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Abstract

Renting Servers in the Cloud

Mahtab Masoori, Ph.D.

Concordia University, 2025

We study the Renting Servers in the Cloud problem (RSiC), which addresses the need for effi-

cient job allocation in cloud computing applications. Jobs arrive in an online manner and need to be

assigned to servers. The size of each job is known at the time of arrival. If the duration of the jobs is

also known, the scenario is termed clairvoyant; if the duration is unknown, it is non-clairvoyant. An

infinite supply of identical servers is available, each providing one unit of computational capacity

per unit of time across all dimensions. A server can be rented at any time and remains rented until

all assigned jobs are completed. The cost of an assignment is the sum of the rental periods of all

servers. The objective is to allocate jobs to servers in a way that minimizes the overall cost while

adhering to server capacity constraints.

We first focus on a scenario where all jobs have equal durations and analyze the performance

of two natural algorithms, NextFit and FirstFit. We establish a tight bound of 2 on the competitive

ratio of NextFit. For FirstFit, we also prove bounds under several restrictions. Next, we conduct

a parameterized analysis of FirstFit, examining inputs where it utilizes at most k servers simulta-

neously. We support the theoretical analysis with extensive experimental studies. Then, we show

for a large class of well-known algorithms for RSiC, none of them always outperforms the others.

We study the multi-dimensional RSiC setting, where jobs/servers have multi-parameter resource

demands/capacities (e.g., cores, memory). We demonstrate a direct sum property of RSiC. We also

propose a novel clairvoyant algorithm called Greedy; our experiments demonstrate its superiority

over existing algorithms in most scenarios. We introduce and analyze performance of a new sub-

family of AnyFit algorithms termed monotone AnyFit, which includes Greedy, FirstFit, LastFit, and

iii



MoveToFront. Finally we evaluate both clairvoyant and non-clairvoyant algorithms for RSiC on

real-world data using the Azure dataset. The results are sometimes different from those previously

obtained on synthetic data. We also proposed some new algorithms that are combinations of known

algorithms and outperform all existing algorithms in our experiments.
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Chapter 1

Introduction

1.1 Motivation

Cloud computing [31] has become a key technology, fundamentally changing how computing

services are provided and used. By delivering resources such as servers, storage, databases, and

software over the internet, cloud computing allows users to access powerful infrastructure on a pay-

as-you-go basis. This model eliminates the need for large investments in physical hardware and

software, reducing capital expenses and offering cost savings, as users pay only for the resources

they actually use. The growing importance of cloud computing is driven by the need for flexibility

and scalability in today’s dynamic business world. Companies can quickly adjust their IT resources

to match changing demands, allowing them to respond swiftly to market shifts and stay competitive.

This adaptability is crucial as organizations undergo digital transformation, using cloud services to

implement advanced technologies like artificial intelligence, machine learning, and big data analyt-

ics.

Cloud service providers offer services and resources, hosted on computing or storage servers

to their customers over the internet. Customers submit jobs to the system, which arrive at different

times, have different durations, and have different resource requirements. The service provider must

assign these jobs to its servers as they arrive, while considering the available capacity of each of its

servers. For example, users request virtual machines (VMs) with certain resource requirements, and

a cloud service provider such as Microsoft Azure must place the VMs on its physical servers [36].
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The total time that the physical servers are active directly contributes to power and other costs for the

cloud service provider. Poor placement decisions can result in fragmentation and over-provisioning

of physical resources. Indeed, Hadary et al. [36] claim that even a 1% reduction in fragmentation

can lead to cost savings of the order of $100M a year for Microsoft.

As another application, cloud gaming companies such as GaiKai, OnLive, and StreamMyGame

rent servers from public cloud companies and are charged using a pay-as-you-go model. A cus-

tomer’s request to play a game is assigned to one of the rented servers that has enough capacity to

serve the request. The rental cost paid by the gaming company is directly proportional to the dura-

tion of time that the servers are rented. Both the above situations could be modeled by the Renting

Servers in the Cloud (RSiC) problem which is the focus of this thesis.

The RSiC problem was first introduced by Li et al. [52]. In this problem, jobs with resource

requirements across multiple parameters (e.g., number of GPUs or CPUs, memory, network band-

width, etc.) arrive at the system and must be assigned to servers with fixed capacities along each of

these dimensions. This is referred to as the d-dimensional RSiC problem. Each job’s resource needs

are represented as a vector, where each component corresponds to a different type of resource. If a

job requires only a single type of resource, the problem is referred to as the 1-dimensional RSiC.

RSiC is naturally an online problem, where jobs arrive and leave the system in sequence over

time. In an online setting, the service provider must make irrevocable assignment decisions imme-

diately upon each job’s arrival, without any prior knowledge of future jobs. In contrast, an offline

approach would involve having access to the entire sequence of jobs in advance. The online nature

of this problem highlights the challenge of making decisions with only partial and evolving infor-

mation. Naturally the size of a job is known at the time of arrival but its duration may or may not

be. The problem has been studied both in the clairvoyant setting, where the job duration is also

known at the arrival time, and in the non-clairvoyant setting, where the job duration is known only

when the job departs. In this problem, job migration from one server to another is assumed to be

prohibitively expensive; therefore, the assignment decisions are irrevocable. The performance of an

online algorithm is usually measured by its competitive ratio, which is the worst-case ratio (over

the inputs) between the cost achieved by the online algorithm and the cost achieved by an offline

optimal solution that knows the entire input instance in advance. One distinguishes two notions of
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competitive ratio: strict, which applies to all inputs, and asymptotic, which applies only to large

enough inputs.

RSiC is a generalization of the classical bin packing problem, which corresponds to the input

scenario for RSiC when all jobs arrive at the same time and have equal duration. RSiC introduces a

temporal component to the classical problem. Another related problem is the dynamic bin packing

problem, introduced by Coffman et al. [20], which however has a different objective – the goal is

to minimize the maximum number of servers rented at any point of time during the operation of the

system. The objective function of RSiC is also known as Min Usage Time. In recent years, interest

in RSiC has increased due to the proliferation of cloud-computing services and the pay-as-you-go

model, and the Min Usage Time objective is more suitable to model such services [52].

1.2 Notation and Problem Statement

In this section, we introduce the notation used throughout the thesis and present fundamental

facts related to the RSiC problem. We begin by providing a general overview of the RSiC problem,

including its input parameters and objective function.

The input to the d-dimensional RSiC problem is a sequence of n items � = (�1, . . . ,�n), where

item i is a triple (ai, fi, si), denoting a job starting at time ai 2 [0,1) and finishing at time fi > ai

where multi-dimensional resource demand si 2 (0, 1)d such that sj
i

denotes the size of the job �i

in the jth dimension for j 2 [d]. We assume that an algorithm for RSiC has access to a supply

of identical servers of capacity 1 in each dimension, i.e, the size of each server is 1
d. Thus, for

every time t the combined size of jobs in a particular dimension assigned to a particular server at

time t must not exceed 1. For the same starting time a, jobs starting at time a are presented in an

adversarial order. An online algorithm for RSiC receives one job �i at a time, and it must make

an irrevocable decision on which server to schedule job i before job i + 1 arrives. The goal of the

online algorithm for RSiC is to minimize the total cost of all servers used, where the cost of each

server is equal to the duration for which it is rented/utilized.

The duration of a job i is fi � ai; we sometimes use d(�i) to represent it.

An important parameter of the input sequence is µ(�) := maxi(fi�si)

mini(fi�si)
, which is the ratio of the
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maximum duration of a job to the minimum duration of a job in the sequence.

We say that a job �i = (ai, fi, si) is active or alive at time t if t 2 [ai, fi). Two jobs �i and �j

are said to be non-overlapping if [ai, fi) \ [aj , fj) = ;, otherwise they are said to be overlapping.

Note that representing active times of jobs by half-open intervals allows us to consider two jobs

such that one starts at exactly the same time as the other one finishes as non-overlapping. Note that

when the number of dimension d = 1, each item i has si 2 (0, 1], and servers possess capacity of

1. Jobs are presented in an order that respects their starting times, i.e., a1  a2  · · ·  an.

Opening a server signifies the start of its rental period, typically marked by the assignment of the

first job to it. A server is considered active or alive at time t if it currently hosts at least one scheduled

job that remains active at t. A server is considered closed when it will no longer receive any future

job assignments; it is important to note that this status is determined by the algorithm rather than

an inherent characteristic of the server itself. Once a server is closed it is no longer open. Despite

being closed, a server may continue to be active until all its assigned jobs are completed. Once all

jobs are finished, the server is released, and subsequently, it becomes inactive. See Figure 1.1 for

the visual representation of a server. Additionally, we define the duration of each server B, denoted

by d(B), as the time interval from its opening until its last active job finishes. In this terminology,

the goal of the RSiC problem is to minimize the total duration of all rented servers.

Open and Active Closed and Active

Closed and Inactive

Open S Close S

Release S Release S

Figure 1.1: Visual representation of server S states and transitions: circles represent possible server statuses (Open and Active, Closed
and Active, Closed and Inactive) and arrows indicate actions. Status definitions: Open: server accepts new requests if capacity allows;
Closed: server does not accept new requests; Active: server contains at least one ongoing job; Inactive: all jobs on the server have
completed.
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1.2.1 Known Algorithms for RSiC

Several algorithms commonly used in the bin packing problem are also applicable to the RSiC

problem, including NextFit, WorstFit, BestFit, and FirstFit. The NextFit algorithm allows only one

server to be open at a time. If there is space available, the current job is assigned to the open server;

if not, the server is closed and a new one is opened. The WorstFit algorithm, in contrast, opens a new

server if no existing one can accommodate the job. If an open server can fit the job, WorstFit places it

in the server with the most free space that can accommodate it. If multiple servers have equal space,

WorstFit selects the server with the lowest index. BestFit works oppositely to WorstFit, placing the

job in the server with the least available space that can still accommodate it. If no such server exists,

BestFit opens a new one. The FirstFit algorithm maintains the order of server openings, placing the

job in the first server that has enough space to fit it. If no such server exists, FirstFit opens a new

one. An algorithm is categorized as part of the AnyFit family if it only opens a new server when

no existing server can accommodate the job. Unlike NextFit, AnyFit algorithms ensure that servers

remain open once they are created. WorstFit, BestFit, and FirstFit are all members of the AnyFit

family.

The following example gives a sample input and solution for the d-dimensional RSiC problem.

Example 1.2.1. In this example we have d = 2. The input sequence � consists of three jobs,

� = {�1 = (0, 6, s1 = [0.5, 0.2]),�2 = (4, 8, s2 = [0.2, 0.2]),�3 = (4, 8, s3 = [0.6, 0.1])}.

Figure ?? shows one possible assignment of these jobs to servers. FirstFit opens the first server for

�1, and �2. However, upon the arrival of �3, a new server is opened since the first server lacks the

capacity in the first dimension to accommodate it.

0 1 2 3 4
T ime

5 6

Server 1

0 1 2 3 4
T ime

5 6

Server 1

(a) (b)

7 8 7 8

Server 2 Server 2

Figure 1.2: Online assignment of jobs into servers described in Example 1.2.1. FirstFit on (a) the first dimension, (b) the second
dimension.

The cost of each server is determined by its opening and closing times. The first server’s cost
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is 8 (opening at 0 and finishing at 8), while the second server has a cost of 4. The total cost of the

algorithm is the sum of the costs of all servers, resulting in a total cost of 12.

In this example, however, OPT assigns the first job to the first server and opens a new server

to accommodate both the second and third jobs together, resulting in a total cost of 10. Figure 1.3

illustrates the assignment of OPT for this example.

0 1 2 3 4
T ime

5 6

Server 1

(b)

7 8

Server 2

0 1 2 3 4
T ime

5 6

Server 1

(a)

7 8

Server 2

Figure 1.3: OPT assignment of jobs into servers described in Example 1.2.1. OPT on (a) the first dimension, (b) the second dimension.

1.3 Competitive Analysis

Online algorithms were initially analyzed under stochastic models, where the input sequence

follows a random distribution. There are several difficulties with this approach: (1) it is not easy

to estimate the correct distribution from real-life data (as real-life data is often rather noisy), (2) it

lacks worst-case guarantees, (3) it is technically quite challenging to obtain tight bounds in stochas-

tic settings. Competitive analysis emerged as an alternative framework that provides worst-case

guarantees for online algorithms, does not require knowledge of distributions, and is often easier

to handle than distributional analysis. Competitive analysis became the standard method following

the work of Sleator and Tarjan [65]. This approach compares the performance of an online algo-

rithm to that of an optimal offline algorithm in the worst case. In the following, we formally define

competitive analysis and its key measures.

For an online algorithm ALG and an input sequence �, let ALG(�) denote the value of the

objective function achieved by ALG on �. Similarly, let OPT (�) represent the cost of an optimal

offline algorithm OPT for the same input �. For a minimization problem1, we say that ALG is
1For a maximization problem, we say ALG is ⇢-competitive if: ALG(�) � ⇢ ·OPT (�)� c.
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asymptotically ⇢-competitive if there exists a constant c > 0 such that for all input sequences �:

ALG(�)  ⇢ ·OPT (�) + c. (1)

The infimum over all such ⇢ is denoted by ⇢(ALG) and is called the competitive ratio of ALG. If

c = 0 then the algorithm is called strictly ⇢-competitive.

Ironically, some of the strengths of worst-case analysis can also be its drawbacks. For example,

while worst-case guarantees may be easier to establish than average-case guarantees and provide

stronger benchmarks, they can be overly pessimistic and not reflect real-life performance. To ad-

dress this concern, researchers have explored alternative frameworks to complement competitive

analysis. For a comprehensive discussion, we refer readers to the survey by Hiller and Vrede-

veld [39]. In addition, as data becomes more abundant, it now becomes possible to get useful

estimates of real-life distributions. Thus, distributional analysis is making a comeback. See, for

example, the survey by Mehta [56] for the developments of distributional analysis in the context of

bipartite matching. In this thesis, we analyze algorithm performance using the standard framework

of competitive analysis (with an exception of one result on advice complexity).

1.3.1 Lower Bounds on OPT

Note that since RSiC is NP -hard, it cannot be solved optimally in polynomial time unless

P = NP . Therefore, to establish bounds on the competitive ratio of ALG, we derive lower bounds

on OPT . The remainder of this section presents these lower bounds on OPT .

The two key parameters of an instance �, usually called the span denoted by span(�) and the

utilization denoted by util(�) [52, 57], are defined as follows:

util(�) =
nX

i=1

(fi � ai) · ksik1 and span(�) =

�����

n[

i=1

[ai, fi]

����� .

Thus, the utilization can be thought of as the total volume (size times duration) of all jobs, and

span is the total duration of all jobs ignoring overlaps. Note that in the case of d = 1, the utilization
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of input sequence � is defined as [52]:

util(�) =
nX

i=1

si(fi � ai)

Without loss of generality, we assume that
S

i2[n][ai, fi) = [0, T ), that is, span arises from a

single uninterrupted interval, and the first job arrives at time 0. It is easy to see that the span and

utilization are lower bounds on the cost of OPT .

Proposition 1.3.1 ([57]). OPT(�) � max{span(�), util(�)/d}.

We denote the sum of sizes of jobs active at time t by s(�, t), i.e., s(�, t) =
P

i:ait<fi
si.

For t 2 [0,1), we use s(t) to denote the sum of all sizes of jobs that have start time t, i.e.,

s(t) =
P

i2[n]:ai=t
si. For a server B we use s(B, t) to denote the sum of all sizes of jobs that are

scheduled on B and active at time t. The value s(B, t) is also called the load of server B at time

t. As previously mentioned, the cost associated with each server corresponds to the total duration it

remains open, and the overall cost of the algorithm is the sum of the costs of all servers.

For an algorithm ALG and t 2 [0, T ) we use ALG(�, t) to denote the number of servers opened

by ALG that are active at time t. We use ALG(�) to denote the total cost of ALG on input �, i.e.,

the sum of durations of servers opened by ALG. Similar notation is used for the offline optimal

solution OPT, where OPT(�, t) refers to the number of active servers used by OPT at time t, and

OPT(�) represents the total cost of the optimal solution on input �. Observe that:

Proposition 1.3.2. OPT(�) =
R
T

0
OPT(�, t)dt, and ALG(�) =

R
T

0
ALG(�, t)dt.

Lemma 1.3.3.
R
T

0
dks(�, t)k1edt  OPT(�).

Proof. As the capacity of each server is 1 for every dimension j 2 [d]; any algorithm needs at least

dks(�, t)k1e servers to pack the total load at any time t. Therefore, OPT(�, t) � dks(�, t)k1e.

Using Proposition 1.3.2, we can conclude:

Z
T

0

dks(�, t)k1edt 

Z
T

0

OPT(�, t)dt = OPT(�).

For the 1-dimensional setting, the following proposition gives a lower bound on the optimal cost

OPT(�).
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Proposition 1.3.4 ([45]). OPT(�) � d
P

i2[n] s(�, t)e.

1.4 Thesis Contributions and Outline

In this thesis, we study the RSiC problem, which is a generalization of the bin packing problem.

Bin packing and its variants have been widely studied by researchers. The literature on classical bin

packing is extensive, spanning over 50 years of active research. Since bin packing is an NP-hard

problem, many different variants have been explored. The RSiC problem introduces an additional

component, making it even more challenging than the classical bin packing problem. Given its com-

plexity, we investigate RSiC under various restrictions like equal duration of jobs, limited number

of arrival times, etc. Table 1.1 summarizes the problem settings studied in this study.

Chapter Job Duration Arrival Pattern # of Arrivals # of Dimensions # of Servers Other
Chapter 3 Equal Duration Arbitrary Arbitrary 1 Unlimited –
Chapter 3 Equal Duration Arbitrary 2 1 Unlimited –
Chapter 3 Equal Duration Midterm 2 1 Unlimited –
Chapter 4 Equal Duration Midterm Arbitrary 1 Unlimited Long Running
Chapter 4 Equal Duration Midterm Arbitrary 1 Unlimited Dual-Core
Chapter 5 Equal Duration Arbitrary Arbitrary 1 Limited –
Chapter 6 Arbitrary Arbitrary Arbitrary 1 Unlimited –
Chapter 7 Arbitrary Arbitrary Arbitrary d Unlimited –

Table 1.1: An overview of the various RSiC settings studied in each chapter of this thesis. By midterm arrival pattern, we mean that the
arrival times of jobs are multiples of half of the job durations, under the assumption that all jobs have equal durations. The rest of the
settings are self explanatory.

It is easy to see that RSiC in its generality does not admit algorithms with a constant competitive

ratio. Thus, the research so far has focused on the inputs parameterized by µ.

In Chapter 3, we consider the problem under the special case of µ = 1, which we refer to as the

equal duration setting. Additionally, we explore a specific instance of the RSiC problem where

jobs have only two arrival times. Although this might seem like an artificial restriction, it reflects

certain real-life scenarios. For example, in the Map-Reduce model [23], the input is divided into

approximately equal blocks processed in two phases: Map and Reduce. This corresponds to input

items arriving at two times in the RSiC model. During the map phase, the user’s map function

creates a set of key/value pairs, generating intermediate key/value pairs. In the reduce phase, these

intermediate pairs are passed to a reduce function, merging values related to the same key. Map-

Reduce is extensively used in cloud computing for automatic parallel processing and large-scale
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data distribution. For this scenario, we establish a tight bound of 2 on NextFit; the previous best

bound for equal duration jobs was 2µ+ 1 = 3.

We also derive a lower bound of
34

27
(1 + t) for t 2 (0, 1) on the competitive ratio for FirstFit

when jobs have duration 1 and arrival times 0 and t for t 2 (0, 1). This surpasses the bin packing

lower bound for t > 0.35. Using the weight function technique, we show an upper bound of
168

131
(1 + t) on the asymptotic competitive ratio of FirstFit where jobs have duration 1 and arrival

times 0 and t for t 2 [0.559, 1). To our knowledge, this is the first application of the weight function

technique to the analysis of RSiC. When t ! 1, our results indicate that the competitive ratio of

FirstFit ranges between 2.519 and 2.565. Furthermore, we prove a strict competitive ratio of 2 for

FirstFit when each job has duration 1 and arrival times are either 0 or 1/2.

In Chapter 4, we demonstrate a tight asymptotic bound of 2/3 on the load of long-running

uniform FirstFit servers when jobs have duration 2 and integer arrival times 0, 1, 2, . . ., implying a

competitive ratio of approximately 3/2 for FirstFit in this long-running uniform case. This suggests

that challenging inputs for FirstFit are those where servers are short-lived. Then, we consider a

simpler version of the problem when all jobs have the same size 1/2. We prove that every online

algorithm has competitive ratio at least 5/4, and any AnyFit algorithm can achieve competitive ratio

5/4. We also show that even in this rather restricted setting it is impossible to achieve competitive

ratio better than 9/8 with sub-linear advice2.

Another setting explored in this thesis in Chapter 5 involves a limited number of servers. We

conduct a parameterized analysis, examining input families where FirstFit requires at most k servers

at any time, and provide tight bounds on FirstFit’s competitive ratio for such inputs. This param-

eterized version naturally models scenarios where the number of available servers is limited but

sufficient to meet demand. It also offers insights into the original RSiC problem with no server

number restriction at the number of servers. For k = 2, we establish a tight bound of 2 on FirstFit’s

competitive ratio. For k = 3, 4, we establish a tight bound of 3. Our lower bound of 3 applies to the

infinite server case and notably uses the time dimension, unlike previous constructions that gener-

alized bad bin packing cases. To prove the upper bound for k = 4, we introduce a novel technique

of partitioning the span into intervals based on the number of servers used by FirstFit and OPT ,
2The definition of advice complexity can be found in Section 4.2.3.
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showing that the total duration of intervals where FirstFit uses 4 servers while OPT uses only one

server cannot be that large. This technique could be useful for analyzing higher values of k or the

unrestricted server case. We also conduct an experimental study of FirstFit in the k-server setting

to understand its average-case behavior and the interplay between k and other system parameters,

such as job arrival rate and size range.

In Chapter 6, we construct specific instances to compare the theoretical performance of different

algorithms. Our results demonstrate that, within the class of algorithms we have discussed, no

single algorithm in the studied class consistently outperforms others. This highlights the inherent

complexity of the RSiC problem, indicating that different algorithms may perform better or worse

depending on the specific characteristics of the input instances.

In Chapter 7, we study both the clairvoyant and non-clairvoyant variants of the d-dimensional

RSiC problem, where job sizes are represented as d-dimensional vectors. In this setup, each job’s

size in any dimension is normalized to fall within the range of 0 to 1, and the server capacity in

each dimension is set to 1. For this variant, we propose a new clairvoyant algorithm called Greedy,

which assigns a new job to the server with enough remaining capacity that would incur the least

additional rental cost. Surprisingly, this natural algorithm has not been studied previously. We

prove that Greedy has a competitive ratio of 3dµ+ 1. Our analysis extends to a class of algorithms

we call monotone AnyFit, which includes FirstFit, LastFit, and MoveToFront. This proof employs

a new technique compared to those in existing literature [1, 45, 50, 59]. Notably, while the proof of

a 6µ + 8 upper bound on the competitive ratio of MoveToFront in [45] also applies to Greedy for

1-dimensional RSiC, our technique achieves a tighter upper bound of 3µ+ 1 for the 1-dimensional

case.

Additionally, we demonstrate a direct sum property of the RSiC problem by showing how to

transform a 1-dimensional algorithm ALG into a d-dimensional algorithm ALG
�d, with the com-

petitive ratio scaling exactly by a factor of d. Consequently, we derive another clairvoyant algorithm

for d-dimensional RSiC with a competitive ratio of ⇥(d
p
logµ). For non-clairvoyant RSiC with

d = 1, we show that no randomized algorithm can achieve a competitive ratio better than 1�e
�1

2
µ.
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We also conduct experiments in the average-case scenario, evaluating nearly all existing algo-

rithms for RSiC using randomly generated synthetic data. Our findings show that the Greedy algo-

rithm outperforms other algorithms, whether clairvoyant or non-clairvoyant, in the vast majority of

cases. Specifically, it surpasses MoveToFront, the previous best algorithm, in these experiments.

In Chapter 8 we focus on a comprehensive performance evaluation of clairvoyant and non-

clairvoyant algorithms for the RSiC problem using real-world data. Leveraging the Azure dataset [36],

we rigorously test these algorithms in realistic scenarios. This approach not only provides deep

insights into their practical effectiveness but also establishes a new benchmark to guide future re-

search. Additionally, we introduce new algorithms, derived from combinations of existing algo-

rithms, which outperform all the existing algorithms in our experimental evaluations.

Finally in Chapter 9, we conclude and discuss the possible future directions for the RSiC prob-

lem.

Part of the work presented in this thesis has already been appeared in the following papers:

• Mahtab Masoori, Lata Narayanan, Denis Pankratov. Renting servers in the Cloud: The case

of equal duration jobs. Discrete Applied Mathematics, 362:82–99, 2025.

• Mahtab Masoori, Lata Narayanan, Denis Pankratov. Renting Servers in the Cloud: Parame-

terized Analysis of FirstFit. In Proceedings of ICDCN 2024 — Best Paper Award.

• Yaqiao Li, Mahtab Masoori, Lata Narayanan, Denis Pankratov. Renting Servers for Multi-

Parameter Jobs in the Cloud. In Proceedings of ICDCN 2025 — Best Paper Award.

• Mahtab Masoori, Lata Narayanan, Denis Pankratov. Renting Servers in the Cloud: Empirical

Study on Real-World Data. Submitted to ACDA25.
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Chapter 2

Literature Review

In this chapter, we review the previous research on the bin packing problem studied in this

thesis. We investigate this problem under 1-dimensional (d = 1) and d-dimensional (d > 1)

settings. The bin packing problem has been a crucial key in the development of classical methods for

analyzing the performance of approximation algorithms [42]. It has also significantly contributed

to the concept of the competitive ratio, which is essential in the analysis of online algorithms [67,

44]. Yao’s research on the bin packing problem established the first general lower bound for the

competitiveness of online algorithms, marking a pivotal advancement in the field [74]. Furthermore,

this problem has offered important perspectives on the average-case performance of approximation

algorithms, as illustrated by Lueker [55].

In the rest of this chapter, we provide an overview of the most significant related work on RSiC,

a variant of bin packing and dynamic bin packing, along with its connections to various extensions.

We begin by reviewing the these problems in the one-dimensional setting and then broaden our

discussion to include the d-dimensional case for d > 1.

2.1 The 1-Dimensional Setting (d = 1)

In the classical one-dimensional bin packing problem, we are given a list of real numbers in

(0, 1]. The goal is to pack these numbers into bins, each with a capacity of 1, such that the total sum

of the items in any bin does not exceed its capacity, while minimizing the total number of bins used.
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By a reduction from the partition problem, it is known that bin packing is an NP-hard problem [35].

2.1.1 Classical Bin Packing

Online Bin Packing

We start by reviewing the online version of the bin packing problem. In this version, items in the

input sequence � are revealed sequentially. Each item �i has a size denoted by si. An algorithm for

the online bin packing problem must place each item into a bin without any knowledge of the future

items. Online processing is challenging due to the unpredictable sizes of items that may appear in

the future. In fact, the performance of an online bin packing algorithm is significantly influenced

by the order in which items are presented in the list. Many different algorithms have been proposed

for the online bin packing problem. In this chapter, we aim to address the most important ones.

As discussed in Chapter 1, one of the simplest algorithms for the bin packing problem is NextFit.

Johnson et al. [44] proved that the competitive ratio of NextFit is 2. Similarly, the competitive ratio

of WorstFit is also 2, offering no improvement in terms of competitive ratio [42]. Ullman in [67]

established the asymptotic bound on the competitive ratio of FirstFit of the form 1.7 ·OPT +3. The

additive term 3 was improved multiple times [33, 34, 64, 73, 11] and finally Dosa and Sgall [26, 27]

demonstrated the strict ratio 1.7. In general, algorithms in the AnyFit family have a tight competitive

ratio of 2. This indicates that their competitive ratio does not exceed 2, and there exists at least one

algorithm within the family, such as WorstFit, that achieves an exact competitive ratio of 2 .However,

rather large sub-families of AnyFit achieve a tighter competitive ratio of 1.7 [41].

The Harmonic family of algorithms represents a class of bin packing algorithms that attempt to

efficiently group items of similar sizes within the same bins. These algorithms maintain a maximum

of k open bins at the same time, where k is a parameter. Lee and Lee [48] present the Harmonic

Fit (HFk) algorithm which partitions the interval (0, 1] into k sub-intervals: (1/(j + 1), 1/j] (for

1  j  k � 1), and (0, 1/k]. Items are then assigned to these intervals based on their sizes using

the NextFit algorithm. When k ! 1 the algorithm is denoted as HF1. In this case, the algorithm

considers infinitely many intervals to classify item sizes. It is shown that the HF1 algorithm has

competitive ratio 1.692 [48].
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A significant restriction of the HF1 algorithm is its inefficiency in handling items slightly larger

than 1/2 as these items are packed alone in a bin, leaving the remaining space unused. To address

this issue, Lee and Lee [48] introduced the Refined Harmonic Fit algorithm, which optimizes bin

usage by sharing bins between items from the first two intervals. This refinement reduced the total

number of bins required and improved the competitive ratio to 1.63596. Over time, several ef-

forts have been made to further enhance the competitive ratio of the Harmonic Fit algorithm [58].

Richey [62] introduced the Harmonic+1 algorithm, claiming a competitive ratio of 1.58. How-

ever, in 2002, Sheiden demonstrated that the competitive ratio of Harmonic+1 is at least 1.59217,

disproving the earlier claim of 1.58. This discovery led to the development of the Harmonic++

algorithm, which achieved a competitive ratio of at most 1.58889. Finally, Balogh et al. [5] pro-

posed a new algorithm in 2017 with a competitive ratio of 1.57829, which remains the best-known

algorithm in this family to date.

Regarding lower bounds, Yao [74] was the first to establish a lower bound of 3/2 for online

bin packing. His construction relied on three lists of items with equal sizes: 1/2 + ✏, 1/2 + ✏,

and 1/6 � 2✏. Later, Brown [13] and Liang [53] independently improved this bound to 1.536345.

Van [69] later conducted an exhaustive analysis of lower bound constructions using linear program-

ming techniques, further raising the bound to 1.54015. Additionally, Faigle et al. [29] demonstrated

that when only two item sizes are considered, no online algorithm can achieve a competitive ratio

better than 4/3.

The bin packing problem has also been extensively studied under the random order model,

where the input sequence of items is selected by an adversary, but the order of arrival of these items

is determined by a uniformly random permutation from all possible permutations of the items.

Although this thesis does not focus on the random order model, but readers interested in further

exploration are referred to the works by [17, 21, 38].

Offline Bin Packing

As previously mentioned, bin packing is NP-hard due to a reduction from the partition prob-

lem. In the partition problem, we are given n integers bi for i 2 {1, 2, . . . , n} with a total sum

B =
P

n

i=1
bi. The goal is to divide these numbers into two sets, S1 and S2, such that the sum of the
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numbers in S1 equals the sum of the numbers in S2. By considering each item in the bin packing

input sequence to have a size of 2bi/B, we can reduce the partition problem to the bin packing

problem by checking if we can pack the items into two bins. It has been shown that the bin packing

problem is NP-hard even for achieving an absolute approximation ratio better than 3/2 [35].

In the offline version, the entire input sequence is available to the algorithm in advance for pre-

processing. Johnson [41, 44] introduced two algorithms, First Fit Decreasing (FFD) and Best Fit

Decreasing (BFD). These algorithms first sort the items in the input sequence in non-increasing

order of their sizes and then apply FirstFit and BestFit, respectively. It has been shown that these

algorithms have an approximation ratio of 11

9
OPT + 4 [41]. This result has been improved several

times, eventually reaching 11

9
OPT +

2

3
[25] which is tight. A modified version of this algorithm,

called Modified First Fit Decreasing, was introduced by Johnson and Garey [43] and has an im-

proved approximation ratio of 71

60
. More generally, if an Any Fit algorithm is applied after sorting,

the resulting algorithm has an approximation ratio of at least 11

9
[41].

A problem admits a Polynomial Time Approximation Scheme (PTAS) if, for every constant ✏ > 0,

there is a polynomial-time algorithm (with respect to the size of the input n) that produces a solution

with an approximation ratio of 1 + ✏. The running time of this algorithm is O(nf(1/✏)
), where f is

a function that depends only on ✏ and may grow with 1/✏. If the running time of a PTAS is poly-

nomial in both n and 1/✏, the algorithm is called a Fully Polynomial Time Approximation Scheme

(FPTAS). A problem admits an Asymptotic Polynomial Time Approximation Scheme (APTAS) if, for

every ✏ > 0, there is a polynomial-time algorithm with an asymptotic approximation ratio of 1 + ✏.

This means the approximation ratio is guaranteed only when the size of the input or some problem

parameter (e.g., OPT ) becomes sufficiently large. If the running time of an APTAS is polyno-

mial in both n and 1/✏, it is called an Asymptotic Fully Polynomial Time Approximation Scheme

(AFPTAS).

The first APTAS for the bin packing problem was proposed by Fernández de la Vega and Lueker

in 1981 [30]. This was improved by Karmarkar and Karp in 1982, who introduced an algorithm

with a guarantee of OPT +O(log
2OPT ) [46]. Subsequently, Rothvoss in 2013 [63] improved the

additive term to OPT +O(logOPT · log logOPT ), and Hoberg and Rothvoss in 2017 [40] further

reduced it to OPT +O(logOPT ). The problem of achieving OPT +1 remains an open problem.
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For more details, refer to the book by Williamson and Shmoys [70].

2.1.2 Dynamic Bin Packing

The dynamic bin packing problem, generalizing the vanilla bin packing, was initially introduced

by Coffman et al. [20]. In this variation, items of varying sizes arrive and depart sequentially, with

their sizes and arrival times known upon arrival, but their departure times remain unknown until they

actually depart. The primary objective is to minimize the maximum number of bins used at any time

during the execution. Coffman et al. considered a version where repacking of items is not allowed,

establishing an initial lower bound of 2.38 for any online algorithm, which has since been improved

to 2.66 [72]. Coffman et al. [20] proposed two types of optimal algorithms for evaluating online

algorithms: OPTR which allows repacking, and OPTNR which repacking is not allowed. Recall

that the algorithm ALG does not allow for repacking items. For OPTR, the competitive ratio of

any online algorithm ALG is at least 2.5. Within this setting, FirstFit achieves a competitive ratio

between 2.75 and 2.89 while the Modified FirstFit (MFF) algorithm has a competitive ratio of 2.788.

For OPTNR, the lower bound is 2.38.

