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Abstract

Deep Learning Approximation of Matrix Functions: From Feedforward Neural Networks
to Transformers

Rahul Padmanabhan

Deep Neural Networks (DNNs) have been at the forefront of Artificial Intelligence (AI)
over the last decade. Transformers, a type of DNN, have revolutionized Natural Language
Processing (NLP) through models like ChatGPT, Llama and more recently, Deepseek.
While transformers are used mostly in NLP tasks, their potential for advanced numerical
computations remains largely unexplored. This presents opportunities in areas like surrogate
modeling and raises fundamental questions about AI’s mathematical capabilities.

We investigate the use of transformers for approximating matrix functions, which are
mappings that extend scalar functions to matrices. These functions are ubiquitous
in scientific applications, from continuous-time Markov chains (matrix exponential) to
stability analysis of dynamical systems (matrix sign function). Our work makes two
main contributions. First, we prove theoretical bounds on the depth and width
requirements for ReLU DNNs to approximate the matrix exponential. Second, we use
transformers with encoded matrix data to approximate general matrix functions and
compare their performance to feedforward DNNs. Through extensive numerical experiments,
we demonstrate that the choice of matrix encoding scheme significantly impacts transformer
performance. Our results show strong accuracy in approximating the matrix sign function,
suggesting transformers’ potential for advanced mathematical computations.
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Chapter 1

Introduction

In a short span of time, Artificial Intelligence (AI) has revolutionized the way we interact
with technology. From facial recognition to autonomous vehicles, AI has found applications
in various domains. Alan Turing, in 1950, asked the question, “Can machines think?”
and the question still remains to be answered [102]. Deep learning [64] is a subfield of
AI that has found applications in various domains such as natural language processing
[52, 79, 95], computer vision [62, 63], and speech recognition [29, 75, 106]. Deep learning
models are also referred to as neural networks or Deep Neural Networks (DNNs). From a
mathematical standpoint, simplistically speaking, deep learning neural networks are high
dimensional functions that are able to learn from data. Better learning usually means that
the model is able to learn more complex patterns in the data and this is usually achieved
by increasing the number of parameters in the model. What had stopped, or rather, slowed
down deep learning models from being able to learn more complex patterns was the lack
of computational power to process large amounts of data in parallel. GPUs came to the
rescue and were able to process data in parallel and this allowed for the development of deep
learning models. Due to performance constraints, there is a need to find ways to improve
the performance of these models. Moreover, there is a need to find the optimal architecture
for a given task.
Several architectures have been developed for neural networks but the most successful
architecture has been the transformer [103]. Primarily used in Natural Language Processing
(NLP), Transformers have advanced NLP by enabling the development of Large Language
Models (LLMs) such as ChatGPT [77], Llama [101], Claude [8], Deepseek [28] and others
[3, 87]. The term GPT itself stands for Generative Pre-trained Transformer, highlighting
the importance of transformers in these advancements. Mathematically, transformers blocks
are mathematically represented as a parameterized function fθ : Rn×d → Rn×d, where n is
the number of tokens in the input sequence and d is the dimension of the token embeddings,
for a given set of parameters θ.
The original transformer model [103] for machine translation was proposed by Vaswani
(2017). Additional research and development has given rise to the more recent models like
BERT [30] by Devlin (2018), RoBERTa [67] by Liu et al. (2019), GPT-3 [21] by Brown et al.
(2020) and Llama-3 [32] by Dubey et al. (2024). Several studies have been conducted to
understand the underlying mathematical base of transformers, notably by Charton (2022)
with one of the goals of optimizing them [23]. While being revolutionary in the field of NLP,
transformers have not been explored to the same depth in the context of advanced numerical
computations. There have been studies that have explored the potential of transformers in
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this area, but the field is still in its infancy. It has been shown that transformers can perform
certain mathematical operations with high degree of accuracy such as, certain problems in
linear algebra [25], solve differential equations [60], find the greatest common divisor [24]
etc. The error analysis in [25] provided an interesting result which is referred to in Charton
(2022) (see [23]). The error analysis of the diagonalization of a matrix task by a transformer
shows that, even for answers from transformers which have been determined to be erroneous,
transformers have been shown to retain mathematical properties of solutions, such as,
generating an incorrect matrix but with the correct eigenvalues. Specifically in the case
of the diagonalization of a matrix, in the error cases, the matrix containing the eigenvectors
has unit norm within a tolerance of 1% relative error and the eigenvalues are within a
tolerance of 1% relative error. This indicates that it learns the latent structure, meaning,
very close to the correct eigenvalues and unit norm mutually orthogonal eigenvectors in the
case of the diagonalization of a matrix (see [23]).

1.1 Motivation
Our main motivation for this work is to determine the potential of transformers in surrogate
modeling. Surrogate modeling is the process of approximating a complex model with
a simpler model. High parameter models are difficult to train and are computationally
expensive to evaluate. To solve this problem, there is research being done to use transformers
in surrogate modeling. FactFormer [66] by Li et al. (2024) have shown that transformers
are a promising approach to surrogate modeling of Partial Differential Equations (PDEs).
Transformers have been successfully applied to boundary value problems. A notable
example is the Galerkin Transformer [22] developed by Cao (2021), which adapts the
attention mechanism by removing the softmax function to enable effective operator learning.

Let us begin by describing the general problem of approximating multivariate functions.
Given a function f(x), where x ∈ Rd, we aim to approximate the function f(x) from a
set of pointwise samples f(x1), . . . , f(xm). Such functions typically represent parametric
models describing physical processes, which can be conceptualized as:

Input x
(parameters) → Model

(black box) → Output f(x)
(state)

This framework has broad applications in uncertainty quantification and surrogate modeling
across scientific domains [1, 94]. For example, it enables sophisticated weather and climate
modeling by capturing complex atmospheric dynamics. In epidemiology, these models help
predict disease spread patterns and evaluate intervention strategies. The framework also
advances our understanding of subsurface flows and geological formations through detailed
hydrological modeling. Nuclear engineering relies on these computational approaches for
reactor design optimization and safety analysis. Additionally, biological systems modeling
leverages this framework to study cellular processes, protein interactions, and other complex
biological phenomena. Matrix functions play a crucial role in many of these applications,
particularly in areas requiring sophisticated numerical computations. By developing better
ways to approximate matrix functions using transformers, we can potentially improve our
ability to handle these complex parametric models more efficiently.

However, approximating such parametric models presents at least four challenges [1]. For
one, complex models are high-dimensional, x = (x1, . . . , xd), with d ≫ 1 or d = ∞ which
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brings the curse of dimensionality [13, 42]. Two, generating data is expensive, it might
depend on simulations or physical experiments. Three, the data is corrupted by (unknown)
errors, physical errors, discretization error, numerical error, etc. Four, f(x) might lie in a
Banach or Hilbert space (i.e. models may be function-space valued).

In order to address these challenges, we will use transformers to approximate the function
f(x). We will apply transformers to approximate a function f̂(x) which is a surrogate
model for the function f(x). There is a trade-off between the accuracy of the surrogate
model and the complexity of the model.

The potential of transformers in numerical computations is another motivating factor for
this work. While initially seeming suboptimal due to computing performance, we would
have to encode the input data prior to using the transformer. This brings the question
of what kind of encoding schemes are best for the transformer to use. We aim to study
the impact of different encoding schemes on the performance of the transformer. Another
motivating factor is that the core of the transformer architecture that is used today, is
very similar to what it was from the original paper [103]. While there have been several
improvements to the transformer architecture (see [56, 104]), they still require a lot of
computational power and memory. If we can understand the limitations of transformers
in tasks which are in a different domain than NLP, then in the long term, we can use this
knowledge to improve the overall architecture of transformers.

In this thesis, we will analyze functions of matrices which falls under the category of high
dimensional functions. Functions of matrices are scalar functions extended to matrices. We
restrict our attention to functions f : Cn×n → Cn×n, where n is the dimension of the matrix.
A notable example of a function of matrices is the matrix exponential, which is an extension
of the exponential function to matrices (and is the most studied per [44]). Statisticians are
likely to have come across it in the study of continuous time Markov chains, in the expression
P (t) = etQ, where P (t) is the transition probability matrix at time t andQ is the rate matrix.
Another important application of matrix functions appears in control theory, where the
matrix sign function is used to solve algebraic Riccati equations (AREs) [88] and Lyapunov
equations through the computation of stable and unstable invariant subspaces. Matrix
functions also have applications in various fields such as physics, engineering, and computer
science (see [31, 33, 93]). In this work, we analyze the matrix exponential, matrix logarithm,
matrix sign, matrix sine, and matrix cosine. We do not aim to develop a new algorithm
to approximate the five matrix functions we are analyzing because the existing algorithms
are at a high state of efficiency. We aim to use different neural network architectures
and compare their performance to the transformer with different encoding schemes. While
it is not possible for us to analyze every single network architecture and every possible
combination, we compare two architectures of basic feedforward ReLU [74] networks to the
transformer approach.

1.2 Main Contributions
This thesis provides the following two main contributions. The first contribution is a
numerical analysis of four methods to approximate the five different functions of matrices
which approximates the matrix sign function successfully. The second contribution is a
theoretical analysis of the width and depth bounds for a ReLU network to approximate the
matrix exponential function.
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Numerical Analysis of Matrix Functions using Transformers

The first contribution is a numerical analysis of four methods to approximate the five
different functions of matrices from Section 1.1 by learning from randomized data, where,
we determine that the transformer encoder-decoder with certain encodings can approximate
the matrix sign function (which is not smooth), upto two significant digits, at an accuracy
of 88.21% for 3×3 matrices and an accuracy of 82.31% for 5×5 matrices within a tolerance
of 1% relative error.

In this analysis, we first attempt to approximate five matrix functions using ReLU [74]
neural networks with two different architectures, a neural network with 3 hidden layers and
a neural network with 7 hidden layers. We then try to only use the transformer encoder
to approximate the same matrix functions. However, literature from Lee et al. (2023) (see
[65]) states that an approach with raw input data does not work well. Initial basic tests
confirmed this. To attempt to overcome this challenge, we use Fourier encodings to enhance
the performance of the transformer encoder similar to the way in which Fourier encodings
are used in multi-layer perceptrons [99]. This approach by Tancik et al. (2020) was found to
be effective for multi-layer perceptrons and helped them to learn high frequency functions
in low dimensional domains. Our final approach is to use a transformer encoder-decoder to
approximate the matrix functions using four different encoding schemes. The final approach
with the transformer encoder-decoder was able to approximate the matrix sign function as
listed in the paragraph above. It was based on the following steps. We represent floating
point numbers with a sign bit, an exponent, and a mantissa. We use four different encoding
schemes to encode the floating point numbers. Each symbol used to represent the number is
considered to be a word in our dictionary. Each word is represented by an embedding vector
also commonly referred to a word embedding. We then construct matrices with coefficents
of up to two numerical digits and generate the corresponding matrix function values and
train the transformer to approximate the function. We generate random matrices from a
normal distribution and bound their coefficents. Existing algorithms are used to compute
the corresponding matrix function which is used as the ground truth. The random matrices
and the functional result is encoded and is used to train our model.

Theoretical Analysis

Our second contribution is a theorem bounding the width and depth of a ReLU network to
approximate the matrix exponential function. The main tools used to prove the theorem
are the Taylor series expansion of the matrix exponential function and the approximation
of the product of n numbers using ReLU [74] neural networks. We find that the width of
the network scales exponentially in nM and the depth scales linearly in M and n. Our
proof of the theorem is in Section 4.3.

1.3 Thesis Outline
The thesis is structured as follows. Chapter 2 introduces the theoretical background on
matrix functions and some important properties of them. Chapter 3 contains an introduction
to transformers, the attention mechanism, and the use of transformers in the context of
mathematical computations. Chapter 4 presents our theoretical result on the width and
depth bounds for a ReLU network to approximate the matrix exponential function. Chapter
5 lists the experiments we conducted to approximate the matrix functions using shallow
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neural networks, deep neural networks, the transformer encoder with Fourier embeddings,
and the transformer encoder-decoder. Chapter 6 provides the conclusion of the thesis and
outlines possible directions for future work.

5



Chapter 2

Theoretical background on
functions of matrices

This chapter aims to introduce the reader to functions of matrices. The reader may refer to
Higham (2008) (see [44]) for more in depth details on the theory of matrix functions. We
use the notation of Higham (2008) (see [44]) in this chapter and several of the examples are
taken from the book or are adapted from the book.

2.1 Introduction to Matrix Functions

Functions of matrices, also known as matrix functions, are scalar functions extended to
matrices. Scalar functions are functions that take a scalar input and return a scalar output,
mathematically represented as f : C → C. The reader is likely to be familar with several
element-wise functions that can be applied to matrices, such as the determinant and trace.
However, our focus is on functions that are not element-wise. We want to define a function
f : Cn×n → Cn×n , but we do not want to do it element-wise. For example, consider a

matrix A ∈ Cn×n and the scalar function f(x) = 1+x
1+2x+2x2 , x ∈ C. For matrices A such

that 1 + 2A+ 2A2 is invertible, we define:

Replacing, x by A, we get
f(A) = 1 +A

1 + 2A+ 2A2 .

Let R1 = (1 +A) and R2 = (1 + 2A+ 2A2)−1.

f(A) = R1(A)R2(A) = R2(A)R1(A) = (1 +A)(1 + 2A+ 2A2)−1.

The result above is from the fact that A commutes with itself and as R1 and R2 are rational
functions. Hence, we can apply the commutative property of rational functions to matrices.
f(A) is called a matrix function. The reader familiar with Padé approximants [11] will
recognize that this is in the form of a Padé approximant and one of our definitions of
matrix functions will use polynomials to define matrix functions.

The chapter is structured as follows. We start with Section 2.2 which first introduces
the three definitions of matrix functions. Section 2.3.1 discusses the properties of matrix
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functions. Section 2.4 illustrates the Fréchet derivative. Finally, Section 2.5 presents the
five types of matrix functions that we will be analyzing in more detail.

