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Abstract 

Cryptocurrency’s Societal Impact: ESG Compliance, Gaming Economies, and Political 
Finance 

Stéphane Sévigny, PhD 
Concordia University, 2025 

This dissertation investigates the transformative role of cryptocurrency across three critical 
domains: environmental, social, and governance (ESG) compliance, blockchain-integrated 
gaming (GameFi), and political finance (PolitiFi). Through a thesis-by-article structure, it 
presents three complementary studies that together explore cryptocurrency’s broader 
societal impact and its implications for innovation in finance and governance. 

The first article critically evaluates Bitcoin’s alignment with ESG criteria, challenging the 
dominant narrative that emphasizes its environmental footprint. Utilizing a novel forecast 
model, the study projects Bitcoin’s energy consumption and highlights overlooked 
contributions to financial inclusion, renewable energy integration, and governance 
transparency. This work offers insights into how Bitcoin’s environmental criticisms may 
be mitigated through technological advancements and innovative mining practices. 

The second article examines the emerging GameFi sector, which bridges decentralized 
finance (DeFi), non-fungible tokens (NFTs), and gaming. By analyzing key developments 
such as play-to-earn models and blockchain gaming’s evolution, the study uses empirical 
methods to explore GameFi’s independence from traditional cryptocurrency markets. It 
reveals how GameFi redefines digital economies, providing new monetization 
opportunities and reshaping value exchange between players and developers. 

The third article introduces PolitiFi, a novel category of cryptocurrencies linked to political 
campaigns and figures. Employing a Vector Autoregressive (VAR) model, the study 
investigates PolitiFi’s market dynamics and its rapid decoupling from traditional meme 
coins. It demonstrates PolitiFi’s potential to engage underrepresented voters, influence 
campaign strategies, and disrupt traditional political finance. 

Together, these studies provide a cohesive examination of cryptocurrency’s societal 
contributions, addressing critical challenges and uncovering opportunities for its 
application in diverse fields. The findings contribute to academic discourse on 
decentralized technologies while offering practical implications for policy-making, 
sustainable finance, and digital innovation. 
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Introduction 

The sophisticated centralized system dominating today's financial infrastructure is the 
result of significant transformations, evolving from its earliest forms of barter-based 
exchanges of goods and services. While effective in small, localized economies, this 
system was inherently limited by the "double coincidence of wants"—the need for two 
parties to have mutually desired goods at the same time (Jevons, 1875; Smith, 1776). The 
introduction of commodity money, such as gold, silver, and other valuable materials, 
addressed these inefficiencies by providing a standardized medium of exchange and 
enabling more flexible trade (Davies, 2002). However, the physical nature of commodity 
money presented challenges, including difficulties in transportation, storage, and valuation 
(Graeber, 2011). 

As economies grew more complex, representative money emerged to address these 
limitations. Banknotes backed by tangible assets like gold reserves allowed for more 
portable and divisible financial transactions, making trade and commerce more efficient 
(Davies, 2002; Redish, 1993). This innovation also enabled the development of early 
financial services, such as lending and borrowing, which had been cumbersome with 
physical commodities (Quinn & Roberds, 2014). The eventual transition to fiat currencies, 
which is money that derives its value from government decree rather than physical backing, 
marked another pivotal shift. Fiat currencies offered greater flexibility in managing 
monetary policy and responding to economic crises, becoming the foundation of modern 
financial systems (Goodhart, 1998; Eichengreen, 2019). 

Fiat-based systems, however, come with their own set of vulnerabilities. Although 
centralized control by governments and central banks has facilitated global commerce by 
providing stability, scalability, and liquidity (Goodhart, 1998; Eichengreen, 2019), it also 
introduces systemic risks. Centralized systems often struggle to adapt to rapid economic 
changes or crises, highlighting their fragility (Allen & Gale, 2000; Gorton & Metrick, 
2012). Exacerbating these issues are high transaction costs, limited accessibility for the 
unbanked, and a lack of transparency in monetary policies (World Bank, 2021). According 
to the World Bank, over 1.4 billion adults worldwide remain unbanked, disproportionately 
affecting populations in developing economies.  
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The 2008 financial crisis brought these inefficiencies into focus. Driven by excessive risk-
taking, opaque financial instruments, and inadequate regulatory oversight, the crisis led to 
widespread economic disruption and a loss of public trust in financial institutions 
(Brunnermeier, 2009; Allen & Carletti, 2010). As Gorton and Metrick (2012) observe, the 
lack of transparency in complex financial products like mortgage-backed securities 
amplified systemic risks. The crisis underscored the limitations of centralized systems, 
particularly their reliance on a small number of institutions that can fail due to poor 
decision-making or mismanagement (Reinhart & Rogoff, 2008). 

In the aftermath of the crisis, fintech innovations emerged as a potential solution (Arner et 
al., 2015). Mobile payment platforms like M-Pesa, peer-to-peer lending networks such as 
LendingClub, and robo-advisors like Betterment have democratized access to financial 
services, addressing key challenges of traditional finance, including high costs and limited 
accessibility (Jack & Suri, 2011; Frame et al., 2018; Philippon, 2017). However, fintech 
innovations rely on intermediaries to function, binding them to centralized frameworks 
(Arner et al., 2015). This dependency reintroduces issues of control and trust, ultimately 
limiting their potential to fully transform financial systems. 

Parallel to these developments, the financial industry sought to create digital money 
capable of blending the accessibility and efficiency of fintech with a decentralized 
framework (Downey, 1996). Early attempts, such as David Chaum’s eCash in the 1990s, 
failed to gain traction due to reliance on centralized intermediaries, limited security, and 
scalability issues (Chaum, 1983; Green & Miers, 2017). These failures highlighted the need 
for a trustless system that could operate without centralized oversight (Maurer et al., 2013; 
Nakamoto, 2008). 

The invention of blockchain technology in 2008 enabled the introduction of Bitcoin as the 
first truly decentralized digital currency, solving the longstanding 'double-spend' problem 
and enabling digital scarcity (Nakamoto, 2008). Blockchain’s decentralized, transparent, 
and trustless design addressed many limitations inherent in centralized financial systems, 
marking a revolutionary shift in the financial landscape (Antonopoulos, 2014; Barber et 
al., 2012). 
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Subsequent innovations in blockchain technology, such as the introduction of smart 
contracts, further expanded its potential. Smart contracts, which are self-executing 
contracts with terms directly written into code, allow for automated and trustless execution 
of complex transactions without intermediaries (Szabo, 1997; Buterin, 2014). This 
innovation set the stage for decentralized finance (DeFi), which seeks to reimagine 
financial services such as lending, borrowing, and trading without relying on traditional 
intermediaries (Schär, 2021). Unlike previous fintech innovations, blockchain-based 
systems offer not only efficiency but also resilience against central points of failure, 
redefining the possibilities for financial inclusion and transparency (Narayanan et al., 2016; 
Gudgeon et al., 2020). 

Within DeFi, decentralized exchanges (DEXs) like Uniswap have emerged as 
transformative platforms, leveraging automated market maker (AMM) models to replace 
traditional order books. As Lehar and Parlour (2023) highlight, Uniswap’s innovative 
liquidity pool mechanism has demonstrated remarkable scalability and stability, handling 
daily trading volumes of up to $7 billion while addressing inefficiencies in traditional 
trading systems. These developments showcase DeFi’s potential to challenge and 
complement existing financial structures while raising questions around governance and 
sustainability. 

While blockchain technology and cryptocurrencies have garnered significant attention for 
their potential to transform the financial system, this promise is accompanied by substantial 
challenges. Emerging innovations like Bitcoin and decentralized finance (DeFi) aim to 
address limitations in centralized systems but simultaneously introduce new complexities. 
Technical inefficiencies, environmental impact, regulatory uncertainty, and the 
pseudonymity that facilitates illicit activities remain central barriers to broader adoption. 
These multifaceted issues underscore the importance of critically evaluating 
cryptocurrencies’ viability as transformative financial instruments. 

A core challenge lies in demonstrating the utility and scalability of cryptocurrencies 
beyond their current perception as speculative assets. While Bitcoin is often heralded as 
“digital gold,” its adoption as a medium of exchange remains limited. Merchant adoption 
is hindered by price volatility, regulatory uncertainty, and integration difficulties with 
existing financial systems. Hileman and Rauchs (2017) highlight the lack of standardized 
payment solutions and banking relationships as critical barriers to broader adoption. 
Furthermore, speculative trading amplifies price instability, reducing cryptocurrencies’ 
appeal as stable financial tools and hindering their scalability beyond emerging 
applications like decentralized finance (DeFi) and non-fungible tokens (NFTs) (Gandal & 
Halaburda, 2016; Aramonte et al. 2021). 
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Bitcoin’s proof-of-work (PoW) consensus mechanism has also attracted substantial 
criticism for its environmental impact. Estimates suggest that global cryptocurrency 
electricity usage in 2022 ranged between 120 and 240 billion kilowatt-hours (kWh), 
comparable to that of Argentina or Australia (OSTP, 2022). Bitcoin alone accounts for 60-
77% of this consumption and is responsible for an estimated 25-50 million metric tons of 
greenhouse gas emissions annually, comparable to emissions from diesel railroads (OSTP, 
2022). Additionally, localized challenges such as electronic waste and grid strain 
exacerbate environmental concerns, even in renewable-powered mining operations. These 
issues highlight the urgent need for more sustainable alternatives, such as proof-of-stake 
(PoS) mechanisms, which consume significantly less energy (OSTP, 2022). 

The inherent volatility of cryptocurrencies further hampers their adoption. Extreme price 
fluctuations, driven by speculative trading and investor herding behavior, undermine their 
role as a stable store of value or reliable medium of exchange. Yermack (2015) notes 
Bitcoin’s annualized volatility rate of 142% in 2013, illustrating the risks associated with 
integrating cryptocurrencies into routine financial activities. Tools like the Cryptocurrency 
Volatility Index (CVIX) (Bonaparte, 2023) underscore the persistent unpredictability of 
these markets, deterring both consumers and institutions from embracing cryptocurrencies 
for everyday use. 

Compounding these issues is the association of cryptocurrencies with illicit activities. Their 
pseudonymous nature facilitates money laundering, ransomware, and darknet transactions. 
Foley, Karlsen, and Putniņš (2019) estimate that nearly half of Bitcoin transactions are 
linked to illegal activity. The growing sophistication of criminal tools, such as mixers and 
cross-chain bridges, further complicates law enforcement efforts (Tziakouris, 2021). High-
profile scandals like the collapse of FTX in 2022 erode public trust, despite advancements 
in blockchain analysis tools aimed at combating illicit use. 

Finally, regulatory uncertainty remains a major barrier to cryptocurrency adoption. 
Inconsistent global policies create a fragmented regulatory landscape, complicating 
compliance for businesses and investors. Decentralized finance participants face legal and 
operational risks due to unclear regulations, as highlighted by Schär (2021). Moreover, 
resistance from traditional financial institutions exacerbates these challenges, with central 
banks perceiving cryptocurrencies as threats to monetary policy and financial stability 
(Auer & Claessens, 2022). The exploration of central bank digital currencies (CBDCs) 
reflects an institutional response to these disruptions but further delays the integration of 
cryptocurrencies into the financial mainstream. 
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Together, these challenges illustrate the complexities of integrating cryptocurrencies into 
broader financial systems. Addressing these barriers requires a nuanced understanding of 
their limitations and risks, balanced against their potential to revolutionize finance. This 
thesis contributes to this critical discourse by examining the societal and financial impacts 
of cryptocurrencies, focusing on environmental concerns, utility limitations, and 
governance issues. Through three distinct yet interconnected chapters, it provides insights 
into the transformative potential of cryptocurrencies while highlighting associated risks. 

The first chapter evaluates Bitcoin’s compliance with Environmental, Social, and 
Governance (ESG) criteria. While Bitcoin’s energy-intensive Proof-of-Work (PoW) 
mechanism has drawn widespread environmental criticism, this chapter reexamines these 
claims using a novel forecasting model to project carbon emissions. It highlights the 
potential for renewable energy adoption and improved mining practices, showing how 
Bitcoin mining can stabilize energy grids by utilizing excess energy. The chapter also 
emphasizes Bitcoin’s social benefits, such as promoting financial inclusion for unbanked 
populations, and its governance strengths, rooted in decentralized decision-making and 
transparency. 

The second chapter explores GameFi as a case study in expanding cryptocurrency utility 
and adoption. By integrating blockchain technology, decentralized finance (DeFi), and 
non-fungible tokens (NFTs), GameFi creates decentralized digital economies where 
players and developers can monetize in-game interactions and assets. This chapter 
demonstrates how GameFi introduces real-world applications for cryptocurrencies, 
decouples blockchain use cases from speculative trading, and fosters sustainable economic 
activity through decentralized gaming ecosystems. 

The final chapter examines PolitiFi, a novel application of cryptocurrencies in political 
finance. PolitiFi tokens engage underrepresented voter demographics, particularly 
younger, tech-savvy individuals, by simplifying political participation through 
decentralized platforms. By leveraging blockchain for campaign finance, these tokens 
enhance transparency, reduce reliance on elite donors, and offer innovative tools for real-
time voter engagement and campaign strategy. This chapter also highlights how PolitiFi 
reflects and shapes voter sentiment, positioning these tokens as both financial instruments 
and vehicles for political narratives. 

By bridging interdisciplinary approaches to sustainable finance, digital innovation, and 
governance, this thesis addresses pressing issues in cryptocurrency adoption and impact. 
Its findings contribute to academic discourse and policy-making by offering solutions to 
key challenges while uncovering opportunities for innovation in cryptocurrency and 
blockchain technologies. 
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Chapter 1: Is bitcoin ESG‐compliant? A sober look  

1.1. Citation 

Proelss, J., Schweizer, D., & Sévigny, S. (2023). Is bitcoin ESG-compliant? A sober 
look. European Financial Management, 30(2), 680–726. doi:10.1111/eufm.12451 

1.2. Abstract 

Much of the media focus surrounding Bitcoin (BTC) has been on the ‘E’ (environmental) 
element of the ESG investing approach. Given the amount of electricity consumed by BTC 
mining, and the resulting large carbon emissions, BTC has faced substantial criticism of its 
overly negative environmental impact, which is critically reviewed in this article. This one‐
sided discussion, however, ignores the ‘S’ (social) and ‘G’ (governance) elements entirely. 
To remedy that, we explore BTC's positive impact on the ‘S’ (user satisfaction, data 
protection and privacy, human rights, and criminal activity), and ‘G’ (accounting integrity 
and transparency, compensation, and principles of good governance) components. 

1.3. Introduction 

On October 28, 2008, a mailing list of known cryptographers received a white paper, 
entitled “Bitcoin: A Peer-to-Peer Electronic Cash System,” from the pseudonymous 
Satoshi Nakamoto (Nakamoto, 2008). The idea of electronic cash (i.e., digital currency) 
was not exactly novel, as it had first been introduced by Chaum (1982). In the years since, 
many iterations of digital currency have been created, but all failed due to their inability to 
solve the “double-spend” problem. Digital assets (e.g., images, video, music) are simply 
unique combinations of binary code, and can thus be easily replicated by duplicating the 
code. The problem of how to prevent a digital asset representing a monetary value (i.e., a 
digital currency) from being duplicated and spent twice (the double-spend problem), 
however, was extremely difficult to resolve.  

The underlying technology described in the Bitcoin1 white paper had existed for some time. 
However, it was not until the creation of a unique combination, which led to the invention 
of blockchain technology and the discovery of true digital scarcity, that the double-spend 
problem was satisfactorily solved. As such, Bitcoin is the first functional digital currency 
that has not yet been hacked. Besides this remarkable innovation, Bitcoin also has 
numerous unique features: It is decentralized, permissionless, and fully transparent. 
Moreover, it requires no intermediaries, and follows a strict monetary policy, with a fixed 
maximum supply of 21 million bitcoin.  

 
1 Bitcoin: Denoted with a capital “B,” it refers to the concept of Bitcoin – the technology, protocol, 
network, etc. Denoted with a lower case “b,” it refers to the asset, or monetary unit of Bitcoin. 
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At its genesis, Bitcoin was broadly dismissed by the financial world. And, although its 
adoption has accelerated significantly, there remains fierce opposition. A multitude of 
narratives continue to dominate news cycles, articles, and even governmental debates (e.g., 
U.S. congressional hearings), including that it is used for criminal activity (Foley, Karlsen, 
and Putniņš, 2019), has no intrinsic value (García-Monleón, Danvila-del-Valle, and Lara, 
2021; Hanley, 2015), is overly volatile (Yermack, 2015), involves too few transactions per 
second (Lee, 2019); is overly vulnerable to attacks (Malhotra et al., 2022), and, lastly, is 
environmentally harmful (Truby et al., 2022).  

The latter narrative is of critical importance to ESG institutional investors interested in 
Bitcoin who may expect higher returns if the “E” is not tackled (Cornell, 2021) or simply 
be prevented from investing due to concerns of the potential valuation effect (Cornell and 
Shapiro, 2021; Krueger, Sautner, and Starks, 2020). Some of the negative narratives persist 
due to the broad lack of understanding of Bitcoin and how it functions. Although the proof-
of-work (PoW) mechanism used by Bitcoin does consume enormous amounts of energy, 
it is instructive to evaluate the real environmental impact of this consumption against that 
of the industries it displaces. We should also consider the additional benefits it provides. 
The environmental narrative is a “low hanging fruit,” so to speak, because it can more 
easily be estimated due to the digital and transparent nature of Bitcoin (vs. that of traditional 
industries). Common criticisms are that Bitcoin emissions alone could push global 
warming above 2°C, and that Bitcoin alone consumes as much electricity as a medium-
sized European country. These critiques are not entirely unfounded, but nevertheless ignore 
Bitcoin’s important social and governance contributions to the ESG discussion.  

In this paper, we aim to evaluate Bitcoin's influence on the three ESG components 
(environmental, social, and governance) separately. By doing so, we contribute to the 
empirical evidence regarding ESG performance, enabling investors to make more informed 
and conscious decisions about investing in BTC from an ESG perspective (Larcker, Tayan, 
and Watts, 2022). Moreover, we consider the implications of observed governance 
structures on stakeholder welfare, as it relates to the decision-making process for Bitcoin's 
governance component, which aligns with Fama's examination of contract structures and 
stakeholder welfare in organizations (Fama, 2021). We begin with an assessment of 
Bitcoin’s direct energy consumption, to estimate current and historical levels, and direct 
carbon emission as a proxy for the “E” (e.g., conserving natural resources). Next, we 
project a range for future energy consumption to determine how it may evolve (assuming 
Bitcoin mining continues in its current form). We note, however, that new methods may 
use less energy, reduce net carbon emissions (or achieve net negative carbon emissions), 
and even find uses for unwanted excess energy. Therefore, we posit that Bitcoin’s current 
“E” score is underestimated, and that predictions about mining-related carbon emissions 
are most likely overrated.  
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We also develop a novel forecast model to estimate the Bitcoin mining-related carbon 
footprint to gauge its environmental impact. When relating it to the literature, we find that 
previous estimations of the carbon footprint have most likely been substantially 
overestimated for various reasons, such as unrealistic assumptions or inadequate prediction 
models.  

In focusing on the “S”, Bitcoin’s extensive network allows for vast opportunities. For 
example, Bitcoin may be used to supply unbanked populations with financial services, such 
as storing wealth, transferring and receiving funds, and serving as an inexpensive 
remittance alternative. Furthermore, Bitcoin mining’s probabilistic nature, and instant “flip 
of a switch” response feature, allows for the consumption of curtailed excess energy while 
providing a rapid demand response. This can aid greatly in stabilizing the grid and energy 
prices. By improving the economics of variable energy production, we believe Bitcoin 
mining will greatly facilitate the overall transition to renewables.  

Within the “G” factor, two primary components significantly impact Bitcoin's governance: 
accounting integrity and transparency, as well as compensation. Accounting integrity 
ensures the accuracy, completeness, and consistency of financial information within the 
Bitcoin ecosystem. The mechanisms underlying Bitcoin's blockchain, including digital 
signatures and time-stamping, provide cryptographic proof of authenticity, effectively 
preventing fraudulent transactions. Furthermore, the blockchain maintains an immutable 
and comprehensive record of all transactions, allowing for comprehensive audits at any 
given time. Consistency is achieved through code that establishes a consistent set of rules 
for validating transactions, ensuring the integrity of the ledger. Transparency, a 
fundamental aspect of governance, is exemplified by Bitcoin's public and distributed 
ledger, enabling independent verification and auditing of transactions. Bitcoin's 
governance operates in a decentralized manner, with decisions made through consensus 
among network participants. The protocol facilitates proposals and voting on changes, 
granting participants a voice in the system's direction and evolution. By embodying 
accounting integrity, transparency, and decentralized decision-making, Bitcoin's 
governance aligns with the principles of good governance, including transparency, 
responsibility, accountability, participation, and responsiveness. Thus, accounting integrity 
and transparency play vital roles in evaluating Bitcoin's governance from an ESG 
perspective. 

Moreover, Bitcoin aligns well with several of the United Nations’ Sustainability 
Development Goals (U.N. SDGs). For example, #1: Ending poverty in all its forms 
everywhere; #7: Providing affordable and clean energy; and #10: Reducing inequality 
within and among countries. Bitcoin also scores high on the “G” (operating standards) 
factor. In fact, Bitcoin’s governance is an almost ideal implementation of the U.N.’s 
Human Rights Council’s five key attributes of good governance: transparency, 
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responsibility, accountability, participation, and responsiveness. Therefore, it also supports 
U.N. SDG #16: Peace, justice, and strong institutions.  

This paper is organized as follows. Section 1.4 describes how Bitcoin’s overall ESG 
performance is assessed. Sections 1.5, 1.6, and 1.7 provide in-depth discussions of 
Bitcoin’s contributions to the “E,” “S,” and “G” factors, respectively. Section 1.8 
concludes.  

1.4. Assessing Bitcoin’s ESG Performance 

Measuring an organization’s ESG performance is never straightforward. But it is even 
more complex for a peer-to-peer network like Bitcoin. As of today, there is no universally 
accepted approach or method to measure ESG metrics. Companies are increasingly 
including disclosures in their annual reports or in standalone sustainability reports, but 
these metrics are not yet part of mandatory financial reporting. Several institutions, such 
as the Sustainability Accounting Standards Board (SASB), the Global Reporting Initiative 
(GRI), and the Sustainable Finance Disclosure Regulation (SFDR), are working to develop 
standards and define materiality to facilitate incorporating these factors into disclosure and 
reporting requirements. However, none of these standards or frameworks precisely defines 
ESG. As a result, a definitive taxonomy of ESG factors is lacking. ESG factors are also 
often interconnected, so it can be challenging to classify an ESG issue as solely an 
environmental, social, or governance issue.  

To explore Bitcoin’s performance on the “E,” “S,” and “G” factors, we first aim to find a 
common denominator with which to measure Bitcoin’s contributions. To this end, we 
research numerous sources, such as the UN’s definition of ESG, in order to ensure 
consistency with the UN’s Sustainable Development Goals. During this process, we 
adjusted some elements of the factors to better fit the context of Bitcoin, which is a network, 
not a company. We note that the ESG factors were originally designed to fit companies.  

We categorize the elements as follows, and discuss the factors in the subsequent sections. 

• “E”: 1. Energy, 2. Pollution, 2.a. Emissions, 2.b. Water, 2.c. Waste 

• “S”: 1. User Satisfaction, 2. Criminal Activity, 3. Data Protection and Privacy, 4. 
Human Rights 

• “G”: 1. Accounting Integrity and Transparency, 2. Compensation, 3. Principles of 
Governance  
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1.5. Environmental, “E” 

A longstanding criticism of Bitcoin and its underlying mechanism, which is referred to as 
“proof-of-work” (PoW), is the amount of energy it consumes. Critics argue that the huge 
energy consumption needed to secure a distributed network and prevent fraud is wasteful. 
Total transaction value per year is a small fraction of total cash transactions, but Bitcoin 
consumes many magnitudes more energy, at about 100 TWh per year (or about 0.16% of 
global consumption). Mora et al. (2018) posit that, if Bitcoin were to scale at the median 
rate of several other technologies, its emissions could unilaterally warm the planet by 2 
degrees Celsius within one to two decades. The network’s energy consumption is 
continuously monitored by the Cambridge Bitcoin Electricity Consumption Index 
(CBECI).  

In 2012, amid mounting concerns about the energy consumption of nascent proof-of-work 
blockchains, Scott Nadal and Sunny King (pseudonym) designed the proof-of-stake (PoS) 
consensus mechanism for their competing blockchain, Peercoin. PoS uses only a fraction 
of PoW’s energy output because no physical or complex work is required to successfully 
append a block. In PoS, miners are replaced by validators or minters, which are essentially 
nodes that hold a pool of native blockchain coins. Owners allocate their coins to a node, 
and the node’s chance of being selected to append a block to the chain is proportional to 
the total percent of coins it is holding. Since its development, many PoS blockchains have 
emerged, such as Cardano, Avalanche, Solana, Algorand, Cosmos, Polkadot, and Tezos. 
The literature on PoS blockchains confirms they can generate consensus and maintain 
network security while achieving many more transactions per second for only a fraction of 
the energy consumption of a PoW blockchain. Nevertheless, there remain some nuances 
and caveats surrounding PoS.  

First, the advantages of PoS come at a cost, one of which is neatly illustrated by the CAP 
theorem, which was developed by computer scientist Eric Brewer in the 1980s. The CAP 
theorem holds that, in any distributed data store, a compromise must always be made 
among consistency, availability, and partition tolerance (CAP). All three are necessary at 
different times, but only two can be guaranteed at all times. Blockchain technology, which 
constitutes an iteration of distributed data stores, suffers from a similar compromise, known 
as the Blockchain Trilemma: Security, decentralization, and scalability are all necessary, 
but only two can exist at any given time. Although each PoS blockchain approaches the 
trilemma differently, they sacrifice on security and decentralization at varying degrees for 
scalability and reduced energy consumption. It therefore becomes important to consider 
the objective and the use case of the blockchain.  
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Bitcoin, on the other hand, was designed as digital money, without a governing body. 
Therefore, a decentralized trustless digital currency system is essential to maintaining the 
integrity of the network and ensuring that transactions are valid and irreversible. 
Prioritizing security not only protects against malicious actors, but it also strengthens trust, 
the resilience of its independent network, resistance to censorship, and protects users from 
theft or fraud. Bitcoin’s security feature aligns with the “G” (Governance) aspect by 
promoting transparency, accountability, and resilience. Bitcoin demonstrates a 
commitment to maintaining a robust and trustworthy financial system that can withstand 
external threats and ensure the integrity of its transactions. This aligns with the principles 
of good governance and responsible management of resources (see section 5). 

In subsection 3.1. Bitcoin Mining, we describe the mining process, and explain why it 
requires substantial energy resources. In subsection 3.2. Forecasting Bitcoin-Related 
Energy Consumption and Carbon Emissions as well as 3.3. Energy and Emissions, 3.4. 
Water, and 3.5. Waste, we evaluate the “E” factor, under which we define how the Bitcoin 
network impacts the environment: 1. Energy, 2. Pollution, 2.a) Emissions, 2.b) Water, and 
2.c) Waste.  

1.5.1. Bitcoin Mining 

Mining, performed by nodes, is the process of assembling blocks of Bitcoin transactions 
and hashing the data of that block. The SHA-256 algorithm is used to generate an output, 
with the number of leading zeros determined by current network difficulty. Difficulty in 
turn is determined by targeting an average number of blocks per hour. If blocks are 
produced too quickly, difficulty is increased. Therefore, because every additional leading 
zero increases difficulty exponentially, either more time or more computational power to 
perform hashing is required. With the shift from hashing using CPUs to application-
specific integrated circuits (ASICs), rapid technological innovation in computing, and a 
strong economic incentive, the amount of active miners and total difficulty have 
skyrocketed.  

For perspective, as of December 31, 2022, the total Bitcoin network had a hash rate of 
253.1 million tera hashes per second (TH/s). This means, on average, 2.53 x 1020 hashes 
are required before a miner creates a block (~10 minutes) that meets the target difficulty 
and is accepted to be appended to the blockchain. The hash rate is a measure of the 
computing power provided by the miners in the Bitcoin network. It is estimated from the 
number of blocks being mined and current block difficulty, since the exact hashing power 
is unknown. This process is often referred to as “solving a math problem,” and is commonly 
viewed as trivial and a waste of resources. However, it is what makes transactions final and 
Bitcoin’s blockchain immutable. Note that, to modify a past transaction, the work (hashing) 
for that block, along with all subsequent blocks, needs to be redone in order to supplant the 
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work done by the honest mining nodes. But, as subsequent blocks are added, and total 
network hash rate increases, modifying past transactions becomes virtually impossible.   

Arguably, one reason Bitcoin has survived this long is due to its seemingly perfectly 
balanced incentive structure and underlying game theory (Han et al., 2012; Bengtsson and 
Gustafsson, 2022). Unlike equity, or other crypto currencies (alt coins), where early 
investors are afforded favorable terms, Bitcoin’s supply is fairly awarded at a 
predetermined rate to the miner that successfully appends a new block. Initially, miners 
were awarded 50 BTC per block, which has halved every 210,000 blocks (~4 years) until 
today, where they currently receive 6.25 BTC. The limited supply and predictable issuance 
schedule have played an important part in the meteoric rise of bitcoin’s price, which 
provides a strong incentive to contribute to the network by mining. 

At its core, mining is a simple process that only requires a computer to run a mining node 
(program) and perform hashing computations. For a small-scale miner, the costs are just 
the hardware and the electricity it consumes. Revenue can be generated from the coinbase 
reward (for successfully appending a block), as well as from transaction fees for all the 
transactions included in the block.  

Once in operation, two other variables can influence the economics: 1) the difficulty 
adjustment, which “tunes” the total difficulty based on total network hash rate and occurs 
every 2,016 blocks (approximately two weeks), and 2) the variable price. Miners do not 
earn revenue unless they successfully append a block, so an increase in network difficulty 
reduces the probability of success, despite the continuing costs of operation. Therefore, the 
average cost to mine a Bitcoin can theoretically be determined. And, if the bitcoin price 
remains above it, it is economically viable to mine.  

However, generating a block that meets the difficulty target is purely probabilistic. As the 
network size grows, the average cost to mine a block becomes increasingly unreliable and 
may become economically unviable. To circumvent this problem, miners can contribute 
hash rate to a mining pool to generate scale. If the pool succeeds at mining a block, they 
will be compensated accordingly, minus a fee (Cong et al. 2019). Because of all these 
factors, scaling up a mining operation can be extremely lucrative. Larger-scale operations 
resemble data centers, with special electrical infrastructure to power the miners, a large 
area to house racks of miners, ventilation and cooling to mitigate heat waste, and an 
inexpensive energy source.  

However, establishing a large mining operation, although lucrative, is also very capital-
intensive. This is exacerbated by the fact that revenue is generated in bitcoin. Because of 
bitcoin’s aggressive price appreciation during each so-called bull cycle, miners seek to 
maximize bitcoin accumulation, and only sell when necessary or most opportune. Thus, 
liquidating bitcoin to secure operating cash flow can hinder long-term earning potential. 
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This has led large mining operations to go public, particularly since 2021, mainly via 
SPACs, to gain ready access to capital (Cumming, Haß, and Schweizer, 2014). In these 
cases, the sizes of their operations have grown exponentially. For example, Bitfarms 
reported an average of 1.2 EH/s in Q1 2021, which grew to 4.5 EH/s by 2022 year-end (see 
Bitfarms, 2023). The megawatt capacity of their facilities has evolved from 14 MW in 
2017, to 69 MW in 2020, 106 MW in 2021, and 188 MW in 2022. 

The mining process by design tethers the digital network to the physical world by requiring 
costly real work be done. The method is both simplistic and designed to be scalable. The 
incentive mechanism for miners ensures that new coin supply is issued as transactions are 
processed. Moreover, as the value of the network (market capitalization) grows, the 
security of the network must also scale up. Network security is encompassed by total 
network hash rate and network difficulty, which ultimately means more hashing is needed 
to successfully append a block. This results in higher costs in electricity consumption per 
block, meaning that any dishonest actors must expend increasing amounts of capital to 
modify a block or include an invalid transaction. The cost of conducting a fraudulent 
transaction has grown to the extent that it would only really be possible for select nation 
states, and only for a short time. However, the network is further protected by its incentives. 
In this way, more favorable economic outcomes accrue for honest contributions to the 
network. 

1.5.2. Forecasting Bitcoin-Related Energy Consumption and Carbon Emissions 

In this section, we explore the future energy consumption and carbon footprint of the 
Bitcoin network by developing a forecast model that links bitcoin price distribution to the 
mining hash rate. The latter approximates the computational power of the Bitcoin network 
that can be used to estimate related energy consumption and CO2 emissions.  

Note that prior studies that attempted to estimate Bitcoin’s energy consumption and related 
carbon footprint either used incorrect assumptions and/or made manual mistakes. These 
resulted in highly overstated numbers. However, these studies were frequently picked up 
by the popular media, and have contributed to the negative narrative surrounding Bitcoin. 
We aim to counter the prior false assumptions by providing recent and more accurate 
estimates and forecasts about Bitcoin’s energy consumption and carbon emissions.  
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1.5.2.1. Methodology 

Previous studies have researched the connection between hash rate and bitcoin prices and 
often used hash rate movements to predict bitcoin prices, and vice versa (e.g., Fantazzini 
and Kolodin, 2020; Hayes, 2019; Aoyagi and Hattori, 2019). Hash rate, energy efficiency, 
and production cost are the input factors. We build our prediction model following 
Fantazzini and Kolodin (2020), who find evidence for the existence of a unidirectional 
Granger causality and cointegration from bitcoin price to hash rate. This type of 
relationship between the commodity price and extraction/excavation equipment is well 
established in energy economics. 

Economic reasoning suggests that the commodity price (for example, oil prices/returns) 
affects demand for the equipment (for example, drilling rigs), but not vice versa (see, e.g., 
Khalifa, Caporin, and Hammoudeh, 2017). Following previous research, we focus on the 
bivariate relationship between hash rate and bitcoin price, rather than using multivariate 
models such as production cost models. To model the relationship, we estimate a bivariate 
VAR model, as an extension to AR or ARIMA models allowing for multiple independent 
variables but without enforcing a causal relationship between hash rate and bitcoin price. 
Past research found a long-run relationship between bitcoin price and various factors, 
including bitcoin supply, investor sentiment, hash rate, market capitalization, and gold 
prices (see, e.g., Zwick and Syed, 2019; Dubey, 2022; Gaies et al., 2023). To allow for a 
possible long-run relationship between bitcoin price and hash rate, we also consider a 
VECM model as an extension to the VAR model, as follows (see also Fantazzini and 
Kolodin, 2020; and Sa-ngasoongsong et al., 2012): 

1. We test for structural breaks in the data, which could result from, e.g., the three 
previous halving events that led to a reduction in the mining reward (November 28, 
2012; July 9, 2016; May 11, 2020). 

