SSIM is only sensitive to local luminance and contrast changes; therefore, misleading
assessments can arise. Indeed, many partially rendered images have irregularities that, in many
cases, do not affect the general luminance or contrast; the SSIM will most likely not pick up those
critical differences and might not recognize partial rendering issues. This is a serious limitation for
mobile application interfaces since users must depend on a fully and correctly rendered presentation
of all interface elements [36].

Also, the fact that SSIM is based on pixel-wise comparisons significantly influences the tendency
to misinterpret complex visual content. Dynamic content in screenshots, such as animations or other
interactive elements, may induce variations in SSIM, which then misinterprets them as structural
differences, though the rendering is complete. Such misinterpretation may lead to false positives
where fully rendered images are wrongly classified as partially rendered [35].

Additionally, SSIM is not suited for changes in scale, rotation, and similar geometric transfor-
mations of the images; hence, in cases where such transformations are introduced between native
app interfaces, it will also not be reliably applicable. The partial rendering of views might include
elements unaligned or unscaled appropriately; hence, the design of SSIM could not consider such
geometric differences [35].

Whereas SSIM provides a basic measure for the structural similarity of two images, inherent
limitations—Ilike being irresponsive against some artifacts and frequently being fooled about dynamic
content and geometrical transformation—make SSIM an intuitively naive and unreliable method
for segmentation among fully and partially rendered mobile applications. Therefore, this type’s
limitations nurtured our interest in alternative directions, namely manual annotation of a small
dataset to fine-tune a large deep learning model previously trained on a large dataset. Such an

approach is further detailed in the next section.
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3.4 Model Fine-tuning

In this section, three cutting-edge deep learning models are introduced: Vision Mamba, Vision
Transformers, and ResNet. All of them have been pre-trained on large-scale datasets. Later, they
were fine-tuned with a small dataset that was labeled manually. Subsequent sections discuss each

model and its implementation details.

3.4.1 Vision Mamba

Recent research has been very instrumental in bringing state space models into the spotlight.
Coming off from the pioneering work of the Kalman filter model [22], the more recent SSMs exhibit
an impressive ability to deal with long-range dependencies and have benefited from parallelized
training. Innovative approaches such as linear state-space layers (LSSL) [17], structured state-space
sequence model (S4) [16], diagonal state space (DSS) [19], and S4D [18] are all models designed
to process sequential data much more effectively across diverse tasks and modalities by design,
focusing on modeling power with extended-range dependencies. State space models are efficient at
handling very long sequences using convolutional and near-linear computations. Methods like 2-D
SSM [5], SGConvNeXt [27], and ConvSSM [39] integrate SSM frameworks with CNNs or Transformer
architectures for the efficient processing of two-dimensional data.

Recent developments, such as Mamba [15], further extend the time-varying parameters to state
space models (SSMs) and develop a hardware-optimized algorithm that significantly boosts the
efficiency of both training and inference. The scaling behavior of Mamba thus has very good com-
petitiveness or is even preferred over Transformers when applied for language modeling. On the
other hand, a systematically thorough SSM-based network as a backbone for an effective treatment
of the visual information embodied by both images and videos is yet to be provided.

ViTs have been performing commendably well in learning representation from visual information,
be it large-scale self-supervised pre-training or showing their best on downstream tasks. Compared
to CNNs, the key advantages of Vision Transformers (ViTs) are that they provide every patch of an
image with a data- or patch-dependent global context through self-attention mechanisms. This is in
direct contrast to the CNNs, which apply identical parameters, such as convolutional filters, equally
at all positions.

Another important advantage of ViTs is that they reflect a modality-agnostic modeling strategy:
they treat an image as a sequence of patches without inductive bias in two dimensions. The latter
property has positioned ViTs as one of the popular architectures for multimodal applications [6], [25],
[29]. While powerful, the Transformer self-attention mechanism also brings up limitations regarding

speed and memory efficiency. Particularly, this becomes an issue in cases requiring long-range visual
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dependencies—for example, high-resolution images processing.

Following the success of Mamba in language modeling, a strong extension of this success is
foreseen in the sphere of vision. This, in particular, involved the design of a generic and efficient
visual backbone with the advanced state space model approach. Despite its merits, Mamba has
two major barriers: unidirectional modeling and no positional awareness. Limitations are overcome
with the Vision Mamba model to combine strengths from both: continuous state space models, thus
modeling data-dependent global visual contexts in a bidirectional manner, and position embeddings
capture location-aware visual recognition.

The input image is divided into patches that are linearly projected into vectors for the processing
of the Vision Mamba model. The image patches are treated as sequential data in the Vim blocks
where the proposed bidirectional selective state space will efficiently compress the visual represen-
tation. Also, the position embedding in the Vim block helps to give the location-based information
that allows the model Vision Mamba (Vim) to be much more robust for dense prediction tasks.
Currently, the model is at a stage where Vision Mamba is trained on a task involving supervised
classification of images using the ImageNet dataset.

Pre-trained Vim forms the backbone for learning the visual representation sequentially to support
various downstream dense prediction tasks like semantic segmentation, object detection, and instance
segmentation. Like Transformers, the model can be pre-trained in an unsupervised way with large-
scale visual data by introducing the Vision Mamba-Vim. Using the greater efficiency of Mamba
allows much economic pre-training for the Vision Mamba on a larger scale.

Comparatively, being among the approaches that are SSM-driven for vision tasks, a good deal
of the design focuses on making the Vision Mamba purely SSM-based: that is, processing images
in order and presenting it as a more viable way to develop a generic efficient backbone. As the
first purely SSM-driven approach, Vision Mamba demonstrates remarkable performance in dense
tasks with bidirectional compression models combined with positional awareness. When compared
to the widely regarded Transformer-based model DeiT [42], the Vision Mamba (Vim) demonstrates
superior performance in ImageNet classification tasks.

Besides the advantages in performance, Vision Mamba shows much higher efficiency in GPU
memory and inference time when processing high-resolution images. This allows Vim to directly
perform sequential visual representation learning without 2D priors, such as the 2D local window
used in ViTDet [26], for high-resolution visual understanding tasks. Surprisingly, Vim outperforms

DeiT in these scenarios.
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3.4.1.1 Method Introduction

The primary objective of Vision Mamba (Vim) is to adapt the advanced state space model (SSM),
specifically Mamba [15], for applications in computer vision. This section begins by outlining the
preliminaries of SSM, providing foundational context. It then offers an overview of Vim, followed
by a detailed explanation of how the Vim block processes input token sequences. Subsequently, the
architectural specifics of Vim are elaborated, culminating in an analysis of the model’s efficiency.

