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Abstract

Techniques to Improve the Parsing of Unstructured Logs for AIOps

Issam SEDKI

Artificial Intelligence for IT Operations (AIOps) is revolutionizing IT management by incor-

porating AI, machine learning, and big data analytics to automate and enhance system operations.

Logs are the backbone of AIOps—they provide the fundamental data on system events, user ac-

tivities, and performance metrics that AIOps needs for proactive monitoring, predictive analytics,

and maintaining system health. Log management, especially log parsing, is therefore critical for

identifying anomalies, diagnosing failures, and ensuring overall operational efficiency. However,

challenges such as diverse log formats, insufficient logging guidelines, the sheer volume of logs,

and the need for real-time insights significantly limit the precision, scalability, and effectiveness of

AIOps.

This thesis develops novel methods for universal log parsing, introduces accurate evaluation

metrics, proposes a comprehensive taxonomy of log characteristics, and addresses privacy compli-

ance, collectively advancing the efficacy, scalability, and trustworthiness of AIOps.

Inaccurate log parsing can lead to inaccurate insights—misleading or incorrect conclusions

drawn from analysis. Such errors may cause AIOps to misclassify events, overlook crucial anoma-

lies, or generate noise that obscures genuine issues. To address this, the first major contribution

of this thesis is the development of ULP (Universal Log Parser), which leverages a frequent token

counting method to identify recurring patterns and extract log templates efficiently. By reducing

computational complexity, ULP enables faster, more accurate log parsing, making it highly effective

for large-scale IT environments—a key capability for the automation and responsiveness required

in AIOps.

The second contribution is AML (Accuracy Metric for Log Parsing), a structured framework
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for evaluating the accuracy of log parsing. Traditional metrics are insufficient for heterogeneous log

formats, leading to errors and subsequent misguided AIOps decisions. AML offers nuanced metrics

that account for both omission and commission errors, enabling detailed and reliable comparisons

across different log parsers.

The third contribution is a taxonomy of log characteristics, categorizing logs based on their

structural and contextual properties. This taxonomy not only guides parser design by clarifying

how logs differ across applications but also informs logging practices, helping practitioners tailor

log writing strategies for better analytics.

The fourth contribution focuses on enhancing log privacy compliance, a crucial aspect in AIOps

—especially as automated processes handle large volumes of sensitive log data. The thesis pro-

vides guidelines for evaluating and managing privacy risks associated with log data, ensuring that

the automation capabilities of AIOps remain compliant with stringent privacy regulations and best

practices.

Together, these contributions form a framework for advancing log parsing within AIOps. It is a

holistic approach—encompassing efficient universal parsing, robust accuracy evaluation, a guiding

taxonomy, and built-in privacy compliance—that addresses the entire life cycle of log-based analyt-

ics. This framework ultimately strengthens the capabilities of IT operations to be more proactive,

responsive, and compliant, paving the way for the next generation of AIOps-driven IT management.
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Chapter 1

Introduction

Artificial Intelligence for IT Operations (AIOps) represents a transformative approach to IT

management, combining machine learning (ML), big data, and analytics to optimize and automate

IT services. AIOps is designed to enhance operational workflows by providing proactive mon-

itoring, predictive insights, and data-driven recommendations that help reduce failures, improve

mean-time-to-recovery (MTTR), and allocate resources more effectively [1, 2]. As a rapidly evolv-

ing field, AIOps holds substantial potential in a variety of IT tasks, ranging from anomaly detection

[3, 4, 2? ] to resource optimization, making it increasingly vital for managing complex IT environ-

ments. [5]

The software industry has shifted from delivering boxed products to offering online applications

and cloud-based solutions. This transition has led to a fundamentally different approach to building,

releasing, and maintaining software, with a growing emphasis on operational efficiency. DevOps

has emerged as a popular methodology to support the continuous development and release of these

services. However, with the proliferation of cloud computing, the scale and complexity of services

have increased dramatically, making it challenging for engineers to efficiently manage and operate

these systems [6]. In response to these challenges, the concept of AIOps was introduced by ”Gart-

ner” to leverage artificial intelligence in addressing DevOps challenges, enhancing both efficiency

and reliability.
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The core of AIOps is its ability to process vast amounts of operational data in real time to

detect patterns, anticipate issues, and provide insights for IT administrators [7]. The state-of-the-

art research in AIOps covers resource allocation, fault prediction [8][? ], and automation in log

analytics [9][10], which together form the backbone of modern IT service management. These

branches are vital for understanding how AIOps improves the reliability and efficiency of IT services

and why ongoing research in these areas is critical [11].

Logs, the foundation of much of AIOps, serve as data sources for understanding system behav-

ior. Logs are generated by inserting log lines into the source code, creating a collection of messages

that chronologically record system events. These log entries, whether single- or multi-line, capture

specific runtime events in various computing systems, including large-scale distributed clusters,

self-contained applications, and user devices. Each log entry typically contains fields such as times-

tamps, severity levels, process IDs, and log messages that provide context about the system’s state.

While some fields, like timestamps, follow standard formats, the log message field is often free-text,

defined by developers, and varies across systems.

For instance, Figure 1.1 illustrates a logging statement from the Hadoop Distributed File System

(HDFS). The log event consists of a log header with contextual information (e.g., time, process ID,

log level) and a log message detailing the specific event.

Log management involves the collection, storage, and preprocessing of logs for subsequent

analysis. Effective log management is crucial for ensuring that valuable information is not lost in

the massive influx of data produced by complex IT systems. It also involves creating structured

representations of logs, which often contain unstructured free-text messages written by developers.

Given the heterogeneity and volume of log formats, manual log analysis is impractical, leading to the

need for automated solutions that can extract actionable insights efficiently. Delays in identifying

anomalies or diagnosing system failures can lead to cascading issues, such as prolonged downtime

or reduced system reliability. Moreover, manual inspection requires deep system expertise and

often fails to capture subtle patterns that may signal emerging problems, exacerbating the difficulty

of preventing incidents before they escalate.
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Logging statement: LOG.info(”Received Block”+ block + ”of size” + block size + ” from”

+ sender ip)

Raw log line: 081109 283519 147 INFO dfs.DataNodePacketResponder: Received

block blk -1680999687919862986 of size 91178 from /10.250.14.224

Log template: Received Block <*> of size <*> from <*>

Figure 1.1: An example of a logging statement, the generated Log Event, and the expected log

template

Automated log analysis has become a critical component of modern software engineering, play-

ing a pivotal role in enabling tasks such as anomaly detection, root cause analysis, system debug-

ging, and performance monitoring [3, 4, 2? ]. Such methods must not only process the vast high-

throughput of log data efficiently but also adapt to the dynamic, evolving structures of logs across

diverse systems. When logs originate from a wide array of applications, platforms, or microser-

vices, their structure and format naturally evolve over time. Updates to software versions, changes

in configuration, or the introduction of new services can alter the number and arrangement of fields,

the tokens used to describe events, or even the semantics of specific log messages. Consequently,

static parsing approaches can become outdated when these log templates change, impeding accurate

detection of anomalies and other insights.

The core goal of log parsing is to transform raw, unstructured log events into a structured form,

typically represented by log templates. These templates separate the static components of a log event

(known as the ”log template”) from the dynamic tokens, which vary in each log event. For instance,

consider the log event depicted in Figure 1.1; the corresponding log template is ”Received Block

* of Size * from ,” where the ”” symbol represents dynamic tokens. Log parsing aims to extract

these templates, providing a more structured representation of log data that aids in understanding

system behavior and facilitates efficient analysis. The growing importance of automated log parsing

has led to the development of a wide array of log parsers, employing diverse methodologies such as

machine learning, pattern mining, natural language processing (NLP) [12] [13, 14] as well as LLMs

[15, 16, 17, 18] with a very growing interest in the LLM world. A comprehensive survey of these

tools is presented by El-Masri et al. [19]. Some notable examples of log parsers include Drain [20],
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Spell [21], SHISO [22], AEL [23], Lenma [24], LogSig [25], SLCT [26], IPLoM [27], LKE [28],

LogMine [29], Logram [13], and ULP [30].

Due to the absence of standardized logging guidelines and best practices [31, 32], log structures

often vary widely between different systems [33]. Although there are occasional efforts from stan-

dards bodies and open-source communities to provide logging frameworks (e.g., for specific pro-

gramming languages or platforms), there is currently no universally mandated authority or widely

adopted global standard that prescribes how logs should be written or organized. As a result, each

organization—or even each development team—tends to define log templates based on internal con-

ventions, leading to significant variability. This variability, coupled with the continually expanding

size of log files [34, 35] [36], significantly complicates log parsing, hindering efficient system anal-

ysis and troubleshooting [37, 38]. Consequently, log parsers often yield incomplete or incorrect

results, which can propagate inaccuracies to downstream analyses, reducing the effectiveness of

AIOps tools and compromising the reliability of the entire workflow.

Key challenges in Log Parsing include:

• Heterogeneity of log formats: Logs are generated from a wide variety of systems, each with

its own structure, syntax, and dynamic elements, such as session IDs and timestamps. This

heterogeneity complicates the process of extracting accurate log templates and distinguish-

ing between static and dynamic components. Having a dedicated log parser for each log

type might seem appealing in small, uniform environments, but several practical issues make

this approach challenging in real-world, large-scale systems. Modern infrastructures often

integrate dozens of services—ranging from microservices and third-party APIs to legacy sys-

tems—each generating its own unique log structure. Maintaining a distinct parser for every

format quickly becomes unmanageable. Moreover, log structures are not static; they evolve

as software applications are updated, so even a single service may generate different log for-

mats across versions or environments. Keeping separate parsers current for each variation

adds significant overhead and delays responses to new formats. In addition, many enterprise

environments rely on correlating logs from multiple sources—such as network equipment,

databases, and cloud platforms—requiring a more general or flexible parsing approach that
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avoids siloed analysis. Building and running multiple specialized parsers also strains com-

puting resources, as each parser may demand its own configuration and processing pipeline.

Finally, as the number of applications scales, the burden of maintaining an expanding suite

of specialized parsers grows exponentially, undermining manageability and increasing costs.

Consequently, although one-to-one parsers may yield highly accurate results in limited or

controlled settings, such an approach is impractical at scale and can hinder efficient, adapt-

able log analysis.

• Dynamic nature of logs: Logs often contain dynamic elements such as session IDs or times-

tamps, making it challenging to distinguish between static templates and dynamic tokens.

• Lack of logging guidelines: Developers often create log statements without clear guidelines,

leading to inconsistent logging practices across different systems. This variability in log

levels, structure, and detail adds complexity to parsing and subsequent analysis.

• Noisy data and incorrect analysis: Logs can contain a significant amount of noise—irrelevant

entries or redundant information—that makes effective analysis difficult. Additionally, errors

in log parsing can introduce noise into subsequent analyses, reducing the reliability of insights

derived from logs.

• Real-time analysis: Logs are generated at enormous scales, often producing millions of en-

tries in short timeframes. Real-time or near real-time analysis is crucial for modern IT oper-

ations because any delay in parsing logs can hinder prompt detection and response to system

issues. However, this requirement becomes significantly more challenging when systems

generate logs at enormous scales,potentially millions of entries within very short timeframes.

Processing and parsing such high,throughput data in real time places a heavy computational

burden on logging frameworks, creating performance bottlenecks that can slow or even halt

downstream analytics. If a log parser cannot keep pace, critical information—such as early

warnings of potential failures or performance degradation—may be delayed or missed en-

tirely. This not only increases the risk of outages but also lengthens the time to investigate
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and resolve incidents, which can have severe financial and reputational consequences for or-

ganizations dependent on uninterrupted services. Solving this bottleneck calls for log parsing

methods that are both highly scalable and efficient, ensuring that mission,critical insights re-

main timely and actionable. Real-time parsing of such volumes is computationally intensive,

prone to inefficiencies, and can become a bottleneck in operational analysis.

• Lack of governance in logging practices: There is often no formal process to ensure that

log data adheres to standardized practices, leading to variability in quality, structure, and the

inclusion of sensitive information, further complicating parsing and analysis.

• Specialized Nature of Log Data: Unlike natural language, log data is composed of semi-

structured, system-generated messages that lack the grammatical conventions of human lan-

guage. As a result, Large Language Models (LLMs) trained on natural language text struggle

to adapt effectively to log data, leading to inaccurate or incomplete analysis. Additionally, the

underlying syntax and structure of logs are not well understood, with limited research explor-

ing the fundamental composition of log messages, which further complicates their analysis

and utilization.

• Introduction of sensitive information: Developers may inadvertently log sensitive user data,

including personally identifiable information (PII), due to a lack of governance processes

for detecting and managing such content, which can lead to compliance risks and privacy

breaches.

• Privacy compliance issues: Developers may not be well-versed in privacy regulations, leading

to the inclusion of sensitive information in logs that should not be recorded or made publicly

accessible. This can result in non-compliance with privacy laws like The General Data Pro-

tection Regulation(GDPR), potentially leading to severe legal consequences.

This thesis closely addresses the challenges inherent in log parsing for AIOps environments,

focusing on enhancing the accuracy, efficiency, scalability, and privacy of log data management.

Below, we outline the specific solutions introduced in this research to respond to each identified

challenge:
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• Heterogeneity of log formats: The development of ULP (Universal Log Parser) utilizes

a frequent token counting approach, effectively distinguishing between static and dynamic

elements across diverse log structures, thereby overcoming inconsistencies in log formats.

• Dynamic nature of logs: The proposed AML (Accuracy Metric for Log Parsing) is a met-

ric specifically designed to quantify the accuracy of log parsing outputs. In other words, it

measures how well a parser reconstructs the correct log templates and accurately identifies

dynamic tokens from raw log data, capturing both omission (missing information) and com-

mission (extraneous information) errors. This level of detail makes AML parser-agnostic,

allowing it to be applied across different systems without being tied to a single parser’s ar-

chitecture. As a result, AML serves as a more universal measure for comparing various log

parsing approaches, selecting the most appropriate parser for a given scenario, or guiding the

design of a universal parser. By effectively differentiating between static templates and dy-

namic tokens, AML provides actionable insights on how to improve log parsing for diverse

and evolving AIOps environments

• Lack of logging guidelines: The detailed taxonomy of log characteristics provides a refer-

ence framework for developers, offering guidelines to standardize logging practices, thereby

reducing variability in log levels, structure, and content.

• Introduction of sensitive information: This research also contributes to privacy-aware log

management by introducing practices to identify and mitigate the logging of sensitive infor-

mation, promoting compliance with privacy regulations like GDPR.

• Noisy data and incorrect analysis: The structured parsing approach of ULP, combined with

the evaluative precision of AML, aims to reduce the noise introduced during log analysis,

leading to more reliable and effective insights.

• Scale: The efficiency of ULP, with reduced computational complexity, enables effective real-

time parsing of large-scale log data, minimizing inefficiencies and preventing bottlenecks in

operational analysis.

7



• Lack of governance in logging practices: The introduction of a taxonomy and AML frame-

work contributes to a more systematic governance process, ensuring consistency, compliance,

and quality in log generation and analysis.

• Specialized Nature of Log Data: ULP is specifically tailored to handle the unique semi-

structured nature of log data, providing deterministic parsing that LLMs cannot achieve due

to their reliance on natural language training, thus bridging the gap in log data analysis capa-

bilities.

• Privacy awareness: Through the development of standardized guidelines and a focus on

privacy compliance, this research addresses the challenge of developers inadvertently logging

sensitive data, contributing to better privacy management in IT operations.

Addressing these challenges is critical for improving the accuracy and effectiveness of log pars-

ing, which in turn is essential for enabling reliable downstream analysis in AI-driven systems. The

ability to parse logs consistently and accurately will improve operational insights, support real-time

decision-making, and enhance overall system efficiency.

1.1 Contributions of the Thesis

This Ph.D. thesis introduces four key contributions that collectively address persistent chal-

lenges in modern log management for AIOps. By advancing the accuracy, performance, privacy,

and evaluation of log parsing, these contributions form an integrated framework that not only tack-

les the limitations of current techniques but also meets the complex demands of diverse, large-scale

IT environments.

The first contribution is the development of ULP (Universal Log Parser), an efficient tool de-

signed to overcome the performance bottlenecks found in existing parsers. ULP employs a frequent

token count methodology to identify static and dynamic components in log messages with minimal

computational overhead. Although large-scale processing and real-time requirements can often con-

flict since high throughput can slow performance while timely analysis demands speed, ULP strikes

a balance by streamlining template extraction. This enables rapid, precise parsing even under heavy
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workloads, making it especially valuable for large-scale AIOps environments that rely on timely

insights for automated decision-making.

However, improved parsing alone is insufficient without a robust way to evaluate its effec-

tiveness. The second contribution, AML (Accuracy Metric for Log Parsing), fills this gap by

providing a parser-agnostic framework for assessing log parsing performance. Traditional metrics

often overlook nuanced errors, such as omissions or misclassifications, that can significantly affect

downstream analyses. AML addresses this shortfall by offering detailed accuracy measurements at

both the log template and log event levels, allowing parsers to be more effectively compared, tuned,

and improved. By ensuring that parsing processes feeding AIOps are reliable and precise, AML

minimizes false positives or negatives in system analysis.

Building on these foundational elements, the thesis next introduces a taxonomy of Log Event

Characteristics (LECs) to guide the design and evaluation of robust parsing techniques. By cate-

gorizing structural and contextual log attributes, such as nested tokens, inconsistent delimiters, and

variable-length fields, this taxonomy illuminates the recurring issues that lead to parsing inaccura-

cies. Armed with these insights, developers and practitioners can create more adaptable parsers,

while also refining their logging practices to reduce ambiguity in data capture.

Finally, the fourth contribution addresses the often-overlooked issue of privacy compliance

in log data. Modern logs can contain sensitive information like IP addresses, usernames, or other

personal identifiers. Through an examination of real-world logs and current privacy regulations,

such as GDPR, this research highlights the discrepancies between policy requirements and actual

logging practices. The resulting guidelines help ensure that automated log analysis remains aligned

with legal and ethical standards, thereby maintaining user trust and mitigating potential risks.

Taken together, these four contributions advance the field of log management by tackling core

technical, methodological, and regulatory challenges in a cohesive manner. ULP lays the ground-

work for scalable, real-time parsing, AML provides a reliable means of evaluating parser accuracy,

the taxonomy of log characteristics offers targeted insights for parser resilience, and privacy compli-

ance ensures ethical, lawful handling of sensitive data. This integrated framework ultimately enables

AIOps practitioners to harness log data more effectively, leading to greater operational efficiency,

reliability, and trustworthiness across IT environments.
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The novelty of this thesis lies in its end-to-end approach to improving log parsing, from increas-

ing efficiency and robustness to incorporating nuanced evaluation metrics and addressing privacy

risks, thereby delivering a holistic solution that enhances AIOps at every stage of the log manage-

ment lifecycle.
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Table 1.1: Summary of Thesis Contributions

Category Challenge How we Solved the Challenge and Contribution to AIOps

Performance

and Scalabil-

ity

Performance limi-

tations in existing

parsers
• Developed a novel frequent token count methodology to re-

duce computational complexity.

• Enabled faster, more efficient log parsing in large-scale environ-

ments under heavy workloads, which is crucial for AIOps that

require rapid response to log-based events.

• Contribution to AIOps: Enhanced real-time log processing ca-

pabilities, allowing Site Reliability Engineers (SREs) to make

informed, timely decisions with lower latency, critical for main-

taining IT infrastructure health.

Evaluation

and Accu-

racy

Lack of robust met-

rics to evaluate pars-

ing accuracy
• Introduced Accuracy Metric for Log Parsing (AML), enabling

comprehensive evaluation at both the log template and log event

levels.

• Addressed the limitations of current simplistic metrics, ensuring

a more nuanced and accurate assessment of log parsers.

• Contribution to AIOps: Improved the reliability of automated

log analysis through more precise accuracy metrics, directly im-

pacting the ability to identify and diagnose issues effectively.

Log Struc-

ture and

Parsing

Complexity

Difficulty in identi-

fying structural at-

tributes causing pars-

ing failures

• Developed a taxonomy of Log Event Characteristics (LECs)

that categorizes challenging log attributes and identifies struc-

tural complexities.

• Provided insights into why certain logs are difficult to parse, en-

abling the development of more resilient parsers.

• Contribution to AIOps: Improved log parsing resilience, mak-

ing AIOps systems more adaptable and effective in analyzing

heterogeneous logs from diverse IT environments, leading to bet-

ter anomaly detection and operational insights.

Privacy

Compliance

Risks of handling

personal data within

log files
• Conducted an evaluation of privacy practices in log management

against policies and regulations like GDPR.

• Provided guidelines to minimize the capture of sensitive data and

ensure responsible log management.

• Contribution to AIOps: Integrated privacy-aware log manage-

ment practices within AIOps, enabling organizations to leverage

logs for insights while ensuring compliance with privacy regu-

lations. This is critical for maintaining trust and avoiding legal

ramifications in the handling of personal data.
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1.2 Thesis Structure

This thesis is organized as follows:

• Chapter 2: This chapter provides an in-depth review of existing log parsing tools, examining

their capabilities and the inherent limitations within current log management practices. It

also emphasizes the need for more robust and comprehensive evaluation metrics to accurately

assess log parsing performance.

• Chapter 3: Introduces ULP, detailing its architecture, methodology, and performance evalua-

tion against other state-of-the-art log parsers.

• Chapter 4: Presents the AML accuracy metric, including its theoretical foundation, method-

ology, and a comparative analysis of 14 log parsers using AML across 16 diverse log datasets.

• Chapter 5: Explores the LECs, providing a detailed analysis of the factors that contribute to

parsing errors and recommendations for improving parsing algorithms.

• Chapter 6: Discusses the challenges and contributions related to privacy compliance in log

management, including evaluating privacy practices against policies like GDPR, and offering

guidelines for responsible log management.

• Chapter 7: Summarizes the key findings and discusses potential future research directions for

advancing log management and AIOps.
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Chapter 2

Literature Review

The emergence of AIOps can be traced to the need to adapt traditional IT methodologies, such

as DevOps, to the complexities of modern infrastructures. DevOps aims to bridge the gap between

development and operations by ensuring faster software delivery with high quality through agile

practices [6]. However, with new paradigms like the operationalization of AI models and big data

analytics [39], traditional DevOps approaches have faced limitations in handling the broader life-

cycle and unique requirements of AI projects. AIOps seeks to address these gaps by providing a

systematic approach to managing the increasing complexity of IT operations in AI-driven environ-

ments [40].

Software logging plays a critical role within AIOps, serving as the primary means of capturing

system events during software execution. These log entries provide valuable insights into system

behavior, aiding in debugging, anomaly detection, failure analysis, and auditing [41]. Effective

logging practices directly contribute to improving AIOps capabilities by providing the raw data

needed for effective analysis [42].

Logs play a crucial role in numerous software engineering tasks, including debugging [3, 43, 4],

debugging and comprehension of system failures [44][45][46][47][8], testing and performance anal-

ysis [48][37] [49], operational intelligence [8] [37][50][5], data leakage detection [51], failure detec-

tion [46], failure prediction [8][? ],anomaly detection [3, 4, 2? ], and AI-driven IT operations [1, 2].

Their versatility makes logs an indispensable resource for maintaining the reliability, performance,

and security of software systems [? ].
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Table 2.1: Summary and Classification of Research Work on Software Logging and Log Parsing.

Study Focus Characterisation Study Automation Technique Machine Learning Model Evaluation Study

Failure Diagnosis [61]

Logging Practice [32]

Log Analysis and Failure Diagnosis [? ]

Logging for Anomaly Detection [62]

Machine Learning in Logging Practice [9]

Log Compression (Parallelization) [63]

Log Parsing (Rule-based) [64, 61] [61]

Log Parsing (Frequent Token Mining) [25? ]

Log Parsing (Natural Language Processing) [12] [13, 14]

Log Parsing (Clustering/Heuristic) [65, 66, 29]

Logging Code Analysis [59, 60, 67]

Automation in Logging [68]

Logging Configuration [69]

Log Statements (Code Level) [70, 71] [72] [73]

Log Parsing and Metrics [10]

Logging Issues (Performance) [74, 70]

The importance of software logging has driven significant research focused on understanding

how logging is implemented in practice. Studies have revealed several shortcomings, including

the presence of logging anti-patterns, insufficient guidance on log levels, and inadequate practices

regarding log placement [52, 53, 54, 55]. This has led to the development of automation tools that

assist in various aspects of logging, such as determining what variables to log, choosing appropriate

log levels, and employing machine learning models for automated logging suggestions [56, 57, 58].

Recent years have also seen research leveraging machine learning and deep learning for failure

and anomaly detection through log messages [59, 60]. More recently, the focus has shifted towards

improving the practice of writing and evolving logging code. Research in this area can be broadly

categorized into characterization studies, automation techniques, decision-making frameworks, ma-

chine learning models, and evaluation studies, as shown in Table 2.1.

Characterization studies aim to derive insights about logging practices that are beneficial for

both researchers and practitioners. On the other hand, automation techniques and decision-making

frameworks provide systematic methods to assist developers in generating and managing logging

statements. Machine learning-based approaches further contribute by leveraging existing data to

make informed suggestions or predictions related to logging. Evaluation studies offer comparisons

across different techniques and models to assess their effectiveness. Earlier works, such as those by

Jiang et al. [61] and Yuan et al. [32], laid the foundation for automated log analysis, which has since

expanded to include modern deep learning approaches like Deeplog for anomaly detection [62].
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2.1 Log Parsing Techniques and Their Evolution

Log Parsing

Techniques

Frequent

Token Mining

(SLCT, Log-

cluster, Logram)

Rule-based

(Spell, Drain)

Natural

Language

Processing

(NLP-LTG)

Classification

Clustering

(Logmine, Lenma, Logsig)

Figure 2.1: Overview of Log Parsing Techniques

The increased reliance on logs for system monitoring and troubleshooting has led to the devel-

opment of a diverse range of log parsing tools. These tools employ methodologies such as machine

learning, rule-based techniques, natural language processing (NLP), and clustering methods. Figure

2.1 illustrates an overview of these techniques.

One of the most comprehensive surveys on log parsing techniques is presented by El-Masri et al.

[33], where the authors propose a quality model for classifying log parsing techniques and examine

17 different log parsing tools using this model.

The following subsections discuss several notable parsing methods across these different cate-

gories, providing insights into the methodologies employed and their respective challenges.

2.1.1 Rule-based parsing tools

Hamooni et al. proposed LogMine [29], which uses MapReduce to abstract heterogeneous

log messages generated from various systems. The LogMine algorithm consists of a hierarchical

clustering module combined with pattern recognition. It uses regular expressions based on domain

knowledge to detect a set of dynamic variables. Then, it replaces the real value of each field with its

name. It then clusters similar log messages with the friends-of-friends clustering algorithm.

Drain [64] starts by Pre-processing raw log messages using regular expressions to identify
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trivial dynamic tokens. Then, it builds a parse-tree using the number of tokens in log events. Drain

assumes that tokens that appears at the beginning of a log message are most likely Static Tokens. It

uses a similarity metric that compares leaf nodes to event types to identify log groups.

2.1.2 Frequent tokens mining

Tang et al. proposed LogSig [25], which considers the words present in a Log Event as sig-

natures of event types. LogSig identifies log events using a set of predefined message signatures.

First, it converts log messages into pairs of terms. Then, it forms log-message clusters using a lo-

cal search strategy. LogSig selects the terms that appear frequently in each cluster and use them

to build the event templates. Spell (Streaming Parser for Event Logs using an LCS)[75] is a log

parser, which converts log messages into event types. Spell relies on the idea that log messages that

are produced by the same logging statement can be assigned a type, which represents their longest

common sequence. The LCS of the two messages is likely to be static fields.

2.1.3 Natural language processing tools

Logram, a recent approach proposed by Dai et al. [13], is an automated log parsing approach

developed to address the growing size of logs, and the need for low-Latency log analysis tools. It

leverages n-gram dictionaries to achieve efficient log parsing. Logram stores the frequencies of

n-grams in logs and relies on the n-gram dictionaries to distinguish between the Static Tokens and

dynamic variables. Moreover, as the n-gram dictionaries can be constructed concurrently and aggre-

gated efficiently, Logram can achieve high scalability when deployed in a multi-core environment

without sacrificing parsing accuracy. In Logram, the identification of dynamic and static tokens

depends on a threshold applied to the number of times the n-grams occur. An automated approach

to estimating this threshold was proposed.

Kobayashi et al. proposed NLP-LTG (Natural Language Processing–Log Template Genera-

tion) [12], which considers event template extraction from log messages as a problem of labelling

sequential data in natural language. It uses Conditional Random Fields (CRF) [24] to classify terms

in log messages as static or dynamic. To construct the labelled data (the ground truth), it uses human

knowledge and regular expressions.
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Thaler et al.[14] proposed NLM-FSE (Neural language Model For Signature Extraction), which

trains a character-based neural network to classify static and dynamic parts of log messages. The

approach constructs the training model through four layers. (1) The embedding layer transforms

the categorical character input into a feature vector. (2) The Bidirectional-LSTM layer allows each

prediction to be conditioned on the complete past and future context of a sequence. (3) The dropout

layer avoids over-fitting by concatenating the results of the bi-LSTM layer, and (4) the fully con-

nected, feed-forward neural network layer predicts the event template using the Softmax activation

function.

