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Abstract

Title: Enhancing Hedging Strategies with Deep Reinforcement Learning and
Implied Volatility Surfaces

Carlos Octavio Perez Mendoza, Ph.D.

Concordia University, 2025

This thesis explores the use of deep reinforcement learning (DRL) to enhance dynamic

option hedging by incorporating forward-looking market information, mitigating speculation,

and optimizing portfolio rebalancing frequency. The first paper, Enhancing Deep Hedging of

Options with Implied Volatility Surface Feedback Information, introduces a DRL-based hedging

framework that leverages implied volatility surface data, improving hedging performance

over traditional methods. The second paper, Is the Difference between Deep Hedging and

Delta Hedging a Statistical Arbitrage?, examines whether deep hedging introduces specu-

lative behavior in incomplete markets, demonstrating that proper risk measure selection

prevents unwanted speculation. The third paper, Implied-Volatility-Surface-Informed Deep

Hedging with Options, extends deep hedging by integrating implied volatility surface-informed

decisions, no-trade regions, and multiple hedging instruments, improving cost efficiency

and adaptability. This research contributes by defining frameworks that enhance existing

techniques for managing risk in financial markets.

Keywords: Deep reinforcement learning, optimal hedging, implied volatility surfaces, arbi-

trage.
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Introduction

The evolution of hedging strategies in financial markets has been significantly influenced by

advances in machine learning and computational finance. Traditional hedging approaches,

such as delta and delta-gamma hedging, rely on parametric models and assumptions that

often simplify market dynamics. While these methods are widely used, their effectiveness

can be limited in complex and volatile market conditions. The emergence of deep hedging,

introduced by Buehler et al. (2019), provides a data-driven alternative that learns optimal

hedging strategies from market data. By leveraging deep reinforcement learning (DRL), deep

hedging adapts dynamically to changing conditions without explicitly specifying an underlying

stochastic model. While deep hedging has shown significant flexibility and adaptability (e.g.,

Cao et al. (2020), Carbonneau (2021), and Cao et al. (2023)), the integration of forward-

looking information into its framework remains largely unexplored.

This thesis is guided by three main objectives: (1) improving hedging performance through

DRL algorithms that leverage implied volatility surfaces, demonstrating superior adaptability

compared to traditional delta and delta-gamma hedging; (2) addressing concerns regarding

about the speculative components inherent in deep hedging, particularly its potential to

inadvertently generate statistical arbitrage under specific market conditions; and (3) examining

the dynamics of DRL-generated hedging policies by employing global feature importance

techniques and advanced statistical methods to gain a more comprehensive understanding of

the underlying decision-making process.

1



The thesis is structured into three main chapters, each presented as an independent paper.

Chapter 2 presents a deep hedging framework for European options using policy gradient

reinforcement learning. A key innovation is the inclusion of IV surface data as an additional

input to the hedging agent. By leveraging this information, the model refines its risk

assessment, leading to improved hedging performance relative to both traditional delta

hedging and standard deep hedging approaches. Empirical results from simulations and

backtesting demonstrate that incorporating IV surfaces enhances the model’s ability to adapt

to different market conditions.

Chapter 3 investigates the relationship between deep hedging and statistical arbitrage in

an incomplete market setting. While it has been shown that the difference between deep

hedging and replicating portfolio strategies could introduce speculative components, we test

this claim within a GARCH-based market model. The findings suggest that deep hedging

may introduce a speculative component if the risk measure does not sufficiently penalize

adverse outcomes. However, selecting an appropriate risk measure mitigates this effect.

Chapter 4 introduces an enhanced deep hedging approach designed to hedge portfolios of

options using multiple hedging instruments. The model dynamically integrates IV surface

evolution to refine decision-making and risk assessment. The study also highlights the benefits

of optimizing hedging frequency, demonstrating that a well-calibrated deep hedging model

can achieve superior performance while reducing unnecessary rebalancing.

The bibliography for all papers is presented at the end of the thesis.
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Chapter 2

Enhancing Deep Hedging of Options with Implied

Volatility Surface Feedback Information

Abstract

We present a dynamic hedging scheme for S&P 500 options, where rebalancing

decisions are enhanced by integrating information about the implied volatility

surface dynamics. The optimal hedging strategy is obtained through a deep

policy gradient-type reinforcement learning algorithm, with a novel hybrid neural

network architecture improving the training performance. The favorable inclusion

of forward-looking information embedded in the volatility surface allows our

procedure to outperform several conventional benchmarks such as practitioner

and smiled-implied delta hedging procedures, both in simulation and backtesting

experiments.

JEL classification: C45, C61, G32.

Keywords: Deep reinforcement learning, optimal hedging, implied volatility

surfaces.
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2.1 Introduction

Since the advent of the Black and Scholes (1973) framework, dynamic hedging has become

a standard financial risk management tool for managing the risk associated with options

portfolios. The Black and Scholes (1973) framework has the remarkable property that delta

hedging –a hedging strategy invested exclusively in the underlying asset and the money

market account– achieves the perfect replication of a European-style contingent claim. In

practice, this property is lost due to frictions. Most notably, considering the infrequent

rebalancing of the hedging portfolio, classic delta hedging, which is inherently local, can no

longer protect against infinitesimal shocks in the underlying asset price. Such an imperfect

hedge inevitably yields a hedging error that has to be managed.

Several works have subsequently extended the idealized setting of the Black-Scholes framework

to account for imperfect hedging, incorporating features such as discrete-time rebalancing

(Boyle and Emanuel, 1980), transaction costs (Leland, 1985; Boyle and Vorst, 1992; Toft,

1996; Meindl and Primbs, 2008; Zakamouline, 2009; Lai and Lim, 2009), trading constraints

(Edirisinghe et al., 1993) or liquidity costs (Frey, 1998; Cetin et al., 2010; Guéant and Pu,

2017). Another very important avenue for the development of a hedging procedure is the

computation of the delta (and other "Greek" sensitivity parameters) which purely relies on

market data and does not require stringent postulates about stochastic dynamics of associated

risk factors: see among others, Bates (2005), Alexander and Nogueira (2007), and François

and Stentoft (2021). This approach utilizes implied volatility (IV) surfaces to derive the

Greeks, specifically the option delta and gamma, based on a mild scale-invariance assumption

for the underlying asset return distribution.

This paper builds on existing literature by developing a data-driven approach that incorporates

IV surface information to derive optimal hedging positions. Unlike traditional methods

focusing on local conditions, we adopt a global perspective, minimizing the risk metric

associated with the terminal hedging error in a multi-period horizon framework. We leverage
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developments in risk-aware reinforcement learning (RL) to find the sequence of hedge ratios

optimizing the hedger’s total risk until the option expiry, a setup analogous to Buehler

et al. (2019)’s deep hedging approach. The novelty of our work lies in integrating factors

that influence IV surface dynamics into the state variable set for determining hedging

positions. The hedging agent therefore relies on market expectations for the underlying return

distributions over several temporal horizons, producing genuine optimal forward-looking

multi-stage hedging decisions informed by IV surfaces. To conduct our numerical experiments,

we use the JIVR model of François et al. (2023), which is a parsimonious, tractable and

data-driven econometric model representing the joint dynamics of the underlying asset return

and five interpretable factors driving the IV surface of the S&P 500. Notably, the model has

been calibrated on a data period spanning more than 25 years of daily option data, reflecting

market behavior in a wide array of scenarios, including several financial crises.

As an additional contribution, we propose a novel hybrid neural network architecture com-

bining feedforward and long-short-term memory (LSTM) layers, which is shown the improve

training performance over conventional architecture.

Hedging procedures with risk-aware reinforcement learning procedures have received substan-

tial attention from the literature recently, see for instance Halperin (2019), Cao et al. (2020),

Du et al. (2020), Carbonneau and Godin (2021), Carbonneau (2021), Horvath et al. (2021),

Imaki et al. (2021), Lütkebohmert et al. (2022), Cao et al. (2023), Carbonneau and Godin

(2023), Marzban et al. (2023a), Mikkilä and Kanniainen (2023), Pickard and Lawryshyn

(2023), Raj et al. (2023), Wu and Jaimungal (2023) and Neagu et al. (2024). Nevertheless, to

the best of our knowledge, our paper is the first to conduct multi-stage RL-based hedging

that incorporates IV surface information directly as state variables.

Our RL approach is shown to substantially outperform delta-based hedging strategies acting

as benchmarks. In particular, RL agents trained with asymmetric objective functions such as

the conditional value-at-risk (CVaR) or the semi-mean squared-error (SMSE) offer superior
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tradeoffs between profitability and downside risk. The outperformance of RL agents is even

more pronounced in the presence of transaction costs, as such agents manage to develop

hedging strategies that remain efficient in terms of risk mitigation while generating lower

turnover. A feature importance analysis highlights that the conditional variance of the

underlying asset returns, the level of the IV surface and its slope all significantly influence

hedging performance, irrespective of the risk metric employed within the objective function.

The rest of the paper is organized as follows. Section 2.2 frames the hedging problem in

terms of a deep reinforcement learning framework. Section 2.3 provides the components of

the JIVR model. Section 2.4 presents the numerical results, assessments, and global feature

importance analysis.1 Section 2.5 concludes.

2.2 The hedging problem

The mathematical formulation of the hedging problem considered herein, along with the

solution approach based on deep reinforcement learning, are described in this section.

2.2.1 The hedging optimization problem

This paper introduces a dynamic hedging strategy for European-style options that leverages

insights provided by the implied volatility surface. The approach aims to minimize some risk

measure applied to the terminal hedging error.