State space models (SSMs), such as structured state space sequence models (S4) and Mamba,
draw inspiration from continuous systems that transform a one-dimensional function or sequence
z(t) € R into y(t) € R through an intermediate hidden state h(t) € RY. In this framework,
A € RVXN serves as the evolution parameter, while B € RY*! and C' € R'™¥ act as projection

parameters.

h'(t) = Ah(t) + Bz(t),
y(t) = Ch(t).

S4 and Mamba represent the discrete adaptations of the continuous system, incorporating a

(1)

timescale parameter A to convert the continuous parameters A and B into their discrete counterparts
A and B. A commonly employed transformation technique for this purpose is the zero-order hold

(ZOH), which is defined as follows:

A =exp(AA),
_ (2)
B = (AA) ! (exp(AA) —I)- AB.

After discretizing A and B, the discretized version of Equation (1) with a step size A can be

rewritten as:

hy = Ahy_1 + By,
yr = Chy.

At last, the models compute output through a global convolution.

M—1

X — (CB,CAB,...,cA" '),

_ (4)
y=zx K,

where M is the length of the input sequence z, and K € RM is a structured convolutional kernel.

3.4.1.2 Vision Mamba

Figure 10 provides an overview of the proposed Vision Mamba (Vim) model. The standard

Mamba is optimized for one-dimensional sequences. To adapt it for vision tasks, a two-dimensional
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image t € REXWXC i5 first transformed into flattened 2-D patches ZTp € R/*(P Z'C), where H and W
represent the image dimensions, C' is the number of channels, and P denotes the size of the image
patches. Subsequently, x, is linearly projected into a vector of size D, and position embeddings

Epos € RUHDXD are added as defined below:

To = {Cls,tpw W5t W | + Epos, (5)

where t{) is the j-th patch of ¢, and W € R(P*-C)xD ig the learnable projection matrix. Drawing
inspiration from Vision Transformers (ViT) [12] and BERT [24], the proposed Vim model incorpo-
rates a class token, denoted as t.js, to represent the entire patch sequence. The token sequence T;_1
is then passed to the I-th layer of the Vim encoder, producing the output 7;. Finally, the output
class token 77 is normalized and passed through a multi-layer perceptron (MLP) head to generate

the final prediction p, as outlined below:

= Vim(Tj—y) + Ti—1,
f = Norm(T?), (6)
p = MLP().
where Vim is the proposed vision mamba block, L is the number of layers, and Norm is the

normalization layer.
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Figure 10: Vision Mamba model overview. The process starts by breaking an image into patches
of relatively small size. Patches will be subsequently turned into patch tokens. In sequence, those
tokens undergo the process imposed by the Vim encoder. For the task of classifying the image classes
into ImageNet categories, on top of these tokens a learnable classification token was placed. While
Mamba is strictly developed with support for text sequences only for its modeling, the Vim encoder
processes token sequences in both forward and backward directions. This figure is taken from Figure

2 of [54].

The proposed Vision Mamba (Vim) model in Figure 10 operates as follows: the input image
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is first divided into patches, which are subsequently projected into patch tokens. The resulting
sequence of tokens is then fed into the Vim encoder. For ImageNet classification, an additional
learnable classification token is appended to the sequence of patch tokens. Unlike Mamba, which is
designed for text sequence modeling, the Vim encoder processes the token sequence bidirectionally,

incorporating both forward and backward directions.

3.4.1.3 Vim Block

The original Mamba block was designed for one-dimensional sequences, making it unsuitable for
vision tasks that demand spatial awareness. To address this limitation, the Vim block is introduced,
integrating bidirectional sequence modeling tailored for vision applications. A detailed depiction of

the Vim block is provided in Figure 10.
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Algorithm 1 Vim Block Process
Require: token sequence T;_; : (B, M, D)

Ensure: token sequence 7} : (B, M, D)
1: /* normalize the input sequence Ty_1 */
2: T/, : (B,M,D) < Norm(T;_1)
3: z: (B, M, E) < Linear” (T]_,)
4: z: (B, M, E) < Linear*(T]_,)

5: /% process with different direction */

(=2

: for o in {forward, backward} do

7 2l (B, M, E) + SiLU(Convld,(z))

8: B, : (B, M,N) « Linear? (z)

9: C,: (B, M, N) « LinearS (/)

10: /* softplus ensures positive A, */

11: A, : (B, M, E) < log(1 4 exp(Lincar5 (z/) + Parameter?))

12: /* shape of Parameter’ is (E,N) */

13: 4,: (B, M,E,N) + A, ® Parameter?

14: B, : (B,M,E,N) + A, @ B,

15: o : (B, M, E) += SSM(A,, B, C,)(x7)
16: end for
17: /* get gated y, */
18: Ytorwara © (By M, E) < Yorwara © SILU(2)
19: Yhackward © (B, M, E) < Ybackward © SiLU(2)
20: /* residual connection */

21: ﬂ : (B7 M5 D) — LinearT(ygorward + yl/aackward) + 711_1

Return: T;

The operations of the Vim block are detailed in Algorithm 21. Initially, the input token sequence

T;_1 is normalized using a normalization layer. Following this, the normalized sequence is linearly
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projected to z and z, each with a dimension size of E. The x sequence is then processed in both
forward and backward directions. For each direction, a one-dimensional convolution is applied to

x, producing x/. Subsequently, z/ is linearly projected to B,, C,, and A,. The parameter A, is

o
then utilized to transform A, and B,, respectively. Finally, the yorward a0d Ybackward COMponents
are computed using the state space model (SSM). These components are then modulated through a

gating mechanism with z and subsequently combined to produce the output token sequence 7;.

3.4.1.4 Architecture Details
In summary, the hyperparameters of the proposed architecture are as follows:

L:  The number of blocks.
D: The hidden state dimension.
FE: The expanded state dimension.

N: The dimension of the state space model (SSM).

Following the methodologies of Vision Transformers (ViT) [12] and DeiT [42], a projection layer
with a 16 x 16 kernel size is initially employed to generate a one-dimensional sequence of non-
overlapping patch embeddings. This is followed by directly stacking L Vim blocks. By default, the
architecture is configured with 24 blocks (L = 24) and an SSM dimension (N) of 16. To maintain
alignment with the model sizes of the DeiT series, the hidden state dimension (D) and expanded
state dimension (F) are set to 192 and 384, respectively, for the tiny-size variant. For the small-size

variant, these dimensions are increased to D = 384 and FE = 768.