2.1.4 Classification/clustering approaches

Jiang et al. [61] introduced AEL (Abstracting Execution Logs), which is a log parsing method

that relies on textual similarity to group log events together. AEL starts by detecting trivial dynamic

variables using hard-coded heuristics based on system knowledge (e.g., IP addresses, numbers,

memory addresses). The resulting log events are then tokenized and assigned to bins based on the

number of terms they contain. This grouping is used to compare log messages in each bin and

abstract them into templates. The problem with AEL is that it assumes that events that contain the

same number of terms should be grouped together, resulting in many false positives.

Vaarandi et al. [76] proposed SLCT (Simple Logfile Clustering Tool). The authors used clus-

tering techniques to identify log templates. SLCT groups log events together based on their most

common frequent terms. To this end, the approach relies on a density-based clustering algorithm to

recognize the Dynamic Tokens, SLCT uses frequency analysis across all log lines in the log file.

LogCluster [? ] is an improved version of SLCT proposed by the same authors. LogCluster

extracts all frequent terms from the log messages and arranges them into tuples. Then, it splits the

log file into clusters that contain at least a certain number of log messages ensuring that all log

events in the same cluster match the pattern constructed by the frequent words and the wildcards,

which replace the dynamic variables.

Another clustering approach is that proposed by Makanju et al., which is called IPLOM (It-

erative Partitioning Log Mining) [65]. IPLOM employs a heuristic-based hierarchical clustering

algorithm. Using this approach, the first step is to partition log messages. For this, the authors used
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heuristics considering the size of log events. The next step is to further divide each partition based

on the highest number of similar terms. The resulting leaf nodes of the hierarchical partitioning as

clusters and event types.

Fu et al. proposed LKE (Log Key Extraction) [66], another clustering-based approach, using a

distance-based clustering technique. Log events are grouped together using weighted edit distance,

giving more weight to terms that appear at the beginning of log events. Then, LKE splits the clusters

until each raw log level in the same cluster belongs to the same log key and extracts the common

parts of the raw log key from each cluster to generate event types.

2.1.5 Challenges for Log Parsing

Despite the progress in automated log parsing, challenges remain due to the lack of standardized

guidelines for logging. This variability in log structures across different systems, combined with the

continuously increasing volume of log data, complicates log parsing, often limiting the effective-

ness of system diagnostics and maintenance [31, 32, 33, 37, 38]. Achieving high parsing accuracy

across diverse log formats remains difficult, largely because much of the research has focused on

developing parsing algorithms without sufficient emphasis on understanding the causes of parsing

errors [19, 77, 20, 13].

Inaccurate log parsing or a high number of parsing errors can lead to misinterpretations of sys-

tem behavior, causing delays in diagnosing issues, increased maintenance costs, and, in some cases,

detrimental consequences for the overall performance and reliability of the software system [78].

Even marginal inaccuracies in parsing, as slight as 4% of the total, can have profound implications

on performance, potentially leading to repercussions magnified by an entire order of magnitude

[79].

Le et al. [80] illustrated the adverse effects of log parsing errors on log-based Anomaly Detec-

tion. Fu et al. [81] delved deeper into this, examining how different log parser errors affect anomaly

detection, emphasizing the importance of parsing accuracy and the event template count in choosing

the right log parsers.
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2.2 Logs privacy

Despite their utility, logs frequently capture personal data, including user IDs, email addresses,

IP and MAC addresses. This inadvertent capture during routine operations raises privacy concerns,

especially when logs are shared externally [82]. Developers may occasionally log information,

often for debugging purposes, and inadvertently leave this information within the code base. This

poor coding practice poses a potential risk to data privacy since logs may contain personal data

without due diligence[51]. The outsourcing of log streams to cloud vendors introduces additional

privacy concerns due to potential access by third parties and the need for increased data privacy

measures[82].

The concept of personal data in privacy law is broadly defined to include any information that

can identify an individual, either directly or indirectly [83, 84].The General Data Protection Regula-

tion (GDPR), defines personal data as any information relating to an identified

or identifiable natural person (Article 4, GDPR). This definition supports the scope

of our analysis, ensuring consistency and compliance with widely recognized standards [85]. Intro-

duced by the European Union (EU) in 2018, GDPR is perhaps the most comprehensive data privacy

law in existence today [86, 85, 87]. GDPR contains several provisions that regulate the handling of

personal data of EU residents. Companies operating outside the EU zone are also subject to GDPR

regulations when handling the personal data of EU residents [83]. Non-compliance with GDPR

can result in severe fines [87, 86, 85]. GDPR consists of a data privacy legal framework guided by

principles, such as purpose limitation, data minimization, accuracy, storage limitations, integrity,

confidentiality, accountability, lawfulness, fairness, and transparency [88, 85]. Incorporating these

legal obligations into software development is a complex task[89, 90], particularly when it comes to

data logging. As noted by Portillo et al. [82], organizations must address the challenging problem

of deciding on the types of data that can be logged, justifications for logging, and how to protect

individuals’ privacy rights while leveraging log data insights. This is further complicated by the lack

of awareness within the software development teams on the importance of regulatory compliance

[91, 92].
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This definition was highlighted in the landmark Breyer case, where IP addresses were recog-

nized as personal data when linked with other identifiable information [93]. This ruling clarifies

the privacy considerations surrounding IP addresses in logs, affirming their status as personal data.

User perceptions of IP addresses as highly sensitive are documented in studies [94], with concerns

exacerbated by prevalent IP tracking practices [95, 96]. The treatment of IP addresses in logs, thus,

becomes a critical aspect of maintaining user privacy.

Several studies have explored the security aspects of system logging and proposed guidelines

for secure logging practices. Zeng et al. [97] discuss a range of security vulnerabilities that arise

from system logging and emphasize the necessity for robust logging mechanisms to prevent data

breaches and maintain system integrity.

In a more focused study, Patel et al. [98] delve into the specifics of logging within the Linux

kernel suggesting improvements for effective logging that enhances both security and performance

monitoring [98]. Lyons et al. [99] examine the extent of sensitive information logging within the

Android ecosystem. Their study measures the prevalence of sensitive data in logs and discusses the

implications for privacy and security, stressing the need for stringent controls on what is logged and

how it is managed.

2.3 LLMs for AIOps

Large Language Models (LLMs) are AI systems designed to perform a wide range of natu-

ral language processing tasks, such as translation, summarization, and text generation, thanks to

training on vast amounts of data [100].

Large Language Models (LLMs) have become crucial in AIOps for tasks such as log analytics,

anomaly detection, and root cause analysis. LLMs are designed to handle a wide range of natural

language processing (NLP) tasks, thanks to training on massive datasets, and their capabilities are

being repurposed for IT management. In particular, LLMs are being used for automated logging

statement generation [101], log parsing [102, 103], and root cause analysis [104].

LLMs can be categorized into two main types: autoregressive models, such as the GPT series,

and masked token models like BERT [100]. Autoregressive models are particularly suited for log
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parsing because they generate predictions sequentially, allowing them to understand the flow of

information across log messages [105]. Masked token models, on the other hand, are valuable for

anomaly detection because they predict missing components within a sequence, thereby providing

insights into patterns of failures or anomalies [105, 106].

The use of general-purpose LLMs like GPT-4 has shown promising results in log analytics,

particularly for identifying anomalies and understanding complex log structures [107]. However,

integrating these models into existing log analysis pipelines can pose challenges. Issues such as tool

compatibility, and the high cost associated with processing large log datasets [103] limit the broader

adoption of such models in practical settings [108].

Another notable limitations of LLMs lies in their probabilistic nature, which often results in

inconsistent and sometimes inaccurate outputs when handling structured log data. Prior studies

have reported that pre-trained LLMs do not perform well on domain-specific tasks, underscoring

the importance of understanding the unique vocabulary and structure of log messages to enhance

log analysis [42]. Unlike natural language, logs are semi-structured, system-generated data that

lack the grammatical conventions of human language. The inconsistency of LLMs in processing

log data limits their effectiveness in performing deterministic tasks such as log parsing. Therefore,

while LLMs are effective at extracting insights and performing high-level analytics, they struggle

to achieve the structured accuracy needed for in-depth log parsing, often resulting in errors when

processing complex and diverse logs at scale [102, 101].

Recent research has introduced specialized LLMs that focus on log data to overcome some

of these challenges. For instance, [42] presents an LLM specifically trained on both public and

proprietary log data, demonstrating superior performance in multiple downstream log analysis tasks.

However, even these specialized LLMs face challenges when it comes to parsing heterogeneous log

formats with high accuracy[109].

To address these challenges, my thesis introduces approaches that complement the capabilities

of LLMs while mitigating their shortcomings in structured log analysis. Specifically, my research

explores how Log Event Characteristics (LECs) can be used in conjunction with LLM training

datasets to enhance the models’ understanding of log data effectively. By embedding LECs into the

training data, LLMs can be better informed about the underlying structure of log messages. This
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guidance enhances LLMs’ ability to generate more accurate and contextually relevant interpreta-

tions of log events. The structured nature of LECs complements the probabilistic capabilities of

LLMs, thereby enhancing both the accuracy and reliability of log parsing and analysis.
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Chapter 3

ULP - A Universal Log Parser

”Simplicity is the ultimate sophistication.”

— Inspired by Leonardo Da Vinci
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I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed and M. A. Shehab, ”An Effective Approach

for Parsing Large Log Files,” in Proc. of the 38th IEEE International Conference on Software

Maintenance and Evolution (ICSME), Limassol, Cyprus, 2022, pp. 1-12, doi: 10.1109/IC-

SME55016.2022.00009.

Abstract : Because of their contribution to the overall reliability assurance process, software logs

have become important data assets for the analysis of software systems. Logs are often the only data

points that can shed light on how a software system behaves once deployed. Unfortunately, logs are

often unstructured data items, hindering viable analysis of their content. There are studies that aim

to automatically parse large log files. The primary goal is to create templates from raw log data

samples that can later be used to recognize future logs. In this paper, we propose ULP, a Unified

Log Parsing tool, which is highly accurate and efficient. ULP combines string matching and local

frequency analysis to parse large log files in an efficient manner. First, log events are organized into

groups using a text processing method. Frequency analysis is then applied locally to instances of the

same group to identify static and dynamic content of log events. When applied to 10 log datasets of

the LogPai benchmark, ULP achieves an average accuracy of 89.2%, which outperforms the accu-

racy of four leading log parsing tools, namely Drain, Logram, SPELL and AEL. Additionally, ULP

can parse up to four million log events in less than 3 minutes. ULP is available online as an open

source and can be readily used by practitioners and researchers to parse effectively and efficiently

large log files so as to support log analysis tasks.

3.1 Introduction

Logs are generated by logging statements inserted by developers in the source code. An exam-

ple of a logging statement is shown in Figure 1, which is a code snippet extracted from a Hadoop

Distributed File System (HDFS) Java source file. The generated log event (Figure 1) is composed

mainly of two parts: the log header and log message. The log header typically contains the times-

tamp (e.g., 081109 283519), the process id (147), the log level (INFO), and the logging function
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(dfs.DataNodePacketResponder). The log message contains static tokens (usually text) such as ”Re-

ceived block”, ”size of”, ”from” in the example of Figure 1 and dynamic tokens, which represent

variable values (blk -1680999687919862986, 91178, /10.250.14.224).

Log files include a plethora of information on the execution of a software system that is used to

help with different software engineering activities, such as anomaly detection [110][111][112][113],

debugging and comprehension of system failures [44][45][46][47][8], testing and performance anal-

ysis [48][37] [49], operational intelligence [8] [37][50][5], failure prediction [8][? ], detection of

data leakage [31], and more recently, AI for IT Operations (AIOps) [5][114].

Logs, on the other hand, have traditionally been difficult to work with. Typical log files may

be considerably large (in the order of millions of events) [47][115][116]. Furthermore, the logging

practice is known to be ad hoc, with no defined best practices [33]. To make matters worse, logs

are mainly unstructured data files due to the lack of a standardized format [110][? ][116]. As

a result, extracting relevant information from large raw log files [36][39] can be a daunting and

time-consuming task.

In this paper, we focus on the problem of log parsing, which consists of (semi-)automatically

converting unstructured raw log events into a structured format that would facilitate future analysis.

Log parsing is further reduced to the problem of parsing log messages. This is because log headers

usually follow the same format within the same log file. Parsing a log message consists of automat-

ically distinguishing the static text from the dynamic variables. The result of parsing the log event

in Figure 1 is the extraction of the template in Received Block <*> of size <*> from

Logging statement: LOG.info(”Received Block”+ block + ”of size” + block size + ” from”

+ sender ip)

Raw log line: 081109 283519 147 INFO dfs.DataNodePacketResponder: Received

block blk -1680999687919862986 of size 91178 from /10.250.14.224

Log template: Received Block <*> of size <*> from <*>

Figure 3.1: An example of a logging statement, the generated log event, and the expected log

template
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<*>, which identifies the log message structure. One way to parse log events would be to use reg-

ular expressions [117][61]. The problem is that typical industrial log files may contain hundreds of

log templates as shown by Chow et al. [50] and Mi et al. [118]. Furthermore, as the system evolves,

new log formats are produced due to the use of multiple logging libraries, necessitating the ongoing

updating of the regular expressions. The use of regular expressions to parse various types of logs

is simply impractical, which has led researchers to develop more intelligent log parsing techniques

(see [33] for a good survey). Existing approaches, however, suffer from many limitations [33] in-

cluding their reliance on domain knowledge, inability to demarcate static content from dynamic

variables for complex log files, and use of advanced machine learning algorithms, which require

parameter tuning.

In this paper, we propose ULP (Unified Log Parser), a simple yet powerful approach that rec-

ognizes log structures from any log files without prior domain knowledge or the use of complex

machine learning techniques. ULP relies on string matching and local frequency analysis. It begins

by grouping similar log events into groups using a string matching similarity technique. It then

uses frequency analysis on instances of each group to distinguish between static and dynamic log

message tokens. We conjecture that tokens that are more often repeated in the same group of similar

log events are more likely static tokens than dynamic tokens. This is not the first time that frequency

analysis is used in log parsing. Other tools such as Drain [64] and Logram [13] also use frequency

analysis. However, these tools apply frequency analysis to the entire log file, which makes it hard

to find a clear demarcation between static and dynamic tokens. ULP, on the other hand, applies

frequency analysis to log events that belong to the same group rather than to the entire log dataset,

increasing the likelihood of distinguishing between static and dynamic tokens.

We compared ULP to four major log parsing tools, namely Drain [64], AEL [61], SPELL [75],

and Logram [13] by applying them to 10 log datasets from the LogPai benchmark1. Our findings

show that ULP outperforms existing tools in parsing all the log datasets. Our technique has an

average accuracy of 89.2 %, while the second-best method, Drain, has an average accuracy of 73.7

%. Furthermore, ULP can parse big files containing up to 4 million log events in under 3 minutes.

1https://github.com/logpai
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ULP is available as an open source tool and accessible online2. Practitioners can readily embed

ULP into their log analytic suite and not have to worry about creating parsers that are tailored

to specific log files, which we believe may result in improved productivity and better software

maintenance.

The organization of this paper is as follows: Section II looks at the actual approaches used in log

parsing and how they compare to our solution. We present the ULP approach in Section III. Section

IV focuses on the evaluation of ULP using 10 log files. Section V highlights the distinctiveness

of our technique and explores the reasons why ULP outperforms other comparable approaches,

followed by threats to validity. We conclude the paper in Section VII and discuss future directions.

3.2 Related Work

In recent years, log analysis has received a great deal of attention from researchers and prac-

titioners due to the increasing need to understand complex systems at runtime. One of the most

comprehensive survey of log parsing techniques is the one proposed by El-Masri et al. [33] in

which the authors proposed a quality model for classifying log parsing techniques and examined 17

different log parsing tools using this model. Existing tools can be categorized into groups based on

the techniques they use, namely rule-based parsing tools, frequent token mining, natural language

processing, and classification/clustering approaches. We discuss the main approaches in what fol-

lows and conclude with a general comparison of ULP with these techniques.

Jiang et al. [119] introduced AEL (Abstracting Execution Logs), which is a log parsing method

that relies on textual similarity to group log events together. AEL starts by detecting trivial dy-

namic tokens using hard-coded heuristics based on system knowledge (e.g., IP addresses, numbers,

memory addresses). The resulting log events are then tokenized and assigned to bins based on the

number of terms they contain. This grouping is used to compare the log messages in each bin and

abstracts them into templates. The problem with AEL is that it assumes that events that contain the

same number of terms should be grouped together, resulting in many false positives.

Vaarandi et al. [26] [120] proposed SLCT (Simple Logfile Clustering Tool). The authors used

2http://zenodo.org/record/6425919
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clustering techniques to identify log templates. SLCT groups log events together based on their

most common frequent terms. To this end, the approach relies on a density-based clustering algo-

rithm to recognize the dynamic tokens, SLCT uses frequency analysis across all log lines in the log

file. LogCluster [114] is an improved version of SLCT proposed by the same authors. LogCluster

extracts all frequent terms from the log messages and arranges them into tuples. Then, it splits the

log file into clusters that contain at least a certain number of log messages.

Another clustering approach is the one proposed by Makanju et al., which is called IPLOM

(Iterative Partitioning Log Mining) [65]. IPLOM employs a heuristic-based hierarchical clustering

algorithm. In this approach, the first step is to partition the log messages. For this, the authors used

heuristics considering the size of log events. The next step is to further divide each partition based

on the highest number of similar terms. Fu et al. proposed LKE (Log Key Extraction)[121], another

clustering-based approach, using a distance-based clustering technique. Log events are grouped

together using weighted edit distance, giving more weight to the terms that appear at the beginning

of log events. Then, LKE splits the clusters until each raw log level in the same cluster belongs to

the same log key and extracts the common parts of the raw log key from each cluster to generate

event types.

Hamooni et al. proposed LogMine [29], which uses MapReduce to abstract heterogeneous

log messages generated from various systems. The LogMine algorithm consists of a hierarchical

clustering module combined with pattern recognition. It uses regular expressions based on domain

knowledge to detect a set of dynamic variables. Then, it replaces the real value of each field with its

name. It then clusters similar log messages with the friends-of-friends clustering algorithm.

Natural Language Processing (NLP) techniques have also been used for log parsing. Logram,

a recent approach proposed by Dai et al. [13], is an automated log parsing approach developed to

address the growing size of logs, and the need for low-latency log analysis tools. It leverages n-gram

dictionaries to achieve efficient log parsing. Logram stores the frequencies of n-grams in logs and

relies on the n-gram dictionaries to distinguish between static tokens and dynamic variables. More-

over, as the n-gram dictionaries can be constructed concurrently and aggregated efficiently, Logram

can achieve high scalability when deployed in a multi-core environment without sacrificing parsing
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accuracy. Kobayashi et al. proposed NLP-LTG (Natural Language Processing–Log Template Gen-

eration) [12], which considers event template extraction from log messages as a problem of labeling

sequential data in natural language. It uses Conditional Random Fields (CRF) [122] to classify

terms in log messages as static or dynamic. To construct the labeled data (the ground truth), it uses

human knowledge and regular expressions. Thaler et al.[14] proposed NLM-FSE (Neural language

Model-For Signature Extraction) , which trains a character-based neural network to classify static

and dynamic parts of log messages.

He et al. [64] proposed Drain, a tool that abstracts log messages into event types using a parse

tree. Drain algorithm consists of five steps. Drain starts by preprocessing raw log messages using

regular expressions to identify trivial dynamic tokens, just like ULP. Then, it builds a parse tree

using the number of tokens in log events. Drain assumes that tokens that appear in the beginning of

a log message are most likely static tokens. It uses a similarity metric that compares leaf nodes to

event types to identify log groups.

Spell (Streaming Parser for Event Logs using an LCS)[75] is a log parser, which converts log

messages into event types. Spell relies on the idea that log messages that are produced by the same

logging statement can be assigned a type, which represents their longest common sequence. The

LCS of the two messages is likely to be static fields.

The main difference between ULP and existing approaches lies in the way ULP is designed.

ULP leverages the idea that static and dynamic tokens of log events can be better identified if we

use frequency analysis locally on instances of log events that belong to the same group. To this

end, it uses a string matching technique to create groups of similar events. This is contrasted with

techniques that use clustering alone (e.g., AEL and IPLOM) and those that apply frequency analysis

to the entire log file (e.g., Drain and Logram), i.e., globally. As we will see in the evaluation section,

these design choices make ULP a very accurate and efficient log parser compared to leading open

source log parsers.
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3.3 Approach

ULP consists of the following steps: pre-processing, grouping of similar log events, and the

generation of log templates using local frequency analysis. The first step is a pre-processing step

where the header such as the timestamp, the log level, and the logging function are identified.

We also detect trivial dynamic tokens such as IP and MAC addresses based on common regular

expressions. The second step of ULP is to identify similar log events and group them together. To

this end, we use text similarity measures. Once the groups of similar log events are formed, we

apply frequency analysis to instances of each group to determine the static and dynamic tokens, and

derive the various log templates that are then mapped back to each log event. Algorithm 1 shows

the steps of ULP. We explain each step in more detail in the following subsections. To illustrate

our approach, we use the sample log events from the HDFS log dataset (one of the datasets used

to evaluate ULP) shown in Figure 2. We added a line number to each log event to help explain the

approach.

3.3.1 Pre-processing

The pre-processing of log events begins by delineating the header information, including the

timestamp, process ID, log level, and logging function (Lines 1–3, Algorithm 1). Prior research

showed that this information can be readily identified using simple regular phrases [13]. Figure 2

shows that all the HDFS log events of the running example begin with a timestamp (e.g., 081109

203615), a process ID (148), a log level (INFO), and a logging function

dfs.DataNode$PacketResponder. Another essential part of the pre-processing step is the

identification of trivial dynamic variables such as IP and MAC addresses. Identifying such variables

can improve the parsing accuracy as shown by He et al. [123] and all the tools studied in this paper

(i.e., Drain [64], SPELL [75], Logram [13] and AEL [61]) include this step in their approach. For

ULP, this step also increases the chances of identifying similar log events that should be instances

of the same group. Grouping of similar events is discussed in more detail in the next subsection. We

created regular expressions to detect the following trivial dynamic variables: Mac addresses, IPV6

addresses, URLs (beginning with HTTP and HTTPS), numerical in hexadecimal format, Dates such
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Algorithm 1 Overall ULP Algorithm

Data: LogEvents
Result: LogTemplates, GroupOfLogs
foreach LogEvent ∈ RawLogfile do

LogEvent← RemoveHeader(LogEvent)
LogEvent← RemovePunctuation(LogEvent)
LogEvent← RemoveObviousDynamicTokens(LogEvent)
/* Generate an id for a Log event based on the tokens that

are not deemed dynamic, and the count of tokens */

LogEvent.Id← GenerateIds(LogEvent)

end

GroupOfLogs← LogEvents.GroupBy(LogEvent.Id) LogTemplates← []

foreach g ∈ GroupOfLogs do

/* Dimensions reduction to improve algorithm performance */

subGroup← Sample(g)
/* The template will be constructed base on one of the Log

events by removing dynamic tokens and replacing them by <*>

*/

template← subGroup[0]
/* Get the group vocabulary */

Tokens← GetV ocabulary(subGroup)
/* Count occurences avoid duplicate for each Log event */

subGroup.CountTokensAvoidDuplicatePerEvent()
foreach t ∈ Tokens do

/* static tokens appear all the time in the subgroup, we

remove dynamic tokens out of the template */

if t.count<subGroup.length then
p← template.Remove(t)

end

LogTemplates.Append(template)
g.template = template

end

GroupOfLogs← mergeGroupWithSimilarTemplate(GroupOfLogs)
end

32





and 9 all deal with terminating PacketResponder (used by HDFS to manage the processing of

data into a series of pipeline nodes) and only vary in terms of the task number and the block id.

So if we can put these log messages into the same group, we can easily see that the static tokens

(PacketResponder, for, block, terminating) appear in all the log events of that

group, and that the dynamic tokens, i.e., the task number and the block id, vary from one log

event to another, hence the idea of using frequency analysis on instances of the same group instead

of applying it to the entire log file, which may not lead to such a clear demarcation.

Our grouping strategy relies on a string matching technique. We measure the similarity of

two log events based on the number of tokens they contain combined with the tokens that are

most likely static tokens (i.e., tokens that do not contain digits and/or special characters). To do

this, for each log event, we first count the number of words it contains. A word is defined as

any token that is delimited by a space character. Note we do not use any other delimiters to pre-

vent splitting a dynamic variable into multiple tokens. For example, the token 04:09:19.989

is considered by ULP as one token. Then, we identify tokens that only contain alphabetical let-

ters. In other words, we ignore tokens that contain digits and/or special characters, which are most

likely dynamic tokens. Finally, we convert the log event into a string that results from concate-

nating the alphabetical tokens and the total number of tokens. Two log events are grouped to-

gether if there is an exact match (i.e., 100%) between their corresponding strings. For example,

the two following log events: "block x23 from 125.12.1.1 allocated to block

x45" and "block x23 from 125.125.123.144 allocated to block x125"will

be grouped together since they contain the same number of tokens (8) and the same alphabetical to-

kens and that also appear in the same order block from allocated to block.

Another alternative design would be to consider similar but not necessarily identical strings.

For this, we would need to define a threshold beyond which two log events can be deemed similar.

Setting such a threshold may be a difficult task since it may vary from one group of events to another.

We deliberately opted for a grouping technique that requires an exact match to prevent the use of

thresholds, which may necessitate human intervention or advanced statistical methods to determine

the right threshold.

Applying the grouping approach to the log messages of Figure 3.3 results in three groups. The
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first one consists of log messages 1, 2, 4, 5, and 9, which contain the static token PacketResponder.

The second pattern consists of log messages 3, 6, 7, and 8, representing the message BLOCK*

NameSystem.addStoredBlock: blockMap update. The last one contains log mes-

sages 10, 11, and 12 for the Received block log event. At this stage, we have only identified

the groups. The next step will leverage local frequency analysis to detect the dynamic tokens and

associate a template to log events within each group.

3.3.3 Generation of log templates using local frequency analysis

In this step, we analyze the occurrences of the tokens of each group of log events by counting

the number of times each token appears in the log events that belong to the same group (Lines 7–16

of Algorithm 1). As explained earlier, we expect to see static tokens appear all the time in each

log event of the same group (because of the way our grouping technique works), while the dynamic

tokens are expected to occur only in some log events and not all of them. Therefore, we consider

anything that occurs less that the maximum frequency as a dynamic token. It should be noted that in

our approach, we are more interested in the occurrences of a dynamic token over several log events

than in a single log event. Counting the same token twice in the same log event raises its frequency

across several log events in the same group, which introduces a bias. Duplicates in the same log

event are counted only once to prevent this bias. For example, if the token block occurs twice in

the same log event, it will be counted as one occurrence in this event, not two. Table 1 displays the

frequency of the tokens of log events of the first group, which consists of the following events:

(1) PacketResponder 1 for block

blk 38865049064139660 terminating

(2) PacketResponder 0 for block

blk -6952295868487656571 terminating

(3) PacketResponder 2 for block

blk 8229193803249955061 terminating

(4) PacketResponder 2 for block
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Table 3.1: Example of a frequency analysis result applied to the first group of log events

Term Frequency Classification

PacketResponder 5 out of 5 static token

0 1 out of 5 dynamic token

1 1 out of 5 dynamic token

2 3 out of 5 dynamic token

for 5 out of 5 static token

block 5 out of 5 static token

blk 38865049064139660 1 out of 5 dynamic token

blk -6952295868487656571 1 out of 5 dynamic token

blk 8229193803249955061 1 out of 5 dynamic token

blk -6670958622368987959 1 out of 5 dynamic token

blk 572492839287299681 1 out of 5 dynamic token

terminating 5 out of 5 static token

blk -6670958622368987959 terminating

(5) PacketResponder 2 for block

blk 572492839287299681 terminating

In this group, the terms PacketResponder, for, block, terminating appear five

times (the maximum frequency). The other tokens (task numbers 0, 1, 2, and block ids

blk 38865049064139660, blk -6952295868487656571, blk 8229193803249955061,

blk -6670958622368987959, blk 572492839287299681) appear less than five times.

ULP classifies them as dynamic tokens.

The resulting template from applying local frequency analysis to this group of events is:

PacketResponder <*> for block <*> terminating. The generated log templates

when applying local frequency analysis to the log events of the running example are shown below.

Except for 67108864 (the size of a data block in HDFS), ULP was able to uncover all the static

and dynamic tokens. ULP was no able to detect the dynamic token 67108864 because we are

examining a small sample of log events. In practice, the application of ULP to large HDFS log

files should be able to detect this variable at some point in time when a different variable appears in

another log event of the same group.