The European option payoff Ψ(ST ) depends on the price of the underlying asset at maturity,

denoted as T trading days. The hedging strategy involves managing a self-financing portfolio

composed of both the underlying asset and a risk-free asset, with daily rebalancing. The

strategy is represented by the predictable process {(ϕt, δt)}Tt=1, where ϕt is the cash held at

time t− 1 and carried forward to the next period, and δt denotes the number of shares of the

1The Python code to replicate the numerical experiments from this paper can be found at the following
link: https://github.com/cpmendoza/DeepHedging_JIVR.git.
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risky asset S held during the interval (t− 1, t]. The time-t portfolio value is

V δ
t = ϕtert∆ + δtSteqt∆

where rt is the time-t annualized continuously compounded risk-free rate, qt is the annualized

underlying asset dividend yield, both on the interval (t− 1, t], and ∆ = 1
252

. To account for

transaction costs the self-financing condition entails

ϕt+1 + δt+1St = V δ
t − κSt | δt+1 − δt |, (2.1)

where κ is the rate of proportional transaction costs.

The optimal hedging problem is an optimization task where an agent seeks to minimize the

risk exposure associated with a short position in the option. More precisely, it is a sequential

decision problem where the agent looks for the best sequence of actions δ = {δt}Tt=1 that

minimizes a penalty function ρ applied to the hedging error at maturity for a short position,

defined as

ξδT = Ψ(ST )− V δ
T .

Note that ξδT is a loss variable, with profits being represented by −ξδT . The problem is

δ∗ = argmin
δ

ρ
(
ξδT
)
, (2.2)

where ρ is a risk measure, acting as the penalty function. Each time-t action (ϕt+1, δt+1) is

of feedback-type, with such decision being a function of current available information on

the market: δt+1 = δ̃(Xt) for some function δ̃ with state variables vector Xt. Section 2.4.3.2

further describes these state variables that include the underlying asset current value as well

as some information about the implied volatility surface, among others. Due to Equation

(2.1), ϕt+1 is fully characterized when δt+1 is specified, and as such the time-t action to be
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chosen is simply δt+1.

In this paper we consider three penalty functions that are very popular in the literature:

• Mean Square Error (MSE): ρ(ξδT ) = E[(ξδT )2].

• Semi Mean-Square Error (SMSE): ρ(ξδT ) = E[(ξδT )21{ξδT≥0}].

• Conditional Value-at-Risk (CVaRα): ρ(ξδT ) = E[ξδT | ξδT ≥ VaRα(ξ
δ
T )], where α ∈ (0, 1)

and VaRα(ξ
δ
T ) is the Value-at-Risk defined as VaRα(ξ

δ
T ) = minc{c : P(ξδT ≤ c) ≥ α}

and α = 95% or 99% in this work.

The MSE was first proposed in the seminal variance-optimal hedging framework of Schweizer

(1995), which was later extended to the multivariate case by Rémillard and Rubenthaler

(2013). The SMSE is a particular case of the asymetric polynomial penalty considered for

instance subsequently in Pham (2000), François et al. (2014) and Carbonneau and Godin

(2023). It provides the advantage over the MSE to avoid penalizing hedging gains. Lastly,

we consider CVaR as a standard metric for measuring potential catastrophic tail events,

frequently mandated by financial regulators for use in financial institutions. This metric has

also been explored in global hedging contexts in Melnikov and Smirnov (2012), Godin (2016),

Buehler et al. (2019), Carbonneau and Godin (2021) or Cao et al. (2023), among others.

Historically, an alternative method for addressing the problem described in Equation (2.2)

employs backward recursion within dynamic programming frameworks. However, this ap-

proach is hindered by the curse of dimensionality, limiting its practical applicability. To

overcome these limitations, we tackle Problem (2.2) using reinforcement learning.

2.2.2 Reinforcement learning and deep hedging

The optimal hedging problem (2.2) can be formulated as a reinforcement learning (RL)

problem because it is a feedback sequential decision-making task. In this framework, an agent

learns a policy (the investment strategy δ) which dictates trading actions to be applied as a

function of state variables to minimize the hedging objective highlighted in Equation (2.2).
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More precisely, the problem consists in learning the mapping δ̃.

Consistently with Buehler et al. (2019), the problem established in (2.2) is solved by direct

estimation of the policy through a deep policy gradient approach that relies on the estimation

of the mapping δ̃ by an Artificial Neural Network (ANN). Denoting by δ̃θ the policy obtained

when δ̃ is estimated by an ANN with parameters θ, the objective function we need to minimize

is thus

O(θ) = ρ
(
ξ δ̃θT

)
. (2.3)

2.2.2.1 Neural network architecture

We propose a nonstandard architecture which consists in a Recurrent Neural Network with

a Feedforward Connection (RNN-FNN) that combines the traditional Long Short-Term

Memory Network (LSTM) and the Feedforward Neural Network (FFNN) architectures. The

inclusion of LSTM layers mitigates problems related to vanishing gradients.2 The RNN-FNN

network is defined as a composition of LSTM cells {Cl}L1
l=1 and FFNN layers {Lj}L2

j=1 under

the following functional representation:

δ̃θ(Xt) = (LJ ◦ LL2 ◦ LL2−1 ◦ ... ◦ L1︸ ︷︷ ︸
FFNN layers

◦CL1 ◦ CL1−1... ◦ C1︸ ︷︷ ︸
LSTM cells

)(Xt).

The LSTM cell Cl is a mapping that transforms a vector Z(C, l−1)
t of dimension d(C, l−1) into a

vector Z(C, l)
t of dimension d(C, l) based on the following equations, considering Z(C, 0)

t = Xt:

i(l) = sigm(W
(l)
i Z

(C, l−1)
t + b

(l)
i ),

o(l) = sigm(W (l)
o Z

(C, l−1)
t + b(l)o ),

c(l) = i(l) ⊙ tanh(W (l)
c Z

(C, l−1)
t + b(l)c ),

Z
(C, l)
t = o

(l)
t ⊙ tanh(c(l)),

2Vanishing gradients arise when the gradients of the penalty function become extremely small, leading to
slow or halted training (details can be found in Goodfellow et al. (2016)).
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where sigm(·) and tanh(·) are respectively the sigmoid and hyperbolic tangent functions

applied element-wise and ⊙ is the Hadamard product. Layer Lj represents a FFNN layer that

maps the input vector Z(L, j−1)
t of dimension d(L, j−1) into a vector Z(L, j)

t of dimension d(L, j)

by applying a linear transformation TLj
(Z

(L, j−1)
t ) = WLj

Z
(L, j−1)
t + bLj

and, subsequently, an

element-wise non-linear activation function gLj
, i.e., Lj(Z

(L, j−1)
t ) = (gLj

◦ TLj
)(Z

(L, j−1)
t ) for

j ∈ {1, ..., L2, J}, considering Z(L, 0)
t = Z

(C,L1)
t .

The trainable parameters θ of the RNN-FNN network are listed below:

• If L1 ≥ l ≥ 1: W (l)
i , W (l)

o , W (l)
c ∈ Rd(C, l)×d(C, l−1) and b

(l)
i , b(l)o , b(l)c ∈ Rd(C, l)×1 with d(C, 0)

defined as the original dimension of the network input.

• If L2 ≥ j ≥ 1: WLj
∈ Rd(L, j)×d(L, j−1) and bLj

∈ Rd(L, j) with d(L, 0) = d(C,L1).

• If j = J : WLJ
∈ R1×d(L, L2) and bLJ

∈ R.

The selected hyperparameter values for our experiments are detailed in Section 2.4.3.1.

2.2.2.2 Neural network optimization

The RNN-FNN network is optimized with the Mini-batch Stochastic Gradient Descent method

(MSGD). This training procedure relies on updating iteratively all the trainable parameters

of the network based on the recursive equation

θj+1 = θj − ηj∇θÔ(θj), (2.4)

where θj is the set of parameters obtained after iteration j, ηj is the learning rate (step

size) which determines the magnitude of change in parameters on each time step,3 ∇θ is

the gradient operator with respect to θ and Ô is the Monte Carlo estimate of the objective

function (2.3) computed on a mini-batch. Additional details are provided in Appendix 2.6.1.

3This parameter can be either deterministic or adaptive, i.e., it may be adjusted during the training period.
For more details on this, please refer to Goodfellow et al. (2016).

10



2.3 Joint market dynamics

This section describes the market dynamics that represent the joint evolution of the S&P

500 index price and its associated Implied Volatility (IV) surface. Such model is used to

construct the state space of the hedging problem.

2.3.1 Daily implied volatility surface representation

On any given day, the cross-section of option prices on the S&P 500 index is captured through

the IV surface model introduced by François et al. (2022) which characterizes the entire

surface parsimoniously with a linear combination of five factors. More precisely, the time-t

IV of an option with time-to-maturity τt = T−t
252

years and moneyness Mt =
1√
τt

logSte(rt−qt)τt

K
,

where K is the strike price, is

σ(Mt, τt, βt) =
5∑

i=1

βt,ifi(Mt, τt) (2.5)

where βt = (βt,1, βt,2, βt,3, βt,4, βt,5) stands for the IV factor coefficients at time t and the

functions {fi}5i=1 represent the long-term at-the-money (ATM) level, the time-to-maturity

slope, the moneyness slope, the smile attenuation and the smirk, respectively (see Appendix

2.6.2.1 for their specification).

Following the same data processing and estimation procedure outlined in the aforementioned

study, we extract the daily time series of the IV factor coefficients spanning from January 4,

1996, to December 31, 2020.4

2.3.2 Joint Implied Volatility and Return (JIVR)

The JIVR model proposed by François et al. (2023) leverages the IV representation (2.5) and

provides explicit joint dynamics for the IV surface and the S&P 500 index price.

The first building block of the JIVR model represents the daily underlying asset excess

4The sample comes from OptionMetrics database, to which the conventional data exclusion filters are
applied.
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log-return, Rt+1 = log
(

St+1

St

)
− (rt − qt)∆. It integrates an NGARCH(1,1) process with

Normal Inverse Gaussian (NIG) innovations to capture volatility clusters and reproduce fat

tailed asymmetric returns, while borrowing information from the volatility surface to anchor

the evolution of the conditional variance process ht,R. The second building block includes a

multivariate heteroskedastic autoregressive processes with non-Gaussian innovations for all

implied volatility factor coefficients. The multivariate time series representation of the JIVR

model is presented in detail in Appendix 2.6.2.2.

