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ABSTRACT 

 

Leveraging Machine Learning Classifiers for Backorder Prediction: A Comprehensive 

Framework for Enhancing Supply Chain Efficiency and Inventory Management 

Addressing Class Imbalance issue in Backorder Prediction 

 

 

Amin Sepehrnia 

 

 

The current research explores the application of advanced machine learning and ensemble 

learning techniques to address the challenges of backorder prediction in supply chain management, 

specifically when the dataset is severely imbalanced. Considering the critical importance of 

accurate forecasting in supply chains, this study evaluates the performance of five resampling 

techniques (Random Under Sampling, ADASYN, SMOTE-ENN, Borderline-SMOTE, and 

SMOTE-SVM), combined with hyperparameter tuning (Randomized Search CV) and two cross-

validation methods (5-fold and 10-fold). The research methodology involved training 98 

combinations of two machine learning and five ensemble learning models, incorporating feature 

selection with SHAP and dimensionality reduction using PCA, alongside sophisticated data 

preprocessing techniques such as MICE for handling missing values. The primary evaluation 

metric is AUC-ROC, complemented by secondary metrics including balanced accuracy, F1 Score, 

and AUC-PR, ensuring a holistic assessment of model performance. Key findings demonstrate that 

ensemble learning models, particularly XGBoost, outperforms classical machine learning models 

in terms of robustness and being accurate in backorder prediction. Resampling techniques such as 

SMOTE-ENN and Random Under Sampling significantly enhance model performance, with 

SMOTE-ENN proving especially effective due to its noise reduction capabilities. Interestingly, 

dimensionality reduction using PCA was found to have little benefit, whereas feature selection 

using SHAP consistently improved efficiency and accuracy. The insights derived from this study 

provide a comprehensive framework for improving predictive performance in supply chain 

management applications, specifically backorder prediction. By addressing class imbalance, 

optimizing preprocessing techniques, and rigorously evaluating resampling methods, this research 

establishes best practices for tackling forecasting challenges in imbalanced, high-dimensional data 

environments. 

 

 

Keywords: Supply Chain Management, Backorder Prediction, Machine Learning, Demand 

Forecasting, Inventory Management, Imbalanced Class 
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1. Introduction 

This research examines the interaction between supply chain management, backorder 

prediction, and machine learning classifiers to address crucial challenges in modern supply chains. 

A total of 98 models, resulting from the combination of multiple resampling strategies, feature 

engineering, machine learning and ensemble learning have been trained on a severely imbalanced 

dataset. The introduction investigates the foundational aspects of supply chain operations, 

including demand forecasting, inventory management, and the impacts of backorders. It also 

explores the implications of imbalanced datasets, the bullwhip effect, and the integration of 

artificial intelligence and machine learning in improving operational efficiencies. Key objectives 

and motivations are highlighted, alongside research questions and contributions, to underscore the 

significance and relevance of this study. The theoretical framework and its practical implications 

provide a solid foundation, followed by an outline of the thesis structure to guide the discourse. 

1.1. Supply Chain Management, Backorder Prediction and Machin Learning Classifiers  

In the supply chain management, inventory planning often depends on accurate demand 

assessment, which can be complex due to the interdependence of manipulated variables and their 

outcomes. On the one hand, effective demand forecasting serves as a proxy for future sales 

estimates, making it essential for aligning supply levels with anticipated demand and ensuring 

smooth inventory flow. On the other hand, handling backordered products is a frequently examined 

subject in supply chain management and inventory planning, as it plays a critical role in boosting 

company profitability (Wang and Tang, 2014; Rodger, 2014; Adana, Cevikparmak, Celik, and 

Uvet, 2019; de Santis, Aguiar, and Goliatt, 2017; Islam and Amin, 2020; Ntakolia, Kokkotis, 

Moustakidis, and Papageorgiou, 2022; Iqbal, Rosenberger, Ha, Gregory, and Anoruo, 2023; Lawal 

and Akintola, 2021; Hajek and Abedin, 2020; Shajalal, Boden, and Stevens, 2022, 2023; Maitra 

and Kundu, 2023; Gao, Ren, and Lv, 2022; Lopez, Panduro, and Pumayauri, 2022; Ahmed, Hasan, 

Hossain, and Andersson, 2022; Ali, Jayaraman, Azar, and Maalouf, 2024). These studies have had 

a specific focus on examining and analyzing the critical role of classification techniques in SCM. 

The above-mentioned studies demonstrated the effectiveness of Machine Learning (ML) 

classifiers in inventory management and backorder prediction, producing promising results. In 

addition, numerous studies demonstrate the effective application of machine learning to enhance 

solutions within SCM. ML algorithms offer powerful predictive capabilities across various supply 

chain metrics, including profit margins, operational costs, credit assessments, backordered items, 

and market demand (Wang and Zhang, 2020 and Abbas et al., 2020). Moreover, machine learning 

techniques, through nonlinear analysis, enhance the predictive accuracy of demand, inventory 

requirements and sales, offering valuable insights to manage inventory precisely (Aguilar-Palacios 

et al., 2020).  

There are critical challenges, such as forecasting demand, managing backorders, and 

replenishing inventory effectively, which are increasingly complicated and exacerbated by the 

growing complexity and disruptions within global supply chains (Tang and Ge, 2021). Modern 

supply chains, which involve various suppliers, numerous stakeholders, and intricate distribution 

channels and logistics networks, face significant challenges in maintaining balanced inventory 

levels. (Shajalal et al., 2022). Disruptions such as geopolitical tensions, natural disasters, and 

global crises like the COVID-19 pandemic can cause substantial delays and material shortages, 

further complicating inventory planning (Liu and Wang, 2007). Additionally, the dynamic and 
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unpredictable nature of customer demand, influenced by market trends, seasonal fluctuations, and 

economic shifts, adds to the difficulty of demand forecasting (Carbonneau et al., 2008).  

Backorder management is a critical metric in inventory analysis and supply chain 

management. Backorders occur when an order is accepted despite the supplier not having the 

product in stock or the manufacturer not yet producing it. Common causes of backorders include 

delays in order placement, warehouse discrepancies, human errors, manufacturer shortages, 

incorrect reorder points, and unexpected demand (Banik et al., 2023). Backorders have been 

considered as one of the causes of the bullwhip effect in SC performance (Pillai and Chinna 

Pamulety, 2013).  

The balance between demand and supply can be disrupted by the bullwhip effect, leading 

to either excess inventory or stockouts, both of which directly harm a company's profitability (Iqbal 

et al., 2023). In backorder prediction “Accuracy” plays a crucial role for reducing the costs related 

to production and also improving inventory services. While precise predictions are required for 

effective inventory control, modelers must consider not only decreasing prediction errors but also 

assessing the economic benefits of these predictions (Hajek and Abedin, 2020) Additionally, 

incorrect predictions of material backorders can adversely affect inventory management and 

production systems. Thus, reliable material predictions are vital for minimizing the risk of 

inventory backorders (Hajek and Abedin, 2020). Accurate forecasting of client backorders is 

critical in sectors that rely on excellent inventory management and supply chain operations for 

profitability. It enables businesses to optimize inventory levels, reduce operational expenses, and 

improve customer happiness. Backorder prediction in the supply chain comprises creating 

algorithms based on past data to anticipate the likelihood of a product running out of stock as well 

as the expected time it will take to fulfill back orders. This information is crucial for optimizing 

inventory levels, adjusting production schedules, and managing customer expectations across the 

supply chain. In improving the accuracy of backorder predictions, many factors are involved such 

as supplier reliability, demand fluctuations, lead times, and market trends which must be carefully 

considered precisely (Ali et al., 2024).  

In backorder prediction numerous significant challenges are involved like the uneven 

distribution of data across classes, commonly referred to as class imbalance. Simply put, this 

occurs when one class contains a disproportionately higher number of instances, such as having 

substantially more non-backordered products compared to backordered ones (de Santis, Aguiar, 

and Goliatt, 2017; Hajek and Abedin, 2020; Ntakolia, Kokkotis, Moustakidis, and Papageorgiou, 

2022; Islam and Amin, 2020; Lawal and Akintola, 2021; Shajalal, Boden, and Stevens, 2022, 

2023; Maitra and Kundu, 2023; ; Iqbal, Rosenberger, Ha, Gregory, and Anoruo, 2023). In the 

recent years, to deal with this issue, a number of techniques have been considered as solutions such 

as resampling techniques and machine learning models, particularly ensemble learning. Examining 

and analyzing the critical role of classification techniques in SCM has been one of the most 

important topics in this field in recent years. Previous research has focused on various aspects of 

this relationship, providing foundational insights and practical applications of classification 

prediction within supply chains, from inventory management to demand forecasting and backorder 

management. For example, Hajek and Abedin (2020), in their paper focus on integrating predictive 

classification techniques to maximize the profitability of inventory management by addressing 

backorders. The authors discuss how accurate prediction models allow for better decision-making 

in supply chain management by classifying high-risk stock items and optimizing order levels 

accordingly. In one of the most recent studies, authors emphasize the need for predictive 

classification to anticipate backorders and manage supply chain disruptions (Ali et al., 2024). They 
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explore how accurate classification models help in stock optimization, thereby enhancing customer 

satisfaction and reducing operational costs. Lawal and Akintola (2021), investigate RNN-based 

classification models for predicting backorders in supply chains. They focus on the importance of 

handling imbalanced data in backorder prediction, emphasizing how accurate classifications 

improve overall inventory and supply chain efficiency. Shajalal et al., (2022) emphasize the 

importance of interpretability in machine learning classifiers for backorder prediction, particularly 

when understanding the sources of backorders in complicated supply chains. By introducing CNN 

models, the study illustrates the role of classification accuracy in ensuring responsive and adaptive 

inventory management. Carbonneau et al., (2008) in their study highlights the importance of using 

classification in managing supply chain complexities and mitigating the bullwhip effect. This work 

compares traditional forecasting methods with machine learning models, including classification 

approaches such as SVM and neural networks, for demand prediction. Hong and Ping (2007), 

provide a detailed examination of the bullwhip effect within supply chains, underscoring the role 

of accurate demand classification and prediction to prevent inventory mismatches. This 

foundational article highlights how accurate classification impacts inventory control, planning, 

scheduling and whole supply chain performance. In another research, tang and Ge (2021) in their 

research demonstrated the application of Convolutional Neural Networks (CNN) for material 

demand forecasting. By optimizing predictive classifications, the study shows how machine 

learning models improve demand accuracy, crucial for effective inventory management and timely 

fulfillment of orders. Integrating machine learning classification models can significantly enhance 

supply chain performance, increase customer satisfaction, and reduce costs, as shown in these 

studies. Traditional models often struggle to handle this volatility, leading to either stock shortages 

or excess inventory—both of which negatively affect operational efficiency and customer 

satisfaction (Ahmed et al., 2022) Among these challenges, backorders play a significant role, as 

they arise when customer demand exceeds available inventory (Lawal and Akintola, 2021). 

Accurately predicting backorders is essential for businesses aiming to optimize inventory 

management and minimize the disruptions caused by stock shortages (Ali et al., 2024). Precise 

forecasting would enable companies and manufacturers to manage inventory more effectively, 

adjust their production schedules, and determine optimal order quantities and timings (Maitra and 

Kundu, 2023). This, in turn, helps businesses mitigate risks associated with delayed supplies, 

minimize financial losses, and maintain customer trust through timely responses to demand 

fluctuations (Shajalal et al., 2023). Quick and accurate backorder management not only prevents 

customer dissatisfaction and canceled orders but also reduces the broader operational risks posed 

by supply chain disruptions (Hajek and Abedin, 2020). To address these complexities, the adoption 

of machine learning (ML) techniques has become crucial in enhancing the precision of backorder 

predictions (Dehghan-Bonari et al., 2021). ML models, capable of analyzing large and complex 

datasets, offer significant improvements in supply chain forecasting by considering key factors 

such as demand variability, inventory levels, sales history, lead times, and production workflows 

(Adana et al., 2019). These models allow companies to proactively manage backorder risks, 

maintaining balanced inventory levels, optimize decision-making, and improve overall SC 

performance (Santis et al., 2017). Methods such as supervised learning, ensemble classifiers, and 

explainability tools enable businesses to refine backorder predictions, identify critical factors 

driving stock shortages, and evaluate both traditional and modern forecasting approaches (Ntakolia 

et al., 2021; Shajalal et al., 2022). Ultimately, the use of ML not only enhances operational 

efficiency but also supports revenue growth by providing actionable insights into inventory 

management and customer service strategies (Ali et al., 2024). The goal of this research is to 
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construct and assess a variety of machine learning models, such as Neural Networks, KNN, and 

sophisticated ensemble approaches, in order to determine the most effective and precise model for 

backorder prediction inside supply chains. 

In summary, the integration of ML classifiers into supply chain and inventory management 

addresses critical challenges, including demand forecasting, backorder prediction, and the 

bullwhip effect, by leveraging advanced predictive capabilities and data-driven insights. These 

classifiers, when paired with novel preprocessing, feature selection, and ensemble learning 

methods, improve operational efficiency, customer happiness, and overall decision-making. 

Figure 1.1. illustrates the central role of machine learning classifiers in supply chain management, 

depicting their connections to key processes, techniques, and outcomes, thereby providing a 

comprehensive framework for understanding their impact on addressing supply chain 

complexities. 
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1.2. Background 

The existing body of research on predicting backorders in SCM emphasizes various 

advanced machine learning (ML) techniques, addressing the challenges of class imbalance, 

prediction accuracy, and interpretability. A common focus across many studies is improving 

predictive accuracy by leveraging ML models, particularly in dealing with the complex, non-linear 

relationships inherent in supply chain data. For instance, Adana et al. (2019) and Carbonneau et 

al. (2008) demonstrated that neural networks (NNs) and support vector machines (SVMs) 

outperform traditional logistic regression models in backorder forecasting. Similarly, Ahmed et al. 

(2022) evaluated multiple ML algorithms to assess their effectiveness in predicting backorders, 

with a particular emphasis on handling imbalanced datasets and complex patterns in inventory 

data. Both Lawal and Akintola (2021) and Shajalal et al. (2023) focused on addressing the 

challenge of class imbalance by utilizing techniques such as SMOTE, ADASYN, and under-

sampling to ensure more accurate backorder predictions. Several studies have also explored the 

interpretability of these models. For instance, Shajalal et al. (2022) highlighted the "black box" 

nature of deep learning models and proposed integrating explainable AI (XAI) techniques to 

enhance transparency, a concern shared by Rodger (2014), who emphasized the complexity of 

backorder aging prediction in supply chains. Other research, such as that by Iqbal et al. (2023), has 

adopted more interpretable methods like Classification and Regression Trees (CART), aiming to 

balance predictive performance with clarity in decision-making. Maitra and Kundu (2023) 

incorporated cost-sensitive learning approaches to minimize financial losses due to stockouts, an 

approach also explored by Hajek and Abedin (2020), who integrated profit-maximization into their 

model development. Furthermore, studies like Ali et al. (2024) and Santis et al. (2017) examine 

the trade-offs between model complexity and computational cost. Ali et al. (2024) showed that 

reducing the number of predictors could maintain acceptable accuracy while lowering computation 

time. In contrast, Garcia et al. (2022) targeted the practical implications of backorders within 

specific sectors, such as cross-docking in HomeCenter services, by optimizing fulfillment 

processes using ML models. Overall, this diverse range of approaches, from big data analytics 

(Hajek and Abedin, 2020) to novel architectures like convolutional neural networks (CNNs) 

(Shajalal et al., 2022), highlights a multi-faceted effort to improve supply chain resilience and 

predict backorders more accurately. 

1.2.1. Supply Chain and Demand Forecasting 

Demand forecasting plays a critical role in supply chain management, serving as a 

foundational input for key decision-making processes in retail, including inventory management, 

network planning, pricing strategies, and revenue management (Ge et al., 2019). As products, 

services, and data traverse organizational boundaries across diverse system platforms in the 

expanding global marketplace, supply chain management (SCM) faces significant challenges. At 

a broader scale, the global economic landscape and political dynamics contribute to disruptions 

within supply chains, generating uncertainties, delays in delivery schedules, and complications 

with regulatory compliance. The lasting effects of the COVID-19 pandemic serve as a clear 

example of these challenges. (Iqbal et al., 2023). In every sector of the supply chain, demand 

prediction is vital not only for profitability but also for ensuring that products are available in the 

right quantities when needed. This makes it a crucial element in planning and decision-making 

within SCM and enterprise operations. Accurate demand forecasting is essential for making 

informed decisions regarding capacity expansion, resource allocation, and strategies for both 

forward and backward integration (Adhikari, 2017). In today's extremely competitive economic 
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world, organizations are increasingly relying on precision marketing to sustain or increase profit 

margins. Consequently, forecasting models have become integral to precision marketing by 

enabling businesses to better understand and meet customer needs and expectations (Seyedan and 

Mafakheri, 2020). In SCM, it is often assumed that factors such as capacity, demand, and costs are 

fixed and known. However, in reality, these factors are subject to significant uncertainties due to 

fluctuations in customer demand, supply chain disruptions, organizational risks, and lead times. 

Among these, demand uncertainty has the most profound impact on supply chain performance, 

affecting production scheduling, inventory management, and transportation. Thus, precise demand 

forecasting is crucial for mitigating these uncertainties and optimizing SCM operations (Seyedan 

and Mafakheri, 2020). 

Businesses must forecast future demand to prepare for unpredictable needs and streamline 

inventory management costs. Given the lead time between ordering and delivery, companies often 

must order in bulk before actual demand materializes (Seyedan et al., 2023). The unpredictability 

of customer demand complicates demand forecasting, which can render traditional SCM systems 

less effective. This can lead to problems such as inaccurate demand predictions and 

misclassification of back-ordered products (Islam and Amin, 2020). Predictive models that 

forecast the likelihood of backorders for specific products enable companies to proactively 

optimize inventory management strategies, thereby mitigating stockout risks and facilitating better 

planning and decision-making (Shajalal et al., 2022). 

1.2.2. Inventory Management 

Supply chain management (SCM) encompasses the flow of goods, services, and 

information from origin points to customers, involving a network of interconnected entities and 

activities (Ge et al., 2019). Inventory management, a critical component of SCM, involves making 

strategic decisions about the quantity and placement of stocked goods within a multi-layered 

system that operates across various locations and facilities (Ge et al., 2019). It covers the entire 

process of inventory control, including the monitoring of goods as they move into and out of 

warehouses and distribution centers, and the reconciliation of inventory balances (Ge et al., 2019). 

Inventory control specifically supports operational decisions about when and how much to 

replenish for each stock-keeping unit (SKU), including parts and materials used in production 

(Goltsos and Syntetos, 2022). Effective inventory management plays a crucial role in maintaining 

a steady flow of raw materials and finished products, ensuring seamless business operations across 

both manufacturing and production activities. Effective inventory management helps maintain 

smooth operations by coordinating purchases, sales, and logistics activities (Oluwaseyi et al., 

2017). The primary goals of inventory management systems are to ensure the seamless operation 

of production processes, minimize ordering costs, capitalize on quantity discounts, and avoid sales 

opportunity losses (Akintola and Lawal, 2021). As a key element of the supply chain, inventory 

management encompasses responsibilities such as overseeing and tracking purchases, managing 

stock storage, controlling available product quantities, and ensuring order fulfillment. To properly 

satisfy customer demand, organizations with complicated supply chains and manufacturing 

processes must balance inventory levels. (Banik et al., 2023). Decisions regarding the timing and 

quantities of SKUs and their associated materials and components are central to inventory 

management. The main objective is to meet customer demand at a specified service level (Seyedan 

et al., 2023). Retailers, including medium and small-sized businesses, must regularly manage a 

wide range of distinct items to minimize operational costs and optimize sales (Seaman, 2018). A 

crucial aspect of inventory management involves determining the need for and timing of placing 
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orders for specific items, as well as the appropriate quantity for each order (Theodorou et al., 2023). 

Proper inventory management guarantees the timely and cost-efficient procurement of essential 

supplies from vendors, supporting both the production process and the delivery of finished goods. 

Inventory management is essential for meeting demand, enhancing profitability, and ensuring the 

smooth operation of a company, making it a critical function for maintaining competitiveness 

(Namir et al., 2021). Inventory management profoundly influences the overall performance of 

manufacturing and trading enterprises. It requires a delicate balance between storage costs and the 

potential losses from insufficient inventory levels and customer dissatisfaction. Optimal inventory 

management involves maintaining satisfactory service levels while avoiding excessive stockpiles 

that disproportionately increase storage costs (Sustrova, 2016). Inventory control has long been a 

significant concern in industrial engineering and operational research, focusing on decisions about 

when to place orders and how much to order through various control mechanisms (Tsou, 2008). 

On a micro level, managing inventory effectively involves addressing issues such as customer 

demand, transportation logistics, and technology platform communication, with product backorder 

being one of the most common challenges (Iqbal et al., 2023). Among the various types of 

inventory costs, stock-out costs are often the most significant, arising from fluctuating customer 

demand, forecast inaccuracies, and variability in lead times. To mitigate these risks, businesses 

may hold sufficient stock to cope with unexpected or excess demand, a strategy known as 

maintaining safety stock (Ge, 2019). Safety stock is crucial for addressing uncertainties in vendor 

lead-time predictions and is the foundation of broader inventory replenishment challenges. The 

core challenge in supply chain and inventory management lies in inventory replenishment 

planning, which involves determining order quantities (lot sizing) and establishing replenishment 

schedules (Boctor and Bolduc, 2015). The increasing complexity of global supply chains, with 

numerous stakeholders and diverse flows of goods and information, adds to the challenge of 

managing inventory effectively. Poorly managed inventory can lead to stock-outs, disrupting 

production and increasing costs, or to excess supplies, which inflate costs and disrupt cash flow 

(Namir et al., 2021). In global production systems, inventory management plays a pivotal role in 

balancing costs and service objectives while serving as a buffer against uncertainties in demand 

and supply (Chinelloa et al., 2020). Effective inventory management is crucial for any company 

seeking to remain competitive in today's business environment (Moshtagh and Taleizadeh, 2017). 

A critical aspect of inventory models is the prediction of backorders, which detects out-of-stock 

items and enables organizations to promptly replenish their inventory (Zhang et al., 2016). 

1.2.3. Backorder 

In inventory management and supply chains, a backorder occurs when a customer 

purchases an item that is currently unavailable or out of stock. Instead of selecting a substitute, the 

consumer opts to wait for the item to be restocked, resulting in delays in order fulfillment and 

delivery. (Maitra and Kundu, 2023; Ntakolia et al., 2022; Islam and Amin, 2020; Shajalal et al., 

2022). Backorders are a frequent feature of inventory management systems, emphasizing the need 

for efficient handling of customer expectations and stock levels. They offer critical insights into 

consumer demand, inventory precision, and the overall performance of supply chains, enabling 

businesses to refine inventory management, enhance customer satisfaction, and minimize lost sales 

opportunities (Maitra and Kundu, 2023). A backorder is essentially a contingent order based on 

future inventory availability with flexible delivery timelines (Shajalal et al., 2022). Stockouts can 

elicit varied responses from customers; some choose to delay their purchase until the item becomes 

available, whereas others opt to cancel their order or seek alternatives from competing providers. 
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These reactions result in either postponed sales through backorders or revenue losses due to 

diverted purchases. (Wang and Tang, 2014). Predicting backordered products before customers 

place orders is crucial for regulating production to reduce lead times and enhance profitability 

(Hajek and Abedin, 2020). Over the years, inventory models have been designed to identify the 

ideal inventory levels needed for efficient production, regulate the timing and frequency of orders, 

establish appropriate quantities of goods or raw materials to maintain in stock, and monitor supply 

chains to guarantee seamless customer service without disruptions in delivery (Akintola and 

Lawal, 2021). Many customers tend to avoid companies with a history of frequent backorders, as 

it signals inefficiencies and can lead to lost sales (Chan et al., 2017). The manner in which a 

company handles backorders can significantly affect customer trust, satisfaction, and the 

company's overall market performance. Promptly addressing backorders can enhance a company's 

reputation, while delays can lead to dissatisfied customers, order cancellations, loss of revenue, 

and supply chain disruptions (Ntakolia et al., 2022; Islam and Amin, 2020; Santis et al., 2017). 

While some studies have assumed that excess demand results in either lost sales or backorders, 

more realistic scenarios involve partial backordering, where some excess demand leads to lost 

sales and the remainder results in backorders (Chen et al., 2015). Backordering offers 

organizations advantages such as maintaining customer retention, fostering a responsive supply 

chain, and supporting effective risk management. Conversely, ineffective backorder management 

can lead to increased expenses, including financial and operational costs related to procurement, 

production, and distribution, alongside intangible drawbacks like diminished customer satisfaction 

and the risk of losing customers to competitors (Akintola and Lawal, 2021). Backorders are 

challenging to predict due to various factors, including unusual customer demands, forecast 

complexity and inaccuracy, material or product shortages, logistics issues, and data inaccuracies 

(Iqbal et al., 2023). Although backorders may indicate strong demand for a product, they also pose 

the risk of losing customers if not managed properly (Iqbal et al., 2023). Optimizing inventory 

policies, such as review periods, lead times, and service levels, is crucial to managing the trade-

off between maintaining product availability and minimizing inventory costs (Theodorou et al., 

2023). Backorders often occur for highly demanded products, but for other items, demand can be 

less predictable. Large orders based on backorders can expose retailers to reputational risks if 

expected delivery dates are not met. Customers may cancel orders due to long wait times or 

purchase from competitors with available stock, leaving companies with excess inventory and 

potential financial losses (Shajalal et al., 2022). The handling of backorders affects a company's 

market position, customer satisfaction, and overall sales performance. Prompt responses to 

backorders enhance reputation, while delays can result in dissatisfied customers, lost revenue, and 

supply chain disruptions. Accurate backorder prediction is crucial for devising mitigation 

strategies and adjusting production processes accordingly (Ntakolia et al., 2022). If backorders are 

not addressed promptly, they can lead to lost customers, decreased revenue, and a decline in market 

share. Conversely, quickly fulfilling backorders can strain supply chain processes, increasing 

labor, production, and shipping costs (Islam and Amin, 2020). Stock-outs result in lost sales when 

no backorders are allowed, leading to reduced sales gains from higher product variety as 

consumers opt for alternatives in the market (Wan et al., 2020). 