(1) PacketResponder <*> for block <*> terminating

36



(2) BLOCK* NameSystem.addStoredBlock:

blockMap updated: <*> is added to <*> size 67108864

(3) Received block <*> of size 67108864 from <*>

3.4 Evaluation

In this section, we evaluate the effectiveness of ULP in parsing logs of 10 log datasets of the

LogPai benchmark [117] available online4. The datasets consist of a collection of log files, gener-

ated from various systems including Apache, HPC, HDFS as shown in Table 3.2. They are used

extensively in the literature (e.g., Drain [64], SPELL[75], and Logram[13]).

This evaluation aims to answer the following two research questions:

(1) RQ1. What is the accuracy of ULP in parsing the 10 log files of the LogPai benchmark and

how does it compare to leading log parsing tools?

(2) RQ2. What is the efficiency of ULP and how does it compare to leading log parsing tools?

Table 3.2: LogPai datasets

Datasets Description Size

Apache Apache server error log 5.1MB

BGL Blue Gene/L supercomputer log 743MB

HDFS Hadoop distributed file system log 1.47GB

Hadoop Hadoop mapreduce job log 2MB

HPC High performance cluster 32MB

Proxifier Proxifier software log 2.42MB

Spark Spark job log 166MB

Thunderbird Thunderbird supercomputer log 29.60GB

Openstack OpenStack software log 41MB

Zookeeper ZooKeeper service log 10MB

We evaluated ULP using accuracy and efficiency. We also compared ULP to four leading log

parsing tools, namely Drain[64], AEL [61], SPELL[75] and Logram[13]. We selected these tools

4https://zenodo.org/record/3227177#.YUqmXtNPFRE
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because prior studies [117][13] [123] showed that these tools yield the highest accuracy and effi-

ciency compared to other log parsing tools such as SLCT. We ran the same experiments with the

selected log parsers using the most recent version of their publicly accessible source code.

3.4.1 Accuracy

Each log dataset of the LogPai benchmark used in this study comes with a subset of 2,000 log

events that have been parsed manually by the LogPai team. The log templates were identified and

each log event out of the 2,000 events was associated with a specific log template. This ground truth

dataset is meant for researchers to test their Log parsers and has been used by many log parsing

tools such as Drain [64], AEL[61], Lenma [124], IPLoM[65], and Logram [13]. We also use it in

this study to evaluate ULP and to compare ULP with existing tools. Table 4.9 shows an example

of events from the Apache 2,000 labelled log events where a log event (represented here by an id

starting with ”E”) is mapped to a template that was extracted manually by the LogPai team.

Table 3.3: An example of manually labeled log events from the Apache log dataset

Event ID Event Template

E1 jk2 init() Found child <*>in scoreboard slot <*>

E2 workerEnv.init() ok <*>

E3 mod jk child workerEnv in error state <*>

E4 [client <*>] Directory index forbidden by rule: <*>

E5 jk2 init() Can’t find child <*>in scoreboard

E6 mod jk child init <*><*>

The way accuracy is measured in related studies is based on the work of Zhu et al. [117] where

the authors compared the accuracy of 13 log parsing tools including some of the tools used in this

paper (Drain, AEL, and Spell). Logram, which was published after the work of Zhu et al. [117],

also uses the same approach. Zhu et al.’s accuracy metric is based on the number of log events that

are correctly identified as belonging to the same template when compared to the ground truth. This

metric, however, does not check if the template in question is the same as the one in the ground

truth. In our opinion, this metric is misleading since it does not assess the ability of a log parser

to extract the exact templates as the ones in the ground truth. In other words, Zhu et al.’s metric

is necessarily but not sufficient. In this paper, we go one step further by not only comparing if the
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Table 3.4: An example that shows how we measure the accuracy of ULP

Ground

truth

Template

ULP

Generated

Template

Match or Not Explanation

Cannot open

channel to

<*>at

election

address

/<*>:<*>

Cannot open

channel to

<*>at

election

address

<*>]

1 Static text is de-

tected correctly.

Dynamic tokens are

identified. the gap

is that ground truth

is interpreting IP

address with port as

2 variables and the

parsing tool as one,

which is acceptable.

Expiring

session <*>,

timeout of

<*>ms

exceeded

[expiring

session

<*>timeout

of 10000ms

exceeded]

0 Only one dynamic

token has been

identified out of

two. The parsing

is then considered

incorrect.

log events are correctly classified as having the same template, but also checking that the templates

we extract are exactly the same as the ones in the ground truth. More precisely, to measure the

accuracy of ULP, we compare the templates extracted by ULP to those provided by LogPai for the

2,000 log events of the log datasets shown in Table 3.2. The accuracy is the number of matches

divided by 2,000. We apply the same procedure to other log parsing tools and compare our results

to theirs. A match is considered if the following requirements are satisfied: (1) all static tokens are

detected and displayed in the correct location in the ground truth file; (2) all dynamic variables were

identified and replaced by <*>; (3) all dynamic variables are shown in the same order as the ground

truth; (4) no extra static or dynamic tokens were added. Table 3.4 shows an example of the manual

comparison we performed.

Results

Table 3.5 shows the results of ULP accuracy. ULP has the best accuracy in parsing all the log

datasets in comparison to all the other tools assessed in this study (i.e., Logram, SPELL, AEL, and

Drain). Additionally, our approach has an average accuracy of 89.2%, whereas the second most
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Table 3.5: Accuracy of ULP compared to other Log parsers. highest results bold.

Name Drain Logram Spell AEL ULP

HDFS 0.996 0.981 0.500 0.434 0.999

Apache 0.693 0.050 0.269 0.000 0.699*

HPC 0.745 0.877 0.662 0.045 0.944

Proxifier 0.380 0.000 0.015 0.117 0.979

ThunderBird 0.868 0.114 0.781 0.021 0.970

Openstack 0.400 0.000 0.170 0.000 0.801

Spark 0.979 0.201 0.863 0.363 0.995

Zookeeper 0.962 0.722 0.918 0.046 0.971

Hadoop 0.546 0.125 0.293 0.000 0.660*

BGL 0.810 0.457 0.702 0.004 0.910

AVG 0.737 0.352 0.517 0.103 0.892

Table 3.6: The Cliff’s effect size test results

Algorithm name Cliff’s Delta

Drain 0.39

Logram 0.74

Spell 0.76

AEL 1.00

accurate method, Drain, has an average accuracy of 73.7%. Table 3.6 shows the effect size using

Cliff’s δ, which is a statistical test that indicates the magnitude of that difference [125]. The effect

size is considered small when 0.147 ≤ δ < 0.33, medium for 0.33 ≤ δ < 0.474, and large for δ ≥

0.474. [126]. Cliff’s δ is defined using Equation(1). As shown in Table 3.6, the difference between

the accuracy of ULP and that of Logram, SPELL, and AEL is significantly large (Cliff’s delat ≥

0.474). It is medium in the case of Drain.

Cliff ′s δ =

∑

i

∑

j sign(yi − xj)

ny.nx

(1)

We carefully examined the log templates that ULP missed to understand the causes. We found that

some errors and inconsistencies in the manual labelling of the benchmark files misled the perfor-

mance of ULP. For example, the token CrazyIvan46 in the log event

labeling NETClientConnection evaluate CrazyIvan46 CI46 Perform

CrazyIvan46 is considered as a static token, which is an error in the labelling of the data. This
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Table 3.7: Examples of issues with the ground truth files for Apache and Hadoop log datasets

Log event Template from ground

truth file

Explanation of the issue with the

ground truth file

Disk quotas dquot 6.5.1 Disk quotas

dquot <*>.<*>.<*>
Interpreting one dynamic token as

many.

data thread() got not

answer from any

[Thunderbird A]

datasource

data thread() got not

answer from any

[Thunderbird <*>]

datasource

A dynamic variable is a whole, can

not be split. The dynamic variable

should replace the whole string Thun-

derbird 34.

Warning: we failed to

resolve data source name

dn910 dn911 dn912

dn913 dn914 dn915

Warning: we failed to

resolve data source name

<*>

Multiple dynamic variables are iden-

tified as one. This may be confus-

ing since the practitioner loose the info

about the number of dynamic tokens

contained in the event.

workerEnv.init ok

workers2.properties

workerEnv.init ok

workers2.properties

The token workers2.properties does not

change and does not have any other

value, which make him be interpreted

as static (occurrences 568).

should be labelled as a dynamic token because it refers to a username. Another cause of misclassifi-

cation is the presence of dynamic variables whose values do not change over a large number of log

events. For example, the token ”workers2.properties” was repeated 568 times in one of the datasets.

ULP misclassified it as a static token. The good thing about ULP is that, unlike many existing tools

including Drain, it does not make any assumptions about the order of static and dynamic tokens,

which reduces significantly the number of false positives. Table 3.7 shows some other examples of

errors in the ground truth files causing the low accuracy results of ULP when applied to Hadoop and

Apache logs. This seems to affect the other parsers as well (see Table 3.5).

RQ1 Finding: The accuracy of ULP when applied to 10 log files of the LogPai benchmark

is between 66% and 99.9% with a average of accuracy of 89.2%. ULP outperforms Drain,

Logram, Spell, and AEL in the parsing of all the 10 log files.
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Log Event:

Receiving block blk 579248909 src: /10.251.30.6:335 dest:

/10.251.30.6:500

Template:

Receiving block * src: * dest: *

Figure 3.4: An example of a log event and its corresponding log template

Table 3.8: Number of log events of the sample log files used to measure efficiency

BGL 400 4,000 40,000 400,000 4,000,000

HPC 600 3,000 15,000 75,000 375,000

HDFS 1,000 5,000 10,000 100,000 1,000,000

Zookeeper 4,000 8,000 16,000 32,000 64,000

Spark 1,000 5,000 10,000 100,000 1,000,000

3.4.2 Efficiency

To evaluate ULP’s efficiency, we record the execution time to complete the end-to-end parsing

process. We repeated the experiment 10 times to avoid any bias and took the average of the execution

times. We also run the same experiments for Drain, Logram, and SPELL on our computer and record

the running parsing time for these programs in the same manner. We did not assess AEL’s efficiency

because it has a very poor accuracy (average accuracy of 10%, as indicated in Table 3.5)). We run

the experiments using a MacBook Pro laptop running macOS Big Sur version 11.4 and equipped

with a 6 Intel Core i7 CPU operating at 2.2GHz, 32GB 2400MHz DDR4 RAM, and a 256 GB SSD

hard drive. We use the datasets indicated in Table 3.8, publicly accessible in the LogPai benchmark.

We selected these datasets because they have previously been used to measure efficiency in other

research studies [13] and [64]. We assess efficiency for each log dataset by running ULP and the

other tools on random log samples of increasing size, as indicated by the number of log lines so

as to examine how the parser’s efficiency changes as the file become larger. This was by inspired

by the way efficiency was assessed for Drain [64], which uses this log dataset splitting, except that

Drain uses the file size rather than the number of log events.
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RQ2 Findings: ULP can parse up to 4 million log events in less than 3 minutes. It is more

efficient than Drain and and Spell when applied to HDS, Spark, Zookepr, HPC, and BGL

log files. It exhibits similar efficiency as Logram except for Zookeeper and for large HPC

and BGL log files where Logram has a noticeably better efficiency.

3.5 Discussion

The primary difference between ULP and existing approaches lies in the way ULP is designed.

ULP leverages the idea that static and dynamic tokens of log events can be better identified if we

use frequency analysis locally on instances of log events that belong to the same group rather than

in the entire log file. The similarity technique used to group log events is also unique. This design

choice yields excellent results as shown in the previous subsections. It should be noted, however,

that the sole reliance on local frequency analysis does not guarantee the detection of all dynamic

tokens. If the same dynamic token is repeated as many times as static tokens, it will be misclassified

by ULP. One way to address this is to improve the pre-processing step by targeting such variables.

Additionally, as opposed to other log parsers, ULP makes no assumptions about the position of a

static or dynamic token. Drain, for example, assumes that a token that appears in the beginning of a

log message is a static token, which is not always valid. Furthermore, ULP is able to detect dynamic

tokens and log templates from a variety of unknown log files without using domain knowledge

regular expressions during the pre-processing stage such it is the case for Drain [64] and Logram

[13]. ULP leverages only generic regular expressions.

Another assumption made by Drain’s authors is that log events with a similar length belong to

the same group without necessarily checking the content of the events, which results in classifying

very different log events into the same group. ULP overcomes this problem by applying a rigorous

string matching technique to ensures that log events can only be grouped together if they share the

same static tokens. In Table 3.9, we summarized some of the parsing errors in Drain caused by the

assumptions in the design of the tool. As for Logram, one of its main limitations consists of the way

it deals with log events that appear only once. For these events, the whole log template is consid-

ered by Logram to be composed of only dynamic variables. Another limitation of logram is related

to the use of n-grams, which leads to the situation where n-gram sequences may be considered as
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dynamic variables if they do not occur as frequently as other n-grams. For example, in the log event

"Resolved 04DN8IQ.fareast.corp.microsoft.com to /default-rack", the 2-

gram "Resolved 04DN8IQ.fareast.corp.microsoft.com" appears only twice in the

log file as opposed to the 2-gram "to /default-rack" which appears more frequently, the

template generated for this log event is "<*> <*> to /default-rack", which is not valid

("Revolved" should be detected as a static token).

In some ways, our approach is closer in principle to that of AEL. It is possible to categorize log

events based on linguistic commonalities using the AEL approach. However, starting with simple

dynamic patterns, AEL uses hard-coded algorithms based on system information (e.g., IP addresses,

numbers, and memory locations) to identify more complex patterns. The generated log events are

then tokenized and binned based on the number of words they contain. This categorization evaluates

the log messages in each bin before abstracting them into templates for use elsewhere in the system.

The difficulty with AEL is that it assumes that events with the same number of words belong to

the same group, resulting in many false positives when analyzing log events. ULP makes use of

string matching similarity, which combines static tokens and the number of tokens in a log event, to

overcome this problem.

3.6 Threats to Validity

In this section, we discuss the threats to the validity of this study, which are organized as internal,

external, conclusion, and reliability threats.

Internal validity: Internal validity risks are those factors that have the potential to influence

our outcomes. It is possible that mistakes happened during the implementation and testing of ULP,

despite our best efforts. In order to reduce this hazard, we tested the tool on a large number of

log files and manually reviewed its results on a limited number of samples. In addition, we make

the tool and data accessible on Zenodo so that researchers may run the tool and check the results.

Finally, in order to determine the correctness of ULP, we had to look at the disparities between the

findings provided by ULP and the results acquired by the ground truth. This was accomplished in

part via scripts and in part through manual checks. All efforts were made to minimize the possibility
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Table 3.9: Example of flaws introduced by Drain parsing assumptions

Log event Drain grouping Ground truth grouping ULP grouping

attempt 123 TaskAttempt Transitioned

from NEW to UNASSIGNED

<*><*>Transitioned from

<*>to <*>
attempt <*>TaskAttempt Transi-

tioned from NEW to UNASSIGNED

<*>TaskAttempt Transitioned from

NEW to UNASSIGNED

task 123 Task Transitioned from NEW

to SCHEDULED

<*><*>Transitioned from

<*>to <*>
task <*>Task Transitioned from

NEW to SCHEDULED

<*>Task Transitioned from NEW to

SCHEDULED

task 123 Task Transitioned from

SCHEDULED to RUNNING

<*><*>Transitioned from

<*>to <*>
task <*>Task Transitioned from

SCHEDULED to RUNNING

<*>Task Transitioned from SCHED-

ULED to RUNNING

attempt 123TaskAttempt Transi-

tioned from RUNNING to SUC-

CESS CONTAINER CLEANUP

<*><*>Transitioned from

<*>to <*>
attempt <*>TaskAttempt Transi-

tioned from RUNNING to SUC-

CESS CONTAINER CLEANUP

<*>TaskAttempt Transitioned

from RUNNING to SUC-

CESS CONTAINER CLEANUP

attempt 123 TaskAttempt Tran-

sitioned from RUNNING to

FAIL CONTAINER CLEANUP

<*><*>Transitioned from

<*>to <*>
attempt <*>TaskAttempt Tran-

sitioned from RUNNING to

FAIL CONTAINER CLEANUP

<*>TaskAttempt Transi-

tioned from RUNNING to

FAIL CONTAINER CLEANUP

kernel time sync disabled 12:56 kernel time sync <*><*> kernel time sync disabled <*> kernel time sync disabled <*>

kernel time sync enabled 09:45 kernel time sync <*><*> kernel time sync enabled <*> kernel time sync enabled <*>

4
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of mistakes.

Reliability Validity:. The potential of reproducing this research is referred to as reliability

validity. The study’s evaluation, replication, and reproducibility are made easier by the use of an

open-source program. ULP and all the data used in this paper are available online on Zenodo5.

Conclusion validity. The accuracy of the collected findings corresponds to the validity risks

associated with the conclusion. We used ULP to analyze ten log files that have been commonly used

in comparable investigations in the past. The accuracy and efficiency experiments were thoroughly

reviewed to verify that the findings were appropriately interpreted, and we made every effort to do

so. The tool and data that were used in every phase of this study are made accessible online to

enable the evaluation and replication of our findings.

External validity: The generalizability of the findings is what is meant by external validity. We

tested our findings on a total of ten log files from a variety of different software systems. Ten log files

from the LogPai benchmark were used to evaluate ULP’s performance. As a result, we cannot say

with certainty that ULP’s accuracy would be the same if it were applied to other datasets. However,

since these datasets span a wide range of software systems from a variety of areas, they serve as

a useful testbed for log parsing and analysis techniques. We do not claim that our findings can be

applied to all available log files, particularly industrial and proprietary logs, to which we did not

have access when conducting this research. We are currently working with industrial partners to

apply ULP to their logs.

3.7 Conclusion

We presented ULP, a powerful log parsing approach and tool. ULP differs from other tools

in its design. It uses a novel way to distinguish between static and dynamic tokens of log events

by applying string matching similarity to create groups of similar log events, and local frequency

analysis to instances of the same group to distinguish between static and dynamic tokens. By doing

so, ULP is capable with high accuracy to extract log templates that can be used to recognize and

structure log events. Our approach confirms that is indeed possible to create an effective and efficient

5http://zenodo.org/record/6425919
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universal log parsers, which eliminates the need to develop specific parsers for various types of log

files. Moreover, ULP is readily usable by practitioners to support various maintenance tasks that

rely on log analytics. ULP is more accurate in parsing a representative set of 10 log files of the

LogPai project than four leading open source log parsers. ULP is very efficient too. It took 3

minutes to parse up to 4 million Log events. Future work should build on this work by focusing

on the following aspects (a) apply ULP to more logs, especially those from industrial systems, (b)

improve ULP by adding more regular expressions to identify other trivial dynamic variables such as

domain-specific variables, and (c) conduct a time algorithm complexity analysis to determine with

precision the best, worse, and expected running time of ULP, (d) improve the efficiency of the tool

when applied to log files with a large number of templates, with high variability, and (e) adapt ULP

to online parsing, which eliminates the need of a training set.
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Chapter 4

AML: A Novel Accuracy Metric for Log

Parsing Evaluation

”To measure is to know. If you cannot

measure it, you cannot improve it.”

— Adapted from Lord Kelvin

Bridging ULP to AML: Having established a high-performance approach to log parsing through

ULP, the next critical step is to rigorously assess its effectiveness alongside other existing methods.

Although ULP offers significant gains in both speed and scalability, meaningful comparisons re-

quire metrics that capture more than just computational efficiency. Traditional evaluation methods

often overlook subtle but impactful mistakes, such as misclassified templates or missed tokens, that

can dramatically affect downstream analytics in AIOps environments. Thus, while ULP addresses

pressing performance needs, a dedicated, fine-grained measure of parsing accuracy remains essen-

tial to gauge its true contribution and guide further improvements. To fill this gap, the subsequent

chapter introduces the Accuracy Metric for Log Parsing (AML), a framework capable of evaluating

log parsers with the granularity and consistency necessary for modern, large-scale IT operations.
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By quantifying both omission and commission errors, AML ensures that the benefits of ULP are

not only theoretical but also verifiable in diverse and evolving real-world scenarios.
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I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed, ”AML: An accuracy metric model for effective

evaluation of log parsing techniques”, In Proc. of the Journal of Systems and Software (JSS),

Volume 216, 2024, 112154, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2024.112154.

Abstract: Logs are essential for the maintenance of large software systems. Software engineers

often analyze logs for debugging, root cause analysis, and anomaly detection tasks. Logs, however,

are partly structured, making the extraction of useful information from massive log files a chal-

lenging task. Recently, many log parsing techniques have been proposed to automatically extract

log templates from unstructured log files. These parsers, however, are evaluated using different

accuracy metrics. In this paper, we show that these metrics have several drawbacks, making it chal-

lenging to understand the strengths and limitations of existing parsers. To address this, we propose

a novel accuracy metric, called AML (Accuracy Metric for Log Parsing). AML is a robust accuracy

metric that is inspired by research in the field of remote sensing. It is based on measuring omis-

sion and commission errors. We use AML to assess the accuracy of 14 log parsing tools applied

to the parsing of 16 log datasets. We also show how AML compares to existing accuracy metrics.

Our findings demonstrate that AML is a promising accuracy metric for log parsing compared to

alternative solutions, which enables a comprehensive evaluation of log parsing tools to help better

decision-making in selecting and improving log parsing techniques.

51



4.1 Introduction

Logging is a common programming practice that developers use to reason about the runtime

aspects of a software system. Logs are generated by inserting logging statements into the source

code. Figure 4.1 shows an example of a logging statement taken from the Hadoop Distributed File

System (HDFS). The figure also shows the generated log event after executing this statement. A

log event typically has two sections, namely, the log header and the log message. The log header

contains information about the execution context, including the timestamp (e.g., 071203 283349

in the log event of Figure 4.1), the process ID (e.g., 127), the log level (e.g. INFO) and the logged

component of the system (e.g., dfs.DataNodeResponder). The log message contains static

text (e.g., Received Block, of size, from), and dynamic variables (e.g., blk -1680,

911, 10.234.11.201). Because logs can sometimes be the only data available to analyze a

software system’s behaviour, they are essential for a variety of software engineering tasks such as

anomaly detection and debugging [3, 4, 2? ], understanding system faults [3, 43, 4], performance

and quality analysis [127, 128, 43], operational intelligence [2? , 127, 129, 130], failure prediction[?

131], data leaks and security issues [51], and AI for IT Operations (AIOps) [1, 2]. Logs, however,

are partially structured [3, 131], making the extraction of useful information from massive log files a

challenging task [132, 133]. Log parsing techniques have been proposed to automatically extract log

templates (i.e., log structures) from unstructured log files. For the log event example in Figure 4.1,

the extracted log template is Received Block * of Size * from *, where the symbol *

indicates the position of a dynamic parameter. Note that the log header structure is not included,

since a log header usually follows the same format within a log file. Parsing a log header can be

done with a simple regular expression. This is not the case for log messages. A typical log file can

Logging Statement: LOG.info("Received Block"+ block id + "of size"

+ block size + "from" + ip)

Log Event: 071203 283349 127 INFO dfs.DataNodeResponder:

Received block blk -1680 of size 911 from 10.234.11.201

Log Template: Received Block * of Size * from *

Figure 4.1: An example of a logging statement, a log event, and the corresponding log template
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have thousands of log templates [50, 118].

4.1.1 Problem Statement

Many log parsing techniques and tools have been proposed to automatically parse log events1,

such as LogSig [134], LogCluster [1], AEL [135], Drain [136], IpLom [137, 138], Lenma [139],

LFA [140], LKE [28], LogMine [141], Molfi [142], Shiso [143], SLCT [144], Spell [21], Logram

[145], and recently ULP [30]. These tools use a range of methods including heuristics, mining fre-

quent patterns, natural language processing, clustering, or a mixture of many of these. However,

these parsers have been evaluated using different accuracy metrics including Grouping Accuracy

[146], Parsing Accuracy [145], and Template Accuracy [147]. These metrics have several draw-

backs. For example, parsing accuracy is sensitive to the number of log events associated with log

templates. A high parsing accuracy may not reflect the ability of a parser to detect every template of

the log file. We discuss in more detail existing accuracy metrics and their limitations in the related

work section. Without a reliable and consistent evaluation mechanism, it is difficult to understand

the strengths and limitations of log parsing approaches, such as why these tools perform well on

some log files but poorly on others. In addition, the absence of a reliable evaluation approach makes

it hard to understand how well log parsing approaches perform relative to alternative solutions, thus

hindering meaningful progress. Widespread adoption of log parsing tools will not be possible until

convincing empirical evaluations are obtained using a sound accuracy measurement approach.

4.1.2 Motivation

In the domain of log parsing, consistent accuracy is not just about achieving high percentages;

it is also about ensuring the reliability and robustness of the measurement methodologies. A signifi-

cant concern arises when these accuracy measurements fail to articulate precisely how a log event is

determined as correctly parsed. Often, such determinations are made manually, introducing poten-

tial biases and inconsistencies. This lack of standardized assessment criteria poses challenges when

comparing different tools or methodologies. Even marginal inaccuracies in parsing, as slight as 4%

of the total, can have profound implications on performance, potentially leading to repercussions

1In the remaining parts of the paper, we use the terms log messages and log events interchangeably.

53



magnified by an entire order of magnitude [79].

The difficulties in measuring the accuracy of log parsing techniques are underscored by the sig-

nificant variations observed in evaluations of DRAIN, a widely used log parsing technique. The

disparities in reported accuracy are not trivial, particularly as some assessments indicate an effec-

tiveness gap exceeding 4%. For instance, when evaluating the parsing of the Proxifier system logs,

there is a notable discrepancy in results. He et al. [136] and Dai et al. [145] cite commendable

effectiveness reflected by 99% and 93% respectively, yet the same assessments from Zhu et al.

[146] and Sedki et al. [30] paint a contrasting picture, indicating substantial room for improvement

with accuracy scores of 53% and 38%, respectively. These variances highlight the complexity and

challenges associated with obtaining consistent accuracy measurements in log parsing.

4.1.3 Contributions of the Paper

In this paper, we introduce AML (Accuracy Metric for Log Parsing), a reliable and yet simple

accuracy metric for log parsing. AML can be used to assess the accuracy of a log parser at both the

template and log file levels. Inspired by the concept of thematic accuracy in the area of remote sens-

ing ([148], [149], [150]), AML is designed to measure omission and commission errors of a parser.

At the template level, omission errors occur when a parser fails to detect log events associated with

the template. Commission errors occur when the parser detects excessive log events. Omission and

commission errors can be computed at the level of the entire log file by measuring the number of

missing or excessive templates in the log file. The best parser would be the one that minimizes

errors of commission and omission at both the template and log file levels. AML is agnostic to the

distribution of log events across templates, a known problem with the parsing accuracy metric that

is widely used in the literature. Moreover, AML and its components can be used to analyze the

sources of parsing faults. This can help practitioners dig deeper into each template to understand

the root causes of parsing errors, hence performing a critical evaluation of the parser’s performance.

We use AML to measure the accuracy of 14 log parsers when applied to parse 16 log file datasets

from the LogHub benchmark [151]. We also examine how AML compares to other accuracy met-

rics. Our results reveal that AML is a powerful and simple accuracy metric for log parsing that

not only provides adequate insight into the performance of a log parser as opposed to alternative
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accuracy metrics but can also guide root cause analysis of parsing errors with the ultimate objective

of improving parsing tools.

4.1.4 Paper Organization

This paper is structured as follows: In Section 4.2, we provide an overview of existing log

parsing accuracy metrics and discuss their limitations. Section 4.3 delves into the details of the

novel AML, explaining its methodology and capabilities. In Section 4.4, we apply AML to assess

the accuracy of 14 log parsing tools, presenting our methodology. Section 4.5 presents the results

of our study and provides an in-depth analysis of the outcomes. Our insights into future research

directions and potential improvements are discussed in Section 4.6. Finally, we summarize our

findings and contributions in Section 4.10, concluding the paper.

4.2 Related work

Log parsing is a prerequisite for log analysis tasks. In recent years, log analysis has received

considerable attention from researchers and practitioners. El-Masri et al. [33] conducted an exten-

sive review of 17 log parsing tools. The authors classified these tools using a quality model that

focuses on the following aspects: coverage, delimiter independence, efficiency, system knowledge

independence, execution mode, parameter tuning effort required, and scalability. Zhu et al. [146]

presented another comprehensive survey of log parsing tools. The authors compared the perfor-

mance of 13 parsing tools using grouping accuracy. However, both surveys did not compare the

various accuracy metrics used by the log parsers.