The full model is characterized by the current market conditions

(St, {βt,i}5i=1, βt−1,2, ht,R, {ht,i}5i=1), which are respectively the underlying S&P 500 in-

dex price, IV factor coefficients, and conditional variances for the S&P 500 return and for

such coefficients.

Following François et al. (2023), the maximum likelihood estimation is applied to S&P

500 excess returns alongside the time series estimates of surface coefficients {βt,i}5i=1. As a

byproduct, we obtain daily estimates of conditional variance series ht,R and {ht,i}5i=1 for the

time period extending between January 4, 1996 and December 31, 2020.

2.4 Numerical study

In this section, simulation and backtesting experiments are conducted to evaluate the

performance of the proposed hedging approach.

2.4.1 Stochastic market generator

2.4.1.1 Market simulator

The JIVR model is used in subsequent simulation experiments to generate paths of the

variables pertaining to market dynamics (St, {βt,i}5i=1, ht,R, {ht,i}5i=1), which drive the hedging

decisions. The initial conditions ({β0,i}5i=1, h0,R, {h0,i}5i=1) are randomly chosen among values

prevailing in our data sample extending between January 4, 1996 and December 31, 2020.

This constitutes a wide variety of states of the economy. Following the determination of
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initial values, the simulation progresses through all time steps in two distinct phases. First, a

sequence of NIG innovations {ϵt}Tt=1 is simulated using the Monte Carlo method considering

the dependence structure of contemporaneous innovations. Secondly, equations of Section

2.6.2.2 are used to obtain values for ({Rt, βt,i}5i=1, ht,R, {ht,i}5i=1) for t = 1, . . . , T based on

the simulated innovations.

2.4.1.2 Market parameters for numerical experiments

The initial underlying asset value is normalized to S0 = 100 for simplicity. The options being

hedged are assumed to be European call options (Ψ(ST ) = max(ST −K, 0)) with maturities

T ∈ {21, 63, 126} days for short-term, medium-term and long-term maturities, and strikes

K ∈ {90, 100, 110} for in-the-money (ITM), at-the-money (ATM) and out-of-the-money

(OTM) options, respectively.5 Various levels of proportional transaction cost are considered,

namely κ ∈ {0%, 0.05%, 0.5%, 1%}. The initial value of the hedging strategy, V δ
0 , is set to

the price of the option being hedged, which is provided by the prevailing implied volatility

surface. Other parameters of the model are specified in Section 2.6.2.2.

2.4.2 Benchmarks

We benchmark RL hedging strategies against the performance of three standard models:

(i) the practitioner’s Black-Scholes delta hedging (BS) which applies the current implied

volatility into the Black-Scholes formula to obtain the hedged option’s delta; (ii) the Leland

(1985) delta (BSL), which modifies the BS delta to reflect proportional transaction costs;

and (iii) the Smile-implied delta (SI) introduced by Bates (2005) and whose closed-form

expression for the IV model (2.5) is provided by François et al. (2022). The explicit formulas

for these three benchmarks are detailed in Appendix 2.6.3.

5Unreported numerical results of European put options exhibit a similar pattern due to the Put-Call
parity formula.
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2.4.3 Neural network settings

2.4.3.1 Neural network architecture

We employ the RNN-FNN architecture from Section 2.2.2.1 with two LSTM cells (L1 = 2) of

width 56 (di = 56 for i = 1, 2) and two FFNN-hidden layers (L2 = 2) of width 56 with ReLU

activation function (i.e., gLi
(x) = max(0, x) for i = 1, 2). In the context of the output FFNN

layer LJ , which maps the output of hidden layers Z(L, L2)
t into the position in the underlying

asset δt+1, the standard deep hedging framework typically employs a linear activation function.

However, this activation function tends to induce RL agents to adopt doubling strategies,

increasing the position in the underlying asset several orders of magnitude over the current

position on each period after any loss until the cumulative loss amount is fully recovered.

Such strategies are definitely undesirable from the perspective of sound risk management.

Therefore, we opt to introduce a leverage constraint through the output layer activation

function.

This leverage constraint is a dynamic upper bound on the activation function, denoted as

gLJ
(Z, t) = min(Z,Bt(Z)), with Z = TLJ

(Z
(L, L2)
t ) representing the typical deep hedging

underlying asset position, and Bt(Z) the highest position in the index that can be held in the

portfolio. Such an upper bound avoids excessive leverage and limits the borrowing capacity,

i.e., the cash held satisfies ϕt+1(Xt) ≥ −B for all Xt and t, and B > 0.6 The latter, in

conjunction with the self-financing constraint (2.1), establishes the dynamic upper bound as

Bt(Z) =


V0+B
S0

if t = 0

Vt+B+κStδt
St(1+κ)

if t > 0 and Z ≥ δt

Vt+B−κStδt
St(1−κ)

if t > 0 and Z < δt.

(2.6)

Appendix 2.6.4.1 provides numerical experiments that illustrate the necessity of including a

leverage constraint in the network architecture to alleviate the aforementioned issues.

6This type of leverage condition has been previously employed in the literature. For instance, the seminal
paper of Harrison and Pliska (1981) assumes a restricted borrowing capacity to maintain a positive wealth
throughout the entire hedging period.
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Our numerical experiments demonstrate the superiority of the RNN-FNN architecture over

standalone LSTM and FFNN networks, considering a leverage constraint of B = 100 for all

agents. These results are presented in Appendix 2.6.4.2. Additionally, agents are trained

as described in Section 2.2.2.2 on a training set of 400,000 independent simulated paths

with mini-batch size of 1,000 and a learning rate of 0.0005 that is progressively adapted

by the ADAM optimization algorithm.7 In addition, we include a regularization method

called dropout with parameter p = 0.5 to reduce the likelihood of overfitting and enhance

the model performance on unseen data.8 The training procedure is implemented in Python,

using Tensorflow and considering the Glorot and Bengio (2010) random initialization of the

initial parameters of the neural network. Numerical results are obtained from a test set of

100,000 independent paths.

2.4.3.2 State space selection

The nature of the hedging problem, combined with the JIVR model, establishes a decision

framework where the optimal decision is entirely defined by the state variables at time t,

denoted as Xt = (V δ
t , δt, τt, St, {βt,i}5i=1, ht,R, {ht,i}5i=1).

However, implementing numerical methods within the deep policy gradient approach across

the entire state space may lead to overfitting. In fact, other studies utilizing the RL framework

have reported optimal results with a reduced state space. For instance, Buehler et al. (2019)

and Cao et al. (2023) employ the deep hedging algorithm without including the portfolio

value V δ
t in the state space configuration. Similarly, Carbonneau (2021) employs the deep

hedging framework in a frictionless market without including δt in the state space.

We explore three different state space configurations. The first configuration aims to replicate

7ADAM is a dynamic learning rate algorithm engineered to accelerate training speeds in deep neural
networks and achieve rapid convergence, details can be seen in Goodfellow et al. (2016).

8Full details of the dropout regularization method can be seen in Goodfellow et al. (2016). The selection
of p = 0.5 stems from our numerical experiments detailed in Appendix 2.6.4.3, indicating that this value
consistently outperforms others across all penalty functions.
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the full state space, denoted by

(V δ
t , δt, τt, St, {βt,i}5i=1, ht,R, {ht,i}5i=1), (2.7)

typically considered in a dynamic optimization task with the portfolio value as a state variable.

The second state space does not consider the portfolio value and also omits the variance of

the IV coefficients {ht,i}5i=1 under the intuition that these coefficients have a second-order

effect, with the IV surface coefficients {βt,i}5i=1 capturing most of the variability. Hence, the

reduced state space is defined as

(δt, τt, St, {βt,i}5i=1, ht,R).

The current position δt is required for the RL agent to learn about the transaction cost

associated with the next rebalancing. This state space component is no longer useful when

κ = 0. For that reason, we remove this component in absence of transaction cost. In such

case, the reduced state space is denoted by

(τt, St, {βt,i}5i=1, ht,R).

Our numerical experiments consider the three aforementioned state spaces to hedge a European

ATM call option with maturity N = 63 days, while taking into account four different

transaction cost rates κ ∈ {0%, 0.05%, 0.5%, 1%}. The impact of the option moneyness and

maturity on hedging performance are studied in later subsections. Additionally, our numerical

experiments involve four RL agents: RL-CVaR95%, RL-CVaR99%, RL-MSE, and RL-SMSE.

These agents aim to minimize different penalty functions.
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Figure 2.1: Optimal penalty function value for a short position in an ATM call option with
maturity of 63 days under various state spaces and transaction cost levels.
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Results are computed using 100,000 out-of-sample paths according to the conditions
outlined in Section 2.4.3.1. Each panel illustrates the optimal penalty function value
of an RL agent considering four transaction cost levels. These values are normalized
by the estimated values of each penalty function obtained with BSL delta hedging for
each transaction cost level. Agents are trained under the specified penalty functions
considering three state spaces: full state space (V δ

t , δt, τt, St, {βt,i}5i=1, ht,R, {ht,i}5i=1) (red
curve), and the two reduced state spaces (δt, τt, St, {βt,i}5i=1, ht,R, {ht,i}5i=1) (green curve)
and (τt, St, {βt,i}5i=1, ht,R, {ht,i}5i=1) (blue curve).

Figure 2.1 illustrates the estimated value of the four penalty functions in proportion to that

obtained with the BSL delta, ρ(ξδT )/ρ(ξBSL
T ), across different transaction cost rates for all

agents. These numerical results reveal that RL agents outperform BSL delta hedging for

all considered state space configurations, as the relative values of the penalty functions are

substantially lower than the reference line value of 1.

Moreover, these results confirm that including the portfolio value in the full state space is

unnecessary for our approach, as metrics under the reduced state space (green curve) show

lower values than those achieved by agents using the full state space (red curve). This is

consistent with the work of Buehler et al. (2019), Cao et al. (2020), Buehler et al. (2022), and
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Cao et al. (2023), where RL techniques are applied in the hedging context without considering

the portfolio value as a state variable.