2.2 Matrix Functions Definitions
Matrix functions are defined in three ways:

1. Jordan canonical form

2. Polynomial interpolation

3. Cauchy integral formula

We will now discuss each of these definitions in more detail. Section 2.2.1 discusses the
Jordan canonical form. Section 2.2.4 discusses the polynomial interpolation. Section 2.2.6
discusses the Cauchy integral formula.

2.2.1 Jordan Canonical Form

The Jordan canonical form is used to define matrix functions from a theoretical standpoint.
While not as numerically stable as the Schur decomposition [71], it is still a useful tool for
defining matrix functions, especially for non-diagonalizable matrices. Any square matrix
can be represented in Jordan canonical form. For example, the matrix A can be expressed
as A = ZJZ−1, where J is a Jordan matrix and Z is a non-singular matrix. If A is
diagonalizable, then Z is the matrix of eigenvectors of A, and A = ZDZ−1, which is the
eigen decomposition of A, where D is a diagonal matrix. Let λ1, λ2, . . . , λs be the distinct
eigenvalues of A. The matrix J is a block diagonal matrix with Jordan blocks on the
diagonal, defined as J = diag(J1, J2, . . . , Jp), where each Ji is a Jordan block associated
with some eigenvalue λk (k = 1, 2, . . . , s), and p is the total number of Jordan blocks. By
similarity transformation properties (refer to Appendix A.0.2), we can compute f(A) as
f(A) = Zf(J)Z−1. Thus, we have Z−1AZ = J = diag(J1, J2, . . . , Jp). However, if A is
not diagonalizable, then J is not diagonal, and we need to define f(J). We will provide a
definition for f(Jk). Assuming

Jk = Jk (λk) =

⎡⎢⎢⎢⎢⎢⎣
λk 1

λk
. . .
. . . 1

λk

⎤⎥⎥⎥⎥⎥⎦ ∈ Cmk×mk ,

f(Jk) is defined as

f(Jk) :=

⎡⎢⎢⎢⎢⎢⎣
f(λk) f ′(λk) · · · f (mk−1)(λk)

(mk−1)!

f(λk) . . . ...
. . . f ′(λk)

f(λk)

⎤⎥⎥⎥⎥⎥⎦ .

Using this definition, we can compute f(A) as

f(A) = Zf(J)Z−1 = Zdiag(f(J1), f(J2), . . . , f(Jp))Z−1.
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We formalize the Jordan canonical form in the following definition [44].

Definition 2.2.1 (Jordan Canonical Form). Let f be defined on the spectrum of A ∈ Cn×n

and let A have the Jordan canonical form:

A = ZJZ−1 = Z diag(J1, J2, . . . , Jp)Z−1.

Then
f(A) := Zf(J)Z−1 = Z diag(f(J1), f(J2), . . . , f(Jp))Z−1,

where

f(Jk) :=

⎡⎢⎢⎢⎢⎢⎣
f(λk) f ′(λk) · · · f (mk−1)(λk)

(mk−1)!

f(λk) . . . ...
. . . f ′(λk)

f(λk)

⎤⎥⎥⎥⎥⎥⎦ for k = 1, 2, . . . , p.

Example 2.2.2 (Matrix Exponential of a Non-diagonalizable Matrix). Let us take the
example of a simple 2 × 2 matrix A with the goal to compute A3. This is similar to the
example given in Higham (2008) (see [44]). In the scalar case, f(x) = x3. Let

A =
[︄
4 3
7 5

]︄
.

The eigenvalues of A can be verified to be λ1 = −1 and λ2 = 10. The eigenvectors are

v1 =
[︄

1
−3

]︄
, v2 =

[︄
3
7

]︄
.

Therefore, A = ZDZ−1 where

Z =
[︄

1 3
−3 7

]︄
, D =

[︄
−1 0
0 10

]︄
.

Now, A3 = ZD3Z−1 where

D3 =
[︄
−1 0
0 1000

]︄
.

Computing Z−1 and multiplying, we obtain

A3 =
[︄
364 273
637 455

]︄
.

We note that there are some assumptions that are made about the function f in the Jordan
canonical form:

1. f is defined on the eigenvalues of A;

2. f is differentiable on the eigenvalues of A at least m− 1 times.
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2.2.1.1 Finiteness of f(A)

We can show that f(A) is finite [45]. To do this, let us write Jk = λkI + Ek ∈ Cmk×mk .

For mk = 3 we have

Ek =

⎡⎢⎣ 0 1 0
0 0 1
0 0 0

⎤⎥⎦ , E2
k =

⎡⎢⎣ 0 0 1
0 0 0
0 0 0

⎤⎥⎦ , E3
k = 0.

Assuming f has a Taylor expansion:

f(x) = f (λk) + f ′ (λk) (x− λk) + · · · + f (j) (λk) (x− λk)j

j! + · · · .

then
f (Jk) = f (λk) I + f ′ (λk)Ek + · · · + f (mk−1) (λk)Emk−1

k

(mk − 1)!

Since Ek is nilpotent (i.e., Emk
k = 0), the series terminates after a finite number of terms.

Thus, f(Jk) is a finite matrix, and by extension, f(A) is finite.

We can verify this result with the following example.

Example 2.2.3 (Matrix Exponential of a Non-diagonalizable Matrix). Let us consider the
following non-diagonalizable matrix A and compute eA

A =
[︄
2 1
0 2

]︄
.

This matrix has a repeated eigenvalue λ = 2 but only one linearly independent eigenvector.
Its Jordan canonical form is given by

J =
[︄
2 1
0 2

]︄
, Z = I.

Therefore, A = ZJZ−1 = J . To compute eA, we need to compute eJ :

eJ =
[︄
e2 e2 · 1
0 e2

]︄
.

To verify this result, we can compute eJ directly using the series expansion:

eJ =
∞∑︂

k=0

Jk

k! .

To compute this efficiently, we observe that J2 =
[︄
4 4
0 4

]︄
, and higher powers of J follow a

similar pattern:

Jk =
[︄
2k k · 2k−1

0 2k

]︄
.
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Plugging this into the series for eJ :

eJ =
∞∑︂

k=0

1
k!

[︄
2k k · 2k−1

0 2k

]︄
.

The elements of eJ become
• (Top-left):

∑︁∞
k=0

2k

k! = e2

• (Bottom-right):
∑︁∞

k=0
2k

k! = e2

• (Top-right):
∑︁∞

k=1
k·2k−1

k! = e2

Thus
eJ =

[︄
e2 e2

0 e2

]︄
.

2.2.2 Polynomial Interpolation

Another approach to computing matrix functions is through polynomial interpolation. The
Hermite interpolation method provides a way to construct matrix functions by interpolating
the function values and their derivatives at the eigenvalues. We use the following definition
[44].

Definition 2.2.4 (Matrix Function via Hermite Interpolation). Let f be defined on the
spectrum of A ∈ Cn×n and let ψ be the minimal polynomial of A. Then f(A) := p(A),
where p is the polynomial of degree less than

s∑︂
i=1

ni = degψ

that satisfies the interpolation conditions

p(j) (λi) = f (j) (λi) , j = 0 : ni − 1, i = 1 : s

where ni is the algebraic multiplicity of the eigenvalue λi and s is the number of distinct
eigenvalues. There is a unique polynomial p(x) of minimal degree that satisfies specific
conditions, known as the Hermite interpolating polynomial.

This polynomial matches the function values f(λ) at each eigenvalue λ and, for eigenvalues
with higher multiplicity, also matches the derivatives f (k)(λ) up to m− 1. This approach is
particularly useful for non-diagonalizable matrices because it accounts for both eigenvalues
and their algebraic multiplicities.
Example 2.2.5 (Matrix Exponential of a Non-diagonalizable Matrix using Polynomial
Interpolation). For instance, consider the same non-diagonalizable matrix in the previous
section:

A =
[︄
2 1
0 2

]︄
.

The eigenvalue λ = 2 has multiplicity 2, and the minimal polynomial is ψ(x) = (x − 2)2.
To compute eA, we construct a Hermite interpolating polynomial p(x) that satisfies:

p(2) = e2, p′(2) = f ′(2) = e2.

This ensures that the matrix function p(A) captures the behavior of ex at λ = 2. Substituting
p(A) gives the same result as the Jordan canonical form method.
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2.2.3 Cauchy Integral Formula

The Cauchy integral formula provides an elegant and powerful way to define matrix
functions. We elaborate less on this definition however, the reader can refer to Higham
(2008) for more details [44].

Definition 2.2.6 (Matrix Function via Cauchy Integral Formula). For a matrix A ∈ Cn×n,
we can express a matrix function f(A) as a contour integral:

f(A) = 1
2πi

∮︂
Γ
f(z)(zI −A)−1 dz,

where Γ is a closed contour in the complex plane that encloses all eigenvalues of A, and f
is analytic inside and on Γ.

The matrix-valued function (zI−A)−1 is called the resolvent of A. It is to be noted that this
approach works for any matrix A regardless of its Jordan structure, and for any function f
that is analytic in a region containing the spectrum of A.

2.3 Properties of Matrix Functions
Matrix functions have several important properties that make them useful in applications.
The following theorem summarizes some key properties.

Theorem 2.3.1 (Higham 2008[44]). Let A ∈ Cn×n and let f be defined on the spectrum of
A. Then

1. f(A) commutes with A;

2. f(AT ) = f(A)T ;

3. f(XAX−1) = Xf(A)X−1;

4. The eigenvalues of f(A) are f(λi), where the λi are the eigenvalues of A;

5. if X commutes with A then X commutes with f(A);

6. if A = (Aij) is block triangular then F = f(A) is block triangular with the same block
structure as A, and Fii = f(Aii);

7. if A = diag(A11, A22, . . . , Amm) is block diagonal then
f(A) = diag(f(A11), f(A22), . . . , f(Amm));

8. f(Im ⊗A) = Im ⊗ f(A), where ⊗ is the Kronecker product;

9. f(A⊗ In) = f(A) ⊗ In.

Example 2.3.2 (Matrix Functions Respect Similarity Transformations). Consider the

matrix A =
[︄
1 2
0 3

]︄
and f(x) = ex. The eigenvalues of A are λ1 = 1 and λ2 = 3. By
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property (d), we know that the eigenvalues of eA must be e1 and e3. Furthermore, if we
consider a similarity transformation X such that B = XAX−1, then by property (c)

eB = eXAX−1 = XeAX−1

This shows that matrix functions respect similarity transformations, which is crucial for
numerical implementations.

Properties Similar to Scalar Functions

Matrix functions are required to have properties that are similar to the properties of scalar
functions. This approach was first proposed by Fantappie 1928 (see [36]).

The following properties are fundamental to matrix functions:

I. If f(z) = k for some scalar k ∈ C, then f(A) = kI,

II. If f(z) = z for some scalar z ∈ C, then f(A) = A,

III. If f(z) = g(z) + h(z) for some scalar functions g and h, then f(A) = g(A) + h(A),

IV. If f(z) = g(z) · h(z) for some scalar functions g and h, then f(A) = g(A)h(A),

These properties ensure that matrix functions behave consistently with their scalar
counterparts.

2.4 Fréchet Derivative
Like in the scalar case, matrix functions can be differentiated. Let U and V be Banach
spaces. In general, the Fréchet derivative is a linear mapping from U to V [44].

Definition 2.4.1 (Fréchet Derivative). The Fréchet derivative of a matrix function f :
Cn×n → Cn×n at a point X ∈ Cn×n is a linear mapping

L : Cn×n → Cn×n

E ↦→ L(X,E)

such that for all E ∈ Cn×n

∥f(X + E) − f(X) − L(X,E)∥ = o(∥E∥),

where, ∥.∥ is a given matrix norm and o(∥E∥) represents a term that goes to zero faster
than ∥E∥ as ∥E∥ → 0.1

This is denoted as the Fréchet derivative at X in the direction of E.

Proposition 2.4.2 (Uniqueness of the Fréchet Derivative). The Fréchet derivative, if exists,
is unique.

1Namely, for h : Cn×n → C, we say that h(E) = o(∥E∥) as ∥E∥ → 0 if lim
∥E∥→0

h(E)
∥E∥ = 0.
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Proof. Suppose L1 and L2 are two Fréchet derivatives of f at X. Then for all E ∈ Cn×n

∥f(X + E) − f(X) − L1(X,E)∥ = o(∥E∥),

∥f(X + E) − f(X) − L2(X,E)∥ = o(∥E∥).

Subtracting the two equations and using the triangle inequality, we get

∥L1(X,E) − L2(X,E)∥ = ∥f(X + E) − f(X) − L1(X,E) − (f(X + E) + f(X) + L2(X,E))∥,
≤ ∥f(X + E) − f(X) − L1(X,E)∥ + ∥f(X + E) − f(X) − L2(X,E)∥,
= o(∥E∥).

This implies that L1(X,E) = L2(X,E) for all E ∈ Cn×n, since the map E ↦→ L1(X,E) −

L2(X,E) is linear.

2.5 Types of Matrix Functions
In this section, we focus on the five types of matrix functions that are used in this work.

1. Matrix exponential;

2. Matrix logarithm;

3. Matrix sign;

4. Matrix sine;

5. Matrix cosine.

We will go over each of these functions in a little more detail in the following sections.
For a comprehensive treatment of the matrix exponential, we refer the reader to Higham
(2008) and Horn and Johnson (2012) (see [44, 48]). In this work, section 2.5.1 presents
a definition of the matrix exponential. Section 2.5.2 illustrates a definition of the matrix
logarithm. Section 2.5.3 contains a definition of the matrix sign. Section 2.5.4 briefly
discusses a definition of the matrix sine. Finally, section 2.5.5 provides a definition of the
matrix cosine.

2.5.1 Matrix exponential

The matrix exponential is the most common matrix function. Laguerre and Peano are
credited with the definition of the matrix exponential by its power series expansion [44].