1.2.4. Imbalanced Dataset 

Identifying backordered products in inventory management is particularly challenging 

because products are far more often available than backordered, leading to a common 

consequence: an imbalanced binary classification problem. Classifying a product as a backorder 
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is difficult due to its infrequent occurrence compared to availability, creating an imbalanced binary 

classification issue (Ntakolia et al., 2022). Class imbalance (CI) in classification tasks occurs when 

one class contains significantly fewer observations compared to another (Khan et al., 2024, 

(Shoeibi et al., 2023; Kaur and Singh, 2023; Osama et al., 2023; Makki et al., 2023). In typical 

supply chain management scenarios, the occurrence of goods in backorder (positive or minority 

class) is relatively rare compared to the number of available or non-backorder items (negative or 

majority class). This situation is referred to as class imbalance. Such class-imbalanced scenarios 

frequently occur in various real-world predictive applications, including loan approval analysis, 

corporate bankruptcy forecasting, and credit card fraud detection (Kim and Hwang, 2022). Class 

imbalance is a prevalent challenge across various fields of study and research, including medical 

images for the diagnosis of brain diseases (Shoeibi et al., 2023), image segmentation and 

classification (Kaur and Singh, 2023), medical diagnostics (Zhu et al., 2018), disease diagnosis 

(Kim and Hwang, 2022) and prediction methods in biotechnology and medicine (Osama et al., 

2023), fraud detection (Makki et al., 2023). In these scenarios, minority positive instances typically 

hold greater importance than the majority class examples. Addressing class imbalance primarily 

involves achieving an optimal balance between majority and minority instances to enhance the 

impact of the positive class. Furthermore, the differing costs of misclassifying backorder and non-

backorder items introduce an additional complexity that must be effectively managed (Hajek and 

Abedin, 2020). Shoeibi et al. (2023), identified imbalanced data as a critical challenge in data 

fusion for diagnosing brain diseases. To address this issue, they proposed resampling techniques 

as a viable solution. Specifically, they implemented three strategies: under-sampling the majority 

class, over-sampling the minority class, and employing the Synthetic Minority Over-sampling 

Technique (SMOTE) to create artificial samples. These methods were effective in increasing the 

representation of the minority class, thereby improving data balance. Bader et al. (2019) 

emphasized data-level strategies to mitigate the effects of class imbalance by either generating 

additional minority class instances (oversampling) or removing some majority class instances 

(undersampling). These methods are typically applied during the data preprocessing stage and 

operate independently of subsequent learning algorithms (Kaur & Singh, 2023). Bader et al. (2019) 

emphasized the effectiveness of ensemble learning methods, which improve predictive accuracy 

by aggregating the outputs of several base classifiers into a unified decision. By combining 

multiple models, ensemble learning provides a more resilient solution and has been extensively 

utilized alongside data augmentation strategies to address challenges associated with class 

imbalance (Shoeibi et al., 2023; Kaur and Singh, 2023; Osama et al., 2023; Makki et al., 2023). 

1.2.5. Bullwhip Effect 

The term "bullwhip effect" refers to a phenomenon in supply chain management where the 

variability of outgoing orders tends to be greater than the variability of incoming demands at each 

level of the supply chain (Gaalman et al., 2022). Carbonneau et al., (2008) in their research 

concluded that the bullwhip effect refers to the amplification of demand variability as information 

moves upstream in the supply chain, causing distortions in demand signals. This distortion often 

results in excessive inventory or stockouts, leading to inefficiencies in supply chain operations. 

An essential concept in supply chain management, the bullwhip effect, indicates that demand 

variability intensifies as it progresses up the supply chain. When a supply chain experiences the 

bullwhip effect, it can result in misguided capacity planning and missed production schedules due 

to a lack of visibility into product sales at the distribution channel stage. This phenomenon also 

contributes to numerous inefficiencies, including insufficient or excessive production capacities, 
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excessive inventory investments, poor customer service due to unavailable products or extended 

backlogs, lost revenue opportunities, uncertainty in production planning (leading to frequent 

revisions), and increased correction costs (Hong and Ping, 2007). Backorders, as a key driver of 

supply chain disruptions, play a crucial role in amplifying the bullwhip effect by creating delays 

in fulfilling customer orders, which further complicates demand forecasting and inventory 

management across the supply chain. Supply shortages drive up costs for companies due to limited 

availability, leading to higher prices for goods and services. This impact is particularly evident in 

last-mile delivery, where escalating fuel expenses translate into increased shipping charges, further 

inflating the prices of products. Such price surges can impose financial strain on consumers and 

may hinder overall economic growth (Iqbal et al., 2023). The bullwhip effect, first identified by 

logistics executives at Procter and Gamble (P&G), refers to the amplification of demand or order 

variability as it moves from downstream to upstream stages in the supply chain (Lee et al., 1997). 

This dynamic can result in overstocked inventories, subpar customer service, revenue declines, 

inefficient transportation utilization, flawed capacity planning, disruptions to production schedules 

(Lee et al., 1997), diminished market share (Wright and Yuan, 2008), and avoidable costs, 

including those associated with stockouts or excess inventory obsolescence (Shukla et al., 2009), 

all of which negatively affect supply chain performance (Nienhaus et al., 2006). Backorders 

exacerbate the bullwhip effect by disrupting inventory, warehousing, production, and 

transportation processes across the supply chain. The bullwhip effect, a significant challenge in 

managing supply chain uncertainty, arises when minor variations in consumer demand trigger 

increasingly amplified fluctuations upstream, affecting wholesalers and manufacturers. 

Contributing factors include delays in information flow, order batching, price variability, and 

inventory management practices. These dynamics often result in imbalanced inventory levels and 

elevated carrying costs for organizations. Pillai and Pamulety (2013) examined the bullwhip effect 

as a performance measure in supply chains, specifically studying the impact of backorders under 

short lead times. Their research, conducted through experiments involving lost sales and backorder 

scenarios, demonstrated that backorders are a key factor contributing to the bullwhip effect. The 

traditional forecasting methods tend to struggle with mitigating the bullwhip effect, as they are not 

designed to handle the non-linear distortions caused by the phenomenon. Machine learning 

models, such as SVMs and neural networks, offer a potential solution by improving the accuracy 

of forecasting and helping to reduce the impact of the bullwhip effect, though their effectiveness 

depends on the specific supply chain context (Carbonneau et al., 2008). Zhang et al. (2021) utilized 

the Support Vector Machine (SVM) model to mitigate the bullwhip effect, a phenomenon of 

demand estimation inaccuracies. They trained a series of observations to classify outcomes based 

on assigned variables, emphasizing that larger datasets yield more stable results for this type of 

processing. 

1.2.6. Artificial Intelligence and Machine Learning 

Big data analytics provide competitive advantages by extracting valuable insights from 

vast databases, helping enterprises make informed business decisions, enhance strategies, improve 

operational efficiency, and boost supply chain sustainability and economic performance (Dubey, 

2019). These applications also deepen understanding of enterprise dynamics, increase customer 

engagement, optimize routine operations, and generate new profit streams (Wang et al., 2016). 

These benefits have led to increasing attention on big data analytics within supply chain 

management (SCM) (Wang et al., 2016). As SCM focuses on satisfying customer demand while 

minimizing total supply costs, the application of machine learning algorithms facilitates precise, 
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data-driven demand forecasts, aligning supply chain activities with these predictions to improve 

efficiency and satisfaction (Seyedan and Mafakheri, 2020). Although predicting demand 

accurately is challenging due to market uncertainties, the use of extensive historical data and big 

data analytics has improved the accuracy of demand forecasting (Seyedan et al., 2023). Advanced 

machine learning (ML) and deep neural network models have garnered widespread adoption in 

various industries, including business, healthcare, and bioinformatics, due to their superior 

predictive capabilities. These technologies have diverse applications, such as optimizing SCM, 

predicting credit risk, detecting credit card fraud, and informing retail banking strategies (Shajalal 

et al., 2022). The integration of artificial intelligence and big data into SCM has been 

transformative, especially as barriers to their implementation—such as costs, computing power, 

and access to open-source platforms—have diminished. Machine learning is now used to design 

and develop predictive models that evaluate all aspects of management, providing crucial insights 

that enable companies to respond effectively to operational changes (Santis et al., 2017). ML 

algorithms can comprehend non-linear processes by analyzing large datasets, making predictions 

or recommendations based on observed patterns rather than assumptions about data generation. 

These algorithms have shown outstanding performance across many SCM domains, including 

substituting statistical methods in demand forecasting, classifying inventory items, and predicting 

optimal transportation routes (Theodorou et al., 2023). Neural networks, one of the most complex 

AI processes, require significant processing power to collect and convert data into actionable 

insights quickly, aiding in prediction and decision-making (Papernot et al., 2017). A decision tree 

is a predictive tool that assists in forecasting outcomes based on a series of decisions. It 

autonomously selects variables from a dataset to create subdivisions, helping guide the decision-

making process (Namazkhan et al., 2019). Support Vector Machines (SVM) are supervised ML 

algorithms used for classification and regression, analyzing binary variables and seeking 

maximum separation between observations. SVM is particularly suitable for complex, small to 

medium-sized datasets (Khan et al., 2021). SVM aims to draw a hyperplane in an "n" dimensional 

vector space to separate data into distinct patterns representing respective classes. Random forests, 

an ensemble ML technique, are highly adaptable to data and capable of identifying correlations 

and interactions between variables. Random forest models can be more effective than neural 

networks, especially when dealing with tabular data where variables are individually significant 

and lack temporal or spatial structure (Lundberg et al., 2020). 

1.3. The main objective and motivation 

The primary objective of this research is to develop a highly accurate and efficient machine 

learning-based predictive model to identify products or materials at risk of backorders within 

supply chain systems. By leveraging advanced machine learning techniques, this study aims to 

enhance backorder forecasting accuracy, enabling businesses to proactively manage inventory 

levels, mitigate the impacts of stock shortages, and optimize supply chain operations. This goal 

will be accomplished by implementing and comparing a total of 98 configurations consisting of 

various machine learning models, including K-Nearest Neighbors (KNN), Neural Networks, 

Random Forest (RF), ensemble methods and model stacking, and numerous resampling techniques 

to identify the most effective predictive approaches. As discussed in the background, one of the 

critical challenges in backorder prediction is data imbalance. This research addresses this issue 

through the use of data augmentation methods and ensemble learning techniques. These efforts are 

supported by innovative data preprocessing, feature selection, and dimensionality reduction 

methods, along with the application of a wide range of machine learning and ensemble learning 
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techniques. Unlike some prior studies that opted to remove records with missing values (e.g., 

Ntakolia et al., 2022; Ali et al., 2024), this research acknowledges the critical value such records 

may hold. While other studies have explored missing value imputation methods (e.g., Santis et al., 

2017; Hajek and Abedin, 2020), and Adana et al. (2019) employed the impute data node in SAS 

Enterprise Miner, this study emphasizes the importance of more sophisticated approaches. For 

instance, Iqbal et al. (2023) assumed missing data to be random, using linear and logistic regression 

for imputation, while Maitra and Kundu (2023) implemented model-based imputation. However, 

traditional methods, such as mean, mode, or median replacements proposed by Gao et al. (2022), 

can result in information loss and reduced model accuracy. To address these issues, this research 

adopts advanced imputation techniques, such as Multiple Imputation by Chained Equations 

(MICE), ensuring valuable insights from incomplete data are preserved. Additionally, model 

explainability is prioritized through SHAP analysis, offering transparent insights into feature 

contributions and enhancing decision-making processes. By focusing on a robust and scalable 

solution, this study aims to improve decision-making, reduce operational costs, enhance supply 

chain efficiency, minimize risks of stockouts or excess inventory, and elevate customer 

satisfaction. Building on this foundation, this research leverages SMOTEENN, an advanced hybrid 

technique combining SMOTE (Synthetic Minority Over-sampling Technique) with Edited Nearest 

Neighbors (ENN), representing a significant improvement over traditional resampling methods 

such as SMOTE or ADASYN. While prior studies have emphasized the need to address class 

imbalance (e.g., Ntakolia et al., 2022; Shajalal et al., 2022, 2023; Islam and Amin, 2020; Ali et al., 

2024; Adana et al., 2019; Kaur and Singh, 2023), none have specifically explored the SMOTEENN 

approach alongside advanced machine learning algorithms for backorder prediction. Studies, 

including Santis et al. (2017) and Shajalal et al. (2023), have underscored the challenge posed by 

the class imbalance between backordered and non-backordered items, which impedes accurate 

predictions. Previous research has applied various strategies to mitigate this issue, such as Random 

Under Sampling, ADASYN, Weighted Samples, SMOTE, Oversampling, Random Down 

Sampling, and Stratified Holdout (e.g., Shajalal et al., 2023; Islam and Amin, 2020; Adana et al., 

2019). By incorporating SMOTEENN, this study seeks to achieve a more optimal balance between 

precision and recall, particularly improving recall for the minority class representing backorders. 

The SMOTEENN technique's combination of oversampling (SMOTE) and noise reduction (ENN) 

results in a cleaner, more balanced dataset, significantly enhancing model accuracy in detecting 

backorders. This hybrid approach is especially effective in addressing the minority class of 

"Backorder," a persistent challenge in backorder prediction. By addressing this gap, the research 

improves the reliability of backorder predictions and establishes a robust framework for handling 

imbalanced datasets, contributing to more precise and actionable insights in supply chain 

management. 

Previous studies, such as Adana et al. (2019) and Santis et al. (2017), have acknowledged 

the importance of feature selection but often relied on traditional or manual selection methods. In 

this research, we integrate Principal Component Analysis (PCA) into our feature engineering 

strategy to effectively manage high-dimensional data while preserving critical information for 

accurate predictions. PCA achieves dimensionality reduction by transforming the original features 

into uncorrelated principal components that retain the maximum variance of the dataset (Momeni 

et al., 2020). This process mitigates issues like multicollinearity, which can compromise the 

accuracy and stability of machine learning models and reduces the risk of overfitting. By applying 

PCA before model training, we enhance computational efficiency, particularly for resource-

intensive algorithms such as Neural Networks. This step ensures faster training and improves the 
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models' ability to generalize to new data. These advancements enable us to develop scalable and 

high-performing predictive solutions for backorder forecasting in complex supply chain systems. 

Through the integration of PCA, our research modernizes feature engineering practices, 

establishing it as a pivotal component of our strategy to create a precise, efficient, and reliable 

backorder prediction model. 

Building on prior research, this study expands the evaluation of machine learning 

algorithms to identify the most effective model for predicting backorders. While earlier studies, 

such as Ali et al. (2024), have tested models like Random Forest, Gradient Boosting, and Neural 

Networks, our research introduces additional methods, including K-Nearest Neighbors (KNN), to 

enhance model diversity and robustness. This broader comparison aims to provide a 

comprehensive understanding of each model’s performance, identifying their respective strengths 

and limitations within the context of supply chain data. Furthermore, this research advances the 

field by incorporating ensemble techniques, such as Gradient Boosting Machines (GBM), 

XGBoost, and LightGBM. These boosting methods combine the predictive strengths of multiple 

models, enabling the capture of intricate patterns and interactions within the dataset. Additionally, 

a key focus of this study is to leverage ensemble learning techniques specifically to address class 

imbalance issues, ensuring more reliable and balanced backorder predictions. Through this 

comprehensive evaluation and the application of ensemble methods, our research offers a novel 

and practical approach to predictive modeling in supply chain management. 

1.4. The main research questions  

The main research questions of this research are as follows:  

Question 1: How do advanced machine learning models, such as Neural Networks (NN) and K-

Nearest Neighbors (KNN), perform compared to traditional forecasting methods in predicting 

backorders in supply chain management, particularly when dealing with imbalanced data? 

 

Question 2: Which ensemble learning techniques—such as XGBoost, LightGBM, and Stacking 

Models—are most effective in improving the accuracy and reliability of backorder prediction 

models? 

 

Question 3: How do different data preprocessing techniques, such as resampling methods (e.g., 

SMOTEENN and Random Under Sampling) and advanced imputation methods, affect the 

performance of machine learning models in backorder prediction? 

 

Question 4: Does feature selection (e.g., using SHAP) improve the accuracy of backorder 

prediction models, and why do dimensionality reduction techniques like PCA fail to deliver similar 

improvements? 

1.5. The contributions of this research 

Based on the identified gaps in the existing literature, the contribution of the current 

research can be summarized as follows:  

This study aims to enhance the accuracy and robustness of machine learning models for 

backorder prediction within supply chain management by addressing several overlooked areas in 

existing research. First, this research systematically compares five key imbalanced data handling 

techniques, Random Under Sampling (RUS), ADASYN, SMOTE-ENN, SMOTESVM, and 
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Borderline-SMOTE, which are rarely assessed side-by-side. This comparison will provide 

valuable insights into their respective impacts on model performance, particularly within the 

context of backorder forecasting, where class imbalance is often a significant challenge. In 

addition, the current study uniquely incorporates an evaluation of different sampling strategies, 

specifically comparing 5-fold and 10-fold cross-validation methods. By assessing how these 

approaches influence model generalizability and predictive accuracy, the study will shed light on 

how sampling techniques affect the reliability of machine learning models in supply chain 

applications. Another significant contribution lies in the examination of hyperparameter 

optimization methods. While previous studies often neglect or inconsistently apply optimization 

methods, this research rigorously evaluates Randomized Search CV to determine the most efficient 

technique for optimizing machine learning models tailored to supply chain backorder prediction. 

Additionally, unlike previous research that often overlooks systematic approaches to handling 

missing values, this study employs MICE (Multiple Imputation by Chained Equations), a 

sophisticated technique particularly suited to supply chain datasets, where missing data can heavily 

impact model reliability and interpretability. A key focus of this research is resolving class 

imbalance issues not only through resampling techniques but also by leveraging ensemble learning 

methods such as Gradient Boosting Machines (GBM), XGBoost, and LightGBM. These ensemble 

techniques are specifically designed to handle skewed datasets while enhancing the robustness and 

predictive accuracy of backorder classification models. By implementing a suite of preprocessing, 

sampling, and optimization techniques and evaluating their influence on machine learning models, 

this research will provide a comprehensive framework for improving predictive performance in 

supply chain management applications. This work will also inform best practices for future studies 

aiming to tackle similar forecasting challenges within imbalanced, high-dimensional data 

environments. 

1.6. Theoretical Framework and Relevance 

This research is grounded in the theoretical framework of predictive analytics and machine 

learning theory, focusing on backorder prediction within supply chain management. By utilizing 

advanced machine learning techniques such as ensemble learning, and feature engineering, the 

study builds on principles of supervised learning and data-driven decision-making. The 

methodology integrates core concepts from data preprocessing, class imbalance handling, feature 

selection, and dimensionality reduction, establishing a comprehensive machine learning workflow. 

Techniques like Principal Component Analysis (PCA) and advanced imputation align with 

theoretical foundations in data transformation and dimensionality reduction, aiming to enhance 

model accuracy and interpretability. This research holds particular relevance for industries where 

supply chain management is essential, including manufacturing, retail, and e-commerce. Timely 

and accurate backorder prediction is crucial for optimizing inventory levels, reducing operational 

costs, and maintaining high levels of customer satisfaction. The study’s focus on addressing 

challenges such as data imbalances, missing values, and feature selection is particularly beneficial 

for businesses seeking to improve supply chain efficiency in a data-rich environment. This work 

not only identifies effective predictive models but also provides actionable strategies for 

optimizing inventory management and mitigating risks associated with backorders, thereby 

strengthening the resilience and competitiveness of contemporary supply chains. 
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1.7. Thesis Structure 

This thesis is structured into eight chapters, each addressing key aspects of supply chain 

management, demand forecasting, and the integration of Machine Learning (ML) models. Chapter 

one introduces the background, research problem, objectives, contributions, and the significance 

of addressing inefficiencies in inventory management and backorder issues through predictive 

models. Chapter two provides a comprehensive review of the relevant literature, identifying the 

research gaps that this study aims to address. In chapter three, the dataset is described in detail. 

Chapter four discusses the research methodology, including data preprocessing, handling 

imbalanced data, feature selection, and the application of various ML models for prediction. 

Chapter five explains the evaluation metrics used in this research. Chapter six presents the results 

of the analysis, comparing model performances. This is followed by a thorough discussion in 

chapter seven, which interprets the findings and explores their practical implications. Finally, 

chapter eight concludes the research by summarizing key insights, addressing the study’s 

limitations, and offering directions for future research in supply chain management, backorder 

prediction, and inventory planning and replenishment. 
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2. Literature Review 

This chapter provides a comprehensive review of prior research on the integration of machine 

learning techniques in supply chain management, with a specific focus on addressing demand 

uncertainty and predicting backorders. The current chapter examines the role of machine learning 

in mitigating the challenges of demand fluctuations and imbalanced datasets, highlighting its 

potential to enhance backorder prediction accuracy and operational efficiency. Key aspects of 

previous studies, including the methodologies, machine learning classifiers, model enhancement 

techniques, and the challenges identified in earlier works, are analyzed. The discussion is 

organized into subsections that explore the contributions of machine learning to supply chain 

management, the specific applications of machine learning in backorder prediction, a critical 

review of related research, and the implications of data imbalance on predictive modeling. 

2.1. The Role of Machine Learning in Addressing Demand Uncertainty and Backorder 

prediction 

In today’s rapidly evolving business landscape, supply chains are facing unprecedented 

levels of complexity, encompassing challenges in production planning, operations, inventory 

management, demand forecasting, and backorder fulfillment. The integration and globalization of 

supply chains have amplified this complexity, leading to a heightened focus on efficient supply 

chain management among both academic and industry stakeholders. This interest is driven by the 

escalating costs of manufacturing and transportation, coupled with the dynamics of global markets. 

These trends have led to the emergence of intricate and dynamic supply networks, which in turn 

have intensified and redistributed uncertainties throughout the supply chain. Consequently, 

companies are now required to allocate more resources to anticipate and manage uncertainties 

related to demand, supply, and internal operations, all of which are crucial for enhancing the 

sustainability of their supply chains. Notably, this surge in uncertainty is not solely due to external 

factors but is also attributed to the increasing complexity of supply chain structures and the diverse 

mechanisms employed within supply chain operations (Shin et al., 2012). In practice, demand 

uncertainties stem from fluctuations in customer demand, transportation issues, organizational 

risks, and variable lead times. Among these, demand fluctuations have the most profound impact 

on supply chain performance, influencing production scheduling, inventory planning, and 

transportation strategies (Seyedan and Mafakheri, 2020). Inventory planning, a critical aspect of 

supply chain management, involves making strategic decisions about when and how much to 

order, employing various control mechanisms to ensure efficiency (Santis et al., 2017). Backorders 

occur when customers order products that are temporarily unavailable. In such situations, 

companies must decide whether to manufacture or source the backordered items, while customers 

may opt to cancel their orders if the delay is too long, possibly leaving the company with excess 

inventory. As a result, making strategic inventory management decisions is essential, and 

incorporating AI-driven insights can improve these decision-making processes (Shajalal et al., 

2022). A wide range of research has investigated the causes and effects of backorders on various 

aspects of supply chain management, production, and inventory control (Bao et al., 2018; Hajek 

and Abedin, 2020; ElHafsi et al., 2021; Umakanta et al., 2021; Thinakaran et al., 2019; Shin et al., 

2012). Some studies have specifically focused on using machine learning models to predict 

backorders in inventory management systems (Islam and Amin, 2020; Hajek and Abedin, 2020; 

Shajalal et al., 2023; Santis et al., 2017). For instance, one study developed a machine learning 

pipeline incorporating explainability analysis to pinpoint key features in backorder prediction 
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(Ntakolia et al., 2022), while another used a supervised learning model with sampling techniques 

and classifier ensembles for improved backorder forecasting (Santis et al., 2017). Additionally, a 

study introduced a range-based approach to determine various predictive features, accounting for 

real-time data anomalies caused by human or machine errors, offering a flexible solution for 

predicting backorder scenarios (Islam and Amin, 2020). Machine learning models have been 

widely used to accurately forecast different aspects of supply chain management, such as demand, 

sales, revenue, production, and backorders. These techniques have been applied to predict 

unpredictable manufacturer demands, with some studies comparing ML-based approaches to 

traditional forecasting methods to evaluate their predictive accuracy (Carbonneau et al., 2008). 

Machine learning is effective for forecasting backorders in the supply chain when relevant data is 

available. The decision to use statistical methods or machine learning depends on the 

organization's specific needs and resources, along with the complexity and variability of the data 

being examined (Tirkolaee et al., 2021). The competition between different ML techniques 

enhances forecasting precision, enabling better decision-making that can ultimately increase 

revenue. 

