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Abstract

Imprints of vector-like fermions on electroweak vacuum stability in extended
Higgs frameworks

Kıvanç Yi�it Çıngılo�lu, Ph.D.
Concordia University, 2025

The issue of electroweak vacuum stability in the Standard Model remains a significant
theoretical challenge. This thesis investigates the role of vector-like fermions in stabilizing
the electroweak vacuum. We focus on three scenarios: the Higgs-Scalar Model with
Vector-Like Quarks, Two-Higgs Doublet Model with Vector-Like Quarks, and Vector-Like
Leptons in the Standard Model, exploring how the introduction of these additional fermions
can modify the stability of the vacuum. We examine all gauge-anomaly-free vector-like
representations under the SM gauge symmetry, and we analyze each of these models,
taking into account all experimental constraints and electroweak precision observables, and
considering both direct and indirect constraints from collider and cosmological data. The
work shows that, under certain conditions for the vector-like fermion masses and mixing
parameters, the electroweak vacuum can be stabilized in all models studied, providing a
viable mechanism for addressing the vacuum stability problem in the Standard Model.
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Chapter 1

Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012 [4, 5],
culminating a decades-long quest, provided a key piece to the Standard Model (SM) of
particle physics. This discovery not only validated the electroweak symmetry breaking
mechanism proposed in the 1960s by Higgs and others, but also set the stage for a deeper
exploration of the fundamental forces and particles in nature. However, while the Higgs
boson itself was an essential missing piece, its discovery serves as a marker for the many
questions that remain unanswered in the SM, and signals the possible presence of new
physics beyond it. In particular, understanding whether the Higgs particle matches the
exact predictions of the SM, or if deviations exist, could o�er insight into physics at energy
scales far beyond the reach of current experiments. Despite its success, the Standard Model
remains an e�ective theory that cannot provide a complete description of nature. Several
open questions still linger, such as the nature of dark matter, the origin of the matter-
antimatter asymmetry, and the elusive role of gravity in unification. Yet, rather than
focusing on these well-known inconsistencies, the hunt for new physics is increasingly focused
on the detailed properties of the Higgs boson and its interactions, as small deviations from
SM predictions could reveal entirely new realms of physics.

One avenue of exploration involves the study of extended Higgs sectors. Models such
as the Higgs Singlet Model (HSM), the Two-Higgs Doublet Model (THDM) and the
Higgs Triplet Model (HTM) introduce additional scalar fields, allowing for richer dynamics
in electroweak symmetry breaking. These extensions might naturally arise from more
fundamental frameworks such as supersymmetry (SUSY) [6, 7], composite Higgs theories,
or high-dimensional Higgs models (HEIDI) [8, 9], all of which aim to address not just
the Higgs sector, but other fundamental issues such as hierarchy problems and quantum
gravity. In SUSY, for example, the Higgs sector contains a richer array of particles,
o�ering potential candidates for dark matter (such as the lightest supersymmetric particle,
often a neutralino) while simultaneously addressing the fine-tuning problem in the SM.
Similarly, axion models [10, 11] provide an intriguing solution to the strong CP problem,
and in doing so, also o�er potential candidates for dark matter. On a more speculative
frontier, string theory [12–14] and extra dimensions [15, 16] promise a unified framework
that could potentially explain all fundamental interactions, incorporating gravity alongside
the other forces described in the SM. Another critical approach is to explore e�ective field
theories (EFTs) [17,18], where new physics is encoded in higher-dimensional operators that
modify the SM at high energies. These modifications could manifest themselves in small
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deviations from the SM predictions, allowing researchers to search for "fingerprints" of new
physics even in the absence of direct discovery of new particles. This model-independent
approach, especially in the context of the Higgs interactions, is a fertile ground for exploring
Beyond the Standard Model (BSM) physics without making strong assumptions about the
underlying theory.

One of the most distinctive features of particle physics is the concept of renormalization.
This procedure is essential in quantum field theory (QFT) as it allows the removal of
infinities that arise in loop calculations. In simple terms, renormalization involves redefining
the parameters of the theory (such as masses and coupling constants) to absorb these
infinities and obtain finite, physically meaningful results. While renormalization is a
standard tool in most quantum field theories, its uniqueness in particle physics lies in
the way it addresses the structure of fundamental forces. The SM is a renormalizable
theory, which means that, despite its apparent infinities at higher orders in perturbation
theory, the theory can be consistently defined and calculated at all orders. This is a
significant property, distinguishing the SM from non-renormalizable theories, such as those
that might describe quantum gravity. Moreover, the renormalization of gauge theories like
QCD (quantum chromodynamics) and the electroweak interactions is particularly elegant,
where symmetry principles dictate the structure of the theory and provide a pathway for
resolving divergences. At higher orders, renormalization is more than just a computational
tool; it also embodies a deeper conceptual principle about the nature of quantum fields and
the structure of interactions at di�erent scales. The sophisticated techniques required to
compute corrections beyond leading order, such as next-to-leading Order (NLO) or even
next-to-next-to-leading order (NNLO) calculations, have become a cornerstone of precision
tests of the Standard Model and for making predictions for new physics scenarios.

To study new physics, physicists rely on advanced techniques from QFT, particularly in
the context of high-energy collider experiments. The calculation of particle interactions
often involves handling loop integrals, virtual particles, and divergences. One of the most
challenging tasks in this domain is managing infrared (IR) and ultraviolet (UV) divergences
that arise in loop diagrams. IR divergences appear when massless particles (like photons or
gluons) are involved in low-energy processes. These can lead to an infinite contribution when
integrating over momentum space. The Kinoshita-Lee-Nauenberg (KLN) theorem [19, 20]
provides a way to handle such divergences by showing that when real and virtual corrections
are combined, the infinities cancel out, yielding finite, observable results. This requires the
development of sophisticated subtraction schemes, often called real-virtual subtraction or
jet algorithms, to cancel the IR divergences in actual calculations. UV divergences, on the
other hand, arise when particles interact at high energies. These divergences are removed
through the process of renormalization, where one systematically redefines the parameters
in the theory (masses, coupling constants, etc.) to absorb the infinities. Renormalization
schemes such as MS (modified minimal subtraction) or on-shell renormalization provide the
framework for handling these divergences, leading to finite, physical predictions.

Moreover, techniques like lattice QCD [21–23] are now extensively used for non-perturbative
calculations, where the strong force governs the interactions between quarks and gluons.
Lattice simulations provide a direct numerical approach to studying the strong interaction
at low energies, allowing for precise calculations of hadronic quantities that are otherwise
di�cult to obtain analytically. Another important tool in the search for new physics is
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Monte Carlo simulations, which are widely used to model particle collisions and detector
responses. These simulations are crucial for understanding how BSM signals might emerge
in high-energy collisions, such as those expected at future colliders or from rare decays. The
accurate simulation of such events relies on both perturbative QCD and non-perturbative
techniques, providing a robust framework for comparison with experimental results.

The study of new physics BSM often involves addressing long-standing issues that are
not easily resolved by traditional perturbative methods alone. One such issue is the
stability of the electroweak vacuum in the SM, which is sensitive to quantum corrections
at high energy scales. While techniques like loop calculations, renormalization, and
Monte Carlo simulations provide powerful tools for analyzing particle interactions, they
are also critical in understanding the stability of the Higgs potential. The SM itself
faces a potential instability at high energies due to large corrections to the Higgs self-
coupling, which could lead to a destabilization of the electroweak vacuum. Here, the
introduction of vector-like fermions (VLFs) o�ers a compelling solution. By mixing with
the third-generation fermions through Yukawa interactions, VLFs modify the behavior of
the Higgs potential, potentially stabilizing the vacuum. Their contribution can be studied
using the same advanced techniques—loop integrals, renormalization group equations, and
precision observables—that are used to handle divergences in high-energy physics. Thus,
the inclusion of VLFs not only provides a framework for solving a theoretical challenge
but also involves the application of sophisticated computational and theoretical methods to
ensure consistency with experimental data and the stability of the electroweak vacuum.

This is the issue we tackle here, and which we explore more in the following chapters.
This thesis is structured as follows:

• We give the theoretical basics in Chapter 2, where the SM is briefly discussed along
with some important topics pertaining to the Higgs boson and some of the open
problems in the current state of particle physics.

• Chapter 3 is mainly focused on the mechanism by which electroweak vacuum
instability occurs in the SM due to the renormalization process in QFT. We also
show how the gauge and fermionic sectors a�ect this outcome using a conventional
method in QFT. We conclude the chapter by presenting an approximate lifetime for
the metastable vacuum, assuming there is no additional mechanism that prevents it
from decaying to a lower energy configuration.

• In Chapter 4, we extend the discussion to the main motivation of this thesis by
exploring the e�ects of VLFs on renormalization group equations (RGEs). The
modifications due to VLFs are twofold: they either manifest directly at the RGE level
or alter the running of the SM couplings through portal e�ects. The RGE formalism
we adopt here will also be useful for the research we conduct in Chapters 5, 6 and 7.

• Chapter 5 is devoted to the e�ects of vector-like quarks (VLQs) in the Higgs Singlet
Model (SM model augmented by a Higgs singlet field). The driving goal here is to
extract the parameter space that survives the vacuum stability condition by allowing
VLQs to couple to the SM quarks through the Yukawa portal. We further apply
electroweak precision observables to check for agreement with the RGE results.
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• In Chapter 6, we extend the discussion of the e�ects of the VLQs in the Two-Higgs
Doublet Model (THDM) (the SM augmented by a Higgs doublet field), up to next-
to-leading order (NLO), where the vacuum stability condition becomes more complex
due to the increased number of couplings and scalar particles. Fermion coupling to the
Higgs doublets di�ers between type-I and type-II THDM models, which drastically
a�ects the influence of VLQs on the running couplings and the parameter space. We
compare the stability results for the two types of THDM when VLQs are present,
although the oblique corrections from VLQs remain insensitive to the specific THDM
type.

• Chapter 7 attempts to answer the radical question of whether the electroweak vacuum
in the SM can be stabilized without an additional scalar. Although VLFs mitigate
vacuum instability at the RGE level, their mass is largely constrained for uncolored
flavors. Vector-like leptons (VLLs) can still be lighter than VLQs. Given that a
sub-TeV-scale extension of the SM with leptons having non-chiral partners could
create a scenario in which the vacuum remains stable up to the Planck scale, we
further show that the allowed parameter space is extended by two-loop corrections.
Furthermore, we check whether the mass regime of VLLs, as inferred from electroweak
precision observables, is consistent with the surviving parameter space from the
stability condition.

• Finally, in Chapter 8, we conclude the thesis by summarizing the main contributions
examined in the previous chapters and providing an outlook for future research in
these areas.
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Chapter 2

The Standard Model

The Standard Model (SM) of particle physics is a renormalizable gauge field theory that
provides a highly successful description of three of the four known fundamental forces in
nature: the electromagnetic, weak, and strong forces. The SM does not include a quantum
theory of gravity, which remains one of the key motivations for exploring physics beyond
the SM.

The SM is built upon the gauge group structure SU(3)C ¢SU(2)L ¢U(1)Y . This gauge
symmetry describes the dynamics of the known particles and their interactions. The SU(3)C

group governs quantum chromodynamics (QCD), which describes the strong interactions
between quarks and gluons, while SU(2)L and U(1)Y are responsible for the electroweak
unification of the weak and electromagnetic forces. The Glashow-Weinberg-Salam (GSW)
model forms the theoretical foundation of this electroweak unification.

The particle content of the SM is categorized into two primary sectors: the fermionic
sector, which constitutes matter, and the bosonic sector, which mediates forces. Fermions
are spin-1

2 particles that obey Fermi-Dirac statistics and are classified into three families of
quarks (which participate in all interactions) and leptons (which do not interact strongly).
Each family contains two types of quarks (up-type and down-type) and two types of leptons
(neutrinos and charged leptons). The first generation of fermions makes up the stable matter
around us, while the heavier second and third generations are unstable and decay into lighter
particles. Neutrinos, originally considered massless in the SM, are now known to have small
masses [24], which points to physics beyond the SM.

Fermions in the SM interact based on their helicities (handedness). Left-handed fermions
form isodoublets under the SU(2)L ¢ U(1)Y gauge symmetry, while right-handed fermions
are isosinglets. The strong interactions between quarks are mediated by eight massless
gluons Gµ

a (a=1,..,8), corresponding to the generators2 of non-Abelian SU(3)C algebra ⁄a,
while electroweak interactions are mediated by the W ± and Z0 bosons and the photon.

The bosonic sector of the SM consists of spin-1 gauge bosons that mediate the forces
between fermions and obey Bose-Einstein statistics. The electroweak force carriers acquire
mass through the Higgs mechanism, a process of spontaneous symmetry breaking. At high
energies, the SU(2)L ¢ U(1)Y symmetry is unbroken, and the gauge bosons are massless.
However, at lower energies, this symmetry breaks down to U(1)EM, giving mass of the
weak bosons (W ±, Z0) while leaving the photon massless. The mechanism predicts the
existence of a scalar (spin-0) Higgs boson, which was experimentally confirmed in 2012 at
CERN [4,5, 25], filling in the last missing piece of the SM puzzle.

2The number of generators in any U(N) and SU(N) group are given respectively as N2 and N2 ≠ 1.
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The SM is a consistent and highly predictive quantum field theory. Its gauge structure
ensures local gauge invariance, where the global phase transformations of the gauge groups
are applied locally, requiring the introduction of vector fields (gauge bosons) to preserve
invariance in spacetime. This leads to interaction terms in the SM Lagrangian that couple
the fermions and gauge fields.

2.1 Framework of the Standard Model
2.1.1 Quantum Chromodynamics
Quantum Chromodynamics (QCD) is grounded in the gauge group SU(3)C of the Standard
Model due to transformation of quarks according to the algebra, and the quarks are
organized into color triplets each characterized by a distinct color charge (r, g, b). Moreover,
local gauge invariance for the total Lagrangian of SU(N) theories dictate the presence of
source terms due to interaction between field current and gauge field. This is achieved by
introducing a gauge covariant derivative

Dµ = ˆµ + igsGµ

aT a, (T a = ⁄a

2 ), (2.1)

which generates QCD Lagrangian

LQCD =
ÿ

q

Â̄q(i /D ≠ mq)Âq ≠
1
4Ga

µ‹Gµ‹,a. (2.2)

The gluon field strength tensor is an artifact of the non-Abelian structure, allowing self-
interactions for SU(3)C fields

Ga

µ‹ = 1
gs

[Dµ, D‹ ] = ˆµGa

‹ ≠ ˆ‹Ga

µ + gsfabcGb

µGc

‹ , (2.3)

and gs is the strong coupling constant. Non-Abelian gauge theories have gauge symmetries
that can lead to redundancies in the physical degrees of freedom. Specifically, there are
more gauge degrees of freedom than physical degrees of freedom for the gauge fields.
Without gauge fixing, the path integral formulation would be ill-defined due to the presence
of infinitely many configurations that are gauge equivalent. By fixing the gauge, these
redundancies can be avoided and actual physical degrees of freedom become the relevant
ones. This is done by gauge-fixing Lagrangian

Lfix = ≠
1
2›

(ˆµGa

µ)2. (2.4)

Gauge fixing introduces constraints that can lead to additional degrees of freedom in the
theory. In non-Abelian gauge theories, these additional degrees of freedom can cause issues
in the path integral formulation, as they may lead to contributions from unphysical states.
To address this, new ghost fields (often denoted by c and c̄) are introduced, which are
necessary to maintain unitarity and the correct counting of degrees of freedom through path
integrals. These ghost fields arise from the gauge-fixing procedure and are implemented
in the Lagrangian through a term that ensures the cancellation of unphysical degrees of
freedom

Lghost = ≠c̄a(≠ˆ2”ac
≠ gsˆµfabcGa

µ)cc, (2.5)
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where fabc is the structure constants of noncommutative algebra. Combining Eq. 2.2 -
2.5 completes the total Lagrangian for QCD. The time-ordering operation applied to gluon
fields defines the two-point function, which describes the propagation of a gluon between
spacetime points x and y

Dab

µ‹(x ≠ y) = ÈTGa

µGb

‹Í
xy

=
⁄

ddk

(2fi)4
≠i

k2 + i‘

3
gµ‹ ≠ (1 ≠ ›)kµk‹

k2

4
”abe≠ik.(x≠y), (2.6)

where the time-ordering T ensures that

TGa

µ(x)Gb

‹(y) =
I

Ga
µ(x)Gb

‹(y), if x0 > y0,

Gb
‹(y)Ga

µ(x), if x0 < y0.
(2.7)

This means that the propagator describes the probability amplitude for a gluon to propagate
from x to y when x0 > y0, and from y to x when y0 > x0. Fourier transform of Eq. 2.6 to
momentum space consequently leads to the gauge propagator of the theory1

Dab

µ‹ = ≠i

k2 + i‘

3
gµ‹ ≠ (1 ≠ ›)kµk‹

k2

4
”ab. (2.8)

2.1.2 Glashow-Salam-Weinberg (GSW) Model
The GSW model, which unifies the weak and electromagnetic forces, is built upon a non-
Abelian gauge theory characterized by the combined gauge group SU(2) ¢ U(1)Y . In this
framework, the W ± and Z bosons are observed to be massive. However, introducing a bare
Proca mass term in the Lagrangian would violate local U(1) gauge invariance. To address
this, the Higgs–Kibble mechanism [26] is employed, which introduces a scalar field known as
the Higgs field. This field possesses a non-vanishing vacuum expectation value, facilitating
the spontaneous symmetry breaking of the gauge group. Crucially, this breaking is arranged
so that the symmetry of the electromagnetic subgroup U(1)em remains intact, allowing the
photon to remain massless while the other gauge bosons acquire mass. In the GSW model,
left- and right-handed fermions transform di�erently under the SU(2) group

Âi = Âi

L + Âi

R, Âi

L = P≠Âi

L, Âi

R = P+Âi

R, (i = q, l) (2.9)

where chirality operator P± = 1±“5
2 . This structure results in the weak interaction being

maximally parity violating

Lm = ≠mÂ̄Â = ≠mÂ̄ (P≠ + P+) Â = ≠m(Â̄RÂL + Â̄LÂR). (2.10)

In the context of a chiral gauge theory, it is important to note that mass terms for fermions
are prohibited in the Lagrangian. Thus kinetic part of Lagrangian reads

L = Â̄Li /DLÂL + Â̄Ri /DRÂR (2.11)

where the chirality preserving gauge covariant derivatives under the complete symmetry of
the SM can be given as2

DL

µ = ˆµ ≠ i
g1
2 Bµ ≠ i

g2
2 W i

µ.· i
≠ i

gs

2 ⁄aGa

µ, DR

µ = ˆµ ≠ i
g1
2 Bµ ≠ i

gs

2 ⁄aGa

µ. (2.12)

1’t Hooft-Feynman gauge › = 1 reflects a balance between mathematical simplicity and physical clarity
when transition between di�erent gauges is present.

2The last terms in Eq. 2.12 are QCD contributions as mentioned earlier and the leptonic sector of the
SM is completely insensitive to this rotation.
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Furthermore, the gauge part of SU(2)L ¢ U(1)Y in terms of the isotriplet1 W a
µ and the

isosinglet Bµ

Lgauge = ≠
1
4W a

µ‹W µ‹,a
≠

1
4Ba

µ‹Bµ‹,a (2.13)

completes the Lagrangian of the GSW model. However, the theoretical mechanism giving
rise to the observed masses in the SM is obviously not achieved by Dirac and Proca mass
terms since they violate SU(2)L symmetry and local gauge invariance respectively.

The Higgs Field and Spontaneous Symmetry Breaking

The SM Higgs field is a complex scalar SU(2)L doublet œ (2, 1
2)

� =
A

„†

„0

B

= 1
Ô

2

A
„1 + i„2
„3 + i„4

B

. (2.14)

The potential of the scalar field � is dictated by Z2 symmetry due to the global phase
transformation. Consequently, only the even powers of field operators are allowed

L� = 1
2m2�2 + 1

4!⁄�4 + O(�6). (2.15)

Moreover, O(�6) has renormalization issues2 when d Ø 4. If m2 > 0, and the Lagrangian
describes an ordinary scalar field theory. However, for the case m2 < 0, the extremum at
„ = 0 is a local maximum of the potential V = ≠Lint = 1

2m2�2 + 1
4!⁄�4 instead of a

minimum, and is unstable as shown in Fig. 2.1. Having a negative mass-squared implies
that a momentum is spacelike.3

Replacing m2
æ ≠µ2 so that µ2 is still positive, the potential is now minimized when

� has a constant non-zero value. There are two possible minima, „0 = ±

Ò
µ2
⁄

= ±v. At
either minimum, the Z2 symmetry is spontaneously broken.

The choice of vacuum expectation value (VEV) .= v = ±

Ò
µ2
⁄

breaks the symmetry of
the initial Lagrangian once the field perturbation around the VEV, „(x) = 1Ô

2(v + h + i›),
is performed.

It is well known that electroweak unification results in three massive and one massless
gauge bosons. That requirement is just an other motivation why the Higgs field is to be
represented as a complex isospin doublet. By Goldstone theorem; for each broken generator
of the original symmetry group, there will be massless scalar ›, transferring its degree of
freedom to the longitudinal state of the massless particle, therefore a mass term is revealed
in the e�ective Lagrangian. In the unitary gauge, each component of the Higgs doublet
obeys the transformation

„i(x) æ ei›i(x)/v„i(x). (2.16)
1The non-Abelian nature of SU(2) gauge covariant derivative generates a self interaction term for W a

µ

similar to that of Eq. 2.3, but scaled with the weak coupling g2 and given in terms of the structure constants
‘abc.

2Additional details about the Higgs field can be found elsewhere [27].
3Spacelike momenta can be used to communicate faster than the speed of light, and therefore negative

mass-squared particles are called tachyons.
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Figure 2.1: The Higgs potential. There are two tachyonic (negative mass-squared) modes
(long-dashed line). Expanding around a minimum, there is one mode with positive mass-
squared (small-dashed line), corresponding to excitations along the radial direction, and
one massless mode (solid line), corresponding to excitations along the symmetry direction
where the potential is flat.

Except „3, all components would gauged away.1 The generators of SU(2)L acting on „0 give
nonzero value, hence this symmetry remains broken, whereas Q acting on the vacuum state
generates zero eigenvalue. So, the vacuum state is neutral and U(1)em remains unbroken.

To identify the mass terms of SU(2)L ¢ U(1)Y gauge bosons, the gauge covariant
derivative in Eq. 2.12 acts on the Higgs doublet in order to generate kinetic terms

Dµ� = 1
2

A
2ˆµ + ig2W 3

µ + ig1Bµ ig2(W 1
µ ≠ iW 2

µ)
ig2(W 1

µ + iW 2
µ) 2ˆµ ≠ ig2W 3

µ + ig1Bµ

B
1

Ô
2

A
0

v + h(x)

B

, (2.17)

and carrying out a similar algebra for the hermitian conjugate (Dµ„)† and calculating the
contraction (Dµ�)(Dµ�)† yields the e�ective Lagrangian2

Le� ∏
1
2(ˆµh)(ˆµh)+ 1

8g2
2v2(W 12

µ +W 22
µ )+ 1

8(g2W 3
µ ≠g1Bµ)(g2W µ

3
≠g1Bµ)(v+h)2. (2.18)

Comparing the 2nd term to the Proca mass mW WµW µ, it is clearly seen that W 1
µ and W 2

µ

have masses 3

MW1,2 = g2v

2 . (2.19)

Working on mass eigenstates is much illuminating. Rewriting W 1
µ and W 2

µ in terms of
W +

µ , W ≠
µ and rewriting the last term of the Eq. 2.18 as a matrix

Leff ∏
1
4g2

2v2(W +2
µ + W ≠2

µ ) + v2

8
1
W 3

µ Bµ

2 A
g2

2 ≠g2g1
≠g2g1 g2

1

B A
W 3

µ

Bµ

B

, (2.20)

it is always possible to recover the hypercharge operator Y where Bµ is present. Thus, only
if Y„0 ”= 0, W 3 and Bµ mix. So the eigenvalues of the mass matrix become

⁄1 = 0, ⁄2 = g2
2 + g2

1. (2.21)
1The choice for index is immaterial, once one is chosen for a field excitation, others are gauged away all

the same.
2The kinetic terms of gauge fields: ≠

q3
i

1
4 W µ‹

i
W i

µ‹ and ≠ 1
4 Bµ‹Bµ‹ are omitted. The complete e�ective

Lagrangian involves di�erent kind of terms. But the essence of the Higgs mechanism is to compare the terms
in Le� to the mass terms of the initial theory; in that case, the Proca mass terms for each distinct vector
boson.

3W1, W2 mix to form mass eigenstates W +
µ , W ≠

µ , whereas W3 and B mix to form Zµ and Aµ.
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Having all the details brought to this point, the massless physical field is identified as
photon Aµ, whereas the massive vector boson is called Z0. In the diagonal basis, the mass
eigenstates become

Aµ =
g1W 3

µ + g2BµÒ
g2

2 + g2
1

, Zµ =
g2W 3

µ ≠ g1BµÒ
g2

2 + g2
1

. (2.22)

The SM includes a constant called the Weinberg angle, defined as g1
g2

= tan ◊W , important
for the mixing scale of the EW theory.

Finally, the photon remains massless since U(1)em is unbroken. And SU(2)L bosons
acquire their mass as a result of the interaction with the Higgs field

mA = M“ = 0, MZ = v

2

Ò
g2

2 + g2
1, MW ± = g2v

2 , cos ◊W = MW

MZ

. (2.23)

The mass of the Higgs field is obtained by comparison of the term in the e�ective Higgs
potential to Klein-Gordon mass term, and is

mh = 2⁄v2,
g2

2
8M2

W

= GF
Ô

2
≠æ v = 1

Ò
Ô

2GF

¥ 246 GeV. (2.24)

Yukawa Couplings

Fermions acquire their masses in the same way as gauge bosons. As mentioned earlier, Dirac
mass terms are not allowed since their chiral decomposition violates left-handed symmetry
of the SM. To this end, a new kind of interaction with the Higgs field is required. Once
evaluated in detail, a special interaction term between fermions and scalar sector is invariant
under the SM gauge group SU(2)L ¢ U(1)Y

LYuk = L̄�R + R̄�†L. (2.25)

For instance, electron mass term corresponds to the following Yukawa interaction as

≠ ye

C1
¯‹eL

ēL

2 A
„†

„0

B

eR + ēR

1
„†ú

„0ú
2 A

‹e

eL

BD

. (2.26)

Unfortunately, the conventional Higgs field is only useful for the lower components of SU(2)L

doublets since the vacuum expectation value is chosen for the lower component of the Higgs
field. After the symmetry is broken, e�ective electron Lagrangian becomes

Le = ≠
ye
Ô

2
vēe ≠

ye
Ô

2
hēe, (2.27)

and the mass of electron is directly related to the Yukawa coupling ye and to the vacuum
expectation value similar to the case of the gauge bosons1

me = ye
Ô

2
v. (2.28)

1Since ye is a free parameter, the mass of electron is not predicted in Higgs mechanism.The observation
of a nonzero fermion mass implies that the electroweak gauge symmetry SU(2)L ¢ U(1)Y is broken, but
electroweak symmetry breaking is only a necessary, not a su�cient, condition for the generation of fermion
mass. In the SM framework, new physics at an unknown scale must give rise to the Yukawa couplings.
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For the upper components of doublets1, an "alternative" Higgs doublet is promising as
it obeys the symmetries of the SM.

�c =
A

≠„0ú

„≠

B

≠æ L
upper
Yuk = L̄�cR + R̄�†

cL (2.29)

ends up with the masses of all the upper components fermions in the SM

yf =
Ô

2mf

v
. (2.30)

Bare Dirac mass terms link the left-handed and right-handed fermions and thus violate the
SU(2)L ¢ U(1)Y gauge symmetry of the electroweak theory. If they persisted to arbitrarily
high energies, such hard masses would destroy the renormalizability of the theory. That is
why bare fermion masses were ruled out when electroweak theory was formulated.

Generalizing the Yukawa Lagrangian to include to all fermionic fields

L = ≠

ÿ

i,j

1
Y d

ijQ̄L

i �dR

j + Y u

ij Q̄L

i �cuR

j + Y l

ijL̄L

i �lRj
2

, (2.31)

where the matrices Y u,d,l

ij
are 3 ◊ 3 structures within the framework of generation space of

the SM. They need not be diagonal, as the fields associated with prime numbers represent
eigenstates of the weak interaction, which do not necessarily align with the mass eigenstates.
To express the Lagrangian using fields that correspond to mass eigenstates, the mass
matrices are subjected to diagonalization via specific transformations, unique to each model,
and given by

F L

i = V F,L

ij
F L

j , F R

i = V F,R

ij
F R

j . (2.32)
The mass eigenvalues after these specific transformations become

mF,i = V F,L

ij
YjkV F,L

ki
. (2.33)

This results in the mixing of quark generations during interactions with W bosons. In
contrast, the coupling between quarks and Z bosons involves fermions of the same type,
maintaining a diagonal structure. Consequently, flavor-changing neutral currents (FCNC)
do not occur at the tree level within the Standard Model. In the lepton sector, there is no
analogous mixing matrix, provided we treat all generations of neutrinos as massless.

Finally, by comparing relative couplings of neutral current and charged current of the
weak interactions; there has to be a parameter which scales to unity in the SM [28]

fl = M2
W

M2
Z

cos ◊2
W

= 1. (2.34)

Theoretically this parameter should remain fixed however, any shift from unity indicates
physics beyond the SM. Finally, we note that the SM contains 25 free parameters:

• The parameters of the Higgs potential µ and ⁄;

• 12 Yukawa couplings related to the observed fermions masses (neutrinos are included
due to the neutrino oscillations);

• 8 mixing angles from the PMNS and the CKM matrices [29];

• The fundamental gauge couplings (at tree level) g1, g2 and gs.
1Yukawa terms are not supposed to be the source of neutrino masses. Nonetheless, none of the extensive

theories have been approved as mass generation mechanism for neutrino masses because their masses have
not been observed yet, though neutrino oscillations had proved they should have mass eigenstates.
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2.2 The Shortcomings of the Standard Model and Open
Problems

Despite its success, the SM has several known limitations. No theoretical mechanism
explains the nature of the free parameters, hence the existence of these parameters in the
SM framework remains a necessity for mathematical consistency and to fit experimental
results, but their origins remain unexplained. Furthermore, although this will be discussed
in more detail in the following chapters, the process of renormalization in quantum field
theory has changed the interpretation of how fields interact di�erently depending on the
measurement scale at which they are examined. Some of the major phenomena which have
no valid explanation under the framework of the SM are

• Dark Matter: A hypothetical field called Dark Matter constitutes approximately
27% of the universe’s mass-energy content [30] but remains undetected in terms of
its fundamental particles due to its insensitiveness to SU(3)C ¢ SU(2)L ¢ U(1)Y

gauge bosons. Yet it is assumed to interact with only massive fields via the Higgs
channel. While candidates like weakly interacting massive particles (WIMPs) [31,32]
and axion-like particles (ALPs) have been proposed [33, 34], none are included in
the Standard Model. The lack of observable interactions with standard particles
challenges researchers to explore beyond the model, including theories such as
supersymmetry (SUSY) or extra dimensions. The search for dark matter continues
through various experimental e�orts, including direct detection experiments and high-
energy collider searches.

• Baryon Asymmetry: The universe is predominantly composed of matter, with the
antimatter missing, a phenomenon that the Standard Model fails to account for due
to insu�cient CP violation [35]. Current models allow for CP-violating processes,
but they do not produce enough asymmetry to explain the observed dominance of
matter over antimatter. Proposed solutions include Grand Unified Theories (GUTs),
which suggest the existence of heavy particles that could induce greater CP violation.
Experimental searches for electric dipole moments and other processes aim to uncover
new sources of CP violation, which may provide insights into this fundamental
asymmetry.

• Strong CP Problem: The strong interaction appears to conserve CP symmetry with
much higher precision than theoretical predictions suggest it should. This discrepancy
is known as the strong CP problem [36, 37]. Theoretical models predict a non-zero
parameter, ◊, in the QCD Lagrangian that would lead to significant CP violation,
yet experimental measurements show it is consistent with zero. Proposed solutions
include the introduction of new particles, such as axions, which could dynamically
cancel the CP-violating e�ects.

• Flavor-Changing Neutral Currents (FCNC): FCNC occurs where a particle
changes its flavor without altering its electric charge, typically mediated by neutral
bosons like the Z boson. In the Standard Model, FCNCs are highly suppressed due
to the Glashow-Iliopoulos-Maiani (GIM) mechanism, making their observation rare
[38,39]. However, experimental results indicate that certain FCNC processes occur at
rates higher than expected, challenging the predictions of the Standard Model. This
anomaly suggests the possible existence of new physics, such as additional interactions
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or particles that could enhance FCNC rates [40], prompting further investigation into
flavor physics and the underlying symmetries that govern particle interactions.

• Neutrino Masses: In the Standard Model, neutrinos are treated as massless
particles. However, experimental observations of neutrino oscillation—where
neutrinos switch flavors—indicate they possess mass [41, 42]. This discrepancy
suggests the need for extensions like the seesaw mechanism, which proposes the
existence of heavy right-handed neutrinos that interact very weakly. The seesaw
mechanism e�ectively explains the small masses of observed neutrinos, but it requires
new physics beyond the Standard Model.

• Rho Parameter: The rho parameter in Eq. 2.34 is a measure of the strength of the
weak interaction relative to the electromagnetic interaction [28]. In the context of the
Standard Model, fl is predicted to equal 1 at low energies due to the unification of
the weak and electromagnetic forces. However, experimental measurements of fl show
deviations from unity, particularly in processes involving heavy vector bosons [43].
This discrepancy raises questions about the underlying symmetries of electroweak
interactions and suggests potential new physics, possibly related to the dynamics of
electroweak symmetry breaking or the existence of new particles that a�ect gauge
boson interactions.

• Fine-Tuning and Naturalness: Certain parameters within the Standard Model,
such as the Higgs mass and the cosmological constant, require careful tuning to match
observed values rather than naturally occurring. This fine-tuning problem suggests an
underlying principle or symmetry that could explain the observed values without the
need for precise adjustments [44,45]. On the other hand, the principle of naturalness
posits that physical parameters should not require fine-tuning to be consistent with
observations.

• Quantum Gravity: The quest for a theory of quantum gravity remains one of
the most profound challenges in theoretical physics. While gravity is crucial to our
understanding of the universe on large scales, it is not included in the Standard Model
of particle physics. Quantum gravity seeks to unify gravity with these other forces, but
doing so requires resolving several deep issues inherent in both quantum mechanics
and general relativity. The central problem arises from the non-renormalizability
of quantum gravity. In quantum field theory, forces are described by interactions
mediated by particles, and these interactions are mathematically formulated through
Feynman diagrams. Renormalization is the process of removing infinities that arise
in loop diagrams (virtual particle exchanges) and making physical predictions finite
and well-defined. The Standard Model is renormalizable, meaning that despite the
infinities appearing in higher-order corrections, they can be systematically removed,
allowing the theory to make precise, testable predictions. However, when we try
to apply a similar quantum field theory approach to gravity, the situation changes
dramatically. The gravitational interaction is mediated by the graviton, a hypothetical
massless spin-2 particle, and the corresponding quantum field theory leads to severe
problems. The loop corrections to graviton interactions result in infinite terms that
cannot be removed by renormalization. This suggests that quantum gravity, as
formulated through standard perturbative methods, is non-renormalizable — meaning
the theory leads to uncontrollable infinities that cannot be tamed through the usual
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techniques. This non-renormalizability implies that any perturbative approach to
quantum gravity would break down at very high energies, such as near the Planck
scale, where quantum gravitational e�ects are expected to become significant. The
issue of non-renormalizability is one of the key reasons why a quantum theory of
gravity has been so elusive. In fact, there is no consistent perturbative theory of
quantum gravity that has been proven to yield finite results at all energy scales. This
has motivated the search for alternative approaches [46–49] to quantum gravity that
do not rely on conventional field-theoretic methods.

