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ABSTRACT 

Assessment of Urban Microclimate and Its Impacts on Building, Community, and Urban Energy 

Performance 

Dongxue Zhan, Ph.D 

Concordia University, 2025 

 

With global efforts aimed at reaching carbon neutrality by 2050, there is an increased focus on 

improving the energy efficiency of buildings. The interactions between constructions and their 

local microclimate significantly influence the built environment and building energy performance. 

This thesis examines the urban microclimate and its impact on building energy consumption from 

the individual building level to entire urban areas.  

Building energy models (BEMs) are essential for understanding building energy consumption, 

forecasting building energy, and evaluating energy-saving measures. Meanwhile Urban Building 

Energy Model (UBEM) is an analytical tool for modeling buildings on city levels and evaluating 

scenarios for an energy-efficient built environment. However, building planners commonly 

overestimate cooling loads by relying on Typical Meteorological Year (TMY) data in 

BEM/UBEM simulations, neglecting local microclimate variations and the neighborhood effects 

of surrounding buildings. This research developed an integrated platform by coupling 

BEM/UBEM with an urban microclimate model, allowing local aerodynamic data to be exchanged 

between the two models at each time step.  

Since these BEM/UBEM models usually come with a deal of computation cost and prior 

knowledge to work with. In recent years, Machine Learning (ML) techniques in specific terms 

have been proposed for predicting building energy consumption. A synthetic dataset from physics-

based simulations can serve as a training and testing data source for the ML model during the 

design phase. Weather clustering techniques are implemented to enhance computational efficiency 

and feasibility avoiding the high computational costs of day-by-day simulations. By employing 

weather clustering to select representative days, the approach reduces database size for training 

ML-based building prediction models. 
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The study begins with a comprehensive review of the latest methods for incorporating urban 

microclimate data into urban building energy models, addressing both methodological approaches 

and practical issues. Subsequently, the research evaluates the effects of urban microclimate on 

building energy performance, considering both individual buildings and urban-scale contexts. To 

address the computational cost associated with BEM/UBEM, an ML-based hourly building energy 

prediction model was developed, leveraging weather clustering techniques. The conclusion 

summarizes the key contributions of this thesis and offers recommendations for future research 

directions. 
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Chapter 1. Introduction 

1.1 Statement of Problem  

Today, around 55% of the global population resides in urban areas, and this rate is projected to 

reach as high as 70% by 2050 [1]. Among various energy-consuming sectors, buildings account 

for over 40% of annual energy consumption worldwide and approximately 55% of electricity 

consumption [2], [3]. Thus, accurate estimation of building energy consumption is critical to 

provide city planners and policymakers with exquisite information on energy use to establish 

energy-efficient cities during the design phase. To this end, Building Energy Model (BEM) tools 

are widely used to estimate building energy consumption and investigate the influence of input 

variables on the energy performance of buildings [4]. BEM can simulate complex building physics 

provide explicit energy-saving performance and become an indispensable tool to explore the 

potential energy-saving of buildings. It considers the impacts of various input parameters, 

including the internal parameters, e.g., occupants, appliances, heating, ventilation, and air 

conditioning (HVAC) systems, and the external parameters, e.g., ambient weather conditions. The 

accuracy of the simulation results is subject to the uncertainties and importance of these inputs 

data. All input parameters in BEMs should be selected carefully to obtain accurate simulation 

results. Meteorological data is one of the most important types of information that has a substantial 

impact on building energy performance. However, Typical Meteorological Year (TMY) data have 

been widely used in BEM studies to represent the ambient climate of the building area without 

considering the local microclimate, omitting complex interactions between buildings and the 

environment [5]. The urban microclimate is a small area around a building that has different 

atmospheric conditions than the surrounding area. Buildings in urban areas suffer from higher air 

temperatures due to the UHI effect as well as reduced wind flow as a result of surrounding 

structures that block airflow. As a result of this, as well as reduced sky exposure and shaded solar 
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heat, neighboring buildings alter the radiation balance [6]. These factors collectively affect the 

thermal and energy performance of urban buildings. A lack of knowledge of the local microclimate 

will decrease the accuracy of building energy simulation results. 

A promising solution to investigate the impact of local microclimate on building energy use is to 

couple urban microclimate simulation tools with BEM tools due to there is no distinct tool that can 

directly assess the urban microclimate impact on building energy use [7]. Urban microclimate 

simulation tools predict local ambient conditions regarding different urban configurations. 

However, the features and the thermal processes of buildings are usually simplified or neglected 

in these simulation tools. BEMs can provide detailed descriptions of the building and its systems 

using a dynamic model in the building energy performance analysis involving many input 

parameters. There is a gap in explicitly quantifying the impact of local UHI on building energy 

consumption. Besides, compared to other inputs, the impacts of urban microclimate on BEM 

results are not adequately understood, and the literature also often presents inconsistent 

conclusions.  

Since the BEMs/UBEMs usually come with a deal of computational cost and prior knowledge to 

work with. ML as a subset of artificial intransigence provides the ability to learn from data using 

computer algorithms. ML techniques contribute to bridging this gap by learning existing data to 

predict new samples and lead to informed decisions. They discover the relation between various 

input features and output targets (e.g. energy performance) using given data. ML techniques offer 

the flexibility to incorporate vast amounts of dataset gathered from various sources for predicting 

new samples and leading to informed decisions. Data sources could be smart grids, sensor 

networks, and on-site measurements, among others. These methods limit the computation 

complexity of the algorithm to computational time.  
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1.2 Motivation and objectives 

Having briefly described the context and problem statement; the motivation and objective of this 

report are now introduced. The primary motivation of the proposed research work is to 

comprehensively understand the influence of local microclimate on building energy performance 

within the broader context of UHI effects. By conducting global sensitivity analysis, we are aiming 

to quantify the importance of urban microclimate and to identify the key parameters for the model 

output variations, study how significance of climatic parameters in building energy performance, 

compared against other building positive parameters, like envelop thermal properties, occupancy, 

and HVAC systems. And employing cutting-edge simulation techniques of BEM/UBEM and 

Urban Climate Model (UCM) in a coupling strategy at multiple scales, individual building and 

urban scale. The aim is to elucidate the significance of ambient temperature compared to other 

passive design parameters in building energy simulation (BES). Through this integrated approach, 

the research seeks to demonstrate how UHI impacts building energy performance, offering 

valuable insights for enhancing urban sustainability and resilience in the face of climate change. 

Moreover, considering the extensive dataset required for hourly building energy prediction models 

using simulated data, weather clustering techniques offer a promising solution to select 

representative days, thereby avoiding the high computational costs associated with day-by-day 

simulations. 

Therefore, the strategy for the research will seek the following target: 

• Develop novel coupling strategies to evaluate the local microclimate and its impact on 

individual building energy performance 

• Propose a new integration platform for city-scale assessment of the urban environment 

during extreme weather conditions. 



4  

• Pioneering uses weather clustering techniques to reduce the size of datasets for the 

development of ML-based building energy prediction models. 

• Develop a machine learning model to predict building energy consumption on an hourly 

basis considering multiple weather parameters and building features. 

1.3 Thesis organization 

To delineate the research gaps addressed in this study concerning urban microclimate and its 

implications, the thesis is structured into six chapters as follows: 

Chapter 2 provides an up-to-date review of existing studies on coupling strategies between urban 

microclimates and building energy models.   

Chapter 3 investigates the spatiotemporal characterization of urban microclimates and their impact 

on building-level energy performance through the development of an integrated platform that 

couples urban microclimate models with building energy simulations.   

Chapter 4 introduces an hourly energy prediction model incorporating weather clustering 

techniques. By identifying a subset of representative days from yearly weather data, the model 

reduces computational complexity by focusing computational efforts on a reduced set of days. 

Chapter 5 develops an integration platform linking urban microclimate models with urban building 

energy models, enabling city-scale holistic assessments of urban microclimates. The use of JSON 

schema facilitates information exchange between the models.   

Chapter 6 concludes the research by summarizing the key contributions and identifying overlooked 

factors in the study. It also outlines potential directions for future research to enhance and expand 

upon the current work. 
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Chapter 2. Literature review 

This chapter presents a comprehensive literature review on building energy modeling approaches 

across various spatial scales, ranging from individual buildings to urban-scale frameworks. It 

begins by reviewing conventional building energy models (BEMs) and then discusses the 

evolution toward urban building energy Models (UBEMs), which simulate energy consumption 

across large building stocks. However, both BEMs and UBEMs often overlook the influence of 

localized environmental factors, prompting the need to integrate urban microclimate models 

(UCMs). These models capture key phenomena such as the urban heat island effect and wind flow, 

which significantly impact building performance.  

The chapter further explores the coupling strategies developed to integrate BEM/UBEM and 

UMCMs, enabling a more accurate representation of the dynamic interactions between buildings 

and their surrounding microclimate. Various one-way and two-way coupling approaches are 

reviewed, along with their strengths, limitations, and applications in recent studies1. In addition, 

this chapter reviews the growing role of machine learning techniques in building energy modeling. 

These data-driven methods offer promising solutions for rapid energy prediction, especially when 

accounting for ambient conditions as weather inputs. 

2.1 Introduction 

Urbanization is a global phenomenon, with a significantly increasing percentage of the world’s 

population residing in urban areas. However, this rapid urban expansion has brought about various 

 
1 This chapter has included the contribution of the author in multiple publications: 

1. Dongxue Zhan, Nurettin Sezer, Liangzhu (Leon) Wang, Ibrahim Galal Hassan (2023). “Coupling of Urban Microclimate 

and Building Energy Simulations: Review of the Recent Literatures.” 6th International Conference on Countermeasures to 

Urban Heat Islands (IC2UHI), RMIT University, Melbourne, Australia. 

2. Nurettin Sezer, Hamad Yoonus, Dongxue Zhan, Liangzhu (Leon) Wang, Ibrahim Galal Hassan, Mohammad Azizur 

Rahman (2023). “Urban microclimate and building energy models: A review of the latest progress in coupling strategies.” 

Renewable and Sustainable Energy Reviews. Volume 184, 2023, 113577 
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challenges, including the Urban Heat Island (UHI) effect. The UHI effect refers to the increased 

temperatures experienced in urban areas compared to their surrounding rural regions. The 

consequences of the UHI effect exacerbate thermal discomfort, environmental pollution, serious 

health problems, and mortalities [8]. Moreover, the UHI effect significantly influences building 

energy demand [9] as the UHI-induced elevated air temperatures result in higher cooling demands 

and lower cooling effectiveness [6], which should be considered in the evaluation of building 

energy performance. Building Energy Models (BEMs) are used to evaluate the effectiveness of 

energy-conservation measures during the design stage [4]. All input parameters in BEMs should 

be selected carefully to obtain accurate simulation results. Weather data is one of the most 

important types of information that has a substantial impact on building energy performance. 

However, the measured climate data collected in the outlying rural areas are widely used in most 

existing BEM development methodologies [5], which ignores the meteorological difference 

between urban and rural areas. According to recent studies, the estimated building energy use 

greatly differs depending on whether the UHI impact is taken into account [10].  

UHI significantly impacts building energy consumption [11]. Previous studies demonstrated the 

UHI effect based on the temperature obtained by both observation and simulation [12], For 

instance, Zinzi et al. [13] analyzed the urban climate in Rome, Italy using air temperature and 

relative humidity data from five weather stations across the city between October 2014 and 

September 2017. The average increase in air temperature due to the UHI effect was found to be 

0.7 ℃ - 1 ℃. Due to the UHI effect, the cooling load was calculated to increase by 53% and 74%, 

and the heating load decreased by 18% and 21% for the office building and residential building, 

respectively. Santamouris [14] reported that the cooling load of a typical urban building is 13% 

higher than a similar building in rural areas. UHI resulted in an average cooling load increase of 

23% and a heating load reduction of 19%, which corresponded to an 11% increase in the overall 
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energy use of a typical building. Another research by Li et al. [12] found that UHI could lead to a 

substantial increase in cooling energy demand between 10% and 120% and a reduction in heating 

energy demand between 3% and 45%. In addition, the UHI effect caused an increase in the median 

cooling load and heating load by 19.0% and 18.7%, respectively. It was indicated that the UHI 

effect may vary across the city. In contrast to the urban fringe, it was stronger in the urban core.  

The approach and the information used to assess the UHI impacts in earlier investigations varied 

significantly. An approach to include the UHI effect in building energy models was put forth by 

Palme et al. [15]. The cooling demand for residential buildings in the coastal cities of the Pacific 

Ocean in South America was foreseen by downscaling the urban weather data at the building level 

of urban morphology. After incorporating the UHI effect, building energy demand increased in a 

range of 15%-200%. The study criticized the validity of current estimation studies, which 

overlooked the UHI effect. A similar study by Li et al. [16] investigated how UCM affects building 

energy use for air conditioning. By revising perceived temperature, the UHI effect, temperature 

and humidity effect, and cumulative effect were considered in estimating the air conditioning 

energy consumption. Microclimate had an impact of 11.3% increase in summertime electricity use, 

which peaked in 2005 at 20.4%. It was noted that the increased cooling load further intensively 

the UHI effect. 

Given the significance of the UHI effect in simulating building energy performance, it is crucial 

to thoroughly examine the approaches implemented to incorporate this effect into building energy 

simulations. To this end, this work aims to review the literature on UCM and BEM tools, as well 

as the coupling strategies employed to integrate these tools effectively. 

2.2 Methodology 

Based on a systematic review methodology, the current work identifies the scope of the study, the 
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research question, the literature resources, and the overall quality assessment.  

2.2.1 Scope of the study 

Most previous building energy simulation studies overlooked the local variations in atmospheric 

variables and their interaction with the built environment. Therefore, a detailed systematic study 

is required to compile and analyze the latest developments of microclimate impacts on building 

energy performance. The present review aims to fill this literature gap and help the readers 

understand the critical parameters that play a significant role during microclimatic interactions 

with urban buildings and choose suitable methods to accurately predict building energy 

performance in a real urban microclimate. The climatic conditions can be classified based on the 

spatial resolution, such as macroclimate (100–10000 km), mesoclimate (1–100 km), and 

microclimate (1 mm–1 km) (Figure 2-1). Urban microclimate describes the local climate effects 

that differ from the surrounding rural areas in terms of wind direction and speed, surface 

temperature, air temperature, and relative humidity [17], [18]. The majority of previous building 

energy simulation studies overlooked the local variations in atmospheric variables and their 

interaction with the built environment. Therefore, it is necessary to compile and analyze the latest 

developments in microclimate impacts on building energy performance in a comprehensive 

systematic study. The present review aims to fill this literature gap and provide readers with an 

overview of critical parameters that play a significant role during the microclimatic interactions 

with urban buildings and how to select appropriate methods to accurately predict building energy 

performance in a real UCM. The effect of UHI has been reviewed in several studies, such as the 

UHI intensity estimation in urban areas[19], UHI's impact on building energy [20], [21], the UHI 

interaction with heat waves [22], the intra-urban relationship between surface geometry and UHI 

[23], effect of spatiotemporal factors on UHI intensity [24], UHI mitigation strategies and tools 

[25], UHI mitigation policies and technologies [26]. A review of urban microclimatic impacts on 
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building energy performance is presented, considering individual, community, and urban scale 

buildings. Microclimate and building energy modeling are discussed in detail, as well as software 

and coupling strategies that can be used to achieve better results. 

 

Figure 2-1. Identifying the point of interest of the present work. (Data source: Google Earth) 

[27]. 