2.2. Machine Learning Approaches to Backorder Prediction in Supply Chain Management 

The literature on backorder prediction and supply chain management increasingly 

emphasizes the role of machine learning models to improve forecasting accuracy, reduce costs, 

and optimize inventory management. Backorders occur when customer demand surpasses the 

available inventory, resulting in higher operational costs, delays in production, and lower customer 

satisfaction. As such, various studies have explored machine learning approaches to address this 

issue. Ali et al. (2024) emphasized the importance of balancing model complexity and 

computational efficiency in backorder prediction, demonstrating that simplified ML models like 

Random Forest (RF), Gradient Boosting (GB), and Extreme Gradient Boosting (XGB) can reduce 

computational costs while maintaining high predictive accuracy. Similarly, Islam and Amin (2020) 

utilized Distributed Random Forest and Gradient Boosting Machines (GBM) to handle the large-

scale datasets and complexity inherent in predicting backorders. Their research employed a 

distributed computing framework to improve scalability and efficiency, making it well-suited for 

real-time applications in global supply chains. Other studies have focused on integrating advanced 

ML techniques with economic considerations. Hajek and Abedin (2020) proposed a Random 

Forest classifier combined with a Clustering-Based Under sampling (CBUS) technique to improve 

backorder prediction while optimizing profitability. Their innovation lies in the application of big 

data analytics to handle large datasets, offering a more practical solution by incorporating 

economic factors into the prediction model. Santis et al. (2017) tackled the issue of class imbalance 

in backorder datasets by employing ensemble learning models like Logistic Regression, 

Classification and Regression Tree (CART), and Gradient Boosting, using techniques like SMOTE 

and Random Under-Sampling (RUS) to improve predictive accuracy. The integration of these 

methods demonstrates the critical importance of addressing the imbalance between backordered 

and non-backordered items to enhance model performance. The use of deep learning models has 

gained traction in recent studies. Shajalal et al. (2023) employed Deep Neural Networks (DNN), 

combining data balancing techniques such as SMOTE and under sampling to address the 

significant class imbalance in supply chain datasets. This approach significantly improved the 

accuracy of backorder prediction, demonstrating the effectiveness of DNNs in handling complex 

data patterns. Furthermore, Shajalal et al. (2022) introduced Explainable Artificial Intelligence 

(XAI) techniques by integrating Convolutional Neural Networks (CNN) with SHAP and LIME, 



18 
 

providing greater transparency and interpretability in backorder predictions. This innovation is 

critical for fostering trust in ML models among business stakeholders, especially in contexts where 

decision-making transparency is essential. Additional studies have explored the role of recurrent 

neural networks (RNNs) in backorder prediction. Lawal and Akintola (2021) developed an RNN-

based model to predict backorders, addressing the challenge of imbalanced datasets through the 

application of SMOTE, ADASYN, and RUS techniques. Their research showed that RNNs, when 

combined with advanced data balancing methods, provide a robust solution for backorder 

prediction. Similarly, Iqbal et al. (2023) applied a Classification and Regression Tree (CART) 

model to predict backorders, leveraging decision trees for their interpretability and ability to handle 

both continuous and categorical variables. This approach, while simpler than deep learning 

models, offers a practical solution for businesses looking for accessible and efficient ways to 

manage backorders. Lastly, Maitra and Kundu (2023) examined the financial implications of 

backorder misclassification, integrating cost-sensitive learning into their model. By employing 

techniques like Balanced Bagging Classifiers and Variational Autoencoder-GAN (VAE-GAN) 

models, they demonstrated that ML models can not only improve backorder prediction but also 

optimize inventory management by minimizing financial losses. This focus on profit functions 

highlights the practical relevance of backorder prediction models in real-world supply chains, 

where financial and operational efficiency is paramount. These studies collectively demonstrate 

the critical role of machine learning in improving the prediction of backorders in supply chain 

management. The methods range from classical models like logistic regression to more complex 

deep learning architectures, each addressing key challenges such as class imbalance, 

computational efficiency, and interpretability. By leveraging machine learning, businesses can 

optimize inventory management, reduce operational costs, and enhance customer satisfaction, 

making it a vital tool in modern supply chain operations. Table 2.1. provides an overview of studies 

that have utilized machine learning algorithms to predict backorders. 

2.3. Review of Related Research on Backorder Prediction and Supply Chain Management 

Islam and Amin (2020) focused on improving the accuracy and efficiency of predicting 

backorder scenarios within supply chains by utilizing advanced machine learning techniques. The 

main concern addressed by the paper is the need for robust predictive models that can handle the 

complexity and scale of modern supply chains. The authors have emphasized that traditional 

prediction methods often fall short in accurately forecasting backorders due to the dynamic nature 

of supply chain variables and the vast amount of data involved. This research aims to bridge this 

gap by applying Distributed Random Forest and Gradient Boosting Machine (GBM) techniques, 

which are well-suited for managing large datasets and capturing intricate patterns in supply chain 

data. To achieve its objectives, the paper employs a methodology that integrates Distributed 

Random Forest and Gradient Boosting Machine learning techniques within a distributed 

computing framework. This approach allows for the processing and analysis of extensive supply 

chain data in parallel, significantly reducing computation time and enhancing scalability. The 

study meticulously compares these advanced machine learning models against traditional 

methods, demonstrating superior performance in terms of prediction accuracy and reliability. One 

of the key innovations of this research is the implementation of distributed computing, which 

enables the models to efficiently handle real-time data and adapt to the evolving complexities of 

global supply networks. Additionally, the paper introduces novel feature engineering strategies 

tailored to supply chain data, enhancing the models' ability to identify critical factors contributing 

to backorders. This combination of distributed machine learning and customized feature 
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engineering sets the study apart from previous research, offering a more effective and scalable 

solution for backorder prediction in contemporary supply chains. The authors have employed two 

machine learning models to predict backorder scenarios: Distributed Random Forest (DRF) and 

Gradient Boosting Machine (GBM). These models were chosen for their ability to handle large 

datasets and provide robust predictions in the context of supply chain management. The 

performance of the prediction models was evaluated using several metrics, including 1. Area 

Under the Curve (AUC) which is a common measure for assessing the accuracy of classification 

models, reflecting the model's ability to distinguish between classes (Kaur and Singh, 2023). 

2.LogLoss which is a measure of the model's prediction error, capturing the probability-based 

classification accuracy. 3.Mean Per Class Error: This metric evaluates the average error across 

different classes, giving insight into how well the model performs for each class individually. 

4.ROC (Receiver Operating Characteristic) Curve, which visualizes the performance of the models 

by plotting the true positive rate against the false positive rate at various threshold settings, with 

AUC summarizing the performance in a single value (Kaur and Singh, 2023).  

Hajek and Abedin (2020) considered the material backorder prediction based on big data 

characteristics and its profitability occurring from misclassification. The have concentrated on 

predicting inventory backorders using a data-driven approach aimed at maximizing profitability. 

Their research introduced a profit function maximization method within a backorder prediction 

system designed to optimize the economic impacts of backorder decisions. The approach involved 

four key steps. First, they developed a modified version of the CBUS method, utilizing the k-

means algorithm to balance instances of inventory backorders. Next, they established a profit-

based classification metric to weigh the trade-offs between the benefits and costs associated with 

backorders. Following this, machine learning algorithms were trained on the balanced dataset, or 

cluster-specific classifiers were employed to enhance the accuracy of data subsets. Finally, they 

implemented a genetic algorithm-based search procedure to optimize the profitability metric. 

Hajek and Abedin (2020) focused on enhancing inventory backorder prediction by integrating big 

data analytics with a profit-maximization approach. The study addresses the challenge of 

predicting backorders, which is critical for optimizing inventory management and improving 

economic outcomes for businesses. The main concern of the paper is the limitation of traditional 

backorder prediction methods that rely heavily on stochastic approximations, which often fail to 

leverage the full potential of historical inventory data. The authors propose a machine learning 

model equipped with an under-sampling technique that aims to maximize the expected profit from 

backorder decisions, setting it apart from previous research that did not incorporate profit-based 

measures into backorder prediction systems. The methodology used in the paper involves 

modifying the Clustering-Based Under sampling (CBUS) approach to balance the class 

distribution in the dataset, which is highly imbalanced with a minority of backordered items. The 

modified CBUS method is combined with a Random Forest classifier, which is enhanced with a 

profit-based classification measure to optimize economic outcomes. The innovation of this paper 

lies in its focus on maximizing profitability rather than merely improving prediction accuracy, as 

well as its use of big data analytics to handle large and complex datasets. Compared to earlier 

studies, this approach offers a more practical and economically beneficial solution for inventory 

backorder prediction, especially in the context of big data. Researchers in this study have employed 

the Random Forest classifier as the primary machine learning model. This model is integrated into 

the modified CBUS (Clustering-Based Under sampling) technique to handle the imbalanced 

dataset and optimize the profit function in backorder prediction. The prediction performance has 

been evaluated by following measures: Area Under the ROC Curve (AUC) and Profit-Based 
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Classification Measure (π), which this novel metric is designed to evaluate the economic impact 

of prediction decisions, incorporating both the benefits and costs associated with correct and 

incorrect classifications.  

In their paper, Santis et al. (2017) suggest using a supervised learning model to predict 

backorders in inventory control. Authors in their research primarily focuses on addressing the 

challenge of predicting material backorders in supply chain management. The main concern in 

their paper is the class imbalance problem, where the number of items that go into backorder 

(positive class) is significantly lower than those that do not (negative class). This imbalance poses 

a significant challenge in accurately predicting backorders, which can lead to inefficiencies in 

inventory management and overall supply chain performance. The methodology used in this study 

involves applying supervised learning models, specifically focusing on the combination of 

sampling methods and ensemble learning classifiers to tackle the class imbalance issue. The paper 

compares various learning classifiers, such as Logistic Regression, Classification Trees, Random 

Forest, and Gradient Boosting, in conjunction with techniques like Random Under-Sampling 

(RUS) and Synthetic Minority Over-sampling Technique (SMOTE). The innovation of this paper 

lies in its approach to integrating sampling techniques with ensemble learning to improve the 

predictive accuracy of backorder events, setting it apart from previous studies that did not 

adequately address the class imbalance in such a comprehensive manner. Several machine learning 

models have been used in this research, including Logistic Regression (LOGIST), Classification 

and Regression Tree (CART), Random Forest (FOREST) Gradient Tree Boosting (GBOOST) and 

Blagging (BLAG), which is a combination of under-sampling and tree ensemble methods.in 

addition the performance of the prediction models was evaluated using Area Under the ROC Curve 

(AUC) and Precision-Recall Curves.  

Ntakolia et al. (2022) focused on interpreting and explaining the importance of key features 

in their dataset's prediction model. They developed a machine learning pipeline that included: (i) 

data preprocessing; (ii) feature selection using Recursive Feature Elimination (RFE) with Random 

Forest; (iii) building a classification model with Random Forest and under-sampling to handle 

imbalanced data; and (iv) applying the SHAP (SHapley Additive exPlanations) approach for post-

hoc model interpretation. In this study, the RFE technique was used with Random Forest as the 

prediction model to identify significant features. The classification task was performed using the 

Random Forest (RF) algorithm, an ensemble method that constructs multiple decision trees based 

on randomly selected subsets of training data and features. The RF model trains on in-bag samples, 

which consist of about two-thirds of the dataset, while the remaining samples (out-of-bag) are used 

for internal cross-validation, yielding an out-of-bag error estimate. The recursive feature 

elimination process, combined with 5-fold cross-validation, was employed to determine feature 

importance and finalize the feature set for training the predictive models. The study demonstrated 

the superiority of the RF classifier by comparing it with two other well-known classifiers. Logistic 

Regression (LR), a regression model that extends linear regression to handle classification 

problems (binary outcomes 0 and 1), and Support Vector Machines (SVMs), were used in the 

analysis to benchmark the performance of the RF classifier.  

Iqbal et al. (2023) centers on developing a predictive model for determining the likelihood 

of product backorders within the context of supply chain management. The main concern of the 

study is the challenge posed by supply chain uncertainties, which can lead to either a surplus or 

shortage of products, with backorders being a critical issue. The unpredictability of product 

backorders, influenced by factors such as fluctuating demand, logistical delays, and supply chain 

disruptions, necessitates an effective prediction model to minimize operational inefficiencies and 
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improve customer satisfaction. To address this concern, the authors employed the Classification 

and Regression Tree (CART) model, a decision tree technique, to predict backorders based on 

various independent variables, such as inventory levels, transit times, sales forecasts, and risk 

factors. The CART model was chosen for its ability to handle both continuous and categorical 

data, providing interpretable results that highlight the most influential factors in predicting 

backorders. The innovation of this paper lies in its application of the CART model to the specific 

problem of backorder prediction, which is relatively novel compared to previous approaches that 

often relied on more complex machine learning models. By using CART, the study aims to offer 

a practical and accessible solution that can be readily implemented by businesses facing similar 

supply chain challenges. The study primarily uses the Classification and Regression Tree (CART) 

model to predict the probability of a product being backordered. The performance of the CART 

model was evaluated using several metrics: Accuracy: Measures the overall correctness of the 

model's predictions. Sensitivity: Evaluates the model's ability to correctly identify actual 

backorders (true positives). Specificity: Assesses the model's ability to correctly identify non-

backorders (true negatives). R-squared (R²): Used to measure the goodness-of-fit of the model, 

indicating how well the independent variables explain the variance in the dependent variable 

(backorder occurrence).  

Lawal and Akintola (2021), in their research focused on developing a predictive model for 

inventory backorders using Recurrent Neural Networks (RNNs). The main concern addressed by 

this paper is the significant challenge of accurately predicting product backorders due to the 

imbalanced nature of the dataset, where backordered items are significantly fewer than non-

backordered items. This imbalance often leads to inaccurate predictions, which can result in 

delays, increased costs, and reduced customer satisfaction. To address this issue, the paper 

proposes a deep learning model based on RNNs, which are particularly suited for processing 

sequential data and capturing temporal dependencies. The methodology includes several steps: 

preprocessing the data, including missing value imputation, feature conversion, and normalization; 

applying data balancing techniques such as SMOTE, ADASYN, and Random Under Sampling 

(RUS); and finally, training the RNN on the balanced dataset. The innovation of this study lies in 

the combination of RNN with advanced data balancing techniques to enhance the predictive 

performance of the model. Compared to previous studies, this approach provides a more robust 

solution to the backorder prediction problem, particularly in the context of large and imbalanced 

datasets. Recurrent Neural Network (RNN) is the primary machine learning model used in this 

study. The study also incorporates data balancing techniques such as: SMOTE (Synthetic Minority 

Over-sampling Technique) ADASYN (Adaptive Synthetic Sampling) and Random Under 

Sampling (RUS). The prediction performance of the models is evaluated using the following 

metrics: Precision, Recall, F1-Score and Area Under the Curve (AUC).  

Shajalal et al. (2022), in their paper primarily focuses on improving the transparency and 

interpretability of machine learning models used for product backorder prediction in inventory 

management systems. The main concern addressed in this study is the "black-box" nature of 

complex machine learning models, which can hinder trust and adoption among business 

stakeholders who rely on these predictions for critical decision-making. To overcome this 

challenge, the authors propose a convolutional neural network (CNN)-based model for predicting 

product backorders, enhanced with explainable artificial intelligence (XAI) techniques. These 

techniques, including SHAP (Shapley Additive Explanations) and LIME (Local Interpretable 

Model-Agnostic Explanations), provide both global and local interpretability, allowing 

stakeholders to understand the decision-making process of the predictive model. The methodology 
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involves several key steps. First, the dataset is preprocessed to handle missing values, normalize 

features, and address class imbalance using the ADASYN (Adaptive Synthetic Oversampling) 

technique. The CNN model is then trained on this balanced dataset. The innovation in this paper 

lies in the integration of XAI techniques with the CNN model, which not only improves the 

predictive performance but also makes the model's decisions transparent and understandable to 

non-expert users. Compared to previous studies, which often focused solely on improving 

prediction accuracy, this approach offers a significant advancement by making the model's 

decision-making process more accessible and actionable for business stakeholders. The primary 

machine learning model used in this paper is a Convolutional Neural Network (CNN). The study 

also compares the performance of the CNN model with classical machine learning models, such 

as: Decision Tree, Support Vector Machine (SVM), Gradient Boosting. The prediction 

performance of the models is evaluated using several metrics: Accuracy, Area Under the ROC 

Curve (AUC) Receiver Operating Characteristic (ROC) Curves.  

Shajalal et al. (2023), primarily addresses the challenge of predicting product backorders 

in inventory and supply chain management. The main concern is the significant class imbalance 

between backordered and non-backordered items, which complicates accurate prediction. The 

study proposes a novel methodological framework that leverages deep neural networks (DNNs) 

combined with data balancing techniques such as SMOTE (Synthetic Minority Oversampling 

Technique) and under sampling to handle this imbalance. This approach aims to improve the 

accuracy and reliability of backorder predictions, which is crucial for optimizing inventory levels, 

minimizing lost sales, and enhancing supplier-customer relationships. The methodology involves 

preprocessing the dataset, which is highly imbalanced, with a ratio of 137:1 between non-

backordered and backordered items. The authors use a combination of oversampling and under 

sampling techniques to balance the dataset. They then implement four different DNN models: 

Weighted_DNN, Ran_Over_DNN, SMOTE_Over_DNN, and Com_SMOTE_Under_DNN. 

These models are trained on the balanced data to predict backorders. The innovation of this paper 

lies in its integration of DNNs with advanced data balancing techniques, which contrasts with 

previous studies that often relied on traditional machine learning models or simpler balancing 

methods. This approach demonstrates superior performance in predicting backorders, as evidenced 

by the new state-of-the-art results achieved. The study uses four variations of deep neural networks 

(DNNs): Weighted_DNN, Ran_Over_DNN, SMOTE_Over_DNN, Com_SMOTE_Under_DNN. 

The performance of the models is evaluated using several metrics: Area Under the ROC Curve 

(AUC), Precision and Recall, Expected Profit Measure.  

Maitra and Kundu (2023), in their paper centers on improving backorder forecasting in 

supply chain management by utilizing advanced machine learning techniques. The study aims to 

reduce the negative impact of stockouts and backorders on inventory systems, customer 

satisfaction, and overall operational performance. This research introduces a comparative analysis 

of multiple machine learning classification techniques, including Balanced Bagging Classifiers, 

Fuzzy Logic, and Variational Autoencoder (VAE) integrated with Generative Adversarial 

Networks (GAN). The authors also account for the financial implications of backorder 

misclassification by incorporating profit functions and misclassification costs into their models. 

This work is significant in demonstrating how backorder prediction models can enhance inventory 

management, leading to improved customer satisfaction and organizational efficiency. The paper 

addresses several gaps in the literature, including the limited focus on cost-sensitive learning and 

profit considerations in backorder prediction models. While previous studies have developed 

machine learning models for backorder forecasting, few have incorporated a comprehensive 
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analysis of both financial impacts and classification performance. Additionally, the study 

highlights the lack of real-world implementations that integrate machine learning interpretability 

for decision-making in inventory management. The authors employ multiple machine learning 

techniques, such as Balanced Bagging Classifiers (BBC), Fuzzy Logic, and VAE-GAN models. 

These are compared based on their ability to handle imbalanced datasets and their classification 

performance. The models are trained and tested on a large inventory dataset using key metrics like 

ROC-AUC, PRAUC, Macro F1-Score, and profit maximization. A notable innovation of the paper 

is the integration of cost-sensitive learning and profit functions into machine learning models for 

backorder prediction. By combining traditional machine learning techniques with VAE-GAN 

models, the authors aim to improve not only predictive accuracy but also the financial implications 

of backorders. The use of permutation importance to interpret model features also distinguishes 

this study from previous research, as it enhances transparency for decision-makers. The study 

found that the Balanced Bagging Classifier (BBC) outperformed other models across multiple 

performance metrics, including ROC-AUC and profit maximization. The integration of VAE with 

BBC also demonstrated strong performance, especially in dealing with class imbalance. The 

results suggest that advanced machine learning techniques can significantly improve backorder 

prediction accuracy and minimize financial losses caused by misclassification. The paper builds 

on existing machine learning and inventory management theories, employing both unsupervised 

learning (VAE) and supervised classification techniques (BBC) within a cost-sensitive learning 

framework. This combination allows for both predictive accuracy and cost minimization, 

positioning the study within the broader field of supply chain optimization. This study is highly 

relevant to the field of supply chain management, particularly in industries where backorders and 

stockouts can cause significant disruptions. The integration of machine learning techniques with 

financial and cost considerations makes this research applicable for real-world inventory systems, 

offering a pathway for businesses to enhance their decision-making processes and operational 

efficiency. 

Rodger (2014), in his paper focuses on the use of advanced statistical and machine learning 

techniques to predict and mitigate backorder aging in complex supply chain systems. He 

emphasizes that the main concern is how uncertainties in supply chain management—such as 

demand variability, production lead time (PLT), and administrative lead time (ALT)—affect 

backorder creation and customer wait time. The authors propose using a Bayesian network-based 

approach, combined with fuzzy clustering and stochastic simulation, to forecast the probability of 

backorders and assess their impact on supply chain performance. This method allows supply chain 

managers to anticipate backorder risks and optimize decision-making to reduce customer wait time 

and improve inventory management efficiency. In terms of innovation, this paper introduces a 

novel application of Bayesian probabilistic estimation integrated with fuzzy logic and Markov 

blankets, which is different from traditional backorder prediction models. The use of Bayesian 

networks provides a structured approach to understanding the relationships between various supply 

chain variables, while fuzzy clustering offers flexibility in dealing with uncertainties and imprecise 

data. The study's key contribution lies in its ability to predict backorders by dynamically adjusting 

trigger points—such as the Acquisition Advice Code, Acquisition Method Suffix Code, and other 

supply chain metrics—based on changes in lead times, unit prices, and stock levels. This approach 

differs from earlier models that were often static and less adaptable to real-time supply chain 

fluctuations. Two machine learning models have been used in this research including Bayesian 

Network and Fuzzy Clustering. The study does not specify common accuracy measures such as 

precision or recall but focuses on the probabilistic outcomes of Bayesian networks which includes 
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calculating posterior probabilities for backorder occurrence and comparing the impact of different 

supply chain variables on backorder aging.  

Wang and Tang (2014), in their research focused on developing optimal inventory 

rationing policies for systems that handle multiple demand classes with both backorders and lost 

sales. The main concern of this study is the complexity involved in prioritizing different demand 

classes over time, where customers may react differently to stockouts—either by waiting for 

backorders or by switching to alternative sources, leading to lost sales. The research introduces a 

dynamic rationing policy that adapts to the fluctuating priority of demand classes, which contrasts 

with traditional static policies that do not account for changes in customer behavior over time. The 

study uses a Markov decision model to determine optimal rationing levels for different demand 

classes, helping to balance the cost of holding inventory against potential penalties from 

backorders and lost sales. One of the key innovations in this paper is the introduction of dynamic 

rationing in systems with mixed backorders and lost sales, which had previously been studied in 

isolation. The research extends existing models by allowing for time-dependent changes in the 

priority of demand classes, based on their respective penalty costs. This dynamic approach results 

in a more nuanced policy where rationing levels for different classes change as time progresses 

toward the next replenishment cycle. The paper also proposes a heuristic policy to simplify the 

computational complexity of the Markov model, making it easier to implement in real-world 

systems. The findings demonstrate that this dynamic rationing policy outperforms static policies, 

leading to reduced costs in inventory management. This study does not explicitly use machine 

learning models. Instead, it relies on Markov decision processes for optimization and a heuristic 

algorithm for simplifying the dynamic rationing process. The evaluation of performance focuses 

on the cost gap between dynamic and non-rationing policies. Cost is evaluated in terms of 

inventory holding costs and penalty costs for backorders and lost sales.  

Gao et al. (2022), in their research focused on improving backorder prediction in supply 

chain management by using machine learning algorithms, specifically neural networks and Naive 

Bayes, to forecast product backorders. The research aims to give decision-makers increased 

flexibility, clarity, and accuracy in predicting when products will be on backorder, thus enabling 

more efficient inventory management. The study contributes by proposing a machine learning-

based approach that integrates neural networks and Naive Bayes to anticipate product backorders 

before actual sales occur. This allows companies to manage stock shortages proactively. The 

approach is tested using real-life data from a well-known e-commerce business, demonstrating 

how these algorithms can be effectively applied to predict future backorders, contributing to 

improvements in supply chain efficiency. The paper addresses a gap in the literature where few 

studies have focused on using machine learning algorithms specifically for backorder prediction. 

While machine learning has been applied extensively in inventory management and demand 

forecasting, its application to predicting backorders, particularly with an emphasis on integrating 

neural networks and Naive Bayes, has not been thoroughly explored.  In this study, machine 

learning models specifically neural networks and Naive Bayes—are applied to predict backorders. 

The performance of these models is then evaluated using various performance metrics on the 

dataset. The innovative aspect of this study is the use of both neural networks and Naive Bayes for 

backorder prediction, combined with a comprehensive data preprocessing approach that ensures 

model accuracy. Additionally, this research is applied to a real-world case study, offering practical 

insights into how these machine learning models can be implemented in e-commerce to anticipate 

backorders. The research is grounded in machine learning theory, particularly in supervised 

learning, and uses neural networks and Naive Bayes as the primary algorithms. These algorithms 
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are employed to classify whether a product will be backordered based on inventory data, customer 

demand, and sales forecasts.  

Ahmed et al., (2022) in their research assess and compare the effectiveness of various 

machine learning (ML) techniques in predicting backorders within supply chains. By examining 

different algorithms, the study seeks to improve the accuracy of backorder predictions and enhance 

supply chain management processes. The research explores how ML models can handle complex 

datasets and imbalanced classes, which are common challenges in inventory management. They 

also demonstrate that machine learning models, when applied correctly, can offer substantial 

improvements in predicting backorders in a supply chain. A key contribution of the study is its 

comparative analysis of traditional and advanced ML techniques, including Random Forest (RF), 

Support Vector Machine (SVM), Neural Networks, and Gradient Boosting (GB). The paper 

highlights the strengths and limitations of these models in predicting product shortages and delays. 

Furthermore, the study emphasizes the importance of feature selection and model optimization in 

improving prediction accuracy. The paper is grounded in the theoretical framework of predictive 

analytics, where machine learning models are used to forecast future outcomes based on historical 

data. 

Garcia and Panduro (2022) in their research focused on applying machine learning models 

to reduce backorders in the cross-docking sales process within the homecenter order service. They 

seek to identify the most effective machine learning algorithm to enhance order fulfillment, 

minimize stockouts, and streamline logistics. The paper contributes to the field by proposing a 

solution to predict and mitigate backorders in inventory management using machine learning. 

Through the application of models like Neural Networks, Random Forest, Decision Tree, and 

Support Vector Machine (SVM), the study highlights the model that best predicts backorders and 

improves decision-making for supply chain efficiency. The key contribution lies in optimizing 

inventory management to reduce pending orders and enhance service quality. A quantitative and 

explanatory-correlational approach is used, where historical data from 2018 to 2020 are analyzed. 

Variables such as demand projection, inventory levels, and backorder status are used as input for 

machine learning models. The models are evaluated using Orange Software, and performance is 

measured using indicators like accuracy, AUC (Area Under the Curve), and the confusion matrix. 

The innovation of this paper lies in its focus on applying multiple machine learning models to the 

specific problem of backorder prediction in cross-docking sales processes. The study offers a novel 

comparative analysis, showcasing the superior performance of neural networks in reducing 

backorders compared to other traditional models like SVM and decision trees. The results reveal 

that the neural network model performed best, achieving an accuracy of 99.5% and the highest 

ROC curve performance. This model significantly outperformed others, such as SVM (79.7%) and 

Random Forest (96.4%), making it the most suitable for predicting and managing backorders in 

the given context.  

