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Abstract

Semi-Robust Risk Minimizing Hedging Strategies

Emmanuel Sekyere Osei Mireku, Ph.D.

Concordia University, 2025

This thesis explores robust risk-minimizing hedging strategies for contingent claims in incom-

plete markets with transaction costs, offering a spectrum of tools to balance risk and cost-

effectiveness. Robust technique applications to finance and insurance have recently gained

popularity due to their ability to mitigate model risk. Model risk arises when strategies

(or models) become in and out of sync with the market. A model is robust if it can adapt

to a wide range of market-dependent factors. However, robust models can be costly and

computationally demanding, especially for complex financial and insurance products. Us-

ing a multidimensional event tree model, we employ the asymmetric norm as a semi-robust

risk measure, integrating asymmetry for customized risk profiles. Three main strategies are

developed: a super-replicating approach ensuring full claim coverage at a higher cost, the

norm as constraint, which introduces controlled losses to reduce costs, and the norm as ob-

jective, minimizing losses directly to enhance capital efficiency. Additionally, self-financing

strategies, which require no additional capital injections, offer cost-effective hedging, while

portfolio value as state variable strategies allow real-time adjustments, enhancing robustness

under volatile conditions. Testing on European call options show that semi-robust strate-

gies - especially norm-constrained and self-financing approaches - maintain low tail risk with

minimized cost, demonstrating versatility in adapting to diverse market conditions, investor

goals, and risk tolerances while upholding robust risk control.
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Chapter 1

Introduction

1.1 Background

Risks come in many forms and are caused by various circumstances, including financial,

liquidity, and insurance-related risks. Uncertainty from some exposures that influence an

investment or an issuer’s ability to fulfill a claim gives rise to several liabilities. Due to the

unpredictability of future outcome variance from expectations, investors face risk and tend

to accept some uncertainty in exchange for a potential return on their investment.

The concept of managing or minimizing risk has evolved for various applications. In insur-

ance, in case of an incidence covered by the insurance policy, the insurer sells its assurance

that it would pay the policyholder or an injured party on the policyholder’s behalf. The

insurer tries to mitigate risk by setting aside a fund known as a reserve for future payments

of incurred claims that are yet to be settled. Traditional finance involves setting up an al-

ternative account or investment known as a hedging portfolio to offset potential losses from

a polarizing position.

Various hedging strategies have been proposed in the literature. If certain payoffs cannot be

replicated by trading in underlying securities, a market is said to be incomplete. As a result,

perfect risk transfer is not achievable. The traditional no-arbitrage theory of valuation in a
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complete market, which is based on the unique price of a self-financing replicating portfo-

lio, is reiterated by Staum (2007) as being insufficient for irreplicable payoffs in incomplete

markets.

Uncertainty surrounding various pricing and valuation parameters makes establishing a hedge

portfolio difficult. For instance, European options can be affected by fluctuations in market

volatility, which poses a challenge when pricing such products. Jaroszkowski and Jensen

(2022) develop a model to assess the impact of uncertainty of market price and volatility

risk on the valuation of European options. They utilize a Hamilton-Jacobi-Bellman (HJB)

approach in a Heston model to quantify the best and worst-case scenarios under uncertainty,

and solve the resulting nonlinear equations using a finite element method. As a result, they

highlight that the relationship between option price sensitivity and uncertainty is nonlinear,

with significant variation across different parameter regimes.

In insurance, most products are not fit to be priced under market completeness because

they involve mortality, financial risk, and, in some circumstances, surrender risk. Møller

(1998) notes that such claims cannot be fully hedged by trading equities and risk-free assets

alone, owing to the incompleteness of the market. To find self-financing hedging methods,

they expand the model to a scenario where they can entirely remove the risk. As a result,

they suggest risk-minimizing techniques and their related inherent risk processes. Schweizer

(1995) provides a self-financing hedging strategy under ℓ2 norm or quadratic minimization

with one risk asset in discrete time. Rémillard et al. (2012) extends the concept to develop

an optimal self-financing hedging strategy with multiple underlying assets by minimizing

the mean square hedging error. To create a least-cost optimal replicating strategy known

as ϵ-arbitrage, Bertsimas et al. (2001) uses the square root of the mean-squared replication

error as an efficiency metric. In their situation, they stipulate that ϵ may be interpreted as

the level of market incompleteness that gauges how expensive it is to replicate a portfolio.

Financial crises highlight the necessity of methods to manage risk and reduce market un-

certainty. Sadly, practical methods to minimize risks are complicated by intricate systems
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of market activity. For any given predicted future return, Lisewski and Lichtarge (2010)

demonstrates that investors may navigate this complexity by using global risk-minimizing

strategies in portfolio models. They show that risk is reduced for markets where stocks,

futures and other financial transactions are completed through margin accounts, provided

the margin account requirement stays below a crucial empirically validated value. They

claim that maintaining margins that are narrow enough would be an effective stabilizing

technique for markets with centrally regulated risk margin requirements. They proceed to

show that this innovative technique is robust to noise in empirical data and may also be

generally applicable to complex networks across other disciplines.

On the concept of local risk minimization, Schweizer (2008) defines a square-integrable

strategy as locally risk-minimizing for a payment stream if, for minor deviations, the dis-

counted risk process expressed as the expectation of squared errors from the cost process

is non-negative almost surely, for all increasing sequence of partitions of the time horizon.

To demonstrate the continued validity of the fundamental martingale characterization for

local risk-minimization, they expand their concept and methodology to a generic multi-

dimensional framework.

Additionally, Lamberton et al. (1998) consider pricing and hedging contingent claims in dis-

crete time under transaction costs in a general incomplete market. They demonstrate the

existence of a local risk-minimizing strategy that includes transaction costs for each square-

integrable contingent claim. They show that their approach is robust for any non-degenerate

model with finite state space if the transaction cost parameter is sufficiently minimal.

Another approach to address market uncertainty is to explore robust methods. Robust opti-

mization safeguards a decision-maker against uncertainty and ambiguous model parameters.

The application of robust techniques to finance and insurance has recently gained popularity

due to their ability to immunize against model risk and characterize market dynamics using

tractable uncertainty sets instead of probability distributions.

An uncertainty set in robust optimization is a representation of all possible variations in the
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model parameters of an optimization problem. It defines the range or region within which

parameters can vary while ensuring that the solution remains feasible and performs well

under all scenarios within the set. Uncertainty sets that allow model parameters to vary

within a defined range are referred to as box or interval uncertainty. One can also allow

model parameters to vary within an ellipsoid (ellipsoidal uncertainty), convex hull (polyhe-

dral uncertainty) or ensure the parameters remain withing a specific distance (norm-based

uncertainty) from the a nominal value.

Ben-Tal and Nemirovski (1998) extensively studied the concept of robust optimization and

laid the foundation for their formulations in generic convex optimization problems. By

considering semi-definite programs whose data rely on certain constrained but unknown

fluctuating parameters, El Ghaoui et al. (1998) explore robust solutions that minimize the

worst-case objective while meeting the constraints for all feasible parameters inside the stated

boundaries.

In their paper, Bandi and Bertsimas (2014) propose an alternative approach to price options

by identifying a self-financing dynamic portfolio that closely resembles an option’s payout

utilizing the ϵ-arbitrage technique. However, they employ polyhedral uncertainty sets and

norms to simulate the price dynamics. To identify the portfolio that minimizes the worst-

case replication error for a given uncertainty set, they formulate the problem as a robust

optimization problem and argue that this approach scales the dimension of the problem

polynomially instead of exponentially.

By concentrating on robust optimization techniques, Scutella and Recchia (2013) employs

robust analogues of the traditional mean-variance and minimum-variance portfolio optimiza-

tion to address uncertainty in portfolio asset allocation. They also examine the connection

between the robustness and convex risk measure concepts. Fonseca and Rustem (2012) as-

sume that returns are unpredictable and aim to maximize portfolio return for the worst-case

scenario using robust optimization. Both the uncertainty set and the objective function

are reformulated as semi-definite problems that result in a tractable model. However, their
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suggested models are bi-linear and non-convex since the overall return in their framework is

the sum of local and currency return.

Ceria and Stubbs (2006) introduced robust optimization to mitigate some of the negative

effects of optimization introduced by estimation errors in expected return estimates after

demonstrating how these errors can result in portfolios with weights significantly different

from the optimal portfolio.

Sözüer and Thiele (2016) summarizes a general review of the advancements in robust op-

timization. They emphasize the growth of knowledge in robust optimization theory and

its applications. They discuss fresh results in static and multi-stage decision-making, the

relationship with stochastic optimization, distributional robustness, and robust nonlinear

optimization from a theoretical perspective. Finally, they offer recommendations for re-

searchers who want to protect their model from parameter uncertainty.

Bertsimas and Sim (2004) presents a strategy that aims to accept sub-optimal solutions and

make trade-offs more desirable by looking at methods to lower conservatism of robustness.

They modify the degree of conservatism of robust solutions in terms of probabilistic bound-

aries with constraint violations. By placing a cap on the number of parameters that can

change, they established a robust method to regulate conservatism. Their robust formulation

is a linear optimization problem, which is an appealing feature, and the methodology can be

naturally and effectively extended to discrete optimization problems in a tractable way.

Liu et al. (2016) offer a theoretical justification for why the approach by Bertsimas and Sim

(2004) exhibits excessive conservatism. They also note that when the cap is lower than the

total number of nonzero components in the optimal solution, the robust approach does not

achieve an extremely conservative result. They continue to state that one has to be cautious

when modifying the cap’s value since doing so can provide results that are more conservative

than planned.

Using ellipsoidal, polyhedral, and interval uncertainty on the mean and covariance of pro-

jected returns, Lotfi and Zenios (2018) develop robust models for optimizing risk measures.

5



They provide an algorithm to get around the conservative nature of robust optimization

models and demonstrate how the robust models reduce the well-known sensitivity of co-

herent risk measures to misspecifications of the first four moments of the expected return

distribution.

Roos and den Hertog (2020) recommend a different robust formulation that combines all

uncertainty into a single constraint and ties the worst-case predicted loss to the original

constraints of the problem to reduce conservatism. They demonstrate that the suggested

formulation may protect against most uncertainty at a minimal cost objective value for

situations with an unfeasible robust counterpart.

1.2 Motivation

Any model that works relatively well most of the time is considered robust. Practically,

strategies will move in and out of sync with the market, but this does not necessarily mean

the strategy is ineffective. When there are market changes, a model’s parameters may also

vary, leading to models doing well in some circumstances while struggling in others. Model

risk arises when a model is in and out of sync with the market. A model is considered robust

if its performance remains stable even when the quality of market-dependent parameters are

no longer adequate. Robust optimization is an effective method for handling such uncer-

tainty in optimization.

A conservative model or strategy stays on the side of caution or presents the problem it ad-

dresses as the “worst-case scenario”. Diverse disciplines have investigated robust optimiza-

tion for market and model parameter uncertainties. However, the selection of constraints

and uncertainty sets may impact robust methods. In most cases, attempts to fix these prob-

lems make the overall model complex or render the problem unsolvable. Furthermore, robust

techniques and computational costs can be expensive, particularly for more complicated fi-

nancial and insurance products. When robust optimization results in a solution with an
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objective value significantly worse than the nominal solution, it is considered conservative.

Although robust techniques address model risk issues, they may result in less-than-ideal out-

comes because of the model’s excessive conservatism. This poses a challenge when it causes

robust solutions to be overlooked in favour of the nominal answer. We seek to develop semi-

robust, model-independent, and cost-effective strategies when minimizing the hedge portfolio

for some contingent claims. We define a model as “semi-robust” when the quantification of

uncertainty directly affects the objective of the problem rather than the model’s parameters.

In essence, we are interested in the region created by the overall model mismatch rather

than studying each model parameter independently. This characterization distinguishes our

approach from traditional robust strategies that rely on the construction of uncertainty sets

for the model’s parameters. Additionally, we assume no distribution on the model framework

which is different from other studies and lastly, we develop a technique to obtain cheaper

strategies using norm constraint optimization.

Using constrained robust optimization, we explore models that minimize risk exposure lo-

cally and globally. We consider filtration under the lattice/tree model as the framework

for optimization. This grid filtration specification is different from other studies where they

consider one step or range for their filtration. Our goal is to identify a semi-robust model

that controls the problem of conservatism in financial and insurance products and attempts

to address some of the drawbacks in robust optimization literature. We adopt convex op-

timization principles for our objective functions and constraints to develop feasible hedging

strategies. We extend our models to include transaction costs and estimate closed-form

solutions to reduce the model and computational complexity of robust hedging strategies.

1.3 Thesis overview

Chapter 2 presents the model framework, risk measures, hedging portfolio and loss function.

We define a discrete state space, specifically a lattice model with recombining trees as the
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model framework. We further introduce the notations that are used to define our losses.

Since we are interested in risk-minimizing strategies, we discuss two known risk measures

in addition to norms and describe how they can be adapted to suit our model. Lastly, we

define a typical loss function for a hedging portfolio. In Chapter 3, we discuss local hedging

strategies and propose our semi-robust models that need to be optimized. In Chapter 4,

we provide a detailed application of the semi-robust hedging strategies to European call

options and compare their performance across different scenarios and model parameters.

Chapter 5 introduces the framework for global hedging strategies and develops an approach

to establishing a self-financing hedging strategy featuring self-financing super-replication and

quadratic hedging. We further provide numerical analysis to compare the performance of

such strategies to their equivalent local hedging strategies. We conclude with a summary

and recommendations for our work.

8



Chapter 2

Model Framework and Risk Measures

In this chapter, we introduce the mathematical notations used and discuss the structure of

our model framework. The risk measures and norms employed in the subsequent chapters

are discussed, along with their characteristics and coherence. We define the portfolio loss

function used in our proposed algorithms for a given hedging portfolio.

2.1 Model framework

We develop our model framework by assuming a multi-dimensional discrete process with

finite number of realizations. Defining the structure as an event tree is convenient for both

stochastic and deterministic dynamic optimization. The tree consists of nodes and branches.

The nodes represent the discrete realizations of the process at each period, and the branches

indicate transitions between nodes from one period to the other with positive transition

probabilities. Specifying the branches in this manner makes it easy to characterize possible

continuation of history, which is useful in developing path-dependent models.

The lattice tree can either be recombining or non-recombining. In a recombining tree, many

branches could lead to a node, which implies many possible histories. In contrast, a non-

recombining tree has only one branch leading to a node, which depicts a long dependence

on history. Both trees can, however, model more general Markovian stochastic processes
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where the evolution of an underlying asset or security is strongly path-dependent. We can

significantly reduce the computational complexity of the model by describing the discrete

process as a recombining tree as opposed to a non-recombining tree.

Due to their versatility and tractability, lattice models are widely used to depict the evolution

of stocks, indexes, interest rates, and other financial securities, see Pliska (1997). Further-

more, they arise when dealing with contingent lives since they can also be described using

counting processes. For our framework, we assume a fixed planning horizon T ∈ N+, divided

into successive dates, T = {0, 1, 2, . . . , T}. We define {Yt}t∈T as a random process on a

probability space (Ω,F ,P) and let {Ft}t∈T be a filtration under which Yt is adapted. Ω is

the sample space and the process Yt is defined as Y : T ×Ω → Y, where Y is the state space

of Yt. Ft denotes the information set that includes process values that have been observed

up to and including time t, and P represents the physical/real-world probability measure.

It is possible to construct a tree with time-varying transition lengths, however, we assume

that for a given date, the duration of the next transition is constant, regardless of the value of

the random process. This assumption results in a tree with finite number of nodes arranged

in a finite number of levels related to dates. The transitions between levels represent the

branches. In general, Yt represents the price process. For Guaranteed Investment Certifi-

cates (GICs), European, American and Barrier options, Yt is the stock price. On the other

hand, a contract can depend on multiple random processes. For example, in Equity-Indexed

Annuities (EIAs), the stochastic process can include both the stock price and another di-

mension for the buyers’ cohort.

Suppose it is the index number for node i at time t. Then, yit ∈ Ω is the value of the random

process relative to node it. At t = 0, we have a unique root node associated with the value

of the stochastic process Y0 = y0. At t = 1, there are as many nodes as possible values of yi1

which are all connected to the root node y0 by branches. Figure 2.1 illustrates three-period

recombining and non-recombining trees with three branches at each node during each tran-

sition.
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y0

y01

y02 y12 y22

y11

y12 y22 y32

y21

y22 y32 y42

0

1

2

y0

y01

y02 y12 y22

y11

y32 y42 y52

y21

y62 y72 y82

Figure 2.1: Recombining and non-recombining trinomial trees.

Let Jt denote the set of all possible indexes it for outcomes of Yt at time t. For simplicity of

notation, we let it−1 represent the event where Yt−1 = yit−1 for conditional sets. Thus, Jt|it−1

is the subset of indexes of Yt, each connected to node yit−1 . For example, conditional on y11

in Figure 2.1, J2|11 = {12, 22, 32}, corresponding to outcomes {y12 , y22 , y32} for the recom-

bining tree and J2|11 = {32, 42, 52}, corresponding to outcomes {y32 , y42 , y52} for the non-

recombining tree. Hence, we can denote pjt|it−1 = Pr[Yt = yjt |Yt−1 = yit−1 ] = Pr[Yt = yjt |it−1]

as the conditional transition probability from node it−1 to node jt, where jt ∈ Jt|it−1. The

conditional expected value of Yt given Yt−1 is,

E[Yt|it−1] =
∑

jt∈Jt|it−1

pjt|it−1yjt . (2.1)

We also let r be the force of interest; that is, r is a nominal interest rate compounded

continuously.

2.2 Risk measures

A risk measure is a function for summarizing the degree of risk associated with a random

variable into a discrete value or real-valued function. Financial institutions, including in-

surance and investment firms, frequently utilize risk measures to assess risk associated with

various business segments. The efficiency and meaningfulness of risk measures in a pro-

fessional and regulatory setting are largely responsible for their extensive use. They can

be used in incomplete markets to develop tractable option pricing models. Artzner et al.
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(1999) defines a coherent risk measure as translation invariant, monotonic, sub-additive and

positively homogeneous. Despite not being coherent, the Value-at-Risk (VaR) is one of the

most popular and well-known risk measures. VaR is widely used due to regulatory require-

ments and ease of interpretation in risk management. On the other hand, the Conditional

Value-at-Risk (CVaR) is a coherent risk measure that has recently gained recognition as

more efficient in quantifying risk. For transitions from node it−1, the VaR at level α ∈ [0, 1]

is defined as the α-quantile of the process Yt. That is

VaRα(Yt|it−1) = inf{y ∈ R : Pr[Yt ≤ y|it−1] ≤ 1− α} = ζα. (2.2)

The CVaR risk measure represents the expected value of the worst (1 − α) realizations of

the conditional transitions. In this context, Rockafellar and Uryasev (2000) propose the

definition as

CVaRα(Yt|it−1) = ζα +
1

1− α
E[(Yt − ζα)

+|it−1]

= ζα +
1

1− α

∑
jt∈Jt|it−1

pjt|it−1(yjt − ζα)
+. (2.3)

They proved that this formulation of the CVaR is convex for ζα. Although it may not always

be differentiable with respect to ζα, it can readily be minimized in either the objective or

constraint of linear programming or line search minimization techniques.

2.3 Robust assumptions

The distribution of a model’s transition probabilities can increase the model’s risk when out

of sync with the market. We model the outcomes of our process without assigning specific

transition probabilities. This approach can be employed to construct model-independent

frameworks that prioritize flexibility in achieving the modelling objective. By refraining

from specifying a probability distribution, the model avoids embedding subjective beliefs
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about the likelihood of different scenarios, making it suitable for situations where a hedger

is skeptical about market dynamics. Instead, the focus shifts to monitoring and hedging

against all possible outcomes, ensuring that the strategy is robust regardless of how the

process evolves. For example, in a super-replicating strategy, a hedger constructs a portfolio

that dominates a future claim and is only interested in possible outcomes rather than the

distribution. In this case, the hedger finds the worst-case scenario or maximum observable

loss and controls it rather than optimizing for expected returns under a given distribution

of losses.

We can define Yt as a non-probabilistic space that corresponds to the image of the orig-

inal probability space. As such, unless one is induced, there is no probability measure

on this space. We let Yt|it−1 be a non-probabilistic vector representation with components

{yjt}jt∈Jt|it−1 . By treating the stochastic process as a collection of possible paths without

assigning probabilities, the hedger adopts a conservative approach that accommodates maxi-

mum uncertainty. It is important to mention that we do not employ conditional probabilities

in the development of our proposed hedging strategies.

2.4 Norms

The norm is another way of measuring the riskiness of a financial position. Unlike the VaR

and CVaR, which measure the riskiness based on a quantile, the norm measures specific sizes

or magnitudes of mismatches from the position. Due to its convex property, the ℓp norm

(1 ≤ p <∞), defined discretely as

∥Yt|it−1∥p =

 ∑
jt∈Jt|it−1

|yjt |p
1/p

, (2.4)

is sometimes used in mathematical finance (specifically the ℓ2 norm) to assign a numerical

value that represents the risk associated with a financial position. We note that (2.4) is
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not a function of weights or probabilities. Minkowski’s inequality ensures the sub-additive

property of the ℓp norm is preserved and hence a convex risk measure, see Föllmer and Schied

(2011).

The value of p represents the investor’s tolerance for risk. If an investor has a high tolerance

for risk, they will choose a low value of p (such as p = 1). This causes a risk measure to

be more sensitive to the portfolio’s extreme values. In contrast, a high value of p (such as

p = ∞) is used if an investor has a low tolerance for risk, resulting in a risk measure that is

less sensitive to the portfolio’s extreme values.

In some situations, we modify the definition of the norm when hedging. For instance, when

using a symmetric norm, equal weights are assigned to positive and negative realizations

or losses. This is sometimes a drawback and can affect the feasibility of the problem. By

generalizing the concept of a norm, we can introduce an asymmetric parameter to ensure

the problem’s feasibility while satisfying the norm’s properties.

Definition 2.4.1. (Asymmetric norm) The norm ℓp is asymmetric if for a given asym-

metric parameter q ∈ [0, 1] and 1 ≤ p <∞,

∥Yt|it−1∥p,q =

 ∑
jt∈Jt|it−1

|y+jt − qy−jt |
p

1/p

, (2.5)

where y+jt , y
−
jt
≥ 0, y+jt = max(yjt , 0), y

−
jt
= max(−yjt , 0) and yjt = y+jt − y−jt .

We denote ℓp,q as the asymmetric norm. Here, q can be perceived as the measure of asym-

metry. In practice, a hedger can set q = 0 to be more conservative or choose 0 < q ≤ 1 to

allow a degree of flexibility during optimization. As such the choice of asymmetry can be

useful for controlling conservatism. Garćıa-Raffi et al. (2002) proves that the asymmetric

norm also satisfies the properties of a norm, and Conradie (2015) investigates the convex

properties of asymmetric norms.
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2.5 Hedging portfolio and loss function

A portfolio of assets whose value can partially or fully offset potential losses is a hedge or

replicating portfolio. If there are no injections or withdrawals from a replicating portfolio

after it has been created, it is considered self-financing. In other words, re-balancing the

portfolio can be done by simply moving the assets around. Nevertheless, a non-self-financing

portfolio permits injections or withdrawals from the hedger to guarantee that the targeted

local requirement is satisfied during re-balancing. Without necessarily selling assets to raise

cash, the investor can add more capital to the portfolio to purchase further assets or take

money out. Non-self-financing portfolios have more flexibility since they can raise additional

funding, but self-financing portfolios must carefully manage their current assets to finance

new purchases.

Definition 2.5.1. (Hedging strategy) For a hedging portfolio with n + 1 assets, xit,k is

the value of the position in asset k held by a hedger for the outcome at node it. The hedging

strategy Xit = (xit,k)k=0,1,...,n is the vector that comprise the hedging portfolio. Furthermore,

let fit(Xit) denote the value of the hedging portfolio at node it after re-balancing with the

hedging strategy Xit such that

fit(Xit) =
n∑
k=0

xit,k. (2.6)

The set of assets could have many components, such as cash, options or multiple risky assets.

For example for a two asset portfolio, xit,0 and xit,1 can be the value of the position in cash

and stocks respectively held by the hedger for the outcome at node it. Without loss of

generality, we denote Xt|it−1 as the collection of vectors of hedging strategies Xjt ∈ Rn for

jt ∈ Jt|it−1.

Next, let Ct|it−1(Xt|it−1) denote a vector of the hedged claim cjt(Xjt), for jt ∈ Jt|it−1. For

example, an European call option with a unit strike price will have

cit(Xit) = (yit − 1)+1{t=T} + fit(Xit)1{t<T}, (2.7)
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where 1{·} is the indicator function. Since the option is not exercised until maturity, cit is the

value of the hedging portfolio for at node it for t < T . In products like American options, cit

can represent the maximum of the continuation value and the payoff of the option at node

it if the option was exercised. However, we consider only European options in our analysis.

It is possible to have different properties affecting the dynamics at each node. We let Zt|it−1

denote the state vector with components zjt for jt ∈ Jt|it−1 and define Hit−1(zit−1 ,Zt|it−1)

as a multivariate state function that describes dynamic state evolution. For example, Hit−1

could be used to introduce transaction costs for trading assets. If we let xit−1,1 be the value

of the position in some stock, we can distinguish between the stock already held with the a

state vector zit−1 , and some variation of xit−1,1 which represents newly bought (x+it−1,1
) or sold

(x−it−1,1
) stocks since transaction fees affect only the variations. Thus, the function Hit−1 can

be expressed as zjt−zit−1−x+it−1,1
+x−it−1,1

to account for transaction cost in the optimization.