2.2.2 Research questions 

This study examines the following primary research questions: (1) how does microclimate affect 

the energy performance of a building? (2) How can the impact of microclimatic conditions on 

building energy consumption be effectively assessed? (3) How can UCM models be integrated 

into building energy models? (4) What are the available strategies for coupling UCM with BEM 

tools?  

2.2.3 Collection and quality appraisal of the literature 

Various steps were followed for the quality assessment. Research papers related to specific 

keywords are gathered through a primary literature search. Afterward, three levels of scrutiny are 

used to identify the most appropriate publications. Lastly, the resources are categorized and 

organized according to the sections of the paper. The papers are analyzed and summarized using 

the information that is most relevant or has the greatest impact on the topic.  
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Figure 2-2 presents the systematic screening process used to select relevant publications for the 

literature review using specific keywords. The initial search, based on a comprehensive set of 

keywords related to building energy simulation and urban climate, yielded 307 documents. 

Following that, three levels of scrutiny are used to sieve the resources and identify the most 

relevant publications and associated topics. The three levels of scrutiny are explained as follows. 

1) Basic Scrutiny: Basic scrutiny is used to separate resources based on parameters like repetition, 

language, etc. The basic scrutiny is carried out by quickly skimming through the initially collected 

literature, 303 publications remained. 2) Intermediate Scrutiny: Within this scrutiny level, a more 

detailed analysis of the research papers based on the year of publication, type of publication 

(journal, conference, report, etc.), publisher, journal impact factor, cite score, etc. are used to 

evaluate the best literature material, reducing the dataset to 258 entries. 3) Strict Scrutiny: The last 

step of scrutiny contains a small pool of resources compared to the initial lot. The resources are 

scrutinized with ample time and removed mainly based on the breadth and depth of discussion, 

novelty, and adherence to the topic, resulting in a final selection of 243 high-quality studies. 

Finally, the resources are classified and organized into different sections of the paper.  

 

Figure 2-2. Steps of the quality assessment of resources. 
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The number of documents by year and journals on the literature search based on the is presented 

in Figure 2-3 and Figure 2-4, respectively. Figure 2-3 illustrates the annual number of documents 

related to the integration of energy models and urban microclimate from 2006 to 2022, based on 

Scopus data. There is a clear upward trend in publication volume, particularly from 2012 onwards, 

reflecting growing academic interest in this research area. The number of journal publications has 

consistently increased, reaching a peak in 2020 and remaining high through 2022. This trend 

highlights the expanding importance and relevance of coupled simulation methods in addressing 

urban energy climate challenges.  

 

Figure 2-3. Number of documents by year (all data from Scopus). 

Figure 2-4 shows the distribution of selected publications across different journals, based on data 

retrieved from Scopus. Among the journals, Energy and Buildings stands out as the most 

prominent source, publishing 50 relevant articles, followed by Building and Environment and 

Sustainable Cities and Society.  
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Figure 2-4. Number of publications by Journal (all data from Scopus). 

2.3 Available simulation tools 

Building energy modeling tools are developed for individual buildings as well as regionally. They 

were developed by universities and government agencies in the 20th and 21st centuries and have 

continually been improved with new versions released. Urban Climate Modeling (UCM) tools 

have newly developed models. In general, UCM software assists the users in modeling the 

surrounding urban environment based on reference weather station data and allows for conducting 

airflow analysis based on the Computational Fluid Dynamics (CFD) principles. Table 2-1 provides 

a list of various commonly used BES and UCM models with descriptions. All the listed UCM tools 

can be coupled with at least one BEM software. 
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Table 2-1. Overview of BES and UCM software. 

SOFTWARE 

(Developer, year)  

FUNCTIONS LINK TO PROGRAMS 

EnergyPlus (US 

Department of Energy, 

2001) 

• Three components - Simulation Manager, 

Heat and Mass Transfer Simulation Module, 

and Building Systems Simulation Module for 

integrated simulation. 

• Input - Building Description Data. 

• Inbuilt link to TRNSYS and SPARK. 

• Functional Mock-up Units for co-

simulation. 

Building Controls Virtual Test Bed 

(BCVTB) for coupling incompatible 

software. 

ESP-r (University of 

Strathclyde, 1974) 

• Separately model moisture, heat, electricity 

flow, and inter- and intra-zone airflow. 

• Handshaking of information takes place. 

• Input – Building geometry, atmospheric 

variables, and Convection Heat Transfer 

Coefficient (CHTC) values. 

• Harmonizer for co-simulation with 

TRNSYS. 

• Other simulation tools can be linked using 

Python or other high-level programming 

languages. 

 

TRNSYS (University 

of Wisconsin, 1975) 

• Component-based workflow with defined 

parameters and input and output customized. 

• It is divided into two parts: the kernel or the 

simulator and the extensive model library of 

components with editable predefined models. 

• The models can be written in other 

programming languages and included in 

TRNSYS. 

• It can be coupled with other simulation 

tools such as ENVI-met/Fluent using 

interfaces, e.g., Grasshopper or other script 

texts. 

• Internal link with Excel and MATLAB for 

other programs. 

 

e-Quest (US 

Department of Energy, 

2009) 

• Hourly simulation of the building based on 

geometrical inputs. 

• Can perform a comparative analysis of 

various simulations from schematic to the 

final stage. 

• It also offers energy cost estimation, 

daylighting calculations, and intuitive 

energy-saving measures. 

  

 

 

 

           - 

IES VE (Integrated 

Environmental 

Solutions, 1994) 

• Modeling, thermal and load analysis, 

ventilation, lighting design, life cycle cost 

analysis, etc. 

• Uses the ApacheSim module for thermal 

simulation. 

• MicroFlo is an internally integrated CFD 

module of IES VE. 
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SOFTWARE 

(Developer, year)  

FUNCTIONS LINK TO PROGRAMS 

• Allows sub-hourly simulation. 

CityBEM (Concordia 

University, 2019) 

• The mass-energy conservation is solved for 

a whole building capsule with an indoor air 

cavity. 

• The building’s overall thermal load is 

calculated. 

• It is easily coupled with in-house CityFFD 

software. 

Eco-Tect (Dr. Andrew 

Marsh, 2001) 

• Hourly thermal comfort and monthly loads. 

• Daylighting, solar penetration, 

overshadowing, acoustic reflections and 

reverberations, project cost, and 

environmental impacts. 

• WinAir plugin facilitates CFD analysis. 

• The ENVI-met solutions can be shared 

using EnergyPlus converters. 

GreenBuilding 

Studio (AutoDesk, 

2004) 

• Optimization of energy performance, carbon 

use, and water use. 

• Compared with over 50 other solutions. 

• It is linked to REVIT for a detailed 

building and environmental model. 

ENVI-met (Dr. 

Michael 

Bruse, 1993) 

• Solar and air pollutant dispersion analysis, 

building energy performance, green and blue 

area analysis, and outdoor thermal comfort 

level. 

• BCVTB module or Meteonorm can be 

used to couple with EnergyPlus. 

• The TRNSYS outputs can be combined 

using Grasshopper. 

Fluent (ANSYS, 2006) • Fluid flow and transport phenomena: 

Incompressible, compressible, laminar, and 

turbulent fluid flow. 

• Steady and transient state analysis with 

natural, forced, and mixed convection. 

• Porous media, multi-reference flow, swirl, 

lumped parameter, and stream-wise periodic 

flow and heat transfer. 

• Through BCVTB and MATLAB to link 

EnergyPlus. 

• MATLAB-Fluent coupling allows easy 

coupling with other software. 

• Direct Coupling of Fluent and SOLENE 

code. 

CityFFD (Concordia 

University, 2019) 

• Hourly Typical Meteorological Year (TMY) 

data is used to simulate local variations in 

atmospheric variables based on reference 

weather station values. 

• Higher-order forward and backward sweep 

and interpolation of the solver. 

• It is easily coupled with CityBEM. 
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SOFTWARE 

(Developer, year)  

FUNCTIONS LINK TO PROGRAMS 

UWG (Massachusetts 

Institute of 

Technology, 2012) 

• Estimate hourly urban canopy temperature 

and humidity based on the weather station 

data input. 

• Input EPW weather file and XML file of 

urban geometry output the effects of UHI in 

EPW. 

• As the output file is in EPW format, it is 

directly compatible with most BES 

software. 

• Usually used for normal chaining. 

SOLENE-

Microclimate 

(CERMA Laboratory, 

1990s) 

• It consists of three models: Thermal, CFD, 

Radiation 

• Quantify envelope materials and impacts of 

landscapes. 

• Direct chaining with BuildSysPro.  

• Submodels for SOLENE are developed as 

a building thermal model to be coupled with 

Fluent. 

OpenFoam (Henry 

Weller, 1989) 

• Meshing, discretized operators, and physical 

models in the form of predefined libraries. 

• Code functionality to implement complex 

physical models. 

• It can couple with EnergyPlus and similar 

software with the help of middleware. 

2.4  Coupling strategies 

There is no distinct tool that can directly assess the UCM impact on building energy use. Coupling 

UCM and building energy simulations can yield reliable predictions of microclimate impact. A 

coupling is the rapid exchange of information or variables between different computational engines 

that helps to solve the necessary equations urged by the solvers. This section intends to help the 

readers identify the methods, guidelines, and limitations of available coupling strategies. The 

software can be coupled in a variety of ways. The coupling strategies can also be classified based 

on the flow of variables, the capacity of the solvers, and the operation of timesteps. The research 

papers explicitly identify one-directional and two-directional coupling strategies and external 

coupling is most prevalent, so this review follows the same classification. This article discusses 

these two methods in detail. Afterward, the guidelines and limitations of these methods are 

discussed. 
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2.4.1 One directional coupling 

One-directional coupling strategy is a method of sharing values for unknown variables from one 

software to another without feedback. Figure 1 summarizes the one-directional flow of information 

for the studies explained below.  

One-directional coupling strategy is a method of sharing values for unknown variables from one 

software to another without feedback. Figure 2-5 summarizes the one-directional flow of 

information for the studies explained below. Liu et al. [28] implemented a one-directional coupling 

of CFD and BEM to investigate the impact of UCM on the energy performance of an academic 

building in the US. CFD software was used to generate local velocity and temperature variables 

based on velocity and temperature variables from the Energy Plus Weather (EPW) data. 

Microclimate variables were stored as EPW files with these local variables. The EPW file was 

entered into one of the physical models to solve the heat transfer variables on the BES platform.  

This is a one-way flow of information, and CFD and BES platforms are used separately to model 

microclimate and heat transfer. 

 

Figure 2-5. One-directional exchange in literature.  
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Furthermore, a module can be used to incorporate two independent platforms in addition to the 

aforementioned manual coupling strategy. Yang et al. [29]  used a Building Controls Virtual Test 

Bed (BCVTB) for coupling ENVI-met with EnergyPlus. To satisfy the boundary condition of 

EnergyPlus, an ‘E-E module’ transfers hourly physical variables from ENVI-met. The building 

envelope is defined using compatible units for both models. Microclimate data with each unit is 

averaged and transferred to EnergyPlus. The outside boundary conditions remained the same for 

all linking units. For the initial time step, EnergyPlus sends unknown values such as air 

temperature to the E-E module. This module collects information and physical variables from the 

ENVI-met microclimate simulation to prepare heat transfer coefficients. These coefficients are 

shared with EnergyPlus for the simulation, and the iteration continues.  

A case study in Switzerland investigated the impact of local microclimate on building energy 

consumption [30]. The study used CFD-BES software coupling with one-directional 

communication. Building surface temperature served as the CFD boundary condition, while no 

feedback was utilized from CFD to BES. The radiation model accounted for shortwave and 

longwave radiations within the BES software. Heat transfer employed an electric circuit 

equivalence and correlations from literature. Multiple simulations were conducted, varying wind 

speeds, directions, albedo values, and designs. The study aimed to understand microclimatic 

variations around the building compared to ambient temperature. Another study indirect coupling 

between BES and CFD to assess the impact of the urban environment on building energy 

performance and indoor environmental quality [31]. The thermal model of university buildings 

was developed in ESP-r software, and ENVI-met was used for microclimate simulation. Weather 

variables from ESP-r were updated and stored, while CHTC values were calculated using different 

methods. The coupling of ENVI-met and ESP-r was achieved through Python programming. To 

accommodate CHTC values, the simulation was divided into seven periods and dynamically run 
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in ESP-r solver. 

2.4.2 Two directional coupling 

Two directional coupling strategies are the exchange of information between the software, 

contributing to the unknown values required for the simulation (Figure 2-6). 

 

Figure 2-6. Two Directional Coupling Methods. 

The resilience of buildings to extreme weather was investigated using a two-directional coupling 

method between CityFFD and CityBEM software Average atmospheric variables and convective 

heat transfer coefficients were exchanged between the models, enabling simulations of heating and 

cooling load and indoor air temperature, etc. Non-geometric input data was processed by 

CityBEM, while building surface temperature calculated by CityBEM was passed onto the 

CityFFD as the boundary conditions. This iterative data exchange was referred to as a ‘ping-pong’ 

data exchange method. To initiate this mechanism, the value of the building surface temperature 

was required as the first-time step. To fulfill that, a loop of 0.1% error condition was run with an 

assumed building surface temperature. It was compared with the final building surface temperature 

obtained by the CityBEM simulation. This converged value was used as the initial parameter for 
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the CityFFD simulation. 

Bouyer et al. improved building energy performance by coupling BES and CFD using a two-

directional dynamic method [32]. However, fully dynamic was computationally expensive, so a 

low-resolution quasi-dynamic approach was used for turbulence, momentum, continuity, etc. 

Fluent and SOLENE exchanged variables such as air temperature, CHTC, and mass rate of 

moisture. The tool proved effective in understanding the influence of urbanization on building 

energy demands at a small scale. Malys et al. performed a sensitivity analysis using the coupled 

software SOLENE-Microclimate [33], following a similar approach [32]. CFD coupling had a 

limited impact on the winter season but significantly affected buildings with inadequate thermal 

insulation during the summer. 

An overview of BES-CFD coupling methods was conducted to identify untested approaches and 

validate them [34]. The literature revealed limited studies on BES-CFD coupling, particularly for 

outdoor conditions. The focus was on the external wall as a reference for variable sharing. Yi and 

Malkawi's [35]outdoor integration method, untested in previous research, was explored using a 

"ping pong" strategy. A dynamic simulation module called BCVTB was incorporated, where BES 

provided building surface temperature to CFD and CFD provided CHTC to BES. MATLAB served 

as an intermediate for BCVTB and Fluent coupling. To ensure result accuracy, a CHTC deciding 

criterion was established based on literature-derived empirical models. If CFD-calculated CHTC 

failed the criterion, empirical model values were used. However, further research on outdoor 

conditions is urged. MoWiTT, TARP, and DOE-2 were employed to evaluate the criterion, but 

CHTC values from CFD were successfully used throughout the entire simulation. 

2.5  Machine learning-based building energy models 

In recent years, ML techniques have gained increasing attention for building energy prediction due 
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to their ability to capture complex relationships between inputs and outputs. However, the 

development of robust ML models is often hindered by limited access to high-quality measured 

data, especially in scenarios where data privacy is a concern, or the building is still in the design 

or construction phase. To overcome these challenges, researchers applied physics-based 

simulation engines to generate synthetic building energy datasets. These synthetic datasets enable 

the creation of large, diverse, and labeled training data under controlled variations of building 

geometry, systems, usage profiles, and weather conditions. 