2. We then test for stationarity, and identify the order of integration and optimal VAR 
lag-length using information criteria. We also test for the existence of a long-run 
relationship using a cointegration rank test. We determine the optimal VECM model 
in case of such a relationship.  

If we find evidence for a statistically significant unidirectional relationship between the 
bitcoin price and hash rate, we use bootstrapping (random sampling with replacement) of 
actual biweekly bitcoin returns. Based on our results for structural breaks, we are able to 
determine the start date of the observation period for the bootstrapping. Furthermore, 
applying a Monte Carlo bootstrapping technique allows us to simulate a bitcoin price 
trajectory distribution.2 We can then use dynamic one-step-ahead forecasting with our 

 
2 We bootstrap 5,000 x 100 biweekly Bitcoin returns, which will be used to generate 5,000 possible Bitcoin 
price trajectories for a 200-week forecast period.  
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model framework (VAR or VECM) to estimate 100 subsequent biweekly expected hash 
rates, depending on simulated bitcoin prices. We roll the window for the model parameter 
estimation forward so that the latest bootstrapped bitcoin return is included in the parameter 
estimation for the subsequent forecast. 

The advantage here is that we can avoid long forecast periods without updating estimation 
parameters or bitcoin prices. We can then convert the hash rate to energy consumption, 
based on miner efficiency. Finally, we can convert into a CO2 consumption estimate based 
on the respective country’s contribution to the hash rate (using data from the Cambridge 
Centre for Alternative Finance). The carbon footprint in turn is based on the energy 
production sources (e.g., hydro or nuclear) in the countries that contribute to the hash rate 
(using data from IEA statistics).  

1.5.2.2. Data 

Average hash rate is measured in exa hashes per second (EH/s), and has been obtained 
from www.BTC.com on a biweekly basis since the first block was mined on January 3, 
2009. Bitcoin (BTC) prices in USD are obtained from CoinGecko, and are based on the 
global volume-weighted average beginning April 30, 2013, and ending July 7, 2022. 
Combining both datasets, we obtain a sample of 254 biweekly observations.  

Table Chapter 1-1 describes our data and sources. Figure Chapter 1-1 shows the 
development of average hash rate in EH/s (blue line) compared to BTC price in USD (red 
line). We calculate CO2 emissions per EH/s by country based on data from the International 
Energy Agency. 

Table Chapter 1-1: Variable Description 

This table summarizes the data used and provides a description of their calculations as well as the database 
from which it is obtained.  

Variable Name Description / Calculation Database 

Bitcoin price 
(USD) 

CoinGecko provides the Bitcoin price based on a global volume-
weighted average price, beginning April 30, 2013 
(see https://www.coingecko.com/en/coins/bitcoin). 

CoinGecko 

Average Hash 
Rate 

BTC.com provides biweekly statistics for average hash rate 
beginning January 27, 2009 
(see https://btc.com/stats/diff). 

BTC.com 

CO2 Emissions  
International Energy Agency (IEA) Emissions Factors – CO2 

emissions per kwh of electricity only (gCO2/kWh) 
(see https://www.iea.org/data-and-statistics). 

IEA 
Emissions 
Factors 

Hash Rate 
Country Split  

Average monthly hash rate share by country and region, based on 
geolocation of mining pool data 

(see https://ccaf.io/cbeci/mining_map). 

Cambridge 
Centre for 
Alternative 
Finance 



 16 
 

Figure Chapter 1-1: Hash Rate and BTC Price 

This figure shows average hash rate development (in EH/s) and average Bitcoin price (in USD) from April 
30, 2013 to July 7, 2022.  

 

1.5.2.3. Results 

In line with the literature, we use log-transformed variables in our analysis, as both EH/s 
and BTC are highly skewed. We first analyze whether the log-transformed hash rate and 
the bitcoin price time series are stationary and have structural breakpoints. To this end, we 
employ a series of tests, including the traditional Dickey-Fuller test (DF); the Zivot and 
Andrews test (ZA), which allows for one structural break; and the Clemente-Montañés-
Reyes test (CMR), which allows for two structural breaks (see Clemente, Montañés, and 
Reyes, 1998; Perron and Vogelsang, 1992; Zivot and Andrews, 1992). 

The bitcoin price literature shows that testing for structural breaks is important in the crypto 
asset space. Such events include halving approximately every four years, the introduction 
of derivatives (2011), the introduction of Bitcoin ETFs (2021), and bitcoin booms, such as 
in 2013 (2014-2015 crash), 2017 (2018 crash), and 2020 (2022 crash). These events could 
cause a structural break in the time series, which may bias models and forecasts (see, for 
example, Corbet, Lucey, and Yarovaya, 2018; Fry, 2018; and Fantazzini and Kolodin, 
2020). Test results are in Table Chapter 1-2. 
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The Dickey-Fuller test statistics show that the bitcoin price time series was not stationary 
over the sample period. This is in line with the literature on bitcoin prices, and with the 
findings of Fantazzini and Kolodin (2020) (see Table Chapter 1-2, and Figure Chapter 1-8 
in Appendix A). However, we cannot reject the stationary hypothesis for the hash rate for 
all tests. Based on the structural break tests by Zivot-Andrews (1992) and Clemente-
Montañés-Reyes (1998), we find support for at least one structural break for bitcoin prices. 
However, both suggest that the first break occurred in Spring 2017.  

We opt to use the Clemente-Montañés-Reyes test to begin our sample period, which 
indicates a breakpoint on March 17, 2017. This is very close to that identified by Zivot-
Andrews (see Table Chapter 1-2). We choose Clemente-Montañés-Reyes’s test because it 
is an “innovation outlier” test and therefore allows for a gradual shift in time series data. 
Because we use bootstrapping to forecast a bitcoin price distribution in our later analysis, 
we should only consider historical observations. These do not feature any break in their 
overall trends. We therefore believe this test provides the most useful breakpoint 
information for our purposes.  

We establish a subsample beginning after the breakpoint, from March 17, 2017, to July 7, 
2022, for further analysis. This is the most recent period. It is arguably the most 
representative for future bitcoin price development, because it includes periods of steep 
price appreciation and depreciation as well as periods of stability.  

Table Chapter 1-2: Test for (Trend) Stationarity and Structural Breaks 

This table shows the results for different unit root tests for the log-transformed variables and their differences 
in order to test for level of integration 𝐼(1), allowing for breakpoint(s) with the null hypothesis (H0): The 
time series variable has a unit root (“Dickey-Fuller with trend”). Clemente-Montañés-Reyes (IO) refers to 
the “innovation outlier” test, allowing for a gradual shift in the mean of the series. ***, **, * indicate we 
cannot reject H0 of the unit root at the 1%, 5%, 10% significance levels, respectively. 

Test Variable Test statistics crit. value 5% Break Date(s) 
Dickey-Fuller with trend Log(EH/s) -6.908*** -3.43 ./. 
Dickey-Fuller with trend Log(BTC) -1,757 -3.43 ./. 

Zivot-Andrews Log(BTC) -3.432 -4.80 Apr 13, 2017 
Clemente-Montañés-Reyes 

(IO) Log(BTC) -4.581 -5.49 Mar 17, 2017 
Oct 4, 2020 

Dickey-Fuller with trend D.Log(EH/s) -11.089*** -3.43 ./. 
Dickey-Fuller with trend D.Log(BTC) -13.366*** -3.43 ./. 
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In the next step, we determine the optimal lag structure to estimate a stationary VAR model. 
We also test for causality, as per Toda and Yamamoto’s (1995) approach, to account for 
integration. We use the following equations for log-transformed variables, 𝐸𝐻/𝑠!  and 
𝐵𝑇𝐶!: 

𝐸𝐻/𝑠𝑡 = 𝜇1 + ∑ 𝛼𝑖𝐸𝐻/𝑠𝑡−1
𝑝+𝑚

𝑖=1
+ ∑ 𝛽𝑖𝐵𝑇𝐶𝑡−1

𝑝+𝑚

𝑖=1
+ 𝑢1𝑡, (1) 

𝐵𝑇𝐶𝑡 = 𝜇2 + ∑ 𝛾𝑖𝐵𝑇𝐶𝑡−1
𝑝+𝑚

𝑖=1
+ ∑ 𝛿𝑖𝐸𝐻/𝑠𝑡−1

𝑝+𝑚

𝑖=1
+ 𝑢2𝑡, (2) 

where 𝜇 is the constant term, 𝑚 is the maximal order of integration of the variable, and 𝑝 
is the optimal lag lengths for the hash rate ( 𝐸𝐻/𝑠! ) and bitcoin price ( 𝐵𝑇𝐶! ). 
𝛼" , 𝛽" , 𝛾" , 	and	𝛿" are the short-run dynamic coefficients. The error terms are assumed to be 
white noise.  

To perform the Toda and Yamamoto (1995) test, we need to determine the order of 
integration for each variable. For the full sample, we find that the bitcoin price is integrated 
at 𝐼(1), but the hash rate is not (see Table Chapter 1-2). In unreported results, however, we 
find that both variables are integrated at 𝐼(1) for the subsample period according to a DF 
test. So we set 𝑚 = 1  for both the full sample and the subsample. We use the Final 
Prediction Error (FPE), Akaike’s information criterion (AIC), Schwarz's Bayesian 
information criterion (SBIC), and the Hannan and Quinn information criterion (HQIC) to 
identify the optimal lag-order for the VAR model (see results in Table Chapter 1-3). We 
find ambiguous results for our full sample, so we opt for both	𝑝 = 3 and 𝑝 = 1, and test 
for any remaining autocorrelation in the VAR model by using a Lagrange multiplier test. 
The test shows that H0 (no autocorrelation) cannot be rejected if we use 𝑝 = 3, but it is 
rejected at the 1% level if we set 𝑝 = 1. We also cannot reject H0 for our subsample with 
𝑝 = 1.  

Table Chapter 1-3: Optimal Lag 

This table summarizes the outcome for optimal lag choice according to AIC, HQIC, and SBIC for the full 
sample and subsample. 

Variable 
Optimal Lag 

(FPI) 
Optimal Lag 
(AIC) 

Optimal Lag 
(HQIC) 

Optimal Lag 
(SBIC) 

Full sample 3 (-0.0001) 3 (-3.4424) 1 (-3.3783) 1 (-3.3269) 
Subsample 1 (-0.0001) 1 (-3.1800) 1 (-3.1292) 1 (-3.0551) 
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In sum, for the full sample, we set 𝑝 +𝑚 = 4, and, for our subsample, we set 𝑝 +𝑚 = 2. 
Following Toda and Yamamoto (1995), we perform Granger causality (the Wald test) on 
the unrestricted [restricted] VAR using 𝑝 +𝑚  [𝑝  only]. We find a significant causal 
relationship from hash rate to bitcoin price (p = 0.0002) [p = 0.0000] for our full sample, 
and for our subsample (p = 0.0986) [p = 0.0408]. We also observe a significant causal 
relationship from bitcoin price to hash rate for our full sample (p = 0.0686) [p = 0.0222], 
but not the subsample (p = 0.2553) [p = 0.6274] using the (unrestricted) [restricted] VAR 
models.  

Next, we test for cointegration using a Johansen test. We consider VECM as an alternative 
to the previous VAR model in case of a long-run relationship between hash rate and bitcoin. 
We use the following equations for log-transformed variables 𝐸𝐻/𝑠! and 𝐵𝑇𝐶!: 

∆𝐸𝐻/𝑠𝑡 = 𝜇1 + ∑𝛼𝑖∆𝐸𝐻/𝑠𝑡−1
𝑝−1

𝑖=1
+ ∑𝛽𝑖Δ𝐵𝑇𝐶𝑡−1

𝑝−1

𝑖=1
+ 𝜆1𝐸𝐶𝑇𝑡−1 + 𝜏1𝑡 + 𝑢1𝑡, (3) 

Δ𝐵𝑇𝐶𝑡 = 𝜇2 + ∑𝛾𝑖Δ𝐵𝑇𝐶𝑡−1
𝑝−1

𝑖=1
+ ∑𝛿𝑖∆𝐸𝐻/𝑠𝑡−1

𝑝−1

𝑖=1
+ 𝜆2𝐸𝐶𝑇𝑡−1 + 𝜏2𝑡 + 𝑢2𝑡, (4) 

𝐸𝐶𝑇𝑡−1 = 𝜇3 + 𝜁𝑗𝐵𝑇𝐶𝑡−1 + 𝜌1𝑡, (5) 

where 𝜇  is the constant term, 𝑝  is the optimal lag lengths, 𝛼" , 𝛽" , 𝛾" , 𝛿" , and	𝜁#  are the 
dynamic coefficients of the model’s adjustment to long-run equilibrium, 𝜆" is the speed of 
the adjustment with negative sign, and 𝐸𝐶𝑇!$%  is the error correction term (the lagged 
value of residuals obtained from cointegrated regression). It contains the long-run 
cointegration relationship, with 𝜌 representing the trend.  

Following our results for the VAR model, we assume a maximum lag of three for the full 
model, and one for the subsample on which we perform the Johansen test of cointegration 
with trend. For our full sample, the trace value (73.14) for rank = 0 exceeds its critical value 
at the 1% level (30.45), and we can reject the null hypothesis of no cointegration. At rank 
= 1, the trace value (6.26) is less than its critical value at the 1% level (16.26). Thus, we 
fail to reject the null hypothesis. Based on the Johansen test, there is one cointegration 
relationship between our two variables. For our subsample, we fail to reject the null 
hypothesis for no cointegration assuming a trend (trace value = 16.28, with critical value = 
23.46) at the 1% level, but not the 10% level.  
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Table Chapter 1-4 reports the estimation results for our full sample, using the VECM model 
with trend (and the VAR model as a robustness check), and the VAR model for our 
subsample (with the VECM with trend as a robustness check). We also conduct a series of 
post-estimation tests, and find no remaining autocorrelation. Our estimation fulfills the unit 
root requirement. However, error terms for some equations are non-normally distributed. 

In the final step, we conduct an out-of-sample forecast on the average hash rate to test 
respective forecast quality using dynamic forecasting. To this end, we re-estimate our 
models in Table Chapter 1-4, removing the last thirteen (seven) observations, half a year 
(three months) from the estimation. We then compare the actual observed values with the 
forecasted values for the hash rate to visualize forecast accuracy.  

Figure Chapter 1-2 plots the average observed hash rate and the respective forecasts. 

Furthermore, we calculate a series of measures of forecast accuracy, including root mean 
squared error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE), 
and Theil’s U. According to these measures, our preferred models, which outperform the 
other choices on average, are the VEC for the full sample and the VAR for the subsample. 
Overall, the VAR model for the subsample seems to produce the best short-term forecasts 
(see Table Chapter 1-5).  

Subsequently, we use bootstrapping of biweekly bitcoin returns to estimate 5,000 bitcoin 
price trajectories for a 200-week period (four years). This allows us to estimate the bitcoin 
price distribution at any point over the next four years. One advantage of this method is 
that we do not need any distribution assumptions. The technique is well established in the 
financial literature for estimating, e.g., a distribution of returns, or for assessing the 
predictive ability of technical trading rules.  

  



 21 
 

Table Chapter 1-4: Estimation Results 

This table shows the estimation results for our VAR and VECM models for the full sample (April 30, 2013-
July 7, 2022) and subsample (March 17, 2017-July 7, 2022). Formatting in “bold” indicates the main model 
is based on the pre-estimation test. If a variable estimate is not filled, it means it was not estimated based on 
the pre-estimation test, or is not required for the model. *, **, and *** indicate statistical significance at the 
10%, 5%, and 1% levels, respectively. 

 Full Sample Subsample 

VAR / VECM VAR 
(𝒑 = 𝟑,𝒎 = 𝟏) 

VECM 
(𝒑 = 𝟑, 𝒓 =1) 

VAR 
(𝒑 = 𝟏,𝒎 = 𝟏) 

VEC-Model 
(𝒑 = 𝟏, 𝒓 =1) 

Eq. (1), (3), (5) 
L1.EH/s / 𝜟L1.EHs 1.0605*** 0.0791 0.9681***  
L2.EH/s/ 𝜟L2.EHs 0.0310 0.1071*   
L3.EH/s -0.1145*    
L1.BTC/ 𝜟L1.BTC 0.0389 0.0127 0.0190**  
L2.BTC/ 𝜟L2.BTC 0.0322 0.0439*   
L3.BTC -0.0476*    
𝝁𝟏 -0.1067*** 0.02476* -0.01935 -0.0006*** 
𝝉𝟏  -0.0001  0.0710*** 
𝝀𝟏  -0.0205***  -0.0004** 
𝜻𝒋   -1.5111***  -62.1496*** 
𝝁𝟑  7.4913 -0.01935 510.9624 
𝒑𝒋  0.0109  0.9843 

Eq. (2), (4) 
L1.EH/s / 𝜟L1.EHs 0.0189 0.0327 -0.0095  
L2.EH/s/ 𝜟L2.EHs 0.4279* 0.4599***   
L3.EH/s -0.4299***    
L1.BTC/ 𝜟L1.BTC 1.16867*** 0.1950*** 0.9771***  
L2.BTC/ 𝜟L2.BTC -0.2413** -0.0492   
L3.BTC 0.0456    
𝝁𝟐 -0.1067** 0.0302 0.2712* 0.0352 
𝝉𝟐  -0.0001  -0.0003 
𝝀𝟐  0.0171**  0.0008* 
Nobs 251 251 142 142 
R² (Eq1) / R²(Eq3) 0.9997 0.6471 0.9962 0.2144 
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Figure Chapter 1-2: Hash Rate Price - Out-of-Sample Forecast 

This figure shows out-of-sample forecasts for Log(EH/s) using VAR and VEC models as specified in Table 
4 and adjusted for the data calibration period starting April 30, 2013 and ending January 8, 2022 for the full 
sample (Panel 1) and starting March 17, 2017 and ending March 13, 2022 for the subsample (Panel 2). 
Observations after the calibration period through July 7, 2022, are used to estimate forecast quality. 

Panel 1: 

 

Panel 2: 
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Note that our goal is not to forecast actual bitcoin prices, but to gain a fuller understanding 
of the expected bitcoin price trajectory distribution, including tails (see Kachnowski, 2020; 
Ruiz and Pascual, 2002; Trimono et al., 2021). Based on the sample of biweekly bitcoin 
returns during the subperiods beginning March 17, 2017, and July 7, 2022, we bootstrap 
5,000 x 100 biweekly bitcoin returns (four-year period). The cumulative return path is 
converted into a bitcoin price trajectory. In total, we thereby simulate 5,000 possible bitcoin 
price trajectories over the subsequent four years. It also makes economical sense to use the 
aforementioned subperiod, because Bitcoin has matured greatly since its introduction. The 
course of its movement patterns and overall economic importance have shifted 
significantly. 

Table Chapter 1-5: Forecast Quality 

This table shows the root mean squared error (RMSE), mean absolute error (MAE), mean absolute percent 
error (MAPE), and Theil’s U for our various models using the data covering April 30, 2013-January 8, 2022 
for our full sample, and March 17, 2017-January 8, 2022 for our subsample to calibrate our models, and data 
from January 21, 2022-July 7, 2022 to estimate forecast quality. Bold indicates best forecasting model for 
the respective sample, and the cursive best model overall according to the different forecast quality measures. 

 
VAR (full sample) VEC (full sample) VAR (subsample) VEC (subsample) 

6-month (13-observation) forecast 
RMSE 0.0595 0.0548 0.0650 0.2401 
MAE 0.0467 0.0493 0.0589 0.2255 
MAPE 0.0010 0.0011 0.0013 0.0048 
Theil's U 1.5032 1.3864 1.6433 6.0667 

3-month (7-observation) forecast 
RMSE 0.1006 0.0758 0.0413 0.0665 
MAE 0.0799 0.0602 0.0344 0.0609 
MAPE 0.0017 0.0013 0.0007 0.0013 
Theil's U 2.9282 2.2069 1.2026 1.9367 
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Figure Chapter 1-3: Cumulative BTC Log-Return Simulation and Resulting Log 
(BTC) 

This figure illustrates the transformed-to-log (BTC) prices over 100 periods calculated from the first ten 
cumulative bitcoin log-return Monte Carlo simulations (1 period is equal to 2 weeks).  
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Figure Chapter 1-3 illustrates the first ten cumulative bitcoin log-return simulations 
transformed-to-log (BTC) prices. In the following analysis, we are interested in the median 
expected bitcoin price, as well as the 95% upper and 5% lower bounds for expected bitcoin 
prices over the next 100 observations (or four years for the 5,000 bitcoin price trajectories). 
To obtain a more robust estimate for the 95% upper and 5% lower bounds, then we take 
the average over 10% best- and (worst-) performing simulation paths for bitcoin price 
trajectories, based on the observed outcome in t = 100 (end of year 4). We calculate the 
median by taking the average of the 45% and 55% quintiles for bitcoin price trajectories. 
We can then use the forecasted bitcoin prices to obtain updated forecasts for the expected 
hash rate.  

In sum, we conduct a dynamic forecast updating model parameters and bitcoin prices 
(based on our bootstrapping approach) for each subsequent biweekly period. In this way, 
we can obtain the hash rate over the subsequent four-year forecast period. 
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Figure Chapter 1-4: Hash Rate Price – Out-of-Sample Forecast 

This figure displays the long-term dynamic out-of-sample forecasts (LT) for the Hash Rate - Log(EH/s) - 
using the VAR (p=1, m=1) model and bitcoin price simulations for the subsample period for calibration. It 
includes the 5% lower and 95% upper credible bounds with dynamic forecasting. UPD, demonstrates how 
dynamic forecasts evolve by predicting hash rate using updated outcome values from previous periods, 
spanning a total of 100 observations or four years. 

 

Figure Chapter 1-4 illustrates the long-term out-of-sample forecasts for our VAR (𝑝 =
1,𝑚 = 1) model specified in Table Chapter 1-4 (using the subsample period to calibrate 
the model). It includes 95% lower and upper credible bounds using dynamic forecasting 
(with and without bitcoin price simulations). For comparison purposes how dynamic 
forecasts change, Figure Chapter 1-4, UPD, predicts hash rate and bitcoin prices for the 
next period by using updated (predicted) outcome values at previous periods, for a total 
period of 100 observations (four years).  

However, this prediction does not update bitcoin prices, and is thus rather static. We modify 
our dynamic forecast in two ways: 1) We replace the bitcoin price with our price 
simulations, and 2) we re-estimate the VAR model with the updated information for each 
new estimate. Figure 4, LT, shows our prediction results for the average hash rate using 
median expected bitcoin, as well as the 95% upper and lower bounds.  
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1.5.3. Energy and Emissions 

To calculate Bitcoin’s energy consumption, we convert our forecasted hash rate into 
Bitcoin’s carbon footprint. We use forecasted computing power (hash rate) to draw 
conclusions about required power consumption. Table Chapter 1-9 in Appendix A provides 
an overview of Bitcoin miners, and reports average hash rate, power consumption (watts), 
and profitability (as of July 7, 2022), sorted by manufacturer and model.3 Based on the 
observable average hash rate of the Bitcoin network, which was 208.52 EH/s (see Figure 
Chapter 1-1 on July 7, 2022), the mean hash rate (in TH/s) for the average profitable single 
Bitcoin miner is 90.3 TH/s. Average required energy consumption would be 3,254 watts 
(see Table Chapter 1-6).  

Table Chapter 1-6: Average Profitable Bitcoin Miner’s Hash Rate and Power 
Consumption 

This table shows for various profitable Bitcoin miners the average Hash Rate and energy consumption based 
on the market share.  

Manufacturer 

Average 
Age 
(Oldest 
Profitable) 

Hash 
Rate 
(in 
TH/s) 

Power 
(in W) 

Efficiency 
(in 

W/TH) 

Revenue 
(in 
$/day) 

Profit  
(in 
$/day) 

Market 
Share 

Bitmain 
(Antminer) 2.0 (3.7) 93.0 3,124 33.6 8.57 4.08 59% 

Canaan  
(Avalonminer) 1.5 (2.0) 84.8 3,404 40.1 7.82 2.94 9% 

MicroBT 
(Whatsminer) 1.8 (3.4) 92.3 3,600 39.0 8.51 3.30 27% 

Others 2.9 (3.1) 57.6 2,655 46.1 5.30 1.48 5% 
Mean 

(Profitable 
Miner) 

 90.3 3,254 36.3 ± 5% 8.32 3.64  

To provide computing power of 208,520,000 TH/s, we would need 2,309,191 (= 
208,520,000 TH/s/90.3 TH/s) average miners. Given the average rate of power flow per 
miner of 3,254 watts, the total power of the Bitcoin network needed is calculated as 7,514 
MW (= 3,254 watts x 2,309,191/1,000,000) to run the network for one hour, or 65.82 TW 
per year (= 7,514 MW x 24 x 365/1,000,000). To calculate total CO2 emissions, we need 
to consider the energy source, e.g., whether renewable or coal. We therefore assess the 
percentage contributed by each country to the hash rate, the related energy consumed, and 
the related CO2 emissions in the respective country to calculate total CO2 needed to power 
the Bitcoin network for one year (see Table Chapter 1-7).   

 
3 See https://hashrateindex.com/rigs or https://miningstore.com/understanding-the-bitcoin-mining-rig-
market/.  
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Table Chapter 1-7: Hash Rate, Energy Consumption, and CO2 Emissions per 
Country 

This table presents the computation of the total CO2 emissions associated with powering the Bitcoin network 
for one year, taking into account the varying energy sources used, whether e.g. renewable or coal-based. It 
evaluates the percentage contribution of each country to the total Hash Rate, and by extension, the energy 
consumed and the related CO2 emissions specific to each country. These figures are then aggregated to 
provide an estimation of the total annual CO2 emissions necessary to sustain the Bitcoin network. 

Country 
% Total 
Computin
g Power 

Total 
TW/ 
Year 

kg 
CO2/M
W 

Tons CO2 % Total 
% Total CO2 / 
% Total Hash 

Rate 
Iran, Islamic Rep. 0.1% 0.1 492.2 32,397 0.1% 1.08 

Malaysia 2.5% 1.6 662.1 1,089,507 3.6% 1.45 
Russian 
Federation 4.7% 3.1 374 1,157,006 3.9% 0.82 

Canada 6.5% 4.3 129.1 552,339 1.8% 0.28 
Kazakhstan 13.2% 8.7 637.4 5,537,992 18.5% 1.40 

Mainland China 21.1% 13.9 622.4 8,644,072 28.8% 1.37 
United States 37.8% 24.9 382.4 9,514,282 31.7% 0.84 
Germany * 3.1% 2.0 344.5 702,938 2.3% 0.76 
Ireland * 2.0% 1.3 294.1 387,161 1.3% 0.65 
Other 9.0% 5.9 403.4 2,389,767 8.0% 0.88 
Total 100.00% 65.8 455.9 30,007,462 100.0%   

Figure Chapter 1-5 provides an overview of the countries that contribute significantly to 
the network’s computing power and their respective CO2 emissions (see Table Chapter 1-7 
as well for details). In sum, our calculations show that, as of July 7, 2022, and assuming 
everything remains constant, the energy needed to power the Bitcoin network for one-year 
yields about thirty mTons of CO2 per year. 
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Figure Chapter 1-5: Computing Power and CO2 Emissions by Country Related to 
Bitcoin Mining 

This figure illustrates computing power by country and is based on CBECI data from January 2022 
(https://ccaf.io/cbeci/mining_map). CO2 emissions per EH/s by country are calculated based on data from the 
International Energy Agency. 

 

To estimate the carbon footprint going forward, we use three scenarios: base case, upper 
bound, and lower bound. These are based on simulated bitcoin prices and implied hash 
rates (averaged over the 10% worst- (best-) performing, as well as median hash rate 
trajectories). The base case scenario in Table 8 can be viewed as the expected CO2 
emissions of the Bitcoin network. It reveals that they roughly double to about sixty-four 
mTons. The upper bound predicts a staggering emission level of about 220 mTons; the 
lower bound predicts about 18 mTons (see again Table Chapter 1-8). However, these 
scenarios do not consider the miners’ increase in energy efficiency, or that many regions, 
such as the EU, are committed to increasing their percentage of renewable energy. Mining 
may therefore shift to countries like Canada, which already has the highest percentage of 
renewable energy as well as low energy costs. Moreover, any shift toward innovative forms 
of Bitcoin mining, as discussed in the previous sections, should also reduce the carbon 
footprint.  
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Table Chapter 1-8: Expected Bitcoin Network Energy Consumption and CO2 
Emissions 

This table presents the estimated future carbon footprint of the Bitcoin network under three distinct scenarios: 
base case, upper bound, and lower bound. These scenarios are derived from simulated bitcoin prices and their 
implied Hash Rates, taking into account the 5% and 95% quantile worst and best-performing trajectories, as 
well as the median Hash Rate trajectory. The base case scenario can be viewed as the expected CO2 emissions 
from the Bitcoin network. However, the table does not factor in potential improvements in miners' energy 
efficiency or shifts in mining location to regions with higher renewable energy usage and lower energy costs, 
which would reduce the carbon footprint.  

Year 

Expected 
TW/Year 
(5% lower 
bound) 

Expected 
TW/Year 
(95% 
upper 
bound) 

Expected 
TW/Year 
(50% 
Median) 

Expected 
average 
change 

MTons 
CO2 (5% 
lower 
bound) 

MTons 
CO2 (95% 
upper 
bound) 

MTons 
CO2 (50% 
Median) 

0 65.82   
 

  30.01 
1 60.52 78.38 69.37 5% 27.59 35.73 31.63 
2 53.23 127.34 83.01 20% 24.27 58.05 37.84 
3 46.08 237.60 106.93 29% 21.01 108.32 48.75 
4 39.00 481.81 140.67 32% 17.78 219.65 64.13 

1.5.3.1. Context of our Results 

In this subsection, we provide an overview of our own forecasts and estimations, and 
compare it to previous work. We also outline recent research on Bitcoin energy 
consumption (estimations and predictions) that is scaled to measure energy consumption 
in TW per year. Note that past literature used different measures and scales for energy 
consumption and emissions. We normalize those measures here to TW per year (energy 
consumption) and mTons CO2 per year (carbon emissions) in order to ensure a suitable 
comparison (see Figure Chapter 1-6 and Figure Chapter 1-7). If available, we show the 
lower and upper bounds, along with best predictions. Most past research (excluding Mora 
et al., 2018, and de Vries, 2018, 2021) follows a bottom-up approach based on miner power 
efficiency. It is similar to that of the Cambridge Bitcoin Electricity Consumption Index 
(CBECI) which was initially developed by Bevand (2017). It is based on a profitability 
assumption about the distribution of active Bitcoin miners. The lower (upper) bound 
assumes all miners always use the most (least) energy-efficient equipment, and the best 
guess assumes miners use an equally weighted basket of profitable hardware, rather than a 
single model assuming a constant electricity price of 5 c/kWh. Electricity consumption is 
then: 
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𝑃𝑒𝑙 =
∑ 𝜗𝑖

𝑁
𝑖=1

𝑁 ∙ 𝑃𝑈𝐸 ∙ 𝐻 ∙ 60 ∙ 60 ∙ 24 ∙ 365.25 (6) 

with a power usage effectiveness of 𝑃𝑈𝐸𝑙𝑜𝑤𝑒𝑟 = 1.01, 𝑃𝑈𝐸ᵆ𝑝𝑝𝑒𝑟 = 1.20, 𝑃𝑈𝐸𝑏𝑒𝑠𝑡 𝑔ᵆ𝑒𝑠𝑠 =

1.10, average energy efficiency of profitable hardware of  ∑ 𝜗𝑖
𝑁
𝑖=1

𝑁
 in J/h, and hash rate 𝐻 in 

h/s.  

Our estimate follows a comparable approach. However, for ∑ 𝜗𝑖
𝑁
𝑖=1

𝑁
∙ 𝑃𝑈𝐸 , we assume 

electricity costs of 6 c/kWh. This allows us to identify profitable miners, and account for 
recent energy cost increases due to the Russia-Ukraine conflict that began in February 
2022. We also assume a market share-weighted basket of profitable miners, including other 
ASIC manufacturers, as follows: Bitmain (Antminers) 59%, Canaan (Avalon Miners) 9%, 
MicroBT (Whatsminers) 27%, and other ASIC manufacturers 5% (see also Table Chapter 

1-9 in Appendix A). Moreover, we assume ∑ 𝜗𝑖
𝑁
𝑖=1

𝑁
∙ 𝑃𝑈𝐸 = 3,254 𝑊/ 90.3 𝑇𝐻/𝑠 =

36.03 𝑊/𝑇𝐻/𝑠. For our historical estimates, we assume hardware is profitable for three 
years in total and is then replaced. For our forecast, we assume constant miner efficiency. 
This is a rather conservative approach, because the energy efficiency of miners generally 
increases over time (see Figure Chapter 1-9 in Appendix A). Contrary to this approach, 
Digiconomist in comparison calculates mining revenues, and assumes 60% are spent on 
operating costs. For every 5 cents spent on operating costs, 1 kWh is consumed, which then 
provides an estimate for total Bitcoin energy consumption per year. 
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Figure Chapter 1-6: Bitcoin Mining Energy Consumption Estimates 

This figure presents a side-by-side comparison of our energy consumption estimates (measured in TW/year) 
for Bitcoin mining with the estimates provided by other researchers, namely McCook (2018), de Vries 
(2018), Digiconomist, CBECI, and Zade et al. (2019). Our energy consumption forecasts show the expected 
(median), 5% and 95% forecasted bitcoin mining related energy consumption based on the VAR model (see 
equations (1) and (2)) for the period July 2022 to December 2025. The non-linear dynamics between bitcoin 
prices and energy consumption in our model are showcased as providing a more accurate projection during 
periods of elevated bitcoin prices. The comparison highlights variations in assumptions about miner 
profitability and differences in methodology. The figure also includes the broad range of minimum and 
maximum estimations given by certain studies, along with the forward-looking predictions from Zade et al. 
(2019). 
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Figure Chapter 1-6 compares our historic estimate with past research. It shows our results 
are in line with the literature with a few key exceptions, such as McCook (2018) and de 
Vries (2018), who provide somewhat higher estimates. Compared to Digiconomist and 
CBECI, our results are also somewhat lower, which we posit is due to our stricter 
assumptions about miner profitability, and to using a market share-weighted approach for 
profitable miners. It is worth noting that the range between CBECI’s max and min 
estimation is relatively wide, similarly to Digiconomist’s min and expected energy 
consumption estimate. Zade et al. (2019) is the only paper that provides an estimate of 
future energy consumption, beginning in 2018 and predicting out to 2024. The estimates 
shown in Figure Chapter 1-6 assume a linear growth of the block difficulty and increasing 
hardware efficiency. The authors also considered an exponential growth in block difficulty 
but considered it unlikely and thus results are not plotted. The linear model however 
underestimates elevated Bitcoin mining activities when the price soars, because the energy 
costs and miner efficiency become less relevant. This explains why the predictions 
underestimate energy consumption when Bitcoin price levels are high. In comparison, our 
model allows for a non-linear relationship, and is more suitable for modeling the actual 
dynamics between bitcoin price and the related energy consumption.  
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Figure Chapter 1-7: Bitcoin Mining Carbon Footprint 

This figure reports our estimates and predictions as well as recent findings on the environmental impact of 
Bitcoin mining, expressed in mTons CO2 emissions annually. It underscores the intricacies involved in 
establishing an accurate environmental footprint, taking into account factors such as miners' energy efficiency 
and location, which in turn impact the energy type and cost. The figure utilizes data from both the CBECI 
mining map and the International Energy Agency's index of energy cleanliness to estimate the environmental 
ramifications of Bitcoin mining. Our estimates are largely consistent with past research, except in the cases 
of McCook (2018) and de Vries (2021). This figure also shows the expected (median), 5% and 95% 
forecasted bitcoin mining related carbon footprint based on the forecasted energy consumption using the 
VAR model (see equations (1) and (2)) in Figure 6 for the period July 2022 to December 2025. 
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Figure Chapter 1-7 provides an overview of our estimations and predictions, and of recent 
research on the environmental footprint of Bitcoin mining measured in mTons CO2 
emissions per year. The main challenge in determining an accurate environmental footprint 
is not just knowledge of miners’ energy efficiency, but also their location, which 
determines the type (coal, nuclear, hydro, oil, etc.) and cost of the energy used in the mining 
process. Since 2020, CBECI has published a useful mining map (see Figure Chapter 1-5). 
The International Energy Agency provides information about the “cleanness” of the energy 
produced in each country. Based on both of these sources, we can estimate the 
environmental impact of Bitcoin mining, as shown in Figure Chapter 1-7. Our historical 
estimates are generally in line with past research (except, as previously mentioned, with 
McCook, 2018, and de Vries, 2021).  