Many state variables and equations would be required if the hedge portfolio includes many

assets with transaction fees, and the value of the strategy would be adjusted to account for

the variations. Hit−1 could also be defined to introduce limits or bounds to state vectors

or portfolio values to achieve a desired level of robustness or ensure the feasibility of the

hedging problem.

In our study, we consider different objective functions for our risk minimization problems and

use dynamic programming to optimize backwards, starting at maturity. We let Vt|it−1(Zt|it−1)

denote the vector of backward objective (cost-to-go) function of the dynamic programming

problem with components vjt(zjt) for jt ∈ Jt|it−1.

Arising from the root node at inception, the hedge portfolio accumulates at each node.

We define Wt|it−1(Xit−1 , zit−1 ,Zt|it−1) as a function that outputs a vector with components

wjt(Xit−1 , zit−1 ,Zt|it−1), the accumulation of hedge portfolio prior to claim payment for jt ∈

Jt|it−1. Thus, wjt is the accumulated value at jt ∈ Jt|it−1 for a hedge portfolio set at node it−1.

For example, if an European option is hedged with xit−1,0 value in cash and xit−1,1 value in the

underlying stock, with transaction cost as state variable such that zjt = zit−1+x
+
it−1,1

−x−it−1,1
,
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we obtain wjt(Xit−1 , zit−1 ,Zt|it−1) = xit−1,0e
r + zjt

yjt
yit−1

for jt ∈ Jt|it−1 and t < T . A hedger

has a surplus if the hedge portfolio value before the claim payment is greater or equal to

the claim value. That is, Wt|it−1(Xit−1 , zit−1 ,Zt|it−1) ≥ Ct|it−1(Xt|it−1). On the other hand, a

hedger incurs temporary losses if this inequality is violated,

Definition 2.5.2. For the transition between t − 1 and t, a hedger who wants to hedge the

claim, Ct|it−1 with wealth, Wt|it−1 incurs a loss,

Lt|it−1(Xit−1 , zit−1 ,Zt|it−1) = Ct|it−1(Xt|it−1)−Wt|it−1(Xit−1 , zit−1 ,Zt|it−1). (2.8)

Without loss of generality, the support or domain of the loss function can vary based on the

inclusion or exclusion of the individual variables that make up the function. For instance,

in the absence of state variables, Equation (2.8) is defined as function of only the hedging

strategy Xit−1 without losing the structural properties of the function. Additionally, given

it−1 we let ljt(Xit−1 , zit−1 ,Zt|it−1) = cjt(Xjt) − wjt(Xit−1 , zit−1 ,Zt|it−1) be the loss value for

jt ∈ Jt|it−1.

Proposition 2.1. If Wt|it−1 is concave (or linear) and Ct|it−1 is convex (or linear) then the

loss function Lt|it−1 is convex.

Proof. Wt|it−1(Xit−1 , zit−1 ,Zt|it−1) is concave =⇒ −Wt|it−1(Xit−1 , zit−1 ,Zt|it−1) is convex.

Thus, the convexity of Ct|it−1(Xt|it−1) implies Lt|it−1(Xit−1 , zit−1 ,Zt|it−1) is the sum of two

convex functions and hence convex.

2.5.1 European options

Next, we illustrate how our hedging portfolio and loss function can be applied to European

options. We consider a European call option with strike price K and payoff at maturity

cjT (XjT ) = (yjT − K)+ ∀ jT ∈ JT . Since the option is not exercised until maturity, for

t < T , the value of the portfolio is the continuation value. We compose Wt|it−1(Xit−1), the
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accumulated hedge portfolio prior to payment without state variables for jt ∈ Jt|it−1. By

default, we consider a portfolio made up of two assets. That is Xit−1 = (xit−1,0, xit−1,1) where

xit−1,0 is the amount invested in cash at the nominal interest rate and xit−1,1 is the amount

invested in the underlying stock. Hence, in the absence of state variables, we obtain

wjt(Xit−1) = xit−1,0e
r + xit−1,1

yjt
yit−1

, ∀ jt ∈ Jt|it−1, (2.9)

and fit−1(Xit−1) = xit−1,0+xit−1,1, the sum of the value of position in each asset. Furthermore,

we can define the values of the associated loss functions as

ljt(Xit−1) =

 cjt(Xjt)− wjt(Xit−1), jt ∈ Jt|it−1, t < T,

(yjT −K)+ − wjT (XiT−1
), jT ∈ JT |iT−1, t = T.

(2.10)

We note that it is possible to generalize our model framework to different financial deriva-

tives and insurance contracts such as European put options, American options and variable

annuities. However, we focus on only European call options for this thesis.
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Chapter 3

Local Hedging Strategies

This chapter proposes how products are hedged by minimizing some objective function sub-

ject to constraints on the loss function. We further discuss some numerical results from

applying the proposed strategies to products.

Several hedging strategies have been introduced in literature, Föllmer and Schweizer (1988)

propose a local risk-minimizing hedging strategy that sequentially minimizes the square of

the prediction error process. Coleman et al. (2007) extend existing quadratic and piece-wise

linear local risk minimization frameworks, which were traditionally used for European op-

tions, to American options. They highlight that piece-wise linear risk minimization strategies

can result in larger probabilities of small costs but also larger extreme costs, indicating a

trade-off between risk and cost efficiency. Gaillardetz and Moghtadai (2017) also proposes

partial hedging strategies that allow some positive losses by controlling a risk measure with

a given threshold. These risk-control strategies can be generalized using more constraints

and linear programming techniques. Gaillardetz and Osei-Mireku (2022) explores the risk-

control strategy as a constraint to obtain a worst-case robust optimal value.

All the optimization algorithms to obtain the hedging strategy use backward dynamic pro-

gramming approach. Starting at maturity, we apply the optimization to find the hedge

portfolio for all iT−1. Based on these results, we apply the optimization recursively, moving
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backwards until we obtain the initial hedging strategy at time t = 0.

3.1 Super-replication

We begin our hedging strategies with one that ensures the hedge portfolio dominates the

claim or payoff at each node. Since such a hedging strategy is not necessarily self-financing,

we can construct infinitely many portfolios that satisfy this condition. The requirement

that the hedge portfolio dominates the claim is expanded by Föllmer and Schied (2011)

to include all time steps during the product’s term. Creating a portfolio with a minimal

investment that super-replicates the claim at any moment is conceivable to establish a super-

replicating portfolio even when the maturity is not fixed. In their study, Davis and Clark

(1994) explain why super-replicating strategies cannot be the foundation for a reasonable

pricing theory. They postulate that when transaction costs are strictly positive, buying

and holding a single share of the risky asset is the cheapest super-replicating approach

under the assumption that trading is done at a continuous rate. By introducing proper

reflecting barriers, they demonstrate that the only alternatives that could be candidates for

super-replicating strategies are those that closely match a Black-Scholes portfolio. However,

super-replication will fail if the sell and buy barriers are close due to high transaction costs.

Chen et al. (2008) propose the possibility of a super-replicating portfolio to cost less when

there is transaction cost. However, when there are no transaction costs, a super-replicating

portfolio must cost at least as much as a replicating portfolio. Soner (2008) studies dynamic

programming to establish super-replicating portfolios in continuous time. In a discrete-time

linear programming setting, our optimization problem is given by

Algorithm 3.1. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1

fit−1(Xit−1) (3.1)
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under the constraints

Lt|it−1(Xit−1 , zit−1 ,Zt|it−1) ≤ 0, (3.2)

Hit−1(zit−1 ,Zt|it−1) = 0. (3.3)

In this formulation, (3.3) represents a state equation that can capture the presence of trans-

action costs and other market-dependent dynamics. Since fit−1 and Lt|it−1 are convex and

Hit−1 is linear, the optimization problem is convex. In addition, if fit−1 and Lt|it−1 are de-

fined as piece-wise linear, then the optimization problem becomes convex piece-wise linear.

Convex piece-wise linear problems can be solved using a standard linear programming kit

or software. In the particular case where there are no state variables and state equations,

the optimal objective value is the replicating portfolio value, and our convex optimization

problem becomes

Algorithm 3.2. For all t = T, T − 1, . . . , 1 and all it−1,

cit−1(Xit−1) = min
Xit−1

fit−1(Xit−1) (3.4)

under the constraints

Lt|it−1(Xit−1) ≤ 0, (3.5)

where cjT (XjT ) is the payoff for jT ∈ JT .

Proposition 3.3. Suppose Lt|it−1 can be ordered, then the number of constraints in (3.5)

can be reduced to those relative to the extreme outcomes of ljt ∀jt ∈ Jt|it−1.

Proof. Lt|it−1(Xit−1) ≤ 0 implies Wt|it−1(Xit−1) ≥ Ct|it−1(Xt|it−1). If we let lMt(Xit−1) =

max{ljt(Xit−1), ∀jt ∈ Jt|it−1} and lmt(Xit−1) = min{ljt(Xit−1), ∀jt ∈ Jt|it−1} be the ex-

treme outcomes such that lmt(Xit−1) ≤ ljt(Xit−1) ≤ lMt(Xit−1). We can express each
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ljt(Xit−1) as a convex combination of lmt(Xit−1) and lMt(Xit−1). This implies, ljt(Xit−1) ≤

ςlmt(Xit−1) + (1 − ς)lMt(Xit−1) for some ς ∈ [0, 1]. Thus, each constraint is dominated by a

convex combination of the extreme constraints. Next, we consider the convex sets formed

by the intersection of the constraints’ half-spaces. For simplicity of set notation we let S1 =

{Xit−1 |wmt(Xit−1) ≥ cmt(Xmt), wMt(Xit−1) ≥ cMt(XMt)} = {Xit−1 |wet(Xit−1) ≥ cet(Xet)} and

S2 = {Xit−1 |wjt(Xit−1) ≥ cjt(Xjt), ∀jt ∈ Jt|it−1 \ et}, where et represents the extreme out-

comes. Since we have established that constraint (3.5) is a subset of S1, we are left to show

that S1 ⊆ S2. The necessary and sufficient condition is to show that ∃k ∈ R+ such that

(i) wet(Xit−1) = kwjt(Xit−1),

(ii) cet(Xet) ≥ kcjt(Xjt).

Suppose there is no k ∈ R+ for (i) to hold. Then for some A ∈ Rn, we have wet(A) = 0

and wjt(A) > 0. For any Xit−1 ∈ S1 and α > 0 we have wet(Xit−1 + αA) = wet(Xit−1) ≥

cet(Xet) and hence wet(Xit−1 + αA) ∈ S1. However, we have wjt(Xit−1 + αA) → ∞ as

α → +∞ hence wjt(Xit−1 + αA) /∈ S2 which is a contradiction. Furthermore, if k < 0, then

S1 = {Xit−1 |wet(Xit−1) ≥ cet(Xet)} = {Xit−1 |kwjt(Xit−1) ≥ cet(Xet)} = {Xit−1 |wjt(Xit−1) ≤
cet (Xet )

k
}, also a contradiction hence k > 0. Lastly, S1 = {Xit−1 |wet(Xit−1) ≥ cet(Xet)} =

{Xit−1 |wjt(Xit−1) ≥
cet (Xet )

k
}. But for S1 ⊆ S2, clearly

cet (Xet )

k
≥ cjt(Xjt), hence cet(Xet) ≥

kcjt(Xjt) and (ii) is also satisfied. This implies S1 is identical to constraint (3.5). Thompson

et al. (1966) explain that the i-th constraint is redundant if and only if the convex set defined

by the intersection of all constraints to the linear program is identical to the set without

the i-th constraint. In linear programming, redundant constraints are not essential to the

solution set of the problem and, hence, can be removed.

In literature, the goal of most super-replicating strategies is to simply dominate the payoff at

the time when the option is exercise. There is no consideration for the value of the replicating

portfolio during re-balancing before maturity. As such, when market conditions deviate

largely from expectation, it becomes less likely for the replicating portfolio to dominate the
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claim at payoff. In Algorithm 3.2, not only do we ensure that the hedging portfolio dominates

the claim at payoff, but also each time we re-balance the portfolio locally. The hedger is

only interested in possible outcomes and wants to monitor them without any regard for how

they are distributed. This approach is a useful contribution as it adds an extra layer of risk

protection while and hence can be robust even in volatile markets. The set-up can also be

useful to regulators since it model-independent.

3.2 ℓp,q norm as constraint

In an ideal setting, the best hedge is to set up a portfolio that provides perfect loss protec-

tion. However, a super-replicating strategy is known to be expensive, and any surplus at

claim payment or maturity is the loss of potential gain from other alternative investments.

Moreover, transaction costs associated with creating and maintaining such portfolios may

decrease the likelihood of surplus. We can overcome these significant drawbacks by allowing

positive losses to some degree. Different scenarios can be used to control the losses.

We can control the loss function with a constant threshold parameter γ0 as a constraint

in our optimization problem. Alternatively, one can choose a dynamic threshold γt that

changes with time or γjt that changes with both the node and time. The choice of threshold

depends on the desired level of conservatism and risk affinity of the hedger. Different norms

can be used to limit the losses. For instance, the ℓ1,q norm limits each component in a box,

the ℓ∞,q norm limits the total losses with a linear constraint and the ℓ2,q norm introduces a

quadratic constraint to penalize large deviations. We propose the following optimization for

general ℓp,q norms.

Algorithm 3.4. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1

fit−1(Xit−1) (3.6)
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under the constraints

∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1)∥p,q ≤ γ0, (3.7)

Hit−1(zit−1 ,Zt|it−1) = 0. (3.8)

This algorithm aims to minimize the hedge portfolio value at each node subject to a threshold

that controls the losses. Here, (3.8) is a constraint to capture the evolution of state variables

like transaction costs and (3.7) is a constraint to limit a risk measure of losses by the constant

threshold. If γ0 > 0, it implies the hedger allows some degree of negative losses in the portfolio

to offset the total cost of hedging. We note that since fit−1 and Lt|it−1 are convex and Hit−1

is linear, the optimization problem is convex. In addition, if fit−1 and Lt|it−1 are defined as

piece-wise linear, then the optimization problem becomes convex piece-wise linear. Convex

linear problems can then be solved using a standard linear programming kit. Setting q = 1

gives the ℓp norm. In the case of the ℓ2 norm, we can use quadratic programming or any

piece-wise linear approximation of the quadratic function. In the particular case where there

are no state variables and state equations, our optimization problem becomes

Algorithm 3.5. For all t = T, T − 1, . . . , 1 and all it−1,

cit−1(Xit−1) = min
Xit−1

fit−1(Xit−1) (3.9)

under the constraints

∥Lt|it−1(Xit−1)∥p,q ≤ γ0, (3.10)

where cjT (XjT ) is the payoff for jT ∈ JT .

Instead of the asymmetric norm, we can also control a coherent risk measure in the con-

straints by imposing an upper bound γ0 on the worst (1 − α) losses. This generalizes the

risk control strategy proposed by Gaillardetz and Osei-Mireku (2022). They explain that
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the robustness of the models can be explored by studying the dynamics of the underlying

probability distributions. However, rather than imposing some distribution on the losses,

Algorithm 3.5 assumes each outcome is equally likely and constraints the magnitude of the

losses instead. This formulation is also model-independent and can easily be adapted to

include information on the distribution of losses. Instead of using a constant threshold

parameter, a hedger can express the threshold as a function of both the node and time.

Hence, the strategy provides the hedger with parameters to optimize their preferred level of

conservatism.

3.3 ℓp,q norm as objective

Another hedging strategy that seeks to control losses is directly minimizing the norm or risk

measure in the objective function. Much like in prevalent portfolio selection problems, the

aim is to obtain a hedge portfolio or strategy by minimizing the ℓp,q norm in the objective

of our linear program. Furthermore, by introducing thresholds, we can include constraints

in the form of asymmetric norms to adjust the optimization sequence to the desired level of

conservatism. Again, the choice of ℓp,q norm depends on the investor’s risk tolerance level.

We propose the following optimization for general ℓp,q norms.

Algorithm 3.6. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1

e−r∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1)∥p1,q1 (3.11)

under the constraints

∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1)∥p2,q2 ≤ γ0, (3.12)

Hit−1(zit−1 ,Zt|it−1) = 0, (3.13)

where cjT (XjT ) is the payoff for jT ∈ JT .
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Again, (3.13) is a constraint to capture the evolution of state variables like transaction costs

and (3.12) is a constraint to limit the asymmetric norm of losses by the constant threshold.

The level of asymmetry can also be modified by changing the value of q. For instance,

if q = 1, we get the symmetric norm. Also, q = 0 implies no weight on negative errors,

pushing the optimization to consider only positive ones. The choice of parameter p1, q1 in

the objective function is independent of the choice of p2, q2 in constraint (3.12). The norm

in the constraint is not mandatory if the norm in the objective is two-sided. Constraint

(3.12) is needed to control losses if the choice of asymmetry in the objective can result in

unbounded solutions. Again, since Lt|it−1 and ∥.∥p,q are convex, the optimization problem

is convex and can be solved using a standard linear programming kit. It is important to

note that, without any modification to the ℓp,q norm, choosing p1 = 2, q1 = 1 is equivalent

to solving an ordinary least-square regression at every node of the model framework. Any

modification may require quadratic programming techniques to solve the algorithm. In the

absence of state variables and the threshold, the local minimization of the ℓ2,1 norm in the

objective is equivalent to the local hedging strategy proposed by Schweizer (2008).

3.4 Portfolio value as state variable

In the previous sections, we introduced local hedging strategies with the goal centred around

only local losses. In this section, we introduce another set of local hedging techniques de-

veloped by controlling both present and future estimates of losses. We refer to these local

hedging techniques as dynamic local hedging. The term dynamic is used here to reference

the inclusion of state variables as estimates of future portfolio value in the optimization prob-

lem. We note that our dynamic local hedging strategies also use the dynamic programming

technique to determine the hedging strategies.

An alternative strategy to control losses is representing portfolio values as state variables

and minimizing the sum of the hedge portfolio’s local losses and future cost-to-go objective.
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In other instances, the state variables can instead be used to control the total losses from

the position. Once this optimization sequence is complete, the hedger sets the initial capital

to finance the portfolio. The results of the loss optimization are used in addition to the state

variables to derive the hedging strategies at each step. The choice of initial capital can be

made by selecting the value that generates the least tail hedging errors after the hedging

strategies have been derived. In this formulation, a function of the losses must be minimized,

with the losses equal to zero at maturity. Norms or risk measures are utilized in the objective

function to choose hedging strategies, much like in portfolio selection problems. We propose

three variations for implementing such models. One is based on stochastic programming,

the other on dynamic coherent risk and a barrier to future risk.

3.4.1 Overview of the dynamic algorithm

We start by providing the main outline of our proposed dynamic algorithm for developing a

portfolio as state variable hedging strategy. The main target is to find a hedge portfolio that

minimizes a function of discounted errors and proportion of the future cost-to-go function,

subject to constraints on the losses and state variables. In general, we consider the following

framework.

Algorithm 3.7. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1

e−rO(Lt|it−1(Xit−1 , zit−1 ,Zt|it−1), Vt|it−1(Zt|it−1)) (3.14)

under the constraints

Hit−1(zit−1 ,Zt|it−1) = 0, (3.15)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) is the payoff for jT ∈ JT .

O(., .) is a function of the loss vector Lt|it−1(Xit−1 , zit−1 ,Zt|it−1) and the cost-to-go vector
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Vt|it−1(Zt|it−1) which is the future objective function evaluated at the vector of state variables

Zt|it−1 . For example, O(., .) can be the norm of the sum of Lt|it−1(Xit−1 , zit−1 ,Zt|it−1) and

Vt|it−1(Zt|it−1).

At the onset of the algorithm, we need at least the portfolio value as a state variable.

Since we do not know this intrinsic value, we modify the algorithm to include a search

process. At maturity, we set VT |iT−1
(ZT |iT−1

) = 0 in the objective function and minimize

O(LT |iT−1
(XiT−1

, ziT−1
,ZT |iT−1

),0) subject to additional state equations (3.15) that defines a

polyhedral of the portfolio values. The polyhedral is bounded by a state variable grid νiT−1

defined as an interval that contains the payoff cjT . Thus, each state variable, zjT ∈ νiT−1

for jT ∈ JT |iT−1. We solve the optimization at maturity to obtain the cost-to-go values

vjT−1
(zjT−1

) ∀ jT−1 ∈ JT−1|iT−2 that make up the vector VT−1|iT−2
(ZT−1|iT−2

). We also ob-

tain the slope and intercepts for each optimal value in the state variable grid to be used to

estimate the hedging strategy.

Conditional on iT−2, we minimize O(LT−1|iT−2
(XiT−2

, ziT−2
,ZT−1|iT−2

), VT−1|iT−2
(ZT−1|iT−2

))

by searching another polyhedral of the payoff at the node subject to the state equation

constraint fiT−2
(XiT−2

) = ziT−2
, which represents a component of constraint (3.15). Conse-

quently, we obtain a set of optimal slopes, corresponding intercepts and proximal estimates

of the future objective function Vt|it−1(Zt|it−1) by repeating the search sequentially at each

node until time t = 0. Finally, to obtain the hedging portfolio, we start at time t = 0 and

set the initial capital f0(X0), to finance the strategy. Using the estimated slopes, intercepts

and state variables recorded from the previous step, we re-evaluate the algorithm without

the search process to obtain the optimal portfolio strategy X∗
it−1

at each node.

3.4.2 Stochastic programming

This approach aims to minimize the discounted cumulative local and future losses at each

time t < T . Starting at maturity, we set the cost-to-go function to zero. This ensures

that the claim or payoff is locally hedged. At each time t < T and for every node it−1, we
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minimize the objective function, which comprises the discounted local losses and a fraction of

estimated future objective function subject to state variables as constraints for jt ∈ Jt|it−1.

The proposed strategy minimizes the discounted average future risk such that the state

variable is the continuation value and can be equal to the portfolio value at each step. We

summarize the strategy using the algorithm below.

Algorithm 3.8. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1

e−r{∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1)∥p,q + β∥Vt|it−1(Zt|it−1)∥p,q} (3.16)

under the constraints

Hit−1(zit−1 ,Zt|it−1) = 0, (3.17)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) is the payoff for jT ∈ JT .

The objective function is the sum of a local norm and the weighted average of near-future

risk. Here, the parameter β sets the degree of the future portfolio value’s impact on the

minimization of local losses and can be used to control the level of robustness. When β = 0,

we obtain Algorithm 3.6, and the problem can be solved directly without the state variables.

When β ̸= 0, we formulate the problem using our dynamic algorithm. Hence, we obtain the

following optimization problem,

Algorithm 3.9. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1
,Θit−1

e−r{∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1)∥p,q + β∥Θt|it−1∥p,q} (3.18)
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under the constraints

Vt|it−1(Zt|it−1) ≤ Θt|it−1 , (3.19)

fit−1(Xit−1) = zit−1 , (3.20)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) is the payoff for jT ∈ JT .

Here, Θt|it−1 is a vector with component θjt for jt ∈ Jt|it−1 and represents the upper bound

of Vt|it−1(Zt|it−1). In this formulation, ΘT |iT−1
= 0 at maturity and since VT |iT−1

(ZT |iT−1
) =

0, we remove (3.19) for t = T . For the remaining t < T , Θt|it−1 is introduced in the

objective function. If the supporting hyperplane of Vt|it−1(Zt|it−1) is piece-wise convex, (3.19)

is equivalent to several linear constraints where each supporting hyperplane of Vt|it−1(Zt|it−1)

is bounded above by Θt|it−1 .

3.4.3 Dynamic coherent risk approach

The information available during risk assessment is considered a conditional risk measure.

Risk assessments are revised over time in light of new or additional information in a dynamic

environment. A sequence of conditional risk measures adapted to the underlying filtration is

known as a dynamic risk measure. Acciaio and Penner (2011) provides a detailed discussion

of dynamic risk measures with robust representation and consistency properties.

We require the risk measure to be coherent to satisfy the convexity of our optimization

problem. Introduced by Riedel (2004), they define a dynamic risk measure as coherent if

the sequence of conditional risk measures is homogeneous and sub-additive. They show that

when the expectations are taken over a group of probability measures that satisfy a consis-

tency constraint, they can be expressed as the worst conditional expectation of discounted

future risks. Gaillardetz and Hachem (2022) also propose a hedging strategy based on dis-

counted recursion of a dynamic coherent risk measure to value Equity-Indexed Annuities

and Guaranteed Investment Certificates.

30



Contrary to the stochastic programming approach, we aim to minimize the discounted co-

herent risk measure on local and successive near-future losses. However, the optimization

approach remains the same. We set the cost-to-go function to be zero at maturity and use

the dynamic algorithm to minimize the objective function at each time t < T . This approach

lets us keep path-wise or dynamic risk control in the optimization problem. We summarize

the strategy using the algorithm below.

Algorithm 3.10. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1

e−r∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1) + βVt|it−1(Zt|it−1)∥p,q (3.21)

under the constraints

Hit−1(zit−1 ,Zt|it−1) = 0, (3.22)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) is the payoff for jT ∈ JT .

The objective function is the norm of the weighted average sum of local losses and the near-

future cost-to-go function. Again, a risk measure like the CVaR can be used as the function

on local losses and setting β = 0 produces Algorithm 3.6. For β ̸= 0, we formulate the

problem using our dynamic algorithm to obtain the following optimization,

Algorithm 3.11. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1
,Θit−1

e−r∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1) + βΘt|it−1∥p,q (3.23)

under the constraints

Vt|it−1(Zt|it−1) ≤ Θt|it−1 , (3.24)

fit−1(Xit−1) = zit−1 . (3.25)
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where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) is the payoff for jT ∈ JT .

The cost-to-go function Vt|it−1(Zt|it−1) is modelled through the definition of its epigraph.