ML techniques offer the flexibility to incorporate vast amounts of data gathered from various 

sources for predicting new samples and leading to informed decisions. Data sources could be smart 

grids, sensor networks, and on-site measurements, among others. An occupant-behavior-sensitive 

modeling approach was applied to four ML approaches for predicting building energy 

consumption [36]. Synthetic data generated by EnergyPlus serves as training and testing data 

resource, including 3-month hourly data. Li et al. [37] utilized two different historical data sets in 

hourly intervals, which are four months and three months in total to predict a building’s electricity 

consumption using optimized artificial neural networks (ANN). Platon et al. [38] collect 14 months 

for 23 variables in the hourly time step, using the ANN model to predict hourly electricity 

consumption. XGBoost consistently demonstrates strong predictive performance across various 

building energy applications. For example, Wang et al. [39] employed multiple ML models to 

predict a detailed cooling load profile one hour ahead. The study concluded with a 

recommendation to utilize the XGBoost algorithm as they produced the best performance on both 

the training and testing set of the data. Similarly, among 17 ML models, XGBoost achieved the 

best accuracy in predicting solar radiation on urban building surfaces [40].  Wu et al. [41] also 

observed that XGBoost excelled in developing baseline energy models across various building 

types and time intervals among 8 different ML models. Ma et al. [42] demonstrated XGBoost’s 
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outstanding performance in predicting outcomes for both envelope and heating, ventilation, and 

air conditioning (HVAC) system retrofit strategies. 

2.6 Limitation  

Coupling strategies used for exchanging information between different simulation tools have 

several limitations. One common strategy, BEM+CFD, which simulates the convective heat 

transfer between buildings and surrounding urban areas, faces challenges due to the high 

computational cost and the need for powerful computing devices for CFD simulations. 

Furthermore, CFD simulations are highly sensitive to mesh properties, requiring high-quality 

meshing for accurate results, but this increases the simulation time. Implementing CFD tools also 

demands extensive knowledge and experience in simulation, as the lack thereof can result in less 

accurate results. Another limitation lies in the use of BEMs, which have constraints in 

incorporating exterior variable boundary parameters. Additionally, the time scales between BEM 

and UCM (Urban Canopy Model) often do not align, posing challenges for their coupling. There 

is a need to further develop BEM software to include all external heat fluxes, especially longwave 

radiation. Currently, using a specific coupling method for different scenarios can lead to 

complications. Microclimate studies using CFD analysis may produce local microclimatic 

conditions that deviate from reality. Uncertainties in case studies should be carefully considered 

when calibrating CFD-BES (Building Energy Simulation) models for varying scenarios. Most 

coupling strategies also overlook important factors such as the evapotranspiration of vegetation 

and evaporative cooling effects of water bodies, whereas ENVI-met takes these effects into 

account. Therefore, there is room for improvement and addressing these limitations in future 

coupling strategies. 
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2.7  Summary  

This work provides an updated review of coupling strategies between urban microclimate and 

building energy models. It discusses available modeling tools, coupling methods, and recent 

research progress. Coupling urban microclimate and building energy simulations requires careful 

consideration for accuracy. Guidelines recommend one-directional or dynamic coupling methods, 

with static being easier but dynamic requiring more resources. Quasi-dynamic and fully-dynamic 

methods yield similar results unless airflow parameters change significantly. Coupling is less 

crucial for winter conditions but important for summers, especially in well-insulated buildings. 

The intermediate coupling method offers a good compromise. Common variables for CFD-BES 

coupling are building surface temperatures and meteorological data. Calibration involves using 

accurate data and adjusting the models based on experimental results.  

Coupling urban microclimate and building energy simulations is crucial for accurate results. One-

directional coupling is commonly used due to computational challenges, and there is a lack of 

research on coupling platforms. However, more studies are expected in the future to explore 

different coupling schemes. Further research is needed to investigate coupling possibilities and 

promote adoption among researchers and industry professionals. 
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Chapter 3. Assessment of urban microclimate and its impact on 

individual building energy performance 

This chapter examines the urban microclimate on building energy performance in Qatar, a hot-arid 

climate, using both measurement data and computational modeling. This study collects 

measurement data across Qatar and conducts computational fluid dynamics (CFD) simulations; 

the results from both methods serve as inputs in building energy simulation (BES). The results 

demonstrate that space cooling demand is more sensitive to ambient temperature than other 

climatic parameters, building thermal properties, etc. The UHI intensity is high during hot and 

transition seasons and reaches a maximum of 13 ℃. BES results show a 10% increase in cooling 

energy demand for an office building due to the UHI effect on a hot day. The results of this study 

enable more informed decision-making during the building design process2. 

3.1 Introduction 

Today, around 55% of the world's population lives in cities, and this rate is projected to reach as 

high as 70% by 2050 [1]. The State of Qatar stands out with the world’s highest urbanization rate 

(99.1%), while its rural population represents only 0.9% [43]. Among different energy-consuming 

sectors, buildings account for over 40% of the annual energy consumption worldwide and around 

55% of the world’s electricity consumption [44], [45]. This rate is even higher in Qatar [46]. Thus, 

accurate estimation of building energy consumption is critical to provide city planners and 

policymakers with exquisite information on energy use to establish energy-efficient cities and 

mitigate greenhouse gas emissions and climate change. To this end, building energy simulation 

(BES) tools are widely used to estimate building energy consumption and investigate the influence 

 
2 This chapter has been published as a peer-reviewed journal paper: Dongxue Zhan, Nurettin Sezer, Danlin Hou, Liangzhu 

Wang, and Ibrahim Galal Hassan (2023). "Integrating Urban Heat Island Impact into Building Energy Assessment in a Hot-

Arid City" Buildings 13, no. 7: 1818. https://doi.org/10.3390/buildings13071818 
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of input variables on the energy performance of buildings. However, typical meteorological Yyear 

(TMY) data have been widely used in BES studies to represent the ambient climate of the building 

area without considering the local urban heat island (UHI) effect, omitting complex interactions 

between buildings and the environment. 

The UHI refers to the characteristic warmness of an urban area, which is often approximated by 

comparing the temperature of a city with its surrounding rural areas. Increasing urbanization 

aggravates the urban climate environment characterized by the UHI effect. The UHI intensity, a 

crucial indicator of the increased heat in urbanized areas, is defined as the air temperature 

difference between urban and rural areas [47]. Previous publications have investigated the UHI for 

various climates; for instance, the daily profile of urban air temperature was studied in comparison 

to that of rural areas for an observation period of one year in Switzerland [48]. The average diurnal 

UHI intensity varied from 0 ℃ to 2 ℃ and peaked at 10:00 pm on a sample clear-sky day on 26 

June 2002. The UHI intensity reaches higher temperatures in cities with hot and arid climates. For 

instance, in the case of Doha, long-term measurement data show that UHI intensity reaches as high 

as 5 ℃ [49]. A lack of knowledge of the local UHI effect will decrease the accuracy of building 

energy simulation results. Shi et al. [50] presented the huge influence of the local UHI effect on 

the sensible and latent cooling energy demand of residential buildings during the summer in Hong 

Kong. The results show sensible cooling demand considering the urban microclimate is 

approximately twice that of the rural weather, and the latent cooling demand could be up to 96% 

higher. Heat in cities increases cooling demand, with each 1 °C increase causing an increase of 

between 8.0 and 15% in building use, placing a considerable burden on decarbonization efforts in 

cities [51]. In a bibliometric review of urban heat mitigation and adaptation, He et al. [52] 

summarized the impact assessment and cause identification of UHI. It has been suggested that a 
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holistic and comprehensive understanding of the scope of urban heat and its associated impacts is 

needed. 

A promising solution to investigate the impact of local UHI on building energy use is to couple 

urban microclimate simulation tools with BES tools since there is no distinct tool that can directly 

assess the urban microclimate impact on building energy use [7]. Urban microclimate simulation 

tools predict local ambient conditions regarding different urban configurations. However, the 

features and the thermal processes of buildings are usually simplified or neglected in these 

simulation tools. BESs can provide detailed descriptions of the building and its systems using a 

dynamic model in the building energy performance analysis involving many input parameters. 

There is a gap in explicitly quantifying the impact of local UHI on building energy consumption 

compared with other inputs in BES, especially in hot and arid climate zones. The specific 

objectives of this study are listed as follows: 

• To provide insights into the significance of ambient temperature in BES compared to other 

building passive design parameters by global sensitivity analysis. 

• To assess the tempo-spatial UHI effect with the help of year-round observation of six 

weather stations across the country in hot-arid coastal areas. 

• To employ a one-way coupling strategy between urban microclimate simulation and 

building energy simulation using CityFFD and EnergyPlus, respectively. 

• To demonstrate the impact of the UHI effect on building energy performance based on co-

simulation results. 

3.2 Description of Study Area 

Over the last two decades, Qatar has experienced rapid population and urban growth [53], [54]. To 
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accommodate part of Qatar’s growing population, a new city development project, namely Lusail 

City, was developed as a flagship project to build a sustainable city on the northeast coast of Qatar. 

The project aimed to apply sustainability principles such as reducing greenhouse gas emissions, 

conserving water, and reversing desertification. Lusail City covers a 38 km2 area and provides 

homes to more than 200,000 people. Marina district is a part of Lusail City. Its master plan 

comprises 36 high-rise commercial buildings, 37 mixed-use high-rise buildings, and 30 residential 

buildings to be constructed in 10 years. Until now, 20% of the buildings have been constructed, 

27% are currently under construction, and 53% are still to be constructed. Pavement widths in the 

Marina district are determined by traffic volume, surface movement requirements, and under-grade 

infrastructure tunnel requirements. In order to enhance the sustainability of the district plan, 

greenery will be integrated into the rooftops, parking areas, and pedestrian areas of the district. To 

achieve the sustainability goals of the project, it is essential to evaluate the energy performance of 

buildings within the local urban context. BESs are commonly used to predict the space cooling 

and heating demands of buildings based on energy conservation for a control volume. Space 

cooling accounts for approximately 80% of the generated electricity in Qatar [55]. District cooling 

has the potential to save approximately 40% of the electricity due to the concentration effect of 

cooling load at one location [56], [57]. District cooling load calculations play a vital role in the 

design and operation phases of a district cooling plant. However, the cooling load of individual 

buildings in a district is usually overestimated in the BES modeling [58], which results in designing 

oversized district cooling systems, high initial investment, low operational efficiency, and waste 

of energy and water. Thus, accurate prediction of building cooling loads is necessary, yet remains 

a challenge in the optimal design and operation of district cooling systems. 

The local environmental setting in Qatar underwent considerable changes as a result of the 

dynamic evolution of numerous urbanization aspects, including a general change in land use, the 
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number of buildings, the total amount of living space, and the number of cars. Typically, these 

shifts take the form of potentially significant micro-level variances in the urban climate across the 

nation. Because of these factors, Qatar is an intriguing case study to examine the sensitivity of 

climate conditions to a range of urban-scale factors. 

The Marina district is in the southern part of Lusail City, comprising high-rise towers (number of 

floors ranging from 15 to 40) for office, residential, mixed-use, hotel, and retail use connected to 

a continuous boardwalk (Figure 3-1). The district totals 3.1 million m2 of built-up area, and the 

population of this district is 40,760, of which 27,000 are residents. It is bounded in the south by 

the Lagoons Canal, to the west by Road B, to the east by the Arabian Gulf shoreline, and to the 

north by Qatar Entertainment City. The urban geometrical data were extracted from the 

information provided by the utility representatives and through the literature search. The Marina 

district is projected to be the future downtown of Lusail City in Qatar, which is under colossal 

construction. Our case study focuses on a typical high-rise office building in the Marina district of 

Lusail City, Qatar. The selection was made based on the fact that all office buildings in the Marina 

district adhere to the same construction requirements outlined in local and national standards. In 

addition, the availability of relevant information regarding the geometry and features of this 

building contributed to the decision to choose this building. 

3.3 Methodology 

This section outlines the methods employed in the present work. Firstly, high temporal granularity 

weather data were collected from a locally installed weather station and five rural airport weather 

stations across the country. Additionally, the microclimate was assessed using CityFFD, a 

microclimate tool based on CFD simulations. The coupling of building energy simulation and 

microclimate modeling enabled the analysis of UHI effects on building energy performance. In 
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conducting a global sensitivity analysis, key climatic variables and building design features that 

have a substantial impact on building energy modeling were identified. 

 

 

Figure 3-1. (a) Locations of airport weather stations in Qatar, (b) urban layout of the Marina 

district, and (c) locations of evaluating points. (AWS: airport weather station; LWS: local 

weather station; T_B: target building; EP: evaluating point). 
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3.3.1 Weather data collection 

High temporal resolution meteorological information is acquired from a local weather station set 

up in the Marina district of Lusail City at coordinates 25.399952 E and 51.519568 N. The sensors 

of the weather station report hourly data on temperature, solar radiation, wind direction, wind 

speed, relative humidity, and precipitation. Wind speed and temperature sensors were positioned 

5 m and 4 m above the ground, respectively, and the measuring pole was 8 m away from the 

building. 

In addition to the local weather station installed in the Marina district of Lusail City, a total of five 

airport weather stations were installed in different locations across Qatar: Doha International 

Airport, AI Ruwais, Dukhan, Umm Said, and Abu Samra. These have been designated as AWS-1 

to AWS-5 in this study. The location of each station is shown in Figure 3-1. The airport 

meteorological information was collected from the OGIMET website based on the “climate” 

package in R 3.6.3 [59], which specializes in the automation of meteorological data downloading. 

Hourly meteorological data are available for these stations during summer, while every three-hour 

data are available during winter. UTC +3 time zone is used in simulations and the time difference 

between the airport weather station and local measurement is accounted for. The five airport 

meteorological stations were installed in different locations across Qatar. All aforementioned 

weather data were collected from August 2020 to August 2021. 

3.3.2 Urban microclimate modeling 

Modeling urban scale microclimate and capturing neighborhood building impact on the 

aerodynamics often lead to huge computing loads. CityFFD is based on the semi-Lagrangian 

approach, a fast and stable numerical model suitable for modeling large-scale airflow problems 

[60]. The turbulence closure is achieved by the large eddy simulation (LES) [61]. CityFFD solves 

the following non-dimensional Navier-Stokes conservation equations [61]: 
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 𝛻 ⋅ 𝑈 = 0 Equation 3-1 

 
𝜕𝑈

𝜕𝑡
+ (𝑈 ⋅ 𝛻)𝑈 = −∇𝑝 + (

1

𝑅𝑒
+ 𝑣𝑡) ∇2𝑈 −

𝐺𝑟

𝑅𝑒2
𝑇 Equation 3-2 

 
𝜕𝑇

𝜕𝑡
+ (𝑈 ⋅ 𝛻)𝑇 = (

1

𝑅𝑒 ⋅ 𝑃𝑟
+ 𝛼𝑡) 𝛻2𝑇 + 𝑞 Equation 3-3 

where t is dimensionless time, U is dimensionless velocity, p is dimensionless pressure, T is 

dimensionless temperature, and q is the dimensionless heat source. 

 CityFFD was already validated in our previous studies by the numerical and experimental data in 

the literature [62], [63]. In this case, the computational domain size was 4000 × 4900 × 1110 m3. 

A grid convergence study was performed, the select meshing setting shows a 1 m grid size close 

to the building. The total grid number is 65.7 million. A 24 h period was simulated with 1 h 

timesteps and 4000 iterations per timestep. The turbulence closure was achieved by the large eddy 

simulation (LES) [61]. 