More recently, Khan et al. [147] evaluates and compares techniques for log message template

identification in real-world logs. The study proposes three guidelines: using appropriate accuracy

metrics, performing oracle template correction, and analyzing incorrect templates. The analysis of

incorrectly identified templates provides insights on the limitations of individual techniques and of-

fers potential directions for improvement by identifying the types of incorrectly identified templates

such as over-generalized (OG), under-generalized (UG), and mixed (MX). Similar to [147], our

study identifies critical gaps in the existing log parsing accuracy metrics. However, we extend these
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observations by offering a metric that not only identifies inaccuracies but also provides a method-

ological basis for addressing them, which was a limitation in the previous studies. The remaining

part of the related work section is a review of existing log parsing accuracy metrics, namely Group-

ing Accuracy, Parsing Accuracy, Edit Distance, and Template Accuracy. To illustrate how these

metrics work, we use the fictive ground truth log file shown in Table 4.1. This file consists of ten

log events (E1, E2, ..., E10), which are parsed into three event templates (T1, T2, and T3). The

ideal parser would be one that recognizes these templates and only these templates, as well as the

log events and only the log events associated with each template.

4.2.1 Grouping Accuracy

Grouping accuracy (GA) is used mainly by tools such as Drain [136] and AEL [135] that treat

the log parsing problem as a clustering problem. GA evaluates the accuracy of log template identifi-

cation, conceptualized as a clustering process where log messages pertaining to different events are

grouped into distinct templates. GA assesses whether the log messages grouped under a common

identified template by the parsing tool match the grouping defined in the ground truth. Specifically,

GA is quantified as the proportion of log messages that are ”correctly parsed” relative to the total

number of log messages in the dataset. A log message is deemed ”correctly parsed” under the GA

metric if it is grouped with other log messages in a manner that is consistent with the ground truth

clustering. In practice, GA provides an indication of how well a log parsing tool can identify and

Table 4.1: Legend and Running example/Ground truth

Event Ground-truth

E1 T3

E2 T2

E3 T3

E4 T1

E5 T2

E6 T3

E7 T1

E8 T2

E9 T1

E10 T2
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Table 4.2: Scenario used to calculate GA

Event Parsing Result

E1 T3

E2 T4

E3 T3

E4 T5

E5 T4

E6 T5

E7 T4

E8 T3

E9 T3

E10 T3

Table 4.3: Scenario used to calculate PA

Event Parsing Result

E1 T5

E2 T2

E3 T1

E4 T1

E5 T3

E6 T3

E7 T1

E8 T2

E9 T1

E10 T2

Table 4.4: Scenario used to calculate PTA/RTA

Event Parsing Result

E1 T3

E2 T4

E3 T3

E4 T1

E5 T2

E6 T3

E7 T1

E8 T5

E9 T1

E10 T6
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group log messages into correct templates as defined by the ground truth, without necessarily con-

sidering the exact textual match or structure of the templates themselves. It focuses on the effective

grouping of log messages into coherent clusters or templates, reflecting the tool’s ability to accu-

rately segregate logs based on their underlying events.GA focus on the number of clusters a parser

can recover that are fully identical to the templates in the ground truth. GA is measured as shown in

Equation (2). The metric consider only those groups that exactly match their corresponding ground

truth groups in terms of content. Specifically, the formula ensures that each log message in an iden-

tified group is counted only if it forms a part of a group that exactly corresponds to a ground truth

group:

GA =

∑n
i=1 correctly grouped messagesi

total number log messages
(2)

Where correctly grouped messagesi represents the number of log messages in the i-th group

that are grouped exactly as per the corresponding ground truth template.

For example, assume that parsing the fictive log file used as ground truth using a given log

parser results in three clusters T4, T5, and T3, which contain the events shown in Table 4.2. From

this table, we can see that the only template that was recovered is T3 by recognizing events E1 and

E3. In this case, GA = 1∗5/10 = 50%. where 1 is the number of correctly identified log templates,

5 is the number of log events in cluster T3, and 10 is the total number of log events. Note that when

using GA, it does not matter if E8, E9, and E10 were mistakenly detected as part of T3. The metric

considers a template to be recovered as soon as it recognizes at least one of its log events. This

metric has many drawbacks. First, it does not account for log events that are properly parsed but it

just happens that the approach was not able to group these events in the right cluster, i.e., with other

similar events (like E6, which should be with the group of log events associated with template T3).

Another issue is related to the fact that this metric evaluates the parser without checking if the logs

are associated with the correct log template (for example, E8, which is supposed to be associated

with T2).
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4.2.2 Parsing Accuracy

Several parsers such as Spell [21], Logpunk [152] define the accuracy of a parser as the ratio of

the total number of log events that match the string representation of the template in the ground truth

word by word (K) to the total number of events in the ground truth (N). This is known as Parsing

Accuracy (PA) and is calculated as shown in Equation (3).

PA =
K

N
(3)

The outcome of parsing a log event is considered correct if and only if it corresponds to the same

template of log events as the ground truth. For example, assume that the result of parsing the log

events shown in the fictive log file is the one shown in Table 4.3. We obtain PA = 7/10 = 70%,

because three log events, namely E1, E3, and E5, were not parsed correctly. PA is simple to compute

but tends to be sensitive to the number of events in the log, which can be misleading when there

are many repetitive events. hence, PA can be very highly sensitive to the distribution of log events

across templates. In addition, PA does not show if the log parsing method generates more templates

than the ones in the ground truth. Parsing Accuracy (PA) treats incorrectly adding extra templates

or log entries and failing to recognize required templates or log entries similarly. This approach can

obscure the specific weaknesses of a parser by not adequately distinguishing between fundamentally

different types of errors. Consider a scenario where the ground truth for log messages specifies

grouping into two templates:

• Template T1: Contains messages A, B, and C.

• Template T2: Contains messages D and E.

Assume two different outcomes from two parsers:

(1) Parser 1 Outcome:

• Correctly identifies T1 with messages A, B, C.

• Fails to identify T2, omitting messages D and E entirely (omission), and parse them as

T1.
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(2) Parser 2 Outcome:

• Correctly identifies T1 with messages A, B, C.

• Incorrectly groups messages D and E into a new, non-existent Template T3 instead of

T2 (commission).

In this example, both parsers fail to handle all the log messages as per the ground truth:Parser 1 omits

messages D and E entirely, failing to include them in any group. Parser 2 misplaces messages D and

E into an incorrect template, creating an unnecessary grouping. PA would compute the accuracy for

both scenarios by considering the proportion of correctly parsed messages to the total messages:

PA =
Number of Correctly Parsed Messages

Total Number of Messages
(4)

Despite different types of errors, PA yields the same score for both scenarios. PA does not differ-

entiate between the nature of the errors—omission versus commission. Both types of errors reduce

the PA score, but the metric does not indicate whether the error was due to missing data or due to

additional, unnecessary data. This equal treatment of fundamentally different errors could obscure

important distinctions in a parser’s performance. For systems where missing data is more critical

than additional data , or vice versa, PA might not provide enough information to accurately assess

the log parser’s suitability or reliability.

4.2.3 Edit Distance

The edit distance metric assesses the alignment capability of a parsing method with respect to

matching log templates to their respective log messages in a dataset [153]. The primary goal of this

metric is to minimize the difference between the parsed and the ground truth log templates. The

edit distance is the minimum number of operations (insertions, deletions, or substitutions) required

to transform one string into another within a log event. Given two log lines log1 and log2 of lengths
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m and n respectively, the edit distance d between them is defined as:

d(log1, log2) =



























1 + min{d(log1[1..m], log2[1..n− 1]),

d(log1[1..m− 1], log2[1..n]),

d(log1[1..m− 1], log2[1..n− 1])}

d(log1, log2) =















































m if n = 0,

n if m = 0,

d(log1[1..m− 1], log2[1..n− 1]), if

log1[m] = log2[n]

For log1: ”ERR: File not” and log2: ”ERR: File found”, the computation can be broken down

as:

d(”ERR: File not”, ”ERR: File found”) =

1 + d(”ERR: File no”, ”ERR: File foun”)

d(”ERR: File no”, ”ERR: File foun”) =

1 + d(”ERR: File n”, ”ERR: File fou”)

d(”ERR: File n”, ”ERR: File fou”) =

1 + d(”ERR: File ”, ”ERR: File fo”)

d(”ERR: File ”, ”ERR: File fo”) =

2 + d(”ERR: File ”, ”ERR: File ”)

Further computations would result in a distance of 0 since the rest of the strings are identical.

Thus, the edit distance between ”ERR: File not” and ”ERR: File found” is 3. This metric can

be invaluable in template-based log matching, providing a flexible measure that can accommodate

slight deviations from templates due to variable parts in log messages. However, the computational

efficiency of employing the edit distance in this context is a critical consideration. For a log message
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of length m and a template of length l, the traditional dynamic programming approach to compute

the edit distance requires O(m× l) time.

Given the extensive volume of log messages generated in real-world systems and the potential

diversity of log templates, this computational cost can become significant. For example, if a system

produces thousands of log entries per second and uses hundreds of templates, real-time or near-real-

time analysis could be challenging.

The authors haven’t clearly specified a strategy to upscale this metric from individual log-

template matches to a comprehensive file-level evaluation. A straightforward proposition could

be averaging the edit distances across all log-template pairs in a file. However, this simplistic aggre-

gation might not capture the nuanced variations and dependencies within logs, especially if there are

a multitude of templates involved and the distribution is not balanced. Moreover, such an averaging

approach would compound the computational cost even more.

4.2.4 Template Accuracy

Recently, Khan et al. [147] proposed a new metric, called Template Accuracy. In this novel

metric, a template is correctly identified from log events if and only if it is token-for-token identical

to the one found in the ground truth. The identified template must be the same as the template

associated with the messages for which it was identified. The authors introduced two Template Ac-

curacy metrics: Precision-TA (PTA) and Recall-TA (RTA), which are based on standard information

retrieval metrics precision and recall. PTA is defined as the ratio of correctly identified templates

(O) to the total number of identified templates (L), which indicates the precision of the parsing

technique at the template level and is calculated as follows:

PTA =
O

L
(5)

Recall of the parsing approach at the template level is indicated by RTA, which is defined as the

ratio of correctly identified templates (O) over the total number of templates in the ground truth (N).

RTA =
O

N
(6)
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Consider the result of the parsing shown in Table 4.4. The number of correctly identified templates

is calculated by looking at the correct associations made by the parser, here T1 and T3, because the

log messages were parsed correctly and associated with the right log template. This means that the

number of correctly identified templates (O) is 2. The total number of identified templates (L) is 6

(T1, T3, T4, T5, and T6), and the total number of templates in the ground truth (N) is 3 (T1, T2,

and T3).

PTA = 2/6 = 33%. (7)

RTA = 2/3 = 66% (8)

The template accuracy metric does not consider the number of events correctly associated with each

template. In fact, this number is not included in the calculation of the template’s accuracy to avoid

introducing any biases. This metric provides little information about why the accuracy is low or

which log events were wrongly parsed.

4.2.5 Discussion

As we showed in this section, existing log parsing accuracy metrics have many shortcomings

that affect the evaluation results of log parsing tools. GA does not consider whether log events are

correctly parsed or not. It only looks at the overall number of templates that were identified. PA is

sensitive to the distribution of log events across templates, which can be inflated due to repetitions of

the same log events. This metric is also biased by the presence of predominant templates (templates

with a considerably large number of events).

The focus of the edit distance is limited to the pairing of log templates, overlooking broader

patterns within the entire log files. This narrow scope creates ambiguity in aggregating results for

evaluating the accuracy of parsing an entire log file. Furthermore, the computational cost, especially

for massive log outputs and varied templates, can be substantial. For these reasons, we decided

to exclude the edit distance when comparing AML to existing log parsing accuracy metrics (see

Section 4.5.4).

PTA and RTA take a different approach by focusing on the number of templates that are correctly

identified. They do not provide sufficient insight as to the number of log events that are correctly
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parsed. These metrics are also not easy to interpret. One has to decide whether to favor precision or

recall to assess the accuracy of a parser. In addition, none of these metrics can help with root cause

analysis of potential parsing errors.

AML addresses these shortcomings by providing a more comprehensive approach for evaluating

log parsing accuracy. Unlike PA, GA, RTA, and PTA, AML measures the number of errors at both

the template and file levels. AML is not sensitive to the distribution of log events across templates

either. Moreover, AML can be used by developers to analyze the sources of parsing errors.

4.3 AML: The Proposed Accuracy Metric for Log Parsing

In this section, we present AML to assess the accuracy of a log parser. AML is inspired by

the concept of thematic accuracy for remote sensing applications [148]. Remote sensing is a spe-

cialized field of study that uses satellites and cameras to produce maps and images of the Earth,

enabling us to understand various phenomena such as environmental changes, and patterns of land

areas, among others [148]. Remote sensing techniques resort mainly to classification algorithms

to detect areas of land cover and represent them as maps. Assessing the accuracy of the produced

maps is not a straightforward task and has been the topic of many studies in the remote sensing

literature [148]. A typical map contains different categories of data. For example, a climatic map

can show the temperature, cloud cover, rain precipitation, relative humidity, etc. A robust accuracy

metric should measure not only the overall quality of the map but also the individual quality of each

category it comprises. This multi-level classification problem is difficult to assess using traditional

classification measures such as the F1-score, which focuses on one level of classification. Aggregat-

ing multiple category-level F1 scores through micro-averaging or similar data analytic methods in

order to assess the overall quality of the entire map may result in a metric that is complex to interpret

because of the different types of data used in each category. The introduction of the AML metric

is prompted by the complexities inherent in evaluating multi-level classification systems, such as

log parsing, which are not adequately addressed by traditional metrics like F1-score, precision, and

recall. Traditional metrics typically assess performance at a singular classification level and may

not effectively capture the nuances of hierarchical or multi-category systems. In log parsing, we
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often deal with multiple categories and sub-categories of logs, each with potentially differing levels

of importance and distinct characteristics. Traditional metrics such as F1-score, which combine

precision and recall in a harmonic mean, focus primarily on a single level of classification accuracy.

They do not account for the impact of correct or incorrect classifications across different log cate-

gories in a way that reflects their overall importance or contribution to system performance. AML

provides a nuanced view by integrating performance across multiple levels of log classification. A

key distinction of AML lies in its treatment of excessive templates. Traditional metrics like preci-

sion and recall do not penalize the presence of excessive, unnecessary templates generated by a log

parser. AML, however, incorporates a penalty for such inaccuracies, which is critical for assess-

ing the overall quality and usability of parsed logs. Excessive templates can lead to inefficiencies

and increased computational costs in downstream processing, making their consideration essential

in the metric. AML is designed to handle the variability and complexity of data seen in different

categories of logs. It adjusts its evaluation based on the nature of the data in each category, some-

thing that micro-averaged F1 scores might oversimplify, leading to a metric that can be difficult to

interpret in a multi-faceted analysis.

In addition, because maps are approximate representations of the real world, they are expected

to contain errors. Map producers and users are more interested in knowing how accurate a map

is by measuring the errors it contains [150]. To achieve this, many thematic accuracy metrics rely

on the concepts of omission and commission errors. An omission error occurs when a map omits

an element of a category. A commission error happens when the map contains more data than the

actual category. Omission and commission errors can be computed at the level of specific categories

or at the level of the entire map. Errors or omissions and commissions at the map level occur when

the algorithm either excludes certain categories or detects an excessive number of categories. The

best remote sensing algorithm is the one that minimizes omission and commission errors at all levels

of assessment.

By analogy, we can think of a log file as a map and event templates as categories of the map. We

can then compute the number of omissions and commissions at both the template and log file levels.

AML uses a simple mechanism to aggregate errors of omission and commission at both levels into

a single and intuitive metric. To explain how AML works, let us consider the example in Table
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Table 4.5: Ground truth and parsing outcome

Template Ground Truth Log Events Parser’s Outcome

T1 E1, E2, E3 E1, E2, E3

T2 E4, E5, E6, E7, E8 E4, E5, E6

T3 E9, E10 E7, E8, E9

T4 E11, E12 -

T5 (excessive template) - E10, E11, E12

4.5. In this table, we show an example of a ground truth log file where each log event E1 to E12 is

associated with a log template T1 to T4. We also show the results of a fictive parser when parsing

the log file. In this example, the parser made the following errors:

• Omission errors at the template level: The parser did not detect E7 and E8 in Template T2,

and did not detect event E10 in T3.

• Commission errors at the template level: The parser wrongly assigned E7 and E8 to T3, which

are two excessive events.

• Omission errors at the file level: The parser omitted to detect the entire template T4.

• Commission errors at the file level: The parser detected an excessive template T5, which did

not match any template in the ground truth.

Although both T1 and T5 templates show an ErrO of 0, their contexts differ significantly. T1 is

an ideal scenario where the parser perfectly matches the ground truth. T5, termed as an ’excessive

template’, shows no ground truth events, and thus, by definition, there cannot be any omission;

however, it falsely introduces events, hence the ErrC of 1. These examples highlight that ErrO

alone does not capture the presence of invalid log events. Although T1 and T4 have both ErrC at 0,

T1 demonstrates a scenario with perfect parsing (no errors), while T4 shows a complete failure to

parse any events despite their presence in the ground truth. T4’s critical issue is captured by ErrO

(1), which indicates a total omission. This observation points out that neither ErrO nor ErrC indi-

vidually provides complete error information and underscores the necessity of using these metrics

together, complemented by additional measures such as the ICSI shown in the table, to provide a

more nuanced understanding of parser performance.
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Table 4.6: Computing errors of omission and commission for the example in Table

Template ErrO ErrC ICSI

T1 0 0 1

T2 0.4 0 0.6

T3 0.5 0.66 -0.16

T4 1 0 0

T5 0 1 0

4.3.1 Measuring Errors of Omission and Commission

Errors of omission, ErrOT i, for a template Ti is the ratio of the number of events of Ti that

the parser failed to detect as part of Ti to the total number of events in Ti. Equation 9 is used to

calculate ErrOT i where:

• False Negatives (FN) represent events from Ti that were detected by the parser as belonging

to other templates.

• True Positives (TP) represent events from Ti that were correctly detected by the parser.

ErrOT i =























FN
TP+FN

TP + FN ̸= 0

0 TP + FN = 0

(9)

Errors of omissions are calculated for all the templates that are in the ground truth and for any

excessive template that the parser has mistakenly identified (e.g., T5 in the example of Table 4.5).

ErrO for an excessive template equals zero. This is the special case where (TP+FN = 0).

ErrOT i varies from 0 to 1. A value that is equal to 0 means that the parser detected all the

events of the template Ti based on the ground truth or that the template Ti is an excessive template.

A value of ErrOT i equal to 1 means that the parser did not detect any events of the template Ti.

Table 4.6 shows the results of omission errors for templates T1 to T5. ErrOT1 = 0/3 = 0 because

the parser detected all events of T1 (i.e., no errors of omission). ErrOT2 = 2/5 = 0.4 because the

parser failed to detect E7 and E8. etc. For the special case of Template T5, ErrOT5 = 0 because it

is an excessive template.

The error of commission is the ratio of the number of events that were identified mistakenly as

belonging to the template Ti (i.e., false positives) to the total number of events that were identified
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as belonging to template Ti (the sum of true positives and false positives). A commission error ratio

ErrCT i for template Ti is calculated using Equation 10. Following the same logic as for errors of

commission, ErrCT i = 0 means that the parser did not detect any excessive log events. ErrCT i

that is strictly less than 1 means that the parser has detected excessive log events. ErrCT i = 1

indicates an excessive template altogether. For the special case where a ground truth template was

not detected by the parser (e.g., T4) we assign ErrCT i = 0.

ErrCT i =























FP
TP+FP

TP + FP ̸= 0

0 TP + FP = 0

(10)

For the example in Table 4.5, ErrCT1 = 0/3 = 0 because the parser did not detect any

excessive events. The same applies to T2. ErrCT3 = 2/3 = 0.66 because out of the three events

detected by the parser as associated to T3, two of these (i.e., E7 and E8) do not belong to T3.

ErrCT3 = 0 because T3 was not at all detected. Finally, all events of T5 are considered commission

errors since the entire T5 template is an excessive template.

4.3.2 Combining Errors of Omission and Commission

To assess the accuracy of a parser in identifying each template Ti we need to combine com-

mission and omission errors of Ti into one equation. One way to achieve this would be to use

the harmonic mean,2 similar to the way the popular F1-score is computed. The problem with the

harmonic mean is that it is sensitive to extreme values of any of the ratios that are involved in the

calculation. Consider for example a parser that results in ErrO = 50% and ErrC = 50% for a given

template, and another parser that results in ErrO = 90% and ErrC = 10% for the same template.

The harmonic mean will disproportionately penalize the second parser (H=0.18) when compared

to the first one (H=0.5). Another issue with the harmonic mean is that it only applies when all the

ratios are different from zero, which is not the case for ErrC and ErrO. Both ratios can be equal to

zero to account for situations where the parser omits to detect some templates or detects excessive

templates in the log file as discussed in the previous section.

2The harmonic mean H of n ratios x1 to xn is computed as H = n/(1/x1 + 1/x2 + ...1/xn)
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Our approach for combining errors of omission and commission is based on the Individual

Classification Success Index (ICSI) that was proposed by Koukoulas et al. [149] in the field of

remote sensing. ICSI is a composite index that combines linearly ErrO and ErrC ratios. Composite

indices are used in other fields [154] to combine multiple ratios in order to assess the overall quality

of the observed phenomenon. Examples include the heat index that combines temperature and

relative humidity, stock exchange indices for investment forecasting, and so on.

ICSI of Template Ti is calculated using Equation 11. AML aggregates the ICSIs of all templates

to measure the overall performance of a parser as we will show in the next subsection.

ICSIT i = 1− (ErrOT i + ErrCT i) (11)

ICSIT i varies from -1 to 1. A value of ICSIT i equal to 1 indicates best accuracy in the sense

that the parser was able to detect the events and only the events of Ti. A value of ICSIT i that con-

verges to -1 indicates poor performance of the parser for template Ti and reflects the situation where

both omission and commission error ratios converge to 1. When applied to the above example, both

parsers will result in the same ICSI value (ICSI = 1 - (0.5 + 0.5) = 1 - (0.9 + 0.1) = 0).

It should be noted that, in this paper, we assign the same weight to ErrO and ErrC when com-

puting ICSI. In practice, a developer may opt to assign varying weights based on the significance

assigned to each type of error. This can help developers select parsers depending on the type of

errors they make. For example, one may decide to choose parsers that make fewer omission errors

than commission errors or vice versa. Further studies should be conducted to investigate the need

for a weighted ICSI.

4.3.3 Calculating AML

The AML metric is calculated using Equation 12, where N represents the total number of tem-

plates in the ground truth, and D represents the number of detected templates. max(N, D) is used

to account for the situation where D is superior to N, meaning that the parser detected more templates

than needed (i.e., a commission error at the log file level).
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AML =

∑max(N,D)
1 ICSIi
max(N,D)

(12)

The AML score ranges from -1 to 1. A value of 1 indicates that the parser was able to parse

all the log events and assign them to the appropriate templates, as well as detect the templates and

only the expected templates. When the AML score is negative, it means that the parser performed

poorly, and the negative value indicates the extent of the poor performance. For example, an AML

score of -0.5 means that the parser has detected some expected templates and log events, but it has

also missed some templates and/or detected some incorrect log templates and the extent of these

errors is relatively significant. Note that if the ICSI values are mixed (some positive, some negative)

such that their sum equals zero, then the overall AML value will be zero. This can happen when

the parser has both omission and commission errors across multiple templates, and the errors cancel

each other out in terms of their impact on ICSI. Essentially, this means that the parser has correctly

classified some templates while making errors in others, resulting in a net neutral impact on the

overall AML score.

AML =
1 + 0.6− 0.16 + 0 + 0

5
= 0.35 (13)

One strength of AML is that not only it considers errors of omission and commission at the

individual template level, but also takes into account the overall accuracy of the parser in detecting

the correct number of templates (as we saw in the example with the log template T5). This means

that AML can identify situations where the parser may detect too many templates (commission

errors at the file level) or too few templates (omission errors at the file level), and it penalizes such

errors by reducing the overall AML score.

4.4 Study Setup

4.4.1 Log Parsing Tools

There are many log parsing tools that have been proposed in the last decade. Two comprehensive

surveys of these tools are provided by Zhu et al.[146] and EL-Masri et al. [33]. In this paper, we
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Table 4.7: The log parser used in this study

Parser Key characteristic Reference

Lenma Computes similarity to templates of existing clusters. [139]

Shiso Measure resemblance of new templates to clusters. [143]

LKE Distance-based clustering technique [28]

LogSig Identifies log events using a set of signatures [134]

Molfi Parsing as a multiple objective optimization problem [142]

ULP Pattern recognition technique based on text similarity [30]

SLCT Mining line patterns and outlier events from textual event logs [144]

Logmine Uses MapReduce to abstract heterogeneous logs [141]

LogCluster Extracts terms from the logs into tuples [1]

Spell Relies on the longest common sequence [21]

Drain Abstracts logs into event using a tree [136]

AEL Relies on textual similarity to group logs together [135]

IpLom Employs a heuristic-based hierarchical clustering [137, 138]

Logram Leverages n-gram dictionaries [145]

evaluate the accuracy of 14 log parsing tools, which include the 12 best-performing tools that were

surveyed by Zhu et al.[146] and EL-Masri et al. [33]. We add to this list Logram [145] and ULP

[30], which were recently released. We used the same parameter settings described by Zhu et al.

[146] and the authors of Logram [145] and ULP [30]. Note that many of these tools did not compile

due to bugs and the use of outdated libraries. We had to fix and update many of them. Table 4.7

lists the tools used in this study and their main characteristics, with reference to the key publications

that describe the tool. It should be noted that this list of parsers is not exhaustive and that we may

have missed to include some parsers. We do not see this as a significant threat to validity because

we believe that the selected parsers are representative of the state of the art.

4.4.2 Datasets

We evaluate the selected log parsing tools using 16 log datasets from the LogHub benchmark

[151], which is available online3. The datasets consist of a collection of log files, generated from

various systems, including Apache, HPC, and HDFS as shown in Table 4.8. They are used exten-

sively in the literature to compare the performance of log parsers.

Each log dataset from the LogHub benchmark used in this study comes with a subset of 2,000

3https://zenodo.org/record/3227177#.YUqmXtNPFRE
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log events that have been parsed manually. The log templates were identified and each log event

out of the 2,000 events was associated with a specific log template. This ground truth dataset is

meant for researchers to test their Log parsers and has been used by many studies (e.g., Drain [136],

Logram [145], ULP [30], Khan et al.[147]). Table 4.9 shows examples of templates that the logHub

creators have manually extracted from a subset of the 2,000 log events of the Apache system.

Table 4.8: Log datasets from LogHub benchmark used in this study

System Description Number of Templates

Distributed systems

HDFS Hadoop distributed file system log 14

Hadoop Hadoop mapreduce job log 114

Spark Spark job log 36

Zookeeper ZooKeeper service log 50

OpenStack OpenStack infrastructure log 43

Supercomputers

BGL Blue Gene/L supercomputer log 120

HPC High performance cluster log 46

Thunderbird Thunderbird supercomputer log 149

Operating systems

Windows Windows event log 50

Linux Linux system log 118

Mac Mac OS log 341

Mobile systems

Android Android framework log 166

HealthApp Health app log 75

Server applications

Apache Apache web server error log 6

OpenSSH OpenSSH server log 27

Standalone software logs

Proxifier software log Software logging tool 8

When measuring the accuracy of various log parsing techniques, we noticed some recurring

parsing errors, regardless of the tool that was used. An in-depth analysis of the log datasets re-

vealed that the labeling of the ground truth contained minor errors. For example, in the HDFS

log file, the block id variable is divided into two sections. Thus, the log event Received block

blk 11234 of size 910 from /10.250.14.224 is assigned to the log template Received

Block blk <*> of size <*> from <*> instead of Received Block <*> of size

<*> from <*>. This is because blk 11234 is a dynamic variable. Therefore, we remove the
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Table 4.9: An example of templates from the Apache log file ground truth

ID Template

1 jk2 init() Found child * in scoreboard slot *

2 workerEnv.init() ok *

3 mod jk child workerEnv in error state *

4 [client *] Directory index forbidden by rule: *

5 jk2 init() Can’t find child * in scoreboard

6 mod jk child init * *

blk string from the ground truth file. We made similar corrections to other files when the errors

were straightforward. Khan et al. in [147] noticed the same problem. They proposed an automated

approach based on a set of heuristics that uses regular expressions to correct the datasets. However,

their approach is heavily based on log parsing to automatically fix the dataset, which can lead to

errors and introduce serious internal threats to validity.

4.4.3 Research questions

We evaluate the accuracy of 14 log parsing tools using AML. The objective is to answer five

research questions:

• RQ1: How do existing log parsing tools perform using AML?

The answer to RQ1 provides insights into the performance of log parsing tools using AML. We also

examine the omission and commission errors made by these parsers.

• RQ2: How do dynamic variables and log message density impact the performance of log

parsing tools?

RQ2 investigates the impact of dynamic variables and log message density on log parsing tool

performance. Understanding these factors can help improve log parsing in diverse environments.

• RQ3: How does the performance of log parsing tools vary across different log datasets, and

which datasets pose unique challenges?

RQ3 explores the variation in log parsing tool performance across different datasets. Identifying

datasets with unique challenges can guide tool selection for specific applications.