Static bin packing can be seen as a special case of dynamic bin packing, where all items arrive

at the same time and remain in the system indefinitely. Dynamic bin packing allows for items to

depart, potentially reducing the number of bins needed if managed optimally. For example, consider

a sequence of items arriving and departing at different times. An optimal dynamic bin packing

algorithm might use fewer bins than an algorithm for the static problem by taking advantage of

the varying departure times. The main difference between these two cases would be clear with the

following example:

Example 2.1.1. Suppose we are given an input sequence � consisting of seven items. Let � =

{�1,�2,�3,�4,�5,�6,�7}. For a small " > 0, suppose s1 = s2 = 1/2 � ", s3 = s4 = 1/2 + ",

s5 = 1/3, s6 = 2/3, and s7 = 1. In static bin packing, all items arrive in the same time and stay in

the system forever. In this case, any optimal algorithm uses 4 bins for packing the sequence �. Now

let us consider the dynamic version of bin packing. In this case suppose �7 arrives after �1 and �3

depart. To be more clear, suppose the input sequence is � = {�1 = (1, 3, 1/2�"),�2 = (1, 6, 1/2�
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"),�3 = (1, 3, 1/2 + "),�4 = (1, 6, 1/2 + "),�5 = (1, 6, 1/3),�6 = (2, 6, 2/3, ),�7 = (3, 6, 1)}.

As you can see, an optimal algorithm uses 3 bins for packing these items. See Figure 2.1.

Bins

Times

Bins

Times

(b)(a)

�1

�3
�7

�2

�4

�5

�6

B1

B2

B3

�1

�3

�2

�4

�5

�6

�7

B1

B2

B3

B4

1 3 6

Figure 2.1: Illustration of the example instance: (a) The optimal solution for static bin packing. (b) The optimal solution for dynamic
bin packing.

In the discrete version of the problem, each item has a size of 1/k, where k is a positive integer.

Chan et al. [16] proved a tight bound of 3 on the competitive ratio of the BestFit and WorstFit. They

also showed that the FirstFit algorithm achieves a competitive ratio of 2.4942, which was later

improved to 2.4842 by Han et al. [37]. Nevertheless, no online algorithm can achieve a competitive

ratio better than 2.428 [16].

In the discrete problem, the competitive ratio of online algorithms is at most 2.48 [16]. However,

the Harmonic family of algorithms, which perform well in classical bin packing, are less effective

in dynamic settings. As these algorithms group items into categories based on their size and assign

separate bins to each category. In dynamic settings, an adversary can exploit this approach by

repeatedly adding and removing items of a single category, leading to substantial wasted space in

the bins.

In summary, dynamic bin packing introduces complexity due to the sequential arrival and de-

parture of items and the unknown duration of their presence. The development and analysis of

algorithms for this problem reveal various competitive ratios and lower bounds, highlighting the

challenge of optimizing bin usage in dynamic environments.
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2.1.3 Renting Servers in the Cloud

The 1-dimensional RSiC problem were introduced by Li et al. [52] for the first time. Except [57],

and this work, all existing literature on RSiC studies only dimension 1. For non-clairvoyant 1-

dimensional RSiC, Li et al. [52] proved that no deterministic online algorithm can achieve a com-

petitive ratio of less than µ. They also showed that no AnyFit algorithm can achieve a competitive

ratio of less than µ + 1. Finally they showed that the competitive ratio of any online algorithm for

RSiC when the size of jobs are greater or equal to 1/k, where k is a positive number, is at most k.

Later, Kamali and Lopez-Oritz [45] showed that µ is in fact a lower bound for any deterministic

algorithm. As we mentioned before, AnyFit is a family of algorithms for the bin packing problem.

For RSiC, researchers have mostly studied FirstFit and BestFit. For the FirstFit algorithm when the

size of jobs are at most 1/k then the competitive ratio is at most
kµ

k � 1
+

6k

k � 1
+1. In the case that

k is equal to 1 (i.e. that there is no restriction on item sizes) then the competitive ratio of FirstFit is

at most 2µ + 13 [51]. In the same work, Li et al. [51] introduced the Modified FirstFit algorithm,

which employs a parameter K to divide jobs into two categories: small jobs, with sizes less than

1/K, and large jobs, with sizes at least 1/K. The FirstFit strategy is then applied independently to

each category. This algorithm achieves a competitive ratio of at most 8/7µ + 55/7 when µ is not

known in advance and a competitive ratio of at most µ+8 when the value of µ is known. In [61] the

authors improved these results. In particular, they proved that FirstFit packing achieves a competi-

tive ratio of µ + 3, indicating that it is near-optimal for RSiC in the non-clairvoyant online setting.

Li et al. [51], proved a surprising result about the competitive ratio of BestFit for renting servers in

the cloud problem; they proved the BestFit algorithm does not have a bounded competitive ratio.

Kamali and Lopez-Oritz [45] considered the NextFit algorithm for RSiC. They showed that if

every job in the input sequence � has a size of at most 1/k, where k � 1, then:

⇢(NextFit) 

8
>><

>>:

µ

1� 1/k
if k � 2,

2µ+ 1 if k < 2.

In the same paper, they proposed a modified version of NextFit for improved performance. This

modified algorithm, known as Modified NextFit with parameter K, processes smaller jobs (less
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than 1/K) separately from larger jobs (at least 1/K). The NextFit strategy is applied indepen-

dently to each category. The competitive ratio for Modified NextFit with parameter K is at most:

K ⇥ max

⇢
1,

µ

k � 1

�
+ 1. If the algorithm knows the value of µ, then K can be set to µ + 1,

making Modified NextFit at most µ + 2-competitive. Kamali and Lopez-Oritz in the same paper,

also introduced a new AnyFit algorithm called the MoveToFront algorithm, which places the next

job in the most recently used bin. They proved that the competitive ratio of MoveToFront is at most

6µ+ 7.

Although these algorithms have promising competitive ratios, practical applications require al-

gorithms that also perform well on average. Kamali and Lopez-Oritz [45] and Ren et al. [60] also

presented experiments on random inputs to compare different algorithms and show various non-

trivial phenomena. In particular, Kamali and Lopez-Oritz [45] performed some experiments to

compare the average-case performance of different algorithms for RSiC on randomly-generated se-

quences. In those experiments, they assumed that each bin had a integer capacity E. Moreover, the

size and length of items had a uniform distribution in the ranges [1, E] and [1, µ], respectively. Their

experiments affirm that MoveToFront in general, performs the best among all known non-clairvoyant

algorithms at dimension 1. The closest counterpart of MoveToFront regarding the average case per-

formance is BestFit which does not have a bounded competitive ratio.

The clairvoyant setting has been studied in [1, 60]. In particular, Ren et al. [60] established a

lower bound of 1+
p
5

2
on the competitive ratio for any online packing algorithm. They also proposed

two item classification strategies for online packing: one based on departure time and the other on

duration. They applied these classification strategies to the classical FirstFit algorithm and analyzed

their competitiveness. Azar et al. [1] proposed the combination of these strategies in the so-called

Hybrid Algorithm which classifies jobs according to their length and their arrivals. Suppose the

maximum duration of jobs in the input sequence is µ. Then all the jobs whose lengths are in range

[2
i�1, 2i] for integer 1  i  dlogµe+1 and whose arrival times are in time interval [(c�1)2

i, c2i)

for an integer c are put into the same category. They proved a tight bound of ⇥(
p
logµ) on its

competitive ratio.

In the offline setting, Ren et al. [60] introduced two approximation algorithms for the RSiC

problem: the 5-approximation Duration Descending FirstFit algorithm and the 4-approximation
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Dual Coloring algorithm. Additionally, Buchbinder et al. [14] proposed an offline algorithm with

an approximation ratio of 2HF1 ⇡ 3.38, which is the current best-known algorithm. To the best of

our knowledge, there has not yet been the study of RSiC under advice model.

2.2 The d-Dimensional Setting (d > 1 )

2.2.1 d-Dimensional Bin Packing

In this section, we will explore previous work on the bin packing problem in a multi-dimensional

setting. This problem has been studied in two distinct scenarios: Vector bin packing (VBP) and

Geometric bin packing (GBP).

The VBP problem is a non-geometric generalization of the bin packing problem. Here we are

given a sequence � of n vectors {v1, · · · , vn}, where each vector vi 2 [0, 1]d. The goal is to

pack all vectors into the minimum number of unit bins such that the sum of the vectors in each

dimension within a bin does not exceed the bin’s capacity. In their paper, Fernández de la Vega and

Lueker [30] proposed the first APTAS for bin packing, which also provides a (d+ ✏) approximation

for VBP. Woeginger [71] proved that, unless P = NP, there is no APTAS even for d = 2 in the

general case. Later, Chekuri and Khanna [18] demonstrated that VBP can be approximated to

O(ln d) in polynomial time for a fixed d, and this result was improved by Bansal et al. [8] to

1 + ln d. Yao [74] showed that no algorithm running in O(n log n) time can achieve better than a

d-approximation for VBP. Chekuri et al. [18] showed that for a fixed value of d, the VBP problem

is hard to approximate within a d1/2�✏ factor for any ✏ > 0. For d = 2, Kellerer and Kotov [47]

presented an algorithm with an absolute approximation ratio of 2. Recall that, achieving an absolute

approximation ratio better than 3/2 for the bin packing problem is NP-hard. Bansal et al. [9]

improved these results by providing a polynomial-time algorithm with an asymptotic approximation

guarantee of (1 + ln(3/2) + ✏) for d = 2 and ln d + 0.807 + od(1) + ✏ for d > 2. They also

demonstrated that for any small constant ✏ > 0, there is a polynomial-time algorithm with an almost

tight absolute approximation ratio of 3/2 + ✏ for d = 2.

For the online version of VBP, Garey et al. [34] extended the analysis of FirstFit to achieve a

competitive ratio of d + 7/10. Galambos et al. [32] demonstrated that as d ! 1, the competitive
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ratio of online algorithms has a lower bound that approaches 2. Epstein [28] conjectured that the

lower bound on the competitive ratio is super-constant but sublinear. Subsequently, Azar et al. [2]

provided an ⌦(d1�✏
) lower bound for the VBP problem. Special cases of the online version of VBP

have been also studied, as detailed in [3, 4].

In the 2-dimensional GBP, the input consists of a sequence � of n rectangular items, each with

a width and height in the range (0, 1]. The objective is to pack these rectangles into the fewest

possible unit square bins, ensuring that the sides of the items are parallel to the sides of the bins.

This problem is generally studied in two variants: one where items cannot be rotated and another

where items can be rotated by 90
�. This problem has been explored in both offline and online

settings; for more details, refer to [54, 7, 22]. Other related problems to VBP and GBP include Strip

Packing and Geometric Knapsack, which extend the concepts of bin packing into geometric forms.

Additionally, Vector Knapsack, Vector Scheduling, and Vector Bin Covering generalize bin packing

to vector spaces. For a detailed exploration of these topics that are beyond the scope of this thesis,

readers are encouraged to see the survey by Christensen et al. [19].

2.2.2 d-Dimensional Dynamic Bin Packing

To the best of our knowledge, the d-dimensional dynamic VBP problem has not been extensively

studied. In [68], the authors introduce a polynomial-time data reduction algorithm that can achieve

(1 + ✏)-approximate solutions for any arbitrary ✏ > 0.

2.2.3 d-Dimensional Renting Servers in the Cloud

Murhekar et al. [57] initiated the study of non-clairvoyant d-dimensional RSiC. They proved that

MoveToFront has an upper bound (2µ + 1)d + 1, which in particular improves the previous upper

bound of MoveToFront in [45] for d = 1 to 2µ+ 2. They also generalized various upper and lower

bounds of algorithms such as FirstFit and NextFit from dimension 1 to dimension d. In particular,

they showed a lower bound of d(µ + 1) for AnyFit algorithms. Similar to [45], Murhekar et al.

also presented some experiments on the same setting as [45] and confirmed their results even in d-

dimensional setting. The currently best known upper and lower bounds for both non-clairvoyant and

clairvoyant RSiC problem under both 1-dimensional and d-dimensional settings are summarized in
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Table 2.1.

Setting Algorithm Lower bound d = 1 Upper bound d = 1 Lower Bound d > 1 Upper bound d > 1

Non-clairvoyant

AnyFit µ+ 1 [50] 1 (µ+ 1)d [57] 1

FirstFit µ+ 1 [50, 61] µ+ 3 [61] (µ+ 1)d [57] (µ+ 2)d+ 1 [57]

NextFit 2µ [66] 2µ 2µd [57] 2µd+ 1 [57]

Online BestFit 1 [50] 1 1 [50] 1

MoveToFront 2µ [57] 2µ+ 2 [57] max{2µ, (µ+ 1)d} [57] (2µ+ 1)d+ 1 [57]

Clairvoyant
Hybrid Algorithm

p
logµ [2]

p
logµ [2] – –

Hybrid Algorithm
�d

⌦(
p
logµ) [2] O(

p
logµ) [2] ⌦(d

p
logµ) O(d

p
logµ)

Greedy µ+ 1 [50] 3µ+ 1 (µ+ 1)d 3dµ+ 1

Table 2.1: Summary of the result for the online RSiC. Bold text highlights our results. Note that when d = 1, the Hybrid Algorithm�d

algorithm is identical to the Hybrid Algorithm algorithm.
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Chapter 3

The Case of Equal Duration Jobs

In this chapter, we study the 1-dimensional RSiC problem, for the situation in which all jobs

have the same duration, that is the case where µ = 1. As we mentioned in Section 2.1.3, the

previous results for RSiC, which are based on span and utilization, give an upper bound 2µ+ 1 for

NextFit and µ + 3 for FirstFit. There is a natural reason for the appearance of these additive terms

and it has to do with the distinction between the asymptotic and strict competitive ratios. Suppose

one proves that for all times t we have ALG(t)  ⇢ · OPT (t) + �, which would be analogous

to an “asymptotic bound” for a fixed time t, so to speak (note that this bound does not have to

apply for each time t, and amortization tricks may be used to prove this bound on average, but we

assume such a bound for each t for simplicity of the argument). The overall cost of the algorithm

is ALG =
R1
0

ALG(t) dt 
R1
0

⇢ · OPT (t) + � dt = ⇢ · OPT + � · span(�)  (⇢ + �)OPT .

Thus, an “asymptotic bound” for a fixed time t with competitive ratio ⇢ gets converted into the

overall bound of (⇢+ �) for the problem. The “asymptotic bounds” for a fixed time t arise because

often one needs to ignore one or two special servers to argue the desired inequality. Thus, one

approach towards tightening these bounds is to attempt to prove “strict bounds” for a fixed time t,

i.e., ALG(t)  ⇢0OPT (t). This way would avoid the appearance of the span(�) term. This is akin

to the difference between proving the asymptotic competitive ratio of FirstFit and strict competitive

ratio of FirstFit for the classical bin packing. We view this as the main obstacle to improving the

known results.
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We now describe one possible program to overcome the above-mentioned obstacle. First, gen-

eralize the weight function technique from the bin packing problem to the RSiC problem to prove

asymptotic bounds in restricted cases. Second, optimize these bounds and make them strict in re-

stricted cases. Third, generalize these techniques to the original problem.

In this chapter we make progress towards the above program, for the special case of µ = 1,

which we call equal duration. Specifically, we analyze two well-known algorithms, NextFit and

FirstFit, under the assumption that all jobs have the same duration. As summarized in Table 3.1,

we consider a scenario where jobs have a uniform duration but have different arrival pattern. We

first consider NextFit where the number of arrivals is arbitrary. Then, FirstFit when we assume jobs

have only two arrival times. We also consider FirstFit under a more simplified version, all jibs have

a fixed duration of x and arrival times that are multiple of x/2. We refer to this setting as midterm

arrivals. Without loss of generality, we assume x = 2, and we restrict the arrival times to be 0 and

1 in this case.

Algorithm Job Duration Arrival Pattern # of Arrivals # of Dimensions # of Servers
NextFit Equal Duration Arbitrary Arbitrary 1 Unlimited
FirstFit Equal Duration Arbitrary 2 1 Unlimited
FirstFit Equal Duration Midterm 2 1 Unlimited

Table 3.1: Overview of the settings for RSiC with uniform duration of jobs.

3.1 Notation and Preliminaries

We specify each job �i by its size and start time to simplify the notation, i.e., �i = (ai, si),

since the finishing time fi is a function of the start time, i.e., fi = ai + 1. We focus on the case of

two arrival times 0 and t 2 (0, 1), where t is arbitrary, and jobs of duration 1. In some sections, we

concentrate on arrival times 0 and 1 and jobs of duration 2, unless stated otherwise; by scaling, this

setting is equivalent to arrival times 0 and 1/2 and jobs of duration 1. Which of these notations is

used in a particular section will be clear from the context.

Recall that for t 2 [0,1), s(t) denotes the sum of all sizes of jobs that have start time t, i.e.,
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s(t) =
X

i2[n]:ai=t

si.

For t1 < t2 we use S(t1, t2) to denote the sum of all sizes of jobs that have start time in the

interval (t1, t2]:

S(t1, t2) =
X

i2[n]:si2(t1,t2]

si

3.2 Tight Competitive Ratio 2 for NextFit

In this section, we assume µ = 1 and jobs have arbitrary arrival times. Recall that the NextFit

algorithm keeps at most one server open at any time, i.e., a server that can be assigned newly arriving

jobs. If a given job does not fit in the open server, the algorithm closes the server (meaning it will

not assign any new jobs to it from this point onward), opens a new server, and assigns the job to

the newly opened server. Note that NextFit never reopens a closed server. Algorithm 1 presents the

pseudocode for NextFit.

Algorithm 1 NextFit algorithm.
procedure NextFit(� = (�1, . . . ,�n))

B  ? . Keeps track of an open server
T  �1 . Keeps track of when the open server terminates
for i = 1 to n do

new job �i = (ai, fi, si) arrives
if ai > T or s(B, ai) + si > 1 then

. open server terminated prior to arrival of the new job or the new job does not fit into
it

B0
 a new open server

Close B
B  B0

end if
Assign �i to B
T  max(T, fi)

end for
end procedure

The lower bound of 2 follows immediately from the lower bound on the competitive ratio of

NextFit for the bin packing problem and the fact that RSiC generalizes bin packing. The upper

bound of 2 on the competitive ratio of NextFit follows from the theorem below, which shows that
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the upper bound holds not only on the total cost of the schedule of NextFit, but, in fact, it holds at

each individual time t.

Theorem 3.2.1. Suppose that the duration of each job in � is exactly 1 while arrival times si are

arbitrary. Then, for every time t 2 [0,1) we have:

NextFit(�, t)  2 ·OPT (�, t).

Proof. If there are no active jobs at time t then NextFit(t) = 0 and the claim trivially holds. If there

are active jobs at time t and NextFit(t)  2 then we have OPT (t) � 1 and the claim also trivially

holds.

It remains to show the claim for those t where NextFit(t) � 3. Let k = NextFit(t) and let

B1, . . . , Bk be the servers of NextFit that are still active at time t and ordered in the non-decreasing

order of their opening times. Observe that since NextFit maintains only one open server at a time,

servers B1, . . . , Bk�1 must be closed at time t. We also use the following simple fact based on

duration of each job being exactly 1: a job is active at time t if and only if its arrival time is in

(t� 1, t]. Therefore we have:

S(t� 1, t) =
kX

i=1

s(Bi, t). (2)

Since B1 is active at time t, it must have had a job scheduled on it in time interval (t � 1, t]. Also,

the job that closed B1 must have arrived in (t�1, t]. We conclude that servers B2, B3, . . . , Bk were

opened in (t � 1, t] and thus all jobs scheduled on these servers since their opening are still active

at time t; see Figure 3.1.
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Figure 3.1: B1 must have a job that arrived in (t� 1, t]. Server Bi was closed at time ti 2 [t� 1, t] by a job that was placed in Bi+1.

Consider a server Bi that got closed at time ti 2 (t� 1, t] by a job �zi . This means that job �zi

was scheduled on server Bi+1 so we have the inequality:

s(Bi, ti) + s(Bi+1, ti) > 1 for i 2 {2, . . . , k � 1}.

Combining this with the fact that all jobs scheduled on servers B2, . . . , Bk are still active at time t,

we conclude:

s(Bi, t) + s(Bi+1, t) > 1 for i 2 {2, . . . , k � 1}. (3)

Observe that the above inequality might fail for i = 1 since the jobs active at time t1 in B1 might

finish before time t. Consider grouping servers in maximally many disjoint pairs (2, 3), (4, 5), . . .,

(2j, 2j + 1). The last pair must satisfy 2j + 1  k, which implies that j = b
k�1

2
c. Summing up

equations (3) corresponding to this pairing we derive:

jX

q=1

(s(B2q, t) + s(B2q+1, t)) � j.

Combining this with equation (2) we conclude that S(t� 1, t) > j. Rounding the left-hand side up

we get dS(t� 1, t)e > j, which implies that dS(t� 1, t)e � j + 1 by integrality. Multiplying both
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sides by 2 we get:

2dS(t� 1, t)e � 2j + 2 = 2(j + 1) = 2

✓
b
k � 1

2
c+ 1

◆
� 2((k/2� 1) + 1) = k.

To conclude, we have demonstrated that NextFit(t)  2dS(t � 1, t)e and the equation OPT (t) �

dS(t� 1, t)e is obvious.

Corollary 3.2.2. The competitive ratio of NextFit for the case equal duration and arbitrary arrival

times is at most 2.

3.3 FirstFit

In this section we consider the FirstFit algorithm, which unlike NextFit does not close servers

unless they are no longer active. As already discussed in Section 1.1, in the FirstFit algorithm, a

newly arriving job is assigned to the earliest (in the order of opening) active server that can accom-

modate it. Algorithm 2 provides the pseudocode.

3.3.1 Lower Bound for Jobs with Two Arrival Times

In this section, we present a parameterized lower bound on the competitive ratio of FirstFit for

the case of equal duration and derive a couple of consequences of this parameterized lower bound.

The adversarial instance consists of two sequences of jobs. In the first sequence all jobs have arrival

time 0 and in the second sequence all jobs have arrival time t 2 (0, 1), by which our lower bound

is parameterized. All jobs have duration 1 in this instance. The first sequence is simply the nemesis

instance for the bin packing problem due to [33]. Recall that this instance creates three groups of

FirstFit servers: (1) those with the load roughly 5/6, (2) those with the load roughly 2/3, and (3)

those with the load roughly 1/2. Meanwhile, OPT is able to schedule all the jobs in the same

instance into servers of duration 1 and load close to 1. Our second sequence consists of jobs that

arrive at time t and are used to extend the duration of each existing FirstFit server by an additive

1 � t. Thus, the items used to extend group (1) servers have size 1/12 each. Those items used to

extend group (2) have size 1/6 each. Lastly, those items used to extend group (3) have size 1/4
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Algorithm 2 FirstFit algorithm.
procedure FirstFit(� = (�1, . . . ,�n))

L ; . List of active servers
for i = 1 to n do

new job �i = (ai, fi, si) arrives
found false . Has an active server that can accommodate the new job been found?
for j = 1 to L.size() do

if ai > L[j].T then . L[j].T is the current finishing time of server L[j]
L.remove(L[j])

else if si + s(L[j], ai)  1 then . The new job fits
found true
break

end if
end for
if not found then

Open a new server B at time ai
L.insert(B)

j  L.size()
end if
Assign �i to server L[j]
L[j].T  max(L[j].T, fi)

end for
end procedure

each. These items can be neatly combined by OPT into servers of duration 1 and load 1. The

following theorem presents the parameterized lower bound. The proof is self-contained, since we

reproduce the nemesis instance from [33] as part of the proof.

Theorem 3.3.1. The asymptotic competitive ratio of FirstFit for the RSiC problem in the case where

the duration of each job is 1 and jobs arrive at times 0 and t 2 (0, 1) is at least
34

27
(1 + t).

Proof. Fix a large positive integer k and take � such that 0 < � ⌧ 18
�k. For i 2 [k] we define

�i = � ⇥ 18
k�i. The adversarial sequence � of input items is a concatenation of two sequences.

The jobs in the first sequence start at time zero, while the jobs in the second sequence start at time t.

Furthermore, the first sequence is subdivided into three phases. The first phase consists of k groups,

where each one consists of 10 jobs. Likewise, the second phase consists of k groups, where each

group consists of 10 jobs. The third phase consists of 10k individual large jobs. Next, we describe

the entire input with more details.

We begin by describing the first sequence. In the first phase, group i 2 [k] consists of items
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�1,i = (a1,i, s1,i),�2,i = (a2,i, s2,i), . . . ,�10,i = (a10,i, s10,i) where a1,i = a2,i = · · · = a10,i = 0,

and the sizes sj,i are defined as follows:

s1,i =
1

6
+ 33�i, s2,i =

1

6
� 3�i, s3,i = s4,i =

1

6
� 7�i, s5,i =

1

6
� 13�i, s6,i =

1

6
+ 9�i,

s7,i = s8,i = s9,i = s10,i =
1

6
� 2�i.

FirstFit puts �1,i, . . . ,�5,i into server 2i�1, which results in the server having the load
5

6
+3�i.

None of the jobs �6,i, . . . ,�10,i fit into this server. So, FirstFit assigns these jobs to server 2i with

resulting load of
5

6
+ �i. Note that, none of the jobs in group i will fit in any of the previous servers

from group i � 1. The smallest load of a server corresponding to group i � 1 jobs, which is server

2i� 2, is
5

6
+ �i�1 =

5

6
+ 18�i, while the smallest job in group i is �5,i. Therefore, �5,i cannot fit

into server 2i � 2. Thus, FirstFit has to open 2 servers for each group i, where in total 2k servers

are used for all of the jobs in the first phase.

The second phase has k groups, where each one consists of 10 jobs �0
1,i

= (a0
1,i
, s0

1,i
),�0

2,i
=

(a0
2,i
, s0

2,i
), . . . ,�0

10,i
= (a0

10,i
, s0

10,i
). Each job has start time 0 and their sizes are given in order as

follows:

s
0
1,i =

1

3
+ 46�i, s

0
2,i =

1

3
� 34�i, s

0
3,i = x

0
4,i =

1

3
+ 6�i, s

0
5,i =

1

3
+ 12�i, s

0
6,i =

1

3
� 10�i,

s
0
7,i = s

0
8,i = s

0
9,i = s

0
10,i =

1

3
+ �i.

According to FirstFit, jobs �0
1,i

and �
0
2,i

are assigned to one server with the total size of
2

3
+ 12�i;

and, jobs �
0
3,i

and �
0
4,i

are packed into one server with total load of
2

3
+ 12�i. It is clear that, the

smallest job from the remaining items in this group cannot fit in any of the open servers. Thus,

FirstFit has to place each pair �0
5,i

and �
0
6,i

; �0
7,i

and �
0
8,i

; �0
9,i

and �
0
10,i

into different servers, each

with a total load of
2

3
+ 2�i. Note that the smallest job in group i, which is �0

2,i
, cannot fit into any

server from group i � 1, as the load of all the servers is at least
2

3
+ 2�i�1 =

2

3
+ 36�i. In other

words, FirstFit has to open 5 servers for assigning jobs in each group i, employing 5k servers for
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all the jobs in the second phase.

In the third phase, 10k jobs of size
1

2
+ � each are presented having start time 0. Since none

of these jobs fit into the previously opened servers, FirstFit has to assign these jobs to new servers,

resulting in opening 10k servers in this phase. This finishes the description of the first sequence.

In the second sequence, all jobs have start time t, and their sizes are as follows. The first 2k jobs

are of size
1

12
each, which are followed by 5k jobs of size

1

6
each, followed by 10k jobs of size

1

4

each. FirstFit assigns the first 2k jobs to the servers that were opened in the first phase (one job per

server), the next 5k jobs to the servers that were opened in phase 2 (one job per server), and the last

10k jobs to the servers that were opened in phase 3 (one job per server).

In general, FirstFit uses 2k servers in the first phase, 5k bins in the second phase and 10k servers

in the third phase. See Figure 3.2.a. The second sequence has the effect of extending the duration

of each server (the period during which the server is active) to 1 + t. Therefore, the cost of FirstFit

is 17k(1 + t).

2k servers

5/6 +⇥(�i)

Time
0 1

(a)

t 1 + t

5k servers

...

1/12

5/6 +⇥(�i)

1/12

2/3 +⇥(�i)

...

1/6

2/3 +⇥(�i)
1/6

1/2 + �

...

1/4

1/2 + �

1/4

10k servers

Time
0 1

(b)

t 1 + t

1� ✏

...

1� ✏

10k + 1
servers

1

1

1

1

...
2k
12 +

5k
6 + 10k

4
servers

FirstF it OPT

Figure 3.2: An illustration of schedules for the adversarial instance from Theorem 3.3.1 constructed by (a) FirstFit. (b) OPT .

The optimal offline algorithm, OPT , uses 10k servers for all the jobs from phase 3 (i.e., 10k
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jobs of size
1

2
+�). The remaining space in these bins will be filled with the following combinations

of items from phases 1 and 2:

• for all jobs j; j � 3, in group i: OPT combines �j,i with �
0
j,i

.

• since �1,i cannot be combined with �
0
1,i

, OPT combines:

(1) �1,i with �
0
2,i

and,

(2) �2,i with �
0
1,i+1

.

According to this packing scheme, two jobs �2,k and �
0
1,1

remain unpacked. Therefore, OPT uses

one extra server for packing these two jobs. Thus, OPT uses 10k+1 servers for duration 1 to pack

all jobs in the first 3 phases, i.e., the first sequence. For the jobs in the second sequence, OPT uses
k

6
+

5k

6
+

10k

4
servers for jobs that are released at time t. In total, OPT uses

162k

12
+ 1 =

27

2
k+1

servers, each of duration 1.

As a result, the competitive ratio of FirstFit for RSiC is at least 17k(1+t)

27k/2+1
!

34

27
(1 + t) as

k !1.

Substituting t! 1 and t = 1/2 in Theorem 3.3.1, we obtain the following corollaries:

Corollary 3.3.2. The competitive ratio of FirstFit for the case of equal duration and arbitrary

arrival times is at least 2.518.

Corollary 3.3.3. The competitive ratio of FirstFit for the case of all jobs having duration 2 and

arrival times 0 and 1 is at least 1.8.

3.3.2 Upper Bound for Jobs with Two Arrival Times

In this section, we prove an upper bound for the competitive ratio of FirstFit for RSiC when

all jobs have duration of precisely one and arrival times of 0 and t. Our result improves upon the

previous best known upper bound of µ + 3 = 4. Our proof extends the weight function technique

that was previously successfully applied to the bin packing problem to the RSiC problem. To the

best of our knowledge, this is the first time the weight function technique has been used in the

analysis of RSiC.
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For the case of jobs of equal duration 1 and arrival times 0 and t, each FirstFit server falls in

one of the following three categories:

Category C: starts at 0 and ends at 1,

Category D: starts at 0 and ends at 1 + t,

Category E: starts at t and ends at 1 + t.

In other words, servers in the category C have some items that arrived at time 0 and no items

that arrived at time t. Servers in category D have some items that arrived at time 0 and some items

that arrived at time t. Servers in category E have some items that arrived at time t and no items that

arrived at time 0.

Let C1, C2, . . . , Ck1 be all the servers in category C listed in the order of their opening times.

Let D1, D2, . . . , Dk2 be all servers in category D listed in the order of their opening times. Lastly,

let E1, E2, . . . , Ek3 be all servers in category E listed in the order of their opening times.

Although we have ordered servers according to their opening times within each category, we

will sometimes need to see how servers of different categories interact. Thus, we will make use of

the following observations:

(1) Ci was opened before Ej for every Ci and Ej

(2) Di was opened before Ej For every Di and Ej

Thus, if we were to order Ci, Dj , Ek according to their opening times, then all the Ci would

appear before any of the Ek and all the Dj would appear before any of the Ek; however, Ci and Dj

could be interleaved.

Recall that for a server B opened by FirstFit, s(B, 0) denotes the sum of all sizes of jobs

assigned to B that were active at time 0. Since the only jobs active at time 0 are those with arrival

time 0, we equivalently can say that s(B, 0) is the sum of sizes of jobs assigned to B with arrival

time 0. Similarly, note that at time 1 the only jobs that are active in B are those that arrived at time

t > 0 and were assigned to B. Thus, s(B, 1) denotes the sum of all sizes of jobs assigned to B with

arrival time t. The sum of all the sizes of jobs assigned to B is called the total load on the server B

and is denoted by S(B), that is, S(B) = s(B, 0) + s(B, 1). We now prove lower bounds on loads

of different categories of servers.
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Lemma 3.3.4. For servers of category C or E used by FirstFit, at most one server can have a total

load less than 1/2, within each category. Moreover, if there are servers from both categories C and

E used by FirstFit, then at most one server across both categories can have a load less than 1/2

concurrently.

Proof. Suppose, by contradiction, that we have two servers Bi and Bj with i < j of category

C, that have load less than 1/2. This implies that s(Bi, 0) + s(Bj , 0)  1. Therefore, FirstFit

should not have opened server Bj because its items could have been accommodated by server Bi,

contradicting the assumption. The same reasoning applies if both Bi and Bj belong to category

E. Suppose we have a server Bi of category C and a server Bj of category E, each with a load

less than 1/2. According to FirstFit, items in server Bj should have been assigned to server Bi,

since s(Bi, 0) + s(Bj , t)  1. Therefore, FirstFit should not have opened server Bj , leading to a

contradiction.

Lemma 3.3.5. For servers of category D used by FirstFit, no more than two servers can have a

total load less than 3/4.

Proof. Suppose, by contradiction, that we have three bins B1, B2, B3 such that S(Bi) < 3/4 for

i = 1, 2, 3. Without loss of generality, assume that the three bins were opened by FirstFit in the order

B1, B2, B3. Due to the definition of FirstFit, it follows that each item in B2 and B3 has size at least

1/4 (otherwise, this item would have been placed into B1). In particular, s(B2, 1), s(B3, 1) > 1/4.

It follows that s(B2, 0), s(B3, 0) < 3/4� 1/4 = 1/2. This is a contradiction since s(B3, 0) should

have been placed into bin B2 by the FirstFit.

In light of the previous lemma, by ignoring at most 2 servers, we can assume that every server

of category D in FirstFit has total load at least 3/4. Inspired by the lower bound construction from

Section 3.3.1, we note that there are certain thresholds for s(B, 0) and S(B) that are important for

the proof. More specifically, s(B, 0) thresholds are 5/6, 2/3, 1/2; whereas S(B) thresholds are

11/12, 5/6, 3/4. For the sake of the analysis, we do not have to consider all pairs of thresholds.

This follows from the following lemma:
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Lemma 3.3.6. Let ↵ 2 (0, 1) and let B1, B2, . . . , Bk be the servers opened by FirstFit (in that

order) that satisfy s(Bi, 0) � ↵. Then at most one server Bi satisfies S(Bi) < (1 + ↵)/2.