3.3.3 Building energy modeling 

EnergyPlus calculates the local outdoor wind speed and air temperature separately for each zone, 

as well as the temperature of surfaces exposed to the outdoor environment according to the US 

Standard Atmosphere [64] and Handbook of Fundamentals (ASHRAE 2005) [65]. However, the 

variation in barometric pressure is ignored in most situations [66]. 

There is a strong correlation between altitude and air temperature. Air temperature decreases 

almost linearly with altitude at a rate of ~1 °C per 150 m across the troposphere. Wind speed 

increases with altitude whereas barometric pressure gradually decreases with altitude. Therefore, 

tall buildings could experience significant differences in local atmospheric conditions between the 

ground floor and the top floor [66], [67]. 
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Variation in outdoor air temperature is calculated using reference values for a given altitude 

independent of climate and seasonal differences [66], [67], based on the US Standard Atmosphere 

(1976) [64]. The following formulas describe the relationship between air temperature and altitude 

in any given layer of the atmosphere. 

 𝑇𝑧 = 𝑇𝑏 + 𝐿(𝐻𝑧 − 𝐻𝑏) Equation 3-4 

 𝐻𝑍 =
𝐸𝑧

(𝐸 + 𝑍)
 Equation 3-5 

 𝑇𝑏 = 𝑇𝑧,𝑚𝑒𝑡 − 𝐿 (
𝐸𝑍𝑚𝑒𝑡

𝐸 + 𝑍𝑚𝑒𝑡
− 𝐻𝑏) Equation 3-6 

where 𝑇𝑧 and 𝑇𝑏 are the air temperature at altitude 𝑧 and the base of the layer, i.e., ground level for the 

troposphere, respectively; 𝐿 is the air temperature gradient (𝐿 = −0.0065 Κ m⁄  in the troposphere); 

 𝐻𝑏 is offset equal to zero for the troposphere;  𝐻𝑧 is geopotential altitude; 𝐸 is the radius of the Earth, 

which equals 6356 km; 𝑍  is altitude;  𝑇𝑧,𝑚𝑒𝑡  is weather file air temperature (measured at the 

meteorological station); and 𝑍𝑚𝑒𝑡 is the height above the ground of the air temperature sensor at the 

meteorological station. The default value for 𝑍𝑚𝑒𝑡 for air temperature measurement is 1.5 m above the 

ground level. 

The local wind speed calculations were performed as described in Chapter 16 of the Handbook of 

Fundamentals (ASHRAE 2005) [65]. The wind speed measured at a meteorological station is 

extrapolated to another altitude with the following equation: 

 𝑉𝑧 = 𝑉𝑚𝑒𝑡 (
𝛿𝑚𝑒𝑡

𝑧𝑚𝑒𝑡
)

𝛼𝑚𝑒𝑡

(
𝑧

𝛿
)

𝛼

 Equation 3-7 

where 𝑧 is altitude (the height above ground); 𝑉𝑧 is the wind speed at altitude 𝑧; 𝛼 is the wind speed 

profile exponent at the site; 𝛿 is the wind speed profile boundary layer thickness at the site; 𝑧𝑚𝑒𝑡 
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is the height above ground of the wind speed sensor at the meteorological station; 𝑉𝑚𝑒𝑡 is wind 

speed measured at the meteorological station; 𝛼𝑚𝑒𝑡  is the wind speed profile exponent at the 

meteorological station; and 𝛿𝑚𝑒𝑡  is wind speed profile boundary layer thickness at the 

meteorological station. The wind speed profile coefficients, 𝛼, 𝛿, 𝛼𝑚𝑒𝑡, and 𝛿𝑚𝑒𝑡, are variables 

that depend on the roughness characteristics of the surrounding terrain. 

To investigate the impact of the UHI effect on building energy consumption, a detailed commercial 

BES model was developed using OpenStudio, SketchUp, and EnergyPlus, as shown in Figure 3-2. 

The target building was Sendian Tower, which is a typical high-rise commercial building in the 

Marina District of Lusail City, Qatar. It comprises 2 basement levels, a ground-floor lobby lounge, 

27 additional floors, and a penthouse. For the difficulty of gathering some parameters, realistic 

assumptions were made during the modeling of the target building. A total of 31 thermal zones are 

defined in the model, with the assumption that each floor corresponds to a single thermal zone. 

While this simplifies the simulation, the single-zone-per-floor approach limits the ability to capture 

intra-floor thermal variations, diverse occupancy patterns, and localized HVAC control, 

potentially affecting the accuracy of energy performance predictions. The heating, ventilation, and 

air conditioning (HVAC) system for each zone is a four-pipe fan coil system for space cooling. 

People density is 0.057 person/m2. Lighting power density is 10.65 W/m2, and electricity 

equipment power density is 7.64 W/m2. The timestep is 10 min, which serves as the driving 

timestep for heat transfer and load calculations in the zone heat balance model. Table 3-1 

summarizes the characteristics of Sendian Tower. 



33  

 

Figure 3-2. Southeast face of the office building model in EnergyPlus 

Table 3-1. Target building characteristics 

Archetype/Feature Description 

Location The Marina district of Lusail City, Qatar. 

Building type Commercial building 

Year of construction 2017 

Number of floors Two basements, 1 ground floor, 27 typical floors, and a penthouse. 

Total building area 41,619.09 m2 

Number of thermal zones 31 

HVAC system The four-pipe fan coil system 

Thermostat setting 24 ℃ from 6:00 to 22:00 and 26.7 ℃ for the rest of the day. 

People density 0.057 person/m2 

Lighting power density 10.65 W/m2 

Electricity power density 7.64 W/m2 
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In the present version of EnergyPlus, air temperature, wind direction, and wind speed are obtained 

from the TMY file, a meteorological file, and assumed identical for all the surfaces in the scene. 

For the link to the urban microclimate model, the EnergyPlus model is adapted, allowing for the 

allocation of individual outdoor air temperature and wind speed to each surface element of the 

building envelope. 

3.3.4 Coupling strategy 

A one-way coupling strategy was used to perform a co-simulation of CFD and BES. A simplified 

simulation framework is illustrated in Figure 3-3. The CFD model calculates local microclimate 

based on airport meteorological data and urban geometry. The airport meteorological data includes 

hourly air temperature, wind speed, wind direction, and humidity, from August 2020 to August 

2021. The site-specific air temperature around the target building was extracted from the CFD 

results and then integrated into the EPW file as EPWlocal for EnergyPlus meteorological boundary 

condition, taking into account the urban microclimate impact. With the help of SketchUp and 

OpenStudio models, the building cooling load and surface temperature were calculated in 

EnergyPlus. 

 

Figure 3-3. One- way framework of the co-simulation of CityFFD and EnergyPlus. 



35  

3.3.5 Sensitivity analysis 

A global sensitivity analysis was conducted to consider the influences of uncertain cases over the 

whole input space in this study. A typical SA study consists of six steps as follows: (1) determining 

input variations, (2) creating building energy models, (3) running energy models, (4) collecting 

simulation results, (5) running sensitivity analysis, and finally, (6) presenting sensitivity analysis 

results [68]. Besides the ambient air temperature, building energy consumption was influenced by 

many input parameters, including weather data, thermal properties of the envelope, and internal 

gains. The building envelope parameters and their variations are defined by ASHRAE or Qatar 

local standards (Lusail City GSAS 2 Star Rating Guidelines) [69]. In total, 13 input parameters 

were evaluated in this study; the range and data source are summarized in Table 3-2. The Latin 

Hypercube Sampling (LHS) method [70], using the R “lhs” package, was applied due to providing 

good convergence of parameters space with relatively few simples. A total of 605 different 

combinations of the parameters were utilized as inputs in this work. A parametric simulation was 

conducted using the EnergyPlus model to generate hourly and annual cooling loads using the 

RStudio script. The R “eplusr” package [71] was used to perform the parametric simulation and 

automatically collect input and output datasets. 

Table 3-2.Input parameters and ranges of values. 

Number Parameters Unit Range of Values Source 

1 Air temperature °C 8.9–46 Doha TMY weather data 

2 Wind speed m/s 0–25.7 Doha TMY weather data 

3 Cooling set point °C 21–26 [69] 

4 Lighting power density W/m2  0–9 [69] 

5 Relative humidity % 5–100 Doha TMY weather data 

6 Wall insulation U-value W/(m2K) 0–0.3 [69], [72] 
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7 Infiltration ACH 0.1–0.2 [72] 

8 Ventilation m3/s/person 0.00047–0.00247 [72] 

9 Occupancy density m2/person 19–24 [72] 

10 

Solar reflectance of 

interior diffusing blinds 

roll 

/ 0.4–0.8 [73] 

11 Roof insulation U-value  W/(m2K) 0–0.25 [74] 

12 
Window solar heat gain 

coefficient 
/ 0–0.22 [72] 

13 Window U-value W/(m2K) 0–1.8 [72] 

This study applied a sensitivity analysis (SA) method and sensitivity value index (SVI) method 

[68], [75] to compensate for the difference in sensitivity analysis methods and target output. The 

SVI method is integrated with the standardized regression coefficient (SRC), random forest 

variable importance, and T-value method. The importance ranking among input parameters for the 

target high-rise office building was identified using the SA approach. The SVI calculation is 

performed based on the following formula [44]: 

 

𝑆𝑉𝐼 (%) = ∑

∑ (
𝑉𝑖,𝑗

∑ |𝑉𝑖,𝑗|𝑛
𝑖=1

)𝑘
𝑗=1

𝑘
𝑚 ∙ 𝑘

× 100

𝑚

𝑙=1

 
Equation 3-8 

where 𝑣 is the value of a sensitivity analysis method, 𝑖 is a parameter, 𝑛 is the total number of the 

parameters, 𝑗 is a sensitivity method, 𝑘 is the total number of sensitivity methods (𝑘 = 3), 𝑙 is the 

target output, and 𝑚 is the total number of target outputs (𝑚 = 1; building cooling demand). 

3.4 Results and Discussion 

We present our findings in the conclusion section. The global sensitivity analysis conducted on a 

typical office building in the study area revealed significant variables that influence building 
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energy modeling. Further, we demonstrated variations in ambient temperature and UHI intensity 

around the target building. Through analysis of UHI effects on building cooling energy loads, 

specifically on a typical hot day, we gained insight into the importance of considering UHI effects 

in building energy modeling. These findings collectively contribute to a better understanding of 

the factors influencing building energy performance. They emphasize the need to account for UHI 

effects in sustainable building design. 

3.4.1 Global sensitivity analysis 

The global SA of a typical high-rise office building was conducted as described in Section 4.5. 

The SA results are listed in Table 3-3. The impact of 13 input parameters was ranked from 1 to 13 

according to their SVI values. The most critical input parameter is indicated as 1 and the least as 

13. The results show that two model weather input parameters—air temperature, and wind speed—

were the most critical parameters with the highest SVI values, followed by the cooling set point 

and lighting power density. However, solar irradiation plays the most crucial role in the energy 

model simulation. It was observed that most of the surrounding buildings are far away from the 

studied high-rise office building, thus the shading caused by other buildings has a slight impact on 

the target building. Therefore, we did not consider the solar-related parameters in the co-

simulation. The conduction transfer function (CTF) thermal model, used in this study, was the best 

choice for the analysis of building energy simulation, especially in a hot climate. Notwithstanding, 

it does not account for the combined transport of heat and moisture within building envelopes [77]. 

Thus, the CTF model probably underestimates the relative humidity (RH) impact on building 

energy simulation. 
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Table 3-3. Results of sensitivity analysis 

 

Parameters SRC Random Forest T-Value SVI Rank 

Air temperature 0.53 204.71 68.95 24.09 1 

Wind speed 0.16 58.74 23.36 7.53 2 

Cooling set point 0.13 60.93 20.97 6.85 3 

Lighting power density 0.10 42.88 16.39 5.15 4 

Relative humidity 0.01 58.41 0.66 2.56 5 

Wall insulation thickness 0.02 7.08 3.67 1.05 6 

Infiltration 0.02 6.50 3.74 1.04 7 

Ventilation 0.01 3.97 1.33 0.44 8 

Occupant density 0.01 6.06 0.90 0.43 9 

Solar reflectance of interior 

diffusing blinds rolls 
0.01 4.217 0.81 0.34 10 

Roof insulation thickness 0.01 3.52 0.85 0.32 11 

Window solar heat gain coefficient 0.003 2.694 0.52 0.22 12 

Window insulation 0.0001 2.899 0.02 0.12 13 

 

3.4.2 Urban heat island effect 

Weather in Qatar is tropical maritime with two main seasons: a cold season from December to 

February and a hot season from May to October, with March, April, and November being the 

transition months [78]. In the study area, the Marina district consists of 36 high-rise commercial 

buildings, 37 mixed-use high-rise buildings, and 30 residential buildings. Figure 3-1 illustrates the 

layout of the buildings in the study area. The UHI intensity was estimated by calculating the 

difference between the air temperature of the local and rural stations. Based on the observed data 

from the local weather station and each airport weather station across Qatar, the maximum station 

difference between the air temperature of the local weather station and each airport weather during 

each season was calculated and plotted in Table 3-4 during the period between August 2020 and 



39  

August 2021. It can be seen in Table 4 that the maximum air temperature difference in each season 

varies from 5.2 ℃ to 13.07 ℃. The significant UHI effect occurs in hot and transition seasons, and 

a noticeable difference in wind speed was observed in the transition season. Different spatial 

distribution characteristics of rural air temperature were observed. The air temperature data 

collected from AWS_5, situated southwest of the local weather station, was higher during cold and 

transition seasons. The minimum air temperature difference was observed to be between the local 

weather station and AWS_1 due to a short distance. The results indicate that the selection of rural 

station data influences the UHI intensity. 

Table 3-4. Maximum differences between the air temperature of the local weather station and 

each airport weather station during each season. 

 AWS_1 AWS_2 AWS_3 AWS_4 AWS_5 

Cold season 5.67 7.87 8.17 7.93 9.65 

Hot season 5.20 11.58 10.30 11.99 9.50 

Transition 6.39 11.41 11.81 7.71 13.07 

All seasons 6.39 11.58 11.81 11.99 13.07 

In order to evaluate the UHI intensity in Marina District, 22 evaluating points are selected to 

present the temperature variations. These locations include the high-density residential building 

area, high-density commercial building area, as well as near-wall of the target building. The 

locations of evaluating points are illustrated in Figure 3-1. 

The hourly temperature variations of the evaluating points against the temperature data of AWS1 

on a hot day are presented in Figure 3-4. As mentioned earlier, the UTC +3 time zone was used in 

the simulations. The peak air temperature occurred at different locations and times, such as 47.9 

℃ at 10:00, 44.3 ℃ at 13:00, and 46.4 ℃ at 13:00, in the residential area, commercial area, and 

target building, respectively. Here, the peak temperature is recorded as the highest value in the 

temperature data obtained from all evaluation points in each observation area. In addition, the 
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average peak temperature of the evaluation points is calculated as 46.0 ℃, 43.8 ℃, and 45.6 ℃ in 

the residential area, commercial area, and target building, respectively. On the other hand, the peak 

temperature of AWS1 was measured as 41.9 ℃  at 9:00. All peak temperatures of simulated 

evaluating points are greater than the AWS1. These results indicate the spatiotemporal variation 

of the thermal intensity across the Marina district due to a number of factors such as building 

density, building envelope material and its thermal properties, and location of building stocks. 
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 Figure 3-4. Temperature variation of evaluating points against the temperature data of airport 

weather station 1 on a hot day: (a) residential area, (b) commercial area, and (c) target building. 

