
Online Bipartite Matching under Markov Chain Model

Arnav Ishaan

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

December 2024

© Arnav Ishaan, 2024

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Arnav Ishaan

Entitled: Online Bipartite Matching under Markov Chain Model

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Hovhannes Harutyunyan

Examiner
Dr. Hovhannes Harutyunyan

Examiner
Dr. Lata Narayanan

Supervisor
Dr. Denis Pankratov

Approved by
Joey Paquet, Chair
Department of Computer Science and Software Engineering

2024
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Online Bipartite Matching under Markov Chain Model

Arnav Ishaan

Online bipartite matching (OBM) has a rich history in the literature of online algorithms, where

it has been an influential problem inspiring many algorithms and techniques. This problem of

obtaining a matching set of maximum size where vertices of one bi-partition arrive online has

many real-world applications from kidney donor exchange to online advertising. This has led to the

problem being studied under a variety of input models. In the adversarial model it is known that the

tight competitive ratio is 1 − 1/𝑒 (among all randomized algorithms). Lower and upper bounds on

competitive ratios better than 1 − 1/𝑒 are known for random order model, known and unknown IID

models and other stochastic models, where a major open problem is to close these gaps.

One feature of the stochastic input models (e.g., known and unknown IID input models) under

which OBM has been studied so far is the assumption of strong independence among the input

items. One of the main conceptual contributions of this thesis is to introduce a stochastic input

model that allows us to simulate limited dependence. In our model, input nodes are sampled

from a Markov chain, and we refer to this as the Markov chain model. Introducing Markov chain

significantly increases the complexity of analysis of algorithms by adding a number of parameters:

initial distribution, transition probabilities, sampling size, etc, which leads us to concentrate on

analyzing the problem for some specific families of bipartite graphs and Markov chains.

In particular, we study two algorithms Non Adaptive and Adaptive Two Suggested Matching

under the Markov chain input model for parameterized versions of lazy random walks on (2, 2)-

biregular type graphs. We give an alternative characterization of an offline optimal solution, 𝑂𝑃𝑇 ,

for these stochastic inputs, which allows us to calculate exactly (in the limit) the expected size of

iii

matching of 𝑂𝑃𝑇 . We then proceed to obtain tight bounds on the sizes of matchings obtained by

the two algorithms under asymptotic conditions, which combined with the bound on 𝑂𝑃𝑇 , gives

us tight competitive ratios of 0.9509 and 0.9733 for the Non Adaptive and Adaptive algorithms,

respectively. These are competitive ratios for the classical lazy random walk Markov chain, where

the probability of staying put is 1/2. We also derive exact formulas for competitive ratios with

respect to lazy walks parameterized by 𝑝 – the probability of staying put.

We believe these results, which use two disjoint matchings and regularity of graph degrees could

be extended to type graphs of degree at most 𝑘 (for any constant 𝑘), and to bipartite graphs that

admit several disjoint matchings of large sizes.

iv

Acknowledgments

I would like to thank my supervisor, Dr. Denis Pankratov for his unwavering support and

guidance throughout my graduate studies. Two years ago, I sought his mentorship after being

fascinated by his teaching methodology and approach to problem solving in the Design and Analysis

of Algorithms class. He generously took me under his tutelage, and since then, he has patiently

guided me through my graduate journey, helping me hone my skills and research temperament. I am

truly grateful for his advice, feedback, and the rapport we share. I have thoroughly enjoyed working

under his expertise, and I hope to replicate an acumen similar to his in both my professional and

personal life in the future.

The past two years in Montreal have been enriched by the amazing professors and lab mates in

the Algorithms and Complexity Group at Concordia University, who have made my journey exciting

and fulfilling. I am deeply appreciative of the time and words I have shared with this wonderful

group. I would like to express my heartfelt thanks to them, as well as to all the faculty and staff

members of Concordia University.

On a personal note, I would like to thank my friends, peers, and well-wishers for their camaraderie

and encouragement at different stages of my life.

Lastly, none of this would have been possible without the unwavering love, support, and sacrifices

of my parents and younger brother, to whom I am forever indebted.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Preliminaries 5

2.1 Graph Theory . 5

2.1.1 Graphs . 5

2.1.2 Matching in Graphs . 7

2.2 Online Algorithms . 8

2.2.1 Measuring Performance of Online Algorithms 9

2.2.2 Modeling Graph Problems in Online Setting 10

2.3 Input Models for Online Bipartite Matching . 12

2.3.1 Adversary . 12

2.3.2 Randomness in Input Sequence . 13

2.3.3 Markov Chains . 13

2.3.4 Summary of Input Models for Online Bipartite Matching 16

2.4 Online Bipartite Matching under Markov Chain Model 18

3 Literature Review 20

3.1 A Short History of the Matching Problem . 21

3.2 Offline Bipartite Matching . 22

vi

3.2.1 Unweighted Bipartite Matching . 22

3.2.2 Vertex Weighted Bipartite Matching . 24

3.2.3 Edge Weighted Bipartite Matching . 25

3.3 Online Bipartite Matching . 25

3.3.1 Unweighted Online Bipartite Matching 26

3.3.2 Vertex Weighted Online Bipartite Matching 29

3.3.3 Edge Weighted Online Bipartite Matching 30

3.4 Applications of Online Bipartite Matching . 31

3.5 Online Algorithms with Markovian Input . 33

4 Matching in (2, 2)-Regular Bipartite Graph – An Offline Optimal Algorithm 34

4.1 Problem Instance & Input Parameters . 35

4.1.1 Type Graph . 35

4.1.2 Markov Chain . 36

4.1.3 Input Size . 36

4.2 Offline Algorithm: Frequency Based Optimal Matching 37

4.2.1 Definitions . 39

4.2.2 Working Mechanism . 40

4.2.3 Algorithm Analysis . 44

4.2.4 Calculating the Size of Expected Matching 46

4.2.5 Size of Expected Matching . 62

5 Online Bipartite Matching in (2, 2)-Regular Bipartite Graph 64

5.1 Overview of Algorithms . 65

5.2 Two Suggested Matching - Non Adaptive . 66

5.2.1 Working Mechanism . 66

5.2.2 Algorithm Analysis . 67

5.2.3 Calculating the Size of Expected Matching 68

5.2.4 Tight Bounds on Competitive Ratio . 77

5.3 Two Suggested Matching - Adaptive . 78

vii

5.3.1 Warm up: Case of 𝑛 = 3 . 78

5.3.2 Working Mechanism . 81

5.3.3 Algorithm Analysis . 81

5.3.4 Calculating the Size of Expected Matching 83

5.3.5 Tight Bounds on Competitive Ratio . 101

5.4 Summary of Results . 102

6 Experimental Analysis of Real World Online Bipartite Matching Data 105

6.1 Introduction . 105

6.2 iPinYou Real-Time Bidding Dataset . 106

7 Conclusion & Future Work 110

Bibliography 113

viii

List of Figures

Figure 2.1 Example of graphs. 6

Figure 2.2 Example of a bipartite graph with 2 perfect and maximum matchings,

{𝑒1, 𝑒2, 𝑒3} and {𝑒4, 𝑒5, 𝑒6}. Note these 2 matchings are not disjoint. 7

Figure 2.3 Example of an online graph building up through incoming online vertices in

sequence 𝑣1, 𝑣2, 𝑣1. Here, 𝑈 = {𝑢1, 𝑢2, 𝑢3} and 𝑉 = {𝑣1, 𝑣2}, and the neighbors of

𝑣1 and 𝑣2 are 𝑁 (𝑣1) = {𝑢1, 𝑢2} and 𝑁 (𝑣2) = {𝑢2, 𝑢3}. 11

Figure 2.4 Example of a Markov chain on 3 states, 𝑥1, 𝑥2 and 𝑥3. 14

Figure 2.5 Stochastic Matrix of the corresponding Markov chain, 𝑀 [𝑖] [𝑗] = 𝑃(𝑋𝑡+1 =

𝑥 𝑗 | 𝑋𝑡 = 𝑥𝑖). 14

Figure 3.1 No deterministic algorithm can perform better than 1
2 . The 𝐴𝐷𝑉 generates

𝑣1, 𝑁 (𝑣1) = {(𝑢1, 𝑣1), (𝑢2, 𝑣1)} as the first input. If 𝐴𝐿𝐺 matches 𝑣1 with 𝑢1, the

next input is (𝑣1, 𝑁 (𝑣2) = {𝑢1, 𝑣2}) as shown in the second graph, otherwise if

𝐴𝐿𝐺 matches 𝑣1 with 𝑢2, the next input is (𝑣2, 𝑁 (𝑣2) = {𝑢2, 𝑣2}), restricting the

maximum possible matching to 1 in online setting. 𝑂𝑃𝑇 = 2 for each case. 27

Figure 4.1 Examples of (2, 2)-regular bipartite (or biregular) graphs on different number

of vertices. 34

Figure 4.2 Example of a Markov chain on 3 states, with 𝑝 = 0.4. 37

Figure 4.3 For type graph (2, 2)-biregular graph of size 𝑛 = 4, the following showcases

the formation of the realization graph on input sequence (𝑣1, 𝑣2, 𝑣3, 𝑣4), where the

types of online vertices are 𝑣1 ≃ 𝑣2, 𝑣2 ≃ 𝑣4, 𝑣3 ≃ 𝑣2, 𝑣4 ≃ 𝑣3. 38

Figure 4.4 Graph realizations depicting appropriate vertices for case ℓ = 1 and ℓ = 2. . 42

ix

Figure 4.5 Two problem instances depicting miss blocks – (1) the first graph has 3 miss

blocks from (𝑖 + 1, 𝑖 + 4), (𝑖 + 4, 𝑖 + 6) and (𝑖 + 6, 𝑖 + 1), whereas (2) the second graph

has 2 miss blocks from (𝑖 + 1, 𝑖 + 4) and (𝑖 + 6, 𝑖 + 1). The block between (𝑖 + 4, 𝑖 + 6)

is not a miss block, because 𝑣𝑖+5 type vertex occurs twice. Matched offline vertices

in the first graph are 3, 6 total vertices minus 3 miss blocks. Similarly for the second

graph, matched offline vertices are 4. 43

Figure 4.6 Input sequences depicting 3 different ways vertices of type 𝑣2, 𝑣3 and 𝑣4 can

occur, where a miss block of length 3 occurs starting from index 𝑖 = 1. 49

Figure 5.1 The first graph is the type graph, (2, 2)-regular bipartite graph. The 2𝑛𝑑 and

3𝑟𝑑 graph depicts matching created by 𝑇𝑆𝑀 − 𝑁𝐴 and 𝑇𝑆𝑀 − 𝐴 of size 2 and 3

respectively. The darker edges in the second and third graph depicts the edges in

matching. 65

Figure 5.2 A recursive tree depicting the events where input sequences lead to 𝑢1 re-

maining unmatched in the final matching for 𝑛 = 3 size (2, 2)-regular bipartite

graph. 80

Figure 5.3 A recursive tree depicting the events where input sequences lead to 𝑢1 re-

maining unmatched in the final matching. 82

Figure 5.4 A visualization of input sequence for 𝐿1. 86

Figure 5.5 A visualization of input sequence for 𝐿2. 87

Figure 5.6 A visualization of input sequence for 𝐿3. 89

Figure 5.7 Graph plotting the changes in competitive ratio of 𝑇𝑆𝑀 − 𝑁𝐴 and 𝑇𝑆𝑀 − 𝐴

as a function of 𝑎. 103

Figure 6.1 Example of empirical Markov chains derived from the experiment. 109

x

List of Tables

Table 3.1 Table summarizing lower and upper bounds in online bipartite matching under

different input models. 29

xi

Chapter 1

Introduction

In a sponsored search scenario, a user submits a query to a search engine, and the search engine

returns a list of results alongside a couple of ads that are deemed relevant to the search query. The

ad matching platform has a set of advertisers and knows about the types of users the advertisers are

interested in. The platform wants to maximize the number of relevant ads shown to the ‘interested’

users, or impressions in the regime of ad matching. Note that the impressions arrive sequentially,

and the platform needs to decide on which ad to show without knowing future impressions. This is

known as an online problem.

More generally, consider a problem in which input is represented by a sequence of input items.

An algorithm is required to make a decision for each input item with the goal of optimizing an

objective function, which evaluates how good the decisions are for the given input. In an offline

scenario, each decision can depend on the entire sequence of input items. In an online scenario,

𝑖th decision can depend only on input items 1, 2, . . . , 𝑖. That is, in an online setting the algorithm

is required to make an irrevocable decision without seeing future input items. Performance of an

online algorithm is measured by competitive ratio, which is the worst-case ratio (over input instances)

between the value obtained by the online algorithm and the value obtained by an optimal offline

algorithm.

The underlying combinatorial problem behind the sponsored search scenario is online bipartite

matching. Given a bipartite graph 𝐺 (𝑈,𝑉, 𝐸), with vertex set 𝑈 known in advance, and vertices

with type (or being similar to vertices) in 𝑉 arriving in an online fashion, an algorithm needs to

1

construct a matching – an independent edge set, where no two edges share a common vertex, of

largest size possible.

The problem of online bipartite matching was introduced in the seminal work of Karp, Vazirani,

Vazirani in 1990 [51], which presented a randomized online algorithm with competitive ratio 1 − 1
𝑒

in adversarial setting. They also showed that this bound is tight, which seemed to settle the problem

of online bipartite matching at least for a while. With the boom of the internet and the explosion in

online advertisement, there was a renewed interest in this problem beginning in the late 2000s, and

it was studied again under a different input model.

The adversarial assumption that the algorithm has absolutely no information about future input

is often too restrictive. In practice, oftentimes extra information is available to an algorithm,

particularly, in the form of historical statistical data. This naturally leads to the following two

questions: (1) can we use extra information to design better matching algorithms? and (2) can we

use extra information to give a better analysis of the performance of existing algorithms? In particular,

in sponsored search, the platform can collect how often different types of users are accessing the

system. This naturally leads to an input model known as the IID model. The IID stands for

independent identically distributed input items. Motivated by these considerations, Feldman et

al. [26] studied online bipartite matching under the IID setting and presented an algorithm which

achieved a competitive ratio of 0.67 (with high probability) breaking the 1 − 1
𝑒

barrier for the first

time in nearly 20 years. Since then, it has been followed up by many improvements in the IID

setting [6, 62, 45].

As evidenced by the literature cited above, up until now most of the works on online bipartite

matching considered statistical information with strong independence assumptions. This thesis is

the first work in the matching area that considers statistical information with limited dependence,

motivated by the following scenario. Consider the sponsored search again and suppose there is

a major event happening, such as the World Cup finals. It is reasonable to assume that a lot of

consecutive search queries received by the search platform are not independent, but have a higher

chance of being related to a major event (such as looking up player statistics for the soccer players

involved in a game). This corresponds to many searches being done by users who are soccer

enthusiasts, i.e., of a similar type.

2

We model the above scenario as follows. There is a bipartite type graph known to the algorithm

in advance. One side of the graph represents types of users, while the other side of the graph

represents different advertisers. There is an edge between a user type and an advertiser, if they are

potentially a good match. There is also a Markov chain with the state space being the set of user

types. A sequence of users of different types is drawn from the Markov chain, and they need to

be matched to advertisers, so as to maximize the total size of the matching at the end. Having a

Markov chain allows one to model that a user of a particular type is more or less likely to follow the

previous user of a particular type. The main conceptual contribution of the thesis is to introduce

this new input model. We note that adding a Markov chain to the picture substantially increases

the complexity of the model. Markov chain itself adds a quadratic (in the number of user types)

number of parameters to the model in addition to the initial distribution, number of samples, and

the type graph parameters. Thus, the Markov chain input model is rather general. In particular, it

generalizes IID models and even can be used to model adversarial setting (albeit, under a somewhat

unnatural setting of parameters). This necessitates the restriction of parameters to some special

classes. We demonstrate that it is possible to analyze algorithms under this model and even obtain

tight competitive ratios, which constitute the main technical contributions of this thesis.

More specifically, we consider the online matching problem in (2, 2)-biregular bipartite type

graphs under a family of Markov chains, representing parameterized lazy random walks. We analyze

two versions of a previously introduced online algorithm, Two Suggested Matching. We calculate

the expected size of matching in the online setting and present tight bounds on the asymptotic

competitive ratios of these two algorithms. We also motivate studying the setting of (2, 2)-biregular

bipartite type graphs and parameterized lazy random walks by examining real-world data related to

sponsored ads.

This thesis is structured the following way – we begin by introducing some notations, mathe-

matical definitions, and problem models in the preliminaries chapter. Next, in Chapter 3, we provide

a brief background on the work done on online bipartite matching under various input models. In

Chapter 4, we give an alternative characterization of the optimal solution in (2, 2)-biregular bipartite

graphs under the family of Markov chains stated above. This alternative characterization then allows

us to derive an asymptotically tight closed-form formula for the expected size of the matching in

3

the offline setting. In Chapter 5, we analyze two online algorithms and calculate the expected size

of online matching. Combining this with the results of Chapter 4, we obtain tight bounds on the

competitive ratios of the two algorithms in the considered regimes. In Chapter 6, we explain the

experiment by which we extract a bipartite type graph and Markov chain based on statistics from

a real world example of online advertisement. Finally, we summarize the results and present some

open questions in Chapter 7.

4

Chapter 2

Preliminaries

In this section, we provide a brief background on the mathematical structures which we use in

our thesis. We present some definitions and introduce notations to maintain consistency throughout

the results. We start by providing background on graphs and matching – the underlying structure and

problem of our works. We then provide some brief background on online algorithms, and present

the problem of online bipartite matching. As discussed in the previous chapter, online matching has

been studied under different models, which we summarize here, and present a new variation of the

model online bipartite matching under Markovian inputs.

2.1 Graph Theory

2.1.1 Graphs

In discrete mathematics and computer science, graphs are a way of representing a set of entities

which are related to each other. The objects are known as vertices or nodes and the relationship

between them is denoted using edges. Mathematically, a graph 𝐺 = (𝑉, 𝐸) is a pair, where 𝑉

represents the set of vertices and 𝐸 represents the set of edges. Directed graphs or digraphs are

graphs whose edges are directed. An edge 𝑒 ∈ 𝐸 of a directed graph is represented by a pair of

vertices (𝑣1, 𝑣2) where 𝑣1, 𝑣2 ∈ 𝑉 . By abuse of terminology, we can interpret undirected graphs

as special digraphs such that (𝑣1, 𝑣2) ∈ 𝐸 if and only if (𝑣2, 𝑣1) ∈ 𝐸 . Weighted graphs are graphs

in which a numerical value is assigned to the edges of the graph, which is used to represent some

5

metric, like distance, or cost associated with moving along the weight.

In this thesis, we focus on simple graphs - graphs with no parallel edges, which implies for a pair

of vertex 𝑣1 and 𝑣2, there can be at-most 1 edge from 𝑣1 to 𝑣2. In case of undirected graphs, we also

restrict the presence of self loops, which means the endpoints of an edge can’t be the same vertex.

For directed graphs, we allow the possibility of self loops1. Unless stated otherwise, from here on,

graphs will be used to refer to simple graphs.

The degree of a vertex for a graph, denoted by 𝑑𝑒𝑔(𝑣) is the total number of edges whose one of

the end points are incident on the said vertex. In other words, the total number of vertices a vertex

is connected to is the degree of the vertex. The neighborhood of a vertex 𝑣, is defined as the set of

vertices which share an edge with 𝑣 and is denoted by 𝑁 (𝑣). Directed graphs have out-degree and

in-degree which denote the outgoing and incoming edges to the vertex. We denote the in-degree and

out-degree of vertex 𝑣 as 𝑑𝑒𝑔+(𝑣) and 𝑑𝑒𝑔− (𝑣) respectively. A graph in which all vertices have the

same degree is known as a regular graph.

w1

w2

w3

w4

(a) Example of a directed graph with self loop at
vertex 𝑤1

v1

v2

v4

v5

v6

v3

(b) Example of a bipartite graph, white and gray
color denotes the two bipartite sets

Figure 2.1: Example of graphs.

A graph is said to be bipartite if the vertex set𝑉 can be bifurcated into 2 non empty, disjoint and

independent subsets 𝑉1 and 𝑉2, such that every edge is between 𝑉1 and 𝑉2. In other words, no edges

exist such that both of its endpoints lie in the same subset. From here on, for representing a bipartite

graph, we would use the notation of 𝐺 = (𝑈,𝑉, 𝐸) where 𝑈 and 𝑉 are the 2 disjoint vertex sets,

1We use self loops in directed graphs while using the graphical representation of Markov chain, in Section 2.3.3

6

and 𝐸 is the edge set. An edge (𝑢, 𝑣) ∈ 𝐸 when 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 . A bipartite graph, where each

vertex in 𝑈 has degree 𝑥, and each vertex in 𝑉 has degree y is known as a (𝑥, 𝑦)-biregular graph or

(𝑥, 𝑦)-regular bipartite graph.

2.1.2 Matching in Graphs

Definition. Given a graph, 𝐺 = (𝑉, 𝐸), a matching or independent edge set of the graph is an

edge set 𝑀 ∈ 𝐸 in which no edges share a common vertex. The matching of the largest cardinality

possible is known as the maximum matching of the graph, and the size of maximum matching is

denoted by 𝜈(𝐺).

An important problem in graph theory is to find the maximum matching of a graph, that is to

find the independent edge subset of a graph of maximum cardinality. This is known as the maximum

cardinality matching problem, often referred to as the maximum matching problem.

u1

u2

u3

v1

v3

v2

e1

e2

e3

e6

e5

e4

Figure 2.2: Example of a bipartite graph with 2 perfect and maximum matchings, {𝑒1, 𝑒2, 𝑒3} and
{𝑒4, 𝑒5, 𝑒6}. Note these 2 matchings are not disjoint.

A matching is said to be a perfect matching if all vertices have an edge incident on it belonging

to the matching. Disjoint matchings are two or more matching sets in a graph which do not share an

edge among themselves.

The work of this thesis revolves around calculating matching in bipartite graph in online setting,

and we expand upon the constituent parts of the problem in the next few sections of this chapter.

7

2.2 Online Algorithms

Following on from the naive formulation of online problems in Chapter 1, we reintroduce online

problems in this section. An online problem or a problem in online setting can be interpreted as

follows: given a sequence of items as an input instance, an online algorithm outputs a decision after

each input item, with the goal of optimizing an associated objective function. The algorithm cannot

change its decisions after making them, and the decisions are final and irrevocable.

The key formulation of problems in online setting lies in the partial knowledge of the input

instance and making final2, irrevocable decisions on each input item without seeing the whole input

sequence. Vis-à-vis the offline setting, where the algorithm is aware of the complete input instance

in advance, and it can utilize the information of the whole input structure to optimize the associated

cost function. We can formally define online algorithms and online problems as follows, except for

a few classes of problems, such as exploration and navigation problems.

Definition (Online Algorithm). An algorithm which processes its input instance in a sequential

piece by piece manner, and outputs immutable decisions for each input item is known as an online

algorithm.

We use 𝐴𝐿𝐺 as a shorthand notation for the online algorithm from here on when the context

suffices. There are many ways to characterize online problems formally, and we define it using a

request answer framework [10], where items of input instance are presented as requests to 𝐴𝐿𝐺,

and it subsequently provides an ‘answer’ to each of these requests.

Definition (Online Problem). An online problem can be formulated as a request answer exchange,

comprising of request set 𝑅, answer set 𝐴, and objective functions, 𝑓𝑛 = 𝑅𝑛 × 𝐴𝑛.

Given an input instance 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of the problem, each item 𝑥𝑖 ∈ 𝑅 is revealed incremen-

tally to 𝐴𝐿𝐺, which presents an answer or decision 𝑑𝑖 ∈ 𝐴, where 𝑑𝑖 is dependent only on the input

items revealed so far, 𝑥≤𝑖 and the previous decisions, 𝑑<𝑖 . The goal is to maximize or minimize the

objective function 𝑓𝑛 = (𝑥1, . . . , 𝑥𝑛, 𝑑1, . . . , 𝑑𝑛) after processing the whole input instance.
2For some models of online problems, there is also an interest in making semi revocable decisions, which means, even

if the algorithm can’t go back and change the decisions, it can disregard or overwrite them in later stages.

8

2.2.1 Measuring Performance of Online Algorithms

The goal of the online algorithm is to make decisions such that the associated cost function gets

maximized or minimized, depending on the problem. Since the discussion is centered around finding

maximum matching in online settings, we define the rest of terms with respect to a maximization

problem. Given input instance 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), we denote the value obtained by the objective

function through 𝐴𝐿𝐺’s decision as 𝐴𝐿𝐺 (𝑥). While evaluating the performance of an online

algorithm, the conventional metrics of time or memory(space) utilization are not used. A popular

metrics of analysis of online algorithms is competitive analysis, introduced by Karlin et al. [49].

In competitive analysis, the performance of an online algorithm is judged by comparing the value

of the objective function obtained by the online algorithm to that of presenting the same problem

in an offline setting and getting an optimal offline solution. More precisely, we compare it with the

value obtained by the best possible optimal offline algorithm, which we denote using 𝑂𝑃𝑇 , and we

denote the value of the objective function as 𝑂𝑃𝑇 (𝑥). This gives us an idea about what ratio of

output we lose when we present an offline problem in online setting. This ratio between the value

obtained by 𝐴𝐿𝐺 and 𝑂𝑃𝑇 is known as the (asymptotic) competitive ratio of the 𝐴𝐿𝐺, and it is

denoted using 𝜌(𝐴𝐿𝐺).

Definition (Asymptotic Competitive Ratio). We say that 𝐴𝐿𝐺 is (asymptotically) 𝜌-competitive, or

alternatively 𝐴𝐿𝐺 achieves competitive ratio 𝜌, if for inputs 𝑥 we have:

𝐴𝐿𝐺 (𝑥) ≥ 𝜌 · 𝑂𝑃𝑇 (𝑥) − 𝑜(𝑂𝑃𝑇 (𝑥)).

The (asymptotic) competitive ratio of 𝐴𝐿𝐺, denoted by 𝜌(𝐴𝐿𝐺), is the supremum over all 𝜌 such

that 𝐴𝐿𝐺 is 𝜌-competitive, i.e.:

𝜌(𝐴𝐿𝐺) = sup{𝜌 : 𝐴𝐿𝐺 is 𝜌-competitive}.

The online algorithm 𝐴𝐿𝐺 is said to be 𝜌(𝐴𝐿𝐺)-competitive if this ratio is bounded. From here

on, we would denote 𝜌(𝐴𝐿𝐺) using 𝜌 where the context is clear. Note that when the input generation

or the decisions of 𝐴𝐿𝐺 involve randomness, we take the ratio of expected values obtained by the

9

objective functions, rather than the standard function values computed directly from the objective

functions.

Note that while analyzing an algorithm 𝐴𝐿𝐺 for an online problem (in a maximization problem),

we are primarily concerned with two results – the upper bound limits with respect to the problem,

and the lower bound with respect to the algorithm being analyzed. The lower bound 𝜌𝐿𝐵 attained by

the algorithm establishes that over any input sequence, the algorithm achieves at least 𝜌𝐿𝐵 times the

value attained by the optimal algorithm 𝑂𝑃𝑇 . In the same context, the upper bound of an algorithm

is the best competitive ratio the 𝐴𝐿𝐺 can attain, over all input instances. When these two, the lower

bound of 𝐴𝐿𝐺, and the upper bound of 𝐴𝐿𝐺 coincide, it illustrates that the analysis of 𝐴𝐿𝐺 is tight.

The upper bound of a problem 𝜌𝑈𝐵 demonstrates that for any online algorithm, and any input

sequence possible, the 𝐴𝐿𝐺 can not perform better than 𝜌𝑈𝐵 times the value obtained by 𝑂𝑃𝑇 .

When the lower bound of an 𝐴𝐿𝐺 matches the upper bound of the problem, we note that the

performance of the algorithm is maximal for the problem and the bounds are tight.

By abuse of notation, we sometimes use 𝐴𝐿𝐺 to refer to both the online algorithm and the value

obtained the the objective function on the algorithm’s decision when the context is clear. The same

holds for 𝑂𝑃𝑇 .

2.2.2 Modeling Graph Problems in Online Setting

Problems centered on graphs in online settings, particularly where the graph is an input can

be formulated in many different ways. The underlying theme in the problems concerning online

graphs is having knowledge of only the partial graph structure, where the graph gets built up as

different sections of graphs present themselves in the input. In the same vein, the problem of finding

maximum matching in bipartite graph in online setting, which has graph as its input, has different

components of the graphs revealed incrementally in an online fashion. At any point, the 𝐴𝐿𝐺 only

knows about the unveiled part of the complete graph, with some vertices and edges still remaining.

Different scenarios lead to different ways of how the ‘parts’ or components of graphs are presented

in a sequential manner. For example, inputs can be presented in the form of edges (denoted by a pair

of vertices) from the edge set of the graph as input, which would build up the graph step-by-step.

Another representation can be presenting the vertices of the graph along with information about the

10

neighborhood of the vertex.

Our thesis is concerned with matching in bipartite graphs, and we present a popular model of

representing bipartite graph as input. Given a bipartite graph 𝐺 (𝑈,𝑉, 𝐸), the algorithm knows one

side of bi-partition, 𝑈 in advance. We label this as the offline vertex set. The other bi-partition, 𝑉

is labeled as the online vertex set. Before the input sequence starts, only vertices from the offline

set 𝑈 are present. We follow the convention of 𝑈 being the offline vertex set and 𝑉 being the online

vertex set for an online bipartite graph 𝐺 (𝑈,𝑉, 𝐸) throughout the thesis.

u1

u2

u3

v2

v1 u1

u2

u3 v1

v2

v1u1

u2

u3

v1

Figure 2.3: Example of an online graph building up through incoming online vertices in sequence
𝑣1, 𝑣2, 𝑣1. Here, 𝑈 = {𝑢1, 𝑢2, 𝑢3} and 𝑉 = {𝑣1, 𝑣2}, and the neighbors of 𝑣1 and 𝑣2 are 𝑁 (𝑣1) =
{𝑢1, 𝑢2} and 𝑁 (𝑣2) = {𝑢2, 𝑢3}.

Each item of the input sequence (denoted by vector ®̂𝑣) consists of a pair, (𝑣𝑖 , 𝑁 (𝑣𝑖)), where

online vertex 𝑣𝑖 has ‘a type’ or is similar to a vertex in the online set𝑉 , in the sense that if 𝑣𝑖 ∈ ®̂𝑣 and

𝑣 𝑗 ∈ 𝑉 are of the same type, they have the same neighbors. Mathematically, if 𝑣𝑖 ≃ 𝑣 𝑗 (are of the

same type), then 𝑁 (𝑣𝑖) = 𝑁 (𝑣 𝑗). Along with the online vertex 𝑣𝑖 , information about its neighbor in

the opposite set 𝑈 with which it shares an edge is also revealed. An example is presented in Fig 2.3.

Online vertices occur in the sequence (𝑣1, 𝑣2, 𝑣1).

Sometimes, the vertices occurring online, in the input sequence are sampled from a distribution

on the online vertices. In such cases, the graph formed in the online fashion, with offline vertex set

𝑈 and these online occurring vertices are different from the base sample graph, which consisted of

the 𝑈 and the online vertex set 𝑉 . We refer to the base graph, 𝐺 (𝑈,𝑉, 𝐸) as the type graph and the

graph constructed online as the realization graph. We discuss these in more detail in sections where

we introduce different input models for online bipartite matching.

Till now, we have presented an overview of what the problem of finding maximum matching

11

is, and how can this problem of bipartite matching be formulated in the online setting. Combining

these two, we now present the definition of online bipartite matching.

Definition (Online Bipartite Matching). The online bipartite matching problem asks to find the

maximum matching set in a bipartite graph 𝐺 (𝑈,𝑉, 𝐸), with 𝑈 known in advance, and vertices

(along with their incident edge set) having a type in𝑉 being revealed in an online manner. Upon the

arrival of a vertex, the 𝐴𝐿𝐺 decides to include (or not) one of the revealed edges in the matching

set, such that the final matching is maximized.

2.3 Input Models for Online Bipartite Matching

We have discussed how graph problems can be modeled in online setting – more specifically,

what the input of online graphs can be. Now we discuss how these inputs are generated. Different

ways of generating input instances for a problem are classified and studied under input models, which

we discuss in this section. We also provide an overview of Markov chains, and introduce a new

model of input generation using Markov chains.

2.3.1 Adversary

A popular representation of input generation for online problem is by conceptualizing a very

powerful, all knowing adversary, which knows the online algorithm before hand, and gives each

new input item such that the cost function becomes minimized relative to 𝑂𝑃𝑇 (for a maximization

problem). An adversary is a function or a strategy to generate input instances for the online problem

(with respect to an online algorithm). One can imagine the adversary 𝐴𝐷𝑉 and the algorithm 𝐴𝐿𝐺

playing a game on the opposite sides. While the 𝐴𝐿𝐺 makes decision to maximize the objective

function, the 𝐴𝐷𝑉 generates each input instance based on all previous input instances and 𝐴𝐿𝐺’s

decision on those input instances, such that the objective function is minimized relative to 𝑂𝑃𝑇 .