Ali et al., (2024), in their paper provide a comprehensive analysis of using machine 

learning (ML) techniques for backorder prediction in supply chains, focusing on optimizing both 

predictive performance and computational efficiency. It evaluates the trade-offs between using 

simplified machine learning models with fewer predictors versus more complex models with a 

larger set of predictors. By reducing the number of input variables, the study seeks to decrease 

computational costs while maintaining an acceptable level of predictive accuracy. The paper's key 

contribution is its demonstration that simplified machine learning models with a limited number 

of high-impact features can significantly reduce computational costs with only marginal reductions 

in predictive accuracy. The study provides a detailed comparison of traditional statistical methods 
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like logistic regression with advanced machine learning algorithms such as Random Forest (RF), 

Gradient Boosting (GB), and Extreme Gradient Boosting (XGB) for predicting customer 

backorders. Previous research has often focused on using large, complex models for backorder 

prediction, but there has been little exploration into how simplifying these models by reducing the 

number of predictors could impact both accuracy and computational efficiency. The paper fills 

this gap by evaluating the performance of simplified models using a subset of important predictors, 

addressing the balance between model complexity and computational cost. The novelty of this 

study lies in its focus on balancing predictive performance and computational efficiency. While 

previous studies have concentrated on achieving high accuracy, this research emphasizes the 

importance of reducing computational costs without sacrificing much accuracy. It also adds value 

by demonstrating that simpler models with fewer features can still provide competitive 

performance, which makes them more feasible for practical implementation. The findings showed 

that reducing the number of predictors from 22 to 5 resulted in only a marginal reduction in 

accuracy (0.6% to 4.2%), while significantly reducing computational costs (30% to 98%). Random 

Forest and Gradient Boosting were identified as the best-performing algorithms, particularly in the 

simpler models with fewer predictors. The most important predictors for backorder prediction were 

identified as inventory levels and sales forecasts.  

Saban Adana et al. (2019) in their research offer a comprehensive analysis of using 

advanced machine learning (ML) techniques to predict backorders in a supply chain setting. The 

focus of the paper is on demonstrating the utility of advanced machine learning models for 

predicting backorders, which are a significant issue in supply chain management. The study seeks 

to show that ML models, such as neural networks, auto neural networks, and decision trees, 

provide more precise forecasts than traditional methods like logistic regression. The main 

contribution of this research is its empirical comparison of machine learning models against 

traditional methods for forecasting backorders. In addition, the authors in their study highlight the 

effectiveness of advanced models in improving prediction accuracy, which can help companies 

optimize inventory management and minimize costs. By implementing these models, businesses 

can better predict when backorders might occur, enabling them to take preventive measures that 

improve customer satisfaction.  

Carbonneau et al. (2008) in their research emphasized on applying Machine Learning (ML) 

Techniques to improve demand forecasting in the supply chain, specifically targeting the distorted 

demand signals that occur due to the bullwhip effect. This research evaluates the efficacy of 

advanced ML methods like neural networks (NN), recurrent neural networks (RNN), and support 

vector machines (SVM) compared to traditional forecasting methods. The paper as a main idea 

addresses the demand distortion problem that arises as demand signals move through the supply 

chain. In addition, the study provides a comparative analysis of traditional forecasting models (like 

moving average and regression) against ML models (NN, RNN, SVM).  

Seyedan and Mafakheri (2020), in their research has emphasized on the application of big 

data analytics (BDA) in demand forecasting for supply chain management (SCM). The primary 

concern is the unpredictability and uncertainty in supply chains due to fluctuating customer 

demand, logistical delays, and the complexities introduced by global supply chains. Traditional 

demand forecasting methods, such as statistical models, struggle to cope with the sheer volume, 

velocity, and variety of data in modern supply chains. This research highlights how BDA, through 

advanced machine learning and data analytics techniques, can provide more accurate, data-driven 

forecasts that help businesses manage their supply chains more efficiently, improve customer 

satisfaction, and reduce operational costs. The methodology involves a thorough review of existing 
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literature, categorizing the BDA techniques used in SCM demand forecasting, including time-

series forecasting, clustering, regression, support vector machines (SVM), and artificial neural 

networks (ANN). The authors identify gaps in the literature, particularly regarding the application 

of BDA in closed-loop supply chains (CLSCs), which deal with the reverse flow of materials like 

returns and recycling. The innovation of the paper lies in its comparative analysis of machine 

learning models and BDA techniques, as well as its focus on the future potential of BDA in SCM. 

This paper differs from previous studies by offering a comprehensive classification of BDA 

methods and highlighting opportunities for integrating prescriptive analytics to optimize decision-

making. The paper reviews several machine learning models that are widely used for demand 

forecasting in supply chains: Neural Networks (ANN), Support Vector Machines (SVM), Time-

Series Forecasting (ARIMA), and Decision Trees. To evaluate the performance of the predictive 

models, the paper references several common metrics: Mean Absolute Percentage Error (MAPE), 

Mean Absolute Deviation (MAD), Root Mean Square Error (RMSE), Area Under the ROC Curve 

(AUC).  

Tang and Ge (2021) in their paper focused on improving the accuracy of material demand 

forecasting in manufacturing enterprises using deep learning algorithms. Their goal was to 

optimize Enterprise Resource Planning (ERP) systems, reduce the time spent on calculations, and 

enhance the response times for both manufacturing enterprises and suppliers, ultimately lowering 

costs and preventing production disruptions due to material shortages. The paper introduces a 

Backpropagation (BP) neural network model for material demand forecasting, which integrates 

historical sales demand and material consumption data to predict future demand more accurately. 

By utilizing deep learning algorithms, the study achieves greater precision in demand forecasting 

and optimizes lead times, allowing suppliers more time to prepare materials. The research's key 

contribution is the development of an auxiliary method that supports ERP systems, reducing 

human intervention in the forecasting process while also lowering material costs for manufacturing 

companies. The innovative aspect of this research is the application of deep learning algorithms, 

particularly the BP neural network, to enhance material demand forecasting in manufacturing 

enterprises. The paper introduces an auxiliary method that extends ERP system functionality, 

allowing enterprises to increase forecast lead times, reduce costs from production plan changes, 

and streamline the forecasting process. Additionally, the model focuses on optimizing both sales 

demand forecasting and material consumption variables, a significant departure from traditional 

approaches that primarily rely on consumption data. The results demonstrate that the deep learning 

model significantly improves forecast accuracy when compared to traditional models. By 

incorporating both sales demand forecasts and material consumption data, the BP neural network 

model achieves lower forecast errors. The extended lead time allows suppliers to better prepare, 

reducing the costs associated with part claims and last-minute adjustments in production plans. 

The model's success in accurately predicting material demand supports the utility of deep learning 

in enhancing ERP systems. 
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Table 2-1 Previous studies focused on backorder prediction by using machine learning techniques 

Study (year) Dataset 

Technique to deal with 

CI Problem / Sampling 

Techniques 

Feature 

Selection / 

Feature 

Engineering 

Techniques 

Machine Learning Models 

 

Ensemble Learnings 

Dataset Split 
Main Findings 

Performance Obtained 

The current study 
Highly 

Imbalanced 

RUS, SMOTE-ENN, 
SMOTE-SVM, 

ADASYN, Borderline-

SMOTE 

SHapely 

Additive. 
PCA 

Neural Network, KNN 

  
and Random Forest, Gradient 

Boosting Machine (GBM), 

Extreme Gradient Boosting 
(XGBM), LightGBM, Stacking 

Standard Splits: 70% 

Training, 30% Test 
Cross-Validation 

Methods:  

5-Fold 10-Fold - 
RandomizedSearchCV 

balanced accuracy, AUC-

ROC, Specificity, F1 
Score, AUC-PR 

PETR HAJEK AND 

MOHAMMAD 
ZOYNUL ABEDIN 

(2020) 

Highly 
Imbalanced 

SMOTE and clustering-

based under-sampling 
(CBUS) using the k-

means algorithm 

NO / Not 
Specified 

Random Forest 
10-fold 

cross-validation. 

RF: ROC 91.57 

SVM: ROC: 78.32 

XGBoost 

Samiul Islam and 

Saman Hassanzadeh 

Amin (2020) 

Highly 
Imbalanced 

SMOTE 
NO / Not 
Specified 

Distributed Random Forest 

(DRF) 
Gradient Boosting Machine 

(GBM) 

Not Specified 
DFR: AUC 0.959 
GBM: AUC 0.946 

Rodrigo Barbosa de 
Santis, 

Eduardo Pestana de 

Aguiar, 
Leonardo Goliatt 

(2017) 

Highly 

Imbalanced 

Random Under 

Sampling (RUS) 

SMOTE 
and Ensemble Learnings 

No / Not 

Specified 

Logistic Regression (LOGIST), 
Classification and Regression 

Tree (CART), 

Random Forest (FOREST) 
Gradient Tree Boosting 

(GBOOST), Blagging (BLAG) 

Training Set: 85 % 

Test Set: 15 % 

GBOOST: AUC 0.9482, 

Random Forest: AUC 
0.9441, BLAG: AUC 

0.9478 

Precision-Recall Curves 

Charis, Ntakolia 

Christos, Kokkotis 
Serafeim, 

Moustakidis 

Elpiniki, 
Papageorgiou (2022) 

Highly 

Imbalanced 

Random 

Under Sampling 
technique 

RFE-RF 

Recursive 
Feature 

Elimination – 

Random 
Forest 

Machine Learning Classifiers: 

Support vector machines 

(SVMs) 
Logistic regression (LR) 

Random Forest (RF) 

70% - 30 % Training-

Test Set Random Data 
Split 

RF: AUC 0.95, 

Accuracy: 87.87 % 
LR: AUC 0.80 - 

Accuracy: 71.08 % 

SVM: AUC 0.84, 
Accuracy: 74.72 % 

Iqbal, G. M. D., 

Rosenberger, M., 
Ha, L., Gregory, S., 

and Anoruo, E 

(2023) 

Highly 

Imbalanced 

No technique and 
solution to deal with 

imbalance issue 

Not Specified 
Classification and Regression 

Tree (CART) model 
Not Specified 

Accuracy 0.98, 

Sensitivity, 0.14, 

Specificity: 0.96 
R-squared (R²): 0.03 

Lawal and Akintola 
(2021) 

Highly 
Imbalanced 

ADASYN, SMOTE, 
Random Under 

Sampling 

Not Specified 
Recurrent Neural Networks 

RNN 
70% 30% Training 

and Test Set 

Precision: 0.901, Recall: 
0.879 

F1-Score: 0.889 

Shajalal, M., Boden, 

A., and Stevens, G 
(2022) 

Highly 

Imbalanced 

ADASYN 

SMOTE 

SHapley 
Additive 

exPlanation 

(SHAP) 

Convolutional Neural Network 

(CNN) 
Not Specified 

AUC 0.9489 

Accuracy 0.894 

Shajalal, M., Boden, 

A., and Stevens, G 

(2021) 

Highly 
Imbalanced 

minority class weight 

boosting, randomised 

oversampling, random 
under sampling, SMOTE 

over- 

sampling, 

No / Not 
Specified 

Weighted_DNN 

Ran_Over_DNN 
SMOTE_Over_DNN 

Com_SMOTE_Under_DNN 

85 % 15 % Training 

and Test Set 
10-Fold Cross 

Validation 

AUC: 0.9427 

Precision and Recall, 

Expected Profit Measure. 

Sarit Maitra 
And Sukanya Kundu 

(2023) 

Highly 

Imbalanced 

Random Under 

Sampling 

Permutation 
importance 

(PI) 

Balanced Bagging Classifiers, 

Fuzzy Logic, and Variational 
Autoencoder (VAE) integrated 

with Generative Adversarial 

Networks (GAN) 

Not Specified 
ROC-AUC: 0.9604, 

PRAUC, 0.2428, Macro 

F1-Score: 0.5483 

Hui Gao, Quanhui 

Ren and Chunfeng 

Lv (2022) 

Highly 
Imbalanced 

No / Not Necessary 
No / Not 
Specified 

Neural networks and Naive 
Bayes 

Not Specified 

Naive bayes: ACC 0.99, 

Precision 0.97 - 
Neural network: ACC 

0.99, Precision 0.99 

Garcia Lopez, Y. J., 

Panduro, J., and 
Pumayauri, S. 

(2022). 

Small and 

Normal 

Dataset 

No / Not Necessary 
No / Not 
Specified 

Neural Networks, Random 

Forest, Decision Tree, and 
Support Vector Machine 

(SVM) 

Not Specified 

SVM: AUC 0.704, RF: 

AUC 0.967, DT: AUC 

0.864, NN: AUC 0.994 

Ali, A., Jayaraman, 

R., Azar, E., and 
Maalouf, M. (2024). 

Highly 

Imbalanced 

Random 

down sampling 

Feature 

Importance 
method, also 

Random Forest (RF), Gradient 

Boosting (GB), and Extreme 
Gradient Boosting (XGB) 

a splitting ratio of 

80:20 

Accuracy of 0.88 by RF 
 

accuracy, F1-score, and 

feature importance 



29 
 

called Gini 
importance 

Ahmed, F., Hasan, 

M., Hossain, M. S., 

and Andersson, K 
(2022) 

Highly 

Imbalanced 

Random undersampling 

method 

Statistical 
Hypothesis 

Test 

Decision tree, Random Forest, 
adaptive boosting and gradient 

boosting 

the dataset is divided 

into training 

and test sets with a 
ratio of 8:2. 

Rand Forest outperforms: 
Accuracy 0.86, precision 

0.88, recall 0.88, 

f1-score 0.88, AUCROC: 
0.9458 and AUCPRC: 

0.9383 

Adana, S., 

Cevikparmak, S., 
Celik, H., and Uvet, 

H (2019) 

Highly 
Imbalanced 

stratified hold-out 

method and randomly 
under sampled the 

frequent event 

PCA 

Decision Trees, Neural 

Networks, and Logistic 
Regression, and Auto Neural 

Models 

Not Specified 

Accuracy, Sensitivity, 
and Precision 

Autoneural: 87.2%, 

88.49%, 85.95%, 
86.29%. 

2.4. Imbalance Class 

To address this imbalance, Santis et al. (2017) compared various learning classifier 

algorithms, incorporating techniques such as sampling and ensemble methods. In their research on 

class imbalance, Islam and Amin (2020) applied a synthetic minority oversampling technique 

(SMOTE) to the target class. Ntakolia et al. (2022) used a random under sampling method to lower 

the majority class to the number of the minority one in order to address the issue of imbalanced 

data. The data set was then normalized to [0,1]. Maitra and Kundu (2023), in their paper address 

the challenge of imbalanced datasets, which is a significant concern in backorder prediction. In 

inventory management, the occurrence of backorders is often much less frequent compared to non-

backordered items, leading to an imbalance in the dataset. The authors point out that standard 

machine learning models may perform poorly as a result of this imbalance since they may become 

biased in favor of the majority class (non-backorders), which would lead to low predicted accuracy 

for the minority class (backorders). To overcome this issue, the authors employ techniques such 

as Balanced Bagging Classifiers (BBC) and Variational Autoencoder (VAE) combined with 

Generative Adversarial Networks (GAN) to enhance model performance on imbalanced data. 

These methods aim to balance the dataset during training, allowing the models to better learn from 

both classes and improve backorder prediction accuracy. Wang and Tang (2014) don’t specifically 

focus on imbalanced datasets, but it discusses the challenge of handling varying demand classes 

in inventory management systems. In scenarios where there are mixed backorders and lost sales, 

certain demand classes are often prioritized, leading to potential imbalance in how inventory is 

allocated. While not explicitly focused on dataset imbalance, the decision-making processes in the 

paper indirectly address the issue by dynamically adjusting inventory levels for different classes. 

Dehghan-Bonari et al. (2021) address the issue of imbalanced datasets explicitly. They highlight 

that in many inventory management systems, the number of backordered products is significantly 

smaller than the number of non-backordered products, leading to a highly imbalanced dataset. To 

overcome this challenge, techniques such as SMOTE (Synthetic Minority Over-sampling 

Technique) and other sampling methods are applied to balance the dataset and improve the 

performance of machine learning algorithms. This imbalance presents a critical problem for 

accurate backorder predictions and was a key concern addressed in the study. Shajala et al. (2021) 

in their study explicitly focuses on the issue of imbalanced datasets in backorder prediction. It 

acknowledges that backordered products are much rarer than non-backordered products, creating 

a highly imbalanced dataset. The authors address this by using oversampling techniques such as 

SMOTE and ADASYN to balance the dataset before applying deep learning models like neural 

networks. This approach helps improve the accuracy of the predictions and ensures that the models 

do not become biased toward the majority class. In another paper, Shajalal et al. (2022) have 

mentioned the class imbalance problem in the context of predicting product backorders. Since 



30 
 

backorders occur less frequently than non-backorders, the dataset is heavily imbalanced. To 

counter this, the study applies the ADASYN (Adaptive Synthetic Sampling) technique, which 

helps to balance the minority and majority classes, ensuring that the convolutional neural network 

(CNN) model can accurately predict backorders. The imbalance problem and its solutions are a 

significant part of the methodology to improve prediction reliability. Choosing the appropriate 

evaluation metrics is crucial for guiding the development of a predictive model, with the confusion 

matrix being a key tool in binary classification for tracking the correct and incorrect classifications 

of each classification (Santis et al., 2017). 
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3. Dataset 

The study's dataset is a severely imbalanced dataset from the Kaggle competition that is 

publicly accessible, "Predict Product Backorders. Can you predict product back orders?" (Santis, 

2017), as shown in Table 3.1. It comprises 23 features, with 15 being numerical and 8 (including 

the target variable 'went_on_back_order') categorical, capturing various aspects of supply chain 

performance. The dataset comprises 1,671,569 observations, containing a mix of floating-point, 

integer, and string values. This dataset offers historical weekly data snapshots for the eight weeks 

leading up to the target week and includes attributes such as ‘national inventory’ (representing 

current stock levels), ‘lead time,’ ‘in transit qty’ (products currently being transported), sales 

forecasts for 3, 6, and 9 months, along with actual sales figures for 1, 3, 6, and 9 months. 

Additionally, it features supplier performance metrics over the previous 6 and 12 months, the ‘min 

bank’ (indicating the minimum required stock level), and multiple binary risk flags. The primary 

objective is to predict whether a product will be on backorder, a binary classification task. 

However, the dataset exhibits a significant class imbalance, as most products are not backordered, 

making accurate predictions challenging since models may be biased toward the majority class. 

The target variable (y_1: went_on_back_order) is represented as a binary label, where 0 denotes 

non-backorder items (‘No’ class), and 1 indicates items that will be backordered (‘Yes’ class). The 

'inventory' feature reflects the stock available for each product, while the 'Lead Time' attribute 

represents the duration between the ordering of products and their delivery to customers, ranging 

from 0 to 52 weeks in this dataset. The sales data is divided into one-month, three-month, six-

month, and nine-month intervals, while the forecasted sales are similarly presented in three 

columns, showing projections for three, six, and nine months, respectively. 

To address the computational complexity and resource-intensive nature of processing a 

large dataset containing over 1.6 million observations, this study employs stratified sampling to 

create a smaller, representative subset for analysis. Specifically, a subset of 16,715 samples was 

selected to maintain the balance between classes and preserve the structural characteristics of the 

original dataset, ensuring the integrity and representativeness of the data while reducing 

computational demands. Implementing multiple machines learning classifiers and employing 

advanced preprocessing techniques such as MICE, RUS, ADASYN, SMOTE, PCA, and SHAP, 

alongside hyperparameter tuning techniques like RandomizedSearchCV, requires substantial 

computational power and time. By focusing on a representative portion of the dataset, this 

approach ensures feasibility while maintaining the integrity of the analysis. The smaller dataset 

allows for efficient experimentation with various preprocessing, feature selection, and 

optimization techniques without compromising the reliability or validity of the results. This choice 

strikes a balance between computational efficiency and the study’s objective of exploring the 

performance of diverse machine learning models and methodologies. 

Sadaiyandi et al., (2023) in their research provide a comprehensive review of stratified 

sampling. They stated that stratified sampling divides data into groups (strata) based on specific 

values to preserve structural information. Random samples are then drawn from each stratum, 

ensuring representative samples and balanced class distributions. For example, in forest datasets, 

stratified sampling balances the number of samples per class while accounting for within-class 

variance, maintaining the original data structure. This method is particularly effective for 

imbalanced datasets, as it randomly selects examples from both positive and negative classes to 

create balanced training sets. The main advantage of stratified sampling is its ability to reduce 

estimation error by grouping similar data objects and applying random or systematic sampling 

within each stratum. 
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The dataset used in this study has been described comprehensively through various tables 

and figures, providing a detailed understanding of its structure and characteristics. Table 3.1 shows 

the overall dataset details, including the total number of observations and key attributes. Table 3.2 

presents a detailed description of the variables, highlighting their roles in predicting backorders. 

To illustrate the imbalance between the "backorder" and "non-backorder" classes, Figures 3.1 and 

3.2 compare the class distribution in the original dataset with the stratified dataset, emphasizing 

the adjustments made to address class imbalance. Figure 3.3 displays the correlation matrix 

heatmap, reflecting the relationships between numerical features and aiding in the identification 

of highly correlated variables. Additionally, Table 3.3 provides a summary of the dataset's 

statistical properties, including measures such as mean, median, standard deviation, and range, 

offering insights into the overall data distribution and variability. Together, these visualizations 

and summaries contribute to a comprehensive analysis of the dataset's features and suitability for 

backorder prediction, described through various tables and figures, providing a detailed 

understanding of its structure and characteristics. 

Table 3-1 The dataset details 

Dataset Independent Variables Target Variable Total Observation 

Product Backorder 

Prediction 
22 

Product on BO 

Classification 0, 1 
16,715 

Table 3-2 Variables description 

No Variables Description Type 

- SKU SKU code - 

1 𝑥1: National Inventory Current inventory level of component Numerical 

2 𝑥2: Lead Time Transit time Numerical 

3 𝑥3: In Transit Quantity Quantity in transit Numerical 

4 𝑥4: Forecast 3_Month Sales forecast - the next 3 months Numerical 

5 𝑥5: Forecast 6_Month Sales forecast - the next 6 months Numerical 

6 𝑥6: Forecast 9_Month Sales forecast - the next 9 months Numerical 

7 𝑥7: Sales 1_Month Sales quantity - the prior 1 months Numerical 

8 𝑥8: Sales 3_Month Sales quantity - the prior 3 months Numerical 

9 𝑥 9: Sales 6_Month Sales quantity - the prior 6 months Numerical 

10 𝑥 10: Sales 9_Month Sales quantity - the prior 9 months Numerical 

11 𝑥11: Min Bank Minimum recommended amount in stock Numerical 

12 𝑥12: Potential_Issue 
Indictor variable noting potential issue 

with item 
Categorical 

13 𝑥13: Pieces Past Due Parts overdue from source Numerical 

14 𝑥14: Perf 6 months avg Source performance in the last 6 months Numerical 

15 𝑥15: Perf 12 months avg Source performance in the last 12 months Numerical 

16 𝑥16: Local BO Quantity Amount of stock orders overdue Numerical 

17-22 𝑥17−22 General Risk Flags multiple binary risk flags Categorical 

23 𝑦1: Went On Back Order Product went on backorder Categorical 
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Original Stratified 

Figure 3.1: Class Distribution (Percentage%) - Backorder vs non-backorder - A comparison 

between original dataset and stratified dataset 

  

Original Stratified 

Figure 3.2: Class Distribution (count) - Backorder vs non-backorder - A comparison between original 

dataset and stratified dataset 
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Figure 3.3: Correlation matrix heatmap 

Table 3-3: Summary statistics of dataset 

 

Variable Feature
Non-Null 

Count
Mean

Standard 

Deviation
Minimum

25th 

Percentil

e

Median
75th 

Percentile
Maximum

0 national_inv 16715 474.6351 13503.772 0 4 15 82 1370327

1 lead_time 16715 8.405171 7.323036 0 4 8 9 52

2 in_transit_qty 16715 37.62238 543.594257 0 0 0 0 34060

3 forecast_3_month 16715 149.3052 2004.5584 0 0 0 4 124380

4 forecast_6_month 16715 293.1877 3918.89074 0 0 0 11 236316

5 forecast_9_month 16715 433.0183 5912.67271 0 0 0 19 358428

6 sales_1_month 16715 40.2895 489.011661 0 0 0 4 30071

7 sales_3_month 16715 131.2472 1557.10325 0 0 1 15 104079

8 sales_6_month 16715 271.2694 3452.68306 0 0 2 30 212700

9 sales_9_month 16715 413.0353 4972.09648 0 0 4 45 304121

10 min_bank 16715 45.55381 565.336179 0 0 0 3 42956

11 potential_issue 16715 0.00071792 0.026785 0 0 0 0 1

12 pieces_past_due 16715 1.115704 29.16411 0 0 0 0 2100

13 perf_6_month_avg 16715 -6.756476 26.3739 -99 0.64 0.82 0.96 1

14 perf_12_month_avg 16715 -6.343496 25.689251 -99 0.66 0.81 0.95 1

15 local_bo_qty 16715 0.256895 8.010347 0 0 0 0 615

16 deck_risk 16715 0.2312893 0.42167 0 0 0 0 1

17 oe_constraint 16715 5.9827E-05 0.007735 0 0 0 0 1

18 ppap_risk 16715 0.1194735 0.324355 0 0 0 0 1

19 stop_auto_buy 16715 0.9615316 0.19233 0 1 1 1 1

20 rev_stop 16715 0.00065809 0.025646 0 0 0 0 1

21 went_on_backorder 16715 0.00616213 0.078259 0 0 0 0 1
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4. Research Methodology 

The methodology of this study follows a comprehensive, multi-phase approach designed 

to ensure accurate and reliable predictions of backorders through the application of advanced 

machine learning models. The process begins with data preprocessing, where the dataset is cleaned 

to address missing values using sophisticated imputation techniques such as Multiple Imputation 

by Chained Equations (MICE), ensuring critical information is preserved. To address the issue of 

class imbalance, a combination of oversampling and under sampling techniques, including 

SMOTE-ENN, ADASYN, and hybrid adaptive sampling methods, is applied, ensuring balanced 

representation between backordered and non-backordered items. Feature engineering and 

dimensionality reduction are then performed, with Principal Component Analysis (PCA) 

employed to transform the high-dimensional dataset into a smaller set of uncorrelated components, 

improving computational efficiency and enhancing model performance. Additionally, SHAP 

(SHapley Additive exPlanations) is utilized to interpret model predictions, identifying the 

contributions of individual features and enhancing the transparency and explainability of the 

machine learning models. The methodology continues with splitting the dataset into training and 

testing subsets, typically using an 70%-30% split, to ensure unbiased model evaluation. Cross-

validation techniques, such as 10-fold cross-validation, has been employed during the training 

phase to enhance model generalizability and robustness. A range of machine learning models, 

including Neural Networks (NN), K-Nearest Neighbors (KNN), Random Forest (RF), Gradient 

Boosting Machines (GBM), XGBoost, LightGBM and stacking model, are then evaluated to 

identify the most suitable algorithms for backorder prediction. Totally 98 different configurations 

resulting from these techniques and method have been trained and implemented. Ensemble 

learning techniques, such as Random Forest and Gradient Boosting-based methods, are prioritized 

for their ability to combine multiple weak learners and improve predictive accuracy. Subsequently, 

model training is accompanied by hyperparameter optimization using methods like 

RandomizedSearchCV, ensuring that each model achieves optimal performance. The trained 

models are then rigorously evaluated using metrics such as ROC-AUC, PR-AUC, F1 Score, 

balanced accuracy, Sensitivity, and Specificity, providing a holistic view of performance across 

both majority and minority classes. Once the models are validated, predictions are generated, and 

a comparative analysis is conducted to determine the most effective model for backorder 

prediction. Finally, the results are interpreted, with actionable insights and recommendations 

presented for practical application in supply chain management. Figure 4.1. represents the 

methodology flow chart of the thesis. 