In the absence of transaction costs, Figure 2.1 confirm that the inclusion of δt in the reduced

state space is unnecessary, as the incremental performance with and without it is negligible.

Conversely, in the presence of transaction costs, agents trained under the reduced state

space (δt, τt, St, {βt,i}5i=1, ht,R) demonstrate superior performance (green curve), and the

outperformance with respect to benchmarks becomes more pronounced as the transaction

cost rate increases. This observation underscores the importance of considering previous

positions in the underlying when optimizing rebalancing actions, as the former is indicative

of transaction costs to be paid for the various possible actions.

The superiority of RL agents trained on the reduced state space can be explained by the

bias-variance dilemma, where the informational content provided by some of the variables

(reduction in bias) is insufficient to compensate for additional complexity and instability

(variance) they cause during training. This is seemingly why removing the IV parameters’

variances {ht,i}5i=1 from the state space increases the performance in this experiment. Our

numerical results indicate that the network architecture considered for the agents acting in

our proposed high-dimensional environment does not require the full state space. In fact, the

performance of the agents deteriorates for some transaction cost levels when the volatilities

of the IV coefficients are included, as shown in Figure 2.1, and the time required to converge

to optimal solutions during training increases by an average of 190% compared to RL agents

under the reduced state space across all experiments.

In all subsequent experiments, we consider the reduced state space (δt, τt, St, {βt,i}5i=1, ht,R)

in the presence of transaction costs and the state space (τt, St, {βt,i}5i=1, ht,R) in the absence

of transaction costs to enhance parsimony.
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2.4.4 Benchmarking of hedging strategies

In this section, we compare the performance of RL agents with classic hedging approaches.

Aggregated results are presented in Section 2.4.4.1, while the segmentation among various

states of the economy is shown in Section 2.4.4.2. The following subsections break down

the performance of the RL agents with respect to moneyness and maturity of the hedged

option, or to transaction cost levels, demonstrating the robustness of the RL approach.

Finally, Section 2.4.6 outlines a comparison of performance over historical paths spanning

from January 5, 1996, to December 31, 2020.

2.4.4.1 Benchmarking over randomized economic conditions

We begin by comparing the hedging performance of the benchmarks and RL agents trained

under the four penalty functions: CVaR95%, CVaR99%, MSE, and SMSE. This comparison is

performed in terms of estimated values of all penalty functions and the average Profit and

Loss, Avg P&L = E[−ξδT ], across all paths in a test set. Additionally, we employ the CVaR

deviation measure, defined as CVaRα(ξ
δ
T −E[ξδT ]), as a deviation metric for the hedging error

in the test set. In such test set, initial economic conditions (the initial value of state variables

in the path) are sampled randomly among historical values from our sample. It therefore

reflects aggregate performance across various economic conditions. Our analysis focuses on

hedging a European ATM call option with a maturity of N = 63, under the assumption of

no transaction costs, which is κ = 0.
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Table 2.1: Aggregated hedging metrics for a short position in an ATM call option with
maturity of 63 days.

Benchmark Reinforcement Learning

Metric BS SI CVaR95% CVaR99% MSE SMSE

Avg P&L 0.356 0.498 0.380 0.321 0.285 0.374

CVaRα(ξ
δ
T − E[ξδT ]) 2.159 3.005 1.646 1.720 1.766 1.652

CVaR95% 1.803 2.507 1.266 1.399 1.481 1.278

CVaR99% 3.442 4.351 2.312 2.198 2.625 2.245

MSE 0.898 1.818 1.243 1.362 0.657 1.018

SMSE 0.298 0.564 0.184 0.214 0.183 0.151

Avg P&L/CVaRα(ξ
δ
T − E[ξδT ]) 0.165 0.166 0.231 0.187 0.161 0.227

Results are computed using 100,000 out-of-sample paths in the absence of transaction
costs (κ = 0%). Agents are trained under the reduced state space (τt, St, {βt,i}5i=1, ht,R)
according to the conditions outlined in Section 2.4.3.1. BS stands for Black-Scholes delta
hedging, whereas SI is the smile-implied delta hedging.

Table 2.1 presents hedging performance metrics attained by both benchmarks and RL agents.

Every RL agent achieves the lowest value for the corresponding metric which they used as

objective function during training, which is expected. Furthermore, the numerical results

indicate that RL agents provide hedging strategies that are much less risky than benchmarks,

as evidenced by metrics such as CVaR95%, CVaR99%, and SMSE. In particular, when computing

the variation rate between the estimated value of each of these metrics obtained by RL agents

relative to the value obtained by BS delta, we observe an average reduction rate across

RL agents of 24%, 31%, and 38%, respectively. Similarly, when comparing with SI delta

strategies, we observe average reductions across RL agents of 45%, 46%, and 67%, respectively.

Moreover, in terms of the MSE metric, the MSE agent demonstrates significant superiority

over benchmarks, reducing 26% and 63% compared to BS delta and SI delta strategies,

respectively.
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Regarding average Profit and Loss (P&L), SI delta yields higher profitability; however, it also

entails increased risk. In contrast, RL agents trained using CVaR95%, CVaR99%, and SMSE

as penalty functions obtain lower values compared to SI delta strategies, but they reach a

more favorable trade-off between profitability and risk management as shown by the ratio

Avg P&L/CVaRα(ξ
δ
T − E[ξδT ]), which yields greater values for these agents. Additionally, RL

agents achieve lower risk than both the BS and SI delta hedging strategies, which highlights

enhanced risk management.

2.4.4.2 Impact of the state of the economy on performance

In this section, we analyze the performance metrics of hedging strategies across clusters of

paths representing different economic states, as detailed in Table 2.3. A path is assigned to a

cluster if its state variable initial values are drawn from the subset of dates corresponding to

that cluster. This approach helps isolate the impact of economic conditions on performance

and assess the robustness of RL hedging strategies. Again, we hedge an ATM European call

option with a maturity of N = 63 days under the assumption of no transaction cost.

Table 2.3: Clusters of dates representing different time periods

Period Time frames Avg option price

Regular 1 05/01/1996 - 28/02/1997 $3.849
Crisis 1 (Asian financial crisis) 03/03/1997 - 31/12/1998 $5.351
Regular 2 04/01/1999 - 31/12/1999 $5.301
Crisis 2 (Dot-com bubble crisis) 03/01/2000 - 31/12/2002 $5.758
Regular 3 02/01/2003 - 31/12/2007 $3.877
Crisis 3 (Global financial crisis) 02/01/2008 - 31/12/2009 $8.009
Regular 4 04/01/2010 - 31/01/2020 $3.728
Crisis 4 (Covid-19 pandemic crisis) 03/02/2020 - 31/12/2020 $6.486

These periods aim to approximate different states of the economy to highlight the
performance of our approach within time windows capturing the financial fluctuations
characteristic of each economic crisis. The column "Avg option price" displays the average
option price of an ATM call option with maturity of 63 days per cluster.

Our numerical results, illustrated in Figure 2.2, indicate that both benchmarks and RL

agents are sensitive to the environment, showcasing better performance during regular periods
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compared to financial crises in terms of risk, as shown by the two right plots showing the

CVaR95% and SMSE metrics. Additionally, both approaches tend to offer more profitable

strategies during crisis periods and periods of high volatility (for instance, even though

Regular period 2 is not labeled as a crisis periods, it is characterized by economic recovery

with significant market fluctuations). This trend can be explained by the fact that higher

volatility during these periods leads to a higher risk premium, increasing the initial portfolio

value and thus the final P&L, as highlighted by the Avg P&L metric (see the top left panel

of Figure 2.2). Regarding the MSE metric, the results align with the Avg P&L metric, with

both approaches showing superior performance during regular periods (except for Regular

period 2 which exhibited high volatility), as higher profits are detrimental for the MSE metric

penalizing upside risk.

Figure 2.2: Hedging metrics for a short position in an ATM call option with maturity of 63
days under different states of the economy.
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Results are computed using 100,000 out-of-sample paths in the absence of transaction costs
(κ = 0%). Agents are trained under the reduced state space (τt, St, {βt,i}5i=1, ht,R) according
to the conditions outlined in Section 2.4.3.1. The results are organized chronologically
across the periods outlined in Table 2.3.

The results that are segregated by time period align with the aggregated findings. Indeed,

for any of the CVaR95%, MSE, and SMSE risk metrics, the RL agent which was trained with
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such risk metric as its objective function consistently exhibits lower values than benchmarks

across all periods. These differences are particularly notable during crisis periods, where BS

delta and SI delta tend to be riskier, while RL agents demonstrate greater stability. The

higher values in the MSE statistic of agents trained under CVaR and SMSE can be attributed

to the fact that these objective functions only penalize hedging losses, allowing agents to seek

positive returns on average. This is consistent with the Avg P&L panel, where CVaR and

SMSE agents tend to display more profitable strategies than the MSE agent.

These results demonstrate the robustness of the RL approach across various environments,

exhibiting greater stability in scenarios with extreme behavior and improving hedging perfor-

mance in terms of the penalty functions considered in the hedging problem. Additionally,

they support our initial findings, indicating that RL agents do not significantly sacrifice

profitability even during extreme market conditions, a phenomenon that could be attributed

to higher initial option prices during these periods, as shown in Table 2.3.

2.4.4.3 Impact of moneyness level on performance

We investigate the robustness of our approach with respect to the moneyness level of the

option being hedged by including OTM and ITM call options with a maturity of N = 63

days in our analysis. Our findings, depicted in Figure 2.3, demonstrate that RL consistently

outperforms benchmarks with respect to the objective function considered during the training

process, regardless of the option moneyness.
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Figure 2.3: Hedging metrics for a short position in OTM, ATM and ITM call options with
a maturity of 63 days.
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Results are computed using 100,000 out-of-sample paths in the absence of transaction
costs (κ = 0%). Agents are trained under the reduced state space (τt, St, {βt,i}5i=1, ht,R)
according to the conditions outlined in Section 2.4.3.1. The average option price stands
at $0.59 for OTM options, $3.89 for ATM options, and $11.37 for ITM options.