This is known as the adversarial model of input generation.

12

2.3.2 Randomness in Input Sequence

Another way of generating online input is by introducing randomness in the generated sequence,

or sampling from a probability distribution.3 Here, we primarily use random variables to characterize

randomness in events. By convention, capital letters are used to denote random variables and

expectation of the random variable is used to denote the weighted average of all values the random

variable can take. The expectation of a random variable 𝑋 is denoted by E(𝑋), and if a 𝑋 is sampled

from a probability distribution D, it is denoted using 𝑋 ≃ D.

Randomness in the input sequence can be introduced in different ways, for e.g. the 𝐴𝐷𝑉 can

choose a distribution on the input vertices, but the input sequence presented to the 𝐴𝐿𝐺 can be a

random permutation. This takes away the control from 𝐴𝐷𝑉 from presenting the worst case sequence

to 𝐴𝐿𝐺 and is generally an easier model for 𝐴𝐿𝐺 to achieve a competitive ratio, as compared to the

adversarial model. Stochastic inputs can be generated from sampling the input from different well

known distributions, or distributions that hold some property. These ways of generating inputs are

commonly studied under stochastic input models. When inputs are generated in a random manner

or stochastically, we compare the expected cost of the 𝐴𝐿𝐺 to the expected cost of the 𝑂𝑃𝑇 to

analyze the performance of the online algorithm. Denoting the input sequence of random variables

as ®𝑋 = (𝑋1, 𝑋2, . . .), the updated definition of (asymptotic) competitive ratio becomes:

E𝑋1,𝑋2,... (𝐴𝐿𝐺 (®𝑋)) > 𝜌 · E𝑋1,𝑋2,... (𝑂𝑃𝑇 (®𝑋)) − 𝑜(E𝑋1,𝑋2,... (𝑂𝑃𝑇 (®𝑋)))

A famous stochastic process Markov chain, which we use to sample online vertices introduced

in a new model is discussed next.

2.3.3 Markov Chains

Markov chains (we consider only discrete time Markov chains in this thesis) are stochastic

models used to generate a sequence of random variables. The sequence of random variables holds

the Markov property, which limits the dependence of the probability of the current event only on

3While stochastic and random represent the same thing, we present popular, well known distributions under stochastic
setting and use random models for general, arbitrary permutations and orderings.

13

the probability of immediately preceding previous events. Another way of representing the Markov

property is by emphasizing the ‘memorylessness’ of the stochastic process – given the current state,

the future states of the Markov chain are independent of its past states.

Given a Markov chain M, the state space 𝑆 = {𝑥1, 𝑥2, · · · 𝑥𝑛} represents the set of values which

the random variable sampled from M can attain. Obtaining 𝑘 samples, we get a 𝑘-length sequence

of random variables, 𝑋1, 𝑋2, · · · 𝑋𝑘 , which satisfy the Markov property:

𝑃(𝑋𝑘 = 𝑥𝑘 | 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . 𝑋𝑘−1 = 𝑥𝑘−1) = 𝑃(𝑋𝑘 = 𝑥𝑘 | 𝑋𝑘−1 = 𝑥𝑘−1).

0.1

0.4

0.10.8

0.20.2

x1

x2 x3

0.40.1

0.7

Figure 2.4: Example of a Markov chain on 3 states, 𝑥1, 𝑥2
and 𝑥3.


0.4 0.2 0.4
0.1 0.8 0.1
0.2 0.7 0.1


Figure 2.5: Stochastic Matrix of
the corresponding Markov chain,
𝑀 [𝑖] [𝑗] = 𝑃(𝑋𝑡+1 = 𝑥 𝑗 | 𝑋𝑡 = 𝑥𝑖).

The distribution of the first random variable among the sampled sequence is given by an initial

distribution, denoted using 𝜋. Baring the first random variable, the value obtained by any subsequent

sampled random variable is conditionally dependent on the value of its preceding random variable

only. This conditional probability is given by the transition stochastic matrix, 𝑀 of the Markov

chain. The stochastic matrix is a square matrix of 𝑛 × 𝑛 dimension, which gives the probability of

transition from one state to other. The transition probability between states 𝑥𝑖 and 𝑥 𝑗 is given by

𝑀 [𝑖] [𝑗]. We refer to the following Markov chain by M(𝜋, 𝑀).

Definition (Markov Chain). A discrete time Markov chainM(𝜋, 𝑀) on state space 𝑆 = {𝑥1, 𝑥2, · · · 𝑥𝑛}

is a stochastic process used to generate a sequence of random variables, 𝑋1, 𝑋2, . . . , 𝑋𝑡 that satisfies

the Markov property, which refers to the fact that the future state depends only on the present state,

14

not on the sequence of past states. Formally:

𝑃(𝑋𝑡+1 = 𝑥𝑡+1 | 𝑋𝑡 = 𝑥𝑡 , 𝑋𝑡−1 = 𝑥𝑡−1, . . . , 𝑋0 = 𝑥0) = 𝑃(𝑋𝑡+1 = 𝑥𝑡+1 | 𝑋𝑡 = 𝑥𝑡),

for all 𝑡 > 0, where 𝑡 represents the discrete time steps at which a random variable is sampled, 𝜋 is

the initial distribution for sampling 𝑋1, and 𝑀 represents the transition matrix.

We assume the transition probabilities of Markov chains which we deal with don’t change with

time. A Markov chain is time-homogeneous if the transition between two states is independent of

𝑘 , 𝑃(𝑋𝑘 = 𝑥 | 𝑋𝑘−1 = 𝑦) = 𝑃(𝑋𝑘+1 = 𝑥 | 𝑋𝑘 = 𝑦).

A famous and well studied stochastic process, random walk can be simulated using Markov

chains. Random walks on a mathematical space is a sequence of random variables that reflect

random subsequent steps taken on the space starting from an initial position. Random walks on

graphs can be thought of as starting from an initial vertex, and then traveling to a next vertex (or

staying at the same vertex) in discrete time steps. The transition from current vertex to the next is

described by the probability of jumping between these 2 vertices.

A Markov chain essentially replicates the same movement, if the graph is strongly connected

(there might be a probability of moving between unconnected components of the graphs, but we

restrict movement only between described state space in Markov chains). The vertex set of the graph

represents the state space of the Markov chain, and the probability of ‘walking’ from one vertex to

another can be emulated by its stochastic matrix. A popular class of random walks is lazy random

walk, in which the walk stays at the same vertex with probability 1
2 , and moves to its neighbors

uniformly with the combined remaining probability of 1
2 .

We generalize this class of random walks, by defining a parameter 𝑝, which denotes the proba-

bility of remaining in the same state. The neighboring vertices can be uniformly reached with the

remaining probability of 1 − 𝑝. In the case of Markov chains with 𝑛 states, this can be defined

using a stochastic matrix, where 𝑀 [𝑖] [𝑖] = 𝑝 and 𝑀 [𝑖] [𝑗] =
1−𝑝
𝑛−1 , for all 𝑖, 𝑗 ∈ [𝑛]. We exhibit

that the Markov process can start at any 𝑛 states uniformly, and the initial probability distribution

is 𝜋 = U[𝑛], where U[𝑛] denotes the uniform discrete probability distribution among n states, the

probability of each state being 1
𝑛

.

15

With this, we have sufficient information to define the Markov chain based input model, which

we present in the next section.

2.3.4 Summary of Input Models for Online Bipartite Matching

We summarize a few different models in which inputs can be generated for the focal problem

here – ‘online bipartite matching’. Note, for 𝐺 (𝑈,𝑉, 𝐸), 𝑈 is the offline vertex set and known in

advance to the algorithm, and 𝑉 is the online vertex set, and online vertices with type in 𝑉 are the

input requests.

(1) Adversarial model: The input is generated using an adversary 𝐴𝐷𝑉 , under the circumstances

that the algorithm 𝐴𝐿𝐺 only knows 𝑈 before the input begins, and has no knowledge of what

the ’types’ of online input vertices in 𝑉 and their neighborhood 𝐸 would be. In other words,

𝐴𝐿𝐺 is not familiar with the input graph structure beforehand. The 𝐴𝐷𝑉 chooses the worst

possible graph 𝐺 and generates the worst possible input sequence.

(2) Random order model: Similar to the Adversarial model, the 𝐴𝐷𝑉 chooses the worst graph 𝐺

for the problem, but it can’t choose the order of input vertices, i.e. the ordering of the online

sequence is randomly generated, and can be any permutation of the possible input sequences.

(3) Stochastic model: Similar to the Random model, 𝐴𝐷𝑉 chooses and fixes the type graph 𝐺 for

the problem before the input requests begin. Each input vertex 𝑣𝑖 is chosen from a distribution

D𝑖 ∈ ®D, where ®D is a vector of probability distributions over the online vertex set𝑉 . Whether

®D is known to 𝐴𝐿𝐺 in advance or not divides the problems into different settings of known

distribution and unknown distribution models. We focus on models in which 𝐴𝐿𝐺 has a priori

knowledge of the distributions because we want to use this beforehand statistical knowledge

to maximize the size of the matching set.

A well known model studied under this scenario is the Independently and Identically Dis-

tributed (IID) model. We discuss here the Known IID model, but its ‘unknown’ counterpart,

the Unknown IID model is also well studied and researched. Another model of sampling from

a distribution can be sampling from a Markov chain known beforehand to the 𝐴𝐿𝐺, which we

introduce in this thesis. We discuss these two models below.

16

(a) Known IID model has all vertices sampled from a fixed distribution D in an indepen-

dently and identically distributed fashion, which means each vertex is sampled from the

same distribution (identical part), and choosing each online vertex is independent of any

other decision (independent part).

(b) Known Markov chain model, introduced for the first time in this thesis presents a way of

sampling vertices from a Markov chain M for the online bipartite matching problem.

Definition (Known Markov Chain Model). Online bipartite matching in graph𝐺 (𝑈,𝑉, 𝐸),

under the Known Markov chain model asks to find the maximum matching set, where

online vertices having a type in 𝑉 are sampled from a Markov chain M distributed over

𝑉 .

We want to highlight two points related to the different input modeling of the problem. First,

under stochastic settings with known distributions, the algorithm has advance knowledge about 𝑈

similar to any other input model stated above. As it has information about the distribution from

which online vertices are sampled from, it also knows all possible vertices in 𝑉 (and its edge set

between vertices from 𝑉 to 𝑈), over which the samples are distributed. Hence, the 𝐴𝐿𝐺 has a priori

knowledge about both vertex sets 𝑈 and 𝑉 , and the edge set 𝐸 . This can be reorganized to state that

in an online bipartite matching problem, under known distribution (stochastic) settings, the 𝐴𝐿𝐺 has

beforehand knowledge about the type graph of the problem, 𝐺 (𝑈,𝑉, 𝐸). The final graph formed by

𝑈 and vertices obtained by sampling from the distribution over 𝑉 is known as the realization graph

of the problem. Note that in Adversarial and Random order model, only one graph is present in the

problem, the ‘input graph’ as the graph chosen by 𝐴𝐷𝑉 is presented to the 𝐴𝐿𝐺 incrementally.

Second point, it can be observed that problem of maximizing matching under given stochastic

information about the graph makes it easier. More information about the structure of graphs makes

the process of decision making of whether to include an edge in matching or not more optimized.

Another point to be highlighted, it can be seen that the Random order model is weaker than the

Adversarial model because in the latter, the adversary has power of choosing the worst case input

instance, which it loses in the former. Because 𝐴𝐿𝐺 obtains at least 𝜌𝐴𝑑𝑣 in Adversarial model, for

all input instances, it does so even in expectation over a random input order. Combining these, we

17

can informally state that from an algorithm designing perspective, Known IID model is easier than

Random order model, and Random order model is easier than Adversarial model. Informally, we

can state the following theorem:

Theorem 1 (Competitive Ratio under Input Models).

𝜌𝐴𝑑𝑣 ≤ 𝜌𝑅𝑂 ≤ 𝜌𝐾𝑛𝑜𝑤𝑛−𝐼 𝐼𝐷

For now, because of the lack of extensive research on Markov chain model, and Markov chains

being a very general model and a part of a very large family of generating stochastic processes, it is

difficult to analyze where this model places in the above model concretely.

We finish off the Preliminaries chapter by summarizing the above discussion in stating the

problem at the crux of this thesis – ‘online bipartite matching under Markov chain model’.

2.4 Online Bipartite Matching under Markov Chain Model

Combining all our previous segments, we can now formally state the problem of online bipartite

matching under Markov chain model. Online bipartite matching under Markov chain model refers

to the problem of solving the maximum cardinality matching problem in bipartite graph in an online

setting, where the input – online vertices are generated using a Markov chain on the online vertex

set. The online algorithm, 𝐴𝐿𝐺 makes online decisions on whether to include an edge between the

online vertex and its available neighbor in the final matching, such that the size is maximized.

We describe our problem as follows:

Given a bipartite graph 𝐺 = (𝑈,𝑉, 𝐸), with 𝑈 and 𝑉 being the offline and online vertex set

respectively, which we refer to as the type graph of the problem. A Markov chain M(𝜋, 𝑀), on the

state space 𝑉 generates a 𝑘 length sequence of online vertices, denoted by ®̂𝑣 = (�̂�1, �̂�2, · · · �̂�𝑘). Each

online vertex, �̂�𝑖 has a type in 𝑉 , denoting that 𝑁 (𝑣𝑖) = 𝑁 (𝑣 𝑗), for some 𝑣 𝑗 ∈ 𝑉 . At the arrival of

𝑣𝑖 , along with the information of its incident edges to vertices in 𝑈, the 𝐴𝐿𝐺 decides to include

(or not) one of these edges to the matching set maintaining that the matching set is independent

throughout. 𝐴𝐿𝐺 can include at most one edge for each online vertex, otherwise there would be

18

2 or more edges with the current online vertex being common. The objective of the problem is to

maximize the size of matching set. The graph formed, between𝑈 and (after encountering) all online

vertices is referred to as the realization graph of the problem. The efficiency of 𝐴𝐿𝐺 is computed

by comparing the size of matching formed by 𝐴𝐿𝐺’s decisions to the size of matching computed in

the realization graph under offline settings by an optimal offline algorithm 𝑂𝑃𝑇 .

Currently, the problem for general type graphs and general Markov chains is quite vast and has

no specific results. For this thesis, we discuss the problem of online bipartite matching for specific

classes of type graph and Markov chains as input. Particularly, we study matching in bipartite graphs

which are biregular, specifically (2, 2)-biregular graphs. For input generation, we employ Markov

chains behaving similarly to the phenomena of lazy random walk as discussed in Section 2.3.3.

19

Chapter 3

Literature Review

Graphs are a foundational concept in mathematics and computer science, serving as a versatile

framework for modeling relationships and interactions in a wide range of domains. From social

networks, where users and their connections are represented as nodes and edges, to communication

systems that model routers and data links, graphs provide an elegant framework for understanding

complex structures. Graphs can be modeled to capture the complexities of protein-protein inter-

actions and gene regulatory networks in biology, providing insights into molecular mechanisms

and cellular functions. In physics and chemistry, graphs represent lattice structures and molecu-

lar bonds, enabling the study of material properties and chemical reactions. In machine learning,

graph-based frameworks power advancements such as recommendation systems and graph neural

networks, allowing for the processing of data with intricate, non Euclidean relationships. Mean-

while, in theoretical computer science, graphs drive advancements in areas like algorithm design for

shortest paths and network flows, complexity theory through reductions and completeness problems,

and automata theory via state transition models.

This thesis narrows its focus to matching problems in bipartite graphs, a fundamental area

within graph theory with practical and theoretical significance. Matchings in bipartite graphs have

wide-ranging offline applications, such as assigning tasks to workers, pairing students to projects,

or matching organs to patients in transplant programs. A few prominent problems include stable

marriage (matching) problem [32], stable roommates problem [44], optimal kidney exchange [5, 4],

resident doctor matching [66], etc.

20

In such cases, the entire problem instance is known upfront, allowing algorithms like the

Hungarian or Hopcroft-Karp to compute optimal or near optimal solutions efficiently. In contrast,

online bipartite matching focuses on scenarios where input arrives sequentially, and decisions must

be made immediately without knowledge of future data. This is critical in applications like online

advertising, where ad slots and advertisers are matched in real time, or ride sharing platforms, where

passengers and drivers are dynamically paired. Online matching algorithms strive for competitive

performance, measured against the ideal offline solution, making their applications indispensable in

dynamic, real-time systems.

In this chapter, we present a brief history of the problem of matching in graphs and some

important results. We first present the problem in offline setting, showing important theorems,

algorithms and results in this problem in the past century. We then survey some recent developments

in the topic of online matching, and summarize important benchmarks in different input models

discussed in Chapter 2.

3.1 A Short History of the Matching Problem

Matching has been a central problem in graph theory, with its roots lasting back to early 20th

century. In bipartite graph, matching has found applications in a spectrum of fields, particularly in

economics [1, 18, 67], wherein the theory of matching markets resources are allocated to respective

assignees in an optimal fashion.

Early results on matching in graphs were presented by Kőnig [60], who stated that the cardinality

of maximum matching in a bipartite graph is equal to the size of minimum vertex cover. A vertex

cover of a graph is the subset of the vertex set such that it includes at least one endpoint of every

edge of the graph. The result, known as Kőnig’s theorem was also independently discovered by

Egerváry [23] for the generalized case of graphs with weighted edges.

In general, the problem of finding the smallest vertex cover of an arbitrary graph is NP-hard,

and also hard to approximate. The vertex cover set of a graph is at least as big as any matching set

of the graph, because the vertex cover must contain at least one vertex from each matching edge.

But in the case of bipartite graphs, the size of minimum vertex cover is exactly equal to the size of

21

maximum matching.

3.2 Offline Bipartite Matching

Offline bipartite matching can be studied under several settings, based on the nature of the

underlying graph structure. We first present results on matching in unweighted bipartite graphs,

and then generalize the results to vertex and edge weighted bipartite graphs. Since the problem of

matching in general graphs also lie in the same domain, we briefly just state the results in the closing

remarks of the section, without going into too much depth.

3.2.1 Unweighted Bipartite Matching

Matching in both, bipartite and general arbitrary graphs can be computed optimally in P

complexity class. In Berge [7], the author introduced the concept of augmenting paths which

serves as the framework for many algorithms in calculating the maximum matching in bipartite

graphs. For a graph 𝐺 (𝑉, 𝐸) and matching 𝑀 , an alternating path is a simple path of edges present

alternatively in 𝑀 and 𝐸 \ 𝑀 . An augmenting path is an alternating path with exposed end-points,

where the starting and ending edges of the path are not in 𝑀 .

Berge’s theorem states that a matching 𝑀 is maximum iff it does not admit an augmenting path

with respect to 𝑀 . If it does admit an augmenting path, then flipping edges in the augmenting path

gives a matching, i.e. the edges in the augmenting path but not in 𝑀 are also a matching, and of

size 1 greater than size of matching 𝑀 . Thus, matching in graphs can be calculated by initially

starting from an empty matching set and finding augmenting paths to update the matching set, until

the matching doesn’t admit an augmenting path.

In bipartite graphs, augmenting paths can be efficiently detected by using Breadth First Search

(BFS) algorithm. Starting from a vertex 𝑠, which has no edges from matching set incident on it, we

search among the neighbors of 𝑠 and either find another vertex 𝑡 which has no edges in the matching

set incident on it, giving an augmenting path. Or if the vertex 𝑡 has an edge in the matching incident

on it, let’s say with vertex 𝑢, then we find an augmenting path from u, along the path 𝑠 − 𝑡 − 𝑢, in

which the edge between 𝑠 and 𝑡 is not in the matching, and the edge between 𝑡 and 𝑢 is present in

22

the matching. To check if an augmenting path can be found with respect to a matching, we run this

BFS step for all vertices 𝑠 ∈ 𝑉 , which takes 𝑂 (|𝑉 |) time and the BFS algorithm takes 𝑂 (|𝐸 |) time,

making the time complexity of the process to be 𝑂 (|𝑉 | |𝐸 |).

The problem of finding maximum matching in bipartite graphs can be reduced to another closely

related problem, of finding maximum flow in a flow network. A flow network is a directed graph,

where each edge has a capacity, or the maximum flow possible through the edge. The graph has

two special vertices, source and sink, which only has outgoing and incoming flow respectively. The

objective of the problem is to find the maximum amount of flow that can pass through the network,

respecting the edge capacity constraints. A bipartite graph 𝐺 (𝑈,𝑉, 𝐸) can be converted to a flow

network by adding auxiliary source – 𝑠 and sink – 𝑡 vertices on the opposite sides of the bi-partition,

such that there are outgoing edges from 𝑠 to all vertices in 𝑈, and similarly, incoming edges from all

vertices in 𝑉 to 𝑡. The capacity of all edges in the newly created flow network is 1.

In 1956, Ford and Fulkerson [28] introduced the Ford Fulkerson method, a greedy procedure

that calculates the maximum flow in a flow network by finding an augmenting path from source to

sink. In general graphs with integral edge capacity, finding augmenting paths takes 𝑂 (|𝐸 |) time, and

the procedure takes 𝑂 (𝑓 · |𝐸 |) time overall, where 𝑓 is the maximum flow possible. This is because,

each time an augmenting path is found, flow increases by at least 1. Edmonds-Karp Algorithm,

introduced in Edmonds [21], an implementation of the Ford Fulkerson method computes the

maximum flow in a network in 𝑂 (|𝑉 | |𝐸 |2) time. Dinic’s Algorithm [14], based on level graphs and

blocking flow, runs in 𝑂 (|𝑉 |2 |𝐸 |).

Both the Edmonds-Karp Algorithm and Dinic’s Algorithm are used to calculate the maximum

flow in flow networks and can be used to calculate the maximum matching for a bipartite graph,

modified to be a flow network. Another algorithm for calculating maximum flow in bipartite

graph, Hopcroft-Karp Algorithm, introduced independently in [38] and [52] has a run time of

𝑂 (
√︁
|𝑉 | |𝐸 |).

While the focus is on matching in bipartite graphs, a closely related and quite important theorem

discussing matching in the case of general graphs cannot be overlooked. In the case of non

bipartite graphs, augmenting paths can be missed due to the presence of odd length cycles in

the graphs ([53] illustrates an example for this scenario). In Edmonds [20], Edmonds gave the

23

famous Blossom Algorithm for calculating the maximum matching in arbitrary graphs. It works

by finding blossoms – odd length cycles in the graphs, and contracting it to a single vertex and

continuing the search of finding an augmenting path in the graph. This is a polynomial time

algorithm, with its time complexity being 𝑂 (|𝑉 |2 |𝐸 |), and this paper introduced the concept of P

time complexity/algorithms.

A faster algorithm for calculating maximum matching in arbitrary graphs runs in 𝑂 (
√︁
|𝑉 | |𝐸 |)

time, given by Micali et al. [65] (rectified in [71]). Similar bounds can be achieved by algorithms in

Blum et al [9], Gabow et al [31], etc.

Weighted Version

The weighted versions of bipartite matching are generalizations of the unweighted bipartite

matching problem, where either vertices or edges have weights associated with them, and the

objective is to find the matching set that maximizes the summation of these quantities. The model of

matching problem discussed above can be more precisely defined as maximum cardinality matching,

where the goal is to find the matching set of largest cardinality possible. We introduce the two different

versions next.

3.2.2 Vertex Weighted Bipartite Matching

In the vertex weighted bipartite matching problem, the target is to find a matching set, such that

the sum of weights of vertices of the edge in the matching set is maximized. Dobrian et al. [15] and

Halappanavar [37] gave a 𝑂 (|𝑉 | |𝐸 |) algorithm for computing maximum vertex weighted matching

in bipartite graphs, which works by dividing the graph into two one side weighted bipartite graph

and solving the problem of maximum weighted matching on it. The two matchings are combined

using the Dulmage–Mendelsohn decomposition [17].

Spencer et al. [68] gave a 𝑂 (|𝑉 | log(|𝑉 |) |𝐸 |) for solving the problem in general graphs. The

theses of Halappanavar [37] and Al-Herz [3] cover exact and approximation algorithms for this

problem in detail.

24

3.2.3 Edge Weighted Bipartite Matching

Another well studied model of this problem is maximum weight matching problem. Given a

graph with edge weights, the goal is to find a matching set such that the sum of edge weights is

maximized. The maximum cardinality matching problem is a special case of the maximum weight

matching problem, with all the edge weights being 1. The Blossom algorithm [20], discussed above

can find the maximum weight matching for both bipartite and non-bipartite graphs in 𝑂 (|𝑉 |2 |𝐸 |)

time.

The maximum weighted matching problem in bipartite graphs is popularly known as the assign-

ment problem. The Hungarian method, introduced by Kuhn in [58] gave an 𝑂 (|𝑉 |4) procedure of

finding the solution to this model, which was modified upon to achieve 𝑂 (|𝑉 |3) time complexity

independently by Edmonds and Karp [22] and Tomizawa [70].

Johnson [47] gave an 𝑂 (|𝑉 | log𝑑 |𝑉 | |𝐸 |), where 𝑑 = 2 + |𝐸 |
|𝑉 | algorithm for weighted bipartite

matching problem, which was improved to 𝑂 (|𝑉 |2 log |𝑉 | + |𝑉 | |𝐸 |) by Fredman and Tarjan [29] by

the use of Fibonacci heaps. A similar bound is achieved for maximum weighted matching in general

graphs given in Gabow [30].

Duan and Pettie [16] surveys and presents important results on linear time approximation algo-

rithms on finding maximum cardinality matching and maximum edge weighted matching problems.

3.3 Online Bipartite Matching

The focus of the work in this thesis is centered around calculating the size of matching in online

bipartite graphs. In particular, we focus on stochastic setting, where the occurrence of online vertices

have a Markovian dependency among them. As discussed in Section 2.3.4 of the previous chapter,

different input models under which the online bipartite matching problem is studied are – Adversarial

model, Random order model, Known IID model (under stochastic models). We once again discuss

this problem under different input models for unweighted and weighted bipartite graphs, and provide

some results pertaining to the lower bounds and upper bounds of the problem setting.

Some literature surveys covering important results in online matching are as follows: An excellent

literature review by Mehta [63] covers important results and techniques in online matching and ad

25

allocation. For a more recent survey, which introduces more different modeling of the online

matching problem, we direct the readers to refer to Huang et al. [42]. Other works reviewing online

matching are [27] and [34]. Devanur and Mehta [13] is a recent work, covering online matching

from an ad allocation, auctions and matching market perspective.

3.3.1 Unweighted Online Bipartite Matching

As implied in the model name, the underlying bipartite graph is unweighted, or it can be assumed

that each edge carries the same weight. Under this graph, the objective is to maximize the size of

the matching set.

Adversarial model

In the unweighted (online) bipartite graph, 𝐺 (𝑈,𝑉, 𝐸), the online vertices with type in 𝑉 are

generated by an adversary, with the algorithm making decisions on matching the current online

vertex with some vertex in 𝑈 (or not), with the goal being to maximize the size of matching in the

generated realization graph. The size of matching is compared with the maximum possible matching

in the final complete graph, given all online vertices are already received.

In the realm of deterministic algorithms, a natural greedy algorithm, Deterministic Greedy

(𝐺𝑟𝑒𝑒𝑑𝑦𝐷𝑒𝑡), which matches the current online vertex to an available offline vertex from a prede-

termined order of offline vertices achieves a competitive ratio of 𝜌(𝐺𝑟𝑒𝑒𝑑𝑦𝐷𝑒𝑡) = 1
2 . 𝐺𝑟𝑒𝑒𝑑𝑦𝐷𝑒𝑡

creates a maximal matching, and any maximal matching is at least 1
2 times the optimal matching.

No deterministic algorithm can do better than 1
2 , and hence this bound is tight in the deterministic

settings, as depicted in Fig 3.1.

A randomized greedy algorithm, Random, which matches the online vertex to a random available

neighbor also achieves similar competitive ratio of 1
2 + 𝑜(1). This ratio is tight and can be achieved

by repeating the instance of graph used in the case of 𝐺𝑟𝑒𝑒𝑑𝑦𝐷𝑒𝑡 [51].

In their seminal work, Karp, Vazirani, Vazirani [51] introduced another randomized algorithm,

which achieves a competitive ratio of 1 − 1
𝑒
. The algorithm, known as Ranking Algorithm works

by choosing an arbitrary preference ordering of offline vertices 𝑈 randomly from all possible

permutations, and fixes it. On arrival of an online vertex, it is matched with the highest ranked

26

u1

u2

v1 u1

u2

v1

v2

u1

u2 v2

v1

Figure 3.1: No deterministic algorithm can perform better than 1
2 . The 𝐴𝐷𝑉 generates 𝑣1, 𝑁 (𝑣1) =

{(𝑢1, 𝑣1), (𝑢2, 𝑣1)} as the first input. If 𝐴𝐿𝐺 matches 𝑣1 with 𝑢1, the next input is (𝑣1, 𝑁 (𝑣2) =

{𝑢1, 𝑣2}) as shown in the second graph, otherwise if 𝐴𝐿𝐺 matches 𝑣1 with 𝑢2, the next input is
(𝑣2, 𝑁 (𝑣2) = {𝑢2, 𝑣2}), restricting the maximum possible matching to 1 in online setting. 𝑂𝑃𝑇 = 2
for each case.

available offline vertex according to the ranking order.

The original paper had a mistake in the proof, independently observed by Goel and Mehta [35]

and Krohn and Varadarajan [57]. [35] also provided a rectified version in their paper, and other

proofs came along in Birnbaum et al. [8], Devnaur et al. [13], Eden et al. [19], etc. The original

paper also proved that the bounds achieved by Ranking is tight, i.e. no algorithm can perform better

than 1 − 1
𝑒

in online adversarial setting.

Random order model

Karp et al. [51], and subsequently, Goel et al. [35] studied the problem of online bipartite

matching, where the type graph is generated by the adversary but the online vertex request is

generated in random order. They showed that a deterministic and greedy algorithm Deterministic

Greedy, which matches the current request with an available offline vertex arbitrarily achieves 1− 1
𝑒

ratio, by showing that the Deterministic Greedy with random inputs and Ranking with adversarial

inputs are dual of each other [27].

Karande et al. [48] showed that Ranking achieves a competitive ratio of 0.653, strictly better

than 1 − 1
𝑒
. This bound was improved to 0.696 by Mahdian et al. [61] which uses a computer based

technique to solve a family of strongly factor revealing LPs. An experimental upper bound on the

modified Ranking algorithm of 0.724 was obtained by Chan et al. [12].

The upper bound in this model for deterministic algorithms is 0.75 and for random algorithms

is 0.833 [35].

27

Known IID model

Under stochastic models, most research has been done under the Known IID setting, in which

the online vertices are generated from an independent and identical distribution. This model was

introduced by Feldman et al. [26]. In this model, the algorithm knows the offline vertex set 𝑈, and

also a distribution D from which the online vertices 𝑉 are sampled. Combining these two, the

algorithm has knowledge of the underlying type graph and distribution D. The paper discussed two

algorithms for this model.

Suggested Matching, a relatively simpler algorithm, finds an optimal matching in the base

(type) graph, and matches the online vertex request with respect to it, i.e. if the corresponding offline

vertex with respect to the optimal matching for the current request is available, then it gets matched.

This algorithm achieves a 1 − 1
𝑒

competitive ratio, and the analysis for the algorithm is tight.

Another algorithm, Two Suggested Matching (Non Adaptive) finds 2 large disjoint match-

ings, 𝑀1 and 𝑀2 in the type graph, and uses these 2 matchings to guide the decision making process

on the incoming online vertices. On the first arrival of a vertex, say 𝑣∗, it is matched in accordance

to its neighbor in 𝑀1(𝑣∗) if available, and on its second occurrence, it is matched in accordance to its

neighbor in 𝑀2(𝑣∗). This algorithm achieves competitive ratio
1 − 2

𝑒2

4
3 − 2

3𝑒
≊ 0.67 with high probability,

and this analysis is tight. They also proved an upper bound of 0.98 for this model.

Bahmani et al. [6] improved this bound to 0.699 by adding a step of preprocessing the graph and

computing the 2 matchings. They also established an upper bound of 0.902 for the model.

In Manshadi et al. [62], the authors presented a more efficient method to find 2 disjoint matchings

in the type graph (using fractional matching), and the same steps to match the online vertices. This

improves the bound to 0.684. They also gave an adaptive version of the algorithm, Two Suggested

Matching (Adaptive), which changes how the online vertices are matched. For each occurrence

of 𝑣∗, it checks both of its neighbor in accordance with matching 𝑀1 and 𝑀2 to match in that order

(given they are available to match). The non adaptive version doesn’t check both matchings for each

occurrence of 𝑣∗ and creates a matching of smaller size as compared to the adaptive version. The

competitive ratio achieved by this algorithm is 0.702 and no algorithm under this setting can do

better than 0.823, improving upon the previous upper bound. As the Known IID model is a special

28

case of Random order model, this also improved upon the upper bound of 5
6 of the latter model.