Again, (3.24) is equivalent to several linear constraints where each supporting hyperplane of

Vt|it−1(Zt|it−1) is bounded above by Θt|it−1 provided Vt|it−1(Zt|it−1) is a linear piece-wise convex

function defined by its supporting hyperplane. The mathematical properties and solution

techniques are the same for stochastic programming. The only difference lies in the objective

function of the problems. Instead of having a composition of a risk measure and future cost-

to-go functions, the stochastic programming approach sums the local risk measure and the

norm of the cost-to-go function. This implies that at optimal value, path-wise solutions for

dynamic coherent risk approach are bounded above by solutions for stochastic programming.

3.4.4 Barrier on future risk

Gaillardetz and Hachem (2022) tested a stochastic programming model that minimizes

weighted average risk measures on Guaranteed Investment Certificates and noticed a weak-

ness during back-testing. They found that models containing a risk measure in the objective

function could induce some nodes to have excessively high values of this risk measure dur-

ing numerical implementations. By introducing a barrier to future risk, we can obtain a

model with the same properties as the stochastic programming approach. We address the

drawback by putting a threshold on the future risk to make an additional constraint to the

optimization problem. Essentially, we minimize a discounted local risk measure subject to a

threshold on weighted future risk. We summarize the strategy using the algorithm below.

Algorithm 3.12. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1

e−r∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1)∥p,q (3.26)
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under the constraints

Hit−1(zit−1 ,Zt|it−1) = 0, (3.27)

Vt|it−1(Zt|it−1) ≤ Γ0, (3.28)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) is the payoff for jT ∈ JT .

The parameter Γ0 is a vector with components γ0 for jt ∈ Jt|it−1 and controls the issuer’s

permitted future risk. Since the cost-to-go function Vt|it−1(Zt|it−1) is now incorporated in

the constraint rather than the objective function, the barrier on future risk algorithm differs

fundamentally from our conventional stochastic programming approach. Alternative meth-

ods, such as expected value, exist to limit future risk measures. We favour the constraint

(3.28) since it manages the path-wise risk. Again, the portfolio value must be one of the

state variables. The state equation must be fit−1(Xit−1) = zit−1 if we allow the state vector

to be the intrinsic portfolio value. Formulating the optimization problem this way is anal-

ogous to that of stochastic programming, where Vt|it−1(Zt|it−1) is replaced by its supporting

hyperplane. As a result, this algorithm uses the same optimization techniques as Algorithms

3.8 and 3.10 with similar features and levels of complexity.
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Chapter 4

Application of local hedging strategies

We now apply the hedging strategies to European-style products. We use the term European-

style loosely to represent products with a single payout only at maturity and do not permit

claims to be redeemed before maturity. Examples of such products are Guaranteed Invest-

ment Certificates and European options. Guaranteed Investment Certificates provide some

return on investment while guaranteeing the investor’s principal. Specifically, a non-cashable

Guaranteed Investment Certificate has a payoff comprising a guaranteed minimum invest-

ment rate. In some cases, the guaranteed minimum rate can be fixed or variable tied to

the performance of an index. An issuer will likely cap the overall return of Guaranteed

Investment Certificates with variable rates. For our application, we rely on only European

options. We also study the behaviour of the strategies in the presence of transaction costs.

4.1 Financial model

To illustrate how hedging strategies can be applied to products, we must first design the

model framework. For this purpose, we consider a financial setting and build a stock or

index model. The dynamics of stocks are replicated using a variety of models. Over time, it

has been demonstrated that lattice pricing models can successfully simulate stocks or indexes,

interest rates, and other financial instruments. The two-state (binomial) lattice technique,
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first presented by Cox et al. (1979), has shown to be a useful model in the valuation of several

financial securities. Their fundamental market process was demonstrated to converge to the

independent log-normal model under various assumptions. The model is insufficient when

long-term market fluctuations and dramatic movements are considered. This is because the

model cannot capture the dramatic movements as a result of shifts in regimes over a long

period. Boyle (1988) advances a three-state lattice model. They calculate the needed risk-

neutral probabilities associated with transitions by comparing a discrete model’s moments to

a continuous log-normal distribution’s mean and variance. Since then, numerous continuous-

time approximation models and multi-period discrete multinomial lattice models have been

developed.

We assume a discrete lattice where Yt is defined by the stock process whose values are

known through time. At the root node t = 0, the stock process has only one value, thus

Y0 = y0. At time t > 0, each node it−1 is connected to N + 1 possible nodes corresponding

to distinct values yjt in the vector Yt|it−1 for jt ∈ Jt|it−1. To model the transition from one

time to the next, we assume the stock value goes up by a factor u or down by a factor d.

As such, our lattice model has N + 1 distinct outcomes of Yt|it−1 given by yit−1u
N−jdj for

j = 0, 1, . . . , N . If we assume the stock process converges to the log-normal distribution of a

geometric Brownian motion with drift µ and volatility σ, we can define u = eσ(∆N)−0.5
where

∆ represents the number of splits between two-time steps. To reduce the computational

intensity, we construct a recombining tree (see Figure 2.1) by setting d = u−1, although it is

not a necessary condition for our framework.

4.2 Hedging with super-replication (SR)

Here, we apply a super-replication hedging strategy to European options and review the

optimization problem to find close-form solutions where possible. For the application, we

consider Algorithm 3.2 with stock outcomes y0t ≥ y1t ≥ . . . ≥ yNt ≥ 0 at a fixed time t. This
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implies c0T (X0T ) ≥ c1T (X1T ) ≥ . . . ≥ cNT
(XNT

) ≥ 0 for the corresponding European option

payoffs. A similar relationship can be defined for subsequent cjt(Xjt) as we evaluate the tree

dynamically. With the help of Proposition 3.3, we can formulate our optimization problem

in terms of only the extreme values of the stock and payoff process as below.

Example 4.1. For all t = T, T − 1, . . . , 1 and all it−1,

cit−1(Xit−1) = min
Xit−1

xit−1,0 + xit−1,1 (4.1)

such that

c0t(X0t)− xit−1,0e
r − xit−1,1

y0t
yit−1

≤ 0, (4.2)

cNt(XNt)− xit−1,0e
r − xit−1,1

yNt

yit−1

≤ 0, (4.3)

where cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .

Furthermore, since the objective function and constraints are linear with respect to the de-

cision variables, we obtain a boundary solution for our optimization at each time step. This

stems from constraint qualification analysis for convex optimization. We let∇Xit−1
fit−1(Xit−1)

be the partial derivative of fit−1(Xit−1) with respect to the vector Xit−1 . Using linear inde-

pendence constraint qualification (LICQ), we obtain a boundary solution since an interior so-

lution would imply ∇Xit−1
fit−1(Xit−1) = 0 but ∇Xit−1

fit−1(Xit−1) = (1, 1) ̸= 0. For instance,

Example 4.1 has two variables, and the maximum number of linearly independent constraints

is two. This confirms that the constraints can be reduced to at least the two extremes with

optimal boundary values xit−1,0 =
cNt (XNt )y0t−c0t (X0t )yNt

er(y0t−yNt )
and xit−1,1 =

yit−1(c0t (X0t )−cNt (XNt ))
y0t−yNt

.

This closed-form solution can be extended to having multiple assets in the portfolio provided

fit−1(Xit−1) remains linear. The algorithm simplifies solving the system of linear inequali-

ties containing extreme constraints. For instance, solutions for a three-asset portfolio can

be obtained by solving three inequalities simultaneously. Two are extremes, and another is
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centred between the extremes to preserve feasibility and convexity. Limiting the solution to

only the extremes, in this case, is similar to the risk-neutral approach.

4.3 Hedging with ℓp,q norm as constraint (NC)

Gaillardetz and Osei-Mireku (2022) explored the use of CVaR as a controlled risk constraint

in their application to EIAs. In this section, we apply the ℓp,q norm as controlled constraints

to losses. For the application, we consider Algorithm 3.5 with the same stock dynamics

as hedging with super-replication. That is, y0t ≥ . . . ≥ yNt ≥ 0 at a fixed time t and

c0T (X0T ) ≥ . . . ≥ cNT
(XNT

) ≥ 0 for the corresponding European option payoffs. Our

optimization transforms to the following example for an asymmetric ℓ1,0 norm.

Example 4.2. For all t = T, T − 1, . . . , 1 and all it−1,

cit−1(Xit−1) = min
Xit−1

xit−1,0 + xit−1,1 (4.4)

such that

cjt(Xjt)− xit−1,0e
r − xit−1,1

yjt
yit−1

= ljt(Xit−1), ∀jt ∈ Jt|it−1, (4.5)∑
jt∈Jt|it−1

l+jt(Xit−1) ≤ γ0, , (4.6)

where cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .

Based on the definition of ℓ1 norm, constraint (4.6) should strictly be
∑

jt∈Jt|it−1
|ljt(Xit−1)| ≤

γ0. However, using this characterization renders the linear programming problem infeasible

at some nodes for an unbounded stock tree. As such, we consider an asymmetric norm with

q = 0 to allow errors to be strictly positive. This makes the problem feasible at all nodes of

an unbounded stock tree.

Also, for ℓ2,0 norm, we replace constraint (4.6) with the squared loss function defined as
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∑
jt∈Jt|it−1

(
l+jt(Xit−1)

)2

≤ γ20 . Similar to the ℓ1, this formulation can be infeasible for an

unbounded stock tree at some nodes. As such, we consider the asymmetric ℓ2,0 norm for

errors to be strictly positive. Thus, we obtain a quadratic constraint programming problem

that can be solved with most quadratic programming kits. In our numerical analysis, we use

the IBM ILOG Concert Technology for Linear Programming and Extensions (CPLEX) kit

for our quadratic optimization.

For ℓ∞,1 norm, we replace constraint (4.6) with a threshold on all losses. The goal is to

constrain the maximum norm of loses with the threshold γ0. In this case, we can deduce

that if the maximum piece-wise absolute loss is bounded above by our threshold, then each

absolute loss must be less than the defined threshold. Hence |ljt(Xit−1)| ≤ γ0, ∀ jt ∈ Jt|it−1.

Since we are only concerned with positive losses, another modification is to constrain the

maximum loss instead of the maximum absolute loss. In this case, Lt|it−1(Xit−1) ≤ Γ0. Also,

we can replace the constant threshold γ0 with a time-dependent threshold γt or a node-

dependent threshold γit . Setting γit = 0 for all time steps yields an algorithm similar to the

super-replicating strategy, and the problem can be reduced to constraints based on only the

extremes. However, allowing some degree of positive losses during optimization implies that

any of the nodes or a combination of them contributes to active constraints, and the full

algorithm has to be solved to arrive at a solution.

4.4 Hedging with ℓp,q norm as objective (NO)

We consider an example for hedging with ℓp,q norm as objective. Again, we adopt the stock

dynamics from the super-replicating example and consider Algorithm 3.6 for application.

We slightly modify our formulation, which allows us to introduce bounds on the sum of

errors to make the minimization finite. In some situations, an asymmetric norm requires an

extra constraint to be formulated to make the problem feasible. The presence of a cost-to-go

function in the objective is feasible but would require more dynamic optimization techniques,
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which we explore under portfolio value as state variable. Our optimization transforms to the

following example for an ℓ1,1 norm.

Example 4.3. For all t = T, T − 1, . . . , 1 and all it−1,

X∗
it−1

= argmin
Xit−1

e−r
∑

jt∈Jt|it−1

|ljt(Xit−1)| (4.7)

such that

cjt(Xjt)− xit−1,0e
r − xit−1,1

yjt
yit−1

= ljt(Xit−1), ∀jt ∈ Jt|it−1, (4.8)

|
∑

jt∈Jt|it−1

ljt(Xit−1)| ≤ γ0, (4.9)

where X∗
it−1

is the optimal strategy and cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .

Again, we can control the losses by setting the sum of errors to be within γ0, although this

constraint is not mandatory when the objective norm is two-sided. This is done to centre

the losses.

We obtain the ℓ2,1 version of this strategy by substituting the objective function in (4.7)

with the quadratic version where

Example 4.4. For all t = T, T − 1, . . . , 1 and all it−1,

X∗
it−1

= argmin
Xit−1

e−r
∑

jt∈Jt|it−1

ljt(Xit−1)
2 (4.10)

such that

cjt(Xjt)− xit−1,0e
r − xit−1,1

yjt
yit−1

= ljt(Xit−1), ∀jt ∈ Jt|it−1, (4.11)

|
∑

jt∈Jt|it−1

ljt(Xit−1)| ≤ γ0, (4.12)

where X∗
it−1

is the optimal strategy and cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .
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Without the loss control feature in constraint (4.12), the optimization is reduced to a least

squares problem. Again, constraint (4.12) is not mandatory as the optimization is designed

to be centred by second-order condition. In this case, we seek the optimum hedging strategy

that minimizes the squared errors of the hedge portfolio. The control parameter in (4.12)

differs from regularization techniques. This is because, while regularized linear models tend

to shrink or penalize the coefficients of regression, in this case, the hedging strategy, (4.12)

tends to control the magnitude of the loss region with the parameter γ0. On the other hand,

for a ℓ∞,1 norm, since the aim is to minimize the maximum possible absolute error, our

optimization transforms to the example below.

Example 4.5. For all t = T, T − 1, . . . , 1 and all it−1,

X∗
it−1

= argmin
Xit−1

e−rb (4.13)

such that

cjt(Xjt)− xit−1,0e
r − xit−1,1

yjt
yit−1

= ljt(Xit−1), ∀jt ∈ Jt|it−1, (4.14)

|ljt(Xit−1)| ≤ b, ∀jt ∈ Jt|it−1, (4.15)

|
∑

jt∈Jt|it−1

ljt(Xit−1)| ≤ γ0, (4.16)

where X∗
it−1

is the optimal strategy and cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .

By setting |ljt(Xit−1)| ≤ b for all jT ∈ JT |iT−1, we ensure that maxjt∈Jt|it−1{|ljt(Xit−1)|} ≤ b

and hence we can minimize b in our objective. We introduce a symmetric modification of

losses in (4.16) to control the level of conservatism and ensure the feasibility of the problem.
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4.5 Hedging with stochastic programming (SP)

This section considers a typical application of the stochastic programming technique using

Algorithm 3.9 and the same stock dynamics from the super-replication example. The goal is

to minimize the cumulative losses over time while considering current and future losses. The

algorithm minimizes discounted average future risk, with the state variable representing the

continuation value, which can equal the portfolio value at each step. We obtain the following

optimization for ℓ1,1 norm.

Example 4.6. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1
,Θt|it−1

e−r
∑

jt∈Jt|it−1

|ljt(Xit−1)|+ β|θjt | (4.17)

under the constraints

cjt(Xjt)− xit−1,0e
r − xit−1,1

yjt
yit−1

= ljt(Xit−1), ∀jt ∈ Jt|it−1, (4.18)

vjt(zjt) ≤ θjt , ∀jt ∈ Jt|it−1, (4.19)

xit−1,0 + xit−1,1 = zit−1 , (4.20)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .

In this example, we minimize the ℓ1,1 norm of current losses and a portion of the ℓ1,1 norm

of future cost-to-go function bounded above by θjt . The desired level of future losses in the

objective function is controlled by the parameter β, which can be interpreted as a measure of

robustness in this setting. The ℓ2,1 norm representation for stochastic programming is similar

to the ℓ1,1 norm where the objective function is replace with
∑

jt∈Jt|it−1
ljt(Xit−1)

2 + βθ2jt .

However, an for ℓ∞,1 representation, we obtain the following optimization,
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Example 4.7. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1
,b1,b2

e−r{b1 + βb2} (4.21)

under the constraints

cjt(Xjt)− xit−1,0e
r − xit−1,1

yjt
yit−1

= ljt(Xit−1), ∀jt ∈ Jt|it−1, (4.22)

|ljt(Xit−1)| ≤ b1, ∀jt ∈ Jt|it−1, (4.23)

|vjt(zjt)| ≤ b2, ∀jt ∈ Jt|it−1, (4.24)

xit−1,0 + xit−1,1 = zit−1 , (4.25)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .

This algorithm aims to find the hedging strategy that minimizes the maximum absolute

current losses and a proportion of maximum future losses. Here, we set b1 and b2 as the

maximum of local losses and future cost-to-go functions. Thus, by minimizing b1 and b2, we

obtain a hedging strategy that leans towards the worst-case scenario for the specified trading

path. Again, setting β = 0 gives us a problem equivalent to Example 4.5.

4.6 Hedging with dynamic coherent risk (DC)

Similarly, we consider an application of the dynamic coherent risk technique using Algorithm

3.11. Unlike stochastic programming, our goal is to minimize the norm of local and near-

future losses, which tends to produce a more conservative hedging strategy. We obtain the

following optimization for ℓ1,1 norm.

Example 4.8. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1
,Ut|it−1

,Θt|it−1

e−r
∑

jt∈Jt|it−1

|ujt | (4.26)
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under the constraints

cjt(Xjt)− xit−1,0e
r − xit−1,1

yjt
yit−1

+ βθjt = ujt , ∀jt ∈ Jt|it−1, (4.27)

vjt(zjt) ≤ θjt , ∀jt ∈ Jt|it−1, (4.28)

xit−1,0 + xit−1,1 = zit−1 , (4.29)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .

Here, Ut|it−1 is a vector with components ujt for jt ∈ Jt|it−1. In this example, local and future

losses are minimized at each optimization. The parameter β controls future losses’ impact

during minimization. A higher value for β leads to stricter hedging where we penalize future

losses more than local losses, leading to a robust strategy. For ℓ2,1 norm representation the

objective function is replace with
∑

jt∈Jt|it−1
u2jt . On the other hand, ℓ∞,1 optimization is

formulated as follows,

Example 4.9. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1
,Ut|it−1

,b
e−rb (4.30)

under the constraints

cjt(Xjt)− xit−1,0e
r − xit−1,1

yjt
yit−1

+ βθjt = ujt , ∀jt ∈ Jt|it−1, (4.31)

|ujt | ≤ b, ∀jt ∈ Jt|it−1, (4.32)

vjt(zjt) ≤ θjt , ∀jt ∈ Jt|it−1, (4.33)

xit−1,0 + xit−1,1 = zit−1 , (4.34)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .

Like stochastic programming, the ℓ∞,1 dynamic coherent risk strategy leans towards the
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worst-case scenario for the specified trading path. The following section compares the two

methods to observe their impact on the VaR and CVaR of hedging costs.

4.7 Hedging with the barrier on future risk (BF)

Rather than having the future loss variable in the objective function, we can control the

impact by limiting future risk to a threshold. The barrier to future risk hedging strategy

allows the hedger to limit all future losses below a single or path-dependent threshold. For

ℓ1,1 norm, Algorithm 3.12 leads to the following optimization.

Example 4.10. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,Zt|it−1

e−r
∑

jt∈Jt|it−1

|ljt(Xit−1)| (4.35)

under the constraints

cjt(Xjt)− xit−1,0e
r − xit−1,1

yjt
yit−1

= ljt(Xit−1), ∀jt ∈ Jt|it−1, (4.36)

vjt(zjt) ≤ γ0, ∀jt ∈ Jt|it−1, (4.37)

xit−1,0 + xit−1,1 = zit−1 , (4.38)

where VT |iT−1
(ZT |iT−1

) = 0, and cjT (XjT ) = (yjT −K)+, ∀jT ∈ JT .

The ℓ2,1 and ℓ∞,1 norm variations follow the same format except for changes in their corre-

sponding objective functions. The static threshold parameter γ0 can be replaced with the

dynamic threshold γt that changes with time or γjt that changes with both time and node

depending on the hedger’s preference. It is worth noting that using a static threshold of-

ten leads to infeasible solutions when the size of the lattice tree is large. As such, a more

favourable threshold to ensure feasibility depends on the size of the lattice tree.
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4.8 Numerical examples

In this section, we analyze the outputs of the model examples produced by taking various

parameter adjustments into account. We first consider the market to be frictionless. That

is, there are no transaction fees or taxes. Later in this section, we consider the addition of

transaction cost and analyze its impact on the baseline models.

4.8.1 Hedging costs

To assess the effectiveness of our proposed strategies, we consider the discounted value of

path-dependent mismatches incurred by the hedging strategies. The nature and scope of

hedging errors that occur when a portfolio is re-balanced in discrete time was first inves-

tigated by Boyle and Emanuel (1980). Their paper analyzes the distribution of hedging

errors and suggests procedures to address the mismatches during re-balancing. Since then,

extensive investigations have suggested that while hedging errors cannot be eliminated, fre-

quent re-balancing of the replicating portfolio tends to minimize these mismatches. Albeit

at the expense of transaction costs, which can be optimized. This concept of minimizing

mismatches through frequent re-balancing does not entirely hold under robust optimization.

We examine the total cost incurred by an issuer or hedger. In effect, the initial replicating

portfolio value and the errors incurred by the hedging strategy constitute the hedger’s entire

cost. To obtain the hedging errors, we first solve the optimization problem to obtain the

hedging strategy at each node for all time t ∈ T . Then, using induced probabilities of the

input process, we simulate a path from the tree and use the path’s corresponding strategies

to compute the temporary loss values as the errors. Thus, we can define the present value

of hedging errors as

h =
∑

jt∈{i1,...,iT }

e−rtljt(Xit−1 , zit−1 ,Zt|it−1), (4.39)

where ljt(Xit−1 , zit−1 ,Zt|it−1) is the loss from hedging the claim cjt(Xjt) with accumulated

portfolio value wjt(Xit−1 , zit−1 ,Zt|it−1) using the hedging strategy for jt ∈ Jt|it−1. From the
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optimal hedging strategies, we can compute f0, the initial value of the hedging portfolio. We

can also simulate several possible paths and compute a collection of hedging errors h for each

simulated path. We present a level comparison of the strategies by allowing the collection

of paths to be controlled by the constant drift parameter µ to capture the evolution under

physical measure P. We introduce the induced probabilities pjt|it−1 to do this. At each time

t, we obtain the induced probabilities using the binomial distribution since this simulates the

geometric Brownian motion of the underlying stock process. Hence for some ρ = eµ/(∆N)−d
u−d

and given it−1, the conditional probabilities pjt|it−1 ∀ jt ∈ Jt|it−1 can be expressed as,

pj|it−1 =

(
N

j

)
ρN−j(1− ρ)j, for j = 0, 1, . . . , N. (4.40)

Gaillardetz and Osei-Mireku (2022) explore using MCMC sampling techniques to develop

non-homogeneous probabilities that vary at each time step in the tree.

Definition 4.8.1. The hedger’s total cost H, is the sum of the initial value of the hedge

portfolio f0, and the simulated hedging errors h.

Thus, for any given hedging strategy, we compute the hedger’s total cost and estimate the

riskiness of a strategy using our proposed risk measures.

4.8.2 Simulation setup

In our analysis, we hedge an at-the-money European option with a unit stock/index price at

t = 0 (i.e., Y0 = K = 1). We define our default hedge portfolio as comprising three assets at

each time step. The first two (xit−1,0, xit−1,1) are the cash and stock investments respectively.

The third asset, xit−1,2, is invested in a one-period at-the-money call option. We denote the

node jt Black-Scholes price of a one-period call option with strike κyjt as ϕjt(κ), where κ is

a scalar to set the moneyness of the option so that κ = 1 implies the option is at-the-money.

Alternatively, we can consider the option prices implied by the tree; however, we use the

one-period Black-Scholes price for simplicity. Thus our loss function can be redefined as
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ljt(Xit−1) = cjt(Xjt)−xit−1,0e
r−xit−1,1

yjt
yit−1

−xit−1,2(yjt −κyit−1)
+, ∀jt ∈ Jt|it−1. To compare

the strategies, we simulate hedging errors under market evolution governed by a constant

drift µ that can be set to capture physical market expectation and the binomial transition

probabilities defined in (4.40). In the absence of any indication to the contrary, we let

T = 1 for a 1-year European call option, ∆ = 12 to represent monthly trading/re-balancing,

N = 20, r = 4%, µ = 8%, σ = 20% and γ0 = 1%. We compute the mean and standard

deviation of 100, 000 simulated hedging costs H for each strategy. Recall H is the collection

of the sum of the initial value of the hedge portfolio f0 and each of the simulated hedging

errors h. We also estimate the VaR and CVaR at α = 99.5% to assess the tail performance

of the strategies.

4.8.3 Analysis of hedging error distribution for SR, NC and NO

strategies

We begin our analysis by comparing the hedging error distribution of the various strate-

gies. Our goal is to assess the robustness of the models based on their tail risk and evaluate

their suitability for worst-case consideration using the super-replication strategy as the base-

line. By examining key metrics such as the initial portfolio value (f0), the expected value

of hedging error (E[H]), and the Conditional Value at Risk at the 99.5% confidence level

(CVaR99.5%), we gain insights into the effectiveness and risk profiles of these strategies.

Since the super-replication strategy requires the hedging portfolio to dominate the claim or

payoff throughout the investment horizon, we expect our hedging errors to be less than zero.

That implies the simulated values of H are less than the estimate of initial portfolio value

f0. Figure 4.1 shows a histogram of hedging costs simulated with the super-replication tech-

nique in Algorithm 3.2. Here, the hedging error distribution is left-skewed with a CVaR99.5%

of 14.43% less than the initial portfolio value estimate of 15.97%. From the histogram, we

can deduce that although the hedge portfolio dominates the payoffs, to some extent, the

lower VaR and CVaR indicate a favourable tail or worst-case behaviour from an investor’s
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Figure 4.1: Distribution of simulated percent hedging costs for an at-the-money call option
with super-replication strategy.

perspective.