Proof. Consider two servers Bi, Bj with i < j and assume, for contradiction, that S(Bi), S(Bj) <

(1 + ↵)/2. This implies that s(Bj , 1) = S(Bj) � S(Bj , 0) < (1 + ↵)/2 � ↵ = (1 � ↵)/2, so

the s(Bj , 1) items can fit into Bi, since S(Bi) + S(Bj , 1) < (1 + ↵)/2 + (1 � ↵)/2 = 1. By the

FirstFit rule these items should not have been placed in Bj .

Thus, by ignoring at most three more servers, we may assume that all servers with s(B, 0) �

5/6 have S(B) � 11/12, all servers with s(B, 0) � 2/3 have S(B) � 5/6, and all servers with

s(B, 0) � 1/2 have S(B) � 3/4.

Lemma 3.3.7. For all but at most one server B with 1/2 < x(B, 0)  2/3, it holds that B contains

a single job at time 0.

Proof. Suppose for contradiction that there are two servers B1 and B2 containing at least two jobs

at time 0 and satisfying 1/2 < s(Bi, 0)  2/3. Without loss of generality, assume that B2 was

opened later. Since s(B2, 0)  2/3, one of the jobs assigned to B2 at time 0 must have size at most

1/3. Then this job should have been placed in B1 by FirstFit.

For the purpose of analysis we divide servers in category D into three types as shown in Ta-

ble 3.2.

Observe that by the previous discussion, a Type I server also satisfies S(B) � 11/12. Type

II server is further subdivided into two subtypes: Type II(a) satisfies S(B) � 11/12, Type II(b)

satisfies 5/6  S(B) < 11/12. Similarly Type III server is further subdivided into several subtypes:

Type III(a) satisfies S(B) � 11/12, Type III(b) satisfies 5/6  S(B) < 11/12, and Type III(c)

satisfies 3/4  S(B) < 5/6. By Lemma 3.3.7 each Type III server contains exactly one item at

time 0.

We make some further observations. Consider a server of Type II (b). We let ✏1, ✏2 > 0 be such

that s(B, 0) = 5/6� ✏1 and S(B) = 11/12� ✏2. It follows that s(B, 1) = 1/12 + ✏1 � ✏2. Also,

since each job arriving at time t (except possibly for the first server of each type) has to have size
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Table 3.2: Different types of servers in category D

Type Subtype Bounds on s(B, 0) Bounds on S(B) Num of items at time 0

Type I 5/6  s(B, 0)  1 11/12  S(B)  1 � 1

Type II 2/3  s(B, 0) < 5/6
(a) 11/12  S(B)  1 � 1

(b) 5/6  S(B) < 11/12 � 1

Type III 1/2 < s(B, 0) < 2/3
(a) 11/12  S(B)  1 = 1

(b) 5/6  S(B) < 11/12 = 1

(c) 3/4  S(B) < 5/6 = 1

greater than 1/12, it follows that S(B) = s(B, 0) + s(B, 1) > 5/6� ✏1 + 1/12 = 11/12� ✏1. It

follows that ✏1 > ✏2. In addition, we observe that ✏1  1/6 and ✏2  1/12.

Similar observations hold for a server of Type III (c). More specifically, we have s(B, 0) =

2/3 � ✏1 and s(B, 1) = 1/6 + ✏1 � ✏2. The choices of ✏1 and ✏2 depend on the server, of course;

however, we always have ✏1 > ✏2 and ✏1  1/6 while ✏2  1/12.

With these notations, we are ready to establish an upper bound using the weighting technique.

Define the following weight functions: w1 for the items arriving at time 0 and w2 for the items

arriving at time t:

w1(s) =
156

131
(1 + t)s+

8
><

>:

0 if s  1/2

12

131
(1 + t) otherwise

and w2(s) =
168

131
(1 + t)s.

We extend the definitions of w1 and w2 to servers as follows: for a server S the notation w1(S)

stands for the sum of w1(s) which ranges over sizes of items � = (s, 0) that arrived and were placed

into S at time 0. Similarly, w2(S) stands for w2(s(S, 2)).

By employing these two weight functions on the items packed into servers of categories C,D

and E used by FirstFit, we can prove the following:

Lemma 3.3.8. On any input � with items arriving at two arrival times 0 and t, we have the follow-

ing:

(i) If t � 41

90
⇡ 0.456 then w1(Ci) � 1 = d(Ci) for all but constantly many servers Ci in
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category C.

(ii) For all but constantly many servers Di in category D it holds that w1(Di)+w2(Di) � 1+t =

d(Di).

(iii) If t � 47

84
⇡ 0.560 then w2(Ei) � 1 = d(Ei) for all but constantly many servers Ei in

category E.

(iv) If t � 1

28
⇡ 0.035 then w1(S) + w2(S) 

168

131
(1 + t)d(S) for every server S of OPT .

Proof. (i) By Lemma 3.3.4 we may assume that s(Ci, 0) > 1/2. If s(Ci, 0)  2/3 then by

Lemma 3.3.7, we may assume that Ci contains a single item. Therefore, we have:

w1(Ci) �
156

131
(1+t)·s(Ci, 0)+

12

131
(1+t) �

156 + 156(41/90)

131
·
1

2
+
12 + 12(41/90)

131
= 1,

where we used t � 41/90 in the second inequality.

If s(Ci, 0) > 2/3, then we have:

w1(Ci) �
156

131
(1 + t) · s(Ci, 0) �

156 + 156(41/90)

131
·
2

3
> 1.

(ii) Let Di be a server in category D that is used by FirstFit such that S(Di) � 11/12. Then we

have:

w1(Di) + w2(Di) �
156

131
(1 + t)S(Di) �

156

131
(1 + t)

11

12
> 1 + t.

We handle servers of Type II (b) next. Let Di be such a server and use the notation of ✏1 and
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✏2 introduced prior to the theorem statement. In this case, we have

w1(Di) + w2(Di) =
156

131
(1 + t)

✓
5

6
� ✏1

◆
+

168

131
(1 + t)

✓
1

12
+ ✏1 � ✏2

◆

= (1 + t)

✓
156

131
·
5

6
+

168

131
·
1

12
+

12

131
✏1 �

168

131
✏2

◆

= (1 + t)

✓
130

131
+

14

131
+

12

131
✏1 �

168

131
✏2

◆

> (1 + t)

✓
130

131
+

14

131
+

12

131
✏2 �

168

131
✏2

◆

= (1 + t)

✓
130

131
+

14

131
�

156

131
✏2

◆

� (1 + t)

✓
130

131
+

14

131
�

13

131

◆
= 1 + t,

where the first inequality follows from ✏1 > ✏2 and the second from ✏2  1/12.

Next, we handle Type III (b) servers. Let Di be such a server, and define ✏ to mean s(Di, 0) =

1/2 + ✏. Since S(Di) � 5/6, it follows that s(Di, 1) � 5/6 � (1/2 + ✏) = 1/3 � ✏. Also

observe that ✏ < 1/6. Plugging these estimates into the weight function we obtain:

w1(Di) + w2(Di) =
156

131
(1 + t)

✓
1

2
+ ✏

◆
+

12

131
(1 + t) +

168

131
(1 + t)

✓
1

3
� ✏

◆

= (1 + t)

✓
146

131
�

12

131
✏

◆
> (1 + t)

✓
146

131
�

2

131

◆
� 1 + t,

where we have used ✏ < 1/6 in the penultimate step.

We are only left to check the servers of Type III (c). Let Di be such a server and redefine ✏1

and ✏2 for this server. Then we have

w1(Di) + w2(Di) =
156

131
(1 + t)

✓
2

3
� ✏1

◆
+

12

131
(1 + t) +

168

131
(1 + t)

✓
1

6
+ ✏1 � ✏2

◆

= (1 + t)

✓
144

131
+

12

131
✏1 �

168

131
✏2

◆
� (1 + t),

Thus, we have proved that for all, but constantly c many, servers of type 2 used by FirstFit it
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holds that w1(Di) + w2(Di) � 1 + t, considering t > 0.3571.

(iii) Let Ei be a server that starts at time t and finishes at time t + 1 which is of category E of

servers. By Lemma 3.3.4 we can assume this server has total load > 1/2. Therefore, when

we apply the weight function w2, we get:

w2(Ei) �
168

131
(1 + t) ·

1

2
�

168(1 + (47/84))

262
= 1.

(iv) Let S be an arbitrary server of OPT . If S contains only jobs that arrived at time 0 then

w1(S) 
156

131
(1 + t) + 12

131
(1 + t) = 168

131
(1 + t) = 168

131
(1 + t)d(S), since d(S) = 1 in this

case. Similarly, if S contains only jobs that arrived at time t, then w2(S) 
168

131
(1 + t) =

168

131
(1 + t)d(S), since again d(S) = 1. If S contains both jobs arriving at time 0 and time t

then the weight function is maximized when there is one item at time 0 that barely exceeds

1/2 (so that we collect the bonus for w1) and the remaining items arrive at time t and add up

to barely 1/2 (since w2 point-wise is at least w1). Thus, we have:

w1(S) + w2(S) 
1

2
·
156

131
(1 + t) +

12

131
(1 + t) +

1

2
·
168

131
(1 + t)

=
174

131
(1 + t) 

168

131
(1 + t) · (1 + t)

=
168

131
(1 + t)d(S),

where the last inequality follows from t � 1

28
, and the last equality follows from d(S) = 1+t

in this case. Thus, in all cases, we show that w1(S) + w2(S) 
168

131
(1 + t)d(S), where d(S)

denotes the duration of the server S.

Theorem 3.3.9. On input � where each job has duration 1 and arrival time 0 and t > 47

84
⇡ 0.560,

FirstFit achieves competitive ratio at most
168

131
(1 + t).

Proof. Let s1, . . . , sn denote the sizes of all jobs arriving at time 0 and s0
1
, . . . , s0m denote sizes of

all jobs arriving at time t. Let B1, . . . , Bk denote FirstFit servers and S1, . . . , Sp denote servers
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of OPT . Since t > 47

84
, parts (i)-(iii) of Lemma 3.3.8 imply that w1(Bi) + w2(Bi) � d(Bi) for

all but some constant number c of servers Bi. Similarly, part (iv) of Lemma 3.3.8 implies that

w1(Si) + w2(Si) 
168

131
(1 + t)d(Si). Combining everything together we have:

FirstFit� (1 + t)c 
kX

i=1

d(Bi) 

kX

i=1

(w1(Bi) + w2(Bi)) =

nX

i=1

w1(xi) +
mX

i=1

w2(x
0
i)

=

pX

i=1

(w1(Si) + w2(Si)) 
168

131
(1 + t)

pX

i=1

d(Si) =
168

131
(1 + t)OPT.

By taking t! 1, we obtain the following corollary:

Corollary 3.3.10. The asymptotic competitive ratio of FirstFit for the case of jobs of equal duration,

two arbitrary arrival times 0 and t 2 (
47

84
, 1] is at most 2.565.

Examining various conditions on the range of t in Lemma 3.3.8, we extend the range of t where

Theorem 3.3.2 holds for inputs where FirstFit has specified behaviors.

Corollary 3.3.11. On inputs � where each job has duration 1, arrival time 0 and t 2 (
41

90
, 1), and no

new servers are opened by FirstFit at time t, FirstFit achieves competitive ratio at most 168

131
(1 + t).

Corollary 3.3.12. On inputs � where each job has duration 1, arrival time 0 and t 2 [
1

28
.1), and

all FirstFit servers have duration 1 + t, FirstFit achieves competitive ratio at most 168

131
(1 + t).

3.3.3 Strict Upper Bound: Equal Duration 2 and Arrival Times 0 and 1

In this section, we prove an upper bound of 2 on the strict competitive ratio of FirstFit for RSiC

when all jobs have duration of precisely two and arrival times of 0 and 1. Clearly this is equivalent

to the situation when all jobs have duration one, and arrival times of 0 or 1/2. The main result of

this section is stated in Theorem 3.3.18. The proof is done by a careful case analysis. Since there

are two arrival times, we have a lot more cases to deal with than in the bin packing problem. We

begin by setting up some notation that will be common to all lemmas in this section.

For the case of jobs of equal duration 2 and arrival times 0 and 1, we have the same categories

of servers as mentioned in Section 3.3.2.
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Recall that s(B, j) denotes the total size of all items that are active at time j and were assigned

to server B. If we wish to refer to items that arrived to server B at time 1, we can use the notation

s(B, 2) since the only jobs active at time 2 in B are those that arrived at time 1 (jobs that arrived at

time 0 are active during the half-open interval [0, 2)).

We begin with a number of observations concerning the relationships between pairs of servers

of the same type.

Lemma 3.3.13. The following inequalities hold:

s(Ci, 0) + s(Ci+1, 0) > 1 for i 2 [k1 � 1] (4)

s(Di, 0) + s(Di+1, 0) > 1 for i 2 [k2 � 1] (5)

s(Ei, 2) + s(Ei+1, 2) > 1 for i 2 [k3 � 1] (6)

s(C1, 0) + s(Ck1 , 0) > 1 if k1 > 1 (7)

s(D1, 0) + s(Dk2 , 0) > 1 if k2 > 1 (8)

s(E1, 0) + s(Ek3 , 0) > 1 if k3 > 1 (9)

s(Di, 0) + s(Di, 2) + s(Di+1, 2) > 1 for i 2 [k2 � 1] (10)

Proof. All the above inequalities follow directly from the definition of FirstFit and the ordering of

the servers. For example, Ci+1 was opened by FirstFit because the first item to be placed in it did

not fit in Ci, yielding Inequality (4). The same logic gives rise to a chain of inequalities (5) and (6)

concerning the Di and Ei servers respectively, as well as (7), (8), and (9). Note that the s(Di+1, 2)

items didn’t fit into Di, which contained at most s(Di, 0)+s(Di, 2), hence the chain of inequalities

(10).

The next lemma concerns relationships between pairs of servers of different types.
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Lemma 3.3.14. The following inequalities hold:

s(Dk2 , 0) + s(Dk2 , 2) + s(Ek3 , 2) > 1 (11)

s(Dk2 , 0) + s(Dk2 , 2) + s(E1, 2) > 1 (12)

s(C1, 0) + s(Dk2 , 0) > 1 (13)

s(Ci, 0) + s(Ej , 2) > 1 for i 2 [k3], j 2 [k2] (14)

Proof. As observed earlier, every Ej server was opened at time 1, after all Ci and Di servers were

opened, and items were placed into an Ej server because they did not fit into Di and Ci servers,

leading to Inequalities (12),(11), and (14. Inequality (13) holds regardless of if C1 was opened

before or after Dk2 .

Define A1 to be the sum of all items that arrived at time 0 and were packed into Ci servers, A2

to be the sum of all items that arrived at time 0 and were packed into Di servers, and B2 to be the

sum of all items that arrived at time 1 and were packed into Di servers, and finally B3 to be the sum

of all items that arrived at time 1 and were packed into Ei servers. More specifically, we have:

A1 :=

k1X

i=1

s(Ci, 0), A2 :=

k2X

i=1

s(Di, 0), B2 :=

k2X

i=1

s(Di, 2), B3 :=

k3X

i=1

s(Ei, 2).

We also define A := A1 +A2 and B = B2 +B3

Since the duration of each item is 2, the following lower bound on the cost of OPT is immediate:

Lemma 3.3.15. OPT � d2A+ 2Be

Next we show some upper bounds on the number of different categories of servers, that hold

when the number of servers of each category are large enough.
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Lemma 3.3.16. The following inequalities hold:

2A1 > k1 if k1 > 1 (15)

2A2 > k2 if k2 > 1 (16)

2B3 > k3 if k3 > 1 (17)

A2 + 2B2 > k2 � 1 + s(Dk2 , 0) + s(D1, 2) + s(Dk2 , 2) if k2 > 1 (18)

2A1 + 2B3 > k1 + k3 if k1, k3 � 1 (19)

4A2 + 4B2 > 3k2 � 1 if k2 > 2 (20)

Proof. Adding up all the inequalities (4) and (7) gives us (15). Adding up all the inequalities (5)

and (8) gives us (16); adding up all the inequalities (6) with (9) gives us (17), and adding all the

inequalities (10) gives us (18).

It follows from (14) that s(Ck1 , 0) + s(E1, 2) > 1 and s(C1, 0) + s(Ek3 , 2) > 1. Adding these

two inequalities to the two chains of inequalities (4) and (6), we obtain (19). (It can be verified that

this is true even if one or both of k1, k2 equal 1.)

To show Inequality 20, we consider the following 2 cases:

Case 1: s(D1, 2) + s(Dk2 , 0) + s(Dk2 , 2) � 1/2: Then we can write Inequality 18 as: A2 +

2B2 > k2 � 1/2. Multiplying this inequality by two and adding to it Inequality 16, we obtain

Inequality 20.

Case 2: s(D1, 2) + s(Dk2 , 0) + s(Dk2 , 2) < 1/2. Let us denote s(Dk2 , 0) by ✏. By FirstFit

rules we s(Di, 0) > 1� ✏ for i 2 {1, . . . , k2 � 1}.

Adding all these inequalities together with s(Dk2 , 0) = ✏ we obtain:

A2 > k2 � 1� (k2 � 2)✏. (21)

From Inequality 18 it follows that:

A2 + 2B2 > k2 � 1 + ✏. (22)
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If we multiply this inequality by 2 and sum it up with twice the Inequality (21) then we have:

4A2 + 4B2 > 4(k2 � 1)� 2(k2 � 2)✏+ 2✏

> 4(k2 � 1)� 2(k2 � 3)✏

> 4(k2 � 1)� (k2 � 3)

= 4k2 � 4� k2 + 3 = 3k2 � 1,

where the third inequality is due to ✏ < 1/2. Observe that we assumed that k2 > 3 in the above

calculation. Observe that if k2 = 3 we obtain 4A2 +4B2 > 4(k2� 1)� 2(k2� 3)✏ = 4(k2� 1) =

4k2 � 4. However, for the case k2 = 3 it holds that 4k2 � 4 = 3k2 � 1, so we conclude that the

inequality 4A2 + 4B2 � 3k2 � 1 holds for all k2 > 2.

The following lemma relates the cost of FirstFit to the cost of OPT and the number of category-

D servers used by FirstFit by using a reduction to bin packing.

Lemma 3.3.17. Let � be an input on which FirstFit uses k2 servers of type D. Then

FirstFit(�)  1.7OPT(�) + k2

Proof. Define �0 to be an input derived from � by shifting the arrival times of items arriving at time

1 to time 0, while preserving the original ordering of items. It is easy to see that for any solution

for �, we can ’slide’ the items arriving at time 1 back to time 0, thus obtaining a valid solution for

�0 without increasing the cost. Thus OPT (�0
)  OPT (�). Furthermore, we have FirstFit(�0

) =

FirstFit(�) � k2, since all the k2 type-D FirstFit servers have duration 2 in the solution for �0

instead of 3 in the solution for �. Lastly, since �0 is just an instance of regular bin packing, we have

FirstFit(�0
)  1.7 ·OPT (�0

). Combining everything together, we get: FirstFit(�) = FirstFit(�0
)+

k2  1.7 ·OPT (�0
) + k2  1.7 ·OPT (�) + k2

Now, we are ready to state the main result of this section.
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Theorem 3.3.18. Let � be an input to the RSiC problem. If the duration of each job in � is exactly

2 and arrival times are 0 and 1 then FirstFit(�)  2 ·OPT (�).

Proof. We show that FirstFit < 2 · OPT + 1 when FirstFit uses (a) exactly one type of server

(Lemma 3.3.19) (b) exactly two types of servers (Lemma 3.3.20, 3.3.21, and 3.3.22) and (c) all

three types of servers (Lemma 3.3.23). Then the result follows using integrality.

We start with the case where only one type of server is used.

Lemma 3.3.19. If exactly one of k1, k2, k3 is non-zero, then FirstFit < 2 ·OPT + 1.

Proof. If k2 = 0, we have FirstFit  1.7OPT by Lemma 3.3.17. So we assume below that

k1 = k3 = 0 and k2 � 1. First note that if k2 = 1, then FirstFit is optimal. If k2 = 2 then the cost

of FirstFit is 6 (two servers of duration 3). Meanwhile, OPT has to open at least 2 servers at time 0;

at time 1, OPT either opens a new bin with total cost 6 or extends at least one server with total cost

� 5. In both cases, the lemma follows. Therefore we assume k2 � 3. We have OPT � 2(A2+B2).

Observing that FirstFit = 3k2 and using Equation (20), we conclude FirstFit < 2 ·OPT + 1.

The next three lemmas consider the cases when exactly two types of servers are present.

Lemma 3.3.20. If k1 = 0 and k2, k3 � 1, then FirstFit < 2 ·OPT + 1.

Proof. We consider the following cases:

k2 = 1 : Then there were items that arrived at time 0 as well as at time 1. At time 0, OPT had to

open a server for a cost of 2. Since k3 � 1, clearly the total size of items at time 1 exceeded

1, and OPT had to pay a minimum additional cost of 2. Thus OPT � 4, which implies that

1.7OPT+k2 = 1.7OPT+1  2OPT. By Lemma 3.3.17, we have:

FirstFit  1.7OPT + k2  2OPT

k2 = 2 : If k3 = 1, we have FirstFit = 8 and OPT � 5, as at least two servers are needed at time

1 for a cost of 4, and OPT has to pay at least an additional cost of 1 for the items that arrive at

time 1. Thus FirstFit  2OPT+1. Therefore let k3 � 2. In this case, we claim OPT � 7.
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To see this, observe that OPT must have opened at least two servers at time 0, and pay a cost

of 2 between time 0 and 1. Next between time 1 and 2, since s(D1, 0) + s(D2, 0) > 1 and

s(E1, 2) + s(E2, 2) > 1, and all these items are active in this time interval, OPT must pay a

cost of at least 3. Finally between time 2 and 3, OPT must pay a cost of at least 2, for a total

cost of at least 7. We conclude that 1.7OPT+k2 = 1.7OPT+2  2OPT. The result now

follows by Lemma 3.3.17.

k2 > 2 : If k3 > 1, we have FirstFit = 3k2 + 2k3 and OPT � 2(A2 +B2 +B3). Therefore

FirstFit� 1 = 3k2 � 1 + 2k3 < 4A2 + 4B2 + 4B3  2 ·OPT

where the second inequality is derived by adding (20) to twice (17).

If instead k3 = 1, we have FirstFit = 3k2 + 2.

Then we add the inequalities s(D2, 0)+ s(D3, 0) > 1, . . . , s(Dk2�1, 0)+ s(Dk2 , 0) > 1 and

s(D2, 0) + s(Dk2 , 0) > 1 to obtain:

2A2 > k2 � 1 + 2x(D1, 0). (23)

Adding ( 23) to twice Inequality (18) and to 4B3 = 4s(E1, 2) we obtain:

4A+ 4B > 2k2 � 2 + 2s(D1, 2) + 2s(Dk2 , 0) + 2s(Dk2 , 2) + k2 � 1 + 2s(D1, 0) + 4s(E1, 2)

= 3k2 � 3 + 2(s(D1, 0) + s(D1, 2) + s(E1, 2)) + 2(s(Dk2 , 0) + s(Dk2 , 2) + s(E1, 2))

> 3k2 + 1 = FirstFit� 1,

where the last inequality follows from s(D1, 0) + s(D1, 2) + s(E1, 2) > 1 and s(Dk2 , 0) +

s(Dk2 , 2) + s(E1, 2) > 1. The lemma follows from Lemma 3.3.15.

Lemma 3.3.21. If k2 = 0 and k1, k3 � 1 then FirstFit < 2 ·OPT + 1.

Proof. Follows from Lemma 3.3.17.
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Lemma 3.3.22. If k3 = 0 and k1, k2 � 1, then FirstFit < 2 ·OPT + 1.

Proof. We consider the following cases:

k2 = 1 : Observe that there must be items that arrived at time 0 as well as at time 1, since k2 � 1.

FirstFit opens at least two servers at time 0, so it must be that OPT has to open at least two

servers at this time, for a cost of 4. Then OPT has to pay at least an additional cost of 1 for

the items arriving at time 1. Thus OPT � 5. The result now follows from Lemma 3.3.17 and

the fact that 1.7OPT+k2  2OPT for OPT � 5.

k1 = 1; k2 > 1 : We have FirstFit = 3k2+2. By adding s(Dk2 , 0)+s(C1, 0) > 1 to Inequality 18,

we obtain

A1 +A2 + 2B2 > k2 (24)

If A1 > 1/2, we have 2A1 > 1, and adding this to twice the above inequality and to Inequal-

ity 16, we get 4A + 4B > 3k2 + 1. Applying Lemma 3.3.15 gives the desired bound. If

instead A1  1/2, we add the following series of inequalities:

s(Di, 0) > 1�A1 for i 2 [1, ..., k2], and

s(C1, 0) = A1

to obtain:

A2 +A1 > k2 �A1(k2 � 1) (25)

By adding A1 + s(Dk2 , 0) > 1 to Inequality (25) and Inequality (18) and multiplying by 2,

we get:

4A1 + 4A2 + 4B > 4k2 � 2A1(k2 � 1) + 2s(D1, 2) + 2s(Dk2 , 2)

> 3k2 + 1 + 2s(D1, 2) + 2s(Dk2 , 2) > 3k2 + 1

where the second inequality follows from A1 < 1/2. Once again, Lemma 3.3.15 gives the

desired bound.
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k1, k2 > 1 : We know that s(C1, 0) + s(Ck1 , 0) > 1, therefore at least one of them is greater than

1/2. If s(Ck1 , 0) > 1/2, we add up Inequalities (4), (10) and (13 to obtain:

2A1 � s(Ck1 , 0) +A2 + 2B > k1 + k2 � 1 + s(D1, 2) + s(Dk2 , 2)

Since s(Ck1 , 0) > 1/2 we have:

2A1 +A2 + 2B > k1 + k2 � 1/2. (26)

The case s(C1, 0) > 1/2 can be handled similarly to obtain (26), by using s(Ck1 , 0) +

s(Dk2 , 0) > 1 in place of (13).

Adding Inequality (16) and twice Inequality (26) we obtain 2k1+3k2� 1 < 4A+4B. Since

2k1 + 3k2 = FirstFit, using Lemma 3.3.15, we obtain FirstFit < 2 ·OPT + 1.

We end with the case when all three types of servers exist.

Lemma 3.3.23. If k1, k2, k3 � 1, then FirstFit < 2 ·OPT + 1.

Proof. We consider the following cases:

k2 = 1 : As in the proof of Lemma 3.3.22, the lemma follows from Lemma 3.3.17 and the fact that

OPT � 5.

k2 = 2 : If k1 = k3 = 1 then FirstFit = 10 and OPT � 5 as it has to open at least 2 servers at

time 0 for a cost of 4, and pay at least an additional cost of 1 to accommodate items arriving

at time 1. Therefore FirstFit < 2OPT+1 in this case. Otherwise either k1 � 2 or k2 � 2.

We claim that OPT � 7 in both cases. If k1 � 2, then since FirstFit opens at least 4 servers

at time 0, it follows from the bin packing upper bound on FirstFit that OPT needs at least 3

servers at time 0 for a cost of 6; and then must pay at least an additional cost of 1 at time 1

to accommodate items arriving at time 1 for a total cost of at least 7. If k3 � 2, then OPT

needs to pay at least cost 2 between times 0 and 1, at least 3 between time 1 and 2, and at least
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2 between time 2 and 3, for a total cost of at least 7. This completes the proof of the claim.

Since OPT � 7, by Lemma 3.3.17, we have FirstFit  1.7OPT+2  2OPT as needed.

k2 > 2 : Observe that FirstFit = 2k1 + 3k2 + 2k3. Adding Inequality (20 to twice (19), we obtain

FirstFit� 1 = 2k1 + 3k2 + 2k3 � 1 < 4A+ 4B  2OPT

3.4 Summary and Discussion

In this chapter, we considered the RSiC problem under equal duration and two arrival times.

For this scenario, we established a tight bound of 2 on NextFit. We also derived a lower bound on

the competitive ratio for FirstFit when jobs have duration 1 and arrival times 0 and t for t 2 (0, 1).

This surpasses the bin packing lower bound for t > 0.35. Using the weight function technique, we

showed an upper bound of
168

131
(1 + t) on the asymptotic competitive ratio of FirstFit where jobs

have duration 1 and arrival times 0 and t for t 2 [0.559, 1).

Although the theoretical analysis established that the competitive ratios of NextFit and FirstFit

are 2 and approximately 2.56, respectively, our experimental findings demonstrated that the com-

petitive ratios of these algorithms are significantly better than the theoretical predictions. A detailed

discussion of our experimental results can be found in Section 7.5.

As mentioned at the start of this chapter, the objective of examining RSiC with equal duration

jobs was to first establish results for this simplified case and then work toward solving the problem

in its general form. Thus, the initial focus was on determining asymptotic bounds for the restricted

case, followed by refining these bounds to derive strict bounds, and ultimately extending these

findings to the original problem. In this chapter, we made progress on the first two steps: we

derived asymptotic bounds for the special case where jobs arrive at two distinct times, and then we

derived new strict bounds (by other methods) for the case of two midterm arrivals. Our techniques

do not immediately generalize to more general arrival patterns, as we discuss below.

The asymptotic result in this section relied on finding two distinct weight functions, one for each
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arrival time. As the number of distinct arrival times increases, it becomes unclear how to define an

appropriate set of weight functions. We might require more than two weight functions, but there is

no clear pattern that allows one to determine the structure of the weight functions to accommodate

additional arrival times. Also, we ignored a few servers to derive the bounds, as they incurred an

additional cost of 1 at each time step. If we generalize these results, this constant cost would extend

over the span in the general case, leading to a higher competitive ratio, which we aim to avoid.

For the strict result which dealt with midterm arrivals, we had to do a careful case analysis based

on the number of servers opened at times 1 and 2 of duration 1, as well as the number of servers

opened at time 1 of duration 2. While it may be feasible to extend this analysis to three arrival times,

the number of cases to consider would increase greatly, the details would be tedious and unlikely to

yield any fresh insights. Furthermore, it would be impossible to extend in a straightforward way to

an arbitrary number of arrival times.

Owing to the reasons explained above, extending our results to the general case of non-uniform

durations and more arrival times would seem to need a fresh approach and new techniques, and we

leave it as an open problem for future research.
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Chapter 4

Equal Duration and Midterm Arrivals

In the previous chapter, we analyzed the RSiC problem under the assumptions of equal job

durations and two distinct arrival times. Another setting that we considered was midterm arrivals

under restricted version where we only have two arrival times. In this chapter, we continue studying

the midterm arrivals setting but without any restriction on the number of arrivals. Table 4.1 provides

details on the settings considered in this chapter.

First we consider the so-called uniform servers scenario in which all FirstFit servers have the

same start and finish times; we establish an upper bound of 3/2 on the competitive ratio of FirstFit

for this case. Next, we examine the problem under the Dual Core input setting, where each server

has two cores and can accommodate at most two jobs simultaneously. Specifically, we consider the

scenario where all jobs have a uniform duration of 2, and integer arrival times. Despite these con-

straints, we demonstrate that RSiC remains unsolvable optimally in an online setting. Specifically,

we prove that any online algorithm for this scenario has a competitive ratio of at least 5/4. More-

over, we demonstrate that achieving a competitive ratio better than 9/8 is impossible, even when

leveraging sub-linear advice. In terms of positive results, we show that a tight bound of 5/4 on

the competitive ratio of any AnyFit algorithm in this setting, and we show that RSiC can be solved

optimally offline for such inputs.
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Job Duration Arrival Pattern # of Arrivals # of Dimensions # of Servers Extra
Equal Duration Midterm Arbitrary 1 Unlimited Long Running
Equal Duration Midterm Arbitrary 1 Unlimited Dual-Core

Table 4.1: Overview of the settings for RSiC with equal duration and midterm arrivals.

4.1 Long-Running Uniform Servers

In this section we consider the case when all jobs in the input sequence � have duration 2 and

arrival times 0, 1, 2, . . . , `, and FirstFit packs these items into servers starting at time 0 and finishing

at time ` + 2. Thus, as we let ` goes to infinity, this setting represents “long-running” uniform

servers of FirstFit. We show that asymptotically (as ` ! 1) such FirstFit servers have amortized

load of 2/3 at all times. We also observe that this bound is tight, i.e., there are inputs on which

long-running FirstFit servers have load of roughly 2/3 at all times. Thus, long-running servers are

beneficial for FirstFit since load of 2/3 translates to competitive ratio of 3/2 when FirstFit cost is

compared to the cost of OPT . This suggests that worst-case adversarial instances for FirstFit on

equal duration jobs should be such that FirstFit servers are short-lived.

4.1.1 Upper Bound for Long-Running Uniform Servers

We begin with a few basic observations about long running servers in the next lemma, before

giving our main result in Lemma 4.1.2.

Lemma 4.1.1. Fix ` 2 N. Let � be such that all jobs in � have duration 2 and arrival times

0, 1, 2, . . . , ` and let B be a set of FirstFit servers of duration exactly `+2 that were opened at time

0. We denote the servers in B by B1, B2, . . . , Bk (opened in this order), where k = |B|.

For i 2 Z�0 we define the layer i, denoted by Li, to be the set of all items packed in B that

arrived at time i. Let s(Li) denote the size of all items in layer i. Assume that k � 2. Then we have:

(1) The cost of FirstFit arising from servers in B is k(`+ 2).

(2) s(L0) > k/2;

(3) s(Li) + s(Li�1)/2 > (k � 1)/2 for i 2 {1, . . . , `}
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Proof. (1) Immediate from the definition of the cost and the fact that each server in B has duration

exactly `+ 2.

(2) This is a standard argument about FirstFit. Let �i = s(L0 \ Bi) denote the total size of

items in server Bi that arrived at time 0. We have �i + �i�1 > 1 for i 2 {2, 3, . . . , k} since

otherwise items in server Bi would have been placed in server Bi�1 instead. Adding up all

these inequalities we get:

kX

i=2

(�i�1 + �i) > k � 1.

By adding �1 and �k to both sides, we obtain 2
P

k

i=1
�i > k � 1 + �1 + �k. Observe that

�1 + �k > 1 by the same reasoning as before. Moreover, we have
P

k

i=1
�i = x(L0) by

definition. Combining all these facts, establishes this part of the lemma.

(3) Fix i 2 {1, . . . , `}. Let �j = s(Li�1 \ Bj) denote the total size of items in server Bj that

arrived at time i� 1. Similarly, let �j = s(Li \Bj) denote the total size of items in server Bj

that arrived at time i. For j 2 {2, 3, . . . , k} we have:

�j + �j�1 + �j�1 > 1

otherwise items packed into server Bj at time i should have been placed into server j � 1 by

FirstFit. Summing all these inequalities we obtain:

kX

j=2

(�j + �j�1 + �j�1) > k � 1

By adding �1 + �k + �k to both sides we obtain:

2

kX

j=1

�j +
kX

j=1

�j > k � 1 + �1 + �k + �k.