Jaliet and Xu [45] and Huang and Shu [40] proposed algorithms which improved the competitive

ratio to 0.706 and 0.711 respectively. Huang et al. [41] further improved the bound to 0.716, the

best known result in this model till now.

Summary of Algorithms

Models Deterministic Lower Random Lower Deterministic Upper Random Upper
Adversarial model 0.5 [p. 26] 1 − 1

𝑒
[51] 0.5 [p. 26] 1 − 1

𝑒
[51]

Random order model 1 − 1
𝑒

[35] 0.696 [61] 0.75 [35] 0.823 [62]
Known IID model 0.699 [6] 0.716 [41] 0.823 [62] 0.823 [62]

Table 3.1: Table summarizing lower and upper bounds in online bipartite matching under different
input models.

Weighted Version

Two generalizations which follows from the unweighted bipartite models are – vertex weighted

and edge weighted online bipartite matching.

3.3.2 Vertex Weighted Online Bipartite Matching

In online vertex weighted bipartite matching, the objective is to maximize the sum of matched

offline vertices. Note, vertices in𝑈 only have non negative weights. The unweighted bipartite model

is a special case of this, under which all offline vertices have an equal weight of 1.

Adversarial model

This model was introduced in Aggarwal et al. [2], and a generalized, weighted version of

Ranking algorithm, Perturbed Greedy was given which achieves 1 − 1
𝑒

competitive ratio for

general vertex weights in Adversarial model. This bound is tight for this model, where the upper

bound follows from the unweighted case.

29

Random order model

In the Random order model, introduced in Huang et al. [43], the authors showed that a generalized

version of the Ranking algorithm achieves a ratio of 0.6534 using a randomized primal-dual

framework, beating the 1− 1
𝑒

bound in the adversarial setting. Jin et al. [46] improved the algorithm

analysis to obtain a competitive ratio of 0.6629, and showed an upper bound of 0.6688 on the

algorithm.

Known IID model

Previous results for vertex weighted matching in Known IID model were under additional

constraints of integral arrivals, i.e. the expected number of online vertices of each type present in

the input sequence is integral. Under this constraint, a competitive ratio of 0.667 [36] and 0.725 [45]

have been achieved.

Jin et al. [46] and Huang et al. [41] gave algorithms for this model with competitive ratios of

0.662 and 0.716 respectively. As of now, the latter is the best known result in this field.

3.3.3 Edge Weighted Online Bipartite Matching

As discussed in the offline setting, edge weighted online bipartite matching problem asks to find

a matching set where the sum of edge weights are maximized.

Adversarial model

In the Adversarial model, the online edge weighted bipartite matching is not competitive without

constraints as shown in Fahrbach and Zadimaghaddam [25], but variations under this model are

studied. Given the edge weights range from [𝐿,𝑈], a deterministic algorithm can achieve a tight

competitive ratio of 𝜙 + 1, where 𝜙 = 𝑈
𝐿

[10].

More commonly, the edge weighted model is studied under the free disposal assumption, which

has applications in the advertisement model discussed in later Section 3.4. Under free disposal

settings, introduced in Feldman et al. [26], the algorithm can revoke previously accepted edges

between the online and offline vertices. Fahrbach et al. [24], using a new technique, online correlated

30

selection presents a 0.5086-competitive algorithm for this model under the free disposal assumption.

Random order model

In Random order model, Kesselheim et al. [54] introduced a 1
𝑒

competitive optimal algorithm for

edge weighted bipartite matching. This improved the 1
8 bound algorithm given by Korula et al. [55],

and matches the upper bound for the problem, as stated in Buchbinder et al. [11].

Known IID model

Yan [73] presents a 0.645 competitive algorithm for edge weighted online bipartite matching

under the stochastic settings and Huang et al. [41] presents an 0.703 upper bound for this model.

3.4 Applications of Online Bipartite Matching

Bipartite matching problems in online settings are ubiquitous and important in many disciplines.

They find applications in online advertisements, crowd sourcing applications, food delivery services,

matching children with schools, doctor residency matching programs, online dating services, etc.

As discussed in Chapter 1, in online advertising, particularly in the domain of ad allocation,

advertisers and available ad slots (impression) form two sets in a bipartite graph, and each ad request

needs to be matched with the best ad slot in real-time. As each request arrives, the advertisement

platform must quickly decide the best match based on available information, with the goal of

maximizing revenue or relevance, often expressed computationally in the size of the matching set’s

weight.

Another application is in ride sharing services, where drivers and passengers are dynamically

matched as requests come in. This forms a bipartite graph where the drivers are matched to

passengers based on proximity and availability, optimizing for both fairness and efficiency. Note that

a better conceptualization of this problem would be to take into fact that both sides of the bi-partition

can arrive online, it is not necessary that the cab drivers (or the passengers) are already present when

the matching starts. Another constraint can be introduced in terms of reusable resource models – in

which an offline vertex can be used for matching again after a time period (or time steps in discrete

31

modeling). This can be used to model that a cab driver can once again start servicing customers (start

matching with them) once they have completed a ride. Such problems and models are described in

[59, 39, 72, 33].

In job matching platforms (such as freelancer websites), crowd sourcing platforms and service

based marketplaces like TaskRabbit and Upwork, employers post tasks while freelancers offer ser-

vices. As new job offers arrive, an online matching algorithm pairs the most appropriate freelancers

to tasks in real-time. These applications are typically modeled as online bipartite matching prob-

lems, where the challenge is to make decisions with limited information and optimize performance

against an ideal offline solution, often using competitive analysis for benchmarking.

We discuss two applications specific to the field of online advertisement, which follow naturally

from the weighted bipartite matching model.

With applications in ad allocation, two popular formulation of online bipartite matching are –

DisplayAds and Adwords problem, which we discuss next.

A popular characterization since the introduction of free disposal assumption in the edge weighted

online bipartite matching, the Display Ads problem was introduced in [26], where the objective is

to maximize the total weight of the matching under the caveat that each offline vertex 𝑢 has an

integral capacity 𝑐𝑢 which denotes the maximum number of edges of online vertices it can admit or

be matched to. This generalizes the notion that an advertiser can display ads to up to 𝑐𝑢 number of

impressions.

Another modification of the problem introduced in [64] is the Adwords problem, where each

offline vertex 𝑢 has a budget 𝐵𝑢 and each edge has a bid cost 𝑏𝑖𝑑𝑢,𝑣 . Each matching depletes the

budget of 𝑢 by the corresponding bid value of the matched edge, and an offline vertex can continue

matching till its budget is not depleted. The other models, unweighted and vertex weighted bipartite

models are special cases of this problem. In case of unweighted matching, the budget of all offline

vertices is 1, and each bid or the edge weighs. 1. The vertex weighted model again has the weight

of each offline vertex equal to its budget 𝐵𝑢, and the bids for an edge 𝑏𝑖𝑑𝑠𝑢,𝑣 = 𝐵𝑢, for all online

vertices 𝑣.

32

3.5 Online Algorithms with Markovian Input

So far, we have introduced and summarized research related to different input models for online

bipartite matching. Now, we initiate studying the new model introduced in this thesis – ‘Online

Bipartite Matching in Markov Chain Model’. Previous work concerning online algorithms under

Markovian dependency has been studied by Karlin et al. [50], in which the authors studied the

problem of paging under the assumption that page requests are generated using a Markov chain.

We present our work on online matching, precisely on designing, calculating, and analyzing

algorithms for online matching in (2, 2)-regular bipartite graphs under the family of parameterized

‘lazy random walk’ based Markov chains in the next two chapters.

33

Chapter 4

Matching in (2, 2)-Regular Bipartite

Graph – An Offline Optimal Algorithm

This thesis studies the performance of algorithms for online bipartite matching in graphs where

the degree of vertices is 2. In other words, the bipartite graph 𝐺 (𝑈,𝑉, 𝐸) is (2, 2) regular bipartite

graph, and it has 2 perfect, disjoint matchings. For reference, see Figure 4.1.

Offline Vertices Online Vertices

u1

u2

u3

u4

v1

v2

v3

v4

(a) An instantiation of (2, 2)-regular bipartite
graph on 𝑛 = 4 vertices

Offline Vertices Online Vertices

u1

u2

u3

u4

v1

v2

v3

v4

u5 u5

(b) An instantiation of (2, 2)-regular bipartite
graph on 𝑛 = 5 vertices

Figure 4.1: Examples of (2, 2)-regular bipartite (or biregular) graphs on different number of vertices.

34

The online vertices are sampled from a Markov chain M, imitating the nature of lazy random

walks, whose state space is 𝑉 , and the objective is to create a matching of maximum size of edges

between 𝑈 and 𝑉 . We divide our work in 2 parts – first, we develop an optimal offline algorithm

which attains the maximum possible matching in the final realization graph. Using this, we calculate

the size of expected matching (under asymptotic conditions). The second part involves calculating

the size of matching (again, under asymptotic conditions) for two significant and crucial algorithms

in the field of online matching – Two Suggested Matching - Adaptive and Two Suggested

Matching - Non Adaptive. Together with the previous results, we get a tight bound on asymptotic

competitive ratio for these two algorithms.

In this chapter, we address the first part of the problem, and in Chapter 5, we carry out the

analysis mentioned in the second part and derive the competitive ratios.

We begin this chapter by discussing the type graph and Markov chain on which we present our

results, along with a brief overview of the optimal offline algorithm which we are designing. In the

second half, we analyze this algorithm from algorithmic perspective and use the analysis to calculate

the size of expected matching in offline scenario.

4.1 Problem Instance & Input Parameters

As stated in Section 2.4, for a problem instance of online bipartite matching in Markov chain

model, we are given a type graph, 𝐺 (𝑈,𝑉, 𝐸) and a Markov chain M(𝜋, 𝑀). We describe the type

graph and Markov chain for our problem in the following subsection.

4.1.1 Type Graph

The type graph 𝐺 (𝑈,𝑉, 𝐸) is a bipartite graph, of size 2𝑛 with 𝑈 and 𝑉 being the offline

and online vertex set respectively, and |𝑈 | = |𝑉 | = 𝑛. The vertex set is labeled with the set of

natural numbers, N. The edge set consists of the edges (𝑢𝑖 , 𝑣𝑖) for all 𝑖 ∈ [1, 𝑛]. Additionally, for

𝑖 ∈ [1, 𝑛 − 1], the edges are (𝑢𝑖+1, 𝑣𝑖), and for 𝑖 = 𝑛, the edge is (𝑢1, 𝑣𝑛).

Two perfect and disjoint matchings exist in the graph structure, which we refer to as 𝑀1 and 𝑀2.

35

𝑀1 : (𝑢𝑖 , 𝑣𝑖) if 𝑖 ∈ [1, 𝑛],

𝑀2 :


(𝑢𝑖+1, 𝑣𝑖) if 𝑖 ∈ [1, 𝑛 − 1],

(𝑢1, 𝑣𝑖) if 𝑖 = 𝑛.

We exploit the independence of these matchings to make decisions on which edge to include in

the final matching.

4.1.2 Markov Chain

For the stochastic nature of input, we sample from a Markov chain based on the analysis of

real world experimental data, which we report in Chapter 6. Markov chain M(𝜋, 𝑀), with state

space 𝑆 = 𝑉 has the following properties. 𝜋 – the initial distribution, taken to be uniform, i.e. the

probability of each vertex in 𝑉 being the first online request equals 1
𝑛

, and 𝑀 – the transition matrix,

based on lazy random walk, has the probability of a vertex remaining in the same state or repeating

itself being denoted by parameter 𝑝, and it transitions to other 𝑛−1 vertices with an equal probability

of 1−𝑝
𝑛−1 . The transition probability is given using the following stochastic matrix:

𝑀 [𝑖] [𝑖] = 𝑝 ∀ 𝑖 ∈ [1, 𝑛]

𝑀 [𝑖] [𝑗] = 1 − 𝑝

𝑛 − 1
∀ 𝑖, 𝑗 ∈ [1, 𝑛], 𝑖 ≠ 𝑗

For example, for 𝑝 = 1
2 , the transition matrix is:

𝑀 [𝑖] [𝑖] = 1
2

∀ 𝑖 ∈ [1, 𝑛]

𝑀 [𝑖] [𝑗] = 1
2(𝑛 − 1) ∀ 𝑖, 𝑗 ∈ [1, 𝑛], 𝑖 ≠ 𝑗

An example of such Markov chain is shown in Figure 4.2.

4.1.3 Input Size

The input sequence, denoted using ®̂𝑣 is a 𝑘 length sequence of the form (𝑣1, 𝑣2, . . . 𝑣𝑘). Each

input item, 𝑣𝑖 represents a type or is similar to a vertex in𝑉 . Note, the hat symbol ‘ˆ’ denotes that an

36

0.3

0.4

0.40.4

0.30.3

v1

v2 v3

0.30.3

0.3

Figure 4.2: Example of a Markov chain on 3 states, with 𝑝 = 0.4.

input item, an online vertex in the sequence and this is generally followed by denoting which 𝑣 ∈ 𝑉

is the online vertex similar to. In contrast, if in this thesis we state that a vertex 𝑣𝑖 (without the)̂

has appeared in the sequence, we mean to say an online vertex having type 𝑣𝑖 has appeared, as an

shorthand expression. For online vertices, we have:

(1) 𝑣1 ∼ 𝜋, and

(2) ∀ 𝑖 ≥ 2, 𝑣𝑖 ∼ 𝑀 [· | 𝑣𝑖−1],

where 𝑀 [· | 𝑣𝑖−1] denotes the previous state of Markov chain is the vertex of ‘type 𝑣𝑖−1’, and the

type of next sampled vertex, 𝑣𝑖 is only dependent on it.

For presenting our results, we represent the length of the sequence as a parameterized input,

based on the size of the bi-partition of type graph. We denote the size of the input sequence, 𝑘 = 𝑎𝑛,

where 𝑛 denotes the size of the offline (or the online) vertex set, and 𝑎 represents the the ratio of input

sequence and the size of either of the vertex sets. In the later sections, when we want to calculate

the probability of certain input sequences, this comes into play by replacing an independent variable

with a dependent variable and is better suited to present the results. We present an example as in

Figure 4.3.

4.2 Offline Algorithm: Frequency Based Optimal Matching

In this section, we devise a new optimal offline algorithm, Frequency Based Optimal Match-

ing and analyze its performance to compare with the two online algorithms. The offline optimal

37

u1

u2

u3

u4

v2 u1

u2

u3

u4

v2

v4

v2

v3

u1

u2

u3

u4

v2

v4

v2

u1

u2

u3

u4

v2

v4

(a.) v̂1 ≃ v2 (b.) v̂2 ≃ v4

(c.) v̂3 ≃ v2 (d.) v̂4 ≃ v3

Figure 4.3: For type graph (2, 2)-biregular graph of size 𝑛 = 4, the following showcases the
formation of the realization graph on input sequence (𝑣1, 𝑣2, 𝑣3, 𝑣4), where the types of online
vertices are 𝑣1 ≃ 𝑣2, 𝑣2 ≃ 𝑣4, 𝑣3 ≃ 𝑣2, 𝑣4 ≃ 𝑣3.

algorithm serves as a nice alternative to the Ford-Fulkerson and other augmenting path based

algorithms, in such that analyzing its computation of total matching is relatively easier and it utilizes

the independence of the two matchings in the type graph. The run time complexity of this algorithm

is linear and dependent on the size of input sequence, 𝑂 (𝑘).

An offline algorithm for an online problem can be interpreted as a scenario in which an algorithm

starts making decisions after the entire input sequence has arrived. Hence in this problem, the

38

algorithm which we devise, Frequency Based Optimal Matching receives the final realization

graph, composed of 2 bi-partitions, offline vertex set 𝑈 and the set of online vertices having a type

in 𝑉 which have arrived online, and it finds the maximum matching for this graph. This algorithm

is optimal and uses the total number of occurrences of each type of input vertex to decide the size of

the matching. From here onward, we refer to this optimal algorithm as 𝑂𝑃𝑇 . We now describe the

algorithm functioning in brief.

Frequency Based Optimal Matching is an offline algorithm which uses the frequency of

each online node 𝑣𝑖 to determine the number of matched offline vertices. An offline vertex, say 𝑢𝑖

has neighbors 𝑣𝑖 and 𝑣𝑖+1. After observing the complete input, if the frequency of vertices having

online type 𝑣𝑖 and �̂�𝑖+1 is 0, then 𝑢𝑖 is certainly unmatched in the final matching, as either of its

two online neighbors don’t occur. Later in this chapter, we define precisely the conditions where

an offline vertex remains unmatched, and the method to count the number of expected unmatched

offline vertices.

We wish to calculate the expected number of matching achieved by 𝑂𝑃𝑇 in asymptotic setting,

or lim
𝑛→∞
E[𝑂𝑃𝑇]. Before going to the working mechanism and calculations behind such, we define

some structures that we use in our algorithm to calculate the size of matching.

4.2.1 Definitions

In this section, we define a few terms which will help us in understanding the working mechanism

of the algorithm better and help in analyzing the algorithm to calculate the expected size of matching.

We begin by defining the frequency vector of the sequence, which stores the total number of

occurrences of each type of online vertex 𝑣𝑖 ∈ 𝑉 .

Definition. The frequency vector, 𝑓 for the input sequence, ®̂𝑣 is an array of length 𝑛, where 𝑓 [𝑖] or

𝑓𝑖 is the total number of occurrences of vertices which are similar to 𝑣𝑖 in the input sequence. Note,

if an online vertex �̂� has a type, or is similar to 𝑣𝑖 (�̂� ≃ 𝑣𝑖), then 𝑁 (�̂�) = 𝑁 (𝑣𝑖).

Sometimes, we refer to the phrase ‘vertex of type 𝑣𝑖 occurring in the input sequence’ to ‘vertex

𝑣𝑖 occurring in the input sequence’, when the context suffices. An example of the frequency vector,

𝑓 for 𝑛 = 6 is:

39

• ®̂𝑣 = 𝑣1, 𝑣2, 𝑣2, 𝑣5, 𝑣4, 𝑣2

• 𝑓 = 1, 3, 0, 1, 1, 0

Note that the indices of the frequency vector start with 1 and go up to 𝑛. Having defined the

frequency vector, we can define a block as:

Definition. A contiguous subsequence 𝑖, 𝑖 + 1, . . . , 𝑖 + ℓ + 1 (with wrap-around) is called a block

of length ℓ ≥ 0 if the following conditions are satisfied:

• 𝑓𝑖 = 𝑓𝑖+ℓ+1 = 0,

• 𝑓 𝑗 ≠ 0 ∀ 𝑗 ∈ {𝑖 + 1, . . . , 𝑖 + ℓ}.

We refer to indices 𝑖 and 𝑖 + ℓ + 1 as end-points of the block, and indices 𝑗 ∈ {𝑖 + 1, . . . , 𝑖 + ℓ} as

internal points of the block. The length of a block is the number of internal points of the block, in

this case ℓ. We don’t include the endpoints in the size of the block, hence the size of possible blocks

varies from 0 to 𝑛 − 2.

Continuing our above example, for 𝑛 = 6, where the input sequence is−→𝑣 = (𝑣1, 𝑣2, 𝑣2, 𝑣5, 𝑣4, 𝑣2),

and the frequency vector is 𝑓 = [1, 3, 0, 1, 1, 0]. Block 𝐵1 starts at 3 and ends at 6, and Block 𝐵2

starts at 6 and ends at 3.

Finally, we proceed to define a miss block, and a complete block.

Definition. We say that a block 𝐵 is a miss block if for every internal point 𝑗 we have 𝑓 𝑗 = 1.

Otherwise, if one of its internal points 𝑗 satisfies 𝑓 𝑗 ≥ 2, it is a complete block. By default, we say

that a block B of length ℓ = 0 is a miss block.

Note that every block is either a miss block or a complete block, as these two cases are mutually

exclusive and exhaustive. In the above example, we note that 𝐵1 is a miss block of length 2, because

𝑓4 = 𝑓5 = 1, and 𝐵2 is a complete block of length 2, because 𝑓2 ≥ 2.

4.2.2 Working Mechanism

Before we formally state the Frequency Based Optimal Matching algorithm, we discuss the

idea behind calculating the matching in the realization graph using the count of miss blocks in the

40

frequency vector. We start with a basic observation that, given the size of offline vertex set, |𝑈 | = 𝑛,

this is also the maximum possible size of matching for the problem. We now show that every

occurrence of a miss block leads to exactly 1 unmatched offline vertex in 𝑂𝑃𝑇 , hence decreasing the

total number of possible matchings by 1, and there is no unmatched offline vertex corresponding to

a complete block.

We start with describing a few basic cases of block size ℓ = 0, 1, 2, . . . 𝑛 − 2, and how an offline

vertex remains unmatched because of these cases.

• ℓ = 0: Suppose for an input sequence ®̂𝑣, the frequency vector 𝑓 incurs a miss block 𝐵 of length 0

demarcated by endpoints 𝑖 and 𝑖 + 1. This means in the input sequence, 𝑣𝑖 and 𝑣𝑖+1 never occurs.

The corresponding common neighbor of these in 𝑈, 𝑢𝑖 never gets matched, because neither of its

2 possible neighbors in the online set occurs. Hence, a block of length ℓ = 0 leads to exactly 1

miss in the final matching.

• ℓ = 1: For a miss block 𝐵 of length 1 with endpoints 𝑖 and 𝑖+2, we have 𝑓𝑖 = 0, 𝑓𝑖+1 = 1, 𝑓𝑖+2 = 0.

This exhibits that in the input sequence, there was no occurrence of 𝑣𝑖 and 𝑣𝑖+2, and only 1

occurrence of 𝑣𝑖+1. The neighbors of vertex 𝑣𝑖+1 are 𝑢𝑖+1 and 𝑢𝑖+2. The following 2 cases are

possible:

(1) 𝑂𝑃𝑇 matches the vertex 𝑣𝑖+1 with 𝑢𝑖+1, 𝑢𝑖+2 remains unmatched in the final matching,

because out of its 2 neighbors, 𝑣𝑖+1 has occurred once and been already matched, and 𝑣𝑖+2

never occurs.

(2) A similar situation occurs, when 𝑂𝑃𝑇 decided to match the vertex 𝑣𝑖+1 with 𝑢𝑖+2. 𝑢𝑖+1

remains unmatched in the final matching, because out of its 2 neighbors, 𝑣𝑖+1 has occurred

once and been already matched, and 𝑣𝑖 never occurs.

Hence, in any case, a block of length ℓ = 1 leads to 1 miss in the final matching.

• ℓ = 2: A miss block 𝐵 of length 2, whose endpoints are denoted by 𝑖 and 𝑖 + 3. 𝑖 + 1 and 𝑖 + 2 are

the internal points which signify that there is exactly one occurrence of 𝑣𝑖+1 and 𝑣𝑖+2 type nodes

in �̂�. Vertices of type 𝑣𝑖 and 𝑣𝑖+2 never appear in the input sequence. The following 3 cases of

matching are possible:

41

vi+1

ui+1

ui+2

(a) Example for ℓ = 1

vi+1

ui+1

ui+2

ui+3

vi+2

(b) Example for ℓ = 2

Figure 4.4: Graph realizations depicting appropriate vertices for case ℓ = 1 and ℓ = 2.

(1) Match 𝑣𝑖+1 to 𝑢𝑖+1 and 𝑣𝑖+2 to 𝑢𝑖+2 – 𝑢𝑖+3 remains unmatched, because among its 2 neighbors,

𝑣𝑖+2 is matched, and 𝑣𝑖+3 never appears.

(2) Match 𝑣𝑖+1 to 𝑢𝑖+1 and 𝑣𝑖+2 to 𝑢𝑖+3 – 𝑢𝑖+2 remains unmatched, because among both of its

neighbors, 𝑣𝑖+1 and 𝑣𝑖+2 are matched.

(3) Match 𝑣𝑖+1 to 𝑢𝑖+2 and 𝑣𝑖+2 to 𝑢𝑖+3 – 𝑢𝑖+1 remains unmatched, because among its 2 neighbors,

𝑣𝑖+1 is matched, and 𝑣𝑖 never appears.

Here too, a miss block of length ℓ = 2 leads to 1 miss in the final matching.

• for an arbitrary ℓ ≤ 𝑛 − 2: Let the input sequence �̂� have an ℓ length miss block B. Denoting the

endpoints of B with 𝑖 and 𝑖 + ℓ + 1, and ℓ internal points as 𝑖 + 1, 𝑖 + 1, · · · , 𝑖 + ℓ, we see that online

vertices of type 𝑣𝑖 and 𝑣𝑖+ℓ+1 never appears. This leads to an imbalance of offline vertices to be

matched and the online vertices in the miss block, with the former being always greater than the

latter by one, and leads to exactly one missed offline vertex in the final matching by 𝑂𝑃𝑇 . An

example is depicted in Figure 4.5.

We also observe that any complete block would not lead to an unmatched online vertex. This

can be proved by constructing a matching that leads to no unmatched vertices in the offline vertex

set for the corresponding complete block. Assuming a complete block 𝐵 of length ℓ, with endpoints

𝑖 and 𝑖 + ℓ + 1, we have an internal point in the block 𝑔, such that for 𝑔 ∈ [𝑖 + 1, 𝑖 + ℓ], 𝑓𝑖 ≥ 2, by

definition. Let 𝑔 be the first such internal point of the block. We can construct a matching in this

way:

42

ui+1

ui+2

ui+3

ui+4

ui+5

ui+6

ui+1

ui+2

ui+3

ui+4

ui+5

vi+2

vi+3

ui+6

vi+5

vi+5

vi+2

vi+3

vi+5

vi+2, vi+3, vi+5, vi+5

Input instance:
vi+2, vi+3, vi+5

Input instance:

Figure 4.5: Two problem instances depicting miss blocks – (1) the first graph has 3 miss blocks from
(𝑖 + 1, 𝑖 + 4), (𝑖 + 4, 𝑖 + 6) and (𝑖 + 6, 𝑖 + 1), whereas (2) the second graph has 2 miss blocks from
(𝑖 + 1, 𝑖 + 4) and (𝑖 + 6, 𝑖 + 1). The block between (𝑖 + 4, 𝑖 + 6) is not a miss block, because 𝑣𝑖+5 type
vertex occurs twice. Matched offline vertices in the first graph are 3, 6 total vertices minus 3 miss
blocks. Similarly for the second graph, matched offline vertices are 4.

• Step 1: For all vertices 𝑣𝑖+1, 𝑣𝑖+2, . . . , 𝑣𝑖+𝑔, we match them to 𝑢𝑖 , 𝑢𝑖+1, . . . , 𝑢𝑖+𝑔−1. This leads

to 𝑔 matched vertices in the offline set.

• Step 2: For the remaining vertices, 𝑣𝑖+𝑔, 𝑣𝑖+𝑔+1, . . . , 𝑣𝑖+ℓ , we match them to 𝑢𝑔, 𝑢𝑔+1, . . . , 𝑢𝑖+ℓ .

This is because we have an extra 𝑣𝑖+𝑔 available to match. This leads to ℓ − 𝑔 + 1 matched

vertices in the offline vertex set.

Total number of matched offline vertices are ℓ + 1. So none of the vertices remain unmatched for

complete block 𝐵.

43

4.2.3 Algorithm Analysis

In the previous section, we showed that the occurrence of every miss block leads to an unmatched

offline vertex. The size of the final matching in a bipartite graph is equal to the number of matched

vertices on either side of the bi-partition, hence the matching here is equal to the total number of

offline vertices minus the number of unmatched online vertices. 𝑂𝑃𝑇 (®̂𝑣) or 𝑂𝑃𝑇 is the size of the

matching in the realization graph, which is equal to the number of matched offline vertices. We

present the result in Lemma 2 as:

Lemma 2. For an input sequence ®̂𝑣, the size of the optimum matching in offline setting given by

𝑂𝑃𝑇 (®̂𝑣), the number of matched offline vertices, which is equal to total number of offline vertices

minus the number of occurrence of miss blocks in the frequency vector. Thus,

𝑂𝑃𝑇 (®̂𝑣) = 𝑛 − number of miss blocks in frequency vector 𝑓 .

We will use this lemma to compute the expected value of 𝑂𝑃𝑇 .

Equation (2) finds the size of matching for a particular input sequence which is randomly

generated and the size varies for each sequence. Note that ®̂𝑣 is random and dependent on the method

which we employ to sample the vertices. We are not interested in the number of matched vertices for

a ‘particular’ input sequence, rather we want to calculate the average or expected number of matched

vertices. We redefine the above equation by introducing random variables, which help capture the

randomness of the sequence and find the expected performance of 𝑂𝑃𝑇 .

The key goal in calculating 𝑂𝑃𝑇 is to find the expected number of miss blocks in the frequency

vector for an input sequence. Observe that the miss blocks can be of different lengths, from 0 to

𝑛 − 2. Thus, we can state that the total count of miss blocks as the sum of number of miss blocks of

each length from ℓ = 0 to 𝑛 − 2 .

To calculate the expected number of miss blocks of a particular length ℓ, we introduce an

indicator random variable, 𝑋𝑖 [ℓ] which indicates whether a miss block of length ℓ has occurred

44

starting at index 𝑖 in the frequency vector, 𝑓 .

𝑋𝑖 [ℓ] =


1 if a miss block of length ℓ occurs at position 𝑖

0 otherwise,

where 𝑖 ∈ [1, 𝑛], and ℓ ∈ [0, 𝑛 − 2].

One can count the total number of miss blocks in the frequency vector in this way – count the

total number of miss blocks of all possible lengths from ℓ = 0 to 𝑛 − 2 for an index 𝑖 and repeat this

process for all indices from 𝑖 = 1 to 𝑛 (our declaration of frequency vector 𝑓 start from 1). We can

express this mathematically as, number of miss blocks of all possible length starting from a fixed

position 𝑖 is
𝑛−2∑
ℓ=0

𝑋𝑖 [ℓ]. And then, the total number of miss blocks becomes the sum of miss blocks

(of all possible lengths) starting from each index 𝑖 in the frequency vector, where 𝑖 ∈ [1, 𝑛]. Hence,

the total number of miss blocks can be expressed as
𝑛∑
𝑖=1

𝑛−2∑
ℓ=0

𝑋𝑖 [ℓ]. Combining Lemma 2 and the

above, Lemma 3 follows.

Lemma 3. The size of matching obtained by an optimal offline algorithm over an input sequence

®̂𝑣, denoted by 𝑂𝑃𝑇 is the difference between size of offline vertex set and the number of occurrence

of miss blocks in the frequency vector. 𝑋𝑖 [ℓ] indicates whether a miss block of length ℓ occurs

at position 𝑖 in the frequency vector, and the presence of a miss block corresponds to a singular

unmatched offline vertex. The total number of miss blocks is expressed as the sum of indicator

random variables 𝑋𝑖 [ℓ] of all possible lengths, ℓ = 0 to 𝑛 − 2, over all possible indices 𝑖 = 1 to 𝑛 in

the frequency vector 𝑓 .

𝑂𝑃𝑇 = 𝑛 −
𝑛∑︁
𝑖=1

𝑛−2∑︁
ℓ=0

𝑋𝑖 [ℓ] (1)

Because we are interested in the expected size of matching, we take expectations on both sides of

the equation, and using linearity of expectation and exchanging the order of summations concurrently,

we obtain

E[𝑂𝑃𝑇] = 𝑛 −
𝑛−2∑︁
ℓ=0

𝑛∑︁
𝑖=1
E[𝑋𝑖 [ℓ]]

Note, by symmetry the expected number of an ℓ – length miss block starting at index 𝑖 = 1

45

is equal to the expected number of ℓ – length miss block starting at index 𝑖 = 2, and so on. The

expected number of miss blocks is independent of their starting position in the frequency vector, as

the Markov chain is symmetric around all vertices which can be generated, and the presence and

absence of any vertex is symmetric. Therefore, E[𝑋1 [ℓ]] = E[𝑋2 [ℓ]] = · · · = E[𝑋𝑛 [ℓ]], and we

replace all similar terms in the above equation with E[𝑋1 [ℓ]]. Therefore, we obtain:

E[𝑂𝑃𝑇] = 𝑛 −
𝑛−2∑︁
ℓ=0

𝑛∑︁
𝑖=1
E[𝑋𝑖 [ℓ]]

= 𝑛 − 𝑛

𝑛−2∑︁
ℓ=0
E[𝑋1 [ℓ]]

Normalizing the equation, and taking limits as we are interested in the asymptotic performance

of the algorithm, we get

Lemma 4.

lim
𝑛→∞

E[𝑂𝑃𝑇]
𝑛

= 1 − lim
𝑛→∞

𝑛−2∑︁
ℓ=0
E[𝑋1 [ℓ]] (2)

4.2.4 Calculating the Size of Expected Matching

Continuing from Lemma 4, we are interested in calculating the expected number of miss blocks

of all possible lengths starting from a fixed index 𝑖 = 1 in the frequency vector (for large values of 𝑛).

As the expectation of an indicator random variable is equal to the probability of the corresponding

event it indicates, it boils down here to calculating the probability of the ‘associated event’ – an input

sequence which creates a miss block of length ℓ in the frequency vector at index 𝑖 = 1.