Earlier studies have explored a variety of machine learning models and preprocessing 

techniques to address the challenges of class imbalance. For example, Adana et al. (2019) applied 

decision trees, neural networks, and logistic regression to a dataset with 22 variables, focusing on 

evaluating model performance through metrics such as accuracy, precision, sensitivity, and 

specificity. Similarly, Ahmed et al. (2022) compared various machine learning algorithms and 

employed comprehensive data preprocessing methods, including missing value imputation, 

normalization, and class imbalance adjustments, assessing models using F1-score, precision, 

recall, cross-validation, and hyperparameter tuning.  
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Figure 4.1: The methodology flow chart of the thesis 

Lawal and Akintola (2021) introduced Recurrent Neural Networks (RNNs) alongside data 

balancing techniques to enhance backorder prediction accuracy in imbalanced datasets, evaluated 

via AUC, precision, and recall. Ali et al. (2024) conducted experiments using models built on all 

22 features and a reduced top 5 feature set, incorporating preprocessing steps such as feature 

scaling and down sampling, with a focus on accuracy, F1-score, and computational efficiency. 

Garcia et al. (2022) employed a correlational approach using historical supply chain data, applying 

machine learning models evaluated with AUC and confusion matrices. In contrast, Carbonneau et 

al. (2008) compared neural networks with traditional forecasting methods, using Mean Absolute 

Error (MAE) as the evaluation metric. Dehghan-Bonari et al. (2021) utilized neural networks and 

Naive Bayes on normalized data, analyzing performance through standard machine learning 

evaluation metrics. Maitra and Kundu (2023) adopted advanced models like Balanced Bagging 

Classifiers (BBC), Fuzzy Logic, and VAE-GAN, emphasizing the management of imbalanced 

datasets and comparing models using metrics such as ROC-AUC and Macro F1-Score. 

Furthermore, Shajalal et al. (2022) and (2023) tackled class imbalance by employing techniques 

like ADASYN, SMOTE, and other resampling strategies to balance datasets, using Convolutional 

Neural Networks (CNN) and Deep Neural Networks (NN) for backorder predictions. Hajek and 

Abedin (2020) modified the Clustering-Based Under sampling (CBUS) approach to address highly 

imbalanced datasets, while Santis et al. (2017) compared ensemble learning models and sampling 

methods, including SMOTE and Random Under Sampling (RUS), to enhance prediction accuracy 

in imbalanced data scenarios. 
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4.1. Data Preprocessing and Handling Missing Values 

In this study, we have adopted a novel approach in our methodology, particularly in the 

areas of data preprocessing and handling missing values. Unlike previous studies that chose to 

eliminate records with missing data (e.g., Ntakolia et al., 2022; Ali et al., 2024), we recognize that 

these records can hold valuable information. While other researchers have utilized missing value 

imputation techniques (e.g., Santis et al., 2017; Hajek and Abedin, 2020) and Adana et al. (2019) 

applied the impute data node using SAS Enterprise Miner, our approach prioritizes the use of more 

advanced imputation methods. For instance, Iqbal et al. (2023) treated missing data as random and 

employed linear and logistic regression for imputation, while Maitra and Kundu (2023) 

implemented model-based imputation. However, conventional approaches such as those 

recommended by Gao et al. (2022), which rely on straightforward mean, mode, or median 

replacements, may result in information loss and reduced model accuracy. Our research seeks to 

improve predictive performance by applying advanced imputation techniques, including Multiple 

Imputation by Chained Equations (MICE), which are more effective in maintaining data integrity. 

This approach represents a considerable advancement in preserving valuable information from 

records with missing values, ultimately enhancing the reliability and precision of our machine 

learning models. 

4.1.1. MICE: Multiple Imputation by Chained Equations 

Also known as "fully conditional specification" or "sequential regression multiple 

imputation," multivariate imputation by chained equations (MICE) is a well-known and ethical 

technique for dealing with missing data in statistical analysis. Unlike single imputation, MICE 

generate multiple imputations, allowing for the inclusion of statistical uncertainty associated with 

the missing values. Furthermore, the chained equations method is highly adaptable, capable of 

managing variables of different types, such as continuous or binary, as well as handling complex 

structures like bounded variables and conditional survey skip patterns (Azur et al., 2011). Multiple 

Imputation by Chained Equations (MICE) is a widely used statistical method for addressing 

missing data in analysis. It treats each missing value as a random variable and estimates it 

iteratively by leveraging the relationships among the other variables in the dataset. The key 

advantage of MICE is its capacity to generate several "complete" datasets by performing multiple 

rounds of regression-based imputations, effectively capturing the uncertainty related to the missing 

values. Samad et al. (2022) have emphasized MICE’s ability to handle various types of missing 

data patterns, such as missing completely at random (MCAR), missing at random (MAR), and 

missing not at random (MNAR). A key role of MICE in data analysis is its capacity to estimate 

missing data by constructing a model that treats each missing entry iteratively, with the method 

cycling through each variable and imputing based on observed values. This conditional modeling 

allows MICE to account for relationships between variables and capture data dependencies, unlike 

simpler imputation methods like mean or median imputation, which ignore the relationships 

between variables. As highlighted in the literature, ensemble learning and deep learning 

approaches, such as gradient boosting within the MICE framework, have been shown to further 

enhance imputation accuracy (Samad et al., 2022). MICE is becoming increasingly common in 

machine learning, particularly for preparing datasets before training models. Machine learning 

algorithms typically cannot handle missing data natively, and MICE is used to impute these 

missing values, allowing for a completer and more usable dataset for supervised learning tasks like 

classification and regression. Studies have shown that MICE, when used alongside machine 

learning models such as random forests or support vector machines, improves the predictive 
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accuracy by preventing loss of data due to missing values (Azur et al., 2011). Moreover, ensemble 

learning techniques integrated with MICE further enhance its performance by using non-linear 

regression methods for imputation. 

4.2. Addressing Imbalanced Data 

Previous studies have emphasized the considerable challenge presented by class imbalance 

between backordered and non-backordered items, which often impedes the accuracy of prediction 

models (Santis et al., 2017; Shajalal et al., 2023). Various research efforts have employed 

techniques like SMOTE and ADASYN to tackle this issue. Additionally, hybrid sampling 

techniques have been used, which involve combining both oversampling and undersampling 

methods, as well as adaptive sampling approaches that adjust dynamically based on dataset 

characteristics. Several studies have addressed class imbalance through different strategies, 

including Random Under Sampling (Ntakolia et al., 2021; Shajalal et al., 2023), Adaptive 

Synthetic Oversampling (ADASYN) (Shajalal et al., 2022), Weighted Sampling (Shajalal et al., 

2023), SMOTE (Shajalal et al., 2022; Islam and Amin, 2020), Oversampling (Shajalal et al., 2023; 

Islam and Amin, 2020), Random Down Sampling (Ali et al., 2024; Adana et al., 2019), and 

Stratified Holdout (Adana et al., 2019). Our research seeks to build upon these techniques by 

implementing more sophisticated hybrid and adaptive sampling methods to improve the handling 

of class imbalance, ultimately enhancing the accuracy and reliability of backorder predictions. In 

this research we have used the SMOTE-ENN (Synthetic Minority Over-sampling Technique with 

Edited Nearest Neighbors) technique which handles class imbalance by combining oversampling 

of the minority class (using SMOTE) with undersampling of the majority class (using ENN). This 

approach refines the dataset to make it more balanced, which is essential for improving model 

performance on imbalanced datasets. In addition, SMOTE-ENN removes noisy data and ensures 

the model is not biased toward the majority class. 

4.2.1. SMOTE-ENN: Synthetic Minority Over-Sampling Technique - Edited Nearest Neighbor 

This over-sampling technique increases the representation of the minority class by 

generating synthetic samples based on the feature space similarities among existing minority class 

instances, utilizing the k-nearest neighbors in Euclidean space (De Santis et al., 2017). A synthetic 

sample is created by adding a minority sample m to a scaled difference vector d, which is multiplied 

by a random value i within the range [0,1], as expressed by the formula s = m + d * i. Here, d is 

calculated as d = m – r, representing the positive difference between the feature vectors of a 

randomly chosen minority neighbor r and the minority sample m. (Lawal and Akintola, 2021). 

Chawla et al., (2002) in their research with the subject SMOTE: synthetic minority over-sampling 

technique have analyzed this technique completely and thoroughly, The Synthetic Minority Over-

Sampling Technique (SMOTE) is a popular method for handling imbalanced datasets, especially 

in classification tasks where the minority class is underrepresented. Instead of merely duplicating 

the existing minority class samples, SMOTE generates synthetic samples to equalize the dataset. 

It does this by creating new data points through interpolation between current minority class 

instances, forming synthetic examples along the lines connecting k-nearest neighbors. This process 

increases diversity in the data and helps prevent overfitting, which is a common issue with 

straightforward replication of minority instances (Chawla et al., 2002). The author in their research 

have emphasizes that SMOTE is widely applied in fields where imbalanced data is common. In 

medical diagnosis datasets, for example, it is frequently used when one class, such as patients with 
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a rare disease, is much smaller than the other (Shoeibi et al., 2023). In fraud detection, SMOTE is 

essential for identifying fraudulent transactions, which occur far less often than legitimate ones. 

Financial datasets, where defaults or rare events constitute the minority class, also benefit from 

SMOTE as it enhances the performance of predictive models. By creating synthetic data to balance 

the dataset, SMOTE helps machine learning models such as decision trees, support vector 

machines (SVMs), and neural networks better handle both majority and minority classes without 

bias. In data analysis, SMOTE is crucial for enhancing model performance by tackling the issue 

of class imbalance, which often results in biased predictions (Bader et al., 2019). Imbalanced data 

tends to cause machine learning models to focus on the majority class, reducing the accuracy for 

the minority class. SMOTE addresses this by creating synthetic samples, compelling models to 

recognize patterns in the minority class, which improves generalization and strengthens the 

classifiers. Additionally, SMOTE's ability to prevent overfitting and avoid under-sampling of the 

majority class makes it superior to methods relying solely on random oversampling or 

undersampling. Notably, using SMOTE improves not only classification accuracy but also key 

metrics like recall, precision, and F1 score for the minority class. Despite its effectiveness, SMOTE 

has certain limitations. One issue is that it may introduce noise into the dataset, since synthetic 

samples are generated without fully accounting for the data's underlying distribution. This can lead 

to overlap between classes, especially when the boundaries between them are unclear. To address 

this issue, we have used SMOTE-ENN in this research. SMOTE-ENN is a hybrid approach that 

integrates SMOTE with an undersampling method called Edited Nearest Neighbor (khan et al., 

2024). The authors stated that Edited Nearest Neighbor (ENN) identifies the k-nearest neighbors 

for each observation and compares the majority class among these neighbors to the class of the 

observation. If the majority class differs from the observation's class, both the observation and its 

k-nearest neighbors are removed. The SMOTEENN technique combines the principles of SMOTE 

and Edited Nearest Neighbors (ENN) to address class imbalance. It first generates synthetic 

samples for the minority class using SMOTE, and then ENN is applied to remove noisy or 

overlapping samples from both the majority class and the newly created synthetic samples 

(Vukovic et al., 2024). By combining synthetic data generation with noise reduction, SMOTEENN 

offers a comprehensive solution to class imbalance, resulting in more robust and generalizable 

classification models. It is specifically aimed at addressing class imbalance in datasets by first 

oversampling the minority class using SMOTE, followed by ENN, which eliminates noise and 

borderline instances from both classes. This combination creates a more balanced and cleaner 

dataset for machine learning model training. ENN works as a data-cleaning method by evaluating 

the nearest neighbors of each sample and removing those whose class labels differ from the 

majority of their neighbors (Bader et al., 2019). This process helps reduce class overlap and filters 

out noise that may have been introduced during the oversampling process (Batista et al., 2004). 

SMOTEENN (SMOTE + ENN) is a two-step method that combines the Synthetic Minority 

Oversampling Technique (SMOTE) and Edited Nearest Neighbors (ENN) to address data 

imbalances (Satpathy, 2020). In the first step, SMOTE is used to create synthetic data to 

oversample the minority class. Then, ENN is applied to undersample the majority class by 

removing noisy or misclassified cases. By combining these strategies, SMOTEENN aims to create 

a more balanced dataset by increasing the minority class instances and eliminating noisy examples 

from the majority class. This approach is particularly useful in situations where there is a 

significant class imbalance, and both oversampling and undersampling are needed to produce a 

well-balanced and relevant dataset (Lanjewar and Panchbhai, 2024). 
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4.2.2. SMOTE-SVM: Synthetic Minority Over-Sampling Technique-Support Vector Machine 

Ezziane et al. (2022) and Guo et al. (2024), in their research to address the issue of class 

imbalance, emphasized the use of SMOTE-SVM. In another study, Ahmad Khan et al. (2024) 

reviewed various papers aimed at resolving class imbalance, covering methods ranging from 

different data augmentation and resampling techniques to various deep learning and ensemble 

methods. After analyzing these papers, the authors concluded that SMOTE-SVM is one of the 

solutions to address class imbalance. The support vector machine (SVM) is a widely used machine 

learning model primarily designed for classification tasks, though it has also been adapted for 

regression and applied across various fields. SVMs are particularly effective in complex areas such 

as handwriting recognition and cancer genomics. The method works by identifying a hyperplane 

that separates different classes in an N-dimensional space. By utilizing only, a small number of 

support vectors instead of all training samples, SVM reduces computational complexity and 

mitigates issues related to high dimensionality. However, one drawback of SVM is that its 

performance significantly decreases when applied to imbalanced datasets. To address this issue, 

SVM has been combined with SMOTE to tackle class imbalance problems, and the resulting 

SMOTE-SVM approach has gained popularity in applications involving spatial datasets (Ahmad 

Khan et al., 2024). 
 

4.2.3. Borderline-SMOTE: Borderline-Synthetic Minority Over-Sampling Technique (BSM) 

Han et al., (2005) in their research introduced the Borderline-SMOTE (BSM) which was 

as an enhancement to SMOTE. This method focuses on creating synthetic samples near the class 

boundaries. Borderline-SMOTE targets instances on or near the borderline, as they are more 

susceptible to misclassification compared to those farther from the boundary. The authors 

emphasize that by concentrating on these critical areas, BSM can enhance classifier performance 

and often outperforms the original SMOTE method (Wang et al., 2015). BSM uses SMOTE to 

identify the k-nearest neighbors for all minority class samples and selects random instances based 

on the oversampling rate. New synthetic samples are then generated along the borderline to 

strengthen these critical minority examples. Unlike standard SMOTE, which generates synthetic 

samples for all minority instances, Borderline-SMOTE targets only those near the class boundary, 

as they are more influential for improving classification performance (Han et al., 2005; Wang et 

al., 2015; Smiti and Soui, 2020). In another research Smiti and Soui (2020), In Borderline-

SMOTE, minority class instances that are at a higher risk of misclassification receive additional 

focus during training. The algorithm identifies borderline minority samples and generates synthetic 

instances by interpolating them with their k-nearest neighbors. When applied to bankruptcy 

prediction, the Borderline-SMOTE method significantly increases the size of the minority class by 

creating these new synthetic instances. 
 

4.2.4. ADASYN: Adaptive Synthetic Oversampling Technique 

Khan et al. (2024) concluded in their paper that the ADASYN has been used to address the 

CI problems in areas like modeling recreational water quality, warning systems for harmful algae 

blooms, and design of wireless intrusion detection systems after analyzing numerous studies in 

various fields of research. An extension of the SMOTE method, the adaptive synthetic (ADASYN) 

sampling approach aims to oversample the minority class by creating artificial examples. The 

ADASYN algorithm uses a weighted distribution for various minority class examples based on 

their learning difficulty, where more synthetic data is generated for minority class examples that 

are harder to learn than those that are easier to learn. This is in contrast to SMOTE, which generates 
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an arbitrary number of synthetic minority examples to correct the imbalance in the dataset (He et 

al., 2008). This approach is essential as the data generated by the algorithm will not only ensure a 

balanced representation of class distribution, but it will also force the learning algorithm to focus 

on those difficult to learn examples (Lawal and Akintola, 2021). In another study, Shajalal et al., 

(2022) in their paper discussed on the Handling class imbalance with ADASYN. The authors have 

mentioned, product backorders are rare events that result in a highly imbalanced dataset. To 

address this, they employed ADASYN (Adaptive Synthetic Oversampling), an effective 

oversampling technique designed to balance datasets. ADASYN generates synthetic samples for 

the minority class, with a focus on samples that are more difficult to classify. This method adapts 

the generation of synthetic samples based on the density distribution of the minority class, ensuring 

that more challenging minority examples receive higher weights during sample generation) (He et 

al., 2008). Given a training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 with N samples, where each sample is denoted as (x,y), 

the vector x represents a K-dimensional feature vector of an ordered product, and y is the binary 

label (0 for non-backordered and 1 for backordered). Let 𝑚𝑚𝑖𝑛 and 𝑚𝑚𝑎𝑗 represent the number of 

samples in the minority and majority classes, respectively, such that 𝑚𝑚𝑖𝑛 and 𝑚𝑚𝑎𝑗 = N, and for 

backorder prediction, 𝑚𝑚𝑖𝑛 <<  𝑚𝑚𝑎𝑗. The ADASYN algorithm balances the dataset by generating 

G, the number of synthetic samples required, based on the degree of imbalance d and a user-defined 

imbalance ratio β (β∈[0,1]). A value of β=1 indicates the dataset will be fully balanced. For each 

minority sample 𝑥𝑖 , ADASYN calculates the difficulty ratio 𝑟𝑖 using K-nearest neighbors and 

Euclidean distance, where Δ𝑖 is the number of nearest neighbors from the majority class. The 

normalized ratio 𝑟𝑖^ determines the number of synthetic samples 𝑔𝑖 to be generated for each 𝑥𝑖. 
Finally, synthetic samples are generated by adding a random perturbation to the minority sample 

along the distance vector to its nearest neighbors, represented as λ⋅(𝑥𝑛𝑛− 𝑥𝑖), where λ is a random 

value in [0,1] and 𝑥𝑛𝑛 is a nearest neighbor. The following steps show ADASYN algorithm. 

Input: 

• 𝐷𝑡𝑟𝑎𝑖𝑛: Training dataset with N samples 

• 𝑚𝑚𝑖𝑛: Number of minority class examples 

• 𝑚𝑚𝑎𝑗: Number of majority class examples 

• β ∈ [0,1]: Desired balancing ratio (default: β=1) 

• K: Number of nearest neighbors (default: 5) 

Output: 

• A balanced dataset with synthetic minority class examples added 

Steps: 

1. Calculate the Degree of Imbalance (d): 

𝑑 =  
𝑚𝑚𝑎𝑗 − 𝑚𝑚𝑖𝑛

𝑚𝑚𝑖𝑛
          (1) 

2. Determine the Number of Synthetic Examples (G): 

G = β × (𝑚𝑚𝑎𝑗  − 𝑚𝑚𝑖𝑛)         (2) 

3. For Each Minority Example (𝑥𝑖): 
o Identify the K-nearest neighbors using Euclidean distance: 

 d (i) = ∥𝑥𝑖−𝑥𝑛𝑛∥ for 𝑥𝑛𝑛 ∈ K         (3) 

o Count the number of neighbors (Δ𝑖) belonging to the majority class. 

o Compute the Difficulty Ratio (𝑟𝑖) for each 𝑥𝑖 

𝑟𝑖 =  
𝛥𝑖

𝐾
           (4) 

4. Normalize the Difficulty Ratios: 
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𝑟𝑖 ^ = 
𝑟𝑖

∑ 𝑟𝑗

𝑚𝑚𝑖𝑛

𝑘=0

          (5) 

5. Compute Synthetic Examples (gig_igi) for Each xix_ixi: 

𝑔𝑖  =  𝑟𝑖^ ×  𝐺          (6) 

𝑔𝑖 represents the number of synthetic examples to generate for 𝑥𝑖. 
6. Generate Synthetic Examples: 

o For each 𝑔𝑖, generate a synthetic sample 𝑥synthetic  

𝑥synthetic  =   𝑥i  +  λ . ( 𝑥nn  −   𝑥i)        (7) 

o 𝑥nn is a randomly selected nearest neighbor of 𝑥i. 
o λ is a random number sampled from [0,1]. 

7. Add Synthetic Examples to the Dataset: 

o Append G synthetic examples to the minority class to create the balanced dataset. 

4.2.5. Random Under Sampling (RUS) 

Random under-sampling (RUS) is a straightforward strategy used to address class 

imbalance in datasets by equalizing the class distribution. This technique involves eliminating 

instances from the majority class within the training data (Ahmad Khan et al., 2024). The under-

sampling method achieves balance by randomly selecting a subset of examples from the majority 

class while preserving all instances of the minority class. However, a notable drawback of this 

approach is the potential loss of important information from the majority class, which could 

negatively impact the model's overall performance when applied to the complete dataset (De Santis 

et al., 2017). The random under-sampling (RUS) technique seeks to reduce the number of majority 

class instances in cases where one class significantly outnumbers the other in a highly imbalanced 

dataset. Let T represent the training dataset, N denote the majority class examples, and P signify 

the minority class examples. In such scenarios, RUS addresses the imbalance by decreasing the 

size of N, thereby mitigating the disproportion between N and P. Given the rapid expansion of 

datasets and their features, under-sampling often presents a more efficient alternative to 

oversampling methods for balancing class distributions (Hajek and Abedin, 2020). 

4.3. Feature Selection Using SHAP (SHapley Additive ExPlanations) 

In this research we have used SHAP method to explain the output of machine learning 

models. It is based on Shapley values from cooperative game theory, which attribute the 

contribution of each feature to the final prediction. In the context of feature selection, SHAP values 

indicate how much each feature contributes to the model's predictions, helping to identify 

irrelevant or less important features. This can be used to reduce dimensionality, improve model 

interpretability, and enhance model performance. Ntakolia et al. (2022) used the SHAP technique 

in their research. The authors stated that, “to explain the predictive model and the contribution of 

the most important features, Shapley Additive Explanations (SHAP) were adopted. SHAP is a 

game-theoretic approach that explains the output of any machine learning model. It connects 

optimal credit allocation with local explanations using classic Shapley values from game theory 

and their extensions” Ntakolia et al. (2022). 

SHAP (SHapley Additive exPlanations), introduced by Lundberg and Lee (2017), provides 

a unified approach to explain and interpret machine learning model predictions. SHAP values, 

derived from Shapley values in cooperative game theory, quantify the contributions of individual 
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features to the prediction for a particular instance x. These contributions can be seen as positive or 

negative impacts on the model’s prediction (Shajalal et al., 2022). SHAP values are computed to 

create both local explanations (for individual predictions) and global explanations (for the overall 

model). Within Explainable AI (XAI), SHapley Additive exPlanations is a commonly used 

technique that provides comprehensible and consistent explanations for machine learning models. 

SHAP, which has its roots in cooperative game theory, gives each characteristic an importance 

value that represents how much it contributes to the model's predictions. By dissecting intricate 

and non-linear model behaviors into easily comprehended parts, this method improves 

transparency and is a potent method for deciphering black-box models in a variety of domains. 

SHAP promotes confidence in the model's judgments by measuring the impact of each 

characteristic, which makes it easier to make better selections. SHAP assigns each feature an 

importance value for a specific prediction. Its key innovations include: (1) identifying a new class 

of additive feature importance measures, and (2) providing theoretical results that demonstrate the 

existence of a unique solution within this class that satisfies a set of desirable properties (Lundberg 

and Lee, 2017). One of the key technical innovations of SHAP is its ability to handle complex 

models by decomposing predictions into additive feature contributions, which sum to the actual 

output of the model. This additive decomposition makes SHAP particularly versatile, allowing it 

to be applied to a broad range of machine learning models, including tree-based models like 

XGBoost and random forests, as well as deep learning architectures. Chen et al. (2020) highlights 

the advantages of SHAP in tree-based models, demonstrating that TreeSHAP, an optimized 

algorithm for tree ensemble methods, allows for efficient and consistent computation of Shapley 

values, overcoming the computational limitations that often-hindered earlier Shapley-based 

methods. In this study, we utilize SHAP to assess the contribution of features to the performance 

of our predictive model for the case of Backorder. In SHAP, each feature's importance is 

represented by the SHAP value, 𝜙𝑗, where a higher 𝜙𝑗 indicates greater influence of feature j on 

the model’s output. For a specific instance x, the SHAP values can be interpreted through an 

additive feature importance model: 

𝑔(𝑧′) = 𝜙0 +∑ 𝜙𝑗𝑧𝑗
′

𝑀

𝑗=1
        (8) 

where: 

• g is the explanation model that approximates the original model f by using SHAP values. 

• z′ is a simplified binary vector (or coalition vector) indicating which features are present 

(1) or absent (0) in the instance. 