We have
P

k

j=1
�j = s(Li) and

P
k

j=1
�j = s(Li�1). Therefore, we obtain:
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2s(Li) + s(Li�1) > k � 1 + �1 + �k + �k.

Now from the results in Lemma 4.1.1, we can establish strong upper bounds on the ratio between

utilization and FirstFit cost, as follows.

Lemma 4.1.2. Let � be the input such that each job has duration 2 and arrival times 0, 1, 2, . . . , `

and suppose FirstFit opens k � 2 servers and each server of FirstFit on � starts at time 0 and

finishes at time `+ 2. Then we have:

util(�)

FirstFit(�)
>

2

3
�

2

3k
�

2

3(`+ 2)
.

where util(�) is the utilization of the input sequence which is defined as the total volume (size times

duration) of all jobs.

Proof. Fix ` � 2. From the results in Lemma 4.1.1, we have:

INi : s(L`�i) + s(L`�i�1)/2 > (k � 1)/2 : i 2 {0, 1, . . . , `� 1}

IN` : s(L0) > k/2 > (k � 1)/2 : o.w

We will choose multipliers f0, f1, . . . , f` such that the linear combination of inequalities
P

`

i=0
fiINi

has util(�)/2

on the left hand side. The multipliers fi are defined recursively:

fi =

8
><

>:

1 if i = 0,

1� fi�1/2 if i � 1.

Observe that the multipliers satisfy fi +
1

2
fi�1 = 1 for i � 1. Next, we verify that

P
`

i=0
fiINi

has
P

`

i=0
s(Li) on the left-hand side. For that it is convenient to think of inequality IN` as s(L0)+
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s(L�1)/2 > k/2, where we define s(L�1)/2 = 0.

`X

i=0

fi(s(L`�i) + s(L`�i�1)/2) =
`X

i=0

fis(L`�i) +
1

2

`X

i=0

fis(L`�i�1)

= f0s(L`) +

`X

i=1

fis(L`�i) +
1

2

`X

i=1

fi�1s(L`�i)

= s(L`) +

`X

i=1

s(L`�i) (fi + fi�1/2) = util(�)/2,

where the last equality is because the sum of sizes is half of utilization, since all items have duration

2.

Let F =
P

`

i=0
fi. To compute a bound on F observe the following:

`+ 1 = f0 +
`X

i=1

(fi + fi�1/2) =
`X

i=0

fi +
1

2

`�1X

i=0

fi

= F +
1

2
(F � f`) =

3

2
F �

1

2
f`.

Thus, we can conclude that F � 2

3
(` + 1). This implies that the right-hand side of

P
`

i=0
fiINi is

F (k� 1)/2 � 2

3
(`+1)(k� 1)/2. Combining with the calculation of the left-hand side, we obtain:

util(�) �
2

3
(k � 1)(`+ 1).

Since FirstFit(�) = k(`+ 2), we conclude:

util(�)

FirstFit(�)
>

2

3

(k � 1)(`+ 1)

k(`+ 2)
=

2

3

✓
1�

1

k

◆✓
1�

1

`+ 2

◆
>

2

3
�

2

3k
�

2

3(`+ 2)
.

Corollary 4.1.3. On the inputs described in Lemma 4.1.2 with k, `!1 FirstFit achieves compet-

itive ratio 3/2.

Proof. The upper bound on the competitive ratio follows from Lemma 4.1.2, since we have OPT (�) �

util(�) and util(�)/FirstFit(�) = 2/3 + o(1).
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4.1.2 Lower Bound for Long-Running Uniform Servers

The bound on utilization in Lemma 4.1.2 is tight asymptotically as k, ` ! 1. It is witnessed

by the following example. Fix k, ` 2 N and ✏ = 1/(k`).

• at time 0 we present k items of size 2/3 each;

• at odd times 1, 3, 5, . . . we present k items of size 1/3 each;

• at even times 2, 4, 6, . . . we present k items of size 1/3 + ✏ each.

Arrival time of the last job is ` in the above. Assume ` is even for simplicity of the presentation.

As can be seen in Figure 4.1, FirstFit opens k servers of duration ` + 2 each and utilization is

2(2/3)k + 2(1/3)k(`/2) + 2(1/3 + ✏)k(`/2) = (2/3)k(`+ 2) + ✏k` = (2/3)k(`+ 2) + 1. Thus,

for this example we have:

util(�)

FirstFit(�)
=

(2/3)k(`+ 2) + 1

k(`+ 2)
=

2

3
+

1

k(`+ 2)
=

2

3
+ o(1).

2/3

1/3

1/3 + ✏

1/3

1/3 + ✏

1/3

1/3 + ✏

Time
0 1 2 3 4 ``� 1 `+ 2`+ 1

k servers

2/3

1/3 1/3 1/3

1/3 + ✏ 1/3 + ✏ 1/3 + ✏

1/3 + ✏ 1/3 + ✏ 1/3 + ✏

1/3 1/3 1/3

2/3

Figure 4.1: The bound in Corollary 4.1.3 is shown in a tight example.
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4.2 Inputs for Dual-Core Servers

In the section1, we focus on the RSiC problem in a dual-core server setup, where each server is

equipped with exactly two cores, and each job requires one core to run. Consequently, a server can

handle up to two jobs simultaneously. Therefore, we can say that each job has uniform duration,

and the arrival times are spaced at exactly half the duration of items. For simplicity, we assume the

durations of items are 2, and job arrival times are natural numbers. Let us first discuss the upper

bound for this variant of the problem.

4.2.1 Upper Bound

We start with a simple proposition.

Proposition 4.2.1. A solution to RSiC for input I in which at any time t, at most one server is

half-empty is optimal.

Proof. Suppose at time t, there is no server that is half-empty, that is, all servers are full. Then the

number of items alive is even. If there is exactly one such server, then the number of alive items is

odd. This implies that at any time t, the number of servers used is ds(�, t)e where s(�, t) is the sum

of sizes of jobs that are alive at time t, which is a lower bound on the cost of a solution. Thus the

solution must be opitmal.

For the special case of input we consider, a server can contain at most two items. A domino

server is defined as a server that has exactly two items placed in it at some t, and is closed immedi-

ately afterwards; that is, it accepts no more items. It remains active until time t+ 2. A chain server

is a server that has one job placed in it at every time step from some time t to time t0 � t; since

no items are placed in it at time t0 + 1, it is released at time t0 + 2. We say its start time is t and it

remains active until time t0 + 2. The length of a chain server is the number of items placed in it; for

a chain server started at time t and closed at t0 + 1, its length is t0 � t+ 1. It is clear that the cost of

a domino server is 2 while the cost of chain server is t0 + 2� t.
1The results presented in this section are based on joint work with Dr. Shahin Kamali.
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In Figure 4.4 (a), ALG has used a chain server of length 2 opened a time 0, and a chain server of

length 1 opened at time 1, while in Figure 4.4 (b), OPT has used one chain server and one domino

server.

We say an algorithm for RSiC forms a domino if at some time-step t it places two items into

the same server to create a domino server. Alternatively, at any time t when a new job arrives, an

algorithm may either start a chain server by placing a single job in a new server, or extend a chain

server by placing a single job in an already existing chain server. We claim that forming a maximal

set of dominos gives an optimal solution.

More precisely, for input sequence (�1, · · · ,�n), with arrival times lying between 0 and k,

assume n1, n2, · · · , nk is the cardinality sequence where ni is the number of items arriving at time

i. We process items in increasing order of arrival times. At any arrival time i with ni > 0, if ni

is even, then pack the items arriving at this time in pairs into domino servers. If ni is odd, then

use one job either to extend an existing chain server if one exists, or to start a new chain server if

none exists. The remaining even number of items are packed into domino servers. Observe that this

algorithm can be implemented as an online algorithm with a lookahead of one: it is enough to know

when receiving an job whether or not there will be another job arriving at the same time.

0 1

o

e

e o

(a)

E O

o

e

e o

(b)

Figure 4.2: The change in number of active chains for (a) OPT . (b) ALG. The labels e and o on edges refer to even and odd ni

respectively. For OPT , the states correspond to the number of active chains, and for ALG, they correspond to the parity of the number
of active chains ci.

Observe that a new chain server is started at time i if ni�1 is even and ni is odd; it is extended

until we keep receiving an odd number of items, and the chain server is closed when we get an even

number of items. See Figure 4.2 (a) for an illustration. Since there is at most one active chain server

at any time, there is at most one server that has a single job packed in it. Optimality now follows

from Proposition 4.2.1.

We call the above algorithm OPT . Denote an AnyFit algorithm by ALG. We proceed to show
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that ALG has competitive ratio  5/4.

Consider the cardinality sequence for an input I . Partition it into maximal sequences of non-zero

integers separated by one or more zeroes. The items corresponding to these maximal subsequences

are called connected components of the input. It is easy to see that for both ALG and OPT , the

servers used for two connected components are disjoint and cannot overlap, that is, be active at the

same time. Therefore, the cost of ALG (and OPT ) is the sum of the cost paid by ALG (resp.

OPT ) for each connected component. Therefore, these connected components can be analyzed

independently, and in the rest of this section, we consider only connected inputs in which all items

of the cardinality sequence are non-zero, that is, there is at least one arrival in every step.

First we define a set of input sequences on which ALG is optimal. An input sequence is called

an ASC if its cardinality sequence is an element of (12+112)
⇤
(1+11). For example, the cardinality

sequence 112121121 corresponds to an ASC input. We say an input I is NASC if it is not ASC. A

NASC input has a cardinality sequence that has at least one of the following properties: (a) has three

or more consecutive 1s, (b) two or more consecutive 2s, (c) contains a number greater than 2 or (d)

does not end with 1. For example, cardinality sequences 112, 12321, 122121, and 11121 are all

cardinality sequences of NASC inputs.

Lemma 4.2.2. ALG is optimal on connected ASC inputs.

Proof. Let I be an ASC input with first arrival at time 1 and last arrival at time k. It is easy to see

that ALG has one chain server starting at time 1, and active until time k + 2. Note that except for

time interval [1, 2) [k + 1, k2), this chain server always has 2 items in it. Also for each time when

there are 2 arrivals, ALG opens a chain server with a single item, open for 2 time units. Since these

times are within the time interval [2, k+1), at all times, there is at most one server which is half-full.

See Figure 4.3 for an example of the behavior of ALG on an ASC input. The lemma now follows

from Proposition 4.2.1.

Since ALG is optimal on ASC inputs, we turn our attention to NASC inputs. Suppose we have

a chain formed by k items; then its cost is exactly k+1. Given that each domino has two items and

cost 2, the cost of an algorithm with c chains for packing n items is exactly n + c. let CALG and

COPT be the number of chains created by ALG and OPT respectively. Then on any input I with
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ni 1 2 1 1 2 1 2 1 1

Figure 4.3: The assignment of ALG on the ASC input with cardinality sequence 121121211

n items,

ALG(I)

OPT (I)
=

n+ CALG

n+ COPT

(27)

In the lemma below we establish a relationship between the number of chains created by ALG and

OPT .

Lemma 4.2.3. CFirstFit(I)  2COPT (I) for any connected NASC input I .

Proof. As already described, at any time t, OPT has at most one active chain server. As shown in

Figure 4.2(a), OPT creates a new chain server whenever the cardinality sequence switches from an

even number to an odd number, and closes the chain server after the cardinality sequence switches

from odd to even. On the other hand, we claim that ALG may create a new chain if the cardinality

sequence switches from an even number to an odd number or vice versa, but never creates a new

chain when there is no such switch.

Suppose ALG has ci chains active at time i when ni items arrive. We will show that (a) a new

chain is not started if the parity of ni�1 is the same as the parity of ni. We will also show inductively

that (b) the parity of ci is the same as the parity of ni�1. This is clearly true at time 1, since there

are 0 active chains, and n0 = 0.

First we consider the case when the parity of ni is the same as the parity of ni�1, which by
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inductive assumption equals the parity of ci. If ci � ni, then ni chains will continue and ci � ni

chains will be closed before time step i + 1. Thus ci+1 = ni, and they obviously have the same

parity. Also note that no new chains were formed. So both (a) and (b) are true. If instead ci < ni,

then all existing chains are extended, and the number of remaining items is ni � ci which is even.

ALG creates dominos with the remaining ni � ci items and no new chains are created. Since

ci + 1 = ci which has the same parity as ni, once again both (a) and (b) are true.

Next we consider the case that the parity of ni�1 and ni are different, to finish the inductive

proof of (b). As before, if ci � ni, no new chains are created, but ni chains will continue, assuring

that ci+1 has the same parity as ni. Otherwise, all ci chains are extended, and ni � ci is odd, which

means a new chain will be created, and so the parity of ci+1 is opposite that of ci. By the inductive

hypothesis, ci and ni�1 have the same parity, which is opposite the parity of ni in this case, thus

assuring that ci+1 has the same parity as ni. See Figure 4.2(b) for an illustration.

To summarize, OPT creates a new chain at time i if ni�1 is even and ni is odd, while ALG may

create a new chain if the parity of ni�1 and ni are different. This shows that ALG starts a new chain

at most twice as often as OPT , completing the proof of the lemma.

Next we show that the number of chains created by OPT on a NASC input with n items is at

most n/3.

Lemma 4.2.4. COPT (I)  n/3 for any connected NASC input with n items.

Proof. Let the cardinality sequence of the input I be n1, n2, . . . , nk, and assume that all ni are pos-

itive. As mentioned earlier, OPT starts a new chain server when the cardinality sequence switches

from an even number to an odd number. Let j1, j2, . . . , j` be the set of times with j1 < j2 < · · · < j`

such that nji is odd and nji�1 is even. Let Si be the chain server opened by OPT at time ji. For

chain server Si, we call items arriving between times ji and ji+1 � 1 the supporting items of the

server Si, and let W (Si) be the number of its supporting items. That is,

W (Si) =

8
>>>>>><

>>>>>>:

Pji+1�1

p=ji
np for 1  i < `

P
k

p=`
np for i = `
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For example, for the cardinality sequence 12234111121, we see that OPT opens 4 servers at

times 1, 4, 6, and 11. We have W (S1) = 5,W (S2) = 7,W (S3) = 6,W (S4) = 1. Observe

that every job in the input is a supporting job of at most one server. If the cardinality sequence

ends with an even number, for a chain server arriving at time ji, there are an even number of items

arriving in the time step ji+1� 1 that are not part of the chain server, but are in its support set. Thus

W (S) � length(S) + 2. If the cardinality sequence does not end with an even number, then this is

still true for every chain server except the last server.

We say that the server S is self-supporting if W (S) � 3 and we call it heavy if W (S) � 5.

If all chains created by OPT on I are self-supporting, then each chain has at least three distinct

supporting items, and the lemma follows.

Suppose instead that there is a chain created by OPT that is not self-supporting. Then the chain

is either of length 1 or 2, and corresponds to an arrival sequence 1 or 11, with no even number of

items arriving afterwards. Such a chain can only be the last chain S created by OPT . But then we

claim there must be at least one heavy chain. To see this, observe that if a chain is self-supporting

but not heavy, it has weight either 3 or 4, in which case it corresponds to a cardinality subsequence

12 or 112. That is, if there are no heavy chains, the input must be of the form (12 + 112)
⇤
(1 + 11),

a contradiction to the assumption that I is a NASC input. Thus there must be a heavy chain, which

has a surplus of at least two supporting items that can instead support S. This completes the proof

of the lemma.

This brings us to the main result of this section.

Theorem 4.2.5. ⇢(ALG) = 5/4.

Proof. For any input I , the cost of any algorithm is the sum of its cost on its connected components.

Since by Lemma 4.2.2 ALG is optimal for ASC components, the worst-case ratio of the cost of

ALG and OPT is achieved on an input with only NASC components. Using Equation 27, on any
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such input I of n items, where ALG creates CALG chains and OPT creates COPT chains we have

ALG(I)

OPT(I)
=

n+ CALG

n+ COPT

(28)


n+ 2COPT

n+ COPT

(29)


n+ 2n/3

n+ n/3
= 5/4 (30)

where the last two inequalities follow from Lemmas 4.2.3 and 4.2.4 respectively.

Corollary 4.2.6. For any online algorithm ALG for RSiC on inputs where every job �i has size

1/3 < s(�i)  1/2, duration 2, and arrival time i 2 N . Then ⇢(ALG) = 5/4.

Proof. The proof follows directly from Theorems 4.2.7 and 4.2.5.

4.2.2 Lower Bound

Theorem 4.2.7. Let ALG be an online algorithm for RSiC where all servers are dual-core servers,

and jobs have duration 2, and arrival time i 2 N . Then ⇢(ALG) � 5/4.

Proof. The adversary gives the first job �1 at time 0 and a second one at time 1. At the arrival

time of job �2, if ALG packs �2 into the same server as �1, then ADV reveals the third job �3

also arriving at time 1, requiring ALG to open another server, see Figure 4.4. In this case, the cost

incurred by ALG is 5, while OPT can pack �1 in one server and �2 and �3 together in another

server, resulting in a total cost of 4. Thus, the ratio of the cost of ALG to the cost of OPT is 5/4.

If instead ALG packs the second job �2 into a new server, ADV ends the input, resulting in a total

cost of 4 for ALG. Meanwhile, OPT can pack �1 and �2 into one server, resulting in a total cost

of 3. Therefore, the ratio in this case is 4/3. We conclude that ⇢(ALG) � 5/4.
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Figure 4.4: (a) ALG. (b) OPT . In this figures, the shaded areas indicate the wasted space within each server.
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Figure 4.5: (a) ALG. (b) OPT . In the figures, the shaded areas indicate the wasted space within each server.

4.2.3 Lower Bound on Advice Complexity

In this thesis, so far we assume that no information about future items is available. However,

this assumption is often unrealistic in real-world scenarios. In many cases, online algorithms have

access to some information about future inputs. Models that try to capture such side-information

are referred to as advice models. In this section, we consider the RSiC problem within a particular

framework of the advice model. We begin with a short discussion of various advice models.

The advice model extends traditional online algorithms by providing additional information

about future inputs, thereby relaxing the assumption of complete uncertainty. This extra informa-

tion is provided by a trusted offline oracle with unbounded computational power, which has full

knowledge of the input sequence. The oracle provides advice in the form of bits, creating a trade-

off between the amount of advice received and the efficiency of the online algorithm. The main

question in advice complexity is determining how much advice is necessary to improve the worst-

case performance of an online algorithm. Specifically, we investigate the amount of advice required

for an online algorithm to achieve optimal results or obtain a certain performance ratio. Depending
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on the quantity of advice received, the algorithm may perform significantly better than an online

algorithm without advice, potentially even optimally.

Several models of advice complexity exist for online problems. The first two, introduced by

Dobrev et al. [24], are known as the helper mode and the answer mode. In the helper mode, the

online algorithm receives a predefined number of advice bits—potentially zero—before processing

each request. The advice complexity in this model is defined as the total number of bits required to

achieve optimal performance. The answer mode operates similarly but allows the online algorithm

to request advice bits as needed rather than receiving them in advance.

The model that became more standard (and the one we use in this thesis) is due to Böckenhauer

et al. [10] and is called the tape model. In this model, the online algorithm has access to an infinite

advice tape written by the oracle. The oracle has unbounded computational power and sees the

entire input in advance. The oracle populates the infinite advice tape prior to algorithm receiving

the first input item. At any point in time, the algorithm can consult the tape and read any number

of advice bits (sequentially from the start of the tape). The advice complexity, as a function of

input length n, in this model is measured by the total number of bits accessed by the algorithm on

the worst-case input of length n. The oracle and the algorithm cooperate and act according to a

pre-agreed protocol. The tape-advice model and the helper model are closely related. In fact, the

advice complexity of an algorithm can differ by at most O(log n) between the two models. The

tape-advice model became more standard, because it has a “cleaner” definition of advice length.

Note that in the helper model, the oracle can send some additional information through the length

of the advice string. For more details on advice complexity models, we refer interested readers to

the survey by Boyar et al. [12].

In this section, we explore the RSiC problem within the tape-advice model. We aim to demon-

strate that, even in the dual-core input setting— a highly relaxed version of the problem— it is

impossible to achieve a competitive ratio better than 9/8 with sub-linear advice. Our proof is based

on a reduction from the binary string guessing with known history (2-SGKH) problem to this variant

of the RSiC problem.

Let us first define the 2-SGKH problem:

Definition 4.2.1. Input: A binary sequence x = (x1, x2, · · · , xn), where xi 2 {0, 1} for i =
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1, 2, . . . , n.

Output: A sequence y = (y1, y2, . . . , yn), where yi 2 {0, 1}, representing a guess of the input

sequence.

Objective: Minimize the number of indices i such that yi 6= xi+1.

The following lower bound on the advice complexity of 2-SGKH problem is known [15]:

Theorem 4.2.8. Fix ↵ 2 (1/2, 1]. Any online algorithm for 2-SGKH that makes at most (1 � ↵)n

mistakes on inputs of length n needs at least (1�H(↵))n bits of advice, where H(↵) = ↵ log
1

↵
+

(1� ↵) log
1

1� ↵
is the binary entropy function.

We are now ready to establish the main result of this section:

Theorem 4.2.9. Fix ↵ 2 (1/2, 1]. Any online algorithm for the variant of RSiC, where all servers

are dual-core servers and jobs have duration 2 and integer arrival times, requires at least
1�H(↵)

3
N

bits of advice to achieve competitive ratio 1 +
1� ↵

4
on inputs of length N .

Proof. We give an online reduction from the 2-SGKH problem to RSiC. Our reduction is gadget-

based. At a high level, we define an algorithm for 2-SGKH based on an algorithm for RSiC. For

each input xi for the 2-SGKH, the reduction constructs a gadget – set of jobs to be scheduled on

servers by the algorithm for RSiC. The gadget shall have the following properties:

(1) first part of the ith gadget is given upon arrival of xi; the behavior of the algorithm for RSiC

is used to make a guess yi;

(2) once xi+1 is revealed, the rest of the ith gadget is revealed so as to achieve the following: if

the guess was correct (i.e., yi = xi+1) then the algorithm for RSiC can schedule the entire ith

gadget optimally, and if the guess was incorrect (i.e., yi 6= xi+1) then the RSiC algorithm’s

decision on the first part of the gadget cannot be completed to an optimal solution once the

second part of the gadget is revealed.

Thus, for all i, except i = 1, in step i the reduction algorithm gives a second part of the i � 1
st

gadget followed by the first part of the ith gadget. Then we carefully relate parameters of the two
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problems (2-SGKH and RSiC) to derive the desired result. The gadgets for different values of i do

not overlap.

Next, we give the details of the above high-level plan. Suppose there is an online algorithm

ALG with advice for the RSiC problem. Moreover, suppose that ALG achieves competitive ratio

at most 1 +
1� ↵

4
on inputs of length N , while using K bits of advice.

Consider input (x1, . . . , xn) to the 2-SGKH problem. We design an online algorithm ]ALG for

2-SGKH problem as follows. The algorithm shall maintain a variable t indicating current time in an

instance for RSiC. Initially, t is set to 0. Upon arrival of input xi for the 2-SGKH and assuming that

]ALG finished presenting the jobs for the i � 1
st gadget, ]ALG updates the time variable t  t+ 4

and presents the first part of the ith gadget which consists of two items to ALG: one with arrival

time t, and another with arrival time t+ 1. Then, ]ALG observes how ALG packs these two items,

and sets the guess yi according to the following rules:

• If ALG places both items in the same server, then ]ALG sets yi = 0.

• If ALG places the two items in separate servers, then ]ALG sets yi = 1.

Once the value of xi+1 is revealed, ]ALG finishes the ith gadget as follows:

• If yi = xi+1 then:

� If yi = 0 (i.e., ALG placed the two items on the same server), then the adversary does

not reveal a new item, resulting in a cost of 3 for both ALG and OPT on the ith gadget.

� If yi = 1 (i.e., ALG placed the two items in separate servers), then the adversary extends

the previous gadget by revealing a new job at time t+1, resulting in a cost of 4 for both

ALG and OPT on the ith gadget (here, we assume without loss of generality that ALG

schedules both items at time t+ 1 onto the same server).

• If yi 6= xi+1:

� If yi = 0, the adversary reveals an additional job at time t + 1, resulting in a cost of 5

for ALG and 4 for OPT on the ith gadget.
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� If yi = 1, the adversary does not reveal a new item, resulting in a cost of 4 for ALG and

3 for OPT on the ith gadget.

Now for 2-SGKH, let us define the number of mistakes on 0s as m0 (i.e., yi 6= xi+1 = 0), the

number of mistakes on 1s as m1 (i.e., yi 6= xi+1 = 1), and the number of correct guesses for 0s as

c0 (i.e., yi = xi+1 = 0) and for 1s as c1 (i.e., yi = xi+1 = 1). Then the length of the instance for

the 2-SGKH is n = c0 + c1 +m0 +m1 + 1. Also, observe that the length of the instance for RSiC

is then N = 2c0 + 3c1 + 3m1 + 2m0 = 2(c0 +m0) + 3(c1 +m1)  3n. Thus, we have:

n � N/3.

We can also calculate the cost of ALG and OPT on the RSiC instance (using the bullet-point

discussion above):

ALG = 3c0 + 4c1 + 5m1 + 4m0

and

OPT = 3c0 + 4c1 + 4m1 + 3m0.

Since the competitive ratio of ALG is at most 1 +
1� ↵

4
, we obtain the following inequality:

3c0 + 4c1 + 5m1 + 4m0

3c0 + 4c1 + 4m1 + 3m0

 1 +
1� ↵

4
.

Rearranging and simplifying the above expression we obtain:

3c0 + 4c1 + 5m1 + 4m0 < (1 +
1� ↵

4
)(3c0 + 4c1 + 4m1 + 3m0),

m0 +m1 < (
1� ↵

4
)(3c0 + 4c1 + 4m1 + 3m0),

m0 +m1 < (
1� ↵

4
)(4n),

m0 +m1 < (1� ↵)n.

In particular, it means that ]ALG makes at most (1 � ↵)n mistakes. By Theorem 4.2.8, ]ALG
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must use at least (1 � H(↵))n bits of advice. Note that the advice used by ]ALG is exactly the

advice used by ALG in the reduction. Therefore, we conclude that

K � (1�H(↵))n �
1�H(↵)

3
N,

as desired.

Corollary 4.2.10. By taking ↵ = 1/2, the competitive ratio of RSiC cannot be better than 9/8.

4.3 Summary and Discussion

In this chapter, we addressed the RSiC problem under the specific scenario of equal job duration

2 and integer arrival times. For this setting, we established an upper bound for the FirstFit algorithm

when all servers have the same start and finish times.

Subsequently, we further restricted the setting to the case where all servers are dual-core servers.

For this variant, we established an upper bound of 5/4 for the problem. Further, we demonstrated

a matching lower bound of 5/4 on the competitive ratio achievable by any online algorithm. Ad-

ditionally, through a reduction from the binary guessing problem, we showed that with sub-linear

advice bits, it is impossible to achieve a competitive ratio better than 9/8.

There are many interesting research directions that the work in this chapter suggests. For exam-

ple, one could try to extend the results to the k-core setting for k � 3. One could also consider arbi-

trary arrival times in the limited core setting and/or allow varying job durations. Studying different

combinations of these extensions may lead to insights for the completely general setting. Moreover,

there do not seem to be significant obstacles to analysis of each of these extensions individually,

making them promising directions for future research.
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Chapter 5

Restricted Number of Servers

In the previous chapters, the assumption is that there is an infinite number of identical servers

available. In this chapter, we study the more realistic setting where there is a limited number of

servers available. We consider a parameterized analysis, and consider families of inputs on which

FirstFit needs at most k servers at any time, and provide tight bounds on the competitive ratio of

FirstFit on such inputs. This type of parameterized analysis has the potential to provide insight

into the original RSiC problem with no restriction on the number of servers. Seen in more practical

terms, for the general input case, we analyze the version of FirstFit in which if none of the k

available servers can accommodate the next job that arrives, then FirstFit simply discards the job.

However, the analysis is restricted to the jobs accepted by FirstFit: we compare the rental cost

paid by FirstFit with the optimal rental cost of serving only those jobs. We refer to this version of

RSiC when there are only k servers available as k-RSiC. In effect, this restricts the space of input

sequences to consist of only those inputs � that satisfy FirstFit(�, t)  k for all t. More precisely,

we consider the case where jobs have uniform durations but arbitrary arrival times, as shown in

Table 5.1.

Algorithm Job Duration Arrival Pattern # of Arrivals # of Dimensions # of Servers Extra
FirstFit Equal Duration Arbitrary Arbitrary 1 Limited k available servers

Table 5.1: Overview of the settings for RSiC with equal duration and midterm arrivals.

The notions of competitiveness and competitive ratio extend naturally to restricted sets of inputs

by requiring that the Inequality (1) holds for all input sequences � from the restricted set only. We
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denote the competitive ratio of FirstFit under the restriction of using at most k servers at a time by

⇢k(FirstFit).

5.1 Theoretical Analysis of FirstFit for k = 2, 3, 4

The following simple upper bound will be used to establish tight competitive ratios for small

values of k.

Lemma 5.1.1. ⇢k(FirstFit)  k.

Proof. Consider an arbitrary input � to k-RSiC. Due to the nature of the restriction, i.e., FirstFit

using at most k servers at a time, we have: FirstFit(�)  k · span(�). From Lemma 1.3.1 we have

OPT (�) � span(�). Combining these two observations proves the lemma.

In the rest of this section we establish tight bounds on the competitive ratio of FirstFit for

k = 2, 3, 4.

Theorem 5.1.2. ⇢2(FirstFit) = 2.

Proof. The upper bound is given by Lemma 5.1.1. As for the lower bound, fix an arbitrary n 2 N

and sufficiently small ✏ > 0 and � > 0, and define the input as follows. The first item is (0, 1� ✏),

and after that items arrive in n groups of 4. The ith group (for i 2 {1, . . . , n}) consists of the

following items:

((2i� 1)� (2i� 1)�, ✏), ((2i� 1)� (2i� 1)�, 2✏), (2i� 2i�, 1� ✏), (2i� 2i�, ✏).

Figures 5.1 and 5.2 demonstrate this construction. Observe that FirstFit maintains two active

servers: Server 1 has duration (2� 2�)n+1 while Server 2 has duration (2� 2�)n+ �. Adding the

cost of both servers, we obtain FirstFit(�) = 4n�4�n+1+�. Meanwhile, OPT always keeps one

server active at a time, with small overlaps between the times they are open. When opened, each

server remains open for duration exactly 1. Each of the groups costs 2, and the initial group costs 1.

Thus, the overall cost of OPT is OPT (�) = 2n+ 1. Combining these observations, we obtain:
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⇢2(FirstFit) �
FirstFit(�)
OPT (�)

=
4n� 4�n+ 1 + �

2n+ 1
� 2�

1� � + 4�n

2n+ 1
! 2 as n!1,

where the last inequality holds for � = n�↵ with 0 < ↵ < 1.

We can also prove the above lower bound by using the following simpler construction: choose

an arbitrary natural number n and set � to be small enough, then define the input as follows: the first

item is (0, 1
2
), followed by n groups of 4 items each. The ith group, where i ranges from 1 to n,

contains the following items: ((2i�1)� (2i�1)�, 1
2
), ((2i�1)� (2i�1)�, 1

2
), (2i�2i�, 1

2
), (2i�

2i�, 1
2
). It can be verified that the cost of FirstFit and OPT are the same as in the previous example.

However, the ratio between FirstFit and volume is approximately 2, whereas in the example used

for the proof of Theorem 5.1.2, this ratio is nearly 4. Thus the earlier example highlights the fact

that utilizing total job volume as a lower bound for the cost of OPT is not a viable approach.

Time0 1� � 2� 2� 3� 3�

1� ✏

✏

· · ·

· · ·

Server 1:

Server 2:

4� 4�

2✏

1� ✏

✏

✏
2✏

Figure 5.1: Schedule of FirstFit on the adversarial input demonstrating ⇢2(FirstF it) � 2.

Time0 1� � 2� 2� 3� 3�

1� ✏

✏

· · ·

· · ·

Server 1:

Server 2:

4� 4�

2✏

1� ✏

✏

✏
2✏

Figure 5.2: Schedule of OPT on the adversarial input demonstrating ⇢2(FirstF it) � 2.

Theorem 5.1.3. ⇢3(FirstFit) = 3.

Proof. The upper bound is given by Lemma 5.1.1. For the lower bound, fix an arbitrary n 2 N
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and sufficiently small ✏ > 0 and � > 0, and define the input as follows. The input begins with

four items: (0, 1/3 � ✏), (0, 1/3 � 2✏), (0, 2/3 � ✏), (0, 2/3 + 2✏). FirstFit will place the first two

items into the first server which will have occupancy 2/3� 2✏, and the remaining two items will be

placed into two additional servers. Then n groups of 3 items each follow. The ith group items are

the following:

(i� i�, 1/3 + ✏/2i�1
), (i� i�, 1/3 + ✏/2i�1

), (i� i�, 1/3� ✏/2i�2
).

Consider how FirstFit behaves on the items for the first group. The first item has size 1/3 + ✏ and

arrives at time 1 � �. The first server has enough remaining capacity to accommodate this item at

time 1 � �. The second item cannot be placed into the first server, since it does not have enough

space at time 1� �, so it is placed into the second server, and similarly, the third item is placed into

the third server.

Next, consider how FirstFit behaves on items for the second group. At the time of arrival of

the second group items, i.e., 2 � 2�, the occupancy in FirstFit servers is 1/3 + ✏, 1/3 + ✏, and

1/3 � 2✏, respectively. Thus, the first item of size 1/3 + ✏/2 is placed into the first server, the

second item of size 1/3 + ✏/2 is placed into the second server. Observe that this raises occupancy

to 1/3 + ✏ + 1/3 + ✏/2 = 2/3 + (3/2)✏ > 2/3 + ✏ for the first two servers at time 2 � 2�.

Thus, when the third item arrives at time 2 � 2�, there is not enough space in the first two servers

to accommodate it (it has size 1/3 � ✏), thus it is placed into the third server. It is easy to see by

induction that this process continues for all the remaining groups. Thus, FirstFit maintains 3 servers

open over the entire span, so FirstFit(�) = 3(n � n� + 1). As for OPT , it can begin by placing

{(0, 1/3 � ✏), (0, 2/3 � ✏)} items in one server, and {(0, 1/3 � 2✏), (0, 2/3 + 2✏)} items into the

second server at time 0. Observe that the items in each group add up to exactly one, so it can fit all

items of a group into one server, which is open for a duration of 1. Thus, we have OPT (�) = 2+n.