The spatiotemporal variation of the UHI intensity within the Marina district on a hot day is 

analyzed by plotting UHI intensity graphs based on the variation of the temperature difference 

between the simulated evaluation point and measured data from AWS1 by time ( 

 

Figure 3-5). The UHI effect is observed only in the daytime between 6:00 and 18:00. The UHI 

intensity reaches a maximum of 6.2 ℃  at 10:00, 5.4 ℃  at 14:00, and 8.2 ℃  at 14:00 in the 

residential area, commercial area, and target building, respectively. The average maximum UHI 

peaks are 4.6 ℃, 4.5 ℃, and 6.5 ℃ in the residential area, commercial area, and target building, 

respectively. Variation of UHI intensity among the simulation areas is due to the type of building 

stocks (building archetype) and location. The residential area, for example, is closer to the inlet 

airflow due to its location where the wind provides more cooling effect, resulting in lesser UHI 
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intensity in this area. The peak temperature and UHI intensity of each area are summarized in 

Table 3-5. 

Mean absolute error (MAE) represents the average absolute difference between simulation results 

and corresponding measurement values over the dataset. It provides a linear score by assigning 

equal weights to all the individual differences in the average. On the other hand, root mean squared 

error (RMSE) involves squaring each difference between simulation and measurement data, 

averaging them, and taking the square root of the average. As a result, the RMSE emphasizes large 

errors by assigning relatively greater weight to them. The MAE and the RMSE were calculated 

together to diagnose the variation in the UHI intensity in the prediction values of the simulation 

on a hot day (Figure 3-6). The higher difference was obtained in the daytime between 8:00 and 

15:00, with both errors peaking at 14:00, which indicates the UHI intensity reaches the maximum 

at 14:00 in the Marina district. 

 
(a) 
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Figure 3-5. Spatiotemporal variation of the UHI intensity on a hot day in the Marina district: (a) 

residential area, (b) commercial area, and (c) target building. 

 

Table 3-5. Summary of the peak temperature and UHI intensity data on selected areas and 

around the target building in the Marina district. 

 Temperature (°C) UHI intensity (°C) 

 Time max avr max Time max 
avr 

max 

Residential 10:00 47.9 46.0 10:00 6.2 4.6 

Commercial 13:00 44.3 43.8 14:00 5.4 4.5 

Target 13:00 46.4 45.6 14:00 8.2 6.5 
Time: UTC +3, max: maximum; avr max: average maximum; Residential: residential area; Commercial: 

commercial Area, Target: target building. 

 

 
(b) 

 
(c) 
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Figure 3-6. UHI intensity of evaluating points against airport weather station on a hot day. 

3.4.3 UHI impact on cooling load 

To evaluate the microclimate impact on building energy load, the date 9 August 2021, was selected 

as the evaluating day to represent a typical hot day. The temperature profile of the Marina district 

at 14:00 on a hot day was evaluated through CFD simulation (Figure 3-7). The wind direction from 

the north can be observed on temperature gradients adjacent to the buildings in the evaluation area. 

Building surface temperature varies among different building stocks, depending on many factors, 

including building characteristics, envelope material, and shading equipment use. 



45  

 

Figure 3-7. Thermal environment of the residential area, commercial area, and target building in 

the Marina district. 

Urban microclimate impact on building cooling load on a hot day was investigated by inputting 

CFD results into EnergyPlus. The hourly cooling energy load intensity—the cooling energy used 

per unit floor area—was simulated in EnergyPlus. The average values of all evaluating points were 

considered as the local microclimate air temperature, which was integrated into the EPW file as 

EPWlocal for following BES modeling taking into account the urban microclimate impact. The 

results are presented against the other simulation results with the data of each airport weather 

station in Figure 3-8. The minimum and maximum cooling loads were observed at 3:00 and 14:00, 

respectively. The daily cooling load obtained with the input of CityFFD was higher than that with 

data from each weather station. With the input of CityFFD results, the daily Energy Use Intensity 

(EUI) was computed as 0.53 kWh/m2, whereas the average daily EUI based on the five weather 
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station data was found as 0.48 kWh/m2 (10% lower). The difference in cooling load was higher in 

the daytime than at nighttime due to the UHI effect in the daytime. With the input of CityFFD 

results, the daytime cooling load between 8:00 and 18:00 was computed as 11.9 MWh, whereas 

the average daytime cooling load based on the five weather station data was found as 10.4 MWh. 

The difference between results, based on CityFFD and each weather station data, indicates the 

microclimate impact on building energy consumption. The available literature related to the urban 

microclimate impact on building cooling energy consumption shows a wide variation among 

different studies, due to several factors such as different study areas, building characteristics, and 

the method of considering the urban microclimate impact. 

 

Figure 3-8. Building cooling load on a hot day. 

3.5 Summary 

This paper investigates the spatiotemporal characterization of an urban heat island (UHI) and its 

impact on building cooling load for a high-rise office building in the Marina district of Lusail City, 

Qatar. Global sensitivity analysis was conducted contributing to a better understanding of the urban 

ambient temperature impact on the building energy performance compared to other BES 
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parameters. With the help of high temporal-resolution observed data collected from six weather 

stations across the country, the UHI effect in Qatar was analyzed representing the hot-arid coastal 

climate. CFD analysis was conducted to evaluate the UHI effect in the case study area. The CFD 

results obtained from CityFFD were inputted into EnergyPlus to simulate the building energy 

consumption. As such, one-way coupling enabled the evaluation of the impact of the UHI effect 

on building energy performance. The following conclusions can be drawn from this study. 

• According to the impact ranking of input parameters in global sensitivity analysis, the most 

critical input parameter is the air temperature, followed by wind speed. 

• The air temperature difference between the local weather station data and airport weather 

station data indicated the UHI effect of the urban area. 

• The spatiotemporal variation of UHI intensity observed in residential and commercial areas 

in the Marina district stems from a number of factors, such as building density, thermal 

properties of building envelope material, shading equipment use, and the location of 

building stocks. 

• The difference between MAE and RMSE results is minimal in the nighttime and maximum 

in the daytime, indicating the high UHI intensity during the daytime. 

• The building cooling load obtained with the input of CityFFD results was higher than with 

weather station data. The difference clearly indicates the significance of considering the 

UHI impact in building energy simulation. 

This study shows the significance of considering urban microclimate impact in BES studies. 

Coupling CFD and BES enables defining the meteorological boundary conditions accurately and 

obtaining realistic energy predictions of buildings within an urban context.  
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Chapter 4. Machine Learning-Based Hourly Building Energy Prediction 

Models  

This chapter investigates the advantages of using the machine learning (ML) model as a surrogate 

model in building engineering, specifically for predicting hourly building energy consumption 

during the design phase. Synthetic data is commonly used for training and testing ML models 

when real-life measured data is unavailable due to privacy concerns or pre-construction scenarios. 

However, the challenge arises from the vast dataset of synthetic data generated by combining long-

term hourly meteorological data with building characteristics. Using an example building, 82 

million data points were generated as a result of simulating 8,760 hours when considering ten 

building performance parameters. To address this issue, a methodology utilizing weather 

clustering techniques is proposed in this work. This approach aims to reduce dataset size associated 

with day-by-day simulations by identifying representative weather patterns3. 

4.1 Introduction 

Among various energy-consuming sectors, buildings use over 40% of annual energy worldwide 

and roughly 55% of electricity [2], [3]. As global warming increases and urbanization accelerates, 

building energy consumption is anticipated to increase. Energy efficiency improvement has 

become an essential aspect of reducing energy usage in buildings. Early design phases play an 

important role in determining building energy consumption [79]. For newly developed cities, the 

primary step in optimizing energy use is to evaluate energy consumption and identify trade-offs 

[80] by applying whole-building energy modeling. Building energy assessment on an hourly basis 

enables better support for effective energy management systems and day-ahead prediction [81]. 

 
3 This chapter has been accepted as a peer reviewed journal paper: Dongxue Zhan, Shaoxiang Qin, Liangzhu (Leon) Wang, 

Ibrahim Galal Hassan (2025). “Weather clustering for machine learning-based hourly building energy prediction models at 

design phase.” Energy and Buildings, https://www.sciencedirect.com/science/article/pii/S0378778825000386 
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Further, understanding hourly energy consumption is critical for estimating peak loads in a 

building, which are used to size equipment and design systems to handle peak demand to avoid 

oversizing/undersizing. It also improves the accuracy of monthly energy use, enhances system 

comparisons, provides more accurate load histories, and delivers higher-quality time-of-use energy 

data [82]. 

Building energy usage can be assessed through engineering calculations, simulation models, 

statistical models, and ML [83]. Engineering methods determine building energy consumption by 

using the laws of physics. A solid professional knowledge of complex mathematics or building 

dynamics is required to ensure results accuracy. Building energy efficiency simulation is used to 

simulate performance with predefined status. Building energy consumption can be calculated using 

a variety of simulation tools for efficient design and retrofits, both at the individual building level 

(DOE-2 [84], EnergyPlus [85], TRNSYS, e-Quest, etc.) and at the urban scale (IES VE, Eco-Tect, 

GreenBuilding Studio, CityBES [86], CityBEM [87], CitySim, and UMI). Most energy modeling 

software absorbs input parameters, involving weather data, building geometry, envelope thermal 

properties, operating schedule, and internal systems settings. Next, the software applies an 

engineering model to quickly estimate the energy consumption of a particular building. However, 

these tools are computationally intensive and require some expertise to operate them. Tasks include 

gathering building geometry and detailed information on buildings, constructing energy models, 

and performing calibration and validation. These statistical approaches use historical data and 

commonly employ regression techniques to model a building's energy consumption. Utilizing the 

provided data, ML uncovers relationships between input features and output targets. ML 

techniques offer the flexibility to incorporate vast amounts of data gathered from various sources 

for predicting new samples and leading to informed decisions.  
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Weather data is one of the main inputs in building energy simulation, and it can significantly 

influence the building energy balance. A comprehensive yearly analysis of a building's energy use 

requires the integration of hourly weather data. The approach is commonly used to analyze the 

energy efficiency of buildings or cities [88], [89], where 8,760 sets of hourly weather data are used 

for the entire year. However, this poses challenges when incorporating yearly meteorological 

variations into ML models. The primary challenge lies in combining the variable meteorological 

data with building features for the preparation of training and testing datasets in predictive model 

development. Due to the huge size of datasets when considering a full variation of meteorological 

data combined with building features using the artificially generated physics-based building 

energy result. For instance, when considering six meteorological parameters and ten building 

energy features, a single building's machine learning model generates over 82 million data points 

for year-round 8760 hourly data points (as discussed in Appendix B). Conducting hourly analyses 

for an entire year requires significant computational resources. It may not be feasible or necessary 

to analyze all hours in the whole year. Therefore, instead of a complex day-to-day building energy 

simulation (BES), we recommend simulations for several representative days. 

Weather clustering was used to identify representative days capturing outdoor weather variables 

such as air temperature, solar radiation, wind speed, and relative humidity (RH) for the entire year. 

The weather clustering techniques have been widely used in various fields, including air quality 

trend studies [90], and operation strategies optimization [91], [92]. And weather pattern analysis 

[93], [94], [95], [96], [97]. Souayfane et al. [91] applied weather clustering with an optimization 

approach to control HVAC systems. Lundell et al. [98] identified six weather regions within the 

United States based on weather characteristics and analyzed patterns in forecast accuracy. Babanov 

et al. [99] compared four commonly used clustering methods to analyze weather regimes in the 

Euro-Atlantic region. Klampanos et al. [93] utilized k-means clustering to derive weather patterns. 
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Hoffmann and Schlünzen [94] employed various clustering methods to represent Urban Heat 

Island (UHI) patterns in present and future climates. Onal et al. [95] applied the k-means clustering 

method to examine a general pattern of weather data using approximately 8000 weather sensors in 

the United States for a single day. Luo [100] proposed a novel clustering-enhanced adaptive ANN 

model for day-ahead cooling energy forecasting, using k-means clustering to identify daily weather 

patterns and categorize annual datasets into clusters, with each cluster used to train an ANN sub-

model. In the meteorological field, there is no one best method for the classification of weather 

patterns. The k-means method, however, ranks highly in these studies [94]. Peng et al. [101] 

employed cluster analysis algorithms to examine climate datasets from 270 cities, aiming to 

understand how building heating and cooling energy demand intensity is distributed 

geographically in relation to climatic characteristics.  

Developing ML-based building energy prediction models on an hourly basis is challenging due to 

the large datasets required. A great deal of synthetic data will be generated by combining long-

term hourly meteorological data with building characteristics under uncertainty. For instance, 

considering six meteorological variables and ten building features for a single building model 

generates over 82 million data points based on year-round hourly data (8,760 hours). Such vast 

datasets necessitate efficient data handling, posing a considerable computational burden. Many 

previous studies have relied on full-year datasets, which exacerbate these challenges. For instance, 

Gao et al. [102] utilized 81 million data points simulated for 16 commercial building types across 

936 cities, considering 8,760 hourly data points per building for a full year. Using full-year data 

often results in redundant information, computational inefficiency, and scalability issues, 

especially for large-scale urban studies or when exploring multiple scenarios. To overcome this 

challenge, we introduced a methodology utilizing weather clustering techniques to identify 

representative days from long-term historical meteorological data on an hourly basis. The size of 
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the final dataset was significantly reduced compared to day-by-day simulations. We streamlined 

the dataset while maintaining the original data integrity and variability. While weather clustering 

has been used in various fields like air quality studies and operational optimization, our solution 

marks the first application of weather clustering methods specifically for developing ML models 

in the context of building energy consumption. This innovative approach provides a generalizable 

framework that other researchers and engineers can replicate in different urban areas, aiding in the 

optimization of building design and retrofit phases. 

4.2 Methodology 

In this study, we introduce an innovative method applying weather clustering to develop ML 

models for predicting building energy consumption. The main methodology that we developed 

and implemented is shown in Figure 4-1. Three main steps were (a) the weather clustering 

methodology, (b) the generation of simulated data based on a physics-based building energy 

model, and (c) the development of an ML building energy prediction model. The methodology 

will be applied in typical residential buildings located in Doha, Qatar.  

This work applied a k-means-based weather clustering technique to find representative days 

capturing the variability of yearly weather features from historical data. As shown in Figure 4-2, 

similar items are grouped into clusters by minimizing the squared distance between each object 

and its cluster mean value.  
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Figure 4-1. Flow chart of the model framework. 

 

 

Figure 4-2. K-means clustering algorithm. 
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4.2.1 Data collection 

The weather conditions observation has been conducted by the researchers for a variety of 

purposes, as weather serves as a fundamental input for numerous simulations and the study of 

weather phenomena itself. In the context of developing machine learning building energy models 

at the design phase, the EnergyPlus weather data (EPW) was used. This data represents compiled 

long-term observations collected at the Doha International Airport meteorological station. The 

typical meteorological year (TMY) weather data is used since it is derived from long-term 

measurements and is generally used to design building energy efficiency systems. Table 4-1 lists 

the weather parameters that were selected for clustering the annual meteorological data using the 

statistical clustering k-means method. 