Masanet et al. (2019) estimate a significantly higher CO2 footprint than other research in 
this field. This is likely due to their hypothesis that Bitcoin technology will ultimately 
replace many traditional payment forms. We believe this notion is clearly beyond the scope 
and application of Bitcoin, and does not consider the scaling effect of the Lightning 
Network. In contrast, our estimates are somewhat lower than those of, e.g., Digiconomist, 
which is mainly because they posit higher energy consumption in their revenue approach. 
Our historical estimation is in line with that of Calvo-Pardo and Mancini’s (2022) 
predictions during the period 2018 to 2021. But their CO2 emissions predictions are 
somewhat higher than ours for 2022 to 2024 because of differences in their forecasting 
methodology, which is based on machine learning. Their predictions for 2022-2024 are 
closer to our upper bound estimation. Jiang et al. (2021) also predict higher CO2 emission 
rates. Their model assumes 70% of mining operations based in China, with the use of coal-
based energy. However, we consider this unrealistic, because China banned Bitcoin mining 
in 2021.4  

To conclude, we examine the various approaches in the literature to calculating the Bitcoin 
mining-related carbon footprint. We find that our approach is generally in line with past 
calculations of CO2 emissions. When focusing on predictions, however, we find that 
alternative approaches often forecast highly unrealistic CO2 emissions. This is due to using 
inadequate assumptions or prediction models that are incapable of fully capturing the 
relationship between bitcoin price levels and the related energy consumption. We argue 
that our predicted CO2 emissions are a more realistic image of the future carbon footprint, 
assuming that Bitcoin mining continues relatively unchanged. As previously discussed, it 
seems plausible that miner efficiency will increase in the future, and we will see a shift 
toward more innovative Bitcoin mining forms. Therefore, our Bitcoin mining-related 
carbon footprint forecasts should be viewed as an upper bound.  

 
4 China’s Bitcoin mining ban should have ended all Bitcoin mining activities, but they apparently persist, as 
Figure 5 shows. 
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1.5.3.2. Innovative Mining 

The solid economic incentives of Bitcoin mining have created a highly competitive, and, 
consequently, innovative environment. The network hash rate has been consolidating to 
increasingly larger mining operations and mining pools. This benefits miners with 
economies of scale, but can erode competitive edges. Arguably, one of the key 
differentiators of a mining operation is the energy source powering their pools. Energy 
costs comprise the majority of mining expenses. They are directly tied to a miner’s ability 
to survive a “bear market,” when bitcoin prices depreciate and revenue is reduced. 
Researchers expect mining to transition more to a low-margin business in the long term, 
but current crypto market dynamics continue to render margins highly elastic, ranging from 
extremely profitable to very tight.  

Naturally, for profit maximization and the ability to navigate extended bear markets, 
mining operations should seek the lowest-cost energy. Although many factors influence 
electricity prices, they generally reflect the cost to build, finance, maintain, and operate 
power-generating plants and the electrical grid. In the U.S., the split is 56% generation, 
31% distribution, and 13% transmission (see EIA, 2021, 2022a). Historically, gas and coal 
energy production has been the cheapest, due to low capital costs and inexpensive fuel. But 
renewable energy sources, such as wind and solar, are growing cheaper and more popular 
(see IEA, 2020). Renewable sources come with their own disadvantages, however, such as 
producing energy at inconsistent rates, which can lead to large amounts of curtailment. So, 
the search for the optimum equation persists. 

Bitcoin mining is a “mobile” industry and can be located anywhere if miners have access 
to electricity and the Internet. But accessing the Bitcoin network in remote areas via 
satellites allows mining pools to operate directly at energy production sites in order to 
capitalize on cheap energy.5 This permits miners to set up shop wherever energy prices are 
lowest, with operations that are increasingly flexible and creative. In the following 
subsection, we discuss some innovative forms of Bitcoin mining.  

1.5.3.2.1. Flaring 

Flaring is the process of burning off excess natural gas from an oil or gas well or refinery. 
The excess gas may result from, e.g., extracting oil from wells, which releases trapped 
natural gas. Many operations do not capture this gas, but instead release it into the 
atmosphere or simply burn it to reduce emissions. Some Bitcoin mining operations, such 
as Crusoe Energy, Giga Energy, and even Exxon, have begun utilizing the excess gas to 
power Bitcoin mining operations. To this end, mining operations set miners up close to 

 
5 See https://blockstream.com/satellite/. 
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wells or refineries, and reroute the excess natural gas into generators, which convert the 
otherwise wasted energy into Bitcoin.  

According to a study by Crusoe Energy, flaring combusts approximately 93% of methane, 
releasing 7% directly into the atmosphere, while the generators combust 99.89% (see Cool, 
2021). The process helps eliminate routine flaring and reduce methane, CO2e, CO, VOC, 
and NOX by 98%, 63%, 95%, 100%, and 89%, respectively, thereby reducing overall CO2-
equivalent emissions by about 63%. In sum, Bitcoin mining using flaring can facilitate the 
conversion of excess gas into a revenue-generating resource while significantly reducing 
its environmental impact. 

1.5.3.2.2. Coal Refuse 

Coal refuse, or coal waste, is the material left over from coal mining. Coal refuse piles are 
generally the result of mining during the last century, when processing techniques were 
less sophisticated. But they can cause severely negative environmental consequences even 
today. For example, Pennsylvania has 770 coal refuse piles, of which 92 are currently 
burning uncontrollably. This constitutes about 220 million tons, covering more than 8,500 
acres of land (ARIPPA, 2015). Bitcoin miners, such as Stronghold Digital Mining, burn 
coal refuse in an emissions-controlled manner, thereby reducing the toxic emissions. This 
process also allows for the reclamation of previously toxic sites by using the energy to 
mine bitcoin.  

1.5.3.2.3. Landfill Methane 

Landfills generate methane as organic waste decomposes, and it can be captured and used 
to produce electricity. However, most landfills either freely release methane, or flare it to 
reduce emissions. According to EPA (2022), landfills represented 15% of anthropogenic 
methane emissions in the U.S. due to human activity in 2020, the third largest source. This 
is not only a significant portion of total greenhouse gas emissions, but also a lost 
opportunity for energy generation.  

Bitcoin miners, such as Vespene Energy, capture methane and use it as an energy source 
by flaring it. This provides a low-cost source of energy for Bitcoin mining, while 
substantially reducing methane emissions. As with coal refuse, mining proceeds are usually 
shared, in this case with landfill operators. In the U.S., many states are beginning to require 
a reduction in methane emissions. But implementing appropriate infrastructure can be 
capital-intensive and requires ongoing maintenance expenses. Although some landfills 
currently use methane emissions to generate power locally, many cannot because of the 
remote location of the landfills and the high capital costs to connect to the power grid. 
These costs are not needed for Bitcoin mining.   
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1.5.3.2.4. Thermal “DeManufacturing” of Tires 

Tires do not decompose. If disposed of whole or scrapped in landfills, they can lead to the 
damaging of landfill liners ultimately causing contamination of the local surface and 
groundwater.6 In the U.S., about 300 million scrap tires are produced per year, and roughly 
15% end up in landfills or junkyards (see USTMA, 2020). The most common way to 
dispose of scrap tires is burning, burying, or grinding, which are all environmentally 
damaging (see Chen et al., 2022). However, a new technology, called “Thermal 
DeManufacturing,” has been developed, which is claimed to be almost zero waste, energy-
positive, and uses carefully managed temperature and pressure to break rubber down into 
useful commodities, such as syngas, carbon, steel, and heat. The released energy can also 
be used for Bitcoin mining.  

1.5.3.2.5. Mining Heat Waste 

The process of Bitcoin mining also generates a large amount of heat. Unutilized heat is at 
best a waste byproduct of Bitcoin mining, but the more miners that are located in closer 
proximity, the more cooling is needed. This necessitates additional energy. However, 
instead of cooling the Bitcoin miners, the heat could be used to heat buildings during the 
winter or for water heating. Mintgreen is an example of a professional application of this 
technology. It heats a district of 100 residential and commercial buildings in the city of 
North Vancouver.7 The company claims that their proprietary “Digital Boilers” recover 
more than 96% of the electricity used for mining in the form of heat energy, preventing 
more than 20,000 tons of greenhouse gases. By inserting the Bitcoin mining process as an 
intermediary between renewable energy generators and the end-user that requires heating, 
Mintgreen is providing access to low-cost energy while maintaining a low environmental 
footprint. 

1.5.3.3. Energy Consumption per Transaction 

An alternative approach to evaluating the energy intensity of Bitcoin and other 
cryptocurrencies is to consider consumption per transaction. Wanecek (2021) compares 
consumption of the two top PoW protocols, Bitcoin and Ethereum, with a popular PoS 
alternative, Stellar, and with Visa. The results show that Stellar’s consumption is 0.00022 
kWh/transaction, compared to Bitcoin’s 814.95 kWh/transaction8 and Visa’s 0.00092 (see 
also Sori et al., 2020). The difference in consumption is staggering. However, there are 
important nuances to consider.  

 
6 See https://archive.epa.gov/epawaste/conserve/materials/tires/web/html/basic.html.  
7 See https://mintgreen.co/#projects. 
8 See Digiconomist’s Bitcoin Energy Consumption Index in January 2023 
(https://bitcoinenergyconsumption.com). 
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For example, Digiconomist’s consumption estimate for Bitcoin of 814.95 kWh/transaction 
assumes that total annual energy consumption is divided by the total number of blockchain 
transactions per year (about seven per second). The underlying assumption is that Bitcoin’s 
base layer is not scalable. Thus, within an expanding network, consumption will grow 
exponentially, but without any added benefits. This assumption is somewhat misleading, 
though, especially considering the existing financial network. Technology tends to be built 
in layers, because more built-in functionalities can lead to more complications (e.g., 
Ethereum congestion and gas fees, Solana down time).  

Visa as a payment processing enterprise exists multiple layers above the financial system’s 
base settlement layer such as the Fedwire Funds Service which is more comparable to 
Bitcoin. Central to Bitcoin’s philosophy is maintaining simplicity in its core code, for 
decentralization and security purposes. Therefore, transaction scalability is achieved with 
higher layers, such as through the Lightning Network, which can currently process up to 1 
million transactions per second (TPS) (a number that is expected to rise in the future (see 
https://lightning.network). Note that a fully utilized Lightning Network with identical 
energy estimates would dramatically decrease Bitcoin’s consumption per transaction, to 
0.0057 kWh/transaction.  

Although this would still exceed Visa’s rate, the Bitcoin network offers a host of benefits 
that go far beyond payment processing. When considering PoS solutions, such as Stellar, 
the energy consumption per transaction may also be lower, but it comes at the cost of 
serious compromises, such as increasing centralization, reduced security and potential loss 
of transaction immutability. Thus, many of the core benefits are eliminated.  

In other words, a comparison of energy consumption per transaction between Bitcoin’s 
base layer and a pure payment processing solution is misleading. Scalability from higher 
layers, such as the Lightning Network, must be included for full comparability.  

1.5.3.4. Full Node Energy Consumption 

Being a peer-to-peer network, Bitcoin is built on an infrastructure of nodes of which there 
are three main types: Full nodes, mining nodes, and light nodes. The type of node is 
determined by the functionality it is supporting of which there are four: Wallet, Miner, Full 
Blockchain and Network Routing Node. All types of nodes must have the network routing 
function in order to communicate with the network and will then include other functions 
depending on its planned use. Miners will generally have two types of configurations which 
depends on their affiliation, if they solo mine they will have the Mining, Network Routing, 
and Full Blockchain functionalities, whereas mining pool miners will not hold a copy of 
the full blockchain. Light nodes usually refer to wallet applications which then only 
typically have the Wallet and Network Routing functions. Lastly, full nodes are the core of 
the network which maintain up-to-date copies of the blockchain, independently and 



 40 
 

authoritatively verify all transactions, which requires the Full Blockchain and Network 
Routing functions, and if desired, the Wallet function.  

Thus far, we have only considered miners which represent the largest portion of the energy 
consumption of the Bitcoin network by design. However, it is important to consider its 
other key components. Although there are millions of light nodes acting as wallet 
applications for users, these are considered to have a negligible net impact as they exist as 
applications on phones and computers and are only used when needed on already operating 
machines, not unlike to accessing your banking account. Full nodes on the other hand 
maintain an up-to-date copy of the blockchain and are typically operated 24/7/365, and so 
their energy consumption and impact should be accounted for. Although many full nodes 
are operated on personal computers that may be always left on anyway or only used 
sporadically (the blockchain catches up in the background). For simplicity we assume all 
full nodes operate using a designated device. A large portion of nodes are known to operate 
using a Raspberry Pi and a Solid-State Drive (SSD) to store the blockchain, which we will 
assume is the universal setup. Based on technical specifications these require on average 
roughly 5.5W (average between 3.5W when idle and 7.5W under load) for the Raspberry 
Pi 4 and 4W for the SSD. Assuming the node operates at full capacity half the time (i.e. 
processing transactions at max capacity), this would equate to an 83.22 kWh9 annual 
consumption, or roughly one 9W LED lightbulb. As of June 5, 2023 there are 45,452 global 
full nodes (reachable and unreachable). 10  The energy consumption of the full nodes 
assuming these values would remain constant for the year would be 3,782 MWh11. For 
comparison, the U.S. Energy Information Administration estimates banks or other financial 
institutional buildings consume on average 19.3 kWh12 per square foot per year, with the 
average size at roughly 2,700 square feet a bank branch consumes roughly 52 MWh 
annually. Put differently, the Bitcoin’s Network of global nodes consumes energy of an 
equivalent of about 73 commercial bank branches. Given the estimates of the International 
Monetary Fund (IMF) that a commercial banks reach on average about 9,000 adults, these 
73 commercial bank branches could regionally service about 650,000 adults. 13  In 
comparison, the Bitcoin network has a global reach with currently about 47 million 
addresses (equivalent to a traditional bank account) with non-zero balance. Put differently, 
the Bitcoin network can increase the number of addresses without needing to increase the 
number of nodes or energy consumption, which is not possible for commercial banks.   

 
9 Annual power consumption can be calculated as follows: hourly consumption (9.5W = 5.5W + 4W) x 
hours per year (8.76 = 24hours x 365 days / 1,000) = 83.22 kWh. 
10 See https://bitnodes.io/nodes/all. 
11 Total consumption: 83.22 kWh x global full nodes (3,782) / 1,000 = 3,782 MWh. 
12 See https://www.eia.gov/consumption/commercial/data/2012/c&e/cfm/pba4.php. 
13 See 
https://data.worldbank.org/indicator/FB.CBK.BRCH.P5?end=2021&name_desc=true&start=2004&view=c
hart. 
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The Lightning Network is a second-layer scaling solution built on top of the Bitcoin 
blockchain. It aims to address scalability limitations by enabling faster and cheaper 
transactions off-chain. Similarly to the Bitcoin network, it is peer-to-peer. It is connected 
by Lightning nodes, which create payment channels. Using the Lightning Network requires 
a user to send on-chain bitcoin to a wallet address tied to the Lightning node, where it is 
then accounted for and moved using the Lightning Network. Unlike nodes for the Bitcoin 
network, those validating transactions on the Lightning Network need only confirm 
transactions in which they are directly involved. This reduced validation requirement 
allows nodes to process transactions much more quickly than on the Bitcoin blockchain. 

However, it's worth noting that the energy consumption of the Lightning Network is 
relatively small compared to the energy-intensive process of Bitcoin mining. Since 
Lightning transactions are conducted off-chain, they significantly reduce the number of 
transactions that need to be processed on the Bitcoin blockchain. On-chain transactions 
associated with the Lightning network include entering or exiting the network, and so 
opening/closing and rebalancing channels require an on-chain transfer of bitcoin. 
Moreover, the Lightning Network's ability to enable micropayments and faster transactions 
can have indirect energy-saving benefits. By reducing the need for frequent on-chain 
transactions, which typically require more computational resources and energy, the 
Lightning Network is capable of positively contributing to the overall energy efficiency of 
the Bitcoin ecosystem.  

The base requirement to operate a Lightning node is having a Bitcoin full node. As per 
available data, there are 20,516 Lightning nodes and 45,452 Bitcoin full nodes. This 
indicates that a substantial portion of Bitcoin full nodes also serve as Lightning nodes. A 
Lightning node is essentially a Bitcoin full node with additional software to participate in 
the Lightning Network. Therefore, considering the overlap between Lightning and Bitcoin 
nodes, the additional energy consumption contributed by the Lightning network to Bitcoin 
is relatively minimal. 

In summary, the energy implications of operating the Lightning Network are primarily tied 
to the energy consumption of running Lightning nodes. While not entirely negligible, the 
energy usage of the Lightning Network itself needs only a fraction of the energy 
consumption of the Bitcoin network. Furthermore, the Lightning Network's scalability 
benefits can indirectly contribute to energy efficiency by reducing the need for frequent 
on-chain transactions. 
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1.5.4. Water 

The Bitcoin mining process is energy intensive, and can have direct and indirect 
environmental impacts, including on water resources. Note that water resources can be 
used directly for cooling miners, but it is more common to use electricity consumption 
methods, such as air cooling. Another, less popular, method is immersion cooling, 

Air cooling reduces the direct draw on water resources. However, cooling of electricity-
producing fossil fuel power plants can nevertheless involve significant water usage, an 
indirect impact on water resources. For example, the reintroduction of warmed water waste 
into ecosystems potentially affects wildlife and overall water quality (Speight, 2019). 
Therefore, it is crucial to consider both the direct and indirect effects of water usage in the 
context of Bitcoin mining, and its reliance on various energy sources. 

Air cooling involves installing large fans to ventilate a mining facility. But this is ultimately 
an inefficient cooling method, furthermore it draws significant power and generates noise 
pollution. In some instances, miners combine air cooling with a water curtain (panels with 
flowing water). This improves efficiency sixfold and does not require traditionally used air 
conditioning. Therefore, this method does require the direct and constant consumption of 
water resources, but it substantially reduces overall energy consumption. 

Water cooling is gaining in popularity as a simple, scalable, and sustainable solution. It is 
a closed loop and involves circulating a water and glycol coolant through a water block or 
cooling plate (see, e.g., Bitmain’s Antminer S19 XP Hyd). The advantages are a dramatic 
reduction in cooling energy expenses (by ~50%), and virtually no fluid expense.  

The last method is immersion cooling, where ASIC miners are submerged in a dielectric 
(electrically non-conductive) liquid that efficiently dissipates heat and vibrations. Oil is 
then circulated outside the system to dissipate the heat through radiators and fans.  

Consider an average data center, where the use of typical 10 kW racks lead to an estimated 
draw of 63,000 gallons of potable water when air cooled. In contrast, closed loop water 
cooling (or immersion cooling) leads to a substantial reduction in water requirements 
(Ebrahimi et al., 2014). We expect to see a shift away from air cooling as Bitcoin miners 
increasingly gain access to public capital. This should drastically reduce the negative 
impact of the cooling of Bitcoin miners on water supplies and improve the economics of 
immersion cooling. 

In addition to electricity produced by hydropower, the draw on water is largely caused by 
fossil fuel-fired thermal power plants with traditional once-through cooling systems. These 
may lead to chemically and thermally polluted wastewater (The White House, 2022). 
However, as previously highlighted, the Bitcoin mining industry is shifting away from the 
use of fossil fuels, and toward renewable or waste energy sources. Thus, the strain on water 
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resources should decrease even as the industry scales. In the case of hydropower, 
establishing the required infrastructure has a significantly negative environmental impact, 
but the resulting electricity generation is efficient and clean. Therefore, the added strain on 
hydro powered electrical grids caused by Bitcoin mining is not so easily resolved. In 
Québec, for example, Canada Hydro-Québec opted to freeze new mining projects to 
conserve power. However, less developed jurisdictions may opt instead to build new dams.  

The United States Institute of Peace (2023) highlights the idea that Bitcoin miners target 
jurisdictions with weak governance and corruption to benefit from cheap energy and avoid 
regulation. Note further that any additional direct and indirect strains on water resources 
can be especially detrimental to areas such as Central Asia, which have a more limited 
water supply (Wang et al., 2022). Although certain actors in the industry have effectively 
gone this route, such as those that moved from China to Kazakhstan (a Central Asian 
country), most operators displaced due to the China ban relocated to the U.S. According to 
the Cambridge Bitcoin Electricity Consumption Index (CBECI), the average monthly hash 
rate share in December 2021 for the U.S. was the densest in the world, at about 40%. The 
shift suggests that miners favor stable jurisdictions with regulatory clarity, rather than those 
with cheap resources they can exploit. 

In sum, water resources are affected indirectly during the mining process when fossil or 
nuclear energy resources are used. This is because they require water for cooling, which 
results in environmentally harmful thermal pollution. Furthermore, total energy 
consumption of Bitcoin miners is largely influenced by the cooling method they employ. 
The popular air-cooling method has the lowest energy efficiency. When the energy used is 
supplied by fossil or nuclear energy, it implicitly exerts the greatest impact on water 
resources.  

With the shift to more renewable energy resources, the use of water in bitcoin mining 
should be greatly reduced. The industry’s impact on water resources will be further 
diminished with the shift to alternative cooling systems. These will not only reduce energy 
costs, but, in the case of non-renewable energy resources, water usage as well.   

1.5.5. Waste 

Bitcoin’s environmental impact, however, extends beyond just the energy consumption of 
the mining process and related water resources. It also requires specialized mining 
hardware and its production requires resources and energy (see De Vries and Stoll, 2021). 
As described in subsection 1.5.1 Bitcoin Mining is the process of bundling transactions and 
generating a single hash output (“hashing”). This process requires large amounts of hashing 
calculations, which are carried out using the SHA-256 algorithm. Mining was originally 
conducted using average CPUs but the process evolved to using the more computationally 
powerful GPUs found in graphic cards. The shift to GPUs caused a short-term surge in 
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graphics card demand14 until mining ultimately shifted to ASICs which are optimized 
solely to conduct SHA-256 hashing calculations.  

This evolution has led to an exponential growth in the number of hashes per second that 
can be performed per chip. But the chips cannot perform any other computation; their use 
is limited to SHA-256 hashing (mainly for Bitcoin mining) (see Bitcoin miner efficiency 
evolution in Figure Chapter 1-9 in Appendix A).  

Moreover, the underlying technology of the integrated circuits has been rapidly evolving. 
Packing transistors closer together leads to more computationally powerful silicon (e.g., 
5nm vs. 12nm between transistors). Therefore, outside of reducing the cost of electricity, 
miners can most efficiently improve their economics by utilizing more computationally 
powerful equipment. Because miners are only used for Bitcoin mining, the decision to 
replace a miner depends on current bitcoin price, energy costs, difficulty rating (based on 
total network hash rate), and miner efficiency. But all these factors must be considered 
simultaneously, so the process is not straightforward. 

The basic economics of miner replacement suggest that a miner is less likely to be replaced 
when bitcoin prices are high, energy costs and hash rates are low, and average miner 
hashing efficiency is relatively high. Bitcoin prices and hash rates can change quickly, so 
replacement decisions hinge on how they are expected to fluctuate in the (near) future. This 
adds a further layer of complexity to the decision-making process. Once a miner is 
permanently retired, it becomes e-waste, although it can be recycled. Thus, some portion 
of the resources used to produce it may be recoverable.   

De Vries and Stoll (2021) find that the average miner operates for 1.29 years before 
becoming obsolete and replaced by a newer, more efficient miner. This assumption is the 
driver behind the estimate of 30.7 metric kilotons of e-waste annually from Bitcoin mining, 
which was projected to exceed 64.4 metric kilotons by the end of 2021.  

However, when we fact check the actual lifetime use of various mining models, we observe 
that it is much longer. The most relevant example comes from the Antminer S9, which 
leaves specific patterns that can be identified via an analysis of “nonce” distribution on the 
blockchain (see Coin Metrics, 2020). In other words, with this signature, we can precisely 
identify Antminer S9 mining activity. The S9, which launched in May 2016, remained 
profitable until May 2022, when it was almost fully removed from the network 

 
14 The popular media has often attributed the price inflation of GPUs to the mining of proof-of-work 
cryptocurrencies, a category that lumps in Bitcoin. While GPUs were initially used for Bitcoin mining 
between 2010 and 2012, their role in mining was later replaced by more powerful ASICs. However, prices 
of GPUs continued to be driven upward by other proof-of-work blockchains, particularly Ethereum, which 
became the second most valuable crypto-asset after Bitcoin (The Economist, 2021). The transition of 
Ethereum to a proof-of-stake consensus mechanism in September 2022 has effectively ended the era of 
GPU mining and resulted in a significant drop in GPU prices. 
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(CryptoSlate, 2022). However, S9s may yet come back online depending on difficulty 
level, bitcoin price, and the cost of electricity available to the miner in question.  

It is important to note that most of De Vries and Stoll’s (2021) calculations center on a cost 
of electricity of $0.05/kWh. However, many miners are in lower energy cost zones because 
they are using inexpensive waste or stranded energy sources (see subsection 1.5.3.2 
Innovative Mining). Furthermore, professional mining businesses may sell unprofitable 
miners to other operations with cheaper access to energy or may simply turn them off until 
favorable conditions return. Since professional mining businesses usually access public 
capital via IPOs or SPACs, they appear to grow their infrastructure by increasing capacity, 
rather than by replacing less profitable miners.  

Although the efficiency of ASICs has grown exponentially since their introduction in 2012, 
there remain physical limitations to how much more they may attain. It has become 
extremely difficult to design and manufacture chips with transistors packed at or closer 
than 3nm. Thus, overall growth in the hashing capacity of newer rigs has diminished in 
recent years. We expect this phenomenon to further extend the profitability of the existing 
fleets of miners.  

In sum, there is no doubt that Bitcoin mining is a net contributor to e-waste, and its effects 
on pollution and resource consumption must be considered. However, based on the 
abovementioned arguments, especially the very short assumed useful life of a miner in the 
study by de Vries and Stoll (2021), the amount of e-waste has been greatly overestimated. 
The slowdown in chip development should further extend miners’ useful lives and lower 
the amounts of future e-waste, even when networks and the total numbers of miners are 
growing.  

1.6. Social, “S” 

Under the Social factor of ESG, we identify four primary elements of Bitcoin that impact 
people: 1. User Satisfaction, 2. Data Protection and Privacy, 3. Human Rights, and 4. 
Criminal Activity. 

1.6.1. User Satisfaction 

User satisfaction refers to the level of satisfaction and fulfillment experienced by Bitcoin 
users. Bitcoin, both as a crypto-asset and a network, offers features and benefits that 
positively contribute to user satisfaction, enhancing its social impact. 

Bitcoin provides protection against the devaluation of traditional currencies caused by 
inflation. This characteristic offers users value that can resist the erosion of purchasing 
power over time, leading to increased satisfaction. In a response to the U.S. Congress, 
human rights advocates highlighted specific situations where Bitcoin was critical in 
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providing a haven from failing currencies for, e.g., Argentinians, Turks, Russians, and 
Lebanese (see Aderinokun et al., 2022). Moreover, certain Bitcoin network characteristics, 
such as transactional transparency and pseudonymity, offer enhanced levels of privacy and 
security in financial transactions. These also contribute positively to user satisfaction. 

One of the key value propositions of Bitcoin is the trustlessness of its peer-to-peer network, 
which allows users to safeguard their bitcoin themselves. Through self-custody, users do 
not rely on traditional financial intermediaries, so they maintain full control of their funds 
and eliminate counterparty risk. Although there are challenges to self-custody, and best 
practices must be followed to maximize security, Bitcoin reduces the risk of theft or loss 
due to vulnerabilities associated with third-party involvement. 

When compared to traditional banking systems and practices, Bitcoin offers users a greatly 
enhanced transactional experience. With its 24/7/365 network availability, users can 
transact at any time, from anywhere in the world, and for any desired amount. Transactions 
on the Bitcoin blockchain are settled rapidly (~10 minutes vs. 24+ hours), and the finality 
eliminates any need for intermediaries to confirm or validate them. This provides users 
with certainty and efficiency.  

However, for smaller transactions, from a consumer perspective, full settlement in ~10 
minutes may be viewed as an inconvenience. To enable instant payments, Bitcoin uses the 
Lightning Network, a second layer that allows individuals to transact in satoshis, Bitcoin’s 
smallest denomination, with near zero transaction fees. When compared to fees in the 
traditional financial system, Bitcoin and the Lightning Network offer a more cost-effective 
alternative. 

Overall, Bitcoin's features, including protection against devaluation, transactional 
transparency, pseudonymity, elimination of counterparty risk, improved transactional 
experience, and low fees, collectively contribute to user satisfaction. These aspects enhance 
the social impact by providing individuals and businesses with alternative financial 
options. This empowers them to retain greater control over their finances, while fulfilling 
their needs for security, privacy, and cost-effective transactions. 

1.6.1.1. Challenges 

The Bitcoin network offers clear advantages for society. Its potential will likely far exceed 
what we have highlighted here. However, there are certain caveats, such as price volatility, 
and security in the context of transaction irreversibility and coin custody. At its essence, 
Bitcoin provides three key uses: medium of exchange, store of value, and value of transfer 
infrastructure. However, it is subject to speculation, and at times high volatility levels. It 
has occasionally experienced price changes of more than 15% within minutes, with price 
shifts of more than 80% and price gains exceeding 1,000% during a cycle.  
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Although this volatility does not influence the ability to use the Bitcoin network as the 
underlying infrastructure to transfer and settle value, it can be problematic when using 
bitcoin as a store of value or medium of exchange (Cermak, 2017). Bitcoin’s volatility may 
also lead to steep losses in (short-term) purchasing power, which makes it a risky medium 
for store of value, especially in times of crisis (See Stulz, 2023). Supporters argue that, 
over a four-year investment horizon, Bitcoin’s price history is clearly upward-trending, 
irrespective of purchase date. However, this may not necessarily be the case going forward.  

The objective of an efficient medium of exchange is to facilitate the purchase, sale, or 
exchange of goods or services between parties by avoiding barter and using a commonly 
accepted unit of account. To this end, it is important for a medium of exchange to maintain 
stable purchasing power. Economies with volatile currencies, such as Venezuela, Turkey, 
Argentina, and Zimbabwe, for example, have experienced weakening purchasing power 
and seen a flight to safer currencies, such as USD. El Salvador went a step further, and 
officially declared bitcoin legal tender in September 2021, making it an official medium of 
exchange along with USD. However, one year later, bitcoin’s price has halved, and the 
experiment has proven disastrous. The full implications are not yet known, but the short-
term pain may signal that Bitcoin was not quite ready as an asset class.  

1.6.2. Data Protection and Privacy 

From the perspective of data protection and privacy, Bitcoin offers several key features 
that contribute to its social impact and align with the social pillar of ESG. One crucial 
aspect is the ability for users to maintain control over their assets, ensuring individual 
autonomy. Bitcoin cannot be readily confiscated, and ownership can only be transferred if 
the current owner authorizes it by providing access to private keys. These keys, commonly 
represented as mnemonic phrases, ensure that only the rightful owner can initiate 
transactions. 

Bitcoin addresses consist of 256-bit numbers, so there are 256 key pairs (public and private) 
mapped to 2160, or ~1.4615 x 1048, possible valid wallet addresses. Therefore, it is highly 
improbable that anyone could gain unauthorized access to a wallet on their own. However, 
we recognize there are certain risks inherent with data protection in the Bitcoin ecosystem. 
For example, losing or forgetting the private keys can render Bitcoin stored in a wallet 
irretrievable. Moreover, Bitcoin transactions are irreversible in nature. Thus, individuals 
have no recourse if they make a mistake transferring funds. The use of Bitcoin comes with 
significant personal responsibility. Users must fully comprehend the risks involved, and 
take appropriate precautions. 

Another important consideration is the pseudonymous nature of the Bitcoin network. The 
full suite of transaction details is immutably recorded on the public blockchain, but the 
participants’ real-world identities are not directly linked to their Bitcoin wallet addresses. 
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This provides users with tremendous privacy, allowing for transactions without revealing 
personal information. However, it is important to note that the privacy is not foolproof. 
Indeed, with sufficient effort and analysis, transactions may potentially be linked to 
individuals, no matter how long ago the transaction settled. 

For users seeking to enhance privacy, various technologies are available, with more in 
development. One example is CoinJoin, which is known as a mixer. It allows multiple users 
to combine their transactions, obfuscating the flow of funds and ultimately improving 
privacy. Along with mixers, technologies like ring signatures and zero-knowledge proofs 
are being developed to further augment privacy within the Bitcoin ecosystem.  

As previously noted, despite Bitcoin’s pseudonymity, failing to follow privacy best 
practices, even one time, can lead to the identification of the user. For example, reusing the 
same Bitcoin address for multiple transactions may compromise privacy. Therefore, 
Bitcoin recommends using a new address for each transaction. 

Although users highly value privacy, regulators need a certain level of identification for 
reporting purposes and to combat illicit activities. The cryptocurrency industry has 
historically been very lightly regulated, but most developed countries have now 
implemented Know Your Client (KYC), Anti-Money Laundering (AML), and Anti-
Terrorist Financing (ATF) regulations. These requirements may affect user privacy, but 
some balance is necessary to curb criminal activities. 

As the technology surrounding Bitcoin continues to develop, there is an expectation of new 
interfaces and strategies to protect users from accidental loss of funds and heighten privacy. 
One example is the use of multi-signature (multisig) wallets, which involve multiple parties 
authorizing transactions. These provide an added layer of security and reduce the risk of 
unauthorized access (Dietz et al., 2021). 