3.4.1.5 Efficiency Analysis

Traditional SSM-based approaches, such as those in Equation (4), leverage the FFT to accelerate
the convolution operations. However, the SSM operation in Line 11 of Algorithm 1 is no longer
equivalent to convolution due to the data dependency in Mamba and other purely data-dependent
approaches. The two approaches, Mamba and the proposed Vim, share a hardware-efficient strategy
towards optimizing performance on modern hardware accelerators such as GPUs. The basic principle
for this optimization is to avoid IO and memory bottlenecks, which usually occur with such hardware.

IO-Efficiency. High Bandwidth Memory (HBM) and Static Random-Access Memory (SRAM)
are two critical components of GPU architecture. SRAM offers higher bandwidth, while HBM
provides greater memory capacity. In the standard implementation of Vim’s state space model
(SSM) operation using HBM, the required memory input/output (IO) operations scale on the order
of O(BMEN), where B, M, E, and N represent the respective dimensions of the computation.

Drawing inspiration from Mamba, Vim implements an efficient memory management strategy by
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first transferring O(BME + EN) bytes of memory (A,, A,, By, C,) from the slower High Band-
width Memory (HBM) to the faster Static Random-Access Memory (SRAM). Once in SRAM, Vim
computes the discrete 4, and B,, with dimensions (B, M, E, N). Subsequently, Vim executes the
state space model (SSM) operations within SRAM and writes the resulting output, sized (B, M, E),
back to HBM. This approach effectively reduces the memory input/output (IO) operations from
O(BMEN) to O(BME + EN), significantly improving efficiency.

Memory-Efficiency. To address out-of-memory issues and reduce memory usage when process-
ing long sequences, the Vision Mamba (Vim) adopts the same recomputation strategy as Mamba.
For intermediate states of size (B, M, E, N), required for gradient calculation, Vim recomputes these
states during the network’s backward pass. Similarly, intermediate activations, such as outputs of
activation functions and convolution operations, are recomputed to optimize GPU memory usage.
This approach is effective as activation values, though memory-intensive, can be recomputed quickly
without significant computational overhead.

Computation-Efficiency. The state space model (SSM) in the Vim block (Line 11 in Algo-
rithm 1) and the self-attention mechanism in Transformers are both crucial for adaptively capturing
global context. For a visual sequence T € R'*M*D with the default setting £ = 2D, the computa-

tional complexities of global self-attention and SSM are as follows:

Q(self-attention) = 4M D? 4+ 2M?*D, (7)

Q(SSM) = 3M(2D)N + M(2D)N, (8)

In this context, the computational complexity of self-attention is quadratic with respect to the
sequence length M, while the complexity of the state space model (SSM) is linear with M, where
N is a fixed parameter set to 16 by default. This computational efficiency allows Vim to scale

effectively for gigapixel applications involving large sequence lengths.

3.4.2 Vision Transformers

ViT is a breakthrough in computer vision, considering it applies the transformer architecture from
NLP to image recognition tasks. Dosovitskiy et al. [12] introduced the model in their work "An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", where they challenged
the long dominance of CNNs in computer vision.

Transformers were first introduced in the NLP domain by Vaswani et al. [43] in "Attention is

All You Need." Transformers are built around self-attention, a mechanism that enables the model
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to dynamically weigh the importance of different input elements relative to one another. This self-
attention mechanism replaces the fixed convolutional kernels of CNNs with global attention, allowing
the model to capture long-range dependencies and relationships in the input data. ViT extends this
architecture to image data by reimagining images as sequences of smaller units analogous to words
in a sentence. This framework’s critical innovation lies in how it tokenizes and processes images.

Figure 11 depicts the overview of the vision transformer model.

Transformer Encoder

Lx °

Vision Transformer (ViT)

Transformer Encoder ’

: ‘ ;
Pmmuﬁﬁﬁﬁﬁﬁ@ﬁﬁé |

Multi-Head
Attention

* Extra learnable - —
[class] embedding Linear Projection of Flattened Patches ]

SRR S O
s ——— O e S
AL L Embedded

Patches

Figure 11: Vision Transformer model overview. The process involves dividing an image into fixed-size
patches, linearly embedding each patch, and adding positional embeddings to the resulting vectors.
These vectors are then input into a standard Transformer encoder. For classification purposes,
the method incorporates a standard technique of appending an additional learnable "classification

token" to the sequence. This figure is taken from Figure 1 of [12].

The first challenge in applying transformers to images is that unlike textual data, which is
naturally sequential, image data is inherently spatial. ViT addresses this by splitting an image into
non-overlapping fixed-size patches (e.g., 16x16 pixels). Each patch is flattened into a vector and
linearly projected into a fixed-dimensional embedding space. These embeddings serve as "tokens"
that the transformer can process.. For an image of size H x W (height x width) with C color

channels, dividing it into patches of size P x P results in:

HwW
N = P2

patches. Each patch is represented as a vector of size C- P2, and these vectors are linearly transformed
into embeddings of dimension D. This transformation ensures that the input to the transformer
matches the dimensions expected by the model.

Positional embeddings are added to patch embeddings to preserve the spatial relationships be-

tween patches. Since transformers are naturally permutation-invariant, they would lose track of
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position without these embeddings. Once the image is tokenized and embedded, the sequence of
tokens is passed through a standard transformer encoder. This encoder consists of alternating layers

of:

e Multi-Head Self-Attention (MHSA): Allows each token to dynamically focus on other

tokens in the sequence based on their learned relevance.

e Feed-Forward Neural Networks (FFNNs): Applied independently to each token, trans-

forming its representation.

These layers are combined with residual connections and layer normalization to ensure stable
and efficient training. Stacking multiple encoder layers allows the model to learn more abstract
and complex representations of the input patches, enabling it to better understand patterns and
relationships within the image.

For classification tasks, a special class token is added to the beginning of the patch embedding se-
quence at the input layer. This token, which is randomly initialized, serves as a global representation
of the entire image. As the sequence passes through the transformer layers, the class token gathers
information from all patches. Its final embedding is then fed into a classification head—usually a
linear layer—to generate the output logits for each class.

A key challenge with Vision Transformers (ViTs) is data efficiency. Unlike CNNs, which generalize
well with limited training data due to built-in inductive biases like locality and translation invariance,
ViTs lack these inherent properties. As a result, ViTs require large-scale datasets to learn meaningful
representations, making them more data-hungry compared to CNNs.

To overcome this challenge, ViTs are often pre-trained on massive datasets like JE'T-300M, which
contains 300 million labeled images. This pretraining helps the model learn general representations
that can be transferred to smaller datasets, such as ImageNet, during fine-tuning. This approach
significantly improves data efficiency and boosts performance on downstream tasks.