In line with our previous experiments, we observe that SI delta tends to offer more profitable

strategies compared to benchmarks, while BS delta demonstrates a similar level of profitability

for ATM and ITM options. However, this trend does not hold for OTM options, where RL

agents not only exhibit better risk management but also yield more profitable strategies on

average (refer to CVaR and SMSE agents for OTM options in Figure 2.3). The discrepancy

can be attributed to the fact that RL agents trained under CVaR and SMSE do not track

the option value nor penalize gains at maturity, allowing agents to profit from OTM paths at

maturity. In contrast, BS and BSL are option tracking methodologies that aim to replicate the

option value at maturity, thereby reducing potential gains for OTM options at maturity. The

latter is consistent with the RL agent trained under the MSE, which achieves the minimum

MSE value for OTM options and the lowest Avg P&L, as it penalizes both gains and losses.
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2.4.4.4 Impact of option maturity on performance

As a third test to assess the robustness of our approach, we compare the performance of RL

agents against benchmarks when hedging ATM call options with different maturities: 21, 63,

and 126 days, in absence of transaction costs. Our results, illustrated in Figure 2.4, show

that the average profitability of hedging strategies increases with option maturity (see Avg

P&L in the top left panel). However, the risk also increases with maturity for all hedging

strategies (refer to CVaR95% and SMSE depicted in the panels positioned at the top and

bottom right corners), as expected.

Figure 2.4: Hedging metrics for a short position in ATM call options with maturities of 21,
63 and 126 days.
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Results are computed using 100,000 out-of-sample paths in the absence of transaction
costs (κ = 0%). Agents are trained under the reduced state space (τt, St, {βt,i}5i=1, ht,R)
according to the conditions outlined in Section 2.4.3.1. Average prices are $2.15, $3.89
and $5.65 for options with maturities of 21 days, 63 days and 126 days, respectively.

These results also demonstrate consistent behavior across all maturities for all hedging metrics,

displaying a uniform distribution among the different strategies across all maturity levels.

In line with our previous experiments, RL agents consistently outperform benchmarks with

respect to asymmetric penalty functions for all maturities, regardless of the penalty function

used during training. Furthermore, in the case of the MSE metric (bottom left panel in
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Figure 2.4), the RL agent trained under that penalty function displays the lowest value across

all maturities.

2.4.4.5 Impact of transaction costs on performance

We now investigate scenarios where hedgers encounter transaction costs, which is meant to

reflect more realistic hedging scenarios. Specifically, we analyze the hedging effectiveness of

RL agents in comparison to benchmarks, including the BSL delta hedging. Our examination

focuses on hedging an ATM European call option with a maturity of N = 63 days across

varying levels of transaction costs assumed to be 0.05%, 0.5% and 1%.

Figure 2.5 illustrates the performance of benchmarks and RL agents, with the four panels

depicting the Avg P&L, CVaR95%, MSE, and SMSE metrics. In general, as expected, the

performance of each strategy tends to deteriorate as transaction costs increase. However,

performance drops are more pronounced for benchmarks than for RL agents. As anticipated,

RL agents consistently outperform benchmarks in terms of downside risk (observe CVaR95%

and SMSE metrics depicted in the panels positioned at the top and bottom right corners

of Figure 2.5) across all transaction cost levels, regardless of the penalty function used

during training. Furthermore, while BSL delta hedging adjusts the strategies in terms of

the transaction cost level and performs better than the other benchmarks, RL strategies

display superior metrics, highlighting their better capacity to adapt to different transaction

cost levels.
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Figure 2.5: Hedging metrics for a short position in an ATM call option with a maturity of
63 days under different transaction cost levels.
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Results are computed using 100,000 out-of-sample paths under the reduced state space
(τt, St, {βt,i}5i=1, ht,R) without transaction costs, and under (δt, τt, St, {βt,i}5i=1, ht,R) in the
presence of transaction cost. Agents are trained according to the conditions outlined in
Section 2.4.3.1. The average option price is $3.89 with a standard deviation of $1.29. The
acronym TC stands for transaction cost. BS stands for Black-Scholes delta hedging, BSL
for Leland delta hedging and SI for smile-implied delta hedging.

In contrast to our previous results where SI delta provides more profitability, the results

regarding the Avg P&L metric (see top left panel in Figure 2.5) indicate that this profitability

is influenced by the inclusion of transaction costs, making the SI delta hedging less profitable

strategy as transaction costs increase, whereas RL agents tend to exhibit much lower average

losses due to their adaptability. In terms of MSE, benchmarks exhibit a more sensitive

behavior than the RL agents regarding the increase in transaction costs, especially when the

transaction costs are set at 0.5% and 1% (see the bottom-left panel of Figure 2.5), irrespective

of the penalty function considered during training.

Table 2.4 displays descriptive statistics about hedging costs, defined as the sum of discounted

transaction costs over a path,

T−1∑
t=0

e−r∆tκSt | δt+1 − δt |, (2.8)
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across different transaction cost levels. In the cases of BS delta and SI delta strategies, which

overlook transaction costs, we observe a higher cost of hedging due to significant variations

in the position of the underlying asset during rebalancing across different time steps, thereby

leading to lower profitability as transaction costs increase. This trend is evident in the case of

SI delta which incurs the highest average hedging cost, followed by BS delta and BSL delta,

when the transaction cost rate is set to 0.5% and 1%. These results consistently align with

the performance differences observed in Figure 2.5, where benchmarks are associated with

the highest losses.

Table 2.4: Hedging costs when hedging a short ATM call option position with a maturity of
N = 63 days under various transaction cost levels.

Benchmark - Delta Reinforcement Learning

κ Metric BS SI Leland CVaR95% CVaR99% MSE SMSE

0.05% Mean 0.138 0.142 0.136 0.112 0.108 0.150 0.113

Std 0.041 0.048 0.040 0.024 0.021 0.042 0.025

0.5% Mean 1.376 1.420 1.223 0.751 0.788 0.767 0.674

Std 0.412 0.482 0.317 0.137 0.137 0.205 0.127

1% Mean 2.753 2.839 2.260 1.245 1.259 1.139 1.031

Std 0.824 0.964 0.535 0.203 0.212 0.254 0.188

The average cost of hedging is computed by evaluating the hedging cost across 100,000
out-of-sample independent paths. Transaction cost levels are assumed to be proportional
to the trade size. The lowest values across all hedging strategies are highlighted in bold.
The average option price is $3.89 with a standard deviation of $1.29. Std stands for
standard deviation.

Furthermore, although none of the agents directly aim to minimize transaction costs, we

observe that RL agents with asymmetric penalty functions tend to offer hedging strategies

with lower costs, as shown by the highlighted values in Table 2.4. This underscores the

robustness of RL agents in addressing transaction costs, as they minimize the penalty function

and thereby indirectly reduce the cost of hedging. Conversely, the RL agent trained under
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the MSE criterion tends to exhibit higher average costs compared to the other agents. This

can be attributed to the MSE agent penalizing both negative and positive returns, creating

additional turnover in some situations to avoid large profits.

2.4.5 Global importance of IV surface features

We now investigate to what extent the risk factors characterizing the IV surface described

in Equation (2.5) contribute to total performance of our model. We employ the Shapley

Additive Global Importance (SAGE) methodology, introduced by Covert et al. (2020), to

evaluate their impact. Specifically, let ρ
(
ξ
δ̃θ(X )
T

)
be the risk measure when the model is

trained with the state space X . The amount of risk reduction achieved by adding the state

variables ({βt,i}5i=1, ht,R) to a baseline model δ̃θ with state variables (τt, St) is

ρ
(
ξ
δ̃θ(τt,St)
T

)
− ρ

(
ξ
δ̃θ(τt,St,{βt,i}5i=1,ht,R)
T

)
=

∑
j∈{{βt,i}5i=1,ht,R}

Cj

where Cj, the contribution of feature j to the total risk reduction, is

Cj =
∑

X⊆{τt,St,{βt,i}5i=1,ht,R}\{j}

|X |!(▽− |X |)!
6!

[
ρ
(
ξ
δ̃θ(X )
T

)
− ρ

(
ξ
δ̃θ(X ,|)
T

)]
.

Exact contributions Cj cannot be negative, although their estimates sometimes are. Negative

values may occur for the contributions we present that are evaluated out-of-sample.

Our numerical experiments involve training RL agents using four penalty functions: CVaR95%,

CVaR99%, MSE, and SMSE. We analyze the global importance of these state variables across

different moneyness and maturities to comprehend their impact on the performance of the RL

agents. The global importance of state variables is normalized by the risk reduction achieved

by the respective RL agent to present contributions in the same order of magnitude: the

relative global importance is
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Cj
ρ
(
ξ
δ̃θ(τt,St)
T

)
− ρ

(
ξ
δ̃θ(τt,St,{βt,i}5i=1,ht,R)

T

) , for j ∈ {ht,R} ∪ {βt,i}5i=1. (2.9)

The relative global importance of the IV characteristic βt,i and the return conditional variance

ht,R to the risk reduction depends on the moneyness and the time-to-maturity of the option

to be hedged, as well as on the choice of risk measure.

Figure 2.6 studies the case of 63-day-to-maturity call options. It illustrates the relative

contribution of each state variable across moneyness levels. Overall, the conditional variance

of the underlying asset returns, the long-term ATM level β1 and the time-to-maturity slope β2

of the IV surface play a major role, no matter what risk measure or moneyness is considered.

This underscores that RL agents utilize both the historical variance process and market

expectations of future volatility to adjust positions in the underlying asset. The moneyness

slope, the smile attenuation and the smirk have a second order effect.