In this section, we discuss how the above scenarios can be realized by what input sequences, and

then we calculate the probability of such input sequences.

We first define 𝑃(𝐸ℓ,𝑛) to be the probability of an event in which an input sequence leads to the

occurrence of a miss block of length ℓ in the frequency vector at index 𝑖 = 1. AsE[𝑋1 [ℓ]] = 𝑃(𝐸ℓ,𝑛),

we are interested in the value of lim
𝑛→∞

𝑛−2∑
ℓ=0

𝑃(𝐸ℓ,𝑛).

Note, we can change the upper bound of the sum to infinity, because the probability of all events

46

where ℓ > 𝑛 − 2 to be 0. We rewrite the above equation as:

lim
𝑛→∞

𝑛−2∑︁
ℓ=0
E[𝑋1 [ℓ]] = lim

𝑛→∞

∞∑︁
ℓ=0

𝑃(𝐸ℓ,𝑛) (3)

In the above equation, we need to calculate the limit of of infinite sum. To calculate this, we

make use of Tannery’s theorem, which states the conditions under which it is possible to interchange

the limits of an infinite summation to the sum of their limiting values. We first state the Tannery’s

theorem, and show that the conditions mentioned in the theorem are satisfied for the above equation.

Theorem 5 (Tannery’s Theorem [69]). Let 𝑆𝑛 =
∞∑
𝑙=0

𝑎𝑙 (𝑛) and suppose that lim
𝑛→∞

𝑎𝑙 (𝑛) = 𝑏𝑙. If

|𝑎𝑙 (𝑛) | ≤ 𝑀𝑙 and
∞∑
𝑙=0

𝑀𝑙 < ∞, then lim
𝑛→∞

𝑆𝑛 =
∞∑
𝑙=0

𝑏𝑙.

To rephrase the above, the interchange of limits and summation of an infinite series of summands

(𝑎𝑙 (𝑛)) is possible if there exists a term (𝑀𝑙) greater than the limiting value of summand (𝑏𝑙), whose

infinite sum converges. Applying Tannery’s theorem to Eq 3, we establish that

Theorem 6.

lim
𝑛→∞

∞∑︁
ℓ=0

𝑃(𝐸ℓ,𝑛) =
𝑒2(𝑎𝑝−𝑎)

1 − (𝑒𝑎𝑝−𝑎 · 𝑎(1 − 𝑝)2)
(4)

The rest of this chapter is dedicated to this proof, and using the results to calculate the expected

size of matching for 𝑂𝑃𝑇 . As there are many components involved in calculating this value, we

present the proof of Theorem 6 using a 3 step framework with the help of Tannery’s theorem, as

stated below.

(1) First, we begin by calculating the probability of the event 𝐸ℓ,𝑛, and calculate its limiting value.

The input sequence associated with the event can be realized in many ways, and we calculate

the probability of each such sequence.

(2) Next, we define an event 𝐹ℓ,𝑛, such that the probability of this event is greater than the

probability of the former event, 𝐸ℓ,𝑛. Corresponding to the Tannery’s theorem, this would be

the required 𝑀𝑙 such that 𝑎𝑙 (𝑛) ≤ 𝑀𝑙. We then show the infinite sum of 𝑃(𝐹ℓ,𝑛) converges.

(3) The conditions of Tannery’s theorem being satisfied, we now exchange the limits of sum of

𝑃(𝐸ℓ,𝑛) to be sum of the limiting values of 𝑃(𝐸ℓ,𝑛), and state Theorem 13.

47

Step 1 – Calculating probability of event 𝐸ℓ,𝑛 and its limiting value

Our first step is to calculate the probability of event 𝐸ℓ,𝑛, and find its limiting value. We

elaborate upon the cases in which an input sequence leads to a miss block of length ℓ occurring in

the frequency vector at index 1. We calculate the probability of different such input sequences, and

the sum of its limiting values gives the limiting value of 𝑃(𝐸ℓ,𝑛).

We begin by discussing the basic case, for the occurrence of miss block of length ℓ = 0 ,

corresponding to the indicator random variable 𝑋1 [0] = 1. This happens in the input sequence

realization when a node of type 𝑣1 doesn’t occur, and the following node 𝑣2 also doesn’t occur. The

probability of this input sequence, denoted using 𝑃(𝐸ℓ=0,𝑛) is,

𝑃(𝐸ℓ=0,𝑛) =
(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1

This follows by sampling from the previously defined input Markov chain M(𝜋, 𝑀), parameter-

ized with self remaining probability 𝑝. The first term denotes that the starting vertex cannot be 𝑣1

and 𝑣2, hence the probability of the first vertex can be uniformly any of the remaining 𝑛 − 2 of the

𝑛 vertices. And all subsequent 𝑎𝑛 − 1 input items will not be transitioning into vertices 𝑣1 and 𝑣2,

hence the probability of transition is being given by 1 minus 2 × 1−𝑝
(𝑛−1) . The exponent 𝑎𝑛− 1 denotes

this transition probability for the remaining 𝑎𝑛 − 1 input terms.

Similarly for the occurrence of miss blocks of length ℓ = 1, starting at index 1, in the input

sequence, vertices of type, 𝑣1, 𝑣2, 𝑣3, occur 0, 1 and 0 times respectively. The probability of such an

input sequence would be

𝑃(𝐸ℓ=1,𝑛) =
(
1 − 3

𝑛

) (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 2(1 − 𝑝)

𝑛 − 1

) (
1 − 3(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−3 (
𝑎𝑛 − 1

1

)
The

(𝑎𝑛−1
1

)
expresses that the 𝑣2 vertex can occur among 𝑎𝑛 − 1 positions in the input sequence.

The 1−𝑝
𝑛−1 denotes the incoming transition probability of 𝑣2 and the term 1 − 𝑝 − 2(1−𝑝)

𝑛−1 denotes the

transition probability of just the next vertex after 𝑣2 occurs in the input sequence. That vertex can

be any of the 𝑛 vertices except 𝑣2 attributing to a negative 𝑝 and the end points of the miss blocks

vertices, 𝑣1 and 𝑣3, denoting a minus of 2 ×1−𝑝
𝑛−1 .

48

We also note that for all sequences such that ℓ ≥ 2, the vertices which serve as the internal point

of the miss block and occur exactly once, can occur either consecutively, back to back in the input

sequence, or occur separately. For example, as depicted in Fig. 4.6, for the ℓ = 3 event, the vertices

in the miss block which occur exactly once are 𝑣2, 𝑣3 and 𝑣4. These vertices can occur either all

separately, or any 2 of them can occur together and 1 separate from them or all 3 can occur together.

Note, in all cases, the internal ordering of these vertices, whether 𝑣2 occurs first or whether 𝑣3 occurs

first constitutes of different realizations of the input sequence, generally characterized by a factorial

in the probability of the input sequences. And so on holds for all following events, for ℓ ≥ 2.

. v2 v3 v4

(a) All 3 vertices are together

. v2 v3 v4

(b) 2 out of 3 vertices are together
.v2 v3 v4

(c) None of the 3 vertices are to-
gether

Figure 4.6: Input sequences depicting 3 different ways vertices of type 𝑣2, 𝑣3 and 𝑣4 can occur, where
a miss block of length 3 occurs starting from index 𝑖 = 1.

To capture these cases in which the vertices (which are the internal points of the miss block)

appear altogether or separately in the input sequence, we rewrite the probability of the event 𝑃(𝐸ℓ,𝑛),

as sum of two disjoint events 𝑃(𝑆ℓ,𝑛) and 𝑃(𝑇ℓ,𝑛).

𝑃(𝐸ℓ,𝑛) = 𝑃(𝑆ℓ,𝑛) + 𝑃(𝑇ℓ,𝑛) and given all limits exist,

lim
𝑛→∞

𝑃(𝐸ℓ,𝑛) = lim
𝑛→∞

𝑃(𝑆ℓ,𝑛) + lim
𝑛→∞

𝑃(𝑇ℓ,𝑛).
(5)

Where 𝑃(𝑆ℓ,𝑛) denotes the probability of the events, in which none of the ℓ internal vertices of

the miss block occur consecutively in the input sequence, and 𝑃(𝑇ℓ,𝑛) denotes the probability of the

events in which at least two of the ℓ internal vertices of the miss block occur together in the input

sequence. Note these events are mutually exclusive and exhaustive, i.e if an ℓ length miss blocks

occurs, the input sequence has either none of the internal vertices as consecutive, or otherwise at

least two of them occur together in the input sequence. We now proceed to calculate these two

individual probabilities in the next section.

We begin by investigating the input sequences which lead to event 𝑆ℓ,𝑛 – where a miss block of

49

length ℓ occurs and all the ℓ vertices are apart in the input sequence.

Such an input sequence can either begin with one of the ℓ internal vertices, or among the

remaining 𝑛 − (ℓ + 2) vertices which are not part of the miss block. This further divides the input

sequence of events 𝑆ℓ,𝑛 into 2 cases, 𝐴ℓ,𝑛 and 𝐵ℓ,𝑛 respectively.

𝑃(𝑆ℓ,𝑛) = 𝑃(𝐴ℓ,𝑛) + 𝑃(𝐵ℓ,𝑛), and given limits exists

lim
𝑛→∞

𝑃(𝑆ℓ,𝑛) = lim
𝑛→∞

𝑃(𝐴ℓ,𝑛) + lim
𝑛→∞

𝑃(𝐵ℓ,𝑛).
(6)

We first calculate the probability of the input sequences of events 𝐴ℓ,𝑛 and 𝐵ℓ,𝑛, and then

calculate their limiting values.

Let 𝐴ℓ,𝑛 denote the event in which one of the ℓ vertices corresponding to the miss block happens

to be the first vertex of the input sequence, and all ℓ vertices occur apart or non consecutively in the

input sequence.

Claim 7.

lim
𝑛→∞

𝑃(𝐴ℓ,𝑛) = 0 (7)

Proof. Observe that 𝑃(𝐴ℓ,𝑛) is equivalent to:

𝑃(𝐴ℓ,𝑛) =
ℓ

𝑛
· 𝑃(𝑅)

where ℓ
𝑛

arises from the fact that ℓ out of 𝑛 vertices can occur at the first position in the input

sequence uniformly. And 𝑃(𝑅) is the probability of the remaining event of occurrence of an input

sequence, in which all vertices corresponding to the internal endpoints of miss block of length ℓ

occur exactly once, except the vertex which has already occurred at the first position. (And the two

vertices which are the endpoints of the miss block do not occur.)

We can upper bound the 𝑃(𝐴ℓ,𝑛) by ℓ
𝑛

, as the maximum value of 𝑃(𝑅) is 1. Therefore,

𝑃(𝐴ℓ,𝑛) ≤
ℓ

𝑛

50

Computing the limit, and lower bounding the value of probability 𝑃(𝐴ℓ,𝑛) by 0, we get

0 ≤ lim
𝑛→∞

𝑃(𝐴ℓ,𝑛) ≤ lim
𝑛→∞

(
ℓ

𝑛

)
lim
𝑛→∞

𝑃(𝐴ℓ,𝑛) = 0

□

We repeat the same steps to calculate the other probability, 𝑃(𝐵ℓ,𝑛). We first calculate the

probability of the input sequence associated with 𝐵ℓ,𝑛, and then find its limiting value.

Let 𝐵ℓ,𝑛 denote the event in which a miss block of length ℓ occurs in the frequency vector, such

that none of the ℓ+2 vertices corresponding to the miss block (which include the two external points)

happens to be the first vertex of the input sequence.

Claim 8. For all ℓ ≥ 1 we have:

lim
𝑛→∞

𝑃(𝐵ℓ,𝑛) = 𝑎ℓ · (1 − 𝑝)2ℓ · 𝑒−(ℓ+2) (1−𝑝)𝑎 (8)

Proof. Observe that we can compute 𝑃(𝐵ℓ,𝑛) as follows:

𝑃(𝐵ℓ,𝑛) =
(
1 − ℓ + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)ℓ (
1 − 𝑝 − (ℓ + 1) (1 − 𝑝)

𝑛 − 1

)ℓ (
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2ℓ−1
×

×
((
𝑎𝑛 − ℓ − 1

ℓ

)
· ℓ!

)
where the terms are explained as follows:

(1)
(
1 − ℓ+2

𝑛

)
: The first vertex of the input sequence cannot be any of the ℓ + 2 vertices in the miss

block (and its endpoints), so the first in the sequence can be the remaining 𝑛 − (ℓ + 2) vertices

uniformly.

(2)
(

1−𝑝
𝑛−1

)ℓ
: The ℓ vertices can occur anywhere except after themselves (because they occur only

once). Therefore, the transition probability from any vertex to these vertices are 1−𝑝
𝑛−1 , and this

transition happens ℓ times, for each vertex.

(3)
(
1 − 𝑝 − (ℓ+1) (1−𝑝)

𝑛−1

)ℓ
: The vertices just after the ℓ vertices of the miss block can not be (1) the

51

vertex themselves, or (2) any of the remaining ℓ − 1 internal vertices or the 2 endpoints vertices

of the miss block, hence any vertex except the ℓ + 1 vertices. Therefore, the probability of next

vertex can be anything except the sum of the probabilities of the above 2 events. The exponent

of ℓ occurs because ℓ such transitions occur after each time one of the ℓ internal vertices occurs

in the sequence.

(4)
(
1 − (ℓ+2) (1−𝑝)

𝑛−1

)𝑎𝑛−2ℓ−1
: The remaining 𝑎𝑛 − 2ℓ − 1 vertices can be any vertex except the ℓ + 2

vertices of the miss block.

(5)
(𝑎𝑛−ℓ−1

ℓ

)
· ℓ!: The ℓ vertices can occur in the sequence in any permutation, hence ℓ! possible

arrangements, and out of 𝑎𝑛 − 1 positions in the input sequence, the ℓ vertices can occur at(𝑎𝑛−ℓ−1
ℓ

)
possible places under the condition that none of them occur together.

We can compute the limit by rearranging the internal terms and using the product limit laws as

follows:

lim
𝑛→∞

𝑃(𝐵ℓ,𝑛) = lim
𝑛→∞

{(
1 − ℓ + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)ℓ (
1 − 𝑝 − (ℓ + 1) (1 − 𝑝)

𝑛 − 1

)ℓ
×

×
(
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2ℓ−1 ((
𝑎𝑛 − ℓ − 1

ℓ

)
· ℓ!

)}

lim
𝑛→∞

𝑃(𝐵ℓ,𝑛) = lim
𝑛→∞

{(
1 − ℓ + 2

𝑛

) (
1 − 𝑝 − (ℓ + 1) (1 − 𝑝)

𝑛 − 1

)ℓ (
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2ℓ−1}
×

× lim
𝑛→∞

{(
1 − 𝑝

𝑛 − 1

)ℓ ((
𝑎𝑛 − ℓ − 1

ℓ

)
· ℓ!

)}
The first limit can be computed as

lim
𝑛→∞

{(
1 − ℓ + 2

𝑛

) (
1 − 𝑝 − (ℓ + 1) (1 − 𝑝)

𝑛 − 1

)ℓ (
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2ℓ−1}
=

= 1 · (1 − 𝑝)ℓ lim
𝑛→∞

(
1 − ℓ + 1

𝑛 − 1

)ℓ
· 𝑒𝑎 (ℓ+2) (1−𝑝)

= (1 − 𝑝)ℓ · 𝑒𝑎 (ℓ+2) (1−𝑝)

52

The second limit can be computed as

lim
𝑛→∞

{(
1 − 𝑝

𝑛 − 1

)ℓ ((
𝑎𝑛 − ℓ − 1

ℓ

)
· ℓ!

)}
= (1 − 𝑝)ℓ lim

𝑛→∞

(
(𝑎𝑛 − ℓ − 1)!

(𝑎𝑛 − 2ℓ − 1)!(𝑛 − 1)ℓ

)
= (1 − 𝑝)ℓ lim

𝑛→∞

(√︂
1 + ℓ

𝑎𝑛 − 2ℓ − 1
·
(
𝑎𝑛 − ℓ − 1

𝑛

)ℓ)
= (1 − 𝑝)ℓ lim

𝑛→∞

((
𝑎 − ℓ + 1

𝑛

)ℓ)
= (1 − 𝑝)ℓ · 𝑎ℓ

Therefore, the limiting value of 𝑃(𝐵) is:

lim
𝑛→∞

𝑃(𝐵) = (1 − 𝑝)ℓ · 𝑒−𝑎 (ℓ+2) (1−𝑝) · (1 − 𝑝)ℓ · 𝑎ℓ

= 𝑎ℓ · (1 − 𝑝)2ℓ · 𝑒−𝑎 (ℓ+2) (1−𝑝)

□

From Equations 6, 7 and 8, we get

lim
𝑛→∞

𝑃(𝑆ℓ,𝑛) = lim
𝑛→∞

𝑃(𝐴ℓ,𝑛) + lim
𝑛→∞

𝑃(𝐵ℓ,𝑛)

= 𝑎ℓ · (1 − 𝑝)2ℓ · 𝑒−𝑎 (ℓ+2) (1−𝑝) (9)

Up until now, we have calculated the limiting value of 𝑃(𝑆ℓ,𝑛) from Eq (5). We now calculate

the probability of event 𝑇ℓ,𝑛 in which at least 2 of the ℓ vertices of the miss block occur together. We

prove that the probability of the sequences ascribed to this event is negligible, and its contributions

to the final matching can be ignored.

We begin with an example for ℓ = 3 or the event 𝑇ℓ=3,𝑛. Let 𝑤1, 𝑤2, 𝑤3 be the 3 in-

ternal vertices of the miss block. So event 𝑇ℓ=3,𝑛 compromises of input sequences in which

(𝑤1, 𝑤2), (𝑤2, 𝑤3)&(𝑤3, 𝑤1) are pairwise together, and (𝑤1, 𝑤2, 𝑤3) are all together. The event

in which 𝑤1, 𝑤2, 𝑤3 are all together is covered under previous events in which any 2 of them are

together. Using 𝐶𝑢,𝑣 to describe an input sequence where vertices 𝑢 and 𝑣 are one of the internal

53

points of a miss block, and occur consecutively in the input sequence, we can express the above as:

𝑇ℓ=3,𝑛 = 𝐶𝑤1,𝑤2 ∪ 𝐶𝑤2,𝑤3 ∪ 𝐶𝑤3,𝑤1

Using union bound, the probability of the event 𝑇ℓ=3,𝑛 can be upper bounded by the sum of

probability of individual events 𝐶𝑤1,𝑤2 , 𝐶𝑤2,𝑤3 and 𝐶𝑤3,𝑤1 .

𝑃(𝑇ℓ=3,𝑛) = 𝑃
(
𝐶𝑤1,𝑤2 ∪ 𝐶𝑤2,𝑤3 ∪ 𝐶𝑤3,𝑤1

)
≤ 𝑃(𝐶𝑤1,𝑤2) + 𝑃(𝐶𝑤2,𝑤3) + 𝑃(𝐶𝑤3,𝑤1)

Note, by symmetry 𝑃(𝐶𝑤1,𝑤2) = 𝑃(𝐶𝑤2,𝑤3) = 𝑃(𝐶𝑤3,𝑤1), and therefore

𝑃(𝑇ℓ=3,𝑛) ≤ 3𝑃(𝐶𝑤1,𝑤2)

We use logic similar to above to upper bound the probability of event 𝑇ℓ,𝑛, where an arbitrary

miss block of length ℓ occurs and prove its limiting value is 0.

Claim 9.

lim
𝑛→∞

𝑃(𝑇ℓ,𝑛) = 0 (10)

Proof. 𝑃(𝑇ℓ,𝑛) is the probability of the event in which an ℓ size miss block occurs in the frequency

vector, such that at least two of the ℓ vertices of the miss block occur together in the input sequence.

Let’s specify and name the nodes which occur consecutively as 𝑢 and 𝑣.

We define 𝐶𝑢,𝑣 to be an event, such that a miss block of length ℓ occurs in the frequency vector,

and two vertices 𝑢 and 𝑣 from the miss block occur consecutively, in that order. Then for fixed ℓ

length miss block, and every pair of 𝑢 and 𝑣, we get –

𝑇ℓ,𝑛 =
⋃

𝑢,𝑣 ∈ 𝐿
𝐶𝑢,𝑣

54

where 𝐿 denotes the set of internal vertices of the miss block. And using union bound

𝑃(𝑇ℓ,𝑛) = 𝑃

(⋃
𝑢,𝑣 ∈ 𝐿

𝐶𝑢,𝑣

)
≤

∑︁
𝑢,𝑣∈𝐿

𝑃(𝐶𝑢,𝑣)

≤
(
ℓ

2

)
𝑃(𝐶𝑢,𝑣) (11)

where the last equality is followed by symmetry.

We now calculate bounds on probability of event 𝐶𝑢,𝑣 . Event 𝐶𝑢,𝑣 has 2 vertices 𝑢 and 𝑣

occurring in the input sequence, let’s say at positions 𝑖 and 𝑖 + 1. The remaining vertices in the input

sequence satisfy the other remaining conditions of 𝐶𝑢,𝑣 , that is the occurrence of an ℓ sized miss

block from which two vertices have already occurred. Let the remaining event be 𝑅, and therefore

𝑃(𝐶𝑢,𝑣)
fixed 𝑖

= 𝑃(𝑢 occurs at position 𝑖) · 𝑃(𝑣 occurs at position 𝑖 + 1) · 𝑃(𝑅)

≤ 𝑃(𝑢 at 𝑖) · 𝑃(𝑣 at 𝑖 + 1 | 𝑢 at 𝑖)

And all possible positions of 𝑖 = 1 to 𝑎𝑛 − 1 in the input sequence, we have

𝑃(𝐶𝑢,𝑣) ≤
𝑎𝑛−1∑︁
𝑖=1

𝑃(𝑢 at 𝑖) · 𝑃(𝑣 at 𝑖 + 1 | 𝑢 at 𝑖)

≤ 1 − 𝑝

𝑛 − 1

𝑎𝑛−1∑︁
𝑖=1

𝑃(𝑢 at 𝑖)

≤ 1 − 𝑝

𝑛 − 1

𝑎𝑛∑︁
𝑖=1

𝑃(𝑢 at 𝑖)

The probability of a node 𝑢 from the set of online vertices, occurring at position 𝑖 in the input

sequence of length 𝑎𝑛 can be calculated using Lemma 10.

Lemma 10.

𝑃(vertex 𝑣 at position 𝑖) = 1
𝑛

Proof. Position 𝑖 in the input sequence can be taken by any of the 𝑛 online vertices having a type in

55

𝑉 . Note that

𝑃(position 𝑖 is occupied) = 𝑃(𝑣1 at 𝑖) + 𝑃(𝑣2 at 𝑖) + · · · 𝑃(𝑣𝑛 at 𝑖]

1 =

𝑛∑︁
𝑗=1

𝑃(𝑣 𝑗 at 𝑖)

Even though the probability of a node 𝑣 occurring at position 𝑖 is dependent on the node occurring

at position 𝑖 − 1 because we are sampling from a Markov chain(except for position 𝑖 = 1, in which

case it is equivalent to 1
𝑛

), in this case given no information about which node is present just before

node 𝑢 occurs at position 𝑖, the probability of all nodes are again equivalent. Therefore,

𝑛 · 𝑃(𝑣 at 𝑖) = 1

Hence, probability of a node 𝑣 occurring at a particular position 𝑖 in the input sequence is 1
𝑛

or

𝑃(𝑣 at 𝑖) = 1
𝑛

. □

Using this lemma, we get

𝑃(𝐶𝑢,𝑣) ≤
1 − 𝑝

𝑛 − 1

𝑎𝑛∑︁
𝑖=1

1
𝑛

𝑃(𝐶𝑢,𝑣) ≤
1 − 𝑝

𝑛 − 1
· 𝑎 (12)

Combining Equations 11 and 12, we get

𝑃(𝑇ℓ,𝑛) ≤
(
ℓ

2

)
· 𝑎 · 1 − 𝑝

𝑛 − 1

Calculating its limits with respect to 𝑛 tending to ∞, and lower bounding the probability by 0,

we get

0 ≤ lim
𝑛→∞

𝑃(𝑇ℓ,𝑛) ≤ lim
𝑛→∞

(
ℓ

2

)
· 𝑎 · 1 − 𝑝

𝑛 − 1

lim
𝑛→∞

𝑃(𝑇ℓ,𝑛) = 0

56

Hence, the contribution of event 𝑇ℓ,𝑛 in asymptotic cases is 0. □

From Equation 9 and Equation 10, we conclude that

lim
𝑛→∞

𝑃(𝐸ℓ,𝑛) = lim
𝑛→∞

𝑃(𝑆ℓ,𝑛) + lim
𝑛→∞

𝑃(𝑇ℓ,𝑛)

lim
𝑛→∞

𝑃(𝐸ℓ,𝑛) = 𝑎ℓ · (1 − 𝑝)2ℓ · 𝑒−𝑎 (ℓ+2) (1−𝑝) (13)

Step 2 – Defining an upper bound on 𝑃(𝐸ℓ,𝑛) and proving the infinite summation converges

In the previous section, we calculated the limiting value of 𝑃(𝐸ℓ,𝑛). We now proceed with the

2𝑛𝑑 step of the process, defining an upper bound on the 𝑃(𝐸ℓ,𝑛), such that the infinite summation of

the new term converges.

Corresponding to the ℓ length miss block in event 𝐸ℓ,𝑛, we present an alternate strategy for

calculating the associated probability. The event where this same ℓ length miss block occurs in the

frequency vector and leads to the occurrence of these ℓ vertices exactly once in the input sequence

can be bifurcated into these 2 cases – (1) the input sequence begins with one of these ℓ vertices, or

(2) it begins with some vertex not in this set. We denote these two mutually exclusive and exhaustive

events as 𝐶ℓ,𝑛 and 𝐷ℓ,𝑛 respectively.

Note, for both events 𝐶ℓ,𝑛 and 𝐷ℓ,𝑛 there can be four types of transitions among the vertices in

the input sequence, based on predecessor-successor vertex combination. Let 𝑥 be a vertex belonging

to the set of ℓ vertices of miss block, and 𝑦 be a vertex not in the miss block. Then, transitions in the

input sequence can be of the following type:

(1) 𝑥 to 𝑥: from a miss block vertex to a miss block vertex, the probability of transition is 1−𝑝
𝑛−1

(2) 𝑦 to 𝑥: from a non miss block vertex to a miss block vertex, again the probability of transition

is 1−𝑝
𝑛−1

(3) 𝑦 to 𝑦: from a non miss block vertex to a miss block vertex, the probability of transition is

1 − (ℓ + 2) 1−𝑝
𝑛−1

(4) 𝑥 to 𝑦: from a miss block vertex to a non miss block vertex, the probability of transition is

1 − 𝑝 − (ℓ + 1) 1−𝑝
𝑛−1

57

In the input sequence when the ℓ vertices of miss block occur the total number of transitions into 𝑥,

i.e. one of the vertices of the miss block is ℓ, and therefore the total transition probability is
(

1−𝑝
𝑛−1

)ℓ
.

The remaining 𝑎𝑛 − ℓ vertices are of the type 𝑦, one of the non miss block vertices. Such transitions

can either occur from a miss block vertex (𝑥) or from a non miss block vertex (𝑦). Let 𝑡1 and 𝑡2 be

the number of such transitions respectively, and 𝑡1+ 𝑡2 = 𝑎𝑛−ℓ. (There may be 𝑎𝑛−ℓ−1 transitions,

under the condition that the first input item doesn’t get ‘transitioned into’, it is sampled uniformly.)

Then, the total transition probability leading into these 𝑦 type vertices in the sequence would be(
1 − 𝑝 − (ℓ+1)1−𝑝

𝑛−1

) 𝑡1 (
1 − (ℓ+2)1−𝑝

𝑛−1

) 𝑡2
. Note that, in asymptotic conditions, the transition probability

from 𝑥 to 𝑦 is dominated by the transition probability from 𝑦 to 𝑦.

1 − 𝑝 − (ℓ + 1) 1 − 𝑝

𝑛 − 1
≤ 1 − (ℓ + 2) 1 − 𝑝

𝑛 − 1
1 − 𝑝

𝑛 − 1
≤ 𝑝 =⇒ 1 − 𝑝

𝑝
≤ 𝑛 − 1 =⇒ 1

𝑛
≤ 𝑝

as 𝑝 ∈ [0, 1], 𝑛 ∈ (1,∞].

So in any input sequence, we can upper bound the transition probability of from any vertex to a

𝑦 type vertex by the latter –
(
1 − (ℓ+2)1−𝑝

𝑛−1

)
. And the transition probability from any vertex to a 𝑥

type vertex is
(

1−𝑝
𝑛−1

)
, as denoted earlier. Using these two facts, we compute an upper bound on the

probability of events 𝐶ℓ,𝑛 and 𝐷ℓ,𝑛 as follows.

𝑃(𝐶ℓ,𝑛) =
(
ℓ

𝑛

) (
1 − 𝑝

𝑛 − 1

)ℓ−1 (
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−ℓ (
𝑎𝑛 − 1
ℓ − 1

)
(ℓ − 1)!

𝑃(𝐷ℓ,𝑛) =
(
1 − ℓ + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)ℓ (
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−ℓ−1 (
𝑎𝑛

ℓ

)
(ℓ!)

where the binomial coefficients arise from the placement of ℓ vertices in a 𝑎𝑛 length input sequence

and factorials arise from the internal arrangement of the ℓ vertices. Note in the earlier calculations,

we had further divided the events into cases where ℓ vertices occur together or not, but we do not

need to follow the same steps here. We want to remark that even though both of these probability

calculations are for the same event 𝐸ℓ,𝑛, the calculation of probability in the latter is more loosely

upper bounded than the former, which helps us in deriving a corresponding 𝑀𝑙 with respect to

Tannery’s theorem whose infinite summation can be proved to converge.

58

We upper bound the probability of event 𝐸ℓ,𝑛 as follows:

𝑃(𝐸ℓ,𝑛) = 𝑃(𝐶ℓ,𝑛) + 𝑃(𝐷ℓ,𝑛)

≤
(
ℓ

𝑛

) (
1 − 𝑝

𝑛 − 1

)ℓ−1 (
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−ℓ (
𝑎𝑛 − 1
ℓ − 1

)
(ℓ − 1)! +

+
(
1 − ℓ + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)ℓ (
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−ℓ−1 (
𝑎𝑛

ℓ

)
(ℓ!)

(14)

Note the R.H.S. of the equation corresponds to 𝑀𝑙 of the Tannery’s theorem. We now show that

the infinite sum of the R.H.S. converges. We first introduce two lemmas, which help in simplifying

the results.

Lemma 11. (
𝑛

𝑘

)
𝑘! ≤ 𝑛𝑘

Proof. Note,

𝑛 · (𝑛 − 1) · (𝑛 − 2) . . . (𝑛 − 𝑘 + 1) ≤ 𝑛𝑘 and therefore
𝑛!

(𝑛 − 𝑘)! ≤ 𝑛𝑘

Multiplying both sides by
1
𝑘!

, we get

(
𝑛

𝑘

)
≤ 𝑛𝑘

𝑘!
=⇒

(
𝑛

𝑘

)
𝑘! ≤ 𝑛𝑘

Hence,
(
𝑛

𝑘

)
𝑘! ≤ 𝑛𝑘 □

Lemma 12. ln(𝑥) − 𝑥 ≤ −1

Proof. Note that 𝑓 (𝑥) = ln(𝑥) − 𝑥 is a decreasing function. For calculating the maxima of 𝑓 (𝑥), we

differentiate 𝑓 (𝑥) and solve by equating its derivative to 0. Differentiating 𝑓 (𝑥), we get

𝑑𝑓 (𝑥)
𝑑𝑥

=
1
𝑥
− 1

And solving 1
𝑥
− 1 = 0, we get 𝑥 = 1. Therefore, the maximum value of 𝑓 (𝑥) exists at 𝑥 = 1, which

59

is

𝑓 (1) = ln(1) − 1 = −1

Therefore, 𝑓 (𝑥) = ln(𝑥) − 𝑥 ≤ 1. □

Using these two lemmas, we further simplify the upper bounds on 𝑃(𝐶ℓ,𝑛) and 𝑃(𝐷ℓ,𝑛).

Upper bounding 𝑃(𝐶ℓ,𝑛)

𝑃(𝐶ℓ,𝑛) =
(
ℓ

𝑛

) (
𝑎𝑛 − 1
ℓ − 1

)
(ℓ − 1)!