Despite their success, Vision Transformers (ViTs) face several challenges:

e Computational Cost: Self-attention scales quadratically with the number of tokens, making

it computationally expensive for high-resolution images.
e Data Hunger: ViTs require large-scale datasets to outperform CNNs.

e Interpretability: Like other deep learning models, transformers can be challenging to inter-

pret, especially when applied to vision tasks.

Vision Transformers (ViTs) represent a major shift in computer vision, challenging the long-

standing dominance of CNNs. By leveraging global self-attention, ViTs achieve state-of-the-art
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results in image recognition tasks. Their ability to capture global relationships and adapt to various

downstream tasks makes them a versatile and powerful tool in deep learning.

3.4.3 ResNet

Residual Networks or ResNets are a breakthrough in deep neural network architecture, especially
within computer vision. Proposed by Kaiming He et al. [21], ResNets had been developed to solve
some crucial problems while training very deep neural networks: the degradation problem where
increased network depth results in higher training errors.

While a few deep networks existed before ResNets, many of them suffered from this degradation
problem: a suitably deep model with added more layers often leads to higher training error, which is
not expected. Apart from this, the problem differed from the vanishing/exploding gradient problem,
indicating that just placing additional layers prohibits effective training.

A ResNet consists of several residual blocks, each consisting of a few layers with a short-cut
connection-a direct connection from the block input to its output. This acts like a skip: the network
can decide whether it wants to go through the layer or use the shortcut to bypass one or more layers,
allowing the gradient to flow directly through the network in the backward pass. Such architecture
prevents vanishing gradients and therefore allows the training of networks consisting of hundreds or

even thousands of layers.

A\ 4

Wight layer
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Figure 12: Residual learning: A building block.

A ResNet is composed of residual blocks, each containing a series of layers and a shortcut
connection that adds the input of the block to its output. This shortcut, or skip connection, enables

the network to bypass one or more layers, allowing the gradient to flow directly through the network
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during backpropagation. This design mitigates the vanishing gradient problem and enables the
training of networks with hundreds or even thousands of layers.

ResNets have evolved to include various types of residual blocks:

e Basic Block: Consists of two sequential 3 x 3 convolutional layers with a residual connection.

The input and output dimensions of both layers are equal.

e Bottleneck Block: Comprises three sequential convolutional layers: a 1 x 1 convolution
for dimension reduction, a 3 x 3 convolution, and another 1 x 1 convolution for dimension
restoration. This design is used in deeper ResNet architectures like ResNet-50, ResNet-101,
and ResNet-152.

e Pre-activation Block: Applies activation functions before the residual function, reducing
the number of non-identity mappings between residual blocks. This design has been used to

train models with over 1000 layers.

ResNets have had a huge impact on deep learning, especially in computer vision for image
classification, object detection, and segmentation. Residual connections also influenced the design
of other architectures, including transformer models such as BERT and GPT, and systems like
AlphaGo Zero and AlphaFold.

The success of ResNets has triggered a number of theoretical analyses that try to explain their
behavior. It has been observed that residual connections help to preserve norms, which means that
backpropagation is stable and the training dynamics are far better. This norm-preserving property
explains why ResNets can be efficiently trained even if they are very deep.

ResNets revolutionized the training of deep neural networks by introducing residual connections
to avoid the degradation problem, hence allowing the construction of very deep architectures. Their
impact goes beyond computer vision into a number of other domains and has inspired many new
network designs. The theoretical understanding of their properties is constantly improving, giving
deeper insights into their effectiveness while guiding future developments in deep learning architec-

tures.

3.4.4 Workflow of the Research

In the figure 13 the workflow of this research is depicted. Initially, some application transitions
are selected from the RICO dataset, and SSIM is applied to them to create an automatically labeled
dataset. This dataset requires manual refinement to ensure 100% accuracy. Once refined, it is used
to train large deep learning models. Ultimately, the models’ results are compared to determine the

most accurate model.
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Figure 13: The workflow of the research.

3.5 Conclusion

This chapter introduced a methodology that would classify fully and partially rendered GUIs in
mobile applications as an important preliminary step toward optimizing accuracy and efficiency for
automated testing frameworks. First to be discussed was the AdaT approach based on SSIM. While
SSIM provides a basic structural similarity measure, our analysis has shown critical limitations in
capturing partial renderings, especially for dynamic or transitional GUI states. It thus opened the
way for more sophisticated approaches beyond mere pixel-level comparisons.

To overcome these shortcomings, we presented an approach that integrated fine-tuning on large-
scale pre-trained models such as Vision Mamba, Vision Transformers, and ResNet. We explained
in detail the architecture, intuition behind, and role of every model in our system. Among them,
Vision Mamba was identified as the most suitable candidate for challenging visual tasks such as
GUI classification with its unique bidirectional compression and position-aware mechanism. Visual
Transformers were added, with their self-attention mechanisms, and ResNet for powerful residual
connections to offer a wider view of model performance.

This chapter aims to serve as a bridge between conceptual design and actual implementation.
The following chapter will introduce the implementation of the proposed methodology, presenting
experimental results, performance comparisons, and lessons learned while testing the classification
system on the Rico dataset. Results of this type will offer a critical look at our approach’s effective-

ness and generalization capability.
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Chapter 4

Results of the Study

4.1 Introduction

The basis of differentiation between fully and partially rendered images is the core focus of this
study. This study, in its pursuit to meet its objectives, addresses three important questions to

achieve the following:

e RQ1: How accurate is SSIM in labeling the Rico dataset?
e RQ2: What dataset is needed to fine-tune large models effectively?

e RQ3: How effective and efficient are the large models for classifying GUI images?

For RQ1, we manually experimented by assessing the accuracy of SSIM labeling through the
correctly labeled percentage of images. In RQ2, for selecting and precisely labeling the images to
prepare the fine-tuning of large models, we analyze several app GUIs from the Rico dataset. Finally,
three large models are fine-tuned for RQ3, giving promising results to determine the effectiveness
of classifying GUI images as fully or partially rendered. The classification logic acts as a trigger for

running testing tools that guarantee proper test execution.

4.2 RQ1: SSIM’s Labeling Accuracy

Motivation. In this research question, we aim to check the reliability of the Structural Similarity
Index in annotation on the Rico dataset, specifically its accuracy for such a large dataset as RICO.
Although holding a wide-spread application for image comparison tasks, SSIM sometimes gives

unexpected results because of its relatively simple approach. Given the size of the RICO dataset,
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quality analysis of the SSIM annotation process is crucial since any wrong labeling would greatly

affect the outcome of later processes, such as model training.