A residential building in Doha, Qatar serves as the case study. All building elements and their 

ranges that are included in the EnergyPlus model are summarized in Table 4-1. The information 

was collected from a variety of sources, such as relevant codes and standards, current building 

practices, and prior literature. All these parameters are collected from local standards [69], [74], 

ASHRAE standards [72], [103], and literature references [104], [105], [106]. 

Table 4-1. Building energy model’s inputs and range. 

 

 Parameter Unit Range 

Weather 

profile 

Outdoor air dry-bulb temperature ℃ (9, 46) 

Outdoor air relative humidity % (5, 99) 

Wind speed m/s (0, 12) 

Wind direction ° (0, 354) 

Normal solar irradiation Wh/m2 (0, 474) 

Diffuse solar irradiation Wh/m2 (0, 681) 

Building 

envelope 

characteristics 

Wall U value [26-29] W/m2K (0.3, 0.7) 

Roof U value[74]  [72] W/m2K (0.19, 0.44) 

Window U value[69]  [72] W/m2K (1.8, 2.8) 
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Window SHGC[69]  [72] / (0.25, 0.275) 

Internal loads 

Occupancy density [72] [104] Person/100m2 (2.83, 76.9) 

Appliance power density[72] [104] W/m2 (2, 8) 

Lighting power density[69], [72] 

[104] 
W/m2 (0, 6.5) 

HVAC 

settings 

Ventilation rate [72], [103] [104] cfm/ft2 (0.06, 0.098) 

Heating set point[69] [104], [105], 

[106] 
℃ (24, 28) 

Cooling set point[69] [104], [105], 

[106] 
℃ (25, 28) 

4.2.2 Weather clustering techniques 

While weather patterns can differ significantly from place to place, for a given location and season, 

they share similar characteristics [92]. There is the possibility of extracting representative days 

from the entire year while still covering yearly weather patterns. To achieve this, a clustering 

analysis is employed as an unsupervised data mining approach. Several representative days should 

be selected from the entire year. Our approach employed k-means clustering since it is a popular 

and simple method of identifying groups of data points that have similar characteristics. While k-

means is known to be sensitive to noise and outliers, our application deviates from conventional 

clustering scenarios in that we cannot disregard data that is rarely observed as noise. Instead, we 

must take care to manage extreme weather conditions, despite their relative rarity. Extreme 

weather events can be evaluated to examine their impact on city energy consumption, agriculture 

productivity, transportation systems, and human thermal comfort. Consequently, we propose a 

weather clustering procedure, that can handle all scenarios, which aims to select a representative 

sample of days to represent the entire year, including several weather parameters, especially the 

weather clustering technique in the development of machine learning buildings energy prediction 

models. The process of weather clustering is as follows. 

1) Reconstruct weather parameter sequences.  
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2) Normalization implements. 

3) Determine the optimal clustering number. 

4) Implement k-means clustering.  

Step 1: Convert weather parameters form 

As aforementioned, the TMY weather in Qatar was used as a weather database on an hourly basis. 

A diurnal cycle is reconstructed for each climate variable. As a result, all the weather parameters 

are converted into a 24-dimensional vector for each day, all the climate parameters are listed in 

sequence in terms of air temperature, RH, wind speed, wind direction, normal solar irradiance, and 

diffuse irradiance.  

Step 2: Normalization implementations 

Normalization is used to eliminate the impact of dimensions because several features often have 

different dimensions. All parameters listed in Table 4-1 were normalized using Z-Score 

normalization. In comparison with min-max normalization, this method is less affected by outliers. 

Since it scales data based on the mean and standard deviation, as demonstrated in Equation 4-1, 

outliers have less impact on the normalized values. Using Jan. 1 as an example day, Figure 4-3 

shows the normalized attribute values. 

 𝑧 =  
𝑥 −  𝜇

𝜎
 Equation 4-1 

where 𝑥 represents the unstandardized weather parameters, 𝜇 is the mean value of each actual 

weather parameter, 𝜎  is the standard deviation of each parameter, and 𝑧  represents the 

standardized data. When a value is exactly equal to the mean of all values of a feature, it will be 

normalized to 0. A number below the mean will be negative; one above the mean will be positive. 
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Figure 4-3. Normalized weather profile of Jan.1. 

Step 3: Determine the optimal number of clusters 

Determining an optimal number of k has to be prescribed for the k-means method. An algorithm 

should be used to calculate the number of clusters k based on the data set and the criteria [107]. 

Generally, it is preferred to have a small number of clusters with examples scattered around them 

in a balanced way [108]. A small value of k may aggregate many natural clusters that hide desirable 

features, causing genes with different expression patterns to end up in the same cluster. Therefore, 

classifications with small k might be considered circulations or weather regimes rather than 

weather patterns [94]. On the other hand, a large value of k will lead to many trivial clusters with 

similarly expressed genes being placed in different clusters. In either case, the clustering results 

do not result in optimal detection of all interesting features [109], [110].  

Previous studies have employed cluster validity indices (CVIs) to quantify the ideal number of 

clusters. It is expected that clusters will be modest in diameter and far apart from one another. The 
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validity index is defined as the ratio of these two distances [29]. Plotting the CVIs versus the cluster 

number yields the ideal number of clusters to have when the CVIs reach their minimal value. An 

illustration of the dynamic validity index (DVIndex) may be found in [29]: 

 𝐷𝑉𝐼𝑛𝑑𝑒𝑥 = min
𝑘=4,….,𝐾

{𝐼𝑛𝑡𝑟𝑎𝑅𝑎𝑡𝑖𝑜 (𝑘) +  𝛾𝐼𝑛𝑡𝑒𝑟𝑅𝑎𝑡𝑖𝑜(𝑘)} Equation 4-2 

 
𝐼𝑛𝑡𝑟𝑎𝑅𝑎𝑡𝑖𝑜(𝑘) =  

𝐼𝑛𝑡𝑟𝑎(𝑘)

𝑀𝑎𝑥𝐼𝑛𝑡𝑟𝑎
 Equation 4-3 

 
𝐼𝑛𝑡𝑒𝑟𝑅𝑎𝑡𝑖𝑜(𝑘) =  

𝐼𝑛𝑡𝑒𝑟(𝑘)

𝑀𝑎𝑥𝐼𝑛𝑡𝑒𝑟
 Equation 4-4 

where k is the cluster number, starting from 4 in this work, and 𝑧𝑖 denotes the center of the cluster 

𝐶𝑖. i = 1, 2,…, k-1; j = i+1, i+2, …, k.  

IntraRatio and InterRatio represent the overall cluster's compactness and separateness 

respectively. The normalized ratios are used for comparison, ranging from 0 to 1. The detailed 

equations for the computation of each component mentioned above are provided in the Appendix 

A section for reference. 

Step 4: Implement k-means clustering 

k-means clustering finds the most representative data point in the cluster, including six main steps: 

1) select k random centroids; 2) assign each data point to the closest centroid; 3) re-calculate 

centroid of each cluster; 4) repeat steps 2&3; 5) terminate when converged. The process iterates 

until re-calculation does not change the centroid of clusters. The centroids are the best 

representation of their clusters. In the k-means clustering method, centroids are the median of all 

data points in a cluster. The k-means method is calculated here in RapdMiner Studio software, 

which is one of the best data mining tools.  

4.2.3 Generation of synthetic data 
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We are aiming to develop a building energy prediction model that predates the construction phase 

itself so that planners can manage to estimate the building energy consumption. In this context, the 

energy data required in ML model development is inaccessible in building design processes. Thus, 

this study utilizes artificial data for the training and testing of ML models. 

The EnergyPlus model was developed and serves as a detailed BES model. It performs a warm-up 

on the first day of the simulation period to achieve thermal stability, improve accuracy, and ensure 

consistent and reliable results. The building hourly EUI (energy use intensity) was selected as the 

target output in this work. Based on the impact of input variables on the outputs, input variables 

can be determined. Considering too many input variables can increase computational time and 

costs, while too few or irrelevant ones can limit the machine learning model’s capabilities and 

accuracy [111]. A BES is typically made of tens or hundreds of attributes influencing its energy 

consumption, in this study, the input variables are collected based on the sensitivity analysis results 

in published results. Building energy models (BEM) involve many input parameters influencing 

energy consumption, including weather conditions, building geometry and properties, building 

system, and occupant information [112], [113], [114]. The current body of work focuses on inputs 

related to five main categories: building envelopes, internal loads, schedules, HAVC systems, and 

outdoor weather. Synthetic datasets were generated using the methodology described by Jia et al 

[56], creating a baseline model, and parametric simulations based on Latin Hypercube Sampling 

(LHS) method. The dataset generated in parametric simulations was divided into training and 

testing data. The training data were normalized and then imported to train the ML models, and 

testing data were used to evaluate the model’s performance.  

4.2.4 Hourly Machine-Learning building energy prediction model development 

ML models are conventionally developed using a series of standard steps. It involves data 

preparation and cleaning, splitting the database into training and testing sets, training the ML 
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model, performance evaluation, and finally the validation and deployment of the model. In our 

study, we are going to run XGBoost since its good accuracy and low computational cost reported 

in the literature [115], [116], [117].  

By utilizing the second-order Taylor expansion of the loss function and incorporating a 

regularization term, XGBoost to find the optimal solution. This method balances the decrease of 

the objective function and the complexity of the model to prevent overfitting. The XGBoost model 

is described as follows: 

 

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘

𝐾

𝑘=1

∈ 𝐹 Equation 4-5 

where 𝑘 is the number of decision trees, 𝑓𝑘(𝑥𝑖) is the function of input in the 𝑘-th decision tree, �̂�𝑖 

is the predicted value. 

The addition of each tree effectively introduces a new function 𝑓𝑘(𝑋, 𝜃𝑘) to fit the residual of the 

last prediction. After training with K trees, each feature in the prediction samples is assigned a leaf 

node in each tree, and each leaf node has an associated score. The final prediction value is obtained 

by aggregating the scores from all the trees. The flow chart of XGBoost is depicted in Figure 4-4. 
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Figure 4-4. Flow chart of XGBoost. 

To evaluate the model’s performance, four statistical indices were employed, the mean bias error 

(MBE) (Equation 4-6), the coefficient of determination (R2) (Equation 4-7), root mean square error 

(RMSE) (Equation 4-8), and coefficient of variation of RMSE [CV(RMSE)] (Equation 4-9).  

 
𝑀𝐵𝐸 =  

1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

𝑛

𝑖=1

× 100(%) Equation 4-6 

 
𝑅2 = 1 −

𝛴𝑖=1
𝑛 (�̂�𝑖 − �̅�)2

𝛴𝑖=1
𝑛 (𝑦𝑖 − �̅�)2

 Equation 4-7 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑦�̂�)2𝑛

𝑖=1

𝑛
 Equation 4-8 

 

CV(RMSE) =  
1

�̅�
√

∑ (𝑦𝑖 − 𝑦�̂�)2𝑛
𝑖=1

𝑛
× 100(%) Equation 4-9 

where �̂�𝑖 denotes predicted variable value for period 𝑖, 𝑦𝑖 represents the observed value for period 
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𝑖. �̅� is the mean value of the observed value. 𝑛 is the sample size.  

MBE and CV(RMSE) were suggested by ASHRAE guidelines [118]. The MBE evaluates how 

accurately the model’s predicted energy use aligns with the actual metered data on a monthly or 

annual basis. However, since MBE can be affected by offsetting errors, an additional metric is 

often needed. The CV(RMSE) is obtained by dividing the root mean square error (RMSE) by the 

mean of the measured data. This metric assesses the model’s fit to the data, with a lower 

CV(RMSE) indicating a better model performance. In general, it is easier to achieve a low MBE 

than a low CV(RMSE).  Typically, models are considered calibrated if they produce MBEs within 

±10% and CV(RMSE)s within ±30% when using hourly data [118]. 

4.3 Results and discussion 

To evaluate the accuracy and effectiveness of the proposed weather clustering-based hourly 

building energy prediction model, the clustering results of the daily weather data profile are 

examined in detail. Then, the performance of the XGBoost model was investigated. Finally, a 

developed model is applied to predict your-round building performance of one building, and the 

predicted cooling demands of the example days in each season are evaluated. The simulation relies 

on Qatar's TMY weather data. This study is conducted using Jupyter and RapidMiner, and it is 

executed on a computer equipped with an Intel(R) Core (TM) i7-10750H CPU @ 2.60GHz and 

16GB of memory, operating on Windows 10 Pro.  

4.3.1 Weather clustering results 

In this study, we integrate this DVIndex into the traditional k-means clustering algorithm to find 

out the representative days out of the entire year. We define the k varies from 4 to 20. Figure 4-5 

illustrates the variation of DVIndex across cluster numbers ranging from 4 to 20, using a 365-day 

annual dataset. The clustering with the smallest DVIndex is considered the best one. Meanwhile, 
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employing a small number of clusters (k) tends to represent general circulation or weather regimes 

rather than distinct weather patterns [109]. Hoffmann and Schlünzen decided that a cluster number 

of 6 or larger is accepted for 𝑘 value, the cluster number of weather patterns [94]. By analyzing 

estimated cooling costs across various cluster numbers, a threshold of k=10 is deemed reasonable, 

as demonstrated by Saudi Arabia weather data [91]. The analysis reveals that the lowest DVIndex 

values are observed at cluster numbers 4, 5, and 6, followed by a comparable value at 10 clusters. 

Following the same restriction in the previous literature, after considering the trade-off between 

DVIndex and the number of clusters, the optimal choice for this scenario appears to be 10 clusters. 

The year-round database is divided into 10 clusters [94].  

 

Figure 4-5. DVIndex variation in clustering procedure. 

We applied t-distributed stochastic neighbor embedding (t-SNE) to visualize the outcomes of k-

means clustering for the overall distribution of data points and the similarity maps As a result of t-

SNE, high-dimensional data is projected onto low-dimensional space, preserving the distance 

between data points in a high-precision manner. As shown in Figure 4-6, the application of k-

means resulted in the segmentation of data points into 10 distinct categories, whose representation 

in a two-dimensional space allows for a comprehensive visualization. Notably, the t-SNE plot 
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elucidates the distinct nature of the 10 clusters, portraying them as non-overlapping entities.  

 

Figure 4-6. The t-SNE visualization of the k-means clustering results. 

 

   

  
Cluster 0 (with 52 days) Cluster 1 (with 60 days) 
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Cluster 2 (with 43 days) Cluster 3 (with 26 days) 

  
Cluster 4 with 68 days) Cluster 5 (with 26 days) 

  
Cluster 6 (with 17 days) Cluster 7 (with 17 days) 
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Cluster 8 (with 25 days) Cluster 9 (with 31 days) 

 

Figure 4-7. Clustering results for the air temperature data attribute. 

The year-round Doha’s TMY database was divided into 10 groups using a value of k-10. Each 

group is represented by a real-period representative day chosen from the cluster genes. Cluster 4 

has 68 days in total, which is the greatest number of days. In contrast, the fewest number of days 

(17 days) are found in clusters 6 and 7. Figure 4-7 depicts the k-means clustering for the air 

temperature portion, the representative day is shown by the red line, and other genes are 

represented by grey curves. The cluster center is determined by identifying the data point with the 

shortest distance to all other points within the cluster. In this study, the cluster center is defined as 

the center day of each cluster. Taking air temperature as an example, the outdoor air dry-bulb 

temperature decreases slightly during the first 7th hour, then increases till the 13th hour, and finally 

decreases till the end of the day. 