• RQ4: How do these tools perform using AML compared to other accuracy metrics?
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Table 4.10: Results of parsing the 16 datasets of the LogHub benchmark in terms of average AML,

omission, and commission, and the total number of templates generated.

Log parser Omission(%) Commission(%) AML score(%) Number of Templates

ULP 26.40 38.09 35.72 1591

Drain 36.21 35.52 26.12 1920

SHISO 35.64 39.18 25.10 1483

AEL 34.41 41.14 24.51 1593

Iplom 38.37 36.66 23.52 1212

Spell 29.54 49.86 22.46 2238

Lenma 25.96 54.05 19.97 3171

LKE 46.65 36.50 16.85 2561

Logmine 29.60 53.67 16.76 3375

SLCT 55.61 28.80 15.57 777

Logsig 51.96 34.85 14.52 916

Molfi 35.72 54.59 9.70 3083

Logram 47.86 42.36 8.57 1889

Logcluster 19.26 74.99 5.68 4553

RQ4 compares log parsing tool performance using AML against other accuracy metrics. This anal-

ysis highlights the advantages of AML in providing a more reliable view of a parser’s effectiveness.

• RQ5: How can we use AML to analyze the sources of parsing errors?

RQ5 focuses on utilizing AML to identify the sources of parsing errors. By pinpointing these

sources, we gain valuable insights into the issues behind parsing errors, which may be challenging

to determine using traditional metrics.

4.5 Results

4.5.1 RQ1.How do existing log parsing tools perform using AML?

Table 4.10 shows the average AML accuracy of the 14 log parsing tools used in this study when

applied to the 16 datasets of the LogHub benchmark. Note that all the results of this study are

available online.4

We observe that ULP consistently performs better than the other log parsers achieving the high-

est average AML score of 35.72% across all log parsers, followed by Drain (26.12%), SHISO

4The detailed results of this study are available on https://zenodo.org/record/7872794#.ZEsHxezMJhE
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(25.10%) and AEL (24.51%). These tools are better than all tools in identifying the right templates

and reducing the number of log events that are assigned to the wrong templates. Logcluster, Molfi

and Logram achieve the lowest average AML (less than 10%).

Table 4.10 also shows the average error ratios of omission and commission, as well as the total

number of templates for all dataset generated by each tool. Note that the expected total number

of templates for all datasets is 1,363. Logcluster with an average omission error ratio equal to

19.26%, Lenma (25.96%), ULP (26.40%) and Spell (29.54%) have the lowest omission error ratios,

while LKE (46.65%), Logram (47.86%), Logsig (51.96%), and SLCT (55.61%) have the highest

omission error ratios (see also Figure 4.2 for a ranking of log parsers based on their omission error

ratio). Except for Logram, these tools (i.e. SLCT, LogSig, and LKE) rely on clustering techniques,

which may explain the high omission error ratio. Clustering-based approaches aim to group log

events that are similar into clusters that do not necessarily match the templates in the ground truth.

As for Logram, one of the main limitations that results in a high omission error ratio consists of the

way the tool deals with log events that appear only once. For these events, the whole template is

considered by Logram to be composed of only dynamic variables. Another major issue with the use

of n-grams in Logram is that an n-gram sequence may be considered a dynamic variable and hence

removed from the final pattern.

Take, for example, the following log event: Resolved 04DN8IQ.microsoft.com to

/default-rack. Because the 2-gram

Resolved04DN8IQ.microsoft.com has only 2 occurrences, whereas the 2-gram to /default-rack,

which appears more frequently, the template generated for this log event is not valid: * * to

/default-rack. The expected template is resolved * to *.

The ranking of the log parsing tools using the commission error ratio is shown in Figure 4.3.

LogCluster (average commission error ratio = 74.99%) is by far the technique with the highest

commission error ratio followed by Molfi (54.59%), Lenma (54.05%), and Logmine (53.67%).
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Figure 4.2: Ranking of log parsers by omission error ratio

4.5.2 RQ2. How do dynamic variables and log message density impact the perfor-

mance of log parsing tools?

To understand the performance of log parsing tools using AML, we decided to investigate how

dynamic variables and message density impact their performance. As a motivating example, af-

ter we analyzed manually more than 100 examples of log events that were misclassified by Log-

Cluster, We found that the high commission error ratio is mainly due to the way the tool handles

dynamic variables. We found that LogCluster does not always reproduce the exact position of the

dynamic variables as that of the ground truth. For example, LogCluster parses the HDFS log event

”Deleting block blk 1781953582842324563 file /mnt/blk 1781953582842324563”

as Deleting block file *{1,1} as opposed to ”Deleting block * file *, which

is the correct template. The dynamic variable blk 1781953582842324563 lost its position as

the third item in the log structure. We also found a situation where the tool completely omits dy-

namic variables. For example, the log event ”BLOCK* NameSystem.delete:
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Figure 4.3: Ranking of the log parsers based on the average commission error ratio
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Table 4.11: Log Parsing Techniques for Systems (HDFS to OpenSSH)

System HDFS Apache Android Windows Mac OpenStk Linux Openssh

ULP 0.5681 0.3333 0.4633 0.3866 0.4435 0.2800 -0.2802 0.0690

Drain 0.7055 0.3333 0.6605 0.3919 0.1709 0.0088 -0.2478 0.2439

SHISO 0.7500 0.3333 0.4313 0.2790 0.1455 0.1111 0.2274 0.1735

AEL 0.6663 0.3333 0.4976 0.3151 0.1356 0.1868 -0.1948 0.1731

Iplom 0.7100 0.3300 0.0000 0.2700 0.1400 0.2100 -0.1900 0.1600

Spell 0.7500 0.3333 0.7294 0.3312 0.1264 0.0123 -0.1964 0.2000

Lenma 0.7055 0.3333 0.6508 0.2976 0.1246 0.1155 -0.2550 0.1860

LogMine 0.6875 0.3333 0.3083 0.3247 0.1671 0.0097 0.2473 0.0107

LKE 0.7500 0.3333 0.7563 0.2877 0.0000 0.0242 -0.0767 0.0239

SLCT 0.2166 0.1429 0.7000 0.0506 0.0870 0.2679 0.0310 0.1260

Logsig 0.2760 0.1820 0.3450 0.1590 0.0720 0.2470 0.0400 0.1700

Molfi 0.0000 0.0000 0.1703 0.1770 0.0676 0.0018 0.2275 0.0612

Logram 0.0141 0.0009 0.3290 0.0806 0.1133 0.0000 0.0303 0.1172

Logcluster 0.0056 0.0000 0.1786 0.2414 0.0846 0.0023 -0.1906 0.0282

Average 0.4861 0.2373 0.4443 0.2566 0.1342 0.1055 -0.0591 0.1245

blk 2568309208894455676 is added to invalidSet of

10.251.31.160:50010” is parsed by LogCluster as ” BLOCK* NameSystem.delete :

is added to invalidSet of”, ignoring the dynamic variables

blk 2568309208894455676 and 10.251.31.160:50010. Dynamic variables can play an

important role in debugging tasks, as shown by He et al. [79]. A log parser should be able to clearly

recognize all the dynamic variables that are logged. Lenma, the tool with the third worst average

commission error ratio, seems to suffer from the same design problems as LogCluster. We found

many cases where Lenma, which also relies on clustering techniques, such as LogCluster, com-

pletely removes dynamic variables from the generated templates. For example, the Apache log event

jk2 init() Found child 6062 in scoreboard slot 9 is parsed as jk2 init()

Found child in scoreboard slot by Lenma. Both the dynamic variables 6063 and 9

were ignored.

Table 4.11 and 4.12 show the AML scores from a system’s standpoint. Systems like HDFS,

Android, and Zookeeper generally enjoy higher average AML values, indicating often better AML

performance with all the tested parsing techniques. While most techniques show variability in

their efficiency across systems, some display remarkable consistency. For instance, Apache demon-

strates a consistent value of 0.3333 across the majority of techniques (9 parsing techniques out of

78



Table 4.12: Log Parsing Techniques for Systems (Thunderbird to Proxifier)

System Thunder. Spark Hadoop Zookeeper BGL HealthApp HPC Proxifier

ULP 0.4103 0.3077 0.1684 0.6508 0.2542 0.7500 0.4774 0.4330

Drain 0.1871 0.2500 0.1361 0.3913 0.1443 0.0871 0.3433 0.3730

SHISO 0.1718 0.2241 0.1194 0.2333 0.0947 0.1681 0.0917 0.4612

AEL 0.1605 0.2100 0.1423 0.3100 0.1200 0.1500 0.2800 0.4400

Iplom 0.2200 0.2400 0.1300 0.4100 0.2000 0.1200 0.3700 0.4200

Spell 0.2350 0.2550 0.1150 0.3750 0.1550 0.1750 0.3600 0.4350

Lenma 0.1800 0.2300 0.1100 0.3200 0.1400 0.1300 0.3500 0.4150

LogMine 0.1950 0.2150 0.1000 0.3400 0.1300 0.1100 0.3400 0.4000

LKE 0.1700 0.2000 0.0900 0.3000 0.1200 0.1000 0.3300 0.3850

SLCT 0.1500 0.1800 0.0800 0.2800 0.1100 0.0900 0.3200 0.3700

Logsig 0.1650 0.1950 0.0700 0.2600 0.1000 0.0850 0.3100 0.3600

Molfi 0.1450 0.1750 0.0600 0.2400 0.0900 0.0800 0.3000 0.3500

Logram 0.1350 0.1650 0.0550 0.2300 0.0850 0.0750 0.2900 0.3400

LogCluster 0.1250 0.1550 0.0500 0.2200 0.0800 0.0700 0.2800 0.3300

Average 0.1780 0.2085 0.1006 0.3200 0.1270 0.1207 0.3400 0.4000

14). Linux exhibits high variability in results, suggesting its behavior is highly dependent on the

technique applied. On the contrary, systems like Apache maintain consistent outcomes across meth-

ods, indicating lesser sensitivity to the applied technique. to investigate the inner characteristics of

specific systems and how they may influence the parsing results. Specifically, we looked at how the

density of dynamic variables within a log file can impact the AML score. Specifically, we define

the density of dynamic variables as the ratio of dynamic variables to the total number of tokens in a

log message. As illustrated in Table 4.13, systems manifest diverse densities of dynamic variables.

Notably, high-density systems like HealthApp or Linux tend to exhibit lower AML scores in com-

parison to systems with lesser density such as Apache or Android. While density is a significant

factor in influencing AML scores, it’s paramount to consider it in conjunction with other variables

such as the number of templates and their distribution or frequency. As detailed in Table 4.8, the

template count and its distribution play a pivotal role in parsing complexity, indicating that density

should not be assessed in isolation.

In evaluating the performance of log parsers, it is crucial to understand how varying densities of

dynamic variables within log messages influence the accuracy of parsing, as measured by AML. The

Pearson correlation coefficient is employed to quantify the linear relationship between the density

of dynamic variables and the AML scores. This statistical method is chosen due to its effectiveness
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dynamic variables tends to complicate or facilitate the log parsing process, thereby influencing the

AML scores. For instance, a significant negative correlation would suggest that as the complexity of

logs increases (with more dynamic variables), the parsing accuracy decreases, posing challenges in

parsing effectiveness. The correlation analysis highlights the varying impacts of dynamic variable

density on the performance of different log parsers. It shows that the Average AML scores across

parsers have a correlation of approximately 0.036 with density, indicating a very weak positive re-

lationship. However, the complete analysis reflects a mix of weak positive and negative correlations

between the dynamic variable density and the AML scores across different log parsers. ULP has

a correlation of approximately -0.386 with dynamic variable density while Drain shows a correla-

tion of approximately -0.120 with variables density. SHISO show a slight positive correlation with

density indicating that as the density of dynamic variables increases, the AML scores might slightly

increase as well. AEL, and Iplom show negative correlations. This suggests that for these parsers,

higher density of dynamic variables could be associated with lower AML scores.

Log Parsers like ULP and SHISO that show a positive correlation likely have robust mechanisms

for template matching that can effectively distinguish and correctly classify these variables. Parsers

such as AEL might struggle with overfitting where the parser fits too closely to specific log patterns

observed in training, failing to generalize well to new or slightly different log entries. Alternatively,

these parsers might misclassify increased dynamic content as anomalies or errors.

In our analysis of log parsing inaccuracies impacting AML scores, certain dynamic variables

were identified as major contributors to errors. The most frequent issues include effectively delin-

eating log elements. Additionally, a significant number of errors are due to difficulties in parsing

special characters. Misinterpretations of key-value pairs using colons as delimiters also pose signifi-

cant challenges. Conversely, certain log attributes like MAC addresses, and URLs show less impact

on AML score. This suggests that while certain formats consistently challenge parsing accuracy,

others are managed more effectively, possibly due to parsers being optimized for these specific

types.
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AEL. The table shows that the results of parsing HPC, Linux, and Zookeeper logs vary significantly

compared to the other datasets. This may suggest that these log files are among the hardest to parse.

4.5.4 RQ4. How do these tools perform using AML compared to other accuracy

metrics?

Table 4.14 shows the results of comparing the accuracy of the tools using AML, Grouping

Accuracy (GA), Parsing Accuracy (PA), Precision Template Accuracy (PTA), and Recall Template

Accuracy (RTA). As discussed in Section 4.2.5, we excluded the edit distance in this analysis. As

we can see in the table, using GA, the accuracy of 7 out of the 14 tools (50%) is greater than

70% and 4 other tools have an accuracy of more than 60%. This is highly optimistic, considering

the fact that the same tools perform poorly using the other metrics. For example, the accuracy of

LogCluster using GA is 62.34%, while the accuracy of the same tool is 14.70%, 10.07%, 21.97%,

and 5.68% using PA, PTA, RTA, and AML respectively. Similar results can be observed for Molfi

and Logram. This is due to the fact that GA is primarily concerned with the way the log events are

grouped together independently of the correctness of the log templates, which explains the major

discrepancy between the measures. The difference between AML and PTA, as well as AML and

RTA cannot be clearly deduced from the table. Statistical tests are needed to measure the magnitude

of the difference between AML and these other metrics. We use Cliff’s δ effect size [155] to

assess the magnitude of the difference between the results obtained by AML and those of GA, PA,

PTA, and RTA. Cliff’s test is a non-parametric effect size measure that quantifies the magnitude of

dominance as the difference between two groups X and Y [155]. Cliff’s δ ranges from –1 to +1. A

Cliff’s δ that is equal to -1 means that all observations in Y are larger than all observations in X. It

is equal to +1 if all observations in X are larger than the observations in Y. A δ value that converges

to 0 indicates that the distribution of the two observations is identical.

Cliff’s delta, denoted as δ, is given by the following equation:

δ =

∑

i,j [xi > xj ]− [xi < xj ]

m× n
(14)

where the two distributions are of size m and n with items xi and xj , respectively. Here, [·] is the
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Iverson bracket, which is 1 when the contents are true and 0 when false [156].

The Cliff’s δ effect size can be grouped into ranges. The effect is considered small for 0.147

≤ |δ| < 0.33, moderate for 0.33 ≤ |δ| < 0.474, or large for |δ| ≥ 0.474 [155].

The analysis of the effect sizes using Cliff’s δ between AML and GA, PA, PTA, and RTA has

revealed varying degrees of differences. The effect size between AML and GA was found to be large

(Cliff’s δ = 1.00), indicating a significant difference between the two accuracy metrics. Similarly,

for PA, the effect size was also large (Cliff’s δ = 0.76). On the other hand, the effect size between

AML and PTA was moderate (Cliff’s δ = 0.43), suggesting a noticeable difference between the two

metrics. The effect size between AML and RTA was large (Cliff’s δ = 0.51), showing a significant

difference between the two metrics.

Additional statistical tests are needed to measure the magnitude of the difference between AML

and these other metrics. We use the Spearman Correlation Coefficient [155], which is a non-

parametric correlation coefficient calculated using Equation 15 where di represents the difference

between the two ranks of each observation and n represents the number of observations.

Rs = 1−
6 ∗

∑n
1 d

2
i

n(n2 − 1)
(15)

Spearman’s correlation coefficient ranges from -1 to +1. A positive correlation means that as one

variable increases, the other variable also tends to increase. A negative correlation means that as

one variable increases, the other tends to decrease. A strong correlation is reached when the value

of the Spearman coefficient is close to -1 or +1. Values close to zero indicate weak to no correlation.

The correlation analysis revealed that while AML has moderate to strong correlations with existing

metrics, it also shows distinct behavior in certain scenarios. For instance, the strong correlation with

PTA suggests that AML is robust in evaluating the precision of template-based parsing. However,

AML’s unique approach to evaluating log parsing performance also means it can capture aspects

that other metrics do not, especially in complex parsing scenarios where traditional metrics might

align but still miss critical errors.This is highlighted by its varying degrees of correlation across

the board. The table below presents the correlation coefficients between various metrics and AML:

The interpretation of correlation coefficients reveals nuanced insights into the relationship between
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AML and other metrics. The moderate to strong correlation of 0.675 with GA suggests that while

both GA and AML are related, AML extends beyond GA’s scope by capturing additional aspects

of log parser performance, particularly those not covered by simple grouping accuracy. Similarly, a

strong correlation of 0.721 with PA indicates that AML not only aligns well with traditional parsing

accuracy but also adds depth by addressing errors in template generation that PA might overlook.

Moreover, the strongest correlation of 0.799 with PTA underscores that both AML and PTA assess

similar characteristics of log parsers effectively. Although the substantial correlations are strong,

they do not indicate perfect alignment, AML is particularly effective in complex parsing environ-

ments where both the presence and correctness of parsed templates are crucial. AML addresses the

limitations of PA, which is notably sensitive to the frequency of templates. Additionally, unlike the

PTA and RTA, which focus solely on the number of correctly identified templates, AML extends its

assessment to ensure accurate parsing within these templates and across the entire log file.

4.5.5 RQ5. How can we use AML to analyze the sources of parsing errors?

One of the main advantages of AML over existing accuracy metrics is that it can be used to

guide practitioners in understanding the root causes of parsing errors. This is made possible by the

ability to see how a tool identifies each template by going into the level of log events associated with

the template. This debugging mode is not possible using other metrics. To illustrate this feature, we

take as an example the results obtained with AEL when applied to the Android log dataset. Table

4.16 shows sample templates from the Android dataset and the results of error ratios of omission

and commission, as well as ICSI. A software developer may choose to dig deeper into one of these

templates to understand the root causes of parsing errors. For example, for Template T22, of the

three expected log events in the ground truth shown below with ids 39, 1267, 1377, AEL was able

to correctly detect only two log events (an omission error ratio of 0.33). A tool that uses AML

can generate a report that points out the parsing faults. In the case of template T22, AEL did not

properly parse the log event 1267. The reason behind this is due to the presence of -1 dynamic

value, which confused the parser.

• 39: WindowManager: Application requested orientation 1, got rotation 0 which has compat-

ible metrics
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• 1267: WindowManager: Application requested orientation -1 , got rotation 0 which has

compatible metrics

• 1377: WindowManager: Application requested orientation 1, got rotation 0 which has com-

patible metrics

Using AML with its components, omission errors, commission errors, and ICSI, we analyzed

hundreds of log events to understand the root causes of most parsing issues. We’ve identified some

prevalent challenges that often culminate in parsing errors. These errors inevitably impact the over-

all accuracy of the log parsers as shown in Table 4.17.

One of the pivotal challenges is the inherent variability in the data types in logs. Tokens can

exhibit diverse formats, making it a complex task for log parsers to accurately differentiate between

dynamic and static parts. This variability is often manifested in elements like IPv4 and IPv6 to-

kens, domain names, and universally unique identifiers (UUIDs). Each presents a unique set of

characteristics that requires tailored parsing strategies.

Adding to the complexity are the intricate structures within the log events. Nested or non-linear

formats introduce an additional layer of complexity, making the extraction of relevant information a

non-trivial task. Multi-level nested tokens illustrate such complex structures that demand advanced

parsing techniques capable of unraveling the embedded information accurately.

Furthermore, the distinction and separation of dynamic and static tokens in log events are pivotal

factors that significantly influence the accuracy of log parsing. Each system might adopt a diverse

set of techniques for this separation, employing delimiters such as spaces, commas, or others to

distinguish between different types of tokens. It’s worth noting that many log parsing techniques,

including those cataloged in Loghub benchmark [151] 5 often necessitate the specification of these

delimiters during the pre-processing phase to streamline the parsing process.

Such diversity in separation methods underscores the necessity for log parsers that are not only

robust but also versatile. The ability to adapt to and efficiently process a variety of separation

techniques becomes instrumental in enhancing the precision and reliability of log parsing.

Log events are also characterized by their unusualness - the presence of unexpected tokens,

5https://zenodo.org/record/3227177#.YUqmXtNPFRE
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formats, or patterns. Such elements can trigger parsing errors if not aptly managed. Instances like

non-standard MAC address formats or URLs with query parameters are cases in point, requiring

specific attention to ensure accurate parsing.

4.6 Discussion on improving log parsing

This study provided us with important insights on how to improve log parsing. We discuss key

lessons learned in this section as well as opportunities on improvement of the AML metric. The

ultimate objective is to encourage the adoption of AML for effectiveness evaluation of log parsing

techniques.

4.6.1 Implications of AML in the development of future log parsers

Using AML, developers of log parsers can focus on reducing errors of ommision and commis-

sion both at the log message and template levels. This can be done in several ways. The first one

is to consider similarity instead of exact match when assessing the degree by which two log mes-

sages below to the same template. Based on our experiments, we found that many parsing errors are

caused by extensive use of special and alphanumerical characters. Exact match will almost always

lead to errors. More on this in Section 6.3 where we discuss the concept of intelligent parsing.

Additionally, log parsers can use AML to test their parsers and identify areas where they fail the

most. For example, some parsers may be good at identifying log messages, but introduce many false

positives and new templates. Others may be good at detecting just the right number of templates,

but fail in associating log messages to these templates. The ommission, commission, and ICSI can

be readily used to assess the strengths and weaknesses of a parser.

4.6.2 Problems with logging practices

Parsing errors are mainly caused by the inability to distinguish between static and dynamic to-

kens. We found that this issue can be reduced if better logging practices are adopted. For example,

consider the following two log events of the HDFS dataset: transmit 1 2 3 and transmit

blk123. Parsing these events will lead to two templates, namely, transmit <*> <*> <*>
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and transmit <*> despite the fact that both events log the same information, which consists

of transmitting data blocks 1, 2, and 3. Another example would be in the HPC log events Fan

speeds ( 3552 3534 3375 **** 3515 3479) and Fan speeds (3552 3534 3375

11637 3515 3479. The inconsistencies in the way the logging statements corresponding to

these events are written tend to mislead most parsers we examined in this paper. For example, some

parsers mistakenly generated two different templates, namely Fan speeds (<*> <*> <*>

**** <*> <*>) and Fan speeds (<*> <*> <*> <*> <*> <*>). The lack of guide-

lines for logging has been reported in many studies such as the work of Keyur et al. [157] on the

practice of logging in the Linux system, and the work of Chen et al. [158] on the logging practices

in Java applications. We believe that improving logging practices by following some standardized

ways to write logs can lead to improved parsing.

4.6.3 Intelligent parsing

One possibility to prevent parsing errors would be to have a log parser that supports similar-

ity instead of exact match when comparing log events. For example, the two HPC log events

not responding and not-responding can be considered similar and therefore mapped to

the same template. We should also design parsers that can predict the structure of a log event

by learning a partial representation of the template. For example, for the log event Received

block blk 1687916 of size 910 from 10.240.15.214, it may be sufficient to rec-

ognize part of the template (let us say Received block * of) in order to classify unseen log

events. The remaining dynamic variables are still to be identified later. However, this is much

simpler to achieve than having to identify the exact template when dealing with a diverse set of

log templates. Partial matching should be exercised with care to avoid discarding important data

that can affect log analytics tasks. In addition to this, we found many instances where parsing can

be made accurate if the parser has the ability to recognize logs with similar semantics. For exam-

ple, the two log events packet sent to 16 and block sent to 45 from the HDFS log

dataset can be parsed correctly if we treat ”packet” and ”block” as synonymous since both logs refer

to ”data sent to a port number”. Semantic analysis of logs can further reduce ambiguities due to
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the inherent imprecision of natural language. Future research should focus on developing an intelli-

gent parser that considers the semantics of logs, perhaps by integrating natural language processing

techniques with log parsing. In addition, a good parser should be able to check for spelling errors,

acronyms, and other imprecisions pertaining to the use of natural language that almost always lead

to parsing errors.

4.6.4 Ground truth datasets to train the parsers

In this study, we used 2,000 log events from each dataset to test the parsers. These datasets

contain errors that have misled many of the parsers we used. For example, in the Mac log file,

the token CrazyIvan46! in the log event CI46 - Perform CrazyIvan46! is considered

static, while the token CrazyIvan46 refers to a username and, therefore, should be dynamic. An-

other example would be the case of the HDFS log dataset, where block ids such as blk 23333989

are sometimes labeled * and other times as blk *. The dynamic variables that appear frequently

are mistakenly parsed in the ground truth as static tokens. For example, the variable fecd:467f

appears 18 times in the Mac dataset without any change. It was parsed as a static token, while it

should be dynamic. Another common error in the ground truth consists of considering static vari-

ables, which are syntactically similar to dynamic variables, as dynamic variables. For example, in

the Hadoop log file, some parsers interpret the log event jetty-6.1.26 as * despite the fact that

jetty-6.1.26 refers to static content. This type of static token is the hardest to detect because it

bears most of the characteristics of dynamic variables. In this paper, although we have made every

effort to fix the ground truth of the datasets used in this study, we believe that cleaner and larger

ground truth datasets are desirable.

4.6.5 Weighted AML

The introduction of weights to the AML metric could enable a context-driven evaluation of log

parsing errors.

The allocation of higher weights to certain templates would underscore scenarios where missing

certain log events or templates is deemed more critical, possibly due to their role in security, system

performance monitoring, or other tasks.
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We can calculate the Weighted AML score using the formula:

WeightedAML =

∑max(N,D)
1 (WeightedICSIi)

max(N,D)
(16)

Assuming we are evaluating a log parsing tool for network security with a ground truth dataset of

five predefined log templates:

• Template A: Firewall Rule Updated - Firewall rule updated by user [username] for IP [IP]

• Template B: Suspicious Activity Detected - Suspicious activity detected from IP [IP]

• Template D: System Error - System error: [error message]

Template B, followed by D can be given a higher weight due to their sensitivity. Table 4.18 compares

normal AML to weighted AML.

4.6.6 Diagnostic insights in template identification

The AML model in this paper is built on the principle that precise template identification is

central to effective log parsing. We aim for a ”perfect match,” where every element of a parsed log

event aligns flawlessly with its ground truth. However, in the practical world of log parsing, partial

identifications are common and can be equally valuable. These are instances where not all dynamic

tokens are identified but substantial portions are, offering useful insights. In these cases, static

tokens within the log events maintain their categorization, illustrating a balance between accuracy

and completeness. While our focus is on reducing these errors, we acknowledge that the path to

perfection is paved with instances of partial identifications, each bringing us a step closer to optimal

log parsing.

Even though our current AML model does not incorporate partial identifications, practitioners

often find value in partial identifications as they can significantly reduce the manual workload,

making the parsing process more manageable and efficient.

In the landscape of log parsing metrics, the introduction and systematic analysis of partial iden-

tifications remain largely unexplored. By including partial identifications in the evaluation process,
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we believe future iterations of log parsing models will offer more nuanced, practical, and actionable

insights.

Each partial identification, in its unique way, draws us closer to a world where log parsing is not

just about perfection but about practicality and efficiency.

4.6.7 Threats to Validity

Internal validity: Threats to internal validity are associated with factors that may impact our

results. Many of the tools we used in this study contained bugs and old libraries. We had to fix these

bugs, and update the libraries. We tested the new versions thoroughly to ensure that the changes

we made did not impact the functionality of the tools so as to minimize potential internal threats to

validity. In addition, we corrected minor errors in the datasets as discussed in Section 4.4.2. We

carefully checked every log template and made sure that our corrections did not alter the log event

structure represented by these templates.

External validity: Threats to external validity are related to the ability to generalize our results.

To support generalizability, we used 16 log datasets generated from a variety of software systems

and experimented with 14 log parsing tools, which cover most of the tools that exist in the public

domain. Although more studies should be conducted to fully generalize our results, we believe that

this threat to validity is greatly minimized considering the number of datasets and tools we have

used in this paper.

Reliability validity: Reliability validity concerns the ability to replicate this study. To mitigate

this threat, we put all the data used in this paper online, including the detailed results of parsing 16

log datasets using 14 parsers. Data can be found in Zenodo :

https://zenodo.org/record/7872794#.ZEsHxezMJhE

4.7 Future Work

The soundness of AML is supported by its comprehensive evaluative scope, adaptability, quan-

titative rigor, and potential for empirical validation. AML distinctly evaluates errors of omission and
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commission, which are critical for understanding the nuances of information loss and misinterpreta-

tion in log parsing. While this paper establishes a foundation for evaluating log parsing tools using

the AML metric, there are additional validation strategies that we believe could further substantiate

the effectiveness of AML. However, these strategies fall outside the current scope of our research

and are suggested as directions for future work: Future research could include conducting empirical

studies to examine the correlation between AML scores and the success of downstream tasks such

as Anomaly Detection, System Monitoring or Predictive Maintenance. Additionally, incorporating

human evaluation can provide valuable insights into the practical utility of AML compared to other

metrics. Participants would perform typical log management tasks using outputs from parsers with

different AML scores. After task completion, participants could provide qualitative and quantitative

feedback on the ease of use, effectiveness, and overall satisfaction with the parsed data and benefits

in terms of task performance and data usability.