In Figure 4.2, we show a histogram of hedging costs simulated with ℓ1,0, ℓ2,0 and ℓ∞,1 norms

as constraints. We obtain the hedge portfolio at each node by setting the sum of absolute

errors for ℓ1,0 and ℓ2,0 norms and maximum error for ℓ∞,1 norm to be less than γ0 = 1%

in Algorithm 3.5. The histograms are similar in shape and have the same expected values,

variances and tail risks of hedging costs as the super-replication strategy. This illustrates the

closeness of the strategies to our worst-case baseline. On the other hand, the initial portfolio

values are less than that of super-replication. The strategy with ℓ1,0 norm is 0.25% less, ℓ2,0

norm is 0.29% less and ℓ∞,1 norm is 0.41% less than the super-replication strategy. The fact

that we can establish a portfolio that is cheaper than the super-replication method while

having a similar hedging error distribution and tail risk by managing a small percentage

of the losses indicates the robustness of the strategies. Therefore, to gain a lower cost of
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Figure 4.2: Distribution of simulated percent hedging costs for at-the-money call option with
ℓ1,0 (left), ℓ2,0 (middle) and ℓ∞,1 (right) norms as constraint.

initial portfolio value while being exposed to a similar tail risk, an investor who chooses to

adopt the super-replicating portfolio may instead limit asymmetric losses by a threshold.

For instance, having ℓ∞,1 norm as a constraint yields the same value for CVaR99.5% as that

of super-replication but requires less initial amount to set-up than even ℓ1,0 and ℓ2,0 norms

as a constraint.

Figure 4.3 is a histogram of hedging costs simulated with ℓ1,1, ℓ2,1 and ℓ∞,1 norms as objec-

tive functions in Algorithm 3.6. Again, we define the strategy to set the sum of losses within

the threshold γ0 = 1%. As a result, we obtain bell-shaped histograms with initial portfolio

values f0 less than the other strategies proposed. However, this is offset by a higher tail risk

as observed by the CVaR99.5%. As such, by setting the asymmetric norm as an objective,

an investor has to decide between a cheaper cost of establishing the portfolio with higher

exposure to tail risk or having a fairly robust but expensive initial portfolio value. Also,
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Figure 4.3: Distribution of simulated percent hedging costs for at-the-money call option with
ℓ1,1 (left), ℓ2,1 (middle) and ℓ∞,1 (right) norms as objective.

minimizing the maximum absolute loss at each node produces an initial portfolio value of

1.39% lower than minimizing the sum of absolute errors.

4.8.4 Sensitivity to number of trades and nodes for SR, NC and

NO strategies

To assess the stability of the hedging strategies to dynamics in the model framework, we

estimate the initial value of the portfolio f0, E[H] and the CVaR99.5% for a varying number

of trades or re-balancing and the number of nodes per branch.

Table 4.1 provides a detailed comparative analysis of the hedging strategies - super-replication

(SR), norm as constraint (NC), and norm as objective (NO) - across different number of

trades ∆, and the number of nodes N . The super-replication strategy serves as a baseline,

offering a conservative approach to hedging by ensuring that the portfolio value always ex-
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∆ = 6 ∆ = 12 ∆ = 24

N = 10 N = 20 N = 30 N = 10 N = 20 N = 30 N = 10 N = 20 N = 30

SR

f0 13.58% 15.05% 15.84% 14.04% 15.97% 17.15% 14.24% 16.37% 17.75%

E[H] 10.15% 10.15% 10.17% 10.15% 10.15% 10.17% 10.15% 10.15% 10.17%

CVaR99.5% 13.58% 15.02% 15.80% 13.23% 14.43% 15.36% 13.11% 14.37% 15.17%

NC-ℓ1,0

f0 13.18% 14.66% 15.49% 13.79% 15.72% 16.91% 14.11% 16.23% 17.62%

E[H] 10.16% 10.15% 10.16% 10.15% 10.15% 10.16% 10.17% 10.13% 10.17%

CVaR99.5% 13.77% 15.12% 15.85% 13.21% 14.43% 15.37% 13.09% 14.35% 15.16%

NC-ℓ2,0

f0 13.09% 14.56% 15.36% 13.77% 15.68% 16.87% 14.24% 16.37% 17.75%

E[H] 10.16% 10.15% 10.16% 10.15% 10.15% 10.17% 10.17% 10.13% 10.17%

CVaR99.5% 13.73% 15.11% 15.86% 13.22% 14.43% 15.37% 13.11% 14.37% 15.17%

NC-ℓ∞,1

f0 12.77% 14.24% 15.03% 13.63% 15.56% 16.74% 14.03% 16.16% 17.55%

E[H] 10.16% 10.15% 10.17% 10.15% 10.15% 10.17% 10.17% 10.13% 10.17%

CVaR99.5% 13.58% 15.02% 15.80% 13.23% 14.43% 15.36% 13.11% 14.37% 15.17%

NO-ℓ1,1

f0 9.97% 9.64% 9.40% 9.70% 8.86% 8.19% 9.60% 7.85% 7.00%

E[H] 10.14% 10.08% 10.07% 10.16% 10.09% 10.05% 10.15% 10.10% 10.07%

CVaR99.5% 15.51% 16.71% 17.37% 14.35% 16.25% 17.32% 13.23% 15.77% 16.99%

NO-ℓ2,1

f0 9.58% 7.76% 5.95% 9.52% 7.14% 4.49% 9.49% 6.63% 3.00%

E[H] 10.15% 10.10% 10.08% 10.16% 10.12% 10.11% 10.17% 10.13% 10.14%

CVaR99.5% 15.53% 17.22% 18.02% 14.49% 16.77% 18.23% 13.54% 16.00% 18.16%

NO-ℓ∞,1

f0 9.62% 7.62% 5.65% 9.85% 7.47% 4.77% 10.07% 7.65% 4.17%

E[H] 10.13% 10.06% 10.03% 10.13% 10.06% 10.03% 10.14% 10.07% 10.02%

CVaR99.5% 15.07% 16.40% 17.06% 13.87% 15.66% 16.76% 12.82% 14.39% 15.66%

Table 4.1: Initial value f0, expected value E[H] and CVaR99.5% of simulated hedging costs for
at-the-money call option for SR, NC-(ℓ1,0, ℓ2,0, ℓ∞,1) and NO-(ℓ1,1, ℓ2,1, ℓ∞,1) strategies with
∆ = 6, 12, 24 number of trades and N + 1 = 11, 21, 31 number of nodes.

ceeds the option’s payoff. Table 4.1 shows that as the number of nodes and the trading

frequency increase, there is a corresponding increase in the initial portfolio value. Specif-

ically, f0 rises slightly with more nodes and more frequent trading, suggesting that larger

tree size and finer discretization introduce additional complexity to the hedging process.

The expected hedging error remains remarkably stable across all values of ∆ and N . This

constancy indicates that the average performance of the super-replication strategy does not
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improve with more frequent trading or a higher number of nodes. However, the CVaR99.5%,

which measures the risk of extreme losses, also increases with higher N but decreases with

higher ∆. This decrease suggests that while the super-replication strategy maintains a stable

average error, it also reduces exposure to higher tail risks as trading frequency increase.

The norm as constraint strategies, categorized based on different norms - ℓ1,0, ℓ2,0 and ℓ∞,1

- show performance similar to those of super-replication but with subtle variations. For

instance, the initial portfolio value in the norm as constraint strategies is comparable to

super-replication but tends slightly lower, particularly for ℓ∞,1. This indicates that norm-

based constraints might be more effective in ensuring a cheaper initial portfolio value. The

expected value of hedging error for the norm as constraint strategies remains consistent and

like super-replication, highlighting that these strategies do not alter the average performance

of the hedge portfolio. These findings imply that while norm as constraint strategies might

not drastically change the expected outcome, they could offer a slight edge in ensuring a

cheaper initial portfolio while having the same exposure to tail risk, making them a poten-

tial alternative to super-replication for risk-averse hedgers.

The norm as objective strategies, which include ℓ1,1, ℓ2,1 and ℓ∞,1 present a distinct approach

by focusing on minimizing the risk with specific norms as objectives. One of the most no-

table findings is that the initial portfolio value is lower than for both super-replication and

norm as constraint strategies, especially as ∆ and N increase. This suggests that norms as

objective strategies are particularly effective in minimizing the initial portfolio value, which

could be critical in scenarios where the cost of establishing the hedge portfolio is paramount.

However, this reduction in initial portfolio value comes with a trade-off. The CVaR99.5% is

generally higher, indicating that while these strategies reduce the set-up cost and expected

costs, they also introduce higher tail risks when exposed to extreme market movements.

Therefore, while norm as objective strategies offer clear benefits in reducing the cost of set-

ting up the portfolio, they may not be suitable for all hedgers, particularly those with a low

tolerance for extreme risks.
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Across all strategies, we see that a hedger must balance the benefits of increased trading

frequency with the potential for higher cost of capital and reduce tail risk. The super-

replication strategy offers a conservative approach with expensive initial portfolio value and

lower tail risks, making it a reliable choice for risk-averse hedgers. Norm as constraint strate-

gies slightly improve tail risk management while maintaining similar expected costs, making

them a viable alternative for hedgers seeking a more robust approach. Norm as objective

strategies, on the other hand, excel in minimizing the initial portfolio value but at the cost of

higher tail risks, making them suitable for hedgers who prioritize early cost and can tolerate

increased exposure to tail risk.

4.8.5 Sensitivity to market parameters for SR, NC and NO strate-

gies

Next, we analyze our hedging strategies’ sensitivity to financial model parameters. The drift

parameter µ calculates the probabilities when simulating hedging errors and not used in

estimating the hedging portfolio. Hence, we only test the risk-free interest rate r and the

market volatility σ.

While the conservative approach of super-replication offers a high degree of protection, Table

4.2 shows considerable sensitivity to interest rate and market volatility changes. As interest

rates increase from 2% to 8%, the initial cost required to set up the super-replicating portfolio

rises . For instance, at a volatility of 15%, the initial cost increases from 11.59% to 14.56%.

This trend highlights the direct relationship between the cost of capital and the initial outlay

required for a super-replicating portfolio. Similarly, an increase in market volatility exac-

erbates this effect. At a fixed interest rate of 2%, the initial cost escalates from 11.59% at

σ = 15% to 21.94% at σ = 30%. This indicates that in more volatile markets, a larger initial

investment is necessary to maintain the conservative posture of the super-replication strat-

egy. The expected hedging error under super-replication increases with higher interest rates

and volatility. Although the super-replication aims to minimize risk, these results suggest
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r = 2% r = 4% r = 8%

σ = 15% σ = 25% σ = 30% σ = 15% σ = 25% σ = 30% σ = 15% σ = 25% σ = 30%

SR

f0 11.59% 18.52% 21.94% 12.54% 19.37% 22.75% 14.56% 21.12% 24.40%

E[H] 7.23% 11.09% 13.01% 8.25% 12.06% 13.97% 10.40% 14.06% 15.92%

CVaR99.5% 10.43% 16.64% 19.74% 11.37% 17.49% 20.54% 13.41% 19.24% 22.19%

NC-ℓ1,0

f0 11.26% 18.32% 21.77% 12.22% 19.17% 22.58% 14.25% 20.92% 24.23%

E[H] 7.23% 11.09% 13.01% 8.24% 12.06% 13.97% 10.40% 14.06% 15.92%

CVaR99.5% 10.43% 16.64% 19.73% 11.38% 17.49% 20.53% 13.42% 19.25% 22.19%

NC-ℓ2,0

f0 11.21% 18.29% 21.75% 12.17% 19.15% 22.56% 14.20% 20.9% 24.21%

E[H] 7.23% 11.09% 13.01% 8.24% 12.06% 13.97% 10.40% 14.06% 15.92%

CVaR99.5% 10.43% 16.64% 19.73% 11.38% 17.49% 20.54% 13.42% 19.25% 22.2%

NC-ℓ∞,1

f0 11.04% 18.19% 21.67% 12.00% 19.05% 22.48% 14.03% 20.80% 24.13%

E[H] 7.23% 11.09% 13.01% 8.25% 12.06% 13.97% 10.40% 14.06% 15.92%

CVaR99.5% 10.43% 16.64% 19.74% 11.37% 17.49% 20.54% 13.41% 19.24% 22.19%

NO-ℓ1,1

f0 6.13% 9.34% 11.01% 7.23% 10.43% 11.96% 9.82% 12.56% 14.14%

E[H] 7.10% 11.08% 13.06% 8.15% 12.04% 13.99% 10.47% 14.07% 15.93%

CVaR99.5% 11.86% 19.10% 22.69% 12.77% 19.85% 23.43% 14.80% 21.50% 24.83%

NO-ℓ2,1

f0 4.81% 7.31% 8.57% 5.94% 8.37% 9.61% 8.41% 10.61% 11.79%

E[H] 7.11% 11.11% 13.09% 8.16% 12.08% 14.03% 10.48% 14.12% 15.99%

CVaR99.5% 12.20% 19.61% 23.27% 13.15% 20.40% 24.00% 15.22% 22.09% 25.55%

NO-ℓ∞,1

f0 5.17% 7.67% 8.94% 6.25% 8.70% 9.95% 8.60% 10.85% 12.04%

E[H] 7.10% 11.07% 13.06% 8.12% 12.02% 13.99% 10.36% 14.01% 15.90%

CVaR99.5% 11.32% 18.24% 21.69% 12.28% 19.06% 22.45% 14.37% 20.79% 24.05%

Table 4.2: Initial value f0, expected value E[H] and CVaR99.5% of simulated hedging costs for
at-the-money call option for SR, NC-(ℓ1,0, ℓ2,0, ℓ∞,1) and NO-(ℓ1,1, ℓ2,1, ℓ∞,1) strategies with
interest rate r = 2%, 4%, 8%, and volatility σ = 15%, 25%, 30%.

that average costs in hedging are influenced by market conditions, reflecting the challenges of

maintaining a perfect hedge in dynamic environments. Moreover, the tail risk, as measured

by CVaR99.5%, rises from 10.43% to 22.19% as both interest rate and volatility increase. This

demonstrates that the portfolio may still be exposed to significant losses in extreme market

scenarios, especially when both interest rates and volatility are high.

The norm as constraint strategies, which impose constraints based on different norms, show

performance closely aligned with the super-replication strategy but with some notable dif-
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ferences. The initial portfolio value for the norm as constraint strategies is generally slightly

lower than for super-replication, particularly for the ℓ∞,1 variant. For instance, at 2% in-

terest rate and 15% volatility, the initial cost for ℓ∞,1 is 11.04%, compared to 11.59% for

super-replication. This suggests that norms as constraint strategies might offer marginal cost

savings, potentially making them more appealing in certain contexts. The expected hedging

costs are also nearly identical to those of super-replication, indicating that these strategies

maintain comparable average performance despite introducing norm constraints. This con-

sistency implies that norm as constraint strategies can be employed without compromising

the effectiveness of the hedge.

The norm as objective strategies present a distinct performance profile, particularly regard-

ing the initial cost. One of the most striking features of norm as objective strategies is their

consistently lower initial costs than super-replication and norm as constraint strategies. For

instance, at 2% interest rate and 15% volatility, the initial portfolio value is just 4.81%,

lower than the 11.59% required for super-replication. This cost efficiency makes norm as

objective strategies particularly attractive in markets with lower volatility or when manag-

ing portfolios with tighter budget constraints. Despite these lower initial costs, the expected

hedging costs are comparable to super-replication and norm as constraints. This indicates

that norms as objective strategies can achieve similar average performance while requiring

less capital to set up. However, the lower initial cost comes with a trade-off: higher tail

risks. For instance, an 8% interest rate and 30% volatility have a CVaR99.5% of 25.55%,

higher than the 22.19% for super-replication. This suggests that while norm as constraint

strategies are more cost-efficient, they may expose the portfolio to greater risk of extreme

losses, particularly in volatile market conditions.

The analysis of these hedging strategies underscores the significant impact of interest rates

and market volatility on their performance. As the interest rate increases, there is a con-

sistent rise in the initial cost, expected hedging error, and CVaR99.5%. This suggests that

higher interest rates increase the cost of hedging and the associated risks. Similarly, in-
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creasing volatility leads to higher values for all three metrics. This is expected, as greater

volatility typically results in more significant price swings, making effective hedging more

challenging. The effect is particularly pronounced in the CVaR99.5%, where extreme market

movements elevate tail risks.

4.8.6 Sensitivity to hedger’s preference for SR, NC and NO strate-

gies

Another way to assess the robustness of super-replication, norm as constraint and norm as

objective strategies is to analyze their performance to changing model parameters based on

the hedger’s preference. These hyper-parameters are classified as hedger’s preference since

they are not dependent on market dynamics and can be tuned individually or collectively to

obtain the desired level of performance and robustness. Specifically, we analyze the asym-

metric parameter of the norms, the threshold and the inclusion of additional assets in the

hedging portfolio.

Figure 4.4 shows nine histograms of percent hedging error distributions for different norms as

objective strategies. Here, we compare hedging error distributions across different norms and

asymmetric parameter values. For lower values of q, we observe an increase in the skewness

of hedging error distributions similar to that of super-replication and norm as constraint

strategies in Figures 4.1 and 4.2 respectively. On the other hand, for higher values of q,

we observe bell-shaped histograms similar to the norm as objective strategies in Figure 4.3.

Generally, strategies with higher initial costs, such as ℓp,0, tend to exhibit lower tail risks,

as evidenced by a relatively lower CVaR99.5%. For instance, the ℓ∞,0 strategy, which has

the highest initial cost of 14.13%, demonstrates the least variability in hedging costs among

ℓp,0 strategies, with a standard deviation of 2.16%, and a moderate CVaR99.5% of 15.16%.

This suggests that strategies with higher initial costs may offer greater protection against

significant potential losses for hedgers, prioritizing the minimization of extreme losses. Con-

versely, strategies with lower initial costs, such as the ℓ2,1 strategy, present a different risk
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Figure 4.4: Distribution of simulated percent hedging costs for at-the-money call option with
ℓ1,q (left), ℓ2,q (middle) and ℓ∞,q (right) norms as objective for q = 1, 0.5, 0

profile. With the lowest initial cost of 7.14%, this strategy also exhibits the highest tail risk

(CVaR99.5% = 16.77%) and a higher standard deviation (SD = 2.23%). While it may be

57



more cost-effective to implement initially, the ℓ2,1 strategy exposes the portfolio to greater

potential losses, making it more suitable for investors with a higher risk appetite.

Tail risks are critical in understanding the exposure to extreme outcomes. In Figure 4.4,

strategies such as ℓ∞,1 and ℓ∞,0.5 show relatively low tail risks, with CVaR99.5% values of

15.66% and 15.76%, respectively. These strategies, which balance initial cost and risk, may

appeal to hedgers seeking a middle ground between cost efficiency and risk control. The stan-

dard deviation of hedging costs provides further insights into the consistency of a strategy’s

performance. Strategies with lower asymmetric parameter values q, tend to have slightly

higher standard deviations, indicating high variability in hedging costs and, consequently,

less predictable outcomes. For example, the ℓ1,0 strategy, with a standard deviation of 2.27%,

offers the highest variability. However, the corresponding low tail risk makes it a strong can-

didate for investors seeking a balance between risk and reward.

The choice of norm asymmetry ultimately depends on the hedger’s objectives and risk tol-

erance. Strategies with higher asymmetric parameters offer higher tail risks in exchange for

lower initial costs. On the other hand, strategies with lower asymmetric parameters offer

higher initial costs while minimizing extreme losses and yielding consistent or robust per-

formance. By carefully considering the trade-offs between cost, tail risk, and hedging error

variability, hedgers can tune the asymmetric parameter to align with their goals and risk

appetite.

In Table 4.3, the conservative super-replication strategy does not depend on the risk tol-

erance threshold γ0. As such, the initial cost of the strategy remains consistent at 15.97%

across all thresholds. This invariance suggests that the super-replication strategy maintains

a fixed cost to achieve its robust hedging objective, irrespective of the risk tolerance level the

investor sets. However, when additional assets are incorporated into the hedging portfolio,

the initial cost of the strategy decreases . For instance, adding five options with strike prices

defined by the moneyness parameter κ = 0.7, 0.9, 1, 1.1, 1.3, reduces the initial cost to 11.47%.

This reduction highlights the impact of diversification, where expanding the asset base in
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γ0 = 1% γ0 = 3% γ0 = 5% γ0 = ∞ 1 option 3 options 5 options

SR

f0 15.97% 15.97% 15.97% 15.97% 15.97% 14.64% 11.47%

E[H] 10.15% 10.15% 10.15% 10.15% 10.15% 10.05% 10.01%

CVaR99.5% 14.43% 14.43% 14.43% 14.43% 14.43% 13.32% 11.28%

NC-ℓ1,0

f0 15.72% 15.27% 14.86% −∞% 15.72% 14.36% 11.28%

E[H] 10.15% 10.14% 10.14% 10.78% 10.15% 10.05% 10.01%

CVaR99.5% 14.43% 14.45% 14.51% ∞% 14.43% 13.29% 11.24%

NC-ℓ2,0

f0 15.68% 15.15% 14.64% −∞% 15.68% 14.34% 11.23%

E[H] 10.15% 10.15% 10.14% 10.84% 10.15% 10.05% 10.01%

CVaR99.5% 14.43% 14.45% 14.48% ∞% 14.43% 13.3% 11.25%

NC-ℓ∞,1

f0 15.56% 14.75% 13.95% −∞% 15.56% 14.23% 11.06%

E[H] 10.15% 10.15% 10.15% 10.15% 10.15% 10.05% 10.01%

CVaR99.5% 14.43% 14.43% 14.43% 14.43% 14.43% 13.32% 11.28%

NO-ℓ1,1

f0 8.86% 8.54% 8.49% 8.50% 8.86% 9.27% 9.73%

E[H] 10.09% 10.10% 10.10% 10.10% 10.09% 10.03% 9.99%

CVaR99.5% 16.25% 16.38% 16.38% 16.44% 16.25% 14.9% 11.68%

NO-ℓ2,1

f0 7.14% 7.14% 7.14% 7.15% 7.14% 9.04% 9.75%

E[H] 10.12% 10.12% 10.12% 10.12% 10.12% 9.97% 10.00%

CVaR99.5% 16.77% 16.77% 16.77% 16.76% 16.77% 14.80% 11.41%

NO-ℓ∞,1

f0 7.47% 8.03% 8.13% 7.81% 7.47% 9.69% 10.62%

E[H] 10.06% 10.07% 10.08% 10.07% 10.06% 9.92% 10.06%

CVaR99.5% 15.66% 15.43% 15.36% 15.39% 15.66% 14.17% 12.31%

Table 4.3: Initial value f0, expected value E[H] and CVaR99.5% of simulated hedging costs
for at-the-money call option for SR, NC-(ℓ1,0, ℓ2,0, ℓ∞,1) and NO-(ℓ1,1, ℓ2,1, ℓ∞,1) strategies
with constant threshold γ0 = 1%, 3%, 5%, and 1 call option with κ = 1, 3 call options
with κ = 0.8, 1, 1.2, and 5 call options with κ = 0.7, 0.9, 1, 1.1, 1.3 as assets to the hedging
portfolio.

the portfolio lowers the required capital for effective hedging. Regarding expected hedging

error, the super-replication strategy shows stability, with a consistent value of 10.15% across
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all thresholds, indicating that the average performance is not influenced by γ0. Moreover,

including additional options slightly improves the expected error, reducing it to 10.01% with

five options, suggesting that diversification can enhance the accuracy of the hedge. The

CVaR99.5% decreases with the addition of more assets in the portfolio. For example, the

CVaR99.5% reduces from 14.43% to 11.28% with five additional options, demonstrating the

effectiveness of diversification in mitigating extreme risks within the super-replication strat-

egy.

Norm as constraint strategies introduce a risk management framework that sets thresholds

to constrain risk exposure. These strategies show a more dynamic relationship between the

initial cost and the threshold γ0. As the threshold increases, the initial portfolio value for

the norm as constraint strategies generally decrease. For example, in the ℓ∞,1 strategy, the

initial cost drops from 15.56% at γ0 = 1% to 13.95% at γ0 = 5%. This trend reflects the

trade-off between risk tolerance and the cost of setting up the portfolio - higher risk tol-

erance allows for a lower initial cost. However, when the threshold is set to infinity, the

initial cost for the norm as constraint strategies falls to negative infinity, indicating that the

strategies become infeasible or excessively risky without a proper constraint. This outcome

underscores the importance of carefully selecting an appropriate threshold to maintain the

viability of norms as constraint strategies. Like the super-replication strategy, adding more

options to the norm as constraint portfolios reduces the initial cost. For instance, in the ℓ1,0

strategy, the initial cost decreases from 15.72% to 11.28% when five options are added. This

reduction demonstrates the positive impact of diversification, which not only lowers the cost

but also enhances the overall performance of the hedge. Regarding expected hedging error,

the norm as constraint strategies exhibit high stability, with values hovering around 10.15%

across different thresholds. This consistency suggests that norm as constraint strategies de-

liver reliable hedging performance, regardless of the specific conditions or risk constraints

imposed. The CVaR99.5% shows slight variations with changes in the threshold, generally

increasing as the threshold rises. In some cases, such as with γ0 = ∞, the CVaR99.5% can
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escalate to infinity, indicating the potential for extreme losses if no constraint is applied.

However, like the super-replication strategy, adding more assets to the norm as constraint

portfolios reduces the CVaR99.5%, demonstrating that diversification is crucial in controlling

tail risk.

Table 4.3 also shows the norm as objective strategies that prioritize minimizing the portfolio

setup’s cost while achieving the desired hedging outcome. Among the strategies analyzed,

norm-as-objective strategies exhibit much lower initial costs than super-replication and norm-

as-constraint strategies, highlighting the cost-efficiency of this approach. Interestingly, the

initial cost for norm as objective strategies slightly increases when additional options are

added to the portfolio, which contrasts the super-replication and norm as constraint strate-

gies. For instance, in the ℓ∞,1 strategy, the initial cost rises from 7.47% to 10.62% when

five options are added. This increase might reflect the increased complexity in the hedging

strategy as more assets are included, suggesting that diversification can reduce risk and may

also introduce additional costs in certain scenarios. The expected hedging error remains rel-

atively stable, around 10.10%, with minor variations across thresholds and additional assets.