The characteristics of these center days are shown in Figure 4-8.  For instance, Cluster_3 is 

characterized by high air temperature, low relative humidity, and high solar irradiation, while 

Cluster_0 has low air temperature, high humidity, low wind speed, and low diffuse solar 

irradiation. Cluster_7 features high air temperature, low humidity, high wind speed, high wind 

direction angle, and high solar irradiation.  
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(a) Air temperature (b) RH 

  
(c) Wind speed (d) Wind direction 

  

(e) Normal solar irradiation (f) Diffuse solar irradiation 

Figure 4-8. Hourly weather data profiles for the ten cluster centroids 

 

4.3.2 Synthetic data generation 

Following the identification of representative days, the synthetic database was generated to build 
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ML models. The LHS method was applied to produce random samples of input parameter 

combinations within specified ranges for various parameters. We developed an R Script to 

automate the process of EnergyPlus model generation, input sample generation, EnergyPlus 

simulation, and data extraction. All building elements and their ranges that are included in the 

EnergyPlus model are summarized in Table 1. A total of 550 EnergyPlus simulations were 

conducted.  

To determine the optimal training dataset for an XGBoost building energy consumption prediction 

model, two methods of dataset preparation were implemented and compared. Method 1 involved 

conducting EnergyPlus hourly simulations for the center day of each cluster, totaling 10 days and 

comprising 2,376,000 data points. Method 2 involved performing EnergyPlus hourly simulations 

for the center days, as well as the days with the maximum and minimum temperatures in each 

cluster, totaling 30 days and comprising 7,128,000 data points. To test whether the developed 

weather clustering-based XGBoost model could predict year-round hourly building cooling 

demand, one testing case was selected out of 550 simulations, resulting in 8,760 hourly 

simulations. To ensure the model was tested on unseen data, the 30 days used in Method 2 were 

removed, resulting in a final testing dataset of 335 days, or 8,040 hours of data. Table 4-2 

summarizes the details regarding the training and testing datasets. 

Table 4-2. Input and output datasets for training and testing. 

 Parameters Training  Testing 

Input datasets 

Weather profiles Method 1 & 2 

TMY weather profile from 

Doha International Airport 

weather station 

Building envelope 

characteristics 
Local and international standards, and existing 

literature Internal loads 

HVAC settings 

Hour of the day Simulation calendar 
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Output datasets 
Simulated cooling 

demand 

Simulated results from EnergyPlus 

 

4.3.3 Building energy prediction model development 

XGBoost model was developed using the data generated according to Section 3.2. 70% of the 

generated synthetic data is used for training the ML models. The remaining 30% is applied for 

model testing. During the testing phase, the developed prediction function and inputs are used to 

predict hourly EUI outputs. We start by selecting the centroid day of each cluster to represent the 

weather boundary conditions. Then, within each cluster, we choose three days: the centroid day, 

the day with the minimum air dry-bulb temperature, and the day with the maximum dry-bulb 

temperature. 

This step aims to assess the predictive capability of the developed model for building energy 

consumption. Only machine learning models that closely match outputs from detailed computer 

models within an acceptable error range, using the same inputs, can potentially replace detailed 

computer models in future analyses for their intended purposes. For testing purposes, a single 

building was randomly selected from the 550 combinations of building features generated during 

the parametric simulation phase. In Method 1, simulations used the center day of each cluster as 

weather conditions in BEM simulations, with each case running for 10 days. The machine learning 

model trained using Method 1 achieved an R2 value of 0.85 and a root mean square error (RMSE) 

of 0.006 kWh/m2. Additionally, the mean bias error (MBE) was found to be -1.41%, and the 

CV(RMSE) was 31.19 (as shown in Table 4-3). Method 2, which incorporated the center day, 

maximum temperature day, and minimum temperature day as boundary conditions for BEM 

simulations, showed improvements in all error metrics. The machine learning model achieved an 

R2 value of 0.94 and an RMSE of 0.004 kWh/m2. The MBE and CV(RMSE) values were -1.66% 

and 19.31%, respectively, which are considered reasonable given the ±10% tolerance for MBE 



70  

and ±30% for CV(RMSE) as required by ASHRAE Guideline 14 [118]. MBE represents the 

average deviation of all predictions across the samples. A positive MBE indicates the model tends 

to overpredict, while a negative MBE indicates underprediction. The closer MBE is to zero, the 

smaller the deviation between the model's predictions and the actual values. Compared to existing 

studies, our model shows competitive results. Wang et al. [119] reported R² values around 0.912 

and CV-RMSE near 20% for synthetic buildings energy uses prediction model, with slightly lower 

performance for existing buildings (R² ≈ 0.83, CV-RMSE ≈ 21.65%). Hong et al. [120] achieved 

a mean CV-RMSE of 24.15% using a K-nearest neighbor (KNN) algorithm to predict hourly 

energy consumption. Dong et al. [121] demonstrated CV-RMSE values decreasing from 24.1% to 

19.8% as data availability increased from 20% to 100%. In comparison, our proposed model 

achieved an R² value of 0.94 and a CV-RMSE of 19.31%, outperforming the reported models in 

terms of accuracy and predictive reliability. 

Table 4-3. Performance of developed ML model. 

 R2 RMSE CV-RMSE MBE 

Method 1 0.85 0.006 31.19% -1.41% 

Method 2 0.94 0.004 19.31% -1.66% 

ASHRAE Guideline 

tolerance 

/ / 30% ±10% 

Figure 4-9 (a) and (c) compare the predicted value generated using Method 1 and Method 2 against 

simulation results from EnergyPlus in the testing dataset. The red dashed line represents the ideal 

case (where predicted and simulated values perfectly match). The green and orange lines represent 

upper and lower 15% error margins. Method 2’s predictions are more closely aligned with the ideal 

line and fall within the upper and lower 15% error margins. While there is a noticeable dispersion 

from Methos 1, especially at higher EUI values. According to Figure 4-9 (b) and (d), the error 

distribution for Method 1 is highly centralized around 0, indicating minimal deviation from the 
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EnergyPlus simulation results, but with a slight underestimation. The comparative analysis 

highlights that Method 2 achieves higher accuracy and consistency in its predictions compared to 

Method 1. 

  
(a) (b) 

  
(c) (d) 

Figure 4-9. Comparison of Actual vs. Predicted Building Cooling Energy Demand and Error 

Distribution. (a) Actual and predicted building cooling energy demand using Method 1; (b) Error 

histogram for Method 1; (c) Actual and predicted building cooling energy demand using Method 

2; (d) Error histogram for Method 2. 

It is challenging to anticipate peak consumption with accuracy, even with advances in machine 

learning techniques [122]. However, the capacity to forecast peak demand might help energy 

management systems implement the best plans of action during demand response incidents. To 

take a deep look into the hourly building cooling energy performance, the cooling demand 

prediction results from 4 example days in each season are presented in Figure 4-10. Qatar's weather 
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is divided into four seasons: summer (June to August), autumn (September to October), winter 

(November to February), and spring (March to May). The chosen example days are, August 16th 

for summer, September 17th for autumn, December 18th for winter, and March 21st for spring. 

Method 2 consistently provides more accurate and stable predictions across all seasons, closely 

matching the EnergyPlus simulations. Method 1 shows reasonable accuracy but has noticeable 

discrepancies during the peak hours.  

 
(a) Spring 

 
(b) Summer 
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(c) Autumn 

 
(d) Winter 

Figure 4-10. Prediction from machine learning models and simulated values from EnergyPlus 

models for cooling energy. 

Weather clustering techniques are applied to identify representative days that capture yearly 

weather variations, enabling a reduction in the need for computationally intensive day-by-day 

simulations. This approach integrates with the capabilities of advanced digital technologies such 

as building information modeling (BIM) [123] and digital twin systems [124], supporting the 



74  

ongoing trend toward digitalization in the construction and building management sectors. By 

integrating weather clustering within these frameworks, BIM and digital twins can deliver more 

resource-efficient insights during the design phase. This is especially advantageous for 

implementing and optimizing emerging technologies, like photovoltaic (PV) panels [125], [126] 

and wind turbines [127], within building systems.  For example, through weather clustering, BIM 

and digital twins can focus analyses on representative days with varying solar radiation levels to 

analyze PV performance, or on days with different wind speeds and directions to estimate wind 

turbine efficiency. Furthermore, weather clustering can aid in identifying and managing extreme 

weather scenarios, contributing to the resilience planning and energy efficiency assessments 

crucial for meeting sustainability and carbon neutrality goals. 

4.4 Summary 

Hourly building energy prediction is essential to efficient building energy management, aiding 

tasks like predicting peak loads, comparing energy systems, and optimization during the design 

phase. This paper explores the advantages of ML approaches for predicting hourly building energy 

consumption during the design phase. We applied weather clustering techniques to reduce the vast 

dataset of synthetic data combining long-term hourly meteorological data with building 

characteristics.  

Synthetic data is commonly used for training and testing ML models when real-life data is 

unavailable, but it presents challenges due to the vast datasets generated from long-term hourly 

meteorological data combined with building characteristics. Our method applies weather 

clustering techniques to identify a subset of representative days from yearly weather data, thereby 

mitigating computational complexity by focusing computational efforts on a reduced set of days. 

Subsequently, synthetic data is generated based on physics-based BEMs under selected 
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representative days, which are then utilized for the training and evaluation of an ML model. A 

comprehensive dataset comprising 6 meteorological parameters, 10 building features, and hourly 

building cooling energy consumption is compiled, amounting to a total of data points. Ten weather 

patterns were identified from long-term hourly meteorological data. To determine the optimal 

training dataset for an XGBoost building energy consumption prediction model, two methods were 

compared. Method 1 used EnergyPlus hourly simulations for the center day of each cluster (10 

days, 2,376,000 data points). Method 2 included simulations for the center days, and the maximum 

and minimum temperature days in each cluster (30 days, 7,128,000 data points). We drastically 

reduce the dataset size from 82 million data points for the studied building, by selecting one/three 

days in each cluster. Employing the XGBoost model, peak load and hourly building cooling load 

are predicted in this study.  

A residential building in Doha, Qatar serves as the case study. Throughout the testing phase, 

Method 2 outperformed Method 1. Method 2 considered not only the center day of each cluster 

but also the maximum and minimum temperature days of each cluster. Method 2 consistently 

provides more accurate and stable predictions across all seasons, closely matching the EnergyPlus 

simulations. Method 1 shows reasonable accuracy but has noticeable discrepancies, particularly in 

spring during the afternoon. The model using Method 2 is characterized by an MBE value of -

1.66% and a CV-RMSE value of 19.31%. These metrics are within the acceptable thresholds of 

10% and 30% in ASHRAE guideline 14, proving that the model is reliable and robust in forecasting 

building cooling energy consumption. Moreover, Method 2 provides more accurate predictions 

during the peak hours across all seasons than Method 1. The presented approach contributes by 

employing weather clustering to effectively downsize the database of ML-based hourly building 

energy prediction models while maintaining acceptable accuracy levels, thereby aiding engineers 

and city planners during design and retrofit phases. Further sensitivity analysis.  This model can 
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be used in place of BEM to predict building energy performance at a much lower computational 

cost.  
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Chapter 5. Assessment of urban microclimate at urban scale 

This chapter attempts to evaluate the effects of urban microclimate on building ambient 

environment with a high degree of spatiotemporal granularity at a city scale. A novel integrated 

platform was employed to facilitate the information exchange between UBEM and UCM models 

and running simulations with CityFFD (City Fast Fluid Dynamics), an urban-scale fast fluid 

dynamics model for microclimate modeling, and CityBES (City Buildings, Energy, and 

Sustainability) for building energy model. A new flexible and tool-agnostic data schema (in JSON) 

is used to facilitate the exchange of data between urban building energy models and urban 

microclimate models. The entire city of San Francisco was examined as a case study, 

encompassing 148,698 buildings. The simulation was conducted during the hottest hour of 

September 1, 2017, a heatwave day with record-breaking temperatures. We investigated the 

impacts of urban microclimate on the ambient atmosphere of buildings4. 

 

5.1 Introduction 

During building/city design and retrofit phases, it is crucial to estimate building energy 

consumption accurately to provide city planners and policymakers with detailed information on 

energy use. To this end, Urban Building Energy Modelling (UBEM) tools are widely used to 

estimate building energy consumption based on a bottom-up physics-based approach. UBEM can 

simulate each physical building in a district or a city’s entire building stock while considering 

 
4 This chapter has included the contribution of the author in multiple publications: 

1. Dongxue Zhan, Wanni Zhang, Maher Albettar, Mohammad Motezazadeh, Na Luo, Tianzhen Hong, Liangzhu (Leon) 

Wang (2024). “Integrated UBEM and UCM assessment to understand urban microclimate under heatwaves: A case study of 

city of San Francisco.” The 1st International Conference of Net Zero Carbon Built Environment, Nottingham, UK, 3-5 July 

2024. 

2. Na Luo, Xuan Luo, Mohammad Mortezazadeh, Maher Albettar, Wanni Zhang, Dongxue Zhan, Liangzhu (Leon) Wang, 

and Tianzhen Hong (2022). “A Data Schema for Exchanging Information between Urban Building Energy Models and 

Urban Microclimate Models in Coupled Simulations.” Journal of Building Performance Simulation, November, 1–18. 

doi:10.1080/19401493.2022.2142295. 
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urban microclimate impacts [128].  

The urban microclimate is a small area around a building that has different atmospheric conditions 

than the surrounding area. Buildings in urban areas suffer from higher air temperatures due to the 

urban microclimate effect as well as reduced wind flow as a result of surrounding structures that 

block airflow. In addition, the reduced sky exposure and shaded solar heat by neighboring 

buildings alter the radiation balance of the urban environment [6]. These factors collectively affect 

the thermal and energy performance of urban buildings. A lack of knowledge of the local 

microclimate will decrease the accuracy of building energy simulation results. However, static 

Typical Meteorological Year (TMY) data have been widely used in BEM studies to represent the 

ambient climate of the building area without considering the local microclimate, omitting complex 

interactions between buildings and the environment [5]. From the perspective of UBEM, the urban 

microclimate could be obtained from local observational weather data, a data-driven forecasting 

model, and a physics-based forecasting model [129]. Measured high-resolution weather data to 

capture local microclimate is not easy to achieve at large scales. Data-driven weather forecasting 

approach became popular to provide more accurate and real-time weather data to UEBM. For 

example, tools like Urban Weather Generator [130] estimate the hourly urban canopy air 

temperature and humidity based on rural weather data, e.g., from airports. However, its limitations 

lie in its coarse resolution and ignoring the interaction between buildings and surrounding 

environments. Physic-based weather forecasting model remains popular for simulating and 

predicting the urban microclimate. Particularly, co-simulation between UBEM and UCM is 

necessary to capture the two-way interactions between buildings and the surrounding urban 

environment with high resolution and detailed boundary information [7]. 

In this study, we pioneer an innovative study by evaluating the urban microclimate within the 
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entire San Francisco during a historical heatwave. Our work offers unprecedented granularity in 

understanding the urban microclimate at a large scale under extreme heat conditions. By leveraging 

advanced integration between UBEM and UCM tools, our work provides valuable insight into the 

localized effects of heatwaves on urban air temperature and wind patterns within the city, 

contributing significantly to our knowledge of urban climate resilience and adaptation strategies.  