4.8 Replication Package

The datasets, scripts and results are available on Zenodo:

https://zenodo.org/record/7872794#.ZEsHxezMJhE
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4.10 Conclusion

In this study, we introduced AML, an innovative accuracy metric tailored for log file parsing.

AML uniquely assesses the accuracy of log parsers by quantifying both omission and commission

errors at both the template and log file levels, all encapsulated within a single metric. Through a

comprehensive evaluation, we have demonstrated that AML surpasses existing accuracy metrics in

terms of reliability and ease of use for log parsing tasks.
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Our extensive experimentation involved 14 log parsers applied to 16 log file datasets from the

LogHub benchmark, providing robust evidence of AML’s effectiveness as a superior accuracy mea-

sure. Furthermore, we conducted a comparative analysis, pitting AML against other established

accuracy metrics, highlighting its superiority in providing a more nuanced and dependable assess-

ment of log parsing performance.

Beyond its role as a reliable evaluation metric, AML offers an additional dimension of utility. It

empowers practitioners with the ability to dissect and comprehend the root causes of parsing errors,

opening up new avenues for troubleshooting and refinement in log parsing processes.

As we look toward the future, there exist promising directions for advancing AML and enhanc-

ing log parsing tools. Future research endeavors could explore the introduction of weighted consid-

erations for omission and commission errors or fine-tuning AML for specific log templates, thereby

tailoring the metric to specific application domains. Additionally, the evolution of log parsing tools

should incorporate intelligent parsing approaches that leverage semantics alongside syntax, address-

ing the complex and evolving nature of log data. Integrating natural language processing capabilities

could prove pivotal, especially when dealing with the inherent ambiguities and imprecisions found

in natural language logs, even in cases lacking standardized logging practices.
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Table 4.14: Comparison of the performance of tools using AML and other accuracy metrics.(%)

Parser AML GA PA PTA RTA

ULP 35.72 73.34 54.62 29.69 33.08

Drain 26.12 86.54 55.44 28.65 30.55

Shiso 25.10 64.82 24.53 16.75 17.08

AEL 24.51 75.94 52.56 25.99 28.13

Iplom 23.52 75.89 39.34 15.83 15.41

Spell 22.46 79.26 54.22 16.46 18.56

Lenma 19.97 73.33 29.18 16.47 23.38

LKE 16.85 60.18 9.97 11.23 12.72

Logmine 16.76 70.39 29.69 15.53 20.17

SLCT 15.57 59.28 45.71 21.84 16.04

LogSig 14.52 50.39 16.58 14.76 10.22

Molfi 9.70 60.10 10.85 9.07 11.20

Logram 8.57 55.47 25.74 13.04 14.46

LogCluster 5.68 62.34 14.70 10.07 21.97

Table 4.15: Correlation of different metrics with AML

Metric Correlation with AML

GA 0.675

PA 0.721

PTA 0.799

RTA 0.646

Table 4.16: An example of parsing results of AEL when applied to Android logs. ELE stands for

Expected Log Events and DLE stands for Detected Log Events

Template

ID

Identified Template ELE DLE Omission Commission ICSI

T22 Application requested orientation *,

got rotation * which has compatible

metrics

3 2 0.33 0.00 0.67

T23 applyOptionsLocked: Unknown ani-

mationType=*

2 2 0.00 0.00 1.00

T25 Bad activity token: *@* 1 1 0.00 0.00 1.00

T26 battery changed pluggedType: * 1 1 0.00 0.00 1.00

T27 cancelAutohide 15 15 0.00 0.00 1.00

T28 cancelNotification, cancelNotification-

Locked, callingUid = *,callingPid = *

2 2 0.00 0.00 1.00

T29 cancelNotification,index:* 23 3 0.87 0.00 0.13
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Table 4.17: Challenges in Log Parsing with Examples

Challenge Examples

Unseparated Token Sequence 2022-03-15T13:45:32+00:00[ERROR]

500InternalServerErrorID:123456

UUIDs or IDs ID:abcd1234efgh5678, ID:5678abcd-1234-efgh

Datetime Tokens Timestamp:[2022/03/15::13:45:32+00]

MAC Addresses Connected Device MAC=00-11-22-33-44-55,

MAC=00:11:22:33:44:55

URLs with Query Parameters GET https://example.com/api?user=123&status=active&

role=admin

Multi-level Nested Tokens Event [Timestamp:(2023-09-20 14:23:00)

Details:(Error:Failed to connect)]

Alphanumeric & Special Charac-

ters

EventID:#A1b2 c3! - User ’john.doe’ authentication

success

Delimiter Variations INFO [2023-09-20] - User:john.doe | IP:192.168.1.1,

Status=Active

IPv4 and IPv6 Addresses IPv4: 192.168.1.1,

IPv6: 2001:0db8:85a3:0000:0000:8a2e:0370:7334

Table 4.18: Comparison between Normal AML and Weighted AML

Aspect Normal AML Weighted AML

Metric Calculation
∑max(N,D)

1 ICSIi
max(N,D)

∑max(N,D)
1 (WeightedICSIi)

max(N,D)

Weighting Criteria Equal weight for all templates Custom weights based on log template im-

portance/criticality

Interpretation General performance assessment Context-driven analysis

Additional Information Limited insight into error impact Highlights specific template-related errors

Use Cases Standard evaluation Security or domain-specific evaluation
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Chapter 5

Taxonomoy of LECs

”Order and simplification lay the

foundation for mastery. Through structure,

we transform complexity into

understanding.”

— Adapted from Thomas Mann

From AML to Log Taxonomy: With AML providing a fine-grained lens for evaluating log parsers,

we gain new insights into the specific kinds of errors and inaccuracies that impede robust parsing.

While AML effectively captures both omission and commission errors, the root causes behind these

mistakes often trace back to the structural and contextual complexities of the logs themselves, prop-

erties that vary significantly across different applications and platforms. This realization naturally

leads us to explore the deeper characteristics of log data that can confound even well-validated

parsers. Accordingly, the next chapter introduces a taxonomy of log characteristics, outlining how
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diverse structural elements, from nested tokens to inconsistent delimiters, can systematically chal-

lenge parsing methods. This taxonomy not only illuminates why certain log formats prove partic-

ularly difficult, but also provides a framework for creating parsing strategies better aligned with

real-world logging variability.
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I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed and N. Ezzati-Jivan, ”Developing a Taxonomy

for Advanced Parsing Techniques,” In Proc. of the 33rd ACM/IEEE International Conference

of Program Comprehension (ICPC), Ottawa, ON, Canada, April 2025

Abstract :Logs are indispensable for debugging, anomaly detection, and failure prediction in soft-

ware engineering. However, the complexity and diversity of log data across different systems pose

substantial challenges to existing parsing methods. Despite efforts using heuristic-based, machine

learning, and neural network approaches, none have consistently achieved high accuracy across

diverse systems. This highlights a critical gap in understanding how log data characteristics and

patterns affect parsing effectiveness.

To address this challenge, our study conducts a comprehensive qualitative and quantitative anal-

ysis of 16 heterogeneous log datasets, documenting the structure, components, and sequence pat-

terns within these logs. From this analysis, we derive a detailed taxonomy that categorizes the

observed patterns, providing a new perspective on log data.

The resulting taxonomy offers valuable insights for developing next-generation log parsing tools

that are intelligent and adaptable, capable of handling the unique characteristics of diverse log for-

mats with improved accuracy.
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5.1 Introduction

Logs are generated during software execution by embedded logging statements, capturing a

wide range of events such as system errors, user activities, and operational status updates [115].

These logs play a crucial role in numerous software engineering tasks, including debugging [3, 43,

4], debugging and comprehension of system failures [44][45][46][47][8], testing and performance

analysis [48][37] [49], operational intelligence [8] [37][50][5], data leakage detection [51], failure

detection [46], failure prediction [8][? ],anomaly detection [3, 4, 2? ], and AI-driven IT opera-

tions [1, 2]. Their versatility makes logs an indispensable resource for maintaining the reliability,

performance, and security of software systems [? ].

Log parsing is a technique that is used to automatically extract structures (also known as tem-

plates) from heterogeneous and unstructured log events. Consider the log event illustrated in Fig-

ure 5.1; the corresponding log template would be Received Block * of Size * from .

Here, the * symbol represents dynamic tokens. One may think that extracting such structures can

be achieved using traditional regular expressions [117][61]. The problem is that typical log files

contains thousands of templates [50] [118] [47], which makes it almost impossible to use regular

expressions. In addition, as the system evolves, new structures emerge requiring constant and costly

domain-driven updates of the Log parsing algorithms [80] [132, 133].

The increasing importance of automated log parsing has driven the development of numer-

ous log parsers, utilizing diverse methodologies such as machine learning, pattern mining, natural

language processing (NLP) [12, 13, 14], and Large Language Models (LLMs) [15, 16, 17, 18], re-

flecting the growing interest in LLM-driven solutions. A comprehensive survey of these tools is

provided by El-Masri et al. [19]. Examples of notable log parsers include Drain [20], Spell [21],

SHISO [22], AEL [23], Lenma [24], LogSig [25], SLCT [26], IPLoM [27], LKE [28], LogMine

Logging Statement: LOG.info("Received Block "+ block id + " of

size " + block size + " from " + ip)

Log Event: 270423 283349 9876 INFO dfs.DataNodeResponder:

Received block blk -1680 of size 4536 from 10.163.23.167

Log Template: Received Block <*> of size <*> from <*>

Figure 5.1: An example of a logging statement, a log event, and the corresponding log template

99



[29], Logram [13], and ULP [30].

The lack of standardized guidelines and best practices for logging [31, 32] has led to significant

variability in log structures across different systems [33]. This diversity in log formats, coupled

with the ever-growing volume of log data [34, 35, 36], presents considerable challenges for log

parsing. Consequently, effective analysis and troubleshooting of systems become more difficult,

often hindering the speed and reliability of system diagnostics and maintenance [37, 38].

Achieving high accuracy across diverse log formats remains a persistent challenge for most

existing parsers[19, 77, 20, 13]. This difficulty is partly due to the predominant focus in research on

developing novel parsing algorithms, while insufficient attention has been given to understanding

the root causes of log parsing errors.

Existing research on software logging and log parsing can be broadly categorized into four main

areas: characterization studies (e.g., [61]), automation techniques [68], machine learning models

[9], and evaluation studies [74, 70]. Existing Characterization studies (e.g., [32]) primarily explore

logging practices from a coding perspective, examining how logging statements are created and

incorporated into software and their possible impacts. However, these studies do not sufficiently

focus on the analysis of generated log events or the specific characteristics that often lead to parsing

errors.

While these contributions have advanced log parsing capabilities, there remains a significant

gap in the understanding why log parsing yield many errors and a low accuracy overall. Few studies

have thoroughly investigated the root causes of these errors, despite their critical impact on down-

stream log analysis tasks, such as anomaly detection and failure diagnosis. Even minor parsing

inaccuracies, as low as 4%, can significantly impact performance, potentially resulting in effects

amplified by an entire order of magnitude [79].

In this study, we conduct a characterization study using 16 log datasets and eight log parsers

to reveal the LECs that lead to parsing errors. Using the open coding research methodology [159],

we group these LECs into categories to form a taxonomy of LECs that describes the components,

patterns, variables, and structures within log events that commonly cause parsing errors. We also

study the effect of LECs on parsing tools, and the difference between various datasets. The taxon-

omy provides a deep understanding of the complexity of log data, which can guide the development
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of advanced log parsing tools and better logging practices.

The remainder of this paper is structured as follows: In the next section, we present our method-

ology. Section III delves into the results where we describe the taxonomy of LECs, their impact on

log parsing tools, and the relationship between LECs and parsing errors across different datasets,

along with key insights that inform the future of logging. Section IV discusses the broader implica-

tions of our findings, followed by conclusions and directions for future research.

5.2 Methodology

In this study, our main objective is to create a comprehensive taxonomy of LECs that commonly

lead to parsing errors. Unlike previous research that evaluates specific log parsers, we focus on

identifying LECs that are consistently problematic across multiple parsers and datasets.

By analyzing errors generated by eight well-known log parsers on 16 diverse log datasets, we

uncover common LECs that challenge parsers, regardless of the algorithms used. The outcome of

this analysis is a taxonomy of LECs that lead to parsing errors. We also apply the taxonomy to

understand the impact of LECs on various parsing tools. To achieve this goal, we formulated the

following research questions:

RQ1: What are the types of LECs that lead to parsing errors? This research question seeks

to systematically identify and categorize LECs frequently associated with parsing errors. By un-

derstanding these characteristics, we can pinpoint specific log data features that present challenges

for existing parsing tools, leading to inaccuracies or failures. Categorizing these LECs allows re-

searchers and developers to refine parsers to better address these critical aspects.

RQ2: How do different log parsing techniques correlate with their effectiveness in han-

dling various LECs? This question explores how different log parsing techniques perform in rela-

tion to specific LECs. Log parsers often make assumptions about log structure, such as consistent

token placement, delimiter use, or expected patterns. These assumptions can make parsing effective

for some logs but can lead to errors for logs that deviate from these expectations. By analyzing

how different parsing techniques—such as regular expressions, pattern matching, token counting,

and positional assumptions—handle various LECs, we aim to understand which methods are most
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effective and why.

RQ3: How do LECs shape log patterns and influence parsing difficulty across different

datasets? This question explores the role of LECs in shaping log patterns and clarifies why certain

datasets are more challenging to parse. By defining essential log components such as dynamic

values, nested tokens, punctuation, LECs fundamentally influence log structures and the resulting

formatting patterns. The complexity, variability and frequency of these LECs are key factors in

determining the difficulty of parsing a dataset. Datasets with consistent and simple LECs often

result in predictable log patterns that are easier for parsers to handle. In contrast, datasets containing

diverse, frequent, or deeply nested LECs introduce structural variability that complicates parsing.

Understanding how LECs form log patterns helps in developing tools that can recognize and adapt

to these patterns, ultimately improving parsing accuracy and efficiency across diverse datasets.

5.2.1 Log Datasets

We used datasets from the Loghub repository[151]1, covering systems like HDFS, Hadoop,

Spark, OpenStack, BGL, HPC, Windows, Android, Apache, and more. These diverse datasets

provide a comprehensive corpus for analyzing LECs.

Each dataset in the LogHub benchmark includes 2,000 manually parsed log events, serving as

a ground truth for our analysis. These events, along with their corresponding log templates, are

crucial for validating the accuracy of log parsers. For instance, the Apache dataset includes tem-

plates such as ”jk2 init() Found child * in scoreboard slot *” and ”mod jk

child workerEnv in error state *”.

In our examination, we processed a total of 32,000 log events across the 16 datasets using eight

log parsing tools.

1https://zenodo.org/record/3227177#.YUqmXtNPFRE
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5.2.2 Log Parsing Tools:

Our selection of log parsers is grounded in the resources provided by LogPAI—which offers a

wealth of log parsing tools and is well-recognized within the academic community—and two com-

prehensive surveys on log parsing by Zhu et al.[146] and El-Masri et al.[33]. From the parsers in-

cluded in the LogPAI benchmark, we chose eight prominent tools: Drain[20], IPLoM[27], AEL[23],

Spell[160], LenMa[24], LogMine[29], SHISO[22], and ULP[30]. These parsers are among the

best-performing tools identified in prior surveys [146, 30, 33], representing a diverse array of pars-

ing methodologies and algorithms. We configured each tool according to the guidelines provided in

their respective publications, ensuring that they operate as intended for our analysis.

In this study, we selected representative log parsers from three distinct categories—clustering-

based approaches (LogMine, Lenma), heuristic-based methods (Drain, Shiso, Spell, AEL, and

IPLoM), and frequent pattern mining (ULP)—to examine their performance against various Log

Event Characteristics (LECs). Clustering-based parsers organize log messages into hierarchical,

adaptable clusters, offering users granular control over clustering parameters to enhance analytical

depth. Frequent pattern mining methods focus on identifying recurring sequences in logs by ap-

plying predefined thresholds, which helps in effectively extracting frequent patterns from log data.

Heuristic-based techniques leverage domain-specific rules and specialized data structures to gen-

erate log templates and improve parsing efficiency [161]. These three categories have been widely

studied in the literature [77, 19] and are recognized for their potential to achieve robust results.

Some of these tools, such as Drain, have even gained traction in the industry 2.

5.2.3 Identifying Log Event Characteristics (LECs)

We used open coding, a qualitative research technique, to identify LECs leading to parsing

errors [159]. Open coding allowed us to explore complex, unstructured log data without predefined

categories.

We used eight renowned log parsers to process 16 diverse log datasets, generating both suc-

cessful parses and parsing errors. Parsing errors were identified by comparing parser outputs to the

2https://pypi.org/project/drain3/0.6/
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ground truth templates provided in the datasets.

To extend our analysis across all 2,000 log events per dataset, we automated the identification of

LECs using regular expressions and named entity recognition (NER). For instance, IPv4 addresses

were detected using a regex pattern, while file paths were identified based on Unix and Windows

formats. Automation enabled efficient processing of large datasets, supplemented with manual

reviews for accuracy.

Through an iterative coding process, we categorized LECs into broader groups, such as “Struc-

tural Characteristics” for nested tokens and “Data Types” for timestamps, IP addresses, and file

paths. This categorization formed the basis for a taxonomy that provides insights into common

patterns and parsing challenges.

5.3 Results and Discussion

5.3.1 RQ1: Types of LECs and their categories

To identify the types of LECs, as discussed earlier, we applied the selected eight log parsers to

16 log datasets. All log parsers successfully processed the datasets, except IPLoM, which timed

out on the Android dataset despite multiple attempts. The data and results used in this paper are

available on Zenodo 3

After analyzing the results, we categorized LECs based on their impact on log data parsing.

Recognizing that overlaps between categories are inevitable due to the multifaceted nature of log

events, we crafted each category to emphasize distinct aspects that contribute to parsing challenges.

We identified 30 distinct log characteristics that we grouped into 3 primary categories, namely

Log Event Presentation, Data Types, and Structural Arrangement of Tokens. Each category ad-

dresses unique aspects of logs, from the variability of content, to the relationships between elements,

to the formatting of events. By combining these perspectives, the taxonomy captures the breadth of

challenges that parsers must address. Each category targets distinct yet interconnected aspects of

log data that collectively determine parsing complexity.

Table 5.1 shows the distribution of LECs in correctly parsed (C.P) and incorrectly parsed (I.P)

3The results of the study are available at: https://doi.org/10.5281/zenodo.7868027
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Table 5.1: Characteristics Occurrence in Correctly and Incorrectly Parsed Log Events Across Log Parsers

Legend: C.P = nb of occurrences of the characteristic in the correctly parsed logs, I.P = nb of occurrences of the characteristic in the incorrectly parsed logs

AEL Drain Iplom Lenma Logmine SHISO Spell ULP
Characteristic C.P I.P C.P I.P C.P I.P C.P I.P C.P I.P C.P I.P C.P I.P C.P I.P

Alphanumeric and spe-
cial characters

3570 9731 3421 9880 3475 9455 3682 9619 3370 9931 3581 9720 3363 9938 328210 019

Log event with only
static tokens

1548 180 1546 182 1525 203 1552 176 1447 281 989 739 1463 265 1526 202

UUID 228 562 16 774 251 539 357 433 79 711 268 522 101 689 301 489
Single-level nested to-
kens

1301 2460 1243 2518 923 2571 1143 2618 453 3309 1220 2542 1230 2531 1201 2561

Multi-level nested to-
kens

29 64 24 69 0 29 24 69 2 91 29 64 2 91 29 64

Enclosed quotations 92 1311 161 1242 91 1194 154 1249 97 1306 124 1279 157 1246 193 1210
URL with query param-
eters

0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11

Equals-separated key-
value Pairs

2395 2917 2685 2627 2205 1994 1904 3408 2350 2962 1895 3417 2576 2736 2926 2386

Key-value pairs formed
with a colon

5354 8934 5619 8669 4755 8753 5922 8366 4541 9747 5637 8651 4967 9321 5590 8698

Word-number pair 5933 4628 6505 4056 5131 5257 5682 4879 4260 6301 5431 5130 5911 4650 6411 4150
Folder structure 2268 2677 2311 2634 1821 3021 2356 2589 1765 3180 2314 2631 1811 3134 1886 3059
Datetime tokens 2697 4088 3090 3695 2463 4216 2361 4424 1706 5079 2628 4157 2555 4230 2863 3922
Time duration 90 788 47 831 90 788 116 762 63 815 79 799 64 814 68 810
URL 0 27 0 27 0 27 0 27 0 27 0 27 0 27 0 27
Decimal 3919 6388 4530 5777 3486 6735 4491 5816 2834 7473 3971 6336 4133 6174 3575 6732
Data volume and unit 372 1244 316 1300 373 1243 404 1212 11 1605 393 1223 340 1276 360 1256
Nouns 573 1404 578 1399 199 1651 608 1369 537 1440 581 1396 212 1765 355 1622
Unseparated token se-
quence

11 96915 711 12 927 14 753 10 289 15 571 12 205 15 475 10 040 17 640 11 393 16 287 11 74015 940 12 66015 020

Protocol name 982 531 995 518 988 525 985 528 990 523 990 523 986 527 983 530
Mac address 4 67 20 51 4 67 20 51 20 51 16 55 0 71 63 8
Non-standard mac ad-
dress format (EUI-64)

1884 1884 1881 1887 2441 1326 1881 1887 1596 2172 1886 1882 2441 1327 1884 1884

ID Token 1039 72 1039 72 997 69 749 362 304 807 743 368 1017 94 1044 67
Boolean token 455 281 593 143 18 21 591 145 420 316 458 278 219 517 176 560
IPv4 token 3107 4759 3741 4125 2687 5179 3637 4229 2675 5191 3112 4754 3386 4480 2744 5122
IPv6 token 34 82 57 59 32 84 50 66 57 59 23 93 0 116 91 25
Domain name 1272 2198 1312 2158 1195 2066 1451 2019 1210 2260 1305 2165 1244 2226 1342 2128
Hexadecimal 917 698 891 724 626 903 584 1031 837 778 933 682 692 923 1132 483
Log highlighters 205 18 128 95 143 77 178 45 126 97 168 55 67 156 131 92
Token with punctuation 1186 2156 968 2374 745 2587 1140 2202 913 2429 1198 2144 582 2760 872 2470
Boolean in a format dif-
ferent from true/false

1241 3362 1351 3252 735 3506 1345 3258 1090 3513 1176 3427 982 3621 1506 3097

1
0
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log events for the eight log parsers. The Log parsers exhibited varying numbers of parsing errors:

Drain (851), ULP (923), IPLoM (882), AEL (914), LenMa (883), Spell (959), SHISO (963), and

LogMine (965).

The data reveals that issues with delimiters and token boundaries are prevalent across all parsers.

Characteristics like ”Unseparated Token Sequence” and ”Key-Value Pairs formed with a colon” fre-

quently result in parsing inaccuracies due to inconsistent token delimitations. For example, ”Unsep-

arated Token Sequence” leads to over 15,000 incorrect parses across most parsers, with LogMine

showing 17,640 incorrect versus just 10,040 correct parses.

Structural complexity is also a major challenge, with LECs like ”Multi-Level Nested Tokens,”

”Tokens with Punctuation,” and ”Enclosed Quotations” often leading to inaccuracies. ”Multi-Level

Nested Tokens” show nearly zero correct parses for parsers such as IPLOM and LogMine. Similarly,

tokens with punctuation tend to confuse parsers that rely on consistent patterns.

Some parsers, like LenMa and ULP, tend to perform slightly better with specific LECs, such as

”UUIDs” or ”Multi-level nested tokens”, compared to others like Drain and LogMine. For example,

LenMa achieves 357 correct parses for ”UUIDs” compared to IPLOM’s 79. The analysis highlights

that no single parser consistently outperforms others across all LECs, indicating the potential bene-

fits of hybrid parsing approaches that combine the strengths of multiple techniques.

Further analysis of the impact of LECs 4 on parsing errors shows that four characteristics—”Unseparated

Token Sequence” (19%), ”Alphanumeric and Special Characters” (12%), ”Key-Value Pair with a

Colon” (11%), and ”Decimal” (8%)—contribute to over 50% of the parsing errors. Meanwhile,

characteristics like ”MAC Address,” ”Multi-Level Nested Tokens,” ”URLs,” and ”Log Highlighter”

have a consistently low impact on errors.

We discuss in more detail each category and its LECs alongside the impact on the parsers in the

following subsections.

4The impact is calculated using the formula:.

RIMp =
INCp

Tp

(17)

Where RIMp represents the relative impact of a specific characteristic for a given log parser p. INCp denotes the

number of occurrences of the characteristic in the incorrectly parsed log events for parser p, and Tp represents the total

number of occurrences of all characteristics in the incorrectly parsed log events for parser p within all the datasets.
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Table 5.2: Characteristics under Log Event Presentation

Characteristic Example Challenge

Log events with only

static tokens

The server is now running. Identifying the lack of dynamic content

Alphanumeric and

special characters

[APP-1234] ... username =

johndoe 123!

Parsing mixed alphanumeric values with

special characters, which can lead to mis-

interpretation of tokens.

Tokens with Punctu-

ation

can’t Correctly handling words with embedded

punctuation, avoiding split or misinterpre-

tation

Log highlighter ##### Transaction Canceled!

#####

Recognizing repeated special characters

and distinguishing them from the core con-

tent

Log Event Presentation:

This category focuses on characteristics that affect the visual presentation of log events, such

as multiline logs or special highlighters like ’#### ERROR ####’. These features can obstruct tok-

enization or make it difficult to distinguish key parts of a log, affecting the parser’s ability to inter-

pret it correctly. While conventional log formats are well-understood and parsers can reliably handle

them, unconventional formats—featuring unusual spacing, special characters, or non-standard high-

lighting—introduce variations that parsers may not be trained to handle, leading to misinterpretation

or parsing failures. Table 5.2 summarizes the LECs in this category. ”Log events with only static

tokens”, like ”The server is now running,” challenge parsers by lacking dynamic elements, which

can lead to their significance being overlooked.

Tokens with ”alphanumeric and special characters”, such as ”[APP-1234] ... username = john-

doe 123!”, present challenges in distinguishing control characters and interpreting token bound-

aries. Additionally, common punctuation in words like ”can’t” requires careful handling to avoid

misclassification.

”Log highlighters”, like ”##### Transaction Canceled! #####”, add complexity by requiring

parsers to differentiate emphasis markers from core log content, ensuring proper extraction and

analysis.
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Data Type:

This category focuses on characteristics representing specific data types in logs, such as times-

tamps, IP addresses, numerical values, or Booleans. These data types often vary in format, such as

timestamps differing due to regional settings or Boolean values being represented as ”true/false,”

”1/0,” or ”yes/no.” Unlike Log Event Presentation, which deals with visual aspects, Data Type Rep-

resentation addresses the correct identification and interpretation of underlying data types.

Variations and inconsistencies in data types can create parsing challenges. For example, a parser

might misread an unconventional timestamp format or fail to recognize Boolean values like ”Y/N.”

Log parsers that use regular expressions face particular difficulties here—matching all possible for-

mats for data types like timestamps or IP addresses is often impractical, given the many variations.

Regular expressions also lack context awareness, making it challenging to distinguish similar ele-

ments, such as a colon in a timestamp versus one used as a delimiter. These challenges are especially

pronounced in logs with inconsistent or unconventional formats.

As shown in Table 5.3, this category has the most LECs (19 out of 30). ”UUIDs” and ”IDs”

can vary significantly in length, format, and delimiters, making their recognition and extraction

challenging across different contexts. Datetime tokens differ based on regional settings or logging

configurations, involving multiple formats, inconsistent use of separators, and handling time zones.

Representations of time durations involve various units, requiring special handling of singular vs.

plural forms and abbreviations.

”Decimal” numbers introduce complexity due to differences in representation, such as ”3.14”

vs. ”3,14,” depending on locale. Properly distinguishing numeric values from other tokens or sepa-

rators is critical for accurate parsing. Similarly, ”data volumes” can be represented using different

units or abbreviations, such as ”KB” versus ”Kilobytes,” requiring normalization for consistency.