Figure 2.6: Normalized global importance of features when hedging a European call options
with a maturity N = 63 days, across various moneyness levels.
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Results are computed using 100,000 out-of-sample paths in the absence of transaction costs
(κ = 0%). Each panel illustrates the Shapley values for all state variables ({βt,i}5i=1, ht,R)
and different moneyness: OTM, ATM, and ITM. These results are shown for the four RL
agents: RL-CVaR95%, RL-CVaR99%, RL-MSE, and RL-SMSE. The Shapley values are
normalized by the risk reduction achieved by the respective agent according to Equation
(2.9).
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Figure 2.7 presents contributions to hedging risk reduction for three option maturities, namely

21, 63 or 126 business days. It underscores the persistent significance of the conditional

variance process {ht,R} across the various option maturities. Its contribution is even more

important for short-term maturities. This reflects the fact that ht,R has a direct impact on

immediate market shocks. Both β4 and β5 are additional contributors mostly for short-term

options when CVaR risk measures are considered. Intuitively, high values of the smile

attenuation (β4) and the smirk (β5) indicate a steep slope and a strong smirk for the short

term smile which, in turn, induces a high exposure to tail risk for short term options.

Figure 2.7: Global importance of features when hedging a European ATM call options,
across various maturities.
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Results are computed using 100,000 out-of-sample paths in the absence of transaction
costs (κ = 0%). Each panel illustrates the Shapley values for all features under different
maturities: 21, 63, and 126 business days. These results are shown for the four RL agents:
CVaR95%, CVaR99%, MSE, and SMSE. The Shapley values are normalized by the risk
reduction achieved by the respective agent according to Equation (2.9).

2.4.6 Backtesting

In this section, we benchmark our approach using a historical path of the JIVR model

spanning from January 5, 1996, to December 31, 2020, to assess the effectiveness of RL agents.

Unlike our above experiments, which use simulated paths to test hedging strategies, this

experiment examines their performance based on the historical series {Rt, βt}. Specifically,
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we evaluate the hedging performance considering a new European ATM call option with a

maturity of 63 days every 21 business days along this historical path. The option prices,

serving as initial hedging portfolio values, are determined with the prevailing IV surface on

the day the hedge is initiated.

To assess the robustness of the model under more general market conditions, we conduct a

comparison of cumulative P&Ls, which are computed as the cumulative sums of the P&L

achieved by each strategy at the maturity of each option during the analyzed period. As

illustrated in Figure 2.8, which depicts the evolution of the cumulative P&L across two panels,

each representing a different transaction cost level, the gap in cumulative P&L between RL

agents and benchmarks significantly widens as transaction cost rates increase. This, again,

highlights the adaptability of the RL approach to various market conditions.

Figure 2.8: Cumulative P&L for ATM call options with a maturity of 63 days under real
asset price dynamics.
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Results are computed based on the observed P&L from hedging 296 synthetic ATM Call
options under real market conditions observed from May 1, 1996, to December 31, 2020.
A new option is considered every 21 business days. Agents are trained under the reduced
state space (δt, τt, St, {βt,i}5i=1, ht,R) according to the conditions outlined in Section 2.4.3.1.

In contrast to the findings presented in Section 2.4.4.1, where SI delta yielded the highest

profitability among all strategies, the RL approach achieved the highest profitability in

historical paths. Specifically, agents trained under the MSE and SMSE emerged as the most

profitable ones.

Moreover, RL agents consistently outperform benchmarks across most of the transaction cost
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levels. However, when the transaction cost is small (left panel), Benchmarks exhibit a better

cumulative P&L compared to the RL agent trained under the CVaR99% penalty function

at the end of the period, December 31, 2020. Nevertheless, Benchmarks also demonstrate

more variability and larger losses, such as those observed between 2008 and 2012. In contrast,

RL agents show a smaller decrease in cumulative P&L, indicating more resilience during

crisis periods. In general, the observed performance of the RL agents under historical data is

consistent with our findings under simulated data, indicating the robustness of our approach.

2.5 Conclusion

This study introduces a novel deep hedging framework that integrates forward-looking

volatility information through a functional representation of the IV surface, combined with

backward-looking conventional features. Our implementation employs deep policy gradient

methods and utilizes a unique neural network architecture consisting of LSTM cells and

FFNN layers to enhance training efficiency. Additionally, the architecture incorporates a

budget constraint mitigating the incentive to gamble and enabling the agent to learn hedging

strategies that are more effective for risk management.

Our approach consistently outperforms traditional benchmarks both in the absence and

presence of transaction costs. The stability of our approach is assessed across various

economic states using simulated data, demonstrating greater robustness than benchmarks in

extreme scenarios such as economic crises.

The global importance analysis of IV features confirms the significant enhancement of

hedging performance in terms of risk reduction relative to the penalty functions. Our

analysis underscores the critical importance of key factors such as the underlying asset return

conditional variance process (hR), the long-term ATM IV level (β1) and the time-to-maturity

slope (β2). RL agents utilize both the historical variance process and market expectations of

future volatility to adjust positions in the underlying asset.
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2.6 Appendix

2.6.1 Details for the MSGD training approach

The MSGD method estimates the penalty function O(θ), which is typically unknown, through

small samples of the hedging error called batches. Let Bj = {ξ
δ̃θj
T,i }

Nbatch
i=1 be the j-th batch

where Nbatch is the batch size and ξ
δ̃θj
T,i denotes the hedging error of the i-th path in the j-th

batch defined as

ξ
δ̃θj
T,i = Ψ(ST,(j−1)Nbatch+i)− V

δ̃θj
T,i for i ∈ {1, . . . , Nbatch}, j ∈ {1, ...N},

where ST,(j−1)Nbatch+i is the price of the underlying asset at time T in the ((j−1)Nbatch+ i)-th

simulated path, V
δ̃θj
T,i is the terminal value of the hedging strategy for that path when θ = θj

and the simulated states are Xi.

The penalty function estimation for the batch B is

Ĉ(MSE)(θj,Bj) =
1

Nbatch

Nbatch∑
i=1

(
ξ
δ̃θj
T,i

)2

,

Ĉ(SMSE)(θj,Bj) =
1

Nbatch

Nbatch∑
i=1

(
ξ
δ̃θj
T,i

)2

1{
ξ
δ̃θj
T,i ≥0

} ,

Ĉ(CVaR)(θj,Bj) = V̂aRα(Bj) +
1

(1− α)Nbatch

Nbatch∑
i=1

max

(
ξ
δ̃θj
T,i − V̂aRα(Bj), 0

)
,

where V̂aRα(Bj) = ξ
δ̃θj

T,[⌈α·Nbatch⌉]
is the estimation of the VaR obtained from the ordered

sample {ξ
δ̃θj
T,[i]}

Nbatch
i=1 and ⌈·⌉ is the ceiling function. These empirical approximations are used

to estimate the gradient of the penalty function required in Equation (2.4).9

The selection of batch size plays a key role in the MSGD training approach as we empirically

9In particular, the gradient of these estimations has analytical expressions for FFNN, LSTM networks
and thus for RNN-FNN networks. Details about gradient of the empirical objective function are provided in
Goodfellow et al. (2016).

34



measure tail risk. A larger batch size provides a more accurate gradient estimate by averaging

gradients computed over more simulated paths, thereby promoting stable convergence during

training. However, large batch sizes may introduce certain disadvantages such as increased

memory requirements, slower convergence, and potential generalization issues. We adopt

the batch size used in Carbonneau (2021) (Nbatch = 1,000), which achieves a good balance

between accuracy and convergence.

2.6.2 Joint Implied Volatility and Return model

2.6.2.1 Daily implied volatility surface

The functional representation of the IV surface model introduced by François et al. (2022) is

σ(Mt, τt, βt) = βt,1︸︷︷︸
f1: Long-term ATM IV

+βt,2 e−
√

τt/Tconv︸ ︷︷ ︸
f2: Time-to-maturity slope

+βt,3

(
Mt1{Mt≥0} +

e2Mt − 1

e2Mt + 1
1{Mt<0}

)
︸ ︷︷ ︸

f3: Moneyness slope

+ βt,4

(
1− e−M2

t

)
log(τt/Tmax)︸ ︷︷ ︸

f4: Smile attenuation

+βt,5

(
1− e(3Mt)3

)
log(τt/Tmax)1{Mt<0}︸ ︷︷ ︸
f5: Smirk

, τt ∈ [Tmin, Tmax]

(2.10)

where Tmax is set to 5 years, Tmin = 6/252 and Tconv = 0.25. As in Dumas et al. (1998), a

minimum threshold of 0.01 is applied to the volatility surface to prevent negative values.

2.6.2.2 Joint Implied Volatility and Return

The JIVR model proposed by François et al. (2023) has 6 components, one for the underlying

asset excess returns and the other 5 for fluctuations of the IV surface coefficients. The S&P

500 excess return follows:

Rt+1 = ξt+1 − ψ(
√
ht+1,R∆) +

√
ht+1,R∆ϵt+1,R,

ht+1,R = Yt + κR(ht,R − Yt) + aRht,R(ϵ
2
t,R − 1− 2γRϵt,R), (2.11)

Yt =

(
ωR σ

(
0,

1

12
, βt

))2

,
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where the equity risk premium is

ξt+1 = ψ(−λ
√
ht+1,R∆)− ψ((1− λ)

√
ht+1,R∆) + ψ(

√
ht+1,R∆), (2.12)

the process {ϵt,R}Tt=0 is a sequence of iid standardized NIG random variables with parameters

ζR and φR,10 and ψ is their cumulant generating function.11 Parameters of the excess return

component of the model are thus ΘR = (λ, κR, γR, aR, ωR, ζR, φR).

The evolution of the long-term factor (β1) is

βt+1,1 = α1 +
5∑

i=1

θ1,jβt,j +
√
ht+1,1∆ϵt+1,1,

ht+1,1 = Ut + κ1(ht,1 − Ut) + a1ht,1(ϵ
2
t,1 − 1− 2γ1ϵt,1), (2.13)

Ut =

(
ω1 · σ

(
0,

1

12
, βt

))2

.