(
1 − 𝑝

𝑛 − 1

)ℓ−1 (
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−ℓ
≤ 1 · (𝑎𝑛)ℓ−1 ·

(
1 − 𝑝

𝑛 − 1

)ℓ−1
· 𝑒−

(ℓ+2) (1−𝑝) (𝑎𝑛−ℓ)
𝑛−1

≤ (𝑎(1 − 𝑝))ℓ−1 ·
(𝑛

𝑛 − 1

)ℓ−1
· 𝑒−

(ℓ+2) (1−𝑝) (𝑎𝑛−𝑎)
𝑛−1 · 𝑒−

(ℓ+2) (1−𝑝) (𝑎−ℓ)
𝑛−1

≤ (𝑎(1 − 𝑝))ℓ−1 · 𝑒 ℓ−1
𝑛−1 · 𝑒−

(ℓ−1) (1−𝑝) (𝑎𝑛−𝑎)
𝑛−1 · 𝑒−

3(1−𝑝) (𝑎𝑛−𝑎)
𝑛−1 · 𝑒

(ℓ+2) (1−𝑝) (ℓ−𝑎)
𝑛−1

≤
{
(𝑎(1 − 𝑝))ℓ−1 · 𝑒−(ℓ−1) (1−𝑝)𝑎

}
·
{
𝑒 · 𝑒−3(1−𝑝)𝑎

}
· 𝑒 (ℓ+2) (1−𝑝)

≤
{
𝑒 (ℓ−1) ln(𝑎 (1−𝑝)) · 𝑒−(ℓ−1) (1−𝑝)𝑎

}
·
{
𝑒 · 𝑒−3(1−𝑝)𝑎

}
· 𝑒3(1−𝑝) · 𝑒 (ℓ−1) (1−𝑝)

≤ 𝑒−(ℓ−1) ·
{
𝑒 · 𝑒−3(1−𝑝)𝑎 · 𝑒3(1−𝑝)

}
· 𝑒 (ℓ−1) (1−𝑝)

≤ 𝑒−(ℓ−1) 𝑝 · 𝑒3(1−𝑝) (1−𝑎)+1

≤ 𝑒−ℓ 𝑝 · 𝑒{3(1−𝑝) (1−𝑎)+1+𝑝} = 𝑒−ℓ 𝑝 · 𝑐1

where 𝑐1 is a constant.

60

And similarly upper bounding 𝑃(𝐷ℓ,𝑛),

𝑃(𝐷ℓ,𝑛) =
(
1 − ℓ + 2

𝑛

) (
𝑎𝑛

ℓ

)
(ℓ!)

(
1 − 𝑝

𝑛 − 1

)ℓ (
1 − (ℓ + 2) (1 − 𝑝)

𝑛 − 1

)𝑎𝑛−ℓ−1

≤ 1 · (𝑎𝑛)ℓ ·
(
1 − 𝑝

𝑛 − 1

)ℓ
· 𝑒−

(ℓ+2) (1−𝑝) (𝑎𝑛−ℓ−1)
𝑛−1

≤ (𝑎(1 − 𝑝))ℓ ·
(𝑛

𝑛 − 1

)ℓ
· 𝑒−

(ℓ+2) (1−𝑝) (𝑎𝑛−𝑎)
𝑛−1 · 𝑒−

(ℓ+2) (1−𝑝) (𝑎−ℓ−1)
𝑛−1

≤ (𝑎(1 − 𝑝))ℓ · 𝑒 ℓ
𝑛−1 · 𝑒−

ℓ (1−𝑝) (𝑎𝑛−𝑎)
𝑛−1 · 𝑒−

2(1−𝑝) (𝑎𝑛−𝑎)
𝑛−1 · 𝑒

(ℓ+2) (1−𝑝) (ℓ+1−𝑎)
𝑛−1

≤
{
(𝑎(1 − 𝑝))ℓ · 𝑒−ℓ (1−𝑝)𝑎

}
·
{
𝑒 · 𝑒−2(1−𝑝)𝑎

}
· 𝑒 (ℓ+2) (1−𝑝)

≤
{
𝑒ℓ ln(𝑎 (1−𝑝)) · 𝑒−ℓ (1−𝑝)𝑎

}
·
{
𝑒 · 𝑒−2(1−𝑝)𝑎

}
· 𝑒2(1−𝑝) · 𝑒ℓ (1−𝑝)

≤ 𝑒−ℓ ·
{
𝑒 · 𝑒−2(1−𝑝)𝑎 · 𝑒2(1−𝑝)

}
· 𝑒ℓ (1−𝑝)

≤ 𝑒−ℓ 𝑝 · 𝑒2(1−𝑝) (1−𝑎)+1

≤ 𝑒−ℓ 𝑝 · 𝑒{2(1−𝑝) (1−𝑎)+1} = 𝑒−ℓ 𝑝 · 𝑐2

where 𝑐2 is a constant.

Using the above bounds and substituting in Eq 14, we get

𝑃(𝐸ℓ,𝑛) ≤ 𝑃(𝐶ℓ,𝑛) + 𝑃(𝐷ℓ,𝑛)

≤ (𝑐1 + 𝑐2)𝑒−ℓ 𝑝 = 𝑐 · 𝑒−ℓ 𝑝

where 𝑐 is a constant.

This R.H.S. provides us an 𝑀𝑙 for completing the conditions of Tannery’s theorem, and the

infinite sum of 𝑐 · 𝑒−𝑙 𝑝, where ℓ ≥ 0, 𝑝 ≥ 0 converges to 𝑐 · 𝑒𝑝

𝑒𝑝−1 . Hence, the conditions of Tannery’s

theorem are satisfied, and we can proceed to Step 3, exchanging the order of limits and summation.

61

Step 3 – Exchanging the order of limits and summation of 𝑃(𝐸ℓ,𝑛)

We have shown that the conditions of Tannery’s theorem are satisfied for lim
𝑛→∞

𝑛−2∑
ℓ=0

𝑃(𝐸ℓ,𝑛) in

Steps 1 and 2. We can now exchange the order of limits and sums, and using Eq 13, we get

lim
𝑛→∞

𝑛−2∑︁
ℓ=0

𝑃(𝐸ℓ,𝑛) =
∞∑︁
ℓ=0

lim
𝑛→∞

𝑃(𝐸ℓ,𝑛)

=

∞∑︁
ℓ=0

𝑎ℓ · (1 − 𝑝)2ℓ · 𝑒−(ℓ+2) (1−𝑝)𝑎

=

∞∑︁
ℓ=0

(
𝑎(1 − 𝑝)2

)ℓ
· 𝑒−ℓ (1−𝑝)𝑎 · 𝑒−2(1−𝑝)𝑎

= 𝑒−2(1−𝑝)𝑎 ·
∞∑︁
ℓ=0

(
𝑎(1 − 𝑝)2 𝑒−(1−𝑝)𝑎

)ℓ
= 𝑒2(𝑎𝑝−𝑎)

∞∑︁
ℓ=0

(𝑧 · 𝑒𝑦)ℓ , 𝑦 = 𝑎𝑝 − 𝑎, 𝑧 = 𝑎(1 − 𝑝)2

=
𝑒2(𝑎𝑝−𝑎)

1 − (𝑒𝑎𝑝−𝑎 · 𝑎(1 − 𝑝)2)

This concludes the proof of Theorem 6, and we obtain the result

lim
𝑛→∞

𝑛−2∑︁
ℓ=0
E[𝑋1 [ℓ]] = lim

𝑛→∞

∞∑︁
ℓ=0

𝑃(𝐸ℓ,𝑛) =
𝑒2𝑦

1 − (𝑒𝑦 · 𝑎(1 − 𝑝)2)
, 𝑦 = 𝑎𝑝 − 𝑎

4.2.5 Size of Expected Matching

Using the above calculations, we can now calculate the size of expected matching constructed

by an optimal offline algorithm in asymptotic conditions. We state the results in Theorem 13.

Theorem 13.

lim
𝑛→∞

E[𝑂𝑃𝑇]
𝑛

= 1 − 𝑒2(𝑎𝑝−𝑎)

1 − (𝑒𝑎𝑝−𝑎 · 𝑎(1 − 𝑝)2)
(15)

This is the expected size of matching in a (2, 2)-regular bipartite graph, where vertices are

generated from a 𝑝 parameterized lazy random walk based family of Markov chains by an offline

optimal algorithm. We present a few corollaries next, for specific values of 𝑎 and 𝑝.

Corollary 14. For the conventional lazy random walk based Markov chain, where 𝑝 = 1
2 , we obtain

62

the expected size of matching as:

lim
𝑛→∞

E[𝑂𝑃𝑇]
𝑛

= 1 − 4
4𝑒𝑎 − 𝑎𝑒

𝑎
2

Corollary 15. For the conventional lazy random walk Markov chain, where 𝑝 = 1
2 , when the input

sequence length is equal to the size of (a single) vertex set or 𝑎 = 1, we get the expected size of

matching as:

lim
𝑛→∞

E[𝑂𝑃𝑇]
𝑛

= 1 − 4
4𝑒 −

√
𝑒
= 1 − 0.4336

lim
𝑛→∞

E[𝑂𝑃𝑇]
𝑛

= 0.56636

We use these results to calculate the asymptotic competitive ratios for the family of Two

Suggested Matching algorithms in the next chapter.

63

Chapter 5

Online Bipartite Matching in

(2, 2)-Regular Bipartite Graph

In this chapter, we present an important family of online algorithms for bipartite matching,

the Two Suggested Matching algorithms. The Two Suggested Matching - Non Adaptive

algorithm (TSM-NA) was introduced by Feldman et al. in [26] and is of significant importance as it

helped break the 1− 1
𝑒

barrier in online matching for the first time in nearly 20 years. This was further

improved upon to the Two Suggested Matching Adaptive algorithm (TSM-A) in Manshadi et

al. [62].

The power of Two Suggested Matching algorithms lies in obtaining 2 large disjoint matchings

of the graph and using them to make a decision on whether to match the current vertex or not.

Because our type graph can be easily decomposed into 2 separate disjoint matchings, we can easily

perform the analysis of the online algorithm without worrying about specific ways of splitting the

graph. We want to calculate the competitive ratio of these algorithms under the new settings and we

present the analysis of the expected size of the matching obtained by these two online algorithms.

We first present an overview of the algorithms, and depict a case where these algorithms result in

different matching size for the same input sequence. Next, we show the intuition behind calculating

the size of expected matching for these algorithms, and finish off their respective sections with

calculations of the expected size of matching set.

64

5.1 Overview of Algorithms

Two Suggested Matching - Non Adaptive

Suppose the two disjoint matchings of the type graph are 𝑀1 & 𝑀2. In Two Suggested

Matching - Non Adaptive, when a vertex arrives for the first time, it is matched to the offline

vertex in accordance with the first matching 𝑀1 if available, and when it arrives the second time, it

is matched to the offline vertex in accordance to the second matching 𝑀2, if available.

Two Suggested Matching - Adaptive

In the Two Suggested Matching - Adaptive, for each arrival of a vertex, it is first matched in

accordance to matching 𝑀1 if available. If not available, it is matched according to its neighbor in

matching 𝑀2, given it is available. 𝑇𝑆𝑀 − 𝐴 adapts to the condition of availability of corresponding

offline vertices when making a decision, whereas 𝑇𝑆𝑀 −𝑁𝐴 makes the decision irrespective of that.

For example in 𝑇𝑆𝑀 − 𝑁𝐴, the first arrival of a vertex of type 𝑣′ will not be matched to its neighbor

in 𝑀2(𝑣′) (if available) when its neighbor in 𝑀1(𝑣′) is not available, creating a missed chance of

matching. An example is depicted in Figure 5.1.

u1

u2

u3 v3

v2

v1 u1

u2

u3 v2

v1

v1

v1, v1, v2Input Sequence:

u1

u2

u3 v2

v1

v1

Type Graph Matching byMatching by TSM −NA TSM − A

Figure 5.1: The first graph is the type graph, (2, 2)-regular bipartite graph. The 2𝑛𝑑 and 3𝑟𝑑 graph
depicts matching created by 𝑇𝑆𝑀 −𝑁𝐴 and 𝑇𝑆𝑀 − 𝐴 of size 2 and 3 respectively. The darker edges
in the second and third graph depicts the edges in matching.

65

5.2 Two Suggested Matching - Non Adaptive

Recall for a bipartite type graph 𝐺 (𝑈,𝑉, 𝐸) and 2 disjoint perfect matchings, 𝑀1 and 𝑀2,

the 𝑇𝑆𝑀 − 𝑁𝐴 algorithm matches the first occurrence of an online vertex with its neighbor in

accordance to 𝑀1, and for the second occurrence of the same online vertex, it matches in accordance

to its neighbor in 𝑀2 (given the offline vertices are available to match). We begin by discussing the

scenarios in which an offline vertex gets matched. These scenarios give us an idea about how the

input sequence should be for an offline vertex in 𝑈 to get matched.

5.2.1 Working Mechanism

Let 𝑢𝑖 ∈ 𝑈 be an offline vertex, which is matched in the final matching. For this requirement to

be satisfied, the input sequence ®̂𝑣 must have any one of the three scenarios:

(1) A vertex of type 𝑣𝑖 occurs at least once, given that no vertex of type 𝑣𝑖−1 occurs before this.

In this case, 𝑢𝑖 gets matched with 𝑣𝑖 .

(2) A vertex of type 𝑣𝑖 occurs at least once, and exactly one vertex of type 𝑣𝑖−1 occurs before this.

In this case, 𝑢𝑖 is available to be matched by 𝑣𝑖 , because on the first occurrence of 𝑣𝑖−1, it gets

matched according to 𝑀1, to offline vertex 𝑢𝑖−1 (given it is available). And 𝑢𝑖 gets matched

with 𝑣𝑖 .

(3) There are two occurrence of vertex of type 𝑣𝑖−1 before a vertex of type 𝑣𝑖 occurs in the

sequence. In this case, for the second occurrence of 𝑣𝑖−1, matching takes place according to

𝑀2, and with vertex 𝑢𝑖 .

Note for all 3 conditions, the indices of the vertices are wrapped around 𝑛, and start again from

1. In other words, for a pair of vertices 𝑣𝑖 and 𝑣𝑖+1 and a fixed 𝑛, such as 𝑛 = 5, the vertex pair is 𝑣3

and 𝑣4 for 𝑖 = 3 and 𝑣5 and 𝑣1 for 𝑖 = 5. This holds for all similar discussions throughout the chapter.

These three scenarios cover all possible events in which 𝑢𝑖 becomes matched in the final matching

(or has an incident edge which is part of the matching set). Similar to 𝑂𝑃𝑇 discussed in the previous

chapter, we want to calculate the probability of the input sequences in these three scenarios, which

helps in calculating the size of expected matching for the 𝑇𝑆𝑀 − 𝑁𝐴 algorithm.

66

5.2.2 Algorithm Analysis

Because the input sequence ®̂𝑣 is a randomly generated, we want to find the expected expected

number of matchings in the case of 𝑇𝑆𝑀 − 𝑁𝐴. To do so we make use of random variables once

again which account for whether an offline vertex is matched in the final matching or not.

We define an indicator random variable 𝑋𝑖 , which indicates whether 𝑢𝑖 ∈ 𝑈, 𝑖 ∈ [1, 𝑛] is matched

or not in the final matching.

𝑋𝑖 =


1 if 𝑢𝑖 is matched in final matching

0 otherwise

where 𝑢𝑖 ∈ 𝑈.

The size of matching which is equal to the number of matched offline vertices can be calculated

by iterating over and summing the sequence of indicator random variables, (𝑋1, 𝑋2, · · · , 𝑋𝑛), as

each indicator random variable being 1 indicates a matched offline vertex, and increments the sum

by 1. We denote it using Lemma 16

Lemma 16. The size of matching set obtained by 𝑇𝑆𝑀 − 𝑁𝐴 on an input sequence ®̂𝑣, given

by 𝐴𝐿𝐺𝑁𝐴(®̂𝑣) is the sum over all indicator random variables, (𝑋1, 𝑋2, · · · , 𝑋𝑛), where each 𝑋𝑖

indicates whether an offline vertex is matched or not.

𝐴𝐿𝐺𝑁𝐴(®̂𝑣) =
𝑛∑︁
𝑖=1

𝑋𝑖 (16)

We use shorthand notation of referring𝑇𝑆𝑀𝑁𝐴(®̂𝑣) as𝑇𝑆𝑀𝑁𝐴. Taking expectation on both sides

and using linearity of expectation, we get

E[𝐴𝐿𝐺𝑁𝐴] =
𝑛∑︁
𝑖=1
E[𝑋𝑖]

As the type graph is symmetrical in terms of vertices and neighbor pairs, we see that E[𝑋1] =

E[𝑋2] = · · · = E[𝑋𝑛]. So, we replace the similar quantities with E[𝑋1] in the equations, and we

67

obtain

E[𝐴𝐿𝐺𝑁𝐴] = 𝑛E[𝑋1]

Normalizing and taking limits on both sides, we get

Lemma 17.

lim
𝑛→∞

𝐸 [𝐴𝐿𝐺𝑁𝐴]
𝑛

= lim
𝑛→∞
E[𝑋1] (17)

5.2.3 Calculating the Size of Expected Matching

From Lemma 17, we gather that we need to calculate the expected value of random variable 𝑋1,

which denotes whether 𝑢1 is matched in the final matching or not. The vertex 𝑢1 is matched if one of

the 3 conditions mentioned in 5.2.1 are satisfied in the input sequence. Let 𝐸𝑛 or (abbreviated to 𝐸

where the context suffices) denote this event of 𝑢1 being matched in the final matching, and 𝐸1, 𝐸2

and 𝐸3 denote the 3 associated sub events. Then,

𝑃(𝐸) = 𝑃(𝐸1) + 𝑃(𝐸2) + 𝑃(𝐸3) (18)

and, we rewrite the expected value of the indicator random variable 𝑋1 as the probability of event

𝐸𝑛.

lim
𝑛→∞
E[𝑋1] = lim

𝑛→∞
𝑃(𝐸) (19)

Because we are interested in the limiting value of E[𝑋1], we calculate the limiting value of these

probabilities, and get the following result:

Theorem 18.

lim
𝑛→∞

𝑃(𝐸) = 1 + 𝑝

2

(
1 − 𝑒−2𝑎 (1−𝑝)

)
+ 1 − 𝑝

2

(
1 − (1 + 2𝑎(1 − 𝑝)𝑒−2𝑎 (1−𝑝))

)
(20)

We derive the probabilities mentioned above in the next section.

CASE 1: Vertex of type 𝑣1 occurs once, and no vertex of type 𝑣𝑛 has occurred before it. This

scenario can be realized by 2 possibilities:

68

(1) 𝑣1 is the first vertex in the input sequence, with uniform probability of 1
𝑛

, as any of the n vertices

can be sampled uniformly. Probability of such an event is:

𝑃(𝐸1) =
1
𝑛

, and its limiting value is

lim
𝑛→∞

𝑃(𝐸1) = 0

(2) 𝑣1 is not the first vertex in the input sequence, and appears at 𝑞𝑡ℎ position in the input sequence

for the first time. The transition probability from vertex at 𝑞 − 1𝑡ℎ position to 𝑞𝑡ℎ position is

given by 1−𝑝
𝑛−1 . And the first 𝑎𝑛 − 𝑞 vertices have no restriction placed on them, other than they

cannot be either 𝑣1 or 𝑣𝑛. The probability of such an event, where vertex 𝑣1 appears at a fixed 𝑞

position is given by:

𝑃(𝐸1)
fixed q

=

(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−2 (
1 − 𝑝

𝑛 − 1

)
, 𝑞 ∈ [2, 𝑎𝑛]

And the actual probability of the sub event (under this circumstance of 𝑞 ≠ 1) is given by

summing the above probability for all possible values of 𝑞, and we obtain the following

𝑃(𝐸1) =
𝑎𝑛∑︁
𝑞=2

{(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−2 (
1 − 𝑝

𝑛 − 1

)}

The limiting value of this equation is:

lim
𝑛→∞

𝑃(𝐸1) = lim
𝑛→∞

(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑎𝑛−2∑︁
𝑞=0

{(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞}

= lim
𝑛→∞

(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) ©­­«
1 −

(
1 − 2(1−𝑝)

𝑛−1

)𝑎𝑛−1

2(1−𝑝)
𝑛−1

ª®®¬
= 1 · 1

2
·
(
1 − 𝑒−2𝑎 (1−𝑝)

)
=

1 − 𝑒−2𝑎 (1−𝑝)

2

69

Combining the above 2 sub cases,

lim
𝑛→∞

𝑃(𝐸1) =
1 − 𝑒−2𝑎 (1−𝑝)

2

CASE 2: Vertex of type 𝑣1 occurs once, and only one vertex of type 𝑣𝑛 has occurred before it. This

scenario can be realized by the following four possibilities,

(1) 𝑣𝑛 and 𝑣1 are the first and second vertex of the sequence respectively. The probability of this

sequence is:

𝑃(𝐸2) =
1
𝑛
· 1

2(𝑛 − 1) , and its limiting value is

lim
𝑛→∞

𝑃(𝐸2) = 0

(2) 𝑣𝑛 is the first vertex of the sequence, and 𝑣1 occurs at 𝑞𝑡ℎ position in the sequence (𝑞 ≠ 2). The

probability of such an input sequence, for a fixed value of 𝑞 is:

𝑃(𝐸2)
fixed q

=
1
𝑛

(
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−3 (
1 − 𝑝

𝑛 − 1

)
, 𝑞 ∈ [3, 𝑎𝑛]

Where the second term’s probability is ascribed to the fact that the vertex just after 𝑣𝑛 can not

be 𝑣𝑛 itself (deducting a value of 𝑝), and it can not be vertex 𝑣1 (deducting a value of 1−𝑝
𝑛−1). The

rest of the terms have logic similar to their occurrence in Case 1. The probability of the input

sequence in this sub case, for all values of 𝑞 is given by:

𝑃(𝐸2) =
𝑎𝑛∑︁
𝑞=3

{
1
𝑛

(
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−3 (
1 − 𝑝

𝑛 − 1

)}

70

The limiting value of the equation is:

lim
𝑛→∞

𝑃(𝐸2) = lim
𝑛→∞

1
𝑛

(
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 𝑝

𝑛 − 1

) 𝑎𝑛−3∑︁
𝑞=0

{(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞}

= lim
𝑛→∞

1
𝑛

(
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 𝑝

𝑛 − 1

) ©­­«
1 −

(
1 − 2(1−𝑝)

𝑛−1

)𝑎𝑛−2

2(1−𝑝)
𝑛−1

ª®®¬
= lim
𝑛→∞

(
1 − 𝑝

2𝑛

) (
1 − 1

𝑛

) (
1 −

(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2
)

=

(
lim
𝑛→∞

1 − 𝑝

2𝑛

)
·
(

lim
𝑛→∞

{(
1 − 1

𝑛

) (
1 −

(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2
)})

= 0 ·
(
1 − 𝑒−2𝑎 (1−𝑝)

)
= 0

(3) 𝑣𝑛 and 𝑣1 occurs consecutively at 𝑞𝑡ℎ and 𝑞 + 1𝑡ℎ position in the input sequence, and 𝑞 ≠ 1.

The probability of such an input sequence, for a fixed 𝑞 is:

𝑃(𝐸2)
fixed q

=

(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−2 (
1 − 𝑝

𝑛 − 1

)2
, 𝑞 ∈ [2, 𝑎𝑛 − 1]

There would be 𝑞 − 2 transitions in the input sequence before the occurrence of 𝑣𝑛 vertex in the

sequence, and the two subsequent transitions of 1−𝑝
𝑛−1 is for the occurrence of 𝑣𝑛 and 𝑣1 vertex

respectively. The probability of the sequence for this sub case, for all values of 𝑞 is given by

𝑃(𝐸2) =
𝑎𝑛−1∑︁
𝑞=2

{(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−2 (
1 − 𝑝

𝑛 − 1

)2
}

And the limiting value of the equation is:

71

lim
𝑛→∞

𝑃(𝐸2) = lim
𝑛→∞

(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)2 𝑎𝑛−3∑︁
𝑞=0

{(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞}

= lim
𝑛→∞

(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)2 ©­­«
1 −

(
1 − 2(1−𝑝)

𝑛−1

)𝑎𝑛−2

2(1−𝑝)
𝑛−1

ª®®¬
= lim
𝑛→∞

(
1
2

) (
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) (
1 −

(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2
)

=

(
lim
𝑛→∞

1 − 𝑝

𝑛 − 1

)
·
(

lim
𝑛→∞

{
1
2

(
1 − 2

𝑛

) (
1 −

(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2
)})

= 0 ·
(
1 − 𝑒−2𝑎 (1−𝑝))

2

= 0

(4) 𝑣𝑛 occurs at 𝑖𝑡ℎ position and 𝑣1 occurs later at 𝑗 𝑡ℎ position in the sequence, such that 𝑖 + 2 ≤ 𝑗

and 𝑖 ≠ 1. The former condition specifies that these two vertices occurs non consecutively in the

input sequence, and the latter specifies that the starting position isn’t the first, which was already

covered in above cases. Probability of such an input sequence, for fixed positions of 𝑖 and 𝑗 is:

𝑃(𝐸2)
fixed i, j

=

(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

) 𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

) 𝑗−𝑖−2
×

×
(
1 − 𝑝

𝑛 − 1

)
(𝑗 − 3) , 𝑖 ∈ [2, 𝑎𝑛 − 2], 𝑗 ∈ [4, 𝑎𝑛]

The first three terms in the equation occur as follows: the occurrence of 𝑣𝑛 at position 𝑖 with

probability 1−𝑝
𝑛−1 is after 𝑖 − 2 transitions among vertices which are not 𝑣𝑛 and 𝑣1. The next term,(

1 − 𝑝 − 1−𝑝
𝑛−1

)
is the transition probability from 𝑣𝑛 to the next vertex, which can be any vertex

except 𝑣𝑛 and 𝑣1. The next two terms follow a similar logic, but for vertex 𝑣1, which occurs after

𝑗 − 𝑖 − 2 transitions form the 𝑞 + 1𝑡ℎ position. And a multiplicand of 𝑗 − 3 occurs because for a

fixed position of 𝑣𝑛, 𝑣1 can occur at 𝑗 − 3 positions in the input sequence (all 𝑗 positions except

1𝑠𝑡 , 𝑖𝑡ℎ and 𝑖 + 1𝑡ℎ). Hence, for a fixed position of 𝑣𝑛, 𝑗 − 3 such input sequences have the same

72

probability. The probability of the input sequence, over all valid values of 𝑖 and 𝑗 is given by:

𝑃(𝐸2) =
𝑎𝑛∑︁
𝑗=4

{(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)2 (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

) 𝑗−4
(𝑗 − 3)

}

And the limiting value of the equation is:

lim
𝑛→∞

𝑃(𝐸2) = lim
𝑛→∞

(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)2 (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) 𝑎𝑛∑︁
𝑗=4

{(
1 − 2(1 − 𝑝)

𝑛 − 1

) 𝑗
(𝑗 − 3)

}

For calculating this sum,
𝑎𝑛∑
𝑗=4

{(
1 − 2(1−𝑝)

𝑛−1

) 𝑗
(𝑗 − 3)

}
we make use of the following observation.

Let
(
1 − 2(1 − 𝑝)

𝑛 − 1

)
= 𝑓 (𝑛), abbreviated to as 𝑓 . A geometric progression in 𝑓 , between ℓ = 4

to 𝑎𝑛 can be simplified as:

𝑎𝑛∑︁
ℓ=4

𝑓 ℓ−3 =

𝑎𝑛−3∑︁
ℓ=1

𝑓 ℓ =
𝑓 𝑎𝑛−2 − 𝑓

𝑓 − 1

Differentiating both sides with respect to 𝑓 , we get the 𝐿.𝐻.𝑆. as:

𝑑

𝑑𝑓

(
𝑎𝑛∑︁
𝑙=4

𝑓 𝑙−3

)
=

𝑎𝑛∑︁
𝑙=4

𝑓 𝑙−4 · (𝑙 − 3)

and the 𝑅.𝐻.𝑆. (using quotient rule of differentiation) as:

𝑑

𝑑𝑓

(
𝑓 𝑎𝑛−2 − 𝑓

𝑓 − 1

)
=

(
(𝑎𝑛 − 2) 𝑓 𝑎𝑛−3 − 1

)
(𝑓 − 1) − 1

(
𝑓 𝑎𝑛−2 − 𝑓

)
(𝑓 − 1)2

=
𝑓 𝑎𝑛−3 ((𝑎𝑛 − 3) 𝑓 − (𝑎𝑛 − 2)) + 1

(𝑓 − 1)2

Substituting 𝑓 = 1 − 2(1 − 𝑝)
𝑛 − 1

, we get the 𝐿.𝐻.𝑆. as

𝑎𝑛∑︁
𝑙=4

𝑓 𝑙−4 · (𝑙 − 3) =
𝑎𝑛∑︁
𝑙=4

(
1 − 2(1 − 𝑝)

𝑛 − 1

) 𝑙−4
(𝑙 − 3)

73

and the 𝑅.𝐻.𝑆. as

𝑓 𝑎𝑛−3 ((𝑎𝑛 − 3) 𝑓 − (𝑎𝑛 − 2)) + 1
(𝑓 − 1)2 =

(
1 − 2(1−𝑝)

𝑛−1

)𝑎𝑛−3 (
(𝑎𝑛 − 3)

(
1 − 2(1−𝑝)

𝑛−1

)
− 𝑎𝑛 + 2

)
+ 1(

−2(1−𝑝)
𝑛−1

)2

=

(
1 − 2(1−𝑝)

𝑛−1

)𝑎𝑛−3 (
(6 − 2𝑎𝑛)

(
1−𝑝
𝑛−1

)
− 1

)
+ 1

4
(

1−𝑝
𝑛−1

)2

Substituting the above result, we get

lim
𝑛→∞

𝑃(𝐸) = lim
𝑛→∞

(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)2 (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) 𝑎𝑛∑︁
𝑗=4

{(
1 − 2(1 − 𝑝)

𝑛 − 1

) 𝑗
(𝑗 − 3)

}
= lim
𝑛→∞

(
1 − 2

𝑛

) (
1
4

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

)
×

×
{(

1 − 2(1 − 𝑝)
𝑛 − 1

)𝑎𝑛−3 (
(6 − 2𝑎𝑛) 1 − 𝑝

𝑛 − 1
− 1

)
+ 1

}
=

1 − 𝑝

4

(
𝑒−2(1−𝑝)𝑎 (−2𝑎(1 − 𝑝) − 1) + 1

)
=

(1 − 𝑝) (1 − (1 + 2𝑎(1 − 𝑝))𝑒−2𝑎 (1−𝑝))
4

Combining the above 4 sub cases,

lim
𝑛→∞

𝑃(𝐸2) =
(1 − 𝑝) (1 − (1 + 2𝑎(1 − 𝑝))𝑒−2𝑎 (1−𝑝))

4

CASE 3: Vertex of type 𝑣𝑛 occurs twice in the input sequence, given that vertex of type 𝑣1 has not

occurred before it. Again, this scenario can be realized by 4 possibilities, as follows:

(1) 𝑣𝑛 occurs at the first and second position in the sequence. The probability of this sequence is:

𝑃(𝐸3) =
1
𝑛
· 1

2(𝑛 − 1) , and its limiting value is

lim
𝑛→∞

𝑃(𝐸3) = 0

(2) 𝑣𝑛 is the first vertex of the input sequence, and the second 𝑣𝑛 occurs at 𝑞𝑡ℎ position in the

74

sequence. The probability of such a sequence, for fixed 𝑞 is

𝑃(𝐸3)
fixed q

=
1
𝑛

(
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−3 (
1 − 𝑝

𝑛 − 1

)
, 𝑞 ∈ [3, 𝑎𝑛]

And the probability of the input sequence for all values of 𝑞 is

𝑃(𝐸3) =
𝑎𝑛∑︁
𝑞=3

{
1
𝑛

(
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−3 (
1 − 𝑝

𝑛 − 1

)}

This probability is same as the probability in Case 2.2, and hence we obtain the result,

lim
𝑛→∞

𝑃(𝐸3) = 0

(3) The first 𝑣𝑛 occurs at 𝑞𝑡ℎ position in the sequence, and the second 𝑣𝑛 occurs at 𝑞 + 1𝑡ℎ position

in the sequence. The probability of such an input sequence for a fixed 𝑞 is:

𝑃(𝐸3)
fixed q

=

(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−2 (
1 − 𝑝

𝑛 − 1

)
𝑝, 𝑞 ∈ [2, 𝑎𝑛 − 1]

The only difference in this probability to that of in Case 2.3 is that instead of two subsequent
1−𝑝
𝑛−1 transitions, we now have a 𝑝 transition denoting the consecutive occurrence of 𝑣𝑛 vertices.