• Gauge Hierarchy and Vacuum Stability: Within the context of the naturalness,
the hierarchy problem emerges prominently in particle physics, particularly concerning
the Higgs boson mass. The mass of the Higgs field, approximately 125 GeV,
is subject to significant quantum corrections from loop processes involving heavy
particles. These corrections, which can diverge with high-energy scales, necessitate the
introduction of a counterbalancing bare mass that must be finely adjusted to avoid
yielding an e�ective mass far exceeding the observed value [50–52]. This situation
implies an unnatural sensitivity of the Higgs mass to high-energy physics, leading to
the hierarchy problem, where the question arises: why does the Higgs mass remain so
much lighter than the scales associated with gravity or grand unification ≥ 1019 GeV?
The apparent disparity suggests that a more profound mechanism must underlie the
stability of the Higgs mass against these quantum corrections, pointing towards the
potential need for new physics beyond the Standard Model.
Concurrently, as one of the major aspect of this thesis, the vacuum instability issue
presents an additional layer of complexity. The e�ective potential of the Higgs field,
when analyzed at high energy, reveals that the potential can become unbounded from
below as an inevitable outcome of renormalization, leading to a metastable vacuum
state. If the Higgs mass were to receive large positive corrections, it could drive the
system into a regime where the vacuum is destabilized, creating a scenario in which
the universe transitions to a lower-energy state. This instability further underscores
the unnaturalness associated with the Higgs mass, as it raises questions regarding the
stability of the vacuum in the face of quantum fluctuations and high-energy physics.
The intertwining of the hierarchy problem and vacuum instability thus highlights
significant challenges within the Standard Model, emphasizing the necessity for a
more comprehensive theoretical framework to address these profound issues.

14



Chapter 3

The Emergence of Vacuum
Instability

In this section, only the essential part of renormalization scheme which causes to occurrence
of vacuum stability problem will be discussed. Although there are several methods dedicated
to underline numerous interpretations of renormalization aspects, we hereby stick with the
most e�ective approach in order to describe the problem for which this thesis tries to o�er
possible remedies. To this end, we first describe the theoretical foundation of the problem
in a comprehensive way, then highlight the motivation for new physics needed due to the
SM falling short to insure vacuum stability.

3.1 The Unbounded Higgs Potential
The expression of the Higgs potential in the SM Lagrangian L = µ2h2 + ⁄h4 highlights a
critical problem, as itself is su�cient to reveal mass terms in both bosonic and fermionic
sectors. The late formalism of quantum field theory reveals that coupling strengths are scale
dependent variables rather than constants of the observable spectrum. This aspect of QFT is
known as renormalization flow. Propagator theory of QFT shows that each propagator (for
fermions or bosons) brings divergent contributions in momentum space, which was initially
thought as an analytical anomaly or unphysical consequence. Later, it had been revealed
that infinities coming out from Feynman rules are simply our mathematical ignorance
related to new physics that governs interactions at a di�erent energy scale. Hence, the
theoretical conditions set at the bare level are vulnerable to any imminent variation of the
free parameters related to the SM and to the theories beyond the SM. To this end, the
vacuum stability condition in the SM entails V (�)Õ > 0, or equivalently, ⁄ > 0 in Eq. 2.15.

The e�ective action �[�] is a functional that incorporates the e�ects of quantum
corrections around a classical field configuration �. And it is defined as a functional integral
over all field configurations

�[�] = ≠ ln
⁄

D�e≠S[�], (3.1)

where the S[�] is the classical action of the Higgs potential. Then fluctuations around
a background field are considered as �(x) = �cl(x) + h(x) while �cl and h(x) represent
classical background field and quantum fluctuation respectively. The e�ective action can
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be expanded around the classical field configuration

�[�cl] = S[�cl] + 1
2

⁄
ddxh

”2S

”�2

---
�cl

+ higher order terms. (3.2)

The e�ective potential Ve�(�) is the part of the e�ective action that depends on the field
� but not on its derivatives. It can be extracted from the e�ective action by looking at the
terms that are purely functions of the field

Ve�(�) = �[�]no derivatives. (3.3)

Or it can directly be calculated through path integral as

Ve�(�) = ≠
1

TV
ln

⁄
Dhe≠S[�cl+h], (3.4)

where T is the time extend and V is the three-dimensional volume of this region.
Using the functional method for renormalization scheme of the e�ective Higgs potential

�[�] =
⁄

[D„]� exp
3

≠

⁄
ddx

51
2(ˆµ„)2 + 1

2m2„2 + ⁄

4!„
4
64

, (3.5)

where path integrals contain all possible field configurations up to cut-o� momentum scale
�

[D„]� =
Ÿ

|k|<�
d„(k),

and rescaling distance and momenta according to kÕ = k/b and xÕ = xb, so that the variable
kÕ is integrated over |kÕ

| < �. Moreover, rewriting the e�ective action in Eq. 3.5 by simply
shifting the field strength, the bare mass and the bare coupling respectively

⁄
ddxLe� = ddx

51
2(1 + �Z)(ˆµ„)2 + 1

2(m2 + �m2)„2 + (⁄ + �⁄)
4! „4 + O(„6)

6
. (3.6)

Next, using the after e�ects of spontaneous symmetry breaking as m2 = ⁄v2 and „ = v + h
in Eq. 3.6, and expanding the Ve� around the VEV

Ve�(h) = 1
2(⁄v2 + �m2)(v2 + 2vh + h2) + ⁄ + �⁄

4! (v4 + 4v3h + 6v2h2 + 4vh3 + h4), (3.7)

where �m2 and �⁄ are quantum corrections, hence arise di�erently with respect to particle
flavor that couples to the Higgs field h. Considering only the Higgs self-energy correction
by using dimensional regularization yields

�m2
≥

⁄
d4k

(2fi)4
1

k2 + m2
H

≥
m2

H

64�2 (≠ ln(m2
H) + 1

‘
), (3.8)

where ‘ is a regularization parameter. Plugging the self-energy correction from one-loop
back to the e�ective potential

V 1≠loop

e� (h) = 1
64fi2

A

h2 ln h2

µ2 ≠ h2 + (2⁄v2)2

µ2

B

. (3.9)
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Finally, we combine this with tree level expression

Ve�(h) = V0(h) + V 1≠loop(h) = ⁄

4 (h2
≠ v2)2 + 3⁄2v4

32fi2 (ln 2⁄v2

µ2 ) (3.10)

in order to understand how the Higgs self-energy strength is scale dependent. The beta
function describes how the coupling ⁄ evolves with energy scale µ. It can be derived from
the e�ective potential by looking at how the quartic coupling changes

⁄(µ) = ⁄ + 3⁄2

16fi2 ln µ2

µ2
0

+ O(⁄3), (3.11)

where µ0 = 2⁄v2. So, the beta function controlling the logarithmic scale dependence of the
Higgs quartic coupling reads as

—⁄ = d⁄

d ln µ
= 1

16fi2 (3⁄2) + O(⁄3), (3.12)

which is the 1-loop RGE for ⁄. This simplified result in pure scalar field theory shows
that ⁄ tends to increase as momentum increases over the entire spectrum. When combined
with the negative contributions of fermions due to Fermi-Dirac statistics in the next step,
the evolution of ⁄ breaks the vacuum stability condition at a specific threshold, causing
the Higgs potential to become unbounded from below. This unboundedness fundamentally
means that there might be other minima, to which the so-called initial vacuum state can
now transition. Consequently, this transition dictates that all massive states must decay
since all massive fields acquire their masses through interactions with a particular value of
the Higgs vacuum configuration.

As discussed above, the overall —-function that governs the dynamical nature of the Higgs
quartic coupling receives corrections from all the fermions and gauge bosons of the Standard
Model (SM). Hence, the loop corrections to the e�ective potential become significantly
larger. Since the top quark is the heaviest of the SM fermions, it provides the largest
correction compared to other flavors. Starting from the Yukawa Lagrangian

Lt,Yuk = ≠ytq̄L�tR + h.c., (3.13)

adding to the e�ective potential from one-loop self-energy diagrams as

Vt(h) ≥
1
2

⁄
d4k

(2fi)4 ln(k2 + m2
t ) æ ≠

3
16fi2 m4

t (ln m2
t

µ2 + “ ≠ ln 4fi ≠
3
2)

= ≠
3y4

t v4

64fi2

A

ln y2
t v2

2µ2 + “ ≠ ln 4fi ≠
3
2

B

. (3.14)

Whereas the contributions of the gauge bosons to the e�ective potential are extracted from
gauge covariant part of the kinetic Lagrangian

Lgauge = (contractions terms) + |Dµ�|
2. (3.15)

Additionally, there is also a contribution from Higgs field renormalization h æ Z1/2
h

hren
to Eq. 3.10 in the SM case. Combining all flavor corrections to the Higgs self-energy, we
generate the one-loop e�ective potential

Ve�(h) = V0(h) + V⁄(h) + Vtop(h) + Vgauge(h), (3.16)
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16fi2Ve�(h) = 1
4

3
m2 + ⁄

2 h2
42 A

ln
m2 + ⁄

2 h2

µ2 + “ ≠ ln 4fi ≠
3
2

B

+ 3
4

3
m2 + ⁄

6 h2
42 A

ln
m2 + ⁄

6 h2

µ2 + “ ≠ ln 4fi ≠
3
2

B

≠
3y4

t h4

4

A

ln y2
t h2

2µ2 + “ ≠ ln 4fi ≠
3
2

B

+ 3g4
2h4

32

A

ln g2
2h2

4µ2 + “ ≠ ln 4fi ≠
5
6

B

+ 3(gÕ2 + g2
2)2h4

64

A

ln (gÕ2 + g2
2)h2

4µ2 + “ ≠ ln 4fi ≠
5
6

B

. (3.17)

The e�ective potential obeys the Callan–Symanzik(CS) equation [53]
A

µ
ˆ

ˆµ
+

ÿ

i

ˆ

ˆ⁄i

≠ “„
ˆ

ˆ„

B

Ve� = 0, (3.18)

where all the couplings in the e�ective potential are assumed ⁄i = {⁄, m2, gÕ, g2, g3, yt}. A
solution attempt starts from the leading order

≠ µ
ˆ

ˆµ
V (1) = D

(1)V (tree), D
n =

ÿ

i

—(n)
i

ˆ

ˆ⁄i

≠ “(n)„
ˆ

ˆ„
. (3.19)

Using the e�ective Higgs potential in Eq. 3.17 in the expression above, we arrive at

16fi2
DV (tree) = 1

2

5
4m4 + 2m2⁄h2 + 1

48
1
16⁄2

≠ 144y4
t + 18g4

2 + 9(gÕ2 + g2
2)2

2
h4

6
. (3.20)

Comparing the coe�cients of quadratic and quartic terms of h to the right hand side of Eq.
3.19 respectively, the following results are obtained

16fi2(—(1)
m2 ≠ 2m2“(1)) = 2m2⁄,

16fi2(—(1)
⁄

≠ 4⁄“(1)) = 1
4(16⁄2

≠ 144y2
t + 9gÕ4 + 18gÕ2g2

2 + 27g4
2). (3.21)

Lastly, the anomalous dimension term reads

16fi2“(1) = 1
4(12y2

t ≠ 3gÕ2
≠ 9g2

2). (3.22)

Putting everything together, the — function of the Higgs quartic coupling adding to the
total renormalization group equation(RGE) can be extracted as

d⁄(µ)
d ln µ

= 1
16fi2

C

4⁄2 + 12⁄y2
t ≠ 36y4

t ≠ 9⁄gÕ2
≠ 3⁄g2

2 + 9g2
2

4 + 9gÕ2g2
2

2 + 27
4 gÕ4

D

. (3.23)

For the convention we choose throughout this thesis, we use the SU(5) normalization scheme
which relates the hypercharge gauge coupling to g1 as g1 =


5/3gÕ. Additionally, it will be

more instructive to recover color factor to Yukawa couplings in RGE level

d⁄(µ)
d ln µ

= 1
16fi2

C

12⁄2 + 2Nc⁄y2
t ≠ Ncy

4
t ≠

9⁄g2
1

5 ≠ 9⁄g2
2 + 27g4

1
200 + 9g4

2
8 + 9g2

1g2
2

20

D

. (3.24)
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The model-independent general method for calculating the —-function coe�cients of gauge
couplings in both SUSY and non-SUSY model yields, at one-loop level [54]

dg

dµ
= ≠

g3

(4fi)2

311
3 C2(G) ≠

4
3ŸS2(F ) ≠

1
6÷S2(S)

4
. (3.25)

In this context, C2 denotes the quadratic Casimir invariants associated with the gauge
multiplets (G) as

C2(G) =
I

0 for U(1),
N for SU(N),

(3.26)

whereas the Casimir invariants associated with the SM multiplets are given by the relation
C2(G) = N

2≠1
2N

[55]

C3
R(i) =

I4
3 for �i = Q, ū, d̄,

0 for �i = L, ē, H

C2
R(i) =

I3
4 for �i = Q, L, H,

0 for �i = ū, d̄, ē

C1
R(i) = 3Y 2

i

5 for each �i with weak hypercharge Yi. (3.27)

The terms S2(F ) and S2(S) represent the Dynkin indices for the representations of fermions
and scalars.

S2(R) © S(R) =
I3

5Y 2
�i

for U(1),
1
2 for SU(N).

(3.28)

The parameter Ÿ takes the value 1 for Dirac fermions and 1
2 for Weyl fermions, while ÷

is equal to 1 for real scalar fields and 2 for complex scalar fields. Consequently, U(1)
contributions from all the SM multiplets are simply related to hypercharge numbers

b1 = 0 + 4
3 ·

1
2 ·

A
ÿ

fermions

3
5Y 2

fermions

B

+ 1
6 · 2 ·

A
ÿ

scalars

3
5Y 2

scalars

B

[for U(1), C2(G) = 0]

= 2
3 ·

ÿ

fermions

3
5Y 2

fermions + 1
3 ·

ÿ

scalars

3
5Y 2

scalars

= 2
5

C

(3 · 2) ·

31
6

42
+ (3 · 1) ·

3
≠

2
3

42
+ (3 · 1) ·

31
3

42
+ 2 ·

3
≠

1
2

42
+ 1 · 12

D

Nf

+ 1
5

C

2 ·

3
≠

1
2

42D

NH = 4
3Nf + 1

10NH . (3.29)

And for SU(2) representation, there are three multiplets which non-trivially transform

b2 = 2
3 ·

1
2[(3 · 1) + (1 · 1)]Nf + 1

3 ·
1
2(1 · 1)NH ≠

11
3 · 2

= 4
3Nf + NH

6 ≠
22
3 . (3.30)

Lastly, only the SM quark triplets contribute to SU(3) gauge corrections

b3 = 2
3 ·

1
2(2 + 1 + 1) ≠

11
3 · 3 = 4

3Nf ≠ 11. (3.31)
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NH is the number of scalar doublets and Nf is the number of fermion generations. From
the expression Eq. 3.25, the gauge —-functions are derived with the coe�cients given in Eq.
3.29 - 3.31

dgi(µ)
d ln µ

= 1
16fi2 big

3
i , (3.32)

where
1
b1 b2 b3

2

SM
=

1
U(1)Y SU(2)L SU(3)C

2

SM
=

341
10 , ≠

19
6 , ≠7

4
. (3.33)

As the last piece of RGE analysis, in order to show complete behavior of the Higgs quartic
coupling up to cut-o� scale �, we simply quote1 the RGE part of Yukawa couplings [56].
Since the 3rd generation quarks are the heaviest contribution to the RG flow, we ignore the
other generations as they contribute insignificantly

dy2
t (µ)

d ln µ2 = y2
t

16fi2

C
(2Nc + 3)

2 y2
t + y2

b

3 ≠
17
20g2

1 ≠
9
4g2

2 ≠ 8g2
3

D

,

dy2
b
(µ)

d ln µ2 = y2
b

16fi2

C
(2Nc + 3)

2 y2
b + y2

t

3 ≠
9
4g2

1 ≠
9
4g2

2 ≠ 8g2
3

D

(3.34)

. The Yukawa RGEs are completely independent from the Higgs sector in one-loop level
and SU(3) corrections significantly decrease overall strength of the Yukawa couplings as
the cut-o� scale gets larger. Taking into account all the uncertainties in the measurements
of mh , mt, mb and –s, the scale where the SM fails is µ ƒ 1010 GeV, as seen in Fig. 3.1.

Figure 3.1: The RGE running of the top, bottom Yukawa and the SM Higgs quartic
coupling. The initial conditions to set of coupled di�erential equations are set at µ0 = mt.

3.2 Coleman-Weinberg Potential
An action �(„, Â, V µ, Gµ‹) that reproduces all the physics of a full quantum theory when
used at tree-level is called a 1PI (one-particle irreducible)2 e�ective action. The 1PI e�ective

1The further sections of this work are dedicated to comprehensive analysis of RGE extension with new
fields.

2A Feynman diagram is 1PI if all internal lines have some loop momentum going through them.
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action can be computed by a matching procedure, which involves evaluating loops in the full
theory and requiring that the e�ective action, when used at tree level, agrees order-by-order
in perturbation theory with the full theory. This process e�ectively captures the e�ects of
quantum corrections.

There is a direct connection between the "ordinary e�ective action" and the 1PI e�ective
action. Starting with the ordinary e�ective action written around a background field „b

with quantum fluctuations „, integrating out „ leads to the 1PI e�ective action �(„b). If
the background field „b is constant, the 1PI e�ective action can be expressed as

�(„b) = ≠V TVe�(„b), (3.35)

Quantum corrections are e�ciently encoded in the e�ective potential as usual, which in this
context, is also referred to as the Coleman–Weinberg potential [57].

As long as only 1PI graphs contribute to the e�ective action, one can shift the action
to S(„ + „b) ≠ SÕ(„b)„, which eliminates all the tadpole terms from the Lagrangian. Then
the e�ective action reads

ei�(„b) = ei

s
d

4
x(≠ 1

2 „b2„b≠V („b))
⁄

D„ exp
3

i
⁄

d4x
5
≠

1
2„2„ ≠

1
2„2V ÕÕ(„b)

64
, (3.36)

where only one-loop closed 1PI diagrams are included. This results is equivalently expressed
as a Gaussian integral, which can be solved explicitly

i�[„b] = const. ◊ ei

s
d

4
x(≠ 1

2 „b2„b≠V („b)) 1


det (2 + V ÕÕ(„b))
. (3.37)

From the highest order in the exponent

�(„) =
⁄

d4x
3

≠
1
2„b2„b ≠ V („b)

4
+ ��(„b), (3.38)

where

i��(„b) = ln 1


det (2 + V ÕÕ(„b))
+ const. = ≠

1
2tr ln

!
2 + V ÕÕ(„b)

"
+ const. (3.39)

This simplifies further as

��[„b] = ≠
1
2

⁄
d4xÈx| ln

3
1 + V ÕÕ[„b]

2

4
|xÍ + const. (3.40)

Next, assuming that „b is constant as mentioned earlier, V ÕÕ(„b) becomes a function rather
than a functional. By inserting a complete set of momentum states, we find

i��[„b] = ≠
1
2

⁄
d4x

⁄
d4k

(2fi)4 ln
A

1 ≠
m2

e�
k2

B

+ const., (3.41)

where m2
e� is the e�ective mass of the field. The spacetime integral is simply V T , which

generates Eq. 3.35. On the other hand, the momentum integral is divergent. For scalar
field theory, we follow Wick rotation k2

æ ≠k2
E

and impose a hard cuto� kE < � [58]. This
yields

��(„b) = ≠
V T

16fi2

⁄ �

0
dkEk3

E ln
A

1 + m2
e�

k2
E

B

+ const.. (3.42)
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Evaluating this, we arrive at

��(„b) = ≠
V T

128fi2

A

2m2
e��2 + 2m4

e� ln m2
e�

�2 + const.
B

. (3.43)

Finally, using the connection Eq. 3.35, the 1PI e�ective potential becomes

Ve�(„b) = V („b) + c1 + c2m2
e�(„b) + m4

e�
64fi2 ln m2

e�(„b)
c3

, (3.44)

where ci are divergent, regulator-dependent constants, but independent of „b.
In order to complete a general expression for one-loop CW potential, the statistics of

the fields have to be taken into account according to the facts

• bosonic fields contribute positively,

• fermionic fields contribute negatively due to their Fermi-Dirac statistics,

• color factor for fermions: Nc = 1 for leptons and Nc = 3 for quarks,

• gauge bosons have polarization factor: NZ = 3 and NW ± = 6,

which are all counted in the final expression

Ve� = V0(„) +
ÿ

i

(≠1)2s
ni

64fi2 m4
i,e�(„)

C

ln
A

m2
i,e�

µ2

B

≠ ci

D

, (3.45)

where si is the spin, ni is the number of degrees of freedom, mi,e� is the field-dependent
mass of the particle and ci is a scheme-dependent constant1.

Since it is a matter of interest throughout this work that RGEs will be constructed
following the CW e�ective potential and the CS equation, we wish to regenerate the
contributions from the top quark, the SM gauge bosons and the Higgs field in Eq. 3.17
by directly following Eq. 3.45.

The biggest contribution in the SM comes from the top quark as its Yukawa coupling
is almost one. The relevant Lagrangian from the SM reads

L = |Dµ�|
2 + m2�2 + ⁄|�|

4 + iQ̄ /̂Q + it̄R
/̂tR + (ytQ̄�ctR + h.c.). (3.46)

After the spontaneous symmetry breaking, the e�ective masses become mt,e� = ythÔ
2 and

m2
h,e� = ≠m2 + 3⁄h2 and also counting over 12 degrees of freedom for top quark (3 from

colors and 4 components of Dirac spinor), CW e�ective potential becomes

Ve�(h) ∏ ≠m2h2 + ⁄h4

4 + (≠m2 + 3⁄h2)2

64fi2 ln
A

≠m2 + 3⁄h2

µ2

B

≠
12

64fi2

A
y2

t h2

2

B2
ln

Q

a
y

2
t
h

2

2
µ2

R

b .

(3.47)
And the relevant EW Lagrangian

(Dµ�)†(Dµ�) = 1
2(ˆµh)2 + v2

4

C

g2
2(W +

µ W ≠µ) + (g2
2 + gÕ2)

2 ZµZµ

D

+ · · · , (3.48)

once again after spontaneous symmetry breaking , mW,e� = g
2
2h

2

4 and m2
Z,e� = (gÕ2+g

2
2)h2

4 .
Additionally, counting over polarization states, nW = 6 and nZ = 3 in Eq. 3.45, we recover
the last two lines in Eq. 3.17.

1ci = 3/2 for fermions and scalars and ci = 5/6 for gauge bosons in MS-scheme
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3.3 Zero-Temperature Vacuum Transition

Figure 3.2: The configuration of the Higgs potential with respect to various field scale �
due to the running quartic coupling ⁄.

The decay of the false vacuum is inherently a quantum tunnelling phenomenon. The
vacuum decay rate cannot be calculated in the usual Minkowski spacetime because tunneling
processes are not classical; instead, they require analyzing the system in Euclidean spacetime
where the Euclidean time · = it and Euclidean coordinates are given ÷µ = (·, x1, x2, x3).
The Euclidean action for the Higgs field h(x) is given as

SE(h) =
⁄

d4÷
51

2(ˆµh)2 + Ve�(h)
6

. (3.49)

The solutions of the SM RGE indicates1 if Ve�(h) < 0 for h ∫ v, then the false vacuum
h = v is separated from a deeper vacua by a significant potential barrier. As a result,
transitions from the EW vacuum to the true vacuum can only proceed through quantum
tunnelling. In such scenarios, it becomes crucial to estimate the tunnelling timescale and
compare it to the age of the Universe T0. If the vacuum tunnels to a deeper minimum as
the field occupies large field values h ∫ v as seen in Fig. 3.2, the tunnelling probability is
given by the bounce configuration [59], driven by the instanton that mediates tunnelling.
The bounce is a non-trivial, finite-energy solution to the Euclidean field equations of motion
derived from SE(h). Specifically, the bounce describes the configuration of the field h(÷)
that starts at the false vacuum, bounces through the potential barrier, and asymptotically
returns to the false vacuum [60,61].

The equation of motion is derived from ”S

”h
= 0

d2h

d÷2 + 3
÷

dh

d÷
= ˆVe�

ˆh
, (3.50)

subject to the boundary conditions dh

d÷ ÷=0 = 0 and h(÷ æ Œ) = vfalse. The bounce action
SB determines the tunnelling rate because it quantifies the suppression of the transition

1For h ∫ mh, ⁄e� determines the dominant scale of Ve�(h) where the running of m2 is negligible [56].
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probability due to the field configuration having to climb over the potential barrier in
Ve�(h). The transition probability is given by

� ≥ �4
Be≠SB , (3.51)

where �B is the instability scale of the potential. Assuming the Universe’s spacetime volume
is dominated by its age, the nucleation rate per unit spacetime volume is given as [62]

dPtunnel = M4e≠SB dV. (3.52)

For tunnelling solutions (bounce solutions), the Euclidean action is assumed to be O(4)-
symmetric because the bounce represents a spherical configuration in d = 4 space. This
means that the field h depends only on the radial coordinate ÷, hence Eq. 3.49 becomes
the bounce action

SB = 2fi2
⁄ Œ

0
d÷÷3

C
1
2

3
dhB

d÷

42
+ Ve�(hB)

D

. (3.53)

This calculation is typically performed numerically because of the nonlinear nature of the
bounce equation, we simply use approximation in Ref. [63] without taking cosmological
e�ects into account (�B < MPl)

SB = 8fi2

|3⁄(�B)| . (3.54)

The scale at which the bounce makes the transition from large field values to vfalse is set by
—⁄ = 0 in Eq. 3.24. At the transition scale ⁄ = 0.008, the transition rate reads [64]

Ptunnel = T 4
0 µ4 exp

A
≠8fi2

3⁄(�B)

B

¥ 10≠1094. (3.55)

The lifetime of the vacuum is astronomically long, far exceeding the current age of the
Universe (1010 years), ensuring that the vacuum remains metastable on cosmological
timescales. However, the actual lifetime of the present EW vacuum depends on the future
cosmological history, depending on whether the matter or dark energy dominance takes over.
If the Hilbert-Einstein action ”SG is involved then the tunnelling rate is weakened [65]. It is
estimated with cosmological data that the metastable vfalse has lifetime ·EW > 10300 years
due matter dominance in the universe and further reaches to a lifetime of 10800 years if
cosmological constant dominates [56].

The metastability of the Higgs vacuum highlights an intriguing aspect of the SM: while
the electroweak vacuum may have a lifetime vastly exceeding the current age of the Universe,
this does not imply absolute stability and the negativity of ⁄ at high energies, signaling an
incomplete theory. The issue originates from the behavior of the Higgs quartic coupling
under renormalization group evolution as shown in Fig. 3.1. As the energy scale increases,
⁄ runs due to quantum corrections, which are influenced by the interplay between gauge
bosons, fermions, and the Higgs self-interactions. To address vacuum instability, new physics
scenarios are required to modify the running of ⁄ and ensure its positivity up to the Planck
scale MPl = 1019 GeV.
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3.4 Constraints on Scalar Extensions beyond the Standard
Model

The fl Parameter

Although scalar extensions of the Standard Model o�er a straightforward way to satisfy
vacuum stability conditions when new scalar fields mix with the Standard Model Higgs,
potentially a�ecting the renormalization group running in a positive direction, any choice
of quantum numbers assigned to the new scalar fields is theoretically and experimentally
constrained. In terms of the electroweak symmetry group SU(2)L ¢ U(1)Y with n number
of scalar fields(with heavy masses MNP ∫ MZ) with charge conserving Higgs structure, the
fl parameter reads [66]

fl = [Ti(Ti + 1) ≠ T 2
3i

]v2
iq

n

1 T 2
3i

v2
i

, (3.56)

where Ti is weak isospin. The global fit for fl parameter [67]

fl0 = 1.00031 ± 0.00019. (3.57)

For the SM with n = 1 and Y = 1, Eq. 3.56 reduces to Eq. 2.34. While, singlet and
doublet scalar extensions of the SM are not generally constrained in terms of new vacuum
expectation values, the fl parameter for triplet and for larger scalar multiplets are heavily
dependent of vacuum ratios tan — = vnew/v [66].

Model fl —max

Singlet 1 none
2HDM 1 none

Real Triplet sec2 — 0.030
Complex Triplet 2(3 ≠ cos 2—)≠1 0.014

Table 3.1: Tree level contribution to fl parameter in models with additional scalars.

Apart from the quantum number assignment to Eq. 3.56, there are also corrections to MW

from electroweak precision measurements1, though there might be numerous choices for new
scalar field assignments with Gell-Mann–Nishijima relation Q = T3 + Y [68], allowed by fl
parameter.

Unitarity

While tree-level unitarity is a straightforward check, new scalar fields are generally similar
across di�erent models, such as the Higgs singlet (HSM), Higgs triplet (HTM) or two Higgs
doublet models (2HDM) because the dominant contributions to the scattering amplitudes
arise from the quartic interactions of these models. At tree level, the fundamental
requirement is that the scattering amplitudes must not exceed the unitarity bound of2

A < 8fi. (3.58)
1Z2 symmetry allows to treat bosonic and fermionic corrections separately from electroweak precision

observables, though a detailed analysis discussed in the next chapters.
2The tree level unitarity constraint in the SM Higgs structure equivalently means |⁄| < 8fi. Nonetheless,

new scalar models have their unique unitarity relations.
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However, including higher loops, the contributions from loop corrections can potentially
enhance or suppress the amplitudes depending on the couplings involved. The e�ective
couplings may not remain constant due to renormalization group running, which introduces
scale dependence. Thus, while the fundamental unitarity condition persists, the specific
bounds on couplings could vary based on the field content and their interactions.

Cosmological Inflation

If the scalar fields are light and have implications for inflation or dark energy, constraints
from cosmological observations need to be investigated. For instance, if a scalar field
contributes to inflation, its potential should satisfy the slow-roll conditions [69], which
typically involve conditions on the first and second derivatives of the potential

‘ ©
M2

P

2

3
V Õ

V

42
, ÷ ©

M2
P

2
V ÕÕ

V
. (3.59)

The conditions ÷, ‘ < 1 are part of the slow-roll approximation, which ensures that the
scalar field rolls slowly down its potential during inflation. This slow rolling is necessary for
generating the desired flatness of the potential, hence maintains inflation for an extended
period. Accordingly, slow roll conditions have to be checked for each direction in field space
(„i) with respect to corrections in e�ective potential level.
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Chapter 4

Contribution of Vector-like
Fermions to RGE

4.1 Introduction
Chiral fermions coupled to the Higgs field are generally believed to destabilize the
electroweak vacuum, a well-established idea in the Standard Model. However, this
conclusion is not as absolute as it may seem, and in this chapter, we show that there
are nuances to consider. Many extensions of the Standard Model introduce new fermions,
and the central question we address here is how these additional fermions influence the
stability of the Higgs vacuum, especially in light of the previous observation.

In this chapter, we derive a compact modification to the SM one-loop —-functions from
vector-like fermions by following some of the analogous calculations in the SM. Such
modifications to RG running of parameters allow to discuss the utility of stability portals
by sticking with low-scale BSM mechanisms. The chirality of the fermions in the SM leads
to distinct contributions to quantum corrections depending on whether a fermion is left-
handed or right-handed. Vector-like fermions, on the other hand, transform in such a way
that both the left- and right-handed components of the fermion field belong to the same
representation of the gauge group. This symmetry between the two chiralities of the fermion
significantly a�ects the structure of quantum corrections and the corresponding RGEs.

For a theory with vector-like fermions, the Coleman-Weinberg (CW) potential takes the
form

V VLF
CW (H) = ≠

NF

64fi2
ÿ

k

nFk

A

MFk
(„)4

C

ln MFk
(„)2

µ2 ≠
3
2

DB

. (4.1)

Since the non-chiral structure of VLFs allow Dirac mass term MD in Lagrangian, the field
dependent VLF mass term in a decoupled nature from the SM fermions becomes

MFk
= MDk

+ yFk
v

Ô
2

, (4.2)

where the statistical factors and fermion sectors are simply

NF = (12, 4), F = (V LQ, V LL)
nF1 œ (nU , nL0), nF2 œ (nD, nL≠). (4.3)
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We are particularly interested in how exactly the VLFs modify the running couplings at the
RGE level. Since the one-loop analysis softly separates these modifications to the couplings,
it is more comprehensive to work through the details by adopting the terminology of portals.

4.2 Gauge Portal
The new fermions modify the runnings of gauge couplings through kinetic term L ∏ Â̄i /DÂ
[54]

—g1 = g3
1

16fi2

S

U
ÿ

F,„

2Y 2
F

5 +
Y 2

„

5

T

V . (4.4)

Both chiralities of VLFs contribute to the first term and introducing nF as the fermion
number in VLF multiplet, hence the corrections to hypercharge portal read

”b1 = 1
5G2G3nF Y 2

F . (4.5)

Similary, the weak gauge portal is simultaneously corrected with left- and right-handed
components, hence removing the Higgs doublet correction in Eq. 3.30 and leaving only the
VLF coe�cient

”b2 = 4
3nF G2S2(G2) (4.6)

Finally, the SM quark is vector-like with respect to SU(3)C , so the strong gauge portal is
boosted in the same manner as the SM

—g3 = g3
3

16fi2

3
≠

11
3 Nc + 4

3nF

4
, (4.7)

hence relevant contribution from a VLFs is only present for colored fields

”b3 = 4
3nF G3S3(G3). (4.8)

where Gi represent the dimensions of the representations under SU(2) and SU(3). For an
energy scale larger than electroweak symmetry breaking µ > µ0 = v, the running of gauge
coupling at µ becomes

–i(µ) = –i(µ0)
1 + –i(µ)bi ln

1
µ

µ0

2 , (4.9)

Consequently, the gauge couplings run higher than the SM due to VLF corrections

–i(µ) ≠ –SM

i (µ) = ”bi ln
3

µ

µ0

4
> 0. (4.10)

This explains why the presence of vector-like fermions at energy scales larger than the
EWSB scale helps stabilize the vacuum by shifting the running of the gauge couplings in
a way that can prevent the electroweak vacuum from becoming unstable at high energies.
Thus, the gauge portal mechanism at one-loop level, involving VLFs, plays a crucial role in
improving the stability of the Standard Model vacuum.
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4.3 Yukawa Portal
In order to construct —yt

, we recall the formalism presented in Ref. [54]. The Goldstone
bosons interacting with each Dirac fermion do not contribute to the —-function as they
are not propagating dynamically (rather transferring degrees of freedom), and since we do
not introduce a specific Yukawa interaction between Goldstone bosons and fermions, the
self energy diagrams of fermions are insensitive to such fields. In terms of the remaining
couplings and fields that correct the top Yukawa coupling, the renormalized fields and the
wave function renormalization factors as a perturbation in yt in leading order can be defined
as

tL,R =
Ò

ZtL,R
tren
L,R yt = Zyt

ytren h =


Zhhren
Ë
ZtL,R

≠ 1
È

= �tL,R

y2
tren

2 [Zyt
≠ 1] = �yt

y2
tren

2 [Zh ≠ 1] = �h

y2
tren

2 . (4.11)

The total Lagrangian in the top sector now reads

L ∏ t̄reni /Dtren + 1
2(Dµh)2

≠

3
ytren

2 hrent̄rentren + h.c
4

+ 1
2(Zh ≠ 1)(Dµh)2

+ (ZtL,R
≠ 1)t̄ren

L,Ri /Dtren
L,R ≠

3
yren

t
Ô

2
(Zyt

Ò
ZhZtL

ZtR
≠ 1)hrent̄rentren + h.c

4
.