For the other 4 coefficients, i ∈ {2, 3, 4, 5}, the time evolution satisfies

βt+1,i = αi +
5∑

j=1

θi,jβt,j + νβt−1,21{i=2} +
√
ht+1,i∆ϵt+1,i,

ht+1,i = σ2
i + κi(ht,i − σ2

i ) + aiht,i(ϵ
2
t,i − 1− 2γiϵt,i), (2.14)

10The standard NIG random variable ϵ follows the probability density function with parameters ζ and φ:

f(x) =

B1

(√
φ6

φ2+ζ2 + (φ2 + ζ2)
(
x+ φ2ζ

φ2+ζ2

)2)

π

√
1

φ2+ζ2 + φ2+ζ2

φ6

(
x+ φ2ζ

φ2+ζ2

)2 e

(
φ4

φ2+ζ2
+ζ

(
x+ φ2ζ

φ2+ζ2

))
,

where B1(·) denotes the modified Bessel function of the second kind with index 1. The common (α, β, δ, µ)-
specification can be obtained by replacing β and γ (γ =

√
α2 − β2), with ζ and φ, respectively, and imposing

a null mean and unit variance to express δ and µ interms of α, β.
11For −

√
ζ2 + φ2 − ζ < z <

√
ζ2 + φ2 − ζ, the cumulant generating function is given by

ψ(z) =
φ2

φ2 + ζ2

(
−ζz + φ2 − φ

√
φ2 + ζ2 − (φ+ ζ)2

)
.
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where {ϵt,i}5i=1 are time-independent standardized NIG random variables with param-

eters {(ζi, φi)}5i=1, respectively. Parameters are {ω1, ν,Θ1,Θ2,Θ3,Θ4,Θ5} with Θi =

(αi, {θi,1}5i=1, σi, κi, ai, γi, ζi, φi)}5i=1.

The JIVR model also imposes a dependence structure on contemporaneous innovations

ϵt = (ϵt,R, ϵt,1, ..., ϵt,5) through a Gaussian copula parameterized in terms of a covariance

matrix Σ of dimension 6× 6.

Estimates of all JIVR model parameters are taken from Table 5 and Table 6 of François

et al. (2023). In all experiments, the annualized continuously compounded risk-free rate and

dividend yield are assumed to be constant with values set to r = 2.66% and q = 1.77%,

respectively.

2.6.3 Benchmarks

The three benchmarks outlined in this appendix operate under the premise that the implied

volatilities follow the IV model introduced in Equation (2.5).

2.6.3.1 Black-Scholes model

The Black and Scholes (1973) pricing formula for an European call option is:

Callt = St · e−qtτtΦ(dt)−K · e−rtτtΦ(dt − σ(Mt, τt, βt)
√
τt)

where dt =
log(St

K )+(rt−qt+
1
2
σ(Mt,τt,βt)2)τt

σ(Mt,τt,βt)
√
τt

, σt is the implied volatility of the option and Φ is

the cumulative distribution function of the standard normal distribution. Moreover, the

Black-Scholes delta is

∆BS
t = e−qtτtΦ(dt).

2.6.3.2 Leland model

The Leland delta, as proposed by Leland (1985), presents a variation of the option replication

approach outlined in the work of Black and Scholes (1973), incorporating parameters such as

37



the transaction cost proportion κ and the rebalancing frequency λ.

∆L
t = e−qtτtΦ

(
d̃t

)
,

where d̃t =
log(St

K )+(rt−qt+
1
2
σ̃2
t )τt

σ̃t
√
τt

with σ̃2
t = σ(Mt, τt, βt)

2
[
1 +

√
2/π 2κ

σ(Mt,τt,βt)
√
λ

]
.

2.6.3.3 Smile-implied model

François et al. (2022) provide the delta associated to the IV surface under model (2.10):

∆SI
t = e−qtτt

(
Φ(⌈t,1) + ϕ(⌈t,1)

∂σ

∂M

)

with

⌈t,1 =
Mt

σ(Mt, τt, βt)
+

1

2
σ(Mt, τt, βt)

√
τt,

and

∂σ

∂M
= βt,31{Mt≥0} + βt,3

(
1−

(
e2Mt − 1

e2Mt + 1

)2
)
1{Mt<0} + βt,42Mte

−M2
t log

(
T

Tmax

)
− βt,581M

2
t e

27M3
t log

(
T

Tmax

)
1{Mt<0}.

2.6.4 Network fine-tuning

2.6.4.1 Bounded strategies - leverage constraint

This section presents a comparison of the hedging performance of RL agents trained under the

full state space considering the CVaR95% as penalty function. The comparison is conducted

considering two RL agents: (i) RL-CVaR95%-LC, agent subject to a leverage constraint

equivalent to the initial value of the underlying asset, set at B = 100, and (ii) RL-CVaR95%,

agent operating without leverage constraints. This comparison evaluates the estimated values

of all penalty functions and the average Profit and Loss (Avg P&L). This analysis aims to

elucidate the impact of boundary conditions on RL agent behavior and performance when
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hedging of a European ATM call option with a maturity of N = 63 days in the absence of

transaction costs, i.e., κ = 0%).

Table 2.6 outlines that the agent without a leverage constraint shows more profitable strategies;

however, it also leads to very large losses. For instance, out-of-sample CVaR99% and SMSE

metrics exhibit higher values for this agent, compared to its counterpart with a leverage

constraint.

Table 2.6: RNN-FNN hedging error statistics of a short position in a ATM call option with
maturity of 63 days.

Function RL-CVaR95%-LC RL-CVaR95%

Avg P&L 0.440 0.715

CVaR95% 1.294 1.242

CVaR99% 2.502 2.622

MSE 1.205 14.650

SMSE 0.241 0.327

Results are computed using 100,000 out-of-sample paths in the absence of trans-
action costs (κ = 0%). Agents are trained under the full state space
(V δ

t , δt, τt, St, {βt,i}5i=1, ht,R, {ht,i}5i=1) according to the conditions outlined in Section 2.4.3.1.
The average option price is $3.89 with a standard deviation of $1.29. RL-CVaR95%-LC
denotes the RL agent trained with a leverage constraint, while RL-CVaR95% refers to the
agent without it. Best performances are highlighted in bold.

Moreover, our numerical experiments demonstrate that the agent without leverage constraints

learns doubling strategies, which are incompatible with sound risk management practices.

For instance, Figure 2.9 illustrates such behavior through three panels associated with the

hedging process of a deep OTM path (first panel).12 We observe that the agent, without a

leverage constraint, tends to increase its position in the underlying (third panel) when a loss

in the portfolio value is observed (second panel), aiming to recover the loss over the long run

12For the purpose of this experiment, a deep OTM path refers to the trajectory of the underlying asset
that keeps the option significantly out-of-the-money.
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with doubling strategies. Conversely, agents trained with a leverage constraint control their

position in the underlying asset, resulting in the learning of different and less risky strategies.

Figure 2.9: Doubling strategy dynamics for a short position in a ATM call option with a
maturity of 63 days.
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Results are obtained using a deep OTM path in the absence of transaction costs (κ = 0%),
with agents trained according to the conditions outlined in Section 2.4.3.1. The training
encompasses the full state space and utilizes CVaR95% as a penalty function. The agent
referred to as "Agent with cash constraint" incorporates a leverage constraint of B = 100,
whereas the agent labeled "Agent without cash constraint" does not.

2.6.4.2 Network architecture selection

In this section, we investigate the superiority of the RNN-FNN architecture compared to

conventional architectures introduced in deep hedging literature, such as the FFNN and

the LSTM architectures. In line with our previous experiments, we consider four penalty

functions to train the agents under the full state space: CVaR95%, CVaR99%, MSE, and SMSE.

Again, our experiment focuses on hedging a short position of a European ATM call option

with a maturity of N = 63 days, assuming no transaction costs.

The superiority of the RNN-FNN over the LSTM and the FFNN is evaluated based on

the optimal value of each penalty function. Figure 2.10 illustrates the optimal values of

each penalty function for each architecture, normalized by the estimated value obtained

with the BS delta. Notably, the RNN-FNN setup considered in this paper significantly

outperforms both the benchmark and other architectures. Conversely, the FFNN does not

surpass the benchmark for the MSE, and the LSTM exhibits almost the same performance

as the benchmark.
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Figure 2.10: Network performance for a short position in a ATM call option with a maturity
of 63 days.
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Results are computed using 100,000 out-of-sample paths in the absence of transaction costs
(κ = 0%). Agents are trained under the reduced state space (τt, St, {βt,i}5i=1, ht,R, {ht,i}5i=1)
according to the conditions outlined in Section 2.4.3.1. The setup for the different networks
follows the architecture described in Section 2.2.2.1, with L1 = 0 and L2 = 4 for the
FFNN, L1 = 4 and L2 = 0 for the LSTM, and L1 = 2 and L2 = 2 for RNN-FNN. Results
show optimal values obtained from agents trained under CVaR95%, CVaR99%, MSE, and
SMSE for the three networks. These values are normalized by the estimated values of
each penalty function obtained with the BS delta.

A second test to demonstrate the superiority of our architecture involves computing the

optimal values of the penalty functions over various clusters of paths. The objective is to

isolate the impact of different state of the economy on performance and assess the robustness

of our architecture. Figure 2.11 displays the optimal values of each architecture normalized by

the estimated values obtained by the BS delta for all penalty functions. Notably, RNN-FNN

agents outperform both the benchmark and other architectures across all penalty functions,

regardless of the economic conditions under which the simulations were conducted. Conversely,

FFNN and LSTM agents fail to outperform the benchmark across all states of the economy

when the agents are trained under the CVaR95%, MSE and SMSE penalty functions, as shown

in the top-left, bottom-left and bottom-right panels, respectively.
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Figure 2.11: Neural network performance for a short position in an ATM call option with a
maturity of 63 days: sensitivity to the state of the economy.
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Results are computed using 100,000 out-of-sample paths in the absence of transaction costs
(κ = 0%). Agents are trained under the reduced state space (τt, St, {βt,i}5i=1, ht,R, {ht,i}5i=1)
according to the conditions outlined in Section 2.4.3.1. Each panel illustrates the values
obtained by different architectures for the following hedging metrics: Avg P&L, CVaR95%,
MSE, and SMSE. These metrics are normalized by the estimated values of each penalty
function obtained with the BS delta. The setup for the different networks follows the
architecture described in Section 2.2.2.1, with L1 = 0 and L2 = 4 for the FFNN, L1 = 4
and L2 = 0 for the LSTM, and L1 = 2 and L2 = 2 for RNN-FNN.13

Results obtained under various economic conditions unequivocally demonstrate the superiority

of the RNN-FNN network across all performance metrics. Moreover, the RNN-FNN not only

offers better performance in terms of risk management but also reduces computational costs

and implementation complexity, with an average reduction in training time of 46%.