Definition 2.5.1 (Matrix Exponential). Let A ∈ Cn×n and f(x) = ex. The power series

expansion of the matrix exponential is given by

eA =
∞∑︂

k=0

Ak

k! .
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Given that the matrix exponential is one of the most common matrix functions, there are
several methods to compute it. In 1978 (reprinted in 2003), Moler and Van Loan (see [73])
compiled “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years
later” [73] which has a self explanatory title.
More recently in Khoroshikh and Kurbatov, (2023) (see [54]), it has been determined that
the matrix exponential can also be approximated by the Laguerre series expansion

HA =
∞∑︂

n=0
Sn,τ,α,Al

α
n,τ ,

where Sn,τ,α,A are the matrix coefficients and lαn,τ represents the Laguerre functions, which
are the modified Laguerre polynomials

lαn,τ (t) =
√︄

n!
Γ(n+ α+ 1)τ

α+1
2 t

1
2 e−τt/2Lα

n(τt), t ≥ 0, n = 0, 1, . . . ,

and the generalized Laguerre polynomials are defined as

Lα
n(t) = t−αet

n! (tn+αe−t)(n), α > −1, t ≥ 0, n = 0, 1, . . . .

In the following proposition, we show that the matrix exponential is not injective. This has
been stated in Köyü (2021) (see [59]) however, we provide a proof for completeness.
Proposition 2.5.2 (Non-injectivity of the matrix exponential). The matrix exponential
function exp : Cn×n → Cn×n is not injective.

Proof. Consider the matrices

A =
[︄
0 2πi
0 0

]︄
and B =

[︄
0 0
0 0

]︄
.

Using the power series expansion

eA = I +A+ A2

2! + A3

3! + · · · ,

note that A2 = 0 (nilpotent), so

eA = I +A =
[︄
1 2πi
0 1

]︄
.

For matrix B,

eB = I +B =
[︄
1 0
0 1

]︄
= I .

Now, consider C = A+ 2πiI. Then

eC = eA · e2πiI = eA · I = eA .

We know that since e2πi = 1 (from complex analysis), then e2πiI = I. Therefore, eA = eC

but A ̸= C, showing that the matrix exponential is not injective.

This non-injectivity is related to the periodicity of the complex exponential function and
the fact that matrices do not necessarily commute.
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Applications: The matrix exponential plays a fundamental role across various scientific
disciplines. In the study of continuous-time Markov chains, it enables the computation of
transition probabilities as systems evolve over time [19, 89]. When solving linear differential
equations, the matrix exponential provides elegant solutions of the form x(t) = eAtx(0)
to systems like ẋ(t) = Ax(t) [73]. The quantum mechanics community heavily relies
on matrix exponentials to express time evolution operators [41]. In control theory, the
matrix exponential naturally emerges in the state transition matrices of linear time-invariant
systems, making it an indispensable tool for system analysis and design [43].

2.5.2 Matrix Logarithm

The matrix logarithm is the inverse operation of the matrix exponential, mapping a matrix
back to its exponent. It transforms a matrix B to A where B = eA, if such an A exists.
This section will provide a definition of the matrix logarithm and some of its properties.

Definition 2.5.3 (Matrix Logarithm). Let A ∈ Cn×n, then any matrix X such that eX = A
is called a logarithm of A.

As we have seen in the previous section, the matrix exponential is not injective, so there
are multiple logarithms for a given non singular matrix. In this thesis, we assume that A
has no eigenvalues on the negative real axis.

Theorem 2.5.4 (Gantmacher [44]). Let A ∈ Cn×n be nonsingular with the Jordan canonical
form. Then all solutions to eX = A are given by

X = ZU diag(L(j1)
1 , L

(j2)
2 , . . . , L(jp)

p )U−1Z−1,

where
L

(jk)
k = log(Jk(λk)) + 2jkπiImk

,

log(Jk(λk)) denotes with f the principal branch of the logarithm, defined by ℑ(log(z)) ∈
(−π, π], jk is an arbitrary integer, and U is an arbitrary nonsingular matrix that commutes
with J .

Without using the matrix exponential, the following theorem provides a way to compute
the matrix logarithm.

Theorem 2.5.5 (Richter [44]). For A ∈ Cn×n with no eigenvalues on R−,

log(A) =
∫︂ 1

0
(A− I)[t(A− I) + I]−1dt.

The following theorem provides a way to determine if a matrix has a real valued logarithm.
This is important because the matrix logarithm is not defined for matrices with negative
eigenvalues.

Theorem 2.5.6 (Higham [44]). Let A ∈ Rn×n be nonsingular. Then:

1. A has a real logarithm if and only if A has an even number of Jordan blocks of each
size for every negative eigenvalue.

2. If A has any negative eigenvalues, then no logarithm is real.
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Applications: In quantum information theory, the matrix logarithm is used in defining
measures such as the relative entropy [41]. In control systems, the matrix logarithm is
used to analyze system dynamics and design controllers, specifically in the discretization
of continuous-time systems [43]. More recently, it has been used in molecular simulations
where it enables the computation of properties of structural defects in silicon crystals at
positive temperatures through efficient and accurate gradients of matrix trace-logarithms
[100].

2.5.3 Matrix Sign

Let A ∈ Cn×n be a matrix with no eigenvalues on the imaginary axis. For a scalar z ∈ C,
the sign function is defined as

sign(z) =
{︄

+1 if Re(z) > 0
−1 if Re(z) < 0.

Kenney and Laub (1995) (see [53]) provide a constructive definition of the matrix sign

function as a limit of the Newton sequence.

Definition 2.5.7 (Matrix Sign - Newton Sequence). For a matrix A ∈ Cn×n with no
eigenvalues on the imaginary axis, the matrix sign function can be defined constructively as
a limit of the Newton sequence

An+1 = 1
2
(︂
An +A−1

n

)︂
, A0 = A,

sgn(A) ≡ lim
n→+∞

An.

Another definition of the matrix sign function is given in Higham (2008) (see [44]) based
on the Jordan canonical form.

Definition 2.5.8 (Matrix Sign - Jordan Canonical Form). If A = ZJZ−1 is a Jordan
canonical form arranged so that J = diag(J1, J2), where the eigenvalues of J1 ∈ Cp×p lie in
the open left half-plane and those of J2 ∈ Cq×q lie in the open right half-plane, then

sign(A) = Z

[︄
−Ip 0

0 Iq

]︄
Z−1.

Applications: The matrix sign function is employed to find solutions to algebraic Riccati
equations [88]. The matrix sign function is also used in the solution of Sylvester and
Lyapunov equations [96]. It has also been used in model reduction techniques, simplifying
complex systems while preserving essential characteristics [17].

2.5.4 Matrix Sine

The matrix sine functions extends the scalar sine function to matrices using its power series
expansion. This section will provide a definition of the matrix sine function and some of its
properties.
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Definition 2.5.9 (Matrix Sine). The matrix sine function, like its scalar version, can be
defined through its power series

sin(A) =
∞∑︂

k=0

(−1)k

(2k + 1)!A
2k+1.

Euler’s formula for the matrix sine function is given by

sin(A) = eiA − e−iA

2i .

The matrix sine function also satisfies several important properties analogous to the scalar
sine function:

1. sin(−A) = − sin(A);

2. If A is real and symmetric, then sin(A) is real and symmetric;

3. For any invertible matrix S, sin(SAS−1) = S sin(A)S−1;

4. If A is diagonal, then sin(A) commutes with A.
Alonso et al. (2017) and Higham and Kandolf (2017) provide efficient algorithms to compute
matrix trigonometric functions (see [7, 46]).

Applications: The matrix sine function is used in the solution of second-order differential
equations. This has applications in quantum mechanics where the Schrödinger equation is
a second-order differential equation which is used to describe the evolution of quantum
systems over time [18]. For example, consider the system

d2

dt2
y +A2y = 0, y(0) = y0, y′(0) = y′

0,

whose solution is given by

y(t) = cos(tA)y0 +A−1 sin(tA)y′
0.

2.5.5 Matrix Cosine

Properties of the matrix cosine function are similar to the matrix sine function.

Definition 2.5.10 (Matrix Cosine). The matrix cosine function is defined as

cos(A) =
∞∑︂

k=0

(−1)k

(2k)! A
2k.

Euler’s formula for the matrix cosine function is given by

cos(A) = eiA + e−iA

2 .

When ∥A∥ ≲ 1, cos(A) is readily approximated using a Taylor or Padé approximation [44].
Refer to Appendix A.0.3 for the notation ≲.

Applications: Similar to the matrix sine function, the matrix cosine function is used in
the solution of second-order differential equations [44].
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Chapter 3

Background on Transformers

This chapter provides a background on the transformer architecture and the mathematical
properties of the attention mechanism. In Section 3.2, we provide a brief overview of
the transformer architecture and the attention mechanism. In Section 3.2.1, we focus on
explaining the attention mechanism in detail. In Section 3.2.1.2, we provide a mathematical
representation of transformers. The goal of this chapter is to provide a foundation for how
transformers can be applied to matrix computations.

3.1 Overview
A neural network f(x; θ) is a function that maps an input x to an output y using a set of
parameters θ.

y = f(x; θ)

While this definition is simple, the complexity of the neural network comes its non-linearity
and compositional nature. Taking the case of a highly simple neural network, the neural
network learning process begins with initialization by randomly sampling parameter vector θ
from a distribution p(θ). Training then proceeds by minimizing a loss function L(y, f(x; θ))
(refer to Appendix B.0.3). Through backpropagation, gradients are computed and the
parameter vector θ is updated to θ∗. Finally, the target function f(x) is approximated by
the neural network f(x; θ∗). A basic neural network is a Feedforward Neural Network (FNN)
which is a composition of linear transformations and non-linear activation functions (refer
to Appendix B.2). Neural networks have gone through many iterations since the 1950s and
several different architectures have been proposed (see [35, 47, 61]). From Convolutional
Neural Networks (CNNs) to Recurrent Neural Networks (RNNs), each architecture has its
own strengths and weaknesses. For example, CNNs are good at processing images, RNNs
are good at processing sequences, and FNNs are good at processing arbitrary data.

The transformer architecture [103] introduced by Vaswani (2017), was a revolutionary
architecture that changed the landscape of natural language processing. This architecture
was designed to process sequences of data, such as text, in a way that was more efficient
than traditional neural networks. Prior to the transformer architecture, a noteable work in
sequence-to-sequence modeling was done by Sutskever et al. (2014) with Long Short-Term
Memory (LSTM [39]) networks (see [98]). LSTM networks are described in more detail in
the appendix (refer to B.4.1 in the appendix). Post 2017, the popularity of the transformer
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architecture was apparent by the number of new models that were released based on it,
such as BERT [30], RoBERTa [67], GPT-3 [21], and more recently, the Llama family of
models [32]. It became a household name with the release of ChatGPT [21] in 2022. It was
further popularized by the news worthy release of DeepSeek [28] which caused volatility in
the stock market in 2025.

The primary difference between transformers and other neural network architectures is the
attention mechanism which replaces the recurrent or convolutional layers used in other
architectures. This mechanism allows each element in a sequence to directly interact with
every other element, creating a representation of the relationships within the data. As a
result, transformers can capture relationships between all elements of a matrix (or sequence)
simultaneously through the attention mechanism versus traditional neural networks that
process inputs more locally. The attention mechanism which we will go into detail later
in this paper, while primarily designed for natural language processing, can be applied to
matrix computations. With appropriate design and training, transformers have been shown
to solve tasks in Computer Vision [4], Audio Processing [10, 40], and more recently, in
mathematical problems [25, 60].

Research by Charton (2021) (see [25]) has shown that transformers can learn to solve
problems in linear algebra. The error analysis in this paper has shown that transformers
can learn the spectral theorem even when the results are not exact. Taking this a step
further, we delve into determining if transformers can learn matrix functions, which can be
viewed as a high dimensional function approximation problem. We use the same encodings
method as proposed by Charton (2021) to manipulate numeric values by representing them
as encodings to generate sequences of encodings.

3.2 Transformer Architecture
The transformer architecture as introduced by Vaswani (2017) and shown in Figure 3.1
consists of several key components:

1. Self-Attention Layers: In the context of matrices, these layers enable each matrix
element to interact with all other elements, capturing global patterns and being able
to learn dependencies. We will go into more detail in Section 3.2.1.

2. Multi-Head Attention: In simplistic terms, one can think of multi-head attention as
just stacking multiple self-attention layers on top of each other. The computer scientist
or programmer may be able to see that processing the multiplication of a vector by a
matrix can be done in parallel. The intiution behind this is that, suppose we stack n
self-attention layers where each self-attention layer is a function fi : Rm×n → Rm×n

called a head. Each layer can theoretically specialize in different aspects where, one
head might focus on diagonal elements, another might track block structures, and
others could monitor eigenvalue-related patterns. While this may come across as a
very simplistic description of multi-head attention, it gives the reader an idea of how
this mechanism can be used to process matrices. More detail is provided in Section
3.2.1.1.

3. Feed-Forward Networks: In the transformer architecture, the feed-forward network
is used to introduce non-linearities to the model. It allows the model to learn complex
patterns in the data. Refer to Appendix B.2 for more detail on feed-forward networks.

19



Figure 3.1: The transformer architecture as introduced in Vaswani (2017). The model
consists of an encoder (left) and decoder (right) stack. Each encoder layer has a multi-head
self-attention mechanism followed by a position-wise feed-forward network. The decoder
includes an additional cross-attention layer that attends to the encoder’s output. Layer
normalization and residual connections are used throughout the architecture to facilitate
training and maintain gradient flow. Figure courtesy of [103]
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4. Layer Normalization: A small, yet significant variation from batch normalization
[51], layer normalization normalizes the activations within each individual data sample
instead of across a batch. This helps maintain numerical stability when dealing with
matrices of varying scales (see Appendix B.1.1 and the original paper by Ba (2016)
[9]).

5. Positional Encoding: This is most easily understood in the context of NLP where
the input is a sequence of words. It helps identify the position of the word and thereby
the relevance of the word in the sequence. For matrices, this encodes the row and
column positions, helping preserve the 2D structure of the input.