(4.12)

For the last line, a new wave function renormalization factor can be defined as

(Zyt
≠ 1) =

1
Zyt

Ò
ZhZtL

ZtR
≠ 1

2
=

3
�yt

+ �h

2 + �tL

2 + �tR

2

4
y2

tren

2 = ”yt

y2
tren

2 . (4.13)

The overall one-loop correction to the top Yukawa is due to the Higgs two-point function
(wave function renormalization of hren), the fermion two-point function (wave function
renormalization of tren

L,R
) and vertex correction respectively

≠ i�h(ph) = ≠i
Ncy2

tren

16fi2 p2
h

31
‘

≠ ln ph ≠ i
fi

2 + ln
Ô

4fi ≠
“

2

4
. (4.14)

The divergent term can be cancelled by the renormalization condition at ph = 0,

i�h(p0) + i�hp2
0
y2

tren

2 = 0, (4.15)

which gives
�h = ≠

Nc

8fi2

31
‘

≠ ln p0 ≠ i
fi

2 + ln
Ô

4fi ≠
“

2

4
. (4.16)

Thus the correction from the Higgs two-point function becomes

i�h(ph) + i�h

y2
tren

2 p2
h = ≠i

Ncy2
tren

16fi2 p2
h ln

3
ph

p0

4
. (4.17)

Next, the fermion two-point function yields

i�tL,R
(pt) = i

y2
tren

32fi2 /pt

31
‘

≠ ln pt

2 + ln
Ô

4fi ≠
“

2

4
, (4.18)
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similarly, the divergent term can be cancelled by using the condition

i�t(p0) + i�t /p0
y2

tren

2 , (4.19)

hence it fixes
�tL,R

= ≠
1

16fi2

31
‘

≠ ln p0
2 + ln

Ô
4fi ≠

“

2

4
. (4.20)

Consequently, the fermion two-point function is renormalized as

i�tL,R
+ i�tL,R /pt

y2
tren

2 = ≠i
y2

tren

32fi2 /pt ln
3

pt
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4
. (4.21)

And the vertex contribution is proportional to

iV(ph) = i
y3

tren

16
Ô

2fi2

31
‘

≠ ln ph

2 + ln
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4fi + 1 ≠ “

2

4
. (4.22)

Finally, the divergent term rising from vertex correction is to be absorbed by the condition

iV(p0) ≠ i�yt

y3
tren

2
Ô

2
= ≠

iy3
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16
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2fi2 ln
3

ph

p0

4
, (4.23)

which fixes
�yt

= 3 + 2Nc

16fi2

31
‘

≠ ln p0
2 + ln

Ô
4fi + 1 ≠ “

2 ≠
ln 2

3 + 2Nc

4
. (4.24)

By combining all the corrections above, the top Yukawa is corrected at one-loop level as

yt ∏ ytren +
y3

tren

16fi2

33 + 2Nc

4

4 31
‘

4
. (4.25)

For VLFs, both chiral states contribute to the top Yukawa corrections in each part, thus
the top Yukawa —-function is proportional to

—yt
∏

y3
t

16fi2

33 + 2Nc

2

4
. (4.26)

Together with the well known result for g2
i
yt contributions [56], yt runs to smaller values

than in the SM

y2
t (µ)NP ≠ y2

t (µ)SM
16fi2 ≥ ≠

y2
t (µ)

16fi2

317
20”b1g2

1 + 9
4”b2g2

2 + 8”b3g2
3

4
ln2

3
µ

µ0

4
< 0. (4.27)

This result shows that the e�ect of the top Yukawa on itself and on the Higgs quartic
coupling becomes smaller as the energy scale increases, due to corrections to the gauge
couplings by VLFs.

The manifestation of Yukawa portal is two-fold for VLFs. Either the SM fermions and VLFs
directly couple in Lagrangian level L ∏ ≠yVÂ̄SMHÂV or a VLF specific Yukawa connects
left- and right-handed part of VLFs in decoupled nature L ∏ ≠yM Â̄VHÂV. Whereas the
second option is only manifested at the RGE level due to the coupled nature of —-functions,
the first one directly a�ects initial conditions according to mass splitting between the SM
and VLF partners as well. For either of the these, the vertex contribution and the Higgs
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two-point function are still given as in the first and the second term in Eq. 4.26 with the
replacement: y3

t æ y(M,V )y
2
t . The top Yukawa contribution in the Higgs two-point function

is 2y(M,V )Ñcy2
t where Ñc = 0, 1, 3. For the second option with yM , this term disappears as

Ñc = 0, disallowed by choice at Lagrangian level.

Despite the fact that g2
2 and g2

3 terms follow similar to the SM case, y(M,V )g
2
1 is corrected by

Bµ interaction with VLFs. Combining vertex correction, the Higgs two-point function and
the fermion two-point function due to U(1)Y gauge field exchange and cancelling divergences
from yM = ZyM

yMren

(ZYM
≠ 1) = ≠

yMren

16fi2

39
5g2

1(Y 2
H + 2Y 2

VLF)
4 31

‘

4
. (4.28)

Thus the hypercharge correction to —-function of VLFs reads

—yM
∏ ≠

yM

16fi2

A
9g2

1
5 (Y 2

H + 2Y 2
VLF)

B

. (4.29)

Apart from the SM fermions and the Higgs contributions, VLF part of Yukawa RGE is
given by

dy2
M

d ln µ2 = y2
M

16fi2

3
(3 + 2G2G3)y2

M ≠ 6g2
3C3(G3) ≠ 6g2

2C2(G2) + 9
20g2

1Y 2
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4
. (4.30)

The loop contribution of VLFs to the Higgs quartic coupling is similar to that in the SM

⁄ ∏ ⁄ren ≠

2Ncy4
(M,V )

16fi2

31
‘

+ finite terms
4

. (4.31)

The fermion loop in any of the four legs of the quartic interaction is
Ô

�h and it gives

i⁄e� ∏
i⁄

p2 4�h, (4.32)

and similar to the top Yukawa case in Eq. 4.17 we can write

⁄(µ) = ⁄(µ0) +
4Nc⁄y2

(M,V )
16fi2 ln

3
µ

µ0

4
. (4.33)

Hence we get the Yukawa contribution from VLFs to the beta function of the Higgs quartic
coupling by combining these two results

—V LF

⁄ = nF

16fi2

1
4Ncy

2
(M,V )⁄ ≠ 2Ncy

4
(M,V )

2
. (4.34)

The scale of the Yukawa portal alone is extremely e�ective on the Higgs quartic coupling,
given that the balance between the quartic and quadratic Yukawa terms at the scalar RGE
level is primarily determined by the initial conditions at low energy, µ0. To this end,
any possible mixing between the SM and new physics (NP) generally reduces the value of
the initial conditions for the VLF Yukawa couplings, thereby opening up a region where
⁄y2

M,V
> y4

M,V
which improves the Higgs quartic running.

In the absence of a new scalar coupled to the SM Higgs field, rest of the direct e�ects

31



on the Higgs quartic coupling is due to the gauge portal. Since the Higgs is colorless, the
shift from the SM due to the gauge portal is given as

⁄NP
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(µ) ≠ ⁄SM

H
(µ)

16fi2 ¥

5 9
40g2
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4

+ 16y2
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3(µ0)”b3 ln3
3
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µ0

46
. (4.35)

Since the right-hand side of Eq. 4.35 is always positive for scales beyond the EWSB, VLFs
are natural candidates to stabilize the vacuum through the gauge and Yukawa portals,
in addition to the widely used method involving the scalar portal. Consequently, in the
following chapters, we will explore the impact of VLFs primarily on vacuum stability
by introducing viable new physics representations within the hierarchy of the SM gauge
symmetry.

32



Chapter 5

Vector-like Quarks in the Higgs
Singlet Model

5.1 Introduction
Ever since the Higgs boson was discovered at the CERN Large Hadron Collider (LHC),
confirming at last the last remaining puzzle of the Standard Model (SM) [4], the observed
mass of the Higgs boson combined with the mass of the top quark, mt, have caused concern
because, as the theory stands, it violates stability of the electroweak vacuum [70]. In the
SM there is a single Higgs h with e�ective potential characterized by two parameters only,
the Higgs (mass)2, Ÿ2 and its self coupling ⁄, V = Ÿ2h2 + ⁄h4. The self-coupling ⁄ can
become negative at larger scales, so the potential becomes unbounded from below, and
there is no resulting stability. Theoretical considerations indicate that if the validity of the
SM is extended to MPlanck, a second, deeper minimum is located near the Planck scale such
that the electroweak vacuum is metastable, i.e., the transition lifetime of the electroweak
vacuum to the deeper minimum is finite with lifetime ≥ 10300 years [56].

If the electroweak vacuum is metastable then Higgs cannot play the role of inflaton [71].
Explanations involving a long lived-universe, where vacuum instability is not important,
were proved to be faulty. Without vacuum stability, fluctuations in the Higgs field during
inflation and in the hot early universe would have taken most of the universe into an anti-
De Sitter phase, yielding a massive collapse, and the expansion of the universe would never
have occurred [72]. The result of this is that either the SM must be incorrect or flawed in
some way [73], or at the very least, that new physics beyond the SM which alters the Higgs
potential so that it enhances its stability must exist at higher energies. Thus extra degrees
of freedom are needed for the SM to explain the inflation of the Universe [71,74,75].

Minimal extensions of the SM which stabilize the Higgs vacuum are the most common
theories which attempt to solve the Higgs mass problem. The correlation between the
Higgs mass and vacuum stability is highly dependent on bosonic interactions. For instance,
a model [76] with two Higgs doublets and large soft Higgs mass terms, satisfying the
electroweak symmetry breaking conditions, has a stable vacuum and decay branching ratios
that are very close to the SM ones, and this only one example.

The question remains if models with additional fermions, present in most beyond the SM
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scenarios, can survive stability constraints, and if so, what are the restrictions imposed on
their masses and mixing (if any) with the SM particles. To investigate how the hierarchy
problem may be fixed, and what are the implications for vacuum stability, one could
proceed by assuming a theory which supersedes the SM emerging at higher energies, such
a supersymmetry. (Note however that minimal supersymmetry has its own di�culties
with accommodating a Higgs boson of mass 125 GeV.) Or one could study the e�ect of
adding particles to the SM, coupled in the simplest way, and investigate the conditions on
their masses and couplings as emerging from vacuum stability conditions, as a simple and
elegant way to obtain information about new particles and interactions without assuming
complicated frameworks. The latter is the approach we wish to follow in this article,
and we investigate inclusion of one additional generation of vector-like fermions, i.e.,
fermions whose left-handed and right-handed components transform the same way under
SU(3)c ◊ SU(2)L ◊ U(1)Y . Unlike sequential fourth-generation quarks, which are ruled
out by the one-loop induced Higgs production and decay mechanisms (the gluon fusion
production and diphoton decay of the Higgs) [77], indirect bounds on vector-like quarks are
much weaker. In particular, vector-like fermions can acquire a large Dirac mass without
introducing a large Yukawa coupling to the Higgs.

Vector-like fermions appear in the context of many models of New Physics [78]. In warped
or universal extra dimensional models, vector-like fermions appear as KK excitations of bulk
fields [79], in Composite Higgs models, vector-like quarks emerge as excited resonances of
bound states that form SM particles [80, 81], in Little Higgs Models, they are partners of
the ordinary fermions within larger group representations and charged under the group [82],
and in non-minimal supersymmetric extensions of the SM, they can increase the Higgs mass
through loop corrections without adversely a�ecting electroweak precision [83]. Vector-like
coloured particles are consistent with perturbative gauge coupling unification and are often
invoked to explain discrepancies in the data, such as the tt̄H anomaly [84]. Vector-like
particles have been considered before in the context of stabilizing the vacuum of the SM
in [85, 86], in the context of baryogenesis [87], to account for the anomalous magnetic
moment of the muon and discrepancies in the W boson mass [88], and to help explain the
observed excess at 750 GeV [89, 90]. However, only particular representations have been
considered [91], and a complete interplay of all possible vector-like quark representations
and the SM does not exist at present. We redress this here, and analyze the restrictions on
the masses and mixing angles for the all anomaly-free representations of vector-like quarks,
as well as the associated boson field which is added to the SM for vacuum stabilization.
In addition, we test the e�ects and restrictions induced by the vector-like fermions on the
electroweak precision observables, S,T and U.

This chapter is organized as follows: In Sec. 5.2 we outline briefly the Higgs singlet model
by giving the experimental and the theoretical constraints on the parameter space, then we
will discuss the results of RGEs by showing how an additional scalar comes as a remedy
to vacuum instability in the SM. In Sec. 5.4, we introduce all anomaly-free vector-like
quark representations, their interaction Lagrangians, and derive their masses and mixing
angles (assumed to be with the third generation quarks only). We then proceed to analyze
the e�ects on vacuum stability of introducing singlet, doublet and triplet representations
in Sec. 5.6, and give the expressions and analyze the e�ects of the additional fields on
the electroweak precision observables in Sec. 5.7. We conclude in Sec. 5.8, and leave the
relevant RGEs for the models studied to the Appendix (see appendix. A).
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5.2 Higgs Singlet Model
In this section, we first consider the simplest remedy to the stability problem by extending
the particle content of the SM by an extra real singlet scalar boson ‰ with its VEV u

‰ = (u + ‰0) , (5.1)

which interacts solely with the SM Higgs, and we examine the constraints placed on its mass
and its mixing angle with the SM Higgs boson on experimental and theoretical grounds. We
leave Higgs vacuum stability condition, the main motivations of this work, to be analyzed
in detail in the last discussion in this chapter. The addition of a boson provides a positive
boost to the coupling parameter, counteracting the e�ect of the top quark and contributing
towards repairing the Higgs vacuum stability [92].

We impose a Z2 symmetry on the model, thereby eliminating the linear and cubic terms
in ‰ and the most general renormalizable potential involving the SM Higgs doublet H and
the singlet ‰ reads

V (�, ‰) = ≠Ÿ2
H�†� + ⁄H(�†�)2

≠
Ÿ2

S

2 ‰2 + ⁄S

4 ‰4 + ⁄SH

2 (�†�)‰2. (5.2)

After symmetry breaking, the minimization condition for the Higgs doublet reads

ˆV (�, ‰)
ˆ�† = ≠2Ÿ2

H� + 4⁄H(�†�)� + 2⁄HS‰2� = 0, (5.3)

then substituting � = 1Ô
2

A
0

v + h

B

, we get the first tadpole condition

≠ 2Ÿ2
Hv + 2⁄Hv3 + ⁄HSvu2 = 0 ≠æ Ÿ2

H = ⁄Hv2 + ⁄SHu2

2 . (5.4)

Similarly, minimization with respect to ‰ and substituting ‰ = u + ‰0, gives the second
tadpole condition

≠ Ÿ2
Su + ⁄Su3 + ⁄HSv2u = 0 ≠æ Ÿ2

S = ⁄Su2 + ⁄SHv2. (5.5)

Plugging these conditions back into the tree level potential V (�, ‰), the tadpole terms in
h and ‰0 vanish (by definition of VEVs), and the potential now has only quadratic and
higher-order terms in the fluctuations

V (h, ‰0) = 1
2m2

hh2 + 1
2m2

‰‰2
0 + 1

2 (h ‰0) MH,S

A
h
‰0

B

, (5.6)

where the mass matrix is given by

MH,S =
A

2⁄Hv2 ⁄SHvu
⁄SHvu 2⁄Su2

B

, (5.7)

and the mass eigenvalues according to the mixing between the Higgs field and singlet scalar
become

m2
H,S = ⁄Hv2 + ⁄Su2

û

Ò
(⁄Su2 ≠ ⁄Hv2)2 + ⁄2

SH
u2v2. (5.8)
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Finally, the eigenvectors are simply given as
A

H
S

B

=
A

cos Ï sin Ï
≠ sin Ï cos Ï

B A
�
‰

B

. (5.9)

As in the SM, we require ⁄H > 0 for a stable SM vacuum, and ⁄S > 0 for the new particle.
In addition we impose that the potential is positive for asymptotically large values of the
fields,

⁄H > 0, 0 < ⁄S < 4fi, |⁄SH | > ≠2


⁄S⁄H . (5.10)

In addition we require that ⁄SH is perturbative, thus bounded by |⁄SH | > 4fi. The quartic
couplings can be expressed in terms of the physical masses as

⁄H = m2
H

cos2 Ï + m2
S

sin2 Ï

2v2 ,

⁄S = m2
S

cos2 Ï + m2
H

sin2 Ï

2v2 ,

⁄SH = m2
S

≠ m2
H

2uv
sin 2Ï. (5.11)

Here ⁄H and ⁄S are the quartic self-couplings of � and ‰, and ⁄SH the coupling describing
their mixing with mH , mS (v, u) are the masses (VEVs) of the physical fields, respectively
and Ï their mixing angle.

The additional scalar is subjected to constraints from particle physics and cosmology
[93, 94]. If the additional scalar is heavier than the Higgs boson at 125 GeV, in HSM the
decay channel S æ HH may exist, and act as an extra constraint for the mixing regime.
The fl parameter and its deviation from unity play an important role in measuring the e�ects
of new physics on the masses of electroweak gauge bosons. Corrections to the mass of W -
boson originate from the Higgs mediated loops, which enhance gauge boson self-energies,
and these are dependent on the masses and the mixing between the scalar fields [95]. In
the case where the heavier of the two scalars is the mostly-singlet S with mS Ø 125 GeV,
the mixing angle sin Ï agrees with theoretical predictions up to 1‡. Although the region for
�MW

1 is less restricted compared to the other case (where mH=125 GeV), this scenario is
disfavoured by collider bounds and Higgs data. If the lighter scalar corresponds to the SM
Higgs boson with mH=125 GeV, larger heavy singlet scalar masses impose smaller mixing
angles between the two scalars in order to fit �MW to 1‡ level. The minimum scale for
the mass of heavier scalar in this work is at least 500 GeV, which in return, corresponds to
sin Ï=0.37 due only to the constraint on �MW .

The bounds on HSM are also constrained by electroweak precision observables (EWPO).
The singlet scalar contributes to the gauge boson self-energy diagrams at loop level,
generating a shift in the oblique parameters S, T, U [97]. Checking the results from EWPO
fit [98] by taking into account only the deviation of the oblique parameters with respect
to the SM [96], Fig. 5.1 shows that, for values of mS below 1 TeV, the restrictions from
the bounds from Higgs signal strength are stronger than those from EWPO. For the case
considered in this work, where mS Æ 2 TeV, the parameter space corresponding to agreement
between oblique parameters and the EWPO fit imposes an upper bound for sin Ï < 0.4

1Please note that in this work we assumed MW = 80.377 ± 0.012 GeV [96] and did not take into account
the new CDF measurement, awaiting further conformation. Our results are thus more conservative.
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around mS=500 GeV. The e�ects arising from electroweak precision in HSM, at 1‡ level [95]
are consistent with our later considerations of S, T, U parameters in Sec. 5.7 which indicate
that, for mass of the singlet Higgs at 1 TeV, the mixing angle must be sin Ï < 0.2 from
the requirement of consistency of new physics with allowed deviations from the SM. These
results are consistent with those in Fig. 5.7.

Figure 5.1: Allowed parameter space for the singlet scalar mass mS and the maximum value
of the mixing angle sin Ï in HSM with respect to various constraints in HSM.

An additional theoretical bound comes from tree-level perturbative unitary. Two body
scattering of scalars at tree level and loop e�ects to SS æ SS and HH æ HH partial
decay widths were derived for HSM in [99–102]

a0(HH æ HH)|
s∫m

2
H

= ≠
3
16(⁄H cos4 Ï + ⁄HS sin2 Ï cos2 Ï + ⁄S sin4 Ï),

a0(SS æ SS)|
s∫m

2
S

= ≠
3
16(⁄S cos4 Ï + ⁄HS sin2 Ï cos2 Ï + ⁄H sin4 Ï). (5.12)

Near the decoupling region sin Ï ≥ 0, the condition |a0| < 1/2 entails ⁄H , ⁄S Æ
8fi

3 , or
equivalently

m2
S sin2 Ï + m2

H cos2 Ï Æ
8fi

Ô
2

3GF

. (5.13)

Near the decoupling region sin Ï ≥ 0, unitarity alone puts a lower bound for mS Ø 700 GeV
and increases to 1 TeV from one-loop correction level, whereas otherwise mS can be as large
as 7 TeV. Additionally, HS æ HS requires only ⁄HS Æ 8fi. But in general, perturbative
unitarity generates a more flexible parameter space compared to other constraints.

The Higgs singlet also a�ects signal rates due to loop e�ects on the Higgs decay
widths through the channels H æ gg, ““ at leading order. Previous analyses used various
benchmark to test behaviours for di�erent tan —, defined as the ratio of the VEVs tan — = u

v
,

and mS scales [103]. The mixing between scalars ranges in the interval sin Ï = (0.31≠0.20),
corresponding to mS = (200≠800 GeV). The parameter space generated from the additional
Higgs production channel S æ HH is in agreement with H æVV (di-boson) decays for

37



sin Ï Æ 0.22 in the mass range mS = (260 ≠ 770 GeV), corresponding to the minimum of
BR(S æ HH) = 0.17. The mixing is further constrained with increasing mass values of
the Higgs singlet, sin Ï Æ 0.16, for mS Æ1 TeV [104].

Apart from the SM Higgs quartic coupling ⁄H , the couplings ⁄S and ⁄HS from Eq. 5.2
are inversely proportional to tan —, which yields ⁄i > 1 at tan — ≥1, mS Ø 900 GeV. So,
⁄S and ⁄HS reach the non-perturbativity region for small tan — values. Taking relatively
larger VEV scales, the couplings are perturbative for tan — = 5, 10, which correspond to
the singlet VEV scales, u = 1, 2 TeV throughout our work. Fig. 5.2 shows the electroweak
corrections to the production gg æ H while Fig. 5.3 shows the decay H æ ““, indicating
that the electroweak correction ”EW becomes more consistent with the SM limit (blue line)
as tan — becomes larger. For tan — = 10, u ≥ 2 TeV, ”EW further tends to the SM scale,
however, variations in sin Ï become tan — suppressed.

Fig. 5.2 yields a strong constraint on the scalar mixing, because for electroweak
deviations ”EW to converge towards the SM limit, sin Ï Æ|0.2| at TeV scale. Electroweak
constraints are more relaxed from diphoton decay Fig. 5.3. Deviations from the SM are
not too severe on sin Ï when mS Ø 800 GeV. Clearly, as tan — becomes larger (and so does
the singlet VEV u), the constraints obtained from H æ diboson channels are satisfied for
mS = O( TeV) scale. On the other hand, the region with small tan — in HSM is restricted
from perturbativity and relatively larger ”EW inconsistencies.

Figure 5.2: Electroweak corrections ”EW to leading order of cross section of SM Higgs
production via gluon fusion in HSM for di�erent VEV ratios, tan — = u

v
= 5, 10, as a

function of the additional singlet mass.

The production and decay channels of the singlet scalar are shown in Fig. 5.4 and Fig.
5.5, respectively. The processes gg æ S and S æ ““ have no useful experimental bounds for
extracting various constraints on HSM. However the corrections ”EW are more dependent
on the sign of sin Ï than on tan —. Similarly, smaller — values restrict the perturbativity of
⁄S and ⁄HS for mS Ø 900 GeV.

Cosmological constraints on models with additional scalars are interested particularly
in cases where the additional singlet is a dark matter candidate. Among the Higgs related
dark matter (DM) portal studies, only the scalar portal is renormalizable. However, when it
comes to scalar portals, the coupling between di�erent scalars can take values in a relatively
large interval. In HSM, ⁄HS sets various constraints on the freezing temperature Tf at which
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Figure 5.3: Electroweak corrections ”EW to the partial decay width of the diphoton decay
H æ ““ in HSM for di�erent VEV ratios, tan — = u

v
= 5, 10, as a function of the additional

singlet mass.

Figure 5.4: Electroweak corrections ”EW to leading order of cross section of the singlet
Higgs production via gluon fusion in HSM for di�erent VEV ratios, tan — = u

v
= 5, 10, as a

function of the singlet mass.
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Figure 5.5: Electroweak corrections ”EW to leading order of the partial decay width of the
diphoton decay S æ ““ (bottom panel) in HSM for di�erent VEV ratios, tan — = u

v
= 5,

10, as a function of the singlet mass.

DM decouples from cosmic heat reservoir [105]. Although additional DM candidates such
as singlet fermions can be added to any theory in order to decrease extremely divergent
characteristic of ⁄HS in RGE level, mixing constraints are still in agreement with other
constraints; mS <1 TeV (without extra fermionic DM), and 200 < mS < 300 GeV
(with extra fermionic DM) as the Universe cools down T < Tf [106]. Furthermore, if
the singlet VEV u < 400 GeV, tan — <2 in order to allow perturbativity of ⁄HS ; this
is however outside the parameter region we considered. Electroweak vacuum stability is
a�ected by the renormalization group equations for the coupling of ⁄H to ⁄HS in Eq.
5.23, hence the connection between coupling evolutions gives limited freedom to control the
dependence of ⁄HS on mS . The combined cosmological constraints were explored within
the GAMBIT framework [107], and they concluded that for 1 < mS < 4 TeV the singlet
scalar portal only can account for the relic abundance. A more recent work [108] treats the
electroweak stability problem by analyzing the HSM potential and transition probability of
VEVs through radiation dominated era by an transcendental function of temperature. In
accordance with the results of this work [108], mS might have to extend to TeV scale to
have a stable vacuum, though the exact lower value of mS depends on the scale of ⁄HS .

5.3 Coleman-Weinberg Potential
For any QFT, the CS equation describes how the e�ective action changes with energy scale.
It expresses the dependence of the e�ective action on the renormalization scale, and in
particular, it gives the equations that describe the running of the coupling constants. Similar
to the SM case in Sec. 3.1, a possible derivation of RGEs is related to CW potential [109].
To this end, the field dependent masses in H and S directions have to be revealed after
spontaneous symmetry breaking in terms of the bare couplings of the model and field
statistics are to be counted in the CW potential. The field-dependent masses after symmetry
breaking are generally computed by taking the second derivative of the e�ective potential
with respect to the field at the vacuum M2

i
(„i) = ˆ

2
Ve�(„i)
ˆ„

2
i

|„i=„i0
. For the scalar sector, it
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was already shown in Eq. 5.7
A

ˆ2
h
Ve� ˆhˆ‰Ve�

ˆhˆ‰Ve� ˆ2
‰Ve�

B

v,u

= PM(M2
H , M2

S)DiagP ≠1, (5.14)

where P is a bi-unitarity matrix that orthogonally diagonalizes the mass matrix in Eq. 5.7.
The field dependent masses of the gauge bosons are same as the SM case since the kinetic
portal is not changed with the additional scalar. Furthermore, the SM Yukawa terms are
still given with respect to the Higgs VEV. Hence, one-loop corrections to the CW potential
in H direction becomes
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4
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3
2

4
≠

3
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T

3
ln FT
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3
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4
, (5.15)

where

FH = ≠Ÿ2
H + 2⁄Hv2, FG = ≠Ÿ2

H + ⁄Hv2, FT = y2
t v2

2 ,

FW = g2v2

4 , FZ = (g2 + gÕ2)v2

4 , FQ = ≠Ÿ2
S + ⁄HSv2, (5.16)

and also in S direction

V (1)(S)|u = 1
64fi2 P 2

S

3
ln PS

µ2 ≠
3
2

4
+ 3

64fi2 P 2
G

3
ln PG

µ2 ≠
3
2

4

+ 1
64fi2 P 2

Q

3
ln PQ

µ2 ≠
3
2

4
, (5.17)

where

PS = ≠Ÿ2
S + 3⁄Su2, PG = ≠Ÿ2

H + ⁄HSu2, PQ = ≠Ÿ2
H + ⁄HSu2. (5.18)

All that remains is to find the beta functions for the scalar potential parameters. These
are determined by requiring scale independence of the e�ective potential Ve�(H, S) =
V (H, S)(0) + V (H, S)(1) as

µ
dVe�(H, S)

dµ
= µ

dV (H, S)(0)

dµ
+ µ

dV (H, S)(1)

dµ
= 0. (5.19)

Di�erentiating the e�ective potential with respect to coupling constants is not a major
issue. However, the derivative of the e�ective potential with respect to the renormalization
scale µ will yield terms that depend on the scale µ including the explicit dependence of the
couplings on µ from the loop integrals and counterterms. And anomalous dimension term
“„ describes how the field itself scales with the renormalization scale µ. The anomalous
dimension is computed from the field’s contribution to the one-loop e�ective potential

“„ = 1
2

d ln Z„

d ln µ
, (5.20)
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where Z„ is the field’s wavefunction renormalization factor. Actually, “ = O(⁄3) as there
are no propagator corrections to scalar two-point function at 1-loop. So the anomalous
dimension for background scalar fields have to be included at 2-loop level as “(1,2) = 0 +
O(⁄3)1. Rewriting the bare HSM Lagrangian in terms of renormalized field and couplings

H =


ZHHRµ≠‘/2 S =


ZSSRµ≠‘/2 Â =
Ò

ZÂÂRµ≠‘/2,

Ÿ2
H = ZŸH

ZH

Ÿ2
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Ÿ2
S = ZŸS

ZS

Ÿ2
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yt = Zyt
Ô

ZH

µ‘/2ytR
,

⁄H = Z⁄H

Z2
H

⁄HR
µ‘ ⁄S = Z⁄S

Z2
S

⁄SR
µ‘ ⁄HS = Z⁄HS

ZHZS

⁄HSR
µ‘. (5.21)

Once the divergent terms in the e�ective action are absorbed into counterterms through
scaling factors Zi = 1+”i, anomalous dimension in every field configuration can be computed
and plugged into CS equation. Then matching of the counter terms can be used to identify
—-functions [110].
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1
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4
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2
t )
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2 yt2
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, (5.22)

where the terms O(g2
i
, g4

i
) are not shown.

Finally, taking all the constraints discussed above into account for the vacuum stability
analysis in HSM and requiring perturbativity up to Planck scales, we apply the Yukawa
and Higgs sector RGEs by adding well known gauge e�ects on the HSM couplings
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2
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. (5.23)

Eqs. 5.11 describe the coupling parameters at relatively small energy scales, and therefore
serve as initial conditions in addition to the gauge couplings

g2
1(µ0) = 4fi–, g2

2(µ0) = 4fi–
3 1

sin ◊W

+ 1
4

, g2
3(µ0) = 4fi–s. (5.24)

1The non-zero terms contributing to the Higgs field’s anomalous dimension at 1-loop can be found in
Ref. [56]
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Here –, –s are the weak and strong coupling constants. Additionally we ignore the
contributions of all Yukawa couplings except for that of the top quark, and also we include
electroweak radiative correction terms for increased accuracy. To this end, we replace the
top Yukawa coupling and Higgs self-coupling boundary conditions with [111]

yt =
Ô

2mt

v
[1 + �t(µ0)] ,

⁄H = m2
H

cos2 Ï + m2
S

sin2 Ï

2v2 [1 + ”H(µ0)], (5.25)

where
�t(µ0) = �W (µ0) + �QED(µ0) + �QCD(µ0) , (5.26)

with
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, (5.27)

and we include the RGEs for the gauge couplings as in the SM, Eq. 3.32. The radiative
decay constant for the Higgs is [112]
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with

Z(z) =
I

2A tan≠1(1/A), z > 1/4
A ln[(1 + A)/(1 ≠ A)], z < 1/4,

(5.30)

A = |1 ≠ 4z|
1/2 (5.31)

where c, s are abbreviations for cos ◊W , sin ◊W . Fig. 5.6 illustrates the running of the
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Figure 5.6: The RGE running of the top Yukawa coupling and scalar couplings for the
scalar boson model with mS = 1 TeV, sin Ï = 0.1, u = 2 TeV, and the initial conditions are
set at µ0 = mt.

coupling parameters for a typical set of parameter values. Notice that in this model, the
scalar couplings increase with increasing energy scales, compensating for the SM Higgs
coupling, which becomes negative at around 1010 GeV in Fig. 3.1. Therefore, the addition
of an extra scalar boson to the SM secures the conditions in Eq. 5.10 for absolute vacuum
stability.

Of course, we may investigate the mass and mixing angle of this singlet scalar with the Higgs
boson by eliminating all parameter values that do not satisfy Higgs vacuum stability. For
this we perform a scan over a broad parameter space and disallow all parameter values which
do not satisfy the vacuum stability conditions outlined in Eq. 5.10. The resulting allowed
parameter space is illustrated in Fig. 5.7. While the blue points represent restrictions
from vacuum stability bounds only, the shaded red region represents the region excluded by
constraints from Higgs production and couplings (as discussed below), which are dominant
and are the only parameters limiting the parameter space, especially for lighter singlet
masses, mS Æ 700 GeV.

(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 5.7: The allowed parameter space for the mass mS and mixing angle Ï with the
SM Higgs for the additional scalar boson model, for di�erent vacuum expectation values:
u = 1 TeV (left panel); u = 2 TeV (middle panel); and u = 4 TeV (right panel). The shaded
region represents the region excluded by constraints from the Higgs data.

Note that, while the mass region allowed for the additional boson for u = 1 TeV is
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quite restricted, for larger VEVs it is quite large, and increasing with the new boson VEV.
However, in all cases, the mixing with the SM Higgs boson is required to be non-zero
(Ï ”= 0), consistent with the observation of Higgs potential instability in the absence of the
additional boson.

Overall, our explored parameter space of SM with the additional scalar is consistent
with Higgs data, electroweak constraints, and cosmological constraints. We showed that
regions with singlet masses and VEVs around the TeV scale are much preferred. We now
proceed to analyze the e�ects of introducing vector-like quarks to the model and show that
there, as we add more fermions, stability emerges be the most stringent constraint.
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5.4 Theoretical Framework
Using the stable potential in the previous section, we investigate the e�ect of introducing
vector-like fermions into this SM + additional scalar model. Unlike SM-like (chiral) fermions
which act as doublets under SU(2)L if left-handed and as singlets if right-handed, and spoil
the agreement of loop-induced production and decays of the SM Higgs, vector-like fermions
have the same interactions regardless of chirality. They appear in many new physics models,
such as models with extra dimensions, and many explanations put forward of deviations
from SM physics include vector-like fermions. Thus it is important that, when considering
the addition of a vector-like fermions to the SM, the presence of a new scalar boson is
essential to ensure the stability of the Higgs potential, otherwise, as the fermions decrease
the e�ective self coupling, the singular divergence of the Higgs quartic coupling would
worsen compared to the one in the SM. As before we require the Higgs sector potential to
be positive at asymptotically large values of the fields, up to Planck scale. The question we
need to address is: what are the constraints on the masses of the vector-like fermions, and
mixing angles with ordinary fermions, such as to maintain vacuum stability.

The new states interact with the Higgs bosons through Yukawa interactions. The allowed
anomaly-free multiplet states for the vector-like quarks, together with their nomenclature,
are listed in Table 5.1 [78, 91, 113]. The first two representations are U -like and D-like
singlets, the next three are doublets (one SM-like, two non-SM like), and the last two are
triplets. The various representations are distinguished by their SU(2)L and hypercharge
numbers. In these representations, the Yukawa and the relevant interaction terms between

Table 5.1: Representations of Vector-Like Quarks, with quantum numbers under SU(2)L ◊ U(1)Y .

Name U1 D1 D2 DX DY TX TY

Type Singlet Singlet Doublet Doublet Doublet Triplet Triplet

T B

3
T
B

4 3
X
T

4 3
B
Y

4 Q

a
X
T
B

R

b

Q

a
T
B
Y

R

b

SU(2)L 1 1 2 2 2 3 3
Y 2/3 ≠1/3 1/6 7/6 ≠5/6 2/3 ≠1/3

the vector-like quarks and SM quarks are, in the mixed (H, S) basis

LSM+S = ≠yuq̄LHcuR ≠ ydq̄LHdR

LU1,D1 = ≠yT q̄LHcU1R
≠ yB q̄LHD1R

≠ yM (Ū1L
SU1R

+ D̄1L
SD1R

)
≠ MU ŪLUR ≠ MDD̄LDR,

LD2 = ≠yT D̄2L
HcuR ≠ yBD̄2L

HdR ≠ yM (D̄2L
ScD2R

+ yBD̄2L
SD2R

)
≠ MDD̄2L

D2R
,

LDX ,DY
= ≠yT D̄XL

HuR ≠ yBD̄YL
HcdR ≠ yM (D̄XL

SDXR
+ yBD̄YL

ScDYR
)

≠ MXD̄XL
DXR

≠ MY D̄YL
DYR

,

LTX ,TY
= ≠yT q̄L·aHc

T
a

XR
≠ yB q̄L·aHT

a

YR
≠ yM (T̄XL

·aSc
T

a

XR
+ yB T̄YL

·aST
a

YR
)

≠ MX T̄XL
TXR

≠ MY T̄YL
TYR

, (5.32)

46



where Hc = i‡2Hı, Sc = i‡2S, yu, yd, yT and yB and the Yukawa couplings of the SM-
like Higgs field H, and yM is the Yukawa coupling of the S field to vector-like quarks.
After spontaneous symmetry breaking, the Yukawa interactions generate mixing between
the SM quarks and the vector-like quarks at tree level. The singlet vector-like quark and
the triplet vector-like quark exhibit similar mixing patterns, while the doublet vector-like
quarks have a di�erent mixing pattern. To avoid conflicts with low energy experimental
data (flavor changing neutral interactions), we limit the vector-like quarks mixing with the
third generation of SM quarks only. This is reasonable also because of the large mass gap
between vector-like fermions and the first two generations of quarks. The mixing patterns
will be described below.