This performance is comparable to the super-replication and norm as constraint strategies,

indicating that norm as objective strategies can achieve similar average hedging outcomes

despite their lower initial costs. However, regarding tail risk, the norm as objective strate-

gies tend to exhibit higher values, which suggests that they expose the portfolio to greater

extreme risks. Despite this, adding more assets to the norm as objective strategies help to

reduce the CVaR99.5%, with the ℓ∞,1 strategy experiencing a decrease from 15.66% to 12.31%

when five options are added. This reduction reinforces the benefit of diversification, even

within cost-sensitive strategies like norm as objective, in managing tail risk.

The comparative analysis of the three hedging strategies reveals distinct characteristics and

trade-offs. While conservative and consistent, the super-replication strategy requires a rel-

atively high initial cost, which can be reduced through diversification. Norm as constraint

strategies offers a balanced approach, requiring careful management of thresholds to avoid
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excessive risks and benefit from diversification in terms of cost and tail risk reduction. Norm

as objective strategies stand out for their cost efficiency, making them suitable for scenar-

ios where minimizing initial costs is a priority, though they come with higher exposure to

extreme risks. Ultimately, the choice of hedging strategy should be guided by the specific

goals and robustness of the portfolio. For conservative risk management, super-replication

and norm-as-constraint strategies may be preferable, while norm-as-objective strategies are

better suited for capital-efficient scenarios. Across all strategies, diversification consistently

emerges as a critical factor in enhancing hedging performance, particularly in reducing tail

risks and managing extreme market conditions, albeit in the absence of transaction costs.

4.8.7 Analysis of hedging error distribution for portfolio as state

variable strategies

We continue our analysis by comparing the hedging error distribution of portfolios as state

variable strategies. To assess the models’ adaptability for worst-case scenarios, we proceed

with our analysis by looking at their expected hedging costs and tail risk. We compare

the portfolio as a state variable strategy to the other hedging techniques for various model

parameters and norms for a fixed initial portfolio value, f0 = 0.1. The hedging portfolio is

established here for a specific initial cost or fund, from which the hedger can cover the future

payoff through the accumulated wealth process. Also, in order the reduce computational

complexity, we set the number of trades, ∆ = 6 for this set of simulations.

Figure 4.5 analyzes the performance of three stochastic programming strategies for hedg-

ing an at-the-money call option, each employing different norms: ℓ1,1, ℓ2,1, ℓ∞,1. All three

stochastic programming strategies analyzed have a predefined initial cost of 0.1, ensuring a

level playing field in comparing their risk-return profiles. The expected hedging costs are

relatively close across the strategies, ranging from 10.00% to 10.19%, suggesting that each

strategy maintains a similar level of performance in terms of minimizing the average error.

However, the slight differences in expected hedging costs indicate that the norm’s choice can
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Figure 4.5: Distribution of simulated percent hedging costs for at-the-money call option with
stochastic programming strategy.

influence the hedging strategy’s efficiency. The ℓ2,1 norm strategy has the lowest expected

hedging error of 10.00% but the highest standard deviation of 2.96%. This implies that the

strategy may yield slightly lower average costs but with a low degree of consistency, making

it a good choice for hedgers seeking cheaper initial hedging costs. The ℓ∞,1 norm strategy

stands out with the lowest tail risk (VaR99.5% = 15.23%, CVaR99.5% = 15.32%). This illus-

trates the strategy’s appeal for risk-averse investors, offering tighter control over extreme

losses. In contrast, the ℓ1,1 and ℓ2,1 norm strategies exhibit higher tail risks, with CVaR99.5%

values of 17.17% and 19.96%, respectively. While offering similar expected hedging costs,

these strategies expose hedgers to greater potential losses in extreme market conditions.

This increased risk is accompanied by a higher standard deviation for the ℓ2,1 norm strategy,

indicating more variability in hedging performance.

Similar to stochastic programming, Figure 4.6 shows the histogram of simulated hedging
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Figure 4.6: Distribution of simulated percent hedging costs for an at-the-money call option
with dynamic coherent risk strategy.

costs of three dynamic coherent risk strategies for ℓ1,1, ℓ2,1 and ℓ∞,1 norms. Again, all three

strategies share a predefined initial cost of 0.1, ensuring comparability in their performance.

The expected hedging costs across the strategies vary more and with a higher standard de-

viation than the stochastic programming strategies. This indicates that the choice of norm

is crucial in influencing hedging efficiency for dynamic coherent risk strategies. The ℓ∞,1

norm strategy has the lowest standard deviation among the three. Coupled with a relatively

low expected error, this strategy offers a balanced performance, providing consistency and

efficiency in minimizing average hedging costs. On the other hand, ℓ2,1 norm strategy shows

a higher standard deviation. The ℓ∞,1 norm strategy also maintains the lowest tail risk with

VaR99.5% of 15.24% and CVaR99.5% of 15.27%. This aligns with its relatively lower standard

deviation, reinforcing its position as a conservative choice for risk-averse investors. It offers

a robust solution for minimizing risk without exposing the portfolio to extreme losses. The
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ℓ1,1 norm strategy, while showing a lower expected hedging error than ℓ2,1 at 10.10%, still

carries considerable tail risks. A standard deviation of 3.18% for the ℓ1,1 norm strategy

reflects its middle ground performance in terms of variability, suggesting that it may serve

as a compromise between the low-risk ℓ∞,1 norm strategy and high-risk ℓ2,1 norm strategy.

Figure 4.7: Distribution of simulated percent hedging costs for an at-the-money call option
with barrier on future risk strategy.

The barrier on future risk strategies limits risk exposure by setting predefined barriers or

thresholds. In Figure 4.7, we show the histogram of simulated hedging costs for ℓ1,1, ℓ2,1 and

ℓ∞,1 norms and analyze their performance. The choice of threshold is crucial to the perfor-

mance of the barrier of future risk strategies. Without loss of generality, we set a dynamic

threshold γit = (1+ γ0/it)
it − 1 for a predefined initial cost of 0.1 to compare the strategies.

The expected hedging costs across the strategies show some variation, ranging from 9.08% to

10.05%, reflecting the differing impact of each norm on hedging efficiency. In this case, the

ℓ2,1 norm strategy has the lowest expected hedging error but a higher standard deviation,
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suggesting that while it may reduce the average error, it does so at the cost of very high

variability.

On the other hand, the ℓ1,1 norm strategy shows a slightly higher expected hedging error

but a much lower standard deviation compared to the ℓ2,1 norm. This implies that while

it is slightly less efficient in minimizing average costs, it offers more consistent performance

with reduced variability in hedging outcomes. Also, despite its lower average hedging error,

the ℓ2,1 norm strategy exhibits higher tail risks. This shows that the strategy exposes the

portfolio to higher potential losses in the tail. The ℓ∞,1 norm strategy emerges as the most

suitable barrier on future risk strategy for risk-averse hedgers, offering consistent perfor-

mance with the lowest tail risks. The strategy ℓ1,1 norm offers a middle ground, balancing

tail risk management at the expense of higher variability. We highlight the complexity of

barriers to future risk strategies as it requires tuning both initial cost and selecting suit-

able thresholds, preferably at each re-balancing node to obtain lower tail risk comparable to

super-replication.

4.8.8 Sensitivity to initial portfolio values for SP, DC and BF

strategies

As pointed out in earlier sections, the initial portfolio value for the portfolio as a state vari-

able strategy requires tuning to obtain a lower exposure to tail risk. In this subsection, we

continue our analysis by comparing the performance of different initial costs of setting up

the portfolio.

Table 4.4 presents a comparative analysis of stochastic programming, dynamic coherent risk,

and barriers on future risk strategies across various initial investment costs ranging from 5%

to 20%. Each strategy is evaluated using different norms: ℓ1,1, ℓ2,1 and ℓ∞,1. The stochastic

programming strategy displays a stable expected hedging cost across all norms and ini-

tial portfolio values. Specifically, ℓ1,1 and ℓ∞,1 norms maintain expected costs around 10%,

while ℓ2,1 norm exhibits slight variability, ranging from approximately 9.95% to 10.30% as
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f0 = 5% f0 = 7% f0 = 10% f0 = 13% f0 = 15% f0 = 18% f0 = 20%

SP-ℓ1,1
E[H] 10.12% 10.13% 10.13% 10.13% 10.14% 10.14% 10.16%

CVaR99.5% 18.51% 17.97% 17.17% 16.56% 16.33% 16.65% 16.86%

SP-ℓ2,1
E[H] 9.95% 10.09% 10.00% 10.07% 9.98% 10.01% 10.30%

CVaR99.5% 22.81% 21.69% 19.96% 16.55% 16.79% 17.31% 22.97%

SP-ℓ∞,1

E[H] 10.16% 10.16% 10.19% 10.15% 10.17% 10.16% 10.08%

CVaR99.5% 15.05% 15.05% 15.32% 16.00% 16.11% 18.04% 19.71%

DC-ℓ1,1
E[H] 10.14% 10.13% 10.10% 9.35% 9.62% 9.79% 9.18%

CVaR99.5% 21.51% 20.06% 19.09% 18.91% 19.28% 19.32% 20.19%

DC-ℓ2,1
E[H] 10.33% 10.29% 10.21% 10.05% 9.98% 9.90% 9.83%

CVaR99.5% 19.54% 20.99% 23.69% 26.46% 28.33% 31.13% 32.98%

DC-ℓ∞,1

E[H] 9.96% 9.96% 9.96% 9.96% 9.96% 9.48% 9.33%

CVaR99.5% 15.27% 15.27% 15.27% 15.27% 15.27% 18.14% 20.06%

BF-ℓ1,1
E[H] 10.08% 10.08% 10.05% 9.83% 9.66% 9.39% 9.22%

CVaR99.5% 22.64% 21.16% 19.58% 19.48% 19.44% 18.75% 20.09%

BF-ℓ2,1
E[H] 10.05% 10.04% 9.08% 7.91% 7.38% 6.76% 6.43%

CVaR99.5% 22.03% 21.56% 23.64% 26.40% 28.30% 31.08% 32.79%

BF-ℓ∞,1

E[H] 9.64% 9.64% 9.64% 9.64% 9.64% 9.62% 9.38%

CVaR99.5% 18.04% 18.04% 18.04% 18.04% 18.04% 18.15% 20.21%

Table 4.4: Expected value E[H] and CVaR99.5% of simulated hedging costs for at-the-money
call option for SP-(ℓ1,1, ℓ2,1, ℓ∞,1), DC-(ℓ1,1, ℓ2,1, ℓ∞,1) and BF-(ℓ1,1, ℓ2,1, ℓ∞,1) strategies with
initial investment value f0 = 5%, 7%, 10%, 13%, 15%, 18%, 20%.

f0 increases. However, the CVaR for stochastic programming strategies shows more notice-

able changes: ℓ∞,1 norm has the lowest CVaR, increasing modestly from 15.05% to 19.71%,

suggesting a controlled risk profile. The ℓ1,1 and ℓ2,1 norms exhibit higher CVaR values,

especially for ℓ2,1 norm, which peaks at 22.97%. Thus, ℓ∞,1 norm seems to offer a balance

between stable expected costs and moderate tail risk.
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The dynamic coherent risk strategy generally shows lower expected values than the stochas-

tic programming strategy, particularly as f0 increases, with a notable decline in expected

hedging costs. Expected costs for ℓ∞,1 norm ranges narrowly from 9.96% to 9.33%, high-

lighting a relatively steady hedging profile. In terms of risk, CVaR for dynamic coherent risk

strategies diverges depending on the chosen norm. The ℓ∞,1 norm displays moderate CVaR

(15.27% to 20.06%), whereas ℓ2,1 norm experiences high and increasing CVaR, peaking at

nearly 32.98%, indicating substantial tail risk exposure. Thus, the ℓ∞,1 norm may appeal for

its balanced risk and cost and the ℓ2,1 norm could be considered riskier despite low expected

costs.

The barrier on future risk strategy appears distinct, reflecting notably lower expected costs

but markedly higher tail risks (CVaR). The ℓ∞,1 norm has consistent expected values around

9.6% with CVaR starting at 18.04% for f0 = 5% and gradually increasing to 20.21% as f0

rises, which may indicate risk stabilization at lower initial investments. The ℓ2,1 norm, while

starting at lower expected costs than ℓ1,1 norm strategy, has the highest CVaR, with values

from 22.03% up to 32.79%, making it the riskiest among all the configurations analyzed.

The ℓ1,1 norm falls in between, with CVaR ranging from 18.75% to 22.64% as expected costs

decrease. This pattern suggests that BF strategies may be beneficial for low-cost risk man-

agement but can present substantial tail risks. Again, the complexity of barriers to future

risk strategies requires tuning both initial cost and selecting suitable thresholds.

There is a U-shape trend, particularly in the CVaR for stochastic programming and dynamic

coherent risk strategies as f0 increases. Specifically, for SP-ℓ1, 1, SP-ℓ2,1 and DC-ℓ1, 1 norms,

tail risk initially decreases as f0 increases from lower levels but eventually begins to rise again

for higher values of f0. This trend suggests that there’s an optimal range of initial invest-

ment where tail risk is minimized (around f0 = 13% and f0 = 15%). Below this optimal

range, insufficient capital limits risk-mitigation capacity, while above it, additional funds

may lead to riskier allocations or exposure, raising the tail risk again. As such, balancing

initial investment levels is critical for optimizing risk containment in stochastic programming
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and dynamic coherent risk strategies. Investors might consider maintaining capital close to

this optimal range to achieve effective tail risk management without excessive exposure to

extreme losses at either end of the spectrum.

4.8.9 Sensitivity to hedger’s preference for SP, DC and BF strate-

gies

Next, we analyze the performance of portfolios as state variable strategies to changing model

parameters based on the hedger’s preference. Again, these parameters can be tuned individ-

ually or collectively to obtain the desired level of performance and robustness. Specifically,

we analyze the proportion of future risk included in the objective function, the asymmetric

parameter of the norms, the threshold for the barrier on future risk and the inclusion of

additional assets in the hedging portfolio. We fix the initial cost to set up the portfolio at

0.1 for all the strategies.

Table 4.5 presents the expected hedging costs and CVaR99.5% as a performance measure for

the portfolio as state variable strategies. The parameter β represents the proportion of fu-

ture costs considered in the objective function of the hedging strategy. The expected error

of the stochastic programming strategy remains relatively stable across different values of β

with no changes. The CVaR99.5% also shows consistency, suggesting that these strategies are

relatively insensitive to changes in the proportion of future costs. There is also no change

in the expected hedging error for dynamic coherent risk strategies as β increases, except

for the ℓ2,1 norm. The CVaR99.5% also remain the same for ℓ1,1 and ℓ∞,1 norms, indicating

that accounting for higher future costs have no significant impact on reducing tail risk un-

der dynamic coherent risk strategies. Similar to the stochastic programming strategies, the

expected hedging costs for the barrier on future risk are stable, but the CVaR99.5% decreases

as the threshold γ0 increases, particularly for ℓ1,1 and ℓ2,1 norms. This trend indicates that

higher thresholds or barriers may reduce both the expected cost of hedging tail risk in these

strategies, except for the ℓ∞,1 norm strategy.

69



β q Number of options

β = 0.5 β = 0.7 β = 1 q = 0.7 q = 0.85 q = 1 1 3

SP-ℓ1,1
E[H] 10.13% 10.13% 10.13% 10.12% 10.12% 10.13% 10.13% 10.00%

CVaR99.5% 17.21% 17.18% 17.17% 16.59% 16.78% 17.17% 17.17% 14.60%

SP-ℓ2,1
E[H] 10.37% 10.09% 10.00% 10.76% 10.03% 10.00% 10.00% 10.85%

CVaR99.5% 19.01% 19.81% 19.96% 18.66% 19.29% 19.96% 19.96% 20.47%

SP-ℓ∞,1

E[H] 10.21% 10.21% 10.19% 10.15% 10.09% 10.19% 10.19% 9.88%

CVaR99.5% 15.42% 15.42% 15.32% 15.04% 15.18% 15.32% 15.32% 13.03%

DC-ℓ1,1
E[H] 10.10% 10.10% 10.10% 10.11% 10.10% 10.10% 10.10% 9.88%

CVaR99.5% 19.09% 19.09% 19.09% 18.89% 18.99% 19.09% 19.09% 15.37%

DC-ℓ2,1
E[H] 9.97% 10.09% 10.21% 10.21% 10.21% 10.21% 10.21% 11.20%

CVaR99.5% 29.43% 24.16% 23.69% 23.61% 23.63% 23.69% 23.69% 22.35%

DC-ℓ∞,1

E[H] 9.96% 9.96% 9.96% 9.96% 9.96% 9.96% 9.96% 9.66%

CVaR99.5% 15.27% 15.27% 15.27% 15.23% 15.26% 15.27% 15.27% 13.30%

γ0

γ0 = 1% γ0 = 3% γ0 = 5%

BF-ℓ1,1
E[H] 10.05% 10.02% 10.00% 10.08% 10.06% 10.05% 10.05% 9.93%

CVaR99.5% 19.58% 19.42% 19.35% 19.22% 19.32% 19.58% 19.58% 15.46%

BF-ℓ2,1
E[H] 9.08% 9.07% 9.04% 9.08% 9.07% 9.08% 9.08% 10.56%

CVaR99.5% 23.64% 23.58% 23.52% 23.40% 23.49% 23.64% 23.64% 20.90%

BF-ℓ∞,1

E[H] 9.64% 9.32% 9.10% 9.65% 9.64% 9.64% 9.64% 9.32%

CVaR99.5% 18.04% 23.32% 26.47% 17.88% 17.93% 18.04% 18.04% 18.72%

Table 4.5: Expected value E[H] and CVaR99.5% of simulated hedging costs for at-the-money
call option for SP-(ℓ1,1, ℓ2,1, ℓ∞,1), DC-(ℓ1,1, ℓ2,1, ℓ∞,1) and BF-(ℓ1,1, ℓ2,1, ℓ∞,1) strategies with
proportion of future cost β = 0.5, 0.7, 1, asymmetric parameter q = 0.7, 0.85, 1, threshold
γ0 = 1%, 3%, 5%, and 1 call option with κ = 1, 3 call options with κ = 0.8, 1, 1.2.

The asymmetric parameter q modifies the distribution of losses in the risk measure. Again,

the expected hedging costs for stochastic programming strategies remain fairly constant

across different levels of asymmetry. The CVaR99.5% however, shows significant fluctuations

with values increasing as we increase the impact of positive losses. The expected hedging
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costs are stable for dynamic coherent risk strategies, but there is a noticeable increase in

CVaR99.5% as q increases. This trend indicates that the potential for extreme losses under

dynamic coherent risk strategies increases as the distribution becomes more symmetric. Sim-

ilar to the other strategies, barriers on future risk strategies show little sensitivity in expected

error to changes in the asymmetric parameter. The CVaR99.5% also follows a similar trend

as stochastic programming and dynamic coherent risk, suggesting that these strategies are

more affected by asymmetry.

The introduction of extra assets in the form of additional options has a notable impact on

both the expected hedging error and tail risk. Generally, including three options (with strike

prices κ = 0.8, 1, 1.2) instead of only one option reduces the expected hedging error and re-

duces CVaR99.5%. This outcome suggests diversifying the hedging portfolio with more assets

can reduce risk. The decrease in CVaR99.5% is particularly pronounced in the dynamic coher-

ent strategies, indicating a substantial reduction in potential extreme losses. The analysis

of Table 4.5 reveals that the stochastic programming strategies are generally robust across

different parameters (β, q), showing stable expected hedging costs and controlled CVaR99.5%.

Dynamic coherent risk strategies tend to exhibit higher sensitivity to changes in these pa-

rameters, especially regarding tail risk, indicating a higher potential for extreme losses under

certain conditions. While generally exhibiting higher CVaR values, barriers on future risk

strategies benefit from including extra assets, which can mitigate risk and improve hedging

outcomes. Overall, the choice of strategy and parameters should be carefully considered

based on the hedger’s specific risk tolerance and investment objectives.

4.8.10 Sensitivity to option moneyness

We perform sensitivity analysis of the models to different strike prices of the call option.

Specifically, we compare the performance of the models when the option is in-the-money

(ITM) with K = 0.95, at-the-money (ATM) with K = 1, and out-of-the-money (OTM) with

K = 1.05. Again, we set the initial portfolio value to be 0.1 for the portfolio as state variable
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strategies.

ITM ATM OTM

f0 E[H] CVaR99.5% f0 E[H] CVaR99.5% f0 E[H] CVaR99.5%

SR 15.97% 10.15% 14.43% 15.97% 10.15% 14.43% 15.97% 10.15% 14.43%

NC-ℓ1,0 18.61% 12.70% 16.89% 15.72% 10.15% 14.43% 14.10% 8.07% 12.50%

NC-ℓ2,0 18.59% 12.70% 16.90% 15.68% 10.15% 14.43% 14.08% 8.07% 12.51%

NC-ℓ∞,1 18.49% 12.70% 16.89% 15.56% 10.15% 14.43% 13.99% 8.07% 12.53%

NO-ℓ1,1 11.96% 12.84% 18.36% 8.86% 10.09% 16.25% 6.43% 7.81% 14.18%

NO-ℓ2,1 10.28% 12.90% 19.01% 7.14% 10.12% 16.77% 4.58% 7.80% 14.79%

NO-ℓ∞,1 10.40% 12.78% 18.09% 7.47% 10.06% 15.66% 5.01% 7.82% 13.62%

SP-ℓ1,1 10.00% 12.78% 19.67% 10.00% 10.13% 17.17% 10.00% 7.97% 14.48%

SP-ℓ2,1 10.00% 12.43% 26.33% 10.00% 10.00% 19.96% 10.00% 8.59% 35.42%

SP-ℓ∞,1 10.00% 12.80% 18.12% 10.00% 10.19% 15.32% 10.00% 7.86% 13.81%

DC-ℓ1,1 10.00% 12.86% 22.35% 10.00% 10.10% 19.09% 10.00% 7.73% 17.12%

DC-ℓ2,1 10.00% 12.92% 21.44% 10.00% 10.21% 23.69% 10.00% 7.99% 22.27%

DC-ℓ∞,1 10.00% 12.35% 18.49% 10.00% 9.96% 15.27% 10.00% 7.78% 13.96%

BF-ℓ1,1 10.00% 12.78% 23.08% 10.00% 10.05% 19.58% 10.00% 7.84% 17.01%

BF-ℓ2,1 10.00% 12.78% 24.06% 10.00% 9.08% 23.64% 10.00% 6.05% 22.91%

BF-ℓ∞,1 10.00% 12.10% 21.08% 10.00% 9.64% 18.04% 10.00% 7.55% 16.34%

Table 4.6: Initial value f0, expected value E[H] and CVaR99.5% of simulated hedging
costs for ITM (K = 0.95), ATM (K = 1) and OTM (K = 1.05) call options for
SR, NC-(ℓ1,0, ℓ2,0, ℓ∞,1), NO-(ℓ1,1, ℓ2,1, ℓ∞,1), SP-(ℓ1,1, ℓ2,1, ℓ∞,1), DC-(ℓ1,1, ℓ2,1, ℓ∞,1) and BF-
(ℓ1,1, ℓ2,1, ℓ∞,1) strategies.

In Table 4.6, we provide a detailed comparison of the proposed hedging strategies across

three option scenarios: in-the-money (ITM), at-the-money (ATM), and out-of-the-money

(OTM). Across all strategies, there is a clear trend where initial costs decrease as the op-

tion moves from ITM to OTM. For example, NO-ℓ2,1 has an initial cost of 10.28% ITM but

drops to 4.58% OTM. This indicates that as options become less risky (OTM), the cost

to hedge them decreases across all strategies. Super replicating strategy stands out as an

exception with its initial cost fixed across all moneyness scenarios. The expected hedging

costs follow a similar trend, with costs typically lower for OTM options compared to ITM.

This reflects the lower risk of hedging OTM options since they are less likely to be exercised.
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The norm as objective strategies show the sharpest decline in expected costs from ITM to

OTM (e.g., NO-ℓ1,1 drops from 12.84% to 7.81%), while super-replication and norm as con-

straint strategies show the same values within each moneyness level. The super-replicating

strategy is more stable across moneyness levels. The portfolio as state variable strategies

have more stable expected hedging costs across moneyness scenarios, with small variations

across the different norms. The expected cost for these strategies is consistently around

10% for ATM and slightly lower for OTM. There is a general trend of decreasing CVaR as

options move from ITM to OTM, highlighting that OTM options involve less extreme risk.

For instance, NO-ℓ2,1 has a CVaR of 19.01% for ITM but only 14.79% for OTM. However,

stochastic programming, dynamic coherent risk and barriers on future risk strategies display

more variation in CVaR values across different moneyness scenarios, highlighting the impact

of the choice of norm in controlling tail risk and robustness.