See Figures 5.3 and 5.4.

Combining the above, we obtain:
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⇢3(FirstF it) �
FirstFit(�)
OPT (�)

=
3n� 3n� + 3

n+ 2
= 3�

3 + 3n�

2 + n
! 3 as n!1,

assuming we take � sufficiently small, e.g., � = 1/n.

Time0 1� � 2� 2� 3� 3�

1/3� ✏

1/3� 2✏

2/3� ✏

2/3 + 2✏

1/3 + ✏

1/3 + ✏

1/3� 2✏

1/3 + ✏/2

1/3 + ✏/2

1/3� ✏

1/3 + ✏/4

1/3 + ✏/4

1/3� ✏/2

· · ·

· · ·

· · ·

Server 1:

Server 2:

Server 3:

4� 4�

Figure 5.3: Schedule of FirstFit on the adversarial input demonstrating ⇢3(FirstF it) � 3.

Time0 1� � 2� 2� 3� 3�

1/3� ✏

1/3� 2✏

2/3� ✏

2/3 + 2✏

1/3 + ✏

1/3 + ✏

1/3� 2✏

1/3 + ✏/2

1/3 + ✏/2

1/3� ✏

1/3 + ✏/4

1/3 + ✏/4

1/3� ✏/2

· · ·

· · ·

4� 4�

Figure 5.4: Schedule of OPT on the adversarial input demonstrating ⇢3(FirstF it) � 3.

We remark that the lower bound shown in the above theorem implies a lower bound for the

general case of unrestricted inputs and number of arrivals.

Corollary 5.1.4. ⇢(FirstFit) � 3

The above bound is an improvement on the previously best known lower bound of ⇡ 2.519

shown in Corollary 3.3.2 on the competitive ratio of FirstFit.

Finally we prove a tight bound on the performance of FirstFit for the case of 4 servers. Clearly

the lower bound shown for 3 servers also applies to this case. To prove the upper bound, we use
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a novel technique of partitioning the span into intervals based on the number of servers used by

FirstFit and OPT . We then show that the total duration of intervals in which FirstFit uses 4 servers

while OPT uses only one server cannot be that large.

Theorem 5.1.5. ⇢4(FirstFit) = 3.

Proof. The lower bound follows from Theorem 5.1.3. For the upper bound, consider an input

sequence � of n items. We refer to an arrival or a departure of a job as an event. Without loss

of generality, we can assume that all event times are distinct (otherwise, we can infinitesimally

perturb arrival and departure times without any significant effect on costs of FirstFit and OPT ).

Let t1  t2  . . .  t2n be the ordered sequence of times of all events. Define the duration between

ith and (i+ 1)
st events by �ti = ti+1 � ti.

Let ni 2 {0, 1, 2, 3, 4} denote the number of servers active at time ti in the FirstFit schedule ,

and let mi � 0 denote the number of servers active at time ti in OPT . Note that since there are

no events between ti and ti+1, the FirstFit schedule has ni active servers during the time interval

[ti, ti+1), and OPT has mi active servers in the same interval. Since servers are released as soon

as all jobs assigned to them are finished, it follows that ni > 0 if and only if mi > 0 (if ni > 0 or

mi > 0 then some job must be active during time interval [ti, ti+1). In addition, time intervals with

ni = 0 and mi = 0 can be ignored since they do not affect the costs of FirstFit and OPT .

Let D(j1, j2) denote the total duration of intervals i with ni = j1 and mi = j2. Using the

introduced notation, we can express the costs of FirstFit and OPT as follows:

FirstFit(�) =
2n�1X

i=1

ni�ti =
4X

j1=1

X

j2�1

j1D(j1, j2)

and

OPT (�) =
2n�1X

i=1

mi�ti =
4X

j1=1

X

j2�1

j2D(j1, j2).

To prove the theorem we need to establish that

FirstFit(�)  3 ·OPT (�)
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which is equivalent to the following:

4X

j1=1

X

j2�1

j1D(j1, j2) 
4X

j1=1

X

j2�1

3j2D(j1, j2).

This inequality is, in turn, equivalent to:

4X

j1=1

X

j2�1

(3j2 � j1)D(j1, j2) � 0.

Observe that

4X

j1=1

X

j2�1

(3j2 � j1)D(j1, j2) =
4X

j1=1

(3� j1)D(j1, 1)

+

4X

j1=1

X

j2�2

(3j2 � j1)D(j1, j2)

� �D(4, 1) +
4X

j1=1

X

j2�2

D(j1, j2),

where the inequality follows by dropping non-negative terms from the first term (corresponding to

j1 2 {1, 2, 3}) and observing that 3j2 � j1 � 2 for the values of j1 and j2 in the second term.

Thus, to prove the theorem it suffices to show the following inequality:

D(4, 1) 
4X

j1=1

X

j2�2

D(j1, j2) (31)

The above inequality says that the total duration of intervals where FirstFit uses 4 servers while

OPT uses 1 server is not much larger than the total duration of intervals where OPT uses at least

2 servers (regardless of how many servers are used by FirstFit).

Let [i1, i2] be a maximal contiguous sequence of indices such that for all i with i1  i  i2

we have ni = 4 and mi = 1. We claim that mi1�1 � 2. If not, we would have mi1�1 = 1 and

since [i1, i2] is maximal, we must have ni1�1  3. As ni1 = 4, this implies that i1 is an arrival

event which forced FirstFit to open a new server, which means the total size of items at time ti1

exceeds 1, contradicting mi1 = 1. Let i0 be the smallest index below i1 such that for all i with
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Indices i0 i1 � 1 i1 i2
ni 3 3 4 3 4 4 4 4 4
mi 1 2 3 2 1 1 1 1 2

Table 5.2: A sequence of indices and the corresponding ni,mi pairs that illustrating i0, i1, i2.

i0  i < i1 we have mi � 2. See Table 5.2 for an example illustrating i0, i1, i2. We will show that

ti2 � ti1  ti1 � ti0 .

First, we show that ti2 � ti1  1. Suppose, for contradiction, that ti2 � ti1 > 1. Since all jobs

have duration 1, all jobs that were active at time ti1 must have finished by time ti2 . However, since

ni2 = 4, all 4 servers are active at time ti2 . This means that some job was scheduled by FirstFit

onto server 4 between ti1 and ti2 . This implies that this job did not fit into server 1, which means

that the total size of items at the time of arrival of this job exceeded 1. This contradicts the fact that

mi = 1 for all i with i1  i  i2.

Second, we show that ti1 � ti0 � 1. Prior to time ti0 OPT has one server, during time interval

[ti0 , ti1) OPT has at least two servers, and at ti1 OPT has one server. If the only server in OPT

that was active prior to time ti0 is never released during [ti0 , ti1) then we can immediately conclude

that ti0�ti1 � 1. This is because in this case some other server must have been opened and released

between ti0 and ti1 , but such a server would have duration at least 1 – (the duration of every job

in the input). Now, consider the case in which the one server active in OPT immediately prior to

ti0 is released some time during [ti0 , ti1) while another server that was opened in OPT at time ti0

remained active during the entire [ti0 , ti1 ] interval. Suppose for contradiction that ti1 � ti0 < 1. Let

Xj denote the total size of jobs that were on server j in FirstFit immediately prior to ti0 (note that

some Xj may be 0 indicating that FirstFit was using less than 4 servers). Let Yj denote the total size

of jobs that were added to server j by FirstFit during time interval [ti0 , ti1). Since OPT had only

one server open immediately prior to ti0 we have
P

j
Xj  1. Since we assumed that ti1 � ti0 < 1

all jobs counted in the Yj’s are still active at time ti1 . Since OPT has only one server open at ti1 it

implies that
P

j
Yj  1. Also, by the rules of FirstFit scheduling we have Yj +Xj�1 + Yj�1 > 1

(jobs in Yj were not placed in server j�1). Note that we have 3 such inequalities (for j 2 {2, 3, 4})

since ni1 = 4. Adding these inequalities we obtain 2
P

j
Yj+

P
j
Xj > 3; however, this contradicts

P
j
Xj  1 and

P
j
Yj  1 that we observed earlier.
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Figure 5.5: The effect of number of jobs on the performance of FirstFit. The performance of FirstFit is seen to be stable with at least
500 jobs for different choices of �. The results are averaged over 100 trials.

This implies the inequality in Equation (31), since we established that any run of indices with

ni = 4 and mi = 1 must be preceded by a run of indices (of at least the same total duration) with

mi � 2. This finishes the proof of the theorem.

5.2 Experimental Results

In the previous section, we showed that in the worst case, FirstFit can have a cost that is twice

the cost of OPT when using 2 servers, or even three times the cost of OPT when using 3 or 4

servers. However, these worst case inputs were carefully constructed, and are unlikely to occur in

practice. In this section, we analyze the empirical performance of the FirstFit algorithm for RSiC

and k-RSiC on random inputs. More specifically, we investigate FirstFit with respect to inputs

generated by a random Poisson process with , rejection sampling, as described below. We consider

the scenarios where FirstFit is limited to using 2, 3, 4, 5 servers at a time, as well as where FirstFit

has access to unlimited number of servers.

All our experiments were executed on a personal desktop with a quad-core 3.3 GHz Intel

Core i3-3220 CPU. The desktop had 8 GB of RAM. The desktop was running Ubuntu OS version

22.04.01. The code was written in Python version 3.10.6.

Input Generation: We generate random inputs for our experiments based on the following

parameters:

• k 2 N [ {1} is the number of servers available for FirstFit;

• � > 0 is the average arrival rate in the first step of the random process (described below);
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• N 2 N is the target number of accepted jobs;

• `, u 2 [0, 1] with ` < u are the lower and upper bounds on sizes of jobs.

The random input is generated in two steps. In the first step we randomly sample a sequence of

arrival times a1, a2, . . . by initializing a1 = 0 and sampling inter-arrival times from an exponential

distribution with parameter �. Recall that the PDF of the exponential distribution is f(x;�) =

�e��x for x � 0 and f(x;�) = 0 for x < 0. Thus, higher values of � result in shorter inter-

arrival times. The resulting sequence of arrival times is a Poisson process, and this gives another

interpretation for �, namely, as an average number of arrival times in any time window of size 1.

Since we consider the case of jobs of equal duration, we set the finishing times of jobs as fi = ai+1.

We assign each job size si to be an independently sampled uniformly random number from the range

[`, u].

In the second step of the process, we execute FirstFit on the input created in the first step. If

a job does not require FirstFit to have more than k active servers at the time of job’s arrival then

this job is accepted; otherwise this job is rejected and removed from the input. We refer to this

step as rejection sampling. The process continues until N jobs are accepted, which form a single

random instance. Experimentally we found that generating 10N jobs in the first step was sufficient

to guarantee that the second step succeeds (i.e., produces N accepted jobs) for all our experiments.

Performance Metric: Given parameters (k,�, N, `, u) of the experiment we repeat several

trials (typically, 100 unless stated otherwise). In each trial, we generate a random input as described

above and compute the cost of FirstFit. Since we do not have an efficient algorithm to compute

OPT , we do not compute OPT exactly; instead, we use the lower bound from Proposition 1.3.4.

Recall that the lower bound is ceiling of the total size of jobs active at time t. We average the cost

of FirstFit over all trials, average the lower bound values over all trials, and report the ratio of the

averages as an upper bound on the competitive ratio of FirstFit.
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5.2.1 The Effect of the Number of Jobs

Since we are mainly interested in the asymptotic performance of FirstFit, first we wanted to

establish a reasonable value of parameter N (the number of accepted jobs) to be used in our exper-

iments. Having N too large would be computationally prohibitive, but having N too small could

result in wrong interpretations of the asymptotic behaviour. We ran our experiments with values of

N in {10, 50, 100, 200, 400, 800, 1500} for three choices of �, namely, � = 2, � = 5, and � = 10.

In this experiment we fix ` = 0 and u = 1, therefore job sizes are uniformly distributed between 0

and 1. Figure 5.5 shows the results of this experiment.

Observe that the performance metric for FirstFit stabilizes at around N = 500 for all considered

choices of �. Thus, we decided to use N = 500 in all our remaining experiments in this section.

The plots in Figure 5.5 exhibit several interesting patterns, which we discuss next.

First of all, observe that the upper bounds on competitive ratios in all the experiments and for

all considered choices of k are quite close to 1 (and all of them are less than 1.25), indicating an

excellent performance of FirstFit on these inputs. This is far better than the worst-case bounds of

2 (for k = 2) and 3 (for k � 3) that we obtained theoretically. This is not too surprising, since we

had to carefully arrange arrival times and sizes of items to construct worst-case instances, and there

is negligible probability of generating such patterns randomly. Perhaps, there are other worst-case

inputs, but the empirical results demonstrate that random inputs are much nicer. It is worth noting

that actual competitive ratio of FirstFit on these inputs can be even better than what is suggested by

Figure 5.5, since we use a lower bound on OPT instead of the actual value of OPT . Understanding

the gap between OPT and the lower bound on OPT is an important open problem, which needs

further investigation.

Secondly, observe that for all the choices of � considered in this experiment the performance

of FirstFit is monotone with respect to k: having more servers leads to worse performance. This

may seem counter-intuitive, but it is important to remember that inputs are also parameterized by k.

Perhaps, it is more accurate to say that inputs which can be processed with fewer FirstFit servers

tend to result in tighter schedules. Lastly, note that the gaps between the performance of FirstFit

for different choices of k seem to increase with �. The results of the experiments in the following
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sections will show that as � increases even more, the competitive ratio of FirstFit converges to 1 for

k servers, for all k 2 {2, 3, 4, 5}.

5.2.2 The Effect of the Job Arrival Rate

In the previous subsection we observed that the competitive ratio seems to increase with in-

creasing values of �. The natural question is how the performance of FirstFit with limited number

of servers depends on � and why. We ran the experiment with N = 500, ` = 0, u = 1, and for all

integral choices of � between 1 and 100. Figure 5.6 shows the results of this experiment.

Figure 5.6: The effect of the job arrival rate on the performance of FirstFit. The total number of accepted jobs is 500. The results are
averaged over 100 trials.

First, observe that all performance curves for various choices of k are uni-modular, i.e., the

performance of FirstFit tends to get worse with increasing value of �, reaches a peak, and then

starts to improve. This suggests that for different choices of k there is a value of � that results in

the most difficult instances. Table 5.3 shows the experimentally derived worst values of � for each

value of k.

k � ⇢(FirstF it) 
2 5 1.06
3 6 1.11
4 7 1.15
5 9 1.18
1 25 1.24

Table 5.3: Values of � that result in worst performance for various values of k.

Figure 5.6 suggests that for every fixed value of k the competitive ratio of FirstFit tends to
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1 as � tends to infinity. Indeed, we conjecture this to be so. To understand the reason behind

such a behavior of FirstFit, it is important to understand the effect of rejection sampling on the

performance of FirstFit. Consider some fixed value of k and a large value of �. Suppose that a large

number of jobs have been generated according to the Poisson process of arrival times that are now

being filtered through the rejection sampling phase. Let us denote the occupancy of ith server of

FirstFit at time t by Si(t). Observe that a job of size s arriving at time t is accepted if and only if

s  1�mini2[k] Si(t). Since job sizes are generated uniformly at random in the interval (0, 1], the

probability of this happening for a single job is 1�mini2[k] Si(t).

Figure 5.7: The effect of the job arrival rate on average size of accepted and rejected jobs. The total number of accepted jobs is 500.
The results are averaged over 100 trials.

This means that as servers of FirstFit get filled in with jobs, there is a tendency to accept smaller

jobs and reject larger jobs. As � gets larger, the probability that some job is accepted during time

interval [t, t + dt] increases, which results in higher occupancy during this time interval, which in

turn results in higher preference towards even smaller jobs. In the limit, taking � = 1 can be

interpreted as having an infinite supply of jobs all arriving at time 0 and with job sizes uniformly

distributed between 0 and 1. It is clear that when FirstFit is limited to k servers then all k servers

would be completely full once the input passes through the rejection sampling stage. There is, of

course, the question of whether the performance of FirstFit is continuous at 1/� = 0, and Figure 5.6

seems to suggest so. Another interesting question that is suggested by this plot is whether the case

of FirstFit with unlimited number of servers tends to competitive ratio 1 or not. This question is left

for future research.

In order to test our hypothesis that the average size of accepted jobs tends to decrease with

increasing � and for a fixed k, we plotted � versus the average size of accepted jobs (as well as the

average size of rejected jobs) in Figure 5.7.
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Using FirstFit with a bounded number of servers also affects the effective arrival rate of the

jobs. Recall that � describes the arrival rate of jobs in the first step of the random input generation

process. Since many of the jobs may be rejected, it is interesting to investigate what would be the

actual arrival rate of jobs after the rejection sampling. We refer to this rate as the effective arrival

rate, and we compute it empirically in the above experiment. The results are shown in Figure 5.8.

The interpretation of this figure is as follows. Take for example � = 80 and the case of k = 5

FirstFit servers. Then after the rejection sampling, on average there will be about 20 jobs with

arrival time in any given time window of duration 1, there will be about 60 jobs rejected with arrival

time in any given time window of duration 1. It would be interesting to be able to predict the

effective arrival rate, given k and �.

Figure 5.8: The effect of the job arrival rate on effective rate of accepted jobs and effective rate of rejected jobs. The total number of
accepted jobs is 500. The results are averaged over 100 trials.

5.2.3 The Effect of Job Sizes

In this subsection we investigate how the interval (`, u] from which job size is sampled uni-

formly at random affects the performance of FirstFit. We ran our experiments with N = 500 for

three choices of �, namely, � = 2, � = 5, and � = 10, and for the following job size intervals:

(0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], and (0.4, 0.5]. Note that if job sizes are restricted to (0.5, 1]

then FirstFit is optimal since both FirstFit and OPT must rent a new server for each incoming job,

as no jobs of sizes greater than 0.5 that overlap in time can be scheduled on a single server. The

results of our experiments are reported in Figure 5.9.

First, observe that in almost all plots the ordering of performance of FirstFit in terms of k is
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consistent with what we found for the job size interval (0, 1] in Section 5.2.1.

Figure 5.9: The effect of the interval (`, u] from which job size is sampled on the performance metric of FirstFit. The total number of
accepted jobs is 500. The results are averaged over 100 trials.

Secondly, for all ranges of item size, and for k servers for all values of k 2 {2, 3, 4, 5}, the

competitive ratio of FirstFit appears to converge to 1 as � increases to 50 and 100. However, we

argue below that the reasons for this are different for small and large item sizes.

For small job sizes, in the interval (0, 0.1], when � is very small (2 or 5) , all items can be

accommodated on a single server, and when � is large, the resulting schedule of FirstFit results in

tightly packed servers nearly matching the volume of all jobs. The competitive ratio is seen to be

very close to 1 in both situations, as seen in Figure 5.9.

For large job sizes, in the interval (0.4, 0.5), both FirstFit and OPT can fit at most two items

in a server at any time. How competitive FirstFit is depends on how well the two items in a server

are aligned in terms of time. As � increases, items arrive closer to each other, resulting in a more

aligned packing of FirstFit. We observe from Figure 5.9 that for every value of k 2 {2, 3, 4, 5}, the

competitive ratio of FirstFit goes down with increasing �.

Looking at each value of k individually, it is clear that there is a particular range of job sizes

which results in the worst performance, but this range changes with �. For example, when k = 3 and

� = 2, the upper bound on competitive ratio of FirstFit is largest for the job size interval (0.3, 0.4],

whereas for the same k = 3 and � = 5, the upper bound on competitive ratio of FirstFit is largest
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for the job size interval (0.2, 0.3]. As � increases from 2 to 10, the gaps between performance of

FirstFit for various values of k increase, and as � increases even further, the gaps decrease, which

is consistent with what we observed in previous sections.

It is interesting to note that the worst performance overall (among these experiments) is obtained

by FirstFit with unlimited number of servers with job sizes in the interval (0.3, 0.4], where the upper

bound on competitive ratio is a bit over 1.3. This is worse than the performance of 1.24 achieved by

FirstFit with unlimited number of servers when job sizes are in the interval (0, 1]. We hypothesize

that this is because the schedule of FirstFit is quite sensitive to items of sizes close to 1/3, which

are essential to many worst-case theoretical constructions.

5.3 Summary and Discussion

In this chapter, we investigated the RSiC problem, focusing on minimizing the total cost of

rented servers when assigning jobs of equal duration in a k-server setting. We established tight

bounds on the worst-case competitive ratio of the FirstFit algorithm, proving a ratio of 2 for k = 2

and 3 for both k = 3 and k = 4, improving on the previous lower bound of approximately 2.518.

Our experimental results revealed that, after 500 jobs, the competitive ratio stabilizes below 1.32

across all values of k and arrival rates �. Initially, the ratio increases with � before decreasing as

� grows, trending toward 1. Moreover, job size plays a significant role, with sizes in the range

[0.3, 0.4] yielding the highest competitive ratio.

A natural next step in the theoretical part of this chapter would be to extend the analysis to larger

values of k. In the proof of k = 4, we had to show that the total duration of intervals where the

FirstFit algorithm uses 4 servers while the OPT uses only 1 server is small. However, trying to

extend this result to larger values of k, such as k � 5, is really challenging. For instance, when

k = 5, we would need to show that the total duration of intervals where FirstFit uses 4 servers and

OPT uses 1 server, plus twice the duration when FirstFit uses 5 servers and OPT uses 1 server, is

not much larger than the total duration where OPT uses at least two servers. This is really difficult

to show since we need to deal with many different cases, each corresponding to various job and

server configurations. As a result, proving these results for larger values of k remains an open
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problem for future research.
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Chapter 6

Instance Incomparability of Some RSiC

Algorithms

In the previous chapters, we analyzed the performance of algorithms using worst-case analysis.

While some algorithms have the same worst-case performance, their behavior on specific inputs

can vary significantly. In fact, even though their worst-case performances align, their results on

particular instances may differ. In this chapter1, we investigate this phenomenon for RSiC. The

setting discussed in this chapter is outlined in Table 6.1.

Job Duration Arrival Pattern # of Arrivals # of Dimensions # of Servers
Arbitrary Arbitrary Arbitrary 1 Unlimited

Table 6.1: A summary of the RSiC setting for the instance incomparability of algorithms.

6.1 Instance Dominance and Instance Incomparability

Johnson, in his Ph.D. thesis [41], introduced an alternative approach by directly comparing the

costs of solutions produced by two algorithms on the same input, without referencing the offline

optimal solution. He evaluated algorithms such as FirstFit, BestFit, Almost Worst Fit, and Next-K-

Fit. The Almost Worst Fit algorithm places a new item in the second emptiest open bin if possible.

If the item does not fit there, it attempts to place it in the emptiest bin, and as a last resort, it opens
1The results presented in this section are based on joint work with Dr. Yaqiao Li.
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a new bin. On the other hand, the Next-K-Fit algorithm modifies NextFit by keeping the last K � 2

bins open simultaneously, packing the item into the first bin where it fits.

Johnson demonstrated that while some of these algorithms have the same competitive ratio, their

costs can vary significantly on certain inputs. To address this, he proposed evaluating the lim sup

of the cost ratios between two such algorithms, considering families of inputs {�n} where the total

item size grows without bound. Based on this analysis, he provided specific examples illustrating

the following relationships:

lim sup
n!1

FirstFit(�n)
BestFit(�n)

= lim sup
n!1

Almost Worst Fit(�n)
BestFit(�n)

= lim sup
n!1

Next-K-Fit(�n)
BestFit(�n)

=
3

2
, for K � 2

and

lim sup
n!1

BestFit(�n)
FirstFit(�n)

= lim sup
n!1

BestFit(�n)
Next-K-Fit(�n)

= lim sup
n!1

BestFit(�n)
Almost Worst Fit(�n)

=
4

3
, for K � 2

Johnson conjectured that these values represent the maximum possible ratios between the re-

spective pairs of algorithms. Recently, Levin [49] proved that these ratios correspond to the worst-

case scenarios, and established this by proving matching upper bounds on the cost ratios of the

respective algorithms, validating Johnson’s conjecture. In this chapter, we aim to conduct a similar

comparison of algorithms for the 1-dimensional RSiC problem. The algorithms discussed include

NextFit, FirstFit, BestFit, LastFit, WorstFit, MoveToFront, as well as a new algorithm we propose,

named Greedy. The Greedy algorithm orders servers in decreasing order of their finishing times,

that is, the maximum of the finishing times of items currently in the server. It assigns the newly ar-

rived item to the first server in the order that has sufficient capacity. If no such server exists, Greedy

opens a new server and assign the item to it. A detailed analysis of this algorithm is presented in

Section 7.4. Before we begin the analysis, we introduce the following key definition:

Definition 6.1.1. For a minimization problem, algorithm A is said to be instance-dominate algo-

rithm B if:

8 instance � : cost(A,�)  cost(B,�)

If neither A instance dominates B nor B instance dominates A, we say that A and B are
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instance-incomparable.

6.2 Catalog of Instances

In this section, we present some examples and evaluate the performance of the algorithms on

these cases. These examples serve as essential components for proving the general Theorem 6.2.1,

which we will explore at the end of this chapter.

Instance A: Consider the input sequence � = {�1, · · · ,�2n}. Assume that all items arrive at time

0 in their indexed order. For all �i where i is odd, the duration is 1, and for all �i where i is even,

the duration is µ. The sizes are defined as follows: for every 1  i  2n:

s(�i) =
1

2
, if i is odd

s(�i) = ✏, if i is even

This instance is also mentioned in [57].

Choose any ✏ satisfying 0 < ✏  1/(4n) and let n be an odd number. A simple analysis shows

that: For FirstFit, a new server is opened for �1. When �2 arrives, FirstFit assigns it to the first

server. However, upon the arrival of �3, FirstFit needs to open a new server since there is not

enough space in the first server. When �4 arrives, FirstFit starts checking the servers in the order

they were opened and assigns �4 to the first available server that has enough capacity, which is the

first server. Following this pattern, FirstFit assigns all �i where i is even, to the first server and

places every two �i where i is odd into separate servers, as illustrated in Figure 6.1 part (a). The

total cost of FirstFit on this input will be (n� 1)/2+ µ, since all servers except the first one have a

duration of 1, and the first server has a duration of µ.

Similarly, BestFit will place all the even items into server 1, as it has the smallest available

space. Greedy will follow the same strategy because, after item 2 is packed, the additional cost of

placing the long-duration items becomes zero.

Now, let us examine the performance of NextFit on the same input. Recall that NextFit always

keeps only one server open at a time. It opens the first server to serve item �1. When �2 arrives,
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there is still enough space in the first server, so NextFit assigns it there. Upon the arrival of �3, the

first server no longer has enough capacity, so NextFit closes it, opens a second server, and assigns

�3 to it. Item �4 can also be assigned to this new server. This pattern continues for the rest of the

input, with NextFit assigning each pair of items to a new server. As a result, each server will incur

a cost of µ, and NextFit will open n servers in total—one for each pair. See Figure 6.1, part (b).

Therefore, the total cost of NextFit for this input will be nµ.

Now, let us consider how the other algorithms perform. Recall that MoveToFront, when assign-

ing an item to a server, moves that server to the front of the list of servers. Therefore, MoveToFront

assigns the first and second items to the first server. Upon the arrival of the third item, MoveToFront

opens a new server to accommodate it and brings it to the front of the list. Consequently, item �4

will be assigned to this new server. This pattern repeats for the rest of the input, with MoveToFront

assigning each pair of items to a new server. LastFit behaves similarly to MoveToFront, but with

one key difference: LastFit does not move servers to the front. Instead, it assigns items to the most

recently opened server. WorstFit assigns each item to the server with the most available space. So,

when �4 arrives, WorstFit will assign it to the second server, as it has more available space than the

first server. This pattern continues until the end of the input. Therefore, MoveToFront, LastFit, and

WorstFit all have the same total cost as NextFit.

In summary, for instance A, the costs for different algorithms are as follows:

FirstFit(A) = BestFit(A) = Greedy(A) = (n� 1)/2 + µ

while

MoveToFront(A) = NextFit(A) = LastFit(A) = WorstFit(A) = nµ

Instance B: This instance is constructed in three stages. Assume the input sequence � = {�1, · · · ,�2n+1}

is given. All items arrive at time 0, according to the order specified below.

In stage one, n items arrive, all have duration 1, and all have size 1� ✏. In the second stage, a single

item arrives, it has duration µ, and it has size 2✏. In the last stage, n items arrive, all have duration

µ, and all have size ✏. Choose any ✏ satisfying 0 < ✏ < 1/(n+ 2).
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Figure 6.1: Example A and the assignment of (a) FirstFit, BestFit and Greedy. (b) NextFit, MoveToFront, LastFit, and WorstFit.

Let us analyze how FirstFit behaves on this input. In the first stage, FirstFit opens n servers, each

with a duration of 1, to assign each item, as each item has a size of 1 � ✏. In the second stage,

FirstFit opens a new server because an item with a size of 2✏ cannot fit in any of the previous n

servers. In the third stage, FirstFit assigns each incoming item to the first available server that has

enough space, extending the duration of the first n servers to µ by assigning one job to each, See

Figure 6.2 part (a). Therefore, the total cost of FirstFit on this input is (n + 1)µ. BestFit behaves

similarly to FirstFit on this instance, assigning items in the third stage to the first n servers, as they

have less available space compare to the (n+ 1)th server.

Now, let us analyze the performance of the other algorithms on this example. First, consider

the Greedy algorithm. In the first stage, Greedy assigns each item of size 1 � ✏ to a new server,

resulting in n servers, each with a duration of 1. In the second stage, Greedy opens a new server for

the (n + 1)-th item, which has a size of 2✏ and a duration of µ. Since this server has the longest

finishing time among all the servers and still has enough remaining space, Greedy assigns all items

from the third stage to this server. See Figure 6.2, part (b). Consequently, the total cost of Greedy

for this input is n+ µ.
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Server n+ 1

1� ✏
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Figure 6.2: Instance B and the assignment of (a) FirstFit and BestFit. (b) Greedy, MoveToFront, LastFit, WorstFit, and NextFit.

The algorithms MoveToFront, NextFit, LastFit, and WorstFit exhibit the same assignment be-

havior. Since LastFit assigns the items from stage 3 to the (n + 1)-st server, which is the least

used server, it follows the same pattern. MoveToFront does similarly, as the (n+ 1)-st server is the

one at the front of the list. WorstFit also places the items in the (n + 1)-st server, since it has the

most available space among all the servers, with only an item of size 2✏ assigned to it. Finally, for

NextFit, the (n + 1)-st server is the only open server, as the rest of the servers have been closed.

Therefore, for instance B:

FirstFit(B) = BestFit(B) = (n+ 1)µ

while

MoveToFront(B) = Greedy(B) = NextFit(B) = LastFit(B) = WorstFit(B) = n+ µ

Instance C: In this example, we aim to compare the performance of algorithms FirstFit and BestFit
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in a specific scenario, that unfolds in two stages. An input sequence � = {�1, · · · ,�2n+1} is

provided, with all items arriving at time 0 in a specified order.

During the first stage, n+ 1 items �1, . . . ,�n,�n+1 arrive, each with a duration of 1. The sizes

are defined as follows: for 1  i  n, s(�i) = 1� 2
�(n+1�i), and s(�n+1) = 1/2 + ✏.

In the second stage, n items �n+2, . . . ,�2n+1 arrive, each with a duration of µ. The sizes are

given by s(�i) = 2
�(i+1)

+✏; for 1  i  n. Here, ✏ is chosen such that 0 < ✏  (n+1)
�1

·2
�(n+1).

Thus the total input is:

� = {1�
1

2n
, 1�

1

2n�1
, . . . , 1�

1

2
,
1

2
+ ✏,

1

22
+ ✏,

1

23
+ ✏, . . . ,

1

2n+1
+ ✏}

For this instance, both FirstFit and BestFit assign the first n+1 items to n+1 new servers during

the first stage. Upon the arrival of items in the second stage, FirstFit extends the first n servers to

duration µ by allocating each server an item with size
1

2i+1
+ ✏, starting form the server n to server

1. Thus, the total cost for FirstFit is nµ+ 1. The same assignment applies to Greedy as well.

In contrast, BestFit attempts to assign second stage items to servers with the highest current

load. Consequently, all second stage items can be accommodated in just one server which is the last

server, resulting in a cost of n+ µ for BestFit on this input instance. This same assignment strategy

also applies to LastFit, NextFit, and MTF.

WorstFit follows a similar approach to these algorithms, with one key difference: it assigns the

first item of the second stage to server n� 1 and then places the remaining items in the last server.

This results in a total cost of (n� 1) + 2µ.

In summary, for this input instance C, we have:

FirstFit(C) = Greedy(C) = nµ+ 1

while

BestFit(C) = LastFit(c) = NextFit(c) = MoveToFront(C) = n+ µ

and

WorstFit(C) = (n� 1) + 2µ
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To better understand this instance, let us consider a simple example.

Example 6.2.1. For n = 5, the input sequence � is constructed as follows. At the first stage, n+ 1

items arrive at time 0, and in the second stage, n items arrive, also at time 0. Thus, the sequence is

given by:

� = {
31

32
,
15

16
,
7

8
,
3

4
,
1

2
,
1

2
+ ✏,

1

4
+ ✏,

1

8
+ ✏,

1

16
+ ✏,

1

32
+ ✏,

1

64
+ ✏}

for some 0 < ✏  (n + 1)
�1

· 2
�(n+1). The first 6 items belong to the first stage with duration 1,

and the remaining items are part of the second stage with duration µ.

For this small example, let us examine how FirstFit handles the packing of items. Initially,

FirstFit opens 6 servers to accommodate the first 6 items in the first stage. When the first item in

the second stage arrives, which has a size of 1

4
+ ✏, the first server with enough capacity is server 5.

Thus, FirstFit packs this item into server 5. The item with size 1

8
+ ✏ is packed into server 4, as it

is the first available server with sufficient capacity for this item. For the items 1

16
+ ✏, 1

32
+ ✏, and

1

64
+ ✏, FirstFit assigns them to servers 3, 2, and 1, respectively. With these assignments, FirstFit

extends the duration of all servers except the last one to µ, resulting in a total cost of 5µ+ 1.

Now let us see how BestFit does the assignment for this example. BestFit opens 6 servers for

the items in the first stage, similar to FirstFit. However, at the arrival of the first item in the second

stage, an item with size 1

4
+ ✏, BestFit tries to pack it into the server with the highest load that has

enough capacity, which is the last server with a total load of 1

2
+ ✏. Thus, BestFit assigns the item

to server 6, and the load becomes 3

4
+ 2✏.