In sum, by providing users with control over their assets, emphasizing privacy through 
pseudonymity and privacy-enhancing technologies, and promoting best practices, Bitcoin 
fully addresses data protection and privacy concerns. The decentralized nature of the 
network and the cryptographic principles underlying it contribute to the social impact of 
Bitcoin. It offers individuals increased autonomy, consent, and privacy in their financial 
transactions, which align well with the principles of ESG. 

1.6.3. Human Rights 

Bitcoin's impact on human rights, particularly in developing and underprivileged countries, 
deserves careful consideration from an Environmental, Social, and Governance (ESG) 
perspective. In this sub-section, we delve into the ways in which Bitcoin's characteristics 
and applications have positively contributed to human rights, with a focus on economic 
empowerment, financial inclusion, and resistance against authoritarian regimes. As 
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highlighted by human rights advocates from twenty different countries in a letter to the 
U.S. Congress, Bitcoin has particularly contributed to the human rights of people living 
under authoritarian regimes and in unstable economies (Aderinokun et al., 2022). The 
signatories highlight many specific situations where Bitcoin proved helpful, such as: 
providing a haven from failing currencies to, e.g., Argentinians, Turks, Russians, and 
Lebanese; helping Afghans survive after the Taliban takeover and subsequent U.S. 
sanctions; helping the Ukrainian government rapidly raise funds to help defend themselves 
against the Russian invasion; and helping finance anti-government protests in Nigeria and 
Hong Kong.  

Furthermore, as mentioned briefly earlier, many of Bitcoin’s qualities align neatly with the 
U.N.’s Sustainability Development Goals (U.N. SDGs).15 The SDGs are an urgent call to 
end poverty and other deprivations, improve health and education, reduce inequality, and 
spur economic growth, while reducing climate change and preserving oceans and forests. 
In this section, we discuss how Bitcoin positively impacts various SDGs.  

SDG #1: End Poverty in All Its Forms Everywhere 

The 2021 World Bank report on financial inclusion underlines the ongoing unbanked crisis 
in many developing countries. Despite global bank account ownership having increased 
from 51% to 76% between 2011 and 2021, nearly 1.7 billion people worldwide remain 
without access to sufficient banking services (Andrews et al., 2021). According to the 
United Nations’ Financing for Sustainable Development Report 2021, 94% of adults in 
developed countries hold a bank account, while, in developing countries, the total is only 
63% (United Nations, 2021). These statistics are a stark reminder that a large segment of 
the population remains excluded from the financial services industry. A 2017 study of the 
Philippines Central Bank found that as much as 60% of their unbanked population cited 
“not having enough money” as their main reason, while 21% felt they did not need one, 
and 18% lacked proper documentation (Bangko Sentral ng Pilipinas, 2017). Other 
important factors were the cost of accounts, and simple access to the nearest bank.  

Therefore, the first U.N. SDG that Bitcoin explicitly supports is “#1: End poverty in all its 
forms everywhere.” It directly contributes to SDG #1’s underlying Target 1.4: “By 2030, 
ensure that all men and women, in particular the poor and the vulnerable, have equal 
rights to economic resources, as well as access to basic services, ownership and control 
over land and other forms of property, inheritance, natural resources, appropriate new 
technology and financial services, including microfinance.”  

Bitcoin software is open-sourced, and requires only a network connection, through, e.g., a 
direct Internet connection, satellite phone, ham radio, or even SMS texting. This makes it 

 
15 United Nations Department of Economic and Social Affairs Sustainable Development, The 17 Goals 
(https://sdgs.un.org/goals). 
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readily available to most of the world. To participate in the Bitcoin network, users must 
have a bitcoin “wallet” to receive and send funds. Obtaining a wallet is straightforward and 
accessible, and non-custodial smartphone wallet applications are available that provide the 
private keys (a twelve- or twenty-four-word mnemonic phrase used to send wallet funds) 
and public keys (the associated address given out to receive funds) needed.16 Individuals 
can store wealth in their wallets, maintaining full custody without counterparty risk, and 
can send and receive funds internationally with final settlement within minutes. Although 
the most common way to purchase bitcoin is via an exchange using funds deposited in a 
bank, unbanked individuals can still readily acquire bitcoin through ATMs or peer-to-peer 
transactions. 

Because physical access to financial services in many countries remains a hurdle and can 
be cost-prohibitive, crypto has begun to fill that gap. For example, about one-third of 
Nigerian adults invest in crypto assets (KuCoin, 2022). Although the Bitcoin network has 
no passive or maintenance fees, transaction fees are imposed when sending funds. The 
transaction fees are driven by network congestion but are the same regardless of transaction 
size (value). As of August 2022, average fees per transaction were about $1 USD, with a 
range of $1 to $5 USD the previous year, and an all-time high of about $60 USD in April 
2021.17  

With the expected increase in adoption, the concurrent increase in the number of 
transactions may clog Bitcoin’s blockchain, which currently processes approximately 
seven transactions per second. To resolve scalability issues and transaction costs, the 
Lightning Network protocol was developed as a second layer on top of Bitcoin. The 
Lightning Network allows users to transfer funds as small as one “satoshi” (0.000000001 
BTC) for 0.000026 satoshis. At the bitcoin price of $21,194 USD, that represents 
$0.000000005482 USD per $0.000021 USD, or a 0.0026% fee (see Divakaruni and 
Zimmerman, 2022). Unlike “on-chain” Bitcoin transactions, Lightning Network 
transactions settle instantly and for nearly zero fees, making it a very viable means of 
payment.  

SDG #7: Affordable and Clean Energy 

Overwhelming evidence indicates that the world is undergoing severe climate changes 
caused by, e.g., carbon dioxide emissions. This has led to an increase in more frequent and 
more extreme weather events, such as heat waves, droughts, and storms. Such events strain 
the reliability of electrical grids and increase power interruptions (see Sanstad et al., 2020). 
The problem is aggravated by more extreme temperatures, which, among other factors, 
have caused the growth in global electricity demand to outpace the growth in supply. The 

 
16 Even without access to smartphones or computers, one can manually generate the keys with pen and 
paper. However, it is a more mathematically challenging process. 
17 See https://studio.glassnode.com/metrics?a=BTC&category=Fees&m=fees.VolumeMean.  



 51 
 

resulting increases in energy price volatility have led to further hardship and unsafe 
situations for many households (EIA, 2020a; IEA, 2022).  

Obviously, significant investment in energy infrastructure is needed. The focus should 
ideally be on low-carbon-emitting and renewable energy sources, such as solar and wind 
energy, to avoid worsening the cycle. However, renewable energy sources can be 
unreliable and involve high initial capital investments. To offset these disadvantages, an 
“overbuilding” of renewable energies is necessary, along with adequate incentives such as 
subsidies or tax credits (Perez et al., 2019; EIA, 2022b). 

Although it may seem counterintuitive due to its high energy use, Bitcoin mining can 
actually help accelerate the rollout of renewable energy, and also help balance energy 
supply and demand. The unreliable nature of renewable energies, as well as the 
overbuilding, may result in excess energy at times. This could be used for Bitcoin mining 
because of the technology’s proverbial “flip of a switch” feature. Therefore, Bitcoin mining 
can stabilize grids while generating proceeds to, e.g., invest in further expanding renewable 
energy infrastructure (Niaz, Liu, and You, 2022). The state of Texas provides solid 
evidence that this symbiosis is working. In 2022, the Electric Reliability Council of Texas 
used Bitcoin mining flexibility to relieve strain on the power grid during extreme weather 
events. This improved the robustness of the grid and helped stabilize energy costs during 
extreme events.  

Many countries have committed to using renewable energy, including the U.S., which aims 
for an increase from 24% to 44% of the energy supply coming from renewable sources 
(Linga, 2022). Leveraging the relationship between utilities and Bitcoin miners could help 
accelerate the transition to renewables, and help meet SDG’s Target 7.1: By 2030, ensure 
universal access to affordable, reliable, and modern energy services, and Target 7.2: By 
2030, substantially increase the share of renewable energy in the global energy mix.  

SDG #10: Reduce Inequality Within and Among Countries  

Developing countries have seen rapid growth in remittance payments, where migrants send 
funds or goods back home to support their families. As such, these payments have become 
an important part of the GDP of developing countries, representing nearly 6% for low-
income countries, and 2% for medium-income countries (Gupta, Pattillo, and Wagh, 2009). 
The cost of sending remittance payments is usually a percentage of the principal amount. 
The World Bank estimates it is about 6%, but the amount can reach as high as 20% if funds 
are sent in smaller remittance corridors (Ratha, 2022). In its Target 10.c, the U.N. has 
established an important goal of lowering remittance costs by 2030: “By 2030, reduce to 
less than 3 percent the transaction costs of migrant remittances and eliminate remittance 
corridors with costs higher than 5 percent.” 
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Strike presents a possible solution to this challenge by using Bitcoin’s global and peer-to-
peer network to eliminate such remittance corridors. As noted earlier, the Lightning 
Network allows users to make remittance payments with virtually no fees.18 Funds sent are 
converted to bitcoin, delivered instantly, and converted back to whatever currency the 
receiver desires. The process simply uses the Bitcoin network on the back end to transfer 
value more efficiently than traditional financial infrastructure. This ensures the receiver is 
not exposed to bitcoin’s price volatility. 

1.6.4. Criminal Activity 

Bitcoin was created as a trustless, independent financial system, with control outside of 
government hands. However, the pseudonymity can lead to criminal activity. The most 
infamous case to date is the Silk Road online marketplace. It operated on the dark web 
from February 2011 to October 2013, when the entire marketplace was seized by the FBI. 
The platform gained notoriety for facilitating illegal transactions, using bitcoin as the 
primary form of payment. It was accessible only through the Tor network, which provided 
anonymity to both buyers and sellers.  

Silk Road aimed to create a platform for free trade and privacy, but it quickly became a 
known hub for illegal activities. Although users’ locations and identities were efficiently 
masked by the Tor network, all bitcoin transactions are publicly visible. So, the flow of 
funds could still be tracked pseudonymously. 

Silk Road’s popularity was presumably a result of insufficient regulation of Bitcoin and 
crypto-assets. Such early exchanges and platforms allowed users to operate anonymously, 
without any form of KYC, AML, or ATF procedures. However, as each Bitcoin halving 
cycle led to explosive increases in the network’s market capitalization, regulators and 
governments began to pay more attention. Currently, most crypto-asset exchanges are 
required to implement KYC and AML procedures to operate in developed jurisdictions. In 
some countries, like Canada, recent regulations prohibit residents from trading crypto-
derivative products and require operating exchanges to register as restricted dealers.  

Thus, it has become increasingly difficult for individuals to on-ramp, and, more 
specifically, to off-ramp funds from the Bitcoin network anonymously (non-KYC). With 
the flow of funds permanently and openly available on the blockchain, it has become more 
possible to determine the identity of wallet addresses ex post. Therefore, conducting 
criminal activities through the Bitcoin network is much riskier than through other means, 
such as cash.  

Even with these improvements in the Bitcoin and crypto-asset industry, there remain 
significant regulatory gaps and ambiguity. These permit cybercriminals to operate 

 
18 See https://strike.me.  
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efficiently, and at lower cost than traditional money laundering methods (van Wegberg et 
al., 2018). For example, in 2021, criminals were found to have laundered $8.6 billion USD 
of cryptocurrency (including $2.8 billion in Bitcoin) (Chainalysis, 2022). However, since 
Bitcoin processed roughly $3 trillion USD of payments in 2021, laundered funds 
represented only a small fraction of transactions. 

To illustrate the contrast between the Bitcoin network and the traditional financial system, 
as well as the tractability of transactions on the Bitcoin network, we consider the case of 
Ilya Lichtenstein and Heather Morgan. The couple are tied to the 2016 hack of the 
cryptocurrency exchange Bitfinex, which became the largest crypto heist in history. They 
were arrested on February 8, 2022, for the theft of 119,754 bitcoins, estimated to be worth 
about USD $4.5 billion at the time (see Department of Justice, 2022). Of those, the couple 
had approximately 90,000 in their possession.  

Over a period of five years, the alleged thieves were able to transfer a portion of the bitcoin 
(~20%) into financial accounts under their control. This required an extremely complex 
money laundering scheme, including fake identification. To withdraw funds in USD, while 
keeping their real identities private, the couple also needed to exploit the traditional 
financial system. This highlights the fact that, even when using elaborate money laundering 
schemes, transactions on the Bitcoin network could be traced back, even more than five 
years after the hack. Moreover, accessing the funds was only possible through the 
traditional financial system, due to certain security flaws, such as, in this case, KYC using 
fake IDs.  

Companies such as Chainalysis conduct in-depth analyses of blockchains to track the flow 
of funds, and identify, tag, and monitor wallet IDs. They assist governments and regulatory 
agencies to enforce compliance and investigate crypto crime. Although crypto users can 
access so-called coin mixing services to obfuscate their activities, Chainalysis claims they 
can even disentangle their effects now (Shin, 2022). 

Naturally, criminals always find new ways to leverage the pseudonymity of Bitcoin and 
blockchains to, e.g., launder funds. However, such dangers are not exclusive to crypto. 
Reflecting on Bitcoin’s history, we observe a clear trend of an improving regulatory 
environment and compliance by key industry players. Thus, overall crypto crime may be 
trending upward in dollar value, but the illicit share of all cryptocurrency transactions is 
decreasing. In 2022, it was reported to be about 0.24% (Chainalysis, 2023).  

Chainalysis (2023) also finds that, in 2022, the majority (about 89%) of crypto-related 
illicit activities were tied to theft (18%), scams (29%), and interactions with sanctioned 
entities (42%) (e.g., Garant X, a Russian exchange sanctioned by the Office of Foreign 
Assets Control (OFAC), and Tornado Cash, a mixer sanctioned by the U.S. Treasury). 
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Although the social impact of sanctioned transactions may be difficult to evaluate, the toll 
of thefts and scams on (retail) investors is high.  

In 2022, USD $3.8B in crypto-assets were stolen, primarily from DeFi protocols and by 
North Korean-linked hackers. These thefts occurred by exploiting smart contracts, which 
only exist on blockchains other than Bitcoin. And retail investors lost an even higher 
amount (USD $5.9B) to scams. Chainalysis categorizes these scams as Giveaways, 
Impersonations, Investments, NFTs, and Romance Scams, which largely prey on investors’ 
lack of experience and/or technical blockchain knowledge. Although some scams are 
crypto-specific, many exist outside of crypto. Furthermore, although scammers historically 
favored payments in bitcoin, since 2021, they are increasingly requesting stablecoins.  

In sum, a certain amount of illicit activity may be facilitated by the pseudonymity and 
borderless nature of crypto markets (mainly theft and sanctions). However, a large portion 
of the criminal activity is unavoidable, and would occur anyway due to flaws in the 
traditional financial system. It is important to note that most of the criminal activity occurs 
on, and is facilitated by, blockchains other than Bitcoin. With improved regulation through 
KYC/AML requirements, industry surveillance (e.g., Chainalysis), and the permanent and 
transparent transactional history of blockchains, using the Bitcoin network for illicit 
activities is increasingly risky. However, because of the technical barriers associated with 
safely transacting on the Bitcoin network, it remains a much higher risk environment for 
the inexperienced. As the industry matures, and jurisdictions continue to develop targeted 
regulations, we expect retail investors will benefit more easily from the unique advantages 
this technology offers. 

1.7. Governance, “G” 

Under the Governance element of ESG, we identify three primary elements of Bitcoin that 
impact governance: 1. Accounting Integrity and Transparency, 2. Compensation, and 3. 
Principles of Governance 

1.7.1. Accounting Integrity and Transparency 

Within the governance pillar of ESG, accounting integrity and transparency are vital 
factors. They play a significant role in assessing the credibility and trustworthiness of 
Bitcoin's ecosystem. Accounting integrity refers to the quality and reliability of financial 
information within an accounting system. It encompasses principles and practices that 
ensure accuracy, completeness, and consistency in recording financial transactions. In the 
context of Bitcoin, we find it fully embodies the aforementioned underlying principles. 
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a. Accuracy: The mechanisms behind Bitcoin’s blockchain ensure a high degree of 
accuracy when recording and verifying transactions. Each transaction is digitally 
signed and time-stamped, which provides cryptographic proof of authenticity. The 
decentralized nature of the blockchain, its validation, and its mining process prevent 
the risk of fraudulent (double-spent) transactions. 

b. Completeness: The blockchain maintains a complete and immutable record of all 
transactions on the Bitcoin network since its inception. This permanently available, 
complete transactional history allows for a comprehensive audit at any time.  

c. Consistency: Bitcoin is governed by a code that establishes a consistent set of rules 
for validating transactions. This allows for greater consensus and ensures the 
integrity of the ledger.  

Transparency is a fundamental aspect of governance. It is essential to fostering trust, 
accountability, and responsible decision-making. In the case of Bitcoin, we find an 
unparalleled level of transparency in accounting integrity, and on the governance structure 
and decision-making process for the protocol itself. As we noted earlier, Bitcoin's 
blockchain is a public and distributed ledger. Anyone can install the protocol, download 
the blockchain, and independently and authoritatively audit every transaction since 
inception.  

As for Bitcoin's governance, it operates in a decentralized manner, with decisions made by 
consensus among network participants. They can propose and vote on changes to the 
protocol, thereby influencing the direction and evolution of the system. 

Accounting integrity and transparency are key to Bitcoin's governance. They ensure 
accuracy and trustworthiness, which in turn influences decision-making within the 
ecosystem. The transparent nature of the ledger provides stakeholders with the ability to 
independently verify and audit financial transactions. This mitigates the risk of fraud, 
manipulation, or misrepresentation. Transparency also fosters accountability among 
participants. And eliminating reliance on centralized intermediaries aligns with the 
decentralized ethos of Bitcoin. 

In sum, accounting integrity and transparency are vital factors in evaluating Bitcoin from 
an ESG perspective, particularly within the governance pillar. 
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1.7.2. Compensation 

Bitcoin is a decentralized protocol that continues to operate as long as more than two people 
run full nodes. The protocol ensures that those who work toward processing transactions 
and documenting them into blocks (miners) are rewarded. Miners are compensated with 
new bitcoins entering circulation (Coinbase reward), where the amount is predetermined 
and dependent on the current halving cycle. Total rewards are then supplemented with 
transaction fees, which can vary greatly.  

Placing a bitcoin transaction requires payment of a minimum fee based on the units of data 
required for the transaction (this is abbreviated as sats/vByte). However, miners will 
always prioritize the transactions that offer the highest transaction fees in the “mempool.” 
Naturally, as transaction volumes increase, users compete to ensure their transactions are 
settled more rapidly, thereby inflating fees.  

To participate in Bitcoin mining, one needs only to download the core protocol and set up 
the node as a mining node. The mining process is stochastic in nature, so each hashed 
output is equally able to mine a block. Therefore, almost anyone can attempt to earn the 
coinbase reward and the transaction fees by successfully mining a block. 

Although the mining process is fair, the bitcoin mining industry has significantly evolved 
since its early days. Initially, individuals could only meaningfully contribute to mining via 
personal computers. Nowadays, successful mining has become a professional endeavor, 
requiring hefty capital investments to own enough hashing power to efficiently operate 
them and mine independently (solo mining) (see also subsection 1.5.1 Bitcoin Mining). 
This is by design, because the best way to generate revenue is to successfully mine a block. 
Otherwise, no bitcoin(s) are earned, regardless of effort (hashing power) contributed.  

To address the increasing difficulty of successful solo mining, the first cooperative (mining 
pool) was launched in 2010. Named Bitcoin.cz, it is now known as Braiins. The idea behind 
a mining pool is to combine the resources of multiple miners to create one collaborative 
mining entity with greater hashing power. This is generally achieved by using a mining 
software that is compatible with the mining pool, and simply registering an account. Large 
mining pools represent an important percentage of the total hash rate of the bitcoin network, 
and consistently produce blocks. They thus provide miners with a steady stream of 
revenue.19  

The profit-sharing models of Bitcoin mining pools can vary, with several important 
differences to keep in mind. The underlying concept of distributing mining rewards among 

 
19 See https://explorer.btc.com/en/btc for mining pools and related hash rate. 
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contributors is common, but the specific mechanisms and parameters differ. There are four 
main models: 

1. Proportional Distribution: Some mining pools distribute rewards proportionally, 
based on the individual miner’s contribution. Miners thus receive a share of the 
rewards that is equivalent to the proportion of their contributed computational 
power. This model ensures a fair distribution of rewards. The Braiins pool operates 
under this model. 

2. Pay-per-Share (PPS): In a pay-per-share model, miners receive a fixed payout for 
each share they contribute, regardless of whether the pool successfully mines a 
block. This model offers predictable and steady income for miners. They are 
compensated for their work based on the number of shares they contribute. F2Pool 
operates under this model. 

3. Score-Based Systems: Some pools use score-based systems, such as the "Double 
Geometric Method" (DGM), or the "Geometric Method" (GM), to distribute 
rewards. These models consider factors like the number of shares submitted by a 
miner over a certain period, and the difficulty of those shares. Miners are then 
rewarded proportionally, based on their score relative to other participants. Antpool 
operates under this model. 

4. PPLNS (Pay-per-Last-N-Shares): PPLNS is a profit-sharing model where miners 
are paid based on the number of shares, they contributed during a specific time 
window. However, payouts are calculated based on the “last N shares,” instead of 
all submitted shares. “N” represents a certain number of shares, and the model aims 
to reward miners who stay with the pool for a longer duration. BTC.com operates 
under this model. 

5. Fee Structures: Mining pools often charge for their services, which can affect the 
profitability and actual rewards received by miners. Fee structures can vary and 
may include flat fees or percentage-based fees on rewards. Miners need to consider 
the fee structure when choosing a mining pool, because higher fees can impact 
overall profitability. ViaBTC offers various profit-sharing models, such as PPS and 
PPLNS, as well as different fee levels. 

Besides mining pools, there are other ways to structure profit-sharing arrangements, such 
as cloud mining contracts and hosted mining. In cloud mining contracts, individuals 
purchase a portion of the hashing power from a larger mining facility. The buyer then 
receives a percentage of the mined bitcoin from the purchased hash rate, minus a service 
fee. Similarly, hosted mining occurs when an individual purchases mining hardware from 
a manufacturer, and subsequently rents hosting in their facilities. Unlike cloud mining, the 



 58 
 

individual owns the mining hardware, and can request it be shipped if they no longer want 
to pay the rental fees.  

In sum, profit-sharing in Bitcoin mining exemplifies good governance. Models such as 
proportional distribution, pay-per-share, score-based systems, and PPLNS ensure fair 
allocations based on contributions. Transparency, choice, and absence of corruption foster 
accountability and participation. This inclusive and equitable approach aligns with the 
principles of good governance, including transparency, accountability, participation, and 
fairness. 

1.7.3. Principles of Governance 

In the broadest sense, the “G” (Governance) of ESG is the process of overseeing control 
and direction. Good governance is necessary to optimize outcomes and protect 
stakeholders in any type of organization or system. The more people an institution impacts, 
the greater the need for good governance of an institution’s actions. In Bitcoin’s case, the 
technology is being adopted as a monetary form, while acting as a value transfer, or 
payment, network. It aims to replace some aspects of central banking and various portions 
of the financial industry. In other words, adopting Bitcoin beyond a speculative asset will 
directly affect the underpinnings of our economy and how we transact. Therefore, it is 
critical to understand how the technology is controlled.  

Central to Bitcoin’s philosophy, and directly integrated into its design, is the creation of an 
independent money source that is separate from that of the state. To accomplish this 
disintermediation, Bitcoin’s design aims to maximize trustlessness, which is the removal 
of the need to trust a third party (such as a bank). Bitcoin was created as an open-source 
software, and the fully decentralized network was bootstrapped by users. Thus, there is no 
centralized governing body, in contrast to current fiat monies and other cryptocurrencies. 
Bitcoin governance is the process by which transaction and block verification rules are 
decided upon, implemented, and enforced. The users that adopt the same validation rules 
to verify payments and transactions form an intersubjective social consensus of how 
Bitcoin is defined. 

Bitcoin has evolved since its initial release. It has received updates to its protocol that have 
patched security flaws and added functionality, such as the most recent Taproot update. 
There are three general ways to propose protocol changes: e-mailing the bitcoin-dev 
mailing list directly; publishing a formal white paper; and/or submitting a Bitcoin 
Improvement Proposal on the Bitcoin Github repository. However, since 2013, changes 
have been published as BIPs (Bitcoin Improvement Proposals), which act as a standardized 
means of communicating ideas.  
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Before any proposed changes can be implemented, consent from the community, in the 
form of consensus from the economic majority of Bitcoin users, is required. Submitted 
BIPs are screened by editors to ensure formatting follows the community’s agreed upon 
structure. Each BIP must also constitute a single key proposal or idea. BIPs can then be 
accepted or rejected. However, the BIP authors are responsible for building consensus by 
addressing concerns and questions about the change. The review process is fully 
transparent, so anyone can view and follow the progress.  

To achieve acceptance, a BIP must meet three criteria: 1) It must follow the agreed upon 
format specified in BIP-001; 2) it must include the necessary code to implement the 
proposed changes to the Bitcoin Core protocol; and 3) it must attract 95% support from the 
last 2,016 miners. Signaling, which is accomplished by setting the version field of the block 
to a specific value, is mandatory, because of certain implications for miners. It is typically 
done once the new code is incorporated. Miners must vote to include the agreed upon data 
in their hashed blocks. Final approval of a BIP takes place when users update their nodes 
to the version that reflects the proposed change.  

It is important to note that changes to the Bitcoin protocol are usually backward compatible 
(this is often referred to as a “Soft Fork”), so users are not forced to update their nodes. 
Changes that are not backward compatible, and force an update, are known as Hard Forks. 
They remain a highly contentious issue in the Bitcoin community because of the danger 
they may pose to the protocol. The process Bitcoin follows is extremely conservative, 
deliberate, and democratic. Historically, it has also been quite lengthy. For example, the 
latest Taproot update was proposed on January 23, 2018, and was finally activated on 
November 16, 2021, nearly four years later.  

The United Nations defines governance as “the process of decision-making and the process 
by which decisions are implemented (or not implemented)” (Sheng, 2009). The U.N. 
Human Rights Council identifies five key attributes of good governance: transparency, 
responsibility, accountability, participation, and responsiveness (OHCHR, 2022). 
Reflecting on Bitcoin’s governance process, we find high degrees of alignment with the 
U.N.’s attributes of good governance: 

• The Bitcoin protocol simply enforces a set of validation rules agreed upon by the 
entirety of its participants. 

• The network itself performs a self-audit of its transactional history roughly every 
ten minutes, which can be performed by anyone. 

• Its entire transactional history is always visible to anyone. 

• The Bitcoin protocol is open-source, with fully transparent and auditable source 
code. 
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• The ability to propose (and actively participate in all phases of) changes to the 
source code is available to anyone. 

• The network adopts changes only when a consensus of the economic majority is 
reached. 

• The Bitcoin network is inclusive and non-discriminatory. No personal information 
needs to be disclosed to create a wallet or use the network. 

Although no system is perfect, Bitcoin is undeniably fairer, more transparent, more 
inclusive, and more corruption-resistant than most existing monetary systems and 
networks. As such, the governance model adopted by Bitcoin also supports the U.N.’s SDG 
#16: “Peace, Justice and Strong Institutions,” by directly contributing to Targets 16.5: 
“Substantially reduce corruption and bribery in all their forms”; 16.6: “Develop effective, 
accountable and transparent institutions at all levels”; 16.7: “Ensure responsive, inclusive, 
participatory and representative decision-making at all levels”; and 16.8: “Broaden and 
strengthen the participation of developed countries in the institutions of global 
governance.” 

1.8. Discussion and Conclusion  

After Bitcoin was invented in 2008, and came into use in 2009, only a few individuals 
mined Bitcoin using CPU-based personal computers. This number grew to a few hundred 
in 2010, so related energy consumption was still negligible. In 2012, however, this changed 
dramatically with the specifically designed application-specific integrated circuits 
(ASICs). Thus began the true start of professional Bitcoin mining.  

Within that year, bitcoin surpassed $100 for the first time, and then quickly overtook the 
$1,000 mark. The steep increase in bitcoin’s price kickstarted the professional Bitcoin 
mining business by creating Bitcoin mining pools or farms. The former are groups of 
miners who share computational power; the latter are centralized collections of miners in, 
e.g., a warehouse, with the sole purpose of mining Bitcoin. With the increase in 
professionalism, however, mining competition intensified, resulting in a concurrent sharp 
increase in Bitcoin miners. This increased the hash rate, and energy consumption.  

As long as the bitcoin price exceeded the administrative, hardware, and energy costs of the 
mining process, it was lucrative to invest in more miners, thereby setting in motion a spiral 
of increasing hash rate and energy consumption. The spiral breaks as soon as the bitcoin 
price falls below the levels needed to mine profitably, as seen during the crypto winter in 
2022. This resulted in insolvencies of numerous professional crypto mining operations, 
such as Core Scientific Inc., one of the largest publicly traded crypto mining companies in 
the U.S. to file for Chapter 11 bankruptcy. It underlines the risk to traditional Bitcoin 
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mining of relying on sufficiently high bitcoin prices, which are not only highly volatile, 
but can remain depressed for extended periods of times (uncertain revenue). It also 
highlights the importance of fixed energy costs.  

In contrast, more innovative methods of Bitcoin mining, such as flaring or coal refuse, do 
not rely on conventional energy sources like gas or coal-fired power plants and instead 
consume waste or stranded energy which may ultimately reduce emissions. Therefore, the 
innovative forms of Bitcoin mining are a better fit for bitcoin’s price volatility and cost 
structure, making them generally more sustainable. Ultimately, they still consume energy, 
but with a much lower (and perhaps negative in the future) carbon footprint. However, it 
is uncertain how quickly the industry can fully transition to these alternate methods. 
Elevated bitcoin price levels will presumably continue to favor conventional Bitcoin 
mining in the short term.  

The discussion of Bitcoin’s energy consumption, however, ignores the many benefits of its 
value transfer network. As an open-source protocol with no overarching governing body, 
the Bitcoin network has had a positive impact on human rights, particularly in oppressed 
and developing jurisdictions. Furthermore, we show that many of Bitcoin’s qualities align 
with some of the U.N.’s Sustainability Development Goals and can thus help achieve their 
targets. Easy access to the Bitcoin network, and the ability to manage one’s own wealth, is 
helping ensure that everyone has equal access to vital financial services. This supports the 
U.N.’s goal of ending poverty in all its forms everywhere.  

The strong economic incentives, mobility, and stochastic nature of Bitcoin mining also 
provides utilities with unique opportunities to build out renewable energy infrastructure 
and stabilize their grids. Bitcoin miners can consume any excess energy generated from, 
e.g., renewable energy sources like solar and wind. This should improve the economic 
viability of those projects, and, consequently, hasten the transition to clean energy. 
Furthermore, the ability to provide an instant demand response at any scale significantly 
improves grid stability. As such, Bitcoin miners can leverage their relationships with 
utilities and increase their share of renewable energy production (SDG 7, Target 7.2). This 
will improve access to affordable and reliable energy services (SDG Target 7.1).  

Last, Bitcoin’s peer-to-peer network eliminates expats’ reliance on costly network 
corridors to make remittance payments (SDG Target 10). Leveraging the Lightning 
Network, Bitcoin’s second layer, allows for more efficient payment transmissions at little 
to no cost, and without exposure to bitcoin’s price volatility (SDG Target 10.c). Thus, 
Bitcoin is clearly more than a speculative asset; its network and infrastructure can improve 
quality of life worldwide. 

When evaluating Bitcoin’s ESG performance, the most pronounced criticism focuses on 
energy consumption during the mining process, as well as on the related emissions and 
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carbon footprint. Regardless of Bitcoin’s numerous benefits (discussed in-depth in the “S” 
and “G” sections), and the fact that current estimates are largely overstated, it remains that 
the absolute energy consumption is not negligible. Increases in the bitcoin price will 
improve the economics of mining and will arguably also increase fuel energy consumption.  

However, given the current turmoil in the professional Bitcoin mining business, investors 
will likely be more careful and more diligent in the future about their decisions to finance 
traditional mining operations. This should create more opportunities for the innovative 
Bitcoin mining alternatives to attract investors and substantially increase their market 
share. Their business models can smooth the effects of bitcoin’s inherent price volatility, 
and they also feature lower mining costs.  

It is probably overly optimistic to expect this shift to occur soon, especially if the bitcoin 
price soars again. But the economic advantages make a move to newer methods virtually 
inevitable. Therefore, we conclude that all Bitcoin mining-related carbon emission 
forecasts (excluding the newer, innovative forms) are overstating their emissions 
footprints. We are likely to see dramatically reduced net emissions, or even net negative 
emissions, in the future.  

As the industry adapts and evolves, it is crucial to move beyond a narrow focus on the 
absolute contribution to the environmental aspect “E” and evaluate Bitcoin's overall impact 
through a holistic lens. By considering the net contribution, the utilization of curtailed or 
waste energy, and the significant social “S” and governance “G” benefits enabled by the 
Bitcoin network, we can recognize the industry's potential to advance global sustainability 
goals. 

In conclusion, we firmly assert that a grounded, holistic approach is essential for the future 
progress of the Bitcoin mining industry. By addressing energy consumption concerns, 
embracing innovative methods, and accounting for the wider positive contributions, we can 
pave the way for a more sustainable and inclusive future. It is through this approach that 
we can unlock the full potential of Bitcoin's network and infrastructure to improve the 
quality of life worldwide, while concurrently striving towards a greener, more equitable 
global economy. 
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Appendix A. Supplemental Information for Chapter 1 

Figure Chapter 1-8: Visualization of CMR test for unit root with two breakpoints 

This figure shows the results of the Clemente-Montañés-Reyes (CMR) test for innovational outliers (IO) for 
gradual shift in the mean and additive outliers (AO) for a single mean shift with two structural breaks (see 
Clemente, Montañés, and Reyes, 1998) for the log-transformed hash rate (EH/s) and bitcoin price (BTC) as 
well as the differences.  
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Figure Chapter 1-9: Bitcoin Miner Efficiency 

This figure shows the miner energy efficiency in W/Th for different miner models over time.  
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Table Chapter 1-9: Hash Rate, Watts, and Profits of Bitcoin Miners (July 7, 2022) 

This tables shows for different miner models (Name) and for each manufacturer the release date, its hash rate (in TH/s), Watts (in W), efficiency (in W/TH), 
revenue (in $/day) and profits (in $/day) assuming energy costs of 0.06 $/kW.  