Approach. To answer RQ1, we conducted an accuracy assessment of SSIM’s labeling on a subset
of the Rico dataset. We randomly selected 89 apps, consisting of 2,217 images from the unlabeled
portion of the RICO dataset. We ran SSIM to label those images and manually checked each image to
decide whether the labeling was accurate. Then, we counted the number of correctly and incorrectly

labeled images to objectively measure the actual performance of SSIM in this respect.

Results. From our analysis, it came out that approximately 30% of the images were wrongly labeled
by SSIM. This is a serious fact because these wrong labels will then give unreliable training data,
and hence, the deep learning models trained on such data will make wrong predictions. Further
insight into the quality of labeling in the dataset is given in Table 1, which provides the number of
correctly and incorrectly labeled images.

Additionally, we identified two major issues with the labeled dataset:

e Repetitive Images: A significant number of images were near duplicates, coming from frames
that differ very little from their neighbors. These duplicate images can introduce bias to model

training by overrepresenting certain visual elements and may affect the model’s generalization.

e Corrupted Images: Some images were completely corrupted, consisting of white and black
pixels, for reasons such as being ineligible for classification. These corrupted images introduce

more noise into the dataset, further compromising label quality.

Dataset Category | Total number of images | Wrong Labeled images | Accuracy
Test 429 127 70.39%
Validation 406 121 70.19%
Train 1382 415 69.97%
Total 2217 663 70.09%

Table 1: The table provides a summary of dataset statistics of 89 apps, including the distribution
across training, validation, and test sets. It highlights the occurrence of mislabeling within each

category and presents the overall accuracy.

Discussion. That points to the fact that SSIM, although effective in simple image comparisons,
falters for larger, more diverse data like RICO. The very 30% mislabeling rate indicated issues with
relying on SSIM when doing large-scale labeling without methods for refinement or validation. Bad
labeling can snowball the performance of a machine learning model, leading it to generalize to poor

degrees, hence making the model unreliable.
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Moreover, the presence of repetitive and corrupted images points to the need for much more
robust data curation in training dataset preparation. Ensuring that datasets are clean, diverse, and

representative is key to achieving the best results from deep learning tasks.

4.3 RQ2: How to prepare a high quality dataset?

Motivation. In RQ1, we saw that SSIM generated a poorly labeled dataset. As a result, a large
portion of images were no more than mislabeled. The fact just gave rise to doubts about the usage
of SSIM. Thus, we decided to take a small dataset from Rico, call it GOLD, and fine-tune large
models on it. The proposed research question seeks to establish dataset characteristics that can
help fine-tune large models effectively. A well-labeled and high-quality dataset will make a model

perform better; thus, a model can generalize well for new data and classify GUI images.

Approach. For the answer to RQ2, we first required a clean dataset manually labeled to fine-tune
our models. Given that SSIM wrongly labeled some of these, we had to create a new dataset. In
particular, those images that SSIM mislabeled were revised, and their labels were corrected. Also,
548 more screenshots from RICO were added, categorizing each image as Fully or Partially rendered.
The whole process ensured the quality of the dataset and devoid it of errors identified in RQ1.

In particular, we must take special care while training and testing split to serve the dataset well
for model generalization. A simple random shuffle of the dataset would result in a data leakage
problem [23] since GUIs in the same app would share very similar visual features. To avoid this, we
stratified based on the applications; thus, images from a specific app would not be represented in
the training and the test sets. This yielded a split of 7:1.5:1.5 across training, validation, and test
set splits.

Results. We created GOLD dataset with two distinct labels and divided it into three sets: training,
validation, and testing. The dataset statistics, including the number of images per label and set, are

summarized in Table 2:

Label Train Validation Test
Full 996 213 215

Partial 938 201 202

Total 1934 414 417

Table 2: The table provides an overview of GOLD dataset, detailing the distribution of fully and

partially labeled instances across the training, validation, and test sets.

Discussion. Since there are identified issues about accuracy, as revealed in RQ1, this was handled
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by the manual curation of the dataset; only the correctly labeled images were used for fine-tuning
the large models. A well-balanced dataset of full and partial would be quite important for training
a model with good performance in classifying GUI images according to their rendered state.

This careful preparation of the data, especially splitting by app, was necessary to avoid overfitting
and ensure the models generalized well. By not allowing any app data to leak into both the training
and testing sets, we did not run the risk of the model learning patterns specific to any particular
app that may not hold for other apps. This refined dataset allowed for fine-tuning large models with
better performance, discussed in RQ3. This serves as a starting point for further experiments with

different models.

4.4 RQ3: Accuracy of Large Models on Classifying GUI Im-
ages

Motivation. The pretraining of many large models on vast amounts of image datasets, including
Vision Mamba, Vision Transformers and ResNet to MobileNetV2, may be done so that all these large
models are representative of complex features. Alternatively, we can train a model from scratch on a
large RICO dataset, but We prefer fine-tuning each large model on a curated small subset. This will
save computational resources but yield very strong performance in classifying the rendering state of
GUIs. In this regard, we will test the performances of three such models: Vision Mamba, Vision
Transformers, and ResNet, all trained on large datasets of images and fine-tuned on our refined

dataset for classifying the rendering states of GUIs in RQ3.

Experimental Setup. For the experiments, we have utilized vision mamba, Google ViT model, and
ResNet-152, and MobileNetV2. We trained the models on a 1934 input image, with the size 224*224,
carefully selected from the Rico dataset as described in RQ2. We used the AdamW optimizer with
a 3 x 107° learning rate and set the batch size to 16. All three models have been trained for 20

epochs. Experiments were done with an NVIDIA RTX A4500 with 20 GB.

Metrics. Since the task is a frame of an image classification problem, we used three common metrics
in the model’s performance evaluation: precision, recall, and Fl-score. These metrics provide a
comprehensive view of model accuracy, considering both the ability to identify positive instances
correctly and the model’s sensitivity to detecting all true positives.

Precision is the proportion of GUIs correctly predicted as fully rendered among all GUIs predicted

as fully rendered.

#GUIs correctly predicted as fully rendered

Precision —
recision #All GUIs predicted as fully rendered (9)
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Recall is the proportion of GUIs correctly predicted as fully rendered among all fully rendered
GUlIs.
#GUIs correctly predicted as fully rendered

Recall =
eca #All fully rendered GUIs (10)

Fl-score is the harmonic mean of precision and recall, which combines both of the two metrics

above.