For the next item with size 1

8
+ ✏, there are three potential servers to accommodate it: servers 4,

5, and 6. Among these, server 6 has the highest load; therefore, BestFit packs this item into the last

server. This pattern repeats, and BestFit assigns all the items in the second stage into the last server,

resulting in a total cost of 5 + µ.

Instance D: Consider the input sequence � = {�1, · · · ,�2n}. Assume that all items arrive at time

0 in their indexed order. All �i where i is odd have a duration of µ, and all �i where i is even have

a duration of 1. The sizes are defined as follows: for every 1  i  2n,

s(�i) = 2✏ if i is odd
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s(�i) = 1� ✏ if i is even

where ✏ satisfies 0 < ✏ 
1

2n
.

A simple analysis shows that NextFit opens a new server for �1. When �2 arrives, NextFit has

to open a new server for it since there is not enough space in the first server, and then closes the first

server. This pattern repeats for the entire input, causing NextFit to open a new server for each item,

as NextFit keeps only one server open at a time, see Figure 6.3 part (a). The total cost of NextFit for

this input will be nµ+ n.

Now, let us evaluate how other AnyFit algorithms handle this input, focusing initially on the

behavior of MoveToFront for input D. MoveToFront opens a new server for �1 and another for �2,

as the first server lacks sufficient space. Upon the arrival of �3, MoveToFront places it into the first

server, where it fits, before opening a new server for �4. This pattern repeats: MoveToFront opens

a new server for each even-indexed item �i while assigning all odd-indexed items �i to the first

server, see Figure 6.3 part (b). This results in a total cost of n+ µ.

The same behavior applies to all other considered AnyFit algorithms, including FirstFit, BestFit,

LastFit, WorstFit, and Greedy. All odd-indexed items are packed into the first server, while a new

server must be opened for each even-indexed item, leading to a total cost of n+ µ.

In summary, for this input instance D, we have:

NextFit(D) = nµ+ n

while

FirstFit(D) = BestFit(D) = MoveToFront(D) = Greedy(D) = WorstFit(D) = LastFit(D) = n+µ
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Figure 6.3: Instance D and the assignment of (a) NextFit. (b) All AnyFit algorithms.

Instance E: The scenario unfolds in two stages. The input sequence � = {�1, . . . ,�2n} with all

items arriving at time 0 in a specified order. In the first stage, n items arrive. The first item �1 has a

size of 1/2 and a duration of 1. The next n� 1 items each have a size of 1� ✏ and also a duration

of 1. In the second stage, another n items arrive. The first item in this stage has a size of 2✏ and a

duration of 1, followed by n�1 items, each with a size of ✏ and a duration of µ. Suppose ✏ satisfies:

0 < ✏ 
1

2(n+ 1)
.

Let us see how LastFit performs on this input instance. During the first stage, LastFit opens n

servers for the first n items: the first server contains the item with size 1/2, while the remaining

servers each contain an item of size 1� ✏. In the second stage, for the first item (of size 2✏), LastFit

starts checking the servers from the most recently opened to the first to find a server with enough

space. The only server with enough space to accommodate 2✏ is the first server, so LastFit assigns

this item there. For the remaining n � 1 items (each of size ✏), LastFit places each one in one
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of the servers that already contain items of size 1 � ✏. This extends the duration of each of these

servers to µ, see Figure 6.4 part (a). Thus, the total cost of LastFit on this input will be nµ. On this

input, BestFit performs the same assignment. For the first-stage items, there is no alternative for any

algorithm, as LastFit’s assignment is the only viable option. In the second stage, BestFit assigns the

first item (size 2✏) to the first server, as it is the only server capable of accommodating it. For the

remaining items in the second stage, BestFit assigns each to one of the servers containing an item

of size 1� ✏, since these are the most loaded servers with exactly ✏ of available space. Thus, BestFit

produces the same assignment as LastFit, resulting in a total cost of nµ.

On the other hand, all other AnyFit algorithms among considered ones including MoveToFront,

WorstFit, and Greedy perform on this input as following. Focus initially on the MoveToFront algo-

rithm. In the first stage, MoveToFront behaves exactly like LastFit, opening n servers to assign the

first n items. In the second stage, MoveToFront assigns the item of size 2✏ to the first server because

it is the only server that can accommodate this item. For the remaining items, since the first server

is at the front of the list according to the MoveToFront algorithm, all the items will be assigned to

this server by MoveToFront, see Figure 6.4 part (b). As a result, the total cost for MoveToFront is

(n � 1) + µ. The FirstFit and WorstFit algorithms also produce the same assignment. In the first

stage, they do not have any option other than assigning items as LastFit does, opening n servers. In

the second stage, FirstFit assigns the first item (size 2✏) to the first server, as it has sufficient space

and is the first server in the list. The remaining items are also assigned to this server for the same

reason. Similarly, WorstFit assigns the first item of the second stage to the first server because it

has the most available space among all servers. The rest of the items in the second stage follow the

same assignment pattern.

The Greedy algorithm behaves in a similar manner. When the first item of the second stage

arrives, the first server still has enough space to accommodate it, so Greedy assigns it there. For the

remaining items in this stage, the first server becomes the one with the longest duration, prompting

Greedy to assign all these items to it as well. As a result, all these algorithms (MoveToFront, FirstFit,

WorstFit, and Greedy) yield a total cost of (n� 1) + µ.

The NextFit algorithm exhibits a slightly different behavior on this instance. After assigning the

first item of size 1/2, NextFit closes the first server and opens a new one to place the second item,
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as the first server lacks sufficient capacity. Consequently, for the first n items in the initial stage,

NextFit opens n servers. In the second stage, NextFit places all items into a single new server with

a duration of µ, resulting in a total cost of n+ µ.

Therefore, for instance E:

LastFit(E) = BestFit(E) = nµ

while

FirstFit(E) = MoveToFront(E) = WorstFit(E) = Greedy(E) = (n� 1) + µ

and

NextFit(E) = n+ µ

0 1

(a)

0 1 µ
T ime T ime

(b)

1� ✏
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✏

Server 1

Server 2

Server 3
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Figure 6.4: Instance E and the assignment of (a) LastFit and BestFit. (b) FirstFit, MoveToFront, WorstFit, Greedy. The assignment of
NextFit is similar to part(b) with one extra server for all the items in the second stage.

Instance F: Consider the input sequence � = {�1, · · · ,�3n�1}, which is constructed in two stages,

with all items arriving at time 0. In the first stage, n items arrive, each with a duration of 1. Most

items have a size of 1/2 + ✏, except for the last item, which has a size of 2/3. In the second stage,
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�n+1,�n+2, · · · ,�3n�1 items arrive. Among these, the first n� 1 items have a duration of 1 and a

size of 1/2� 2✏, while the last n items each have a duration of µ and a size of ✏. Suppose ✏ satisfies

0 < ✏ 
1

3n
.

In this scenario, LastFit opens a new server for each item in the first stage, resulting in a total of

n servers. When items arrive in the second stage, LastFit checks the servers from the most recently

opened to the first, looking for available space. For item �n+1, LastFit finds that the second-to-last

server (server n� 1) has enough space and assigns the item there. The next item, �n+2, is assigned

to server n� 2. This pattern continues, till all the first n� 1 items in the second stage, packed with

items with size 1/2 + ✏ in the first n � 1 servers. Then LastFit assigns all the last n items each

with size ✏ into the last server, see Figure 6.5 part (a). This results in a total cost of n � 1 + µ for

LastFit. The same assignment is also applies to WorstFit, since at the arrival of the first n items in

the second stage, the first n� 1 servers are with the most available space compare to the last server.

All the other considered AnyFit algorithms, including MTF, FirstFit, BestFit, and Greedy, behave

differently on this instance. For example, consider MTF. The MoveToFront algorithm behaves the

same as LastFit during the first stage and also for the first n items in the second stage. However,

since MoveToFront brings the server where an item is placed to the front of its list of servers, the

arrival of the last n items in the second stage (each with a size of ✏) causes them to be packed into

the first n�1 servers. As a result, the duration of these servers is extended to µ, while the last server

remains unaffected. This leads to a total cost of (n� 1)µ+ 1, as shown in Figure 6.5, part (b). The

same assignment also works for FirstFit, BestFit, and Greedy.

The NextFit algorithm demonstrates slightly different behavior in this instance. During the first

stage, NextFit also opens n servers to accommodate the items from this stage. However, since

NextFit keeps only one server open at a time, it must close server n and open a new one upon the

arrival of the first item in the second stage, which has a size of 1/2 � 2✏. Consequently, NextFit

needs to open n/2 servers for the first n items in this stage. Additionally, for the final n items,

each with a size of ✏ and duration µ, it must open one more server. This results in a total cost of

n+ n/2 + µ.
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Therefore, for instance F :

LastFit(F ) = WorstFit(F ) = n� 1 + µ

while

MoveToFront(F ) = FirstFit(F ) = BestFit(F ) = Greedy(F ) = nµ

and

NextFit(F ) = 3n/2 + µ

0 1
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0 1 µ
T ime T ime
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Figure 6.5: Instance F and the assignment of (a) LastFit and WorstFit. (b) MoveToFront, FirstFit, BestFit, and Greedy.

The NextFit algorithm exhibits a slightly different behavior on this instance. In the first stage

NextFit also opens m servers to accommodate the items form the first stage. However, since NextFit

only keeps one server open at each time, at the arrival of the first item in the second stage which is

the item with size 1/2 � 2✏, NextFit has to close the server n and opens a new one. Thus, NextFit

needs to open n/2 servers for the first n items in this stage, and for the last n items with size ✏ and

duration µ it needs to open another server, which leads to a cost of n+ n/2 + µ in total.

of size 1/2, NextFit closes the first server and opens a new one to place the second item, as the
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first server lacks sufficient capacity. Consequently, for the first n items in the initial stage, NextFit

opens n servers. In the second stage, NextFit places all items into a single new server with a duration

of µ, resulting in a total cost of n+ µ.

Instance G: This instance is constructed in three stages. Consider the input sequence:

� = {�1, . . . ,�2n+1}

All items arrive at time 0, according to the following order. In stage 1, n� 1 items of size 1� ✏ all

with duration 1 arrive. In stage two, three items �n, �n+1 and �n+2 arrive all have duration 1, and

sizes are the following: s(�n) = 1/2, s(�n+1) = 1� ✏, s(�n+2) = 1/2. In stage three, n� 1 items

of size ✏ all have duration µ arrive where ✏ satisfies 0 < ✏  (2n)�1.

NextFit on this input instance performs as follows: In the first stage, it opens n�1 servers, each

with a duration of 1, for each item, and close each server before the next server is opened. For each

item in the second stage, NextFit has to open a new server. All the items from the third stage could

be fit in the last server, extending its duration to µ, see Figure 6.6 part (a). Thus, the cost of NextFit

on this instance is n+ 1 + µ.

All the AnyFit algorithms among considered ones do the same assignment for this instance. Let

us explain this assignment by seeing how MoveToFront does the assignment. MoveToFront acts

similarly to NextFit in the first stage. However, in the second stage, MoveToFront places s(�n) and

s(�n+2) together in one server and item s(�n+1) in a separate server. Therefore, upon the arrival of

items in the third stage, MoveToFront has to extend the duration of all the previous servers, except

for one, to µ by assigning one item of size ✏ to each of them, see Figure 6.6 part (b). This results

in a cost of (n � 1)µ + 2. The same assignment applies to all AnyFit algorithms. Therefore, for

instance G:

NextFit(G) = n+ 1 + µ

while

FirstFit(G) = BestFit(G) = MoveToFront(G) = LastFit(G) = WorstFit(G) = Greedy(G) = (n�1)µ+2
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Figure 6.6: Instance G and the assignment of (a) NextFit. (b) All AnyFit algorithms.

Instance H: Consider the following instance, which demonstrates that while all other algorithms

achieve a bounded competitive ratio, WorstFit exhibits an unbounded competitive ratio. This in-

stance is constructed with k distinct phases. In the first phase, there are two distinct durations, while

in subsequent phases, there is only one duration. Each phase has a single arrival time.

In the first phase, a sequence of items � = {�1,�2, . . . ,�2n} arrives at time 0 in the specified

order. Each odd-indexed item, �2i�1, has a duration of 1 and a size of 1/2. Each even-indexed

item, �2i, has a duration of µ and a size ✏2i, where ✏2i (for i 2 N) are in increasing order and satisfy

✏2i < 1/2n. At time 1, all items of size 1/2 depart.

In the second phase, at time µ�� (for a small �), a new sequence of items � = {�2n+1,�2n+2, · · · ,�3n}

arrives. These items all have the same duration, µ, and sizes ✏i satisfying two conditions:

(1) ✏2n+i (for i = 1, 2, . . . , n) are in increasing order.

(2) ✏2n < ✏2n+1, ensuring that the smallest items in this phase are larger than the largest items

from the previous phase.
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At time µ, the �2i items from the first phase depart.

In the third phase, at time 2µ��, another sequence of items � = �3n+1,�3n+2, . . . ,�4n arrives.

These items have the same duration, µ, and sizes ✏i satisfying the similar conditions as the previous

phase:

(1) ✏3n+i (for i = 1, 2, . . . , n) are in increasing order.

(2) ✏3n < ✏4n+1.

At time 2µ, the �2n+i items from the second phase depart. This process repeats for k phases.

Analyzing this setup reveals the inefficiency of WorstFit. Now, let us examine the details of how

WorstFit assigns items in each phase.

In phase 1, WorstFit places the first two items into the first server. When the third item arrives,

WorstFit must open a new server, as the third item cannot fit into the first server. Therefore, when the

fourth item arrives, the second server has more available space than the first, so WorstFit assigns the

new item to the second server. This pattern continues, with WorstFit using n servers to accommodate

the items in phase 1, each with a duration of µ. At time 1, all the odd-indexed items from phase 1

depart.

Items from phase 2 arrive one by one at time µ � �, each with a size ✏2i in increasing order.

The first item is placed in the first server, as it has the most available space. After the first item is

assigned, the first server no longer has the most available space, so WorstFit assigns the second item

to the second server. This pattern repeats, and all items in phase 2 are assigned to servers, extending

their duration by µ � �. As a result, the duration of each server becomes 2µ � �. At time µ, all

even-indexed items from phase 1 depart the system, leaving each server occupied by one item from

phase 2.

At time 2µ � 2�, items from phase 3 arrive. Similar to phase 2, these items are assigned

to servers, extending the duration of each server by µ � �. This pattern continues, and WorstFit

extends the duration of each server by approximately µ in each phase. Consequently, WorstFit uses

n servers per phase, resulting in a total server time of knµ across k phases, see Figure 6.7.
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Figure 6.7: Instance H and the assignment of WorstFit.

In contrast, the other considered AnyFit algorithms, as well as NextFit, effectively pack items

into fewer servers. For example, consider BestFit. During the first phase, all �2i items fit into the

first server because their cumulative size does not exceed 1, given that each ✏2i < 1/2n. Similarly,

in each subsequent phase, all newly added items also fit into the same server. As a result, the total

server time for BestFit is approximately (n � 1)/2 + kµ, as illustrated in Figure 6.8. This same

assignment strategy applies to both FirstFit and Greedy.

On the other hand, LastFit behaves like WorstFit in the first stage. However, in the second stage,

it places the remaining items into the last server, n, leading to a total cost of (n � 1) + kµ. This

same assignment pattern is also observed with MTF and NextFit.

Therefore, for instance H:

WorstFit(H) = knµ
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while

FirstFit(H) = BestFit(H) = Greedy(H) = (n� 1)/2 + kµ

and

MoveToFront(H) = LastFit(H) = NextFit(H) = (n� 1) + kµ

As n grows arbitrarily large, the competitive ratio of WorstFit compared to other algorithms

approaches infinity, demonstrating the unbounded nature of WorstFit’s performance on this instance.
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✏3n ✏(k+1)n
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1/2

1/2

1/2
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Figure 6.8: Instance H and the assignment of BestFit, FirstFit, and Greedy. Note that LastFit, MTF, and NextFit follow a similar
structure; the key difference is that they keep the last server open to accommodate jobs from stage 2 and beyond.

Instance I: This instance demonstrates that BestFit has an unbounded competitive ratio. The in-

stance unfolds over multiple stages as follows:

At time 0, a sequence of 2n items � = {�1,�2, . . . ,�2n} arrives in a specific order, odd-indexed

items �2i�1 each have a duration of 1 and a size of 1 � ✏i. And all even-indexed items �2i each

have:

• Duration between µ� � and µ, for small �.
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• Sizes ✏i satisfying ✏2i > ✏2(i+1) > . . . > ✏2n (i.e., sizes decrease with increasing index).

At time 1, all odd-indexed items depart since they have duration 1. In the second stage, within the

time interval [µ � �, µ], a new sequence of items � = {�2n+1,�2n+2, . . . ,�3n} arrives one after

another. These items have the following properties:

• Duration between µ� � and µ.

• Sizes ✏i < 1/n2 that satisfies:

(1) ✏2n > ✏2n+1 > ✏2n+2 > . . . > ✏3n.

(2) ✏2n�2 > ✏2n +
P

3n

i=2n+1
✏i.

During this stage, each new item ✏2n+i is placed in bin Bi. The previous item in Bi (which arrived

before time µ� �) departs before the next item in the sequence arrives.

In the time interval [2µ� �, 2µ], a third sequence � = {�3n+1,�3n+2, . . . ,�4n} arrives. These

items have durations between µ � � and µ, and their sizes ✏i adhere to the following condition:

✏3n > ✏3n+1 > ✏3n+2 > . . . > ✏4n. Similar to the previous stage, after each item ✏3i is placed, the

old item in bin Bi (the item that arrived before time 2µ � �) departs before the next item arrives.

This pattern repeats for k stages.

This example highlights the inefficiency of the BestFit algorithm. In the first phase, BestFit

opens n servers and assigns pairs of items to each server. As a result, at time 1, when the odd-

indexed items depart, the servers only contain smaller items. In the next phase, when the first

item arrives, BestFit assigns it to the server with the highest load (which is the first server). The

oldest item in that server then departs, causing this server to no longer have the highest load. When

the second item arrives, BestFit places it in the server with the next highest load, which is now the

second server. The oldest item in this server then departs, and this server no longer holds the highest

load. This process continues for each incoming item, with each being assigned to the server with the

current highest load, and the oldest item in that server departing. As a result, all n servers remain

open throughout all k phases, see Figure 6.9. Therefore, the total cost of BestFit is knµ.
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Figure 6.9: Instance I and the assignment of BestFit.

In contrast, all other considered algorithms place all items into a single server during the second

and subsequent phases, resulting in a total cost of (n�1)µ+kµ. Notably, except for FirstFit, which

extends the first server, all other algorithms extend the last server, see Figure 6.10. However, the

total cost remains the same.
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Figure 6.10: Instance I and the assignment of FirstFit. The Greedy, LastFit, WorstFit, MoveToFront, and NextFit algorithms also produce
the same assignment. However, these algorithms differ by extending the last server rather than the first server during the assignment
process.

Therefore, for instance I:

BestFit(I) = knµ

while

FirstFit(I) = BestFit(I) = Greedy(I) = MoveToFront(I) = LastFit(I) = NextFit(I) = (n�1)µ+kµ

As a result, as n grows larger, the ratio of BestFit compares to other algorithms approaches

infinity, showing the unbounded nature of BestFit’s assignment on this instance.

Instance J: This example demonstrates that, in this specific instance, Greedy is less efficient than

BestFit. The instance is structured in three stages. In the first stage, which begins at time 0, n items

of size 1� ✏, each with a duration of 1, arrive sequentially, followed by a single item of size 2✏ with

a duration of µ. In the second stage, also at 0, another n items of size ✏, each with a duration of

1, arrive. Finally, in the third stage, occurring at time 1 � �, for a small �, n items of size ✏ with a

duration of µ� 1 arrive. Assume that ✏ = 1/(n+ 2).
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In this scenario, Greedy opens n+1 servers to accommodate the items from the first stage. Each

of the first n servers holds one item of size 1 � ✏, while the last server contains the single item of

size 2✏. When the second stage items arrive, Greedy assigns all n items to the last server, which

already has a duration of µ, ensuring no additional cost is incurred. However, when the third stage

items arrive, the last server lacks sufficient capacity. As a result, Greedy extends the duration of the

first n servers to µ by assigning one item of size ✏ to each, leading to a total cost of (n + 1)µ, see

Figure 6.11, part (a).

The same outcome applies to LastFit, WorstFit, and MoveToFront because, like Greedy, these

algorithms assign the second-stage items to the last server and extend the duration of the first n

servers to accommodate the third-stage items. On the other hand, NextFit behaves similarly for the

first and second stages but differs in its handling of the third stage. Since NextFit keeps only one

server open at a time, it closes server n+ 1 and opens a new server to accommodate the third-stage

items. This results in a total cost of n+ 1 + µ.

BestFit behaves similarly to Greedy in the first stage, opening n+1 servers to accommodate the

items. However, in the second stage, BestFit assigns one item of size ✏ to each of the first n servers,

as they all have a maximum load of 1�✏. In the third stage, BestFit assigns all items arriving at time

1� � to the last server, resulting in a total cost of n+ µ. This outcome is illustrated in Figure 6.11,

part (b).

The same assignment applies to FirstFit because FirstFit always prioritizes placing new items

in the first server with available space in the order of their opening. Consequently, all second-stage

items are assigned to the first n servers, and all third-stage items are packed into the last server by

FirstFit.

Therefore, for instance J :

Greedy(J) = LastFit(J) = WorstFit(J) = MoveToFront(J) = (n+ 1)µ

and

NextFit(J) = n+ 1 + µ
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while

BestFit(J) = FirstFit(J) = n+ µ
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Figure 6.11: Instance J and the assignment of (a) Greedy, LastFit, WorstFit, MoveToFront. (b) BestFit and FirstFit.

Instance K: This instance is constructed in two stages. In the first stage, all items arrive at time 0

in a specified order. The first n� 1 items have a size of 1� ✏ and a duration of 1 + �, where � > 0

is a small positive value. These are followed by a single item with a size of 2✏ and a duration of

1. In the second stage, occurring at time 1, n items of size ✏, each with a duration of µ � 1, arrive.

Assume that ✏ = 1/(n+ 2).

Greedy handles this instance as follows. In the first stage, it opens n servers to accommodate the

n items. Each of the first n�1 servers contains one item of size 1�✏ with a duration of 1+�, while

the last server holds the item of size 2✏ with a duration of 1. In the second stage, Greedy assigns each

item of size ✏ to one of the already-opened servers, placing one item per server. This assignment

extends the duration of all n servers to µ, as illustrated in Figure 6.12, part (a). Consequently, the

total cost of Greedy is nµ.

This same assignment applies to FirstFit and BestFit. FirstFit always places new items in the

first server with available space, following the order in which the servers were opened, while BestFit

assigns items to the server with the highest current load. Both strategies result in the same final
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configuration as Greedy.

MoveToFront behaves identically to Greedy during the first stage, opening n servers and assign-

ing n� 1 items of size 1� ✏ with a duration of 1 + � to the first n� 1 servers, and the item of size

2✏ with a duration of 1 to the last server. However, in the second stage, MoveToFront assigns all n

items of size ✏ to the last server, as it is the first server in the list due to the ”move-to-front” strategy.

This results in extending the duration of the last server to µ while leaving the other n � 1 servers

unchanged. Consequently, the total cost for MoveToFront is (n� 1) + µ, as shown in Figure 6.12,

part (b).

The same assignment applies to NextFit, LastFit, and WorstFit, as these algorithms also priori-

tize assigning the second-stage items to the last server, leading to the same total cost. Therefore, for

instance K:

Greedy(K) = FirstFit(K) = BestFit(K) = nµ

while

MoveToFront(K) = LastFit(K) = NextFit(K) = WorstFit(K) = (n� 1) + µ

0 1

(a)

0 1 µ
T ime T ime

(b)

1� ✏

1� ✏

Server 1

Server 2

Server n� 1

Server n

µ

1� ✏

2✏

✏

✏

✏

1� ✏

1� ✏

1 + 2�

Server 1

Server 2

Server n� 1

Server n

1� ✏

2✏

1 + 2�

✏✏

✏

✏

Figure 6.12: Instance K and the assignment of (a) Greedy, FirstFit, and BestFit. (b) MoveToFront, NextFit, LastFit, and WorstFit.
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Instance L: This instance is constructed in two stages. In the first stage, all items arrive at time 0

in a specified order. The first item has a size of 2✏ and a duration of 1, followed by n � 1 items,

each of size 1 � ✏ and duration 1 + �, where � > 0 is a small positive value. In the second stage,

occurring at 1, n items of size ✏, each with a duration of µ� 1, arrive.

On this input instance, Greedy handles the first stage by opening n servers for the n items. Each

server accommodates one item, resulting in n�1 servers holding items of size 1� ✏ with a duration

of 1 + �, and the first server holding the item of size 2✏ with a duration of 1.

In the second stage, Greedy assigns the items of size ✏ to the servers with the latest finishing

times. It begins by assigning the items to servers 2 through n, which are already at a duration of

1 + �, and then assigns the final item to the first server. This process extends the duration of all

servers to approximately µ, as illustrated in Figure 6.13, part (a). Consequently, the total cost of

Greedy is nµ.

This same assignment applies to LastFit, MoveToFront, and BestFit. Since LastFit assigns items

to the most recently opened server. Therefore, it distributes the second-stage items across all n

servers, extending the duration of each server to µ. BestFit assigns items to the server with the

highest current load. For the second-stage items, BestFit first fills the last n � 1 servers with items

of size 1� ✏, and then assigns the final item to the first server, which still has available space. And

MoveToFront behaves similarly by reordering servers whenever it packs one items into it, leading

to the same outcome as Greedy.

FirstFit handles this instance in a manner similar to Greedy during the first stage, opening n

servers to accommodate the items. Each server holds one item, with the first n�1 servers containing

items of size 1� ✏ and duration 1+ �, and the last server holding the item of size 2✏ with a duration

of 1.

In the second stage, however, FirstFit assigns all items of size ✏ to the first server, as it has

sufficient space to accommodate all these items. This assignment extends the duration of the first

server to µ while leaving the remaining n � 1 servers unchanged. As a result, the total cost of

FirstFit is (n � 1) + µ, as shown in Figure 6.13, part (b). WorstFit performs similarly because it

prioritizes assigning items to the server with the most available free space. In this case, the first

server has the most available capacity, leading to the same outcome as FirstFit.
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NextFit also behaves similarly to FirstFit and WorstFit, with one key difference: since NextFit

keeps only one server open at any time, it assigns the first item of size ✏ from the second stage to the

last server, extending its duration to µ. For the remaining items, NextFit opens a new server with a

duration of µ� 1. This results in a total cost of approximately n+ µ.

Therefore, for instance L:

Greedy(L) = LastFit(L) = MoveToFront(L) = BestFit(L) = nµ

while

FirstFit(L) = WorstFit(L) = n� 1 + µ

and

NextFit(L) = n+ µ

0 1

(a)

0 1 µ
T ime T ime

(b)

1� ✏

1� ✏

Server 1

Server 2

Server 3

Server n

µ

1� ✏

2✏
✏

✏

1� ✏

1� ✏

1� ✏

✏

✏

1 + �

Server 1

Server 2

Server 3

Server n

2✏ ✏✏

✏

1 + �

Figure 6.13: Instance L and the assignment of (a) Greedy, LastFit, MoveToFront, and BestFit. (b) FirstFit, and WorstFit.

Table 6.2 provides a breakdown of the distinct sizes, arrival times, and durations for each in-

stance, highlighting the complexity of each example for comparison.
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Instance # of Distinct Sizes # of Distinct Arrival Times # of Distinct Duration

A 2 1 2

B 3 1 2

C ⇥(n) 1 2

D 2 1 2

E 4 1 2

F 4 1 2

G 5 1 2

H ⇥(n) ⇥(n) 2

I ⇥(n) ⇥(n) 2

J 3 2 3

K 3 2 3

L 3 2 3

Table 6.2: Summary of instance characteristics including number of sizes, distinct arrival times, and duration counts.

In Table 6.3, we summarize the results. Let A and B denote two algorithms. Let � denote one

instance. Observe that, if we construct an instance � for which A(�)/B(�) � ⇢, this automatically

implies that ⇢ is also a lower bound for algorithm A because A(�) � ⇢ · B(�) � ⇢ · OPT (�).

Hence, every number in each row is a lower bound of the corresponding row algorithm. Of course,

all these lower bounds have been established in existing works, except for LastFit. On the other

hand, if algorithm ALG has an upper bound ⇢, then A(�)/B(�)  ⇢ holds for every instance �

because A(�)  ⇢ ·OPT(�)  ⇢ · B(�). Hence, all ratios of separation we showed in Table 6.3 are

tight up to the constant in front of µ. To clarify this further, consider two algorithms, FirstFit and

LastFit. As discussed, for a given example B, we have FirstFit(B) � µ · LastFit(B). Additionally,

we know that for all � we have FirstFit(�)  (µ+ 3) ·OPT(�)  (µ+ 3) · LastFit(�). Thus, we

can conclude that FirstFit(B) = ⇥(µ) · LastFit(B).

FirstFit MoveToFront NextFit BestFit LastFit WorstFit Greedy

FirstFit 1 B, µ B, µ C, µ B, µ B, µ B, µ

MoveToFront A, 2µ 1 G, µ A, 2µ F, µ F, µ A, 2µ

NextFit A, 2µ D, µ 1 A, 2µ D, µ D, µ A, 2µ

BestFit H,1 H,1 H,1 1 H,1 I,1 H,1

LastFit A, 2µ E, µ E, µ A, 2µ 1 E, µ A, 2µ

WorstFit I,1 H,1 H,1 H,1 H,1 1 H,1

Greedy L, µ K, µ L, µ J, µ K, µ L, µ 1

Table 6.3: Theoretical comparison of algorithms. (A, k) in the table entry (i, j) indicate that algorithm j is better than algorithm i on
instance A by a factor k.
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Theorem 6.2.1. Consider set C = {NextFit,FirstFit,BestFit, LastFit,WorstFit,MoveToFront,Greedy}

of algorithms for RSiC. For every algorithm A 2 C, A is instance-incomparable with any algorithm

B 2 C � {A}.

Proof. The proof is provided through instances A to L above, which demonstrate that within set C,

there is no algorithm that consistently outperforms all other algorithms.

6.3 Summary and Discussion

In this chapter, we investigated the instance dominance concept for a set of algorithms for the

RSiC problem. Our analysis showed that none of the algorithms among the considered set achieve

true instance dominance across all possible input instances. Through a series of examples and

detailed comparisons, we highlighted the restriction in each algorithm. Additionally, our set of

instances can serve as a guide for the development of future algorithms.

The findings raise an important question about the feasibility of achieving instance dominance

for the RSiC problem. While it is clear that no algorithm we discussed meets this ideal, we must

consider whether it is possible to construct an algorithm that is truly instance-dominant, or whether

such a level of performance is unattainable given the inherent complexity of the problem.
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Chapter 7

The Case of Multi-Parameter Jobs

In the previous chapters, we examined the RSiC problem in a one-dimensional setting, where

each job requires only a single resource, such as a specific amount of CPU. However, in real-world

scenarios, jobs typically demand multiple resources, including CPU, memory, and I/O bandwidth.

This setting is referred to as the d-dimensional setting. In this chapter1, we extend our analysis

to the RSiC problem within this d-dimensional framework. The scenario we focus on is outlined

in Table 7.1. We first establish an upper bound for this version of the problem and then prove

a lower bound for the case of d = 1 in the randomized setting. Additionally, we introduce a

new clairvoyant algorithm for the d-dimensional RSiC problem and demonstrate its upper bound.

Finally, we present the results of an experimental evaluation in an average-case scenario, where

nearly all existing algorithms for RSiC are assessed using randomly generated synthetic data.

Job Duration Arrival Pattern # of Arrivals # of Dimensions # of Servers
Arbitrary Arbitrary Arbitrary d Unlimited

Table 7.1: A summary of the RSiC setting for multi-parameter jobs.

7.1 Preliminaries

Before discussing the results for the problem in this setting, we need to review the following

simple properties of the L1 norm of a vector v 2 Rd

�0
denoted by kvk1 and that equals maxj2[d] vj .

1The results presented in this section are based on joint work with Dr. Yaqiao Li.
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We shall make frequent use of the following classical inequalities:

Proposition 7.1.1. For any set of vectors v1, v2, · · · , vn 2 Rd

�0
, we have the following:

�����

nX

i=1

vi

�����
1



nX

i=1

kvik1  d ·

�����

nX

i=1

vi

�����
1

7.2 A ⇥(d
p
log µ) Algorithm via a Direct-Sum Property of RSiC

In this section we give a O(d
p
logµ) upper bound for d-dimensional RSiC by showing a direct

sum property of the problem. This is provably better in the worst case than the previously proposed

algorithms for d-dimensional RSiC [57], which were shown to have a lower bound of ⌦(dµ) on

their competitive ratio.

Given an arbitrary algorithm ALG for 1-dimensional RSiC, we define an algorithm, call it

ALG
�d, that works for d-dimensional RSiC, as follows. Let � be an input instance for the d-

dimensional problem. We partition � as follows: � = �(1)
[ · · · [ �(d), where �(j) is the subset

of jobs r for which ks(r)k1 is achieved at the j-th dimension. When ks(r)k1 is achieved in more

than one dimension, we break the tie arbitrarily. It is easy to see that this partitioning can be done

online.

The algorithm ALG
�d is defined as follows: on the arrival of a job r, decide online a unique

dimension j in which its size is maximum, and assign r 2 �(j), then, apply ALG (for 1-dimensional

RSiC) to process �(j), pretending that the instance is 1-dimensional by only looking at the size at

the j-th coordinate, and ignoring the sizes of other dimensions, and assigning to servers that only

contain jobs in �(j).

Theorem 7.2.1. Let ALG be an arbitrary deterministic algorithm for 1-dimensional RSiC. Then,

ALG
�d works correctly for any d-dimensional RSiC, and ⇢(ALG�d

) = d ·⇢(ALG). Moreover, the

guarantee on the competitive ratio holds for both strict and asymptotic competitive ratios.

Proof. Firstly, we show that the algorithm ALG
�d does not violate the size constraint, i.e., the total

size of all jobs in every server does not exceed 1
d. To see this, consider an arbitrary job r 2 � and

suppose it is put into a bin B by ALG
�d. By the definition of ALG�d, we know before r is put
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into B, either server B is empty (i.e., has not been created yet) in which case after r is assigned to

server B the size constraint is trivially respected, or server B is nonempty. In the latter case, it only

contains jobs in �(j). In this case, we have

ks(r) + s(B, t)k1 = s(r)j + s(B, t)j  1,

where the equality follows from the fact that every job in server B is in �(j) and also r 2 �(j). The

inequality follows by the fact that we apply algorithm ALG on r 2 �(j).