• 𝜙0 represents the base value or expected prediction over all instances. 

• 𝜙𝑗is the SHAP value for feature j, reflecting its contribution to the prediction. 

To calculate 𝜙0, the Shapley value formula from game theory is applied, which assesses each 

feature's marginal contribution across all possible combinations of features. For a given predictive 

model f, the SHAP value ϕj for feature j can be computed as: 

𝜙𝑗 =∑ 𝜙𝑗𝑧𝑗
′

𝑀

z′⊆x′∖{j} 
(
(|z′|!(𝑀−|z′|−1)!

M!
(f(z′ ∪ {j}) − f(z′) )     (9) 

where: 

• z′⊆x′∖{j} represents all subsets of features excluding j. 

• M is the total number of features. 
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• f(z′∪{j}) −f(z′) represents the change in the model’s prediction when feature j is included 

in the subset z′, providing the marginal contribution of j. 

This game-theoretic approach allows SHAP to isolate each feature's impact on the model's decision 

by evaluating its contribution in various combinations of features, providing insights for model 

interpretability. 

4.4. Feature Engineering and Dimensionality Reduction 

In this study, Principal Component Analysis (PCA) is employed as a robust technique for 

feature engineering and dimensionality reduction. Previous research, such as by Adana et al. 

(2019) and Santis et al. (2017), mainly relied on traditional or manual feature selection methods; 

however, our approach leverages PCA to enhance model performance. PCA transforms the high-

dimensional dataset into a smaller set of uncorrelated principal components, optimizing machine 

learning models like Support Vector Machines (SVM) and Neural Networks by addressing 

multicollinearity issues and reducing computational complexity. PCA is a widely used statistical 

technique that efficiently reduces the dimensionality of large datasets while preserving most of the 

original variability (Jolliffe and Cadima, 2016). This process not only improves model accuracy 

but also alleviates the "curse of dimensionality," where an increase in dataset features requires 

exponentially more data to achieve statistical significance (Bellman, 1961). High-dimensional data 

often lead to challenges such as overfitting, extended computational time, and reduced model 

accuracy. By implementing PCA, we reduce the feature space complexity, making clustering and 

classification tasks more efficient and less resource-intensive (Abdi and Williams, 2010). In this 

study, the application of PCA allows for a more streamlined and effective solution to backorder 

prediction by focusing on the most impactful features. By integrating PCA into our methodology, 

we ensure that our machine learning models operate with greater efficiency and predictive 

accuracy, ultimately enhancing the overall performance of our backorder prediction framework. 

Principal Component Analysis (PCA) is a statistical method that applies an orthogonal 

transformation to convert a group of correlated variables into a set of uncorrelated variables. PCA 

is one of the most used techniques in both exploratory data analysis and machine learning, 

particularly for building predictive models. Principal Component Analysis (PCA) generates new 

features that are linear combinations of the original features. In a d-dimensional space, PCA 

transforms the dataset into a new k-dimensional space, where k < d. These new features are called 

principal components (PCs), and each PC captures the maximum variance in the data, with 

successive components capturing progressively less variance. The first principal component (𝑃𝐶1) 

retains the largest variance, while subsequent components retain decreasing amounts of variance. 

Each principal component can be mathematically represented as: 

𝑃𝐶1  =  𝑎1𝑋1  +  𝑎2𝑋2+ . . . +𝑎𝑑𝑋𝑑        (10) 

Here, 𝑋𝑗 represents the original features, and 𝑎𝑗 denotes the coefficients (or weights) for 

the j-th original feature in the calculation of the i-th principal component. These coefficients are 

derived from the eigenvectors of the covariance matrix of the original dataset, ensuring 

orthogonality between the components and a hierarchical variance structure. As an unsupervised 

learning method, PCA investigates the relationships between variables, functioning similarly to a 

general factor analysis where regression is used to find the best-fitting line. The primary objective 

of PCA is to reduce the dimensionality of a dataset while retaining the key patterns or relationships 

among the variables, without requiring prior knowledge of the target variables (GeeksforGeeks, 

2024). PCA preserves the most significant details by retaining the most representative 
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measurements and discarding smaller, less relevant ones. It generates new features that are linear 

combinations of the original variables, transforming data from a d-dimensional space to a k-

dimensional space, where k is less than d. These new features, known as principal components 

(PCs), capture the maximum variance in the data, with the first component accounting for the 

highest variance and each subsequent component capturing progressively less variance. PCA is 

traditionally used for dimensionality reduction, but more recently, it has been applied to identify 

and eliminate redundancies in different layers of neural networks by pruning redundant features 

(Sudharsan and Thailambal, 2023; Chakraborty et al., 2020). 

4.5.Machine Learning Models 

In this step, since the data preprocessing has been completed, the process moves to 

Building and Training Machine Learning Models. The dataset has been split into training and 

testing sets to ensure the models can be validated accurately. Various machine learning models, 

including Neural Networks, K-Nearest Neighbors (KNN) and Random Forest, and Modern 

Gradient Boosting models like XGBoost and LightGBM, Gradient Boosting, will be implemented 

and trained on the data. Ensemble learning technique such as Model Stacking will then be 

employed to combine the strengths of these individual models, resulting in more accurate and 

robust backorder predictions. Each model's hyperparameters will be carefully tuned to optimize 

performance, and the models will be evaluated using primary metrics such as ROC-AUC, PR-

AUC, F1 Score and confusion matrix and secondary metrics such as balanced accuracy, Specificity 

(True Negative Rate). Implementing this approach will lead to a comprehensive comparative 

analysis, where the predictive performance of all models will be analyzed to identify the most 

effective ones for backorder forecasting. 

4.5.1. Neural Networks 

Carbonneau et al. (2008) explained that while artificial neural networks encompass various 

types, their study focused on the widely used feed-forward error back-propagation neural 

networks. In these architectures, individual components (neurons) are arranged in layers, where 

the output signals from neurons in one layer are transmitted to all neurons in the subsequent layer. 

This setup ensures that neural activations flow exclusively in one direction, moving layer by layer. 

The simplest configuration involves two layers: an input layer and an output layer. However, 

additional layers, known as hidden layers, can be inserted between the input and output layers to 

enhance the network's computational capabilities. With enough hidden units, a neural network has 

the potential to function as a "universal approximator". 

Neural networks are computational models inspired by the structure and functioning of the 

human brain. They consist of layers of interconnected nodes (often referred to as neurons) that 

process input data to identify patterns and relationships. These networks simulate how the human 

brain learns and generalizes information, attempting to model complex relationships within data. 

Neural networks can refer to both biological neuron-inspired architectures and artificial 

implementations used in machine learning and data analysis. Figure 4.2 illustrates the general 

architecture of a neural network, typically comprising an input layer, one or more hidden layers, 

and an output layer, with each layer performing specific computations to transform the input into 

the desired output (Shaik et al., 2021) 
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Figure 4.2: General Neural Network structure (Shaik et al, 2021) 

Carbonneau et al, (2008) considered the Neural Networks (NN) as a powerful tool for 

handling complex, non-linear relationships in demand forecasting. They emphasize that NNs have 

the ability to model intricate patterns in data, making them highly suitable for forecasting in 

unpredictable and dynamic environments, such as supply chains. The authors highlight that neural 

networks are particularly effective when traditional methods fail to capture the complexity of real-

world data. In their experiments, neural networks showed competitive performance compared to 

traditional methods. However, similar to Support Vector Machines (SVM), the authors caution 

that while NNs perform well, the marginal improvement over simpler models like multiple linear 

regression may not always justify the additional computational complexity and training required 

for neural networks.  

The core functions of neural networks, regardless of type, include receiving data from 

external sources, determining whether the data is significant enough to be considered or discarded 

as irrelevant, minimizing errors through iterative processing, and ultimately producing an output 

or performance result for the trial. In an artificial neuron, the initial step involves summing various 

inputs (𝑥𝑖) after multiplying each by its corresponding weight (𝑤𝑖). These weighted inputs (𝑥𝑖𝑤𝑖) 

are then processed through a summation function, followed by iterative adjustments to minimize 

errors (Profillidis and Botzoris, 2019). 

 
Figure 4.3: The basic function of a neural network (Shaik et al., 2021) 

4.5.1.1. Back propagation 

Shaik et al (2021) in their research have mentioned Back-propagation, first introduced by 

Paul Werbos in 1974 and later popularized by Rumelhart, Hinton, and Williams in 1986, is one of 

the most widely used learning algorithms for training neural networks. It is particularly common 
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in multilayer perceptron (MLP) frameworks, which account for a significant proportion of neural 

network applications (Garrido, 2014). Back-propagation operates as a supervised learning 

algorithm that trains MLPs using gradient descent to minimize the error between the network's 

predicted output and the target output. During the learning process, the error is calculated at the 

output layer and propagated backward through the network, enabling the adjustment of weight 

coefficients in a manner that minimizes this error. The goal of back-propagation training is to 

iteratively update the weights between neurons to achieve an optimized error function (Pradhan 

and Sameen, 2020). The error function 𝐸𝑖 is minimized using the following equation:  

𝐸𝑓  =  0.5𝑁∑ (𝑝^ i − 𝑝 i)
2𝑁

𝑖
        (11) 

 (5) 

𝑝 𝑖  =  𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 

𝑝^ i = Calculated Output 

I = Output Layer 

N = Number of Nodes (Output Layer) 

4.5.1.2. Feed Forward Neural Network 

The feed-forward neural network (FFNN) is among the earliest types of artificial neural 

networks developed. In this architecture, data flows exclusively in a forward direction across the 

layers: from the input layer, through the hidden layers, and finally to the output layer. This structure 

is referred to as a feed-forward network because it lacks feedback loops, meaning the model's 

output is not cycled back into the network Shaik et al (2021). A feed-forward neural network 

(FNN) typically comprises an input layer, one or more hidden layers, and an output layer. FNNs 

are capable of learning and modeling complex input-output relationships without requiring explicit 

mathematical formulations to describe such mappings. The learning process involves iterative 

adjustments to the weights and biases in the network using optimization techniques, such as the 

steepest descent method, commonly implemented through backpropagation (BP). This process 

minimizes the error between the network's predicted output values and the actual target values, 

culminating in the completion of training. FNNs allow only forward connections, meaning data 

flows in a unidirectional manner from the input layer through the hidden layers to the output layer. 

The activation of neuron i in layer l (𝑎𝑖
𝑙) is calculated as follows: 

𝑎𝑖
𝑙 = 𝑓(𝑛𝑖

𝑙)                                                                (12) 

𝑛𝑖 
𝑙 = ∑ 𝑤𝑗𝑖

𝑙 𝑎𝑗
𝑙−1 + 𝑏𝑖

𝑙𝑁𝑖
𝑙

𝑗=1            (13) 

Which 𝑓 represents the activation function, 𝑤𝑗𝑖
𝑙  denotes the weights associated with each 

connection, and 𝑏𝑖
𝑙 is the bias. Given that the nonlinear response of the macroscale model 

depends on the loading history and the current loading increment, the macroscopic stress and 

strain from the previous step, along with the current incremental strain, are utilized as input 

parameters. The neural network's overall architecture can be outlined as follows: 

∆𝜎𝑖𝑗
𝑡+1 = 𝐹𝐹𝑁𝑁(𝜎𝑖𝑗

𝑡 , 𝜀𝑖𝑗
𝑡 , ∆𝜀𝑖𝑗

𝑡+1 )        (14) 

Where 𝐹𝐹𝑁𝑁 is FNN that maps inputs 𝜎𝑖𝑗
𝑡 , 𝜀𝑖𝑗

𝑡 , ∆𝜀𝑖𝑗
𝑡+1 and ∆𝜎𝑖𝑗

𝑡+1 outputs.  
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Figure 4.4: General layout of FNN (Li and Zhuang, 2020) 

4.5.2. K Nearest Neighbours 

KNN (K-Nearest Neighbors) is a widely utilized classification technique in pattern 

recognition. This algorithm determines the similarity of a given object to its surrounding objects 

(referred to as tuples) by creating a similarity index. Each tuple is characterized by n attributes, 

meaning it represents a point within an n-dimensional space. The KNN algorithm identifies the k 

tuples that are nearest to the target tuple, leading to the creation of clusters that group similar 

objects together. Additionally, KNN can be applied in regression analysis for the purpose of 

reducing data dimensionality (Seyedan and Mafakheri, 2020). The k-Nearest Neighbors (k-NN) 

algorithm is a non-parametric method widely applied in estimation and pattern recognition tasks. 

It predicts the output value of a new input vector by considering the outputs of its 𝑘 nearest 

neighbors in the dataset. The similarity between data points is typically calculated using a distance 

function, with commonly used metrics including Euclidean distance and Mahalanobis distance. 

Depending on the specific implementation, the output for a new sample is determined either 

through a simple average (normal averaging) or by applying weights to its 𝑘 nearest neighbors, 

where closer neighbors often have higher weights (Abbasi et al., 2020). The k-nearest neighbors 

(KNN) algorithm is a memory-based classification method that does not require a fitted model, 

making it a non-parametric technique. To classify a query point x0x_0x0, the algorithm identifies 

the k closest training points, 𝐹(𝑟), r = 1, ..., k, based on a chosen distance metric, typically Euclidean 

distance in the feature space, defined as 𝑑𝑖 = ∣∣ 𝑥𝑖− 𝑥0∣∣. The class of 𝑥0 is then determined by a 

majority vote among these k nearest neighbors. In cases of a tie, the class is chosen randomly. 

When k=1, each query point is classified according to its nearest neighbor, resulting in a highly 

irregular decision boundary. Increasing k tends to smooth the decision boundary, as more 

neighbors contribute to the vote. KNN is particularly effective in classification tasks where each 

class has numerous prototypes, and the decision boundaries are complex. It has been applied 

successfully in various domains, such as classifying handwritten digits, interpreting satellite 

images, and analyzing EKG (electrocardiogram) patterns (Tibshirani, 2017). 

4.6.Ensemble Learning 

Ahmad Khan et al (2024), in their research have focused on the exploration of ensemble 

learning methods as a powerful approach to improving predictive performance in addressing class 

imbalance (CI) problems within supply chain management and backorder prediction. The authors 

stated that “Ensemble learning combines multiple models to construct a more robust and 



49 
 

comprehensive predictive framework, often outperforming single-algorithm approaches. Bagging, 

boosting, and stacking, with prominent implementations like AdaBoost and random forests are the 

example of ensemble learning” (Ahmad Khan et al., 2024). In the context of our research, 

particular attention is given to the application of Random Forest, XGBoost, LightGBM, GBM, and 

Stacking methods, highlighting their effectiveness in handling complex and imbalanced datasets 

while enhancing model accuracy and reliability. 

4.6.1. Random Forest 

Using a bootstrap sample, Random Forest is a tree-based ensemble in which batches of 

training data are drawn with replacement. The optimum split among a random subset of the 

characteristics is chosen during tree construction, creating a randomness that favors the forest's 

performance over that of a single non-random tree. By combining the probabilistic predictions of 

the base classifiers, the bias increase is counterbalanced by an average variance decrease. (De 

Santis et al., 2017). Random Forest as an ensemble learning technique composed of multiple 

decision trees combines the principles of bagging (Bootstrap Aggregating) and random subspace 

methods to enhance predictive accuracy. In this approach, 𝑁 regression trees are created, with each 

tree trained on a bootstrapped sample of the original dataset. Additionally, at each node of the 

decision trees, a random subset of the original features is selected for splitting. This dual-

randomization strategy reduces correlations among the individual regression trees. By averaging 

the predictions of these decorrelated trees, Random Forest effectively reduces error variance, 

leading to more robust and accurate predictions. Umoh et al., (2022), in their research described 

the Random Forest as an ensemble machine learning technique used for both classification and 

regression tasks. The authors have mentioned it employs bagging (bootstrap aggregation), a 

method of creating new datasets by sampling with replacement from an existing dataset. Random 

Forest offers the advantages such as prevention of Overfitting, effective with smaller datasets, 

parallel training, and automatic feature selection. The decision tree structure within Random Forest 

inherently ranks and selects features, focusing on the most informative ones during training. 

In the current research, Random Forest can be used to classify backorder prediction data 

into two categories: a negative class (non-backordered) and a positive class (Backordered). The 

random forest algorithm is presented below: “STEP 1: Randomly select k features from the total 

m features, where k ≪ m; STEP 2: Among the “k” features, calculate the node “d” using the best 

split point; STEP 3: Split the node into daughter nodes using the best split; STEP 4: Repeat 1 to 3 

steps until the “p” number of nodes has been reached; STEP 5: Build the forest by repeating steps 

1 to 4 for “n” number of times to create “n” number of trees” (Umoh et al., 2022; Arowolo et al., 

2023). 

4.6.2. Gradient Boosting 

Gradient Tree Boosting is a boosting-based ensemble that uses an arbitrary differentiable 

loss function. It is utilized in a range of applications, including web search ranking and ecology. 

The technique is quite competent of handling heterogeneous attributes and is robust to outliers. 

However, its main weakness is that it can rarely be parallelized (De Santis et al., 2017). 

Khan et al., (2024) in their research have stated that the Gradient Boosting is widely 

recognized for its exceptional accuracy and its capability to process large datasets effectively. 

Gradient Boosting classifier, often referred to as Gradient Boosting Machines (GBM), minimizes 

the log-likelihood loss function by iteratively adding models trained on the residual errors of the 
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preceding models. In this ensemble learning approach, M represents the total number of boosting 

stages, while m denotes the current stage. The final model is denoted as F_M(x), and F_m(x) 

represents the model obtained after incorporating mmm-stage base learners. The boosting process 

begins with a high-bias initial model, F_0 = γ, and progressively reduces bias by sequentially 

adding models from m = 1 to m = M. At each stage, the model 𝐹𝑚−1(x) is enhanced by 

incorporating weighted base learners, and pseudo-residuals are calculated for each training 

example i. The loss function L, which guides the optimization process, is computed as shown in 

the following equation (Khan et al., 2024; and Chen and Guestrin, 2016): 

𝐿 =
1

𝑛
 ∑ (𝑦𝑖 − 𝐹(𝑥𝑖)) 

2𝑛

𝑖=1
        (15) 

Which the 𝑦𝑖 is the observed Value. 

𝑟𝑖𝑚 = − 
𝜕𝐿(𝑦,   𝐹𝑚−1(x))

𝐹𝑚−1(x)
 |𝑥 =  𝑥𝑖, 𝑦 =  𝑦𝑖   ∀𝑖 =  1, 2, … , 𝑛       (16) 

Which in this equation, each residual calculation  𝑟𝑖𝑚 has been computed for ith training 

example to the current base learner m on the weighted sum of base learners from 1 to m-1, and the 

initial constant function. Then a new dataset has been generated from the original dataset and train 

(fit) the base learner  ℎ𝑚(𝑥) as shown in following equation: 

𝐷 = {(𝑥𝑖, 𝛾𝑖𝑚) ∶ 𝑖 = 1, 2…, 𝑛}         (17) 

𝛾𝑖𝑚 = argmin ∑ 𝐿 (𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) +  𝛾ℎ𝑚( 𝑥𝑖) )
𝑛

𝑖=1
         (18) 

Therefore, the 𝐹𝑚(𝑥) will be calculated using following equations: 

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) + 𝛾ℎ𝑚( 𝑥 )            (19) 

The function ℎ𝑚( 𝑥 ) is fitted to approximate the rate of change of the loss function L with respect 

to 𝐹𝑚−1(𝑥). This function ℎ𝑚( 𝑥 ) provides an estimation of the derivative of the loss function 

concerning𝐹𝑚−1(𝑥), indicating the direction in which the loss decreases. To optimize this process, 

the parameter γoptimum is determined by solving the optimization problem formulated in Eq. (). 

γoptimum = argmin ∑ 𝐿 (𝑦𝑖, 𝐹𝑚(𝑥𝑖))
𝑛

𝑖=1
 

 = argmin ∑ 𝐿 (𝑦𝑖, 𝐹𝑚−1(𝑥 ) +  𝛾ℎ𝑚( 𝑥))
𝑛

𝑖=1
      (20) 

The procedure has been run for each base model m = 1 to M and after the M iterations, the 

final model  𝐹𝑀(𝑥) has been obtain in the following equation: 

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) + γoptimumℎ𝑚( 𝑥 )            (21) 

(Khan et al., 2024; and Chen and Guestrin, 2016) 

4.6.3. XGBoost Extreme Gradient Boosting 

XGBoost (eXtreme Gradient Boosting) is a scalable, efficient, and highly optimized tree 

boosting system. It improves upon traditional gradient boosting methods by introducing 

innovations like sparsity-aware algorithms, weighted quantile sketches, and parallel computing. 

XGBoost scales seamlessly to billions of examples while maintaining computational efficiency, 

and its flexibility allows it to handle both large and sparse datasets effectively. It has been 

extensively applied in areas such as ad click-through rate prediction, customer behavior analysis, 

and high-energy physics experiments (Chen and Guestrin, 2016). The loss function and 

regularization for XGBoost at the t-th iteration can be expressed mathematically as shown in the 

Eq. 

𝐿(𝑡)  = ∑ 𝑙 (𝑦𝑖, 𝑦 𝑖
(𝑡−1) + 𝐹𝑡(𝑥𝑖)) + 𝛺( 𝑓𝑡) )

𝑛

𝑖=1
        (22) 

𝛺( 𝑓 ) + 𝛾𝑇+ 
1

2
 𝜆∑ 𝑤𝑗

2 
𝑇

𝑗=1
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Where,  

𝑦 
𝑖
 = ∑  𝑘

𝑘=1 𝑓𝑘(𝑥𝑖), 𝑓𝑖 𝜖𝐹         (23) 

In XGBoost, K represents the number of trees, and f denotes the functional space of F, 

encompassing all possible classification and regression trees. To facilitate the use of conventional 

optimization methods, XGBoost uses a Taylor approximation to convert the original objective 

function into a form compatible with the Euclidean domain. During the t-th iteration, the goal is 

to train a model that maximally reduces the loss, as specified by the following equation (Khan et 

al., 2024; and Chen and Guestrin, 2016). 

𝐿 ̃(𝑡) (𝑞) = − 
1

2
∑  

( ∑   
𝑖 ∊ 𝐼𝑗

𝑔𝑖)
2 

 ∑ ℎ𝑖 + 𝜆
 

𝑖 ∊ 𝐼𝑗

𝑇

𝑗=1

 + 𝛾𝑇       (24) 

𝑔𝑖 = 𝜕
�̂�𝑖

(𝑡−1)𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1))         (25) 

ℎ𝑖 = 𝜕2
�̂�𝑖

(𝑡−1)𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1))         (26) 

Like other ensemble learning techniques, XGBoost has certain limitations, including 

sensitivity to parameter selection, necessitating careful fine-tuning for optimal performance. 

Although XGBoost is a complex ensemble model that incorporates specialized decision trees, it 

remains interpretable by providing insights into feature importance. This capability makes 

XGBoost particularly useful for identifying the most significant features in a dataset, facilitating 

feature selection and improving the understanding of underlying relationships within the data 

(Khan et al., 2024). 

4.6.4. LightGBM 

LightGBM, shares similarities with XGBoost in using gradient boosting for decision trees. 

LightGBM differs primarily in its use of histogram-based algorithms for efficient split finding and 

its focus on speed and memory efficiency. Unlike XGBoost, it uses a leaf-wise growth strategy, 

which can lead to deeper trees and faster convergence but might be overfit in small datasets (Chen 

and Guestrin, 2016). To address the inherent drawbacks of GBDT, an enhanced version known as 

the Light Gradient Boosting Machine (LightGBM) has been introduced. LightGBM integrates 

Gradient-based One-Side Sampling (GOSS) with Exclusive Feature Bundling (EFB) to create a 

faster, distributed, high-performance, and efficient gradient boosting framework (Awe and Vance, 

2020). Unlike random forests, which build trees independently for each sample, LightGBM 

constructs trees sequentially within the gradient boosting framework. LightGBM employs a leaf-

wise tree growth algorithm, which splits the tree leaf-by-leaf rather than level-by-level, resulting 

in an unbalanced tree structure. This method uses information gain to determine splits at each node 

(Datta et al., 2022; Sai et al., 2023). 

4.6.5. Stacking 

Stacking is an ensemble learning technique that combines predictions from diverse base 

learners using a meta-learner to produce final predictions. The base learners, which can include 

models like SVMs, Neural Networks, or Decision Trees, are trained using k-fold cross-validation. 

For each fold, the dataset is split into k−1 folds for training and 1-fold for validation. During this 

process, each base learner generates predictions for the validation fold, creating a matrix of size 
𝑚

𝑘
𝑛𝑖 where m is the total number of samples, and n is the number of base learners. This matrix 

represents the outputs of the base learners and serves as the input for the meta-learner, which is 
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subsequently trained to combine these predictions optimally. By leveraging the strengths of 

heterogeneous models and a higher-level learner, stacking enhances predictive accuracy and 

generalization. (Gaye et al., 2021). Belouch and Hadaj (2017) conducted a study in which they 

examined three ensemble learning techniques—boosting, bagging, and stacking—in an effort to 

increase the detection rate and lower the false alarm rate. According to their findings, bagging and 

boosting can both outperform single classifiers in terms of accuracy, whereas stacking outperforms 

other ensemble learning techniques. 

Stacking, or stacked generalization, is an ensemble learning technique that combines the 

outputs of multiple diverse classifiers. Unlike bagging and boosting, which typically use 

homogeneous models, stacking integrates various types of classifiers, such as decision trees, neural 

networks, rule induction, naïve Bayes, and logistic regression. Stacking operates in two levels: the 

base learners (level-0) and the stacking model learner (level-1). The base learners are trained on 

the original dataset, and their predictions are aggregated to form a new dataset, where each instance 

is paired with the true target value it aims to predict. This new dataset is then used to train the 

stacking model learner, which synthesizes the base learners' outputs to produce the final prediction. 

By combining the strengths of different classifiers, stacking often achieves higher predictive 

accuracy and robustness than individual models (Belouch and Hadaj, 2017). 