To measure robustness, we seek a model that minimizes the downside risks (CVaR) while

maintaining cost efficiency. Super-replication is the most robust strategy across all money-

ness scenarios, with consistent initial costs (f0 = 15.97%) and stable expected hedging costs

(E[H] = 10.15%). Its CVaR is moderate at 14.43%, which does not fluctuate across ITM,

ATM, or OTM scenarios. This suggests that super-replication is highly resilient to market

changes, delivering predictable performance and protection across different market condi-

tions. This strategy is also conservative, reflecting its design to hedge against the worst-case

scenario. However, its high cost might limit its practicality for less risk-averse investors. The

norm as constraint strategy is relatively robust but demonstrates slightly higher variability in

CVaR compared to super-replication. For instance, NC-ℓ1,0 has a CVaR that decreases from

16.89% (ITM) to 12.50% (OTM). The initial costs for the norm as constraint strategies are

somewhat high, especially in ITM scenarios, but these costs decrease as the option moves

out of the money. The robustness of norm as constraint lies in its ability to control risk

across different market conditions, though it is not as stable as super-replication. The use

of different norms provides slight adjustments to risk management but does not drastically
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change the robustness. Norm as objective strategies display the lowest initial costs, espe-

cially as options move OTM, with NO-ℓ2,1 costing only 4.58% OTM. However, the CVaR for

the norm as objective strategies is higher, especially in ITM scenarios. This makes having

norms as objective strategies less robust in terms of managing extreme risk. While they

minimize upfront costs, norm as objective strategies expose the portfolio to high risk under

extreme market conditions. However, this sensitivity to market uncertainty, particularly in

ITM scenarios, shows a trade-off between cost and robustness, making them suitable for

investors seeking low upfront costs but willing to take on higher tail risk.

Stochastic programming strategies have relatively high CVaR with values between 13.81%

and 35.42% across all moneyness scenarios and norms. This suggests that stochastic pro-

gramming is highly sensitive to extreme risks given the same initial cost in all cases. As

such, stochastic programming strategies may appeal to market speculators interested in

hedging strategies that are versatile across different market conditions. Dynamic coherent

risk strategies show similar trends to stochastic programming, with initial costs also fixed at

10%, they produce slightly higher CVaR than stochastic programming. This suggests that

dynamic coherent risk strategies have a moderate level of robustness, particularly for more

extreme market conditions when we consider the ℓ2,1 norm. They are not as cost-efficient as

the norm as objective strategies but comparable to tail-risk protection. Barriers on future

risk strategies exhibit similar robustness to stochastic programming and dynamic coherent

risk strategies. The initial cost is also set to 10%, but the CVaR fluctuates between 16.34%

(OTM) and 24.06% (ITM). These strategies appear slightly more volatile in risk management

compared to stochastic programming, but they offer good performance in terms of hedging

costs. Barrier on future risk is therefore a robust strategy for situations where investors are

willing to tolerate slightly higher extreme risk in return for lower initial costs.
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4.9 Transaction costs

In this section, we will explore the impact of transaction costs on hedging strategies and

portfolios. Since transaction fees are only paid for variations in the number of stocks, we

distinguish between stocks that are already held and those that vary in quantity. Addition-

ally, stock transactions do not occur at their theoretical or book value. As such, we include

a proportional bid-ask spread due to the existence of proportional transaction costs.

4.9.1 Risky asset as state variable

Using state variables to describe how the portfolio composition changes over time, we can

distinguish stocks already held and the amount of newly bought or sold stocks. If we let

zit−1 , x
+
it−1,1

(≥ 0) and x−it−1,1
(≥ 0) denote the stock already held and the amount of stocks

newly bought and sold respectively, we can define the amount of stocks that are accessible

for every transition with a state equation Hit−1 in our optimization for Algorithms 3.2 and

3.5. The corresponding state equation can be defined as,

zjt = zit−1 + x+it−1,1
− x−it−1,1

, ∀jt ∈ Jt|it−1. (4.41)

The value of zjt is independent of the future amount and is dependent only on the stocks

that are held at it−1 and those recently traded on the market. Furthermore, there is no

dependence of this state equation on the conditional transitions from node it−1.

The distinction between purchasing and selling of stocks is required since transaction costs

differ for each position. More precisely, for a fix proportional transaction cost parameter

ϵ ∈ [0, 1), we let (1 − ϵ)yjt and (1 + ϵ)yjt denote the bid and ask prices respectively for

jt ∈ Jt|it−1. By including the third investment in the call option with strike price κyjt and

option price ϕjt(κ) for jt ∈ Jt|it−1, the corresponding accumulated hedge with transaction
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cost for our three asset portfolio can be formulated as ∀jt ∈ Jt|it−1,

wjt(Xit−1 , zit−1 ,Zt|it−1) =


xit−1,0e

r + zjt
yjt
yit−1

+
xit−1,2

ϕit−1
(κ)

(yjt − κyit−1)
+, t < T

xiT−1,0e
r + zjT (1− ϵ)

yjT
yiT−1

+
xiT−1,2

ϕiT−1
(κ)

(yjT − κyiT−1
)+, zjT ≥ 0

xiT−1,0e
r + zjT (1 + ϵ)

yjT
yiT−1

+
xiT−1,2

ϕiT−1
(κ)

(yjT − κyiT−1
)+, zjT < 0.

(4.42)

4.9.2 Portfolio value and risky asset as state variables

In the case where the hedging strategy already employs state variables to represent the

portfolio values - stochastic programming, dynamic coherent risk and barrier on future risk

strategies - we extend our formulation to include both transaction costs and portfolio value

as distinct state variables. That is, we let z
(1)
it−1

denote the state variable for transaction costs

as before in Equation (4.41), and introduce z
(2)
it−1

to represent the portfolio value as a state

variable. Thus the two-dimensional state variable equations Hit−1 for Algorithms 3.9 and

3.11 can be defined as,

z
(1)
jt

= z
(1)
it−1

+ x+it−1,1
− x−it−1,1

, ∀jt ∈ Jt|it−1. (4.43)

z
(2)
it−1

= z
(1)
it−1

+ xit−1,0 + (1− ϵ)x+it−1,1
− (1 + ϵ)x−it−1,1

+ (1 + ϵ)xit−1,2 (4.44)

The corresponding accumulated hedge with transaction cost can be formulated as ∀jt ∈

Jt|it−1,

wjt(Xit−1 , zit−1 ,Zt|it−1) =


xit−1,0e

r + z
(1)
jt

yjt
yit−1

+
xit−1,2

ϕit−1
(κ)

(yjt − κyit−1)
+, t < T

xiT−1,0e
r + z

(1)
jT
(1− ϵ)

yjT
yiT−1

+
xiT−1,2

ϕiT−1
(κ)

(yjT − κyiT−1
)+, z

(1)
jT

≥ 0

xiT−1,0e
r + z

(1)
jT
(1 + ϵ)

yjT
yiT−1

+
xiT−1,2

ϕiT−1
(κ)

(yjT − κyiT−1
)+, z

(1)
jT
< 0.

(4.45)

We set ϵ = 0 if there are no transaction costs. More generally, for some predictable processes,

we could describe the bid and ask prices differently as time-dependent variables, ϵbidt and ϵaskt ,
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respectively. However, we employ a symmetric bid-ask spread parameter for ease of use. We

lose the feasibility of the hedging optimizations by introducing transaction costs. As such,

we rely on Algorithm 3.7, where we search a polyhedral to initialize the state variables. The

resulting problem has the same mathematical properties and solution techniques as that for

Algorithms 3.9 and 3.11.

4.9.3 Analysis of transaction costs for SR, NC, SP and DC strate-

gies

Due to the continuous evolution of the financial landscape, sophisticated strategies are re-

quired to hedge against potential risks. We illustrate the impact of different levels of transac-

tion cost parameters on our proposed models and assess their sensitivities. We also increase

the price of the option asset by (1+ ϵ) to simplify the impact of transaction cost when trad-

ing the option component in the portfolio. In Table 4.7, we test the super-replication, norm

as constraint, stochastic programming, and dynamic coherent risk strategies under different

levels of transaction costs, denoted by ϵ, ranging from 0% to 1.5%. The super replication

strategy, characterized by its robust approach to ensuring no shortfall in meeting liabilities,

predictably has the highest initial portfolio values across all transaction cost levels. This in-

dicates the conservative nature of super replication, which requires substantial initial capital

to guarantee no losses. However, as transaction costs increase, the initial value only rises

from 15.97% to 16.09%. This slight increase suggests that the super replication strategy

can reduce the impact of transaction costs on initial capital. The expected hedging cost for

super-replication increases across different transaction cost levels, starting at 10.15% and

rising slightly to 10.53%. This trend shows it becomes more expensive to maintain expected

outcomes despite the higher initial costs. Similarly, the CVaR99.5% for super replication grad-

ually increases from 14.43% to 14.69%, reflecting the strategy’s effectiveness in containing

extreme losses, albeit at a higher initial cost.

Norm as constraint strategies, including ℓ1,0, ℓ2,0 and ℓ∞,1 norms, offer a balance between
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ϵ SR NC-ℓ1,0 NC-ℓ2,0 NC-ℓ∞,1 SP-ℓ1,1 SP-ℓ∞,1 DC-ℓ1,1 DC-ℓ∞,1

0%

f0 15.97% 15.72% 15.68% 15.56% 10.00% 10.00% 10.00% 10.00%

E[H] 10.15% 10.15% 10.15% 10.15% 10.13% 10.19% 10.10% 9.96%

CVaR99.5% 14.43% 14.43% 14.43% 14.43% 17.17% 15.32% 19.09% 15.27%

0.3%

f0 15.99% 15.74% 15.71% 15.58% 10.00% 10.00% 10.00% 10.00%

E[H] 10.41% 10.27% 10.27% 10.26% 15.16% 15.44% 11.84% 13.76%

CVaR99.5% 14.59% 14.51% 14.51% 14.50% 19.69% 15.52% 19.07% 16.17%

0.5%

f0 16.01% 15.76% 15.73% 15.6% 10.00% 10.00% 10.00% 10.00%

E[H] 10.43% 10.29% 10.29% 10.28% 15.64% 15.72% 11.95% 13.94%

CVaR99.5% 14.60% 14.53% 14.53% 14.52% 20.90% 15.85% 19.38% 16.91%

1.5%

f0 16.09% 15.85% 15.81% 15.69% 10.00% 10.00% 10.00% 10.00%

E[H] 10.53% 10.39% 10.39% 10.39% 16.72% 17.08% 12.68% 14.85%

CVaR99.5% 14.69% 14.61% 14.61% 14.60% 22.85% 17.35% 27.24% 20.57%

Table 4.7: Initial value f0, Expected value E[H] and CVaR99.5% of simulated hedging costs
for at-the-money call option for SR, NC-(ℓ1,0, ℓ2,0, ℓ∞,1), SP-(ℓ1,1, ℓ∞,1) and DC-(ℓ1,1, ℓ∞,1)
strategies with transaction cost parameter ϵ = 0%, 0.3%, 0.5%, and 1.5%.

risk and initial cost. The initial portfolio values for these strategies are slightly lower than

those for super replication, indicating a less conservative approach. For instance, ℓ1,0 norm

starts with an initial value of 15.72% with no transaction cost, slightly increasing to 15.85%

at 1.5% transaction cost. This marginal increase across all norms as constraint strategies

suggests that they are relatively more efficient in capital utilization compared to super repli-

cation. The expected hedging costs for the norm as constraint strategies are consistent with

those of super replication, remaining close to 10.15% across different values of ϵ. However,

the norm as constraint strategies exhibits lower CVaR99.5% in the presence of transaction

cost, indicating slightly better performance than super-replication under transaction costs.

As transaction costs increase, the CVaR99.5% for norm as constraint strategies remains rel-

atively stable, indicating that these strategies effectively manage tail risk without incurring

significant additional costs.
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Stochastic programming strategies, specifically ℓ1,1 and ℓ∞,1 norms, are designed to optimize

the trade-off between risk and reward by incorporating stochastic elements into the decision-

making process. The initial values for stochastic programming strategies are fixed at 10%,

regardless of the transaction cost. The expected hedging costs for both norms increase

with transaction costs included, starting around 10% and rising to 17%. The CVaR99.5%

for stochastic programming strategy varies for each norm, with ℓ1,1 norm showing a higher

increase to 22.85% at higher transaction costs, indicating its tendency to produce high tail

risk in extreme risk scenarios when transaction costs are accounted for.

Dynamic coherent risk strategies integrate dynamic risk measures to adjust hedging strate-

gies in real-time, particularly ℓ1,1 and ℓ∞,1 norms. These strategies start with the same fixed

initial portfolio value at 10%. The expected hedging error for ℓ∞,1 norm increases from 9.96%

to 14.85% as transaction costs rise, suggesting a slight deterioration in hedging performance

with higher transaction costs. On the other hand, ℓ1,1 norm slightly increases in expected

hedging cost from 10.10% to 12.68% as ϵ increases.

The analysis of the hedging strategies across varying transaction costs reveals that each

strategy has its strengths and weaknesses depending on the hedger’s specific financial goals

and risk tolerance. The super replication strategy offers the highest security but at a sig-

nificant initial cost, making it suitable for highly risk-averse investors. Norm as constraint

strategies provides a balanced approach, offering efficient capital utilization while main-

taining reasonable risk management. Stochastic programming and dynamic coherent risk

strategies, particularly ℓ∞,1 norms, demonstrate dynamic adaptability, showing substantial

improvements in risk management as transaction costs are introduced.
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Chapter 5

Self-financing Hedging Strategies

Hedging is a popular approach to control risks and lower possible losses in insurance and

finance. The cost is a major deterrent for investors when it comes to hedging. Self-financing

strategies are one of the best ways to hedge because they allow hedgers to obtain their objec-

tive without injecting or withdrawing cash from the portfolio. This is because the possible

profits from the financial position are used to cover the cost of hedging. Hence, the portfolio’s

assets are used to finance the re-balancing of the portfolio, which involves the purchasing

and selling of assets. In other words, there is no need for outside cash flows when adjusting

the portfolio’s composition. Therefore, a self-financing strategy might be preferred because

of its theoretical consistency, sustainability (as it guarantees that the hedging strategy can

be maintained over time without reliance on external funding), and ease of use of math-

ematical models for pricing and risk management. However, self-financing techniques can

be challenging to implement in practice since they need ongoing portfolio monitoring and

adjustment, which can be difficult to execute operationally. Furthermore, the portfolio can

be exposed to model risk due to the high sensitivity of the performance of such strategies

to the accuracy of model parameters. The addition of extra constraints can also introduce

computational cost and the feasibility of the hedge portfolio selection problem.

Mahayni (2003) examines the effectiveness of self-financing strategies under model misspec-
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ifications and trading restrictions. They use the robustness of Gaussian hedging strategies

to analyze the discrete-time errors. They observe that simply discretizing time introduces

duplication due to asset price trends, which can be avoided by discretizing the whole model

instead. Rudloff (2009) also uses a coherent risk measure to find a self-financing strategy

using static optimization. They show that the optimal self-financing strategy that minimizes

the coherent risk of the shortfall consists of super-replicating a modified claim that is the

product of the original payoff and the solution of their static optimization problem.

We discuss the formulation of self-financing strategies for the proposed hedging portfolios. So

far, our goal for constructing the hedging strategies has been to either ensure a negative loss

in the case of super-replication or allow for some loss using thresholds and state variables. In

these cases, our local hedging strategies allow possible injections to meet the desired criteria.

However, to make the strategies self-financing, we need to impose an additional constraint to

ensure that the compositions of assets in the hedge portfolio are adjusted to equal the state

value without any external cash flows. While constructing a self-financing replicating port-

folio may be easier in a complete market, the same cannot be said in an incomplete market.

We extend our development to self-financing strategies under market incompleteness in this

chapter.

5.1 Global super-replication (SF-SR)

In section 3.1, we introduced the super-replicating strategy where we ensure the value of the

hedge portfolio supersedes the contingent claim at each node almost surely. Algorithm 3.2

minimizes the value of this hedge portfolio subject to constraints that ensure negative losses

at each node throughout the optimization. This formulation renders the portfolio non-self-

financing; hence, injections and withdrawals can be made to the assets to satisfy constraints

at each step. A self-financing strategy with the least cost that dominates the claim or payoff

at maturity is known as a self-financing super-replicating strategy. Such strategies do not
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allow any positive loss. Hence, the highest admissible loss is 0 for all possible outcomes.

When the portfolio compositions are fixed from time t = 0, the strategy is known as a static

super-replicating strategy. Chen et al. (2015) investigate the problems with optimizing a

self-financing super-replicating strategy. They prove that one can have some flexibility when

composing the optimal strategy in real market situations since the optimal solution is not

unique. Dolinsky and Neufeld (2018) also developed a probabilistic approach to self-financing

super-replication under market incompleteness. They demonstrate that the super-replication

and model-independent super-replication prices are the same for incomplete markets. As a

result, understanding the model does not lower the cost of super-replication.

Definition 5.1.1. For an European option and t ∈ T ,

ψ = {Xit−1 |Xit−1 is self-financing, LT |iT−1
(XiT−1

) < 0}.

Thus, ψ is the set of all self-financing strategies with no positive errors or losses at maturity

such that {Xi0 , Xi1 , . . . , Xit−1} is one sequence of such strategies. In our framework, a self-

financing super-replicating strategy belongs to ψ and provides the least-cost initial portfolio

value. Hence, we seek the solution set to the following problem.

Algorithm 5.1.

min
{Xi0

,Xi1
,...,XiT−1

}∈ψ
f0(X0) (5.1)

The idea is to obtain the least-cost hedge portfolio at time t = 0 such that, without any

outside cash flow during re-balancing, the portfolio value supersedes the claim at maturity

T . Alternatively, Algorithm 5.1 can be presented as an unconstrained minimization problem.

That is, for a large nulling constant ϱ, we seek the solution set to the following optimization

problem.
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Algorithm 5.2.

min
Xi0

,Xi1
,...,XiT−1

f0(X0) + ϱ
∑

iT−1∈JT−1

∑
jT∈JT |iT−1

max
(
0, ljT (XiT−1

)
)
, (5.2)

where ljT (XiT−1
) = cjT (XjT ) −

(
f0(X0) +

∑T
t=1wjt(Xit−1)− fit−1(Xit−1)

)
for all paths and

the component f0(X0)+
∑T

t=1wjt(Xit−1)−fit−1(Xit−1) is the value of the self-financing hedging

strategy at maturity. Several methodologies have been proposed in the literature to find a

self-financing super-replicating strategy. Recent approaches to solving Algorithm 5.1 involve

the use of deep hedging techniques. Carbonneau and Godin (2021) argue that in incomplete

markets, super-replication is often not feasible due to high costs, and hedgers must accept a

certain level of residual risk. They introduce the equal risk pricing framework by balancing

the risk exposure of both long and short positions in a derivative. By training neural networks

to minimize the risk exposure for both positions, they use deep reinforcement learning to

generate dynamic hedging strategies under a chosen convex risk measure, like Conditional

Value-at-Risk.

We rely on a two-step optimization to solve Algorithm 5.1 under our model framework. First,

we find the set of strategies with no positive losses at maturity. Secondly, we impose the self-

financing condition for each of these strategies and solve for the optimal strategies at time t =

0. This two-step optimization gives us the set ψ. An advantage of using linear programming

to solve the problem is that we can also include another constraint to minimize the portfolio

value at each node and obtain the least-cost self-financing super-replication strategy under

the minimization problem. Our two-step optimization requires state equations for a path-

dependent process to solve the problem. We introduce state variables and equations under

our proposed dynamic algorithm, which allows us to optimize the state variables when solving

the problem. Let θT be the maximum error at maturity. Then the self-financing super-

replicating problem is equivalent to solving the following optimization problem.
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Algorithm 5.3. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,zit−1
,Zt|it−1

,θt
fit−1(Xit−1)1{t=0} + e−r{θt1{t<T} + ϱθT1{t=T}} (5.3)

under the constraints

ljT (XiT−1
, ziT−1

,ZT |iT−1
) ≤ θT , ∀jT ∈ JT |iT−1, t = T (5.4)

vjt(zjt) ≤ θt, ∀jt ∈ Jt|it−1, t ≤ T (5.5)

fit−1(Xit−1) = zit−1 , (5.6)

wjt(Xit−1 , zit−1 ,Zt|it−1) = zjt , ∀jt ∈ Jt|it−1, t ≤ T. (5.7)

The state Equations (5.6) and (5.7) ensure the portfolio is self-financing while we seek the

strategy such that θT = 0 for super-replication. Starting at maturity, we establish a hedge

portfolio that supersedes the contingent claim. Then, for all time t < T , we ensure the

hedge portfolio remains self-financed using the state variables. This approach, coupled with

the dynamic algorithm, provides a strategy that offers the least-cost portfolio value that

dominates the claim at maturity.

Proposition 5.4. Algorithm 5.3 is equivalent to Algorithm 5.1.

Proof. We show that the constraints in Algorithm 5.3 are formulated to satisfy the require-

ments of Algorithm 5.1. Since Algorithm 5.1 is the least-cost self-financing super-replicating

strategy, we minimize f0(X0) such that LT |iT−1
(XiT−1

, ziT−1
,ZT |iT−1

) ≤ 0 and pick the mini-

mum strategy from the set ψ of self-financing strategies.

We can construct infinitely many self-financing super-replicating portfolios when we do not

consider the overall cost of setting up the portfolio. We use θT to constraint the losses at

maturity and obtain the least cost when θT = 0. Constraints (5.6) and (5.7) are used to

ensure the strategy is self-financing. Given the portfolio’s value at node it−1 is the sum of

the positions in each asset, fit−1(Xit−1) =
∑n

k=0 xit−1,k.

84



The trading strategy Xit−1 = (xit−1,k)k=0,1,··· ,n is Fit−2-measurable where xit−1,k is the value

of the position in asset k at node it−1 to be determined based on information available before

node it−1. The initial value of the portfolio f0(X0) =
∑n

k=0 xi0,k. Without loss of generality,

we let yit−1,k be the price of asset k at node it−1. For the portfolio to be self-financing,

the change in the value at node it−1 to jt, ∀jt ∈ Jt|it−1 should only depend on changes in

asset prices without any additional withdrawal or investment. Thus, fjt(Xjt)−fit−1(Xit−1) =∑n
k=0 xit−1,k

(
yjt,k
yit−1,k

− 1

)
, ∀jt ∈ Jt|it−1 and wjt(Xit−1 , zit−1 ,Zt|it−1) =

∑n
k=0 xit−1,k

yjt,k
yit−1,k

, ∀jt ∈

Jt|it−1. At time t, fjt(Xjt) =
∑n

k=0 xjt,k and the change in portfolio value fjt(Xjt) −

fit−1(Xit−1) =
∑n

k=0 xjt,k − xit−1,k, ∀jt ∈ Jt|it−1. Nevertheless, under self-financing condi-

tions, the change in the value of the position in the asset xit−1,k
yjt,k
yit−1,k

and xjt,k should bal-

ance to 0. That is, xjt,k−xit−1,k
yjt,k
yit−1,k

= 0 ⇒ wjt(Xit−1 , zit−1 ,Zt|it−1) = fjt(Xjt), ∀jt ∈ Jt|it−1.

Hence fjt(Xjt)− fit−1(Xit−1) =
∑n

k=0 xjt,k − xit−1,k
yjt,k
yit−1,k

+ xit−1,k
yjt,k
yit−1,k

− xit−1,k =
∑n

k=0 0 +

xit−1,k

(
yjt,k
yit−1,k

− 1

)
, ∀jt ∈ Jt|it−1 as expected.

We replace fjt(Xjt) with state vector Zt|it−1 to obtain the self-financing constraints in Equa-

tions (5.6) and (5.7). Finally, we use the duality theorem in convex optimization and

Proposition A.2 to show super-replication. Let m = #(Jt|it−1), the cardinality of the

conditional set Jt|it−1 and let Im be a vector of ones of size m. Then for Xit−1 ∈ Rn,

Ct|it−1(Xt|it−1) ∈ Rm, Wt|it−1(Xit−1 , zit−1 ,Zt|it−1) ∈ Rm, Zt|it−1 ∈ Rm, Vt|it−1(Zt|it−1) ∈ Rm and

zit−1 ∈ R we have Lt|it−1(Xit−1 , zit−1 ,Zt|it−1) ∈ Rm. This implies at maturity, for θT ∈ R and

fiT−1
(XiT−1

) = I⊤nXiT−1
, we obtain

viT−1
(ziT−1

) = min
XiT−1

,ziT−1
,ZT |iT−1

,θT
e−rϱθT (5.8)

such that

CT |iT−1
(XT |iT−1

)−WT |iT−1
(XiT−1

, ziT−1
,ZT |iT−1

) ≤ ImθT , (5.9)

I⊤nXiT−1
= ziT−1

. (5.10)
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Since the discounting factor e−r and the nulling constant ϱ in the objective function are

constants, they do not affect the optimal values and the feasibility of the problem. The scaled

objective changes only the magnitude of the optimal values. We define the Lagrangian L of

the optimization problem as a combination of both the objective function and the constraints.

Thus, for non-negative Λ = {λjt}jt∈Jt|it−1 ∈ Rm+ and for ϑ ∈ R,

L(Xit−1 , ziT−1
,ZT |iT−1

, θT ) = θT + Λ⊤ (
CT |iT−1

(XT |iT−1
)−WT |iT−1

(XiT−1
, ziT−1

,ZT |iT−1
)− ImθT

)
+ ϑ

(
I⊤nXiT−1

− ziT−1

)
(5.11)

such that

inf L(XiT−1
, ziT−1

,ZT |iT−1
, θT ) = Λ⊤CT |iT−1

(XT |iT−1
) + inf

θT

(
1− Λ⊤Im

)
θT

+ inf
XiT−1

,ZT |iT−1

(
ϑI⊤nXiT−1

− Λ⊤WT |iT−1
(XiT−1

, ziT−1
,ZT |iT−1

)
)

− inf
ziT−1

ϑziT−1
.

(5.12)

Next we let ∇XiT−1
WT |iT−1

be the first partial derivative of WT |iT−1
(XiT−1

, ziT−1
,ZT |iT−1

)

with respect to XiT−1
and ZT |iT−1

provided WT |iT−1
(XiT−1

, ziT−1
,ZT |iT−1

) is differentiable.