3.2.0.1 Embeddings

Before the transformer can process raw data, if needed, the input matrices must be converted
into a format suitable for the attention mechanism. This is accomplished through an
embedding process.

For a matrix A ∈ Rm×n, we define the embedding map:

ε : Rm×n → Rmn×d

where d is the embedding dimension. The embedding process consists of three main steps:

1. The input matrix A ∈ Rm×n is flattened into a vector in Rmn by concatenating its
rows or columns;

2. Each element of this flattened vector is mapped to a d-dimensional embedding vector;

3. These embedding vectors are stacked to form the final embedding matrix of dimensions
mn× d.

This embedding transformation projects the scalar matrix elements into a higher-
dimensional space where relationships can be better captured. The learned embeddings can
encode semantic information about the numerical values. The fixed dimension d provides a
consistent input format for the transformer architecture

3.2.1 Attention Mechanism

The attention mechanism is a key component of the transformer architecture which allows
the model to focus on the most relevant parts of the input. From an NLP lens and most
easily understood to a speaker of any language, suppose we represent a word as a vector,
say x. This vector x is one row of a matrix X ∈ Rn×d where n is the number of words in
the sentence and d is the dimension of the vector space. Now, given this vector x ∈ Rd,
the vector emits a key, query, and value. Keys, queries, and values are mathematically
represented as K,Q, V ∈ Rn×t where n is the number of words in the sentence and t is
the dimension of the transformed space. They are the matrices obtained by projecting
the vector x into a higher dimensional space and therefore, K = XWk, Q = XWq, and
V = XWv where Wk,Wq,Wv ∈ Rd×t are trainable parameter matrices (in the most basic
case). We will use more detailed notation in Section 3.2.1.1 to represent the dimensions of
the transformed space. We can then compute the attention scores by applying the softmax
function as shown in the equation below. The softmax function applied to the matrix makes
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it a stochastic matrix, which can be interpreted as a probability distribution. This attention
matrix is given by the formula

Attention(Q,K, V ) = softmax
(︄
QKT

√
dk

)︄
V. (1)

The scaling factor
√
dk ensures numerical stability as it prevents the dot product from

becoming too large [103].

3.2.1.1 Multi-Head Attention

To capture different types of relationships within the data, transformers use multiple
attention heads operating in parallel. Each head can focus on different aspects of the
input. Multi-head attention is computed as:

MultiHead(Q,K, V ) = Concat(head1, ...,headh)WO,

where Concat(·) denotes the concatenation operation that combines multiple matrices along
their feature dimension, producing a single matrix of dimension Rn×hdv from h matrices
of dimension Rn×dv The final projection matrix WO ∈ R(hdv)×d ensures that the output
remains in Rn×d, consistent with the input feature dimension.

Each attention head is computed as

headi = Attention(QWQ
i ,KW

K
i , V W V

i ),

where, WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv are learned parameter

matrices for the i-th head. Here dmodel represents the dimensionality of the input
embeddings.

3.2.1.2 Mathematical Representation

This section provides a mathematical representation of the attention mechanism and multi-
head attention. We omit the residual connections for brevity.

Let H ∈ N \ {0} be the number of attention heads and K ∈ N \ {0} be the number of
transformer blocks. The single-head attention and multi-head attention mechanisms can be
expressed mathematically as

Attention(X) = softmax
(︄
QKT

√
dk

)︄
V,

Attentionh(X) = softmax
(︄
QhK

T
h√

dk

)︄
Vh,

where for each head h ∈ {1, . . . ,H}

Qh = XWh,Q, Kh = XWh,K , Vh = XWh,V ,

with learned parameter matrices

Wh,Q ∈ Rdmodel×dk , Wh,K ∈ Rdmodel×dk , Wh,V ∈ Rdmodel×dv .
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The multi-head attention mechanism concatenates the outputs of all attention heads along
the feature dimension

MultiHeadAttention(H,X) = [Attention1(X) | Attention2(X) | · · · | AttentionH(X)].

The result of the multi-head attention is then projected using an output matrix Wo ∈
RHdv×dmodel :

∇X = MultiHeadAttention(H,X)Wo.
Here, ∇X represents the result of the multi-head attention projection, not the gradient of
X.
A transformer block combines attention with a feed-forward network:

TransformerBlocki(X) = X + FeedForward(LayerNorm(X + ∇X)) i ∈ 1, . . . ,K.

Finally, the complete transformer is the composition of K transformer blocks:

Transformer(X) = (TransformerBlock1 ◦TransformerBlock2 ◦ · · · ◦TransformerBlockK)(X).

3.2.1.3 Cross-Attention

Cross-attention, also known as encoder-decoder attention, is a mechanism that allows the
decoder to attend to the encoder’s output sequence. Unlike self-attention where queries,
keys, and values come from the same sequence, in cross-attention

• Queries (Q) come from the decoder’s previous layer;

• Keys (K) and Values (V) come from the encoder’s output.

An intuitive explanation of cross-attention is that it enables the decoder to focus on relevant
parts of the input sequence when generating each element of the output sequence. In
machine translation, cross-attention allows each word in the target language to be generated
while considering all words in the source language sentence. Similar to self-attention, the
cross-attention mechanism can be represented mathematically as

CrossAttention(Q,K, V ) = softmax
(︄
QKT

√
dk

)︄
V

Example 3.2.1 (Cross-Attention Example). Consider a simple sequence of three words:
“The owl hoots”. Each word is first embedded into a vector space. Let’s say we have:

“The” → [1.0, 0.2,−0.3]
“owl” → [0.4, 1.1, 0.8]

“hoots” → [−0.2, 0.9, 1.2]
The attention mechanism would compute attention scores between each pair of words. For
instance, when processing “owl”, the model might assign: high attention to “hoots” (as it’s
the verb describing the owl’s action) and medium attention to “The” (as it’s the article
modifying “owl”)
These attention scores are then used to create a weighted combination of the values,
producing a contextualized representation for each word that incorporates information from
the entire sequence.
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Figure 3.2: Cross-attention mechanism in transformer decoder. The queries come from the
decoder while keys and values come from the encoder output. Figure courtesy of [58]

3.2.1.4 Positional Encoding

Since the attention mechanism itself is position-agnostic, positional encoding is used to
provide information about the sequence order. The positional encoding is typically added
to the input embeddings before they are processed by the transformer. The standard
approach uses sine and cosine functions of different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel),

PE(pos,2i+1) = cos(pos/100002i/dmodel),

where pos is the position in the sequence, i is the dimension, and dmodel is the embedding
dimension. This encoding ensures that each position has a unique encoding and the relative
positions of tokens can be easily computed.

Example 3.2.2 (Positional Encoding Example). Returning to our “The owl hoots”
example, let’s see how positional encoding affects the representation. Suppose we use a
simplified 3-dimensional positional encoding:

PEpos=1 = [0.84, 0.54, 0.00]
PEpos=2 = [0.41,−0.71, 0.58]
PEpos=3 = [−0.41,−0.71,−0.58]

Adding these to our word embeddings:

“The” + PE1 = [1.0, 0.2,−0.3] + [0.84, 0.54, 0.00] = [1.84, 0.74,−0.30]
“owl” + PE2 = [0.4, 1.1, 0.8] + [0.41,−0.71, 0.58] = [0.81, 0.39, 1.38]

“hoots” + PE3 = [−0.2, 0.9, 1.2] + [−0.41,−0.71,−0.58] = [−0.61, 0.19, 0.62]

Now each word’s representation contains both semantic information (from the embedding)
and positional information (from the encoding). This allows the transformer to
mathematically understand that “The” comes before “owl” and “hoots” is the last word.
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3.3 Transformers in Mathematics
Since the transformer architecture is a general purpose architecture, it can be applied to
a wide range of mathematical tasks. Recent research has demonstrated that transformers
can be effectively applied to mathematical tasks, ranging from symbolic mathematics to
numerical computations [25, 60]. This application extends beyond simple arithmetic to
complex mathematical operations including linear algebra, calculus, and even theorem
proving. Existing research by Polu and Sutskever (2020) (see [84]) has shown that a
deep learning based system can contribute proofs to the math community Charton (2021)
(see [25]) showed certain problems in linear algebra can be solved using transformers.
Results from this paper show that transformers can learn to perform fundamental matrix
operations such as addition, multiplication, and transposition with high accuracy. They also
show that transformers can learn to perform more complex operations such as eigenvalue
decomposition and matrix inversion. Polu et al. (2022) (see [85]) showed that expert
iteration in the context of language modeling can solve multiple challenging problems from
high school olympiads Alfarano et al. (2023) (see [5]) showed that transformers can find
Lyapunov functions of polynomial and non-polynomial systems with high accuracy. Charton
(2024) (see [24]) showed that transformers can learn the Greatest Common Divisor (GCD)
of two numbers. Our work uses the work by Charton (2021) (see [25]) as a foundation.

Recent work by Charton (see [23, 24]) has also made progress in understanding how
transformers process mathematical information, providing insights into their internal
representations and decision-making processes. This research suggests that transformers
can learn to implement known algorithms while also discovering novel computational
approaches. The application of transformers to mathematics represents a significant step
toward automated mathematical reasoning and computation, though challenges remain in
areas such as formal proof verification and handling very large mathematical expressions.
A notable work by Alfarano et al. (2024) (see [6]) demonstrates transformers’ potential in
solving long-standing open problems in mathematics. Their work focuses on finding global
Lyapunov functions, a challenging problem in dynamical systems theory that had remained
unsolved for decades.

3.4 Limitations
Despite their remarkable success, transformer models face several important limitations.
The self-attention mechanism has quadratic computational and memory complexity with
respect to sequence length (O(n2), where n is the sequence length). This makes processing
long sequences computationally expensive and memory-intensive. Most transformer
implementations have a fixed maximum sequence length (context window) that limits the
amount of information they can process at once. This constraint can be problematic for tasks
requiring understanding of very long documents or maintaining long-term dependencies.
Sanford et al. (2024) have found that transformers are not able to represent certain
mathematical concepts. They found that transformers have a complexity that scales linearly
with the input size for tasks like triple detection (see [92]). Nogueira et al. (2021) found
that transformers have problems with basic arithmetic operations (see [76]). Nogueira et al.
also indicates that subword tokenizers and positional encodings are components of the
transformer that need improvement. Transformers require large amounts of data to train
and this is a problem for domains with limited data availability. The amount of power
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required to train a transformer is also significant [69, 82]. To attest to this, some of the
experiments in our work have taken several weeks to train. And as with other domains
of deep learning, transformer interpretability is a challenge [105]. Various approaches have
been proposed to address these limitations, such as sparse attention mechanisms to reduce
computational complexity, adaptive positional encodings, and more efficient architectures
(see [14, 56, 91, 104]). However, these challenges remain active areas of research in the field.
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Chapter 4

DNN Architecture for Matrix
Exponential

The theory behind functional approximation using neural networks has a history going back
to the 1940s [68]. Kolmogorov in the 1950s proposed a theorem that can be thought of from
a neural network perspective [57]. Kolmogorov’s superposition theorem [57] states that
any continuous function of n variables can be represented as a sum of 2n + 1 continuous
functions of one variable. More precisely, for any continuous function f : [0, 1]n → R, there
exist continuous functions Φq : R → R and constants λqp such that

f(x1, x2, . . . , xn) =
2n+1∑︂
q=1

Φq

⎛⎝ n∑︂
p=1

λqpxp

⎞⎠ .
If we were to connect it to neural network terms and theoretical aspects, it says that
any continuous function of n variables can be represented exactly through a 2-layer neural
network of width 2n+1 [34]. While it may not be the foundation of neural networks, it is an
interesting historical result that relates to the representational power of neural networks. In
the 1980s, Cybenko [27] established the Universal Approximation Theorem, demonstrating
that a single hidden layer neural network with a continuous sigmoid activation function
can approximate any continuous function on compact subsets of Rn. With AI rising in
popularity, there has been a lot of interest in understanding the theoretical bounds of
neural networks and a lot of work has been done in this area [12, 15, 34, 70]. In this work,
we focus on this specific function rather than a class of functions. The objective of this
chapter is to prove a theorem that gives us a depth and width bound of a ReLU neural
network that can approximate the matrix exponential. We outline the steps of the proof in
Section 4.1, provide the necessary definitions and theorems in Section 4.2, then prove the
theorem in Section 4.3.

4.1 Proof Overview
In this chapter, we will prove Theorem 4.3.1. We find the width and depth bounds for a
ReLU neural network that can approximate the matrix exponential up to arbitrary accuracy.
We then find the error bound for the network. The proof is divided into three steps. The
first step is to determine the value of k for the Taylor series for the matrix exponential with
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the remainder term. The second step is to find an upper bound for the remainder term.
The third step is to construct the network Φ that approximates the matrix exponential.

4.2 Preliminaries
Before proceeding with the proof, we need several key definitions and theorems. First, we
recall the definition of the matrix exponential (see [44]).

Definition 4.2.1 (Matrix Exponential). For a matrix A ∈ Cn×n, the matrix exponential
is defined as

exp(A) =
∞∑︂

k=0

Ak

k! ,

where A0 = I is the identity matrix.

We also need the following lemma about the Taylor series expansion of the matrix
exponential (see [44]).

Lemma 4.2.2 (Taylor Series with Remainder for Matrix Exponential). For any matrix
A ∈ Cn×n and any non-negative integer K,

exp(A) =
K∑︂

k=0

Ak

k! +RK(A),

where RK(A) is the remainder term given by

RK(A) = AK+1

(K + 1)! exp(tA),

for some t ∈ [0, 1].

We will also use Stirling’s approximation for factorials ([37, Appendix C.12]).

Lemma 4.2.3 (Stirling’s Approximation). For any positive integer n,

n! =
√

2πn
(︃
n

e

)︃n

exp
(︃
θ(n)
12n

)︃
,

where θ(n) is a function taking values in [0, 1].

Finally, we recall some basic properties of matrix norms that will be used in the proof (see
[48]).