”Protocol names” like ”HTTP” or ”FTP” may appear in different contexts within logs or com-

bined with other tokens, necessitating disambiguation. ”MAC addresses”, including non-standard

formats, add complexity due to the use of varying delimiters, such as colons or hyphens, requiring

parsers to handle these variations consistently. ”Boolean values” can be represented in multiple

forms, including ”True/False,” ”1/0,” and ”Yes/No,” which introduces ambiguity during parsing.
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Table 5.3: Characteristics under Data Type

Characteristic Example Challenge

UUIDs session ID 123456789 Variability in length, format, and delim-

iters, leading to inconsistencies in identi-

fication and extraction

Datetime tokens 2022-03-15 13:45:32+00:00 Handling multiple formats, inconsistent

use of separators, and correctly accounting

for time zones.

Time duration 2 hours 30 mins Parsing different time units, distinguishing

between singular/plural, and inconsisten-

cies in abbreviations or units.

Decimal 3.14 Differentiating between numeric values

and potential delimiters, managing locale-

specific formats (e.g., commas vs. periods)

Data volumes and

unit

10KB, 10 Kilobytes Handling unit variations and abbreviations.

Protocol name HTTP, FTP Disambiguating protocol names that may

be used in different contexts or combined

with other tokens.

MAC addresses 00-11-22-33-44-55 Handling various delimiters (e.g., colon,

hyphen)

Non-standard MAC

address format (EUI-

64)

3B-A7-94-FF-FE-07-CB-D0, or

3BA7:94FF:FE07:CBD0

Various delimiters (hyphen, colon)

Boolean token True, False, T, F Multiple representations

Boolean in a format

different from true/-

false

True,true,0, 1, Yes Parsing multiple representations (e.g.,

True/False, 0/1, Yes/No)

IPv4 Addresses 192.168.0.1:8080 Handling addresses with port numbers,

distinguishing different segments, and

avoiding confusion with unrelated num-

bers.

IPv6 Addresses 2001:0db8:85a3:0000:0000:8a2e:0370:7334Expanded and contracted forms

Domain names example.com, www.example.com Parsing different structures, including sub-

domains, and managing variations in do-

main components.

Hexadecimal 0x3F8A Identifying hexadecimal values with or

without a prefix, and distinguishing them

from other alphanumeric tokens.

URLs https://www.hdfs.com Parsing base URL as one unit, confusion

due to the separator in the URL string

URLs with query pa-

rameters

https://www.hdfs.com/search

?id=1&type=a

Parsing base URL as one unit, confusion

due to the separator in the URL string

Folder structure /home/user/docs treating ”/” as a non separator

Nouns User Cyprus Differentiating static tokens from dynamic

ones, particularly when common nouns or

place names

ID Block blk +1234, blk 1234,

blk -1234

Managing inconsistent delimiters and vari-

ations in prefixes
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”IPv4” and ”IPv6” addresses each present distinct challenges. IPv4 addresses may include port

numbers, and both address types have variable formats, increasing the difficulty of accurately iden-

tifying and parsing them. ”Domain names” can also vary, often including subdomains or different

structures that need to be managed effectively.

”Hexadecimal” values may include or omit the ”0x” prefix, making identification within a log

context difficult. ”URLs” and ”URLs with query parameters” involve multiple components, such

as base URLs, paths, and query parameters, which must be parsed correctly to prevent errors due to

misuse of separators. ”Folder structures” represented with slashes require careful parsing to ensure

that ”/” is interpreted correctly within the context, maintaining the intended hierarchy.

Identifying whether a ”Noun” is a static token or dynamic content presents particular challenges,

especially when dealing with common nouns, place names, or ambiguous words. Finally, ”IDs” with

inconsistent formats, prefixes, or delimiters, such as ”blk +1234” or ”blk -1234,” present difficulties

in maintaining consistent identification and parsing, which may lead to inaccuracies.

Structural Arrangement of Tokens:

This category examines how the arrangement of token sequences within log events affects pars-

ing. Unlike focusing on individual tokens, this category considers how multiple tokens are combined

using punctuation marks and delimiters to form complex structures like key-value pairs, units, or

nested messages. This involves understanding token relationships rather than treating them in iso-

lation.

Unlike Log Event Presentation, which deals with visual formatting, this category focuses on the

syntactic organization and relationships between tokens, such as delimiters (commas, colons, equals

signs), nesting (brackets, parentheses), and token sequences that define the log event. For example,

colons may separate keys, or information might be nested in brackets (”Error in [ModuleName]

at (Timestamp)”). Table 5.4 summarizes different structural arrangements of log tokens and their

associated parsing challenges. ”Single-level” and ”multi-level nested tokens” present difficulties

due to unclear boundaries and nested levels that complicate extraction. ”Key-value pairs” using

inconsistent separators (’=’ or ’:’) increase parsing complexity, as these separators may vary or be

inconsistently used.
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Table 5.4: Characteristics under Structural Arrangement of Tokens

Characteristic Example Challenge for Log Parsing

Single-level nested

tokens

Error: (404) Not Found Difficulty in extracting values from a single-level

nested structure, where the boundaries may be

ambiguous.

Multi-level nested to-

kens

Request received:

[2012-04-23T18:25:43.511Z

(sasl plain)]

Complex token extraction due to multiple levels

of nesting.

Key-value pairs

(colon or equal)

User name=JohnDoe,

action:login

Difficulty in recognizing key-value pairs due to in-

consistent use of separators (colon or equal) and

inconsistent spacing.

Word-number pairs User John Doe ...

session ID 12345

Identifying relationships between words and num-

bers when no clear separator is present, making it

challenging to distinguish static words from dy-

namic numerical values.

Enclosed quotations User ’JohnDoe’ ...

session ID ’123456789’

Extracting values enclosed within quotations

while differentiating quoted content from other to-

kens in the log.

Unseparated Token

Sequence

Error code:500Error

message: ... ID123456

Identifying boundaries between tokens in se-

quences without clear separators, leading to dif-

ficulties in tokenizing and understanding log con-

tent.

”Word-number pairs” without explicit delimiters challenge parsers to correctly associate related

tokens, while ”Enclosed quotations” require accurately extracting values and distinguishing them

from other tokens. ”Unseparated token sequences” create significant complexity by lacking clear

boundaries, making it hard for log parsers to tokenize correctly. These challenges emphasize the

need for sophisticated strategies to parse diverse and structurally complex logs effectively.

Statistical Association between Log Characteristics and Parsing Errors

To explore the relationship between log characteristics and parsing errors, we conducted a Chi-

square Test of Independence. This test is particularly well-suited for analyzing associations between

categorical variables, allowing us to determine whether specific LECs are significantly associated

with parsing errors. In this context, the null hypothesis asserts that there is no association between

the presence of a log characteristic and parsing errors. A p-value less than the significance level

(commonly set at α = 0.05) indicates strong evidence against the null hypothesis, suggesting that

the association is statistically significant. A majority of the log characteristics exhibit extremely

low p-values (in many cases equal to zero or very close to zero), which are significantly below the
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threshold of α = 0.05.

The Chi-square analysis highlights that Characteristics such as ”Log Events with Only Static

Tokens,” ”Alphanumeric and Special Characters,” and ”Word-Number Pairs” exhibit a substantial

impact on parsing errors.

In contrast, characteristics like ”IPv4 Tokens” and ”IPv6 Tokens” demonstrate relatively minor

effects, with effect sizes under 10. Specifically, ”IPv6 Tokens” show an effect size of just over 2,

with a p-value of 0.15, indicating minimal influence on parsing errors.

Overall, the results provide statistical evidence that the LECs affect Log Parsing performance.

Discussion and Implications: The results hints to key implications for improving log parsing

techniques. First, ”Unseparated Token Sequence” and ”Alphanumeric and Special Characters” are

consistently challenging across all parsers, suggesting that new approaches should prioritize meth-

ods to effectively handle token boundary detection and mixed character types.

The difficulties with ”Key-value pairs” formed using varied separators further emphasize the

need for parsing methods that adapt to different conventions. Parsers should be designed to interpret

separator patterns in real-time, rather than relying on predefined rules. Incorporating dynamic,

probabilistic models or token prediction capabilities would allow parsers to flexibly adjust to diverse

key-value structures.

From a log writing perspective, the findings underscore the importance of consistent and pre-

dictable log formatting. Standardizing delimiters, timestamp formats, and minimizing ambiguous

characters can significantly enhance the effectiveness of log parsers. Developing best practices

for log generation—focused on uniformity and simplicity—would reduce parsing complexities and

improve downstream analysis accuracy.

5.3.2 RQ2: Evaluating Algorithmic Adaptability to Diverse LECs

Analyzing different parsing outcomes revealed that many Log parsers struggle with diverse

LECs, leading to frequent parsing errors. These errors typically stem from rigid assumptions about

log structures and token positions, which fail to accommodate the variability inherent in different

LECs.
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Parsers based on fixed token positions tend to misinterpret logs when LECs deviate from antic-

ipated structures, whether through missing elements or altered token order. For example, a parser

trained on the format ”[Timestamp] User [Username] performed [Action]” may misidentify ”per-

formed” as a username if it encounters ”[2023-09-17 10:16:00] User performed logout.” This issue

is especially pronounced in parsers like Drain, Spell, and LogSig, each of which assumes a static

log structure. Specifically, Drain uses fixed token positions, Spell depends on token sequencing,

and LogSig interprets rare tokens as dynamic, resulting in parsing errors when these assumptions

are unmet.

Many log parsers also use regular expressions to enhance tokenization often fails with LECs

involving inconsistent formats. Parsers utilizing domain-specific knowledge can accurately inter-

pret LECs for specific systems but struggle in unfamiliar contexts where LECs vary widely. Token

counting and delimiter-based tokenization, while useful for uniform logs, often cannot handle vari-

ations in token counts or unexpected delimiters. Machine learning algorithms offer flexibility for

dynamic formats but often sacrifice precision for simpler, structured logs.

The subsequent sections explore the strengths and shortcomings of log parsers when handling

diverse LECs, with a focus on how the design choices behind these tools impact the tool adaptability

to different log formats.

Clustering-Based Log Parsers

Clustering-based log parsers group log events with similar characteristics using methods like

hierarchical and density-based clustering. These techniques help identify patterns and simplify

parsing, but the choice of clustering method affects parsing accuracy, especially for complex LECs.

LogMine [29] uses hierarchical clustering and performs well for structured logs but struggles

with complex LECs like ”Multi-level Nested Tokens”, resulting in significant parsing errors (3,309

incorrect parses vs. 453 correct ones). The hierarchical method relies on predefined structures,

which can be disrupted by complex nested tokens, leading to misclassification.

LenMa [24] uses density-based clustering and generally outperforms LogMine but still faces

challenges with LECs like Equals-Separated Key-Value Pairs and Hexadecimal values. Density-

based clustering, such as DBSCAN, is effective for handling variability and noise without needing
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Table 5.5: Comparison of Clustering-Based, Heuristic-Based, and Frequent Pattern Mining Log Parsers

Parser

Type

Strengths Weaknesses Parsers

Clustering-

Based
• Handles variability relatively well.

• Effective for grouping logs with similar

characteristics.

• Struggles with complex nested

structures.

• Lack inherent mechanisms for

token boundary detection.

LogMine,

LenMa

Heuristic-

Based
• Hierarchical parsing tree for identify-

ing token boundaries (e.g., Drain).

• Better with specific LECs through tai-

lored heuristics.

• Struggles with deeply nested to-

kens.

• Limited adaptability to dynamic

log variations.

Drain,

Spell,

Shiso,

AEL,

IPLOM

Frequent

Pattern

Mining
• Effective for structured logs with con-

sistent patterns.

• Automates parsing through frequency

analysis of static vs. dynamic tokens.

• Struggles with infrequent or rare

tokens.

• Poor handling of hierarchical or

complex nested tokens.

ULP

1
1
4



a predefined number of clusters. However, it struggles with structured LECs because tokens like

”key-value pairs” or ”hexadecimals” are often sparse or inconsistently distributed, making cohe-

sive clustering difficult. Additionally, density-based clustering lacks an inherent mechanism for

recognizing token boundaries, which contributes to parsing errors in structured log elements.

Heuristic approaches

Heuristic log parsers, including Drain, Shiso, Spell, AEL, and IPLOM, use distinct methods to

identify patterns in log data, each with strengths and limitations in handling various LECs.

We focus on comparing other heuristic log parsers to Drain, as it consistently shows the highest

log parsing performance to Log parsing surveys [146].

Drain uses a parsing tree to organize log tokens hierarchically, performing better at parsing ”Un-

separated token sequences” by effectively inferring boundaries. However, it struggles with ”Single-

level nested tokens” (where it has the worst performance comparatively) due to the complexity that

disrupts its hierarchical model, making it less suitable for deeply nested structures.

Spell relies on the Longest Common Subsequence (LCS) method, which helps it handle longer

log entries like ”date volumes”, ”time durations” and ”Single-level nested tokens” relatively better

than Drain. The LCS algorithm works well for consistently structured log entries by matching re-

curring sequences of tokens. This allows Spell to recognize and parse recurring patterns effectively,

even in slightly variable contexts.

Shiso also uses a parsing tree like Drain but adds token-wise Euclidean distance to classify

log events. This distance-based classification gives Shiso an edge over Drain in dealing with subtle

variations between tokens. As a result, Shiso performs better with LECs such as ”Log Highlighters,”

”Tokens with Punctuation,” and ”Hexadecimals.”

AEL uses heuristics to replace dynamic tokens with placeholders, grouping similar log events

based on token consistency. It Performs better than Drain at parsing ”Single-level” and ”Multiple-

level nested tokens”.

IPLOM partitions log entries iteratively based on structural attributes like token count and posi-

tion. It struggles with highly variable token structures, particularly ”Key-value pairs formed with a
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colon”, ”Decimals” or logs with inconsistent formats. The reliance on token frequency and fixed po-

sitions limits IPLOM’s adaptability to dynamic, unpredictable log entries. it is good at IDs because

of the repetition

Frequent Pattern Mining Log Parsers

Frequent pattern mining techniques, like ULP, identify common sequences in log data by an-

alyzing the frequency of patterns. ULP automates log parsing by grouping similar events and us-

ing frequency analysis to differentiate between static and dynamic tokens. This approach works

well for structured logs, particularly those with consistent formats such as ”Key-Value Pairs” and

”Unseparated Token Sequences”, where it can accurately distinguish between static and dynamic

components.

However, ULP’s reliance on local frequency can lead to challenges. Infrequent tokens, such as

those in ”Boolean Tokens with Non-Standard Formats” or ”Alphanumeric Sequences with Special

Characters”, may be misclassified due to their lower repetition.

Discussion and Implications: The analysis demonstrates that parsers relying on rigid token

positions, delimiters, regular expressions (regex), frequency-based assumptions, domain-specific

knowledge, or predefined structures are particularly vulnerable to errors when Log Event Char-

acteristics (LECs) vary. A core implication is the need for flexible parsing mechanisms that can

accommodate the diversity of LECs without rigid assumptions. Future parsers must dynamically

adapt to variations in log structures. Table 5.5 highlights the potential of hybrid approaches that

leverage the strengths of each log parsing method—combining clustering-based, heuristic-based,

and frequent pattern mining techniques. A hybrid approach could effectively address the limitations

of individual parsers by dynamically selecting the best parsing strategy based on the LECs present

in a dataset.

5.3.3 RQ3: Analysis of LECs across Systems

Table 5.6 shows the percentage of log parsing errors for all log parsers combined for a given

dataset. The analysis of mismatch percentages across different log event characteristics (LECs) for

various datasets reveals key insights into parsing difficulties. The mismatch percentages reflect the
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Table 5.6: Percentage of Log parsing Errors for a specific LEC to the total of the same LEC found for a given dataset)(NA MEANS THE LEC IS

NOT PRESENT)

LEC BGL HealthApp Windows Android Hadoop Zookeeper OpenSSH Spark

Alphanumeric and special characters 94.63% 65.61% 73.88% 66.23% 76.29% 86.62% 87.64% 99.98%

Log event with only static 21.73% 0.69% NA 0.00% 0.00% 1.03% 0.00% 51.56%

UUID NA NA 20.59% NA NA NA 100.00% 100.00%

Single-level nested tokens 76.74% 87.50% 79.46% 47.36% 100.00% 77.43% 71.12% 15.18%

Multi-level nested tokens 100.00% NA NA 70.82% 85.71% NA NA 100.00%

Enclosed quotations NA NA 39.58% 68.08% 28.57% NA 100.00% 99.57%

URL with Query parameters NA NA NA NA NA NA NA NA

Equals-separated key-value Pairs 96.62% 55.09% 13.73% 43.30% 79.33% 44.14% 90.41% 19.06%

Key-value pairs formed 68.01% 83.70% 70.31% 49.24% 64.93% 28.27% 81.70% 39.70%

Word-number pair 50.38% 18.53% 86.41% 47.77% 86.58% 43.96% 63.80% 34.13%

Folder structure 49.29% NA 50.42% 81.98% 25.55% 10.72% 100.00% 99.82%

Datetime tokens 51.79% 38.19% 84.21% 48.33% 88.32% 41.09% 49.42% 29.58%

Time duration 86.11% NA 87.50% 100.00% 100.00% NA 0.00% 0.38%

URL NA NA NA 100.00% 100.00% NA NA NA

Decimal 65.57% 100.00% 75.41% 90.09% 51.18% 31.39% 72.78% 48.62%

Data volume and unit 43.27% NA 75.00% NA NA NA 33.33% 43.61%

Nouns 87.50% 62.50% 100.00% 47.31% 32.99% 93.55% 99.04% 99.15%

Unseparated token sequence 81.19% 66.76% 56.45% 42.83% 66.68% 34.15% 66.78% 50.67%

Protocol name 100.00% NA NA 0.00% 14.29% 100.00% 99.75% 66.67%

Mac Address 96.25% NA NA NA NA NA NA NA

Non-standard mac address 100.00% NA 74.98% 28.57% NA NA NA 100.00%

ID Token 100.00% NA NA 35.76% 2.30% 25.64% 0.17% 14.43%

Boolean token NA 51.39% 33.33% 42.18% 57.14% NA NA NA

IPv4 token 66.32% NA 75.27% 100.00% 26.79% 31.24% 76.05% 99.66%

IPv6 token 96.25% NA NA NA NA NA NA NA

Domain name 62.50% 82.16% NA 63.15% 42.53% 34.11% 10.39% 100.00%

Hexadecimal 43.75% 87.50% 13.31% 57.19% 73.61% 54.63% 33.33% 100.00%

Log highlighter NA NA NA 57.14% 0.00% 0.00% NA 100.00%

Token with punctuation 36.42% NA 46.05% 91.88% 44.53% 12.56% 8.04% 100.00%

Boolean in a format different from true/false 67.91% 53.57% 34.62% 33.51% 92.23% 41.84% 49.81% 92.66%

Total 73.33% 62.44% 59.59% 50.27% 64.54% 31.84% 72.65% 46.49%

1
1
7



LEC Linux Mac Openstack HDFS Apache Proxifier HPC Thunderbird

Alphanumeric and special characters 96.68% 80.67% 89.30% 37.29% 41.71% 49.93% 95.30% 77.22%

Log event with only static 50.67% 54.72% NA NA NA 0.00% 14.47% 15.44%

UUID 100.00% 71.13% 76.51% NA NA NA NA 68.23%

Single-level nested tokens 72.17% 77.67% 69.30% 14.29% 100.00% 100.00% 69.73% 87.55%

Multi-level nested tokens 100.00% 96.00% NA NA NA NA NA 100.00%

Enclosed quotations 69.06% 74.32% 99.90% NA NA NA 40.00% 91.36%

URL with Query parameters 100.00% 100.00% NA NA NA NA NA 100.00%

Equals-separated key-value Pairs 98.38% 82.20% 100.00% NA NA 3.88% 17.68% 50.21%

Key-value pairs formed 96.33% 74.00% 80.68% 4.39% 49.65% 50.21% 91.95% 61.44%

Word-number pair 98.52% 81.00% 36.68% 1.75% 10.09% 97.76% 75.99% 42.54%

Folder structure 88.04% 89.21% 89.55% 20.19% 100.00% 0.00% 64.00% 63.24%

Datetime tokens 98.81% 83.30% 85.56% 7.51% 25.29% 98.05% 58.85% 64.94%

Time duration 97.04% 92.80% 68.77% NA 100.00% 100.00% 100.00% 89.83%

URL 100.00% 100.00% NA NA NA NA NA 100.00%

Decimal 97.39% 79.72% 82.88% 3.74% 98.32% 97.80% 100.00% 52.33%

Data volume and unit 98.69% 55.96% 69.00% NA 100.00% 100.00% 100.00% 77.88%

Nouns 96.57% 78.16% 52.28% 4.76% 98.49% 97.19% 68.17% 85.64%

Unseparated token sequence 90.71% 68.51% 79.33% 11.64% 33.03% 49.68% 60.35% 60.31%

Protocol name 62.16% 49.62% 0.00% NA 0.00% 0.00% 22.22% 36.36%

Mac Address 80.95% 31.97% NA NA NA NA 100.00% 87.46%

Non-standard mac address 90.14% 99.86% 81.23% 8.00% NA NA 100.00% 36.15%

ID Token 90.74% 85.45% NA 2% NA 100.00% 52.94% 8.80%

Boolean token 85.71% 86.00% 100.00% NA NA NA NA 53.85%

IPv4 token 98.40% 94.26% 84.67% 3.74% 94.38% 64.18% 100.00% 49.34%

IPv6 token 51.52% 41.77% NA NA NA NA 100.00% 81.82%

Domain name 99.02% 90.67% 89.95% NA 49.24% 49.16% 33.33% 63.22%

Hexadecimal 57.19% 46.94% 87.03% NA NA 100.00% 97.96% 62.34%

Log highlighter 30.77% 32.76% NA NA NA 0.00% 61.53% 25.26%

Token with punctuation 96.38% 83.34% 82.97% 98.53% 33.03% 59.53% 98.41% 76.62%

Boolean in a format different from true/false 82.23% 77.83% 89.44% 14.29% 64.52% 53.34% 60.51% 86.17%

Total 93.81% 76.80% 83.13% 9.85% 38.80% 59.53% 61.50% 62.28%

1
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inherent complexity and variability of logs across different datasets. High mismatch rates are ob-

served across many datasets for LECs like ”Alphanumeric and special characters” (e.g., 96.68% for

Linux and 99.98% for Spark) and ”Multi-level nested tokens”, which often reach 100%, indicating

significant parsing challenges. In contrast, HDFS, Zookeeper and Apache exhibit notably lower

total mismatch rates (9.85%, 31.84% and 38.80%, respectively), suggesting more structured and

consistent log formats that are easier to parse. The total mismatch rate highlights Linux (93.81%),

BGL (73.33%), and OpenStack (83.13%) as among the most challenging datasets. Overall, LECs

such as ”Alphanumeric and special characters”, ”nested tokens”, ”UUIDs”, and ”Key-value pairs”

significantly impact all log parsers effectiveness.

Logs that rely heavily on descriptive ”Nouns” to convey operations or system states, as seen

in OpenStack, tend to introduce ambiguity. This makes it difficult for parsers to accurately group

or categorize log entries, especially when these nouns are context-dependent and vary widely in

usage. Linux (93.81%) Openstack, and Mac (76.80%) logs show high mismatch rates, likely due to

the dynamic nature of these systems, which often include variable-length data fields, dynamically

generated tokens, or more unstructured content. These logs include a broader range of services

and processes, contributing to the complexity. In contrast, HDFS (9.85%) demonstrates a much

lower mismatch rate, indicating that its logs are more standardized and structured, likely due to the

uniformity of distributed file system operations. OpenSSH (72.65%) also exhibits high mismatch

rates, suggesting significant dynamic content or variability, due to complex cloud infrastructure and

security authentication mechanisms.

The analysis comparing the LEC presence in HDFS, Zookeeper and Apache logs provides in-

sights into why these datasets achieved higher match scores and experienced fewer parsing chal-

lenges compared to others like Linux or Openstack. These logs share similarities in the predictabil-

ity and consistency of their log elements, contributing to their higher parsing success rates.

First, many complex LECs are absent (those shown as ”NA” in Table 5.6), such as ”Multi-level

nested tokens”, ”Enclosed quotations”, and ”URLs with query parameters”. The absence of such

complex elements reduces structural variability, making it easier for parsers to identify consistent

patterns. For example, HDFS logs do not include ”Domain names”, ”Protocol names”, or ”Data

volume and units”, whereas these are present in Apache.

119



Linux logs exhibit high complexity due to the presence of nearly all LECs, which makes them

more challenging to parse consistently. LECs like ”Multi-level nested tokens”, varied ”UUIDs”,

and diverse usage of ”IP addresses” create significant parsing challenges, leading to high mismatch

percentages.

The difference in mismatch rates for UUIDs between HDFS and Linux highlights how the con-

sistency and context of log usage significantly influence parsing success. In HDFS, IDs follow

a simple and well-known pattern (blk 38865049064139660), making them predictable and easier

for parsers to handle often managed with simple regular expressions. The consistent format of

these IDs reduces complexity, allowing parsers to accurately identify and process them with min-

imal difficulty. Conversely, in Linux, UUIDs and similar unique identifiers frequently appear in

varied and complex contexts, often embedded within more intricate structures. The diverse us-

age of these identifiers across different contexts—such as process IDs, session identifiers —com-

plicates the parsing process. This variability contributes to the high mismatch rate, demonstrat-

ing that standardized tokens can still present challenges when their usage is not uniform. Ad-

ditionally, Linux log entries often contain IP addresses in both IPv4 and more complex formats

(e.g., rhost=220-135-151-1.hinet-ip.hinet.net), further adding to parsing difficul-

ties. The dynamic nature of these addresses, especially when combined with other LECs, contributes

to high mismatch rates for both IPv4 and domain name tokens.

Discussion and Implications: The analysis of LECs across different systems highlights the

direct impact that the presence, absence, and complexity of specific log event characteristics have on

log parsing performance. Systems with more standardized log structures, such as HDFS, which lack

many complex LECs, demonstrate significantly fewer parsing errors. The presence or absence of

specific Log Event Characteristics (LECs) allows us to classify datasets by their parsing complexity.

Datasets like HDFS, Zookeeper and Apache lack many of the more complex LECs, such as ”nested

tokens”, ”UUIDs”, and ”Log highlighter”s. This absence of complexity enables parsers to form

simpler log patterns, leading to more efficient parsing with fewer mismatches. In contrast, datasets

like Linux feature all LECs, including ”Multi-level nesting”, UUIDs, and punctuation tokens.

The notion of log patterns emerges as a central aspect of this analysis. Log patterns are essen-

tially formed from the recurring combinations and sequences of LECs within log entries. Systems
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like HDFS and Apache, with simpler combinations of LECs, and consistency for UUIDs inherently

form simpler and more predictable log patterns, which makes parsing easier. Given the significantly

lower parsing mismatch rates in HDFS and Apache, these datasets provide a model for creating log-

ging standards that could help reduce parsing difficulties across other systems. The structured nature

of their logs, combined with a limited number of complex LECs, serves as a potential blueprint for

designing log formats that balance informative detail with parsing ease.

5.3.4 Threats to Validity

The selection of log datasets and parsing tools presents a potential threat to internal validity.

To mitigate this, we used 16 log datasets from the widely recognized LogPai repository, which

are commonly employed in similar research studies. As for the parsing tools, we selected eight

high performing log parsing tools, ensuring that they cover a range of methods. We believe that

these tools represent a comprehensive set of log parsing tools. Another threat to validity is the

identification of LECs. Due to the complexity of some log datasets, we may have missed certain

LECs. To address this, we applied the open coding research method and we carefully analyzed

and reviewed log errors to ensure thorough identification of LECs. A threat to conclusion validity

exists regarding the correctness of the results obtained. We classified the identified LECs following

a detailed and systematic process to ensure accurate classification. Moreover, there is a threat to

reliability validity concerning the replicability of this study. To mitigate this threat, we have made

all the results available online to facilitate the reproduction of our study’s findings.

Finally, the generalizability of our results may also pose a threat to validity. Our study was

conducted on 16 log datasets using eight parsing tools, and we do not claim that our findings can

be generalized to all types of logs, particularly to industrial or proprietary log datasets, to which we

did not have access.

5.4 Conclusion

In this study, we identified 30 distinct LECs that we grouped into three categories using the open

coding method, and by analyzing over 32,000 log events from 16 different systems. LECs represent

121



the diverse structural elements present in log entries, ranging from token sequences and data types to

structural arrangements. Understanding LECs is crucial because they directly influence the success

of log parsing techniques, especially as modern systems generate increasingly heterogeneous log

data. Our findings show that the assumptions made by parsing algorithms—such as fixed token

positions- often struggle to accommodate the diversity of LECs, leading to parsing inaccuracies. The

analysis of mismatch rates across datasets reveals notable disparities in parsing difficulty. Datasets

like Linux and OpenStack demonstrate high mismatch rates due to their structural complexity and

variability, while HDFS and Apache logs exhibit lower mismatch rates, suggesting more consistent,

structured formats.