2 x Precision x Recall
F1- = 11
Seore Precision + Recall (11)

Higher values are better for all three metrics. We have also measured the inference time, which
denotes the time required by the model to classify an image after it has been trained. The lower the

inference time, the faster the model performs, which is crucial for real-time applications.

4.4.1 Analysis of Models

Analysis of Vision Mamba

This section analyzes Vision Mamba’s fine-tuning process on our small dataset. First, we load
both the model architecture and its pre-trained weights. Then, we change the classification head
to output two classes to align the network with our binary classification task. Unlike methods that

freeze certain layers, we decided to keep all the layers trainable to fine-tune the whole model.
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Figure 14: The figure illustrates the training process of Vision Mamba model, showing the reduction

in training loss over epochs and the progression of accuracy for both training and validation.
Training Loss. Figure 14 on the left, this plot shows the training loss in several epochs. Much

error remains in the model’s predictions from the higher value of the training loss in the first epoch

during training. The increase in the number of epochs reduces the loss quickly, especially for the
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initial epochs - from 1 to 5 - revealing that the model effectively learns this pattern. After about
ten epochs, the reduction in loss starts to slow down and converges at a low value close to zero by
epoch 20. The consistent decrease in training loss shows the optimization process is going well. The

small final training loss suggests a good fit of the model for the training data.

Training Accuracy. Figure 14 the right plot compares the training versus validation accuracy
across the epochs. Training accuracy increases rapidly during the first few epochs and reaches about
95% at epoch 10. Beyond this point, the training accuracy continues improving a little and stabilizes
at almost 98.19% at around epoch 20. This indicates that the model efficiently learns the training

data as it increases rapidly and stabilizes.

Validation Accuracy. The accuracy on the validation set improves within the first few epochs,
then is stabilized around 80% after epoch 5. Beyond the fifth epoch, the behavior of the validation
accuracy does not improve, and only minor fluctuations can be seen in the later epochs. Another
trend that it reflects is the gap between training and validation accuracy. That indicates the model
has overfitted the training data because it performs significantly better on the training set than on

the validation set.

Test Results. Table 3 reveals that in class Full, this model was a bit better off than in the case
of Partial, as demonstrated by the higher recall for class Full. About balanced precision, recall,
and Fl-score, an overall excellent performance without high bias can be noticed towards one class
from another. From an accuracy perspective, it can be seen that an overall accuracy of about 84%
indicates quite a very good generalization of this model for the test dataset, whereas there is indeed

scope for improvement. The Vision Mamba model takes an average time of 12.47 ms per GUI

inference.
Class Precision | Recall | Fl-score | Support
Full 0.82 0.89 0.85 215
Partial 0.87 0.79 0.83 202
Accuracy - - 0.84 417
Macro Avg 0.84 0.84 0.84 417
Weighted Avg 0.84 0.84 0.84 417

Table 3: The table presents the classification performance of the Vision Mamba model on the test

set.
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Analysis of Vision Transformers

In this section, we will fine-tune a pre-trained ViT model on ImageNet-21k for our binary classi-
fication problem. We start by loading the model and updating its classification layer to output two
classes. Unlike the other approaches where some parameters are frozen, we do not explicitly lock any
layers here. It enables all the parameters of the ViT model. It changes their status to a trainable
state, indicating that the whole architecture can adjust the learned representations according to the

features of our target dataset.
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Figure 15: The figure illustrates the training process of the vision transformers model, showing
the reduction in training loss over epochs and the progression of accuracy for both training and

validation.

Training Loss. In figure 15, the left plot shows the decrease in training loss over 20 epochs. First,
the training losses are rather high and above 0.6 during the initial rounds of epochs. One can
see a gradual decline due to training, most strongly during the first ten epochs. After the tenth
epoch, further reduction decelerates toward stability within the range of 0.1 to 0.2 toward the end.
The consistent decrease in training loss supports that model optimization is going pretty well. In
contrast, stabilizing the loss on a low value tells us that this model generalized well from the training

data.
Training Accuracy. The right plot compares training and validation accuracy over 20 epochs.
The training accuracy increases steadily, reaching above 90% by epoch 10. It stabilizes between 93%

and 95% during the later epochs, indicating strong performance on the training data.

Validation Accuracy. First, the validation accuracy improves in the first five or so epochs, reaching
its peak around epoch 5, then with large fluctuations between 70% and 80%. Large fluctuation in

validation accuracy is an indication of instability in the generalization performance of the model.
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While the training accuracy increases with more epochs, the gap between the training and validation

accuracy becomes large after epoch five, which might indicate overfitting.

Test Results. Table 4 shows that the model has performed better in class Full compared to class
Partial. Low recall of class Partial means difficulty finding the positive samples, resulting in many
false negatives. With the overall accuracy at 77.94%, this is a reasonable performance but with
scope for more improvements. On average, it takes 6.71 ms for a single GUI inference using the

Vision Transformers model.

Class Precision | Recall | Fl-score | Support
Full 0.74 0.87 0.80 215
Partial 0.84 0.68 0.75 202
Accuracy - - 77.94 417
Macro Avg 0.79 0.78 0.78 417
Weighted Avg 0.79 0.78 0.78 417

Table 4: The table presents the classification performance of the Vision Transformers model on the

test set.

Analysis of ResNet

This section will adapt a pre-trained ResNet152 model for our binary classification task. We load
the model and replace its last fully connected layer with a new one that outputs two classes. We keep
all parameters trainable, allowing the entire model to adjust its representations to the specifics of our
target dataset. This approach leverages ResNet’s powerful, pre-trained feature extraction capabilities
while retaining the flexibility to refine high-level and low-level representations, potentially improving

overall performance in our binary classification setting.

Training Loss. In figure 16, the left plot shows how the training loss changes over 20 epochs. The
loss is relatively high at the start, around 0.66 in the first epoch. The loss drops quickly during the
first few epochs, with the most noticeable decrease occurring before epoch 5. After this point, the
rate of improvement slows, and the loss stabilizes, fluctuating slightly around 0.56. By epoch 20,
the loss reaches its lowest value, though the improvement is minimal compared to earlier epochs.
The sharp drop in training loss during the initial stages indicates that the model quickly picks up
on important patterns in the data. The stabilization and small fluctuations after epoch 5 suggest

that the model has reached a point where additional training provides limited benefit.

Training Accuracy. The right plot compares the training and validation accuracy over the epochs.

The training accuracy starts at around 60% in the first epoch and gradually rises to approximately
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Figure 16: The figure illustrates the training process of the ResNet model, showing the reduction in

training loss over epochs and the progression of accuracy for both training and validation.