The probability of the input sequence for all valid values of 𝑞 is given by

𝑃(𝐸3) =
𝑎𝑛−1∑︁
𝑞=2

{(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞−2 (
1 − 𝑝

𝑛 − 1

)
𝑝

}

75

The limiting value of the equation is:

lim
𝑛→∞

𝑃(𝐸3) = lim
𝑛→∞

(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)
𝑝

𝑎𝑛−3∑︁
𝑞=0

{(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑞}

= lim
𝑛→∞

(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)
𝑝
©­­«

1 −
(
1 − 2(1−𝑝)

𝑛−1

)𝑎𝑛−2

2(1−𝑝)
𝑛−1

ª®®¬
= lim
𝑛→∞

(𝑝
2

) (
1 − 2

𝑛

) (
1 −

(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2
)

=
𝑝

2

(
1 − 𝑒−2𝑎 (1−𝑝)

)
(4) The first 𝑣𝑛 occurs at 𝑖𝑡ℎ position in the sequence, and the other 𝑣𝑛 occurs at 𝑗 𝑡ℎ position in the

sequence, such that 𝑖 + 2 ≤ 𝑗 and 𝑖 ≠ 1. This is similar to Case 2.4, where the constraints make

sure that the two occurrence of vertices are not consecutive, and the first vertex in the input

sequence is not 𝑣𝑛 (as these cases are covered in the previous sub cases). The probability of

such an input sequence for fixed 𝑖 and 𝑗 is:

𝑃(𝐸3)
fixed i, j

=

(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

) 𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

) 𝑗−𝑖−2
×

×
(
1 − 𝑝

𝑛 − 1

)
(𝑗 − 3) , 𝑖 ∈ [2, 𝑎𝑛 − 2], 𝑗 ∈ [4, 𝑎𝑛]

For all valid values of 𝑖 and 𝑗 , the probability of the input sequence is given by

𝑃(𝐸3) =
𝑎𝑛∑︁
𝑗=4

{(
1 − 2

𝑛

) (
1 − 𝑝

𝑛 − 1

)2 (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

) 𝑗−4
(𝑗 − 3)

}

This probability is same as the probability in Case 2.4, and we obtain the limiting value of the

probability as

lim
𝑛→∞

𝑃(𝐸3) =
(1 − 𝑝) (1 − (1 + 2𝑎(1 − 𝑝))𝑒−2𝑎 (1−𝑝))

4

76

Combining the above 4 sub cases,

lim
𝑛→∞

𝑃(𝐸3) =
𝑝

2

(
1 − 𝑒−2𝑎 (1−𝑝)

)
+ (1 − 𝑝) (1 − (1 + 2𝑎(1 − 𝑝))𝑒−2𝑎 (1−𝑝))

4

We have now calculated the limiting value of probability of input sequences for all 3 sub events.

The limiting value of probability for event 𝐸 is the sum of these 3 limiting values and denotes the

probability of occurrence of an input sequence in which vertex 𝑢1 becomes matched in the final

matching.

lim
𝑛→∞

𝑃(𝐸) = 1 − 𝑒−2𝑎 (1−𝑝)

2
+ 𝑝

2

(
1 − 𝑒−2𝑎 (1−𝑝)

)
+ 2 · (1 − 𝑝) (1 − (1 + 2𝑎(1 − 𝑝))𝑒−2𝑎 (1−𝑝))

4

=
1 + 𝑝

2

(
1 − 𝑒−2𝑎 (1−𝑝)

)
+ 1 − 𝑝

2

(
1 − (1 + 2𝑎(1 − 𝑝))𝑒−2𝑎 (1−𝑝)

)
This wraps up the proof of Theorem 18, and we have now obtained the results required to

calculate the expected number of matchings by 𝑇𝑆𝑀 − 𝑁𝐴.

lim
𝑛→∞
E[𝑋1] = lim

𝑛→∞
𝑃(𝐸) = 1 + 𝑝

2
(1 − 𝑒−𝑦) + 1 − 𝑝

2
(1 − 𝑒−𝑦 (1 + 𝑦)) , 𝑦 = 2𝑎(1 − 𝑝)

5.2.4 Tight Bounds on Competitive Ratio

By computing the probability of the desired sequences above, now we can calculate the size of

expected matching for the 𝑇𝑆𝑀 − 𝑁𝐴 algorithm. We express the result in Theorem 19 as follows.

Theorem 19.

lim
𝑛→∞

𝐸 [𝐴𝐿𝐺𝑁𝐴]
𝑛

=
1 + 𝑝

2

(
1 − 𝑒−2𝑎 (1−𝑝)

)
+ 1 − 𝑝

2

(
1 − (1 + 2𝑎(1 − 𝑝))𝑒−2𝑎 (1−𝑝)

)
(21)

Using Theorems 13 and 19, we can derive the asymptotic competitive ratio of Two Suggested

Matching - Non Adaptive algorithm as:

𝜌𝑇𝑆𝑀−𝑁𝐴 =

1+𝑝
2

(
1 − 𝑒−2𝑎 (1−𝑝)) + 1−𝑝

2
(
1 − (1 + 2𝑎(1 − 𝑝))𝑒−2𝑎 (1−𝑝))

1 − 𝑒2(𝑎𝑝−𝑎)

1−(𝑒𝑎𝑝−𝑎 ·𝑎 (1−𝑝)2)

(22)

Once again, we present the results for some specific parameters of 𝑎 and 𝑝.

77

Corollary 20. For the conventional lazy random walk based Markov chain, where 𝑝 = 1
2 , we obtain

the expected size of matching as:

𝜌𝑇𝑆𝑀−𝑁𝐴 =

4(1−𝑒−𝑎)−𝑎𝑒−𝑎
4

1 − 4
4𝑒𝑎−𝑎𝑒

𝑎
2

Corollary 21. For the conventional lazy random walk Markov chain, where 𝑝 = 1
2 , when the input

sequence length is equal to the size of (a single) vertex set or 𝑎 = 1, we get the expected size of

matching as:

𝜌𝑇𝑆𝑀−𝑁𝐴 =
1 − 5

4𝑒

1 − 4
4𝑒−

√
𝑒

=
1 − 0.4598

0.56636
=

0.5401
0.56636

𝜌𝑇𝑆𝑀−𝑁𝐴 = 0.9536

Hence, under the lazy random walk Markov chain, 𝑝 = 1
2 , Two Suggested Matching - Non

Adaptive achieves a competitive ratio of 𝜌𝑇𝑆𝑀−𝑁𝐴 = 0.9536.

Next, we analyze the adaptive version of the Two Suggested Matching algorithm.

5.3 Two Suggested Matching - Adaptive

Given a bipartite type graph 𝐺 (𝑈,𝑉, 𝐸) with 2 disjoint perfect matchings 𝑀1 and 𝑀2, for each

input vertex of type �̂� in the sequence, the Two Suggested Matching - Adaptive (𝑇𝑆𝑀 − 𝐴)

algorithm first checks its neighbor in accordance to 𝑀1(�̂�) to obtain a matching (if available). And it

next checks it neighbor in accordance to 𝑀2(�̂�) to obtain a matching (if available). This is different

from 𝑇𝑆𝑀 − 𝑁𝐴 in the sense that first occurrence of a vertex �̂� will only attempt to be matched to

its neighbor in 𝑀1(�̂�), and if it is not available, it will not continue to look for its neighbor in 𝑀2(�̂�),

creating a loss in its refusal to adapt.

5.3.1 Warm up: Case of 𝑛 = 3

Similar to 𝑇𝑆𝑀 − 𝑁𝐴, we explain the scenarios in which an offline vertex remains unmatched

in the final matching of the representation graph. We begin with an example case of 𝑛 = 3 size type

78

graph which has 3 offline and online vertices. Focusing on an offline vertex 𝑢1, we see it remains

unmatched in the final matching because of either of these 2 conditions -

(1) No occurrence of 𝑣1 till end of sequence (EoS) and no occurrence of 𝑣3 till end of sequence,

or

(2) No 𝑣1 till EoS and one 𝑣3 till EoS such that 𝑢3 is unmatched when 𝑣3 arrives.

The first condition makes sure there are no neighbors for 𝑢1 to be matched to in the input sequence.

And the second condition makes sure that the arrival of one of its neighbors, 𝑣3 creates a matching

with preference to 𝑀1. For the second condition to be satisfied, it is needed that vertex 𝑢3 remains

unmatched until the occurrence of 𝑣3. This is similar to our beginning problem statement, which

deduces the cases where 𝑢1 remains unmatched, illustrating the presence of a recursive structure in

our problem.

The conditions of 𝑢3 remaining unmatched when 𝑣3 arrives for the first time in the input sequence

can happen in the following situations:

(1) One 𝑣3 till EoS and no occurrence of 𝑣2 before 𝑣3 arrives, or

(2) One 𝑣3 till EoS and one 𝑣2 before 𝑣3 arrives such that 𝑢2 is unmatched when 𝑣2 arrives.

Substituting the above conditions ‘in’ the conditions for 𝑢1 being unmatched in the final matching,

we get:

(1) No 𝑣1 till EoS and no 𝑣3 till EoS, or

(2) No 𝑣1 till EoS and one 𝑣3 till EoS and no 𝑣2 before 𝑣3 arrives, or

(3) No 𝑣1 till EoS and one 𝑣3 till EoS and one 𝑣2 before 𝑣3 arrives, such that 𝑢2 remains unmatched

when 𝑣2 arrives.

We see similar recursive conditions are set for vertex 𝑢2 to be unmatched when 𝑣2 arrives. We can

state the conditions for this as follows:

(1) One 𝑣2 till EoS and no occurrence of 𝑣1 before 𝑣1 arrive, or

(2) One 𝑣2 till EoS and one 𝑣1 before 𝑣2 arrives such that 𝑢1 remains unmatched when 𝑣1 arrives.

79

No v1 till EoS,
No v3 till EoS.

No v1 till EoS,
1 v3 till EoS,
No v2 till v3 arrives.

No v1 till EoS,
1 v3 till EoS,
1 v2 till v3 arrives,
No v1 till v2 arrives.

No v1 till EoS,
1 v3 till EoS,
s.t. u3 is unmatched when v3 arrives.

No v1 till EoS,
1 v3 till EoS,
1 v2 till v3 arrives
s.t. u2 is unmatched when v2 arrives.

No v1 till EoS,
1 v3 till EoS,
1 v2 till v3 arrives,
1 v1 till v2 arrives,
s.t. u1 is unmatched when v1 arrives.

u1 is unmatched

Stopping Case - Not Possible!
L2

L0

L1

Figure 5.2: A recursive tree depicting the events where input sequences lead to 𝑢1 remaining
unmatched in the final matching for 𝑛 = 3 size (2, 2)-regular bipartite graph.

Combining the above conditions, with the conditions of 𝑢1 being unmatched in the final matching

gives us:

(1) (𝐿0) No 𝑣1 till EoS and no 𝑣3 till EoS, or

(2) (𝐿1) No 𝑣1 till EoS and one 𝑣3 till EoS and no 𝑣2 before 𝑣3 arrives, or

(3) (𝐿2) No 𝑣1 till EoS and one 𝑣3 till EoS and one 𝑣2 before 𝑣3 arrives, and no 𝑣1 before 𝑣2

arrives, or

(4) No 𝑣1 till EoS and one 𝑣3 till EoS and one 𝑣2 before 𝑣3 arrives, and one 𝑣1 before 𝑣2 arrives,

such that 𝑢1 remains unmatched when 𝑣1 arrives.

This final condition is contradictory because we have 2 complementing conditions conjugating,

first that no 𝑣1 arrives till EoS and the second that one 𝑣1 is present in the sequence before 𝑣2

arrives such that 𝑢1 remains unmatched when 𝑣1 arrived.

Since the last condition isn’t possible, it also acts as a stopping case for the recursive tree, and we

get 3 conditions for 𝑢1 being unmatched in the final matching. We refer to the events corresponding

to such conditions here as 𝐿0, 𝐿1 and 𝐿2 respectively, for the leaf nodes at different levels of the

recursive tree, as depicted in Figure 5.2.

80

5.3.2 Working Mechanism

We can generalize these conditions for the type graph of size 𝑛. Let 𝑢1 ∈ 𝑈 be an offline vertex,

which remains unmatched in the final matching. Note 𝑢1 can be generalized to any arbitrary node

𝑢𝑖 ∈ 𝑈, and the conditions will remain the same, just the indices would shift with respect to the

difference between 1 and 𝑖. So, for 𝑢1 to remain unmatched in the final realization graph, the input

sequence ®̂𝑣 must have any one of the 𝑛 scenarios:

1. 𝐿0 : No 𝑣1 till EoS and no 𝑣𝑛 till EoS, or

2. 𝐿1 : No 𝑣1 till EoS and one 𝑣𝑛 till EoS and no 𝑣𝑛−1 till EoS, or

3. 𝐿2 : No 𝑣1 till EoS and one 𝑣𝑛 till EoS and one 𝑣𝑛−1 before 𝑣𝑛 arrives, and no 𝑣𝑛−2 𝑣𝑛−1

before 𝑣𝑛−1 arrives, or
...

n. 𝐿𝑛−1 : No 𝑣1 till EoS and one 𝑣𝑛 till EoS and one 𝑣𝑛−1 before 𝑣𝑛 arrives, and no 𝑣𝑛−2 𝑣𝑛−1

before 𝑣𝑛−1 arrives, · · · , one 𝑣2 before 𝑣3 arrives, and no 𝑣1 before 𝑣2 arrives.

These 𝑛 conditions, 𝐿0 to 𝐿𝑛−1 represent the cases in which 𝑢1 remains unmatched under the adaptive

version, also shown in Figure 5.3. Using similar logic as before, we calculate the probability of such

input sequences and use them to calculate the expected matching created under this algorithm.

5.3.3 Algorithm Analysis

Similar to the case of Frequency Based Optimal Matching and Two Suggested Matching

- Non Adaptive, the input sequence ®̂𝑣 is a randomly generated sequence, and we want to find the

expected number of matchings in the case of 𝑇𝑆𝑀 − 𝐴. Again, we define indicator random variables

which denote whether an offline vertex is matched in the final matching or not.

We define an indicator random variable 𝑋𝑖 , which indicates whether 𝑢𝑖 ∈ 𝑈, 𝑖 ∈ [1, 𝑛] is

unmatched or not in the final matching. 𝑋𝑖 is the indicator for offline vertex 𝑢𝑖 being unmatched in

81

u1 is unmatched

No v1 till EoS,
1 vn till EoS,
s.t. vn−1 is unmatched when vn arrives.

No v1 till EoS,
1 vn till EoS,
1 vn−1 till vn arrives
s.t. un−2 is unmatched when vn−1 arrives.

No v1 till EoS,
1 vn till EoS,
1 vn−1 till vn arrives,
1 vn−2 till vn−1 arrives,
s.t. un−3 is unmatched when vn−2 arrives.

No v1 till EoS,
1 vn till EoS,
1 vn−1 till vn arrives,

1 v1 till v2 arrives,
1 v2 till v3 arrives,

s.t. un is unmatched when v1 arrives.

...

No v1 till EoS,
1 vn till EoS,
No vn−1 till vn arrives.

No v1 till EoS,
1 vn till EoS,
1 vn−1 till vn arrives,

No v1 till EoS,
1 vn till EoS,
1 vn−1 till vn arrives,
...

No v1 till v2 arrives.
1 v2 till v3 arrives,

No vn−2 till vn−1 arrives.

No v1 till EoS,
No vn till EoS.

Stopping Case

Figure 5.3: A recursive tree depicting the events where input sequences lead to 𝑢1 remaining
unmatched in the final matching.

the final matching, rather than being matched which was previously defined for 𝑇𝑆𝑀 − 𝑁𝐴.

𝑋𝑖 =


1 if 𝑢𝑖 is unmatched in final matching

0 otherwise

where 𝑢𝑖 ∈ 𝑈. Note 𝑋𝑖 here as the opposite meaning, of being unmatched as to when discussed in

the previous section in the context of 𝑇𝑆𝑀 − 𝑁𝐴.

The total number of unmatched offline vertices can be calculated by iterating over and summing

the sequence of indicator random variables, (𝑋1, 𝑋2, · · · , 𝑋𝑛). Each matched offline vertex con-

tributes to an increment in the sum. The total number of matched offline vertices is equal to the total

82

offline vertices, 𝑛 minus the total unmatched offline vertices. We denote it using Lemma 22:

Lemma 22. The size of matching set obtained under 𝑇𝑆𝑀 − 𝐴 over an input sequence ®̂𝑣, given by

𝐴𝐿𝐺𝐴𝑑 (®̂𝑣) is the difference between total offline vertices and the sum over all indicator random

variables, (𝑋1, 𝑋2, · · · , 𝑋𝑛), where each 𝑋𝑖 indicates whether an offline vertex is unmatched or not.

𝐴𝐿𝐺𝐴𝑑 (®̂𝑣) = 𝑛 −
𝑛∑︁
𝑖=1

𝑋𝑖 (23)

Once again, we refer to 𝑇𝑆𝑀𝐴𝑑 (®̂𝑣) as 𝑇𝑆𝑀𝐴𝑑 . Taking expectation on both sides and using

linearity of expectation, we obtain

E[𝐴𝐿𝐺𝐴𝑑] = 𝑛 −
𝑛∑︁
𝑖=1
E[𝑋𝑖]

And once again, we use the symmetry of the type graph structure and see that E[𝑋1] = E[𝑋2] =

· · · = E[𝑋𝑛]. Replacing all equivalent terms in the expression with E[𝑋1], we get

E[𝐴𝐿𝐺𝐴𝑑] = 𝑛 − 𝑛 · E[𝑋1]

Finally, we normalize the value with respect to 𝑛, and take limits on both sides, we obtain

Lemma 23.

lim
𝑛→∞

E[𝐴𝐿𝐺𝐴𝑑]
𝑛

= 1 − lim
𝑛→∞
E[𝑋1] (24)

5.3.4 Calculating the Size of Expected Matching

Carrying on from Lemma-23, we see the need to calculate the expected value of random variable

𝑋1, which denotes whether 𝑢1 is unmatched in the final matching or not. The vertex 𝑢1 is matched if

one of the 𝑛 conditions mentioned in 5.3.2 is satisfied in the input sequence. Because 𝑋1 is a random

variable, the expected value of 𝑋1 is equal to the sum of probability of events corresponding to when

83

𝑋1 = 1, and therefore

E[𝑋1] =
𝑛−1∑︁
𝑘=0

𝑃(𝐿𝑘)

lim
𝑛→∞
E[𝑋1] = lim

𝑛→∞

𝑛−1∑︁
𝑘=0

𝑃(𝐿𝑘) (25)

Once again, we make use of Tannery’s theorem and find conditions to switch the limit of sums

of 𝑃(𝐿𝑘) to sum of limits. We define a step by step framework to computer the value in Theorem 24.

Theorem 24.

lim
𝑛→∞

∞∑︁
𝑘=0

𝑃(𝐿𝑘) = 𝑒 (1−𝑝) (𝑒
−𝑎 (1−𝑝)−2𝑎) (26)

Note that we can change the upper limit of summation from 𝑛 − 1 to ∞, by simply observing

that probability of events 𝐿𝑘 , 𝑘 ≥ 𝑛 is 0, as they are impossible to happen. We now present the

framework to calculate this value.

(1) The first step is calculating the limiting value of𝑃(𝐿𝑘). Starting with computing the probability

of the first few leaf nodes for 𝑘 = 0, 1, 2, we then calculate the value of 𝑃(𝐿𝑘) for an arbitrary

level 𝑘 . The value of 𝑃(𝐿𝑘) is quite complex and large expression, which we simplify further

by introducing Gaussian binomial coefficients. We introduce expressions upper and lower

bounding the value of 𝑃(𝐿𝑘), and calculate its limits which coincide, and in turn gives us the

limiting value of 𝑃(𝐿𝑘). Let this term, the value of 𝑃(𝐿𝑘) be known as 𝑎𝑙.

(2) Next, we define an 𝑀𝑘 corresponding to 𝑃(𝐿𝑘), such that 𝑃(𝐿𝑘) ≤ 𝑀𝑘 and the infinite sum

of 𝑀𝑘 , from 𝑘 = 0 to ∞ converges.

(3) With the conditions of Tannery’s theorem satisfied, we finally calculate the infinite sum of 𝑎𝑙

(the limiting value) from 0 to ∞, which gives us the required L.H.S. lim
𝑛→∞

∑𝑛−1
𝑘=0 𝑃(𝐿𝑘).

Before beginning with the calculation of the limiting values of 𝑃(𝐿𝑘), we define two lemmas

that are useful in calculating the probabilities in the first step.

Lemma 25. The limiting value of the probability of an event 𝐸𝑛, in which nodes of type 𝑣𝑖 and 𝑣 𝑗

appear in the input sequence consecutively is 0.

84

Proof. Let 𝐸𝑛 be an event in which nodes of type 𝑣𝑖 and 𝑣 𝑗 appear in the input sequence consecutively,

or 𝑣𝑖 , 𝑣 𝑗 is a subsequence present in the input sequence. Then

𝑃(𝐸𝑛) ≤
1 − 𝑝

𝑛 − 1

And the limiting value of probability of such a sequence for large 𝑛 is

0 ≤ lim
𝑛→∞

𝑃(𝐸𝑛) ≤ lim
𝑛→∞

1 − 𝑝

𝑛 − 1

lim
𝑛→∞

𝑃(𝐸𝑛) = 0

And every event 𝐺𝑛 ⊆ 𝐸𝑛 has 𝑃(𝐺𝑛) ≤ 𝑃(𝐸𝑛), therefore using sandwich theorem once again, we

get its limiting value, lim
𝑛→∞

𝑃(𝐺𝑛) = 0. □

Lemma 26. The limiting value of the probability of an event 𝐸𝑛, in which node 𝑣𝑖 appears at a fixed

position 𝑖 in the input sequence is 0.

Proof. Let 𝐸𝑛 be an event, in which node 𝑣𝑖 appears at a fixed position 𝑖 in the input sequence. The

probability of this event is

𝑃(𝐸𝑛) = 𝑃(𝑣𝑖 at position 𝑖) = 1
𝑛

(Lemma 10)

The limiting value of probability of such an event is

lim
𝑛→∞

𝑃(𝐸𝑛) = 0

And any subsequent events 𝐺𝑛 ⊆ 𝐸𝑛 follows the same, lim
𝑛→∞

𝑃(𝐺𝑛) = 0. □

We now proceed with the 3 step framework to calculate the results in Theorem 24.

Step 1: Limiting value of 𝑃(𝐿𝑘)

We start by calculating the probability of input sequences for a few initial leaves 𝐿0, 𝐿1, 𝐿2, . . .

which satisfy the conditions of 𝑋1 = 1, or 𝑢1 being unmatched.

85

(1) 𝐿0: The condition for 𝑢1 remaining unmatched in leaf 𝐿0 is no occurrence of 𝑣1 till EoS and no

occurrence of 𝑣𝑛 till EoS. The probability of such an input sequence and its limiting value is:

𝑃(𝐿0) =
(
1 − 2

𝑛

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1

lim
𝑛→∞

𝑃(𝐿0) = 𝑒−2(1−𝑝)𝑎

(2) 𝐿1: The conditions for 𝐿1 leaf is no 𝑣1 till EoS, one 𝑣𝑛 till EoS and no 𝑣𝑛−1 till 𝑣𝑛 arrives. The

input sequence looks similar to – This can be realized in 3 ways:

vn· · · · · ·
No vn−1, vn and v1

No vn and v1{
{

Figure 5.4: A visualization of input sequence for 𝐿1.

2.1 𝑣𝑛 is the 1𝑠𝑡 term of the sequence. The probability of such a sequence is:

𝑃(𝐿1) =
1
𝑛

(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1

lim
𝑛→∞

𝑃(𝐿1) = 0

2.2 𝑣𝑛 is the last term of the sequence. The probability of such a sequence is:

𝑃(𝐿1) =
(
1 − 3

𝑛

) (
1 − 3(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−2 (
1 − 𝑝

𝑛 − 1

)
lim
𝑛→∞

𝑃(𝐿1) = 0

2.3 𝑣𝑛 occurs at ℓ𝑡ℎ position, after ℓ − 1 transitions. The probability of a single such sequence,

for a fixed value of ℓ, 𝑃(𝐿1)
ℓ fixed

is given by

(
1 − 3

𝑛

) (
1 − 3(1 − 𝑝)

𝑛 − 1

)ℓ−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−ℓ−1

where ℓ varies from 2 to 𝑎𝑛− 1. The terms arising in the expression have a similar logic to

86

their appearance, as discussed in the probability calculations of 𝐹𝐵𝑂𝑀 and 𝑇𝑆𝑀 − 𝑁𝐴.

The total probability is the sum of the above probability for an individual ℓ, for all possible

values of ℓ = 2 to 𝑎𝑛 − 1. Hence,

𝑃(𝐿1) =
𝑎𝑛−1∑︁
ℓ=2

{(
1 − 3

𝑛

) (
1 − 3(1 − 𝑝)

𝑛 − 1

)ℓ−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

)
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−ℓ−1}
Grouping the terms independent of the index of summation ℓ separately, we can modify

the expression as

𝑃(𝐿1) =
(
1 − 3

𝑛

) (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 3(1 − 𝑝)

𝑛 − 1

)−2
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
𝑧1,

where

𝑧1 =

𝑎𝑛−1∑︁
ℓ=2

{(
1 − 3(1 − 𝑝)

𝑛 − 1

)ℓ (
1 − 2(1 − 𝑝)

𝑛 − 1

)−ℓ}
=

𝑎𝑛−1∑︁
ℓ=2

(
𝑛 + 3𝑝 − 4
𝑛 + 2𝑝 − 3

)ℓ
=

𝑎𝑛−1∑︁
ℓ=2

(
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

)ℓ
.

(3) 𝐿2: The conditions for 𝐿2 is no 𝑣1 till EoS, one 𝑣𝑛 till EoS, one 𝑣𝑛−1 till 𝑣𝑛 arrives and no 𝑣𝑛−2

till 𝑣𝑛−1 arrives. The input sequence looks like

vn· · · · · ·· · ·
No vn−1, vn and v1

vn−1

No vn−2, vn−1, vn and v1 No vn and v1

{
{ {

Figure 5.5: A visualization of input sequence for 𝐿2.

These conditions can be realized in several different ways depending on the relative positions of

𝑣𝑛−1 and 𝑣𝑛. Listing out the conditions based on the relative position of 𝑣𝑛−1 and 𝑣𝑛 we get,

87

3.1 𝑣𝑛−1 at first, 𝑣𝑛 at second position:

3.2 𝑣𝑛−1 at first, 𝑣𝑛 𝑖𝑡ℎ at position

3.3 𝑣𝑛−1 at first, 𝑣𝑛 at last position

3.4 𝑣𝑛−1 at 𝑖𝑡ℎ position, 𝑣𝑛 𝑖 + 1𝑡ℎ at position

3.5 𝑣𝑛−1 at 𝑖𝑡ℎ position, 𝑣𝑛 at last position

3.6 𝑣𝑛−1 at previous to last position, 𝑣𝑛 at last position

For events concerning input sequences under 3.1, 3.4, and 3.6, the limiting value of the

probability of the sequence is 0 by Lemma 25. The same follows for events concerning

input sequences under 3.2, 3.3, and 3.5 by Lemma 26. The contributing sequence where

𝑣𝑛−1 and 𝑣𝑛 both have unanchored positions possible in the sequence.

3.7 𝑣𝑛−1 at 𝑖𝑡ℎ position, 𝑣𝑛 at 𝑗 𝑡ℎ position: The probability of such a sequence, for fixed 𝑖 and

𝑗 is:

𝑃(𝐿2)
𝑖, 𝑗 fixed

=

(
1 − 4

𝑛

) (
1 − 4(1 − 𝑝)

𝑛 − 1

) 𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 2(1 − 𝑝)

𝑛 − 1

)
×

×
(
1 − 3(1 − 𝑝)

𝑛 − 1

) 𝑗−𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛− 𝑗−1

where 𝑖 varies from 2 to 𝑎𝑛 − 3 and 𝑗 varies from 4 to 𝑎𝑛 − 1. The total probability of all

input sequences under 𝐿2 in case 3.7 is given by summing over all possible values of 𝑖 and

𝑗 which is:

𝑃(𝐿2) =
𝑎𝑛−3∑︁
𝑖=2

𝑎𝑛−1∑︁
𝑗=4

{(
1 − 4

𝑛

) (
1 − 4(1 − 𝑝)

𝑛 − 1

) 𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 2(1 − 𝑝)

𝑛 − 1

)
×

×
(
1 − 3(1 − 𝑝)

𝑛 − 1

) 𝑗−𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛− 𝑗−1}
=

(
1 − 4

𝑛

) (
1 − 4(1 − 𝑝)

𝑛 − 1

)−2 (
1 − 𝑝

𝑛 − 1

)2 (
1 − 𝑝 − 2(1 − 𝑝)

𝑛 − 1

) (
1 − 3(1 − 𝑝)

𝑛 − 1

)−2
×

×
(
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
×

×
𝑎𝑛−3∑︁
𝑖=2

𝑎𝑛−1∑︁
𝑗=4

{(
1 − 4(1 − 𝑝)

𝑛 − 1

) 𝑖 (
1 − 3(1 − 𝑝)

𝑛 − 1

) 𝑗−𝑖 (
1 − 2(1 − 𝑝)

𝑛 − 1

)− 𝑗}

88

Simplifying, we get

𝑃(𝐿2) =
(
1 − 4

𝑛

) (
1 − 𝑝

𝑛 − 1

)2 (
1 − 3(1 − 𝑝)

𝑛 − 1

)−2 (
1 − 4(1 − 𝑝)

𝑛 − 1

)−2
×

×
(
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 2(1 − 𝑝)

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
𝑧2,

where

𝑧2 =

𝑎𝑛−3∑︁
𝑖=2

𝑎𝑛−1∑︁
𝑗=𝑖+2

{(
1 − 4(1 − 𝑝)

𝑛 − 1

) 𝑖 (
1 − 3(1 − 𝑝)

𝑛 − 1

)−𝑖 (
1 − 3(1 − 𝑝)

𝑛 − 1

) 𝑗 (
1 − 2(1 − 𝑝)

𝑛 − 1

)− 𝑗}
=

𝑎𝑛−3∑︁
𝑖=2

𝑎𝑛−1∑︁
𝑗=𝑖+2

{(
𝑛 + 4𝑝 − 5
𝑛 + 3𝑝 − 4

) 𝑖 (
𝑛 + 3𝑝 − 4
𝑛 + 2𝑝 − 3

) 𝑗}
=

𝑎𝑛−3∑︁
𝑖=2

𝑎𝑛−1∑︁
𝑗=𝑖+2

{(
1 − 1 − 𝑝

𝑛 + 3𝑝 − 4

) 𝑖 (
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

) 𝑗}
.

Note that, the only sequence which contributes here has the freedom of placing the occurring

nodes almost anywhere in the input sequence while satisfying the requiring conditions. This

follows in all subsequent cases.

(4) 𝐿3: The input sequence for 𝐿3 has the following conditions, no 𝑣1 till EoS, one 𝑣𝑛 till EoS, one

𝑣𝑛−1 till 𝑣𝑛 arrives, one 𝑣𝑛−2 till 𝑣𝑛−1 arrives, and no 𝑣𝑛−3 till 𝑣𝑛−2 arrives.

vn· · · · · ·· · ·
No vn−1, vn and v1

vn−1

No vn−2, vn−1, vn and v1 No vn and v1

· · · vn−2 { {
{{No vn−3, vn−2, vn−1,

vn and v1

Figure 5.6: A visualization of input sequence for 𝐿3.

Similarly, for leaf 𝐿3 the contributing input sequence has 𝑣𝑛−2, 𝑣𝑛−1 and 𝑣𝑛 at 3 independent

positions, 𝑖, 𝑗 and 𝑘 . By Lemmas 25 and 26, the limiting value of the probability of the rest of

the sequences is 0. For the former sequence with 3 independent positions, the probability of the

89

input sequence for fixed 𝑖, 𝑗 and 𝑘 is:

𝑃(𝐿3)
𝑖, 𝑗 ,𝑘 fixed

=

(
1 − 5

𝑛

) (
1 − 5(1 − 𝑝)

𝑛 − 1

) 𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 3(1 − 𝑝)

𝑛 − 1

)
×

×
(
1 − 4(1 − 𝑝)

𝑛 − 1

) 𝑗−𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 2(1 − 𝑝)

𝑛 − 1

)
×

×
(
1 − 3(1 − 𝑝)

𝑛 − 1

) 𝑘− 𝑗−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

)
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−𝑘−1

And the probability of 𝐿3 for all possible positions of 𝑖, 𝑗 and 𝑘 is

𝑃(𝐿3) =
𝑎𝑛−5∑︁
𝑖=2

𝑎𝑛−3∑︁
𝑗=𝑖+2

𝑎𝑛−1∑︁
𝑘= 𝑗+2

{(
1 − 5

𝑛

)
×

×
(
1 − 5(1 − 𝑝)

𝑛 − 1

) 𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 3(1 − 𝑝)

𝑛 − 1

)
×

×
(
1 − 4(1 − 𝑝)

𝑛 − 1

) 𝑗−𝑖−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 2(1 − 𝑝)

𝑛 − 1

)
×

×
(
1 − 3(1 − 𝑝)

𝑛 − 1

) 𝑘− 𝑗−2 (
1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

)
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−𝑘−1}
This can be further simplified as

𝑃(𝐿3) =
(
1 − 5

𝑛

) (
1 − 𝑝

𝑛 − 1

)3 (
1 − 3(1 − 𝑝)

𝑛 − 1

)−2 (
1 − 4(1 − 𝑝)

𝑛 − 1

)−2 (
1 − 5(1 − 𝑝)

𝑛 − 1

)−2
×

×
(
1 − 𝑝 − 1 − 𝑝

𝑛 − 1

) (
1 − 𝑝 − 2(1 − 𝑝)

𝑛 − 1

) (
1 − 𝑝 − 3(1 − 𝑝)

𝑛 − 1

) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
𝑧3,

where

𝑧3 =

𝑎𝑛−5∑︁
𝑖=2

𝑎𝑛−3∑︁
𝑗=𝑖+2

𝑎𝑛−1∑︁
𝑘= 𝑗+2

{(
1 − 5(1 − 𝑝)

𝑛 − 1

) 𝑖 (
1 − 4(1 − 𝑝)

𝑛 − 1

) 𝑗−𝑖 (
1 − 3(1 − 𝑝)

𝑛 − 1

) 𝑘− 𝑗}
𝑎𝑛−5∑︁
𝑖=2

𝑎𝑛−3∑︁
𝑗=𝑖+2

𝑎𝑛−1∑︁
𝑘= 𝑗+2

{(
1 − 1 − 𝑝

𝑛 + 4𝑝 − 5

) 𝑖 (
1 − 1 − 𝑝

𝑛 + 3𝑝 − 4

) 𝑗 (
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

) 𝑘}
.