Lemma 4.2.4 (Matrix Norm Properties). For matrices A,B ∈ Cn×n:

1. ∥AB∥F ≤ ∥A∥F ∥B∥F ,

2. ∥A+B∥F ≤ ∥A∥F + ∥B∥F ,

3. For any scalar c, ∥cA∥F = |c|∥A∥F .

We use the following lemma in the proof of Theorem 4.3.1. This is Lemma 7.1 from Adcock
et al. (2025) (see [2]).
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Lemma 4.2.5 (Approximate Multiplication of l Numbers by ReLU DNNs). Let 0 < δ < 1,

l ∈ N and consider constants M1, . . . ,Ml > 0 such that M =
l∏︁

i=1
Mi ≥ 1. Then there exists

a ReLU DNN χδ :
l∏︁

i=1
[−Mi,Mi] → R satisfying

sup
|xi|≤Mi

⃓⃓⃓⃓
⃓

l∏︂
i=1

xi − χ
(l)
δ (x)

⃓⃓⃓⃓
⃓ ≤ δ, where x = (xi)l

i=1,

The width and depth are bounded by

width(χ(l)
δ ) ≤ c1,1 · l,

depth(χ(l)
δ ) ≤ c1,2

(︂
1 + log(l)

⌈︂
log(lδ−1) + log(M)

⌉︂)︂
,

where M =
l∏︁

i=1
Mi, and c1,1, c1,2 are universal constants.1

We will show the formation for the entries of Ak by induction in the following lemma.

Lemma 4.2.6 (Matrix Multiplication Representation). Let A be an n × n matrix. Then,
for any k ∈ N, the entries of Ak are given by

(Ak)ij =
n∑︂

ℓ1=1

n∑︂
ℓ2=1

· · ·
n∑︂

ℓk−1=1

k∏︂
q=1

aℓq−1ℓq , (2)

where ℓ0 = i and ℓk = j.

Proof. We will prove the formula by induction.

Base case (k = 1):
When k = 1, we have A1 = A, and (A1)ij = aij . In this case, there are no summations and
the product has only one term: aℓ0ℓ1 = aij , which matches the matrix entry.

Inductive step:
Assume the formula holds for some positive integer k. We will prove it holds for k + 1.
Consider (Ak+1)ij . By definition of matrix multiplication

(Ak+1)ij = (Ak ·A)ij =
n∑︂

m=1
(Ak)im · amj . (3)

Using our inductive hypothesis for (Ak)im

(Ak+1)ij =
n∑︂

m=1

⎛⎝ n∑︂
ℓ1=1

n∑︂
ℓ2=1

· · ·
n∑︂

ℓk−1=1

k∏︂
q=1

aℓq−1ℓq

⎞⎠
im

· amj ,

=
n∑︂

m=1

n∑︂
ℓ1=1

n∑︂
ℓ2=1

· · ·
n∑︂

ℓk−1=1

⎛⎝ k∏︂
q=1

aℓq−1ℓq

⎞⎠ · amj .

1While [1, Lemma 7.1] does not explicity mention the assumption M ≥ 1, further analysis and inspection
of the proof shows that this assumption is needed.
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Now, let m = ℓk. This gives us

(Ak+1)ij =
n∑︂

ℓ1=1

n∑︂
ℓ2=1

· · ·
n∑︂

ℓk=1

k+1∏︂
q=1

aℓq−1ℓq , (4)

where ℓ0 = i and ℓk+1 = j. This matches our formula for k + 1, completing the inductive
step. By the principle of mathematical induction, the formula holds for all positive integers
k.

These definitions and theorems provide the foundation for constructing and analyzing our
neural network approximation of the matrix exponential.

4.3 DNN Architecture for Matrix Exponential
We will prove the Theorem 4.3.1 which gives us the width and depth bounds for a ReLU
neural network that can approximate the matrix exponential. We will implicity assume
that the neural networks mentioned in the section can accept inputs in the form of a matrix
and output a matrix up to reshaping the input and output matrices as vectors.

Theorem 4.3.1 (DNN Architecture for Matrix Exponential). Let n ∈ N and M ≥ 1.
Consider the matrix exponential function exp : Cn×n → Cn×n. Then, for any ϵ > 0 there
exists a ReLU network fϵ with

width(fϵ) ≤ C1 ·K · nK ,

depth(fϵ) ≤ C2

[︃
1 + ln(K)

(︃
ln(K) + ln

(︃2e
ϵ

)︃
+K (ln(n) + ln(M))

)︃]︃
,

that satisfies
sup

A∈[−M,M ]n×n

∥fϵ(A) − exp(A)∥F ≤ ϵ,

where K =
⌈︄

max
{︄

enM,
nM+ln(

√
2√

πϵ
)

ln(2) − 1
}︄⌉︄

, ∥·∥F denotes the Frobenius norm and C1, C2 >

0 are universal constants.

Proof. Refer to the auxiliary lemmas in Section 4.2. The matrix exponential can be
expressed as

exp(A) =
∞∑︂

k=0

Ak

k! .

Step 1: First, we determine the value of k for the Taylor series for the matrix exponential
with the remainder term. The Taylor series for the matrix exponential with the remainder
term is given by (see Lemma 4.2.2)

exp(A) =
K∑︂

k=0

Ak

k! + AK+1

(K + 1)! exp(tA), for some t ∈ [0, 1].

For any K ≥ 0, let RK(A) denote the remainder term

RK(A) = AK+1

(K + 1)! exp(tA), t ∈ [0, 1],
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Then, by standard matrix norm inequalities (see Lemma 4.2.4),

∥RK(A)∥F ≤ 1
(K + 1)!∥A∥K+1∥ exp(tA)∥F .

Using the definition of the Frobenius norm, for every A ∈ [−M,M ]n×n, we see that

∥A∥F =

⌜⃓⃓⎷ n∑︂
i=1

n∑︂
j=1

|aij |2,

≤
√
n2M2,

= nM.

It follows that ∥A∥K+1
F ≤ (nM)K+1 for any A ∈ [−M,M ]n×n. Therefore,

∥exp(tA)∥F =

⃦⃦⃦⃦
⃦⃦ ∞∑︂

j=0

(tA)j

j!

⃦⃦⃦⃦
⃦⃦

F

,

≤
∑︂
j≥0

tj∥A∥j
F

j! ,

= exp(t∥A∥F ),
≤ exp(∥A∥F ) (maximum value at t = 1),
≤ exp(nM).

By using Stirling’s approximation (refer to Lemma 4.2.3), we can approximate the factorial
term and obtain

∥RK(A)∥F , ≤ (nM)K+1 exp(nM)
(K + 1)! ,

= (nM)K+1 exp(nM)
√

2π · (K + 1)
1
2 · (K + 1)K+1 · e−(K+1) · exp

(︂
θ(K+1)
12(K+1)

)︂ , where θ(x) ∈ [0, 1],

≤ (enM)K+1 exp(nM)
√

2π · (K + 1)K+ 3
2 · exp

(︂
θ(K+1)
12(K+1)

)︂ ,
≤ 1√

2π

(︃ enM
K + 1

)︃K+1
exp(nM),

≤ 1√
2π

(︃1
2

)︃K+1
exp(nM), (5)

where, in the last step, we assumed that K ≥ 2enM − 1. Now we find an upper bound for
the remainder term.

Step 2: For a given η > 0, we need to find the value of K such that

∥RK(A)∥F ≤ η.

Using the upper bound from equation (5)

1√
2π

(︃1
2

)︃K+1
exp(nM) ≤ η,
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which is equivalent to
η
√

2π
exp(nM) ≥

(︃1
2

)︃K+1
.

Taking the natural logarithm yields

(K + 1) ln
(︃1

2

)︃
≤ ln

(︄
η
√

2π
exp(nM)

)︄

Solving for K, we obtain

K ≥
ln
(︂

exp(nM)
η

√
2π

)︂
ln (2) − 1.

It follows that ⃦⃦⃦⃦
⃦⃦exp(A) −

K∑︂
j=0

Aj

j!

⃦⃦⃦⃦
⃦⃦

F

≤ η,

provided that

K ≥ max

⎧⎨⎩enM,
ln
(︂

exp(nM)√
2πη

)︂
ln(2) − 1

⎫⎬⎭ ,
which simplifies to

K ≥ max

⎧⎨⎩enM,
nM + ln

(︂
1√
2πη

)︂
ln(2) − 1

⎫⎬⎭ . (4.2)

Step 3: We now construct the network Φ that approximates the matrix exponential.
Observe that the choice η = ϵ

2 guarantees ∥R(A)∥F ≤ ϵ
2 . Hence, we construct Φ such

that ⃦⃦⃦⃦
⃦⃦Φ(A) −

K∑︂
j=0

Aj

j!

⃦⃦⃦⃦
⃦⃦

F

≤ ϵ

2 .

In fact, since we have the value of K as a function of the target remainder bound η = ϵ
2 ,

using the triangle inequality, this would imply that

∥Φ(A) − exp(A)∥F ≤

⃦⃦⃦⃦
⃦⃦Φ(A) −

K∑︂
j=0

Aj

j!

⃦⃦⃦⃦
⃦⃦

F

+ ∥R(A)∥F ≤ ϵ

2 + ϵ

2 = ϵ.

Now, to construct the network P(k) that approximates the matrix exponential, i.e.,
∑︁K

j=0
Aj

j! ,
we will use the Lemma 4.2.6 from Section 4.2, namely,

(Ak)ij =
n∑︂

ℓ1=1

n∑︂
ℓ2=1

· · ·
n∑︂

ℓk−1=1

k∏︂
q=1

aℓq−1ℓq where ℓ0 = i, ℓk = j.

Using Lemma 4.2.5 from Section 4.2, we can construct a ReLU network P(k) : Rn2 → Rn2

such that
P(k)(A) ≈ Ak ∀A ∈ [−M,M ]n×n.
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This network is defined as

P(k)(A)ij =
n∑︂

ℓ1=1
· · ·

n∑︂
ℓk−1=1

χ
(k)
δ

(︂
(aℓq−1,ℓq )k

q=1

)︂
.

This is simply the parallelization of nk−1 networks χ(k), whose outputs are summed up with
a final linear layer of 1’s. So from Lemma 4.2.5, we have

width
(︂
P(k)

)︂
= nk−1 · width

(︂
χ(k)

)︂
≤ Cnk−1k,

depth
(︂
P(k)

)︂
= depth

(︂
χ(k)

)︂
+ 2 ≤ C ′(1 + log(k)[log(kδ−1) + log(Mk)]),

where C and C ′ are universal constants C,C ′ ≥ 1 .
Therefore, we define Φ as

Φ(A) =
K∑︂

j=0

1
j!P

(j)(A).

Now, for any A ∈ [−M,M ]n×n, we have the error bound⃦⃦⃦⃦
⃦⃦Φ(A) −

K∑︂
j=0

Aj

j!

⃦⃦⃦⃦
⃦⃦

F

≤
K∑︂

j=0

1
j!

⃦⃦⃦
P(j)(A) −Aj

⃦⃦⃦
F
,

=
K∑︂

j=0

1
j!

⌜⃓⃓⃓
⎷ n∑︂

s=1

n∑︂
t=1

⃓⃓⃓⃓
⃓⃓ n∑︂
ℓ1=1

· · ·
n∑︂

ℓj−1=1

⎛⎝(︃χ(k)
δ

(︂
aℓq−1,ℓq

)︂k

q=1

)︃
−

j∏︂
q=1

aℓq−1,ℓq

⎞⎠⃓⃓⃓⃓⃓⃓
2

,

≤
K∑︂

j=0

1
j!

⌜⃓⃓⃓
⎷ n∑︂

s=1

n∑︂
t=1

⎛⎝ n∑︂
ℓ1=1

· · ·
n∑︂

ℓj−1=1

⎛⎝(︃χ(k)
δ

(︂
aℓq−1,ℓq

)︂k

q=1

)︃
−

j∏︂
q=1

aℓq−1,ℓq

⎞⎠⎞⎠2

,

(by the Cauchy-Schwarz inequality),

≤
K∑︂

j=0

1
j!

⌜⃓⃓⎷ n∑︂
s=1

n∑︂
t=1

nj−1
n∑︂

ℓ1=1
· · ·

n∑︂
ℓj−1=1

δ2 ,

=
K∑︂

j=0

1
j!

√
n2 · nj−1 · nj−1 · δ2 ,

= δ
K∑︂

j=0

nj

j! ,

≤ δen.

Therefore, in order to bound the last term by ϵ
2 , we let

δ = ϵ

2en
.

Recall that K ≥ max
{︃

enM,
nM+ln( 1√

2πη
)

ln(2) − 1
}︃

. Substituting η = ϵ
2 into the expression, we

get

K ≥ max

⎧⎨⎩enM,
nM + ln( 1√

2πϵ
)

ln (2) − 1

⎫⎬⎭ .
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We pick the ceilng of the expression, i.e., K =
⌈︄

max
{︄

enM,
nM+ln(

√
2√

πϵ
)

ln(2) − 1
}︄⌉︄

.

So the final width and depth bounds are:

width(Φ(A)) ≤
K∑︂

j=0
width(P(j)) ≤

K∑︂
j=0

Ĉ1n
j−1j,

≤ Ĉ1 ·K ·
K∑︂

j=1
nj−1,

= Ĉ1 ·K · n
K − 1
n− 1 ,

≤ D ·K · nK .

Then let C1 = D. So, we have a power of K in the width bound.

Now, for the depth bound, we have:

depth(Φ(A)) ≤ depth(P(K)) + 2

≤ C ′
[︂
1 + ln(K)(ln(K · δ−1) + ln(MK))

]︂
+ 2

≤ C ′
[︄
1 + ln(K)

(︄
ln
(︄
K · 2enK

ϵ

)︄
+ ln(MK)

)︄]︄

= C ′
[︃
1 + ln(K)

(︃
ln(K) + ln

(︃2e
ϵ

)︃
+K ln(n) +K ln(M)

)︃]︃
= C ′

[︃
1 + ln(K)

(︃
ln(K) + ln

(︃2e
ϵ

)︃
+K (ln(n) + ln(M))

)︃]︃
These bounds are expressed purely in terms of ϵ, n, and M . Finally, we let C1 = D and
C2 = C ′ to get the final width and depth bounds.