The gauge eigenstate fields resulting from the mixing can be written in general as,

TL,R =
A

t
T

B

L,R

BL,R =
A

b
B

B

L,R

. (5.33)

The mass eigenstate fields are denoted as (t1, t2) and (b1, b2) and they are found through
bi-unitary transformations,

TL,R =
A

t1
t2

B

L,R

= V t

L,R

A
t
T

B

L,R

BL,R =
A

b1
b2

B
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= V b

L,R

A
b
B

B
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, (5.34)

where
V t

L,R =
A

cos ◊ ≠ sin ◊
sin ◊ cos ◊

B

L,R

, V b

L,R =
A

cos — ≠ sin —
sin — cos —

B

L,R

. (5.35)

In the following we abbreviate cos ◊t

L
© ct

L
,... Through these rotations we obtain the

diagonal mass matrices

M t

diag = V t

LM t(V t

R)† =
A

mt1 0
0 mt2

B

, M b

diag = V b

LM b(V b

R)† =
A

mb1 0
0 mb2

B

, (5.36)

where M t, M b represent the 2 ◊ 2 mass mixing matrix between the t, T and b, B states,
before diagonalization. The eigenvectors now become, for instance for the top sector

m2
t1,t2 = 1

4
Ë
(y2

t + y2
T )v2 + y2

M u2
È
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WU1 ±
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with eigenvectors
A
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B
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cos ◊L,R sin ◊L,R

≠ sin ◊L,R cos ◊L,R
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. (5.38)

where the mixing angles are

tan ◊L = 2yT yM vu
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t
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)v2

tan ◊R = 2ytyT v2
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)v2 , (5.39)

47



and similarly for the b-quark sector, with the replacement t æ b and ◊ æ —. Note that,
because of their charge assignments, the X and Y fields do not mix with the other fermions
and are therefore also mass eigenstates.

Relationships between mixing angles and mass eigenstates depend on the representation
[113,114].

For doublets : (XT ) : m2
X = m2

T (cos ◊R)2 + m2
t (sin ◊R)2

(TB) : m2
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b(sin —R)2
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Ô

2 m2
T

≠ m2
t

(m2
B

≠ m2
b
) sin(2◊L) .
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t

Ô
2(m2
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b
)

sin(2◊L) , (5.40)

and where

mT tan ◊R = mt tan ◊L for singlets, triplets
mT tan ◊L = mt tan ◊R for doublets
mB tan —R = mb tan —L for singlets, triplets
mB tan —L = mb tan —R for doublets . (5.41)

For doublet models, while the Higgs mixing is the same as in the previous section, the
mixing between the top quark t and the new vector-like singlet T , characterized by the
mixing ◊L, results in the shift in the Yukawa couplings as follows

yt(µ0) =
Ô

2mt

v

1
Ò

cos2 ◊L + x2
t

sin2 ◊L

,

yT (µ0) =
Ô

2mT

v

sin ◊L cos ◊L(1 ≠ x2
t )

Ò
cos2 ◊L + x2

t
sin2 ◊L

,

yB(µ0) =
Ô

2mB

v

sin ◊L cos ◊L(1 ≠ x2
b
)

Ò
cos2 ◊L + x2

t
sin2 ◊L

,

yM (µ0) = mT + mB
Ô

2u

Ò
cos2 ◊L + x2

t
sin2 ◊L , (5.42)

with xb = mb/mB, and as before xt = mt/mT . We use these expressions as initial conditions
to the RGE equations (see appendix. A). We review the mass bounds on vector-like quarks,
then proceed with our numerical analysis in Sec. 5.6.
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5.5 Experimental bounds on vector-like quark masses
Searches for vector-like quarks have been performed at the LHC and various limits exist
[115], all obtained assuming specific decay mechanisms. The Run 2 results from the LHC
have improved previous limits from Run 1 by about 500 GeV [116]. All measurements
assume top and down-type vector-like quarks to decay into one of the final states involving
Z, W or Higgs bosons with 100% branching ratios. So far, lower limits around 800 GeV
have been obtained. The most recent search at ATLAS obtains, with 95% C.L., lower limits
on the T mass of 870 GeV (890 GeV) for the singlet model, 1.05 TeV (1.06 TeV) for the
doublet model, and 1.16 TeV (1.17 TeV) for the pure Zt decay mode quark [117]. The
current experimental lower bound on the mass of the down-type vector-like quark which
mixes only with the third generation quark is around 730 GeV from Run 2 of the LHC and
around 900 GeV from Run 1. The current lower bound for a vector-like quark which mixes
with the light quarks is around 760 GeV from Run 1. In our analyses, we set a lower limit
on all masses of 800 GeV, to allow for the consideration of the largest parameter space.

We proceed with analyzing the representations in turn, showing the e�ects of the
additional fermions on the RGEs, and the mass and mixing angles constraints on the
fermions and additional boson for each. All the relevant RGE for the Yukawa couplings,
couplings between the bosons, and gauge coupling constants are given in the Appendix A.

5.6 RGE Analysis of Vector-like Quarks in Higgs Singlet
Model

The evolution of the RGE’s under di�erent vector-like fermion representations are illustrated
in Fig. 5.8 for singlet model U1 for di�erent values of the VEVs of the new scalar field
(u = 1, 2, 4 TeV) along with (u = 2, 4 TeV) for singlet model D1 in Fig.5.9. In the case
of u = 1 TeV, we have taken the mass of the scalar boson to be 0.8 TeV, because for
mS = 1 TeV, the Higgs sector couplings diverge, leading to singularities, whereas in the
case of u = 2 TeV and u = 4 TeV, we chose mS = 1 TeV because the smaller mass of 0.8
TeV is not large enough to ensure a positive Higgs quartic coupling. In the case of other
representations only u = 2 TeV case is set for running couplings as shown in Fig. 5.10 for
doublet VLQs and Fig. 5.11 for triplet VLQs. We compared our results to the findings of
Ref. [85], where the parametric solutions to the RGEs and the running couplings for singlet
VLQs are in good agreement, while the RGE solutions for the larger representations provide
novel contributions to the literature. As required, all of the Higgs sector couplings remain
positive up to Planck scale. As expected, the fermion Yukawa couplings tend to decrease
with increasing energy, while the scalar bosonic couplings tend to increase. As we discussed
previously, the addition of extra scalar bosons to the Standard Model helps maintain a
positive Higgs self-coupling at larger energy scales, while the addition of extra fermions
only aids in lowering it further. A common trend with respect to the models is that the
Yukawa couplings are generally negatively a�ected by added loops at higher energy scales,
while the Higgs sector couplings are generally a�ected positively (they tend to increase with
increasing energy).

The obvious exception here is the SM Higgs coupling, which strays dangerously close to
zero at high energy scales, and even becomes negative for the additional singlet vector-like
fermion case. The models that augment the scalar boson by vector-like representations vary
significantly among each other in predictions for the various couplings with the scalar VEV
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(a) u = 1 TeV (b) u = 2 TeV

(c) u = 4 TeV

Figure 5.8: The RGE running of the Yukawa and scalar couplings in singlet vector-like
quark model U1. We set mS = 0.8 TeV, u = 1 TeV, (top left panel), mS = 1 TeV, u = 2
TeV (top right panel), mS = 1 TeV, u = 4 TeV (bottom panel) and sin Ï = 0.1 for scalar
sector. For fermionic sector: mT = 0.9 TeV, sin ◊L = 0.08 and µ0 = mt.

(a) u = 2 TeV (c) u = 4 TeV

Figure 5.9: The RGE running of the Yukawa and scalar couplings in singlet vector-like quark
model D1. We set mS = 1 TeV, u = 2 TeV (left panel), mS = 1 TeV, u = 4 TeV (right
panel) and sin Ï = 0.1 for scalar sector. For fermionic sector: mB = 1 TeV, sin ◊L = 0.08
and µ0 = mt.
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(a) D2 (b) DX

(c) DY

Figure 5.10: The RGE running of the Yukawa and scalar couplings in doublet vector-like
quark models D2 (top left panel), DX (top right panel), DY (bottom panel). We set mS =
1 TeV, u = 2 TeV, sin Ï = 0.1 for scalar sector and mT = 0.9 TeV, mB = 1 TeV, mX = 1
TeV, mY = 1 TeV, sin ◊L = 0.08 and µ0 = mt for all doublet VLQ models.

(a) TX (b) TY

Figure 5.11: The RGE running of the Yukawa and scalar couplings in triplet vector-like
quark models TX (left panel), TY (right panel). We set mS = 1 TeV, u = 2 TeV, sin Ï = 0.1
for scalar sector and mT = 0.9 TeV, mB = 1 TeV, mX = 1 TeV, mY = 1 TeV, sin ◊L = 0.08
and µ0 = mt for both triplet VLQ models.
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u. Note in particular that for the the first case, for the singlet vector-like case, where u = 1,
the Higgs couplings increase, and ⁄H becomes negative at µ ≥ 1011 in Fig. 5.8, rendering
the theory unstable, while if the additional scalar VEV is increased to u = 2, or 4 TeV, the
problem is ameliorated. The same problem recurs for the doublet and triplet models (not
shown), but the theory is safe1 for u = 2 and 4 TeV. Di�erences in the running RGE’s are
more pronounced for ⁄S , the new boson self-coupling, and negligible for the others. Note in
particular, the di�erence between the values in Fig. 5.8 and 5.6. For the doublet and triplet
vector-like fermions, the RGE evolutions are similar, and the Higgs self-coupling remains
positive at all energies. The additional scalar quartic coupling does not lie close to the
origin as its interactions with fermions are small. There are some variations among models
in the new scalar coupling, and the one describing the mixing with the SM Higgs. We have
put less emphasis on the vacuum stability bound for the additional scalar, since its mass
and VEV are unknown, and thus limiting concrete information from a detailed study of its
vacuum stability bound.

Imposing the same conditions on the positivity of the potential as in Eq. 5.10, we study the
allowed masses and mixing angles corresponding to each vector-like fermion representation.
In Figs. 5.12 and 5.13 we perform a scan over random values of the relevant vector-like
quarks between 300 and 2200 GeV, and for the mixing angles sin —L (in the bottom sector)
and sin ◊L (in the top sector) between -1 and 1. The allowed values of the scalar mass mS

are plotted against the mixing angle in the scalar sector, sin Ï for di�erent values of the
expectation values u (1, 2 and 4 TeV), providing an illustration of the possible quantitative
properties of the scalar boson in this model. The results are given for all models. In Fig.
5.12 we plot the scans for singlet vector-like T (top row), singlet vector-like B (second row),
(T, B) doublet (third row), (X, T ) doublet (fourth row), (B, Y ) doublet (bottom row). And
in Fig. 5.13 we consider the (X, T, B) triplet (top row), and (T, B, Y ) triplet (bottom row),
providing an illustration of the possible quantitative properties of the scalar boson in these
models. We remark from Figs. 5.12 and 5.13 that just as in the SM extension containing
only an extra scalar boson, considered in the previous section, mass mixing between the two
scalar bosons is always required, and this mixing is significant, sin Ï Ø 0.2. Also, consistent
with previous discussions, increasing the VEV u enlarges the parameter space, which is now
quite restricted for u = 1 TeV. As expected, the addition of vector-like fermions worsens
the stability of the potential, but larger VEVs (mass scales) survive. The mixing in the
singlet U1 model is the most e�ective counter-term addition, in fact pretty much ruling out
the scenario where u = 1 TeV (unless the additional scalar is light, 600-1000 GeV), while
the other representations provide much milder bounds for the same VEV.

We now investigate the restrictions on the vector-like fermion masses and mixing from
requiring the stability of the Higgs potential. We concentrate first on the vector-like T ,
which has the same charge as the top quark, and which, through mixing can a�ect changes
in the Higgs potential, both in the fermion and in the scalar sector. In order to investigate
this, we perform the same scan over random values of mS and MU between 300 and 2200
GeV, and for the mixing angles sin Ï and sin ◊L between -1 and 1, and show the results in
Fig. 5.14. The first row shows the results for the singlet T vector-like quark, the second
row shows the results for the doublet vector-like (T, B), the third for the (X, T ) doublet,
the fourth for the (X, T, B) triplet and the last for the (T, B, Y ) triplet. Unlike the case of

1In fact even u = 1 TeV generates an allowed parameter space that survives from vacuum stability
constraints as to be shown in the next section. Nevertheless, it should be noted that for smaller u values,
parameters leading to vacuum instability are more likely to be encountered.
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Figure 5.12: The allowed parameter space for the scalar boson mass and mixing angle with
the SM Higgs. In the (top panel) scalar + vector-like T ; (second panel) scalar + vector-like
B; (third panel) in the scalar + vector-like (T, B) model; (fourth panel) scalar + vector-like
(X, T ) fermion model; and (bottom panel) scalar + vector-like (B, Y ) fermion model, for
di�erent vacuum expectation values of the additional scalar: u = 1 TeV (left panel); u = 2
TeV (middle panel); and u = 4 TeV (right panel).
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Figure 5.13: (Continued) The allowed parameter space for the scalar boson mass and mixing
angle with the SM Higgs. In the (top panel) the scalar + triplet (X, T, B) model , and for
(bottom panel) the scalar + (T, B, Y ) triplet model, for di�erent vacuum expectation values
of the additional scalar: u = 1 TeV (left panel); u = 2 TeV (middle panel); and u = 4 TeV
(right panel).

scalar mixing, here the mixing between the top quark and the vector-like one is required to
be small, in general, for most cases, in the region sin ◊L œ (≠0.2, 0.2) (with some exceptions,
where it can be larger, discussed below), and it can be zero. The allowed masses of the T
quark are restricted for the scalar VEV u = 1 TeV, and increase with increasing VEVs, so
that in the singlet T and doublet (X, T ) models cases, practically no T masses are allowed
for u = 1 TeV, while masses up to 1400 GeV are allowed for u = 4 TeV. For the SM
like doublet (T, B), for u = 1 TeV, mT Æ 800 GeV, for u = 2 TeV, mT Æ 1600 GeV,
while for u = 4 TeV, mT spans the whole axis. Note that here, like in the scalar sector,
there are marked di�erences between the scenarios. For the doublet (X, T ), any mixing
between the T and t quark is allowed. We expect this case to be somewhat similar to the
singlet, however, the Yukawa coupling of the X quark lowers the Higgs coupling further, the
parameter space continues to be severely constrained, and the mass is allowed in a narrow
region near mT = 1 TeV for all values of the additional singlet. Here, as an exception
to small mixing, the constraints on the mixing with the top are lifted. The case with
triplets (X, T, B), a�ected by both the X and B vector-like quarks, exhibits a behaviour
independent of the singlet VEV. Masses again are favoured to be near mT = 1 TeV (we rule
out light masses, ≥ 500 from direct searches) and the mixing is allowed to be small or large.
The strong enhancements are for the cases where the t and T mix. The mixing is expected
to be stronger than between B and b quarks, due to the di�erences between mass of the
top and of the bottom (making the denominator in Eq. 6.36 smaller). It is interesting to
note here the e�ect of the X vector-like quark, which, while not mixing with SM quarks, is
nevertheless important for the mass of the T vector-like quark (seen clearly if we compare
the singlet T model with the doublet (X, T ), and the doublet (T, B) model with the triplet
(X, T, B)).

The scans in Fig. 5.15 illustrate the allowed masses and mixing angles of the B vector-
like quark with the bottom quark for the SM augmented by the additional scalar. We show,
in the top panel, the vector-like singlet B model, in the second panel, the vector-like (T, B)
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Figure 5.14: The allowed parameter space for the T fermion mass and mixing angle with
the top quark for: (top panel) in the scalar + singlet vector-like T model; (second panel) in
scalar + vector-like (T, B) model; (third panel) for the T fermion mass and mixing angle in
the scalar + (X, T ) fermion doublet model, (fourth panel) for the scalar + (X, T, B) triplet,
and (bottom panel) for the triplet (T, B, Y ) model, for di�erent vacuum expectation values,
u = 1 TeV (left panel); u = 2 TeV (middle panel); and u = 4 TeV (right panel).

model, in the third panel, the vector-like (B, Y ) model, in the fourth panel, in the vector-like
(X, T, B) triplet, and in the bottom panel, the (T, B, Y ) triplet. We again perform the same
scan over the mB and mS masses and mixing angles sin —L constrained by vacuum stability
requirement, and plot the resulting mB against the mixing the b-sector sin —L. The e�ect
of the B quark is markedly di�erent from that of the T quark due to weaker constraints on
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its angle (the denominator in tan —L is larger than tan ◊L ). For the B singlet model, the
mixing and mass range are restricted, especially for u = 1 TeV, while for the (T, B) model
the mass restrictions are lifted, but the mixing limits still remain. For the (B, Y ) doublet
and for the (T, B, Y ) triplet model, the situation is very similar to that of the T mass and
mixing in these models: the mixing is restricted everywhere except around 1000 GeV, and
this result is independent on the scalar VEV. Finally, we investigate constraints on the
vector-like fermions with non-SM like hypercharge, X, with charge 5/3, and Y , with charge
-4/3. As the additional vector-like quarks X and Y do not mix with SM particle, a plot
of mass against the mixing angle does not make sense, Instead, in Fig. 5.16, the allowed
values of the scanned fermion mass mX is plotted against mT , and mY is correlated with
mB. Note that in the (X, T ) quark doublet, the X and T masses are strongly correlated
(as seen from the third row of Fig. 5.14) and the expected mX is required to be close to
1000 GeV regardless of mT values. We see that, similarly, in the (B, Y ) doublet model,
mY must have an allowed mass of approximately 1000 GeV, regardless of mB, or the VEV
u, unless both mX and mY would be much lighter (100-200 GeV) in agreement with our
earlier results. This seems to severely constrain models with vector-like quarks with exotic
hypercharges.

For completeness, all the relevant RGE for the Yukawa couplings, couplings between
the bosons and coupling constants are included in the Appendix A.
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Figure 5.15: The allowed parameter space for the B fermion mass and mixing angle in:
(top panel) the vector-like singlet B model, (second panel) the vector-like (T, B) model,
(third panel) the vector-like (B, Y ) model, (fourth panel) the vector-like (X, T, B) triplet,
and (bottom panel) the (T, B, Y ) triplet, for di�erent vacuum expectation values of the
additional scalar: u = 1 TeV (left panel); u = 2 TeV (middle panel); and u = 4 TeV (right
panel).
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Figure 5.16: The correlated parameter space for the X and T quark masses in the (X, T )
quark doublet model (top panel) and in the (X, T, B) triplet model (second panel), and for
the Y and B quark masses for the (B, Y ) doublet model (third panel), and for the (T, B, Y )
triplet model (bottom panel) for di�erent vacuum expectation values.
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5.7 Electroweak Precision Measurements
Constraints on possible new physics also emerge from precision electroweak mea-
surements. The extra singlet scalar and vector-like states induce modifications to
the vacuum polarizations of electroweak gauge bosons at loop level as shown in
Fig. 5.17, which are parameterized by the oblique parameters S,T, and U.

Figure 5.17: Scalar boson and VLQ contributions to vacuum polarization amplitude of the
SM gauge bosons �V V .

For a large class of new physics models, corrections to precision electroweak observables
are universal, in the sense that they are revealed only in self-energies of electroweak gauge
bosons. There are solid constraints from these oblique corrections, pushing the scale of new
physics around 1 TeV. The oblique parameters can be calculated perturbatively for any
model from the gauge boson propagators, and are defined as [97]

S = 16fiŸ
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The current experimental values are obtained by fixing �U = 0 are �T = 0.08 ± 0.07,
�S = 0.05 ± 0.09. The overall calculation of S,T and U parameters via loop contributions
can be separated into contributions from scalars and from fermions since VLQs is odd under
Z2 symmetry.
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5.7.1 HSM contributions to the S and T parameters
Rewriting Eq. 6.42 explicitly in terms of the scalar loop contributions to the gauge boson
two point functions [118].
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The explicit expressions for the �S and �T parameters for the SHM, including the extra
singlet scalar representation, but without the vector-like quarks, are
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and similarly for [tH ] function, with the replacement mS æ mH .
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and similarly for [sH ] function, with the replacement mS æ mH .
Although pure scalar contributions to �S and �T relatively fit better with the

experimental bounds as the scalar mixing angle is increased (Fig. 5.18), we are particularly
interested in numerical values at sin Ï ≥ 0.1 and mS ≥ 2 TeV since the constraints coming
from vacuum stability are more restricted. Moreover, in Fig. 5.18, it is seen that the whole
scalar parameter space mS , sin Ï is allowed, considering only the constraints from oblique
parameters.
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(a) sin Ï = 0.1 (b) sin Ï = 0.2

(c) sin Ï = 0.4

Figure 5.18: The contribution to the T (orange) and S (blue) parameters in the SM
augmented by a singlet scalar, as a function of the singlet scalar mass. We take u = 1
TeV for our consideration to remain in the vicinity of vacuum stability constraints.

5.7.2 VLQ contributions to the S and T parameters
The oblique correction parameter T for vector-like quarks is given as [119]
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where the fermion ratio functions ◊± are given as
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where yi = ( mi
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)2, and for the S parameter,
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Except U1 and D1 cases, the contributions to T and S parameters from VLQ can be given
by leading order approximation.
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Doublet D2 (T, B), Y = 1/6
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Doublet DX (X, T ), Y = 7/6
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Doublet DY (B, Y ), Y = ≠5/6
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Triplet TX (X, T, B), Y = 2/3
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where xi = mF

mt
for all representations. We now scan over the oblique parameters from

di�erent VLQ masses with respect to the expression given in Eq. 5.54 - 5.60.
The S-parameter agrees with the experimental bounds for small mixing angles, and

does not bring tighter constraints on the masses of vector-like quarks. However, the T-
parameter becomes negative for small mixing angles for the D1 and DX representations.
This feature in return might exclude some regions of the parameter space once combined
with the contributions from the SM + additional scalar, and imposes further conditions on
the mass of singlet scalar. Apart from the vacuum stability constraints that connects the two
sectors, this unique feature of electroweak precision accounts for the destructive interference
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(a) U1 (T) (b) D1 (B)

Figure 5.19: The contributions to the T (blue) and S (orange) parameters in the singlet
representations, as functions of the vector-like quark mass.

(a) D2 (T,B) (b) DX (X,T)

(c) DY (B,Y)

Figure 5.20: The contributions to the T (blue) and S (orange) parameters in the doublet
representations as functions of the vector-like quark mass.

between parameter spaces of scalars and vector-like fermions. Similar studies have been
carried out in the literature [120] to impose more restricted constraints on parameter spaces
of additional scalars. Checking the Eq. 5.55 for �T, the logarithmic term suppress the linear
term in the small mixing domain of D1. Similarly, for DX , the first term in Eq. 5.57 is
inversely proportional to vector-like quark mass, which is rapidly suppressed by the second
term, growing with opposite sign with respect to mass of vector-like quark. Numerical
values for �T and �S at mV LQ ≥ 1 TeV agree with the experimental limits in small mixing
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(a) TX (X,T,B) (b) TY (T,B,Y)

Figure 5.21: The contributions to the T (blue) and S (orange) parameters in the triplet
representations, as functions of the vector-like quark mass.

throughout all representations. However, it is shown from the mutual regions satisfying
S,T-parameters and vacuum stability parameter spaces that, in general, vector-like quark
masses and mixings are inversely proportional to each other. Moreover, in the mixing
interval sin ◊L,R > 0.3, although not shown here, �T and �S dangerously stray away from
the experimental bounds, yielding more restrictions on mS , as seen in Fig. 5.18. Therefore,
negative contributions to �T and �S are very likely to be compensated with relatively
heavier scalars in various models.

5.8 Conclusions
In this work, we presented a detailed analysis of the stability conditions on the Higgs
potential under the presence of extra vector-like fermions. Since these have the same
couplings for left and right components, they do not a�ect the loop-induced decays of
the SM Higgs boson, and indeed, can have arbitrary bare masses in the Lagrangian. We
asked the question of whether they can have an e�ect on the Higgs sector, in particular,
we concentrated on one of the outstanding problems in the SM, vacuum stability of the
Higgs potential. While vector-like fermions appear in many beyond the SM models, here
we have taken a model-independent approach. We allowed mixing of the vector-like fermions
with the third generation chiral fermions only, and we considered all possible anomaly free
possibilities for the vector-like representations, with the additional fermions allowed to be
in singlet, doublet, or triplet representations.

As all other fermions, their e�ect on the RGE’s of the Higgs self-coupling constant is
to lower it further, worsening the vacuum stability. An additional boson is introduced
to alleviate this problem (representing an additional Higgs boson which would naturally
appear in most New Physics models). Its presence is essential, and by itself it remedies
the stability problem. The allowed additional scalar mass varies with its assigned VEV,
but for all scenarios the mixing with the SM Higgs is required to be non-zero. We analyze
constraints on the parameter space coming from theory, experiment and cosmology, and
accordingly, we require the singlet mass to be preferably in the O(TeV) scale. Thus this
work focuses on TeV scale with small mixing because once vector-like quarks are introduced,
stability becomes the most restrictive theoretical constraint. Even in bare HSM (without
vector-like quarks), stability is one of the most stringent ones. In addition, the singlet scalar
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VEV must be in the TeV scale as well, as smaller VEVs spoil pertubativity and severely
restrict the parameter space.

Additional fermionic representations survive for scalar VEVs u = 1, 2 or 4 TeV, and the
agreement improves with increasing the scalar VEVs, indicating that higher scale physics
is more likely to improve the vacuum stability problem. For most models, u = 1 TeV
is highly restricted, and likely ruled out, especially for top-like vector fermions, or in
doublet models where this fermion is the only one mixing with the SM top. The situation
worsens for the (X, T ) doublet model, where for all values of the VEV u, the mass mT

hovers around 1000 GeV and is independent of the mixing. For triplet representations, the
parameter spaces for T ≠ t mixing have similar characteristics in imposing a small vector-
like quark mass limit, regardless of the value for the singlet VEV. Compared to the doublet
(T, B) representation, large mixing angles are permitted, for a relatively wide allowed mass
spectrum. Comparatively, the model (X, T, B) is more sensitive to large vector-like quark
masses, and shrinks the mixing angles to a small range as mT becomes large, whereas the
model (T, B, Y ) allows for more parameter space for masses and mixing angles space for
various singlet VEVs. The di�erences in parameter spaces can be attributed to the fact
that although the vector-like quark X does not mix with the SM particles, its Yukawa term
appears in the RGE for yT , which is unique to the (X, T, B) model.

Vacuum stability is improved if the bottom-like fermion is also present, and allowed to
mix with the b quark. The mixing angles are in general small (an exception are extreme
cases where the mass is extremely restricted and the mixing completely free). However the
di�erence between models with top-like or bottom-like quarks o�er a way to distinguish
between them, complimentary to collider searches.

Compared to T vector-like quarks, constraints on the B-like fermion masses and mixing
angles are much more relaxed. For the (T, B) doublet model, the restrictions a�ect mostly
mT and are relaxed for mB (the mixing with the b quark is required to be small). While
the mixing can be larger for the (B, Y ) and (T, B, Y ) models, and for mB = 1000 GeV, the
mixing with the bottom quark is unrestricted. (On the other hand, the models (T,B,Y) and
(B,Y) have almost identical parameter spaces for B mixings regardless of the singlet VEV.
The mixings are constrained everywhere except mB = 1000 GeV. Although it’s possible, the
model (T, B, Y ) is relatively less su�cient to impose mass values for mB around 1000 GeV
for u = 1 TeV. And finally, B mixings become less relaxed as the mass of vector-like quark
gets larger for the models (T, B) and (X, T, B).) The vector-like quarks carrying non-SM
hypercharge do not mix with quarks, and seem to be required to have masses of around
1000 GeV, irrespective of the model, other vector-like fermion masses, or scalar VEV.

Compared to vacuum stability restrictions, electroweak precision constraints are more
relaxed. Although the S-parameter does not introduce strong restrictions on parameter
space, the T-parameter evolves in negative direction in di�erent models. Combined with
scalar contributions to S and T-parameters, deviations from the experimental precision data
might impose further restrictions on additional scalars and mixings with Higgs.

In conclusion, models where T -quark is unaccompanied by a B-quark yield very
restrictive constraints for the masses mT and mixing angles sin ◊L. As well, additional
vector-like fermions with hypercharge 5/3 or -4/3 are shown to restricted the additional
fermions to masses close to 1 TeV, for the sampled range of the parameter space, which, in
association with their exotic charges, renders them predictable, making it easy to confirm or
rule out the existence of these fermions. Our considerations which constrain the masses and
mixings of vector-like fermions are complimented by analyses on the parameters of models
with vector-like quarks from electroweak fits to the parameters in these models.
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Chapter 6

Vector-like Quarks in the Two
Higgs Doublet Model

6.1 Introduction
The discovery of the Higgs boson [4, 5] marked a significant milestone in particle physics,
validating the existence of the missing piece of the Standard Model (SM). Yet the data
collected supporting the Higgs discovery seem to indicate that principles of stability,
renormalizability, and naturalness, which motivated the introduction the Higgs boson in
the first place, appear in conflict with the properties of the Higgs field itself. The idea
of naturalness seems to be in conflict with the surprising degree of fine-tuning of both
parameters in the Higgs field potential [56, 70]. Related to this is the issue of the stability
of the electroweak vacuum which arises from the behaviour of the Higgs potential under
renormalization group equations. To address this issue, it became imperative to explore
extensions of the SM that could resolve this instability while remaining consistent with
experimental observations. These explorations involve extending the particle content by
additional states, and/or extending the symmetry group (which in turn, result in the
presence of new particles).

Such additional particles can be fermions or bosons. While the former are limited, the
later appear to have a wider range of applicability. The issue with additional fermions
is the following. In the SM, gauge invariance does not allow for the introduction of bare
mass terms for quarks and leptons, since these terms are not gauge invariant. So quark
and lepton masses only arise from Yukawa interactions, after spontaneous gauge symmetry
breaking. Additional fermionic families (quark or lepton) are ruled out by the Higgs data,
since both the digluon production cross section (and decay), and diphoton decay channel,
agree with the SM predictions and thus are inconsistent with the existence of additional
fermions in the loops. The reason is the following. For the gluon fusion, the lowest order
process proceeds through a loop involving quarks. The loop function which depends on
ratio of the quark mass over the Higgs mass, both squared. The loop function is negligible
for light quarks, where this ratio is < 1, leaving only the top contribution to be significant.
However if there are additional generations of chiral fermions, their contributions will also
add to that of the top quark and enhance the cross section, rendering it inconsistent with
the experimental value [121, 122]. Thus surprisingly, heavy chiral quark contributions do
not decouple [123,124].
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However, if the fermionic components have vector-like structure, rather than SM-chiral-
like, their left- and right-handed components have the same couplings, allowing for bare
mass terms which are gauge invariant. The addition of these particles is one of the simplest
extensions of the SM. Because of their vector-like nature, they do not contribute to gauge
anomalies and are less restricted than their chiral counterparts by current experimental
data. They may populate the desert between the SM and the scale of grand-unification,
without worsening the hierarchy problem. Vector-like quarks (VLQs), allowed to mix that
couple with the third generation quarks (top and bottom partners), appear in composite
Higgs models with a partially-composite top quark [125–128]. They are naturally present in
theories with extra dimensions [79,129–133] and in Little Higgs Models [134–136]. Finally,
VLQs can be introduced in non-minimal supersymmetric models to increase corrections to
the Higgs mass without significantly a�ecting electroweak precision observables [137–139],
and they appear also in GUT-inspired, supersymmetric models [140].

Additionally, VLQ may explain some of the mismatch between the SM predictions and
observed data. For instance the CKM matrix, which encodes couplings for each of the three
generation quarks is, by construction, unitarity. However, the recent dataset collected after
2018 [141] disfavours the CKM unitarity of the first row for three generations of quarks to
99.998% C.L., a problem confirmed by the determination of Vud from superallowed beta
decays [142]. While improved lattice evaluations of decay constants and form factors for
kaons and pions, and corrections to the nuclear beta decay have shrunk the discrepancy to
3‡, referred to as the Cabibbo Angle Anomaly [143,144], introducing VLQs seems the most
promising avenue, because of they are able to yield right-handed charged quark currents,
which can modify the CKM matrix results [145]. An additional VLQ family could also
explain quark and lepton mass hierarchies [146].

In the context of the SM, vector-like quarks (VLQ) contribute to the stability of the
vacuum, due to their strong coupling. It is well-known that in the SM, the stability of
the vacuum is threatened by the strong coupling of the top to the Higgs boson [147]. The
simplest cure is to add a scalar singlet field, which mixes with the SM Higgs boson and
compensates for the top quark contribution [92]. Vector-like quarks, due to their distinct
representation under the electroweak group, o�er a promising avenue for mitigating the
vacuum stability problem. The question remains, how would the vacuum stability be
a�ected by the addition of VLQs to the particle content.

In a previous work [1], we analyzed the e�ects of all possible representations of vector-like
quarks and their implications for maintaining vacuum stability within the SM augmented
by an additional scalar. We have shown that, even with the addition of VLQs, the presence
of the additional scalar was still a necessity. We extend this analysis here to the study
of the e�ect of introducing vector-like quarks into the a simple extension of the SM, the
Two-Higgs Doublet Model (2HDM). Thus we e�ectively replace the singlet scalar by scalars
in a doublet representation. Our study involves analyzing all anomaly-free representations
of vector-like quarks and their implications for maintaining vacuum stability within this
model. As several versions of the model exist, we shall concentrate here on Type-I (where
the fermions couple to only one Higgs doublet and the other is inert) and Type-II (where
up quarks and neutrinos couple to one Higgs doublet, while down quarks and charged
leptons couple to the other). The latter is of particular interest as it is consistent with the
interaction structure required in supersymmetry.

68



The Two-Higgs doublet models, seen as one of the simplest extensions of the SM, have
received a great deal of attention in the literature, see for example [148–166] and references
therein. There are several motivations for extending the SM to 2HDMs. The best known
is, as alluded to before, supersymmetry. In supersymmetric theories, the scalars belonging
to multiplets of di�erent chiralities cannot couple together in the Lagrangian, and thus a
single Higgs doublet cannot give mass to both up- and down-type quarks. In addition,
cancellation of anomalies also requires the presence of an additional doublet. Another
motivation for 2HDMs comes from axion models [167]. It was noted [168] that a possible
CP-violating term in the QCD Lagrangian can be rotated away if the Lagrangian contains
a global U(1) symmetry, but this is possible only if there are two Higgs doublets. And yet
another motivation for 2HDMs comes from the fact that the SM is unable to generate a
su�ciently large baryon asymmetry of the Universe, while 2HDMs can, due to additional
sources of CP violation [169].

In this paper, we investigate the e�ects of vector-like quarks in the context of extending
of SM to the 2HDM framework. By incorporating vector-like quarks into 2HDM, we analyze
whether we can overcome the negativity of quartic Higgs boson self couplings by finding a
viable parameter space consistent with various theoretical and experimental constraints in
Type-I and Type-II 2HDM scenarios. Furthermore, we delve into the consequences of these
extensions on precision electroweak observables. We focus on two separate components:
first the oblique parameters originating from purely the 2HDM and second, on the impact
of vector-like quark contributions on these observables. These analyses shed light on the
potential alterations to electroweak measurements that arise from the inclusion of vector-
like quarks in multi-Higgs scenarios. Through numerical simulations, we demonstrate the
significant role that vector-like quarks play in stabilizing the electroweak vacuum while
maintaining agreement with precision electroweak measurements. Our aim is to provide
insights into the potential avenues for extending the SM to address some of its shortcomings
and set the theoretical framework for future explorations and for experimental validations.