Next, we show ⇢(ALG�d
)  d · ⇢(ALG). By an abuse of notation, let ALG(�(j)

) denote the

cost of ALG�d
(�) on the subset of inputs �(j). Since �(j)

✓ �, one has OPT(�(j)
)  OPT(�)

for every j. Let OPT
0
(�(j)

) denote the cost of the optimal solution that processes �(j) by only

focusing on the size of the j-th dimension. Then, for every ⇢ > ⇢(ALG) there exists a c > 0 such

that ALG(�(j)
)  ⇢ ·OPT

0
(�(j)

)+c for every j. Observe that we have OPT
0
(�(j)

) = OPT(�(j)
).

This is because every job in �(j) satisfies that the size at the j-th dimension is the largest. With these,

and by the definition of ALG�d, we have

ALG
�d

(�) =
X

j2[d]

ALG(�(j)
)



X

j2[d]

⇣
⇢ ·OPT

0
(�(j)

) + c
⌘

=

X

j2[d]

⇣
⇢ ·OPT(�(j)

) + c
⌘



X

j2[d]

(⇢ ·OPT(�) + c) = d · ⇢ ·OPT(�) + cd.

Since cd is a constant independent of input, and this inequality holds for all ⇢ > ⇢(ALG), it

follows that ⇢(ALG�d
)  d⇢(ALG). Moreover, if c = 0 then cd = 0, so the competitive ratio

guarantee preserves strictness.

Lastly, we show ⇢(ALG�d
) � d · ⇢(ALG). Let H be an arbitrary 1-dimensional instance, from

which we construct a d-dimensional instance � as follows. For every job h = (a(h), f(h), s(h)) 2

H , create d jobs in � that have the same arrival and finishing time as h, and the size vectors are the
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d column vectors of the matrix s(h) · Id where Id is the d⇥ d identity matrix. Clearly, every �(j) is

simply a copy of H in dimension j, while having 0’s in all other dimensions. Hence, ALG�d
(�) =

d · ALG(H). Furthermore, observe that OPT(H) = OPT(�), where here by an abuse of notation

we use OPT(H) to denote the cost of the optimal algorithm for the 1-dimensional instance H , and

OPT(�) to denote the cost of the optimal algorithm for the d-dimensional instance �. Hence,

⇢(ALG�d
) �

ALG
�d

(�)

OPT(�)
=

d ·ALG(H)

OPT(�)
= d ·

ALG(H)

OPT(H)
.

Because H is arbitrary, the desired lower bound follows.

We note that Theorem 7.2.1 is rather general – it can apply to strict, as well as asymptotic

competitive ratio guarantees, and it can be applied to clairvoyant and non-clairvoyant algorithms

for 1-d. For example, applying Theorem 7.2.1 to Departure Strategy and Duration Strategy algo-

rithms2 yields ⇥(d
p
µ) and ⇥(d logµ/ log logµ) competitive algorithms in dimension d, respec-

tively. The theoretical state-of-the-art clairvoyant algorithm in dimension 1 is the Hybrid Algorithm,

Hybrid Algorithm, introduced in [1] and shown to have a competitive ratio ⇥(
p
logµ). Applying

Theorem 7.2.1 to Hybrid Algorithm gives us the following.

Corollary 7.2.2. The algorithm Hybrid Algorithm�d for d-dimensional clairvoyant RSiC has a

competitive ratio ⇥(d
p
logµ).

7.3 Lower Bound for Randomized Algorithms for d = 1

Since d-dimensional RSiC generalizes vector bin packing (by having all items arrive at time 0

and have the same duration 1), the lower bound of ⌦(d/ log2 d) (due to Azar et al. [2] and Balogh et

al. [6]) on the competitive ratio of randomized algorithms applies to RSiC. This lower bound result

does not give anything non-trivial for small values of d. In this section, we complement this lower

bound by giving a stronger lower bound for d = 1.

Theorem 7.3.1. In 1-dimensional non-clairvoyant RSiC, any randomized algorithm has a compet-

itive ratio at least 1�e
�1

2
· µ.

2These algorithms are introduced in [60]. We shall revisit them in Section 7.5.
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Proof. We use Yao’s principle. Consider the following distributional input: k2 jobs each of size

1/k, uniformly at random pick k among k2 jobs to be of duration µ, and let the rest k2 � k jobs

to be of duration 1. Let ALG be an arbitrary deterministic algorithm. We show that in expectation

ALG has cost ⌦(kµ). Since OPT has cost  k � 1 + µ, this gives the competitive ratio ⌦(µ) as

desired.

Let A1, . . . , Am be the m servers that ALG uses for the above instance. Let |Ai| denote the num-

ber of jobs in Ai, then 1  |Ai|  k. We partition these m servers into p groups B1, . . . , Bp�1, Bp

such that the number of jobs in each group Bi contains � k jobs and < 2k jobs, except perhaps

the last group Bp which may contain less than k jobs. Note that such a partition exists by simply

partitioning greedily. Hence, p � k2/2k = k/2. Let |Bi| denote the number of jobs in group Bi.

Then, for every 1  i  p� 1,

Pr[Bi contains at least one job of duration µ] = 1�

�
k
2�|Bi|
k

�
�
k2

k

�

� 1�

�
k
2�k

k

�
�
k2

k

� � 1� (1�
1

k
)
k
� 1� e�1.

Let Xi 2 {0, 1} be a random variable denoting whether group Bi contains some job of duration

µ or not. Then, by the linearity of expectation, the expected cost of ALG is at least

µ · E
"
p�1X

i=1

Xi

#
= µ ·

p�1X

i=1

E[Xi] � µ · (p� 1)(1� e�1
)

� µ · (k/2� 1)(1� e�1
).

Hence, the competitive ratio is at least 1�e
�1

2
·

k�2

k�1+µ
· µ. For every µ, since we can pick k to be

arbitrarily large, we get the ratio is at least 1�e
�1

2
· µ as claimed.

7.4 Greedy and the Class of Monotone AnyFit Algorithms

In this section, we want to discuss the Greedy algorithm in details; a new clairvoyant algorithm

that surprisingly has not been studied earlier. Recall that Greedy orders servers in decreasing order

of their finishing times, that is, the maximum of the finishing times of jobs currently in the server.
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It assigns the newly arrived job to the first server in the order that has sufficient capacity. If no such

server exists, Greedy opens a new server and assign the job to it. Greedy is a natural and easy-

to-implement algorithm that uses the greedy heuristic of assigning the incoming job to the server

that will incur the least additional cost to the algorithm. Greedy belongs to the class of AnyFit

algorithms; recall that an algorithm for RSiC is said to be an AnyFit algorithm if it opens a new

server only in case that a new incoming job cannot be accommodated on any of the currently active

servers. The main result of this section is to show that the competitive ratio of Greedy is at most

3µd + 1. In fact, we show that this bound holds for a large subclass of AnyFit algorithms that we

introduce below.

Most AnyFit algorithms use an ordering of active servers, and assign the next job to the first

server in the ordering with enough available space. In this case, we say that the algorithm employs an

ordering. For example, FirstFit orders servers based on their opening times, BestFit orders servers

based on their remaining capacity, and MoveToFront moves the server to which a job is assigned

to the first position in the ordering. However, RandomFit does not employ any specific ordering; it

assigns jobs to servers randomly. Observe that the ordering of servers could be fixed as in FirstFit

and LastFit, or it could change when a job arrives, as in BestFit, WorstFit, and MoveToFront, as well

as when a job leaves, as in BestFit and WorstFit.

Consider an algorithm ALG that employs an ordering. We say that a server S is higher in the

ordering than S0 at time t if S appears closer to the beginning of the ordering than S0. Consider

t < t0 and define A(t, t0) to be the set of servers that are alive at t and t0.

Definition 7.4.1. An AnyFit algorithm ALG is called monotone if

• it employs an ordering, and

• for every t < t0 and every server S 2 A(t, t0): if S did not receive any new jobs during the

interval (t, t0) then every server in A(t, t0) that is higher than S in the ordering at time t is still

higher than S in the ordering at time t0.

Note that for a monotone AnyFit algorithm a server S can move up in the ordering between t and

t0 only if either some server that was higher than S at time t was released before t0, or S received a

job during the interval (t, t0).
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It is clear that AnyFit algorithms employing a static ordering such as FirstFit and LastFit have

the monotone property. Observe that in MoveToFront, a server that receives a job moves to the first

position in the ordering, and the relative position of other servers stays the same. Since the only way

for a server to move ahead of other servers in the ordering is for it to receive a job, MoveToFront

obeys the monotone property. However, in BestFit, a server may move down in the ordering when

a job departs, causing the server to have more available space. Thus BestFit does not obey the

monotone property.

Observe that Greedy is, indeed, a monotone AnyFit algorithm, since a server S moves ahead of

another server S0 in the ordering of Greedy if and only if S receives a job that causes its finishing

time to be higher than that of S0.

We need the following lemma before we prove the main result of this section. We denote the

sum of L1 norms of sizes of jobs with arrival time in the interval (t, t0) for t < t0 by s1(�, t, t0),

i.e., s1(�, t, t0) =
P

i:t<ai<t0 ksik1 .

Lemma 7.4.1. For 0 < ↵  T , we have:
R
T

0
s1(�, t� ↵, t)dt = ↵

P
n

i=1
ksik1.

Proof.

Z
T

0

s1(�, t� ↵, t)dt =

Z
T

0

nX

i=1

1(t� ↵ < ai < t) ksik1 dt

=

nX

i=1

Z
T

0

1(t� ↵ < ai < t) ksik1 dt

=

nX

i=1

ksik1

Z
T

0

1(t� ↵ < ai < t)dt

=

nX

i=1

↵ ksik1 .

Now, we are ready to prove the main result of this section.

Theorem 7.4.2. Let ALG be a monotone AnyFit algorithm. Then, ⇢(ALG)  3µd+ 1.

Proof. We claim that for an arbitrary t it holds that

ALG(�, t)  s1(�, t� 2µ, t) + s1(�, t� µ, t) + 1. (32)
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Figure 7.1: Configuration of servers in interval [t � 2µ, t]. Note that the Ai servers are ordered according to the ordering of ALG at
time t� µ while the Bi servers are ordered by opening time.

Observe that each server in A(t� µ, t) must have received a job during the time interval (t� µ, t),

otherwise a server alive at time t � µ would have been released by time t, since the duration of

each job is at most µ. Suppose there are q servers in A(t � µ, t) named A1, A2, . . . , Aq, ordered

according to the ordering of ALG at time t� µ. Let ti be the earliest time in (t� µ, t) when a job

with the size vector si arrived in server Ai. Let B(t� µ, t) denote the set of new servers that were

opened during time (t � µ, t) that are still alive at time t. Suppose there are p such servers called

B1, B2, . . . , Bp ordered by their opening times t0
1
, t0

2
, . . . , t0p. Let s0

i
be the size vector of the first

job placed into Bi. See Figure 7.1 for an illustration. Note that we have ALG(�, t) = p+ q.

Consider some i 2 {2, . . . , q}. Observe that Ai�1 preceded Ai in the ordering of ALG at time

t � µ, no job arrived in Ai during time interval (t � µ, ti), and ALG is monotone. Thus, Ai�1

precedes Ai in the ordering of ALG immediately prior to arrival of job si. Thus, ALG must have

tried placing si into server Ai�1 at time ti, but could not fit it in (since si was ultimately placed into

Ai). This happened because in some coordinate the total size of jobs in server Ai�1 plus the size of

the job si in that coordinate exceeded the capacity. Thus, we can conclude that

ksi + s(Ai�1, ti)k1 > 1. (33)
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For the Bi servers, since ALG is an AnyFit algorithm (it opens a new server only if it has to), we

have:
��s01 + s(Aq, t

0
1)
��
1 > 1 and

��s0i + s(Bi�1, t
0
i)
��
1 > 1 for 2  i  p (34)

Also, note that

qX

i=2

ks(Ai�1, ti)k1 +
��s(Aq, t

0
1)
��
1 +

pX

i=2

��s(Bi�1, t
0
i)
��
1  s1(�, t� 2µ, t), (35)

since all jobs that are alive in server Ai�1 at time ti, as well as in Aq at time t0
1
, must have arrived

between t � 2µ and t, and the Ai and the Bj servers partition the set of relevant jobs. In addition,

we have
qX

i=2

ksik1 +
��s01

��
1 +

pX

i=2

��s0i
��
1  s1(�, t� µ, t), (36)

since the si and the s0
i

jobs have arrival times between t� µ and t, and the jobs are distinct.

Combining the observations in (33) and (34), we obtain

q + p� 1 <
qX

i=2

ksi + s(Ai�1, ti)k1 +
��s01 + s(Aq, t

0
1)
��
1

+

pX

i=2

��s0i + s(Bi�1, t
0
i)
��
1

 s1(�, t� 2µ, t) + s1(�, t� µ, t),

where the second inequality follows from Proposition 7.1.1 and application of (35) and (36).

This establishes Inequality (32).
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To finish the proof of the theorem, we integrate this inequality over possible values of t, i.e.:

ALG(�) =

Z
T

0

ALG(�, t)dt



Z
T

0

(s1(�, t� 2µ, t) + s1(�, t� µ, t) + 1)dt

= 2µ
nX

i=1

ksik1 + µ
nX

i=1

ksik1 + span(�)

 3µ util(�) + span(�)

 3µdOPT(�) + OPT(�),

where the second equality follows from two applications of Lemma 7.4.1, and the last inequality is

an application of Proposition 1.3.1.

We remark that the analysis in the theorem above holds for both clairvoyant and non-clairvoyant

monotone AnyFit algorithms. In Murhekar et al. [57], it shows (µ+1)d is a lower bound for AnyFit.

Thus, we obtain the following corollary:

Corollary 7.4.3. (µ+ 1)d  ⇢(Greedy), ⇢(LastFit)  3dµ+ 1.

As mentioned earlier, for the case of d = 1, a weaker upper bound 6µ+8 can be obtained via the

proof in [45]. We conjecture that the correct competitive ratio for Greedy is µd + O(d). Although

Greedy has a worse competitive ratio than Hybrid Algorithm�d, our experimental results described

in Section 7.5 show that the competitive ratio of Greedy is much better in the average case, and

Greedy has the best performance in practice of all known algorithms for d-dimensional RSiC.

7.5 Experiments

In this section, we provide a thorough evaluation of the average-case performance of almost all

existing non-clairvoyant as well as clairvoyant algorithms for the RSiC problem.
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7.5.1 Experimental Setup

We evaluate the performance of different algorithms using randomly generated input sequences

for d-dimensional RSiC, for d 2 {1, 2, 4, 5}, closely adhering to the experimental setup detailed in

[45] for the 1-dimensional case. In the experiments, we assume that each server has size Ed where

E = 1000, and each job is assumed to have a size in {1, 2, · · · , E}
d. For a given integral span

value T ; for T 2 {1000, 5000, 10000}, we assume that each job arrives at an integral time step

within the interval [0, T � µ] and has an integral duration in [1, µ], for µ 2 {1, 2, 5, 10, 100}. Each

experimental instance comprises a sequence of N = 10000 jobs, with the size and duration of each

job selected randomly from their respective ranges, assuming a uniform distribution. The reported

upper bound on competitive ratio of each studied algorithm is computed as the ratio of the average

cost of the algorithm over 100 input sequences, and the average of the lower bound on OPT given

by Lemma 1.3.3 for these instances.

All our experiments were executed on a personal laptop with a Dual-core 2.3 GHz Intel Core i5

CPU. The laptop had 8 GB of RAM. The laptop was running Mac OS version 12.6.4. The code was

written in C++ using VS code version 1.38.1.

7.5.2 Implemented Algorithms

We implemented both clairvoyant and non-clairvoyant algorithms. In Table 7.2, you can find a

detailed overview of each one.

p

7.5.3 Experimental Results

Our experimental results for d 2 {1, 2, 4, 5} are shown in Tables 7.3, 7.4, 7.5, and 7.6. We

validated our results against those in [45] for d = 1 and for the algorithms implemented there. Our

results are slightly different as we use a better lower bound to compute the competitive ratio; when

using the same lower bound as [45], our results match exactly.

First we note that for all algorithms, the experimentally derived competitive ratio on random

inputs is much better than the worst-case bounds derived theoretically. This is not surprising as the
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Algorithm Description
NextFit Keeps only one open server at each time.
Modified
NextFit

Assigns jobs with sizes greater than a specific threshold separately from the
other jobs using the NextFit algorithm.

FirstFit Monotone AnyFit that orders servers in increasing order of opening time.
Modified
FirstFit

Assigns jobs with sizes greater than a specific threshold separately from the
other jobs using the FirstFit algorithm.

LastFit Monotone AnyFit that orders servers in decreasing order of opening time.
BestFit AnyFit that orders servers in increasing order of remaining capacity.
WorstFit AnyFit that orders servers in decreasing order of remaining capacity.
RandomFit AnyFit algorithm that orders servers randomly.
MoveToFront Monotone AnyFit that orders servers in decreasing order of the last time a job

was assigned to it.
Departure
Strategy [60]

The span is split into intervals of length ⌧ each, where ⌧ > 0 is a constant.
Classifies jobs into categories according to their departure times. Each cate-
gory contains all jobs that depart in a time interval of length ⌧ .

Duration
Strategy [60]

Classifies the jobs into categories such that the max/min job duration ratio for
each category is a given constant ↵. Given a base job duration b, each category
includes all the jobs with durations between b↵i�1 and b↵i for an integer i.

Hybrid
Algorithm
(HA) [1]

Classifies jobs according to their length and their arrivals. Suppose the max-
imum duration of jobs in the input sequence is µ. Then all the jobs whose
lengths are in the range [2

i�1, 2i] for integer 1  i  dlogµe + 1 and whose
arrival times are in the time interval [(c�1)2

i, c2i) for an integer c are put into
the same category.

New Hybrid Hybrid Algorithm�d as defined in Section 7.2.
Greedy Monotone AnyFit as defined in Section 7.4.

Table 7.2: Implemented Algorithms. Similar to [45], we adopt the parameters for ModifiedNextFit and ModifiedFirstFit as Ed
/(µ+ 1)

and E
d
/(µ + 7), respectively. This choice of values is designed to optimize the competitive ratio of these algorithms, as indicated in

[45, 52].

worst-case inputs are carefully constructed to beat the given algorithm and are unlikely to occur in

practice. Comparing the three tables, we see that the competitive ratio for every algorithm and every

value of T and µ increases with increasing d. In general, the competitive ratio also increases with

µ, keeping other parameters constant.

We note that many algorithms have versions that separate servers into separate categories, and

assign jobs to servers in a particular category based on their sizes. In general, such modifications

of algorithms do not perform better than the original versions on random inputs, even though they

have better worst-case competitive ratios. For example, MFF performs worse than FirstFit, MNF

performs worse than NextFit, and Hybrid Algorithm�d performs worse than Hybrid Algorithm in

our experiments. We can also see that all clairvoyant algorithms except Greedy classify jobs and
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T=1000 T=5000 T=10000
µ = 1 µ = 2 µ = 5 µ = 10 µ = 100 µ = 1 µ = 2 µ = 5 µ = 10 µ = 100 µ = 1 µ = 2 µ = 5 µ = 10 µ = 100

Non-clairvoyant
NextFit 1.27 1.37 1.45 1.49 1.52 1.12 1.20 1.32 1.40 1.51 1.06 1.10 1.20 1.31 1.50
MNF 1.31 1.39 1.43 1.48 1.52 1.19 1.29 1.41 1.47 1.52 1.11 1.19 1.31 1.39 1.51

WorstFit 1.41 1.39 1.36 1.33 1.29 1.16 1.20 1.26 1.28 1.29 1.06 1.09 1.16 1.22 1.29
FirstFit 1.42 1.36 1.30 1.27 1.22 1.17 1.20 1.24 1.25 1.23 1.07 1.10 1.16 1.21 1.24
MFF 1.51 1.44 1.35 1.30 1.23 1.25 1.29 1.33 1.32 1.25 1.13 1.17 1.24 1.28 1.25

BestFit 1.51 1.41 1.31 1.24 1.11 1.17 1.21 1.25 1.26 1.16 1.07 1.10 1.17 1.22 1.19
LastFit 1.35 1.34 1.29 1.25 1.17 1.14 1.18 1.23 1.24 1.19 1.05 1.08 1.15 1.20 1.21

Random Fit 1.49 1.41 1.34 1.28 1.18 1.17 1.21 1.26 1.27 1.21 1.07 1.10 1.17 1.22 1.23
MoveToFront 1.32 1.32 1.28 1.24 1.16 1.13 1.17 1.22 1.24 1.19 1.05 1.08 1.15 1.20 1.20

Clairvoyant
Departure Strategy 1.42 1.36 1.30 1.27 1.17 1.17 1.20 1.24 1.25 1.21 1.07 1.10 1.16 1.21 1.23
Duration Strategy 1.42 1.40 1.35 1.31 1.23 1.17 1.20 1.24 1.25 1.24 1.07 1.16 1.26 1.33 1.29
Hybrid Algorithm 1.12 1.25 1.32 1.33 1.25 1.03 1.22 1.36 1.39 1.31 1.01 1.15 1.30 1.39 1.34

New Hybrid 1.12 1.25 1.32 1.33 1.25 1.03 1.22 1.36 1.40 1.31 1.01 1.15 1.30 1.39 1.34
Greedy 1.28 1.27 1.22 1.19 1.13 1.12 1.15 1.19 1.20 1.16 1.05 1.07 1.13 1.17 1.17

Table 7.3: Average competitive ratio results for the RSiC problem when d = 1.

T=1000 T=5000 T=10000
µ = 1 µ = 2 µ = 5 µ = 10 µ = 100 µ = 1 µ = 2 µ = 5 µ = 10 µ = 100 µ = 1 µ = 2 µ = 5 µ = 10 µ = 100

Non-clairvoyant
NextFit 1.40 1.49 1.59 1.65 1.73 1.12 1.20 1.36 1.48 1.69 1.05 1.09 1.21 1.35 1.65
MNF 1.44 1.52 1.61 1.65 1.73 1.17 1.25 1.39 1.49 1.69 1.09 1.13 1.23 1.36 1.65

WorstFit 1.46 1.45 1.44 1.42 1.38 1.14 1.19 1.29 1.35 1.39 1.05 1.08 1.17 1.26 1.38
FirstFit 1.49 1.45 1.42 1.40 1.35 1.15 1.20 1.29 1.34 1.37 1.06 1.09 1.17 1.26 1.37
MFF 1.50 1.47 1.43 1.41 1.35 1.16 1.21 1.30 1.35 1.37 1.06 1.09 1.18 1.26 1.37

BestFit 1.48 1.44 1.40 1.37 1.26 1.14 1.19 1.28 1.33 1.31 1.05 1.08 1.17 1.25 1.33
LastFit 1.39 1.40 1.39 1.36 1.29 1.12 1.17 1.27 1.32 1.32 1.05 1.08 1.16 1.24 1.33

Random Fit 1.48 1.45 1.42 1.39 1.30 1.14 1.19 1.28 1.34 1.34 1.05 1.08 1.17 1.26 1.35
MoveToFront 1.38 1.39 1.38 1.36 1.28 1.12 1.17 1.27 1.32 1.32 1.05 1.07 1.16 1.24 1.33

Clairvoyant
Departure Strategy 1.48 1.45 1.42 1.40 1.30 1.15 1.20 1.29 1.34 1.35 1.06 1.09 1.17 1.26 1.37
Duration Strategy 1.48 1.49 1.48 1.47 1.38 1.15 1.20 1.29 1.34 1.37 1.06 1.12 1.23 1.34 1.44
Hybrid Algorithm 1.23 1.37 1.45 1.47 1.38 1.07 1.21 1.36 1.45 1.45 1.02 1.11 1.25 1.37 1.48

New Hybrid 1.42 1.54 1.62 1.65 1.64 1.17 1.29 1.46 1.57 1.65 1.09 1.16 1.31 1.46 1.65
Greedy 1.36 1.36 1.34 1.32 1.24 1.12 1.16 1.25 1.30 1.29 1.04 1.07 1.15 1.23 1.30

Table 7.4: Average competitive ratio results for the RSiC problem when d = 2.

servers into different categories, and do not have good performance.

An interesting finding is that Greedy has the best performance in almost all cases, among all

clairvoyant and non-clairvoyant algorithms. Clearly, Greedy being a clairvoyant algorithm uses the

information on finishing time of jobs to its advantage. However, the other clairvoyant algorithms

generally do not exhibit good performance, with the exception of Hybrid Algorithm for the case

µ = 1. It is important to note that Greedy is the only monotone AnyFit algorithm among the

clairvoyant algorithms we have implemented. The other clairvoyant algorithms do not belong to the

monotone AnyFit algorithms category.

Among non-clairvoyant algorithms, the best algorithms are generally MoveToFront and LastFit,

which are also both monotone AnyFit algorithms. Surprisingly, as in [45], in our experiments BestFit
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T=1000 T=5000 T=10000
µ = 1 µ = 2 µ = 5 µ = 10 µ = 100 µ = 1 µ = 2 µ = 5 µ = 10 µ = 100 µ = 1 µ = 2 µ = 5 µ = 10 µ = 100

Non-clairvoyant
NextFit 1.48 1.57 1.69 1.75 1.88 1.12 1.20 1.38 1.52 1.80 1.04 1.08 1.20 1.36 1.75
MNF 1.50 1.58 1.69 1.75 1.88 1.13 1.20 1.38 1.52 1.81 1.05 1.09 1.20 1.36 1.75

WorstFit 1.47 1.51 1.55 1.56 1.53 1.11 1.18 1.32 1.43 1.55 1.04 1.07 1.18 1.30 1.54
FirstFit 1.49 1.52 1.56 1.57 1.54 1.12 1.19 1.33 1.43 1.55 1.04 1.08 1.18 1.30 1.54
MFF 1.49 1.52 1.55 1.57 1.54 1.12 1.19 1.33 1.43 1.55 1.04 1.07 1.18 1.31 1.54

BestFit 1.47 1.50 1.54 1.54 1.48 1.12 1.18 1.32 1.43 1.52 1.04 1.07 1.18 1.30 1.52
LastFit 1.43 1.48 1.52 1.53 1.48 1.11 1.18 1.32 1.42 1.52 1.04 1.07 1.17 1.30 1.52

Random Fit 1.47 1.50 1.54 1.55 1.50 1.12 1.18 1.32 1.43 1.53 1.04 1.07 1.18 1.30 1.53
MoveToFront 1.43 1.48 1.52 1.53 1.48 1.11 1.18 1.32 1.42 1.52 1.04 1.07 1.17 1.30 1.52

Clairvoyant
Departure Strategy 1.49 1.52 1.55 1.57 1.52 1.12 1.19 1.33 1.43 1.56 1.04 1.08 1.18 1.31 1.55
Duration Strategy 1.49 1.52 1.55 1.57 1.54 1.12 1.19 1.33 1.43 1.56 1.04 1.08 1.18 1.31 1.55
Hybrid Algorithm 1.38 1.50 1.59 1.64 1.60 1.10 1.20 1.37 1.50 1.64 1.04 1.09 1.21 1.36 1.63

New Hybrid 1.53 1.62 1.73 1.79 1.88 1.15 1.24 1.42 1.57 1.83 1.06 1.11 1.24 1.40 1.79
Greedy 1.43 1.47 1.51 1.52 1.46 1.11 1.18 1.32 1.41 1.50 1.04 1.07 1.17 1.29 1.51

Table 7.5: Average competitive ratio results for the RSiC problem when d = 4.

T=1000 T=5000 T=10000
µ = 1 µ = 2 µ = 5 µ = 10 µ = 100 µ = 1 µ = 2 µ = 5 µ = 10 µ = 100 µ = 1 µ = 2 µ = 5 µ = 10 µ = 100

Non-clairvoyant
NextFit 1.49 1.58 1.70 1.77 1.90 1.11 1.19 1.37 1.52 1.82 1.04 1.08 1.19 1.35 1.76
MNF 1.50 1.58 1.70 1.77 1.90 1.12 1.19 1.37 1.52 1.82 1.04 1.08 1.19 1.35 1.76

WorstFit 1.47 1.52 1.59 1.61 1.61 1.11 1.18 1.33 1.45 1.61 1.04 1.07 1.18 1.31 1.60
FirstFit 1.48 1.53 1.59 1.62 1.62 1.11 1.18 1.34 1.46 1.62 1.04 1.07 1.18 1.31 1.60
MFF 1.48 1.53 1.59 1.62 1.62 1.11 1.18 1.34 1.46 1.62 1.04 1.07 1.18 1.31 1.60

BestFit 1.47 1.52 1.58 1.60 1.57 1.11 1.18 1.33 1.45 1.60 1.04 1.07 1.18 1.31 1.59
LastFit 1.45 1.51 1.57 1.60 1.57 1.11 1.18 1.33 1.45 1.60 1.04 1.07 1.18 1.31 1.58

Random Fit 1.47 1.52 1.58 1.61 1.59 1.11 1.18 1.33 1.45 1.61 1.04 1.07 1.18 1.31 1.59
MoveToFront 1.45 1.51 1.57 1.60 1.57 1.11 1.18 1.33 1.45 1.60 1.04 1.07 1.18 1.31 1.59

Clairvoyant
Departure Strategy 1.48 1.53 1.59 1.62 1.61 1.11 1.18 1.34 1.46 1.63 1.04 1.07 1.18 1.31 1.61
Duration Strategy 1.48 1.55 1.63 1.67 1.66 1.11 1.18 1.34 1.46 1.63 1.04 1.08 1.19 1.34 1.65
Hybrid Algorithm 1.42 1.53 1.63 1.68 1.68 1.10 1.19 1.37 1.51 1.70 1.04 1.08 1.20 1.35 1.68

New Hybrid 1.52 1.61 1.72 1.79 1.91 1.13 1.21 1.39 1.55 1.85 1.05 1.09 1.21 1.37 1.79
Greedy 1.45 1.50 1.56 1.59 1.55 1.11 1.18 1.33 1.44 1.59 1.04 1.07 1.17 1.31 1.58

Table 7.6: Average competitive ratio results for the RSiC problem when d = 5.

is one of the better algorithms, especially for higher values of µ, where its performance ratio equals

or betters that of MoveToFront and LastFit3. Recall that the worst-case competitive ratio of BestFit

is unbounded as shown in [50].

In [45] and [57], two key factors, namely alignment and packing are identified as contributing to

the performance of an algorithm for RSiC. The first factor is about how effectively jobs are aligned

into servers in terms of their durations, while the second factor evaluates how tightly the jobs are

packed together in servers. AnyFit algorithms (except WorstFit) do well in terms of packing, but do

not consider alignment. Conversely, NextFit tries to align jobs but does not do as well with packing.
3While BestFit also has excellent performance in the experiments of [57], it does not beat MoveToFront for any value

of d or µ. However, their experimental setup is somewhat different to ours and that in [45].
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The authors of [45] stipulate that by assigning the next job to the server that has the most recently

arrived job, MoveToFront succeeds in terms of aligning jobs well in terms of time, while it also

succeeds in packing since it is an AnyFit algorithm.

The logic behind the first factor – alignment – is that jobs arriving around the same time are

likely to depart around the same time as well. Therefore, an algorithm that groups jobs with similar

departure times is expected to yield better performance. Greedy follows this principle by choos-

ing the server in such a way that minimally extends the finishing time when placing a job into it.

Similarly, MoveToFront contributes to addressing this factor by placing a job in the recently used

server. Thereby both algorithms addressing this factor and enhancing overall performance. On the

other hand, all AnyFit algorithms, including Greedy and MoveToFront, possess the second factor

– packing. This is because these algorithms aim to avoid opening new servers and prefer packing

jobs into already opened servers. By doing so, they achieve a more efficient use of resources, which

results a better performance.

Considering the clairvoyant algorithms, all algorithms except Greedy do not fall under the Any-

Fit category, meaning they do not tightly pack jobs into bins. Greedy is the only algorithm in this

category that focuses on packing jobs tightly. The other four algorithms open new bins even when

there are already opened bins for other categories of jobs. The Hybrid Algorithm and New Hybrid

attempt to group jobs with similar arrival and duration times together, reserving bins for each cat-

egory and then packing them together. While achieving excellent alignment, the packing seems to

suffer a lot, resulting in bad performance overall on the input instances considered in this paper. It is

important to highlight that, although Table 2.1 shows that Hybrid Algorithm�d has better worst-case

performance than Greedy across all dimensions, these ratios are asymptotic. Our experiments are

limited to µ  100, so for significantly larger values of µ, it is possible that Hybrid Algorithm�d

could further surpass Greedy.

A final interesting finding is that the difference in performance between the algorithms appears

to narrow for d = 5. Further research is needed to understand this phenomenon, but one rea-

son could be that because the sizes of jobs in different dimensions are chosen independently, it is

harder for any algorithm to achieve a good packing, which diminishes the difference between the

algorithms.
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7.6 Summary and Discussion

In this chapter, we addressed the d-dimensional RSiC problem and proposed two new algo-

rithms: Greedy, which excels in practical performance, and Hybrid Algorithm�d, which offers the

best theoretical worst-case performance among all existing algorithms. We introduced a new class of

AnyFit algorithms known as monotone algorithms and proved that they, including Greedy, achieve

a competitive ratio of ⇥(dµ). Our study also includes a general direct-sum theorem that extends

1-dimensional RSiC algorithms to d-dimensional, with Hybrid Algorithm�d deriving as a result.

Additionally, our experiments demonstrated that the Greedy algorithm is among the top performers

in average-case scenarios, surpassing both clairvoyant and non-clairvoyant algorithms.

In this chapter, we established that Greedy has a performance bound of at most 3µd + O(d).

However, we conjecture that its actual theoretical performance is at most dµ+O(d). This conjecture

arises from the observation that our proof for the monotone AnyFit algorithm is somewhat loose,

as it relies on upper bounds for server costs in the intervals [t � 2µ, t] and [t � µ, t]. Improving

the upper bound for the monotone AnyFit algorithms would be an interesting direction for future

research.

132



Chapter 8

Experiments on Real-World Data

In this chapter, we evaluate the performance of nearly all existing clairvoyant and non-clairvoyant

algorithms for the RSiC problem. Additionally, we introduce new algorithms, derived from com-

binations of existing algorithms, which outperforms all previously known algorithms in our ex-

perimental evaluations. Unlike prior studies that exclusively utilized synthetic data, we rely on

real-world Azure data from the ”Protean: VM Allocation Service at Scale” study [36]. This dataset

captures large-scale virtual machine (VM) allocation across Azure’s availability zones, offering a

more practical perspective on the operational effectiveness of these algorithms.