90

Similarly, we can write the probability of a leaf node at an arbitrary 𝑘 𝑡ℎ level, 𝐿𝑘 , where 𝑘 varies

from 0 to 𝑛 − 1.

𝑃(𝐿𝑘) =
(
1 − 𝑘 + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑘 𝑘∏
𝑖=1

{(
1 − 𝑝 − 𝑘 (1 − 𝑝)

𝑛 − 1

)} 𝑘+2∏
𝑗=3

{(
1 − 𝑗 (1 − 𝑝)

𝑛 − 1

)−2
}
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
𝑧𝑘 ,

where 𝑧𝑘 is

𝑧𝑘 =

𝑎𝑛−2𝑘+1∑︁
𝑖1=2

𝑎𝑛−2𝑘+3∑︁
𝑖2=𝑖1+2

. . .

𝑎𝑛−3∑︁
𝑖𝑘−1=
𝑖𝑘−2+2

𝑎𝑛−1∑︁
𝑖𝑘=
𝑖𝑘−1+2

{(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

) 𝑖1
×

×
(
1 − 1 − 𝑝

𝑛 + 𝑘 𝑝 − (𝑘 + 1)

) 𝑖2
. . .

(
1 − 1 − 𝑝

𝑛 + 3𝑝 − 4

) 𝑖𝑘−1 (
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

) 𝑖𝑘}
Simplifying 𝑃(𝐿𝑘)

The probability of the event at 𝑘 𝑡ℎ level, given by 𝑃(𝐿𝑘) is a complex term, involving nested

summations and different terms with varying exponent. We can simplify it a little further and

introduce similar expressions to upper and lower bound it. We observe that the limiting value of the

upper and lower bounds calculated in the previous step coincides, which in turn gives us the limiting

value of 𝑃(𝐿𝑘).

𝑃(𝐿𝑘) is equal to

𝑃(𝐿𝑘) =
(
1 − 𝑘 + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑘 𝑘∏
𝑖=1

{(
1 − 𝑝 − 𝑘 (1 − 𝑝)

𝑛 − 1

)} 𝑘+2∏
𝑗=3

{(
1 − 𝑗 (1 − 𝑝)

𝑛 − 1

)−2
}
× (27)

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
𝑧𝑘 , (28)

91

where 𝑧𝑘 is

𝑧𝑘 =

𝑎𝑛−2𝑘+1∑︁
𝑖1=2

𝑎𝑛−2𝑘+3∑︁
𝑖2=𝑖1+2

. . .

𝑎𝑛−3∑︁
𝑖𝑘−1=
𝑖𝑘−2+2

𝑎𝑛−1∑︁
𝑖𝑘=
𝑖𝑘−1+2

{(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

) 𝑖1
×

×
(
1 − 1 − 𝑝

𝑛 + 𝑘 𝑝 − (𝑘 + 1)

) 𝑖2
. . .

(
1 − 1 − 𝑝

𝑛 + 3𝑝 − 4

) 𝑖𝑘−1 (
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

) 𝑖𝑘}
where for now, we focus on the last part of the equation, 𝑧𝑘 .

𝑧𝑘 is a term containing 𝑘 consecutive nested summations. The upper bounds of the summation

have terms like −2𝑘 +1,−2𝑘 +3 · · · −1 constant with respect to summation index 𝑖, and can be taken

out of the summation bounds by introducing extra summands. Shifting the lower and upper bounds

of summation, we obtain

𝑧𝑘 =

𝑎𝑛−2𝑘+1∑︁
𝑖1=0

𝑎𝑛−2𝑘+1∑︁
𝑖2=𝑖1

. . .

𝑎𝑛−2𝑘+1∑︁
𝑖𝑘−1=𝑖𝑘−2

𝑎𝑛−2𝑘+1∑︁
𝑖𝑘=𝑖𝑘−1

{(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

) 𝑖1+2𝑘
×

×
(
1 − 1 − 𝑝

𝑛 + 𝑘 𝑝 − (𝑘 + 1)

) 𝑖2+2(𝑘−1)
. . .

(
1 − 1 − 𝑝

𝑛 + 3𝑝 − 4

) 𝑖𝑘−1+4 (
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

) 𝑖𝑘+2
}

The fractions in the nested summation hold the following inequality

(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

)
≤

(
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

)
We can introduce an upper bound and lower bound for 𝑧𝑘 , by replacing all intermediate summands

by either of these two fractions.

Using the following notations for the fractions,

𝑓𝑢 (𝑛, 𝑝, 𝑘) = 𝑓𝑢 =

(
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

)
and

𝑓𝑙 (𝑛, 𝑝, 𝑘) = 𝑓𝑙 =

(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

)

92

We thus obtain an upper bound 𝑢𝑧𝑘 as

𝑢𝑧𝑘 =

𝑎𝑛−2𝑘−1∑︁
𝑖1=0

. . .

𝑎𝑛−2𝑘−1∑︁
𝑖𝑘=𝑖𝑘−1

{
𝑓 𝑖1+2𝑘
𝑢 · 𝑓 𝑖2+2(𝑘−1)

𝑢 . . . 𝑓
𝑖𝑘−1+4
𝑢 · 𝑓 𝑖𝑘+2

𝑢

}
and a lower bound 𝑙𝑧𝑘 as

𝑙𝑧𝑘 =

𝑎𝑛−2𝑘−1∑︁
𝑖1=0

. . .

𝑎𝑛−2𝑘−1∑︁
𝑖𝑘=𝑖𝑘−1

{
𝑓
𝑖1+2𝑘
𝑙

· 𝑓 𝑖2+2(𝑘−1)
𝑙

. . . 𝑓
𝑖𝑘−1+4
𝑙

· 𝑓 𝑖𝑘+2
𝑙

}
By taking out the constants terms in the nested summation, specifically the power of summand

𝑓 2𝑘
𝑢 , 𝑓

2(𝑘−1)
𝑢 , . . . and 𝑓 2𝑘

𝑙
, 𝑓

2(𝑘−1)
𝑙

, . . . the expressions can be further simplifies as

𝑧𝑘 ≤ 𝑢𝑧𝑘 =

𝑎𝑛−2𝑘−1∑︁
𝑖1=0

. . .

𝑎𝑛−2𝑘−1∑︁
𝑖𝑘=𝑖𝑘−1

𝑓

𝑗=𝑘∑
𝑗=1
𝑖 𝑗 + 2· 𝑘 (𝑘+1)

2

𝑢 = 𝑓
𝑘 (𝑘+1)
𝑢

𝑎𝑛−2𝑘−1∑︁
𝑖1=0

. . .

𝑎𝑛−2𝑘−1∑︁
𝑖𝑘=𝑖𝑘−1

𝑓

𝑗=𝑘∑
𝑗=1
𝑖 𝑗

𝑢 (29)

and

𝑙𝑧𝑘 =

𝑎𝑛−2𝑘+1∑︁
𝑖1=0

. . .

𝑎𝑛−2𝑘−1∑︁
𝑖𝑘=𝑖𝑘−1

𝑓

𝑗=𝑘∑
𝑗=1
𝑖 𝑗 + 2· 𝑘 (𝑘+1)

2

𝑙
= 𝑓

𝑘 (𝑘+1)
𝑙

𝑎𝑛−2𝑘−1∑︁
𝑖1=0

. . .

𝑎𝑛−2𝑘−1∑︁
𝑖𝑘=𝑖𝑘−1

𝑓

𝑗=𝑘∑
𝑗=1
𝑖 𝑗

𝑙
≤ 𝑧𝑘 (30)

We have obtained two nested summations, the upper and lower bounds, where the interior

summand terms are the same. We can now introduce a lemma that specifies replacing this nested

summation with a Gaussian binomial coefficient.

Lemma 27. The coefficient of a function 𝑓 under nested summations can be expressed in terms

of partition function 𝑝(𝑁, 𝑘, 𝑠), where 𝑝(𝑁, 𝑘, 𝑠) counts the total number of ways of partitioning a

number 𝑠 with at most 𝑘 number of parts, and under the constraints that the maximum size of any

partition is 𝑁 .

𝑁∑︁
𝑖1=0

. . .

𝑁∑︁
𝑖𝑘=𝐼𝑘−1

(𝑘 nested sums)

𝑓 𝑖1+𝑖2+...𝑖𝑘 =

𝑁 ·𝑘∑︁
𝑠=0

𝑝(𝑁, 𝑘, 𝑠). 𝑓 𝑠

𝑁 ·𝑘∑︁
𝑠=0

𝑝(𝑁, 𝑘, 𝑠). 𝑓 𝑠 =
(
𝑁 + 𝑘

𝑘

)
𝑓

,

93

where
(𝑁+𝑘
𝑘

)
𝑓

is the Gaussian Binomial Coefficient, and is equal to

(
𝑁 + 𝑘

𝑘

)
𝑓

=
(1 − 𝑓 𝑁+𝑘) (1 − 𝑓 𝑁+𝑘−1) · · · (1 − 𝑓 𝑁+1)

(1 − 𝑓) (1 − 𝑓 2) · · · (1 − 𝑓 𝑘)
.

We use this lemma to simplify the upper bound 𝑢𝑧𝑘 and lower bound 𝑙𝑧𝑘 and we obtain

𝑢𝑧𝑘 = 𝑓
𝑘 (𝑘+1)
𝑢

𝑎𝑛−2𝑘−1∑︁
𝑖1=0

. . .

𝑎𝑛−2𝑘−1∑︁
𝑖𝑘=𝑖𝑘−1

𝑓

𝑗=𝑘∑
𝑗=1
𝑖 𝑗

𝑢 = 𝑓
𝑘 (𝑘+1)
𝑢

(𝑎𝑛−2𝑘−1) ·𝑘∑︁
𝑖=0

𝑝(𝑎𝑛 − 2𝑘 − 1, 𝑘, 𝑠).(𝑓𝑢)𝑠

= 𝑓
𝑘 (𝑘+1)
𝑢

(
(𝑎𝑛 − 2𝑘 − 1) + 𝑘

𝑘

)
𝑓𝑢

= 𝑓
𝑘 (𝑘+1)
𝑢

(
𝑎𝑛 − 𝑘 − 1

𝑘

)
𝑓𝑢

and

𝑙𝑧𝑘 = 𝑓
𝑘 (𝑘+1)
𝑙

𝑎𝑛−2𝑘−1∑︁
𝑖1=0

. . .

𝑎𝑛−2𝑘−1∑︁
𝑖𝑘=𝑖𝑘−1

𝑓

𝑗=𝑘∑
𝑗=1
𝑖 𝑗

𝑙
= 𝑓

𝑘 (𝑘+1)
𝑙

(𝑎𝑛−2𝑘−1) ·𝑘∑︁
𝑖=0

𝑝(𝑎𝑛 − 2𝑘 − 1, 𝑘, 𝑠).(𝑓𝑙)𝑠

= 𝑓
𝑘 (𝑘+1)
𝑙

(
(𝑎𝑛 − 2𝑘 − 1) + 𝑘

𝑘

)
𝑓𝑙

= 𝑓
𝑘 (𝑘+1)
𝑙

(
𝑎𝑛 − 𝑘 − 1

𝑘

)
𝑓𝑙

Calculating the limits for the upper and lower bound

In this step, we make use of inequalities individually on 𝑢𝑧𝑘 and 𝑙𝑧𝑘 to derive simpler terms

which are greater and lesser than 𝑢𝑧𝑘 and 𝑙𝑧𝑘 respectively. We substitute these new, simpler terms

for 𝑧𝑘 in the R.H.S. of 𝑃(𝐿𝑘) and hence we get upper and lower bounds on the value of 𝑃(𝐿𝑘)

respectively. These bounds coincide, and hence we get the limiting value of the 𝑃(𝐿𝑘) term.

Inequality for Upper Bound 𝑢𝑧𝑘:

First, we evaluate the upper bound as follows.

𝑢𝑧𝑘 = (𝑓𝑢)𝑘 (𝑘+1)
(
𝑎𝑛 − 𝑘 − 1

𝑘

)
𝑓𝑢

= (𝑓𝑢)𝑘 (𝑘+1) · (1 − 𝑓 𝑎𝑛−𝑘−1
𝑢) (1 − 𝑓 𝑎𝑛−𝑘−2

𝑢) · · · (1 − 𝑓 𝑎𝑛−2𝑘
𝑢)

(1 − 𝑓𝑢) (1 − 𝑓 2
𝑢) · · · (1 − 𝑓 𝑘𝑢)

(31)

We introduce a lemma to further upper bound this expression.

94

Lemma 28.

1
(1 − 𝑓𝑢) (1 − 𝑓 2

𝑢) · · · (1 − 𝑓 𝑘𝑢)
≤ 𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
· ℎ𝑛 (𝑘, 𝑝) (32)

Proof. The following inequality holds from [56].

(1 + 𝑥)𝑘 ≤ 1
1 − 𝑘𝑥

for 𝑥 ∈ [−1, 1/𝑘), 𝑘 ≥ 0

1 − (1 + 𝑥)𝑘 ≥ 1 − 1
1 − 𝑘𝑥

1
1 − (1 + 𝑥)𝑘

≤ 1
1 − 1

1−𝑘𝑥
= 1 − 1

𝑘𝑥

For 𝑥 = − 1−𝑝
𝑛+2𝑝−3 , −1 ≤ 𝑥 ≤ 1/𝑘 , and 𝑘𝑥 =

−𝑘 (1−𝑝)
𝑛+2𝑝−3 ,

1 − 1
𝑘𝑥

= 1 + 𝑛 + 2𝑝 − 3
𝑘 (1 − 𝑝) =

𝑘 (1 − 𝑝) + 𝑛 + 2𝑝 − 3
𝑘 (1 − 𝑝)

Using this to simplify the denominator of the fraction in Equation 31, we get

1
(1 − 𝑓𝑢) (1 − 𝑓 2

𝑢) · · · (1 − 𝑓 𝑘𝑢)
≤

≤
(
𝑘 (1 − 𝑝) + 𝑛 + 2𝑝 − 3

𝑘 (1 − 𝑝)

) (
(𝑘 − 1) (1 − 𝑝) + 𝑛 + 2𝑝 − 3

(𝑘 − 1) (1 − 𝑝)

)
· · ·

(
1(1 − 𝑝) + 𝑛 + 2𝑝 − 3

1(1 − 𝑝)

)
≤ 𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
·
(
𝑘 (1 − 𝑝) + 𝑛 + 2𝑝 − 3

𝑛

) (
(𝑘 − 1) (1 − 𝑝) + 𝑛 + 2𝑝 − 3

𝑛

)
· · ·

(
1(1 − 𝑝) + 𝑛 + 2𝑝 − 3

𝑛

)
≤ 𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
· ℎ𝑛 (𝑘, 𝑝) (33)

□

Inequality for Lower Bound 𝑙𝑧𝑘:

Similarly, we evaluate the lower bound as follows.

𝑙𝑧𝑘 = (𝑓𝑙)𝑘 (𝑘+1)
(
𝑎𝑛 − 𝑘 − 1

𝑘

)
𝑓𝑙

= (𝑓𝑙)𝑘 (𝑘+1) ·
(1 − 𝑓 𝑎𝑛−𝑘−1

𝑙
) (1 − 𝑓 𝑎𝑛−𝑘−2

𝑙
) · · · (1 − 𝑓 𝑎𝑛−2𝑘

𝑙
)

(1 − 𝑓𝑙) (1 − 𝑓 2
𝑙
) · · · (1 − 𝑓 𝑘

𝑙
)

(34)

We introduce the following lemma to lower bound this expression.

95

Lemma 29.

1
(1 − 𝑓𝑙) (1 − 𝑓 2

𝑙
) · · · (1 − 𝑓 𝑘

𝑙
)
≥ 𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
· 𝑔𝑛 (𝑘, 𝑝) (35)

Proof. The following inequality holds from [56].

1 + 𝑘𝑥 ≤ (1 + 𝑥)𝑘 for 𝑥 ≥ −1, 𝑘 ≥ 0

1 − (1 + 𝑘𝑥) ≥ 1 − (1 + 𝑥)𝑘

1
1 − (1 + 𝑘𝑥) =

−1
𝑘𝑥

≤ 1
1 − (1 + 𝑥)𝑘

For 𝑥 = − 1−𝑝
𝑛+(𝑘+1) 𝑝−(𝑘+2) , 𝑥 ≥ −1, and 𝑘𝑥 =

−𝑘 (1−𝑝)
𝑛+2𝑝−3

−1
𝑘𝑥

=
𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

𝑘 (1 − 𝑝)

Using this to simplify the denominator of the fraction in Equation 34, we get

1
(1 − 𝑓𝑙) (1 − 𝑓 2

𝑙
) · · · (1 − 𝑓 𝑘

𝑙
)
≥

≥
(
𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

𝑘 (1 − 𝑝)

) (
𝑛 + 𝑘 𝑝 − (𝑘 + 1)
(𝑘 − 1) (1 − 𝑝)

)
· · ·

(
𝑛 + 2𝑝 − 3
1(1 − 𝑝)

)
≥

≥ 𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
·
(
𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

𝑛

) (
𝑛 + 𝑘 𝑝 − (𝑘 + 1)

𝑛

)
· · ·

(
𝑛 + 2𝑝 − 3

𝑛

)
≥ 𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
· 𝑔𝑛 (𝑘, 𝑝) (36)

□

We have obtained two expressions – one that is greater than the upper bound of 𝑧𝑘 and one that

is smaller than the lower bound of 𝑧𝑘 . We can now substitute the value of 𝑧𝑘 with these terms in

𝑃(𝐿𝑘) and calculate the upper and lower bound of 𝑃(𝐿𝑘).

Substituting the results of Lemma 28 in the upper bound of 𝑃(𝐿𝑘) from Equation 29 gives us:

96

(For upper bound of 𝑧𝑘)

𝑃(𝐿𝑘)
upper bound

=

(
1 − 𝑘 + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑘 𝑘∏
𝑖=1

{(
1 − 𝑝 − 𝑘 (1 − 𝑝)

𝑛 − 1

)} 𝑘+2∏
𝑗=3

{(
1 − 𝑗 (1 − 𝑝)

𝑛 − 1

)−2
}
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
· (𝑓𝑢)𝑘 (𝑘+1) · (1 − 𝑓 𝑎𝑛−𝑘−1

𝑢) (1 − 𝑓 𝑎𝑛−𝑘−2
𝑢) · · · (1 − 𝑓 𝑎𝑛−2𝑘

𝑢)
(1 − 𝑓𝑢) (1 − 𝑓 2

𝑢) · · · (1 − 𝑓 𝑘𝑢)
.

𝑃(𝐿𝑘)
upper bound

≤
(
1 − 𝑘 + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑘 𝑘∏
𝑖=1

{(
1 − 𝑝 − 𝑘 (1 − 𝑝)

𝑛 − 1

)} 𝑘+2∏
𝑗=3

{(
1 − 𝑗 (1 − 𝑝)

𝑛 − 1

)−2
}
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1 (
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

) 𝑘 (𝑘+1)
(
1 −

(
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

)𝑎𝑛−𝑘−1
)
×

×
(
1 −

(
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

)𝑎𝑛−𝑘−2
)
· · ·

(
1 −

(
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

)𝑎𝑛−2𝑘
)

𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
· ℎ𝑛 (𝑘, 𝑝)

We calculate the individual limits of the terms in the R.H.S. and use product law to calculate the

limit of the term in the L.H.S.

(1)

lim
𝑛→∞

(
1 − 𝑘 + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑘
𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
· ℎ𝑛 (𝑘, 𝑝) =

1
𝑘!

The limit of ℎ𝑛 (𝑘, 𝑝) as n goes to ∞ is 1.

(2)

lim
𝑛→∞

𝑘∏
𝑖=1

{(
1 − 𝑝 − 𝑘 (1 − 𝑝)

𝑛 − 1

)} 𝑘+2∏
𝑗=3

{(
1 − 𝑗 (1 − 𝑝)

𝑛 − 1

)−2
}
= (1 − 𝑝)𝑘

(3) (
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1 (
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

) 𝑘 (𝑘+1)
= 𝑒−2𝑎 (1−𝑝)

(4)

lim
𝑛→∞

(
1 −

(
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

)𝑎𝑛−𝑘−1
) (

1 −
(
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

)𝑎𝑛−𝑘−2
)
×

× · · ·
(
1 −

(
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

)𝑎𝑛−2𝑘
)
=

(
1 − 𝑒−𝑎 (1−𝑝)

) 𝑘

97

Combining these terms, we get the limit to be

lim
𝑛→∞

𝑃(𝐿𝑘)
upper bound

≤
((

1 − 𝑒−𝑎 (1−𝑝)
)
· (1 − 𝑝)

) 𝑘
𝑘!

· 𝑒−2𝑎 (1−𝑝)

Substituting the results of Lemma 29 in the lower bound of 𝑃(𝐿𝑘) from Equation 30 gives us:

(For lower bound of 𝑧𝑘)

𝑃(𝐿𝑘)
lower bound

=

(
1 − 𝑘 + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑘 𝑘∏
𝑖=1

{(
1 − 𝑝 − 𝑘 (1 − 𝑝)

𝑛 − 1

)} 𝑘+2∏
𝑗=3

{(
1 − 𝑗 (1 − 𝑝)

𝑛 − 1

)−2
}
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
· (𝑓𝑙)𝑘 (𝑘+1) ·

(1 − 𝑓 𝑎𝑛−𝑘−1
𝑙

) (1 − 𝑓 𝑎𝑛−𝑘−2
𝑙

) · · · (1 − 𝑓 𝑎𝑛−2𝑘
𝑙

)
(1 − 𝑓𝑙) (1 − 𝑓 2

𝑙
) · · · (1 − 𝑓 𝑘

𝑙
)

.

𝑃(𝐿𝑘)
lower bound

≥
(
1 − 𝑘 + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑘 𝑘∏
𝑖=1

{(
1 − 𝑝 − 𝑘 (1 − 𝑝)

𝑛 − 1

)} 𝑘+2∏
𝑗=3

{(
1 − 𝑗 (1 − 𝑝)

𝑛 − 1

)−2
}
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1 (
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

) 𝑘 (𝑘+1)
×

×
(
1 −

(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

)𝑎𝑛−𝑘−1
) (

1 −
(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

)𝑎𝑛−𝑘−2
)
×

× · · ·
(
1 −

(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

)𝑎𝑛−2𝑘
)

𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
· 𝑔𝑛 (𝑘, 𝑝)

Once again, we use product law of limits here to calculate the limiting value of the L.H.S of the

expression by calculating individual limits on the terms in R.H.S.

(1)

lim
𝑛→∞

(
1 − 𝑘 + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑘
𝑛𝑘

𝑘! · (1 − 𝑝)𝑘
· 𝑔𝑛 (𝑘, 𝑝) =

1
𝑘!

The limit of 𝑔𝑛 (𝑘, 𝑝) as n goes to ∞ is 1.

(2)

lim
𝑛→∞

𝑘∏
𝑖=1

{(
1 − 𝑝 − 𝑘 (1 − 𝑝)

𝑛 − 1

)} 𝑘+2∏
𝑗=3

{(
1 − 𝑗 (1 − 𝑝)

𝑛 − 1

)−2
}
= (1 − 𝑝)𝑘

98

(3)

lim
𝑛→∞

(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
·
(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

) 𝑘 (𝑘+1)
= 𝑒−2𝑎 (1−𝑝)

(4)

lim
𝑛→∞

(
1 −

(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

)𝑎𝑛−𝑘−1
) (

1 −
(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

)𝑎𝑛−𝑘−2
)
×

× · · ·
(
1 −

(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

)𝑎𝑛−2𝑘
)
=

(
1 − 𝑒−𝑎 (1−𝑝)

) 𝑘
Combining these terms, we get the limit to be

lim
𝑛→∞

𝑃(𝐿𝑘)
lower bound

≥
((

1 − 𝑒−𝑎 (1−𝑝)
)
· (1 − 𝑝)

) 𝑘
𝑘!

· 𝑒−2𝑎 (1−𝑝)

As both these bounds coincide, using the squeeze or the sandwich theorem we get that

lim
𝑛→∞

𝑃(𝐿𝑘) =
((

1 − 𝑒−𝑎 (1−𝑝)
)
· (1 − 𝑝)

) 𝑘
𝑘!

· 𝑒−2𝑎 (1−𝑝)

Step 2: Defining an upper bound on 𝑃(𝐿𝑘) and proving the infinite summation converges

Till here, we have found the limit of 𝑃(𝐿𝑘). Now, we find to find an 𝑀𝑘 such that 𝑃(𝐿𝑘) ≤ 𝑀𝑘 ,

and
∞∑
𝑘=0

𝑀𝑘 ≤ ∞.

We define an 𝑀𝑘 next using the expression in Equation 27, when we first expressed 𝑃(𝐿𝑘).

𝑃(𝐿𝑘) =
(
1 − 𝑘 + 2

𝑛

) (
1 − 𝑝

𝑛 − 1

) 𝑘 𝑘∏
𝑖=1

{(
1 − 𝑝 − 𝑘 (1 − 𝑝)

𝑛 − 1

)} 𝑘+2∏
𝑗=3

{(
1 − 𝑗 (1 − 𝑝)

𝑛 − 1

)−2
}
×

×
(
1 − 2(1 − 𝑝)

𝑛 − 1

)𝑎𝑛−1
𝑧𝑘 ,

99

where 𝑧𝑘 is

𝑧𝑘 =

𝑎𝑛−2𝑘+1∑︁
𝑖1=2

𝑎𝑛−2𝑘+3∑︁
𝑖2=𝑖1+2

. . .

𝑎𝑛−3∑︁
𝑖𝑘−1=
𝑖𝑘−2+2

𝑎𝑛−1∑︁
𝑖𝑘=
𝑖𝑘−1+2

{(
1 − 1 − 𝑝

𝑛 + (𝑘 + 1)𝑝 − (𝑘 + 2)

) 𝑖1
×

×
(
1 − 1 − 𝑝

𝑛 + 𝑘 𝑝 − (𝑘 + 1)

) 𝑖2
. . .

(
1 − 1 − 𝑝

𝑛 + 3𝑝 − 4

) 𝑖𝑘−1 (
1 − 1 − 𝑝

𝑛 + 2𝑝 − 3

) 𝑖𝑘}
We can upper bound the value of 𝑃(𝐿𝑘) here using these inequalities. Note, all the internal

terms with the nested summation in 𝑧𝑘 are less than 1, so the expression reduces to

𝑧𝑘 ≤
𝑎𝑛−2𝑘+1∑︁
𝑖1=2

𝑎𝑛−2𝑘+3∑︁
𝑖2=𝑖1+2

. . .

𝑎𝑛−3∑︁
𝑖𝑘−1=
𝑖𝑘−2+2

𝑎𝑛−1∑︁
𝑖𝑘=
𝑖𝑘−1+2

1𝑖1+𝑖2+...𝑖𝑘

which is equal to
(𝑎𝑛−2𝑘−1+𝑘

𝑘

)
1. In case where 𝑓 = 1 for Gaussian binomial coefficient

(𝑁+𝑘
𝑘

)
𝑓
, it

becomes equal to the normal binomial coefficient,
(𝑁+𝑘
𝑘

)
. Using the same logic here, we can state

𝑧𝑘 =
(𝑎𝑛−2𝑘−1+𝑘

𝑘

)
=

(𝑎𝑛−𝑘−1
𝑘

)
≤ 𝑛𝑘

𝑘! .

The two product terms in 𝑃(𝐿𝑘) are upper bounded by 1. Hence, 𝑃(𝐿𝑘) can be upper bounded

as follows:

𝑃(𝐿𝑘) ≤ 1 ·
(
1 − 𝑝

𝑛 − 1

) 𝑘
· 1 · 𝑒−2𝑎 (1−𝑝) · 𝑛

𝑘

𝑘!

≤
(𝑛

𝑛 − 1

) 𝑘
· 𝑒−2𝑎 (1−𝑝) · (1 − 𝑝)𝑘

𝑘!

≤ 𝑒𝑘 · 𝑒−2𝑎 (1−𝑝) · (1 − 𝑝)𝑘
𝑘!

This term, 𝑒𝑘 · 𝑒−2𝑎 (1−𝑝) · (1−𝑝)𝑘
𝑘! is the required 𝑀𝑘 and the infinite sum of this term,

∞∑︁
𝑘=0

𝑒−2𝑎 (1−𝑝) · 𝑒
𝑘 (1 − 𝑝)𝑘

𝑘!
= 𝑒𝑒 (1−𝑝)

which converges, where the summation follows from the expansion of Taylor series,
∞∑
𝑘=0

𝑥𝑘

𝑘! = 𝑒𝑘 .

This satisfies the required conditions for Tannery’s theorem.

100

Step 3: Exchanging the order of limits and summation of 𝑃(𝐿𝑘)

We have shown the conditions for interchanging the order of sum and limits are satisfied with

respect to Tannery’s theorem. We now calculate the infinite sum of limits of the limiting value of

𝑃(𝐿𝑘), and we get

lim
𝑛→∞

𝑛−1∑︁
𝑘=0

𝑃(𝐿𝑘) =
∞∑︁
𝑘=0

lim
𝑛→∞

𝑃(𝐿𝑘)

=

∞∑︁
𝑘=0

((
1 − 𝑒−𝑎 (1−𝑝)

)
· (1 − 𝑝)

) 𝑘
𝑘!

· 𝑒−2𝑎 (1−𝑝)

= 𝑒−2𝑎 (1−𝑝) ·
∞∑︁
𝑘=0

(
(
1 − 𝑒−𝑎 (1−𝑝)

)
· (1 − 𝑝))𝑘

𝑘!

= 𝑒−2𝑎 (1−𝑝) · 𝑒 (1−𝑝) ·(1−𝑒−𝑎 (1−𝑝))

= 𝑒 (1−𝑝) (1−2𝑎−𝑒−𝑎 (1−𝑝))

where the summation follows from expansion of Taylor series,
∞∑
𝑘=0

𝑥𝑘

𝑘! = 𝑒𝑘 .

Therefore we obtain the result,

lim
𝑛→∞
E[𝑋1] = lim

𝑛→∞

𝑛−1∑︁
𝑘=0

𝑃(𝐿𝑘) = 𝑒 (1−𝑝) (1−2𝑎−𝑒−𝑎 (1−𝑝))

5.3.5 Tight Bounds on Competitive Ratio

By computing the probability of desired sequences above, now we can calculate the size of

expected matching for the case of 𝑇𝑆𝑀 − 𝐴. We express the result in Theorem 30 as follows.

Theorem 30.

lim
𝑛→∞

E[𝑋1]
𝑛

= 1 − 𝑒 (1−𝑝) (1−2𝑎−𝑒−𝑎 (1−𝑝)) (37)

Using Theorems 13 and 30, we conclude that the asymptotic competitive ratio of Two Suggested

Matching - Non Adaptive algorithm is:

𝜌𝑇𝑆𝑀−𝐴 =
1 − 𝑒 (1−𝑝) (1−2𝑎−𝑒−𝑎 (1−𝑝))

1 − 𝑒2(𝑎𝑝−𝑎)

1−(𝑒𝑎𝑝−𝑎 ·𝑎 (1−𝑝)2)

(38)

101

Once again, we present the results for some specific parameters of 𝑎 and 𝑝.

Corollary 31. For the conventional lazy random walk based Markov chain, where 𝑝 = 1
2 , we obtain

the expected size of matching as:

𝜌𝑇𝑆𝑀−𝐴 =
1 − 𝑒

1
2 ·

(
1−2𝑎−𝑒

−𝑎
2

)
1 − 4

4𝑒𝑎−𝑎𝑒
𝑎
2

Corollary 32. For the conventional lazy random walk Markov chain, where 𝑝 = 1
2 , when the input

sequence length is equal to the size of (a single) vertex set or 𝑎 = 1, we get the expected size of

matching as:

𝜌𝑇𝑆𝑀−𝐴 =
1 − 𝑒

− (1+
√
𝑒)

2
√
𝑒

1 − 4
4𝑒−

√
𝑒

=
1 − 0.4478

0.56636
=

0.5521
0.56636

𝜌𝑇𝑆𝑀−𝐴 = 0.9748

Hence, under the lazy random walk Markov chain, 𝑝 = 1
2 , Two Suggested Matching -

Adaptive achieves a competitive ratio of 𝜌𝑇𝑆𝑀−𝐴 = 0.9748.