Our work is organized as follows. In Section 6.2 we review the 2HDM. In the following
Section 6.3 we review vector-like quarks, in singlet, doublet or triplet representations, setting
the general Lagrangian responsible for their interaction, as well as reviewing experimental
searches and theoretical considerations responsible for restricting their masses. Section 6.5 is
dedicated to our exploration of the parameter space of the 2HDM with VLQs which satisfies
vacuum stability bounds. Section 6.6 explores the constraints imposed by electroweak
precision observables on the surviving parameter space, looking separately at the restrictions
coming from the 2HDM alone, in 6.6.1, and from the VLQs, in 6.6.2. We summarize our
findings and conclude in Section 6.7. Finally, in the Appendices B.1-B.2 we gather all RGE
formulas for the VLQ representations used in this work.

6.2 The Two Higgs Doublet Model
In what follows, we present brief summary of the Two Higgs Doublet Model (2HDM).
Extensive reviews of the 2HDMs of Type-I and Type-II are in e.g. [148, 149]. The most
general scalar potential contains 14 parameters and can have CP-conserving, CP-violating,
and charge violating minima. We make several simplifying assumptions: that CP is
conserved in the Higgs sector, allowing one to distinguish between scalars and pseudoscalars,
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that CP is not spontaneously broken, and that discrete symmetries eliminate from the
potential all quartic terms odd in either of the doublets.

The 2HDM scalar potential for the two doublet fields with hypercharge Y =1, which is
invariant under the gauge symmetry of the SM, SU(3)C ¢ SU(2)L ¢ U(1)Y and satisfy a
discrete Z2 symmetry is given by [148]
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where the complex doublets are perturbed around their minimums vi as
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with
Ò
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2 = v = 246 GeV, and the m2
12 term softly breaks the Z2 symmetry. The

reason for introducing Z2 symmetry is to avoid tree-level flavour-changing neutral currents.
Minimizing the 2HDM potential Eq. 6.1 breaks electroweak symmetry and allows the scalar
potential be fully described in terms of seven independent parameters. Unlike the Standard
Model, where spontaneous symmetry breaking leaves only a single free Higgs field, the
2HDM features five fields, corresponding to five distinct Higgs particles. For the doublets
�i to have their minima precisely at È�iÍ, the two conditions for the minima must be
satisfied
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Such requirement equivalently generates the tadpole relations for the 2HDM, which must
vanish in the lowest level
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The tadpole conditions enable the removal of two parameters m2
11, m2

22 from the 2HDM
potential, allowing them to be expressed in terms of the remaining parameters. In addition
to the terms that are linear in the fields, substituting the doublet expansions from Eq. 6.2
into the 2HDM potential introduces bilinear terms involving the fields w±

i
, fli, ÷i. These

bilinear terms a�ect the propagators of the eight fields, leading to the generation of mass
terms as
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where the mass matrices are expressed as
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Diagonalization of mass matrices are necessary to have physical particles in the 2HDM with
bi-unitary transformation
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B
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. (6.7)

The diagonal mass matrices of the 2HDM is found by applying a set of orthogonal
transformation1
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The mass eigenvalues of the physical particles read
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For clarity, it is important to point out that the diagonalization process links the two angles,
– and — to the 2HDM parameters via the following tree-level relation
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along with tan — = v2/v1, – is the mixing angle between the two CP-even scalars and
⁄345 = ⁄3 + ⁄4 + ⁄5. The scalar couplings at µ0 can be expressed in terms of the physical
masses of the two CP-even scalars, h, H, CP-odd Higgs A and two charged Higgs bosons
H± as
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1Here s–, c– and t— denotes sine, cosine and tangent of the given parameters.
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In contrast to the SM vacuum which conserves CP symmetry but breaks SU(2)L ¢ U(1)Y

symmetry, there are four possible vacuum states in 2HDM. Charge-breaking vacuum occurs
when the charged component of either of scalars acquires a non-zero VEV. U(1) symmetry
is spontaneously broken, and the photon gets a non-zero mass

È�1ÍCB = 1
Ô

2

A
0
c1

B

, È�2ÍCB = 1
Ô

2

A
c2
c3

B

, (6.13)

CP-breaking vacuum occurs when there is a relative phase di�erence between the vacuum
expectation values (VEVs) of the neutral components of the scalar doublets
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The inert vacuum state happens when either one of the scalar fields acquire a non-zero
VEV.
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while mixed (normal) vacuum occurs when both of the neutral components of the scalar
doublets have non-zero and positive VEVs
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If all di�erent vacua could have existed simultaneously in 2HDM potential, then one can
undoubtedly think that the probability of transition between these states is non-zero. It
was shown in Ref. [170] that if 2HDM potential has a CP conserving vacuum, then the
di�erent vacua (CP and CB) become saddle points1, with energy larger than that of the CP
preserving vacuum, insuring that normal vacua stays global. If two di�erent pair of normal
vacua can coexist, for a choice of tan — value, more than one pair of v1, v2 (v̂1, v̂2), might
survive away from the origin [171]. The relative depth of the potentials is given by2.
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However, a new pair of deeper minima (v̂1, v̂2) in a special form of the 2HDM potential
conflicts with SM phenomenology (the Higgs boson data) for a large region of the parameter
space while a small parameter space still survives, preserving the mass spectrum of the
SM and yet developing a non-zero transition rate between di�erent normal vacua pairs.
Nevertheless, the coexistence of two pair neutral vacua
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a particle spectrum which might yield decays conflicting with the SM predictions, even
without RG flow, given the age of universe exceeds the tunnelling time. A su�cient
condition that the normal vacua v2 = v2
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1This is not necessarily so for the CP breaking case, though normal vacua remains deeper.
2A similar relation in terms of inert and inert-like minimum cases is given elsewhere [172]
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Additionally, one loop e�ects rise in the e�ective 2HDM potential, hence the relative depth
of potential under the presence of the coexistence of inert [172] and of CB vacua [173] cases
involve further corrections. Consequently the parameter space extracted from the relative
depth of potential is extended. In fact, such e�ect is an alternative way for renormalized
couplings to manifest themselves according to RGEs, since the complete form of the e�ective
potential runs over all gauge boson, fermion and scalar fields contributions. In return,
renormalized couplings and masses according to a cut-o� scale modify the relative depth
between two e�ective potential under the coexistence of vacua. The procedure follows
according to the general structure of —-functions under the SM symmetry group, whereas
gauge and scalar couplings extend the parameter space in a similar way. The Yukawa
couplings do not a�ect the inert-like minimum since the fermions remain massless. The
non-coexistence of CB and normal vacua is assured by the relative depth between di�erent
vacua nature VCB ≠ VEW > 0, hence the normal vacuum remains global minimum at tree
level. However, there exists a finite allowed region [173] from one loop corrections to V eff

EW

that might develop a larger e�ective potential than the one of V eff

CB
. Since the e�ective

potential is RG scale independent, this phenomena is not related to the energy scale for
which the loop corrections are performed. Thus at one-loop level, di�erent from at tree level,
the e�ective scalar potential that measures transition rates between EW and CB vacua is
extremely dependent on particle content given. Nonetheless, the study of the surviving
rates is meaningful in the case where VEW ≠ VCB > 0 and concludes remarkably that the
tree level relation for EW vacuum stability may not hold for a unique choice of parameters.

Furthermore, tree level vacuum stability is insured if the following necessary and
su�cient conditions are satisfied for the potential parameters in softly broken Z2 symmetry
[174]
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While these conditions may not necessarily hold true at the one-loop level, within the
range where perturbative methods apply, the minor adjustments in the one-loop corrections
to the e�ective potential should not substantially alter the potential’s asymptotic trends.
Typically, this is managed by scrutinizing the RG evolution of scalar couplings in the
potential and ensuring that the criteria outlined in Eq. 6.19 remain applicable across
all scales. Throughout our work in Section 6.5, the conditions Eq. 6.19 and Eq. 6.20
on all the quartic couplings are satisfied up to the Planck scale. In principle, assuming
the most general 2HDM potential (e.g. Z2 is not preserved, ⁄6, ⁄7 ”= 0), it was shown
[152, 175, 176] that necessary and su�cient conditions for boundedness from below (BFB)
can be numerically solved for limited cases. Inclusion of ⁄6 and ⁄7 extends the parameter
space that satisfies BFB conditions. Without loss of generality, the BFB conditions for the
most general 2HDM potential reduce to Eq. 6.19. To this end, by adopting Z2 conserving
case only, our scanning of complete RGEs in Section 6.5 obeys Eq. 6.19 at all energy scale
up to µ = MP l. Additional conditions on the parameters of the 2HDM potential at the tree
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level emerge when ensuring the theory maintains unitarity [177,178]
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At the end of Section 6.4, the tree level expressions1, Eqs. 6.20, will be further modified
to one-loop corrections for perturbative unitarity conditions in order to be examined
throughout complete 2HDM+VLQ RGE scan. We consider the case where Mh < MH

(with h the SM-like Higgs boson), the light Higgs masses scenario and normal vacuum in
this study. Based on how Z2 symmetry is imposed on the 2HDM Lagrangian, four types of
Yukawa interactions arise. Here we consider only two versions of the model:

• Type-I: All fermions couple to the �2 doublet, and the discrete symmetry is described
as �2 æ ≠�2.

• Type-II: All charged leptons and down type quarks couple to �1 and all up type
quarks couple to �2.

Adopting a similar method as the HSM, the e�ective potential of the 2HDM can be used
to construct one-loop RGEs once the tree level expression is corrected by CW potential
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where the field-dependent masses are set by second order variation of the tree level potential
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Since the degrees of freedom that the vector fields have exceeds the degrees of freedom
of the physical gauge fields, the 2HDM gives rise to gauge-freedom. However, choosing
Landau gauge ‰ = 0 set that the additional gauge-dependent pieces do not contribute to
field-dependent scalar masses. For Z2-symmetric case we adopt, the scalar part is already
given in Eq. 6.10. For the gauge bosons, the field-dependent masses are derived from the
kinetic part of the Lagrangian ∏ (Dµ�i)†(Dµ�i) in terms of the expectation values of both
doublets
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where ‡a are the standard Pauli matrices. It is much easier to compute field-dependent
masses by introducing a general gauge vector
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1The analytic expressions for the most general 2HDM potential appear elsewhere [176].
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Thus the squared mass eigenvalues for the gauge bosons become
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2
1
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2
2
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ddddb
, (6.25)

where

p = „2
3 + „2

7 + „2
4 + „2

8,

q = „2
1 + „2

2 + „2
5 + „2

6,

r = „2„4 + „6„8 + „1„3 + „5„7,

s = „1„4 + „5„8 ≠ „2„3 ≠ „6„7. (6.26)

Diagonalization of Eq. 6.25 generate the mass eigenvalues for the gauge bosons1

M2
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2
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1
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B 3
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Ò
(p + q)2 + 16s2
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4
,
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2
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M2
“ = g2

2
8

A

1 + g2
1

g2
2

B 3
p + q ≠

Ò
(p + q)2 + 16s2

W
c2

W
(s2 ≠ pq + r2)

4
. (6.27)

The field-dependent squared mass of the top quark is determined by �2 through the Yukawa
part

L
t

Yuk = ≠ytq̄L�c

2tR + h.c. (6.28)
since lower component of weak isospin doublets always couple to �2 as

m2
t = y2

t

2 („2
5 + „2

6 + „2
7 + „2

8) È„7Í=v2
≠æ m2

t = y2
t v2

2
2 . (6.29)

Carrying out similar but tedious analysis with the e�ective potential and CS equation gives
the complete RGEs for the 2HDM2.

Although the conditions Eq. 6.18 - 6.19 are necessary, they are not su�cient to guarantee
absolute stability of the electroweak vacuum at next-to leading order (NLO). In fact, the
renormalization group equations (RGE) running of quartic couplings ⁄1,2 in Type-I and
Type-II are severely a�ected by negative corrections of top and bottom Yukawa couplings

d⁄I
2

d ln µ2 = 1
16fi2

Ë
12⁄2

2 + 4⁄2
3 + 4⁄3⁄4 + 2⁄2
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1 + 3g2

2)

≠ 12y4
t ≠ 12y4

b + · · ·

È
,

d⁄II
1

d ln µ2 = 1
16fi2

Ë
12⁄2

1 + 4⁄2
3 + 4⁄3⁄4 + 2⁄2

4 + 2⁄2
5 ≠ 3⁄1(g2

1 + 3g2
2)

È
,

d⁄II
2

d ln µ2 = 1
16fi2

Ë
12⁄2

2 + 4⁄2
3 + 4⁄3⁄4 + 2⁄2

4 + 2⁄2
5 ≠ 3⁄2(≠4y2

t + g2
1 + 3g2

2)
È

, (6.30)

1This is only valid for mixed(normal) vacua, otherwise none of eigenvalues can be set to zero.
2For brevity we discard the details of a complete derivation.
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where gauge portal terms are not shown here due to their positive contributions. In Fig. 6.1,
we present the running couplings of the quartic couplings ⁄1 and ⁄2 in 2HDM Type-II by
considering a toy-model, without showing RG evolution of ⁄3,4,5. The first two conditions
in Eq. 6.19 are not satisfied at one loop level by simply imposing the existence of a mixing
between scalars. We adopt this toy-model to show that, unlike the common misconception
rising from the absence of an additional scalar in the SM, the model including an additional
scalar also relies on the other free parameters of 2HDM1. According to the initial value of
⁄2 in Eq. 6.12, MH = 450 GeV is insu�cient to preserve the positivity of ⁄2 around µ ≥ 105

GeV. Increasing the mass to MH = 600 GeV and MH = 700 GeV lifted the initial value and
ameliorated the positivity of quartic coupling up to MP l. Introducing additional freedom
in the scalar sector proved to be the best scenario for a remedy for the vacuum stability as
well as enlarging allowed parameter space consistent with the SM phenomenology so far,
because the SM can be recovered in the decoupling of BSM scalar extension (mixing angle
– = 0).

Figure 6.1: The RGE running of the top Yukawa and scalar couplings ⁄1 and ⁄2 in 2HDM
fixed at tan — = 6 for (a) MH = 450 GeV, (b) MH = 600 GeV, (c) MH = 700 GeV

While the initial conditions to RGEs require utmost attention, radiative corrections to
the Yukawa and the quartic couplings are only justified for the top quark and for the Higgs
quartic terms that experience fermionic e�ects depending on type-I and type-II. To this end,
the corrections in Eq. 5.28 are taken into consideration from the h æ ““ amplitude. Since
the signals from the photon decay of the Higgs have also corrections from the loop level

1Similar analyses for the Higgs singlet model (HSM) and 2HDM have been performed in Ref. [92, 179].
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diagrams, we only take the account the SM gauge bosons and the top quark appearing in
one loop level. Furthermore, the deviation patterns in the Yukawa couplings due to mixing
e�ects at the tree level remain consistent with the Standard Model predictions even when
considering the inclusion of radiative corrections. Moreover, the scale factor corrections in
one loop level due to extra scalars remain under 5% due to stability and perturbativity
constraints in 2HDM. This emerges according to the following relation

�̂2HDM

hff ≥ �̂SM

hff + 1
16fi2

mf M2
�

v3 (1 ≠ M2/M2
�)2

≥ �̂SM

hff + 1
16fi2

mf v⁄2
i

M2
�

. (6.31)

Specifically for the top quark radiative correction, if the soft breaking scale of the Z2
symmetry is around the masses of extra scalars H±, H and A, then the corrections remain
under 1% for tan — > 3. In fact, the peak value is around 6% for tan — = 1 and this scale
becomes even smaller and negligible for tan — > 3 [180]. This is also shown to be correct
for all the SM fermions studied therein. Hence, we can safely assume that for tan — and
the mass range of extra scalars we choose for this work, the following electroweak radiative
corrections to the initial condition on the top quark for increased accuracy hold [111].

6.3 2HDM+VLQ: Model Framework
Using 2HDM potential in Section 6.2, we investigate the e�ect of introducing vector-like
quarks on the stability of electroweak vacuum. Unlike SM-like (chiral) fermions whose left-
handed and right-handed components transform di�erently under SU(3)C¢SU(2)L¢U(1)Y ,
vector-like fermions have the same interactions regardless of chirality. However when we
consider incorporating them into the SM framework, it becomes necessary to introduce a
new scalar boson into the Lagrangian. The additional scalar boson plays a crucial role
in maintaining the stability of the 2HDM potential up to Planck scale. The rationale
behind this requirement stems from the fact that the inclusion of extra fermions leads to a
decrease in the e�ective self-coupling of the Higgs boson. Consequently, this extension could
potentially exacerbate the negative evolution of the Higgs quartic coupling when compared
to the scenario within the SM without additional particles. The presence of the new scalar
boson serves as a remedy to this situation.

The question remains how would VLQs a�ect models with di�erent scalar
representations, such as 2HDMs. Throughout our work, we uphold the condition that the
potential of 2HDM must remain positive up to the Planck scale. Previous works analyzed
several collider signatures that would be expected in Type-II 2HDM with vector-like quark
(singlets and doublets) [181–185]. The main motivation for our study, is to establish the
limitations that constrain the masses of vector-like quarks and the mixing angles with the
SM quarks. Establishing these constraints is essential in preserving the stability of the
electroweak vacuum. While VLQ are also allowed to appear in loop level of the radiative
Higgs decay and their contributions, because of their vector-like character, they do not
a�ect the branching ratio. The oblique corrections to the mass of W-boson rely on various
VLQ representations as well, and thus making Eq. 5.28 model-dependent. Because of this,
only the corrections from W-boson and the top quark are considered to slightly increase the
relevant initial conditions on the quartic couplings without contradicting to experimental
data. Furthermore, if e�ects from mV LQ ≥ O TeV are taken into account in Eq. 6.31, e�ects
due to VLQ break perturbativity of the top Yukawa coupling as setting its initial value too
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large. Moreover, as to be seen in Fig. 6.2-6.4, the initial value of the top Yukawa coupling
according to radiative corrections we assume herein, ensures the observed top quark mass
throughout all representations of VLQ+2HDM-I,II. Since all the initial conditions are set
at µ0 = mt, any VLQ e�ect contradicts with the experimental data. One might argue
that the mixing relations between the SM quarks and VLQ could further correct the initial
condition on the top Yukawa, however Eq. 6.38 and Eq. 6.39 are only allowed to reduce
yt(µ0) if the mixing angle (denoted below by sin ◊t

L,R
) becomes larger than the constraints1

in Section 6.4.

The new VLQs states interact with the Higgs bosons through Yukawa interactions.
The allowed anomaly-free multiplet states for the vector-like quarks, together with their
nomenclature, are listed in Table 6.1 [78, 91, 113, 186]. The first two representations are
U -like and D-like singlets [140,187,188], the next three are doublets (one SM-like, two non-
SM like), and the last two are triplets. Note that the latter allow for quarks with exotic
charges, QX = 5/3 and QY = ≠4/3. The various representations are distinguished by their
SU(2)L and hypercharge numbers.

Table 6.1: Quantum number assignments of VLQ models under SU(2)L ◊ U(1)Y symmetry.

Model U1 D1 D2 DX DY TX TY

Type Singlet Singlet Doublet Doublet Doublet Triplet Triplet

Representation T B

A
T
B

B A
X
T

B A
B
Y

B Q

ca
X
T
B

R

db

Q

ca
T
B
Y

R

db

SU(2)L 1 1 2 2 2 3 3
Y 2

3 ≠
1
3

1
6

7
6 ≠

5
6

2
3 ≠

1
3

The Yukawa and other relevant interaction terms between the vector-like quarks and
SM quarks are, in the bare (�1, �2) basis for Type-I:

L
I

SM = ≠yuq̄L�c

2uR ≠ ydq̄L�2dR,

L
I

U1,D1 = ≠yT q̄L�c

2U1R
≠ yB q̄L�2D1R

≠ yM (Ū1L
�2U1R

+ D̄1L
�2D1R

)
≠ MU ŪLUR ≠ MDD̄LDR,

L
I

D2 = ≠yT D̄2L
�c

2uR ≠ yBD̄2L
�2dR ≠ yM (D̄2L

�c

2D2R
+ yBD̄2L

�2D2R
)

≠ MDD̄2L
D2R

,

L
I

DX ,DY
= ≠yT D̄XL

�2uR ≠ yBD̄YL
�c

2dR ≠ yM (D̄XL
�2DXR

+ yBD̄YL
�c

2DYR
)

≠ MXD̄I

XL
DXR

≠ MY D̄YL
DYR

,

L
I

TX ,TY
= ≠yT q̄L·a�c

2T
a

XR
≠ yB q̄L·a�2T

a

YR
≠ yM (T̄XL

·a�c

2T
a

XR
+ yB T̄YL

·a�2T
a

YR
)

≠ MX T̄XL
TXR

≠ MY T̄YL
TYR

(6.32)
1Nonetheless, for the mixing scale between the SM quarks and VLQ set here, the radiative corrections for

yt(µ0) can always be neglected without significantly e�ecting the parameter space generated by the complete
RGE analysis.
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and for Type-II:

L
II

SM = ≠yuq̄L�c

2uR ≠ ydq̄L�1dR,

L
II

U1,D1 = ≠yT q̄L�c
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)
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,

L
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a
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a
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)
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,

(6.33)

where �c

i
= i‡2�ı

i
, (i=1,2), yu, yd, yT , and yB are the Yukawa couplings of the scalar

fields �1,2 to vector-like and to SM quarks, while yM is the Yukawa coupling of the
scalar fields to only vector-like quarks. The connection between gauge eigenstates and
mass eigenstate is similar to Eq. 5.33 with bi-unitary transformation. However, the mass
matrices that generate the mixing are unique to Lagrangian in Eq. 6.32 - 6.33, and follow
after spontaneous symmetry breaking for the top and bottom sector as
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. (6.34)

The mass eigenvalues for top partners in Type-I, II+VLQ model are

m2
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Diagonalization of the mass matrices Eq. 6.34 is useful for expressing the mixing angles for
top and bottom sector in terms of the free parameters of the model

tan(2◊t

L) = 2yT yM

y2
M

≠ y2
t

≠ y2
T

,

tan(2◊t

R) = 2ytyT

y2
M

+ y2
t

≠ y2
T

. (6.36)

Charge assignments of the non-SM-like quarks do not allow the X and Y fields to mix with
the other fermions. Therefore, these vector-like quarks are also mass eigenstates. Bottom
sector mixing angle can be obtained with the replacement t æ b and ◊t

æ ◊b. And solving
Eq. 6.36 for the Yukawa couplings we end up with the relations between mass eigenvalues
and mixing angles:

yT

yt

= st

Lct

L

m2
t

tan ◊
t
2

L

tan ◊
t2
R

≠ m2
T

tan ◊
t
2
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tan ◊
t2
L

mT mt

. (6.37)
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The mixing relations between mass eigenstates in Eq. 5.41 are modified in 2HDM
depending on how fermions couple to the CP-even scalars as mT = MDirac + yT v sin —/

Ô
2,

mB = MDirac +yBv cos —/
Ô

2, mt = ytv sin —/
Ô

2, mb = ybv cos —/
Ô

2 for type-II models (for
type-I, replace v cos — and v sin — by v) , while mX = MX and mY = MY .

Initial conditions for all Yukawa couplings are modified with mixing relations. For Type-
I+VLQ, all fermions acquire mass by interacting with VEV of �2

yI

t (µ0) =
Ô

2mt

v

1
Ò
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t

sin2 ◊L

,
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Ô
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sin ◊L cos ◊L(1 ≠ x2
b
)

Ò
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b
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,
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M (µ0) =
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i=X,T,B,Y

CRmi

v

Ò
cos2 ◊L + x2

t
sin2 ◊L ,

(6.38)

whereas in Type-II+VLQ, tan —, which is the ratio of VEVs, modifies the initial conditions
to read

yII

t (µ0) =
Ô
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1
Ò
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t
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,

yII
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Ò
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t
sin2 ◊L

,

yII
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2mB

v cos —

sin ◊L cos ◊L(1 ≠ x2
b
)

Ò
cos2 ◊L + x2

b
sin2 ◊L

,

yII

M (µ0) =
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i=X,T,B,Y

CRmi

v

Ò
cos2 ◊L + x2

t
sin2 ◊L ,

(6.39)

where CR = (
Ô

2, 1Ô
2 ,

Ô
2

3 ) is the representation dependent weight factor with xb = mb/mB,
and as before xt = mt/mT . Since X and Y fields do not mix with other fermions of the
model, their low-energy Yukawa couplings are not altered by mixing relations. However,
yX and yY have indirect e�ects on the coupled RGEs, as seen from Eq. B.1-B.2 for Type-I
and Type-II analyzed in this work. Furthermore, the initial conditions on the VLQ Yukawa
couplings in Type-II have di�erent — dependences in Eq. 6.39 based on which field is an
up- or down-type member of the multiplets.

6.4 Experimental and Theoretical Constraints on
VLQ+2HDM

Bounds on masses of VLQs were established by the direct searches at the LHC by
ATLAS [189–192] and by CMS [115,193,194,194–197] collaborations, obtained from specific
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mechanisms such as single production [198] and pair production [117,199] at s =
Ô

13 TeV.
The constraints are sensitively dependent on the assumed decay channels of the light VLQs,
which are allowed by kinematics to decay into a SM quark. If VLQs decay only to the third
generation quarks, then following channels could be observed:1 T (B) æ W +(W ≠)t(b),
T (B) æ Zt(b), T (B) æ Ht(b), hence the bounds become relatively stronger due to the final
states. The constraints mT > 1.27 TeV, mB >1.2 TeV are obtained for singlets, whereas
doublets require slightly higher mass limits mT > 1.46 TeV, mB >1.32 TeV through pair
production. Nonetheless, the lower limits on the VLQ masses in the range of [800, 1400]
GeV and sin ◊ < 0.18 from Run 2 [200] are still compatible with the data [201]. It should
be noted that these limits are decreased if the first and the second generation SM quarks
are also included. However, since the Yukawa couplings play an essential role due their
direct relations to masses, these models are commonly unfavored. As our work concerns
2HDMs, we consider a lowest limit on mT of 800 GeV, to allow for the consideration of the
largest parameter space for the electroweak vacuum stability and electroweak observables
(EWPOs).

Corrections to the mass of W -boson are calculated using the oblique parameters. To
this end, precision experiments carried out at the Tevatron [202] that signal any type of
shift in �MW are used to describe e�ects from new physics (NP). Since both the scalar
and the fermion sector contribute to EWPO, the combined corrections significantly rely
on scalar extensions in addition to vector-like fermions. Singlet (HSM) [85, 95] and triplet
(HTM) scalar models [120, 203] have already been studied. However, for 2HDM+VLQ, we
are only interested in constraints coming from the ‰2(S, T )[VLQ+2HDM] analysis in order
to generate a viable space for the electroweak vacuum stability requirements.

There are alternative ways for corrections to Higgs self-energies which would manifest
themselves, especially when the new particles carry SM-like colour and electroweak quantum
numbers. In these scenarios, for every diagrammatic contribution to the self-energies, one
could replace one of the Higgs bosons by its vacuum expectation value and attach two
SM gauge bosons to the loop. From there, one can obtain a corresponding diagrammatic
contribution to the Higgs decays to SM gauge bosons. A rough estimation of possible
deviations from precision electroweak measurements, which pushed new physics to �NP ≥

1 TeV, is based on the estimate of the size of Higgs oblique corrections roughly given
by O(v2/�2) ≥ 5%. If VLQs enter the loop diagrams, new fermions or charged bosons
contribute to the loop-induced diphoton decay and/or gluon fusion channels of the Higgs
bosons. E�ects of VLQs on Higgs couplings have been explored in studies for singlet [85,204],
doublet [205] and triplet models [206]. The T - singlet VLQ model established an upper
bound sin ◊L < 0.4 from the combined H æ gg and H æ ““ cross section and branching
ratio, respectively, while in the doublet (TB) representation an upper limit sin ◊L < 0.115
was obtained only from contribution to gluon fusion cross section µ““ Æ 1.03, while the
triplet (XTB) model contribution is µ““ Æ 1.18 around mV LQ ƒ 1 TeV. Consequently, all
these studies have shown VLQ corrections which match the earlier correction scale from NP
models.

By far the most significant constraint here comes from B-physics, namely from b æ s“,
1For VLQs that carry non-SM-like hypercharges, the following CC and NC channels are also allowed and

searched for accordingly: X æ tW +, Y æ bW ≠, T (B) æ X(Y )W ≠(W +). See also [113].
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since tan — alone varies in a significantly large interval for the 2HDM models without
VLQs. Studies in literature which extend 2HDM with singlet [207] and doublet [208] VLQs
provide solid constraints to working around tan — Æ 12, MH± = [80, 1000] GeV for 2HDM-I
and MH± = [580, 1000] GeV for 2HDM-II along with mV LQ > 1 TeV and small mixings,
sin ◊L < 0.2, between VLQ and the SM quarks. We further explain the di�erence between
mass regimes regarding the charged scalars of Type-I and of Type-II as RG evolutions are
analyzed in the next section.

In what follows, we will scan the parameter space for tan — œ [6, 12].The reason for such
a restriction is as follows.

• LHC data mostly constraints tan — ≠ cos(— ≠ –) plane in 2HDM-II models. This is
known from [155] within the exceptional region beyond the alignment limit (Fig. 2 in
the reference). The LHC data alone in 2HDM does not exclude tan — < 6. However,
the addition of VLQ to 2HDM slightly extends the space, [207]. Hence, taking both
the exceptional and the ordinary regions into account, tan — > 5 is favoured for 2HDM
in the alignment region and if VLQ mixing < 0.2. Although smaller values for tan —
are still possible too.

• The biggest motivation to assuming tan — > 5 throughout our study is unique to us.
This is because in the regime we choose for VLQ masses, if tan — becomes slightly
smaller, meaning that v2 becomes smaller with respect to v1, the initial conditions
on up-like quarks Yukawa couplings (VLQ or SM) become larger (Eq. 6.39) and
these break the perturbativity of Yukawa couplings as well as violate the stability
conditions due to excess weight of Yukawa couplings on the evolutions of all ⁄’s. As
a consequence, if tan — << 6, then VLQ masses need to be < 0.8 TeV to satisfy
perturbative unitarity and stability conditions. This mass scale is ruled out by the
experimental data.

Unitarity requires the S-matrix for scalar scattering to be unitary at high energy [178].
At tree tree level, this translates into imposing upper limits as M�0 <

Ò
4fiÔ
2GF

= 870

GeV for scalar-scalar scattering and M�0 <
Ò

8fi

3
Ô

2GF

= 712 GeV for gauge boson-scalar
scattering in 2HDM. At NLO, unitarity condition of the S-matrix yields terms proportional
to O(⁄i⁄j/16fi2), hence one-loop corrections to the tree level unitarity conditions are
modified by —-functions of scalar couplings. The combined perturbativity and unitarity
conditions for the quartic couplings are bounded under RG evolutions [209]

|⁄i(µ)| . 4, (6.40)

and hence this will be required up to MP l in the next section. The perturbativity of the
Yukawa couplings yi is one of the weakest constraints at tree level, extending the upper
bound of the mixing angle as sin ◊t

L
= [0.77, 0.31] for mT = [0.8, 2] TeV [113]. Lastly, for

VLQ mixing, we choose the recent unitarity constraints [145] at O(TeV) scale.
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6.5 RGE Analysis of Vector-like Quarks with Two Higgs
Doublet Model

The e�ect of fermions on the stability of the electroweak vacuum without extending scalar
sector beyond the SM Higgs field is to drive the Higgs self-coupling negative at larger
scales, so the potential becomes unbounded from below, and there is no resulting stability.
Theoretical considerations indicate that if the validity of the SM is extended to MP l,
a second, deeper minimum is located near the Planck scale such that the electroweak
vacuum is metastable [56, 70]. The additional scalar bosons maintain positivity of the
Higgs self coupling while the renormalization flow tends to decrease it further at higher
energy scales [147]. Moreover, a common feature of both observed and exotic fermions
is that Yukawa couplings generally further lower scalar couplings since Yukawa couplings
are negatively a�ected by NLO contributions. However, this is not always the case, and
it depends on how the structure of gauge interactions have been a�ected by new fields.
Through the possibility of various interaction portals, vector-like fermions open new ways
to remedy stabilizing the electroweak vacuum.

A straightforward approach would be to extend the gauge sector of the SM as the gauge
beta-functions have positive e�ects on quartic coupling RGEs [210]. However, additional
gauge symmetries might also come short of being able to express the current SM interactions
as they have relatively small contributions compared to other remedies. Nonetheless, these
corrections, �—1 = 8

3nF G2G3y2
f

and �—2,3 = 8
3nF d2,3S2(G2,3)1, are multiplicative with

respect to new fermion families and these contributions are already manifest at the RGE
level, as we shall see in Section B.1. Yukawa and scalar portals have shown promising
results, providing non-critical surfaces of electroweak vacuum stability [86]. As shown in
Section 6.3, Yukawa portals lead to mixing between vector-like quarks and the SM quarks.
Due to mixing constraints, for an energy scale less than the mass of mV LQ, decoupling
occurs and VLQs contribute to RGE running as if they were massless. Furthermore, in the
presence of VLQs, beyond-SM gauge couplings have larger values compared to the SM ones,
thus reducing the corrections to Yukawa couplings running at energy scale µ Ø mV LQ. This
could be shown, for instance, for the top quark, where the beta function

—t ∏ yt[Cf yf ≠ C1g1 ≠ C2g2 ≠ C3g3] (6.41)

which in turn shows that yt(µ) < ySM
t (µ). Moreover, gauge and Yukawa couplings have

opposite sign contributions in scalar RGEs Eq. B.1 - B.2 when fermions are allowed to
interact with the scalars of the model. This characteristic can be seen from all scalar RGEs
except the one governs ⁄I

1, which is not allowed to interact with fermions through Yukawa
couplings due to Z2 symmetry. Thus, from RGE structure, the gauge and Yukawa couplings
could lead to upward shifts in the Higgs quartic couplings though the condition ⁄1,2 > ⁄SM

1,2
in the presence of VLQ. We note that, in this context, vector-like quarks have been studied
with only the SM Higgs field [211] and within the additional Higgs singlet model [1].

In Fig. 6.2 - 6.4 we present the RGE evolution for all vector-like quark representations
given in Eqs. 6.32 - 6.33, combined with 2HDM couplings respectively, for Type-I and
Type-II, in the case where the lightest CP-even scalar is taken to be the observed 125 GeV
Higgs boson.

1Here S2(Gi) are Dynkin indices for the groups G2 and G3.
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Among various bare 2HDM constraints, the limits on MH± and MA are extremely
sensitive to the VEV ratios tan — and to experimental data from B-physics [212], which
a�ects how quarks are coupled in Type-I and Type-II models. Electroweak corrections to the
W-boson, for a fixed value of tan — = 5 in Type-I model, yield a degenerate mass spectrum
for all scalars in the model, found to be M = [100, 1000] GeV, if these EW corrections
remain �W

EW
< 5% as indicated from Higgs oblique corrections [99]. We have also compared

our parameter space from the oblique parameters in 2HDM, Fig. 6.5 indicating that larger
values of tan — reduce the upper bound of MH± and MA, in good agreement with the results
in Ref. [99]. The allowed parameter space from the oblique corrections yields a solid interval
for the stability and perturbativity analyses throughout this work, as we choose some of the
fixed parameters from the scalar sector to run the RG evolutions. However, bounds on MH±

as a function of tan — from B-physics constraints are di�erent in Type-I and Type-II models
[213]. Lower bounds on MH± are inversely proportional to tan — value in Type-I model,
yielding a relatively lower minimum than the LEP result MH± > 80 GeV [214]. On the
other hand, the lower bound on MH± in Type-II model behaves almost tan — independent as
tan — > 2 and scales about the minimum MH± = 580 GeV. Apart from this distinguishing
feature, both types are constrained to generate lower bounds on MH± as tan — increases.
The Type-II model in the heavy Higgs scenario is a�ected by the lower bound on MH± , while
the mass di�erence between in 2HDM scalars is required to be small MH± ≠MA . 160 GeV
in order for the RG evolutions to survive about �cut ≥ MP l [215]. As we run RG evolutions
from 2HDM+VLQ up to µ = MP l, Type-I and Type-II models can be better compared in
the light Higgs scenario while setting fixed values to RGEs. The relative di�erence between
masses MH ≠ MH± and MH± ≠ MA is important, though theoretical constraints do not
strictly forbid large splittings between these parameters. However, bounds from EWPO
[155] and from B-physics [154,216] strongly correlate these mass di�erences if 2HDM+VLQ
RGEs are to survive without having a Landau pole up to the Planck scale. We have
investigated that large splitting between MH , MH± and MA could not satisfy RG evolutions
for 2HDM-II+VLQ, due to the non-perturbativity of scalar couplings and the vacuum
instability in sub-Planckian region. The parameter space of 2HDM that survives from
RGEs running will be discussed in detail below.