8.1 Description of the Dataset

We begin by describing the dataset, which captures a segment of Microsoft’s Azure Compute

workload consisting of a set of VM requests. Each VM request corresponds to a specific VM type,

detailing requirements for CPU (core), memory (RAM), SSD (solid-state drive), NIC (network

bandwidth), and HDD (hard drive), with resource values presented in fractional units. Collected

over a 14-day period, the dataset includes all VMs that overlapped with this timeframe. Jobs con-

tinued to be observed for 76 days after the data collection period. Jobs with a start time prior to the

observation period are assigned a negative start time. Jobs that did not conclude within 76 days of

the observation period’s end are given a null end time. VMs are classified by priority—high (0) and
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low (1)—where low-priority VMs may be evicted in favor of high-priority VMs. This comprehen-

sive dataset provides a realistic basis for analyzing VM allocation strategies in cloud environments.

8.1.1 Analysis of the Dataset

Hadary et al. [36] provided valuable insights into the nature of VM workloads, highlighting

their significant variability and non-uniform distribution. The analysis revealed that certain VM

types dominate the workload, with some comprising nearly half of the total, while others occur

much less frequently. A majority of VMs require relatively few cores, yet a subset of VM types

exhibits significantly higher demands for computational resources, requiring a greater number of

cores.

The authors also examined temporal variations in resource demand, highlighting sharp surges

during job arrivals and gradual declines as jobs are completed. Additionally, the authors observed

substantial variation in VM durations, with many VMs running for only a few minutes, while others

last for weeks or even months.

Another noteworthy finding was the diurnal patterns in VM requests. Peak demand typically

occurs on Tuesdays, Wednesdays, and Thursdays, with request volumes dropping overnight but

rising during the day, particularly with sharp spikes at 12:00 PM and 4:00 PM. This variability

highlights the varying nature of workload demand, as observed in the study.

Figure 8.1 illustrates the frequency of VMs based on their core sizes, memory sizes, SSD sizes,

and NIC sizes that were assigned to one specific machine, called machine 0 on the dataset. The

figure reveals that for all these resource types, the majority of VMs require only a small fraction of

the total available capacity. Specifically, for core sizes, approximately 80% of VMs utilize less than

10% of the total core capacity, demonstrating the lightweight nature of most workloads. A similar

trend is evident for memory, SSD, and NIC sizes, where the demand is predominantly concentrated

within the lower ranges of the available resource capacity.

This consistent pattern across resource types highlights that while the large majority of VMs im-

pose minimal demands, a small subset of resource-intensive VMs stand out as outliers, consuming a

disproportionately large share of resources. These findings emphasize the importance of designing
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resource allocation strategies that are optimized to efficiently handle both the lightweight major-

ity and the resource-heavy minority, ensuring balanced and effective utilization of computational

infrastructure.

Figure 8.1: Computational resources demand for all dimensions for machine 0. Note that since all type 0 machines are identical, their
computing capacities are the same such as memory, cores, and other resources. All values are represented as integers and we scale all
resource capacities to 1000 in order to standardize the analysis.

In Figure 8.2, we present the total resource demand for each dimension over time. At each

time step, the figure shows the cumulative demand for all resources. The resource demand surges

sharply during job arrivals, reflecting the significant initial load as incoming jobs request resources

simultaneously. In contrast, the tail of the plot corresponds to the period when jobs are completing

and leaving the system, leading to a gradual decline in total resource demand. The monitoring

period spans 14 days, during which the peak reflects the maximum demand from active jobs, while

the tail illustrates the steady reduction as jobs finish and release resources.
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Figure 8.2: Sum of the computational resources demand for each dimensions at each specific time for machine 0. Note that all values
are represented as integers.

For the same machine shown in Figure 8.1, we plot the duration of VMs assigned to it. As

illustrated in Figure 8.3, the majority of VMs have very short duration as discussed in [36].
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Figure 8.3: The frequency of each job duration is shown for all jobs. Note that all values are represented as integers.

8.2 Experimental Setup

In our experiments, each virtual machine (VM) is treated as a job request, representing the

demand for computational resources within the Azure environment. We evaluate the performance

of various algorithms using the Azure dataset, assigning these jobs to servers. The dataset includes

nearly 34 different types of machines, each capable of accommodating a significant volume of

jobs. Due to resource and time constraints, our analysis is restricted to machines 0 and 1. Each

job comprises five resource dimensions: CPU, memory, SSD, NIC, and HDD. However, due to

the frequent presence of null values in the HDD dimension, we discarded it from our analysis and

focused on the remaining four dimensions. As we mentioned earlier, in this dataset, negative start

times indicate jobs that were already active at the onset of data collection, while null end times

represent jobs that continued running beyond the 90-day observation period. To ensure accuracy,

we exclude jobs with negative start times or null end times from our analysis.

As previously noted, the resource values are expressed in fractional units. For consistency with

earlier experiments involving synthetic data, we convert all resource values to integers without loss

of generality. In the experiments, we assume that each server has a size of E4 where E = 1000,

and each job is presumed to have a size in {1, 2, · · · , E}
4.
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We consider a configuration where jobs with a priority of 1 are excluded from both machines 0

and 1, as the eviction policy makes their duration data unreliable. This exclusion is reasonable be-

cause, as shown in Table 8.1, the majority of jobs—89.51%—in machine 0 have a priority of 0, and

a similar distribution is expected for machine 1. Additionally, machine 1 receives nearly 4,000,000

job requests, with 3,775,455 of them classified as priority 0. However, due to computational con-

straints, we analyze only a subset of these jobs. To enable a fair comparison, the sampled dataset

for machine 1 is chosen to be approximately the same size as that of machine 0. Specifically, each

priority 0 job is independently selected with a probability of 112, 552/3, 775, 455. Our experiments

are conducted under the following configurations:

(1) Machine 0 handling both priority 0 and priority 1 jobs.

(2) Machine 0 restricted to handling only priority 0 jobs.

(3) Machine 1 processing a randomly sampled sequence of jobs, uniformly selected from its

priority 0 job requests. To ensure consistency, we generate two independent random samples

for machine 1.

Table 8.1 provides a detailed summary of the datasets, including the number of jobs and the

corresponding µ ratio for each configuration. It highlights that the µ values vary significantly across

datasets.

Machine 0,
Priority 0

Machine 0,
Priority 0 and 1

Machine 1,
Priority 0 - Sample 1

Machine 1,
Priority 0 - Sample 2

Number of Jobs 112, 552 125, 784 112, 299 112, 546
µ 11, 794, 735 11, 794, 735 104, 761, 079 52, 083, 077

Table 8.1: Number of jobs and the ratio µ for each dataset.

The reported upper bound on the competitive ratio for each algorithm is the ratio of the algo-

rithm’s cost over input sequences to the cost of the lower bound on OPT as specified in Lemma 1.3.3

for these instances.

All experiments were conducted on a personal laptop equipped with an Apple M1 chip, featuring

an 8-core CPU and 16 GB of RAM. The laptop operated on macOS Sonoma 14.5, and the code was

developed in C++ using Visual Studio Code version 1.93.1.
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The algorithms we implemented are identical to those described in Section 7.5.2. For detailed

descriptions, refer to Table 7.2.

8.3 Experiments on the Full Dataset

As detailed in Section 8.2, our experiments are conducted on machines 0 and 1. A comprehen-

sive summary of the experimental results across all datasets is presented in Table 8.2.

Algorithms
Machine 0,
Priority 0,

µ = 11, 794, 735

Machine 0,
Priority 0 and 1,
µ = 11, 794, 735

Machine 1,
Priority 0-Sample 1,
µ = 104, 761, 079

Machine 1,
Priority 0-Sample 2,
µ = 52, 083, 077

Non-clairvoyant
NextFit 4.48 3.70 8.88 8.85
MNF 4.48 3.70 8.88 8.85

WorstFit 2.81 2.76 3.47 3.51
RandomFit 2.55 2.64 3.14 3.13

MoveToFront 2.48 2.14 3.15 3.16
LastFit 2.24 1.93 3.11 3.14
BestFit 2.21 1.99 2.99 2.85
FirstFit 2.00 1.76 2.71 2.69
MFF 2.00 1.76 2.71 2.69

Clairvoyant
Departure Strategy 6.17 4.88 13.53 13.20
Duration Strategy 1.83 1.69 2.23 2.22

Greedy 1.64 1.54 1.85 1.78
New Hybrid 1.30 1.24 1.67 1.67

Hybrid Algorithm 1.29 1.21 1.36 1.35

Table 8.2: Competitive ratio results for the RSiC problem on real data. Algorithms are listed in decreasing order of competitive ratio for
Machine 0, Priority 0.

Now, let us focus on analyzing the experimental results. To begin, we note that the competitive

ratios of all implemented algorithms, as shown in Table 8.2, have almost the same ratio order for

all datasets, despite some differences in their ratios. NextFit and MNF are the worst and FirstFit

and MFF are the best among all non-clairvoyant algorithms. On the other hand, for clairvoyant

algorithms, Hybrid Algorithm is the best and Departure Strategy is the worst. This variation is due

to the differing number of jobs and the distinct values of µ for each machine. In the case of machine

0, the competitive ratio follows the same pattern whether jobs have mixed priorities (0 and 1) or

only priority 0. Therefore, given this consistent pattern, we focus the remainder of our analysis on

machine 0 with priority 0.
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Next, we observe that for all algorithms, the results derived from the real dataset are worse than

those obtained from the randomly generated inputs. This outcome is not surprising, as the random

inputs were chosen within µ = {1, 2, 5, 10, 100}. In Table 8.1, for all datasets that we run the

algorithms, µ is much larger. As discussed in Section 7.5.3, the competitive ratio of all algorithms

generally increases with µ, assuming other parameters remain constant.

We also observe that the differences in algorithm performance are more pronounced when com-

pared to the random input data. For instance, the competitive ratio of NextFit on synthetic data with

d = 4, T = 1000, and µ = 100 is 1.87611, while the ratio for FirstFit is 1.53345. In contrast, on

the real dataset, the ratio for NextFit is 4.483 on machine 0 with priority 0, whereas FirstFit has a

ratio of 2.00454, nearly half that of NextFit. This highlights the critical importance of selecting the

appropriate algorithm for real datasets, as choosing an ineffective algorithm can lead to significant

costs for server providers.

We find that the algorithms NextFit and FirstFit share the same competitive ratio as their mod-

ified counterparts, MFF and MNF. As noted in Section 7.5.3, while the modified versions exhibit

improved worst-case performance, they did not yield favorable results in experiments involving ran-

dom data. In contrast, our analysis of real datasets indicates that these modified versions maintain

the same competitive ratio as the original algorithms. This performance similarity suggests that

the majority of jobs in the real dataset have sizes less than half of the server capacity (< 500), as

the modified algorithms differentiate jobs based on whether their sizes exceed or fall below this

threshold.

In investigating the hypothesis, for machine 0, we found that out of a total of 112, 552 jobs

of priority 0, only 656 jobs (approximately 0.58%) had a core size greater than 500. Similarly, the

number of jobs with memory exceeding 500 was also 656, constituting about 0.58% of the total. For

SSD, only 514 jobs (around 0.46%) exceeded a size of 500, while for NIC, 637 jobs (approximately

0.57%) surpassed this threshold. These low percentages support our hypothesis about why FirstFit

and MFF, as well as NextFit and MNF, perform similarly.

Interestingly, among the non-clairvoyant algorithms, FirstFit exhibits the strongest performance.

Although MoveToFront excelled in experiments with random input sequences, it shows significantly

poorer results compared to FirstFit in experiments with real data. We suspect that the restrictions on
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the selection of µ in the random input may account for this discrepancy. Specifically, in the random

input sequence, µ is chosen from the set {1, 2, 5, 10, 100}. To further investigate this hypothesis,

we conduct additional tests in the following section.

The results also reveal that nearly all clairvoyant algorithms, with the exception of the Departure

Strategy, perform exceptionally well. We suspect that the poor performance of the Departure Strat-

egy is due to the large value of µ and the wide span, as it categorizes jobs based on their duration,

which may not be effective under these conditions.

Although Greedy outperforms Hybrid Algorithm in experiments with random data, Hybrid Al-

gorithm demonstrates an advantage when applied to real-world datasets. For example, in the random

data experiments with d = 5 and m = 1, Hybrid Algorithm achieves a better average ratio of 1.42

compared to Greedy’s performance which is 1.45. Notably, this is the only case in the random data

experiments where Hybrid Algorithm outperforms Greedy. For other values of µ, {2, 5, 10, 100},

Greedy consistently performs better.

However, on real data, Hybrid Algorithm consistently outperforms all other algorithms, includ-

ing Greedy, the competitive ratio of Hybrid Algorithm is 1.29 while Greedy has ratio 1.64 . We

hypothesize that this disparity arises because real datasets typically feature much higher µ values.

This advantage can be attributed to Hybrid Algorithm’s strategy of grouping jobs with similar arrival

and duration into the same servers. As discussed in Section 7.5.3 and noted in [45], jobs arriving

at the same time are more likely to have similar durations. Hybrid Algorithm capitalizes on this

property by efficiently assigning jobs with identical arrival times and durations to the same server.

In the following section, we explore this hypothesis further by restricting the jobs to smaller µ

values to evaluate the impact on algorithm performance.

8.4 Experiments on µ-Filtered Data

We hypothesized that the difference in relative ratio between algorithms on real data and syn-

thetic data are caused by much higher values of µ in real data. To evaluate our hypothesis, we

filtered the dataset to include only jobs within a specified range determined by µ. The filtering pro-

cess began by sorting all jobs in ascending order based on their duration. For each job in the sorted
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list, we treated its duration as the lower bound of an interval. Specifically, for a job with duration

dlower, we considered the interval [dlower, µ · dlower] and counted the number of jobs that fell within

this range. By iterating through all jobs, we identified the interval that contained the maximum

number of jobs.

Once the interval with the highest density of jobs was determined, we selected the jobs within

this interval for experimentation. The analysis focused exclusively on jobs associated with machine

0 and priority 0, while excluding any jobs where µ exceeded the values in the set {1, 2, 5, 20, 100}.

For machine 0 with priority 0, the initial number of jobs before applying the filter is 112, 552. The

results of this experiment are presented in Table 8.3.

Algorithms
Machine 0,
Priority 0,
µ = 1

Machine 0,
Priority 0,
µ = 2

Machine 0,
Priority 0,
µ = 5

Machine 0,
Priority 0,
µ = 10

Machine 0,
Priority 0,
µ = 100

Number of jobs 13 28, 051 49133 55, 382 73, 215
Non-clairvoyant

NextFit 1 1.29 1.50 1.62 3.05
MNF 1 1.31 1.48 1.58 3.05

WorstFit 1 1.74 1.87 1.84 1.98
FirstFit 1 1.16 1.17 1.18 1.23
MFF 1 1.25 1.27 1.24 1.23

BestFit 1 1.21 1.22 1.23 1.31
LastFit 1 1.20 1.21 1.22 1.32

Random Fit 1 1.90 2.10 2.05 1.75
MoveToFront 1 1.16 1.20 1.22 1.40

Clairvoyant
Departure Strategy 1 11.26 12.18 10.76 8.55
Duration Strategy 1 1.16 1.20 1.24 1.24
Hybrid Algorithm 1 1.59 1.90 1.82 1.39

New Hybrid 1 1.60 1.93 1.84 1.42
Greedy 1 1.13 1.15 1.14 1.12

Table 8.3: Competitive ratio results for the RSiC problem on machine 0 for jobs with priority 0 after filtering the jobs based on µ.

As shown in Table 8.3, the ratios for various algorithms look similar to the results derived

from the synthetic data, particularly for smaller values of µ. This trend suggests that imposing

restrictions on µ can improve algorithm performance. However, certain algorithms, such as NextFit,

MNF, and the departure Strategy, still exhibit significant deviations from the synthetic data results.

This divergence may be attributed to the number of jobs and the large span value in the real data

input, which is considerably larger than that in the synthetic data.
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8.5 New Combined Algorithms

From the experiments described in Section 8.3, we can conclude that for datasets with larger

values of µ and a large span, Hybrid Algorithm is the optimal choice. For smaller values of µ,

Greedy performs better in the clairvoyant case. In the non-clairvoyant case, when µ is large, FirstFit

is the preferred algorithm, while MTF generally performs well in the other case. Based on these

observation, an interesting idea arises: what if we design an algorithm that dynamically selects

between two existing algorithms based on a threshold? For example, such an algorithm could

combine two algorithms A and B, where A is used for short duration of jobs while B is used for

the jobs with long duration. By carefully selecting an appropriate threshold, incoming jobs could be

assigned to the most appropriate algorithm. This raises a compelling question: could this combined

approach surpass the performance of current algorithms?

To answer this question, we propose several new algorithms designed to enhance the perfor-

mance of the packing process, surpassing all existing approaches in both clairvoyant and non-

clairvoyant scenarios. For each algorithm, we categorize servers into two distinct types:

(1) Type A servers, which are used by algorithm A to pack jobs with durations less than a prede-

fined threshold ⌧ ,

(2) Type B servers, which are used by algorithm B to pack jobs with durations greater than or

equal to the threshold ⌧ .

8.5.1 Combined Clairvoyant Algorithms

As shown in Table 8.2, all the existing clairvoyant algorithms except the Departure Strategy

perform well on the real database. However, in this section, we want to achieve a better performance

by proposing new algorithms that combine the existing algorithms based on the parameter ⌧ .

The clairvoyant algorithms that we propose are as the following:

• Greedy-Hybrid: In this algorithm, the Greedy algorithm is applied to type A and Hybrid

Algorithm is applied to type B servers.
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• Greedy-Greedy: In this algorithm, the Greedy algorithm is applied to both type A and type B

servers.

• Greedy-Duration: In this algorithm, the Greedy algorithm is applied to type A and Duration

Strategy is applied to type B servers.

We also introduce a new clairvoyant algorithm that differs slightly from the previous approach

but still utilizes the parameter ⌧ to allocate each job. The new algorithm is defined as follows:

• New Greedy: If assigning a new job to the best server chosen by the Greedy algorithm causes

its finishing time to exceed ⌧ , the New Greedy algorithm opens a new server for the job.

Otherwise, the job is packed into the server in the same way as the standard Greedy algorithm.

The main challenge lies in identifying the optimal value of ⌧ to maximize the performance of

these new algorithms. To tackle this, we employ a grid search approach, testing values of ⌧ rang-

ing from the shortest to the longest job duration. Initially, we set the range for ⌧ to be one of

[10
3, 104, 105, 106, 107, 108, 109, 1010] to determine whether a threshold exists that improves per-

formance compared to the existing algorithms. Figure 8.4 compares the performance of these algo-

rithms across various threshold settings with that of the Hybrid Algorithm and Greedy algorithms.

Figure 8.4: Performance of the new combined clairvoyant algorithms for ⌧ 2 [10
3
, 10

10
].
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As shown in Figure 8.4, after ⌧ = 10
6, the Greedy-Hybrid algorithm achieves competitive ratios

better than Hybrid Algorithm, with the best ratio occurring at ⌧ = 10
9, where it reaches 1.21. At

this threshold, the competitive ratios of Greedy-Greedy, New Hybrid, and Greedy-Duration are also

very close to that of Hybrid Algorithm. This is noteworthy, as these algorithms are significantly

simpler compared to Hybrid Algorithm while maintaining strong performance at this threshold.

We hypothesize that this threshold serves as the dividing point between two categories of jobs.

Jobs with durations exceeding this threshold tend to increase the algorithm’s cost, as they are packed

together with shorter-duration jobs. As shown in Figure 8.5, the majority of jobs have short dura-

tions, while only a few have significantly longer durations. In this figure, you can see how this

threshold compares to the overall distribution of job durations. Specifically, for this threshold, al-

most all the jobs, 99.76% (112, 277 out of 112, 552)—fall below it, while only 0.24% (275 out of

112, 552)—exceed it. The distribution for the other thresholds can be found in Table 8.4.

Threshold Jobs Below Threshold Jobs Exceeding Threshold
10

3
0.01% 99.99%

10
4

2.02% 97.98%
10

5
19.39% 80.61%

10
6

31.22% 68.78%
10

7
79.21% 20.79%

10
8

95.72% 4.28%
10

9
99.76% 0.24%

10
10

100% 0%

Table 8.4: Job distribution for different thresholds on job durations.

Consequently, we focus on ⌧ values around this interval to explore the potential for achieving

even better ratios. As a result, we select ⌧ to range from 10
8 to 10

10, with increments of 10
8.

Therefore, we aim to evaluate a total of 100 points to observe any improvements, See Figure 8.6.

Based on these experiments, we observe that the Greedy-Hybrid algorithm achieves a competi-

tive ratio of 1.18 at a threshold of ⌧ = 400, 000, 000, outperforming Hybrid Algorithm. Similarly,

both the Greedy-Greedy and Greedy-Duration algorithms achieve a desirable competitive ratio of

1.28 at ⌧ = 2, 500, 000, 000. Additionally, the New Greedy algorithm achieves a competitive ratio

of 1.41 at ⌧ = 1, 100, 000, 000. These results are particularly impressive, especially for Greedy-

Greedy, as it is a very simple algorithm to implement and achieves a competitive ratio better than
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Figure 8.5: Distribution of jobs compared to the threshold. Note that 99.76% of jobs fall below threshold 10
9, while only 0.24% exceed

it.

Hybrid Algorithm, which aligns with our objectives.

Figure 8.6: Comparison between the competitive ratio of the new clairvoyant combined algorithms.
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8.5.2 Combined Weakly Clairvoyant Algorithms

As shown in Table 8.2, both FirstFit and BestFit consistently achieve the best competitive ratios

in nearly all scenarios within the non-clairvoyant setting. Based on this observation, we propose

new algorithms that combine FirstFit and BestFit using the parameter ⌧ . In this setting, jobs are

classified as long or short by the user, and the scheduler does not require knowledge of their actual

durations at the time of arrival. Consequently, this setting is neither fully clairvoyant nor fully non-

clairvoyant, which we refer to as weakly clairvoyant. Therefore, the algorithms we propose are

weakly clairvoyant. The algorithms we introduce for this setting are as follows:

• FirstFit-FirstFit: In this algorithm, the FirstFit algorithm is applied to both type A and type

B servers, where jobs are assigned according to whether their durations are smaller or larger

than the threshold ⌧ .

• FirstFit-BestFit: In this algorithm, the FirstFit algorithm is applied to type A and BestFit is

applied to type B servers.

• BestFit-BestFit: In this algorithm, the BestFit algorithm is applied to both type A and type B

servers.

• BestFit-FirstFit: In this algorithm, the BestFit algorithm is applied to type A and FirstFit is

applied to type B servers.

For these algorithms, we adopted the range of ⌧ used in the experiments with clairvoyant al-

gorithms, setting ⌧ to vary between 10
8 and 10

10. Figure 8.7 presents the competitive ratios of the

combined algorithms for various thresholds within this range. As shown in the figure, the perfor-

mances of FirstFit-BestFit and FirstFit-FirstFit are nearly identical, as are those of BestFit-FirstFit

and BestFit-BestFit. The results indicate an improvement over all existing non-clairvoyant algo-

rithms. Notably, setting ⌧ = 1, 300, 000, 000 allows FirstFit-FirstFit to achieve a competitive ratio

of 1.41 and FirstFit-BestFit to reach 1.42, representing a significant improvement over the algo-

rithms listed in Table 8.2. Similarly, BestFit-BestFit and BestFit-FirstFit achieve competitive ratios

of 1.45 when ⌧ is set to 1, 300, 000, 000 and 1, 000, 000, 000, respectively.
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Figure 8.7: The performance of the weakly clairvoyant combined algorithms over different values of ⌧ .

8.6 Wasted-Space and Duration of Servers

In this section, we aim to understand why different algorithms exhibit varying levels of perfor-

mance, why some perform well while others do not. Our analysis will consider both clairvoyant

and non-clairvoyant scenarios. As outlined in Chapter 1, the total cost of an algorithm for the RSiC

problem is determined by the total cost of all servers utilized by the algorithm, where the cost of

each server is proportional to its duration. Consequently, the performance of an algorithm is gener-

ally a linear function of the number of servers it uses and their respective durations. It is evident that

the number of servers utilized by an algorithm depends on how efficiently jobs are packed into the

servers. In the rest of this section, we analyze how these factors influence algorithm performance.

8.6.1 Clairvoyant Algorithms

As shown in Table 8.2, among the clairvoyant algorithms, Hybrid Algorithm and New Hy-

brid demonstrate superior performance, while the Departure Strategy performs poorly, and Greedy

148



shows moderate performance. To provide a clearer understanding and comparison of these algo-

rithms, Table 8.5 and Figure 8.8 present the number of servers utilized by each algorithm and the

corresponding server durations. In Figure 8.8, the servers are first sorted in ascending order by

duration to create the plot. The x-axis represents the cumulative number of servers, while the y-

axis displays the corresponding sorted duration values. This visualization helps us understand how

frequently servers share the same duration, allowing us to assess how effectively the algorithm op-

timizes server allocation.

Algorithms Greedy Hybrid Algorithm New Hybrid Duration Strategy Departure Strategy
Number of Servers 1, 078 24, 322 16, 796 4, 953 76, 893

Table 8.5: Number of servers that each clairvoyant algorithm used on the full dataset.

From Table 8.5 and Figure 8.8, we observe that Departure Strategy employs the highest number

of servers, nearly 76, 000 in total. Most of these servers have short durations, but there is a subset

with significantly long durations, contributing to its poor performance. In contrast, Greedy utilizes

far fewer servers—approximately 1, 000—which is significantly less than the number used by the

Departure Strategy. On the other hand, the Hybrid Algorithm algorithm, which achieves the best

performance among clairvoyant algorithms, uses around 24, 000 servers. Notably, only a small

portion of these servers have long durations. This efficient balance of server usage and duration

likely explains why Hybrid Algorithm outperforms the other algorithms.

Figure 8.8: Duration of servers for clairvoyant algorithms.
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We observe that while Greedy uses fewer servers than Hybrid Algorithm, its performance is

significantly worse. Why is this the case? To answer this question, we conducted additional experi-

ments to compare how tightly these algorithms pack jobs into each server.

In our database, each job is defined in four dimensions: core, memory, NIC, and SSD. In Fig-

ure 8.9, we plot the cumulative distribution wasted space for each dimension across the servers used

by each algorithm. The x-axis represents the cumulative number of servers, while the y-axis dis-

plays the corresponding sorted wasted space values for each dimension. From these plots, we can

see that the servers utilized by Hybrid Algorithm have significantly less wasted space across all di-

mensions. This indicates that Hybrid Algorithm achieves tighter packing of jobs, which contributes

to its superior performance.

On the other hand, while Greedy ’s performance is worse than Hybrid Algorithm, it performs

better than Departure Strategy. This is because Greedy exhibits less wasted space in all dimen-

sions—core, memory, NIC, and SSD—compared to Departure Strategy. The tighter packing of

jobs in Greedy leads to improved performance relative to Departure Strategy, even though it still

falls short of the efficiency achieved by Hybrid Algorithm. Finally, algorithms like Departure Strat-

egy show significantly higher wasted space across all dimensions, resulting in poor utilization of

server resources and the lowest overall performance.

8.6.2 Non-clairvoyant Algorithms

Now, let us analyze the performance of the non-clairvoyant algorithms. From Table 8.2, we

observe that among all the non-clairvoyant algorithms, FirstFit demonstrates the best performance,

while NextFit performs the worst. Why is this the case?

To investigate, we conducted the same experiments as we did for the clairvoyant algorithms,

comparing the number of servers used and their durations across all non-clairvoyant algorithms.

The results, summarized in Table 8.6 and illustrated in Figure 8.10, highlight the differences in

server utilization and duration across these algorithms.

Algorithms NextFit MNF WorstFit FirstFit MFF BestFit LastFit Random Fit MoveToFront
Number of Servers 6, 549 6, 549 971 709 709 446 401 362 442

Table 8.6: Number of servers that each non-clairvoyant algorithm used on the full dataset.
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Figure 8.9: Wasted-space of servers for clairvoyant algorithms.

From this figure, we observe that NextFit utilizes nearly 6500 servers in total. While most of

these servers have a short duration, there is a subset with very long durations, which negatively

impacts its performance. In contrast, algorithms like FirstFit and MFF use significantly fewer

servers—around 700 in total—which is considerably less compared to NextFit.

As shown in Table 8.2, the performance of almost all non-clairvoyant algorithms, except for

NextFit and MNF, is relatively close, with FirstFit outperforming the rest. To understand why

FirstFit performs better, we compare these algorithms from the perspective of wasted space across

each dimension. The corresponding wasted resources are depicted in Figure 8.11.
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Figure 8.10: Duration of servers for non-clairvoyant algorithms. Note that due to overlapping values, MFF hides FirstFit, and NextFit
similarly hides MNF.

Figure 8.11: Wasted-space of servers for non-clairvoyant algorithms. Note that due to overlapping values, MFF hides FirstFit, and
NextFit similarly hides MNF.
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8.7 Summary and Discussion

In this chapter, we evaluated the performance of existing clairvoyant and non-clairvoyant algo-

rithms for the RSiC problem using real-world datasets. To the best of our knowledge, this is the

first study to analyze the RSiC problem with real-world data. We also proposed new algorithms

that demonstrate superior performance in experimental evaluations. Our analysis provides valu-

able insights into the effectiveness of these algorithms and establishes a benchmark to guide future

research in this area.

Recall that in the clairvoyant setting job durations are known at the time of job arrivals; in the

weakly clairvoyant setting, jobs are categorized as long or short duration before arrival at the sched-

uler; and in non-clairvoyant setting nothing is known about the job durations at the time of arrivals.

Our experiments with real world data confirm that the clairvoyant algorithms tend to perform better

than the weakly clairvoyant algorithms which in turn tend to perform better than non-clairvoyant

algorithms.

In the clairvoyant setting, Hybrid Algorithm emerged as the most effective algorithm. However,

Greedy stands out as a simpler alternative, avoiding the complexity of Hybrid Algorithm, which

involves server categorization and extensive server usage. By combining the algorithms we were

able to improve on the competitive ratio of Hybrid Algorithm. In particular, Greedy-Hybrid exhibits

the best performance of all known algorithms including Hybrid Algorithm in terms of empirically

derived competitive ratio but is as difficult to implement. Consequently, Greedy-Greedy which also

beats Hybrid Algorithm offers a more practical solution.

In the weakly clairvoyant setting, FirstFit-FirstFit and FirstFit-BestFit have similar performance

and improve upon the empirically derived competitive ratio of both FirstFit and BestFit. Since

BestFit has infinite competitive ratio in the worst case, we recommend using FirstFit-FirstFit as a

safer alternative.

In the non-clairvoyant setting, FirstFit exhibited the strongest performance overall. While

MoveToFront excelled in experiments with random input sequences, its performance with real-world

data was significantly weaker than that of FirstFit. Based on these findings, we recommend using

MoveToFront for datasets with small µ values and FirstFit for datasets with larger µ values.
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Chapter 9

Conclusion

In this thesis, we investigated the RSiC problem, motivated by job allocation to servers in cloud

computing applications. This problem generalizes the bin packing problem by introducing addi-

tional constraints. Bin packing is one of the fundamental problems in combinatorial optimization

with many practical applications, such as cutting stock problem and other problems alike. Despite

50 years of research, bin packing remains a challenging problem. Yet, it represents only a restricted

version of the RSiC problem. Given the difficulty of RSiC, this thesis tackled the problem by first

exploring simpler variations.

First, we dealt with the case of equal job durations and two arrival times. We analyzed two

well-known algorithms, NextFit and FirstFit, and established bounds on their performance. We

proved a tight bound for competitive ratio of NextFit in this regime and in fact for the general

case of equal duration of jobs. For FirstFit we derived a new upper bound by applying the weight

function technique to the RSiC problem. This was the first time that this technique was applied to

the RSiC problem. Building on this, we extended our analysis to the long-running servers version

of the problem and established upper bounds for this case.

Next, we explored another variation where servers are dual-core, jobs arrive at integer times,

and jobs have equal duration of 2. For such inputs, the states of ALG and OPT can be described

and analyzed using a finite state machine. This enables us to show a tight bound on the competitive

ratio of AnyFit algorithms. By a reduction from the binary guessing problem to this problem, we

demonstrated that sub-linear advice is not enough to solve the problem near optimally.
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We also addressed the RSiC problem with limited number of servers, introducing a novel interval

partitioning technique to establish tight competitive ratio bounds. This technique shows potential for

application in broader, unrestricted cases. Lastly, we formalized the notion of instance-dominance

and demonstrated that no single known algorithm is instance-dominant across all possible inputs.

The following questions remain open for these simpler variations of RSiC:

• For the case of equal duration of jobs, we improved the lower bound to 2.519 while the upper

bound for FirstFit is µ+ 1 = 4. Is it possible to close this gap?

• Is it possible to generalize the results for the dual-core server setting to the k-core server

setting?

• Is it possible to extend the analysis of the upper bound for the case with at most 4 servers to

improve the upper bound on the competitive ratio of FirstFit in the k � 5 server case?

Another approach we took to address the RSiC problem was to consider it in the d-dimensional

setting for both clairvoyant and non-clairvoyant algorithms. In this setting, we conducted a compre-

hensive study, establishing a direct sum property that transforms 1-dimensional algorithms into d-

dimensional algorithms with competitive ratios scaled by d. We proposed and analyzed the Greedy

algorithm, Greedy assigns the current job into the server that incurs the least additional cost. We

introduced a new analytical technique that extended to a broader class of monotone algorithms,

including FirstFit, LastFit, and MoveToFront.

In the d-dimensional setting, the following is a list of open problems that we found interesting

for the possible future works:

• Does there exist a randomized algorithm for 1-dimensional clairvoyant RSiC with a competi-

tive ratio of O(1)?

• For the d-dimensional RSiC problem in the non-clairvoyant setting, the lower bound for any

AnyFit algorithm is (µ+ 1)d, and the upper bound is 2µd+ 1. Is it possible to close the gap

between the upper and lower bounds?

• For d-dimensional clairvoyant RSiC, is ⌦(d
p
logµ) a lower bound for any algorithm?
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To evaluate the performance of different algorithms under average-case scenarios, we conducted

a comprehensive experimental study of this problem. The experiments utilized both synthetic ran-

dom data and real-world datasets. Notably, this study is the first to assess algorithmic performance

on real-world datasets for the RSiC problem, offering valuable insights into its practical applica-

tions. We have identified the best performing algorithms for each of the following three settings:

clairvoyant, weakly clairvoyant, and non-clairvoyant.

In conclusion, our research introduced novel algorithms, established new performance bounds,

and advanced analytical techniques to deepen the theoretical understanding of the RSiC problem.

Additionally, we conducted comprehensive experimental studies to evaluate algorithm performance

across diverse scenarios, offering both theoretical insights and practical guidance for real-world

applications.
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