The respective infimums are the values of Λ and ϑ such that

inf
θT

(
1− Λ⊤Im

)
θT = 1− Λ⊤Im = 1−

∑
jT∈JT |iT−1

λjT = 0, (5.13)

inf
XiT−1

(
ϑI⊤nXiT−1

− Λ⊤WT |iT−1
(XiT−1

, ziT−1
,ZT |iT−1

)
)
= ϑI⊤n − Λ⊤∇Xit−1

WT |iT−1

= nϑ−
n∑
k=0

∑
jT∈JT |iT−1

λjT
∂wjT (XiT−1

)

∂xiT−1,k

= 0,

(5.14)
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and

inf
ziT−1

ϑziT−1
= ϑ = 0. (5.15)

By putting (5.13), (5.14) and (5.15) together, the dual counterpart to the optimization (5.8),

(5.9) and (5.10) at maturity can be formulated as

max
Λ

∑
jT∈JT |iT−1

λjT cjT (XjT ) (5.16)

such that

Λ⊤Im = 1 (5.17)

n∑
k=0

∑
jT∈JT |iT−1

λjT
∂wjT (XiT−1

)

∂xiT−1,k

= 0 (5.18)

Λ ≥ 0. (5.19)

If WT |iT−1
is linear, then ∇XiT−1

WT |iT−1
is a m × n matrix with the coefficients of XiT−1

as the entries. By the variant of Farka’s Lemma in Proposition A.2, if every non-negative

Λ ∈ Rm+ with Λ⊤∇XiT−1
WT |iT−1

= 0 also satisfies Λ⊤CT |iT−1
(XT |iT−1

) ≤ 0, then the system

WT |iT−1
(XiT−1

, ziT−1
,ZT |iT−1

) ≥ CT |iT−1
(XT |iT−1

) has a solution for every XiT−1
∈ Rn. This

implies LT |iT−1
(XiT−1

, ziT−1
,ZT |iT−1

) ≤ 0. Hence, the minimum feasible upper bound of

the loss variable is when θT = 0 and thus super-replication. Also, by duality theorem

maxΛ⊤CT |iT−1
(XT |iT−1

) = min θT , so the dual objective maxΛ⊤CT |iT−1
(XT |iT−1

) attains the

maximum bound under super-replication. The dual problem can be interpreted as seeking

the maximum expected value of payoff such that there is no expected change in the value of

the replicating portfolio and, hence, self-financing.

Next, we extend our derivations to the optimization problem for when 0 ≤ t < T . After

the optimization at maturity, we obtain the cost-to-go function ViT−2
(ZiT−2

) ∈ Rm and for
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0 ≤ t < T our optimization becomes

vit−1(zit−1) = min
Xit−1

,zit−1
,Zt|it−1

,θt
I⊤nX01{t=0} + e−rθt (5.20)

such that

Vt|it−1(Zt|it−1) ≤ Imθt, (5.21)

I⊤nXit−1 = zit−1 , (5.22)

Wt|it−1(Xit−1 , zit−1 ,Zt|it−1) = Zt|it−1 . (5.23)

The corresponding Lagrangian L, of the optimization problem for Λ = (λjt)jt∈Jt|it−1 ∈ Rm+,

ϑ1 ∈ R and ϑ2 ∈ Rm is defined as

L(Xit−1 , zit−1 ,Zt|it−1 , θt) = I⊤nX0 + θt + Λ⊤ (
Vt|it−1(Zt|it−1)− Imθt

)
+ ϑ1

(
I⊤nXit−1 − zit−1

)
+ ϑ2

(
Wt|it−1(Xit−1 , zit−1 ,Zt|it−1)− Zt|it−1

)
,

(5.24)

such that

inf L(Xit−1 , zit−1 ,Zt|it−1 , θt) = Λ⊤Vt|it−1(Zt|it−1) + inf
θt

(
1− Λ⊤Im

)
θt

+ inf
Xit−1

,Zt|it−1

(
I⊤nX0 + ϑ1I

⊤
nXit−1 + ϑ2Wt|it−1(Xit−1 , zit−1 ,Zt|it−1)

)
− inf

zit−1

ϑ1zit−1 − inf
Zt|it−1

ϑ2Zt|it−1 .

(5.25)

The minimization of the Lagrangian with respect to zit−1 and Zt|it−1 implies the free variable

ϑ1 and ϑ2 are both zero at infimums. This also means the infimum with respect to Xit−1 is

also zero. As such, we obtain a simple but intuitive dual counterpart to the optimization as

max
Λ

∑
jt∈Jt|it−1

λjtvjt(zjt) (5.26)
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such that

∑
jT∈JT |iT−1

λjT = 1 (5.27)

λjT ≥ 0 ∀jT ∈ JT |iT−1. (5.28)

The dual objective function, maxΛ⊤Vt|it−1(Zt|it−1) is equal to primal objective function,

min θt by the duality theorem. Hence, for every 0 ≤ t < T of Algorithm 5.3, the opti-

mization is equivalent to solving for the maximum weighted average of the future cost-to-go

functions beginning with the value obtained at maturity through to time zero. This shows

that Algorithm 5.3 is equivalent to Algorithm 5.1.

5.2 Norm minimization strategies

In this section, we introduce the self-financing variant of having ℓp,q norm as the objective

function in the optimization. Under global hedging, the goal is to obtain the least-cost

self-financing strategy such that the ℓp,q norm of the loss at maturity is minimized. We

also compare the strategies to the optimal hedging strategy in discrete time proposed by

Rémillard and Rubenthaler (2013).

5.2.1 Self-financing stochastic programming (SF-SP)

We develop a global hedging strategy that minimizes the ℓp,q norm of losses at maturity such

that any changes in the portfolio’s value over time are entirely funded by the portfolio’s ex-

isting assets, with no external capital injections or withdrawals. We model the self-financing

condition using state variables as constraints similar to self-financing super-replication in

Algorithm 5.3. We propose the following optimization for general ℓp,q norms.
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Algorithm 5.5. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,zit−1
,Zt|it−1

,θt
e−r{∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1)∥p,q1{t=T} + θt1{t<T}} (5.29)

under the constraints

Vt|it−1(Zt|it−1) ≤ Imθt, (5.30)

fit−1(Xit−1) = zit−1 , (5.31)

wjt(Xit−1 , zit−1 ,Zt|it−1) = zjt , ∀jt ∈ Jt|it−1. (5.32)

Again, the state Equations (5.31) and (5.32) ensure the portfolio is self-financing while we

seek the strategy such that the ℓp,q norm of losses at maturity is minimized. Alternatively,

the dynamic coherent risk formulation of the self-financing stochastic programming strategy

is given as,

Algorithm 5.6. For all t = T, T − 1, . . . , 1 and all it−1,

vit−1(zit−1) = min
Xit−1

,zit−1
,Zt|it−1

,θt
e−r∥Lt|it−1(Xit−1 , zit−1 ,Zt|it−1)1{t=T} + θt1{t<T}∥p,q (5.33)

under the constraints

Vt|it−1(Zt|it−1) ≤ Imθt, (5.34)

fit−1(Xit−1) = zit−1 , (5.35)

wjt(Xit−1 , zit−1 ,Zt|it−1) = zjt , ∀jt ∈ Jt|it−1. (5.36)

However, since θt is a scalar, equation (5.29) is the same as equation (5.33). As such

both stochastic programming and dynamic coherent risk strategies are the same under self-

financing conditions. Starting at maturity, we establish a hedge portfolio that minimizes the

ℓp,q norm. Then, for all time t < T , we ensure the hedge portfolio remains self-financed using
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the state variables. Similar to global super-replication, the optimal strategy is obtained with

the help of the dynamic algorithm in Section 3.4.1.

Typically, hedging strategies like Rémillard and Rubenthaler (2013) and Bertsimas et al.

(2001) minimize the mean-square error of losses using a quadratic cost function. However,

using an asymmetric ℓp,q norm is more tractable and robust as it provides a generalized

penalty function while characterizing the risk profile of the hedger in a model-independent

framework. Carbonneau and Godin (2021) also introduce an asymmetric ϵ-completeness

measure to quantify the magnitude of unhedgeable risk associated with a position in a con-

tingent claim. Different norms can be used to quantify the losses at maturity and the values

of both p and q can be set to align with the hedger’s risk tolerance. The ℓ2,q norm penalizes

large deviations while the ℓ1,q norm is more sensitive to extreme values and the ℓ∞,q norm

limits the total losses. Since at maturity VT |iT−1
(ZT |iT−1

) = 0, the self-financing stochastic

programming and self-financing dynamic coherent risk strategies are the same. Additionally,

by minimizing the maximum losses at maturity, the self-financing ℓ∞,q norm as objective

coincides with the super-replication strategy. Table 4.1 highlights the similarities between

the ℓ∞,q norm and super-replication can be even under local hedging conditions.

5.2.2 Global ℓ2,1 hedging (SF-QH)

Next, we elucidate the mean-squared error minimization under self-financing conditions

proposed by Rémillard and Rubenthaler (2013) to provide a basis for comparing our self-

financing strategies. They begin with the univariate case proven by Schweizer (1995) and

extend to the multivariate case. If options are included as assets in our framework, then

without loss of generality, we define Ȳt|it−1 and ȳit−1 as matrices with stock prices and option

payoffs (or prices, ϕit−1) as columns and let Υit−1 be the diagonal matrix of ȳit−1 . Thus by

assuming the price process, Ȳt to be square integrable and adapted under a discrete filtration

Ft for t = 0, 1, . . . , T , they define some ∆t|it−1 = e−rtȲt|it−1 − e−r(t−1)ȳit−1 . The goal is to find

the initial portfolio value f0 and hedging strategy Xit−1 such that ∆t|it−1Υ
−1
it−1

Xit−1 is square
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integrable and minimizes the E[LT |iT−1
(XiT−1

)2]. Rémillard and Rubenthaler (2013) provide

a closed-form solution to the following minimization problem.

Algorithm 5.7.

min
Xi0

,Xi1
,...,XiT−1

E


e−rTCT |iT−1

(XT |iT−1
)−

f0(X0) +
T∑
t=1

∆t|it−1Υ
−1
it−1

Xit−1


2
 (5.37)

where erT
(
f0(X0) +

∑T
t=1∆t|it−1Υ

−1
it−1

Xit−1

)
is the value of the self-financing strategy at

maturity. Thus, they seek the least cost self-financing portfolio that minimizes the expected

squared losses at maturity. In this setup, we ensure that the value of the accumulated

hedge portfolio is equal to the portfolio value relative to node it−1. In our case, we set the

transition probabilities to be equal and illustrate a robust variant of the closed-form solution

to Algorithm 5.7 when the probabilities for all observations are equal. In essence, we set

pjt|it−1 = 1/(N + 1), ∀jt ∈ Jt|it−1 where N + 1 represents the number of outcomes from

it−1. Hence the robust counterpart of the closed-form solution proposed by Rémillard and

Rubenthaler (2013) is outlined in the following algorithm.

Algorithm 5.8. Set ΠT+1|iT = IN+1.

For t = T, T − 1, . . . , 1, and it−1,

Define:

∆t|it−1 = e−rtȲt|it−1 − e−r(t−1)ȳit−1

At|it−1 = E[∆⊤
t|it−1

Πt+1|it∆t|it−1 |Ft−1] =
1

N+1
(∆⊤

t|it−1
Πt+1|itI

⊤
N+1∆it|t−1

)

Mt|it−1 = E[∆⊤
t|it−1

Πt+1|it |Ft−1] =
1

N+1
(∆⊤

t|it−1
Πt+1|it)

Bt|it−1 = A−1
t|it−1

Mt|it−1, and Pt|it−1 = 1−∆t|it−1Bt|it−1

πit−1 = E[Πt|it−1 |Ft−1] =
1

N+1
(P⊤

t|it−1
Πt+1|it)

ωit−1 = E[CT |iT−1
(XT |iT−1

)Πt+1|it |Ft−1] =
1

N+1

(
P⊤
t|it−1

CT |iT−1
(XT |iT−1

)
)
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Compute fit−1(Xit−1) = e−r
ωit−1

πit−1

Retrieve:

Υ−1
it−1

Xit−1 = A−1
t|it−1

E[e−rTCT |iT−1
(XT |iT−1

)P⊤
t|it−1

∆t|it−1 |Ft−1]− fit−2(Xit−2)Bt|it−1

= e−rT
[
A−1
t|it−1

1

N + 1
(ωit−1I

⊤
N+1∆t|it−1)

]
− fit−2(Xit−2)Bt|it−1 .

In their analysis, they consider regime-switching geometric random walk models governed

by a Markov chain with i.i.d. Gaussian transition matrix for hedging European call options.

In our case, we set the transition probabilities to be equal for a typical European call option.

5.3 Numerical examples

In this section, we apply our proposed global hedging strategies to find the initial portfolio

value for the at-the-money European call option. Similar to local hedging, we analyze the

outputs and sensitivities of the strategies by taking various model parameter adjustments

into account. In the absence of any indication to the contrary, we let T = 1, ∆ = 12,

N = 20, r = 4%, µ = 8%, σ = 20%, and compute the mean and standard deviation of

100, 000 simulated hedging cost H.

5.3.1 Analysis of self-financing strategies

In this section, we consider numerical examples to compare distributions of the self-financing

strategies to their non-self-financing counterparts in Chapters 3 and 4.

The histograms presented in Figure 5.1 depict the distribution of simulated percentage hedg-

ing costs for an at-the-money call option under two distinct strategies: local super-replication

(SR) and global/self-financing super-replication (SF-SR). Both strategies are designed to mit-

igate the risk of financial exposure, but their effectiveness can vary based on their structural

differences. The super-replicating strategy is a conservative approach that ensures the port-
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Figure 5.1: Distribution of simulated percent hedging costs for an at-the-money call option
with local (left) and global (right) super-replication strategy.

folio’s liabilities are fully covered under all possible scenarios. The distribution of hedging

costs for the super-replication strategy is fairly skewed to the left, indicating that the hedging

costs are less than the initial cost of setting up the portfolio. The global super-replicating

strategy, depicted by the histogram on the right, is a variant of the local super-replicating

strategy that incorporates the principle of self-financing, where the portfolio is adjusted over

time without additional capital injections. The initial cost remarkably remains identical to

that of super-replication at 15.97%, indicating that both strategies require the same initial

investment to set up. The expected hedging error for the strategies also remains the same at

10.15%, suggesting similar average hedging performance. The standard deviations are rela-

tively similar, indicating similar variability of hedging costs. The CVaR99.5% for self-financing

is 14.45%, closely matching that of local super-replication. This consistency suggests that

the self-financing strategy is equally efficient in reducing average hedging costs and does not

alter the tail risk profile when compared to the non-self-financing counterpart.
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In summary, both super-replicating strategies exhibit similar performance characteristics

in terms of initial cost, expected hedging costs, and extreme risk measures, indicating the

robustness of each strategy. The differences or improvements between the two strategies

are minimal, indicating that the self-financing component does not drastically enhance the

overall risk management capabilities of the super-replication strategy. Ultimately, the choice

between self-financing and non-self-financing may come down to considerations such as op-

erational ease or specific market conditions rather than a substantial difference in risk man-

agement performance.

Figure 5.2: Distribution of simulated percent hedging costs for an at-the-money call option
with self-financing ℓ2,1 strategy.

Figures 5.2 and 5.3 present histograms showing the distribution of hedging costs for four

different self-financing hedging strategies - quadratic hedging, stochastic programming with

ℓ1,1, ℓ2,1 and ℓ∞,1 norms. These histograms provide insights into how different strategies

manage hedging costs. The self-financing quadratic hedging histogram shows a narrow and
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peaked distribution, with most of the hedging costs clustered tightly around the expected

cost of 10.20%. The low standard deviation (1.04%) indicates that the hedging costs are

fairly stable, with only slight deviations from the mean. This suggests that SF-QH provides

a highly predictable and relatively low-cost hedging solution. However, when looking at

extreme risks, the VaR and CVaR values (13.62% and 14.61%, respectively) show that while

most of the outcomes are concentrated around the mean, there is still a noticeable right tail

in the distribution, signifying the presence of some higher-cost outcomes.

Figure 5.3: Distribution of simulated percent hedging costs for an at-the-money call option
with self-financing stochastic programming strategy.

The self-financing stochastic programming with ℓ1,1 norm strategy results in a wider and less

skewed distribution compared to quadratic hedging. The expected hedging cost (10.16%)

is slightly lower than that of SF-QH, but the standard deviation is larger at 2.25%, indi-

cating much greater variability in the hedging costs. This wider spread suggests that self-

financing stochastic programming with ℓ1,1 norm may be less predictable and more volatile
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than quadratic hedging, with a notable chance of experiencing higher hedging costs. The

VaR and CVaR values (14.60% and 15.08%) are relatively higher, reflecting the heavy tail

risk in this strategy. However, when compared to its local hedging counterparts (NO-ℓ1,1,

SP-ℓ1,1 and DC-ℓ1,1), the self-financing stochastic programming with ℓ1,1 norm remarkably

has the lowest CVaR with comparable expected hedging cost. With the initial setup cost

set to 0.1, the potential for lower tail outcomes on the distribution suggests that the self-

financing approach may be better suited for investors willing to tolerate more volatility in

exchange for potentially lower tail risk.

The distribution for self-financing stochastic programming with ℓ2,1 and ℓ∞,1 norms are also

shifted to the left like the quadratic hedging strategy, for a fixed initial setup cost of 0.1.

Despite this higher initial cost, the expected hedging costs (10.36% and 10.24% respectively)

are only slightly higher than the quadratic hedging strategy. This indicates that while the

initial investment is higher, the resulting expected hedging costs are closer to the initial

cost. The VaR and CVaR values (17.17% and 18.63%) are much lower than those of SP-ℓ2,1

and DC-ℓ2,1 norm strategies, suggesting that self-financing stochastic programming with ℓ2,1

norm also provides better tail-risk protection compared to the local hedging ℓ2,1 norm. The

self-financing stochastic programming with ℓ2,1 and ℓ∞,1 norm distributions are wider, and

the tails are more pronounced, meaning that the strategies may be strong alternatives to

their robust local hedging counterparts for risk management.

The choice of hedging strategy depends largely on the investor’s risk tolerance and cost

preferences. The SF-QH strategy strikes a balance between cost efficiency and robustness,

offering low expected hedging costs with moderate risk protection. The SF-SP strategies

can be cost-effective upfront but introduce considerable volatility and risk, making them

suitable for risk-tolerant investors. Also, the SF-SP-ℓ1,1 norm strategy, with its relatively

higher expected cost than the SF-QH strategy, delivers strong risk management and stability,

appealing to hedgers who prioritize long-term robustness over short-term cost savings.
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5.3.2 Sensitivity to number of trades and nodes for SF strategies

Next, we estimate the initial value of the portfolio f0, E[H] and the CVaR99.5% for a varying

number of trading periods and the number of nodes per branch.

∆ = 6 ∆ = 12 ∆ = 24

N = 10 N = 20 N = 30 N = 10 N = 20 N = 30 N = 10 N = 20 N = 30

SR

f0 13.58% 15.05% 15.84% 14.04% 15.97% 17.15% 14.24% 16.37% 17.75%

E[H] 10.16% 10.15% 10.17% 10.15% 10.15% 10.17% 10.17% 10.13% 10.17%

CVaR99.5% 13.58% 15.02% 15.80% 13.23% 14.43% 15.36% 13.11% 14.37% 15.17%

SF-SR

f0 13.58% 15.05% 15.84% 14.04% 15.97% 17.15% 14.24% 16.37% 17.75%

E[H] 10.14% 10.19% 10.12% 10.14% 10.15% 10.19% 10.16% 10.15% 10.16%

CVaR99.5% 13.58% 15.02% 15.80% 13.15% 14.45% 15.45% 13.08% 14.40% 15.17%

SF-QH

f0 9.58% 7.74% 5.89% 9.52% 7.13% 4.35% 9.49% 6.62% 2.72%

E[H] 10.12% 10.20% 10.35% 10.11% 10.20% 10.39% 10.10% 10.21% 10.48%

CVaR99.5% 16.03% 16.20% 16.32% 14.04% 14.61% 15.21% 12.79% 13.94% 15.44%

SF-SP-ℓ1,1

f0 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

E[H] 10.13% 10.19% 10.20% 10.14% 10.16% 10.21% 10.14% 10.13% 10.14%

CVaR99.5% 15.77% 16.65% 17.50% 13.95% 15.08% 15.94% 13.80% 14.76% 15.26%

SF-SP-ℓ2,1

f0 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

E[H] 10.32% 10.46% 10.52% 10.24% 10.36% 10.53% 10.18% 10.22% 10.33%

CVaR99.5% 23.93% 22.23% 20.73% 23.20% 18.63% 18.52% 21.34% 18.51% 17.38%

SF-SP-ℓ∞,1

f0 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

E[H] 10.08% 10.27% 10.17% 10.34% 10.24% 10.13% 10.18% 10.17% 10.17%

CVaR99.5% 27.88% 18.92% 18.77% 23.96% 17.93% 15.81% 18.69% 16.47% 14.38%

Table 5.1: Initial value f0, expected value E[H] and CVaR99.5% of simulated hedging costs
for at-the-money call option for local and self-financing strategies with ∆ = 6, 12, 24 number
of trades and N + 1 = 11, 21, 31 number of nodes.

Table 5.1 provides a detailed comparison of different hedging strategies—super-replication

(SR), self-financing super-replication (SF-SR), self-financing quadratic hedging (SF-QH),

and various forms of self-financing stochastic programming (SF-SP) under different norms

(ℓ1,1, ℓ2,1, ℓ∞,1). The comparison is across initial costs (f0), expected hedging costs (E[H]),

and Conditional Value at Risk at the 99.5% confidence level (CVaR99.5%), with varying re-
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balancing frequencies (∆ values of 6, 12, and 24 trades) and tree granularity (node counts

N = 10, N = 20, and N = 30).

The self-financing super-replicating strategy follows the same pattern as the local super-

replicating strategy, with the initial cost rising with the number of trades and nodes. This

reflects the strategy’s more conservative nature, allocating sufficient capital to ensure repli-

cation of payoff. Both local and global super-replicating strategies yield expected hedging

costs around 10.12% to 10.17%, relatively stable across different numbers of trade and node

configurations, indicating these strategies’ robustness and consistency. Their CVaR values

increase modestly with a higher number of trades and node counts, showing a risk manage-

ment benefit. Both maintain a lower tail risk than self-financing stochastic programming

under specific norms, reflecting a reliable approach to minimizing extreme losses. These

findings imply that while the super-replicating strategies in general offer robust performance

with consistent results across different investment outlooks, the differences between self-

financing and non-self-financing are minimal, and the choice between these strategies may

depend on other external factors.

The self-financing quadratic hedging strategy has the lowest initial costs among the strate-

gies considered. At ∆ = 24 and N = 30, the initial cost drops to 2.72%, compared to

5.89% at ∆ = 6. This suggests that SF-QH is a cost-efficient strategy, as it requires mini-

mal upfront capital while adapting flexibly to dynamic markets. Despite lower initial costs,

the self-financing quadratic hedging strategy maintains expected costs comparable to the

super replicating, ranging from 10.10% to 10.48%, signifying effective allocation of resources

to achieve reliable performance within reasonable bounds. While generally higher than su-

per replication, the tail risk for self-financing quadratic hedging strategy declines with higher

node counts and trading frequency, with CVaR values falling from 16.03% to around 12.79%.

This highlights the strategy’s capacity to mitigate risk with higher adaptability in trading

intervals and structure granularity.

The self-financing stochastic programming strategies (ℓ1,1, ℓ2,1, ℓ∞,1) has initial cost fixed
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at 10%. The expected hedging costs generally hover around 10.08% to 10.53%, suggesting

these strategies are cost-effective in achieving the desired outcomes without significant cost

fluctuation across different lattice configurations. The tail risk values for ℓ1,1 norm show a

slight decline with lower ∆ and higher node counts, indicating better risk containment with

frequent number of trades and increased lattice granularity. The ℓ2,1 norm variant experi-

ences a significant drop in CVaR with higher nodes, reducing from 23.93% (for N = 10)

to 17.38% (for N = 30), implying that a larger tree structure enhances risk containment.

The ℓ∞,1 norm shows a marked tail risk improvement from 27.88% to 14.38% as ∆ increases

and node count grows, suggesting that it effectively mitigates extreme losses with a highly

granular trading structure.

The self-financing quadratic hedging strategy stands out as a cost-efficient strategy with com-

paratively low f0, making it suitable for scenarios where capital preservation is prioritized,

though it entails relatively higher risk. Super replicating strategies, with their stability in tail

risk, suit investors focusing on robust risk containment. However, self-financing stochastic

programming strategies, particularly under the ℓ∞,1 norm, demonstrate more favourable risk

management with higher nodes and trading frequency, supporting a more flexible adaptation

to volatile conditions. For conservative investors prioritizing lower tail risk, super replication

provides consistent results. SF-SP-ℓ2,1 and SF-SP-ℓ∞,1 norms, meanwhile, offer adaptive al-

ternatives with effective cost containment and declining CVaR as the number of trade and

structural granularity increase, balancing efficiency with resilience against extreme losses.

5.3.3 Sensitivity to market parameters for SF strategies

We also consider the effectiveness of the self-financing strategies to changes in interest rates

and market volatility.