4.4 Discussion
Theorem 4.3.1 shows that the matrix exponential can be approximated with an arbitrary
accuracy by a sufficiently wide and deep ReLU neural network. The proof of the
theorem is based on an explicit construction of a network realizing an approximate
Taylor expansion of the matrix exponential of order K. Up to logarithmic factors,
the Taylor expansion order K scales like nM . So, the width scales like K · nK ≈
Mn · nnM . Our width bound is hence exponential in nM . However, the depth scales
like ln(K)

(︂
ln(K) + ln

(︂
2e
ϵ

)︂
+K (ln(n) + ln(M))

)︂
. So, we have

depth ≈ K ln(K) · (logarithmic factors),
≈ Mn · (logarithmic factors).

So, up to log factors, the depth scales linearly in M and n. Our proof strategy can probably
be optimized and this could lead to improved width and depth bounds. Two possible
optimizations are the choice of K and the construction of a network to approximate the
matrix power Ak (needed for the Taylor expansion), which could be done in a recursive
manner.
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Chapter 5

Numerical Experiments

This chapter presents our experiments to approximate the five matrix functions listed
in Section 2.5 using different neural network architectures. Section 5.2 explains how to
interpret the experimental results, followed by Section 5.3 which describes our experimental
setup and methodology. Our investigation progresses through several architectural
approaches: a neural network with three hidden layers (Section 5.3.1), a deeper network
with seven hidden layers (Section 5.3.2), and transformer-based architectures—first with
Fourier embeddings (Section 5.3.4), and then with an encoder-decoder using four different
encodings (Section 5.3.5). The latter section contains one of the two main contributions of
this thesis.

5.1 Overview
Our goal is to use the transformer architecture to approximate matrix functions. While
existing algorithms for matrix function approximation are already efficient [26, 44, 50, 86],
our approach is to use the transformer architecture to approximate matrix functions to
understand the capabilities of the transformer architecture and the limitations of it. Before
we take on the task of approximating matrix functions using transformers, we first ask
ourselves the following questions:

1. Can a feedforward neural network be used to approximate matrix functions?

2. What neural network architecture is best suited for this task?

3. Can we just feed the matrix into the transformer without embeddings and use the
transformer to approximate the matrix function?

We attempt to answer these questions by conducting experiments with different neural
network architectures and encodings. Observe that a matrix function f can be thought of as
a function with n×n parameters (by the reshaping of the matrix). One may then reformulate
the problem as a high-dimensional vector valued function approximation problem [1]. Our
experiments are designed by varying the number of training samples, the DNN architecture,
and the encoding.
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5.2 Understanding the Results
We use similar visualizations as mentioned in Adcock et al. (2022) (see Appendix A.1 in this
work or [1, Appendix A.1.3]). Our experimental results are visualized through plots with
logarithmic scales on both axes. The x-axis displays training sample sizes ranging from 25

to 218 samples for experiments detailed in Sections 5.3.1, 5.3.2, and 5.3.4, while the y-axis
shows the relative error computed using the Frobenius norm. Shaded regions in these plots
represent the dispersion and variability of the error measurements across different trials.
In analyzing these visualizations, several key indicators help assess model performance.
Strong performance manifests as relative errors below 10−2 (1%) coupled with consistent
downward trends as the sample size increases. The stability of predictions can be gauged
by the width of the shaded regions, with narrower bands, especially at larger sample sizes,
indicating more reliable results. A gradual flattening of the error curve may suggest that
additional training data yields diminishing returns.

Conversely, relative errors exceeding 10−1 (10%) signal suboptimal performance. Other
concerning patterns include error trends that remain flat or exhibit inconsistency despite
increased training data, as well as wide shaded regions that indicate high variability in
the model’s predictions. These characteristics help identify limitations in the model’s
learning capacity or potential issues in the training process. Due to the high computational
cost of training the models, we ran different models on different GPUs. We used several
machines which had Nvidia 3080, 4090, and A100 GPUs, however, the computation was
not parallelized across the GPUs.

5.3 Experiments
With the goal of approximating the five matrix functions listed in Section 2.5, we use four
different types of neural network architectures.

• A relatively shallow neural network1;

• A deeper neural network2;

• A transformer encoder with the Fourier Transform by Tancik et al. (2020);

• A transformer encoder-decoder with encodings as listed in Table 5.1.

The following sections detail the configuration of each of the neural network architectures,
the parameters of the experiments, the training and testing data, and the results of the
experiments.

5.3.1 Shallow Neural Network

To begin our investigation, we first explored whether traditional neural network
architectures could effectively approximate the five matrix functions from Section 2.5.
The following is the configuration for the shallow neural network:

• Input layer: Accepts flattened matrices of varying dimensions (1 × 1 to 8 × 8)
1A neural network with three hidden layers
2A neural network with seven hidden layers

36



• Hidden layers: Three layers with sizes 128, 256, and 128 neurons respectively

• Output layer: Matches input dimension to reconstruct the transformed matrix

• Activation functions: ReLU for hidden layers, linear activation for output layer

• Optimizer: Adam [55] with learning rate 1 × 10−3

• Batch size: 128

• Training epochs: 100

5.3.1.1 Training and Testing Data

We train 14 × 5 × 8 = 560 models. 14 training set sizes ranging from 25 to 218 samples and
for each of the five matrix functions and each of the eight matrix dimensions. We use a test
set of 215 samples in all cases. The training and testing data is generated by sampling the
matrix coefficients from a uniform distribution with coefficients in [−1, 1].

5.3.1.2 Results

The results for the shallow neural network configuration are shown in Figures 5.1 through
5.8. These figures illustrate the performance across different matrix dimensions from 1 × 1
to 8×8 matrices. We see that the performance of the shallow neural network is not good for
any of the matrix dimensions over the trivial case of 1 × 1 matrix. Note that the variance
of the sign function is very high, which is expected as the sign function is not smooth. The
sign function has the highest relative error of all the matrix functions in most cases with
the exception of the 1 × 1 matrix.
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Figure 5.1: Shallow neural network results for 1 × 1 matrices

Figure 5.2: Shallow neural network results for 2 × 2 matrices

38



Figure 5.3: Shallow neural network results for 3 × 3 matrices

Figure 5.4: Shallow neural network results for 4 × 4 matrices
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Figure 5.5: Shallow neural network results for 5 × 5 matrices

Figure 5.6: Shallow neural network results for 6 × 6 matrices
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Figure 5.7: Shallow neural network results for 7 × 7 matrices

Figure 5.8: Shallow neural network results for 8 × 8 matrices
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5.3.2 Deeper Neural Network

The following is the configuration for the deeper neural network:

• Input layer: Accepts flattened matrices of varying dimensions (1 × 1 to 8 × 8)

• Hidden layers: Seven layers with sizes 128, 256, 512, 1024, 512, 256, and 128 neurons
respectively

• Output layer: Matches input dimension to reconstruct the transformed matrix

• Activation functions: ReLU for hidden layers, linear activation for output layer

• Optimizer: Adam[55] with learning rate 1 × 10−3

• Batch size: 128

• Training epochs: 100

• Dropout rate: 0.2

5.3.2.1 Training and Testing Data

Similar to the shallow neural network in Section 5.3.1, we train 14 × 5 × 8 = 560 models. 14
training set sizes ranging from 25 to 218 samples and for each of the five matrix functions
and each of the eight matrix dimensions. We use a test set of 215 samples in all cases. The
training and testing data is generated by sampling the matrix coefficients from a uniform
distribution with coefficients in [−1, 1].

5.3.2.2 Results

The results for the deeper neural network configuration are shown in Figures 5.9 through
5.16. These figures illustrate the performance across different matrix dimensions from 1 × 1
to 8 × 8 matrices. In general, this configuration performs worse than the shallow neural
network configuration for all the matrix dimensions. This is likely due to the fact that the
deeper neural network has more parameters to learn and it is more difficult to train for the
same number of epochs [16, 97].
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Figure 5.9: Deeper neural network results for 1 × 1 matrices

Figure 5.10: Deeper neural network results for 2 × 2 matrices
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Figure 5.11: Deeper neural network results for 3 × 3 matrices

Figure 5.12: Deeper neural network results for 4 × 4 matrices
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Figure 5.13: Deeper neural network results for 5 × 5 matrices

Figure 5.14: Deeper neural network results for 6 × 6 matrices
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Figure 5.15: Deeper neural network results for 7 × 7 matrices

Figure 5.16: Deeper neural network results for 8 × 8 matrices
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5.3.3 Transformer Encoder with Fourier Transform

In this experiment, we investigated the ability of a Transformer encoder architecture with
Fourier feature encodings to approximate the matrix functions listed in Section 2.5. We
conducted an initial experiment to determine if the matrix without encodings could be fed
into the transformer encoder and to train it to approximate the matrix function. However,
the results were not promising and it verified the results of Lee et al. (2023) which states that
traditional training data is not optimal for the transformer in mathematical tasks. In order
to overcome this issue, we will use the Fourier Transform to encode the matrix coefficients.
Tancik et al. (2020) have shown that, using the Fourier transform in the case of a multi-
layer perceptron (MLP) can be used to learn high frequency functions in low-dimensional
domains (see [99]). We aim to see if this also holds for the transformer architecture. In this
work, we will use the Fourier feature mappings [99] to attempt to improve the performance
of the transformer architecture.

The Fourier feature mapping configuration enables learning of high-frequency functions in
low-dimensional domains. The approach maps input x to a higher-dimensional space using:

γ(x) = [cos(2πBx), sin(2πBx)]

where B is a matrix with entries sampled from N (0, σ2) and σ controls the frequency range

of the embedding. This approach has been shown to provide several benefits including
improved ability to represent high-frequency details and enables faster training with better
generalization. In this experiment, we have tested large transformer models, the largest
being a 16 layer transformer model with 64 heads. We have also increased the number of
epochs to 600 (compared to 100 in the other experiments). This was done in order to ensure
that the model has enough time to learn how to approximate the desired matrix function.
We vary the number of transformer layers and the number of attention heads based on
the matrix dimension d. This experiment was computationally heavy and took almost a
month to train on a single Nvidia 3080 GPU. Due to the high computational cost, we have
evaluated the model on matrices of dimension 3 × 3 and 5 × 5 only.

5.3.4 Transformer Encoder with Fourier Transform

The following is the configuration for the transformer encoder with Fourier Transform:

• Input dimension: d2 where d is the matrix dimension

• Number of Fourier features: 3d2

• Model dimension: 6d2

• Number of attention heads: d2

• Number of transformer layers: Variable (2, 4, 8 and 16 layers tested)

• Activation functions: ReLU [74] for feed-forward networks

• Optimizer: Adam [55] with learning rate 1 × 10−3

• Batch size: 64

• Training epochs: 600
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5.3.4.1 Training and Testing Data

The training and testing data is generated by sampling the matrix coefficients from a
uniform distribution with coefficients in [−1, 1]. The three matrix dimensions that we
have tested are 3 × 3, 5 × 5, and 8 × 8. We train 14 × 5 × 4 × 3 = 840 models. 14 training
set sizes ranging from 25 to 218 samples for each of the five matrix functions, for each of the
four different transformer encoder configurations and for each of the three different matrix
dimensions. We use a test set of 215 samples.

5.3.4.2 Results for 3 × 3 matrices

The results of the experiments with the Fourier feature mappings using different numbers of
transformer layers are shown in Figures 5.17, 5.18, 5.19, and 5.20. These figures demonstrate
how the number of transformer layers affects the performance on 3×3 matrices. We observe
poor performance in terms of relative error. The shaded plots show that there is not much
success in the model learning the matrix function. The cosine function performs the best,
but it is still not able to learn the function to a high degree of accuracy. The performance
marginally improves with the number of transformer layers and the number of attention
heads. While the performance is poor, we observe that the matrix cosine function performs
better than on the deeper neural network however, it is still not able to learn the function
to a high degree of accuracy. However, the shallow neural network still performs better on
an average than the transformer encoder with Fourier Transform. We note that the matrix
sign function is one of the worst performing matrix functions.

Figure 5.17: Performance of transformer with 2 layers using Fourier features on 3×3 matrices
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Figure 5.18: Performance of transformer with 4 layers using Fourier features on 3×3 matrices

Figure 5.19: Performance of transformer with 8 layers using Fourier features on 3×3 matrices
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Figure 5.20: Performance of transformer with 16 layers using Fourier features on 3 × 3
matrices

5.3.4.3 Results for 5 × 5 matrices

The results of the experiments with the Fourier feature mappings using different numbers of
transformer layers are shown in Figures 5.21, 5.22, 5.23, and 5.24. These figures demonstrate
how the number of transformer layers affects the performance on 5 × 5 matrices. The
performance is worse than the 3 × 3 matrices. We note that the matrix sign function is one
of the worst performing matrix functions again.
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Figure 5.21: Performance of transformer with 2 layers using Fourier features on 5×5 matrices

Figure 5.22: Performance of transformer with 4 layers using Fourier features on 5×5 matrices
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Figure 5.23: Performance of transformer with 8 layers using Fourier features on 5×5 matrices

Figure 5.24: Performance of transformer with 16 layers using Fourier features on 5 × 5
matrices
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5.3.4.4 Results for 8 × 8 matrices

The results of the experiments with the Fourier feature mappings using different numbers of
transformer layers are shown in Figures 5.25, 5.26, 5.27, and 5.28. These figures demonstrate
how the number of transformer layers affects the performance on 8 × 8 matrices. The
performance is worse than the 3 × 3 and 5 × 5 matrices. The high dimensionality of the
8×8 matrices makes it difficult for the transformer encoder with Fourier Transform to learn
the matrix function. We note that the matrix sign function is one of the worst performing
matrix functions again. The model is unable to learn any of the matrix functions to a high
degree of accuracy.