We note that the overall e�ect of RGE on running couplings up to a cut-o� scale �cut

is sensitively dependent on initial conditions given for a fixed set of parameters. Scalar
couplings tend to generate a Landau pole and break perturbativity if they start from
relatively large initial values due to their evolution (increase with energy scales). On the
other hand, new in this work, when combined with mV LQ & O(TeV), scalar RG evolutions
also result in vacuum instability in case the initial values are too small and the mass limits
of VLQ are too large. Although RGEs of the fermion sector are coupled due to the Yukawa
couplings in the model, scalar RGEs are coupled due to any free parameters in 2HDM+VLQ.
The parameter space of scalar masses which survive up to Planck scale according to the
initial conditions given in Eq. 6.12 and to bare 2HDM RGEs scanning, spans over a wide
range for tan — = [1, 50] [216]. Nonetheless, the spectrum for tan — activated from 2HDM
RGEs alone faces experimental constraints related to VLQ contributions to LHC Higgs data
from di-boson channels [207] and constraints from B-physics results [208]. The presence of
VLQs at O (TeV), carrying the SM-like quantum numbers, further constrain tan — = [1, 15]
and MH± > 600 GeV in 2HDM-II+VLQ. Before delving into RGEs results, we also discuss
the analytical nature of initial conditions depending on the mass di�erence MH± ≠ MA

and on tan —. The quartic coupling ⁄1(µ0) rapidly grows for larger MH and tan — values,
therefore it can generate a Landau pole faster than the rest of couplings in the sub-Planckian
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scale, particularly in Type-I model without presence of any Yukawa term to drive it lower. In
contrast, ⁄2(µ0), ⁄3(µ0) become heavily suppressed for larger tan — and smaller MH values,
hence vacuum instability can occur due to the evolution of ⁄2, more dominantly so in Type-I
model. The initial condition on ⁄4 is by far the most sensitive to the constraints on the mass
di�erence between the pseudoscalar and the charged scalar. Being tan — independent, and
due to a large separation between MA and MH± , the quartic coupling ⁄4 can easily reach a
Landau pole in either direction1, hence this initial condition alone develops an approximate
limit for the separation |MH± ≠ MA|. As shown in [154], by inverting Eq. 6.12 and relating
the separation between scalar masses to numerical values of ⁄4 +⁄5 that survive up to MP l,
the mass di�erence is bound to ≥ 160 GeV. However, this scale is based on scanning over
all values of tan — = [1, 50]. Consequently, we have cross checked that such separation is
allowed by RG analyses, considering smaller VEV ratios tan — = [6, 12] [216]. Taking into
account that VLQs become unfrozen at � ≥ O (TeV), the strategy we follow to search the
parameter space can be summarized as

• We scan RGE over a large number of parameters from 2HDM+VLQ by imposing
theoretical and experimental bounds discussed above from both sector.

• We extract the parameter space that survives from running RGEs requiring stability,
perturbativity and unitarity conditions up to the Planck scale.

• The initial conditions for all of the couplings that appear in the combined model are
set at the energy scale µ0 = mt.

• We calculate the corrections to the oblique parameters S and T from 2HDM and
VLQs, then check if the allowed parameter space for tan — range is consistent with
the RG analyses.

The scanning ranges in the VLQ and 2HDM are given in Table 6.2. Note that the parameter
space of VLQ+2HDM that satisfies the vacuum stability constraint extends to mV LQ <

O(TeV) and to larger mixing angle sin ◊t,b

L,R
(not shown). However, the recent experimental

constraints [198, 199, 201, 217] and constraints from EWPO, Fig. 6.7-6.8, discard large
mixings and the light mV LQ domain. The mixing angle – ”= 0 (means the neutral scalars
are not decoupled), because otherwise the perturbativity and the stability conditions are
not satisfied at initial condition µ0 as seen from Eq. 6.12 with respect to the range of MH

and tan — we scanned, especially for the minimum bound on MH± in Type-II.

1We observed that for larger VLQs multiplets, ⁄4 tends to diverge from a positive direction if |MH± ≠
MA| ∫ 150 GeV, due to a relatively large number of Yukawa terms, though ⁄4 always starts from a negative
direction.
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Model Parameter Range
VLQ mT [0.8, 2] TeV

mB [0.85, 2] TeV
mX [0.9, 2] TeV
mY [0.9, 2] TeV

sin ◊L,R [0.05, 0.2]
2HDM-I MH± [80, 900] GeV

MA [300, 1000] GeV
MH [400, 1100] GeV
t— [6, 12]

sin – [0.05, 0.15]
2HDM-II MH± [600, 900] GeV

MA [300, 1000] GeV
MH [400, 1100] GeV
t— [6, 12]

sin – [0.05, 0.2]

Table 6.2: Scanning range of parameter space of 2HDM-I,II combined with VLQ models.

6.5.1 Singlet VLQs: U1 and D1

Type-I 2HDM+VLQ singlets yield the most stringent mass limits for VLQs required to
satisfy the stability bounds, as expected from form of the Yukawa terms appear in both
scalar and fermion RGEs. We present RG running of the couplings for singlet VLQ+2HDM-
I,II in Fig. 6.2. The relative di�erence regarding the initial condition of top Yukawa coupling
between U1 and D1 occurs due to absence of top mixing in D1 model. For mixing angles
sin ◊L,R > 0.15, the mass scale region mT > O(TeV) leads to negative top Yukawa coupling
in sub-Planckian region. The RGEs of singlet VLQ in Type-I are similar, therefore the
di�erence between initial values of ⁄2 stems from the mass di�erence between the top and
the bottom VLQ sector. Although all the initial conditions are set at the top quark mass,
the overall shift of VLQ Yukawa couplings between Type-I and Type-II is always due to
how strong extra fermions couple to scalars, depending on tan —. As discussed previously,
a small separation between mass values of scalars in Type-II models together with a larger
value of the minimum bound on MH± ameliorate the stability result compared to Type-I
models, and hence larger ⁄2 values in Type-II models are allowed by extending the bounds
on scalar parameter space. In contrast to the proximity of ⁄2 values to instability region,
⁄1 evolves safer away from non-perturbativity region in Type-II models, as expected from
the splitting of Yukawa couplings in top and bottom sectors. In Table 6.3, we list the
allowed mass ranges due to RG analyses of the combined model that survive from stability,
perturbativity and unitarity up to µ = MP l.
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U1 (T) - Type I U1 (T) - Type II

D1 (B) - Type I D1 (B) - Type II

Figure 6.2: The RGE running of the Yukawa and scalar couplings for models with vector-
like quarks. We plot results for Type-I on the left column and for Type-II on the right
column. Top panel: singlet vector-like representation, U1. Bottom panel: singlet vector-
like representation, D1. For singlet models, we have set mT = 0.8 TeV, mB = 0.85 TeV,
MH = 800 GeV, MH± = 750 GeV, MA = 650 GeV µ0 = mt, tan — = 10, and mixing angles
sin – = 0.1 and sin ◊L = 0.08.

Model mV LQ (GeV) MH± (GeV) MH (GeV) MA (GeV)

U1 + Type-I mT œ [800, 920] [80, 830] [700, 810] [510, 770]

U1 + Type-II mT œ [820, 930] [600, 840] [720, 860] [715, 600]

D1 + Type-I mB œ [850, 970] [80, 840] [725, 870] [500, 800]

D1 + Type-II mB œ [870, 980] [600, 840] [740, 870] [770, 860]

Table 6.3: Allowed parameter space for 2HDM + singlet VLQs that survives the constraints
from unitarity, perturbativity, and vacuum stability.
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A few comments regarding the behaviour of the couplings for all VLQ representations
are in order.

(i) The upper mass bounds on the scalars of 2HDM can be extended further if tan —
is increased according to the RG scanning. Otherwise, larger tan — leads to ⁄i

suppressions by flattening all scalar RG flows and might lead to instabilities by causing
Yukawa divergences for tan — > 12 beyond the range scanned. This characteristic can
always be read from the denominator term through initial conditions in Eq. 6.12.
Ref. [218] discusses the details of “squeezing” regions of stability for VLQ in various
models.

(ii) The high energy enhancement of ⁄2 in Type-II models occurs due to the presence
of the Yukawa terms y2

M
and y2

f
y2

M
appearing in the ⁄3,4,5, contribution to running

coupling constants as yM approaches to MP l, this being the largest correction among
all VLQ Yukawa couplings.

(iii) Due to the splitting of Yukawa terms between �1 and �2, Type-II+VLQ models are
safer for vacuum stability as ⁄I

2 stays closer to zero as compared to ⁄II
2 , though this

distinction alone is not enough for the stability requirements.

6.5.2 Doublet VLQs: DX, D2 and DY

As seen in Fig. 6.3, where we plot the variation of the scalar and Yukawa coupling constants
as functions of the energy scale, the evolution of ⁄1 in Type-I+D2 is safer compared to DX

and DY models. In fact, faster coupling increases for these models are seen from the upper
bound of scalar masses, which exceeds the bounds extracted from D2. Furthermore, the
allowed space for the heavier CP-even scalar MH in DY is quite restricted compared to
other Type-I+ doublet VLQ models, hence ⁄2 increases very fast, consistent with its initial
condition as well. Due to fact that B and Y VLQs are relatively heavier than T and X
VLQs, the evolution of ⁄1 stays closer to zero in DY +Type-II model as this coupling is
connected to the down-sector VLQ. Among all the doublet models, D

II

X
yields the most

sensitive parameter space for the mass of heavier CP-even scalar MH , resulting in a very
narrow range for the combined RG scanning. Furthermore, as seen from the absence of
bottom and top sector mixings in DX and DY respectively, and also the fact that these
VLQ are pure eigenstates, the evolution of yX and yY is enhanced compared to yT and
yB in D2. Therefore, the quartic Yukawa cross terms proportional to y2

M
y2

X,Y
lead to

positive evolution for ⁄4, within the perturbative range for VLQ models with non-SM-like
quantum numbers. Actually, this reciprocal RG connection between ⁄4 and ⁄5 determines
how stringent the scalar parameter space is constrained. This will be further shown in the
analysis of the parameter space for triplet VLQ+2HDM. The complete allowed mass range
for doublet models that survives from unitarity, perturbativity and stability up to µ = MP l

is given in Table 6.4.
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DX (XT) - Type I DX (XT) - Type II

D2 (TB) - Type I D2 (TB) - Type II

DY (BY) - Type I DY (BY) - Type II

Figure 6.3: The RGE running of the Yukawa and scalar couplings for models with vector-
like fermions. As before, we plot results for Type-I on the left column and for Type -II
on the right column. Top panel: doublet vector-like representation, DX . Middle panel:
doublet vector-like representation, D2. Bottom panel: doublet vector-like representation,
DY . For doublet models, we have set mT = 0.85 TeV, mB = 1 TeV, mX = 1 TeV, mY = 1
TeV, MH = 800 GeV, MH± = 750 GeV, MA = 650 GeV, µ0 = mt, tan — = 10, and mixing
angles sin – = 0.1 and sin ◊L = 0.08.
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Model mV LQ (GeV) MH± (GeV) MH (GeV) MA (GeV)

DX + Type-I mX œ [800, 1040]
mT œ [850, 970]

[80, 840] [690, 870] [520, 860]

DX + Type-II mX œ [880, 1050]
mT œ [870, 1000]

[600, 865] [820, 890] [760, 880]

D2 + Type-I mT œ [800, 930]
mB œ [860, 970]

[80, 810] [670, 830] [490, 870]

D2 + Type-II mT œ [840, 1010]
mB œ [900, 1040]

[600, 840] [810, 980] [640, 860]

DY + Type-I mB œ [900, 970]
mY œ [900, 990]

[80, 840] [750, 890] [610, 875]

DY + Type-II mB œ [925, 1010]
mY œ [950, 1050]

[600, 870] [750, 930] [670, 890]

Table 6.4: Allowed parameter space for 2HDM + doublet VLQs that survives the constraints
from unitarity, perturbativity, and vacuum stability.
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6.5.3 Triplet VLQs: TX and TY

Finally, for triplets, plotted in Fig. 6.4, our RGE scanning indicates that mass of CP-
even scalar exceeds 1 TeV, whereas MH± approaches an upper limit < 1 TeV, which is in
good agreement with the mass limits extracted from the deviation of the oblique parameters
according to CDF W-mass anomaly [219]. For triplet VLQs, a unique feature of the Yukawa
couplings is that due to the dependence on yM , their evolution becomes less suppressed as
the energy scale grows. In fact, yM which is Yukawa representation of Dirac mass terms
for VLQs surpasses the top Yukawa coupling at a scale around 1013 GeV. The parameter
space for triplet VLQ+2HDM extends the upper bounds compared to other representations,
because the opposite convolution of ⁄4 and ⁄5 always occurs for triplet VLQs due to the
abundance of coupled terms. We also note that the stability condition on the electroweak
vacuum is at its most critical state around 106 GeV regardless of the 2HDM type for triplet
VLQs. This critical proximity to the instability case occurs at almost the same energy
level regardless of all the parameters that satisfy the combined stability, perturbativity and
unitarity conditions. Finally, the allowed parameter space for triplet VLQs+2HDM-I,II
that survives the constraints from stability, perturbativity and unitarity up to µ = MP l is
given in Table 6.5.

TX (XTB) - Type I TX (XTB) - Type II

TY (TBY) - Type I TY (TBY) - Type II

Figure 6.4: The RGE running of the Yukawa and scalar couplings for models with vector-
like fermions. As before, we plot results for Type-I on the left column and for Type -II on
the right column. Top panel: triplet vector-like representation, TX . Bottom panel: triplet
vector-like representation, TY . For triplet models, we have set mT = 0.9 TeV, mB = 1 TeV,
mX = 1 TeV, mY = 1 TeV, MH = 850 GeV, MH± = 800 GeV, MA = 650 GeV, µ0 = mt,
tan — = 10, and mixing angles sin – = 0.1 and sin ◊L = 0.08.
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Model mV LQ (GeV) MH± (GeV) MH (GeV) MA (GeV)

TX + Type-I mX œ [900, 1070]
mT œ [870, 990]
mB œ [900, 1040]

[80, 890] [780, 1030] [560, 930]

TX + Type-II mX œ [950, 1100]
mT œ [890, 1000]
mB œ [925, 1040]

[600, 885] [790, 910] [700, 890]

TY + Type-I mT œ [840, 950]
mB œ [890, 970]
mY œ [880, 1020]

[80, 900] [740, 1050] [525, 940]

TY + Type-II mT œ [860, 975]
mB œ [910, 1035]
mY œ [950, 1100]

[600, 890] [820, 1020] [580, 910]

Table 6.5: Allowed parameter space for 2HDM + triplet VLQs that survives the constraints
from unitarity, perturbativity, and vacuum stability.

For completeness, explicit expressions for all the relevant RGE for the Yukawa couplings,
the couplings between the bosons and coupling constants, are included in the Appendix B.
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6.6 Electroweak Precision Constraints
Signals from new physics are also constrained through electroweak precision observables,
which are highly correlated to large logarithms of extra masses when the scale of new model
is significantly larger than electroweak scale [54,220,221]. The modifications to electroweak
gauge boson loops at loop level are calculated through the oblique parameters, S,T, and U,
defined as [97]

S = 16fiŸ

Ë
�̄3Q

“ (M2
Z) ≠ �̄33

Z (0)
È

,

T = 4
Ô

2GF

–e

Ÿ

Ë
�̄3Q(0) ≠ �̄11(0)

È
,

U = 16fiŸ

Ë
�̄33

Z (0) ≠ �̄11
W (0)

È
. (6.42)

The S, T parameters in new physics models, such as VLQ scenarios and 2HDMs, are
di�erent from those in the SM due to extra scalars and fermions appearing in gauge boson
self energies at the loop level. Additionally, the mixing between the SM fields and the new
particles modifies the Higgs and electroweak couplings as well. Consequently, electroweak
precision observables are universal. The current experimental values [222] are obtained
by fixing the di�erences between the new physics and the SM contributions by setting
�U = 0, yielding �T = 0.09 ± 0.07, �S = 0.05 ± 0.08 (and flS,T = 0.92 ± 0.11). For the
work carried here, we can split the oblique parameters calculation of S,T and U parameters
via loop contributions into two independent contributions, one due to bosons and the other
to fermions circulating in self-energy diagrams. We extracted gauge boson self energies
using LoopTools and FormCalc [223], and implemented analytical expressions of Passarino-
Veltman (PV) functions in FeynCalc [224] to obtain oblique parameters.

6.6.1 Contributions to the S and T-parameters from 2HDM
Further expanding Eq. 6.42 explicitly in terms of the scalar loop contributions to the gauge
boson two point functions

S2HDM = 16fiŸ
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. (6.43)

The coupling factors are gZ = g/cW and the photon two-point function in the 2HDM is

�““

2HDM
(p2) = e2B5(p2, M2

H± , M2
H±) ≠ e2p2[5B0(p2, M2

W , M2
W )

+ 12B3(p2, M2
W , M2

W ) + 2
3]. (6.44)
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The photon-Z mixing is given by

�Z“

2HDM
(p2) = ≠egZp2

311
2 B0(p2, M2

W , M2
W ) + 10B3(p2, M2

W , M2
W ) + 2

3

4

+ egZ

2 B5(p2, M2
H± , M2

H±)

≠
sW

cW

Ë
e2B5(p2, M2

H± , M2
H±) ≠ e2p2[5B0(p2, M2

W , M2
W )

+ 12B3(p2, M2
W , M2

W ) + 2
3]

6
. (6.45)

The Z-boson two-point function in the 2HDM is

�ZZ
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The W -boson two-point function in the 2HDM follows as
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The Passarino - Veltman functions and relevant identities are given in Appendix D.
Subtracting the SM contributions from S and T parameters of the 2HDM yields the new
physics contributions to oblique parameters:
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In Fig. 6.5 (left panel), the correlation between MA and MH± due to EWPO does
not constrain the masses in a stringent way, though when MA > 550 GeV, the correlation
becomes significantly important. The red region has already been discarded by direct
searches at LEP [214]. Considering the imposing theoretical bounds only, the findings from
EWPO are consistent with the unitary bounds in MA ≠ MH± plane [178]. Note that,
tan — dependence of the oblique parameters alone is more relaxed, allowing a wide mass
spectrum. This is due to fact that the mixing between CP-even scalars can be shifted
away from the sin – = 0 (decoupling) limit, hence the variation in tan — compensates for
the Higgs data requirement of the near-alignment limit, cos(— ≠ –) ¥ 0. Consequently,
imposing the alignment limit on the mass spectrum of scalars is by choice (to fit the Higgs
data) rather than requirement of the theory when RG running µ <1 TeV. This consequence
is highlighted particularly for Type-I with various tan — values [215]. On the other hand, as
seen from Fig. 6.5 (right panel), the limit is stronger in the MH ≠ sin – plane for fixed value
of tan — in both types of 2HDMs. It is seen that for tan — = 6, EWPO constrain the masses
in a way that the decoupling limit of CP-even scalars occurs in a natural way at a scale ≥ O

(TeV). Although the sin – = 0 (decoupling) limit is not forbidden by EWPO, we combined
it with the minimum stability requirement on sin – near the decoupling limit. Moreover,
the constraints on MH obtained from EWPO and from the vacuum stability match with
the constraint for signal rates of H æ WW ı

æ e‹µ‹ [225,226]. Furthermore, we excluded
the sin – = 0 region because a nonzero mixing between CP-even scalars (sin – ”= 0) is
required to preserve the vacuum stability up to the Planck scale. As keeping cos(— ≠ –)
closer to zero is motivated by the alignment limit from the Higgs data [155], we impose this
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Figure 6.5: The allowed mass regions from EWPO for the pseudoscalar boson mass MA

and charged Higgs mass MH± (left panel). The allowed parameter space from EWPO for
scalar mass MH and scalar mixing angle with the SM Higgs sin – (right panel) in 2HDM.
The sin – = 0 limit of CP-even scalars mixing is allowed by EWPO but excluded due to
the vacuum stability constraint. We have set tan — = 6.

Figure 6.6: The allowed mass regions extracted from EWPO for MH versus cos(— ≠ –)
mixing between CP-even scalars in 2HDM.

along with the requirement that the couplings evolved with the RGEs remain away from
the vacuum instability. Hence, using the mass spectrum allowed from EWPO constraints
fit with the stability analysis. It is important that the theoretical constraints align with
each other as the limits rising from vacuum stability become stronger at the scale [103, 1010]
GeV [218], thus restricting MH± > 580 GeV with smaller mass di�erences between extra
scalars, as the cut-o� scale increases in Type-II. However, the mass limits in Type-I are
weaker. Favoured also by collider bounds [154], there exists a parameter space for which
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the mass separation between scalars remains small for 2HDM, while validated up to the
Planck scale. Our results from the oblique parameters do not conflict with the parameter
space obtained from RGE in Section 6.5, however the e�ects of VLQs on RGE slightly shift
the upper limits compared to the findings of EWPO.

In Fig. 6.6, we have considered the energy scale µ = [800 ≠ 1000] GeV in self energy
diagrams, and scan over values up to 1 TeV with respect to the oblique parameters. The
upper limit of MH is chosen to be in a good agreement with the limits from vacuum stability
on scalars+VLQs at tan — = [6, 12]. The current experimental data constraining h to having
SM-like Higgs behaviour restrict values of cos(— ≠ –) much closer to the decoupling limit.
Consequently, the electroweak vacuum stability requirements and EWPO impose naturally
occurring near decoupling limit when MA, MH > 600 GeV. We should also note that,
Type-I and Type-II dependent e�ects are highly manifestable through Higgs channels, for
which the signal strengths Ÿhbb, Ÿhcc also favour regions slightly beyond the decoupling limit,
particularly for tan — ≥ [2, 12] [155]. The contribution to T2HDM is twofold, depending on
the mass parameter space of scalars and on sin(— ≠ –) whereas a negative contribution to
T2HDM can always be generated by varying MH± . For general scale of sin(— ≠ –), Mh and
MH splitting has to be small for pushing T2HDM to be large and negative values. Hence,
negative corrections to T in 2HDM can render overall positive corrections rising from various
fermion representations and further enhancing limitations on additional scalars and mixing
among Higgs bosons.

6.6.2 VLQ contributions to the S and T parameters
The contributions of VLQs to S and T parameters are di�erent for each representation
(singlets, doublets or triplets) in the current framework. Since the electroweak Lagrangian
is constructed with gauge eigenstate fields, any mixing of fermions with extra anomaly-
free fields alters the structure of the bare electroweak Lagrangian, as seen from Eq. 7.10.
As we have already seen in Section 6.3, the mixing regime is model dependent. Ref. [88]
highlighted the emergence of disagreement of the oblique parameters for triplets in [119],
where the external momenta of gauge bosons are omitted in self-energy diagrams �V V . This
leads to a discrepancy in the S parameter, which becomes positive in triplet representations
in the large logarithm of mT ≥ O(TeV), as in Ref. [114]. Following the corrections carried
in Ref. [88], we obtained better approximations to �STX ,TY

and �TTX ,TY
. Consequently, in

to our calculations �S < 0 and �T > 0, and we found agreement with the results in [227].
As we mentioned in Section 6.6.1, the self energies of gauge bosons are extracted so that
UV divergences are properly cancelled. Here we present the contributions of VLQs to the
oblique parameters in terms of PV functions.

The couplings to W -boson and Z-boson are been modified by the VLQs through their
mixing with SM quarks

LW = g
Ô

2
Q̄i“

µ(CL

QiQj
PL + CR

QiQj
PR)QjW +

µ + h.c. ,

LZ = g

2cW

Q̄i“
µ(NL

QiQj
PL + NR

QiQj
PR ≠ 2”ijQs2

W )QjZµ , (6.50)

where Qi,j are any type of quarks in our convention of electroweak Lagrangian. The
condition |Qi ≠ Qj | = 1 holds for all form of W ≠ Qi ≠ Qj interactions.
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Further compression of the modified electroweak couplings take the following forms:

LW ∏ “µ(�L

W QiQj
L + �R

W QiQj
R)W +

µ ,

LZ ∏ “µ(�L

ZQiQj
L + �R

ZQiQj
R)Zµ . (6.51)

For the cases i = j of Z ≠ Qi ≠ Qj interactions, the last term of Eq. 7.10 is absorbed in
�L,R

ZQiQj
throughout all VLQ representations.
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where the fermion functions FV V,Z“ contributing to the gauge boson two-point functions
are calculated as

FZ“(�1, �2,Q, m2, p2) = Nc

8fi2 [Q(�1 + �2)
1
2B00(p2, m2, m2) ≠ A0(m2)
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2
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Complete expressions of the oblique parameters for doublets and triplets are lengthy.
Thus, we give the full contributions to S and T parameters from singlet VLQ representations
U1 and D1. The deviations �T, �S of the oblique parameters from their SM values are
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t (st
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Contributions to S and T parameters from doublet and triplet VLQ representations
follow from Eq. 6.52-6.53 by a straightforward calculation with the relevant electroweak
couplings as in the Appendix E. In Fig. 6.7-6.8, we plot the parameter space restricting the

(a) U1 (T) (b )D1 (B)

(c) DX (XT) (d) D2 (TB)

(e) DY (BY)

Figure 6.7: The allowed parameter space from EWPO: fermion masses versus mixing angle
with the SM quark for singlet U1 model (top left panel), D1 model (top right panel), doublet
DX (middle left panel), doublet D2 (middle right panel), and doublet DY model (bottom
panel). Loop functions are calculated at energy scale µ = mt.

mixing between t ≠ T and b ≠ B versus the corresponding VLQ masses satisfying EWPO,
in accordance with the expressions given before. The largest deviations arise from the T
parameter due to large logarithm of (mT /mt)2, yielding a wide range for the mass-mixing
spectrum compared to the S parameter for all multiplets. In analogy with the case of
sin – = 0 behaviour in the scalar sector, decoupling between the VLQs and the SM quarks
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(a) TX (XTB) (b) TY (TBY)

Figure 6.8: The allowed parameter space from EWPO: fermion masses versus mixing angle
with the SM quark for triplet TX model (left panel), TY model (right panel). Loop functions
are calculated at energy scale µ = mt.

becomes much prominent as mV LQ æ O(TeV) scale. The behaviour of the decoupling zone
due to larger values of mV LQ can be seen from Eq. 6.55, �

mV LQ

≥ st
2

L
. This consequence

can always be viewed as a rule-of-thumb to explain why EWPO constraints are already
satisfied in decoupling limit. However, regardless of mV LQ, there are no model parameter
contributions to S and T parameters in zero mixing (sin – = 0) domain.

The mixing angle in the singlet D1 model, Fig. 6.7 (b), is much more relaxed compared
to that in the U1 model due to the fact that up and down type mixings are exclusively
dependent on mass splitting between VLQ and the SM quark as seen from Eq. 6.36. In
fact, this holds true for all models if the parameter space allows for b≠B mixing. The allowed
space for t ≠ T mixing in U1 model matches input values we used to assure the stability
in Type-I and Type-II models, whereas scenario D1 lifts the upper bound of b ≠ B mixing
to a scale which cannot stabilize the electroweak vacuum around mB Ø 1 TeV. Hence, the
stability requirements is much severe than the oblique parameters requirements for singlets.
The values of �TV LQ in U1 are always positive and accordingly have more potential to
compensate the negative e�ect of �T2HDM , whereas D1 features negative corrections to
�TV LQ. Thus, in terms of the oblique corrections between both sectors, U1 is capable of
imposing more bounds on MA, MH± and cos(— ≠ –).

For doublets, the parameter space is larger and similar to D1 except for D2 where �S
contributes negative values. We should emphasize that, for cases where SV LQ contributes
negatively to cancel the positive e�ect of the T parameter, the allowed parameter spaces
are e�ectively enlarged as seen in Fig. 6.7(c),(e) for DX and DY models. In contrast, �S is
positive in D2 for mT Ø 645 GeV. We also observe the behaviour from Eq. 6.53, where the
D2 model does not contribute to (FCNC case) ZtT and ZbB channels, hence S is relatively
larger than those in other doublets. Among all doublet models only DX has a negative
�TV LQ contribution. On the other hand, �TV LQ stays close to zero in DY model, making
it more limited for rendering �T2HDM negative, compared to the D2 model, where the
correction �TV LQ Ø 0.08 yields mT > 1 TeV.

Furthermore, at the TeV scale, the EWPO parameter space of the D2 model is in good
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agreement with the vacuum stability requirements for t≠T mixing, while constraints in DX

and b≠B mixing in DY allow angles beyond the maximum allowed in the stability analysis.
The parameter space of the triplet TX model in Fig. 6.8 is quite restricted, and t≠T and

b ≠ B mixing allowed by the oblique parameters do no cross beyond the vacuum stability
requirements. However, for the model TY , constraints are more relaxed, though sin ◊t

L
> 0.2

only exacerbate the constraints on vacuum stability. The relaxation of the mixing in the TY

scenario compared to that in TX , can be described in terms of mixing relations Eq. 5.40.
Since up and down type mixing angles are not independent for triplets, st

L
ƒ

s
b

LÔ
2

1, which
enhances the Zbb coupling over the one in TY , and thus leads to more severe corrections
in S [227]. �TV LQ is always positive in TY , while TX has positive corrections to the T
parameter for mT > 400 GeV. As a consequence, the TY model is more relaxed as it
compensates the negative corrections in 2HDM and it expands the parameter space through
combined analysis of the oblique parameters.

6.7 Conclusions
We analyzed the stability of the electroweak vacuum resulting from the interplay between
vector-like quarks and the extended bosonic sector of the Two Higgs Doublet Model by
adopting various representations to scrutinize the potential e�ects of vector-like quarks on
the Higgs sector. In particular, our work zooms in the e�ects of renormalization group
flow that governs the energy scale and flavour dependent behaviour of interactions in the
theory. Our investigation remains agnostic to specific parameter choices, while restricting
the mixing of vector-like quarks to solely with the third generation SM quarks. The core of
the analysis revolves around the delicate balance of the Higgs potential stability. It has been
long assumed that the SM lies in a metastable state or there is an alternative mechanics
behind the absolute stability of the vacuum. In fact, there is an e�ective approach to extend
the Higgs sector of the SM with additional scalar bosons, as allowed by certain symmetries
of the model. To this end, an auxiliary scalar doublet is introduced here to ameliorate
the SM vacuum predicament. Using RGEs in 2HDM, we showed the additional degree
of freedom in scalar sector enlarges the parameter space that might preserve the absolute
stability of vacuum up to the Planck scale.

We then added all anomaly-free representations of vector-like quarks (two singlet, three
doublet and two triplet representations). We showed that the inclusion of vector-like
quarks, although analogous in their couplings to SM quarks, has complicated consequences.
Although fermions contribute negatively to the couplings at RGE level, vector-like quarks
e�ectively modify beta functions through the gauge and Yukawa portals. Even though
the gauge portal e�ects are weaker than those of the Yukawa couplings, the corrections
are multiplicative with respect to number of fermions in the family included. A natural
and straightforward attempt could be add more vector-like quarks, considering their e�ect
on gauge couplings modifications. However, there is a relationship between the number
of vector-like quarks and their masses that imposes an upper bound on each, for which
the vacuum can be stabilized. If mV LQ is too large and nF is too small, then RG
evolutions fall into the negative perturbativity region before lifting it up. On the other
hand, if nF is too large and mV LQ too small, RG evolutions are too strong and abruptly
diverge, thus predictability is lost due to a Landau pole around µ < MP l. Considering

1This relation is valid for the triplet model TX .
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the strong gauge portal alone, this imposes the upper bounds: mV LQ Æ 106 TeV and
nF = [2, 18]. Additionally, the hypercharge portal vanishes either by increasing mV LQ, thus
leaving insu�cient RG evolution for the parameter space restrictions to be operative, or
by increasing nF causing a sub-Planckian theory breakdown. Increasing the hypercharge
limits nF to small values and to a narrower interval. Thus, allowed hypercharge values
are obtained for smallest number of flavours nF , and there is a fine-tuned mutual relation
between mass, flavour and hypercharge of vector-like quarks that is capable to generate
absolute stability of the vacuum.

We imposed perturbative unitarity and stability constraints for ⁄i(µ) and yi(µ) in both
Type-I+VLQ and Type-II+VLQ up to the Planck scale. All VLQ representations require
tan — œ [6, 12] for the mass regime assumed from both sectors, with small fermionic mixing
sin ◊L < 0.2. Although larger tan — values might satisfy the stability requirements, we
observed that they lead to a heavy suppression of the quartic couplings in small perturbation
regions due to coupled nature. Initial conditions on ⁄1,2 in Type-II+VLQ are stronger due
to the split of the Yukawa terms coupling to di�erent scalar doublets. Generally, Type-
II +VLQs models require larger scalar masses compared to Type-I model counterparts.
Accordingly, for a given set of fixed parameters in both types, the vacuum stability
conditions are safer in VLQ+Type-II. Compared to T vector-like quarks, constraints on
the B-like fermion masses and mixing angles are much more relaxed. This is simply a
consequence of the fact that the mixing between vector-like quarks and the SM quarks is
described in terms of the inverse of mass splitting between two quarks. Due to excessive
number of negative quartic Yukawa terms appearing at the RGE level, the constraints
arising in bare 2HDM have to be enlarged from the considerations above. To this end, we
checked both theoretically and experimentally allowed regions of 2HDM and VLQ models
by preserving the validity of 2HDM up to the Planck scale.

We also scanned over EWPO and found the space for t≠T and b≠B mixings versus the
mass of vector-like quarks which includes stability regions, especially in the near decoupling
limit. Furthermore, since the scalar and fermion parts of the oblique parameters are
calculated separately and then combined, we found that the upper bound on the heavier
CP-even scalar extends while preserving the vacuum stability conditions, especially when
combined with triplet VLQs. For this reason, we assumed mass values of the heavier
neutral scalar beyond the limits of 2HDM oblique parameters. However, the extension of
the upper limit of MH as cos(— ≠ –) approaches the alignment limit, also confirms the
stability requirement on scalar masses near TeV scale.

Although mixing between CP-even states cos(— ≠ –) ”= 0 is allowed by the oblique
parameters, the stability requires at least near-alignment limit as cos(— ≠ –) remains close
to zero. In fact, we observed that RGE running of ⁄1 and ⁄2 deteriorate and the condition
for the potential to be bounded from below cannot be satisfied as cos(— ≠ –) strays away
from the alignment limit. Accordingly, the lower limit on CP-even mixing angle from the
stability and EWPO requirements also match the experimental Higgs bounds.