5.2 Methodology 

5.2.1 Microclimate modeling and simulation with CityFFD 

CityFFD is a UCM tool that employs semi-Lagrangian and fractional step methods, along with 

several novel numerical schemes to enhance accuracy and lower computational costs [131], [132], 

[133]. Its fourth-order numerical interpolation scheme minimizes numerical dissipation and 

dispersion errors, even when using coarse grids [131]. By using Large Eddy Simulation (LES), 

CityFFD accurately represents turbulence in the atmospheric boundary layer. Due to its semi-

Lagrangian formulation, is unconditionally stable allowing any mesh size or time step. Depending 

on the domain size and available computational resources, grid resolutions typically range from 

1 m to 10 m near buildings, with recommended time steps spanning a few seconds to several 

minutes for stable and accurate simulations. 

5.2.2 Urban building energy modeling with CityBES 

CityBES (i.e., City Buildings, Energy, and Sustainability) is one of the UBEM programs [134], 

[135]. It is a web-based data and computing platform that focuses on energy modeling and analysis 

of a city’s building stock to support district- or city-scale energy efficiency programs [136]. 

CityBES uses an international open data standard, CityGML, to represent and exchange 3D city 

models. CityBES employs EnergyPlus to simulate building energy use and savings from energy-

efficient retrofits [137]. CityBES provides a suite of features for urban planners, city energy 

managers, building owners, utilities, energy consultants, and researchers. 
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5.2.3 Integration between CityFFD and CityBES 

The CityBES program utilizes EnergyPlus for simulating building energy usage and assessing 

energy efficiency retrofits. For each exterior surface of a building, the total heat is calculated as 

the convective and radiative heat emission rate from the surface, added to the HVAC exhausted 

and rejected heat emission rate at the zone and building level, subdivided by the surface area of 

each exterior surface. Hourly total heat emission rates are calculated for each building's exterior 

surface during the simulation period. Each building exterior surface is mapped to the attaching 

grid cell(s) in the UCM model. The heat flux into any UCM grid cell is determined by dividing the 

total heat from attached surfaces by the grid cell's connected area. In addition, this work runs 

simulations of CityFFD as the UCM tool (Figure 5-5). The CityFFD microclimate model was 

created for the domain (13,000 meters by 11,800 meters, and 900 meters in height) with a grid size 

of 10 meters in three dimensions and runs at a 100-second time step. The total grid number of the 

CityFFD domain is about 138 million. CityFFD simulation was conducted on an Nvidia DGX 

Station with four Nvidia Tesla V100 Tensor Core GPUs, achieving a total of 500 TFLOPS of 

performance and offering 128GB of total GPU memory. It took 4 hours for each coupling time 

step in CityFFD. The ground temperature was set to 40℃ based on recent research that derived 

land surface temperature images from Landsat 8 satellite thermal infrared sensor from 2017 to 

2020 in the San Francisco Bay area [138]. The simulation was conducted for the hottest day, 

September 1st, 2017, and the data was exchanged between CityBES and CityFFD at the hourly 

time step, which is considered one timestep of the co-simulation.  

Figure 5-1 illustrates the general data exchange fields and processes of a couple of UBEM and 

UCM models. At each iteration, the UBEM provides heat emission and building surface 

temperature per exterior surface as the boundary conditions for the UCM, while UCM provides 

local ambient conditions for the UBEM at the CFD cell level, which may include ambient air 
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temperature, humidity, pressure, velocity and wind direction, solar radiation, and carbon dioxide 

(CO2) level. 

 

 Figure 5-1. Data exchange between UBEM and UCM 

A new flexible and tool-agnostic data schema (in JSON) was utilized to facilitate the exchange of 

data between urban building energy models and urban microclimate models. As shown in Figure 

5-2, three JSON files serve as a “bridge” for data exchange between the UCM and UBEM tools. 

Each UCM grid cell ID is mapped to one or more surface IDs in UBEM. During each coupling 

iteration, the UCM outputs variables like air temperature, wind speed, and direction (file No. 3), 

which are mapped to specific buildings and surfaces using file No. 5. Similarly, UBEM outputs, 

such as temperature and heat emissions, are transferred back to corresponding UCM grid cells via 

the same mapping. While files No. 3 and No. 4 are dynamically updated during co-simulation, the 

static JSON files (No. 1, No. 2, and No. 5) are derived from the geographic information of the 

simulation domain. 
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Figure 5-2. Illustration of the data exchange schema using JSON files [86]. 

Figure 5-3 further illustrates how building surface and ambient air condition data are mapped 

between air nodes (UCM/CityFFD domain) and surface nodes (UBEM/CityBES domain). The 

surface nodes (red nodes) represent the exterior surfaces of a UBEM building, such as exterior 

walls, roofs, and windows. The Air Nodes (blue nodes) are the UCM cells that hold information 

about the surrounding air conditions. The nearest red nodes and blue nodes were mapped based on 

the centroid information. During the later coupled simulations, a red node reads outdoor conditions 

from its mapped blue node, and a blue node takes the aggregated heat flux and surface temperatures 

from its attached/mapped surfaces as boundary conditions. 
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Figure 5-3.  Mechanism of mapping the grid cells in UCM (blue nodes) with the building 

surfaces in UBEM (red nodes) [86]. 

5.2.4 Case study 

In recent years, San Francisco has experienced unprecedented heatwaves during the summer 

season, impacting both energy demand and public health. Even in cool, coastal California, extreme 

heat sickens and kills people. In 2017, extreme heat killed 14 people in the San Francisco Bay 

Area. Over the Labor Day weekend, six people alone died in San Francisco. The heat also sent 

hundreds more to the hospital [139]. The entire city of San Francisco is selected for the case study 

to evaluate the urban microclimate during the heatwave by integrated simulation of UBEM and 

UCM programs. All building information required for the simulation was collected from the public 

data portal of San Francisco, DataSF [datasf.org]. The dataset comprises 148,689 buildings. The 

weather data used for UBEM was collected from the local weather stations scattered in the whole 

domain. San Francisco is located in Northern California, USA, covering an area of 121.4 km2 

(Figure 5-4).  
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Figure 5-4. Urban layout of San Francisco via Google Maps. 

 

Figure 5-5. CityFFD model of the entire San Francisco city 

5.3 Results 

Using the data collected from the local weather station installed in San Francisco as a boundary 

condition, it was observed that at 2 pm on September 1st, 2017, the air temperature was 37.4 °C, 
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and the wind speed was 0.5 m/s from the west. These meteorological data serve as crucial boundary 

conditions for understanding the local urban microclimate. The heat emissions from buildings 

during the daytime largely affect the ambient air temperature near buildings. Luo et al. [86] indicate 

the buildings began to produce heat emissions to the surrounding air starting at 10 am in the San 

Francisco area, which accelerated the heating of the surrounding air afterward.  

5.3.1 Urban temperature distribution 

Figure 5-6 illustrates the distribution of ambient air temperature at a height of 10m. The air 

temperature near buildings increased to 55℃ in most places. In low-density areas, the air 

temperature remained around 39℃ ，  while high-density areas experienced temperatures 

exceeding 42 ℃. A notable disparity such as this illustrates the localized impacts of building heat 

emissions on a city's microclimate. As a result of the high ambient air temperatures in San 

Francisco, residents are affected by increased building energy consumption and outdoor 

discomfort (also for tourists). 
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Figure 5-6. San Francisco's air temperature distribution at a height of 10 meters. 

5.3.2 Urban wind distribution 

Figure 5-7 shows the wind distribution within San Francisco at a height of 10m, specifically at 2 

pm on September 1, 2017. As aforementioned, the prevailing wind direction is west, with a speed 

of 0.5 m/s. However, wind speed reduces to 0.15 m/s in open areas and decreases to zero in densely 

populated areas. The decreased wind velocity hampers high-temperature air dispersal from urban 

areas to suburbs. The marked decrease in wind velocity hinders the dispersion of high-temperature 

air from urban areas into suburban areas, intensifying heatwaves and amplifying the effects of 

Urban Heat Island (UHI). Due to this, the urban heat island effect gets worse, posing more 

challenges to mitigating heat-related risks and making sure communities are resilient to heat. 
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Figure 5-7. San Francisco's wind distribution at a height of 10 meters. 

5.4 Summary 

Our study utilized an integrated platform to exchange information between UBEM and UCM 

models with high spatial granularity at a large scale. Using CityFFD and CityBES, we simulated 

the city’s urban microclimate during the hottest hour of September 1st, 2017, a day of record-

breaking temperatures. Our findings highlight the significant impact of urban microclimate on 

ambient air temperature and local wind speed within the city. We observed a considerable increase 

in ambient air temperature, with the maximum temperature reaching 55℃ in dense areas, 

representing an increased deviation of 8℃ from the inlet air temperature at a height of 10m, with 

the westerly wind originating from the Pacific Ocean. In addition, our findings revealed a 
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significant decrease in wind velocity, which hampers high-temperature air dispersal from urban 

areas to suburbs (San Francisco Bay). As pioneers in the application of high-granularity urban 

microclimate modeling at the city scale, our study provides a comprehensive understanding of 

ambient air temperature and wind velocity in San Francisco during a record heatwave. Our work 

shows how integrated co-simulation methods can be applied to achieve high-resolution urban 

microclimate modeling considering detailed dynamic anthropogenic heat from buildings, paving 

the way for future research and practical applications in urban sustainability and resilience. 
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Chapter 6. Conclusions 

This research has systematically examined the spatiotemporal characterization of urban 

microclimates and their influence on building-level energy performance by establishing an 

integrated platform that couples urban microclimate models with building energy simulations. 

Focusing on a hot and arid climate zone, an area that remains underexplored in existing literature. 

By replacing conventional rural weather inputs with ambient weather conditions, the coupled 

modeling framework provides more detailed cooling profiles, helping avoid the common 

overestimation problems seen in current district cooling system designs and supporting more 

efficient and context-sensitive planning. In addition, the study explores the application of machine 

learning (ML) as a surrogate modeling technique for predicting hourly building energy 

consumption during the design phase. To address the high computational cost associated with 

generating detailed ML models, a weather clustering-based approach was introduced, effectively 

reducing the dataset size while maintaining prediction accuracy within ASHRAE’s acceptable 

tolerance. Finally, a city-scale integration method was formulated to assess urban microclimate 

conditions, particularly air temperature and wind distribution, during extreme heat events. Overall, 

these contributions enhance the assessment of urban microclimates and support more efficient and 

accurate building energy planning at various scales. 

6.1 Contributions 

The following is a list of significant findings and contributions from this thesis: 

• Developed a novel coupling strategy that integrates a CFD-based urban microclimate 

model with a building energy model, enabling detailed spatiotemporal evaluation of urban 

microclimate effects on building-level energy performance. 

• Conducted a comprehensive global sensitivity analysis to explore the complex relationship 
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between input parameters and building energy consumption, identifying outdoor air 

temperature as the most influential factor, followed by wind speed and cooling setpoint. 

• Proposed an innovative machine learning-based approach for hourly building energy 

prediction by applying a weather clustering technique. This method effectively reduces 

computational demand by selecting a representative subset of days from annual weather 

data. 

• Established a coupling platform linking urban microclimate models and urban building 

energy models using a JSON-based data exchange schema. The platform supports scalable 

analysis of building-environment interactions at the city scale. 

6.2 Future work 

In the context of future work for this thesis, a range of opportunities exist to advance and refine 

the current research: 

• Continue exploring urban microclimate impacts on large-scale energy performance by 

applying the proposed UCM-UBEM platform. 

• Incorporate relative humidity into urban microclimate evaluations, to better understand 

how varying moisture levels affect building cooling and heating demands. 

• Apply the developed ML-based approaches at different spatial scales, from neighborhoods or 

districts to entire urban areas, for more detailed insights into urban energy consumption 

patterns.  

• Adopt a multi-zone configuration to better capture intra-floor thermal variations, occupancy 

diversity, and localized HVAC control for more accurate energy simulations. 

Addressing these areas in future research will further enhance our understanding of urban 
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microclimates and enable more accurate assessments of building energy performance across 

different scales.
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Appendix A 

To further elucidate the DVIndex, which serves as a measure of cluster compactness, we define 

the components contributing to it. The Intra(k) term represents the average sum of distances 

between cluster centers and individual data points (Eq. (A-1)). This Intra value is then normalized 

by dividing it by its maximum value (Eq. (4-3)), computed from Intra values obtained for different 

cluster numbers, ranging from k =4 to an upper limit defined as k (Eq. (A-2)). Separateness is the 

ratio of the maximum and minimum Squared Euclidean Distance (SED) between cluster centers, 

multiplied by the sum of inverse distances between cluster centers (Eq. (A-3)). 

The IntraRatio and InterRatio terms collectively denote the overall compactness and separateness 

of clusters, respectively. These ratios normalized for comparison within the range of 0 to 1, convey 

insights into the clustering structure. Typically, the intra-term diminishes with increasing cluster 

numbers, indicating enhanced compactness, while the inter-term tends to rise with greater cluster 

counts, signifying increased separation between clusters. Consequently, the DVIndex becomes 

more meaningful when clusters are either merged or split, as the inter-term is particularly sensitive 

to changes in inter-cluster distances. 

A modulating parameter γ is introduced to balance the relative importance of IntraRatio and 

InterRatio terms. Its value influences the sensitivity of the DVIndex to noise within the data. In 

scenarios where raw data exhibit minimal noise, γ is often set to 1. Conversely, if noise is present, 

γ is adjusted to a value less than 1 to mitigate its impact. Conversely, when prioritizing cluster 

separateness over compactness, γ is set to a value greater than 1. 
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 (A-1) 
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 𝑀𝑎𝑥𝐼𝑛𝑡𝑟𝑎 = max
𝑘=4,….,𝐾

(𝐼𝑛𝑡𝑟𝑎(𝑘)) (A-2) 
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 (A-3) 

 𝑀𝑎𝑥𝐼𝑛𝑡𝑒𝑟 =  max
𝑘=4,….,𝐾

(𝐼𝑛𝑡𝑒𝑟(𝑘)) (A-4) 

where N is the number of data (objects), N=365 in this study; k starts from 4, and 𝑧𝑖 denotes the 

center of the cluster 𝐶𝑖. i = 1, 2,…, k-1; j = i+1, i+2, …, k. 
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Appendix B 

In this study, we included six meteorological variables (outdoor air dry-bulb temperature, outdoor 

air relative humidity, wind speed, wind direction, normal solar irradiation, and diffuse solar 

irradiation) and ten building features (wall U value, roof U value, window U value, window SHGC, 

occupancy density, appliance power density, lighting power density, ventilation rate, heating set 

point, and cooling set point). We generated synthetic data using a physics-based building energy 

model to train and test the machine learning model, applying latin hypercube sampling (LHS) to 

perform parametric simulations. 

The total number of data points was calculated as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 =  𝑁𝑆𝑖𝑚 × 𝑁ℎ𝑜𝑢𝑟𝑠 × (𝑁𝑖𝑛𝑝𝑢𝑡𝑠 + 𝑁𝑜𝑢𝑡𝑝𝑢𝑡𝑠) (B-1) 

𝑁𝑆𝑖𝑚 = 𝑆 × 𝐹 (B-2) 

where: 

- N_Sim is the number of building energy simulations, here are EnergyPlus simulations.  

- N_hours is the total number of hours in results, here is 8760 hours.  

- N_inputs represents the number of input variables (16 in this study, 10 building features 

and 6 meteorological variables.) 

- N_outputs is the number of output variables, we have one output variable in this work, 

hourly energy use intensity. 

- S is sampling size, set to 50 to ensure that the sample distribution closely represents the 

original distribution. 

- F is the number of building features, 10 in this study.  

Using these parameters, we calculated approximately 82 million individual data points. 