72% by epoch 5. Beyond epoch 5, the training accuracy fluctuates and largely stabilizes at about

70%, with minimal further improvement toward the later epochs.

Validation Accuracy. The validation accuracy shows significant variation across the epochs, peak-
ing at around 80% near epoch five but frequently dropping to as low as 60%. This inconsistency sug-
gests the model’s performance on the validation set is unstable. While the training accuracy follows
a gradual upward trend and stabilizes over time, the validation accuracy fluctuates unpredictably.
These large swings in validation accuracy indicate potential overfitting or poor generalization, as the
model may be overly tuned to the training data and struggling to maintain performance on unseen
data.

The reasons why validation accuracy is considerably higher than training accuracy could be at-
tributed to many things. Regularization methods such as dropout or batch normalization usually
alter the parameters in training and evaluation phases separately, which results in under perfor-
mance on the the training accuracy. Augmented data seems to be harder to grasp compared to the
unmodified data, but can be easier for validation. A training set that is small or has noise can be
more challenging to learn from, but the validation set can be easier and more defined. Differences
in batch sizes while training and validating may influence the batch normalization statistics. A lack
of time to train, bad shuffling of training data, and an easy validation Set are also possible reasons

for this discrepancy.

Test Results. Table 5 indicates that the model returns a higher recall for class Full, with a value
of 0.85, than class Partial, with a recall of 0.62. Precision is equilibrated between both classes: 0.71

for Full and 0.79 for Partial, giving a good classification capability. An accuracy of 73.86% reflects
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a good generalization of the test set but leaves room for improvement. The ResNet model takes, on

average, 31.89 ms per GUI inference

Class Precision | Recall | Fl-score | Support
Full 0.71 0.85 0.77 215
Partial 0.79 0.62 0.70 202
Accuracy - - 73.86 417
Macro Avg 0.75 0.74 0.73 417
Weighted Avg 0.75 0.74 0.73 417

Table 5: The table presents the classification performance of the ResNet model on the test set.

Analysis of MobileNetV2

This section will adapt a pre-trained MobileNetV2 model for our binary classification task. We
load the model and replace its last fully connected layer with a new one that outputs two classes. We
keep all parameters trainable, allowing the entire model to adjust its representations to the specifics

of our target dataset.
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Figure 17: The figure illustrates the training process of the MobileNetV2 model, showing the reduc-

tion in training loss over epochs and the progression of accuracy for both training and validation.

Training Loss. In figure 17, the left plot shows how the training loss changes over 20 epochs. The
loss is relatively high at the start, around 0.55 in the first epoch. The loss decreases sharply during
the first few epochs, indicating that the model is learning effectively. Around epoch 10, the loss

stabilizes but shows minor fluctuations. This could suggest slight instability in optimization.
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Training Accuracy. The right plot compares the training and validation accuracy over the epochs.
The training accuracy starts at around 73% in the first epoch and gradually rises to approximately
92% by epoch 5, indicating that the model is fitting well to the training data. After epoch 10, it

plateaus, suggesting that the further training may not significantly improve performance.

Validation Accuracy. The validation accuracy fluctuates more compared to the training accuracy.
There is a sharp increase, but the afterward fluctuations show potential overfitting. The final part
of the curve shows lower amount than corresponding part in training graph. This depicts that the

model may not generalize well to unseen data.

Test Results. Table 6 indicates that the model returns a higher recall for class Full, with a value
of 0.82, than class Partial, with a recall of 0.79. Precision is equilibrated between both classes: 0.80
for Full and 0.81 for Partial, giving a good classification capability. An accuracy of 81% reflects a
good generalization of the test set but leaves room for improvement. The MobileNetV2 model takes,

on average, 4.24 ms per GUI inference

Class Precision | Recall | Fl-score | Support
Full 0.82 0.80 0.81 215
Partial 0.79 0.81 0.80 202
Accuracy - - 0.81 417
Macro Avg 0.81 0.81 0.81 417
Weighted Avg 0.81 0.81 0.81 417

Table 6: The table presents the classification performance of the MobileNetV2 model on the test

set.

4.4.2 Comparative Analysis of Models

Comparison of training loss

Compared to both, Vision Mamba shows very low final training loss with less volatility. In
contrast, ViT and MobileNetV2 only perform fairly, with less output stability. ResNet’s performance
is poor because of the unusually large variability in that a higher final loss is compared to the other
methods studied here, thereby establishing a tough case for optimization using these choices of
training conditions. This highlights how architectural design and proper mixing and matching for a

good training breed can significantly help attain low training volatility.
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Comparison of Training and Validation Accuracy

The accuracy trends of the training and validation for the four models represent marked differ-
ences in general stability and their propensity for generalization or overfitting. It is observed from
the above that Vision Mamba achieves very high accuracy for both training and validation with
minimal variance, demonstrating robust generalization. ViT and MobileNetV2 also attain very high
training accuracy, but their validation trends have been erratic, reflecting difficulty in translating
the learned patterns to new data. Among them, ResNet falls behind in overall accuracy and sta-
bility, struggling to improve and maintain performance on either set. These patterns collectively
highlight the superior balance and reliability of Vision Mamba, the intermediate stability of ViT
and MobileNetV2, and the challenges faced by ResNet in achieving steady, effective learning.

Comparison of Test Results

Model Accuracy (%) | Precision | Recall | F1-Score | Time (ms)
Vision Mamba 84.00 0.84 0.84 0.84 12.47
MobileNetV2 80.58 0.81 0.81 0.81 4.24
Vision Transformers 77.94 0.79 0.78 0.78 6.71
ResNet 73.86 0.75 0.74 0.73 31.89

Table 7: Comparison of test results for Vision Mamba, Vision Transformers, and ResNet.

Testing on the test dataset, Vision Mamba, MobileNetV2, Vision Transformers, and ResNet show
striking differences in predictive performance and computational efficiency. The best performance
is given by Vision Mamba, with the highest accuracy of 84.00% and a balanced precision, recall,
and F1-score of 0.84, showing this model generalizes fairly well and isn’t biased towards either class.
Although its inference time of 12.47 ms is nothing to brag about, it is still reasonably efficient in
making Vision Mamba competent for scenarios that require high accuracy and demand moderate
speed.

ViT provides strong, though far from the best predictive metrics - 77.94% accuracy at 0.78 F1-
score - but very strong inference speed, 6.71 ms. In this regard, ViT achieves a fantastic balance
that may be of interest for tasks where time is crucial, but the absolute top-of-the-class accuracy
is not as important. On the contrary, ResNet falls behind on most dimensions - starting from
accuracy (73.86%) and Fl-score (0.73), finishing with the longest time for one inference at 31.89
ms. These results reinforce that ResNet is more challenging to optimize effectively and unsuitable
for applications where speed and accuracy are a priority.