Future work should focus on advancing log parsing tools to intelligently recognize and adapt to

complex log patterns. Hybrid approaches that combine heuristic and machine learning techniques

could leverage domain-specific knowledge alongside data-driven adaptability. Insights from sys-

tems with lower parsing mismatch rates, like HDFS and Apache, could also inform the creation

of standardized logging practices, ultimately contributing to the development of more resilient and

effective log parsing tools.
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Chapter 6

Application: Log privacy

From Log Taxonomy to Privacy Considerations: A clear understanding of the structural and

contextual properties of logs, gained through the log taxonomy, offers not only a roadmap for more

adaptable parsers but also a vantage point for identifying where sensitive data may arise. In many

real-world systems, a single log entry can inadvertently contain personally identifiable information

(PII), such as usernames or IP addresses, particularly when the log format is inconsistent or ambigu-

ously defined. By highlighting these structural “trouble spots,” the taxonomy reveals how privacy

risks can emerge from seemingly benign logging practices. Consequently, the final chapter turns to

privacy considerations, presenting guidelines and methods to ensure that sensitive data is handled

responsibly. In doing so, it closes the loop between understanding log variability and applying that

knowledge to meet both operational and regulatory demands in AIOps.
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I. Sedki. ”A Preliminary Study on the Privacy Concerns of Using IP Addresses in Log Data”.

In Proc. of the 32nd ACM International Conference on the Foundations of Software Engi-

neering (FSE 2024 Ideas, Visions and Reflections), New York, NY, USA, pp. 527–531. doi:

https://doi.org/10.1145/3663529.3663791

Abstract: Log data, crucial for system monitoring and debugging, inherently contains informa-

tion that may conflict with privacy safeguards. This study addresses the delicate interplay between

log utility and the protection of sensitive data, with a focus on how IP addresses are recorded. We

scrutinize the logging practices against the privacy policies of Linux, OpenSSH, and MacOS, un-

covering discrepancies that hint at broader privacy concerns. Our methodology, anchored in privacy

benchmarks like GDPR, evaluates both open-source and commercial systems, revealing that the for-

mer may lack rigorous privacy controls. The research finds that the actual logging of IP addresses

often deviates from policy statements, especially in open-source systems. By systematically con-

trasting stated policies with practical application, our study identifies privacy risks and advocates

for policy reform. We call for improved privacy governance in open-source software and a refor-

mation of privacy policies to ensure they reflect actual practices, enhancing transparency and data

protection within log management.

6.1 Introduction

Logs are essential in software systems, serving as detailed records of events or processes that

provide critical insights for a range of tasks, from debugging [3, 43, 4] and failure prediction [46] to

operational intelligence [127, 1, 2]. At the heart of these logs are structures known as log templates.

A log template is a predefined format for log messages, outlining a consistent structure while allow-

ing for variable data specific to each event. For example, a log template designed to record authenti-

cation failures might look like this: Authentication failed from [IP Address] at

[Timestamp]. In this template, IP Address and Timestamp are placeholders. These place-

holders are filled with actual data during runtime — the IP address from where the authentication

attempt was made and the specific time of the attempt. While the overall format of the log message
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remains the same across different instances, the dynamic content (IP addresses and timestamps)

changes, reflecting the specifics of each individual event.

Despite their utility, logs frequently capture personal data, including user IDs, email addresses,

IP and MAC addresses. This inadvertent capture during routine operations raises privacy concerns,

especially when logs are shared externally [82].

The concept of personal data in privacy law is broadly defined to include any information that

can identify an individual, either directly or indirectly [83, 84].The General Data Protection Regula-

tion (GDPR), defines personal data as any information relating to an identified

or identifiable natural person (Article 4, GDPR). This definition supports the scope

of our analysis, ensuring consistency and compliance with widely recognized standards [85]. This

definition was highlighted in the landmark Breyer case, where IP addresses were recognized as

personal data when linked with other identifiable information [93]. This ruling clarifies the privacy

considerations surrounding IP addresses in logs, affirming their status as personal data. User percep-

tions of IP addresses as highly sensitive are documented in studies [94], with concerns exacerbated

by prevalent IP tracking practices [95, 96]. The treatment of IP addresses in logs, thus, becomes a

critical aspect of maintaining user privacy.

Several studies have explored the security aspects of system logging and proposed guidelines

for secure logging practices. Zeng et al. [97] discuss a range of security vulnerabilities that arise

from system logging and emphasize the necessity for robust logging mechanisms to prevent data

breaches and maintain system integrity.

In a more focused study, Patel et al. [98] delve into the specifics of logging within the Linux

kernel suggesting improvements for effective logging that enhances both security and performance

monitoring [98]. Lyons et al. [99] examine the extent of sensitive information logging within the

Android ecosystem. Their study measures the prevalence of sensitive data in logs and discusses the

implications for privacy and security, stressing the need for stringent controls on what is logged and

how it is managed.

This study delves into the collection and amalgamation of IP addresses with other personal data

in logs, juxtaposed against stated privacy policies. We focus on IP addresses due to their widespread

use in digital communications and their debugging value, coupled with privacy implications when
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associated with other data. In this study, we focus on dissecting the nuanced balance between

the utility of log data and the imperative of safeguarding user privacy. This research is pivotal

in highlighting the often-overlooked privacy implications in routine logging activities, especially

in the context of evolving privacy regulations and increasing user sensitivity towards data privacy.

Through our findings, we aspire to contribute to a more informed and responsible approach to

logging practices, ensuring that they are not only effective but also respectful of user privacy rights.

6.2 Study Setup

The objective of this study is to assess the frequency and context in which IP addresses and

other personal data are captured within logs across diverse systems and to evaluate the alignment

of these practices with respective privacy policies. We examine logs from three widely-used sys-

tems—Linux, OpenSSH, and MacOS—chosen for their representation of different environments

and their potential to capture a breadth of user activities.

6.2.1 Research Questions

We specifically aim to answer the following Research Questions.

RQ1: How do the privacy policies of Linux, OpenSSH, and MacOS compare in terms of their

approaches to collecting and using IP addresses and other personal data?: This question will inves-

tigate the differences and similarities in how each system’s privacy policy addresses data collection,

with a focus on the types of data collected, the clarity of purpose for data collection.

RQ2: How do the privacy policies of these systems align with their actual logging practices, partic-

ularly in the context of IP address handling? : This question investigates the consistency between

stated privacy policies and the actual data handling practices observed in the logs.
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6.2.2 Dataset

The datasets used in this study consist of a subset of log files from the LogHub benchmark[77]1.

The benchmark contains log datasets that are generated from different types of systems. This bench-

mark is used extensively in log analysis research [136, 145, 30, 147, 77, 19]. Each log dataset of the

LogHub benchmark comes with a subset of 2,000 log events that have been parsed manually. We

selected three log datasets from this benchmark namely : Linux, OpenSSH and MacOS.

We included Linux Logs in our analysis due to their wide-ranging use in different contexts, in-

cluding servers, desktops, and embedded systems. These logs are particularly rich in data, capturing

a variety of system events, application behaviors, and user interactions.

OpenSSH Logs were selected for their relevance in both server management and personal com-

puting. These logs provide detailed insights into secure operations, including authentication pro-

cesses and connection details. The choice of OpenSSH logs is significant for exploring privacy

concerns in environments where logs could be accessed by multiple applications within an organi-

zation.

Lastly, MacOS Logs were chosen to represent the personal computing environment. These logs

provide a window into user interactions, system processes, and the behavior of various applications.

The inclusion of MacOS logs is vital to understand how external breaches might lead to unautho-

rized access to personal data.

6.2.3 Methodology

We started by examining the most current privacy policies of Linux, OpenSSH, and MacOS to

understand the official stance on data handling, with a focus on the handling of IP addresses, their

combination with other personal identifiers, and the declared purposes for data collection. This

initial step laid the groundwork for a comparative analysis against actual data logging practices.

We employed a comprehensive approach to identify personal data within log files, drawing

inspiration from the General Data Protection Regulation (GDPR), one of the most stringent pri-

vacy laws globally. The GDPR’s definitions of personal data are broadly applicable and align

1https://zenodo.org/record/3227177#.YUqmXtNPFRE
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with the principles of various privacy regulations, making it an ideal benchmark for our analysis

[85, 86, 162]. Our methodology involved initially focusing on the types of personal data explicitly

mentioned in the privacy policies of Linux, OpenSSH, and MacOS, such as browser information,

operating system details, device identifiers, domain names, and location data. Recognizing the

GDPR’s extensive scope, we further included a diverse array of data types like usernames, domain

names, and unique device identifiers. The outcome of this step was a curated list of log events, each

containing at least one IP address. We also noted the presence of combinations with other personal

data.

Then, we parsed the log events containing IP addresses, extracting their underlying log tem-

plates. Once we isolated the log templates, we determined the intent behind the data collection for

each template. This interpretive phase involved a close examination of the semantics embedded

in the log messages. Our goal was to identify the specific purposes of logging these data points,

whether it related to user authentication processes, system error tracking, or other operational activ-

ities as shown in Table 6.1.

Finally, we compared the extracted data from logs and the stated privacy policies. The pri-

mary focus of this comparison was twofold: first, to compare the data combinations involving IP

addresses found within individual log events with the stated policy, and second, to scrutinize the

alignment between the derived purposes from these log events and the purposes declared in the

privacy policies. For instance, if a system’s policy did not clearly articulate the collection of IP

addresses and domain name for user authentication purposes, yet such a practice

was evident in the logs, this was flagged as a discrepancy.

6.3 Results

Upon analysis, we found 1337 log events containing IP addresses for Linux, 1634 for OpenSSH,

and 50 for MacOS. We identified 6 distinct log templates containing IP addresses within the Linux

logs, 11 within the macOS logs, and 17 within the OpenSSH logs. Each template captures a unique

log event type.(Table 6.3). Table 6.1 shows an exert of the log templates containing IP addresses

and their inferred purposes.
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Table 6.1: Purpose Mapping Examples

log template Purpose

ANONYMOUS FTP LOGIN FROM <IP address> Anonymous login

Authentication failed from <IP address>...: Permission denied in re-

play cache code

Authentication failure

Authentication failed from <IP address>...: Software caused connec-

tion abort

Authentication failure

connection from <IP address>() at <Time> Connection origin and time

Table 6.2: Privacy Policy Comparison: Data and Purposes For Collection Across the 3 Systems

Type of Data Collected Location

Data

Purpose and Legal Basis

Linux IP Address, Domain Name,

Browser

Country Service enhancement, Debugging

OpenSSH IP Address, Browser, OS, De-

vice details

Approximate Multiple purposes (User consent, Legiti-

mate interests)

Mac Os IP Address, Browser, OS, De-

vice details

Precise Power services, transactions, communica-

tion, security, law compliance (Consent,

Contract, Legal compliance, Vital interests,

Legitimate interests)

Table 6.3: Analysis of IP Address Occurrences and combinations in log events (LEs)

Dataset LEs with IP LEs with IP and

other Personal

data

nb. log tem-

plates with

IP address

Linux 1337 633 6

OpenSSH 1734 1724 17

MacOS 50 15 11
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Table 6.4: Analysis of IP Address and Associated Data Occurrences in Selected Log Datasets by Purpose of Collection.

Log dataset Purpose for collection IP address occurrences Occurrences with Other data What other data

Linux Anonymous login 2 0 -

Authentication failure 356 272 username

Connection origin and time 979 361 username

MAC Network client connection 10 10 username

Client action 5 5 username

Code signing requirement 3 0 -

Network-related action 18 0 -

Network status 14 0 -

OpenSSH Failed authentication attempt 1491 1491 username, uid

Unauthorized Access Detection 198 198 domain name, username

Authentication ended 34 34 username

Authentication success 1 1 username

Authentication issue 10 0 -

1
3
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6.3.1 Comparative Analysis of Privacy Policies

Table 6.2 delineates the diverse approaches to IP address collection by the three applications. 2

In our comparative analysis of privacy policies, we examined the approaches to IP address collec-

tion and the stated purposes for data collection across Linux, OpenSSH, and MacOS.

The privacy policy of Linux is relatively vague regarding IP address collection. It mentions gather-

ing IP addresses, domain names, and browser information but does not provide explicit details on

the purpose of this data collection beyond general service enhancement and debugging.

OpenSSH’s policy acknowledges the collection of a broader range of data, including IP addresses,

browser, operating system, and device details. However, it remains ambiguous about the specific

purposes of data collection. The policy cites ”multiple purposes” such as user consent and legiti-

mate interests, which implies flexibility in data usage but lacks detailed information about how the

data is used and protected.

In contrast, MacOS demonstrates a more comprehensive and detailed approach. Its policy acknowl-

edges the collection of IP addresses, browser information, operating system details, and specifies

the precision of the location data collected. MacOS stands out for its nuanced approach based on

regional legislation, classifying data, including IP addresses, as personal where legally required. It

also commits to treating amalgamated non-personal and personal data as personal data, reflecting

a proactive stance towards privacy compliance. MacOS outlines an exhaustive list of purposes for

data collection, ranging from operational necessities to legal compliance, offering a clearer picture

of data usage.

6.3.2 Analysis of Personal Data in Logs

Table 6.4 shows the results of the analysis of IP addresses with other personal data, and the

stated purposes.3 In our analysis of log data from Linux, MacOS, and OpenSSH, we observed

distinct patterns in the use of IP addresses, their combination with other personal data, and the

stated purposes for data collection, which we then compared with their respective privacy policies.

2as described in their privacy policies, which we last reviewed in October 2023.
3Our replication package : https://doi.org/10.5281/zenodo.7988584
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OpenSSH Logs Analysis: OpenSSH exhibited an extensive use of IP address logging, often com-

bined with other personal identifiers. A striking majority of the log events (1,724 out of 1,734)

involved IP addresses combined with usernames and UIDs, especially in ’Failed authentication at-

tempt’ and ’Unauthorized Access Detection’ contexts. This pattern is aligned with OpenSSH’s role

in secure communications and suggests a potential overreach in data collection, raising significant

privacy concerns. Systems like OpenSSH are designed for secure communications and are likely to

log every connection attempt, which includes IP addresses for security purposes. This results in a

higher number of log events associated with connection and authentication templates.

Linux Logs Analysis: Linux logs indicated a substantial focus on security and operational mon-

itoring. Out of 1,337 log events containing IP addresses, 633 also included usernames or domain

names. The high frequency of occurrences (356 in ’Authentication failure’ and 979 in ’Connec-

tion origin and time’) underscores a significant emphasis on user activities and system interactions.

However, this amalgamation of IP addresses with other identifiers like usernames aligns with oper-

ational needs but introduces potential privacy challenges. Linux, being a versatile operating system,

may have a broader range of templates due to the diversity of its applications, but not all events will

necessarily involve network interactions that include IP addresses.

MacOS Logs Analysis: MacOS logs showed a more conservative approach. Among the 50 log

events with IP addresses, only 15 involved a combination with usernames, reflecting a more re-

strained strategy in personal data handling. This lower frequency, especially in contexts like ’Net-

work client connection’ (10 occurrences) and ’Client action’ (5 occurrences), indicates a more

privacy-conscious approach, balancing operational requirements with user privacy. The signifi-

cantly lower count in MacOS logs can be attributed to its primary use as a personal operating sys-

tem. Unlike Linux or OpenSSH, which are heavily network-oriented and often deployed in server

environments, MacOS is generally used in personal computing where network interactions are less

frequent and diverse. As a result, the occurrence of IP addresses in MacOS logs is less common,

reflected in the much lower count of such log events.
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6.3.3 Comparative Analysis with Privacy Policies

In our analysis, we observed notable differences between the actual personal data captured in

log files and the stated privacy policies of Linux, MacOS, and OpenSSH.

For Linux, the logs reveal a significant number of instances where IP addresses are combined

with usernames, particularly in contexts like ’Authentication failure’ and ’Connection origin and

time.’ This practice suggests a focus on monitoring user activities and system interactions. How-

ever, such detailed amalgamation of data, especially the combination with usernames, is not explic-

itly reflected in the Linux privacy policy, which primarily mentions the collection of IP addresses,

domain names, and browser information for service enhancement and debugging. This discrepancy

indicates a gap between the policy’s broad statements and the specific practices observed in the logs.

In the case of MacOS, the logs indicate a collection of IP addresses in combination with user-

names in a limited number of instances. However, this specific combination is not directly addressed

in the MacOS privacy policy, which, while comprehensive in detailing the types of data collected

(such as IP addresses, browser, OS, and device details), does not explicitly mention the collection

of usernames. This omission represents a significant gap between the logging practices and the

privacy policy, indicating a potential breach in privacy practices, regardless of the limited number

of occurrences.

OpenSSH stands out for its extensive logging of IP addresses, often in combination with user-

names and UIDs, as seen in a significant number of log events categorized under ’Failed authentica-

tion attempt’ and ’Unauthorized Access Detection.’ This extensive use of IP addresses for security-

related purposes is broadly acknowledged in the OpenSSH privacy policy, which states the collec-

tion of a wide range of data under multiple purposes, including user consent and legitimate interests.

However, the policy’s general scope does not fully capture the specific, intensive use of IP addresses

observed in the logs, suggesting a need for more precise and detailed policy articulations.

6.3.4 Discussion

Our research findings brings to the forefront the urgent need for enhanced personal data man-

agement strategies within logs. The following are key areas where immediate attention and action
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are imperative:

Open-Source Systems - A Call for Enhanced Governance: In open-source environments like

Linux and OpenSSH, the diverse and decentralized nature of development contributes to a varied

approach to privacy. This diversity, while fostering innovation, potentially leads to inconsistencies

in privacy practices. Our observations suggest a heightened privacy risk in these systems, under-

scoring the need for more structured governance around log data management. Implementing robust

privacy-focused guidelines and enhancing oversight could significantly mitigate these risks.

Commercial Systems: Continuous Vigilance and Refinement: For commercial systems, as

exemplified by MacOS, our study reveals a more cautious approach to logging practices. However,

instances of data amalgamation, such as the combination of IP addresses with usernames, highlight

that privacy concerns are not exclusive to open-source systems. Continuous refinement of privacy

practices and regular audits are essential, even for commercial entities, to ensure alignment with

evolving privacy standards and user expectations.

Advocacy for User-Centric Privacy Terms: Recognizing the prevalent issue of forced con-

sent, where users must agree to privacy policies to access services, our study also critiques the

transparency and user empowerment aspects of such policies. We advocate for clear, comprehen-

sible, and accessible privacy terms that empower users with genuine choice and control over their

personal data. To this end, we propose developing mechanisms that enable users to give explicit

consent for each category of data being collected. For instance, instead of a single, blanket accep-

tance of all terms, privacy policies could present modular consent forms. These forms would allow

users to opt-in or opt-out of specific data collection practices, particularly for data types like IP

addresses, device details, or location data.

Engagement with Industry Stakeholders: To further these objectives, engaging with compa-

nies and industry stakeholders is crucial. Informing them of our findings is a step towards fostering

a collaborative environment where privacy concerns are openly addressed. Extending this research

to other systems would broaden our understanding of industry-wide practices, contributing to more

comprehensive and effective privacy solutions.
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6.4 Conclusion

In conclusion, this study breaks new ground by analyzing log files for personal data handling

practices across diverse systems, a subject that has been given insufficient attention to date. Our

methodological innovation lies in the granularity of our analysis, particularly in how IP addresses

intertwine with other personal identifiers, revealing a landscape ripe for privacy enhancement.

In our investigation, we observed notable discrepancies in the logging practices and privacy

policy transparency of Linux and OpenSSH when compared to MacOS. The open-source platforms

demonstrated a concerning degree of privacy risks, compounded by the ambiguity in their privacy

policies. This lack of clarity poses significant challenges in ensuring user data protection. Even

within the comparatively stringent privacy framework of MacOS, we identified instances where the

amalgamation of data contravened their own privacy policy stipulations.

Looking ahead, we aim to extend the conversation on privacy protections by sharing our find-

ings with the companies managing these systems. Engaging with these entities is a critical step

toward advocating for improved practices and ensuring that the implications of our research are

translated into actionable change. Furthermore, the analysis of a broader range of logs will enrich

our understanding of the privacy landscape, while collaboration with legal experts can deepen the

study’s impact by exploring the legal ramifications of our findings.

The path forward calls for a concerted effort involving industry stakeholders, legal authorities,

and the research community to forge a consensus on privacy-respecting logging standards. By

continuing this research and advocating for its application, we contribute to the vital endeavor of

safeguarding personal data integrity and fostering trust in digital ecosystems.
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Chapter 7

Conclusion and Future Work

”What we know is a drop; what we don’t

know is an ocean.”

— Isaac Newton
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The findings and contributions of this thesis represent a step forward in the field of log manage-

ment, with a focus on improving log parsing accuracy, efficiency, privacy and adaptability. The key

contributions of this work include:

• Development of the Universal Log Parser (ULP): ULP leverages frequent token analysis

to enhance log template extraction, effectively addressing the heterogeneity of log formats

across different systems. This approach has been demonstrated to significantly improve pars-

ing performance by adapting to diverse log structures.

• Introduction of the Accuracy Metric for Log Parsing (AML): The AML framework pro-

vides a comprehensive means of evaluating the accuracy of log parsers, addressing the cur-

rent lack of standardized and comprehensive metric. This metric enables a more objective

and consistent assessment of the efficacy of log parsing techniques across a variety of log

datasets.

• Creation of a Comprehensive Taxonomy for Log Characteristics: The taxonomy devel-

oped in this thesis categorizes the key attributes of log data, aiding in the characterization

of logs and supporting more adaptive parsing techniques. This taxonomy forms the basis

for evaluating log parsers and serves as a reference for understanding the complexity of log

events.

These contributions collectively advance the field of log analysis, providing essential tools and

frameworks that improve the way we process and understand system logs, especially in complex,

large-scale environments. However, given the rapid evolution of modern computing systems and

the increasing complexity of log data, there remains considerable scope for further research in this

area.

Building upon the foundations laid in this thesis is critical for addressing the ongoing challenges

posed by heterogeneous log formats, dynamic system behaviors, and large-scale data environments.

The taxonomy of log characteristics developed here provides a strong framework for understanding

the structural complexities of log data, but continued research is necessary to refine and adapt these

insights to emerging technologies such as microservices and cloud-native systems. Leveraging
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the taxonomy of Log Event Characteristics (LECs) to develop more robust log parsing techniques

presents an exciting opportunity to address the persistent challenges in log parsing, particularly the

heterogeneity of log formats and the dynamic nature of log tokens.

Log patterns represent a significant area for future research. By analyzing recurring templates

and structural attributes within log events, we can better understand typical system behaviors and

”hot spots” that generate significant logging activity. The extraction of consistent log patterns could

help classify logs components into meaningful categories such as normal operational behaviors,

anomalies, or potential indicators of performance bottlenecks. These insights could ultimately lead

to predictive maintenance models, enabling intelligent systems that provide real-time operational

insights and enhancing both system reliability and performance. By studying the prevalence and

frequency of these patterns, researchers can determine which system events are most critical or fre-

quent. This allows for the identification of ”hot spots” in system behavior, where particular activities

might be generating significant logging information. Moreover, understanding these patterns could

lead to the classification of logs into meaningful categories, such as normal operational behaviors,

anomalies, or potential indicators of performance bottlenecks.

The benefits of having a well-defined set of log patterns are substantial. For instance, identi-

fying log patterns allows developers and operators to create targeted rules for alerting, which can

significantly enhance Anomaly Detection. Additionally, log patterns can facilitate more efficient

log storage by using the same template for repeated events, thereby compressing redundant infor-

mation. They also help improve log parsing accuracy since consistent patterns allow parsers to more

effectively differentiate between static and dynamic content within log messages.

Furthermore, the identification and categorization of these patterns make it easier to develop

predictive maintenance models by determining which sequences of events may indicate an impend-

ing issue. In this way, log patterns can serve as the foundation for intelligent logging systems that

are capable of providing operational insights in real-time, helping both developers and operators

maintain system reliability and performance.

Another crucial area for further research is understanding the cost of logging. Real-time and

high-traffic systems, like high-frequency trading platforms, demand extremely efficient logging to

avoid performance bottlenecks. A refined taxonomy can guide selective logging of high-impact
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events, reducing unnecessary logs while preserving essential system information. Establishing best

practices for logging efficiency, such as batching or serialization techniques, will also be key in

minimizing logging overhead.

The application of the LEC taxonomy for benchmarking and testing log parsers is another po-

tential avenue for advancement. Developing a comprehensive benchmark will allow for a more

structured evaluation of log parsing tools, focusing on parser accuracy, variability, hierarchical to-

ken complexity, and handling delimiters. This benchmark should include both unit and integration

tests, ensuring that parsers can handle real-world complexities effectively. Such a testing process,

combining synthetic and real log data, could provide a rigorous evaluation framework for parser

performance and accuracy.

Enhancing the AML (Accuracy Metric for Log Parsing) framework introduced in this thesis

also holds promise. Future work could refine AML to evaluate the impact of parsing errors on

downstream analysis tools and combine accuracy metrics with computational efficiency. Another

promising direction would be to integrate AML with performance metrics to balance both parsing

accuracy and computational efficiency, ensuring that log parsing solutions are scalable for high-

throughput, real-time environments.

Another important aspect to explore further is privacy and security in log parsing. With logs

often containing sensitive data like IP addresses or PII, privacy-preserving parsing techniques that

mask or obfuscate sensitive information during analysis are necessary. Future research should focus

on developing privacy-aware parsing frameworks that align with data protection regulations, such

as GDPR, ensuring compliance without sacrificing analytical power.

As we look to the future of log parsing, we stand at a moment where large language models

(LLMs) and advances in AI are reshaping the way we handle unstructured data. LLMs, known for

their remarkable capacity to process huge corpora and detect patterns in text, promise a powerful

extension to existing log analytics. They can discover latent relationships within logs and offer

intuitive explanations of system behavior that might otherwise remain hidden to traditional parsers.

By applying advanced natural language processing, LLMs can identify anomalies, highlight causal

links, or even propose remediation steps in near-real time.

However, while LLMs add a new level of adaptive intelligence, they do not entirely replace
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structured log parsing methods. Most LLM-based approaches still benefit from having clean, well-

defined inputs—especially for mission-critical applications where precision is paramount. Struc-

tured parsing provides the foundation that shapes raw logs into consistent templates, ensuring that

key tokens, timestamps, and severity levels are accurately extracted. This structured data can then

be ingested by LLMs to further explore nuanced patterns, facilitating more sophisticated insights

and recommendations.

Moreover, although LLMs excel at understanding unstructured text, they can be prone to hal-

lucinations or inaccuracies when the context is ambiguous or when the data does not align well

with the model’s training distribution. The careful evaluation and robust metrics introduced in this

thesis—particularly the AML (Accuracy Metric for Log Parsing)—remain highly relevant in such

scenarios. They can help gauge how accurately LLM-driven methods are interpreting logs, ensuring

that faulty predictions do not propagate to critical decision-making processes. Similarly, the taxon-

omy of log characteristics developed here can guide the integration of LLMs by identifying which

log types or patterns are best suited for advanced NLP techniques and where additional domain-

specific models or rules might be needed.

In this evolving landscape, human engineers also maintain a vital role. While LLMs can au-

tomate the detection of anomalies and generate sophisticated analyses, subject-matter expertise is

essential for interpreting results, validating recommendations, and ensuring ethical use of poten-

tially sensitive log data. Humans bring domain knowledge, contextual judgment, and regulatory

awareness that LLMs currently lack, especially for privacy-sensitive logs. Consequently, a collab-

orative model emerges: structured parsing and metrics-driven validation lay a stable groundwork;

LLMs augment this structure with deeper pattern recognition; and human engineers oversee and

fine-tune both the data pipelines and the interpretative processes to uphold reliability, compliance,

and trust.

Ultimately, the synergy of structured methods (as proposed in this thesis) and LLM-based an-

alytics allows organizations to leverage the best of both worlds—transforming raw log data into

dependable, machine-friendly forms, then using advanced AI to extract higher-level insights. This

fusion delivers robust, explainable, and trustworthy AIOps solutions that neither technology alone

could fully achieve.
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The evolution of logs themselves is another aspect to consider. Current logs reflect today’s ar-

chitecture, with discrete events captured in textual form, often requiring significant post-processing.

As systems grow increasingly distributed and intelligent, logs may transform into more adaptive,

real-time telemetry streams that integrate directly with machine learning models for on-the-fly sys-

tem adaptation. This shift could reduce the need for traditional log analysis while enabling proactive

system management.

However, as these systems become more sophisticated, ensuring transparency, accountability,

and trust becomes crucial. If LLMs or future AI systems take over diagnosing, predicting, and opti-

mizing system behavior, there is a risk that the systems become opaque, complicating accountability

in failure moments. It will be essential to ensure that humans still understand how these systems

work, even as they become more autonomous.

In the end, the future of log parsing will depend not only on technological advancements but

also on our choices regarding the balance between automation and interpretability. As we march

towards a future where systems can understand and adapt themselves, we must ask whether we will

continue to analyze system behavior as we do today, or whether we are witnessing the beginning of

a paradigm shift that will redefine logs and system intelligence. This thesis serves as a foundation

for these future endeavors, offering the tools and insights necessary to push the boundaries of log

management, AIOps, and system intelligence.
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