In financial markets, hedging strategies are crucial for managing risk, particularly when

dealing with derivatives such as options. Various market conditions, including interest rates

and market volatility, can influence the effectiveness of these strategies. Table 5.2 offers a
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r = 2% r = 4% r = 8%

σ = 15% σ = 25% σ = 30% σ = 15% σ = 25% σ = 30% σ = 15% σ = 25% σ = 30%

SR

f0 11.59% 18.52% 21.94% 12.54% 19.37% 22.75% 14.56% 21.12% 24.40%

E[H] 7.23% 11.09% 13.01% 8.25% 12.06% 13.97% 10.40% 14.06% 15.92%

CVaR99.5% 10.43% 16.64% 19.74% 11.37% 17.49% 20.54% 13.41% 19.24% 22.19%

SF-SR

f0 11.59% 18.52% 21.94% 12.54% 19.37% 22.75% 14.56% 21.12% 24.40%

E[H] 7.25% 11.09% 13.04% 8.26% 12.07% 14.00% 10.42% 14.06% 15.95%

CVaR99.5% 10.44% 16.66% 19.75% 11.38% 17.51% 20.55% 13.42% 19.28% 22.22%

SF-QH

f0 4.80% 7.29% 8.55% 5.92% 8.35% 9.59% 8.40% 10.60% 11.77%

E[H] 7.34% 11.09% 12.96% 8.36% 12.07% 13.94% 10.49% 14.08% 15.91%

CVaR99.5% 11.50% 16.76% 19.62% 11.86% 17.45% 20.35% 13.56% 19.18% 22.04%

SF-SP-ℓ1,1

f0 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

E[H] 7.10% 11.09% 13.06% 8.19% 12.06% 14.01% 10.38% 14.05% 15.95%

CVaR99.5% 10.31% 17.76% 21.47% 11.75% 18.81% 22.44% 13.94% 21.00% 24.57%

SF-SP-ℓ2,1

f0 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

E[H] 7.04% 11.18% 13.05% 8.15% 12.40% 14.15% 11.39% 15.35% 17.03%

CVaR99.5% 10.06% 23.56% 34.01% 11.83% 29.57% 40.96% 22.28% 46.70% 56.60%

SF-SP-ℓ∞,1

f0 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

E[H] 7.05% 11.02% 12.94% 8.20% 12.14% 13.84% 10.99% 15.44% 16.35%

CVaR99.5% 10.81% 18.74% 23.64% 12.12% 25.20% 29.66% 24.42% 56.30% 54.42%

Table 5.2: Initial value f0, expected value E[H] and CVaR99.5% of simulated hedging costs
for at-the-money call option for local and self-financing strategies with interest rate r =
2%, 4%, 8%, and volatility σ = 15%, 25%, 30%.

comparative analysis of the self-financing strategies for different interest rates and market

volatility levels. The table indicates a clear trend in the initial portfolio value as both

interest rate and volatility increase; the initial cost also rises across the super-replication

and quadratic hedging strategies.

The super-replicating strategies both show relatively high initial costs across different interest

rates and volatilities, which increase with higher volatilities and interest rates. The expected

hedging cost and CVaR99.5% values also rise in response to higher market risk, particularly

with increasing volatility. This indicates that both super-replicating strategies are relatively

conservative approaches, providing substantial coverage for risk at a correspondingly high

initial cost. The similarity between local and global super-replicating values suggests that
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self-financing constraints do not alter the risk and return profile of the super-replicating

strategy in this context.

The self-financing quadratic hedging strategy demonstrates lower initial costs compared to

the super-replicating strategies, with initial values ranging from 4.8% to 11.77%, depending

on the volatility and interest rate combination. This reduction in f0 suggests SF-QH is a

less conservative strategy, potentially leaving the portfolio more exposed to adverse market

movements. While the expected hedging cost E[H] is similar to super-replication, SF-QH

shows slightly lower CVaR99.5% values, indicating a narrower range of potential extreme losses

compared to the super-replication strategies.

The self-financing stochastic programming strategies explore different norm configurations

(ℓ1,1, ℓ2,1, and ℓ∞,1) and are set with a default initial cost of 10% to demonstrate a controlled

cost structure. However, doing this causes these strategies to exhibit varying levels of risk

tolerance. The CVaR99.5% values for SF-SP-ℓ1,1 strategy are moderate, increasing with higher

volatility and interest rates, but remaining more controlled compared to the SF-SP-ℓ2,1 and

SF-SP-ℓ∞,1 strategies. This strategy shows a balanced approach, with an expected cost

close to that of the super-replicating strategies but with slightly lower extreme risk. On the

other hand, the ℓ2,1 norm exhibits higher CVaR99.5% values, particularly at elevated interest

rates and volatilities, reflecting higher potential losses in extreme market conditions. It

appears that this strategy is more exposed to tail risk, indicating a less conservative hedging

profile than SF-SP-ℓ1,1. The SF-SP-ℓ∞,1 strategy presents the highest CVaR99.5% values in

high-volatility and high-interest scenarios. The increase in risk exposure suggests that SF-

SP-ℓ∞,1 may be suited for portfolios with a greater tolerance for extreme losses, making

it a less conservative approach in stable market conditions. We highlight that using the

stochastic programming strategies requires the hedger to calibrate for the minimum initial

cost of the portfolio every time a parameter is adjusted.

Table 5.2 reveals that super-replicating strategies are the most conservative, with consistently

higher initial costs and lower exposure to extreme tail risks. In contrast, SF-QH provides a
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lower initial cost and maintains a slightly lower CVaR, making it a viable choice for scenarios

requiring moderate hedging. The SF-SP strategies, with their fixed initial cost values, offer

cost-effective alternatives with varying levels of risk exposure. SF-SP-ℓ1,1 stands out as a

balanced approach, while SF-SP-ℓ2,1 and SF-SP-ℓ∞,1 exhibit higher tail risks, particularly in

volatile markets.

5.3.4 Sensitivity to hedger’s preference and moneyness for SF

strategies

We also assess the robustness of the self-financing strategies to changes in the hedger’s pref-

erence such as the number of assets that constitute the portfolio, the moneyness of the call

option and the level of asymmetry in the ℓp,q norm.

Table 5.3 presents a comparative analysis of the self-financing strategies under different sce-

narios: adding multiple options to the portfolio, changing the strike price of the option

to reflect moneyness and changing the asymmetric parameter to reflect various risk levels.

The initial cost is a critical metric that reflects the upfront capital required to establish a

hedging portfolio. The table compares results for hedging portfolios containing either one

or three options. The number of options in the portfolio affects both the initial setup cost

(f0) and the associated risk (CVaR99.5%) for each strategy. With local super-replication, the

initial cost slightly decreases from 15.97% to 14.64% when moving from one to three options.

This decrease also applies to global super-replication and the self-financing constraint shows

a similar variation in expected cost and CVaR values. This suggests that diversification

within the hedging portfolio (i.e., using multiple options) reduces the initial cost of setting

up the portfolio. However, SF-QH shows an increase in initial cost from 7.13% to 8.95%

when moving to three options, reflecting an increase in complexity. Although still relatively

low in cost compared to super-replication, the expected cost remains similar across option

counts, maintaining an economical profile with a moderate increase in CVaR. The stochastic

programming strategies using ℓ1,1, ℓ2,1, and ℓ∞,1 norms have a set initial cost of 10%, which
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Number of options Moneyness Asymmetry

1 3 ITM ATM OTM q = 0.7 q = 0.85 q = 1

SR

f0 15.97% 14.64% 15.97% 15.97% 15.97% 15.97% 15.97% 15.97%

E[H] 10.15% 10.05% 10.15% 10.15% 10.15% 10.15% 10.15% 10.15%

CVaR99.5% 14.43% 13.32% 14.43% 14.43% 14.43% 14.43% 14.43% 14.43%

SF-SR

f0 15.97% 14.64% 18.90% 15.97% 14.39% 15.97% 15.97% 15.97%

E[H] 10.15% 10.05% 12.71% 10.15% 8.08% 10.15% 10.15% 10.15%

CVaR99.5% 14.45% 13.30% 16.89% 14.45% 12.52% 14.45% 14.45% 14.45%

SF-QH

f0 7.13% 8.95% 10.27% 7.13% 4.56% 7.13% 7.13% 7.13%

E[H] 10.20% 10.01% 13.08% 10.20% 7.78% 10.20% 10.20% 10.20%

CVaR99.5% 14.61% 14.23% 17.41% 14.61% 12.18% 14.61% 14.61% 14.61%

SF-SP-ℓ1,1

f0 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

E[H] 10.16% 10.06% 12.72% 10.16% 7.86% 10.13% 10.13% 10.16%

CVaR99.5% 15.08% 13.53% 18.16% 15.08% 13.10% 15.16% 15.10% 15.08%

SF-SP-ℓ2,1

f0 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

E[H] 10.36% 10.03% 13.83% 10.36% 7.69% 10.42% 10.37% 10.36%

CVaR99.5% 18.63% 18.77% 38.80% 18.63% 12.99% 19.61% 18.99% 18.63%

SF-SP-ℓ∞,1

f0 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

E[H] 10.24% 10.12% 12.92% 10.24% 7.71% 10.49% 10.26% 10.24%

CVaR99.5% 17.93% 22.08% 36.94% 17.93% 13.17% 27.78% 19.96% 17.93%

Table 5.3: Initial value f0, expected value E[H] and CVaR99.5% of simulated hedging costs for
at-the-money call option for local and self-financing strategies with 1 call option with κ = 1,
and 3 call options with κ = 0.8, 1, 1.2 as assets to the hedging portfolio, ITM (K = 0.95),
ATM (K = 1) and OTM (K = 1.05) call options, and asymmetric parameter q = 0.7, 0.85, 1.

is independent of the number of options. However, risk profiles diverge, with SF-SP-ℓ∞,1

showing a higher CVaR increase (from 17.93% to 22.08%) when moving to three options,

reflecting heightened risk exposure under more complex portfolios. SF-SP-ℓ1,1 and ℓ2,1 see

smaller CVaR increases, offering more controlled risk expansion relative to SF-SP-ℓ∞,1.

Moneyness plays a critical role in the performance and cost of each strategy. The super-

replicating strategies exhibit stability across moneyness conditions, with local super-replication

maintaining a consistent f0 and CVaR at 15.97% and 14.43% respectively. Self-financing
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super-replication demonstrates slightly higher variability, with a higher f0 of 18.9% for ITM

options and a reduced cost of 14.39% for OTM options. The CVaR values also vary with

moneyness in global super-replication, indicating that in-the-money positions increase expo-

sure to extreme losses. The self-financing quadratic hedging shows increased sensitivity to

moneyness, especially with ITM options, where the initial cost rises to 10.27% (compared

to 7.13% for ATM) and the CVaR reaches 17.41%. This suggests that while SF-QH re-

mains cost-effective overall, it becomes more expensive with ITM options due to the need

for higher capital reserves. Moneyness affects CVaR for the self-financing stochastic pro-

gramming strategies. SF-SP-ℓ2,1 is especially impacted, with ITM options resulting in a

high CVaR of 38.80%, indicating a notable risk increase when options are ITM. SF-SP-

ℓ1,1 and ℓ∞,1 demonstrate similar patterns, though the increase in CVaR is more moderate,

peaking at 18.16% and 38.8% for ITM options, respectively. Thus, self-financing stochastic

programming strategies tend to carry greater risk with ITM options, particularly with the

ℓ2,1 norm.

Both super-replicating strategies and quadratic hedging strategies are unaffected by changes

in norm asymmetry. The choice of the asymmetric parameter has a marked effect on self-

financing stochastic programming strategies, especially SF-SP-ℓ∞,1. For instance, when

q = 0.7, the CVaR increases to 27.78%, indicating heightened tail risk under asymmetry.

This trend underscores that while self-financing stochastic programming strategies flexible,

they are more vulnerable and sensitive to asymmetry changes.

Examining these three conditions highlights key trade-offs in choosing a strategy. The num-

ber of options primarily impacts initial costs and risk in SF-QH and SF-SP strategies, espe-

cially with increased CVaR for SF-SP-ℓ∞,1. Moneyness particularly affects SF-QH and SF-

SP, where ITM options substantially increase costs and CVaR. Finally, asymmetry exerts its

strongest influence on SF-SP strategies, most noticeably SF-SP-ℓ∞,1, where increased asym-

metry corresponds with heightened risk. In summary, super-replicating strategies demon-

strate high resilience across conditions, with both local and global configurations being the
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most stable but also the most costly. SF-QH offers cost-efficiency with moderate risk sen-

sitivity, while SF-SP strategies present the most flexibility but require careful management

due to sensitivity to option characteristics and asymmetry.

5.3.5 Sensitivity to initial portfolio values for SF-SP strategies

Similar to the local stochastic programming and dynamic coherent risk strategies, the initial

portfolio value for the global stochastic programming strategies requires tuning to obtain a

lower exposure to tail risk. In this subsection, we continue our analysis by comparing the

performance of different initial costs of setting up the portfolio and their impact on expected

hedging cost and tail risk for ∆ = 6 number of trades.

f0 = 5% f0 = 7% f0 = 10% f0 = 13% f0 = 15% f0 = 18% f0 = 20%

SP-ℓ1,1
E[H] 10.12% 10.13% 10.13% 10.13% 10.14% 10.14% 10.16%

CVaR99.5% 18.51% 17.97% 17.17% 16.56% 16.33% 16.65% 16.86%

SP-ℓ2,1
E[H] 9.95% 10.09% 10.00% 10.07% 9.98% 10.01% 10.30%

CVaR99.5% 22.81% 21.69% 19.96% 16.55% 16.79% 17.31% 22.97%

SP-ℓ∞,1

E[H] 10.16% 10.16% 10.19% 10.15% 10.17% 10.16% 10.08%

CVaR99.5% 15.05% 15.05% 15.32% 16.00% 16.11% 18.04% 19.71%

SF-SP-ℓ1,1
E[H] 10.16% 10.15% 10.19% 10.07% 10.05% 10.08% 10.09%

CVaR99.5% 18.04% 17.63% 16.65% 15.15% 15.69% 16.38% 16.73%

SF-SP-ℓ2,1
E[H] 12.04% 10.99% 10.46% 10.16% 10.06% 10.05% 10.07%

CVaR99.5% 43.23% 33.90% 22.23% 16.53% 16.38% 16.54% 16.62%

SF-SP-ℓ∞,1

E[H] 10.72% 10.65% 10.27% 10.19% 10.20% 10.20% 10.21%

CVaR99.5% 31.83% 28.40% 18.92% 16.55% 17.04% 18.59% 20.04%

Table 5.4: Expected value E[H] and CVaR99.5% of simulated hedging costs for at-the-money
call option for SP and SF-SP-(ℓ1,1, ℓ2,1, ℓ∞,1) strategies with initial investment value f0 =
5%, 7%, 10%, 13%, 15%, 18%, 20%.

Table 5.4 explores the self-financing stochastic programming (SF-SP) compared to the local

stochastic programming (SP) strategies, aiming to calibrate the initial portfolio setup cost
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(f0) that minimizes Conditional Value at Risk across three norms: ℓ1,1, ℓ2,1, and ℓ∞,1. We

examine the expected value of hedging costs and CVaR at the 99.5% confidence level to eval-

uate the trade-offs in risk and expected cost across both self-financing and non-self-financing

strategies. As illustrated earlier in Table 4.4, the non-self-financing stochastic programming

strategies show moderate adjustments in both expected costs and CVaR with changes in

f0, which reflects the capital allocated upfront for hedging. For SP strategies, increasing f0

generally reduces CVaR, suggesting a direct benefit in risk reduction as initial investment in-

creases. For example, in the SP-ℓ1,1 strategy, CVaR reduces steadily from 18.51% to 16.33%

as f0 increases from 5% to 15%, from which it increases at higher values of f0. Similarly,

SP-ℓ2,1 experiences a significant CVaR reduction as f0 increases from 5% to 13%, achieving

a minimum CVaR of 16.55% and increasing thereafter. The ℓ∞,1 norm, however, displays a

constrained sensitivity to initial cost increases, limiting its risk-reduction capability in high-

cost scenarios.

The self-financing stochastic programming strategies introduce more variability in outcomes,

with both expected costs and CVaR showing different behaviours across norms as f0 changes.

For instance, SF-SP-ℓ1,1 exhibits a consistent decrease in CVaR as initial cost increases from

5% to 13%, achieving a minimum CVaR of 15.15% at f0 = 13% and then increasing slightly

thereafter. Interestingly, the expected cost also decreases with a higher initial portfolio

value, indicating improved cost efficiency alongside tail risk reduction for this norm. The

SF-SP-ℓ2,1 and SF-SP-ℓ∞,1 norms behave differently. For SF-SP-ℓ2,1, a substantial CVaR

reduction occurs between 5% and 15%, plummeting from 43.23% to 16.38%. This shows a

significant improvement in risk management with moderate initial costs but less sensitivity

to further increases, as CVaR stabilizes around 16.5% for higher f0. The SF-SP-ℓ∞,1 norm

follows a similar pattern, with CVaR declining dramatically and then increasing at higher

costs, highlighting a limited capacity for further risk control.

Across norms, self-financing strategies tend to exhibit higher initial CVaR levels compared

to non-self-financing counterparts, especially at lower initial portfolio values. However, they
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show rapid CVaR reductions with moderate increases in initial cost, often stabilizing or even

slightly increasing CVaR at higher f0, suggesting high sensitivity to lower investment that

tapers off as more capital is used to set up the portfolio. The local stochastic programming

strategies, while displaying less extreme CVaR reductions, demonstrate more stable cost-

to-risk relationships across all norms, indicating cost efficiency that makes it advantageous

for controlled-risk scenarios without high initial costs. This stability can be attractive for

hedgers who prioritize consistency and lower cost sensitivity. Given that the lowest CVaR

for the stochastic programming strategies in Table 5.4 is around f0 ≤ 15% when calibrated,

the strategies provide strong evidence for comparable risk management properties that can

rival that of super-replication in terms of robustness. For instance, the SF-SP-ℓ1,1 strategy

obtains a minimum tail risk of 15.15% for f0 = 13% whereas the super replicating strategies

in Table 5.1 for ∆ = 6 show CVaR values around 15.02% for a corresponding 15.05% initial

portfolio value.

The analysis of Table 5.4 also reveals important distinctions in risk and cost management

across the self-financing and non-self-financing stochastic programming strategies for dif-

ferent norms. Global stochastic programming, particularly SF-SP-ℓ1,1, are cost-sensitive, as

they quickly reduce CVaR with moderate increases in f0. This efficiency makes them suitable

for scenarios requiring rapid risk reduction but with budget constraints. Non-self-financing

stochastic programming strategies show consistent CVaR reduction, especially in SP-ℓ∞,1,

where increased f0 provides limited but steady risk management. This makes local stochastic

programming strategies attractive for stable hedging portfolios where cost sensitivity needs

control. In summary, SF-SP strategies offer flexibility with higher initial risk but quick im-

provements as f0 rises, while local SP strategies provide steady, reliable CVaR reductions

at higher initial costs, with the ℓ1,1 norm being the most cost-effective for risk management

across both strategy types.
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Conclusion

In this thesis, we sought to develop cost-effective and robust hedging strategies that mini-

mize risk exposure for contingent claims. The research is motivated by the need to address

the limitations of traditional hedging strategies, particularly in the presence of market in-

completeness and transaction costs. We begin by developing a model framework based on

a discrete process with a finite number of realizations. The structure is defined as an event

tree, which is convenient for stochastic and deterministic dynamic optimization. The tree

consists of nodes representing discrete process realizations at each period and branches in-

dicating transitions between nodes. Our framework assumes a recombining tree to reduce

computational complexity. We introduce the ℓp,q norm as a convex risk measure, with mod-

ifications to include asymmetric parameters to expand the flexibility and robustness when

hedging. The choice of risk measure and norm depends on the investor’s risk tolerance and

the desired level of conservatism.

For our proposed models, the super-replicating strategy ensures that the hedge portfolio

dominates the claim at each node, making it a conservative approach. We provide a detailed

optimization problem to find the least-cost super-replicating portfolio. The strategy is shown

to be effective but expensive, as it requires the portfolio to cover potential losses fully. On

the other hand, the ℓp,q norm as constraint strategy allows for some degree of positive losses

by controlling the loss function with a threshold parameter. Different norms, such as ℓ1,q,

ℓ2,q, and ℓ∞,q, are used to limit the losses. The optimization problem is formulated to mini-

mize the hedge portfolio value subject to the loss constraint, providing a more cost-effective
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alternative to super-replication.

In the ℓp,q norm as objective strategy, the objective function directly minimizes the norm.

The goal is to obtain a hedging strategy that minimizes the ℓp,q norm of the losses. The op-

timization problem includes constraints to control conservatism and ensure feasibility. The

portfolio as state variable strategy introduces state variables representing future portfolio

values and minimizes the sum of local losses and future cost-to-go functions. Using state

variables in the optimization process enables dynamic adjustments to the hedging strategy,

enhancing its robustness and adaptability. We propose three variations: stochastic program-

ming, dynamic coherent risk, and barrier on future risk. Each variation aims to balance

current and future risks, providing a dynamic and robust hedging strategy.

Finally, we introduce another approach to self-financing strategies, where the portfolio is

adjusted over time without additional capital injections. A self-financing super-replicating

strategy is developed, ensuring the portfolio value supersedes the contingent claim at ma-

turity. The optimization problem is formulated to find the least-cost self-financing strategy.

We extend the concept of self-financing to stochastic programming strategies which is the

same as dynamic coherent risk under self-financing conditions and compare the robustness

of the self-financing strategies to their local counterpart and ℓ2 or quadratic hedging strategy

with equal transition probabilities.

To assess the performance of our models, we apply the hedging strategies to European call

options. Our financial model assumes a uni-dimensional discrete lattice where the stock

process evolves. Detailed numerical examples are provided to compare the performance of

different hedging strategies. Key metrics such as initial portfolio value, expected hedging

error, and CVaR are analyzed. The results show that strategies with controlled losses offer a

cost-effective alternative to super-replication while maintaining similar tail risk profiles. The

proposed strategies also exhibit robust performance under various market conditions, with

consistent expected hedging errors and CVaR values.

By comparing the performance of local and global hedging strategies, our results indicate
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that they offer marginal improvements in expected hedging errors and tail risk, making them

a viable alternative in certain market conditions without transaction costs. Our results also

affirm the suitability of minimizing the mean square error under self-financing conditions.

We observe that the widely used self-financing quadratic hedging technique offers a cost-

efficient alternative while maintaining reasonable tail risk levels, making it attractive for

cost-conscious hedgers.

In summary, each hedging strategy displays unique strengths. Both local and global super-

replicating strategies are reliable and conservative. Norm as constraint strategies offer robust

cost-effective alternatives to super-replication whereas the norm as objective strategies may

appeal to hedgers interested in lower cost of capital. Self-financing quadratic hedging strat-

egy is cost-effective but riskier, and portfolio as state variable strategies under specific norms

excel with increased granularity, presenting a flexible and dynamic solution for managing risk

and cost in volatile markets. This versatility enables hedgers to select strategies based on

investment objectives, capital constraints, and risk tolerance, fostering a nuanced approach

to portfolio optimization and risk management.

Recommendations for Future Work

The findings of this thesis have significant implications for the design and implementa-

tion of hedging strategies in incomplete financial markets. Introducing the self-financing

strategy further enhances the practical applicability of the proposed methods. Future re-

search on semi-robust risk-minimizing strategies could extend our proposed strategies to

American-style products, considering the interactions between different stopping times and

their impact on hedging performance. Also, applying the proposed strategies to real-world

financial products and markets could validate their effectiveness and identify potential areas

for improvement. However, developing more efficient algorithms for solving optimization

problems, particularly for large-scale portfolios, could enhance the practical applicability

111



of the strategies. Lastly, investigating the impact of different behavioural factors such as

utility functions on the choice of hedging strategies could provide valuable insights for per-

sonalized risk-minimizing solutions. The semi-robust risk-minimizing strategies proposed

are model-independent and adaptable to different discrete filtrations and model frameworks

with possible extensions to non-linear optimization techniques.
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Appendix A

Farka’s Lemma

We introduce the variant of the popular Farka’s Lemma used to establish the existence of

a solution to convex linear optimization. The application of the lemma is used when we

develop our self-financing strategies in Chapter 5.

Proposition A.1. (Farka’s Lemma) Let A be a real matrix with m rows and n columns,

and let b ∈ Rm be a vector. Then exactly one of the following two possibilities occurs:

1.There exists a vector x ∈ Rn satisfying Ax = b and x ≥ 0. (A.1)

2.There exists a vector y ∈ Rm such that y⊤A ≥ 0⊤ and y⊤b < 0. (A.2)

Proof. We provide a brief proof of Farka’s Lemma. We show that both (A.1) and (A.2) do

not hold simultaneously. Note that y⊤Ax = y⊤(Ax) = y⊤b < 0 since by (A.1), Ax = b and

by (A.2) y⊤b < 0. But also y⊤Ax = (y⊤A)x = (A⊤y)⊤x ≥ 0 since by (A.2) A⊤y ≥ 0 and by

(A.1) x ≥ 0. This implies y⊤Ax < 0 and y⊤Ax ≥ 0 at the same time. Hence, a contradiction

and, thus, exactly one of the two equations is consistent.

Several variants of Farka’s Lemma answer questions about the feasibility of a linear equa-

tions and inequalities system. For example “When is there a non-negative solution for a

system of linear equations?”, “When is there a non-negative solution for a system of linear
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inequalities?” and lastly, “When is there ever a solution for a system of linear inequalities?”.

Concerning the latter question, Matoušek and Gärtner (2007) extends Farka’s Lemma and

proposes the following proposition.

Proposition A.2. The system Ax ≤ b has a solution if every non-negative y ∈ Rm with

y⊤A = 0⊤ also satisfies y⊤b ≥ 0.

Proof. Let Ax ≤ b for x ∈ Rn. Then suppose ∃ y ≥ 0 such that y⊤A = 0⊤ but y⊤b < 0. Then

y⊤Ax = y⊤(Ax) ≤ y⊤b < 0 but y⊤Ax = (y⊤A)x = 0 hence a contradiction. Conversely,

suppose y ≥ 0, y⊤A = 0⊤ and y⊤b ≥ 0. Then y⊤Ax = (y⊤A)x = 0 ≤ y⊤b and thus

Ax ≤ b.
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