Manufacturer Name Release Hash rate Watts Efficiency Revenue Profit 
Bitmain Antminer S7 Aug 15 4 1093.6 273.4 0.4 -1.4 
Bitmain Antminer V9 Mar 17 4 1027.2 256.8 0.4 -1.1 
Bitmain Antminer T9 Jul 17 12 1513.2 126.1 1.2 -1.1 
Bitmain Antminer T9 Dec 17 10 1364 136.4 1 -1.1 
Bitmain Antminer T9+ Dec 17 10 1364 136.4 1 -1.1 
Bitmain Antminer T9 Mar 17 11 1387.1 126.1 1.1 -1 
Bitmain Antminer S7-ln May 16 2 516.2 258.1 0.2 -0.8 
Bitmain Antminer S9 hydro Jul 18 18 1728 96 1.7 -0.8 
Bitmain Antminer S5 Nov 14 1 508.6 508.6 0.1 -0.7 
Bitmain Antminer S9 Aug 17 13 1274 98 1.2 -0.7 
Bitmain Antminer S9 Oct 17 14 1372 98 1.3 -0.7 
Bitmain Antminer S9 Jan 16 12 1176 98 1.2 -0.6 
Bitmain Antminer S9 May 16 11 1078 98 1.1 -0.6 
Bitmain Antminer S9 Apr 18 13 1280.5 98.5 1.2 -0.6 
Bitmain Antminer S9i Apr 18 13 1280.5 98.5 1.2 -0.6 
Bitmain Antminer S9i Apr 18 14 1320.2 94.3 1.3 -0.6 
Bitmain Antminer S9j Jul 18 14 1303.4 93.1 1.3 -0.6 
Bitmain Antminer S9k Jul 19 13 1261 97 1.2 -0.6 
Bitmain Antminer S3 Jun 14 0 0 762.5 0 -0.5 
Bitmain Antminer R4 Jan 17 8 776.8 97.1 0.8 -0.4 
Bitmain Antminer S9se Aug 18 16 1280 80 1.5 -0.4 
Bitmain Antminer S9se Aug 18 16 1280 80 1.5 -0.4 
Bitmain Antminer S11 Oct 19 20 1492 74.6 1.9 -0.3 
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      (continued) 

Table Chapter 1-10: Hash Rate, Watts, and Profits of Bitcoin Miners (July 7, 2022)¾continued 

Bitmain Antminer T15 Nov 18 23 1541 67 2.1 -0.1 
Bitmain Antminer S15 Nov 18 28 1596 57 2.6 0.3 
Bitmain Antminer T17 Apr 19 40 2200 55 3.7 0.5 
Bitmain Antminer T17e Oct 19 53 2915 55 4.9 0.7 
Bitmain Antminer T17+ Nov 19 64 3200 50 5.9 1.3 
Bitmain Antminer S17 Mar 19 53 2385 45 4.9 1.4 
Bitmain Antminer S17 Mar 19 56 2520 45 5.2 1.5 
Bitmain Antminer S17 pro Mar 19 50 1975 39.5 4.6 1.8 
Bitmain Antminer S17e Oct 19 64 2880 45 5.9 1.8 
Bitmain Antminer S17 pro Mar 19 53 2093.5 39.5 4.9 1.9 
Bitmain Antminer S17+ Nov 19 73 2920 40 6.7 2.5 
Bitmain Antminer T19 May 20 84 3150 37.5 7.7 3.2 
Bitmain Antminer T19 Jul 20 88 3344 38 8.1 3.3 
Bitmain Antminer S19j May 21 90 3249 36.1 8.3 3.6 
Bitmain Antminer S19i unknown 90 3051 33.9 8.3 3.9 
Bitmain Antminer S19 Apr 20 95 3249 34.2 8.8 4.1 
Bitmain Antminer S19j Pro Jul 21 92 2714 29.5 8.5 4.6 
Bitmain Antminer S19j Pro May 21 100 3050 30.5 9.2 4.8 
Bitmain Antminer S19j Pro Jul 21 96 2832 29.5 8.8 4.8 
Bitmain Antminer S19a Pro Oct 21 104 3255.2 31.3 9.6 4.9 
Bitmain Antminer S19j Pro Jul 21 104 3068 29.5 9.6 5.2 
Bitmain Antminer S19 Pro Apr 20 110 3245 29.5 10.1 5.5 
Bitmain Antminer T19 Hydro Jun 22 145 5437.5 37.5 13.4 5.5 
Bitmain Antminer S19 XP Nov 21 140 3010 21.5 12.9 8.6 
Bitmain Antminer S19 Pro Hydro Jan 22 198 5445 27.5 18.2 10.4 
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Bitmain Antminer S19 XP Hydro Feb 22 255 5304 20.8 23.5 15.9 

      (continued) 

Table Chapter 1-11: Hash Rate, Watts, and Profits of Bitcoin Miners (July 7, 2022)¾continued 

Canaan Avalonminer 741 Mar 17 7 1102.5 157.5 0.7 -1 
Canaan Avalonminer 821 Jan 18 11 1147.3 104.3 1.1 -0.7 
Canaan Avalonminer 841 Mar 18 13 1233.7 94.9 1.3 -0.6 
Canaan Avalonminer 921 Aug 18 20 1700 85 1.8 -0.6 
Canaan Avalonminer 1066 Aug 19 50 3250 65 4.6 -0.1 
Canaan Avalonminer 1047 Aug 19 37 2379.1 64.3 3.4 0 
Canaan Avalonminer A1046 unknown 36 2318.4 64.4 3.3 0 
Canaan Avalonminer 1146 pro Jul 20 63 3276 52 5.8 1.1 
Canaan Avalonminer 1166 pro Jul 20 81 3402 42 7.5 2.6 
Canaan Avalonminer 1246 Dec 20 90 3420 38 8.3 3.4 
Canaan Avalonminer 1247 unknown 90 3420 38 8.3 3.4 
Canaan Avalonminer 1266 Apr 22 100 3500 35 9.2 4.2 
MicroBT Whatsminer M21 Aug 18 31 3360.4 108.4 2.9 -2 
MicroBT Whatsminer M3x Jul 16 12 1968 164 1.2 -1.8 
MicroBT Whatsminer M3 Feb 18 12 2000.4 166.7 1.1 -1.8 
MicroBT Whatsminer M10 Sep 17 33 2145 65 3 0 
MicroBT Whatsminer M10s Oct 19 55 3498 63.6 5.1 0 
MicroBT Whatsminer M21s Mar 19 56 3360 60 5.2 0.3 
MicroBT Whatsminer M32 Aug 19 62 3348 54 5.7 0.9 
MicroBT Whatsminer M32s Jul 19 66 3432 52 6.1 1.1 
MicroBT Whatsminer M20 Jul 20 68 3359.2 49.4 6.3 1.4 
MicroBT Whatsminer M20s Jul 20 68 3359.2 49.4 6.3 1.4 
MicroBT Whatsminer M31s Nov 20 76 3313.6 43.6 7 2.2 
MicroBT Whatsminer M31s+ Sep 20 80 3360 42 7.4 2.5 
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MicroBT Whatsminer M30 Dec 20 86 3268 38 7.9 3.2 
MicroBT Whatsminer M30s Dec 20 86 3268 38 7.9 3.2 

      (continued) 

Table Chapter 1-12: Hash Rate, Watts, and Profits of Bitcoin Miners (July 7, 2022)¾continued 

MicroBT Whatsminer M30s+ Jan 21 100 3400 34 9.2 4.3 
MicroBT Whatsminer M30s++ Sep 20 112 3472 31 10.3 5.3 
MicroBT Whatsminer M50 Apr 22 114 3306 29 10.5 5.7 
MicroBT Whatsminer M53 Apr 22 226 6554 29 20.8 11.4 
Other Bitfury B8 Nov 17 49 6399.4 130.6 4.5 -4.7 
Other Pantech Wx6 Dec 17 34 5001.4 147.1 3.1 -4.1 
Other Snow Panthera1 Dec 17 49 5399.8 110.2 4.5 -3.3 
Other Ebit E10d Aug 19 25 3500 140 2.3 -2.7 
Other Gmo B3 Oct 18 33 3415.5 103.5 3 -1.9 
Other Bitfury Tardis Oct 18 80 6304 78.8 7.4 -1.7 
Other A1 unknown 25 2800 112 2.3 -1.7 
Other Ebit E10.3 Jan 18 24 2640 110 2.2 -1.6 
Other T1 unknown 32 3100.8 96.9 2.9 -1.5 
Other Default unknown 10 1500 150 0.9 -1.2 
Other Ebit E9.3 Apr 18 16 1760 110 1.5 -1.1 
Other V9 unknown 4 1000 250 0.4 -1.1 
Other Ebit E9+ Dec 17 9 1299.6 144.4 0.8 -1 
Other Ebit E9 Aug 18 6 1026 171 0.6 -1 
Other Aisen A1 pro Apr 20 23 2201.1 95.7 2.1 -1 
Other S5 unknown 25 2200 88 2.3 -0.9 
Other Ebit E9.2 Apr 18 12 1320 110 1.1 -0.8 
Other Ebit E9i Jun 18 13 1367.6 105.2 1.2 -0.8 
Other Snow Pantherb1+ Jul 18 24 2056.8 85.7 2.3 -0.8 
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Other A1 unknown 24 2100 87.5 2.2 -0.8 
Other B1+ unknown 24 2056.8 85.7 2.3 -0.8 
Other F1 unknown 24 2100 87.5 2.2 -0.8 

      (continued) 

Table Chapter 1-13: Hash Rate, Watts, and Profits of Bitcoin Miners (July 7, 2022)¾continued 

Other Pantech Sx6 Aug 17 8 940.8 117.6 0.8 -0.7 
Other Ebit E10 Jan 18 18 1650.6 91.7 1.7 -0.7 
Other Dragonmint T1 Mar 18 16 1480 92.5 1.5 -0.7 
Other Innosilicon T2 terminator Apr 18 17 1552.1 91.3 1.6 -0.7 
Other Innosilicon Turbo hf+ Jun 20 33 2600.4 78.8 3 -0.7 
Other Innosilicon T2 Jul 18 26 2100.8 80.8 2.4 -0.6 
Other Innosilicon T2 turbo Jul 18 24 1980 82.5 2.2 -0.6 
Other Gmo B2 Sep 18 24 1951.2 81.3 2.2 -0.6 
Other Snow Pantherb1 Jun 18 16 1380.8 86.3 1.5 -0.5 
Other Innosilicon T2t Jul 18 30 2199 73.3 2.8 -0.4 
Other Holic H22 Nov 18 22 1700.6 77.3 2 -0.4 
Other Holic H28 Nov 18 28 2100 75 2.6 -0.4 
Other F3 unknown 30 2199 73.3 2.8 -0.4 
Other F5 unknown 40 2852 71.3 3.7 -0.4 
Other Innosilicon T2 turbo+ Aug 18 32 2201.6 68.8 2.9 -0.2 
Other Ebit E11 Sep 18 30 1950 65 2.8 0 
Other Innosilicon T3 Jun 19 50 3100 62 4.6 0.1 
Other Ebit E11+ Sep 18 37 2035 55 3.4 0.5 
Other Innosilicon T3 Feb 19 39 2148.9 55.1 3.6 0.5 
Other Ebit E12 Aug 19 44 2499.2 56.8 4.1 0.5 
Other Innosilicon T3+ Aug 19 57 3300.3 57.9 5.3 0.5 
Other Innosilicon T3+ Apr 19 52 2797.6 53.8 4.8 0.8 
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Other Innosilicon T3 Dec 18 43 2098.4 48.8 4 0.9 
Other Ebit E12+ Aug 19 50 2500 50 4.6 1 
Other Ebit E11++ Sep 18 44 1980 45 4.1 1.2 
Other Stu-u8 Jun 19 46 2102.2 45.7 4.2 1.2 

      (continued) 

Table Chapter 1-14: Hash Rate, Watts, and Profits of Bitcoin Miners (July 7, 2022)¾continued 

Other U8 unknown 46 2102.2 45.7 4.2 1.2 
Other Strongu Pro Aug 19 60 2802 46.7 5.5 1.5 
Other F5i unknown 60 2820 47 5.5 1.5 
Other Hornbill H8 Sep 20 74 3330 45 6.8 2 
Other Hornbill H8 pro Sep 20 84 3360 40 7.7 2.9 
Other Bonanza Mine 2 (BZM2) Jan 22 135 3510 26 12.4 7.4 
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Table Chapter 1-15: Expected Bitcoin Network Energy Consumption and CO2 Emissions 

This table shows the expected forecasted energy consumption in TW/Year for the different forecast models including the 5% lower and 95% upper bound, including 
the expected change in energy consumption as well as the implied CO2 release from the network. 

Year 
Expected 

TW/Year (5% 
lower bound) 

Expected 
TW/Year (95% 
upper bound) 

Expected 
TW/Year (50% 
Median) 

Expected 
average change 

MTons CO2 
(5% lower 
bound) 

MTons CO2 
(95% upper 
bound) 

MTons CO2 
(50% Median) 

Subsample VAR Forecast 
0 65.82   

 
  30.01 

1 60.52 78.38 69.37 5% 27.59 35.73 31.63 
2 53.23 127.34 83.01 20% 24.27 58.05 37.84 
3 46.08 237.60 106.93 29% 21.01 108.32 48.75 
4 39.00 481.81 140.67 32% 17.78 219.65 64.13 

Full Sample VEC Forecast 
1 42.87 72.19 54.58 -17% 19.54 32.91 24.88 
2 25.34 153.06 57.86 6% 11.55 69.78 26.38 
3 13.93 463.05 70.29 21% 6.35 211.10 32.04 
4 6.99 1763.87 89.49 27% 3.19 804.14 40.780 

Full Sample VAR Forecast 
1 63.79 98.80 78.58 19% 29.08 45.04 35.82 
2 57.74 236.15 113.37 44% 26.32 107.66 51.68 
3 49.28 689.07 176.67 56% 22.48 314.14 80.54 
4 39.94 2315.70 282.51 60% 18.22 1,055.71 128.80 
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Chapter 2: GameFi: The perfect symbiosis of blockchain, tokens, 
DeFi, and NFTs? 

2.1. Citation 

Proelss, J., Sévigny, S., & Denis Schweizer. (2023). GameFi: The perfect symbiosis of 
blockchain, tokens, DeFi, and NFTs? International Review of Financial Analysis, 90, 
102916. doi:10.1016/j.irfa.2023.102916 

2.2. Abstract 

GameFi is a portmanteau of “game” and “finance.” The concept involves blockchain games 
that offer economic incentives to play, otherwise known as play-to-earn (P2E) games. We 
explain in detail how GameFi differs from traditional games, and carve out its unique value 
proposition. We also explore how the mechanics of blockchain games influence the social 
facet of P2E games, where guilds and clans essentially function as profit-sharing 
organizations. GameFi leverages disparate elements of the crypto space: tokens, DeFi, and 
NFTs. Lastly, we discuss in detail some of the challenges of GameFi.  

2.3. Introduction 

As a response to the global financial crisis, Satoshi Nakamoto’s (2009) white paper 
introduced Bitcoin, a digital peer-to-peer monetary system. This innovation brought true 
digital scarcity with the invention of blockchain technology: a shared, decentralized ledger, 
without a central governing entity, that allows for immutable trustless transactions (Corbet 
et al., 2019). Decentralized blockchains provide users with bona fide ownership of their 
native digital assets, as well as the ability to transact with them freely and with finality.  

The functionality of blockchains expanded with the invention of smart contracts, which 
allow programming of blockchain native currencies (see Buterin, 2014). Smart contracts 
are addresses on the blockchain, with programmed conditions imposed on those who 
choose to interact with them. These contracts are fully transparent and can be freely 
audited, so individuals can conduct complex transactions without the need for trusted 
intermediaries (see Clack, 2018). Using smart contracts, traditional financial (TradFi) 
activities can be replicated online and without a central authority. This is known as 
decentralized finance (DeFi) (see Harvey et al., 2021). DeFi transactions occur on Web 3.0 
decentralized applications (dApps). They include such activities as asset swaps (e.g., 
Ethereum to a U.S. dollar stablecoin (ETH/USDT)), liquidity providing (depositing a $1-
to-$1 value of two pairs, such as ETH/USDT, known as liquidity mining), and lending and 
borrowing services (see Schär, 2021; Jensen et al., 2021; Harvey et al., 2021; Chiu et al., 
2022; Treleaven et al., 2022; Corbet et al., 2023).  
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Within these activities, the majority of fees generated are distributed to peers that facilitate 
the transaction (e.g., liquidity providers). The balance is kept by the platform that provides 
the interface. The most commonly used assets in DeFi are fungible tokens, which represent 
a form of currency. However, since 2021, non-fungible tokens (NFTs) have also been 
gaining wide acceptance. Note that each token equals a digital unit of value that represents 
an asset or utility. Unlike coins, tokens do not have their own blockchains. They are issued 
on top of existing networks. Furthermore, they are not mined in the process of transaction 
validation, but are instead minted. 

NFTs can represent ownership (see Fairfield, 2021; Yousaf and Yarovaya, 2022b) of any 
type of item, ranging from digital art or images (such as the popular Bored Ape Yacht Club 
collection), to concert tickets, to real estate in the metaverse (see Chohan, 2021). The 
novelty is that digital assets with fully unique characteristics and value are tokenized. But 
each NFT is unique, and tied to a specific digital asset that is non-fungible in nature (unlike 
Bitcoin or USD).  

NFTs originated in 2013, when Meni Rosenfeld (currently Chairman of the Israeli Bitcoin 
Association) introduced the concept of colored coins. The idea was to tie real world assets 
to Bitcoin as a way to authenticate ownership (see Rosenfeld, 2013). Although colored 
coins were not ultimately implemented, they led to the release of the Rare Pepes memes in 
2016 on the Ethereum blockchain (see www.rarepepes.com).  

In 2017, Larva Labs created CryptoPunks, the first of many series of randomly generated 
unique character images (see http://cryptopunks.app). Series like CryptoPunks use 
randomly selected defining characteristics, such as background, face, hair, hats, and 
accessories, to create a collection of unique characters (there are 10,000 CryptoPunks). 
This collection inspired the ERC-721 data standard that now powers most digital art and 
collectibles on the Ethereum network. Owning these types of NFTs offers access to events, 
physical items, and various DeFi utilities.  

Also in 2017, by leveraging NFT technology, Dapper Labs released the first official 
blockchain game on Ethereum, CryptoKitties. It took the world of crypto by storm (see 
Jiang and Liu, 2021, and www.cryptokitties.co). In this game, players purchase, breed, and 
trade virtual cats that, like CryptoPunks, have unique defining visual characteristics of 
varying rarity. The game’s popularity exploded, clogging the Ethereum network and 
accounting for about 25% of all traffic. Regular transactions were delayed for days. Since 
then, multiple blockchain-based games of various genres have been developed, such as 
Gods Unchained (see https://godsunchained.com), which is comparable to Activision’s 
Hearthstone, and Axie Infinity (see https://axieinfinity.com), inspired by Pokémon. 

Blockchain-based games typically use crypto-assets in two ways. They tokenize in-game 
items as NFTs, and they use fungible tokens as in-game currency. Traditional online games 
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are considered “walled gardens,” where the in-game items, characters, and currencies exist 
on developers’ servers. Consequently, users have no ownership rights to their accounts or 
content, and items and in-game currencies are limited to that specific game. As such, 
players trade their time and effort to grow their accounts, but gain nothing of lasting 
economic value. And, if they switch games, or if the developer shuts down the servers, all 
is lost.  

In blockchain-based games, the digital assets exist outside the game, and can be sold, 
transferred into another game, or used in certain DeFi transactions. Thus, building a game 
around blockchain technology redefines the incentive models for both players and 
developers. This has the potential to revolutionize what is already one of the fastest 
growing industries. 

The term GameFi merges the concepts of “gaming” and “finance,” and is generally defined 
as the convergence of three markets: gaming, DeFi, and NFTs (see Figure Chapter 2-1). 
Each component is significant, and growing rapidly. The gaming industry at large, 
including PC games, console games, social/casual gaming, and video games, generated 
approximately $200 billion in revenue in 2022. And the number of players increased during 
the COVID-19 lockdowns from about 2.6 billion to 3.1 billion (see World Economic 
Forum, 2022). Astonishing growth was also seen in the DeFi segment, which grew from 
about a $1 billion market capitalization20 before the pandemic, to an all-time high of nearly 
$200 billion in November 2021, before dropping significantly to $60 billion by the end of 
2022 (see Inside Bitcoins, 2022).  

  

 
20 Market capitalization represents the sum of all market capitalizations for all DeFi projects. We calculate 
the market capitalization of a DeFi project by multiplying the native DeFi token price, which is related to 
the respective DeFi project, by the number of tokens in circulation.  
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Figure Chapter 2-1: Illustration of GameFi 

This figure shows how GameFi is positioned at the intersection of Gaming, DeFi, and NFTs. 

 

We observe a similar pattern in the NFT market, which grew from almost no daily volume 
to a peak monthly volume of about $5 billion in January 2022. However, the NFT market 
had also declined by the end of the year, to about $600 million in December 2022, 
according to CryptoSlam’s NFT Global Sales Volume Index.21  

GameFi refers to play-to-earn (or P2E) games, where players can earn crypto-asset tokens 
(fungible or non-fungible) through gameplay. Players can sell the fungible tokens, or NFTs, 
via exchanges or marketplaces for fiat currencies (such as USD), or use them on DeFi 
protocols to, e.g., rent NFTs. Therefore, tokenizing in-game assets into NFTs serves as a 
way to bridge games and DeFi, allowing for unique opportunities (such as creating yield-
generating in-game assets). This type of structure maximizes value for players, rather than 
extracting value from players (see Hays et al., 2022). Unlike traditional gaming, effort and 
time is exchanged for entertainment, as well as ownership of digital assets, which is a new 
P2E model.  

The unique benefits and opportunities of GameFi, however, are only made possible by the 
synergistic nature of its elements. The gaming aspect has a low barrier to entry and provides 
entertainment, which drives new players and creates a marketplace while acting as a 
gateway to crypto-assets. NFTs act as securities that facilitate the monetization of certain 

 
21 The CryptoSlam NFT Global Sales Volume Index is available at https://www.cryptoslam.io/nftglobal. 



 77 
 

game mechanics, while creating new revenue streams for developers via royalties from 
NFT transactions.  

The DeFi protocols also act as a decentralized gamification of financial services, providing 
GameFi players with an entirely new dimension to monetize their in-game assets. Besides 
simply selling in-game currency fungible tokens, the key to P2E are the NFTs. They 
connect the game and its community with decentralized financial services such as “staking” 
and lending/borrowing.  

As we mentioned, the integration of these technologies into games permits many unique 
monetization strategies (see Figure Chapter 2-2). Traditionally, games generated revenue 
from pay-to-play (P2P) or free-to-play (F2P) models. They used advertisements, in-game 
purchases, subscriptions, and data monetization with the F2P, or the newer and rapidly 
growing “freemium” model. For example, in 2021, of the $200 billion generated in 
revenue, mobile F2P contributed about 38% ($75.6 billion). Under the freemium model, 
players access the game for free, but can accelerate their progress, purchase more powerful 
items, or customize their look by paying for items like avatars and hard in-game currencies. 
Steady revenue is generated from average players, but most “freemium” games depend on 
players known as “whales,” who are big spenders. Whales take gaming to the next level, 
seeking completion, optimization/ranking, and/or recognition from the community.  

For example, in Diablo Immortal, a recent mobile game, players have spent up to $100,000 
to optimize avatars (see Forbes, 2022). The P2E model, in contrast, provides developers 
with new avenues for fundraising and monetization. Investors may speculate on a game’s 
success and popularity. They can inject capital into the gaming environment without 
playing the game, by purchasing in-game currency tokens or NFTs. This raises the market 
capitalization of the in-game currency, and can lead to steady revenues via royalties from 
NFT transactions. We note that developers have raised enormous sums of capital with the 
initial issuance of in-game currency tokens, as well as by the sales of virtual plots of land, 
such as in Sandbox, where one plot alone sold for $4.3 million USD (see Wall Street 
Journal, 2021). 
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Figure Chapter 2-2: Evolution of Gaming Monetization 

This figure illustrates monetization strategies for the gaming categories Pay to Play, Free to Play, and Play 
to Earn, as well as examples for games in the respective categories. 

 

Integrating crypto-assets into video games comes quite naturally, because they are already 
digital in nature. Moreover, crypto-assets also usually feature some form of in-game 
currency and an economic model. Integrating blockchain technology permits the further 
monetization of various elements, such as converting an in-game item into a tradable NFT. 
From a player perspective, interest is heightened from the actual ownership of items or 
progress earned for time and effort invested, which can also be brought to market. 
Previously, selling in-game items was overly complex, and not always possible. Therefore, 
the rise of tokenized items and currencies allows for a smoother, safer, and more liquid 
secondary market.  

Some research has noted the benefits to players in developing countries, who have been 
able to earn a living via non-professional gaming with P2E games (see De Jesus et al., 
2022). Game developers are incentivized by the monetization mechanics. Not only do they 
draw adoption and engagement, but developers earn a percentage of every in-game 
transaction. From a community perspective, innovative DeFi products are being created 
for further monetization and profit making.  

Interestingly, in addition to the potential for financial compensation and gameplay, GameFi 
may eventually provide innovative new medical solutions. The metaverse, which is 
compatible with GameFi, is expected to combine with various medical technologies, such 
as telemedicine, virtual care, and holoportation (see Johannes et al., 2021). In 2020, the 
FDA granted marketing authorization to “EndeavorRx,” a video game treatment for 
children diagnosed with ADHD. Initial results show improvements in ADHD-related 
behaviors after two months of treatment, without supplementary medication. 
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Although still in its infancy, GameFi, as the nexus of three rapidly growing technologies, 
has experienced exponential growth since its introduction. Even during the depths of the 
2022 crypto bear market, venture capital activity in this sector increased, from $874 million 
in 2021 to $2.4 billion in 2022 (including investment in the metaverse and other gaming 
projects). Therefore, as an important emerging sector in the crypto space, with the potential 
to disrupt large industries, it is essential to better understand GameFi’s history, underlying 
mechanisms, and expected trajectory.  

Our paper contributes to the literature by introducing and defining GameFi as the 
intersection of DeFi, NFTs, and gaming. We aim to provide future researchers with a solid 
foundation of the underlying literature, as well as a sense of the challenges underpinning 
this rapidly growing multibillion dollar industry. Our work is both descriptive and 
exploratory. For the descriptive part, our primary contribution lies in introducing and 
explaining the economics of blockchain gaming, especially GameFi. We clarify how it is 
related to other crypto sectors, such as DeFi and NFTs. We also discuss GameFi’s 
economics using a case study of Axie Infinity, one of the leading games, and the related 
gaming guild, Yield Guild Games. We provide a comprehensive DeFi and NFT literature 
review in order to clearly position our paper. For the exploratory part, our contribution lies 
in empirically investigating how GameFi is related to the leading coins (Bitcoin, 
Ethereum), the impact of transaction costs (measured by gas fees), and the related crypto-
asset sectors (DeFi, NFTs, and P2E). We also analyze return spillovers during various 
subperiods. Our results contribute to the DeFi and NFT literature by illustrating how NFTs 
can be embedded in the gaming ecosystem and intersect with DeFi applications. 
Furthermore, we find that NFTs are a key component for the new P2E functionality of 
gaming.  

The remainder of this paper is organized as follows. Section 2 provides a comprehensive 
literature review of DeFi and NFTs. Section 3 describes the evolution of GameFi, and 
presents a case study of one of the most successful games (Axie Infinity), outlines the 
concept of guilds, and provides an overview of its related gaming guild (Yield Guild 
Games). The section also contains a discussion of the industry’s challenges. GameFi’s role 
in the crypto ecosystem is explored in-depth in Section 4. Section 5 concludes. 

2.4. Literature Review 

The crypto-asset market is fast moving, dynamic, and innovative, which has inspired a 
rapidly growing stream of research on the two GameFi-related sectors, DeFi and NFTs. In 
this section, we present a systematic literature review on both topics. We aim to provide a 
comprehensive understanding of the current literature, and identify possible future research 
directions.  
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Table Chapter 2-1: Literature Overview 

This table summarizes the current literature in decentralized finance (DeFi) (Panel A) and non-fungible tokens (NFTs) (Panel B). See Appendix Table Chapter 2-5 
for more details including the article title, journal name and research type.  

Panel A: Decentralized Finance (DeFi) 
1. Micro-level 

 1.1. Smart Contracts  
1 Clack (2018)  

 1.2. Tokens   

2-8 Klages-Mundt et al. (2020), Clements (2021), Saengchote (2021), van der Merwe (2021), Kim et al. (2022), Corbet et al. (2023), Fan et al. 
(2023),  

 1.3. DeFi Apps  

9-18 
Angeris et al. (2019), Foundation, L. X. L., Legal Counsel at Interstellar and Stellar Development (2019), Gudgeon et al. (2020), Bartoletti et al. 
(2021), Kim (2021), Reno et al. (2021), Stepanova and Erins (2021), Han et al. (2022), Metelski and Sobieraj (2022), Makridis et al. (2023) 

2. Meso-level 
2.1. Multichain Scaling  
19 Shekhawat et al. (2021) 

3. Macro-level 

20-58 

Larios-Hernández (2017), Chen and Bellavitis (2020), Ellul et al. (2020), Guseva (2020), Popescu (2020), Tien et al. (2020), Zetzsche et al. 
(2020), Abdulhakeem and Hu (2021), Clements (2021), Duran and Griffin (2021), Jensen et al. (2021), Johnson (2021), Schär (2021), Smith 
(2021), Al-Tawil (2022), Allen et al. (2022), Chiu et al. (2022), Garon (2022), Koster and Lapidus (2022), Meyer et al. (2022), Makarov and 
Schoar (2022), Momtaz (2022), Park et al. (2022), Popescu (2020), Sauce (2022), Treleaven et al. (2022), Umar et al. (2022), Yousaf and 
Yarovaya (2022a,b), Allen (2023), Barbereau et al. (2023), Bennett et al. (2023), Brummer (2023), Chu et al. (2023), Kaur et al. (2023), 

Kirimhan (2023), Piñeiro-Chousa et al. (2023), Qiao et al. (2023), Wronka (2023) 
(continued) 
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Table Chapter 2 1: Literature Overview—continued 

Panel B: Non-fungible Tokens (NFTs) 
1. Review 

59-60 Nobanee and Ellili (2023). Vidal-Tomás (2023) 
2. NFT Market 

61-76 
Chohan (2021), Nadini et al. (2021), Borri, Liu and Tsyvinski (2022), Kräussl, and Tugnetti (2022), Ko et al. (2022), Mazur and Polyzos 

(2022), Oh et al. (2022), Sharma et al. (2022), Urom et al. (2022), White et al. (2022), Zhang et al. (2022), Chowdhury et al. (2023), Ghosh et 
al. (2023), Jiang and Xia (2023), Ko and Lee (2023), Umar et al. (2023), Wilkoff and Yildiz (2023) 

3. Asset Pricing 
4. Tokens  

87-88 Nakavachara and Saengchote (2022), Wang et al. (2023) 
5.  Behavioral Finance   

89-103 Aharon and Demir (2022), Dowling (2022), Gunay and Kaskaloglu (2022), Umar et al. (2022a,b,c,d), Wang (2022), Xia et al. (2022), Yousaf 
and Yarovaya (2022a,b,c), Boido and Aliano (2023), Bani-Khalaf and Taspinar (2023), Qiao et al. (2023), 

6.  Regulatory & Societal Factors  

104-114 
Guadamuz (2021), Fairfield (2021), Chalmers et al. (2022), Chandra (2022), van Haaften-Schick and Whitaker (2022), Al Shamsi et al. (2023), 

Bonifazi et al. (2023), Kraizberg (2023), Serneels (2023), Weking et al. (2023), Zhong et al. (2023) 
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2.4.1. Decentralized Finance (DeFi) 

Since its inception in 2017, the DeFi sector has grown dramatically, reaching a peak market 
capitalization of nearly $200 billion (see https://coinmarketcap.com/view/defi/). Assets 
locked into DeFi smart contracts totaled approximately $175 billion as of November 2021 
(see https://DeFiLlama.com/). However, as of May 17, 2023, the sector had declined in 
value to about $50 billion in market capitalization and total assets locked into DeFi smart 
contracts.  

The majority of DeFi activity occurs on decentralized exchange (“DEX”) platforms such 
as Uniswap, Curve, Balancer, Bancor, etc. (see Foundation, L. X. L., Legal Counsel at 
Interstellar and Stellar Development, 2019; Han et al., 2022; Metelski and Sobieraj, 2022; 
Makridis et al., 2023). DEX platforms offer lending (yield farming or liquidity mining), 
borrowing, token swapping, and derivatives trading (see Gudgeon et al., 2020; Kim, 2021; 
Reno et al., 2021; Stepanova and Erins, 2021). Most DEXs, such as Uniswap, are liquidity 
pool-based, and function using an automated market maker (AMM) model to determine 
asset prices algorithmically (see Angeris et al., 2019; Bartoletti et al., 2021). They thus 
depend on DeFi participants to provide liquidity for their asset pairs, compensating 
liquidity miners with an algorithmically determined yield and the majority of the generated 
swapping fees (weighted average contribution). AMMs also depend on arbitrageurs (see 
Fan et al., 2023) to normalize prices across the ecosystem.  

The emergence of dollar stablecoins, such as Tether’s USDT, Circle’s USDC, Binance’s 
BUSD, and MakerDAO’s DAI, have contributed greatly to the growth of DeFi. They 
reduce friction for users, allowing for better risk management (see Klages-Mundt et al., 
2020; Clements, 2021; Saengchote, 2021). Stablecoins have effectively become the 
bedrock of DeFi ecosystems. The most commonly used assets in DeFi are fungible tokens 
(stablecoins and other crypto-assets). But, since 2021, non-fungible tokens (NFTs) have 
also gained wide acceptance as collateralizable assets (see van der Merwe, 2021). Note that 
each token equals 1 digital unit of value that represents an asset or utility. NFTs can 
represent ownership (see Fairfield, 2021; Yousaf and Yarovaya, 2022b) of any type of 
item, ranging from digital art or images (such as the popular Bored Apes Yacht Club), to 
real estate in the metaverse (see Chohan, 2021), perpetual contract positions (Kim et al., 
2022), or in-game equipment. 

The financial activities available within the DeFi ecosystem are constantly evolving, and 
the possibilities are limited only by the community’s imagination. This has attracted 
attention from regulators and researchers, giving host to a multitude of literature strands on 
DeFi. A framework developed by Meyer et al. (2022) categorizes the DeFi literature as 
follows: Micro, which groups strands of research on individual components of DeFi, Meso, 
which groups research on single DeFi blockchain systems and scaling beyond single-chain 
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systems, and Macro, which groups research on the DeFi ecosystem as a whole and its 
broader implications. See Table Chapter 2-1 (Panel A) for a detailed overview. 

Most of DeFi’s activities reside on the Ethereum blockchain, and the rapid growth in a 
short time has caused severe congestion. Such congestion translates into increased delays 
in transactional treatments and very high transaction costs, measured in gas fees.  

Shekhawat et al. (2021) discuss the challenges of DeFi on Ethereum, and the possibility of 
scaling by using cross-chain solutions. In this context, Smith (2021), Momtaz (2022), Chiu 
et al. (2022), and Makarov and Schoar (2022) provide an overview of the broader DeFi 
ecosystem. They examine the potential benefits and challenges of DeFi compared to 
traditional markets, while Kaur et al. (2023) identify and prioritize the risks.  