Figure 5.25: Performance of transformer with 2 layers using Fourier features on 8×8 matrices
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Figure 5.26: Performance of transformer with 4 layers using Fourier features on 8×8 matrices

Figure 5.27: Performance of transformer with 8 layers using Fourier features on 8×8 matrices
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Figure 5.28: Performance of transformer with 16 layers using Fourier features on 8 × 8
matrices

5.3.5 Transformer Encoder-Decoder with Encodings

This section contains the results for the transformer encoder-decoder with encodings for
3×3 and 5×5 matrices. We use a transformer encoder-decoder with 8 layers of the encoder
and 1 of the decoder with 8 heads of attention in each layer.

5.3.5.1 Encoding Scheme

The encoding scheme used affects the performance of the transformer architecture. Evidence
of this is shown by Nogueira et al. (2021) (see [76]) where they have conducted experiments
to show that the encoding scheme used in the transformer architecture significantly changes
the answer to the question “Can transformers add five digit numbers?”. The results from
this paper, show that the model fails to learn addition of five-digit numbers when using
subwords (e.g., “32”), and it struggles to learn with character-level representations (e.g., “3
2”). By introducing position tokens (e.g., “3 10e1 2”), the model learns to accurately add
and subtract numbers up to 60 digits. The primary paper used as a reference for this work,
Charton (2021) (see [25]), has shown that different encoding schemes produce varied results
in estimating the answer to certain problems in linear algebra using transformers.

In this work, we will use the encoding scheme proposed by Charton (2021) (see [25]) for
the transformer architecture. This has proven to be effective for problems in linear algebra
[25].

Any floating point number can be encoded using the following scheme [25]:

For x ∈ R, x ≈ s ·m · 10e, (s,m, e) ∈ {−1, 1} × {100, . . . , 999} × Z
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Based on this representation, we can encode the matrix coefficients into a sequence of tokens.
We take four different encodings for the matrix coefficients as shown in Table 5.1.

Embedding 3.14 −6.02 × 1023 Tokens / coefficient Vocabulary Size

P10 [+, 3, 1, 4, E-2] [−, 6, 0, 2, E21] 5 210
P1000 [+, 314, E-2] [−, 602, E21] 3 1100
B1999 [314, E-2] [−602, E21] 2 2000
FP15 [ FP314/-2] [ FP-602/21] 1 30000

Table 5.1: Four encodings for matrix coefficients[25].

5.3.5.2 Training and Testing Data

All matrices have been generated using a gaussian distribution over the interval [−5, 5].
The matrices evaluated are of dimensions 3 × 3 and 5 × 5. We use the L1 norm (see
Appendix D.2.1) to measure the error between the predicted and target matrices. Since
attention to Rn×d does not take ordering into consideration, we encode the position of aij

in the embedding as V i and V j, which denote the encoded row and column index of ai,j ,
respectively.

5.3.5.3 Configuration

The transformer architecture used in our experiments consists of an encoder with 8 layers
and 8 attention heads, paired with a single-layer decoder also using 8 attention heads. This
type of shallow decoder architecture was also used for experiments in Charton (2021) (see
[25]) which yielded results with high accuracy. Both the encoder and decoder utilize an
embedding dimension of 512. Shared input/output embeddings (based on Table 5.1) are
used across the encoder and decoder. From a performance perspective, Automatic Mixed
Precision (AMP) dynamically adjusts the precision of computations, using lower-precision
floating-point formats (e.g., fp16) where possible to improve performance while maintaining
numerical stability. To improve training efficiency and memory utilization, we implemented
mixed precision training (fp16) with AMP level 2 and applied gradient clipping [80] with
a norm threshold of 5.0. As transformers are sensitive to the learning rate [67, 103], for
training, we used the Adam [55] optimizer with a warmup schedule spanning 10,000 updates
and a peak learning rate of 0.0001. The model was trained for 100 epochs, with each epoch
processing 300,000 samples. We used a training batch size of 64 and an evaluation batch
size of 128.
Our experimental setup focused on matrices of dimensions 3 × 3 and 5 × 5, with coefficients
generated from a Gaussian distribution bounded within [−5, 5]. The evaluation dataset
comprised 10,000 samples. For assessing model accuracy, we primarily used a float tolerance
of 0.05 (5%), with additional evaluations at stricter tolerances of 0.02 (2%), 0.01 (1%) and
0.005 (0.5%) to gauge precision. The training infrastructure utilized a single GPU setup
with 10 worker processes dedicated to data loading, ensuring efficient throughput during
training.
We forked the code from the GitHub repository github.com/facebookresearch/LAWT and
modified it to suit our needs. Our code was written in PyTorch [81] and the code can be
found in the GitHub repository github.com/rahul3/LAWT.
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5.3.5.4 Results for 3 × 3 matrices

For 3 × 3 matrices, we conducted a comprehensive evaluation across different matrix
functions and encoding schemes, with results shown in Table 5.2.

Operation Encoding Accuracy
tol=0.05 tol=0.02 tol=0.01 tol=0.005

Exponential P10 93.63% 34.42% 4.15% 0.12%
Logarithm P10 91.88% 84.82% 71.72% 46.19%
Sign P10 96.73% 91.87% 76.90% 44.29%
Sine P10 40.92% 11.21% 0.57% 0.00%
Cosine P10 10.32% 2.24% 0.05% 0.00%
Exponential P1000 87.58% 37.95% 10.30% 1.17%
Logarithm P1000 92.89% 86.62% 74.51% 46.37%
Sign P1000 97.52% 95.24% 88.21% 65.57%
Sine P1000 8.38% 5.94% 1.57% 0.16%
Cosine P1000 10.64% 4.62% 0.43% 0.01%
Exponential FP15 0.00% 0.00% 0.00% 0.00%
Logarithm FP15 0.00% 0.00% 0.00% 0.00%
Sign FP15 96.33% 92.42% 86.90% 66.72%
Sine FP15 0.00% 0.00% 0.00% 0.00%
Cosine FP15 0.00% 0.00% 0.00% 0.00%
Exponential B1999 98.52% 74.73% 28.14% 3.11%
Logarithm B1999 92.62% 79.96% 56.95% 22.05%
Sign B1999 93.77% 85.45% 62.39% 29.18%
Sine B1999 0.00% 0.00% 0.00% 0.00%
Cosine B1999 0.04% 0.00% 0.00% 0.00%

Table 5.2: Accuracy results for different matrix functions and encodings on 3×3 matrices
across various error tolerances.

The results demonstrate varying performance across different encoding schemes and matrix
functions. The results in Table 5.2 highlight the varying effectiveness of different encoding
schemes for approximating matrix functions using transformers. The sign function exhibits
the highest overall accuracy across all encodings, The sign function exhibits the highest
overall accuracy across all encodings, with the P1000 and FP15 encodings achieving over
92% accuracy at tol = 0.02, and maintaining strong performance at stricter tolerances,
notably over 86% at tol = 0.01. In contrast, the exponential function’s accuracy drops
sharply as tolerance tightens, with P10, P1000 and B1999 encodings performing better
than FP15. The B1999 encoding performs better than P10 and P1000 at tol = 0.02. The
FP15 encoding fails completely for the exponential, logarithm, sine, and cosine functions,
indicating poor numerical stability in this format. The B1999 encoding, while effective for
exponential at tol = 0.05, degrades significantly for stricter tolerances. sine and cosine
functions generally perform poorly, with accuracies close to zero. These results validate the
importance of choosing an appropriate encoding scheme based on the target function and
desired error tolerance. The most significant result is that the sign function performs the
best across all encodings and error tolerances and the transformer encoder-decoder with
encodings is able to learn the function to an accuracy of 88.21% at tol = 0.01.
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Figure 5.29: Performance at tolerance 0.05 on 3 × 3
matrices

Figure 5.30: Performance at tolerance 0.02 on 3 × 3
matrices

Figure 5.31: Performance at tolerance 0.01 on 3 × 3
matrices

Figure 5.32: Performance at tolerance 0.005 on 3 × 3
matrices

5.3.5.5 Results for 5 × 5 matrices

The results in Table 5.3 demonstrate a significant drop in accuracy compared to the
3 × 3 case, highlighting the increased difficulty in approximating matrix functions as
dimensionality grows. The P10 and FP15 encodings fail completely across all operations,
suggesting that they are inadequate for higher-dimensional matrices. P1000 achieves
moderate performance for the exponential and logarithm functions at loose tolerances but
rapidly degrades as stricter thresholds are applied. The B1999 encoding emerges as the best-
performing scheme, particularly for sign, where it maintains an impressive 97.77% accuracy
at tol = 0.05 and retains reasonable performance even as tolerance tightens. However,
B1999 completely fails for logarithm, sine, and cosine, indicating its limited generalizability.
Across all encodings, the matrix functions sine and cosine remain the most challenging to
approximate, with accuracies consistently at zero. Our key result is that the transformer
encoder-decoder with encodings is able to learn the sign function to a high degree of accuracy
(over 82%) at tol = 0.01 and the performance improves at higher tolerances.
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Operation Encoding Accuracy
tol=0.05 tol=0.02 tol=0.01 tol=0.005

Exponential P10 0.00% 0.00% 0.00% 0.00%
Logarithm P10 0.00% 0.00% 0.00% 0.00%
Sign P10 0.00% 0.00% 0.00% 0.00%
Sine P10 0.00% 0.00% 0.00% 0.00%
Cosine P10 0.00% 0.00% 0.00% 0.00%
Exponential P1000 85.97% 21.13% 1.18% 0.00%
Logarithm P1000 88.44% 77.93% 59.20% 19.30%
Sign P1000 89.99% 57.62% 11.38% 2.16%
Sine P1000 0.00% 0.00% 0.00% 0.00%
Cosine P1000 0.00% 0.00% 0.00% 0.00%
Exponential FP15 0.00% 0.00% 0.00% 0.00%
Logarithm FP15 0.00% 0.00% 0.00% 0.00%
Sign FP15 1.26% 1.26% 1.26% 1.26%
Sine FP15 0.00% 0.00% 0.00% 0.00%
Cosine FP15 0.00% 0.00% 0.00% 0.00%
Exponential B1999 95.95% 42.99% 14.14% 2.49%
Logarithm B1999 0.00% 0.00% 0.00% 0.00%
Sign B1999 97.77% 95.13% 82.31% 32.04%
Sine B1999 0.00% 0.00% 0.00% 0.00%
Cosine B1999 0.00% 0.00% 0.00% 0.00%

Table 5.3: Accuracy results for different matrix functions and encodings on 5×5 matrices
across various error tolerances.
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Figure 5.33: Performance at tolerance 0.05 on 5 × 5
matrices

Figure 5.34: Performance at tolerance 0.02 on 5 × 5
matrices

Figure 5.35: Performance at tolerance 0.01 on 5 × 5
matrices

Figure 5.36: Performance at tolerance 0.005 on 5 × 5
matrices
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Chapter 6

Conclusions and Future Work

This section contains the conclusions of the thesis and the future work that can be done to
improve the results.

6.1 Conclusions
We have two main results. Our first main result is that we have proved a theorem (Theorem
4.3.1) bounding the width and depth of a ReLU [74] DNN in the approximation of the matrix
exponential function. Our second main result is that we have shown that a transformer with
8 layers of the encoder and 1 of the decoder with 8 heads of attention in each layer can
approximate the matrix sign function, at an accuracy of 88.21% for 3 × 3 matrices (using
the FP15 encoding from Table 5.1) and an accuracy of 82.31% for 5 × 5 matrices (using
the B1999 encoding from Table 5.1) at a tolerance of 1% with two significant digits. This
result may be of interest to areas of research which have shown that transformer models can
discover new Lyapunov functions [6] as the matrix sign function is used to solve Lyapunov
equations, which, in turn, help find Lyapunov functions.

We have also shown that the encoding scheme in conjunction with the architecture used is
highly important. The transformer encoder is not able to learn the matrix functions we are
interested in using Fourier encodings however, the transformer encoder-decoder model with
different encodings is able to learn some of them to a degree of accuracy.

6.2 Limitations and Future Work
There are several limitations to our approach. In Theorem 4.3.1, the sharpness of the
bounds can be improved. Our proof strategy can probably be optimized and this could
lead to improved width and depth bounds. We could improve the choice of K. Another
improvement could be the construction of a network to approximate the matrix power Ak

(needed for the Taylor expansion) done in a recursive manner. In future work, it would
also be interesting to extend the theorem to consider other matrix functions. An analogous
theorem for transformers is also an open problem.See Section 4.4 for further details.

In the training data used for the experiments of the shallow neural network (Section
5.3.1), the deep neural network (Section 5.3.2) and the transformer encoder with Fourier
encoding (Section 5.3.4), we used matrices with coefficients in [−1, 1] sampled from a
uniform distribution. In the main experiment however, we used matrices with coefficients in
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[−5, 5] sampled from a normal distribution. We aim to extend our experiments to include
matrices with coefficients in [−5, 5] sampled from a normal distribution and also conduct
experiments with training and test data generated from other distributions to see if the
results are consistent. The transformer encoder-decoder model is for coefficients with only
two significant digits. It would be interesting to extend the experiments to find a way
to generalize the transformer encoder-decoder model to include matrices with coefficients
with more significant digits which would help in accurate surrogate modelling of the matrix
functions.
The transformer architecture used in our main experiment (in Section 5.3.5) is not able to
be used for the other matrix functions. There is a need to find a more general architecture
that can be used for the other matrix functions. Our experiments are also limited to
certain matrix sizes upto 8 × 8 as the computational complexity of the matrix functions
increases rapidly with the size of the matrix. A more general architecture is needed to be
able to handle larger matrices. We have also used only a single transformer architecture
in our experiments. In future work, it would be interesting to explore other transformer
architectures to see if they can be used to approximate the matrix functions.
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Appendix A

Appendix For Chapter 2

We describe some preliminaries and definitions used in Chapter 2.

Definition A.0.1 (Matrix Similarity Transformation [48]). Two square matrices A and B
of size n× n are said to be similar if there exists an invertible matrix P such that:

B = P−1AP.

In this case, we write:
A ∼ B.