For the VLQ part of the oblique parameters, the allowed parameter space for t ≠ T and
b ≠ B mixing is largest for cases where �S contributes negatively and we have shown that,
for all vector-like multiplets, the EWPO constraints lead to the alignment limit occurring
naturally as mV LQ > 1 TeV. In turn, constraints at higher TeV range from the oblique
parameters become more consistent with the stability requirements. Thus the constraints
to oblique parameters from vector-like quarks, combined with �S and �S from the 2HDM
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are VLQ representation-dependent as well as di�ering for Type-I and Type-II 2HDM and
can be used to distinguish among di�erent scenarios. In a specific representation and model-
type, these corrections may indicate an allowed deviation from the required cancellations,
and this would impose further restrictions on the extra scalar and its mixing with the SM
Higgs boson.
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Chapter 7

Vector-like Leptons in the SM

7.1 Introduction
While the discovery of the Higgs boson with mass 125.66 ± 0.30 GeV and analysis of
its properties [122, 228] completes the search for the particle content of the Standard
Model (SM), confirming Higgs mechanism to be responsible for electroweak symmetry
breaking, it also raises questions about naturalness. In particular, there are hints that
the SM is incomplete, or perhaps just an e�ective theory at large scales, where the model
becomes unstable. The metastability of the SM vacuum is driven by the behavior of the
couplings in the model at high energy scales. In general, the SM couplings run slowly but
at µ ≥ 1010 GeV the Higgs quartic coupling ⁄ flips sign, as evidenced by a downward
spike, which indicates the onset of vacuum instability. Extending the validity of the
SM to MPlanck, a second, deeper minimum develops, located near the Planck scale, such
that the electroweak vacuum is metastable, i.e., implying that the theoretical transition
lifetime of the electroweak vacuum to the deeper minimum is finite with lifetime ≥ 10300

years [62, 70, 229–233]. The issue is that the Higgs quartic coupling is renormalized not
only by itself (⁄ increasing as the energy scale increases), but also by the Higgs (Yukawa)
coupling to the top quark [234], which tends to drive it to smaller, even negative values at
high scales µ.

Vacuum stability can be achieved through beyond the Standard Model (BSM) e�ects,
as long as these enhance the Higgs quartic coupling su�ciently strongly. This is achieved by
introducing new particles, which can couple to the gauge or Higgs fields. While coupling to
gauge fields modify the SM beta functions and generally result in small changes, couplings
to the Higgs can a�ect the running of the SM couplings more significantly.

Perhaps the simplest remedy to the stability problem is to augment the SM by an
extra (singlet, as it is simplest) scalar boson which interacts solely with the SM Higgs
boson [235–239]. The addition of a boson provides a positive boost to the coupling
parameter, counteracting the e�ect of the top quark and contributing towards repairing
the Higgs vacuum stability. In this scenario, the scalar couplings increase with energy scale,
compensating for the SM Higgs coupling. Therefore, the addition of an extra scalar boson
to the SM rescues the theory from vacuum instability, as long as its mixing with the SM
Higgs boson is non-zero [1]. It has been shown that such a singlet scalar, if light, can
also serve as dark matter (DM) candidate, obeying all constraints from relic abundance
and direct detection [240]. The study of the scalar singlet DM has been extended, with
additional portal couplings of the scalar added on top of the usual Higgs portal interaction.
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Such possibility is to include DM portal couplings with new vector like leptons [241–247]
and/or quarks [248–252].

Vector-like leptons (VLLs) are color-singlet fermions and vector-like quarks (VLQs) are
color-triplet fermions, i.e., fermions with left- and right-handed components transforming
the same way under the electroweak gauge symmetry group. Such new states arise in a wide
variety of BSM scenarios, including, but not limited to, supersymmetric models [83,253–257]
models with extra spatial dimensions [258, 259] and grand unified theories. Expansions of
the SM with one or more vector-like fermion families may provide a dark matter candidate
[260–266], and account for the mass hierarchy between the di�erent generations of particles
in the SM via their mixings with the SM fermions [267–271].

Vector-like particles have been considered before in the context of stabilizing the vacuum
of the SM in [85, 86], in the context of baryogenesis [87], to account for the anomalous
magnetic moment of the muon and discrepancies in the W boson mass [88, 227, 272], and
to help explain the observed excess at 750 GeV [89, 90]. Analyses of vacuum stability have
served as guides for beyond the SM model building [55,218,273].

In a previous work [2] we analyzed the stability of the SM with additional vector-
like quarks. We included all the possible non-anomalous representations, and analyzed a
complete interplay of all possible vector-like quark representations. We investigated the
restrictions on the masses and mixing angles for the all anomaly-free representations of
vector-like quarks, as well as the additional boson field which is needed to be added for
vacuum stabilization, including e�ects and restrictions induced by the vector-like fermions
on the electroweak precision observables (EWPOs), S and T. Previous works have also
performed complementary analyses [274], some combining vacuum stability constraints with
the possibility of allowing the new scalar to be the dark matter candidate [240,275].

Here we complement our previous work here by performing an analysis of the stability
of the SM with vector-like leptons. The study of the vacuum stability is di�erent here as
vector-like leptons do not have QCD couplings. Additionally, unlike the vector-like quarks,
the leptons can still be light, the limit from LEP allowing vector-like charged fermions
with masses above 100 GeV [96,276,277]. There have been previous studies of the vacuum
stability of the SM in the presence of vector-like fermions [78,240,278]. Our analysis di�ers
from previous ones in that we once again examine the e�ects of all possible non-anomalous
vector-like lepton representations. Moreover, we shall show that stability of the SM with
vector-like leptons does not require the additional scalar boson mixed with the Higgs bosons,
and this result is consistent with parameter space restrictions on the electroweak precision
observables, S,T and U.

Our work is organized as follows. In Sec. 7.2, we introduce six di�erent vector-like
lepton representations and describe their connections to the SM leptons through relevant
Lagrangian. In Sec. 7.4 we present the vector-like lepton contributions to the electroweak
precision observables and discuss the regions of parameter space that are consistent with
the spectrum that ensures stability. Sec. 7.5 is dedicated to the examination of the running
of the SM couplings and renormalization group equation (RGE) solutions in the presence
of vector-like leptons along with allowed parameter space that satisfy the vacuum stability
constraints.Further, we add two loop corrections to RGEs to check how the next-to-next-
to-leading order accuracy a�ects the model couplings up to the Planck scale. Furthermore,
we draw our conclusions in Sec. 7.6 and leave the complete set of RGEs up to two-loops
and VLL modified EW couplings to the Appendix C and the Appendix E.2 respectively.

108



7.2 Setup for Vector-like Lepton Model
Here we explore an extension of the SM, incorporation only vector-like leptons. The selection
of leptonic mixing via Yukawa interactions with the Higgs field constrains us to a finite set of
anomaly-free and renormalizable SU(2) gauge representations and hypercharge assignments
for the new fermionic states. We give the list of the VLL representations under SU(2)L ◊

U(1)Y symmetry in Table 7.1.

Table 7.1: Representations of Vector-Like Leptons, under gauge symmetry SU(2)L ◊ U(1)Y .

Name S1 S2 D1 D2 T1 T2

Type Singlet Singlet Doublet Doublet Triplet Triplet

L0 L≠

Q

aL0

L≠

R

b

Q

a L≠

L≠≠

R

b

Q

ccca

L+

L0

L≠

R

dddb

Q

ccca

L0

L≠

L≠≠

R

dddb

SU(2)L 1 1 2 2 3 3
Y 0 -1 -1/2 -3/2 0 -1

The renormalizable Lagrangian for these model, including the Yukawa interactions and
Dirac mass terms of the weak multiplets contains the SM part, and additional interactions
corresponding to the di�erent interactions in Table 7.1:

LSM = ≠y‹ l̄L�c‹R ≠ y· l̄L�·R,

LS1,S2 = ≠yL0 l̄L�cS1R
≠ yL≠ l̄L�S2R

≠ yM (S̄1L
�S1R

+ S̄2L
�S2R

)
≠ ML0S̄1L

S1R
≠ ML≠S̄2L

S2R
,

LD1,D2 = ≠yL≠D̄1L
�·R ≠ yL0D̄1L

�c‹R ≠ yL≠D̄2L
�c·R ≠ yM (D̄1L

�D1R
+ yL≠D̄2L

�cD2R
)

≠ MD1D̄1L
D1R

≠ MD2D̄2L
D2R

,

LT1,T2 = ≠yT1 l̄L·a�c
T

a

1R
≠ yT2 l̄L·a�T

a

2R
≠ yM (T̄1L

·a�c
T

a

1R
+ yL≠ T̄2L

·a�T
a

2R
)

≠ ML+ T̄1L
T1R

≠ ML≠≠ T̄2L
T2R

,

(7.1)

where the triplet models can equivalently be written as irreducible SU(2) representations

·a
T

a

1R
=

Q

a
L

0
Ô

2 L+

L≠
≠

L
0

Ô
2

R

b

R

, ·a
T2R

=

Q

a
L

≠
Ô

2 L0

L≠≠
≠

L
≠

Ô
2

R

b

R

. (7.2)

Here, �c = i‡2�ı, y· , y‹ , yL0 , yL≠ and yT1,2 are the Yukawa couplings of the Higgs field
� to vector-like leptons and SM leptons1, while yM is the Yukawa coupling of the Higgs
scalar field to vector-like leptons only.

1Although the SM does not inherently include a right-handed neutrino (‹R), our analysis considers such
state as added to the SM. This right-handed neutrino is required to preserve mixing between the VLL and
the SM leptons through the Yukawa interactions present in our study. Although this state is included only
in the SM and D1 part of Lagrangian in Eq. 7.1, its contribution appears in mass matrices throughout all
six representations whenever the neutral sector is considered.
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We assume that only the third generation SM leptons mix with VLLs in order to avoid
unwanted complications from flavour-changing neutral current (FCNC) and lepton flavour
violating (LFV) decays. If the VLLs mix with leptons of all generations, such mixing
induces flavor transitions between the SM generations, which would lead to dangerous LFV
processes. These are tightly constrained by experimental data, especially from processes
like µ æ e“ decay [279] and µ æ e conversion [280], which are highly sensitive to new
flavor-changing interactions. By restricting the VLL mixing to only the third-generation
leptons, the model avoids these stringent flavor constraints, as the third-generation leptons
are less sensitive to flavor-changing processes [281]. This is additionally motivated by the
analysis of EWPOs and of renormalization group equations. Large mass splitting between
the members of weak eigenstates in Eq. 7.3 can lead to adverse e�ects on initial conditions
for the Yukawa couplings in the low mass regime of the first and the second generation
SM leptons. Similarly, the EWPOs are sensitively dependent on logarithmic mass splitting
between the SM and the vector-like leptons [282] as �T ≥

M
2
W

–e
ln( m

2
l

M
2
VLL

), inducing large
discrepancies to the global fit of the oblique T-parameter [96] if the SM leptons of the first
two generations couple to VLL.

The weak eigenstate lepton fields mix, for both chiralities in the neutral and charged sectors,
and are respectively given as

NL,R =
A

‹
L0

B

L,R

, LL,R =
A

·
L≠

B

L,R

. (7.3)

The mass eigenstate fields are denoted as (n1, n2) and (l1, l2) and they correspond to bi-
unitary transformation of weak eigenstates,

NL,R =
A

n1
n2

B

L,R

= V 0
L,R

A
‹
L0

B

L,R

LL,R =
A

l1
l2

B

L,R

= V l

L,R

A
·

L≠

B

L,R

, (7.4)

where the mixing matrices in neutral (0) and charged sector (l) follow as

V 0
L,R =

A
cos ◊u

≠ sin ◊u

sin ◊u cos ◊u

B

L,R

, V l

L,R =
A

cos ◊d
≠ sin ◊d

sin ◊d cos ◊d

B

L,R

. (7.5)

By using these rotation operators we construct the diagonal mass matrices

Mu

diag = V 0
L Mu(V 0

R)† =
A

mn1 0
0 mn2

B

, Md

diag = V l

LMd(V l

R)† =
A

ml1 0
0 ml2

B

. (7.6)

Utilizing the gauge eigenstate fields, the mass matrices for both the neutral and charged
sectors are obtained following spontaneous symmetry breaking

≠L
u

Y uk =
1
‹L L0

L

2 A
y‹

vÔ
2 yL0 vÔ

2
yL0 vÔ

2 yM
vÔ
2 + ML0

B A
‹R

L0
R

B

,

≠L
d

Y uk =
1
·L L≠

L

2 A
y·

vÔ
2 yL≠

vÔ
2

yL≠
vÔ
2 yM

vÔ
2 + ML≠

B A
·R

L≠
R

B

. (7.7)

110



The Dirac mass term introduces another free parameter into VLL models and it appears as
an uncoupled degree of parametric freedom in RGE level, so to this end, we absorb ML0,≠ in
Eq. 7.7 into yM for all VLL representations. This is equivalent to assuming that the mass
of the vector-like fermion are purely generated from the spontanous symmetry breaking,
such that mDirac = 0.

7.3 Restrictions on Vector-like Lepton Masses
The CMS Collaboration has carried out three direct searches targeting extensions of the
SM with VLLs in pp collisions at

Ô
s = 13 TeV collision data set. In the first of these

searches, multilepton final states with electrons and muons were probed using a data set
collected during 2016-2017, yielding the first direct constraints on doublet models with
vector-like tau leptons in the mass range of 120–790 GeV [283]. A second search, targeting
both doublet and singlet vector-like tau lepton models and conducted with the larger full
Run-2 data set, included additional multilepton final states, including hadronically decaying
tau leptons, and superseded the first result [284]. Lastly, a third search performed by the
CMS Collaboration probed non-minimal SM extensions involving VLLs and other BSM
states in the context of the 4321 model in all-hadronic final states involving multiple jets
and hadronically decaying tau leptons [285]. Searches for vector-like leptons have also been
performed at ATLAS, most recently for third-generation leptons in [286]. A description of
the expectation at all colliders is summarized in [287], while for an up-to-date review of
searches for vector-like fermions at LHC see [288].

In what follows, in order to allow exploration of the largest parameter space and to
remove any model-dependency, we will impose the weakest constraints, as restricted by
Particle Data, requiring masses above 100 GeV [96,276,277].

7.4 Corrections from the Oblique Parameters
In addition to the constraints defined in the previous subsections, electroweak precision
observables (EWPOs) are essential tools for probing the SM and constraining possible
extensions. These observables arise from precise measurements of electroweak processes,
such as the properties of the W and Z bosons, and provide stringent tests for any new
physics scenarios. The addition of new particles, particularly scalars and leptons, impacts
these observables through loop corrections to gauge boson masses, leading to potential
signals of new physics. A significant aspect of these constraints is encapsulated in the
oblique parameters, also known as the Peskin-Takeuchi parameters, namely S, T, and U [97].
The latest fits for the oblique parameters give S = ≠0.04 ± 0.10 and T = 0.01 ± 0.12 at 90%
CL [96]. These parameters quantify the e�ects of new physics on the vacuum polarization
corrections to the gauge bosons. They provide a model-independent way to parameterize
deviations from the SM predictions, thus o�ering a systematic approach to compare di�erent
theoretical models.

Since our work does not incorporate additional fields in the scalar sector, the corrections
to the oblique parameters from Z2 symmetric fields are the same as in the SM. The largest
contribution from the fermionic sector to the T and S parameters in the SM comes from
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the t and b quarks

TSM

f = 3m2
t

4fie2v2 , SSM

f = 1
2fi

A

1 ≠
1
3 ln(m2

t

m2
b

)
B

. (7.8)

Previous analyses reproducing the oblique corrections for some vector-like representations
have appeared in [119, 289]. In what follows, we investigate the contributions to these
parameters by the additional vector-like states in our scenarios.

7.4.1 VLL contributions to the S and T parameters
In scenarios with additional fermions, such as VLLs, the oblique parameters require special
consideration. These fermions can alter the gauge boson self-energies, leading to unique
patterns in the oblique corrections. VLLs might transform under certain symmetries, such
as Z2, and may not interact with the SM Higgs boson, allowing their contributions to the
oblique parameters to be isolated and studied separately. In VLL extensions, the physical
states L and N contribute to the transverse component of the vacuum polarization for the
gauge bosons in the SM through Feynman loop diagrams. To estimate their contributions
to S and T, one needs to compute the one loop diagrams that contribute to the electroweak
gauge boson vacuum polarization amplitudes, as shown in Fig. 7.1. Adopting the general

Figure 7.1: Vector-like lepton contribution to vacuum polarization amplitude of the SM
gauge bosons. Here Li and Lj are the mass eigenstates.

expression for the T and S parameter contributions from additional fermions [290]

TV LL = 1
–e

C
�V LL

W W
(0)

M2
W

≠
�V LL

ZZ
(0)

M2
Z

D

,

SV LL = 4s2
W

c2
W

–eM2
Z

C

�V LL

ZZ (M2
Z) ≠ �V LL

ZZ (0) ≠ �V LL

““ (M2
Z) ≠

c2
W

≠ s2
W

cW sW

�V LL

“Z (M2
Z)

D

,

(7.9)

we initially calculate their gauge couplings with the vector bosons. The VLL mass matrices
are given in Eq. 7.4, and the components of the diagonalizing matrices in Eq. 7.5. The
couplings to W -boson and Z-boson are been modified by the VLLs through their mixing

112



with SM leptons in the relevant Lagrangian

LW = g
Ô

2
L̄i“

µ(CL

LiLj
PL + CR

LiLj
PR)LjW +

µ + h.c. ,

LZ = g

2cW

L̄i“
µ(YZNL

LiLj
PL + YZNR

LiLj
PR)LjZµ , (7.10)

where Li,j are any type of leptons in our electroweak Lagrangian and YZ = T 3
≠ Qis2

W
.

The condition |Qi ≠ Qj | = 1 holds for all forms of W ≠ Li ≠ Lj interactions.

We further define VLL modified electroweak couplings to Z and W bosons in terms of
the weak hypercharge operator and mixing identities

�L,R

W LiLj
= g

Ô
2

CL,R

LiLj
, �L,R

ZLiLj
= g

2cW

(T 3
≠ Qs2

W )NL,R

LiLj
, (7.11)

yields the final form of modified electroweak interactions 1

LW ∏ “µ(�L

W LiLj
L + �R

W LiLj
R)W +

µ ,

LZ ∏ “µ(�L

ZLiLj
L + �R

ZLiLj
R)Zµ . (7.12)

The relevant electroweak couplings �L,R

V LiLj
are unique to each VLL representation and are

given in the Appendix E.2. In fact, the expressions for the oblique parameters in Eq. 6.52 -
6.54 have been derived for vector-like fermions, and therefore they also apply to VLLs with
the replacements Qi,j æ Li,j and Nc = 1. Nonetheless, the number of possible neutral EW
currents is relatively smaller than in the VLQ scenario. Subtracting the SM values in Eq.
7.8 from Eq. 7.13-7.18, we scan the oblique parameters with respect to neutral and charged
vector-like leptons.

Singlet S1 (L0), Y = 0

�T = 1
16fic2

W
s2

W
M2

Z

A

m2
· (cu

L)2 + m2
L0(su

L)2
≠

m2
L0(su

L
)2(cu

L
)2

2

B

,

�S = 1
36fi

C

(su

L)2(cu

L)2
A

≠5 ≠ 3 ln( m·2

m2
L0

)
B

≠ 2(su

L)2
A

ln( m·2

m2
L0

) ≠ 3
B

+ 6(cu

L)2
D

.

(7.13)
1For neutral leptons, operator YZ generates a term proportional to (≠ 1

2 L̄0“µL0)Zµ, where the coe�cients
of these neutral currents are absorbed in �L,R

ZLiLj
throughout all VLL representations.
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Singlet S2 (L≠), Y = ≠1

�T = 1
16fic2
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s2

W
M2
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A
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. (7.14)
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In Fig. 7.2, we illustrate the dependence of the oblique parameters on the mass of VLLs
for two specific mixing angles. For a near-decoupling limit, sin ◊ = 0.05, neither of the
oblique parameters imposes a constraint on VLL masses. However, increasing the mixing
value to sin ◊ æ 0.1, the S parameter starts to disfavor mL0 > 520 GeV in the neutral
singlet model S1, whereas the entire spectrum of mL≠ is allowed by the S parameter in the
S2 model. This is well-motivated, as the S parameter is influenced by the hypercharge of the
new leptons, fundamentally measuring the di�erence in the running of the electroweak gauge
couplings. In contrast, the T parameter is more restrictive for both singlet VLLs at larger
mixing scales. While mL0 > 540 GeV falls outside 2‡ region for the T parameter, the upper
bound for charged VLL extends to mL≠ ≥ 590 GeV. The T parameter is more sensitive
to weak isospin breaking and to the mass splitting between components of weak isospin
multiplets. Due to the large mass splitting between members of neutral mass eigenstates as
compared to charged mass eigenstates of S2, the T parameter imposes more constraint on
S1. As expected, having the least number of possible electroweak couplings, singlet VLLs
recover the SM limit for T æ 0 as sin ◊ æ 0 because most terms in the T parameter are
modified by weak isospin breaking.

S1 S1

S2 S2

Figure 7.2: New physics contributions to the oblique parameters: T (orange) and S (blue)
from singlet vector-like lepton representations for di�erent VLL-SM lepton mixing sin ◊L =
0.05 (left) and sin ◊L = 0.1 (right). The green shaded region is the allowed space from the
S and the T parameters in 2‡ level.
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Doublet D2 (L≠, L≠≠), Y = ≠3/2

�T = 1
16fic2

W
s2

W
M2

Z

A

(cd

R)2m·2 + (sd

R)2(m2
L≠ + 2m2

L≠≠)

+
(2sd

R
)2

3
m4

L≠ ≠ m4
L≠≠ ≠ 2m2

L≠≠m2
L≠ ln

3
m

2
L≠

m
2
L≠≠

44

(m2
L≠ ≠ m2

L≠≠) +

+
4mL≠mL≠≠(sd

R
)2

3
2m2

L≠≠ ≠ 2m2
L≠ +

!
m2

L≠ + m2
L≠≠

"
ln

3
m

2
L≠

m
2
L≠≠

44

(m2
L≠ ≠ m2

L≠≠) +

+ 1
2(cd

R)2(sd

R)2

Q

cca≠5m2
L≠ +

8mL≠m·

3
2

!
m2

L≠ ≠ m2
·

"
+

!
m2

L≠ + m2
·

"
ln

3
m

2
·

m
2
L≠

44

(m2
L≠ ≠ m2

· )

R

ddb

≠

4mL≠≠m· (sd

R
)2

3
2

!
m2

L≠≠ ≠ m2
·

"
+

!
m2

L≠≠ + m2
·

"
ln

3
m

2
·

m
2
L≠≠

44

(m2
L≠≠ ≠ m2

· )

B

,

�S = ≠
1

36fi

A
6(cd

R
)2 !

m2
L≠ + m2

L≠≠
"

mL≠mL≠≠
+

6(sd

R
)2 !

m2
L≠≠ + m2

·

"

mL≠≠m·

+ 4(sd

R)2
A

≠3 + ln
A

m2
·

m2
L≠

BB

+ 4(cd

R)2
A

≠3 + ln
A

m2
L≠

m2
L≠≠

BB

≠

6(cd

R
)2(sd

R
)2

3
m8

L≠ ≠ 8m6
L≠m2

· + 8m2
L≠m6

· ≠ m8
· ≠ 12m4

L≠m4
· ln

3
m

2
·

m
2
L≠

44

mL≠m·

1
m2

L≠ ≠ m2
·

23

+ 5(cd

R
)2(sd

R
)2

1
m2

L≠ ≠ m2
·

23
# 1

5m6
L≠ + 27(m2

L≠m4
· ≠ m4

L≠m2
· ) ≠ 5m6

·

2

+ 3
1
m6

L≠ ≠ 3m4
L≠m2

· ≠ 3m2
L≠m4

· + m6
·

2
ln

A
m2

·

m2
L≠

B
$
B

. (7.16)

As shown in Fig. 7.3, the parameter space of D2 receives almost no constraint in the
vicinity of the decoupling limit. The entire spectrum of mL≠ scanned is allowed by both
oblique parameters in the 2‡ region for sin ◊ = 0.05. However, the S parameter excludes
mL0 > 730 GeV in D1 model. The distinction between doublet models from the S parameter
is sharper than that for singlet models. With six di�erent weak hypercharge choices, the S
parameter constraints are significant, due to the extended number of lepton-modified gauge
boson propagators. Increasing the lepton mixing to sin ◊ = 0.1, the T parameter becomes
restrictive for both doublet models. The mass of neutral VLL in D1 falls o� the global fit
of the oblique parameters for mL0 > 760 GeV, whereas the charged VLL mass of D2 model
must be mL≠ < 670 GeV to remain in 2‡ region for the T parameter. In contrast, the S
parameter imposes a minimum bound on D2 of mL≠ > 400 GeV.
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D1 D1

D2 D2

Figure 7.3: New physics contributions to the oblique parameters: T (orange) and S (blue)
from doublet vector-like lepton representations for di�erent VLL-SM lepton mixing sin ◊L =
0.05 (left) and sin ◊L = 0.1 (right).The green shaded region is the allowed space from the S
and the T parameters in 2‡ level.
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Triplet T1 (L+, L0, L≠), Y = 0
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Finally, by comparing triplet VLL models at sin ◊ = 0.05, the allowed space of T1 is
independent of the S and T parameters throughout the entire spectrum, as shown in Fig
7.4. While the T parameter shows almost VLL mass-independent behavior for T2 model,
the S parameter excludes mL≠ = [250, 510] GeV from constraints at the 3‡ level. T1 has a
similar S characteristic for larger mixing sin ◊ = 0.1, thus mL≠ is not limited. However, the
upper bound from the T parameter occurs around mL≠ ≥ 650 GeV. The constraints are
more stringent on T2 representation as leptonic mixing increases due to its direct dependence
on mass splitting between mass eigenstates. The upper bound from the T parameter occurs
for mL≠ ≥ 590 GeV.

As expected, a smaller mixing regime generates more relaxed constraints from the
oblique parameters. We note that none of the representations is limited by the T parameter
at sin ◊ = 0.05, though this freedom is limited as the mixing gets larger. Thus, the oblique
parameter T becomes more restrictive as mV LL gets larger. Furthermore, given di�erent
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T1 T1

T2 T2

Figure 7.4: New physics contributions to the oblique parameters: T (orange) and S (blue)
from triplet vector-like lepton representations for di�erent VLL-SM lepton mixing sin ◊L =
0.05 (left) and sin ◊L = 0.1 (right).The green shaded region is the allowed space from the S
and the T parameters in 2‡ level.

weak hypercharge choices, the S parameter also shows varying constraints but may not be as
constraining as the T parameter unless the hypercharge choices lead to significant changes
in the gauge boson propagators.
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7.5 RGE Allowed Parameter Space of Vector-like Leptons
Theories with additional fermions customarily enhance the instability of the Higgs
self-coupling, driving it faster toward negative values at higher energy scales. This
fundamentally signals the occurrence of an unbounded potential from below, thereby
undermining vacuum stability. Such an outcome is already evident in the SM due to
the top quark, which drives the Higgs quartic coupling negative around µ = 1010 GeV
at one loop [56]. While supplementary scalar bosons can uphold the positivity of the Higgs
self-coupling against the diminishing influences of the renormalization flow at higher energy
scales, the introduction of vector-like fermions (VLFs) o�ers an intriguing alternative. These
VLFs, through various gauge portals, have the potential to stabilize the electroweak vacuum.
Therefore, the e�ects of VLFs have been studied in numerous extensions involving extensive
scalar models. However, models with additional scalars are already promising when mixed
with the Higgs fields, opening up a large parameter space due to considerable e�ects at the
RGE level. The question remains, could one achieve vacuum stability without additional
scalar(s)?

In this context, the inclusion of vector-like leptons (VLLs) exerts a strong influence
on electroweak vacuum stability, predominantly through their e�ects on the Higgs quartic
coupling via the weak hypercharge and isospin portals. In fact, additional charged fermions
alone do not destabilize the Higgs potential. Their gauge interactions stabilize it, while
their Yukawa couplings to the SM Higgs introduce new instabilities. Unlike the impact
of vector-like quarks, VLLs engage di�erently with the gauge fields, leading to distinctive
contributions to the RGEs of the Yukawa couplings �g1,2, due to the absence of the largest
�g3 correction. Scenarios that allow more than one generation VLL that do not exhibit such
couplings exist, and could be viable to stabilize the Higgs potential. The incorporation of
VLLs introduces novel Yukawa interactions that generally serve to lower the Higgs quartic
coupling. However, the gauge couplings g1 and g2, which are positively influenced by
VLLs, are pivotal in counteracting this e�ect [210]. Furthermore, if VLL Yukawa couplings
contribute su�ciently to balance the Higgs quartic coupling, compensating quartic e�ects
|⁄Hy2

L
| > |y4

L
| along with gauge corrections, this can generate a viable parameter space that

keeps ⁄H > 0 for µ Æ MPlanck, preventing its descent into negativity at elevated scales [86].
The intricate interplay between the Yukawa portal and the gauge couplings induced by
the VLLs induces a non-trivial impact on the RGE flow, potentially unveiling regions of
parameter space wherein the electroweak vacuum retains stability. This delicate equilibrium
among the diverse contributions is paramount in determining the overall stability of the
electroweak vacuum in the presence of VLLs. Allowed by the experimental constraints,
masses m ≥ O (TeV) survive from stability constraints for VLQ [1, 291]. However, we
assume lighter scales < O (TeV) for VLL masses to obtain viable solutions that survive
from the RGE flow. Hence, the examination of VLLs within the SM framework underscores
a promising pathway for addressing vacuum stability without necessitating an extension of
the scalar sector. To this end, we summarize our methodology as:

• We impose the minimum mass bounds on the neutral and charged sectors of VLLs
and run RGEs over various models in Appendix. C to generate the running of the
Higgs and Yukawa couplings without encountering any Landau pole.

• We also provide the allowed space for SM-VLL mixing versus mV LL by randomly
generating nV LL + 1 parameter points as solutions to RGEs while enforcing stability
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and perturbative unitarity conditions on the couplings up to the Planck scale µ =
MPlanck.

• The initial conditions for the couplings appearing in the VLL representations are set
at the energy scale µ0 = mt.

• Additionally, new physics corrections are also manifested through gauge boson loops
in self-energy diagrams, namely the oblique parameters S and T from VLLs. We
check the region of electroweak observables (EWPO) and discuss the scale favoring
our findings from the RGE analyses.

We now proceed to analyze the representations in Table 7.1.

7.5.1 Singlet VLL: S1 and S2

Singlet VLL extensions S1 and S2 of the SM generate the safest scenario for the Higgs
quartic coupling among all the representations studied herein. Fixing the masses of neutral
and charged vector fermions throughout our work to compare each model clearly showed
that ⁄ is more prone to stay away from the vacuum instability scale in singlet VLL models,
as seen in Fig. 7.5. The S2 model generates a relatively larger parameter space up to
mL≠ ≥ 150 GeV, as seen in Fig. 7.6, surviving all theoretical constraints. The distinction
between S1 and S2 is fully attributed to weak hypercharge di�erence, where U(1)Y gauge
portal g1 receives no correction from the L0 field alone, hence it narrows the allowed space.
This can also be shown in the RG running of yM that defines the Higgs coupling to only
VLLs. It strays dangerously close to the non-perturbative region in S1 model, for which
the RGE controlling the yM coupling is completely dictated by the Yukawa terms in Eq.
C.1. The upward shift of the neutral Yukawa coupling in S1 compared to the charged
Yukawa in S2 occurs due the fact that the mass splitting between neutrino and L0 is larger
than that between the · and L≠, thus generating a larger initial condition. Having the
least number of free parameters used for RGE solutions, the S1 and S2 models are highly
dependent on the reciprocal relation between the mass of the field and its mixing with the
SM lepton. Although lighter mass scales are excluded by the experimental data [96], we
found that mL0,≠ & 110 GeV; otherwise, the perturbativity of the Higgs coupling breaks
down. Additionally, Fig. 7.6 shows that the mixing between VLLs and SM leptons remains
non-zero, serving as the most important condition for stabilizing the electroweak vacuum
in the presence of new fields. The absence of the color charge is prominent in Fig. 7.5,
producing a unique feature of VLL Yukawa couplings that di�er significantly from those
of vector-like quarks [2]. Furthermore, we checked that, except for highly exotic weak
hypercharge choices Y > |3/2| [292], VLL Yukawa couplings tend to increase over energy
scales, as the remain insensitive to the largest gauge portal correction g31. In this graph,
we indicate the region shaded in pink which is disallowed by constraints coming from the
electroweak precision observables as in Sec. 7.4.1.

1The relative strength of · Yukawa is too small and the running coupling appears almost flat compared
to other couplings in the model.
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(a) S1 (b) S2

Figure 7.5: The RGE running of the Yukawa and the Higgs coupling for models with singlet
vector-like lepton representations. We show singlet vector-like representation, S1 (a), and
S2 (b). For singlet models, we have set mL0 = 120 GeV, mL≠ = 125 GeV µ0 = mt, and
sin ◊L = 0.1.

(a) S1 (b) S2

Figure 7.6: The allowed parameter space extracted from theoretical constraints for the mass
of vector-like leptons and its dependence on mixing angle to the third generation SM leptons
for singlet vector-like lepton representations. We show singlet S1 vector-like model (a), and
singlet vector-like S2 model (b). The region shaded in pink is disallowed by constraints
coming from the electroweak precision observables as in Sec. 7.4.1.
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7.5.2 Doublet VLL: D1 and D2

In contrast to singlet models, RGE solutions of doublet models D1 and D2 exhibit a more
sensitive behaviour with respect to the Higgs coupling, especially in the presence of non-
SM-like charges. The uncoupled nature of doubly charged VLLs drastically adjusts the
starting value of the running coupling yL≠≠ as illustrated in Fig. 7.7. Consequently, this
adjustment a�ects the Higgs RGE more significantly than for fields that mix with SM
leptons across all multiplets. However, this phenomenon also imposes a soft upper bound
on the mass of exotic leptons, constrained by perturbativity to mL≠≠ < mt. As mentioned
earlier, larger hypercharge values for VLLs can cause Yukawa couplings to decrease with
increasing energy, similar to quark couplings in renormalization theory. As shown in
the right panel of Fig. 7.7, yL begins to decrease around µ & 1013 GeV as might be
expected from the e�ect of the largest hypercharge-carrying field D2. The vacuum stability
condition requires smaller mixing angles to counterbalance initial conditions due to the
mass increment; however, the Yukawa coupling yM increases as the VLL-SM mixing scale
approaches the decoupling region. Therefore, representations that exclude both neutral
and charged VLLs simultaneously are more sensitive to the value of yM due to the indirect
e�ects of uncoupled leptons via RGEs. This sensitivity results in distinct parameter spaces
for S1, S2 and D2 compared to other models. On the other hand, the model D1, including
both L0 and L≠, provides more space as both up and down sector mixings vary between
extreme ends while maintaining ⁄ in the vacuum stability regime. The extension of the
RGE parameter space is also related to the additional number of positive quadratic and
negative quartic Yukawa terms. The limits on doublet models are more relaxed compared
to singlet VLLs with mL≠ upper bound reaching approximately 170 GeV for D2, and the
mass of the charged lepton rising up to ≥ 260 GeV in the D1 model, allowed by mixing
angle sin ◊ < 0.05. In fact, we verified numerically that a scale mV LL > 260 GeV breaks the
perturbativity of Yukawa couplings before the Higgs quartic coupling becomes negative.
Thus Fig. 7.8 shows that the upper bound on the mass of charged VLLs for D2 model
corresponds to a critical value where ⁄ starts to run to negative values before Yukawa
couplings become non-perturbative. Finally, non-SM-like multiplets can generate heavier
mass values that meet theoretical requirements; however, the Higgs constraints from VLLs
limit the mixing domain, which is in particular constrained by the Higgs diphoton decay
rate [293]. As before, in this graph, we indicate the region shaded in pink which is disallowed
by constraints coming from the electroweak precision observables as in Sec. 7.4.1.
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(a) D1 (b) D2

Figure 7.7: The RGE running of the Yukawa and the Higgs coupling for models with doublet
vector-like leptons. We show doublet vector-like representation, D1 (a), and D2 (b). For
doublet models, we have set mL0 = 150 GeV, mL≠ = 130 GeV, mL≠≠ = 160 GeV, µ0 = mt,
and sin ◊L = 0.1.

(a) D1 (b) D2

Figure 7.8: The allowed parameter space extracted from theoretical constraints for the
mass of vector-like leptons and its dependence on mixing angle to the third generation SM
leptons for doublet vector-like representations. We show doublet D1 vector-like model (a),
and doublet vector-like D2 model (b). The region shaded in pink is disallowed by constraints
coming from the electroweak precision observables as in Sec. 7.4.1.