Tien et al. (2020) propose maximizing the time value of cryptocurrencies by leveraging 
decentralized money market DeFi protocols, such as Compound. Zhang et al. (2022) 
investigate the market efficiency of the DeFi market through the lens of the adaptive market 
hypothesis, while Momtaz (2022) evaluates whether institutional investors improve DeFi 
market efficiency.  

Furthermore, Chu et al. (2023) examine the dynamic volume-return relationship of the top 
five DeFi tokens, and the implications for trading strategies and market efficiency. Bennett 
et al. (2023) analyze the impact of behavioral finance factors on the pricing of assets in 
DeFi markets. From a broader perspective, Allen et al. (2022) explore how DeFi, crypto-
assets, and fintech have transformed China’s financial system.  

There has been growing interest in the drivers of the DeFi market and its relation to other 
subsectors of the crypto-asset market. Piñeiro-Chousa et al. (2023) evaluate the impact of 
social metrics, such as tweets and social sentiment indicators, on returns. Park et al. (2022) 
study price comovements between DEX and CEX tokens in the DeFi market. Umar et al. 
(2022a) examine how COVID-19 impacted the connectedness among NFTs, DeFi tokens, 
TradFi assets, and other cryptocurrencies, as well as the spillover effects.  

Qiao et al. (2023) take a slightly different tack by examining the time frequency extreme 
risk spillover network among these asset classes. Yousaf and Yarovaya (2022b) explore 
the portfolio implications of static and dynamic connectedness among NFTs, DeFi, and 
other assets. Yousaf and Yarovaya (2022a) also examine herding behavior in the DeFi 
market.  

With the novel technology introduced by crypto-assets, and the existence of DeFi 
technically outside the traditional financial system, how to regulate the industry has 
become a hotly debated topic. This strand of the literature has also been rapidly growing. 
For example, Wronka (2023) investigates financial crime compliance in the rapidly 
evolving DeFi ecosystem, where regulatory oversight has thus far been minimal. Clements 
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(2021) and Johnson (2021) highlight the need to regulate exchanges, while Al-Tawil (2022) 
and Kirimhan (2023) emphasize the importance of anti-money laundering (AML) 
regulations. In contrast, Ellul et al. (2020) provide a regulator’s perspective on regulating 
blockchain, distributed ledger technology (DLT), and smart contracts.  

Duran and Griffin (2021) and Allen (2023) discuss the potential risks DeFi presents, as 
well as its potential to cause a financial crisis if left unchecked. Zetzsche et al. (2020), 
Guseva (2020), Koster and Lapidus (2022), and Sauce (2022) explore the current and 
upcoming regulatory landscape for DeFi in the U.S. and how it may affect the growing 
industry. Brummer (2023) considers how the industry and regulators must adapt dated 
disclosure frameworks to match the novel policy questions of DeFi. In addition, Garon 
(2022) highlights the potential shift in legal doctrine needed to properly approach 
regulation of this industry. 

Another unique characteristic of decentralized protocols and networks is the governance 
mechanisms. Barbereau et al. (2023) analyze the distribution and exercise of tokenized 
voting rights in DeFi governance. 

Beyond consumer protection, governance, and regulation of the industry, several authors 
debate the societal benefits of DeFi. For example, Larios-Hernández (2017), Chen and 
Bellavitis (2020), Popescu (2020), and Abdulhakeem and Hu (2021) highlight the 
technology’s potential to provide open, borderless, and transparent alternatives to 
traditional services while increasing financial inclusion.  

2.4.2. Non-fungible Tokens (NFTs) 

Similarly to DeFi, the NFT market has grown exponentially in terms of number of NFTs, 
total value, media attention, and possible applications. Since 2021, the NFT literature has 
also been fast-moving. Nobanee and Ellili (2023) and Vidal-Tomás (2023) were the first 
to systematically summarize the literature on NFTs. They also conducted as a literature 
review on the concept of the metaverse, and an empirical assessment of the current state of 
the Web3 meta-economy. See Table 1 (Panel B) for a detailed overview. Mazur and 
Polyzos (2022) also provide a detailed overview of the infrastructure surrounding NFTs as 
an investment class. They examine the performance of various NFT categories over short- 
and long-term periods. 

The first set of papers on NFTs identified token price dynamics in the market, as well as 
the appropriate financial and econometric models. Kireyev and Lin (2021), Kong and Lin 
(2021), and Wang et al. (2023) develop valuation models for two of the most successful 
and popular NFT collections, CryptoKitties and CryptoPunks. Goldberg et al. (2021), 
Nakavachara and Saengchote (2022), and Dowling (2022) explore the pricing factors for 
digital land in Decentraland (a cryptocurrency and metaverse that lives on the Ethereum 
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platform). Yencha (2023) extends that work to investigating the digital land’s spatial 
heterogeneity.  

Horky et al. (2022) focus on the price determinants of NFTs in the digital art market, while 
Ante (2022), and Anselmi and Petrella (2023) explore the relationship between NFT digital 
artwork and traditional real-world art. Kräussl and Tugnetti (2022) provide an overview of 
the models used for pricing NFTs. Ghosh et al. (2023) attempt to predict and interpret the 
daily dynamics of NFT and DeFi prices using machine learning. 

Nadini et al. (2021) expand the literature beyond token-specific studies and pricing 
research. They shift the focus from single NFT collections to NFT transactions on 
OpenSea, the world's first and largest Web3 marketplace for NFTs and crypto collectibles. 
The NFT universe is diverse. Thus, Borri et al. (2022) analyze various categories 
independently by creating indices. Along these lines, Oh et al. (2022) assess NFT 
investment returns, while Sharma et al. (2022), Jiang and Xia (2023), and Ghosh et al. 
(2023) explore the return and volatility properties and drivers of NFTs.  

White et al. (2022) show how NFT returns react to NFT-related news. Later work by 
Wilkoff and Yıldız (2023) examines the behavior and determinants of illiquidity in the 
NFT market. Chowdhury et al. (2023) examine the efficiency and asymmetric multi-fractal 
features of various assets, including NFTs, DeFi, crypto-assets, and traditional assets. 
Moreover, to integrate NFTs into traditional investment portfolios, Umar et al. (2023), 
Zhang et al. (2022), Ko et al. (2022), and Ko and Lee (2023) examine their diversification, 
hedging, and safe haven properties.  

Lastly, Urom et al. (2022) explore the roles market factors and geopolitical risks play in 
the dependence and predictability between the volume and return of NFTs in three 
submarkets: CryptoKitties, CryptoPunks, and Decentraland. 

There is an extensive strand of literature on the spillover effects between NFTs and other 
assets or crypto-asset sectors. For example, Aharon and Demir (2022) and Umar et al. 
(2022c) investigate the relationship between NFT returns and major asset classes, 
specifically during the COVID-19 pandemic. Umar et al. (2022a) also explore spillover 
effects during the COVID-19 pandemic, but they focus on the relation between NFT 
segments and media coverage. Meanwhile, Wang (2022) examines volatility spillovers 
between NFT news coverage and broader financial markets.  

Xia et al. (2022) also investigate the relationship between NFTs and broader markets, while 
Bani-Khalaf and Taspinar (2023) study the relationship among BTC, NFTs, and oil. 
Dowling (2022), Gunay and Kaskaloglu (2022), Qiao et al. (2023), Umar et al. (2022d), 
and Boido and Aliano (2023) focus more specifically on the relationship between NFTs 
and other crypto-assets. Relatedly, Umar et al. (2022b) and Yousaf and Yarovaya (2022c) 
consider the relationship among trading volume, volatility, and NFT returns. Other work 
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by Yousaf and Yarovaya (2022a) examines herding behavior in the NFT, DeFi, and 
conventional crypto-asset markets. 

As a new asset class, NFTs and their value proposition have generally perplexed the 
uninitiated. However, Kraizberg (2023), van Haaften-Schick and Whitaker (2022), Weking 
et al. (2023), Chalmers et al. (2022), and Chandra (2022) provide insights into NFTs by 
examining their potential value-generating mechanisms. This stream of work also explores 
how NFTs affect entrepreneurship, art, and intellectual property rights. 

Garon (2022) examines the legal implications of the metaverse and Web3. Guadamuz 
(2021) specifically analyzes the relationship between NFTs and copyright laws from a U.K. 
legal perspective. Furthermore, there have been studies on the vulnerability of the NFT 
market to financial crimes, such as money laundering, fraud (Al Shamsi et al., 2023) and 
wash trading (Bonifazi et al., 2023; Serneels, 2023). Lastly, Zhong and Hamilton (2023) 
survey gender and race biases in the NFT market. 

2.5. Emergence of GameFi 

GameFi made its debut with CryptoKitties, which was released on November 23, 2017, 
and largely flew under the radar. On December 2, 2017, the “genesis” kitty, with identifier 
#1, sold for 247 ETH, which at the time exceeded $100,000 USD. This transaction was 
publicized and drew large crowds of speculators hoping to breed and flip kitties. According 
to Jiang and Liu’s (2021) analysis of addresses tied to CryptoKitties transactions, activity 
peaked only eight days later on December 10, 2017. Since then, it has steadily declined. 
The authors attribute the sharp decline to four specific reasons: Imbalance in the supply 
and demand of kitties; loss of profit in kitty trading; increase in the gap between rich and 
poor players; and limitations of the blockchain infrastructure.  

Thus, until 2021, when a variety of blockchain-based games were released, they saw only 
limited success. The highly anticipated Gods Unchained, a digital trading card game not 
unlike Magic: The Gathering and Hearthstone, was released in March 2021. In January 
2022, the developer Immutable X reported having created over 13 million Gods Unchained 
NFTs, which generated $25 million worth of NFT trading volume over 65,000 unique user 
accounts.  

Although that growth was impressive compared to that of CryptoKitties, Gods Unchained 
was ultimately dwarfed by Axie Infinity. Released in 2018, Axie Infinity experienced 
explosive growth in 2021, from a market cap of $29.6 million on January 1, to a peak of 
$10.5 billion on November 7. In February 2021, to help combat the prohibitively high gas 
fees (transaction costs) of the Ethereum blockchain, Axie Infinity released its own side 
chain, Ronin. The reduced transaction costs greatly improved the game’s economics and 
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value proposition, which led to a boom in volume and deposited balances that have far 
exceeded expectations.22  

This period coincided with COVID-19-related lockdowns, which caused unprecedented 
disruptions and hardship among workers and employers, especially in the ASEAN region 
(Brunei, Burma (Myanmar), Cambodia, Timor-Leste, Indonesia, Laos, Malaysia, the 
Philippines, Singapore, Thailand, and Vietnam). As a result, millions of workers in the 
region, especially women and young people, were laid off in 2020. Furthermore, many 
families were dependent on overseas migrant family members sending remittances, which 
the pandemic halted. 

GameFi therefore attracted the attention of unemployed workers seeking income in the 
virtual world. The opportunity was especially appealing to teenagers and young adults in 
the ASEAN region, because they are tech-savvy, and about 90% have access to mobile 
Internet. For these reasons, GameFi quickly gained popularity, at first in the ASEAN region 
by late 2020. Axie Infinity ultimately created an employment model that could help players 
generate additional revenue streams while playing the game. Motivated gamers found they 
could earn approximately $1,200 USD per month. 

However, with an increase in in-game token prices, many aspiring players could not afford 
to buy the necessary items to start playing, e.g., monsters for Axie Infinity. This drove the 
community to adopt concepts of social gaming that date back to the days of Atari, but have 
evolved dramatically with the advent of digitization and the Internet. With the emergence 
of online gaming in the early 2000s, and massively multiplayer online role-playing games 
(MMORPGs), such as World of Warcraft (WoW), players not only assume the role of a 
character, but can team up within communities called guilds or clans. This quickly built 
social and democratic structures within the early virtual worlds, allowing players to 
coordinate around shared goals or quests, and to share in the spoils of victory.  

Note that guilds in traditional gaming environments play a central role in games' longevity. 
The social environment created in a guild, as well as end-game content targeted to large 
groups (e.g., ten to twenty-five collaborating players), have become what players aspire to 
and what keeps them returning.  

The same underlying social principles can be observed in blockchain gaming and P2E 
ecosystems. Gaming communities worldwide come together to complete tasks or quests 
and earn rewards in the form of tokens or NFTs. However, because resources hold real 
monetary value, players gain more than an entertainment value, they have an economic 
incentive as well. As such, P2E gaming guilds will likely continue to play important roles 
and will probably be operated much more professionally. One benefit of guilds is they help 
reduce or eliminate the high minimum capital barrier to entry of crypto games for new 

 
22 See https://explorer.roninchain.com.  
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users. Guild members, or managers, give scholarships to new members. In other words, 
they essentially rent out their NFTs, in the form of, e.g., units like Axies, or items like 
weapons. 

Technically, we can define a blockchain gaming guild as a collection, or group of gamers, 
formed around playing, progressing in, sharing resources, and monetizing blockchain-
based games. They are typically structured as so-called decentralized autonomous 
organizations (DAOs) that collaborate to acquire, manage, use, and monetize assets from 
blockchain games. Operated outside specific games, guilds gravitate toward the games with 
the most attractive incentive models. In this genre, as noted earlier, that is currently Axie 
Infinity, because it developed and popularized P2E GameFi and guild economies.  

Axie Infinity’s key innovation in building this new genre was focusing on the infrastructure 
necessary for gamers to enjoy the benefits of advanced blockchain-powered gameplay, 
while also profiting economically. The idea and infrastructure to implement scholarships 
(smart contracts, which allow the lending of Axies in exchange for a percentage of 
earnings) led to the development of the blockchain gaming guilds. This was because many 
new players could not afford the minimum purchase needed to be successful at the games.23 

Traditional gaming is usually free-to-play (F2P), but can be enhanced through 
microtransactions that improve the gaming experience and success rate (commonly 
referred to as pay-to-win). In contrast to traditional gaming communities, blockchain 
gaming guilds democratize the process of generating revenue via gameplay. They have 
successfully monetized the concept of online entertainment.  

However, it is not only the players who benefit from blockchain gaming guilds. The 
Managers can also maximize the utility and revenue generation of their NFT portfolios by 
securely lending them to Scholars. For example, in-game avatars like Axies can serve as 
yield-generating speculative assets. Blockchain gaming guilds provide both Managers and 
Scholars with a variety of unique opportunities in the P2E ecosystem, such as exposure to 
the latest gaming projects (e.g., parcels of land). This helps diversify income streams, and 
can increase expected revenues. Furthermore, many blockchain gaming guilds can 
influence game design by using their collective voting power. This helps ensure the 
longevity and profitability of the games.  

There are many existing blockchain games. Each is somewhat unique in gameplay and 
mechanics, but have some core similarities. Thus, to better understand the mechanisms 
tying GameFi’s elements together (gaming, DeFi, and NFTs), the economic incentives 
driving the P2E model, and the challenges facing the industry, we conduct an in-depth case 
study of a specific blockchain game. We choose Axie Infinity, which is the most successful 

 
23 The most expensive Axie NFT sold was named “Crypto-Kitty.” It garnered 1,500 ETH (equal to 
$170,000 at the time).  
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project to date from both a financial and a player activity perspective, and the related 
blockchain gaming guild, Yield Guild Games.  

2.5.1. Case Study: Axie Infinity 

Launched in 2018, Axie Infinity’s developers sought to expose people to crypto and Web3 
through gameplay. To this end, they built a game where players and developers would 
collaborate through aligned financial incentives. Originally on the Ethereum blockchain, 
Axie Infinity switched to its own dedicated Ronin blockchain in order to eliminate gas fees. 
At its peak in 2021, Axie Infinity had 2.8 million daily active players (10 million total) and 
$3.6 billion USD of NFTs trading on their in-house marketplace, with an Axie (a playable 
digital pet NFT) selling for up to $820,000. 

The game features a two-currency model: the in-game currency, known as Smooth Love 
Potion (SLP), and governance tokens known as Axie Infinity Shards (AXS). The game is 
a digital pet universe, where players use fantasy creatures known as Axies, similarly to the 
popular game Pokémon. Axies have four main attributes, determined by a combination of 
six body parts and the class of the Axie, making each one unique. With these creatures, 
players can 1) play solo in adventure mode, to earn items and experiences used to upgrade 
their Axies, 2) play in PvP (player versus player) arena battles to win SLP, or 3) engage in 
breeding to make new Axies by reinvesting SLP and AXS. 

Following private investments, Axie Infinity raised capital in 2020 like any other non-
Bitcoin crypto project. It used an initial private and public sale of a portion of the total 
supply of 270 million (see Figure Chapter 2-3). Axie Infinity retained key portions of the 
total supply in order to finance certain aspects, such as the Community Treasury and the 
P2E portion. 
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Figure Chapter 2-3: Axie Infinity Shards (AXS) Release Schedule 

This figure shows the release schedule for the AXS token over time, as well as the related parties to which 
the tokens will be released. 

 

The Community Treasury is used to finance future game development. Although initially 
under the control of Sky Mavis (the parent company of Axie Infinity), it has shifted to AXS 
holders as more supply is issued. Treasury funds are replenished with spent AXS tokens 
and a flat 4.25% commission from all marketplace transactions. The P2E tokens are 
awarded to players for various activities within the Axie Infinity ecosystem, such as 
participating and winning in arena, winning tournaments, interacting and tending to plots 
of land, using the Axie Infinity marketplace, breeding Axies, and future, currently 
unannounced, features. Therefore, by playing, players can earn items, Axies, in-game 
currency (SLP), and AXS governance tokens. 

The in-game mechanics combine to create a fully functioning in-game P2E economy (see 
Figure Chapter 2-4). First, individuals who wish to play must inject capital into their Ronin 
wallets using either a Binance integration or the Ethereum bridge. From there, they visit 
the marketplace on the Axie Infinity website (Web3), and acquire at least three Axies (the 
minimum for gameplay). They can then play the game to win rewards. They can choose to 
cash out, by selling the reward tokens on an exchange called Katana, or they can reinvest 
by performing in-game activities, such as breeding.  

The simplified model in Figure Chapter 2-4 provides a general summary of the economic 
options. 
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Figure Chapter 2-4: In-Game Economic Model (Simplified) 

This figure summarizes the economic options for gamers, from beginning the game by acquiring at least three 
Axies from the Marketplace, to participating in Arena Battles, cashing out tokens through the Katana 
Exchange, deciding to Breed new Axies, or trading Axies on the marketplace. 

 

Similarly to many mobile games, players’ daily activity is limited by energy points, which 
are generated based on the amount of Axies owned (e.g., 60 energy max with twenty 
Axies). Participation in arena battles costs players one energy point. Also, depending on 
their matchmaking rating (MMR), or in-game skill level, players earn between one and 
fourteen SLP per win. Thus, players can theoretically earn up to 840 SLP per day, which 
in May 2021 was approximately $180 USD. 

With this earning potential, Axie Infinity attracted a large player base from developing 
countries, with a particularly large concentration from the Philippines. But in 2021, the 
cryptocurrency market experienced sharp price increases, leaving players suddenly facing 
a much higher barrier to entry. The cost to acquire the minimum of three Axies to play (or 
twenty to maximize earning potential) skyrocketed to hundreds of thousands of dollars. 
Because players own their NFTs, however, and could engage with smart contracts via DeFi 
protocols, a multitude of interesting solutions developed.  

One is the Scholarship Program, which is an agreement between two parties, the 
Scholarship Manager (Player A) and the Scholar (Player B) (see Figure Chapter 2-5). 
Scholarship managers have accumulated a team of Axies, and seek to monetize idle Axies; 
scholars are individuals who lack the resources to acquire the initial three Axies. By using 
smart contracts, managers can lend out teams to scholars in exchange for a percentage of 
earned tokens, with a minimum quota per period (monthly or weekly). Through these 
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programs and DeFi, NFT owners can generate a yield on their assets, while players (who 
are disproportionately in developing countries) can earn a living wage by playing. Because 
of the earning potential, the demand for scholarships became so high that managers 
developed selection processes.  

Figure Chapter 2-5: Scholarship Program 

This figure visualizes how players who do not own Axies (Scholars) can participate in the game by borrowing 
Axies from Scholarship Managers in exchange for a share of future profits. 

 

In sum, Axie Infinity provides an excellent example of the mechanics of GameFi. Players 
can earn in-game currency (SLP), governance currency (AXS), and Axie NFTs via 
gameplay (P2E). These can be sold at popular cryptocurrency exchanges such as Binance, 
and ultimately exchanged for fiat currencies. Besides monetizing their efforts via the sale 
of fungible tokens, players can further monetize their gameplay activities by leveraging 
their NFTs and DeFi protocols. Using smart contracts from DeFi, players that own Axies 
can begin to earn a yield on their NFT assets via scholarships. In this way, players can 
benefit from an environment that maximizes their value, while developers benefit from 
new, steady income streams.  

2.5.2. Case Study: Axie Infinity and Yield Guild Games 

Yield Guild Games (YGG) was one of the earliest and largest guilds by market 
capitalization ($150 million), discord members (~80,000), and partnered games (#38 as of 
August 2022). The majority of other blockchain gaming guilds are organized similarly. 
YYG’s initial proof of concept dates to 2018, when gaming industry veteran Gabby Dizon 
began lending out his Axie NFTs to other players who did not have the means to purchase 
them. By late 2020, it became clear that Axie Infinity had created an employment model 
that could help players in the Philippines generate additional revenue streams while 
enjoying gameplay. YYG was formally cofounded by Gabby Dizon and Beryl Li in 
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October 2020, with the primary objective of introducing as many people as possible to the 
P2E revolution spearheaded by Axie Infinity.  

YGG’s White Paper, along with Splinterlands’ SubDAO Litepaper, outline the initial 
project roadmap and goals driving the guild: as follows 1) maximize the value of NFTs 
used in virtual worlds and blockchain-based games, 2) build a global community of P2E 
gamers who play competitively to collect in-game rewards, 3) produce revenue through the 
rental or sale of YGG’s NFT assets at a markup, 4) allow the community to participate in 
the DAO by establishing proposals and voting, and 5) coordinate research and development 
for gamers in the DAO to arbitrage yield generation by being competitive in metaverse-
related games (see YGG, 2021a, 2021b).  

Thus, the goal of the guild is to implement a business model aimed at generating real world 
monetary value by supporting the emerging digital economy through earning, buying, 
selling, and renting NFTs to players. To achieve these goals, YGG is organized as a DAO, 
which is subdivided into Treasury, Vaults, and SubDAOs.  

The main role of YGG’s Treasury is to oversee the management of assets in order to 
maximize the value returned to the YGG DAO over time (see YGG, 2021a). The Treasury 
conducts multiple economic activities, including 1) purchasing assets in the form of 
cryptocurrencies, virtual assets in the metaverse, simple agreements for future tokens 
(SAFT), in-game tokens, and NFTs to contribute to the development of metaverse 
economies, 2) arbitraging farms to maximize yields, providing guidance on debt and 
interest payments, acquisition of assets, including any buybacks and future fundraising 
rounds, and 3) performing financial operations, such as accounting, audits, reporting, and 
taxes.  

Vaults are connected to the Treasury, and consist of various guild functions and 
investments that aim to provide dividends to the Treasury. These include lending and 
borrowing, yield farming tokens, staking tokens, NFT and other asset loan-outs, purchases 
and sales (see YGG, 2021a).  

In sum, each Vault represents a token rewards program for specific activities. To claim 
dividends or rewards for a specific activity, investors need to stake (lock up) YGG’s native 
token in the respective Vault from which they would like to gain rewards. Each Vault has 
specific rules, such as lock-in periods, rewards escrows, or vesting periods. This 
methodology differs from traditional DeFi protocols. These allow token holders to stake 
their tokens and accrue yield at the interest rate, which varies depending on supply and 
demand or tokens allocated to a liquidity pool.  

In contrast, the rewards paid to stakers in YGG’s Vaults depend on the respective Vaults’ 
economic success, which is ex ante unknown. For example, one Vault is dedicated to 
generating revenue from breeding and selling Axie NFTs. Another distributes revenue 
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acquired from NFT rentals. The token rewards generated from gameplay (breeding and 
selling Axie NFTs) or NFT lending are distributed to guild members according to the 
portion staked by each individual guild member and the amount of revenue generated by 
the source assigned to the respective Vault. This means that guild members have the option 
to actively invest in different revenue streams according to their gauge of the best financial 
opportunity. Or they can invest in a diversified basket of all its yield-generating activities 
(“super index vault”), instead of just receiving a fixed rate.  

The guilds’ SubDAOs can be considered miniature economies that interact with the larger 
all-inclusive economy, which is the DAO itself. SubDAOs are thus similar to subsidiaries 
of a parent company. SubDAOs are specialized portions of a guild's main DAO. They are 
in turn dedicated to a specific game or activity, for example, one may be exclusively 
dedicated to players of League of Kingdoms, and another to players of Axie Infinity, etc. 
Members of the SubDAO, dedicated to, e.g., Axie Infinity, play and work together, with 
the aim of generating and increasing income from various activities. The more successful 
the members of a SubDAO, the more financial resources they accrue to better equip and 
strengthen their in-game characteristics. This further increases their likelihood of 
generating additional income. This structure of a DAO and subordinate SubDAOs 
facilitates the specialization of the respective SubDAOs. 

2.5.3. Challenges  

P2E games have led to many intriguing developments, and offer both players and 
developers unique opportunities. But they are not without challenges. In their current state, 
most are not economically sustainable. We next illustrate some of these challenges, again 
using the example of Axie Infinity.  

In order for players to sustainably generate income via gameplay, positive net cash inflows 
are required. This occurs naturally during periods of price appreciation in the 
cryptocurrency market, when speculators inject capital by acquiring tokens. Otherwise, and 
similarly to multi-level marketing businesses, the game is dependent on new players 
purchasing in-game creatures (Axies) from older players. When the influx of new players 
slows or decreases, the game’s balanced economic model is endangered, and the likelihood 
of failing increases (see Figure Chapter 2-6). 
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Figure Chapter 2-6: Net Change in Axie Holders (Daily) 

This graph shows the daily change of in-game Axie creature holders. It is produced by using on-chain data 
compiled from the Ronin network, an Ethereum-linked sidechain. 

 

An early warning sign is a decline in trading volume in in-game Axies, because of a decline 
in new players who must acquire at least three Axies in order to begin play (see Figure 
Chapter 2-7). This can lead to a decline in Axie prices due to oversupply. The situation is 
exacerbated by the fact that there is no alternative for removing Axies from circulation, 
other than not putting them up for sale. However, if players exit the game, it is in their 
interest to try to sell their Axie NFTs. 

Figure Chapter 2-7: Axie Sales Volume 

This graph shows daily sales volume in USD of in-game Axie creatures from May 21, 2021 to December 21, 
2022. Data come from the Axie Infinity Marketplace (https://app.axieinfinity.com/marketplace/). 
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This has led to another imbalance in the economic model, where the incentives to breed 
new Axies are severely diminished (see Figure Chapter 2-8). Since breeding is the 
mechanism by which players can burn or reinvest SLP, and remove them from circulation, 
players are instead incentivized to cash out their SLP. The resulting downward price 
pressure imbalances SLP inflation further. 

Figure Chapter 2-8: New Daily Axies 

This graph shows the number of newly created in-game Axie creatures on a daily basis from May 21, 2021 
to December 21, 2022. It is produced by using on-chain data compiled from the Ronin network, an Ethereum-
linked sidechain. 

 

A second major challenge for Axie Infinity, as well as for other P2E games, is inflation of 
in-game currency (see Figure Chapter 2-9)24. For Axie, SLP is key to the game’s economic 
model. A change in player behavior can throw off the token supply balance, and lead to 
substantial inflation of its circulating supply. There are three ways to earn SLP in-game, 
but only one way to burn it, which is breeding new Axies. If interest in breeding diminishes, 
the currency supply will naturally inflate. Because SLP has no supply cap, this can lead to 
drastic drops in price, and further exacerbate the problem.  

  

 
24 The game aims to maintain a stable supply via a careful equilibrium between SLP minting and burning 
in-game mechanics. Season 19, which lasted from November 10, 2021 to January 4, 2022 experienced a 
particularly high inflation of SLP supply due to an imbalance between these mechanics. 
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Figure Chapter 2-9: Circulating SLP Supply 

This graph shows the number of SLP tokens in circulation for the period May 21, 2021 to June 10, 2023. It 
is produced by using data from Messari (https://messari.io/asset/smooth-love-potion/historical). 

 

In addition to the above-mentioned in-game dynamics, the crypto markets have been in a 
downturn since November 2021. According to CoinGecko, SLP saw a 99% decline to 
$0.00256 USD as of December 18, 2022, from its peak of $0.3645 USD (on May 1, 2021). 
Axie has also seen a drastic crash in floor price, which once fetched $340 USD per NFT, 
but is now at $6 USD (see Blockworks, 2022). As a result, many players who are motivated 
to play for economic reasons would earn less than the hourly minimum wage, and this 
makes it economically unattractive to continue playing (TIME, 2022).  

To increase player engagement, Axie Infinity has recently introduced land plots, and 
expanded the playable universe. This adds utility and new ways for players to interact and 
earn. The addition of digital land has had a particularly strong reception, with one plot of 
land selling for $2.3 million. In total, the collection has generated $4 billion in sales (see 
Cointelegraph, 2022).  

The challenge now for P2E games, such as Axie Infinity, is their dependence on attracting 
new users. Player incentives and activity are overly dependent on economic conditions. As 
they deteriorate, those of the game do as well. This is an important finding: Players are 
there to earn, and not solely for entertainment. This finding stands in contrast to traditional 
games, where players are eager to pay to play because they enjoy the entertainment and 
intensity of the game, as well as the social interactions. 

Furthermore, many P2E games are considered rather elementary, and lacking in 
entertainment value when compared to regular games. This is reflected in the steady 
decline of active players since the beginning of the 2021 decline in cryptocurrency prices 
(see Figure Chapter 2-6). 
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Relatedly, there are increasing occurrences of blockchain game projects that overpromise 
in trailers, demos, and general communications about quality, while subsequently 
underdelivering. One example is Pixelmon, a project that raised $70 million from its NFT 
sale (up to 3 ETH per mint, or ~$9,200 USD at the time), and subsequently revealed in-
game art that fell far short of expectations (see Figure Chapter 2-10). The user backlash 
was so severe that the project expunged all traces of the original reveal from its website 
and Twitter account (see Figure Chapter 2-11, as well as CoinDesk (2022) and CNET 
(2022)). This kind of hype can foment disappointment and frustration, which negatively 
impacts the credibility of GameFi and its mainstream adoption. 

Figure Chapter 2-10: Underdelivered Artwork Release 

This figure shows the contrast between Pixelmon’s originally promoted art during the fundraising process, 
and the finally delivered art.  
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Figure Chapter 2-11: Deleted Posts 

This figure shows the removal of the promoted art during the fundraising process. 

 

However, when comparing developers’ roadmaps and timelines against those of recent 
gaming projects, it is obvious why GameFi projects sometimes underdeliver. For example, 
Pixelmon followed a standard development and release schedule, first by publishing a 
litepaper detailing the project and its ambitions, and a subsequent roadmap (see Figure 
Chapter 2-12). Similarly to other crypto-asset projects, Pixelmon’s team followed the 
common formula of releasing a whitepaper, creating excitement through a highly ambitious 
teaser trailer, raising funds for development with an NFT sale, and then beginning 
development. Promising “the largest and highest quality game the NFT space has ever 
seen,”25 before raising the necessary capital, and then expecting to complete the entire 
project within the same year, was ultimately unrealistic. Contrast this timeline with that of 
a top-tier game, Genshin Impact. It required two years of development, with a team of 700, 
and a budget of $100 million USD (see IGN, 2022). In the GameFi space, which is still in 
its infancy, it is important for projects to set realistic, achievable expectations. 

  

 
25 See Pixelmon’s website at https://pixelmon.club/adventure.  



 100 
 

Figure Chapter 2-12: Pixelmon’s Roadmap 1.0 

This figure shows Pixelmon’s initially released roadmap. 

 

In sum, current blockchain games are overly focused on economic incentive models, and 
underfocused on actual game design. The game tokenomics also need to avoid self-
reinforcing cycles that can lead to high volatility. Such volatility can result in a death spiral. 
Expanding on gameplay and creating multiple burn mechanisms that have actual utility for 
players should help break these cycles, and even render tokens deflationary. Although 
GameFi does present exciting opportunities, and the space is evolving rapidly, it is critical 
for long-term success that it mature thoughtfully and learn to set realistic expectations. 

2.6. GameFi’s Role in the Crypto Ecosystem 

GameFi is one of the most recent innovations in the crypto space, and its landscape is 
changing rapidly. In this section, we aim to identify how GameFi is embedded in the crypto 
ecosystem by determining spillover effects from the major coins (Bitcoin and Ethereum), 
gas fees, and related crypto-asset sectors (DeFi, NFT, and Play-to-Earn).  

To measure spillovers, we estimate a Vector Autoregression (VAR) model, which can 
process several variables over time. Estimation results are then used to investigate 
relationships between those variables. We include Bitcoin as the most dominant digital 
asset (Kyriazis, 2019), and Ethereum because a significant amount of NFT trading volume 
rests on the Ethereum blockchain and GameFi-related games.26 The bulk of GameFi-
related transactions are on the Ethereum blockchain, so we also include gas in our analysis. 
It measures the amount of computational effort and costs required to operate on the 
Ethereum network.  

 
26 Despite the emergence of other blockchains that support NFT trading and P2E, tokens are often linked to 
or use the Ethereum blockchain directly. These include popular tokens such as ApeCoin, Sandbox, 
Immutable, Axie Infinity, and Decentraland. 
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The majority of scientific papers studying spillover in the crypto space focus on Bitcoin, 
Ethereum, and Litecoin, as well as Ripple or Stellar (see, for example, Katsiampa et al., 
2019; Koutmos, 2018; and Luu Duc Huynh, 2019). Ohers research the impact on crypto-
assets with relatively low market capitalizations (e.g., Koutmos, 2018; Omane-Adjepong 
and Alagidede, 2019; Zieba et al., 2019). Past research has been inconclusive, with results 
ranging from 1) bidirectional return spillover effects between Bitcoin and Ethereum, to 2) 
Bitcoin being the dominant return contributor to a range of other larger crypto-assets, 
including Ethereum, and 3) Bitcoin being the receiver of spillovers from large 
cryptocurrencies, while Ethereum remains unaffected.  

Diebold and Yilmaz (2012) introduce a spillover index model based on a generalized VAR 
model to measure volatility spillover. It has been applied by Gillaizeau et al. (2019) and 
Trabelsi (2018) to investigate return and volatility spillover. It is also useful to explore the 
predictive power between crypto-assets and currencies, or crypto-assets at large and other 
markets, such as commodities and stocks, to gain insights into investment strategies. 
Dowling (2022) investigates volatility spillover among certain NFTs, such as CryptoPunks, 
Decentraland LAND tokens as a proxy for NFTs, and Ethereum and Bitcoin, using wavelet 
coherence. The results indicate that the NFT proxies are not only quite distinct, but exhibit 
only limited spillover.  