5.4 Summary of Results

We conclude the chapter by summarizing the size of expected matchings and competitive ratios

obtained above for the case of the conventional lazy random walk based Markov chain, where 𝑝 = 1
2 .

For this specific Markov chain, we obtained the following competitive ratios:

𝜌𝑇𝑆𝑀−𝑁𝐴 =
(4 − 4𝑒−𝑎 − 𝑎𝑒−𝑎) (4𝑒𝑎 − 𝑎𝑒

𝑎
2)

4 ·
(
(4𝑒𝑎 − 𝑎𝑒

𝑎
2) − 4

)
and,

𝜌𝑇𝑆𝑀−𝐴 =

(
1 − 𝑒

1
2 ·

(
1−2𝑎−𝑒

−𝑎
2

))
(4𝑒𝑎 − 𝑎𝑒

𝑎
2)

(4𝑒𝑎 − 𝑎𝑒
𝑎
2) − 4

We wanted to analyze how the competitive ratio behaves as a function of 𝑎, where 𝑎 is the factor

by which we scale the size of input, with respect to the graph size 𝑛. We plotted the values of the

102

competitive ratio of both these algorithms by increasing the value of 𝑎 from 0.1 to 10.6, with an

addendum of 0.1 at each step, and Fig 5.7 shows the change in competitive ratio for such.

Figure 5.7: Graph plotting the changes in competitive ratio of𝑇𝑆𝑀−𝑁𝐴 and𝑇𝑆𝑀− 𝐴 as a function
of 𝑎.

Note that the competitive ratios approach their minimum value for both algorithm near the range

of 𝑎 = 1.35 to 1.4. From further investigations, we derived the following corollary.

Corollary 33. 𝑇𝑆𝑀−𝑁𝐴 achieves a competitive ratio of at least 0.9509 in online bipartite matching

in (2, 2)-regular bipartite graph under the lazy random walk Markov chain model, where 𝑝 = 1
2 .

𝑇𝑆𝑀−𝐴 achieves a competitive ratio of at least 0.9733 in online bipartite matching in (2, 2)-regular

bipartite graph under the lazy random walk Markov chain model, where 𝑝 = 1
2 .

Proof. To analyze further where the competitive ratio becomes minimized for the respective values

of 𝑎 in both of these algorithms, we solve by setting the derivative of the competitive ratio with

respect to 𝑎 to be 0. We get the following results:

For 𝑇𝑆𝑀 − 𝑁𝐴, 𝑑 (𝜌𝑇𝑆𝑀−𝑁𝐴)
𝑑𝑎

= 0, we get 𝑎 ≈ 1.3896. And for the case of 𝑇𝑆𝑀 − 𝐴, setting
𝑑 (𝜌𝑇𝑆𝑀−𝐴)

𝑑𝑎
, where 𝑓 (𝑎) = 𝜌𝑇𝑆𝑀−𝐴, we obtain 𝑎 ≈ 1.3714. By plugging in these values, we see that

for 𝑝 = 1
2 -lazy random walk Markov chain setting of online bipartite matching, 𝑇𝑆𝑀 −𝑁𝐴 achieves

the worst competitive ratio of 𝜌𝑇𝑆𝑀−𝑁𝐴 = 0.9509 at 𝑎 ≈ 1.3896, and 𝑇𝑆𝑀 − 𝐴 achieves the worst

103

competitive ratio of 𝜌𝑇𝑆𝑀−𝐴 = 0.9733 at 𝑎 ≈ 1.3714. □

Next, we delve into experiments based on the statistics of a real world online ad allocation

matching competition which helped in mapping out the underlying type graph and Markov chain on

which our results and analysis are based.

104

Chapter 6

Experimental Analysis of Real World

Online Bipartite Matching Data

As stated previously, this thesis is the first work which considers dependency among online

vertices in the problem of online bipartite matching. The problem for general type graphs and

Markov chains presented challenges in terms of complexity and unclear relationship between their

parameters. To gain a clearer understanding and investigate the issue, we turned to real world data

where this dependency is observed and can be replicated. This chapter briefly summarizes our

findings and presents the experimental setup that led to the development of type graphs and Markov

chains specific to our thesis.

6.1 Introduction

The experiment discussed in the chapter serves as the basis of the type graph and Markov

chains components of the matching problem we discuss in this thesis. We looked through different

experiments and data-sets which can be abstracted to model the online bipartite matching problem.

The intention of looking into real world data was to better understand the natural dependency

which occurs among online vertices. We prefixed our search to find experiments where - (1) The

procedure revolved around the pairing of two opposite entities, for example, real time advertisements,

auction bidding, cab request service. (2) We would be able to extract the underlying bipartite graph

105

structure from the experiment, and largely throughout the experiment, the graph structure remains

non evolving. A few experiments had a highly evolving and time-varying graph structure, e.g. cab

service requests. (3) Lastly, we wanted experiments where the input data occurred in an online

fashion, and we focused on experiments which had either discrete time steps capturing the evolving

system, or data incorporating time stamps. This was needed to learn how the current data set was

dependent on the previous one, and hence, can be used to construct a Markov chain, using simpler

approaches like frequency analysis.

Keeping these in mind, we begin our research by looking into real world examples of online

matching where the input has a stochastic taste to it. We surveyed various data-sets, including

but not limited to auction bidding [76], cab service requests [78], patient oxygen demands during

COVID-19 [77], and online advertisement bidding [75], [74]. We tried to obtain the data sets

behind doctor residency matching, in which incoming doctors are matched or allotted to residency

programs. Despite being one of the most famous and excellent use cases of bipartite matching

besides online ad allocation, data sets related to this were extremely tough to obtain, possibly due to

privacy regulations and data protection laws. The most appropriate data set and experiment, which

suited the characterization of Markov chain was the iPinYou Real Time Bidding Data set [75]. In

the following sections, we briefly explain the original experiment, and how we extracted the type

graph and Markov chain from the data set.

6.2 iPinYou Real-Time Bidding Dataset

iPinYou is a prominent Chinese marketing technology company, which among other things,

provides digital advertising solutions. Of particular interest is the Demand Side Platform (DSP)

of iPinYou. A DSP is a service or software which provides automation for buying and selling ad

impressions in real time. In other words, DSPs let advertisers manage their target audience, budget,

ad formats, and bidding amounts for showcasing an ad to an impression, along with providing

data metrics and analytical tools to optimize their campaign. A DPS works in conjugation with a

Real-Time Bidding (RTB) algorithm employed by the advertiser end.

An RTB algorithm provides a mechanism to automate the process of bidding for an impression

106

on behalf of the advertisers. Impressions arrive in online fashion, when let’s say a user searches a

query, or visits a popular website that showcases advertisements. The impression carries data like

browser and network specific information (browser model, web engine model, IP address, etc.), user

specific information (e.g. gender, age, likes-dislikes), date and time, query, site visited, etc. This

helps in deciding the advertisers or the RTB algorithm to decide if it should bid to display ad to this

impression, and what percentage of budget to allocate for this bid, etc. Once the auction begins,

different RTBs representing different advertisers strategically submit their bids for each impression

to the bidding component of the DSP, and DSP decides the winner of the bid, and notifies the

top bidder. The winning RTB then displays the advertisement to the user corresponding to the

impression. So much happens, in such a small time when a user just submits a query or visits a

website! For this to efficiently take place, designing fast and efficient RTB algorithms, as well as

DSPs are important.

In 2013, iPinYou organized a global Real-Time Bidding algorithm competition spanning three

seasons, where each season included both an offline and an online stage. During the offline stage,

iPinYou provided a dataset for model training, while reserving another dataset for testing purposes.

The datasets contained logs of ad bids, impressions, clicks, and conversions. Upon the competition’s

conclusion, iPinYou made these datasets publicly available. This marked the release of the first

publicly accessible dataset related to RTB display advertising. The datasets serve as valuable

resources for addressing key research challenges, such as bid optimization and Click-Through Rate

(CTR) estimation.

We concentrate on the bidding logs of the advertisers in the experimental setup. Using the offline

stage bidding logs data set, we gather which advertisers are interested in what types of impressions.

We approximate an impression using the same information which is supplied to the RTB, browser

information, user information, and so forth.

Two data elements, ‘iPinYouId’ and ’adSlotId’ were sufficient in comprehensively identifying

the impression. These impressions were bid upon by 5 advertisers, classifying the impressions into

groups of 25 − 1 sets, with each set denoting a subset of advertisers interested in them. Using

these, we were able to extract the underlying bipartite type graph between the 5 advertisers (which

formed the offline vertex set) and the 31 impression types. An edge was present between them if the

107

advertisers had bid for that particular type of impression.

Along with the browser, site, and user details in the logs, another data slot given was the date

and time for when the bid was supplied for the impression. This was a critical aspect in tracking the

arrival of impressions. We chronologically sorted the impressions and used frequency analysis to

extract a Markov chain on these impression types.

We noticed that each bidding log contained the bids for the whole duration of the day or 24 hours

period, and larger log files had about 4.7 million entries. Such log files led to the composition of very

general Markov chains, in which identifying a structure or some theoretic properties was very tough.

Moreover, a period of 24 hours is too long to capture the stochastic intricacies among the arriving

impressions. Hence, we tried to re-capture the same elements, the type graph and the Markov chain

on a smaller snapshot of data. We constructed multiple data frames of about 6000 bidding starting

from a random time for the log files. We sorted the bids in the bigger log file chronologically to

preserve the order of impression arrival and re-ran the same experiment steps.

On the smaller log file, we found that the number of different advertisers and different types of

impressions were generally limited to 3 and 6 respectively. Impressions of say, type 1, 2 and 3 had

only 1 advertiser interested in them, and impressions of type 4, 5 and 6 had (a subset of) 2 advertisers

interested in them. A large portion, 99.7% among the 6000 bids compromised of impressions of

type 1, 2 and 3. Again, the Markov chain contained scattered data which made it impossible to

recognize patterns in its structure.

From above, we can infer that the underlying bipartite graph contains two types of impressions,

(1) which has only 1 advertiser interested in it, and (2) an impression which has 2 set of advertisers

interested in it. When type-(1) impressions occur in the input sequence, matching should be quite

straightforward, the only interested advertiser matches with the impression. But in the case of

impressions with 2 interested advertisers, we can’t directly state any such results. Hence, we

proposed working on such cases, in which online vertices have 2 choices of matching in the offline

vertex set. This gave the formulation of the problem of finding matching in online bipartite graphs

where the online vertices have degree 2, or 2 neighbors present in the offline vertex set. Naturally,

any such online vertex having the same 2 neighbors in the offline set can essentially be abstracted

to be the same type of vertices. This latent structure leads to the construction of a (2, 2)- regular

108

bipartite graph, which becomes the type graph upon which we present results.

Similarly, focusing on only the type-(2) impressions in the input sequence gave rise to an

empirical Markov chain which had the structure of performing lazy random walk on a graph, with

probability 1
2 . Once an impression arrived, it stayed in the same state (or it occurred again in the input

sequence) with a probability of 1
2 , and switched to other states (or impressions) with a combined

probability of 1
2 distributed equivalently among the states. Two examples of such are presented as

follows:


0.500 0.417 0.083
0.313 0.562 0.125
0.500 0.250 0.250


(a) Markov chain based on 6000 bidding logs in
chronological order from time 11 : 44 : 09.816
to 11 : 46 : 13.299 of date 12 June 2013 log file
of the experiment data set.

[
0.852 0.148
0.592 0.408

]
(b) Another Markov chain based on 6000 bidding
logs in chronological order from time 23 : 30 :
05.367 to 23 : 30 : 07.503 of date 12 June 2013
log file of the experiment data set.

Figure 6.1: Example of empirical Markov chains derived from the experiment.

We generalized this 1
2 probability lazy random walk to a general random walk of probability 𝑝

remaining in the same state and remaining 1 − 𝑝 probability of transitioning to other 𝑛 − 1 states.

109

Chapter 7

Conclusion & Future Work

We wrap up this thesis by summarizing the results we attained on studying the online bipartite

matching problem under the parameterized lazy random walk Markov chain.

We first summarized different input models for the problem of online bipartite matching and then

introduced a new model for generating inputs based on Markov chain. This model helps in capturing

the interaction between the online inputs, and this was the first time in the domain of online bipartite

matching that dependency between input nodes was considered.

To study the problem, we began our research by looking into real world applications of the online

matching problem from where we can analyze the structure of dependency among the online input

items. We observed a good example in the online advertisement bidding experiment by iPinYou,

a Chinese DSP where we looked deep into the data sets to understand how the experiment can be

modeled into a bipartite graph matching problem. We extracted an underlying bipartite graph and

used frequency analysis to create a Markov chain on the sequence of submitted bids.

We formulated the above empirical results into theoretical settings, in particular by studying

the problem on the underlying extracted graph – a (2, 2)-regular bipartite graph, under a family

of parameterized Markov chains resembling lazy random walks on a discrete state space. With

parameter 𝑝 depicting the probability of remaining in the same state and 1−𝑝
𝑛−1 of entering a new

state, we defined a Markov chain on the set of online vertices, which helped in generating the input

sequence for the problem with Markovian dependency. We created an offline optimal algorithm,

Frequency Based Optimal Matching, which is arguably a simpler algorithm to create an optimal

110

matching in offline settings. The run time of the algorithm was linear, and we analyzed the algorithm

to obtain the expected number of matching in the input sequence generated by the parameterized

Markov chain.

Next, we analyzed two versions of a popular algorithm in the online matching literature, Two

Suggested Matching – Non Adaptive and Adaptive. We analyzed the performance of the

algorithms under the input sequence sampled from the lazy random walk based Markov chain, and

we obtained the expected size of matching in both cases. Coupled with the former results of the

expected size of matching in the offline case, we derived the competitive ratio of the 2 algorithms.

For specific case of the conventional lazy random walk Markov chain, where 𝑝 = 1
2 , we found that

the algorithm achieves competitive ratio of 0.9509 (𝑇𝑆𝑀 −𝑁𝐴) and 0.9733 (𝑇𝑆𝑀 − 𝐴), or matches

at least the fraction of vertices as compared to 𝑂𝑃𝑇 .

Because the family of Markov chains and the structure of the underlying type graph can be

generalized vastly, one can go in varying directions in continuing the research from here on. We

pose a few naturally occurring problems from our discussion so far.

(1) The work concerns (2, 2)-regular bipartite graphs, where the degree of each vertex is 2. This

leads to 2 perfect and disjoint matchings. It can be noted that a (𝑑, 𝑑)-regular bipartite graph can

also be decomposed into 𝑑 perfect disjoint matchings (the proof follows from application of Hall’s

marriage theorem and Konig’s Edge Coloring theorem). Does the structure of analysis hold for

a (𝑑, 𝑑)-regular bipartite graph, albeit for a more general online algorithm than Two Suggested

Matching? An approach for analyzing bipartite graphs with 𝑘 perfect disjoint matchings is discussed

in Karande et al. [48]. A more general question would be to find a matching in a (𝑥, 𝑦)-regular

bipartite graph or a more general type graph.

(2) An immediate follow up question from the discussion in Chapter 6 is to analyze the type graph

where the vertices have degree at most 2. We analyzed the algorithm for (2, 2)-regular bipartite

graph, where the degree of each vertex is exactly 2, but we suppose if the type graph has offline

vertices with degree 1, then matching the vertex would simply constitute of picking the edge with an

incoming online vertex. This shouldn’t degrade the expected size of matching, as the offline vertex

with degree 1 doesn’t affect the matching of other vertices. Does the same hold for online vertices

with degree 1? Another question would be to see how the Markov chain needs to be modified to

111

account for the degree 1 vertices, and then analyze the algorithm.

(3) A more general and important question would be to see if one can find some structure in

the transition matrix of the Markov chain, using properties in the field of stochastic processes and

spectral theory to see if it helps in the decision making process of matching a vertex. One can start by

studying specific families of Markov chains like we did to find a correlation between some specific

matrix properties e.g. eigenvalues and eigenvectors, the symmetric difference between 2 matrices,

and the size of matching. A specific question that we focused on during the time of research was –

Given a Markov chain M1(𝜋1, 𝑀1) which attains a competitive ratio of 𝜌1 on bipartite graph

𝐺 (𝑈,𝑉, 𝐸), then does another Markov chain M2(𝜋2, 𝑀2) with M2 = 𝑓 (M1) (e.g. a transformation

of M1) attain a competitive ratio 𝜌2, which is also a function of 𝜌1?

112

Bibliography

[1] Atila Abdulkadiroğlu, Parag A. Pathak, and Alvin E. Roth. The New York city high school

match. American Economic Review, 95(2):364–367, 2005.

[2] Gagan Aggarwal, Gagan Goel, Chandran Karande, and Aranyak Mehta. Online vertex-weighted

bipartite matching and single-bid budgeted allocations. In Proc. of 22nd Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2011), pages 1253–1264. SIAM, 2011.

[3] Ahmed Al-Herz. Approximation Algorithms for Maximum Vertex-Weighted Matching. PhD

thesis, Purdue University, 2019.

[4] Itai Ashlagi. Kidney exchange. In Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani,

editors, Online and Matching-Based Market Design, pages 201–216. Cambridge University

Press, 2023.

[5] Itai Ashlagi and Alvin E. Roth. Kidney exchange: An operations perspective. Management

Science, 67(9):5455–5478, 2021.

[6] Bahman Bahmani and Michael Kapralov. Improved bounds for online stochastic matching.

In Proc. of 18th Annual European Symposium on Algorithms (ESA 2010), pages 170–181.

Springer, 2010.

[7] Claude Berge. Two theorems in graph theory. Proc. of the National Academy of Sciences of

the United States of America, 43(9):842–844, 1957.

113

[8] Benjamin Birnbaum and Claire Mathieu. Online bipartite matching made simple. In Proc. of

23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pages 530–537.

SIAM, 2012.

[9] Norbert Blum. A new approach to maximum matching in general graphs. In Proc. of 17th

International Colloquium on Automata, Languages and Programming (ICALP 1990), pages

586–597. Springer, 1990.

[10] Allan Borodin and Denis Pankratov. Online and other myopic algorithms. Manuscript.

[11] Niv Buchbinder, Kamal Jain, and Mohit Singh. Secretary problems via linear programming.

Mathematics of Operations Research, 39(1):190–206, 2014.

[12] T.-H. H. Chan, Fei Chen, Xiaowei Wu, and Zhichao Zhao. Ranking on arbitrary graphs:

Rematch via continuous lp with monotone and boundary condition constraints. In Proc. of

25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pages 1112–1122.

SIAM, 2014.

[13] Nikhil Devanur and Aranyak Mehta. Online matching in advertisement auctions. In Federico

Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors, Online and Matching-Based

Market Design, pages 130–154. Cambridge University Press, 2023.

[14] Anatolii A. Dinic. Algorithm for solution of a problem of maximum flow in a network. Soviet

Mathematics Doklady, 11:1277–1280, 1970.

[15] Florin Dobrian, Mahantesh Halappanavar, Alex Pothen, and Ahmed Al-Herz. A 2/3-

approximation algorithm for vertex weighted matching in bipartite graphs. SIAM Journal

on Scientific Computing, 41(1):A566–A591, 2019.

[16] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. Journal

of the ACM (JACM), 61(1):1–23, 2014.

[17] Andrew L. Dulmage and Nathan S. Mendelsohn. Coverings of bipartite graphs. Canadian

Journal of Mathematics, 10:517–534, 1958.

114

[18] Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors. Online and Matching-

Based Market Design. Cambridge University Press, 2023.

[19] Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An economics-based analysis of

ranking for online bipartite matching. In Proc. of 4th Symposium on Simplicity in Algorithms

(SOSA 2021), pages 107–110. SIAM, 2021.

[20] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467,

1965.

[21] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency

for network flow problems. Journal of the Society for Industrial and Applied Mathematics,

19(2):248–264, 1972.

[22] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for

network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

[23] Jenő E. Egerváry. Matrixok kombinatorius tulajdonságairol (On the Combinatorial Properties

of Matrices). Matematikai Fizikai Lapok, 38:16–28, 1931.

[24] Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, and Morteza Zadimoghaddam. Edge-weighted

online bipartite matching. Journal of the ACM (JACM), 69(6):1–35, 2022.

[25] Matthew Fahrbach and Morteza Zadimaghaddam. Online weighted matching: Breaking the

1/2 barrier. In Proc. of the 60th Annual IEEE Symposium on Foundations of Computer Science

(FOCS 2019), pages 1242–1252. IEEE, 2019.

[26] Jon Feldman, Nitish Korula, Vahab Mirrokni, S. Muthukrishnan, and Martin Pál. Online ad

assignment with free disposal. In Proc. of 5th International Workshop on Internet and Network

Economics (WINE 2009), pages 374–385. Springer, 2009.

[27] Xixuan Feng. Online bipartite matching: a survey and a new problem. https://pages.cs.

wisc.edu/˜xfeng/sides/full_online.pdf, 2014. Accessed: 28-11-2024.

[28] Lester R. Ford Jr and Delbert R. Fulkerson. Maximal flow through a network. Canadian

Journal of Mathematics, 8:399–404, 1956.

115

https://pages.cs.wisc.edu/~xfeng/sides/full_online.pdf
https://pages.cs.wisc.edu/~xfeng/sides/full_online.pdf

[29] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

[30] Harold N. Gabow. Data structures for weighted matching and nearest common ancestors with

linking. In Proc. of 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1990),

page 434–443. SIAM, 1990.

[31] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for general graph matching

problems. Journal of the ACM (JACM), 38(4):815–853, 1991.

[32] David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The

American Mathematical Monthly, 69(1):9–15, 1962.

[33] Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc.

Online matching with general arrivals. In Proc. of the 60th Annual IEEE Symposium on

Foundations of Computer Science (FOCS 2019), pages 26–37. IEEE, 2019.

[34] Caelan Garrett, Chris Graves, and Casey O’Brien. Survey on online bipartite matching and its

variants. https://web.mit.edu/caelan/www/projects/6.854_paper.pdf. Accessed:

28-11-2024.

[35] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with

applications to adwords. In Proc. of the 19th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2008), pages 982–991, 2008.

[36] Bernhard Haeupler, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online stochastic

weighted matching: Improved approximation algorithms. In Proc. of the 7th International

Workshop on Internet and Network Economics (WINE 2011), pages 170–181. Springer, 2011.

[37] Mahantesh Halappanavar. Algorithms for Vertex-Weighted Matching in Graphs. PhD thesis,

Old Dominion University, 2009.

[38] John E. Hopcroft and Richard M. Karp. An 𝑂 (𝑛5/2) algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. Previously announced at

the 12th Annual Symposium on Switching and Automata Theory, 1971.

116

https://web.mit.edu/caelan/www/projects/6.854_paper.pdf

[39] Zhiyi Huang, Ning Kang, Zhihao G. Tang, Xiaowei Wu, Yuhao Zhang, and Xue Zhu. Fully

online matching. Journal of the ACM (JACM), 67(3):1–25, 2020.

[40] Zhiyi Huang and Xinkai Shu. Online stochastic matching, poisson arrivals, and the natural

linear program. In Proc. of the 53rd Annual ACM Symposium on Theory of Computing (STOC

2021), pages 682–693. ACM, 2021.

[41] Zhiyi Huang, Xinkai Shu, and Shuyi Yan. The power of multiple choices in online stochastic

matching. In Proc. of the 54th Annual ACM Symposium on Theory of Computing (STOC 2022),

pages 91–103. ACM, 2022.

[42] Zhiyi Huang, Zhihao G. Tang, and David Wajc. Online matching: A brief survey. ACM

SIGecom Exchanges, 22(1):135–158, 2024.

[43] Zhiyi Huang, Zhihao G. Tang, Xiaowei Wu, and Yuhao Zhang. Online vertex-weighted bipartite

matching: Beating 1-1/e with random arrivals. ACM Transactions on Algorithms, 15(3):1–15,

2019.

[44] Robert W. Irving. An efficient algorithm for the “stable roommates” problem. Journal of

Algorithms, 6(4):577–595, 1985.

[45] Patrick Jaillet and Xin Lu. Online stochastic matching: New algorithms with better bounds.

Mathematics of Operations Research, 39(3):624–646, 2014.

[46] Billy Jin and David P. Williamson. Improved analysis of ranking for online vertex-weighted

bipartite matching in the random order model. In Proc. of 18th International Conference on

Web and Internet Economics (WINE 2022), pages 207–225. Springer, 2022.

[47] Donald B. Johnson. Priority queues with update and finding minimum spanning trees. Infor-

mation Processing Letters, 4(3):53–57, 1975.

[48] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching with

unknown distributions. In Proc. of the 43rd Annual ACM Symposium on Theory of Computing

(STOC 2011), pages 587–596. ACM, 2011.

117

[49] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Competitive snoopy

caching. Algorithmica, 3:79–119, 1988.

[50] Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan. Markov paging. SIAM Journal

on Computing, 30(3):906–922, 2000.

[51] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An online algorithm for a class

of matching problems. In Proc. of the 22nd Annual ACM Symposium on Theory of Computing

(STOC 1990), pages 352–358. ACM, 1990.

[52] Alexander V. Karzanov. An exact estimate of an algorithm for finding a maximum flow, applied

to the problem on representatives. Problems in Cybernetics, 5:66–70, 1973.

[53] Anup Kavathekar. Maximum matching. https://www.cs.dartmouth.edu/˜ac/

Teach/CS105-Winter05/Notes/Kavathekar/Maximum_Matching.pdf. Lecture Notes

for CS105, Winter 2005, Dartmouth College, Accessed: 28-11-2024.

[54] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal online

algorithm for weighted bipartite matching and extensions to combinatorial auctions. In Proc.

of 21st Annual European Symposium on Algorithms (ESA 2013), pages 589–600. Springer,

2013.

[55] Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hypergraphs.

In Proc. of 36th International Colloquium on Automata, Languages and Programming (ICALP

2009), pages 508–520. Springer, 2009.

[56] László Kozma. Inequalities cheat sheet. https://www.lkozma.net/inequalities_

cheat_sheet/ineq.pdf. Accessed: 28-11-2024.

[57] Erik Krohn and Kasturi Varadarajan. Private communication, 2007. Reported by Goel and

Mehta in SODA 2008 [35].

[58] Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics

Quarterly, 2(1-2):83–97, 1955.

118

https://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/Notes/Kavathekar/Maximum_Matching.pdf
https://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/Notes/Kavathekar/Maximum_Matching.pdf
https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf
https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

[59] Ravi Kumar, Manish Purohit, Aaron Schild, Zoya Svitkina, and Erik Vee. Semi-Online

Bipartite Matching. In Proc. of 10th Innovations in Theoretical Computer Science Conference

(ITCS 2019), pages 50:1–50:20. Schloss Dagstuhl, 2019.

[60] Dénes Kőnig. Gráfok és mátrixok. Matematikai és Fizikai Lapok (Graphs and Matrices),

38:116–119, 1931.

[61] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an

approach based on strongly factor-revealing LPs. In Proc. of the 43rd Annual ACM Symposium

on Theory of Computing (STOC 2011), pages 597–606. ACM, 2011.

[62] Vahideh H. Manshadi, Shayan O. Gharan, and Amin Saberi. Online stochastic matching:

Online actions based on offline statistics. Mathematics of Operations Research, 37(4):559–

573, 2012.

[63] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends® in Theoretical

Computer Science, 8(4):265–368, 2013.

[64] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized

online matching. Journal of the ACM (JACM), 54(5):22–es, 2007.

[65] Silvio Micali and Vijay V. Vazirani. An 𝑂 (
√
𝑉𝐸) algorithm for finding maximum matching

in general graphs. In Proc. of 21st Annual Symposium on Foundations of Computer Science

(FOCS 1980), pages 17–27. IEEE, 1980.

[66] Alvin E. Roth and Elliott Peranson. The redesign of the matching market for american physi-

cians: Some engineering aspects of economic design. American Economic Review, 89(4):748–

780, 1999.

[67] Alvin E. Roth and Marilda Sotomayor. Two-sided matching. In Handbook of Game Theory

with Economic Applications, volume 1, pages 485–541. Elsevier, 1992.

[68] Thomas H. Spencer and Ernst W. Mayr. Node weighted matching. In Proc. of 11th Interna-

tional Colloquium on Automata, Languages and Programming (ICALP 1984), pages 454–464.

Springer, 1984.

119

[69] Jules Tannery. Introduction à la théorie des fonctions d’une variable, volume 1. A. Hermann,

1910.

[70] Nobuaki Tomizawa. On some techniques useful for solution of transportation network prob-

lems. Networks, 1(2):173–194, 1971.

[71] Vijay V. Vazirani. A simplification of the mv matching algorithm and its proof, 2013.

[72] Yajun Wang and Sam C. Wong. Two-sided online bipartite matching and vertex cover: Beating

the greedy algorithm. In Proc. of 42nd International Colloquium on Automata, Languages and

Programming (ICALP 2015), pages 1070–1081. Springer, 2015.

[73] Shuyi Yan. Edge-weighted online stochastic matching: Beating 1- 1
𝑒
. In Proc. of the 2024 Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA 2024), pages 4631–4640. SIAM, 2024.

[74] Real Time Advertiser Ad-slot Auction Data set. https://www.kaggle.com/datasets/

saurav9786/real-time-advertisers-auction. Accessed: 28-11-2024.

[75] iPinYou Real Time Bidding Data set. https://www.kaggle.com/datasets/

lastsummer/ipinyou. Accessed: 28-11-2024.

[76] Online eBay Auction Data set. https://www.kaggle.com/datasets/onlineauctions/

online-auctions-dataset. Accessed: 28-11-2024.

[77] Patient Oxygen Demand Data set. https://www.kaggle.com/datasets/

dibyasankhapal/realtime-patient-data-with-oxygen-demand. Accessed: 28-

11-2024.

[78] Uber Customers Taxis Data Set. https://www.kaggle.com/datasets/anupammajhi/

uber-request-data. Accessed: 28-11-2024.

120

https://www.kaggle.com/datasets/saurav9786/real-time-advertisers-auction
https://www.kaggle.com/datasets/saurav9786/real-time-advertisers-auction
https://www.kaggle.com/datasets/lastsummer/ipinyou
https://www.kaggle.com/datasets/lastsummer/ipinyou
https://www.kaggle.com/datasets/onlineauctions/online-auctions-dataset
https://www.kaggle.com/datasets/onlineauctions/online-auctions-dataset
https://www.kaggle.com/datasets/dibyasankhapal/realtime-patient-data-with-oxygen-demand
https://www.kaggle.com/datasets/dibyasankhapal/realtime-patient-data-with-oxygen-demand
https://www.kaggle.com/datasets/anupammajhi/uber-request-data
https://www.kaggle.com/datasets/anupammajhi/uber-request-data

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Graph Theory
	Graphs
	Matching in Graphs

	Online Algorithms
	Measuring Performance of Online Algorithms
	Modeling Graph Problems in Online Setting

	Input Models for Online Bipartite Matching
	Adversary
	Randomness in Input Sequence
	Markov Chains
	Summary of Input Models for Online Bipartite Matching

	Online Bipartite Matching under Markov Chain Model

	Literature Review
	A Short History of the Matching Problem
	Offline Bipartite Matching
	Unweighted Bipartite Matching
	Vertex Weighted Bipartite Matching
	Edge Weighted Bipartite Matching

	Online Bipartite Matching
	Unweighted Online Bipartite Matching
	Vertex Weighted Online Bipartite Matching
	Edge Weighted Online Bipartite Matching

	Applications of Online Bipartite Matching
	Online Algorithms with Markovian Input

	Matching in alt-Regular Bipartite Graph – An Offline Optimal Algorithm
	Problem Instance & Input Parameters
	Type Graph
	Markov Chain
	Input Size

	Offline Algorithm: Frequency Based Optimal Matching
	Definitions
	Working Mechanism
	Algorithm Analysis
	Calculating the Size of Expected Matching
	Size of Expected Matching

	Online Bipartite Matching in (2,2))-Regular Bipartite Graph
	Overview of Algorithms
	Two Suggested Matching - Non Adaptive
	Working Mechanism
	Algorithm Analysis
	Calculating the Size of Expected Matching
	Tight Bounds on Competitive Ratio

	Two Suggested Matching - Adaptive
	Warm up: Case of n=3
	Working Mechanism
	Algorithm Analysis
	Calculating the Size of Expected Matching
	Tight Bounds on Competitive Ratio

	Summary of Results

	Experimental Analysis of Real World Online Bipartite Matching Data
	Introduction
	iPinYou Real-Time Bidding Dataset

	Conclusion & Future Work
	Bibliography