4.7.Overview of hyperparameter tuning: RandomizedSearchCV and GridSearchCV 

A crucial stage in the practical application of machine learning is hyperparameter 

optimization. Hyperparameter tuning is a technique used to optimize the parameters within 

machine learning algorithms, facilitating the efficient development of models and improving 

classification accuracy (Jamaleddyn et al., 2023). Feurer et al. (2015) emphasized that model 

selection and hyperparameter optimization are critical when applying machine learning to novel 

datasets. Referring to prior research, they noted, “Hyperparameter optimization is a crucial step in 

the practical application of machine learning algorithms. Manually finding suitable 

hyperparameter settings is often a time-consuming and tedious process, requiring many ad-hoc 

decisions by practitioners. Consequently, recent research in machine learning has increasingly 

focused on developing improved hyperparameter optimization methods” (Hutter, Hoos, and 

Leyton-Brown, 2011; Bergstra et al., 2011; Snoek, Larochelle, and Adams, 2012; Bergstra and 

Bengio, 2012). Selecting an effective hyperparameter configuration for a machine learning model 

requires specialized knowledge, intuition, and often, trial and error. The optimization of these 

hyperparameters is typically formulated to maximize the predictive capability of the model. 

Various strategies have been proposed for hyperparameter optimization in classification 

algorithms, with grid search and random search being two widely used approaches. GridSearchCV 

and RandomizedSearchCV are essential techniques in machine learning for hyperparameter 

tuning, enhancing model accuracy and performance by systematically selecting optimal parameter 

values. GridSearchCV conducts an exhaustive search across predefined hyperparameter 

combinations, which, while thorough, becomes computationally expensive as hyperparameter 

dimensions grow. RandomizedSearchCV, in contrast, samples a subset of random hyperparameter 

combinations, making it more efficient in high-dimensional spaces while often yielding 

comparable performance to GridSearchCV (Bergstra et al., 2011; Hutter et al., 2014). Grid search 

is a tuning technique designed to identify optimal hyperparameter values through an exhaustive 

search of specified parameter values for the model. This traditional approach to hyperparameter 

optimization systematically searches a defined subset of the algorithm’s hyperparameter space. 

Random Search, by contrast, involves sampling random sets of hyperparameters to locate an 
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optimal configuration. While similar to grid search, it has been found to yield comparatively better 

results in some cases. However, random search can introduce significant variance in computational 

outcomes.  Results indicate that random search outperformed grid search in terms of accuracy, 

precision, recall, and F1-score, while also delivering faster execution times for some algorithms 

(Jamaleddyn et al., 2023). Bergstra and Bengio (2012) illustrate the efficiency of 

RandomizedSearchCV, especially in scenarios where only a subset of hyperparameters 

significantly impacts model performance. The "curse of dimensionality" associated with 

GridSearchCV requires a prohibitive number of trials as parameters increase, often resulting in 

misallocated computational resources. In contrast, RandomizedSearchCV's random sampling 

approach explores a larger portion of the parameter space with fewer evaluations, mitigating over-

sampling of non-critical hyperparameters. This approach allows for an efficient allocation of 

resources without exhaustive searches, which is advantageous in models with complex 

interactions, like deep neural networks. In practical applications, both methods are frequently used 

for models such as Support Vector Machines (SVM), Decision Trees, and Neural Networks. For 

instance, in SVM, GridSearchCV may be employed to fine-tune parameters like regularization 

strength and kernel type; however, RandomizedSearchCV is preferred in high-dimensional tuning 

scenarios for deep neural networks (Hutter et al., 2014). Cross-validation is used in both methods 

to ensure that selected hyperparameters generalize well to unseen data, but for more complex 

settings, Bayesian optimization and Sequential Model-Based Optimization (SMBO) offer greater 

efficiency by concentrating on promising regions within the hyperparameter space (Bergstra and 

Bengio, 2012). Furthermore, RandomizedSearchCV's asynchronous and flexible nature allows it 

to operate effectively under constrained or variable computational resources, contrasting with the 

fixed grid configuration of GridSearchCV. This adaptability makes RandomizedSearchCV 

especially useful in distributed or cloud environments, where tasks may need to be paused or 

reallocated without compromising experimental integrity (Bergstra and Bengio, 2012). Both 

GridSearchCV and RandomizedSearchCV serve as robust baseline methods in machine learning, 

setting standards for more advanced hyperparameter tuning techniques (Hutter et al., 2014). Pérez-

Padilla et al. (2024) utilized fine-tuned machine learning models with a randomized search cross-

validation algorithm to optimize trigger day timing in minimal ovarian stimulation protocols. Their 

findings suggest that hyperparameter tuning through random search significantly improved model 

accuracy. Model training was conducted using the scikit-learn library, with hyperparameter 

optimization performed through a randomized search cross-validation approach. This method 

generated 50 random samples of parameter configurations, selecting the optimal combination 

based on Root Mean Squared Error (RMSE) as the scoring metric to compare different 

configurations. To mitigate overfitting, they employed a cross-validation value of K = 3, which 

allowed for model performance evaluation across multiple data subsets. By using random search 

within a predefined hyperparameter grid, this technique effectively reduced computational 

demands while identifying optimal values. 

4.8. K-Fold Cross Validation 

Cross-validation is a straightforward method for estimating the expected prediction error, 

often represented as Err=E[L(Y, f(X))], which is the average generalization error when applying a 

method f(X) to an independent test sample drawn from the joint distribution of X and Y. Ideally, 

cross-validation provides an estimate of the conditional error when the training set T is held fixed. 

In K-fold cross-validation, the dataset is split into K equally sized folds. The model is trained on 

K−1 folds and tested on the remaining fold. This process is repeated K times, with each fold used 
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once as a test set. The cross-validation estimate of the prediction error is calculated as the average 

error across all K trials. 

For an indexing function k: i→1..., K that assigns each observation i to one of the K folds, let 

𝑓−𝑘(x) denote the fitted function when the k-th fold is excluded from the training data. The cross-

validation estimate of the prediction error can be defined as: 

𝐶𝑉(𝑓) =
1

𝑁
∑ 𝐿(𝑌𝑖, 𝑓−𝑘(𝑖)(𝑋𝑖))

𝑁

𝑖=1
         (27) 

where L (Y, Y^) is the loss function (e.g., squared error for regression). 

4.9.Leave-One-Out Cross-Validation (LOOCV) 

A special case of K-fold cross-validation is when K=N, known as leave-one-out cross-

validation (LOOCV). Here, each observation i serves as a single test case, with the model trained 

on the remaining N−1 observations. LOOCV has the advantage of low bias in error estimation but 

is computationally expensive for large datasets. (Tibshirani, 2017). 

5. Evaluation Metrics 

Generally, the performance of any classification method is evaluated using standard 

metrics such as accuracy, precision, recall, and F1-score, which are derived from the confusion 

matrix. However, in cases where the dataset is highly imbalanced, as with the backorder prediction 

dataset, these metrics alone may not provide a comprehensive assessment of classifier 

performance. To address this, additional metrics such as AUC (Area Under the Curve) and ROC 

(Receiver Operating Characteristic) curves are employed to measure and visualize the classifier's 

ability to distinguish between classes. These metrics are particularly effective for imbalanced 

datasets as they provide insights into the trade-offs between true positive rates and false positive 

rates ((Shajalal et al., 2022; De Santis et al., 2017; Chawla et al., 2002). 

The classification accuracy ACC of a model using the number of true positives, true 

negatives, false negatives, and false positives as shown in the following equation: 

Acc=  
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝐹𝑛 + 𝐹𝑝 + 𝑇𝑛
, where 𝑇𝑝  + 𝐹𝑝  +  𝐹𝑛  +  𝑇𝑛 denote the number of classifed samples as true 

positive, false positive, false negative and true negative, respectively (Shajalal et al., 2021). 

• True Negative (TN): The number negative samples (non-backordered) correctly classified as 

negative.  

• False Positive (FP): The number of negative samples incorrectly classified as positive 

(backordered). 

• False Negative (FN): The number of positive samples incorrectly classified as negative. 

• True Positive (TP): The number of positive samples correctly classified as positive (Shajalal 

et al., 2021). 

Precision and recall are commonly used metrics to evaluate classification performance, 

particularly as they relate to the positive (minority) class. Precision and recall ignore true 

negatives, making them unaffected by class imbalance and reliable metrics for assessing a model's 

performance. Precision assesses the classifier’s accuracy in identifying positive (backordered) 

instances (Shajalal et al., 2021). It can be defined as: 

P = 
𝑇𝑝 

𝑇𝑝+ 𝐹𝑝
            (28) 
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Unlike precision, recall is determined by accounting for the total number of actual positive 

samples (total backorders). Recall R measures the classifier's ability to correctly identify positive 

instances (the proportion of backorders). It is also referred to as sensitivity or the true positive rate 

(TPR) (Shajalal et al., 2021). It is defined as: 

R = 
𝑇𝑝 

𝑇𝑝 + 𝐹𝑁
           (29) 

The false-positive rate (FPR) is another commonly used evaluation metric for classification 

techniques. In the context of backorder prediction, it quantifies the proportion of non-backordered 

instances incorrectly classified as backordered relative to all actual non-backordered instances 

(Shajalal et al., 2021). It is defined as follows: 

F = 
𝐹𝑝 

𝐹𝑝 + 𝑇𝑁
           (30) 

The Receiver Operating Characteristic (ROC) curve is a valuable tool for evaluating the 

performance of a classifier, particularly when dealing with class-imbalanced datasets (Khan et al., 

2024). It provides a visualization for selecting the optimal decision threshold by plotting the trade-

off between the true-positive rate (TPR) and the false-positive rate (FPR). The Area Under the 

Curve (AUC) associated with the ROC curve measures the likelihood that the classifier ranks a 

randomly chosen backordered instance higher than a randomly chosen non-backordered instance. 

As highlighted by Chawla et al. (2002), the AUC is widely used to estimate the performance of 

classification techniques on imbalanced datasets (Kaur and Singh, 2023). The ROC curve offers 

an intuitive way to demonstrate classifier efficiency and illustrates how increasing the FPR can 

lead to a corresponding increase in the TPR. Moreover, like the precision-recall curve, the ROC 

curve helps visualize the trade-off between precision and false-positive rate, providing insights 

into classifier behavior under varying thresholds. AUC is one of the most efficient metrics to 

measure the performance of any classification model on imbalanced data (Zhu, M., et al., 2018) 

The AUC, derived from the ROC curve, can be mathematically expressed as follows: AUC = 
1+𝑇𝑃𝑅−𝐹𝑃𝑅

2
, where TPR is the true positive rate and FPR is the false positive rate (Shajalal et al., 

2022; De Santis et al., 2017; Chawla et al., 2002). A higher AUC indicates that the model performs 

better at distinguishing between classes. An AUC of 1 represents a perfect classifier, while an 

AUC of 0 means the model misclassifies all negatives as positives and all positives as negatives. 

The F1 score represents the harmonic mean of precision and recall, combining them into a 

single unified metric and evaluates errors arising from both false positives and false negatives. as 

shown in following equation (Khan et al., 2024; Kaur and Singh, 2023; Zhu, M., et al., 2018): 

F1 = 2 
𝑃 ∗ 𝑅

𝑃 + 𝑅
,           (31) 

6. Results Analysis 

This chapter presents the results from a comprehensive evaluation of 98 predictive models. 

These models were constructed using combinations of 5 resampling methods (Random Under 

Sampling, SMOTE-ENN, SMOTE-SVM, Borderline-SMOTE, and ADASYN), two levels of 

cross-validation (5-fold and 10-fold), and two machine learning models (K Nearest Neighbours 

and Neural Networks) as well as five ensemble learning techniques (Random Forest, Gradient 

Boosting, XGBoost, LightGBM, and Stacking). Each of these machine learning and ensemble 

learning models was trained and optimized using RandomizedSearchCV, a widely recognized 

hyperparameter tuning technique, in conjunction with the two cross-validation strategies (5-fold 

and 10-fold). 
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The performance of these 98 models was evaluated and compared based on various evaluation 

metrics, with a particular emphasis on handling class imbalance, the main challenge in this 

research. Specific metrics such as balanced accuracy, Specificity, Precision, Recall, F1-Score, 

ROC-AUC, and others were used to assess both the predictive accuracy and the effectiveness of 

the resampling methods. The objective of this comparison is to ascertain which machine learning 

or ensemble learning model produces the most accurate backorder predictions and which 

resampling technique best resolves the dataset's class imbalance. 

6.1. Comparison of Results from Resampling Techniques 

The analysis of resampling techniques plays a critical role in addressing the Class Imbalance 

in the dataset. For instance, applying SMOTE-ENN resulted in a significant transformation of the 

original class distribution. The used dataset had a highly imbalanced distribution, with the majority 

class (non-backordered products) represented by 11,629 instances and the minority class 

(backordered products) by only 71 instances. After applying SMOTE-ENN (as the first resampling 

technique) the resampled dataset achieved a more balanced distribution, with 11,568 instances of 

the minority class and 10,753 instances of the majority class. This balancing was achieved by 

combining oversampling through SMOTE, which generates synthetic samples for the minority 

class, and ENN, which removes noisy and borderline majority instances, resulting in a cleaner and 

more representative dataset. The Table 6.1 shows the performance of each resampling technique 

in class distribution. The results show that each technique achieved significant rebalancing of the 

dataset. 

Table 6-1: Comparison of Results from Resampling Techniques 

Original Dataset and Resampling Techniques 
0: Majority 

Class 

1: Minority 

Class 

Total of 

Observations 

Original dataset class distribution 11,629 71 11,700 

SMOTE-ENN 10,753 11,568 22,321 

SMOTE-SVM 11,629 6,427 18,056 

Borderline-SMOTE 11,629 11,629 23,258 

ADASYN 11,629 11,625 23,254 

Random Under Sampling 71 71 142 

 

Comparatively, other resampling techniques like SMOTE-SVM, Borderline-SMOTE, and 

ADASYN exhibit varying behaviors in balancing the dataset. The main goal of SMOTE-SVM is 

generating synthetic samples near the decision boundary, making it particularly effective for 

separating overlapping classes. In order to help the classifier focus on difficult areas of the feature 

space, Borderline-SMOTE focuses on producing synthetic samples for minority class instances 

near the decision boundary. ADASYN, on the other hand, adapts the synthetic sample generation 

based on the difficulty of classification, concentrating more on harder-to-classify minority 

instances. Each technique's impact on the class distribution directly influences model performance. 

The effectiveness of these methods in improving predictive accuracy and handling the class 

imbalance will be further evaluated and compared based on model-specific metrics, such as F1-

Score, Recall, and Precision, across the selected machine learning models and ensemble methods. 
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6.2. Analysis and Comparison of Resampling Techniques Combined with SHAP and PCA 

The results from the five resampling techniques (SMOTE-ENN, SMOTE-SVM, Borderline-

SMOTE, ADASYN, and RUS) provide valuable insights into how each method interacts with 

SHAP for feature selection and PCA for dimensionality reduction.  

Regarding the Feature Selection, across all five resampling techniques, SHAP identified the 

same 16 features as the most important. This consistency reflects SHAP's robustness in selecting 

features that contribute significantly to backorder prediction. 

Regarding Dimensionality Reduction, PCA retained 9 components for all methods, preserving 

a substantial portion of variance. However, the explained variance ratios vary slightly, reflecting 

the impact of each resampling technique on data distribution: 

The first component explains 47.13% of the variance, resulting from SMOTE-ENN. This 

value from SMOTE-SVM, Borderline-SMOTE and finally ADASYN is 46.86%, 46.85% and 

47.18% respectively. The results reflects that the explained variance ratios for the first component 

are slightly higher for ADASYN and SMOTE-ENN, suggesting that these techniques result in a 

dataset structure that retains more meaningful variance during dimensionality reduction. Figure 

6.1 displays the distribution of SHAP values for individual features, showing their importance and 

impact on predictions. The combination of SHAP for feature selection and PCA for dimensionality 

reduction proved effective across all resampling techniques. However, the choice of resampling 

method significantly impacts the class balance, data structure, and variance retention. SMOTE-

ENN and ADASYN appear to offer a favorable balance between variance retention and dataset 

size, while Borderline-SMOTE provides the most comprehensive rebalancing. The final choice of 

resampling technique should consider the specific requirements of the predictive models and 

computational resources. 
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ADASYN RUS 

  
SMOTE-SVM SMOTE-ENN 

Figure 6.1: Distribution of SHAP values for individual features 
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Figure 6.2 to 6.6 visualize the importance of features as identified by SHAP values. Bar 

charts showing average absolute SHAP values for each variable. 

 

Figure 6.2: SHAP Feature Importance Bar Chart (ADASYN) 

 
Figure 6.3: SHAP Feature Importance Bar Chart (Borderline-SMOTE) 
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Figure 6.4: SHAP Feature Importance Bar Chart (SMOTE-ENN) 

 
Figure 6.5:  SHAP Feature Importance Bar Chart (SMOTE-SVM) 
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Figure 6.6: SHAP Feature Importance Bar Chart (RUS) 

Figure 6.7 to 6.11 visualize the PCA-reduced data in 2D (using first two components). 

 
Figure 6.7: Transformed Data Scatter Plot (ADASYN) 
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Figure 6.8: Transformed Data Scatter Plot (Borderline-SMOTE) 

 
Figure 6.9: Transformed Data Scatter Plot (SMOTE-SVM) 
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Figure 6.10: Transformed Data Scatter Plot (SMOTE-ENN) 

 
Figure 6.11: Transformed Data Scatter Plot (RUS) 
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6.3.Adjusted Feature Selection 

In another phase of analysis, all models were retrained with an adjusted methodology to 

evaluate their performance under refined conditions. Specifically, SHAP was utilized exclusively 

for feature selection, while PCA was omitted to assess the direct impact of SHAP-based feature 

selection alone. To ensure robust evaluation, a 10-fold cross-validation approach was employed 

across all models, providing a thorough assessment of generalization performance. Additionally, 

the SHAP threshold for feature importance was increased to 0.2, thereby selecting only the most 

impactful features for the training process. This adjustment has been used to analyze the dataset 

further by focusing on highly influential features, reducing noise, and potentially enhancing model 

interpretability and performance. These modifications provide a critical comparative framework 

to examine the performance of models trained with SHAP-selected features versus the previous 

combination of SHAP and PCA. 

6.4. Evaluation Metrics Analysis 

To provide a comprehensive evaluation of the trained models, Tables 6.2 to 6.4 present a 

structured comparison of the 98 distinct models generated in this study. These models are derived 

by combining various resampling techniques (e.g., SMOTE-ENN, Borderline-SMOTE, 

ADASYN, SMOTE-SVM, and RUS), feature selection and dimensionality reduction approaches 

(e.g., SHAP and PCA), and K-fold cross-validation methods (5-fold and 10-fold). The 

performance of each model is assessed across five evaluation metrics: F1 Score, balanced 

accuracy, ROC-AUC, PR-AUC, and Specificity. This tabular representation allows for a detailed 

comparison of how different combinations influence model effectiveness in addressing the 

backorder prediction task. 

Since classification accuracy is unable to capture model performance in class imbalance 

(CI) problems, especially for the minority classes, and does not account for the disparity in class 

sizes, we have used balanced accuracy as an evaluation metric. Classification accuracy can lead to 

misleading conclusions when dealing with imbalanced datasets (Ahmad Khan et al., 2024). In the 

current study, the XGBoost and Stacking models, combined with SMOTEENN and Random 

Under-Sampling (RUS) as resampling techniques, and SHAP for feature selection, using 10-fold 

cross-validation, achieved the highest balanced accuracy scores of 0.876 and 0.888, respectively. 

To evaluate the ability of a classifier to distinguish between classes, the AUC (Area Under 

the Curve) was used as a summary score of the ROC curve. Better model performance in class 

distinction is indicated by a higher AUC. Perfect classification is represented by a model with an 

AUC of 1, but all negatives are misclassified as positives by a model with an AUC of 0 and vice 

versa (Ahmad Khan et al., 2024). The findings demonstrate that, in terms of AUC, ensemble 

learning models perform better than conventional machine learning models. Moreover, in the 

adjusted approach—where PCA was omitted and the SHAP threshold was increased—Stacking, 

using SMOTEENN as a resampling technique and SHAP for feature selection, achieved the 

highest AUC score of 0.954, surpassing all other models (see Tables 6.2 to 6.4). 

An assessment metric for binary classification issues is the AUC-ROC curve. Plotting the 

True Positive Rate (TPR) versus the False Positive Rate (FPR) at different threshold levels is done 

by the AUC-ROC curve. Figures 6.12 to 6.25 provide a visual representation of the comparative 

performance through ROC curves for the trained models. These curves provide information on 

each model's capacity to distinguish between backordered and non-backordered instances by 

highlighting the trade-off between the true positive rate (sensitivity) and the false positive rate. By 
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visually comparing the ROC curves, Figures 6.12 to 6.25 emphasizes the strengths and weaknesses 

of various resampling and modeling combinations in achieving optimal classification outcomes. 

Together, tables 6.2 to 6.4 and figures 6.12 to 6.25 serve as critical tools for analyzing model 

performance, with tables 6 focusing on quantitative comparisons and Figure 6 providing intuitive 

visual insights into classifier discrimination power. 

Table 6-2: Comprehensive Evaluation Metrics of Model Training: Integration of Resampling Techniques, 

ML and Ensemble Methods, Feature Selection (SHAP and PCA), and 5-Fold CV 

Resampling 

Techniques 

Machine Learning Models 

Ensemble Learnings 

Evaluation Metrics 
ROC-

AUC 

PR-

AUC 

F1 

Score 
B-ACC Specificity 

SMOTEEN

N 

Neural Network 0.637 0.013 0.023 0.571 0.83 
K Nearest Neighbour 0.608 0.092 0.09 0.598 0.977 

Random Forest 0.826 0.044 0.135 0.589 0.99 
Gradient Boosting 0.797 0.047 0.108 0.586 0.985 

LightGBM  0.78 0.037 0.081 0.569 0.983 
XGBoosting 0.811 0.042 0.121 0.616 0.982 

Stacking 0.829 0.042 0.096 0.558 0.991 

SMOTESV

M 

Neural Network 0.669 0.014 0.046 0.549 0.973 
K Nearest Neighbour 0.583 0.049 0.069 0.542 0.99 

Random Forest 0.792 0.075 0.087 0.53 0.998 
Gradient Boosting 0.796 0.048 0.071 0.529 0.996 

LightGBM  0.821 0.038 0.032 0.513 0.994 
XGBoosting 0.854 0.044 0.033 0.513 0.994 

Stacking 0.781 0.072 0.04 0.514 0.997 

ADASYN 

Neural Network 0.701 0.033 0.067 0.567 0.978 
K Nearest Neighbour 0.594 0.107 0.083 0.583 0.979 

Random Forest 0.839 0.049 0.083 0.543 0.993 
Gradient Boosting 0.791 0.053 0.115 0.587 0.987 

LightGBM 0.761 0.039 0.139 0.603 0.988 
XGBoosting 0.784 0.046 0.154 0.619 0.987 

Stacking 0.863 0.051 0.071 0.555 0.985 

Borderline-

SMOTE 

Neural Network 0.711 0.024 0.063 0.591 0.963 
K Nearest Neighbour 0.584 0.051 0.07 0.542 0.99 

Random Forest 0.735 0.101 0.095 0.53 0.998 
Gradient Boosting 0.825 0.089 0.074 0.529 0.996 

LightGBM 0.831 0.039 0.036 0.513 0.995 
XGBoosting 0.664 0.019 0.062 0.603 0.956 

Stacking 0.728 0.08 0.093 0.53 0.998 
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Table 6-3: Comprehensive Evaluation Metrics of Model Training: Integration of Resampling Techniques, 

ML and Ensemble Methods, Feature Selection (SHAP and PCA), and 10-Fold CV 

Resampling 

Techniques 

Machine Learning Models 

Ensemble Learnings 

Evaluation Metrics 
ROC-

AUC 

PR-

AUC 

F1 

Score 
B-ACC Specificity 

SMOTEENN 

Neural Network 0.728 0.03 0.045 0.638 0.902 
K Nearest Neighbour 0.608 0.092 0.09 0.598 0.977 

Random Forest 0.802 0.074 0.1 0.572 0.987 
Gradient Boosting 0.797 0.047 0.108 0.586 0.985 

LightGBM  0.78 0.037 0.081 0.569 0.983 
XGBoosting 0.811 0.042 0.121 0.616 0.982 

Stacking 0.839 0.045 0.119 0.573 0.991 

SMOTESVM 

Neural Network 0.669 0.014 0.046 0.549 0.973 
K Nearest Neighbour 0.583 0.049 0.069 0.542 0.99 

Random Forest 0.763 0.071 0.091 0.53 0.998 
Gradient Boosting 0.796 0.048 0.071 0.529 0.996 

LightGBM  0.821 0.038 0.032 0.513 0.994 
XGBoosting 0.854 0.044 0.033 0.513 0.994 

Stacking 0.83 0.072 0.078 0.53 0.997 

ADASYN 

Neural Network 0.594 0.029 0.051 0.562 0.968 
K Nearest Neighbour 0.594 0.107 0.083 0.583 0.979 

Random Forest 0.808 0.073 0.081 0.543 0.992 
Gradient Boosting 0.825 0.049 0.128 0.588 0.989 

LightGBM  0.761 0.039 0.139 0.603 0.988 
XGBoosting 0.78 0.038 0.138 0.617 0.985 

Stacking 0.815 0.042 0.12 0.588 0.988 

Borderline-

SMOTE 

Neural Network 0.736 0.018 0.038 0.535 0.976 
K Nearest Neighbour 0.584 0.051 0.07 0.542 0.99 

Random Forest 0.735 0.102 0.095 0.53 0.998 
Gradient Boosting 0.804 0.106 0.113 0.545 0.996 

LightGBM  0.809 0.039 0.033 0.513 0.995 
XGBoosting 0.848 0.044 0.098 0.544 0.995 

Stacking 0.816 0.085 0.091 0.53 0.998 

Random 

Under 

Sampling 

Neural Network 0.839 0.023 0.056 0.782 0.847 
K Nearest Neighbour 0.873 0.362 0.033 0.784 0.663 

Random Forest 0.888 0.0795 0.043 0.801 0.760 
Gradient Boosting 0.878 0.044 0.039 0.810 0.714 

LightGBM  0.889 0.034 0.052 0.860 0.782 
XGBoosting 0.828 0.036 0.045 0.763 0.807 

Stacking 0.897 0.041 0.048 0.827 0.780 
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Table 6-4: Comprehensive Evaluation Metrics of Model Training: Integration of Resampling Techniques, 