The following function application to similar matrices is fundamental in matrix function
computations.

Definition A.0.2 (Function Application to Similar Matrices). If f is a matrix function
(e.g., exponentials, polynomials, or trigonometric functions), then applying f to a similarity
transformation follows:

f(B) = f(P−1AP ).
For many analytic functions defined via power series, this simplifies to:

f(B) = P−1f(A)P.

This property is fundamental in matrix function computations, as it ensures that similar
matrices maintain the same spectral characteristics under function application.
We denote the notation of ≲ in the following definition.

Definition A.0.3 (Notation ≲ [44]). Let a, b be real numbers or functions, or let A,B be
matrices with a chosen norm ∥ · ∥. The notation

a ≲ b,

or
A ≲ B,

means that there exists a constant C > 0 such that

a ≤ Cb, or ∥A∥ ≤ C∥B∥.

The constant C is typically independent of key parameters in the problem but may depend
on structural properties of the space or the specific norm used.
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Appendix B

Appendix For Chapter 3

This chapter introduces certain concepts key to understanding the mathematics of neural
networks. Non linearities that help the neural network learn complex patterns are
introduced in the following definitions.

Definition B.0.1 (Softmax Function). The softmax function [20] converts a vector of real
numbers into a probability distribution:

softmax(zi) = ezi∑︁n
j=1 e

zj
, for i = 1, 2, . . . , n.

It ensures that each output is in the range (0, 1) and that the sum of all outputs equals 1.

The ReLU [74] function is a popular non-linear activation function in neural networks.

Definition B.0.2 (ReLU Function). The Rectified Linear Unit (ReLU) activation function
[74] is defined as:

ReLU(x) = max(0, x).

For positive inputs, it outputs x, while for non-positive inputs, it outputs 0.

The loss function is a measure that quantifies the difference between the predicted output
and the true target. We introduce the following definition.

Definition B.0.3 (Loss Function). A loss function measures the difference between the
true target y and the predicted output ŷ. It is denoted as:

L(y, ŷ) = L(y, f(x; θ))

where f(x; θ) represents the model’s prediction.

B.1 Layer Normalization
Layer normalization is a technique used to normalize the activations within each individual
data sample instead of across a batch. We define the following.

Definition B.1.1 (Layer Normalization (LN)). Layer Normalization (LN) [9] normalizes
the activations within each individual data sample instead of across a batch. Given an input
x ∈ Rd:
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1. Compute the mean:

µ = 1
d

d∑︂
i=1

xi

2. Compute the variance:

σ2 = 1
d

d∑︂
i=1

(xi − µ)2

3. Normalize:
x̂i = xi − µ√

σ2 + ϵ

4. Apply learnable scale and shift parameters:

yi = γx̂i + β

where γ and β are learnable parameters.

B.2 Feedforward Neural Network
A Feedforward Neural Network (FNN) is a function f : Rd0 → RdL that maps an
input x ∈ Rd0 to an output using a sequence of affine transformations followed by nonlinear
activation functions. [38] The network consists of L layers: an input layer, hidden layers,
and an output layer. An more comprehensive definition can be found in [38, 49].

Mathematical Representation:

• Input Layer:
h0 = x ∈ Rd0

• Hidden Layers (for ℓ = 1, . . . , L− 1):

hℓ = σ(Wℓhℓ−1 + bℓ), hℓ ∈ Rdℓ

where:

– Wℓ ∈ Rdℓ×dℓ−1 is the weight matrix,
– bℓ ∈ Rdℓ is the bias vector,
– σ : R → R is an element-wise nonlinear activation function (e.g., ReLU, Sigmoid).

• Output Layer:
f(x) = WLhL−1 + bL.

If a final activation function ϕ is used (e.g., Softmax in classification problems), then:

f(x) = ϕ(WLhL−1 + bL).
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B.3 Recurrent Neural Network (RNN)
Recurrent neural networks (RNNs) are a type of neural network that processes sequential
data by maintaining a hidden state that captures information from previous time steps. We
define the following.

Definition B.3.1 (Recurrent Neural Network (RNN)). A recurrent neural network (RNN)
[90] by Rumelhart et al. (1986) is a type of neural network that processes sequential data by
maintaining a hidden state that captures information from previous time steps.

Mathematical Formulation:

ht = tanh(Wihxt + bih +Whhht−1 + bhh) yt = Whoht + bho

where tanh is the hyperbolic tangent function, Wih and Whh are weight matrices, bih and bhh

are bias vectors, and Who and bho are output weight and bias vectors. Recurrent networks
typically produce an output at each time step and have recurrent connections between
hidden units [38].

B.4 Long Short-Term Memory (LSTM)
Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN)
that can capture long-term dependencies in sequential data. We define the following.

Definition B.4.1 (Long Short-Term Memory (LSTM)). LSTMs [39] are a type of recurrent
neural network (RNN) that can capture long-term dependencies in sequential data. Each
LSTM cell consists of a memory cell Ct and three gates: forget, input, and output.

Mathematical Formulation:

ft = σ(Wfxt + Ufht−1 + bf ) (Forget Gate)
it = σ(Wixt + Uiht−1 + bi) (Input Gate)
C̃t = tanh(WCxt + UCht−1 + bC) (Candidate Cell State)
Ct = ft ⊙ Ct−1 + it ⊙ C̃t (Cell State Update)
ot = σ(Woxt + Uoht−1 + bo) (Output Gate)
ht = ot ⊙ tanh(Ct) (Hidden State)

where σ is the sigmoid function and ⊙ represents element-wise multiplication.
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Appendix C

Appendix For Chapter 4

This chapter introduces the theorems and propositions used in Chapter 4.

C.1 Theorem: DNN Architecture for Matrix Exponential
The following theorem is taken from Higham (2008) (see [44] for more details).

Theorem C.1.1 (Convergence of Matrix Taylor Series). Suppose f has a Taylor series
expansion

f(z) =
∞∑︂

k=0
ak(z − α)k

(︄
ak = f (k)(α)

k!

)︄
,

with radius of convergence r. If A ∈ Cn×n then f(A) is defined and is given by

f(A) =
∞∑︂

k=0
ak(A− αI)k,

if and only if each of the distinct eigenvalues λ1, . . . , λs of A satisfies one of the conditions:

1. |λi − α| < r,

2. |λi − α| = r and the series for f (ni−1)(λ) (where ni is the index of λi) is convergent
at the point λ = λi, i = 1 : s.

The following theorem provides an estimate of the truncation error which we used in
Theorem 4.3.1 when approximating matrix functions using Taylor series.

Theorem C.1.2 (Taylor Series Truncation Error Bound). For a matrix function f with
Taylor series expansion (4.6) with radius of convergence r, if A ∈ Cn×n with ρ(A−αI) < r
then for any matrix norm⃦⃦⃦⃦

⃦f(A) −
s∑︂

k=0

f (k)(α)
k! (A− αI)k

⃦⃦⃦⃦
⃦ ≤ 1

s! max
0≤t≤1

∥(A− αI)s+1f (s+1)(αI + t(A− αI))∥.

This bound from Higham (2008) (see [44]) provides an estimate of the truncation error
when approximating matrix functions using Taylor series.

The next two definitions are taken from Petersen and Voigtlaender (2018) (see [83] for more
details). These theorems outline the concatenation and parallelization of neural networks.
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Theorem C.1.3 (Concatenation of Neural Networks). Let L1, L2 ∈ N and let

Φ1 =
(︂
(A1

1, b
1
1), . . . , (A1

L1 , b
1
L1)
)︂

and
Φ2 =

(︂
(A2

1, b
2
1), . . . , (A2

L2 , b
2
L2)
)︂

be two neural networks such that the input layer of Φ1 has the same dimension as the output
layer of Φ2. Then, Φ1 • Φ2 denotes the following L1 + L2 − 1 layer network:

Φ1 • Φ2 :=
(︂
(A2

1, b
2
1), . . . , (A2

L2−1, b
2
L2−1), (A1

1A
2
L2 , A

1
1b

2
L2 + b1

1),

(A1
2, b

1
2), . . . , (A1

L1 , b
1
L1)
)︂
.

We call Φ1 • Φ2 the concatenation of Φ1 and Φ2.

One directly verifies that

Rϱ(Φ1 • Φ2) = Rϱ(Φ1) ◦Rϱ(Φ2),

which shows that the definition of concatenation is reasonable.
If the activation function ϱ : R → R is the ReLU – that is,

ϱ(x) = max{0, x}

– then, based on the identity x = ϱ(x) − ϱ(−x) for x ∈ R, one can construct a simple
two-layer network whose realization is the identity IdRd on Rd.

Theorem C.1.4 (Parallelization of Neural Networks). Let L ∈ N and let Φ1 =
((A1

1, b
1
1), . . . , (A1

L, b
1
L)) and Φ2 = ((A2

1, b
2
1), . . . , (A2

L, b
2
L)) be two neural networks with L

layers and with d-dimensional input. We define

P (Φ1,Φ2) := ((Ã1, b̃1), . . . , (ÃL, b̃L)),

where
Ã1 :=

(︄
A1

1
A2

1

)︄
, b̃1 :=

(︄
b1

1
b2

1

)︄
and

Ãℓ :=
(︄
A1

ℓ 0
0 A2

ℓ

)︄
, b̃ℓ :=

(︄
b1

ℓ

b2
ℓ

)︄
for 1 < ℓ ≤ L.

Then, P (Φ1,Φ2) is a neural network with d-dimensional input and L layers, called the
parallelization of Φ1 and Φ2.

One readily verifies that M(P (Φ1,Φ2)) = M(Φ1) +M(Φ2), and

Rϱ(P (Φ1,Φ2))(x) = (Rϱ(Φ1)(x), Rϱ(Φ2)(x))

for all x ∈ Rd.

The next proposition is taken from Opschoor et al. (2022) (see [78] for more details). This
proposition outlines the multiplication of two neural networks.
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Proposition C.1.5 ([78, Proposition 3.1]). For any δ ∈ (0, 1) and M ≥ 1 there exists a
σ1-NN ×̃δ,M : [−M,M ]2 → R such that

sup
|a|,|b|≤M

|ab− ×̃δ,M (a, b)| ≤ δ,

ess sup|a|,|b|≤M max
{︃⃓⃓⃓⃓
b− ∂

∂a
×̃δ,M (a, b)

⃓⃓⃓⃓
,

⃓⃓⃓⃓
a− ∂

∂b
×̃δ,M (a, b)

⃓⃓⃓⃓}︃
≤ δ,

where ∂
∂a×̃δ,M (a, b) and ∂

∂b×̃δ,M (a, b) denote weak derivatives. There exists a constant
C > 0 independent of δ ∈ (0, 1) and M ≥ 1 such that sizein(×̃δ,M ) ≤ C, sizeout(×̃δ,M ) ≤ C,

depth(×̃δ,M ) ≤ C(1 + log2(M/δ)), size(×̃δ,M ) ≤ C(1 + log2(M/δ)).

Moreover, for every a ∈ [−M,M ], there exists a finite set Na ⊆ [−M,M ] such that
b ↦→ ×̃δ,M (a, b) is strongly differentiable at all b ∈ (−M,M) \ Na.
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Appendix D

Appendix For Chapter 5

This chapters introduces the shaded plots used in Chapter 5 in Section D.1. It is for the
reader to have a better understanding of the plots in Chapter 5. We also introduce the L1
norm (Manhattan distance) in Section D.2.

D.1 Shaded Plots
This section is taken from Adcock et al. (2022) (see [1, Appendix A.1.3] for more details).

For experiments that involve statistical simulations, we perform multiple random trials (i.e.,
random draws of the sample points) and display certain statistics of the sampled variable
of interest. Throughout, we set the number of trials to be

Ntrials = 50

Suppose that the hyperparameter values considered in a certain simulation are

xi, i = 1, . . . , n

We denote the simulated samples of the variable of interest as

y
(k)
i , i = 1, . . . , n, k = 1, . . . , Ntrial

In the settings of our experiments, we often observe large variations of the variable of
interest as a function of the hyperparameter; typically, by orders of magnitude. Hence, the
variable of interest is always measured using a base-10 logarithmic scale in the y axis. For
this reason, it is natural to visualize statistics of the variable of interest after a logarithmic
transformation. For every value of i = 1, . . . , n, we compute the sample mean and the
(corrected) sample standard deviation of the transformed sample{︂

log10

(︂
y

(k)
i

)︂}︂Ntrial

k=1

Namely, for every i = 1, . . . , n, we compute

µi = 1
Ntrial

Ntrial∑︂
k=1

log10

(︂
y

(k)
i

)︂
and σi =

⌜⃓⃓⎷ 1
Ntrial − 1

Ntrial∑︂
k=1

(︂
log10

(︂
y

(k)
i

)︂
− µi

)︂2

78



These statistics of the variable of interest are visualized using shaded plots. They are
formed by two main components: 1. A main curve obtained by plotting the data points
{(xi, 10µi)}n

i=1, which represents the average behaviour (in logarithmic scale) of the variable
of interest. 2. A shaded region bounded by a lower and an upper curve, obtained by plotting
{(xi, 10µi−σi)}n

i=1 and
{︁(︁
xi, 10µi+σi

)︁}︁n
i=1, respectively. The width of this region represents

the amount of dispersion of the variable of interest.
Notice that 10µi is precisely the geometric mean of the values

{︂
y

(k)
i

}︂Ntrial

k=1
and 10σi its

(corrected) geometric standard deviation.

D.2 ℓ1 Norm (Manhattan Distance)
This section introduces the ℓ1 norm (Manhattan distance) which is used in Chapter 5.

Definition D.2.1 (ℓ1 Norm (Manhattan Distance)). The ℓ1 norm (also known as
Manhattan distance or taxicab norm) of a vector x ∈ Rn is defined as:

∥x∥1 =
n∑︂

i=1
|xi|

where |xi| denotes the absolute value of the i-th component. The name Manhattan distance
comes from the distance a taxi would drive in a city laid out in a grid-like pattern (like
Manhattan), where the taxi can only drive along the grid lines.
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