Vision Mamba perhaps provides the best overall balance of predictive performance and efficiency.
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On the other hand, ViT offers competitive accuracy with much higher inference speed. However,

ResNet is poor in both ways, making it thus the least advantageous choice under these conditions.

Comparison Between Vision Mamba and MobileNetV2

The studied approach, AdaT, performed its own experiments on the MobileNetV2 model with
learning process from scratch. However, we decided to use this model to fine-tune the version that
was pre-trained on the ImageNet dataset with more than 1 million images and compare it with
Vision Mamba. The results show that MobileNetV2 obtained around 80.58% accuracy with a 4.24
ms processing time per GUI. This shows that this model outperforms ViT but lacks the accuracy
to take over the first position among the other models. On the other hand, if the speed is preferred,

this model can be utilized rather than vision mamba.

Comparison Between SSIM and Vision Mamba

Consequently, the accuracy and reliability of Vision Mamba outperformed SSIM by a margin.
While SSIM records a mislabeling rate of about 30%, the overall accuracy that could be attained for
Vision Mamba was 84.00%, showing a much finer job in classifying fully and partially rendered GUIs.
Besides this, SSIM relies on comparisons at the level of pixels, which very seldom captures subtle
semantic differences in GUI rendering states. On the contrary, Vision Mamba with deep learning
analyzes higher-order features, hence making much finer distinctions of the rendering states possible.
At the same time, it grants balanced precision and recall, a high Fl-score, while the very high rate
of misclassifications makes SSIM impractical for effective use. Obviously, the highest scores belong
to Vision Mamba and prove the robustness of this method as well as its further scalability for most

GUI classification challenges.

4.4.3 How the new result will replace existing component in AdaT

According to the obtained results, Vision Mamba is the most accurate model that can predict
the state of the GUI. Therefore, in AdaT architecture we can replace MobileNetV2 with Vision
Mamba. On the other hand, the procedure of labeling RICO dataset utilizing SSIM is no longer
necessary. Therefore, we only need to train Vision Mamba on GOLD dataset and integrate that in

the workflow of AdaT.
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Chapter 5

Thesis Contributions and Future

Work

5.1 Conclusion

In this study, Vision Mamba emerged as the most effective GUI rendering state classification
model, consistently outperforming both ResNet and Vision Transformers across accuracy, precision,
recall, and F1-score metrics. Its stable generalization and balanced class-wise performance highlight
the model’s ability to handle diverse GUI conditions with minimal bias. Although ResNet and
Vision Transformers achieved comparable performance on certain metrics, Vision Mamba’s predictive
quality and robustness advantage are clear despite a modest increase in inference time.

Beyond model comparisons, this chapter critically examined the limitations of the ADAT method,
which relies heavily on SSIM-based automated labeling. While computationally efficient, ADAT’s
approach is prone to a high error rate—30% of labels were found to be incorrect—due to its inability
to capture subtle semantic cues or adapt to varied GUI designs. Predefined thresholds and a lack
of semantic understanding further constrained ADAT’s effectiveness, resulting in inconsistent and
unreliable predictions.

A fine-tuning strategy was introduced to address these issues, leveraging a manually curated
subset of RICO dataset images and the Vision Mamba model. By grounding the training process
in a set of highly accurate annotations, this approach overcame the limitations inherent in SSIM-
driven methods. Vision Mamba’s deep learning architecture provided a more nuanced understanding
of GUI states, adapting seamlessly to complex, dynamic interfaces without relying on hard-coded
thresholds. As a result, its labeling accuracy improved substantially, reducing the error rate from

30% to under 5% and producing robust, semantically rich representations of GUI readiness.
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This analysis underscores the value of advanced deep learning frameworks in GUI state classifica-
tion. While the lightweight ADAT method offers computational convenience, its high error rate and
inflexible thresholding limit its practical utility. By contrast, Vision Mamba’s fine-tuned approach
delivers superior accuracy, adaptability, and resilience, establishing it as a more reliable and scalable

alternative to the ADAT paradigm.

5.2 Future Work

Building on the insights and results of this thesis, several directions offer opportunities to advance

the field of GUI rendering state classification:

e Refinement of Data Labeling Methods: Indeed, this manual curation had a payoff- it
significantly increases the reliability of the annotations- and the challenge lies in scaling that.
Future work can take several directions in semi-supervised or active learning techniques to
reduce labeling overhead. These efforts could be complemented further by automatic but highly
contextual annotation methods, utilizing, for instance, optical flow or even simple temporal
consistency between multiple frames showing a sequence of the same GUI, which have great
potential not only for improvements in accuracy but can contribute greatly to the scaling

aspect for generating this dataset.

e Integration of Temporal and Multimodal Information: While many GUIs involve dy-
namic features like animations, loading states, and interactively emerging widgets, most cur-
rent approaches have relied on static screenshots. These could thus be enriched with temporal
information such as video frames and/or multimodal cues like textual content, patterns of
user interaction, or back-end metadata to provide a complete representation that improves

classification for partial or fully rendered states.

e Domain Adaptation and Robustness Testing: GUIs can be very different between ap-
plications, platforms, and devices. Examples of potential future work include investigating do-
main adaptation techniques to ensure models like Vision Mamba perform well on new interface
styles, themes, or screen resolutions, testing model robustness against adversarial examples,

various rendering quirks on devices, and network conditions for real-world environments.

e Model Explainability and Interpretability: While Vision Mamba shows very strong per-
formance concerning quantitative metrics, it becomes relevant to understand the logic behind
its predictions. Adding explainability frameworks, such as attention heatmaps, feature visual-

izations, or saliency techniques, would give developers and testers a chance for deeper analysis
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of the model’s behavior and make sure that at least its classification decisions do not conflict

with human logic and domain-specific knowledge.

e Efficiency and Deployment Considerations: Although Vision Mamba showed a reason-
able inference time, further optimization will be required for some applications, such as mobile
testing and low-latency continuous integration pipelines. Model compression techniques, opti-
mizations on edge devices such as quantization and pruning, and cloud deployments would be

interesting in bridging the gap from a research prototype to a production-ready solution.

Ultimately, the groundwork laid in this thesis provides a great foundation for further research
in this area. Future work can provide more holistic, versatile, and deployable solutions toward GUI
rendering state classification by developing superior labeling strategies, incorporating temporal and
multimodal data, ensuring domain robustness, explaining, refining the class definition, and focusing

on computational efficiency.
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