However, those papers find mixed results for a multitude of reasons, including varying 
proxies, time frames, and applied methodologies.  

In contrast, our aim is to carve out how GameFi is incorporated into the crypto space during 
different periods, because the dynamics are rapidly changing. We choose the general VAR 
model without restrictions, such as in a structured VAR, because we do not want to impose 
ex ante rules on potential relationships ex ante. That would only be required if we needed 
to isolate exogenous independent movements, such as the interference of a central bank. 
We are mainly interested in identifying and explaining the intertwined dynamics of the 
crypto sector and cryptocurrency returns during subperiods only. Furthermore, we do not 
forecast returns based on the model or aim to minimize forecast errors. Therefore, a general 
model is most suitable. 

2.6.1. Methodology 

Following past research, such as Lütkepohl (2005) and Greene (2008), we estimate a 
𝑉𝐴𝑅(𝑝) model that allows for multiple independent variables without enforcing a distinct 
causal relationship:  

𝐘𝑡 = 𝐀1𝐘𝑡−1 + 𝐀2𝐘𝑡−2 + ⋯+ 𝐀𝑝𝐘𝑡−𝑝 + 𝒄 + 𝐮𝑡 (1) 

where 𝐘! is the 𝐾 × 1 vector of our seven endogenous return variables (BTC, ETH, Gas, 
DeFi, GameFi, NFT, Play-to-Earn), which is a linear function of 𝑝, of their own lags. 𝐀" 
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is a 𝐾 × 𝐾 matrix of coefficients for 𝑖 = 1, . . ,𝑝, and 𝐘𝑡−𝑖 are the 𝐾 × 1 matrices of lagged 
returns, with 𝑝 as the optimal lag lengths to be included.27 The 𝐾-dimensional intercept 
term is represented by 𝐜,  and 𝐮! is a 𝐾-dimensional term of white noise.  

We estimate the coefficients by iterating seemingly unrelated regressions. Moreover, we 
adjust our maximum likelihood divisor from 𝑇̃ = 𝑇 to 𝑇̃ = 𝑇 −𝑚H , where 𝑚I  is the average 
number of parameters per equation for 𝐘!  over the 𝑛  equations, and 𝑇  represents the 
number of error terms. This is to adjust for small-sample degrees of freedom, as our later 
determined subsamples have 319, 354, and 347 observations, respectively, for subsamples 
1, 2, and 3.  

After fitting the 𝑉𝐴𝑅(𝑝) model, we test whether one variable causes another variable by 
using “Granger causality” (Granger, 1969). We regress 𝑦  on lagged 𝑦 . Variables are 
considered “causal” if the null hypothesis that estimated coefficients on the lagged values 
𝑦 are (jointly) zero can be rejected.   

2.6.2. Data 

Next, to research the spillover effects, we create the following four crypto-asset sector 
indices based on CoinGecko’s classification28: 1) DeFi, 2) GameFi, 3) NFT, and 4) Play to 
Earn. CoinGecko’s API also provides the token prices, market capitalization, and trading 
volume in USD, based on a global volume-weighted average price formula.  

Appendix Table Chapter 2-13 provides an overview of the tokens included in the respective 
indices, including their market capitalization in USD. For a token to be considered in any 
of the four indices, it must be traded for a minimum of seven days with a non-zero trading 
volume, and have at least a $5 million USD current market capitalization. To build the four 
indices, we also require a minimum of three distinct tokens in each respective index. This 
results in a start date of January 17, 2020, and an ending date of April 21, 2023, with a total 
of 1,191 observations. We create equally weighted indices by taking the average of the log-
returns of each token.29  

Figure Chapter 2-13 plots the respective indices over the sample period. Table Chapter 2-2 
shows the descriptive statistics for the sample period for BTC, ETH, and gas, as well as for 
the four indices. The descriptive statistics show that, despite the high standard deviations 

 
27 Optimal lag length maximizes the degrees of freedom to estimate the model without incurring the 
omitted variable problem. 
28 Tokens are categorized according to CoinGecko on April 24, 2023 (available at 
https://www.coingecko.com/en/categories).  
29 In unreported results, we test our results for value-weighted indices, and find they are not driven by the 
weighting scheme. The value-weighted index is the sum of the weighted log-returns of each token. The 
respective weight is calculated based on the average market capitalization of a token over the last fourteen 
trading days relative to the total market capitalization of all tokens included in the respective index at that 
time. 
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for all indices, the returns are positive over the observation period. The distinct higher 
moments – mostly negative skewness and positive excess kurtosis (fat tails) – reveal that 
the returns are non-normally distributed. This is supported by the unreported Jarque-Bera 
test. 

Figure Chapter 2-13: Crypto-Asset Price Charts and Structural Breakpoints 

These figures show the development of prices for the equally weighted crypto sector indices (DeFi, GameFi, 
NFT, and Play-to-Earn) (see Panel A), and Bitcoin (BTC), Ethereum (ETH), and gas prices (see Panel B), 
including structural breaks based on the Clemente-Montañés-Reyes test. The two structural breakpoints were 
selected at the date when three structural breaks coincided for the crypto sector indices, BTC, ETH, and gas. 
All time series are indexed to 100 at the beginning of the observation period January 17, 2020 to April 21, 
2023.  

Panel A: Crypto Sectors  
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Panel B: Bitcoin, Ethereum, and Gas  

 

Table Chapter 2-2: Descriptive Statistics 

This table shows the descriptive statistics (mean (Mean), median (Median), standard deviation (Std), 
minimum (Min), maximum (Max), skewness (Skew), and Kurtosis (Kurt)) for BTC, ETH, and gas, as well 
as the equally weighted DeFi, NFT, GameFi, and Play-to-Earn indices for the period January 18, 2020 to 
April 21, 2023, with a total of 1,119 observations. In unreported results, we calculate Jarque-Bera (JB) test 
statistics, and find all are larger then 9.21. We thus reject the null hypothesis of normally distributed returns 
at the 1% level for all coins and indices. 

 
Mean Median Std Min Max Skew Kurt 

BTC 0.0009 0.0011 0.0376 -0.4337 0.176 -1.39 19.76 
ETH 0.002 0.003 0.0502 -0.5631 0.2194 -1.46 18.81 
Gas 0.0008 0.0005 0.0688 -0.6002 0.76 1.16 27.39 
DeFi 0.001 0.0061 0.0531 -0.5792 0.2126 -2.02 19.26 
GameFi 0.0012 0.0013 0.0698 -0.5015 0.6975 0.86 20.65 
NFT 0.0011 0.0051 0.0598 -0.6743 0.2653 -1.85 20.97 

Play-to-Earn 0.0019 0.0017 0.0707 -0.5699 0.6873 0.69 20.56 

2.6.3. Empirical Results 

Because we are interested in how the GameFi sector evolved over time, we first analyze 
whether the log return time series for the indices (DeFi, NFT, GameFi, and Play-to-Earn), 
and for BTC, ETH, and gas, are stationary. To this end, we use a series of unit root tests 
on the log-returns, including the traditional Dickey–Fuller no trend-stationary test, the 
Zivot and Andrews test, and the Clemente-Montañés-Reyes (CMR) test. This ensures the 
estimation is reliable and the results are not spurious, which could lead to poor 
understanding of any subsequently applied VAR model results.  
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As Table Chapter 2-3 shows, the test statistics for all time series are stationary, and are thus 
integrated at 𝐼(0)  at the 1% level (see Table 3, columns “Dickey–Fuller,” “Zivot-
Andrews,” and “CMR (AO)”). CMR tests the unit root of a time series under possible 
structural breaks, and considers the existence of up to two such breaks (Clemente et al., 
1998; Perron and Vogelsang, 1992). This is a key point, because the crypto market evolves 
rapidly. The dynamics can also change quickly and severely, because of, e.g., Bitcoin 
halving events, the introduction of derivatives (2011) and ETFs (2021), and bubbles and 
crashes, such as the 2017 boom (2018 crash) and 2020 boom (2021 crash).  

Table Chapter 2-3: Stationary and Structural Break Tests 

This table shows the results for our stationary test and our structural break test using the Dickey–Fuller no 
trend-stationary test, the Zivot-Andrews stationary test, and the Clemente-Montañés-Reyes unit root test with 
double mean shifts. It also shows the AO model breakpoint analysis for BTC, ETH, and gas, as well as the 
equally weighted DeFi, NFT, GameFi, and Play-to-Earn indices. 

 Dickey–Fuller Zivot-Andrews CMR (AO) Break Date 1 Break Date 2 
BTC -35.96*** -16.25*** -9.40*** 06-Feb-21 07-Nov-22 
ETH -37.11*** -16.22*** -10.20*** 17-May-21 07-Nov-22 
Gas -39.13*** -16.16*** -17.26*** 19-Feb-21 07-Feb-23 
DeFi -37.07*** -15.43*** -10.05*** 03-Sep-20 17-May-21 
GameFi -32.62*** -15.66*** -13.87*** 05-Jul-20 9-May-22 
NFT -35.31*** -14.51*** -10.16*** 17-May-21 9-May-22 
Play-to-
Earn 

-32.41*** -15.61*** -13.72*** 05-Jul-20 9-May-22 

Applying CMR methodology, we identify two major breakpoints: The first is during 
February to May 2021 (BTC, ETH, Gas, DeFi, and NFT), and the second in May 2022 
(DeFi, GameFi, NFT, and Play-to-Earn). These breakpoints can also be seen visually in 
Figure 13. The exact dates are set to the date when three structural breaks coincided for the 
sector indices, BTC, ETH, and Gas, which occurred on May 17, 2021, and May 9, 2022. 
From an economic standpoint, this may have occurred as the concept of GameFi began to 
take shape during the first half of 2021, when GameFi overtook DeFi as the new emerging 
crypto-asset sector.30  

The GameFi “hype” ended when the total number of active users fell by about 13%, and 
GameFi investment amounts declined by about 90% month-over-month from April to May 
2022. At the same time, Ethereum’s high gas fees and network congestion issues continued 
to slow growth.31  

 
30 See, for example, https://news.coincu.com/73220-overview-gamefi-2021-prediction-2022/.  
31 See, for example, https://cryptoslate.com/can-mays-biggest-gamefi-crash-victims-survive-the-bear-
market-may-monthly-report/.  
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We therefore label the three time periods as follows: the Spring period refers to the period 
before the first breakpoint, July 5, 2020, to May 17, 2021, the period when the first large 
GameFi projects emerged. The Summer period begins after the first breakpoint (May 18, 
2021), and extends until the second breakpoint (May 9, 2022). This is when GameFi was 
overtaking DeFi in fund inflows and popularity. The Winter period begins after the second 
breakpoint (May 10, 2022), when the sharp decline in the crypto-asset market started. It 
lasts until the end of the observation period (April 23, 2023). 

Before estimating the VAR model, we choose the optimal lag-length (𝑝) using Final 
Prediction Error (FPE), Akaike’s information criterion (AIC), Schwarz’s Bayesian 
information criterion (BIC), and the Hannan and Quinn information criterion (HQIC) lag-
order selection statistics. We choose 𝑝 = 1, which is supported by most criteria for each 
subperiod. We find it is the optimal choice between giving up degrees of freedom and 
enduring the omitted variable problem. 

Next, we estimate our VAR(1) models to assess Granger causality, with endogenous 
variables BTC, ETH, Gas, DeFi, GameFi, NFT, and Play-to-Earn for the full sample, as 
well as separately for Spring, Summer, and Winter (see Table Chapter 2-4). Because of the 
breakpoints, it is important to test the subperiods separately. Otherwise, we may be 
“diluting” distinct subperiod relationships by only interpreting the results for the full 
sample period. 
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Table Chapter 2-4: Granger Causality 

This table shows the results for the Granger causality Wald test 𝜒% estimators, using the estimation results of 
the VAR(1) model with endogenous variables BTC, ETH, Gas, DeFi, Game, NFT, and Play-to-Earn (equally 
weighted indices) for the subperiods Spring, Summer, and Winter. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% levels, respectively. The Granger causality relationship is shown from 
Origin (columns) to Receiver (rows). 

Origin 

Receiver BTC ETH Gas DeFi GameFi NFT Play-to- 
Earn 

Sub-Period: Spring 
BTC - 3.18* 7.84*** 0.02 0.02 0.05 0.02 
ETH 5.21 - 11.45*** 0.03** 0.24 0.29 0.06 
Gas 5.63** 11.67*** - 1.83 0.44 1.83 0.03 
DeFi 2.64 5.94** 5.96** - 0 1.12 0.4 
GameFi 2.57 3.91** 2.54 0.41 - 1.8 1 
NFT 8.68*** 10.33*** 3.9** 0 0.95 - 0.09 

Play-to-Earn 1.86 5.67** 2.11 0.46 0.73 0.81 - 
Sub-Period: Summer 

BTC - 0.27 0 0.96 3.31* 3.09* 0.68 
ETH 1.14 - 0.02 2.74 0.49* 0.22 0.75 
Gas 0.02 0.79 - 0.09 1.46 0.91 0.19 
DeFi 0.4 1.48 0 - 1.34 0.57 1.15 
GameFi 0.05 0.66 0.81 0.12 - 3.29* 0.02 
NFT 0.05 0.95 0.61 0.17 1.51 - 0 

Play-to-Earn 0 0.69 1.37 0.18 0.71 2.2 - 
Sub-Period: Winter 

BTC - 0.04 1.5 0.16 0.33 1.24 0.8 
ETH 0.37 - 3.77 0.86* 0.42 1.92 1.84 
Gas 1.54 0.18 - 3.43* 1.78 2.16 0.02 
DeFi 0.72 0.64 1.81 - 0.27 0.61 0.6 
GameFi 0.29 1.15 1.94 3.31* - 0 0.24 
NFT 0.6 1.05 1.23 3.07* 0 - 0.18 

Play-to-Earn 0.66 1.06 1.39 2.86* 0.01 0 - 

During the Spring period, when the GameFi market was still in its infancy, we find support 
for the prediction that ETH Granger causes the DeFi, GameFi, NFT, and Play-to-Earn 
market, and, to some extent, BTC and Gas. We do not find that the aforementioned markets 
Granger cause BTC (see Table 4, Subperiod: Spring). We interpret these results as a sign 
that the GameFi market was young and immature, and mostly determined by the 
movements of the leading crypto-assets, BTC and ETH, and the crypto market at large. In 
line with Luu Duc Huynh (2019), we also find evidence that Bitcoin received spillover 
effects from Ethereum (and gas) using a comparable early sample period. 
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The dynamic described previously changed rapidly during the Summer period, when 
GameFi skyrocketed in popularity. In fact, none of the DeFi, GameFi, NFT, or Play-to-
Earn markets showed Granger causality by BTC, ETH, or gas (see Table Chapter 2-4, 
Subperiod: Summer). On the contrary, we find that BTC and ETH are Granger caused by 
GameFi, and that NFTs Granger cause GameFi. The latter may be explained by the earlier 
emergence of the NFT market, and by NFTs becoming an increasingly integral part of 
GameFi.  

During the Winter period, we find, similarly to the Summer period, that the DeFi, GameFi, 
NFT, and Play-to-Earn markets seem to have become emancipated from the major crypto-
assets (BTC and ETH). They continue to not be Granger caused by them (see Table Chapter 
2-4, Sub-period: Winter). However, GameFi no longer Granger causes BTC or ETH, but 
DeFi is emerging as an important factor in the crypto market. It Granger causes not only 
ETH and gas, but also the GameFi, NFT and Play-to-Earn sectors. The relationship 
between DeFi and ETH/Gas may be attributed to the fact that many DeFi projects are using 
the Ethereum blockchain, which is powered by gas (a proxy for transaction costs).  

In sum, the dynamics in the crypto space, and especially the GameFi sector, are changing 
rapidly, driven by, e.g., media attention, fund in- and outflows, and technological advances. 
Not surprisingly, we find that, after GameFi’s introduction, the sector was driven by 
general market movements in the crypto space (Spring period). Strikingly, only a short 
time later, it was growing exponentially, and its dynamics caused spillovers to Bitcoin and 
Ethereum (Summer period). During the subsequent Winter period, the GameFi sector seems 
to be independent from Bitcoin and Ethereum, and is only obtaining spillovers from the 
DeFi sector.   

2.7. Conclusion  

GameFi and gaming guilds have become one of the most promising avenues in the digital 
asset space. Replacing in-game currencies with crypto-assets, and creating NFTs from in-
game assets, has literally been a game changer. This is because shifting from a structure 
that maximizes extraction of value from players, to one that maximizes value for players, 
is a recipe for success, if done right. Players are rewarded for time and effort invested with 
assets they own and can trade.  

Gamers always valued these types of in-game assets, but were generally unable to safely 
transact with peers. These changes have also provided opportunities for game developers 
to collect royalties on every NFT transaction, which can lead to intriguing new business 
models. Lastly, the ability to use NFTs outside an actual game, and to interact with smart 
contracts (using DeFi), has led to imaginative solutions to in-game hurdles. 
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However, the hype over blockchain gaming, guilds, and in-game NFTs have pushed prices 
to unsustainable levels, from a financial perspective. Guilds helped democratize access and 
enable gaming communities to widen participation. But future success in monetary terms 
depends on the overall success of their partnered games. If a particular blockchain game 
fails, or the demand for its NFT assets is suddenly reduced, the SubDAO that is dedicated 
to the monetization of that game's assets will inevitably suffer. This, by default, may affect 
the performance of its superordinate DAO. Thus, the primary economic drivers ensuring 
the success of gaming guilds are inherently connected to the success of the blockchain 
gaming industry and its native tokens as a whole. We note that blockchain gaming guilds 
have the advantage of diversifying their NFT investments across different games, and 
gaining exclusive early access to the newest games on the scene. This ultimately increases 
their value proposition.  

GameFi has shown the capability to contribute to reducing income inequalities by allowing 
monetization while gaming. However, it has become apparent that this can be a double-
edged sword, especially when the tokenomics are not well designed, or the financial 
gameplay is not appealing enough to attract players. Furthermore, a sharp decline in 
cryptocurrency prices in 2022 dramatically reduced blockchain gaming activity, which 
suggests their success is largely tied to earning potential. Current blockchain games have 
been designed with economic incentives first, and entertainment and game quality second. 
For more enduring success, industry developers should shift perspective, and take 
sufficient time to plan and design appealing projects. They should aim to avoid overly 
ambitious roadmaps, which can mislead players and the markets. However, the continued 
heavy investment of venture capital into the sector during the bear market signals the 
continued promise of GameFi. Many market participants still seem to see potential beyond 
the challenges faced by GameFi and blockchain-based games. 
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Appendix B. Supplemental Information for Chapter 2 

Table Chapter 2-5: Literature Overview 

This table summarizes the current literature in decentralized finance (DeFi) (Panel A) and non-fungible tokens (NFTs) (Panel B).  

# Article Title Authors Year Journal Name 
Research 
Type 

Panel A: Decentralized Finance (DeFi) 
1. Micro-level 

 1.1. Smart Contracts    
1 Smart Contract Templates: Legal Semantics and Code Validation Clack 2018 Journal of Digital Banking Theoretical 
 1.2. Tokens       
2 Built to Fail: The Inherent Fragility of Algorithmic Stablecoins Clements 2021 Wake Forest Law Review Theoretical 

3 
Are DeFi Tokens a Separate Asset Class from Conventional 

Cryptocurrencies? Corbet et al. 2023 
Annals of Operations 

Research Empirical 

4 Towards Understanding Governance Tokens in Liquidity Mining: A Case 
Study of Decentralized Exchanges 

Fan et al. 2023 World Wide Web Empirical 

5 Perpetual Contract NFT as Collateral for DeFi Composability Kim et al. 2022 IEEE Access Theoretical 

6 Stablecoins 2.0: Economic Foundations and Risk-based Models Klages-Mundt 
et al. 

2020 
Proceedings of the 2nd ACM 
Conference on Advances in 
Financial Technologies 

Theoretical 

7 A DeFi Bank Run: Iron Finance, IRON Stablecoin, and the Fall of TITAN Saengchote 2021 SSRN Descriptive 
8 A Taxonomy of Cryptocurrencies and Other Digital Assets van der Merwe 2021 Review of Business Descriptive 
 1.3. DeFi Apps  

9 An Analysis of Uniswap Markets Angeris et al. 2019 Cryptoeconomic Systems 
Journal 

Empirical 

10 A Theory of Automated Market Makers in DeFi Bartoletti et al. 2021 
Logical Methods in Computer 

Science Theoretical 

11 
DeFi Protocols for Loanable Funds: Interest Rates, Liquidity and Market 

Efficiency Gudgeon et al. 2020 
Proceedings of the 2nd ACM 
Conference on Advances in 
Financial Technologies 

Empirical 

12 Trust in DeFi: An Empirical Study of the Decentralized Exchange Han et al. 2022 SSRN Empirical 
13 New Crypto-Secured Lending System with a Two-Way Collateral Function Kim 2021 Ledger Journal Theoretical 

     (continued) 
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Table Chapter 2-6: Literature Overview—continued 
 

14 Deconstructing Decentralized Exchanges 

Foundation, L. 
X. L., Legal 
Counsel at 

Interstellar and 
Stellar 

Development 

2019 Stanford Journal of 
Blockchain Law & Policy 

Descriptive 

15 
The Rise of Decentralized Cryptocurrency Exchanges: Evaluating the Role 

of Airdrops and Governance Tokens Makridis et al. 2023 Journal of Corporate Finance Empirical 

16 Decentralized Finance (DeFi) Projects: A Study of Key Performance 
Indicators in Terms of DeFi Protocols’ Valuations 

Metelski and 
Sobieraj 

2022 International Journal of 
Financial Studies 

Empirical 

17 Mitigating Loan Associated Financial Risk Using Blockchain Based 
Lending System. 

Reno et al. 2021 Applied Computer Science Empirical 

18 
Review of Decentralized Finance Applications and Their Total Value 

Locked 
Stepanova and 

Erins 2021 TEM Journal Empirical 

2. Meso-level 
2.1. Multichain Scaling  

19 Scaling Decentralized Finance Shekhawat et al. 2021 
Journal of Analysis and 

Computation Theoretical 

3. Macro-level 

20 Fintech, Cryptocurrencies, and CBDC: Financial Structural Transformation 
in China 

Allen et al. 2022 Journal of Money Laundering 
Control 

Descriptive 

21 BeFi Meets DeFi: A Behavioral Finance Approach to Decentralized Finance 
Asset Pricing 

Bennett et al. 2023 Research in International 
Business and Finance 

Descriptive 

22 Grasping Decentralized Finance Through the Lens of Economic Theory Chiu et al. 2022 
Canadian Journal of 

Economics Theoretical 

23 
An Analysis of the Return–Volume Relationship in Decentralised Finance 

(DeFi) Chu et al. 2023 
International Review of 
Economics and Finance Empirical 

24 An Introduction to Decentralized Finance (DeFi). Jensen et al. 2021 Complex Systems Informatics 
and Modeling 

Descriptive 

25 Risk Analysis in Decentralized Finance (DeFi): A Fuzzy-AHP Approach Kaur et al. 2023 Risk Management Empirical 
     (continued) 
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Table Chapter 2-7: Literature Overview—continued 

26 
Time-frequency Extreme Risk Spillover Network of Cryptocurrency Coins, 

DeFi Tokens and NFTs 
Qiao et al. 2023 Finance Research Letters Empirical 

27 Decentralized Finance: On Blockchain- and Smart Contract-Based Financial 
Markets 

Schär 2021 Federal Reserve Bank of St. 
Louis 

Descriptive 

28 
Decentralized Finance & Accounting – Implications, Considerations, and 

Opportunities for Development Smith 2021 
The International Journal of 
Digital Accounting Research Theoretical 

29 
Maximizing the Time Value of Cryptocurrency in Smart Contracts with 

Decentralized Money Markets Tien et al. 2020 
IEEE International 

Conference on Blockchain  Empirical 

30 Web 3.0 Tokenization and Decentralized Finance (DeFi) Treleaven et al. 2022 SSRN Descriptive 

31 
Dynamic Connectedness Between Non-Fungible Tokens, decentralized 
Finance, and Conventional Financial Assets in a Time-frequency 

Framework 
Umar et al. 2022 Pacific Basin Finance Journal Empirical 

32 Disclosure, Dapps and DeFi Brummer 2023 
Stanford Journal of 

Blockchain Law and Policy Theoretical 

33 
Blockchain Disruption and Decentralized Finance: The Rise of 

Decentralized Business Models 
Chen and 
Bellavitis 

2020 
Journal of Business Venturing 

Insights 
Descriptive 

34 Emerging Canadian Crypto-Asset Jurisdictional Uncertainties and 
Regulatory Gaps 

Clements 2021 Banking and Finance Law 
Review 

Descriptive 

35 
Smart contracts: will Fintech Be the Catalyst for the Next Global Financial 

Crisis? 
Duran and 
Griffin 2021 

Journal of Financial 
Regulation & Compliance Theoretical 

36 DeFi: Shadow Banking 2.0? Allen 2023 
William and Mary Law 

Review Theoretical 

37 Regulating Blockchain, DLT and Smart Contracts: A Technology 
Regulator’s Perspective. 

Ellul et al. 2020 ERA Forum Theoretical 

38 Legal Implications of a Ubiquitous Metaverse and a Web3 Future Garon 2022 SSRN Theoretical 
39 The SEC, Digital Assets, and Game Theory Guseva 2020 Journal of Corporation Law Empirical 
40 Decentralized Finance: Regulating Cryptocurrency Exchanges Johnson 2021 William & Mary Law Review Theoretical 

41 
Importance of Anti-money Laundering Regulations Among Prosumers for a 

Cybersecure Decentralized Finance 
Kirimhan 2023 Journal of Business Research Theoretical 

42 Regulation of Decentralized Finance in the United States: What to Expect in 
Crypto 

Koster and 
Lapidus 

2022 Banking Law Journal Descriptive 

     (continued) 
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Table Chapter 2-8: Literature Overview—continued 

43 Blockchain Entrepreneurship Opportunity in the Practices of the Unbanked 
Larios-
Hernández 

2017 Business Horizons Empirical 

44 Decentralized Finance (Defi) – The Lego of Finance Popescu 2020 Social Sciences and Education 
Research 

Descriptive 

45 The Unintended Consequences of the Regulation of Cryptocurrencies Sauce 2022 
Cambridge Journal of 

Economics Empirical 

46 
Financial Crime in the Decentralized Finance Ecosystem: New Challenges 

for Compliance Wronka 2023 Journal of Financial Crime Empirical 

47 Decentralized Finance Zetzsche et al. 2020 Journal of Financial 
Regulation 

Theoretical 

48 Is Decentralized Finance (DeFi) Efficient? Momtaz 2022 SSRN Empirical 

49 
Cryptocurrencies and Decentralized Finance Makarov and 

Schoar 
2022 National Bureau of Economic 

Research 
Theoretical 

50 
Impact of Social Metrics in Decentralized Finance Piñeiro-Chousa 

et al.  
2023 Journal of Business Research Empirical 

51 Price Co-Movements in Decentralized Financial Markets Park et al. 2022 Applied Economics Letters Empirical 

52 Anti-Money Laundering Regulation of Cryptocurrency: UAE and Global 
Approaches 

Al-Tawil 2022 Journal of Money Laundering 
Control 

Descriptive 

53 
Decentralised Finance's Timocratic Governance: The Distribution and 

Exercise of Tokenised Voting Rights 
Barbereau et al. 2023 Technology in Society Empirical 

54 
Decentralized Finance (Defi) – The Lego Of Finance Popescu 2020 Social Sciences and Education 

Research 
Descriptive 

55 
Powered by Blockchain Technology, DeFi (Decentralized Finance) Strives 
to Increase Financial Inclusion of the Unbanked by Reshaping the World 

Financial System 

Abdulhakeem 
and Hu 

2021 Modern Economy Theoretical 

56 
Decentralized Finance—A Systematic Literature Review and Research 

Directions 
Meyer et al. 2022 SSRN Descriptive 

57 Herding Behavior in Conventional Cryptocurrency Market, Non-fungible 
Tokens, and DeFi Assets 

Yousaf and 
Yarovaya 

2022a Finance Research Letters Empirical 

58 
Static and Dynamic Connectedness Between NFTs, Defi and Other Assets: 

Portfolio Implication 
Yousaf and 
Yarovaya 2022b Global Finance Journal Empirical 

     (continued) 
 



 114 
 

Table Chapter 2-9: Literature Overview—continued 

Panel B: Non-fungible Tokens (NFTs) 

1. Review 

59 
Non-fungible tokens (NFTs): A Bibliometric and Systematic Review, 
Current Streams, Developments, and Directions for Future Research 

Nobanee and 
Ellili 2023 

International Review of 
Economics and Finance Descriptive 

60 The Illusion of the Metaverse and Meta-economy Vidal-Tomás 2023 
International Review of 
Financial Analysis 

Descriptive 

2. NFT Market 

61 The Economics of Non-Fungible Tokens. Borri, Liu and 
Tsyvinski 

2022 SSRN Empirical 

62 Non-Fungible Tokens (NFTs) as an Investment Class Mazur and 
Polyzos 

2022 SSRN Empirical 

63 
NFTs, DeFi, and Other Assets Efficiency and Volatility Dynamics: An 

Asymmetric Multifractality Analysis 
Chowdhury et 

al. 2023 
International Review of 
Financial Analysis Empirical 

64 
Return and Volatility Properties: Stylized Facts From the Universe of 

Cryptocurrencies and NFTs Ghosh et al. 2023 
Research in International 
Business and Finance Empirical 

65 What Drives the Volatility of Non-fungible Tokens (NFTs): Macroeconomic 
Fundamentals or Investor Attention? 

Jiang and Xia 2023 Applied Economics Letters Empirical 

66 Non-fungible Tokens: A Hedge or a Safe Haven? Ko and Lee 2023 Applied Economics Letters Empirical 

67 
The Economic Value of NFT: Evidence From a Portfolio Analysis Using 

Mean–variance Framework Ko et al. 2022 Finance Research Letters Empirical 

68 
Mapping the NFT Revolution: Market Trends, Trade Networks, and Visual 

Features Nadini et al. 2021 Scientific Reports Empirical 

69 Investor Experience Matters: Evidence from Generative Art Collections on 
the Blockchain 

Oh et al. 2022 SSRN Empirical 

70 
Investment in Virtual Digital Assets Vis-A-Vis Equity Stock and 

Commodity: A Post-Covid Volatility Analysis Sharma et al. 2022 Virtual Economics Empirical 

71 
Diversification Benefits of NFTs for Conventional Asset Investors: 

Evidence from CoVaR with Higher Moments and Optimal Hedge Ratios Umar et al. 2023 
Research in International 
Business and Finance Empirical 

     (continued) 
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Table Chapter 2-10: Literature Overview—continued 

72 
Dynamic Dependence and Predictability Between Volume and Return of 

Non-Fungible Tokens (NFTs): The Roles of Market Factors and 
Geopolitical Risks 

Urom et al. 2022 Finance Research Letters Empirical 

73 The Role of the Media in Speculative Markets: Evidence from Non-Fungible 
Tokens (NFTs) 

White et al. 2022 SSRN Empirical 

74 
The Behavior and Determinants of Illiquidity in the Non-fungible tokens 

(NFTs) Market 
Wilkoff and 
Yildiz 2023 Global Finance Journal Empirical 

75 
The Hedge and Safe Haven Properties of Non-fungible Tokens (NFTs): 
Evidence from the Nonlinear Autoregressive Distributed lag (NARDL) 

Model 
Zhang et al. 2022 Finance Research Letters Empirical 

76 Non-Fungible Tokens: Blockchains, Scarcity, and Value Chohan 2021 SSRN Descriptive 
3. Asset Pricing 

77 Non-fungible Token Artworks: More Crypto than Art? Anselmi and 
Petrella 

2023 Finance Research Letters Empirical 

78 Non-fungible token (NFT) Markets on the Ethereum Blockchain: Temporal 
Development, Cointegration and Interrelations 

Ante 2022 Economics of Innovation and 
New Technology 

Empirical 

79 Fertile LAND: Pricing Non-fungible Tokens Dowling 2022 Finance Research Letters Descriptive 
80 Land Valuation in the Metaverse: Location Matters Goldberg et al. 2021 SSRN Empirical 

81 Prediction and Interpretation of Daily NFT and DeFi Prices Dynamics: 
Inspection Through Ensemble Machine Learning & XAI 

Ghosh et al. 2023 International Review of 
Financial Analysis 

Empirical 

83 Price Determinants of Non-fungible Tokens in the Digital Art Market Horky et al. 2022 Finance Research Letters Empirical 

83 
Infinite but Rare: Valuation and Pricing in Marketplaces for Blockchain-

Based Nonfungible Tokens 
Kireyev and Lin 2021 SSRN Empirical 

84 Alternative Investments in the Fintech Era: The Risk and Return of Non-
fungible Token (NFT) 

Kong and Lin 2021 SSRN Empirical 

85 
Non-Fungible Tokens (NFTs): A Review of Pricing Determinants, 

Applications and Opportunities 
Kräussl, and 
Tugnetti 2022 SSRN Descriptive 

86 Spatial Heterogeneity and Non-fungible Token Sales: Evidence from 
Decentraland LAND Sales 

Yencha 2023 Finance Research Letters Empirical 

     (continued) 
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Table Chapter 2-11: Literature Overview—continued 

 4. Tokens  

87 Does Unit of Account Affect Willingness to Pay? Evidence from Metaverse 
LAND Transactions 

Nakavachara 
and Saengchote 

2022 Finance Research Letters Empirical 

88 
Dissecting Returns of Non-fungible tokens (NFTs): Evidence from 

CryptoPunks Wang et al. 2023 
North American Journal of 
Economics and Finance Empirical 

5.  Behavioral Finance  

89 
NFTs and Asset Class Spillovers: Lessons from the Period Around the 

COVID-19 Pandemic 
Aharon and 
Demir 2022 Finance Research Letters Empirical 

90 The Role of Oil Price in Determining the Relationship Between 
Cryptocurrencies and Non-fungible Assets 

Bani-Khalaf and 
Taspinar 

2023 Investment Analysts Journal Empirical 

91 Digital Art and Non-fungible-token: Bubble or Revolution? Boido and 
Aliano 

2023 Finance Research Letters Empirical 

92 Is Non-fungible Token Pricing Driven by Cryptocurrencies? Dowling 2022 Finance Research Letters Empirical 

93 
Does Utilizing Smart Contracts Induce a Financial Connectedness Between 

Ethereum and Non-fungible Tokens? 
Gunay and 
Kaskaloglu 2022 

Research in International 
Business and Finance Empirical 

94 Time-frequency Extreme Risk Spillover Network of Cryptocurrency Coins, 
DeFi Tokens and NFTs 

Qiao et al. 2023 Finance Research Letters Empirical 

95 The Return and Volatility Connectedness of NFT Segments and Media 
Coverage: Fresh Evidence Based on News About the COVID-19 Pandemic 

Umar et al. 2022a Finance Research Letters Empirical 

96 Return and Volatility Connectedness of the Non-fungible Tokens Segments Umar et al. 2022b 
Journal of Behavioral and 
Experimental Finance Empirical 

97 
COVID-19 Impact on NFTs and Major Asset Classes Interrelations: Insights 

from the Wavelet Coherence Analysis 
Umar et al. 2022c Finance Research Letters Empirical 

98 
Dynamic Connectedness Between Non-Fungible Tokens, Decentralized 
Finance, and Conventional Financial Assets in a Time-frequency 

Framework 
Umar et al. 2022d Pacific Basin Finance Journal Empirical 

99 Volatility Spillovers Across NFTs News Attention and Financial Markets Wang 2022 
International Review of 
Financial Analysis Empirical 

100 
Are Non-fungible Tokens (NFTs) Different Asset classes? Evidence from 

Quantile Connectedness Approach 
Xia et al. 2022 Finance Research Letters Empirical 

     (continued) 
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Table Chapter 2-12: Literature Overview—continued 

101 
Herding Behavior in Conventional Cryptocurrency Market, Non-fungible 

Tokens, and DeFi Assets 
Yousaf and 
Yarovaya 

2022a Finance Research Letters Empirical 

102 Static and Dynamic Connectedness Between NFTs, Defi and Other Assets: 
Portfolio Implication 

Yousaf and 
Yarovaya 

2022b Global Finance Journal Empirical 

103 
The Relationship Between Trading Volume, Volatility and Returns of Non-

Fungible Tokens: Evidence from a Quantile Approach 
Yousaf and 
Yarovaya 2022c Finance Research Letters Empirical 

6.  Regulatory & Societal Factors 

104 
Space Transition and the Vulnerabilities of the NFT Market to Financial 

Crime Al Shamsi et al. 2023 Journal of Financial Crime Theoretical 
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Empirical 
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Creative Industry Entrepreneurs? 
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Rights 
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110 Detecting Wash Trading for Nonfungible tokens Serneels 2023 Finance Research Letters Empirical 
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van Haaften-
Schick and 
Whitaker 

2022 Journal of Cultural Economics Descriptive 

112 Metaverse-enabled Entrepreneurship Weking et al. 2023 Journal of Business Venturing 
Insights 

Theoretical 

113 Exploring Gender and Race Biases in the NFT Market Zhong et al. 2023 Finance Research Letters Empirical 
114 Tokenized: The Law of Non-Fungible Tokens and Unique Digital Property Fairfield 2021 SSRN Theoretical 
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Table Chapter 2-13: Index Constituents 

This table provides an overview of the respective index constituents for the DeFi, NFT, GameFi, and Play-
to-Earn indices. To be included in an index, a token must have a regular trading volume of greater than zero 
for no more than seven trading days, and a market capitalization on April 24, 2023 of above $5 million USD. 
Market capitalization (Market Cap) is calculated in millions as of April 24, 2023.  