ML and Ensemble Methods, Feature Selection (SHAP), and 10-Fold CV 

Resampling 

Techniques 

Machine Learning Models 

Ensemble Learnings 

Evaluation Metrics 
ROC-

AUC 

PR-

AUC 

F1 

Score 
B-ACC Specificity 

SMOTEENN 

Neural Network 0.894 0.086 0.065 0.856 0.838 
K Nearest Neighbour 0.742 0.185 0.115 0.671 0.967 

Random Forest 0.895 0.141 0.218 0.681 0.987 
Gradient Boosting 0.915 0.156 0.22 0.651 0.99 

LightGBM  0.93 0.189 0.202 0.636 0.99 
XGBoosting 0.944 0.136 0.146 0.876 0.94 

Stacking 0.954 0.144 0.265 0.638 0.995 

ADASYN 

 

Neural Network 0.834 0.085 0.056 0.795 0.841 
K Nearest Neighbour 0.7 0.171 0.127 0.659 0.974 

Random Forest 0.908 0.131 0.268 0.668 0.992 
Gradient Boosting 0.908 0.17 0.218 0.592 0.997 

LightGBM  0.934 0.138 0.161 0.576 0.995 
XGBoosting 0.947 0.166 0.17 0.823 0.959 

Stacking 0.907 0.147 0.216 0.622 0.993 

SMOTESVM 

Neural Network 0.822 0.066 0.09 0.692 0.947 
K Nearest Neighbour 0.646 0.17 0.178 0.635 0.988 

Random Forest 0.917 0.165 0.054 0.515 0.999 
Gradient Boosting 0.946 0.156 0.14 0.546 0.998 

LightGBM  0.926 0.193 0.12 0.545 0.997 
XGBoosting 0.937 0.189 0.266 0.758 0.984 

Stacking 0.894 0.233 0.205 0.562 0.999 

Borderline-

SMOTE 

Neural Network 0.806 0.112 0.101 0.641 0.969 
K Nearest Neighbour 0.677 0.178 0.165 0.619 0.989 

Random Forest 0.904 0.161 0.105 0.531 0.999 
Gradient Boosting 0.936 0.194 0.208 0.577 0.998 

LightGBM  0.935 0.21 0.2 0.577 0.997 
XGBoosting 0.929 0.187 0.262 0.787 0.981 

Stacking 0.941 0.237 0.205 0.562 0.999 

Random 

Under 

Sampling 

Neural Network 0.785 0.019 0.041 0.634 0.892 
K Nearest Neighbour 0.866 0.113 0.033 0.792 0.647 

Random Forest 0.92 0.168 0.062 0.828 0.844 
Gradient Boosting 0.933 0.106 0.069 0.887 0.837 

LightGBM  0.926 0.116 0.071 0.851 0.859 
XGBoosting 0.93 0.091 0.065 0.857 0.839 

Stacking 0.938 0.117 0.069 0.888 0.839 

 



68 
 

 
Figure 6.12: ROC Curve - SMOTEENN 10-Fold Cross Validation 

 
Figure 6.13: ROC Curve - SMOTEENN 5-Fold Cross Validation 
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Figure 6.14: ROC Curve - SMOTE-SVM 10-Fold Cross Validation 

 
Figure 6.15: ROC Curve - SMOTE-SVM 5-Fold Cross Validation 
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Figure 6.16: ROC Curve - ADASYN-10 Fold Cross Validation 

 
Figure 6.17: ROC Curve - ADASYN– 5-Fold Cross Validation 
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Figure 6.18: ROC Curve - Borderline-SMOTE-10 Fold Cross Validation 

 

 
Figure 6.19: ROC Curve - Borderline-SMOTE 5-Fold Cross Validation 
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Figure 6.20: ROC Curve - Random Under Sampling-10 Fold Cross Validation (Without PCA) 

 

 
Figure 6.21: ROC Curve - Random Under Sampling-10 Fold Cross Validation 
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Figure 6.22: ROC Curve - ADASYN -10-Fold Cross Validation (Without PCA) 

 

 
Figure 6.23: ROC Curve - SMOTEENN -10-Fold Cross Validation (Without PCA) 
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Figure 6.24: ROC Curve - Borderline-SMOTEENN -10-Fold Cross Validation (Without PCA) 

 

 
Figure 6.25:  ROC Curve - SMOTESVM -10-Fold Cross Validation (Without PCA) 
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7. Discussion of the results 

The results of our research indicate that traditional machine learning models struggle with class 

imbalance compared to ensemble techniques. This broader comparison provides a comprehensive 

understanding of model performance, identifying strengths and limitations within the supply chain 

context. Furthermore, this research advances the field by integrating ensemble techniques, such as 

XGBoost, LightGBM, and Stacking, which demonstrated superior performance in handling class 

imbalance and improving prediction accuracy. In addition to model selection, this study 

emphasizes the critical role of resampling techniques (SMOTE-ENN, ADASYN, RUS) in 

addressing class imbalance, ensuring that predictions are more reliable and balanced. By 

combining ensemble learning with effective resampling techniques, this research offers a novel 

and practical approach to improving predictive modeling in supply chain management. 

Class imbalance is a prevalent issue in a variety of applications, such as credit card fraud 

detection, corporate bankruptcy prediction, and loan approval modeling (Makki et al., 2023); 

medical imaging for brain disease diagnosis (Shoeibi et al., 2023); image segmentation and 

classification (Kaur and Singh, 2023); medical diagnostics (Zhu et al., 2018); disease diagnosis 

(Kim and Hwang, 2022); and prediction methods in biotechnology and medicine (Osama et al., 

2023). This issue is also prevalent in the manufacturing and retail industries, where imbalanced 

datasets are a frequent obstacle in predictive modeling. As datasets grow larger and more complex, 

the challenge for machine learning models to effectively handle class imbalance becomes 

increasingly significant, often requiring advanced resampling techniques and feature selection 

methods to achieve balanced and accurate predictions. 

In this study, we explored 98 possible combinations of training models by applying various 

machine learning and ensemble learning techniques combined with resampling methods, feature 

selection using SHAP, and dimensionality reduction using PCA. However, our findings indicate 

that the combination of resampling techniques with both SHAP and PCA did not yield satisfactory 

results in terms of AUC and balanced accuracy across all models. In contrast, when dimensionality 

reduction was excluded, and the SHAP threshold was increased (resulting in 10 selected features), 

all models showed significant performance improvements. 

For instance, combining resampling techniques with SHAP resulted in higher AUC-ROC and 

balanced accuracy (B-ACC) values across all models, particularly for ensemble learning methods. 

Among these, Stacking consistently outperformed other models. Specifically, with the 

combination of SMOTEENN and SHAP, Stacking achieved an AUC-ROC of 0.954 and a balanced 

accuracy of 0.638, while the XGBoosting Model reached an AUC-ROC of 0.944. This trend was 

also observed with other SMOTE-based techniques such as Borderline-SMOTE and SMOTE-

SVM. 

Interestingly, Random Under Sampling (RUS) combined with SHAP showed comparable 

performance to other resampling techniques, with all ensembles learning models achieving AUC-

ROC scores above 0.92 and specifically balanced accuracy values (higher than 0.85) that was 

notably better than those achieved with SMOTE and ADASYN. Under this configuration, 

Stacking achieved an AUC-ROC of 0.938 and a balanced accuracy of 0.888. Even when 

dimensionality reduction (PCA) was applied alongside SHAP, RUS maintained strong 

performance, suggesting its robustness as a resampling method in this context. 

Our results suggest that dimensionality reduction using PCA is not effective or applicable for 

this analysis, as it consistently underperformed compared to setups without PCA. However, 

Random Under Sampling emerged as a key technique for backorder prediction, achieving the 

highest balanced accuracy across all trained models compared to other resampling methods. 
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Additionally, our findings highlight the superior performance of SMOTEENN compared to 

other SMOTE-based and other resampling techniques. This emphasizes the role of Edited Nearest 

Neighbors (ENN) in reducing noise, resulting in a cleaner and more balanced dataset that 

significantly enhances model accuracy in detecting backorders. Notably, to the best of our 

knowledge and until the preparation of this research, this study is the first to explore the application 

of SMOTEENN on this specific dataset as a severely imbalanced one, marking an innovative 

contribution to the literature. 

Lastly, our research demonstrates that ensemble learning models perform better than 

conventional machine learning models, with Stacking continuously outperforming other ensemble 

techniques. However, in some cases, the XGBoosting Model demonstrated slightly higher 

balanced accuracy values, indicating that both approaches are highly effective for imbalanced 

backorder prediction tasks. These findings reinforce the importance of carefully selecting 

resampling techniques and model architectures to address class imbalance and improve prediction 

accuracy. 

Our results reflect the low values of the F1 score and AUC-PR indicating the model struggles 

with effectively identifying the minority class. The model is obviously biased towards predicting 

the majority class due to the imbalance in the dataset, which results in poor performance on the 

minority class. This has a direct impact on the F1 score and AUC-PR. These metrics emphasize 

minority class performance and are highly affected by a low recall or precision. 

Regarding the main research question, the following points are noteworthy: 

The results indicate that while advanced machine learning models such as K-nearest neighbors 

(KNN) and neural networks (NN) face challenges in handling class imbalance, they still 

outperform traditional forecasting methods in backorder prediction accuracy within supply chain 

management. Despite their limitations in addressing imbalanced data, these models demonstrate 

improved predictive capabilities, making them more effective than conventional approaches in 

identifying potential backorders. 

For the second question, the findings of this research emphasize the critical role of ensemble 

learning techniques—specifically staking model, and XGBoost—in enhancing the accuracy and 

reliability of backorder prediction models. Among these, the Stacking model demonstrated the 

highest overall performance, achieving the best AUC-ROC and balanced accuracy scores across 

various resampling techniques. These results confirm that ensemble learning methods outperform 

traditional machine learning models, making them a superior choice for backorder prediction in 

supply chain management. 

To answer question three (Q3), the findings of this study demonstrate that data preprocessing 

techniques, particularly resampling methods, have a significant impact on the performance of 

machine learning models in backorder prediction. Among the resampling methods tested, 

SMOTEENN consistently outperformed other SMOTE-based techniques by effectively balancing 

the dataset while reducing noise, leading to enhanced model accuracy. Additionally, random under 

sampling (RUS) emerged as a highly effective technique, achieving the highest balanced accuracy 

across all trained models, surpassing SMOTE and ADASYN in performance. These results 

highlight the importance of carefully selecting resampling strategies to mitigate class imbalance 

issues in backorder prediction. Furthermore, while missing value imputation was not the primary 

focus of this study, advanced imputation methods can further refine data quality and contribute to 

model stability and reliability. 

Finally, feature selection using SHAP played a crucial role in improving backorder prediction 

accuracy by identifying the most relevant features while eliminating less impactful ones. When 
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the SHAP threshold was increased, resulting in 10 selected features, all models exhibited 

significant performance improvements, particularly in terms of AUC-ROC and balanced accuracy. 

However, dimensionality reduction using PCA failed to yield similar improvements and, in some 

cases, led to decreased model performance. This is likely because PCA transforms features into 

uncorrelated components, potentially discarding critical domain-specific information necessary 

for accurate backorder prediction. In contrast, SHAP preserves interpretability and feature 

importance, ensuring that the most meaningful variables contribute to model predictions. Thus, 

while feature selection enhances model efficiency, PCA does not appear to be a suitable 

dimensionality reduction technique for this problem. 

Results show that stacking model outperforms other models. Stacking incorporates multiple 

machine learning algorithms, each trained with different learning mechanisms (e.g., tree-based 

models like XGBoost and LightGBM, distance-based models like KNN, and deep learning models 

like Neural Networks). By combining models with varied strengths, stacking enhances 

generalization and predictive robustness. 

Stacking is an ensemble learning technique that combines multiple base models to enhance 

predictive performance. The meta-learner in stacking is trained on the predictions of these base 

models, learning how to optimally combine their outputs. Instead of relying on a single model's 

decision, the meta-learner refines predictions by assigning appropriate weights to each base 

model's contribution, leading to better overall accuracy. Traditional ensemble methods like 

bagging (e.g., random forest) primarily reduce variance, while boosting methods (e.g., Gradient 

Boosting, XGBoost, LightGBM) reduce bias by sequentially improving weak learners. Stacking 

benefits from both approaches by integrating models that minimize both bias and variance, leading 

to a well-balanced predictive model (Soni, 2021 and Bajaj, 2024) 

In this study, resampling techniques (such as SMOTEENN and RUS) played a crucial role in 

balancing the dataset. Stacking model further enhances performance by allowing models trained 

on resampled data to collectively refine predictions, reducing misclassification in the minority 

class. The study demonstrated that feature selection with SHAP significantly improved model 

performance. The stacked model, with its multiple base learners, was able to effectively utilize 

selected features and optimize feature interactions that single models might overlook. The results 

indicated that the stacked model achieved the highest AUC-ROC (0.954) and performed well in 

balanced accuracy, outperforming other ensemble methods like XGBoost and LightGBM. This 

highlights its ability to consistently distinguish between backordered and non-backordered 

products. 

This study advances the field of backorder prediction within supply chain management by 

implementing a more comprehensive methodology than previous research. Unlike prior studies, 

which typically employed only one or two resampling techniques, this research systematically 

evaluated five different resampling techniques (SMOTE-ENN, Borderline-SMOTE, SMOTE-

SVM, ADASYN, and RUS), allowing for a more in-depth analysis of class imbalance handling. 

Furthermore, feature selection and feature engineering techniques, particularly SHAP and PCA, 

were incorporated to assess their impact on model performance, which was absent in most previous 

studies. The implementation of diverse evaluation metrics, including F1 Score, balanced accuracy, 

ROC-AUC, PR-AUC, and Specificity, ensures that this research provides a more holistic 



78 
 

assessment of model performance, in contrast to prior studies that relied solely on accuracy—an 

unreliable measure for imbalanced datasets. 

Comparing these findings with previous studies, Hajek and Zoynul Abedin (2020) utilized 

SMOTE and CBUS as resampling techniques, achieving an ROC-AUC of 91.57% with a Random 

Forest model. However, they did not incorporate feature selection, potentially limiting the 

interpretability of their results. Similarly, Islam and Amin (2020) reported higher AUC values 

(0.959 for Distributed Random Forest and 0.946 for GBM) using SMOTE, yet their study did not 

explore feature selection or consider a broader range of resampling methods. De Santis et al. (2017) 

achieved comparable results, with AUC values of 0.9482, 0.9441, and 0.9478 for Gradient 

Boosting, Random Forest, and BLAG, respectively, using SMOTE and RUS. However, they did 

not incorporate feature selection or feature engineering techniques, which may have affected their 

models' robustness. Ntakolia et al. (2022) employed Recursive Feature Elimination (RFE) with 

Random Forest for feature selection and used RUS as the resampling technique. They achieved 

AUC scores of 0.95 for RF, 0.80 for Logistic Regression, and 0.84 for SVM, demonstrating that 

feature selection can enhance model performance. In contrast, this study employed SHAP, which 

provides more interpretability than RFE by quantifying individual feature contributions. 

Additionally, the present research tested multiple machine learning models and ensemble learning 

approaches, providing a more comprehensive analysis. Shajalal et al. (2022) focused on CNN 

models, incorporating ADASYN and SMOTE as resampling techniques and SHAP for feature 

selection, achieving an AUC of 0.9489. However, their reliance on accuracy as the primary 

evaluation metric undermines the reliability of their conclusions due to the severe class imbalance 

in the dataset. Similarly, Ali et al. (2024) used random down sampling and feature importance for 

feature selection but reported only an accuracy of 0.88 for Random Forest, neglecting critical 

metrics like ROC-AUC and balanced accuracy. 

One of the most significant distinctions of this study is the superior performance of the 

Stacking model, which was not identified as the best-performing model in any prior research. 

While previous studies have primarily highlighted Random Forest, GBM, or CNN as top-

performing models, this research demonstrates that stacking model, particularly when combined 

with SMOTEENN or RUS as resampling techniques and SHAP for feature selection, achieves the 

highest AUC-ROC (0.954) and balanced accuracy (0.888). This finding emphasizes the advantage 

of integrating multiple base models into a meta-learner to optimize predictive accuracy and 

robustness. Overall, this study contributes to the literature by demonstrating that a more 

comprehensive approach—including diverse resampling methods, rigorous feature selection, and 

appropriate evaluation metrics—can significantly enhance backorder prediction models. The 

results confirm the effectiveness of ensemble learning, particularly Stacking and XGBoost, in 

handling imbalanced datasets and improving predictive performance beyond what previous studies 

have achieved. 
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8. Conclusion  

In this chapter, we will discuss the limitations that influenced our findings and provide 

suggestions for future research. This study contributes to the literature by demonstrating that the 

integration of advanced machine learning techniques, such as ensemble learning models and 

innovative data preprocessing methods, can significantly enhance backorder prediction in supply 

chain management. 

Additionally, this work emphasizes how crucial feature selection, resampling, and 

hyperparameter tuning strategies are for enhancing machine learning algorithms' performance on 

imbalanced datasets. By addressing class imbalance with methods like SMOTEENN and 

ADASYN, leveraging SHAP for feature importance analysis, and employing optimized cross-

validation strategies, this research provides a robust framework for handling the complexities of 

real-world supply chain datasets. In this study the combination of different resampling techniques, 

feature selection methods, hyperparameter tuning, machine learning and ensemble learning 

techniques led to training of totally 98 different models. The specific findings of this research 

emphasize on the critical role of methodology in developing reliable predictive models for 

inventory management and backorder forecasting. 

8.1. Remarks 

Backorder management plays an essential role in inventory and supply chain management. 

Incorrect predictions about backorders can disrupt inventory control and production processes. It 

is the reason that accurate predictions are crucial to reducing the risk of backorders, even though 

they are relatively rare. This study focuses on using various resampling techniques and machine 

learning methods, including ensemble learning, to tackle the imbalanced dataset and make precise 

backorder predictions. 

The findings show that ensemble learning outperformed classic machine learning models (e.g., 

Neural Networks and K-Nearest Neighbors) across all combinations of resampling methods and 

feature selection techniques. Our research contributes to the existing literature on ensemble 

learning models such as Gradient Boosting and Random Forest, highlighting their effectiveness in 

backorder prediction. Additionally, by employing various resampling methods—including 

SMOTE, RUS, and ADASYN—we demonstrated the critical role these techniques play in 

addressing the challenge of severely imbalanced classes.  

In this study, the SHAP technique has been employed to evaluate the contribution of features 

to the performance of the predictive model for backorder classification. SHAP also provides 

interpretability for model predictions by identifying the impact of individual features, thereby 

enhancing the transparency and explainability of the machine learning models. The original dataset 

includes 22 variables; however, SHAP identified 10 key features as the most influential. 

This study has made several significant contributions within the supply chain context. 

First, the research delivers a robust and reliable forecasting model that can be effectively used 

for backorder prediction and inventory management. The proposed model is applicable in the 

production and retail sectors for both raw materials and finished goods, helping to minimize the 

risks of backorders, client loss, stockouts, or excess inventory—factors that can significantly 

impact a company’s profitability. 

Additionally, by emphasizing scalable and dependable solutions, this research seeks to 

improve decision-making procedures, save operating expenses, boost supply chain effectiveness, 

and lessen the bullwhip impact, which can upset the supply-demand balance. 
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Finally, this thesis provides a practical and actionable solution that can be implemented to 

improve supply chain and inventory management practices across various industries. 

8.2. Managerial Implications 

Managers and decision-makers are among the beneficiaries of this research. The managerial 

implications of this research are significant for companies seeking to improve operational 

efficiency and decision-making in supply chain management, particularly in addressing backorder 

challenges. By demonstrating the superior performance of ensemble learning models such as 

XGBoost and stacking model, this study provides a clear pathway for managers to implement 

advanced predictive techniques to mitigate the impact of class imbalance in their datasets. The 

findings emphasize the importance of selecting appropriate resampling methods, with 

SMOTEENN and Random Under Sampling emerging as particularly effective strategies for 

enhancing model accuracy and balanced predictions. These insights can guide managers in refining 

their data preprocessing workflows to improve forecast reliability. 

Moreover, the research highlights that while feature selection using SHAP adds considerable 

value by identifying the most impactful variables, dimensionality reduction through PCA may not 

be suitable for all predictive contexts, particularly for backorder forecasting. This underscores the 

need for targeted, problem-specific approaches when implementing machine learning solutions. 

Managers can leverage these findings to allocate resources more effectively, prioritize the adoption 

of ensemble learning methods, and focus on hybrid resampling techniques that deliver cleaner and 

more balanced datasets, ultimately leading to improved forecasting precision and operational 

resilience in dynamic supply chains. 

Based on the findings of this research, several key recommendations can be made for supply 

chain managers seeking to enhance backorder prediction and optimize inventory management 

through machine learning: 

8.2.1. Focus on the Most Important Variables for Backorder Prediction 

Through SHAP-based feature selection, the most influential variables in predicting backorders 

were identified. Supply chain managers should prioritize these key variables when implementing 

predictive models: 

• Inventory levels (National_inv): Critical for determining stock availability. 

• Lead time: Helps in estimating delays in replenishment. 

• Forecasting variables (forecast_3_month, forecast_9_month): Provide predictive insights 

into future demand. 

• Sales history (1-month, 3-month, 6-month, and 9-month forecasts): Essential for tracking 

demand trends. 

• Supplier performance (perf_6_month_avg and perf_12_month_avg): Helps assess 

reliability. 

By focusing on these variables, supply chain managers can ensure that predictive models 

capture the most relevant information for backorder forecasting. 
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8.2.2. Choose the Right Machine Learning Model 

 The findings indicate that Stacking consistently outperforms other models in terms of 

predictive accuracy and robustness. However, if managers are looking for a single, stand-alone 

model, XGBoost is the most effective individual model for backorder prediction. 

• Best individual model: XGBoost 

o Strong performance in handling imbalanced datasets. 

o High AUC-ROC and balanced accuracy compared to other models. 

o Well-suited for real-world supply chain applications. 

• Best overall model: stacking model 

o Combines the strengths of multiple models. 

o Learns from the predictions of base models, optimizing overall performance. 

o Demonstrated superior results with SMOTEENN and RUS resampling techniques. 

Managers should prioritize Stacking for the most accurate backorder predictions while 

considering XGBoost if computational efficiency or simplicity is a concern. 

8.2.3. Implementing and using machine learning models in supply chain operations 

To effectively implement machine learning in supply chain management, managers should follow 

these steps: 

• Data collection & preparation 

o Ensure accurate and comprehensive data collection, particularly for the key variables 

identified. 

o Use advanced imputation techniques (such as MICE) to handle missing values instead 

of discarding incomplete records. 

• Handling class imbalance 

o Apply resampling techniques (SMOTEENN, RUS) to balance datasets before training 

models. 

o Use proper evaluation metrics like balanced accuracy, AUC-ROC, and PR-AUC, 

instead of relying solely on Accuracy, which may be misleading in imbalanced 

datasets. 

• Model deployment & integration 

o Integrate predictive models into supply chain management systems (e.g., ERP 

software, inventory tracking platforms). 

o Implement real-time backorder alerts based on model outputs to allow for proactive 

decision-making. 

o Use explainability tools like SHAP to interpret model predictions and improve trust 

among stakeholders. 

• Continuous monitoring & model updating 

o Regularly retrain models with updated data to maintain accuracy over time. 

o Monitor model performance and adjust hyperparameters as needed to optimize 

results. 
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By adopting these recommendations, supply chain managers can significantly improve their 

ability to predict and prevent backorders, leading to better inventory planning, reduced stockouts, 

optimized supply chain efficiency, and improved customer satisfaction. 

8.3.Limitation 

A key limitation of this research is the use of a stratified subset of the original dataset, which 

contained over 1.6 million observations. Due to computational constraints, a reduced dataset of 

16,000 samples was employed for analysis. While this approach preserved the class balance and 

key characteristics of the original data, it may have limited the model's ability to capture all 

underlying patterns in the larger dataset. Additionally, GridSearchCV, a robust hyperparameter 

tuning method, was not utilized because it was computationally demanding. Given the scope of 

the study, which involved evaluating seven different machine learning and ensemble learning 

models combined with five resampling techniques, allocating the necessary resources to perform 

GridSearchCV was not feasible. 

8.4. Future research 

Other hyperparameter tuning methods or the efficiency of other feature extraction approaches 

on classification problems including backorders or imbalanced datasets could be the subject of 

future research. In general, this research offers significant perspectives for scholars and 

professionals engaged in supply chain forecasting and backorder classification. 

Future research can focus on and develop other aspects of this study. For instance, exploring 

other ensemble learning methods, such as bagging, or analyzing classical machine learning 

methods could provide further improvements. Additionally, incorporating more resampling 

techniques and data augmentation methods that primarily focus on the minority class would 

enhance model performance. Future research could explore the integration of other 

hyperparameter tuning methods, such as GridSearchCV or Bayesian Optimization, to address the 

computational challenges posed by GridSearchCV. 

o Future research could introduce a cost-sensitive learning approach that prioritizes backorder 

predictions with an economic impact model. This could be similar to the approach by Hajek 

and Abedin (2020) but integrated into the training phase of the machine learning models used 

in this study. 

o Most studies discussed in this field rely on historical data. However, as supply chains become 

more dynamic, real-time data could provide better predictive capabilities. 

o Real-Time Data Processing: Future research could integrate streaming data, such as real-time 

demand fluctuations, into predictive models to improve their accuracy and responsiveness to 

changing conditions. 

o While most models focus on a specific supply chain, learning across industries could add 

additional value. Transfer Learning: Applying transfer learning techniques by training models 

on one dataset (e.g., retail) and fine-tuning them for another industry (e.g., manufacturing) 

could increase robustness and adaptability across domains. 

o Future work could investigate how specific interactions between features (e.g., lead time and 

inventory levels) can be explicitly modeled using interaction-based approaches such as Deep 

Feature Synthesis (DFS). 

o Few studies directly address the impact of sudden supply chain disruptions, such as 
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geopolitical events or pandemics, on backorder predictions, researching on this field is another 

interesting idea. 

o Developing models that incorporate external data, such as global events, to anticipate 

backorders could involve scenario modeling and stress-testing predictions under various 

disruption scenarios.  
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