7.5.3 Triplet VLL: T1 and T2

The case of triplets vector-like representations is a�ected by both the exotic L+, L≠≠, and
SM-like vector partners. In Fig. 7.10 the mixing is allowed to be either small or large in
the low mass region, whereas larger masses generally require smaller mixing for both triplet
models. The mass spectrum reaches up to 270 GeV, though the theoretical minimum would
be allowed to be lower in our work, but is excluded by experimental constraints. Similar
to singlet models, the distinction between parameter spaces arises from weak hypercharge.
Nevertheless, RGE constraints on the triplet model T1 model are less relaxed due to the
absence of g1 correction, which imposes a smaller mixing regime compared to the T2 model.
The minimum value of the mixing angle required to ensure vacuum stability is slightly
larger than for all other representations. This feature is analytically motivated by the fact
that triplets rely simultaneously on both neutral and charged Yukawa RGEs, thus requiring
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a relatively larger minimum mixing across the entire mass spectrum. Moreover, ⁄ in Fig.
7.9 approaches to zero in T1 while yM is the largest correction among the models, directly
correlating the allowed space to the inverse relationship between VLL mass and mixing
angle shown in Fig. 7.10. Finally, we can conclude that VLL triplets are more promising
for stabilizing the vacuum, as they scan over a larger spectrum while satisfying both stability
and perturbative unitarity constraints. As for the case of singlets and doublets, we shade
in pink the region which is disallowed by constraints coming from the electroweak precision
observables as in Sec. 7.4.1.

(a) T1 (b) T2

Figure 7.9: The RGE running of the Yukawa and the Higgs coupling for models with triplet
vector-like leptons. We show triplet vector-like representation, T1 (a), and T2 (b). For triplet
models, we have set mL0 = 150 GeV, mL≠ = 200 GeV, mL+ = 170 GeV, mL≠≠ = 170 GeV,
µ0 = mt, and sin ◊L = 0.1.

(a) T1 (b) T2

Figure 7.10: The allowed parameter space extracted from theoretical constraints for the
mass of vector-like leptons and its dependence on mixing angle to the third generation SM
leptons for triplet vector-like representations. We show triplet T1 vector-like model (a) and
triplet vector-like T2 model (b). The region shaded in pink is disallowed by constraints
coming from the electroweak precision observables as in Sec. 7.4.1.
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7.5.4 E�ects of Two Loop Corrections to the RGE
Here we analyse the e�ect of using the RGEs to two loop accuracy, and whether the next-
to-next-to-leading order (NNLO) couplings evolve in such a way as to extend the VLL
parameter space. The transition from one loop to two loop RGEs introduces nuanced
changes to the running of all couplings, due to higher-order interactions and mixed terms
that appear in two loop corrections. E�ectively this allows all terms in the RGE to be
influenced by the presence of di�erent sectors, generating fully coupled equations. At the
one loop level gauge couplings generally increase with energy due to contributions from
additional fermions which enhances the gauge portal for vacuum stability concerns. When
moving to two loop corrections, gauge couplings receive additional positive contributions
from themselves, further enhancing their growth. However the Yukawa couplings mitigate
the gauge coupling runnings to order -g4

i
y2

F
. While the interplay between couplings becomes

more complex at the two loop level, making deterministic interpretation di�cult, it is
expected that the gauge portal weakens as the multiplets include more fermions.

Even in the absence of VLL, the top Yukawa becomes smaller due to ≠y2
t g4

3 correction.
Additionally all VLLs contribute negatively to the overall running of the top Yukawa as seen
in Figs. 7.11-7.13. Hence, the overall decline of the top Yukawa coupling directly a�ects
the Higgs quartic coupling. For the two loop analysis, we found that all the VLL Yukawa
couplings except yM have a basically insignificant e�ect on RGEs from any type of cross
term y2

i
y4

j
, due to their relatively small initial values. Thus we only emphasize the e�ects

of the terms that a�ect the two loop level and also strengthen the Higgs quartic coupling
up to the Planck scale.

For singlet models, the SU(2)W portal from VLLs does not contribute to the top Yukawa
coupling, so the only gauge portal correction from two loop is g4

1y2
L≠ , hence the overall

di�erence of the top Yukawa running between two singlet models is almost insignificant,
as seen in Fig. 7.11. We increased the masses of singlet VLL to mL0 = 150 GeV and
mL≠ = 160 GeV for S1 and S2 models as the greatest e�ect to ⁄(2)

RGE comes from y2
M

y2
L

⁄,
and it is additive for the number of VLLs in each representation. This is also seen from the
two loop behaviour of yM throughout all the VLL multiplets. In the next leading order,
the Yukawa couplings do not decrease, an e�ect expected for yL≠ in D2 model because
negative e�ects are fully associated with gauge couplings g1 and g2. On the other hand,
the coupling of Yukawa terms is negative at two loop order, thus forcing yM to decrease
with respect to the energy scale. However, this feature is not manifested for the singlet
models, as the dominance of one loop e�ects do not allow yM to run downwards because
the self coupling e�ects of this Yukawa term become larger with respect to the number of
VLLs in a model. In an agreement with the one loop RGE results, S2 model allows larger
VLL masses compared to S1 model, while the Higgs quartic coupling is safer away from
instability region, mainly due to the e�ect of ⁄g4

1. Although the results from two loop RGE
extended the parameter space for VLL masses, we found that ⁄ changes direction around
µ ≥ 1014 GeV when mV LL > 170 GeV and eventually hits the instability region.

The top Yukawa coupling becomes even smaller in the D1 model, leading to a greater
boost for the parameter space surviving the stability constraint by ameliorating the e�ect
on the Higgs quartic coupling. This is mainly due to the fact that y2

t g4
1 e�ect is nine times

stronger for D2 model. Thus, the relatively stronger top Yukawa coupling running in D2
exerts more pressure on ⁄ up to the Planck scale. The most striking feature of two loop
corrections for the Yukawa couplings is present in the models with non-SM like charges.
The quartic and hexic Yukawa terms couple negatively in two loop and the coe�cients
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(a) S1 (b) S2

Figure 7.11: The two loop RGE running of the Yukawa and the Higgs coupling for models
with singlet vector-like leptons. We show singlet vector-like representation, (a) S1, and
(b) S2. For singlet models, we have set mL0 = 150 GeV, mL≠ = 160 GeV µ0 = mt, and
sin ◊L = 0.1.

rapidly multiply in RGE level due to large number of VLL members. As the VLLs with
exotic charges do not couple to SM leptons, their e�ect on the initial values to yL+ and
yL≠≠ is more e�ective in yM on both quadratic and quartic scale. Combined with the one
loop ≠Y 2g2

1 e�ect, yM runs downward throughout the entire spectrum in D2 as seen from
Fig. 7.12. The consequence of this is to indirectly decrease the e�ect of y2

M
y2

L
⁄ on ⁄(2),

which can be counted as an additional reason why D1 allows larger parameter space to
survive the vacuum stability condition. The two loop corrections to all doublet VLL RGEs
extend the upper bound to mV LL Æ 290 GeV. However, higher VLL masses either break
the perturbativity of the Yukawa couplings, or destabilize the vacuum, depending on the
leptonic mixing scale.

(a) D1 (b) D2

Figure 7.12: The two loop RGE running of the Yukawa and the Higgs coupling for models
with doublet vector-like leptons. We show doublet vector-like representation, (a) D1, and
(b) D2. For doublet models, we have set mL0 = 200 GeV, mL≠ = 220 GeV, mL≠≠ = 170
GeV, µ0 = mt, and sin ◊L = 0.1.

Finally, in triplet models, the absence of hypercharge terms in the T1 model uniquely
determines the di�erence in the parameter space and in the running of couplings, whereas
the Yukawa e�ects at the two loop level are similar, due to the particle content. The
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intricate interplay between coupled terms at the two loop RGE level results in the largest
mass bounds for triplets. However, with fixed VLL inputs, the Higgs quartic coupling runs
to its smallest values in triplet models as shown in Fig. 7.13. The two loop corrections
open up more space, up to mL0 < 290 GeV and mL≠ < 310 GeV compared to the one loop
results in Fig. 7.10. Thus the inclusion of two loop renormalization group equations in the
analysis has proven to improve the predictive accuracy of the model’s coupling evolution.
As demonstrated, the two loop RGE study not only refines the running of the couplings but
also extends the available parameter space by up to 20% for all six SU(2) representations.
This extension is primarily due to the introduction of more complex couplings inherent in
the two loop structure, which e�ectively capture higher-order e�ects missing in the one loop
approximation.

(a) T1 (b) T2

Figure 7.13: The two loop RGE running of the Yukawa and the Higgs coupling for models
with triplet vector-like leptons. We show triplet vector-like representation, (a) T1, and (b)
T2. For triplet models, we have set mL0 = 200 GeV, mL≠ = 220 GeV, mL+ = 170 GeV,
mL≠≠ = 170 GeV, µ0 = mt, and sin ◊L = 0.1.
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7.6 Conclusions
We have studied SM extensions with six di�erent vector-like lepton representations. Our
main focus has been to study the e�ects of new vector-like lepton fields on electroweak
vacuum stability, while also satisfying perturbative unitarity conditions for all the couplings
appearing in various representations. We concentrated on the answering the question of
whether, unlike the case where vector-like quarks are introduced, and stability requires
introduction of an additional scalar field, one can achieve stability with VLL only, and
without introducing any additional fields. If this is possible, this would be a novel feature
of the SM with VLLs.

Our analysis shows that, while VLLs can stabilize the Higgs quartic coupling up to
the Planck scale under certain conditions, significant constraints on Yukawa couplings
and VLL masses exist. Specifically, with a particular choice of Yukawa couplings to
the SM Higgs field, and given that ⁄y2

M
surpasses the large quartic terms at the RGE

level, vector-like leptons have an allowed but limited parameter space that prevents the
Higgs quartic coupling from diverging up to the Planck scale. The absence of the colour
charge and the large number of VLLs lead to unconventional behaviour, causing Yukawa
couplings to increase with the energy scale if the hypercharge is not su�ciently large. If
the scale of new physics is very high and the number of flavours nF is too small, the RG
evolutions enter the non-perturbative region prematurely before rising again. Hence we
assumed here VLLs masses of π O(TeV) scale. Allowing all lepton generations from the
SM to mix with VLLs could strengthen the gauge portal —�gi

. However, third-generation
leptons are less constrained by flavour physics experiments compared to the first and second
generations, where flavour-changing neutral currents (FCNCs) and lepton flavour violation
(LFV) processes tightly constrain any mixings for the lighter generations. In addition, even
if allowed, these mixings will be negligibly small due to the smallness of the first and second
generation lepton masses.

The allowed strength of mixing between the SM and VLLs, according to RGE solutions,
is determined by the presence of both neutral and charged VLL partners simultaneously,
specifically the coexistence of mass splitting initial conditions. We found that large mixing
is required if a model excludes both L0 and L≠. Consequently, the relative weight on ⁄(µ)
with respect to the largest Yukawa yM becomes smaller, while its initial condition starts at
a lower value. Even though singlet VLLs have a similar RGE structure, the di�erence in
hypercharge eventually leads to a wider parameter space allowed for the charged sector mL≠ .
Our findings from RGE analysis are consistent with the data, considering the minimum
bound mV LL & 110 GeV. Doublet and triplet VLL models open up more allowed parameter
space, as expected from additional terms at the RGE level, reaching around mV LL ≥ 270
GeV, while the leptonic mixing has a minimum bound sin ◊ & 0.05. We further extended the
RGE analysis to two loop corrections to check the amount of improvement to the running
couplings in all models. The interplay between the number of higher order interactions
generated an extra space for VLL masses, enlarging the maximum bound up to 20%, now
reaching 310 GeV for charged VLL. The running of the Yukawa term yM that connects
left- and right-handed part of a VLL played a major role in the two loop evolution, along
with the gauge couplings g1, g2 with the latter two becoming coupled at two loop level.
Since new leptonic fields with exotic charges do not couple to the SM leptons through
the Higgs, the upper bounds on their masses depend on perturbative unitarity conditions.
Therefore, we assume mL+,≠≠ < mt in order to keep RG evolutions manageable. Although
our renormalization analysis uses only two sets of free parameters, mV LL and sin ◊u,d

L,R
,
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further studies can modify unconventional initial conditions for exotic V LLL,R fields in
order to extend the allowed space from RGE solutions.

We also scanned the oblique parameters, ensuring that mixing constraints from the Higgs
channel are considered. Generally, the T does not constrain VLL masses at sin ◊ = 0.05;
however, the T parameter becomes restrictive with larger mixing sin ◊ = 0.1, rendering
mV LL > 600 GeV into the 3‡ region. Moreover, the overall constraint from the S parameter
relies more on hypercharge e�ects than on the mixing variance within the same multiplet,
showing less severe di�erences as sin ◊ increases. Limits from EWPO at a fixed mixing scale
are more relaxed compared to vacuum stability bounds. Additionally, the parameter space
obtained from RGE solutions does not exclude our results from the oblique parameters at
sin ◊ Æ 0.1 as there is always a solution in mV LL = [100, 300] GeV throughout RGE level.
Nevertheless, the oblique parameters rapidly deviate from the global fit for large mixings
due to their direct dependence on mass splitting within multiplets.

Future investigations may build on this study by incorporating analyses of non-
perturbative e�ects and higher-order corrections and by examining more intricate VLL
representations. Furthermore, exploring the implications of varied initial conditions and
potential new physics beyond VLLs could yield additional insights. This study enhances
our understanding of the influence of novel fermion fields on electroweak vacuum stability
and o�ers valuable guidance for the search for new particles and interactions in forthcoming
experimental endeavours.

Finally, we note that adding a scalar singlet field undoubtedly increases the allowed
mass range for VLL masses that satisfy RGE constraints (stability and perturbative
unitarity) because the extra parameters from scalar sector allow to extend the range of
VLL parameters. This approach was explored before, and, in our opinion, does not have
much di�erent or newer features than the model with vector-like quarks and an extra scalar,
because apart from overall factors in RGE level, all that is di�erent in Yukawa RGE sector
are g3 corrections terms, and these do not do not appear in scalar RGE terms.
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Chapter 8

Conclusion

In this thesis, we embarked on a comprehensive exploration of the impact of vector-like
quarks and vector-like leptons on the stability of the electroweak vacuum. The Standard
Model, while successful in explaining a vast range of phenomena, leaves us with lingering
questions, notably regarding the stability of its electroweak vacuum under sub-Planckian
scales. To address these questions, we introduced extensions to the SM in the form of
vector-like fermions—particles whose chiral structure and coupling structures di�er from
those of the SM fermions, yet still preserve the SM gauge invariance, the renormalizability
and self-consistency of the theory.

Our investigation was driven by a dual motivation: to evaluate how these additional fermions
might influence the stability of the electroweak vacuum, controlled by the renormalization
group equation (RGE) structure, and to probe whether their inclusion could satisfy the
electroweak precision observables. To this end, we imposed the recent bounds on the
extended sector. In particular, we examined the behavior of the scalar potential for di�erent
scenarios where the 125 GeV Higgs field mixes with additional scalars.

In general, vector-like fermions (VLFs) o�er two independent remedies to the vacuum
stability condition for various scalar potentials, regardless of whether scalar mixing is
present. On one hand, gauge portals of new fermions o�er direct modifications to the RG
running of the SM interactions without changing the Higgs quartic beta function itself and
delaying the occurrence of Landau poles for gauge couplings. On the other hand, Yukawa
portals o�er mixing between the SM and the new fermions, which also bring coupled e�ect
to Yukawa flavors in RG level. Additionally, the existence of the Yukawa portal, which
includes both gauge portal e�ects and stability conditions, is largely insensitive to possible
choices for connecting the Yukawa portal to the third-generation leptons, as mixed terms in
the beta functions containing both SM and BSM Yukawa are numerically small with very
little impact on the running of the parameters.

In the Higgs Singlet Model (HSM) with vector-like quarks (VLQs), we focused on the
interplay between the Higgs potential stability and the introduction of additional scalar
fields that could mitigate the destabilizing e�ects of vector-like fermions. The key
observation was that these fermions, while not directly altering the Higgs couplings at the
loop level, e�ectively contribute to the RGE running by modifying the Higgs self-couplings.
Our results demonstrated that the introduction of a singlet scalar with TeV-scale VEVs
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could stabilize the vacuum, provided that there is non-zero mixing between the SM Higgs
and the additional scalar. The parameter space for the singlet scalar mass was constrained,
with the most viable scenarios requiring the scalar mass to be at the O(TeV) scale and the
VEV to be between 1 and 4 TeV. For vector-like quarks, the vacuum stability was found
to be most restrictive when the scalar VEV was at or below 1 TeV, and the masses of
the additional fermions were constrained to the TeV range. The allowed parameter space
was found to be highly sensitive to the mass of the vector-like quarks and their mixing
with the Standard Model top quark. Specifically, models with top-like vector-like quarks
imposed stricter limits on the scalar VEV, and for smaller VEVs (around 1 TeV), many
configurations were ruled out. This illustrates the delicate balance required between the
mass of vector-like quarks, the singlet scalar and the mixing with the SM Higgs, with the
stability condition being most restrictive in scenarios involving the (X,T) doublet model.

In the Two Higgs Doublet Model (2HDM) with VLQs, we explored the e�ects of an
additional scalar doublet on vacuum stability. Our analysis showed that the enlarged
scalar sector of the 2HDM could extend the region of vacuum stability up to the Planck
scale, depending on the mass and mixing of the vector-like quarks. The most significant
contributions to vacuum instability stemmed from the interplay between the Yukawa terms
and the gauge couplings. While the gauge couplings had a relatively weaker e�ect on
the RGE evolution compared to the Yukawa interactions, they still contributed in a
multiplicative manner, making the overall e�ect of vector-like fermions highly sensitive
to their number and mass. We found that if the number of vector-like quarks was too
large or their masses too small, the RG evolution of the Higgs self-coupling would enter a
non-perturbative regime before returning to the perturbative domain. This scenario would
be highly unpredictable due to the formation of a Landau pole. Conversely, if the number
of flavors was too small and the masses of the VLQs too large, the vacuum stability would
be compromised. For example, the masses of VLQs were constrained to be less than 106

TeV to avoid destabilizing the vacuum. In terms of mixing, we showed that large mixing
angles (sin ◊L,R > 0.1) led to violations of perturbative unitarity, while smaller mixing
angles (sin ◊L,R < 0.2) were more consistent with vacuum stability. We also identified
specific regions of the parameter space where the triplet VLQ representations would lead
to an improved vacuum stability. In these models, the stability was found to improve with
increasing scalar angle tan — value, which suggested that higher-scale physics could play a
crucial role in mitigating the vacuum instability. Additionally, we determined that Type-II
2HDM models, which involve splitting the Yukawa terms between the two Higgs doublets,
generally required larger scalar masses than Type-I models to satisfy the stability conditions
up to the Planck scale.

In the case of SM extensions with vector-like leptons (VLLs), we focused on the novel
question of whether vacuum stability could be achieved without introducing additional
scalar fields. This scenario is particularly interesting, as vector-like leptons, unlike vector-
like quarks, do not couple via strong interactions. Our analysis revealed that VLLs, while
not as powerful as vector-like quarks in modifying the Higgs quartic coupling, could still
stabilize the vacuum under certain conditions. However, these models had strict constraints
on the Yukawa couplings and VLL masses. We observed that for a given VLL mass, the
allowed mixing angle (sin ◊u,d

L,R
) between the SM leptons and the VLLs must be small, with

a lower bound of approximately 0.05 for the mixing angle. Larger mixing angles led to
significant deviations in the electroweak precision observables (EWPO), particularly the T
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parameter, which placed a strict upper bound on the VLL mass when sin ◊ approaches 0.1.
The mass of the VLLs was constrained to lie between 110–310 GeV, with the most relaxed
bounds coming from doublet and triplet VLL representations.

Our analysis also showed that the presence of exotic charges in vector-like leptons did
not a�ect the SM leptons directly through the Higgs coupling, but their masses and mixing
angles were tightly constrained by perturbative unitarity conditions. The RGE analysis
of the Yukawa terms revealed that a fine balance between the masses and mixing angles
of the VLLs was essential to prevent the theory from entering a non-perturbative regime.
For singlet VLLs, this constraint led to a minimum mass bound of 110 GeV, while doublet
and triplet VLLs allowed for a slightly larger range of masses, extending up to 270 GeV.
The inclusion of higher-loop corrections further refined these bounds, enlarging the allowed
parameter space by about 20%. The two-loop corrections played a significant role in
improving the predictability of the model, especially in terms of Yukawa and gauge coupling
evolution. The presence of higher-order interactions in the RGE equations allowed for a
broader range of VLL masses that satisfied both the stability and perturbative unitarity
requirements.

In conclusion, we have demonstrated that while vector-like fermions can indeed influence
the stability of the electroweak vacuum, their e�ects vary significantly depending on their
representation and the specific extension to the Standard Model. The introduction of vector-
like quarks in the Higgs Singlet and Two Higgs Doublet Models suggests that additional
scalars, such as singlet or doublet fields, are crucial for maintaining vacuum stability,
especially when the vacuum expectation values are in the TeV range. On the other hand,
the study of vector-like leptons revealed that it is possible to stabilize the vacuum without
the need for extra scalars, although with tighter constraints on the fermion masses and
Yukawa couplings. These results provide valuable insights into the viability of new physics
models and the constraints on future experimental searches for vector-like fermions.

As a next step in the exploration of vacuum stability, future research could focus on refining
the RGE analysis by including novel initial conditions (e.g. mixing relations) to model
couplings, more precise two-loop corrections, exploring additional fermion representations,
and extending the study to non-perturbative e�ects and higher-order corrections. Such
studies will be crucial for further extending the potential implications of vector-like fermions
in the context of vacuum stability and the search for new particles beyond the Standard
Model. Additionally, there are di�erent ways in which the gauge or Yukawa portal
mechanisms can be exploited for various purposes. The gauge portal, in particular,
lends itself naturally to the search for new GUTs or SM extensions with various Higgs
representations. In fact, mild modifications to the RG running of couplings can be used to
systematically search for vacuum stability, in combination with gauge coupling unification
at or below the Planck scale. Furthermore, having control over the gauge, Yukawa, and
Higgs couplings, along with their beta functions at the Planck scale, could prove valuable
for identifying extensions of the SM that successfully connect with quantized gravity and
address cosmological problems. To study the cosmological implications of the Standard
Model (SM) in the presence of gravity, the SM Lagrangian must be coupled to a gravitational
background. This introduces modifications to the e�ective potential and the running of
couplings, especially at high energy scales, and can impact the vacuum stability. The
scalar potential receives corrections that reflect the coupling of the Higgs (or other scalar
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fields) to gravity. These corrections are typically small at low energies but become more
significant at high scales, such as near the Planck scale, where spacetime curvature can
introduce additional terms to the potential, potentially altering the vacuum structure and
stability. Quantum gravity corrections, such as those from graviton loops or modifications
to the metric, also contribute to the e�ective potential, with these e�ects being suppressed
at low energies but potentially significant at higher scales. Gravity has the most direct
impact on scalar couplings, particularly in the Higgs sector, where it modifies the e�ective
potential by introducing curvature-dependent terms. In cosmological backgrounds (e.g., an
expanding universe), these gravitational e�ects can lead to new contributions to the scalar
beta functions, influencing the running of scalar self-couplings and other scalar parameters.
While gravity generally has a smaller e�ect on Yukawa and gauge couplings at low energies,
at high energies or in curved spacetimes, gravity can introduce corrections to their beta
functions, a�ecting the running of these couplings. Overall, gravitational e�ects could
modify vacuum stability and the running of scalar, Yukawa, and gauge couplings. These
e�ects could become increasingly important at high energy scales or in regions of strong
curvature, such as near the Planck scale.
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Appendix A

RGEs for Higgs Singlet Model +
Vector-like Quarks

We give below the renormalization group equations for the models studied in the text.

A.1 Singlet U1 (T ), Y = 2/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are:
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A.2 Singlet D1 (B), Y = ≠1/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are:
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Finally the coupling constants gain additional terms due to the new fermion, for both models
U1, D1 with singlet fermions as follows:
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A.3 Doublet D2 (T, B), Y = 1/6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are:
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and the coupling constants gain additional terms due to the new fermion as follows:
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A.4 Non SM-like Doublet DX (X, T ), Y = 7/6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are:
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and the coupling constants gain additional terms due to the new fermion as follows:
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A.5 Non SM-like Doublet DY (B, Y ), Y = ≠5/6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are:
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and the coupling constants gain additional terms due to the new fermion as follows:
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A.6 Triplet TX (X, T, B), Y = 2/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are:
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and the coupling constants gain additional terms due to the new fermion as follows:
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A.7 Triplet TY (T, B, Y ), Y = ≠1/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are:
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and the coupling constants gain additional terms due to the new fermion as follows:
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Appendix B

RGEs for Two Higgs Doublet
Model + Vector-like Quarks

In the appendices below, for completeness, we give the renormalization group equations
with respect to Type-I and Type-II models studied in the text.

B.1 RGEs for 2HDM + VLQ - Type I
B.1.1 Singlet U1 (T ), Y = 2/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are

d⁄1
d ln µ2 = 1

16fi2

C

≠4⁄1

A
3g2

1
4 + 9g2

2
4

B

+ 12⁄2
1 + 4⁄2

3 + 4⁄3⁄4 + 2⁄2
4 + 2⁄2

5

+ 3g4
1

4 + 9g4
2

4 + 3g2
1g2

2
2

D

,

d⁄2
d ln µ2 = 1

16fi2

C

4⁄2

A

6y2
t + 6y2

T ≠
3g2

1
4 ≠

9g2
2

4

B

+ 12⁄2
2 + 4⁄2

3 + 4⁄3⁄4 + 2⁄2
4 + 2⁄2

5

+ 3g4
1

16 + 9g4
2

4 + 3g2
1g2

2
2 ≠ 12y4

t ≠ 24y4
T ≠ 24y2

t y2
T

D

,

d⁄3
d ln µ2 = 1

16fi2

C

2⁄3

A

6y2
t + 6y2

T + 12y2
M ≠

3g2
1

2 ≠
9g2

2
2

B

+ 4⁄2
3 + 2⁄2

4 + 2⁄2
5

+ (⁄1 + ⁄2)(6⁄3 + 2⁄4) + 3g4
1

4 + 9g4
2

4 ≠
3g2

1g2
2

2

D

,

d⁄4
d ln µ2 = 1

16fi2

C

2⁄4

A

6y2
t + 6y2

T + 12y2
M ≠

3g2
1

2 ≠
9g2

2
2

B

+ 3g2
1g2

2

+ 4⁄2
4 + 8⁄2

5 + 8⁄3⁄4 + 2⁄4(⁄1 + ⁄2)
È

,

d⁄5
d ln µ2 = 1

16fi2

C

2⁄5

A

6y2
t + 6y2

T + 12y2
M ≠

3g2
1

2 ≠
9g2

2
2

B

+ 2⁄5(⁄1 + ⁄2 + 4⁄3 + 6⁄4)] . (B.2)

B.1.2 Singlet D1 (B), Y = ≠1/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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Finally the coupling constants gain additional terms due to the new fermion, for both models
U1, D1 with singlet fermions as follows:
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B.1.3 Doublet D2 (T, B), Y = 1/6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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B.1.4 Non SM-like Doublet DX (X, T ), Y = 7/6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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B.1.5 Non SM-like Doublet DY (B, Y ), Y = ≠5/6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are:
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The coupling constants gain additional terms due to the new fermion in all doublet models
as follows
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B.1.6 Triplet TX (X, T, B), Y = 2/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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B.1.7 Triplet TY (T, B, Y ), Y = ≠1/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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The coupling constants gain additional terms due to the new fermions in both triplet models
as follows
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B.2 RGEs for 2HDM + VLQ - Type II
B.2.1 Singlet U1 (T ), Y = 2/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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B.2.2 Singlet D1 (B), Y = ≠1/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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Finally the coupling constants gain additional terms due to the new fermion, for both models
U1, D1 with singlet fermions as follows
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B.2.3 Doublet D2 (T, B), Y = 1/6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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B.2.4 Non SM-like Doublet DX (X, T ), Y = 7/6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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B.2.5 Non SM-like quark doublet DY (B, Y ), Y = ≠5/6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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The coupling constants gain additional terms due to the new fermion in all doublet models
as follows:
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B.2.6 Triplet TX (X, T, B), Y = 2/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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B.2.7 Triplet TY (T, B, Y ), Y = ≠1/3
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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The coupling constants gain additional terms due to the new fermions in both triplet models
as follows
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Appendix C

2-Loop RGEs for VLLs

The results are based on [54,220,221,294,295], with our choice of convention for the group
representation-dependent quantities as specified in Sec. 3.1.

C.1 Singlet S1 (L0), Y = 0
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGE, describing the interactions between the scalar boson and all fermions
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Finally the gauge terms gain additional coupled terms from fermions in 2-loop corrections

dg2
1

d ln µ2 = g4
1

16fi2

341
10

4

+ g4
1

(4fi4)

5199
9 g2

1 + 9g2
2 + 88

3 g2
3 ≠

17
3 y2

t ≠
3
2y2

· ≠ 3y2
L0

6
,

dg2
2

d ln µ2 = g4
2

16fi2

3
≠

19
6

4

+ g4
2

(4fi4)

5
3g2

1 + 35
3 g2

2 + 24g2
3 ≠ 3y2

t ≠
1
2y2

· ≠ 3y2
L0

6
,

dg2
3

d ln µ2 = g4
3

16fi2 (≠7)

+ g4
3

(4fi4)

511
3 g2

1 + 9g2
2 ≠ 52g2

3 ≠ 4y2
t

6
. (C.3)

159



C.2 Singlet S2 (L≠), Y = ≠1
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGE, describing the interactions between the scalar boson and all fermions:
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Finally the gauge terms gain additional coupled terms from fermions in 2-loop corrections
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C.3 Doublet D1 (L0, L≠), Y = ≠1/2
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGE, describing the interactions between the scalar boson and all fermions
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The gauge couplings gain additional terms due to the new fermions from 2-loop corrections

dg2
1

d ln µ2 = g4
1

16fi2

341
10 + 18

5

4

+ g4
1

(4fi4)

5226
9 g2

1 + 18g2
2 + 88

3 g2
3 ≠

17
3 y2

t ≠
3
2y2

· ≠ 15y2
L0 ≠ 15y2

L≠ ≠ 18y2
M

6
,

dg2
2

d ln µ2 = g4
2

16fi2

3
≠

19
6 + 7

3

4

+ g4
2

(4fi4)

5
6g2

1 + 182
3 g2

2 + 24g2
3 ≠ 3y2

t ≠
1
2y2

· ≠ 3y2
L0 ≠ 3y2

L≠ ≠ 18y2
M

6
,

dg2
3

d ln µ2 = g4
3

16fi2 (≠7)

+ g4
3

(4fi4)

511
3 g2

1 + 9g2
2 ≠ 52g2

3 ≠ 4y2
t

6
. (C.10)

163



C.4 Doublet D2 (L≠, L≠≠), Y = ≠3/2
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGE, describing the interactions between the scalar boson and all fermions
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The gauge couplings gain additional terms due to the new fermions from 2-loop corrections

dg2
1

d ln µ2 = g4
1

16fi2

341
10 + 27

5

4

+ g4
1

(4fi4)

52386
9 g2

1 + 90g2
2 + 88

3 g2
3 ≠

17
3 y2

t ≠
3
2y2

· ≠ 39y2
L≠ ≠ 39y2

L≠≠ ≠ 162y2
M

6
,

dg2
2

d ln µ2 = g4
2

16fi2

3
≠

19
6 + 7

3

4

+ g4
2

(4fi4)

5
30g2

1 + 182
3 g2

2 + 24g2
3 ≠ 3y2

t ≠
1
2y2

· ≠ 3y2
L≠ ≠ 3y2

L≠≠ ≠ 18y2
M

6
,

dg2
3

d ln µ2 = g4
3

16fi2 (≠7)

+ g4
3

(4fi4)

511
3 g2

1 + 9g2
2 ≠ 52g2

3 ≠ 4y2
t

6
. (C.14)

165



C.5 Triplet T1 (L+, L0, L≠), Y = 0
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGE, describing the interactions between the scalar boson and all fermions
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The gauge couplings gain additional terms due to the new fermions from 2-loop corrections
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C.6 Triplet T2 (L0, L≠, L≠≠), Y = ≠1
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The Higgs sector RGE, describing the interactions between the scalar boson and all fermions:
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The gauge couplings gain additional terms due to the new fermions from 2-loop corrections
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And the SM part of the 2-loop RGE for the Higgs quartic coupling in all VLL models
read [296]
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Appendix D

Passarino-Veltman Integrals

Although a more detailed discussion about Passarino-Veltman (PV) reduction appears
elsewhere [297], we give a generic one-loop tensor integral as the following

T ‹i

fl = (2fiµ)4≠D
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D1 · · ·Dfl

(D.1)

where the propagators are described by
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1 + i‘,

D2 = (p + q1)2
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2 + i‘,

D3 = (p + q1 + q2)2
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3 + i‘, (D.2)

After factoring out the i/(16fi2), scalar, vector and tensor functions are defined from the
generic one-loop tensor integral Eq. D.1:
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(2fi)DD1
,
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⁄
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[1, pµ, pµp‹ ]
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,
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3) = µ4≠D

⁄
dDp
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(D.3)

Scalar and tensor integrals are not independent. In fact, tensor forms can be decomposed
in terms of scalar functions:

Bµ = qµ

1 B1, Cµ = qµ

1 C1 + qµ

2 C2,

Bµ‹ = qµ

1 q‹

1 B11 + gµ‹B00, Cµ‹ =
2ÿ

i=1
qµ

i
q‹
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Cµ‹” =
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i
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j q”

kCijk +
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i
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i gµ‹)C00i

(D.4)

Scalar integrals or vacuum integrals play a main role for all intents and purposes throughout
this work. Furthermore, there are only four type of independent scalar(vacuum) integrals.
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The rest of the vacuum integrals carried out throughout this work are combination of the
following definitions:

A0(m2
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⁄
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1
,
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(D.5)
where ‘ = 4 ≠ D. Explicit analytical expressions of widely used PV functions are defined as

A0(m2) = m2
A

1 ≠ ln m2

µ2

B

,
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and the mass ratio parameter

yi = m2
i

m2
1
.
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It is useful to isolate the divergent part of the Passarino-Veltman integrals:

Div
Ë
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È
= �‘ m2,

Div
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where the divergent term in MS scheme is given by

�‘ = 2
‘

≠ “E + ln 4fi . (D.8)

Finally, the complementary relations to the definitions above can be summarized with the
following four scalar functions:

B2(p2, m2
1, m2
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Appendix E

Electroweak couplings of
vector-like fermions and the SM
fermions

Couplings of the SM gauge bosons to fermions are uniquely modified with new mass
eigenstates of vector-like fermions in terms of mass splitting expressions. We give the
complete list of electroweak couplings used in calculation of Peskin-Takeuchi parameters.

E.1 EW corrections from VLQs
E.1.1 Singlet U1 (T ), Y = 2/3
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E.1.2 Singlet D1 (B), Y = ≠1/3
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E.1.3 Doublet D2 (T, B), Y = 1/6
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E.1.4 Doublet DX (X, T ), Y = 7/6
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E.1.5 Doublet DY (B, Y ), Y = ≠5/6
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E.1.6 Triplet TX (X, T, B), Y = 2/3
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E.1.7 Triplet TY (T, B, Y ), Y = ≠1/3
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E.2 EW corrections from VLLs
E.2.1 Singlet S1 (L0), Y = 0
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E.2.3 Doublet D1 (L0, L≠), Y = ≠1/2
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E.2.4 Doublet D2 (L≠, L≠≠), Y = ≠3/2
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E.2.5 Triplet T1 (L+, L0, L≠), Y = 0
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E.2.6 Triplet T2 (L0, L≠, L≠≠), Y = ≠1
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