 Market 
Cap DeFi GameFi NFT Play-to-

Earn 
BTC 16,443 NO NO NO NO 
ETH 1,842 NO NO NO NO 
Gas 5.15 NO NO NO NO 
0x 19.16 YES NO NO NO 
1inch 15.46 YES NO NO NO 
aave 36.63 YES NO NO NO 

amp-token 13.24 YES NO NO NO 
aurora-dao 153.25 YES NO NO NO 
badger-dao 6.16 YES NO NO NO 
balancer 5.94 YES NO NO NO 

band-protocol 11.42 YES NO NO NO 
barnbridge 12.59 YES NO NO NO 
bella-protocol 37.07 YES NO NO NO 
chainlink 244.73 YES NO NO NO 
coin98 10.26 YES NO NO NO 

compound-governance-token 14.89 YES NO NO NO 
curve-dao-token 57.92 YES NO NO NO 

dai 135.92 YES NO NO NO 
dodo 9.92 YES NO NO NO 
dydx 139.87 YES NO NO NO 
frax 9.81 YES NO NO NO 

frax-share 17.65 YES NO NO NO 
gains-network 12.28 YES NO NO NO 

gmx 29.98 YES NO NO NO 
havven 33.01 YES NO NO NO 

injective-protocol 111.18 YES NO NO NO 
joe 14.78 YES NO NO NO 
just 18.14 YES NO NO NO 
kava 11.79 YES NO NO NO 

kyber-network-crystal 11.24 YES NO NO NO 
lido-dao 48.45 YES NO NO NO 
linear 10.65 YES NO NO NO 
liquity 18.28 YES NO NO NO 

(continued) 
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Table Chapter 2-14: Index Constituents—continued 

 Market 
Cap DeFi GameFi NFT Play-to- 

Earn 
loopring 27.50 YES NO NO NO 
maker 16.89 YES NO NO NO 
nest 5.37 YES NO NO NO 
osmosis 11.20 YES NO NO NO 

pancakeswap-token 119.72 YES NO NO NO 
republic-protocol 13.66 YES NO NO NO 
reserve-rights-token 7.10 YES NO NO NO 

rocket-pool 7.03 YES NO NO NO 
serum 12.68 YES NO NO NO 

spell-token 8.20 YES NO NO NO 
staked-ether 10.92 YES NO NO NO 

stargate-finance 11.25 YES NO NO NO 
sushi 23.55 YES NO NO NO 

terra-luna-2 42.30 YES NO NO NO 
the-graph 45.03 YES NO NO NO 
thorchain 46.49 YES NO NO NO 
uma 6.20 YES NO NO NO 

uniswap 71.89 YES NO NO NO 
venus 5.38 YES NO NO NO 

wrapped-nxm 6.25 YES NO NO NO 
yearn-finance 19.30 YES NO NO NO 
yfii-finance 6.69 YES NO NO NO 
apecoin 86.08 NO YES YES NO 
cocos-bcx 66.76 NO YES YES NO 
enjincoin 21.30 NO YES YES NO 

ethernity-chain 5.15 NO YES YES NO 
internet-computer 36.94 NO YES YES NO 

magic 29.09 NO YES YES NO 
my-neighbor-alice 19.14 NO YES YES NO 
alien-worlds 6.08 NO YES YES YES 
axie-infinity 50.99 NO YES YES YES 
gala 217.38 NO YES YES YES 

immutable-x 33.02 NO YES YES YES 
mobox 10.03 NO YES YES YES 

smooth-love-potion 8.62 NO YES YES YES 
stepn 51.52 NO YES YES YES 

the-sandbox 118.87 NO YES YES YES 
yield-guild-games 7.96 NO YES YES YES 

audius 39.32 NO NO YES NO 

(continued) 

  



 120 
 

Table Chapter 2-15: Index Constituents—continued 

 Market 
Cap DeFi GameFi NFT Play-to-

Earn 
bakerytoken 6.76 NO NO YES NO 
chiliz 62.89 NO NO YES NO 

contentos 6.30 NO NO YES NO 
ethereum-name-service 17.59 NO NO YES NO 

fetch-ai 50.54 NO NO YES NO 
flow 63.57 NO NO YES NO 

origin-protocol 5.73 NO NO YES NO 
playdapp 19.17 NO NO YES NO 

project-galaxy 13.28 NO NO YES NO 
radicle 6.47 NO NO YES NO 

render-token 90.56 NO NO YES NO 
superfarm 5.29 NO NO YES NO 
theta-token 13.82 NO NO YES NO 
decentraland 82.81 NO NO YES YES 
verasity 11.70 NO YES NO NO 
volt-inu-2 13.85 NO YES NO NO 
illuvium 8.60 NO YES NO YES 

mines-of-dalarnia 13.92 NO YES NO YES 
wax 8.61 NO NO NO YES 

wemix-token 7.98 NO NO NO YES 
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Chapter 3: PolitiFi: Just Another Meme, or Instrumental for 
Winning Elections? 

3.1. Citation:  

Proelss, J., Schweizer, D., & Sevigny, S. (2025) PolitiFi: Just Another Meme, or 
Instrumental for Winning Elections? Finance Research Letters, 72, 106533. 
doi:10.1016/j.frl.2024.106533  

3.2. Abstract: 

As the 2024 U.S. presidential election looms, the intersection of cryptocurrency and 
political finance has garnered significant interest. This study explores the new crypto 
category of PolitiFi, which merges politics and finance and is linked to political figures and 
agendas. Our analysis underscores the strategic deployment of these tokens to enhance 
visibility, shape narratives, and appeal to younger, more technologically adept voters 
within the crypto sphere. The alignment of cryptocurrency adoption with voter 
demographics highlights PolitiFi's potential to redefine political engagement and campaign 
strategies, and influence election outcomes. Empirical analyses show that PolitiFi’s 
development has exhibited a distinct trajectory, rapidly demonstrating independence and a 
critical decoupling from other meme coins in the cryptocurrency market. 

3.3. Introduction 

As the 2024 U.S. presidential election approaches, a notable shift has occurred: Former 
President Donald Trump, previously critical of cryptocurrencies (see 2019 Twitter post)32, 
has embraced them (see 2024 Truth Social post)33 to outpace President Joseph Biden in 
fundraising. This shift reflects broader trends in the integration of digital assets into 
politics, exemplified by the rise of PolitiFi, a new crypto trend merging politics and finance. 
PolitiFi tokens, often meme coins associated with political figures or movements, serve 
campaign purposes like raising awareness, shaping narratives, soliciting crypto donations, 
and appealing to younger, tech-savvy voters. Notable tokens include MAGA (Trump) and 
BODEN (Biden). 

Trump’s ventures into crypto, selling digital trading card non-fungible tokens 34  and 
accepting crypto payments, likely influenced his decision to accept crypto contributions 
for his 2024 campaign.35 His pledge to free Silk Road creator Ross Ulbricht (CoinDesk, 

 
32 See https://x.com/realDonaldTrump/status/1149472282584072192.  
33 See https://truthsocial.com/@realDonaldTrump/112503319133425856.  
34 See https://opensea.io/collection/trump-digital-trading-cards.  
35 See https://www.donaldjtrump.com/crypto.  
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2024) and support for making the future of crypto "made in the USA" (Benzinga, 2024) 
further cement his alignment with the crypto community. As a result, tokens like "Make 
America Great Again" (MAGA) surged up to about 100x in value since 2023 (reaching a 
market cap of about $750m), with Trump outpacing Biden in fundraising as of April 2024 
(BNN Bloomberg, 2024)36. 

A key aspect of this landscape is the role of internet memes and meme coins in shaping 
political discourse. Memes, driven by humor and virality, serve as valuable marketing 
tools. They unite communities via “social currency” (Benaim, 2018), and when combined 
with cryptocurrencies, can sway retail investors and voters alike (Elsayed et al. 2024). 
Political meme coins leverage this appeal, allowing campaigns to spread messages rapidly 
(Beskow et al., 2020). However, these communities may devolve into echo chambers 
dominated by ill-informed members, leading to significant market disruptions, as seen with 
meme stocks like GameStop (Pedersen, 2022; Aloosh et al., 2022). 

We build on Bonaparte and Kumar’s (2013) insight that political activism reduces 
information-gathering costs, lowering barriers to participation, a dynamic also seen in 
PolitiFi. These tokens simplify political engagement, particularly for younger, tech-savvy 
individuals by offering a decentralized and accessible platform for political participation. 
Hong, Kubik, and Stein’s (2004) work on sociability and Grinblatt et al.’s (2011) research 
on financial literacy suggest that individuals inclined to use cryptocurrencies are also likely 
to participate politically through PolitiFi. Guiso et al. (2008) highlight that trust influences 
market participation, and in PolitiFi, trust in political figures translates to trust in their 
associated tokens. Akerlof and Shiller’s (2016) emphasis on narrative economics 
highlights how compelling stories and emotional appeal can drive the widespread adoption 
of financial tools like PolitiFi, even when individuals have limited understanding of the 
risks involved. 

PolitiFi represents a novel intersection of decentralized finance and political engagement, 
with the potential to shift political power away from elite donors, as Ansolabehere et al. 
(2000) discuss. This aligns with Rogers’ Diffusion of Innovation theory (2003), positioning 
PolitiFi as a tool first adopted by opportunistic political campaigns, like Trump’s, before 
spreading to mainstream political finance strategies. 

To understand PolitiFi’s potential, it is critical to recognize the overlap between U.S. voting 
demographics and crypto adoption patterns. In the 2020 election, younger voters (ages 18-
24) showed a turnout rate of 51.4%, compared to 76% for those over 65 (Pew Research 
Center, 2023). Millennials and Gen Z, the same groups more likely to engage with 
cryptocurrencies (Campino and Yang, 2024), constitute an underrepresented yet vital 

 
36 See https://www.bnnbloomberg.ca/trump-leads-biden-in-monthly-campaign-fundraising-for-first-time-
1.2075243.  
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demographic. With approximately 20% of individuals aged 18-44 involved in 
cryptocurrency, and with higher ownership among African-Americans (33%) and 
Hispanics (32%) (Paradigm, 2024), PolitiFi holds the potential to bridge this voter 
engagement gap. This convergence of crypto and political participation presents a unique 
opportunity for campaigns to sway traditionally underrepresented voter bases through 
targeted crypto-friendly narratives, adding an additional layer to candidates’ outreach 
strategies. 

We explore the dynamics of how PolitiFi could influence political engagement and 
campaign strategies through two primary channels: Candidate viability and narrative-
shaping. For candidate viability, we measure the price movements of PolitiFi tokens, such 
as MAGA or BODEN, act as proxies for market sentiment on electoral prospects. Previous 
research shows that cryptocurrency prices are linked to investor sentiment and social media 
activity (Kraaijeveld and De Smedt, 2020; Phillip et al., 2018). We hypothesize that major 
campaign events, such as President Biden’s withdrawal from the race, will cause sharp 
declines in related token prices, reflecting the strong connection between PolitiFi tokens 
and candidate reduced viability. 

Second, narrative-shaping can be analyzed through token price reactions to key political 
events. Campaigns that align themselves with the crypto community should experience 
increased engagement with their PolitiFi tokens, which serve as extensions of their 
messaging. However, isolating the impact of pre-announced events like Trump’s Bitcoin 
2024 conference appearance is challenging due to anticipatory market effects. In contrast, 
unanticipated events, such as the assassination attempt, offer clearer insight into PolitiFi’s 
dynamics. This event, framed by Trump’s campaign as a demonstration of strength and 
resilience, triggered measurable price surges, illustrating the power of narrative control. 
We hypothesize that positive narratives, such as campaign victories or strategic successes, 
will lead to price spikes, reflecting increased optimism. Even dramatic and potentially 
negative events, like the assassination attempt, can be reframed to enhance market 
confidence through effective narrative spinning, driving unexpected price gains. 

Our findings reveal that PolitiFi tokens, while initially regarded as meme tokens, have 
matured into financial instruments that directly reflect market sentiment, voter behavior, 
and candidate viability. The empirical evidence shows that PolitiFi tokens react 
significantly to key campaign events, suggesting that these tokens are a real-time gauge of 
voter sentiment, especially within younger, tech-savvy demographics. The ability of 
PolitiFi to engage with previously underrepresented voter bases, particularly among 
minorities and lower-income groups, provides a new mechanism for political campaigns 
to broaden their outreach. As PolitiFi gains traction, the expanding institutional acceptance 
of crypto at large, signaled by major players like BlackRock and Fidelity offering e.g. 
crypto related Exchange Traded Funds, underscores its growing legitimacy within 
mainstream finance. 
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Although still in its early stages, PolitiFi’s capacity to drive both financial and voter 
engagement positions it as a transformative tool in U.S. political campaigns. The 
integration of decentralized fundraising and active voter sentiment tracking through token 
movements offers a unique dual impact on electoral outcomes. Given that candidates who 
outspend their opponents are more likely to win, PolitiFi tokens hold the potential to 
influence fundraising dynamics and empower campaigns to attract decentralized, crypto-
friendly donor bases. The implications extend beyond the U.S., with PolitiFi potentially 
evolving into a global model for campaign finance, offering a decentralized alternative to 
traditional elite donor structures. 

3.4. PolitiFi’s Role in the Crypto Ecosystem 

PolitiFi is a recent spinoff of meme coins, a rapidly evolving trend where politics, finance, 
and cryptocurrency converge. PolitiFi essentially began in August 2023 with the 
introduction of the MAGA coin, inspired by Trump’s "Make America Great Again" 
campaign. Over the following months, many other PolitiFi meme coins were launched, 
inspired by both President Biden (Jeo Boden: BODEN; Jill Boden: JILLBODEN) and 
Donald Trump (Doland Tremp: TREMP; Pepe Trump: PTRUMP). As of May 23, 2024, 
they reached a total market cap of about $850 million.  

Our next objective here is to analyze how PolitiFi is integrated within the crypto ecosystem. 
We turn to empirical data to estimate a general vector autoregression (VAR) model without 
restrictions in order to measure spillovers. We then use the estimation results to investigate 
the relationships between the variables.  

We compare PolitiFi with Bitcoin and Ethereum, the two leading digital asset and meme 
coins, because it evolved from that space, as well as from the U.S. Economic Policy 
Uncertainty (EPU) Index. Past research on spillovers in the digital asset space focused on 
specific tokens, coins, and volatility (see, e.g., Katsiampa et al., 2019; Koutmos, 2018; and 
Omane-Adjepong and Alagidede, 2019). Our aim, in contrast, is to carve out how PolitiFi 
is incorporated into the crypto space during different periods, because the dynamics change 
so rapidly.  

We estimate a 𝑉𝐴𝑅(𝑝)  model that allows for multiple independent variables without 
enforcing a distinct Granger causal relationship. We follow the research design of Proelss 
et al. (2023):  

𝐘𝑡 = 𝐀1𝐘𝑡−1 + 𝐀2𝐘𝑡−2 + ⋯+ 𝐀𝑝𝐘𝑡−𝑝 + 𝒄 + 𝐮𝑡 (1) 

where 𝐘𝑡 is the 𝐾 × 1 vector of our five endogenous return variables (BTC, ETH, PolitiFi, 
Meme Coins, EPU), which is a linear function of 𝑝 of their own lags. 𝐀" is a 𝐾 × 𝐾 matrix 
of coefficients for 𝑖 = 1, . . ,𝑝 and 𝐘𝑡−𝑖 are the 𝐾 × 1	matrices of lagged returns, with 𝑝 as 
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the optimal lag lengths to be included.37 The 𝐾-dimensional intercept term is 𝐜, and 𝐮! is a 
𝐾 -dimensional white noise term. After fitting the VAR(1) model, we use “Granger 
causality” (Granger, 1969) to test whether one variable causes another. We regress 𝑦 on 
lagged 𝑦 . Variables are considered “causal” if we can reject the null hypothesis that 
estimated coefficients on the lagged values 𝑦 are (jointly) zero. 

3.4.1. Data 

We create the following two equally weighted crypto-asset sector indices based on 
CoinGecko’s Top-PolitiFi Index and Top GMCI Meme Index constituents. We obtain BTC 
and ETH prices by using CoinGecko’s API. To build the two indices, we also require a 
minimum of two distinct tokens in each respective index. This leads to a start date of 
November 23, 2023, and an end date of March 31, 2024, with a total of 131 observations. 
Finally, we also include the daily EPU Index.  

Figure Chapter 3-1 plots the respective indices over the sample period. Table Chapter 3-1 
shows the descriptive statistics for the sample period for BTC and ETH, as well as for 
PolitiFi, Meme Coins, and EPU.38  

  

 
37 Optimal lag length maximizes the degrees of freedom to estimate the model without incurring the 
omitted variables problem. 
38 The index is the daily U.S. EPU index (available at 
https://www.policyuncertainty.com/us_monthly.html).  
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Figure Chapter 3-1: Crypto-Asset Price Developments 

This figure illustrates the price trajectories of equally weighted crypto indices (PolitiFi and Meme Coins), 
alongside Bitcoin (BTC), Ethereum (ETH), and the Economic Policy Uncertainty (EPU) index. A structural 
break, identified via the Clemente-Montañés-Reyes test, is also depicted. All time series are indexed to a base 
value of 100, spanning the observation period of November 23, 2023, to March 31, 2024 

 

Table Chapter 3-1: Descriptive Statistics 

This table shows the descriptive statistics mean (Mean), median (Median), standard deviation (Std), 
minimum (Min), maximum (Max), skewness (Skew), and kurtosis (Kurt) for Bitcoin (BTC) and Ethereum 
(ETH), the equally weighted indices for PolitiFi and Meme Coins, and the economy policy uncertainty (EPU) 
index spanning the observation period of November 23, 2023, to March 31, 2024, with a total of 131 
observations. 

 
Mean Median Std Min Max Skew Kurt 

BTC 3.41% 1.11% 15.28% -17.62% 116.83% 3.54 24.96 
ETH 3.62% 1.87% 12.68% -15.77% 115.55% 5.58 48.12 
PolitiFi 0.56% 0.32% 2.87% -8.24% 9.75% 0.14 4.59 

Meme Coins 0.53% 0.37% 3.03% -10.06% 10.86% 0.18 4.88 
EPU 0.61 0.00 1.28 0.00 6.54 2.61 9.66 
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3.4.2. Empirical Results 

Because we are interested in how the PolitiFi sector has evolved over time, we first analyze 
whether the time series for the indices (PolititFi and Meme Coins), and for BTC, ETH, and 
EPU, are stationary. To this end, we use unit root tests on the returns (Dickey-Fuller no 
trend-stationary test, the Zivot and Andrews test, and the Clemente-Montañés-Reyes 
(CMR) test). This ensures our estimation is reliable and the results are not spurious, which 
could lead to poor understanding of any subsequently applied VAR model results.  

Table Chapter 3-2: Stationary and Structural Break Tests 

This table shows the results for our stationary test and structural break test using the Dickey-Fuller no trend-
stationary test, the Zivot-Andrews stationary test, and the Clemente-Montañés-Reyes unit root test with 
single mean shifts. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 

 Dickey-Fuller Zivot-Andrews CMR (AO) 
PolitiFi -11.401*** -11.766*** -12.494*** 

Meme Coins -13.415*** -11.895*** -11.569*** 
BTC -12.921*** -13.357 *** -4.353*** 
ETH -12.722*** -6.352*** -9.669** 
EPU -6.253*** -4.704* -2.575 

As Table Chapter 3-2 shows, the test statistics for all time series are stationary. The Zivot-
Andrews and CMR tests of the unit root consider one structural break in mid-January 2024 
for the PolitiFi time series (Clemente et al., 1998). This corresponds to the week when the 
number of constituents doubled from three to six, marking the point where PolitiFi began 
to take shape and gain increased media coverage.  

Crypto markets are known for their rapidly changing dynamics, due to events such as the 
Bitcoin halving and the introduction of the Bitcoin ETF. As visually represented in Figure 
Chapter 3-2, we establish the PolitiFi breakpoint as January 16, 2024. Therefore, we 
analyze the entire period, as well as two subperiods: pre-breakpoint (subperiod 1), and 
post-breakpoint (subperiod 2). 
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Figure Chapter 3-2: Structural Break Test 

This figure presents the results of the Clemente-Montañés-Reyes structural break test, including the 
corresponding t-values. 

 

Before estimating the VAR model, we determine optimal lag length (p) by using several 
selection criteria: final prediction error, Akaike’s information criterion, Schwarz’s 
Bayesian information criterion, and the Hannan-Quinn information criterion. For each 
subperiod, most criteria indicate that 𝑝 = 1 is optimal. This represents a balance of the 
trade-off between preserving degrees of freedom and minimizing the omitted variables 
bias. 

The results of the VAR(1) models in Table Chapter 3-3 reveal significant insights across 
the two subperiods. In subperiod 1, which precedes the widespread media coverage and 
public discussion of PolitiFi tokens, we find evidence that meme coins Granger cause 
PolitiFi (see Yousaf et al. (2023) for additional insight into the relation between meme 
coins and other crypto assets). This suggests that PolitiFi tokens were not initially clearly 
differentiated from meme coins. However, this dynamic shifts markedly after the identified 
breakpoint. During subperiod 2, which coincides with increased public interest in the U.S. 
presidential election (according to Google Trends and the higher media coverage of 
PolitiFi-related tokens), we no longer observe any Granger causation between meme coins 
and PolitiFi. This is a strong indicator that PolitiFi quickly established a distinct presence 
in the crypto ecosystem. 
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Table Chapter 3-3: Granger Causality 

This table shows the results for the Granger causality Wald test 𝜒% estimators, using the estimation results of 
the VAR(1) model with endogenous variables Bitcoin (BTC) and Ethereum (ETH), the equally weighted 
PolitiFi and Meme Coins indices, and the economic policy uncertainty (EPU) index for the entire sample 
period (Entire Period) and two subperiods: subperiod 1 (pre-January 16, 2024), and subperiod 2 (post-
January 16, 2024). ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
The Granger causality relationship is shown from Origin (columns) to Receiver (rows). 

           Origin 

Receiver PolitiFi Meme Coins BTC ETH EPU 
Entire Period 

PolitiFi - 3.81* 0.02 0.63 0.05 
Meme Coins 0.15 - 0.05 0 7.45*** 

BTC 0.22 2.03 - 0.56 1.22 
ETH 0.59 3.77* 1.06 - 3.27* 
EPU 0.65 0.04 9.04*** 6.13** - 

Subperiod 1 
PolitiFi - 4.48** 1.6 0.45 0.36 

Meme Coins 0.47 - 0.09 0.09 0.76 
BTC 0.11 0.91 - 0.93 0.22 
ETH 0.42 1.49 0.3 - 2.97* 
EPU 0.37 1.88 0.49 0.01 - 

Subperiod 2 
PolitiFi - 0.08 0.66 2 0.45 

Meme Coins 0 - 0.29 0.73 24.35*** 
BTC 0.04 0.35 - 0.01 0.79 
ETH 0.27 0.24 0.89 - 3.81* 
EPU 0.61 0.7 8.26*** 7.72*** - 

Additionally, we see during subperiod 2 that Bitcoin and Ethereum Granger cause EPU 
(see Katsiampa et al. (2019) for spillover effects). This may be attributable to ongoing 
discussions surrounding crypto-related policies, the introduction of Bitcoin ETFs, pending 
approval of Ethereum ETFs, and the Bitcoin halving event, which were prevalent in the 
press. Notably, EPU only Granger causes meme coins and Ethereum during this subperiod, 
further highlighting the evolving interdependencies within the crypto market. 

3.5. Channels of Influence 

We test our two channels of political campaign influence on PolitiFi tokens by conducting 
event studies in response to Kamala Harris replacing President Biden as the Democratic 
Presidential Nominee (candidate viability) and the assassination attempt on Donald Trump 
(narrative-shaping) for two separate groups of PolitiFi tokens either related to the 
Republican or Democratic party (see Table Chapter 3-4). We find that after President 
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Biden’s withdrawal from the race, PolitiFi tokens related to him experienced a statistically 
significant drop of about 45%. This aligns with reduced candidate viability. Conversely, 
tokens associated with Trump and the Republican party increased about 15%, also 
statistically significant at the 1%-level, following the assassination attempt. This increase 
reflects how the campaign successfully leveraged the narrative to their advantage. These 
results provide preliminary evidence on the relationships and possible channels through 
which political campaigning influences PolitiFi tokens.  

Table Chapter 3-4: Testing the Channels of Political Campaign Influence on PolitiFi 
Tokens 

This table presents the results of four event studies examining the price impact on PolitiFi tokens related to 
the Republican and Democratic parties (Token Type) following two key events: 1) the assassination attempt 
on Donald Trump on July 13, 2024, and 2) Kamala Harris replacing Joe Biden as the Democratic Presidential 
Nominee on July 21, 2024. '#Tokens' denotes the number of tokens associated with each party. 'AARE' 
represents the average abnormal returns and are caculted on the [0;1] event window. Abnormal returns are 
calculated using a three-factor model, incorporating Bitcoin, Ethereum, and an equally weighted Meme Coins 
index, consistent with the analysis in Table 3. The estimation window spans from May 1 to June 30, 2024, 
for both events, with a minimum of 25 observations per token to ensure reliable estimates. 'Patell' and 'Patell 
adj.' show the t-statistics based on the methodology of Patell (1976) and Kolari and Pynnönen (2010) 
respectively. We employ the Patell and adjusted Patell tests, as Gao et al. (2024) demonstrate that these 
methods perform best for small sample sizes, event-induced volatility, and non-normal returns. ***, **, and 
* indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 

Event Token Type #Tokens AARE Patell Patell adj. 

Trumps Assassination 
Attempt on July 13, 2024 

Republican 13 15.2% 3.748*** 2.346** 

Democrat 5 -8.8% -1.245 -0.926 

Harris Replacing Biden as 
Presidential Nominee on 

July 21, 2024 

Republican 13 -1.2% -0.721 -0.452 

Democrat 5 -45.3% -6.69*** -4.977*** 

3.6. Conclusion  

Examining the intersection of politics and meme coins reveals that PolitiFi has rapidly 
become a significant factor in political campaigns, influencing voter behavior, financing, 
and outcomes. In federal elections, where billions are raised and spent, financial resources 
are crucial for candidate success. PolitiFi represents a groundbreaking change in political 
finance. By leveraging digital assets, meme culture, and the financial power of 
cryptocurrencies, it can energize younger voters and fundamentally alter the strategies and 
outcomes of political campaigns. 

Our complementary empirical findings indicate that the dynamics within the 
cryptocurrency market can swiftly transform, influenced by factors such as media 
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coverage, regulatory developments, and the U.S. presidential election campaign. These 
elements collectively contribute to crypto’s evolution and volatility. Not surprisingly, 
during the initial phase of PolitiFi’s introduction (subperiod 1), we noted that its price 
dynamics were significantly influenced by developments in meme coins. However, in the 
subsequent phase (subperiod 2), PolitiFi exhibited a strong, distinct evolution, becoming 
decoupled from the price movements of meme coins, Bitcoin, and Ethereum. Additionally, 
we identified two potential channels—candidate viability and narrative-shaping—through 
which political campaigns can influence PolitiFi. While PolitiFi presents a compelling tool 
for political campaigning, it remains in its early stages, and various crypto market factors, 
such as bear markets or high volatility, may negatively impact its long-term success (see 
Bonaparte, 2023). On October 15, 2024 the Trump campaign's launch of the 'World Liberty 
Financial' (WLFI) token introduced new dynamics into the PolitiFi landscape. Despite 
initial excitement, the token raised less than $12 million against its ambitious $300 million 
target (Sigalos, 2024). The token’s governance framework is notably restrictive, as it 
prohibits holders from selling unless approved by collective governance vote, mitigating 
speculative trading and framing the token as a governance tool rather than an investment 
asset (World Liberty Financial, 2024). This non-transferability may reflect a strategic 
approach to comply with regulatory frameworks, presenting an intriguing use case within 
campaign finance law. This approach highlights PolitiFi tokens' potential to serve as legally 
complex tools that facilitate political financing within cryptocurrency, offering campaigns 
a new way to leverage digital assets while navigating regulatory restrictions. Future 
research should examine the impact of election outcomes on PolitiFi tokens and identify 
key events driving token behavior. Additionally, exploring regulatory frameworks around 
cryptocurrencies in campaign finance will be crucial to address transparency and legal 
compliance issues. 
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Conclusion 

This thesis has explored the transformative potential and multifaceted challenges of 
blockchain technology and cryptocurrencies through three interconnected lenses: Bitcoin’s 
alignment with Environmental, Social, and Governance (ESG) criteria, GameFi’s role in 
expanding blockchain utility, and PolitiFi’s innovative application in political finance. 
Each chapter contributes distinct insights into how cryptocurrencies address inefficiencies 
in centralized systems while simultaneously unveiling new paradigms for financial and 
societal transformation. 

The first chapter critically evaluated Bitcoin’s compliance with ESG principles, 
emphasizing its environmental, social, and governance dimensions. On the environmental 
front, Bitcoin’s energy-intensive proof-of-work (PoW) mechanism has been a major source 
of criticism. However, this study challenges exaggerated claims about Bitcoin’s 
environmental harm by presenting a nuanced analysis of its energy consumption and 
carbon emissions. A novel forecasting model revealed that prior estimates were often 
overstated due to flawed assumptions that failed to properly model mining dynamics. 
Furthermore, the study highlighted the potential for Bitcoin mining to integrate renewable 
energy sources and stabilize power grids by consuming surplus energy. Socially, Bitcoin 
demonstrates potential to enhance financial inclusion for unbanked populations, offering 
secure, transparent, and decentralized financial services. From a governance perspective, 
Bitcoin’s decentralized architecture exemplifies accountability, transparency, and 
stakeholder participation, positioning it as a model of governance innovation. These 
findings underscore Bitcoin’s broader societal benefits, suggesting that its environmental 
challenges must be assessed from a holistic viewpoint, alongside its contributions to social 
and governance advancements. 

Building on this, the second chapter examined GameFi as a case study in expanding 
blockchain’s practical applications. By integrating decentralized finance (DeFi), non-
fungible tokens (NFTs), and gaming, GameFi platforms create decentralized digital 
economies where players and developers can monetize in-game assets and interactions. 
Empirical evidence showed that GameFi enables economic empowerment and 
engagement, particularly among younger, tech-savvy demographics. However, the study 
also identified key challenges, such as market volatility, liquidity constraints, and 
governance vulnerabilities within these ecosystems. Addressing these risks is crucial for 
ensuring the sustainability and inclusivity of GameFi platforms. The findings suggest that 
GameFi represents a transformative avenue for blockchain technology, capable of bridging 
the gap between speculative trading and real-world utility while democratizing access to 
digital economies. 

Finally, the thesis explored PolitiFi tokens, a novel intersection of blockchain technology 
and political finance. By leveraging blockchain’s transparency and decentralization, 
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PolitiFi tokens offer a new mechanism for engaging voters and funding campaigns. The 
analysis demonstrated how PolitiFi tokens reflect market sentiment and candidate viability, 
with price movements tied to key campaign events. These tokens also enable real-time 
voter engagement, reduce reliance on elite donors, and provide innovative tools for 
narrative shaping. The study highlighted the potential of PolitiFi to engage 
underrepresented voter demographics, particularly younger and minority groups, through 
targeted crypto-friendly narratives. While these tokens face regulatory and ethical 
challenges, their capacity to redefine political engagement positions them as a 
transformative tool for campaigns, with implications extending beyond the U.S. to global 
political finance. 

Collectively, these findings illuminate the potential of cryptocurrencies to drive 
transparency, inclusivity, and decentralization across industries. However, significant 
barriers remain, including regulatory uncertainty, technical inefficiencies, and public 
skepticism.  

This thesis contributes to the growing body of literature critically assessing 
cryptocurrencies’ dualities—their ability to address systemic inefficiencies and their 
inherent complexities. By examining the ESG dimensions of Bitcoin, the utility expansion 
through GameFi, and the governance innovation via PolitiFi, this work informs academic 
and practical discussions on blockchain’s evolving role in society. The transformative 
potential of cryptocurrencies lies in their capacity to foster innovation and inclusivity 
across diverse sectors. Realizing this potential requires a balanced approach that leverages 
their strengths while addressing their limitations. As blockchain technology continues to 
evolve, its ultimate impact will depend on collaborative efforts among researchers, 
policymakers, and practitioners to navigate these challenges responsibly. 
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