2.6.4.3 Dropout parameter selection

The process of selecting the dropout parameter for the regularization method involved

evaluating the performance of four agents across a range of potential parameter values. These

agents are trained using the full state space, considering four penalty functions: CVaR95%,

CVaR99%, MSE, and SMSE. The performance of the agents is measured in terms of the

13 The periods aim to approximate different states of the economy considering the time frames specified in
Table 2.3.
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estimated values of the penalty functions after hedging a short position of a European call

option with a maturity of N = 63 days, with no transaction costs.

Figure 2.12 illustrates a comparison of the optimal values of penalty functions normalized

by the estimated values obtained using the BS delta. It is noteworthy that the RNN-FNN

network consistently outperforms the benchmark regardless of the dropout parameter value.

Additionally, the selection of the dropout parameter remains consistent across all objective

functions, with a dropout probability (p) of 50% yielding optimal performance. Consequently,

for all our experiments, a dropout regularization parameter of p = 50% is adopted. This

parameter drives the likelihood of randomly dropping out a fraction of the units within a

neural network during training, thereby generating varied architectures for each training

iteration. As demonstrated in Warde-Farley et al. (2013), this method not only effectively

mitigates overfitting but also boosts performance, which is consistent with our numerical

results.

Figure 2.12: RNN-FNN performance for a short position in an ATM call option with a
maturity of 63 days: the effect of the dropout parameter in the training phase.
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Results are computed using 100,000 out-of-sample paths in the absence of transaction costs
(κ = 0%). Agents are trained under the reduced state space (τt, St, {βt,i}5i=1, ht,R, {ht,i}5i=1)
according to the conditions outlined in Section 2.4.3.1. All the metrics are expressed in
proportion of values obtained under the Black-Scholes delta hedging strategy.
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2.6.4.4 Quadratic hedging problem

This appendix aims to compare the closed-form solution of the quadratic hedging problem

as outlined by Godin (2019) with our own approach within the framework of Black-Scholes

market dynamics, where log-returns are assumed to adhere to a Gaussian distribution.

Table 2.8 illustrates performance metrics using three distinct penalty functions from two

experiments analyzing the hedging error of an ATM call option with a strike price of K=100,

with maturities of 63 days and 252 days. The experiments involve 16 time steps and 5 time

steps for rebalancing, respectively.

The outcomes of the 63-day maturity ATM option reveal that the RL agents outperform the

two benchmarks, Black-Scholes delta (BS) and the quadratic hedging solution (QH), examined

in this study. Additionally, the performance gap between the RL agent trained with the full

state space (RL-Full) and the agent trained with the reduced state space (RL-Reduced) is

negligible. In fact, the Kolmogorov-Smirnov test fails to reject the null hypothesis that the

hedging errors of both agents are equally distributed, with a confidence level of 99.9%.14

14The Kolmogorov-Smirnov test, outlined in Darling (1957), is a non-parametric statistical test used to
determine whether two samples differ significantly.
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Table 2.8: RNN-FNN hedging error statistics for a short position ATM call option with two
different maturities and rebalancing periods under the MSE as penalty function.

Maturity: 63, Time steps:16 Maturity: 252, Time steps:5

Function BS QH RL-F RL-R BS QH RL-F RL-R

Avg P&L 0.005 -0.081 -0.014 -0.009 0.185 -0.335 -0.279 -0.216

CVaR95% 1.942 2.619 1.897 1.931 7.291 6.662 6.596 6.514

CVaR99% 2.896 3.748 2.808 2.881 10.62 10.488 9.913 9.624

MSE 0.684 1.272 0.681 0.683 8.691 7.609 7.865 7.834

SMSE 0.367 0.647 0.350 0.359 5.292 3.721 3.852 3.941

These results are computed considering the hedging error of 99,000 out-of-sample inde-
pendent paths from the Black-Scholes market with yearly parameters µ = 0.0892 and and
σ = 0.1952. The RNN-FNN is trained based on 400,000 independent paths under the
same scheme.

Conversely, results of the 252-day maturity ATM option reveal that the QH approach exhibits

slightly superior performance in MSE, as anticipated due to its closed-form nature. However,

the performance of RL agents demonstrates stronger potential in terms of risk management,

evident from their ability to yield the lowest CVaR values and closely approximate the

MSE of the closed-form solution. Moreover, the agent trained with the reduced state space

(RL-Reduced) exhibits enhanced performance compared to its counterpart trained with the

full state space.
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Figure 2.13: RNN-FNN loss function for a short position ATM call option with maturity
N = 63 days and 16 time steps for rebalancing.
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Results are computed considering the MSE as the loss functions and the hedging error
of 99,000 out-of-sample independent paths with random initialization for the validation
loss curve (full line) and 400,000 independent paths fot the training loss curve (dash
line). Simulations are performed based on the Black-Scholes model and agents are trained
considering the cash constraint of B = 100.

Consistent with the findings detailed in Section 2.4.3.2 regarding the dynamics of the JIVR

model, the RL agent trained with the reduced state space exhibits improved the rate of

convergence during the training phase. For instance, as depicted in Figure 2.13, the penalty

curve evolution for the RL-MSE agent over 50 epochs illustrates this trend. This approach

effectively reduces computational costs during training and accelerates convergence to optimal

performance. These numerical outcomes confirm that our method achieves robust performance

without necessitating the inclusion of portfolio value, even within the Quadratic Hedging

framework with Black-Scholes market dynamics.
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2.6.4.5 JIVR Model parameters

Table 2.10: Estimated Gaussian copula parameters

ϵt,R ϵt,1 ϵt,2 ϵt,3 ϵt,4 ϵt,5

ϵt,R 1.000

ϵt,1 -0.550 1.000

ϵt,2 -0.690 0.140 1.000

ϵt,3 0.030 -0.030 -0.0100 1.000

ϵt,4 -0.220 0.250 0.120 0.280 1.000

ϵt,5 -0.340 0.170 0.370 0.130 -0.050 1.000

Table 2.11: JIVR model parameter estimates

Parameter β1 β2 β3 β4 β5 S&P500

α 0.000899 0.008400 0.000770 -0.001393 0.000657 λ 2.711279

θ1 0.996290 -0.013869 0.002841

θ2 0.003669 0.877813 0.001300

θ3 -0.032640 0.997071 0.003722 -0.004198

θ4 0.980269

θ5 -0.047789 0.986019

ν 0.089445

σ
√
252 0.380279 0.052198 0.048641 0.051536

ω 0.267589 0.977291

κ 0.838220 0.965751 0.974251 0.945377 0.980844 0.888977

a 0.134152 0.098272 0.092646 0.102201 0.100502 0.056087

γ -0.111813 -1.482862 0.096766 0.060558 -0.102996 2.507796

ζ 0.143760 0.852943 0.029109 -0.159051 0.092664 -0.641306

φ 1.351070 1.538928 2.284780 1.449977 1.428477 2.039669
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Chapter 3

Is the Difference between Deep Hedging and Delta

Hedging a Statistical Arbitrage?

Abstract

Horikawa and Nakagawa (2024) claim that in a complete market admitting

statistical arbitrage, the difference between the deep hedging and the replicating

portfolio hedging positions is a statistical arbitrage. Deep hedging can thus

include an undesirable speculative component. We test whether this remains

true in a GARCH-based incomplete market dynamics. We observe that the

difference between deep hedging and delta hedging is a speculative overlay if

the risk measure considered does not put sufficient relative weight on adverse

outcomes. Nevertheless, a suitable choice of risk measure can prevent the deep

hedging agent from engaging in speculation.

JEL classification: C45, C61, G32.

Keywords: Deep reinforcement learning, optimal hedging, arbitrage.
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3.1 Introduction

The seminal paper of Buehler et al. (2019), which proposes to use deep reinforcement learning

(RL) methods to obtain optimal hedging procedures for financial derivatives, initiated a

recent strand of literature.15 Deep RL methods are particulary well-suited to solve dynamic

hedging problems because these methods can handle the curse of dimensionality, a problem

that more traditional approaches (e.g., finite elements dynamic programming) struggle to

overcome. They can also work with very general dynamics for asset prices, not being limited

by mathematical tractability issues.

While the ability of deep hedging strategies to outperform standard counterparts is well-

documented, the existing literature has not yet extensively analyzed the structure of optimal

policies and explained how such incremental performance is attained. Neagu et al. (2024)

make a step in that direction by investigating the impact of the various features on optimal

risk management decisions in the presence of illiquidity market impacts.

In their recent work, Horikawa and Nakagawa (2024) investigate complete markets that

allow for statistical arbitrage with respect to a specific risk measure ρ. They assert that,

within this framework, deep hedging strategies that minimize the chosen risk metric combine

the traditional delta-hedging approach with a statistical arbitrage overlay. In a vector

auto-regressive stochastic volatility model and in a GAN-simulated market model, Buehler

et al. (2021) find that the optimal hedging strategy maximizing the entropy utility can also

incorporate a statistical arbitrage component. Such claims raise concerns about the suitability

of the deep hedging approach; incorporating speculative or arbitrage-like components that

do not contribute to reducing the risk exposure within hedging portfolios would be deemed

undesirable in practice. Our objective is therefore to assess empirically whether deep

15See for instance Halperin (2019), Cao et al. (2020), Du et al. (2020), Carbonneau and Godin (2021),
Carbonneau (2021), Horvath et al. (2021), Imaki et al. (2021), Lütkebohmert et al. (2022), Cao et al. (2023),
Carbonneau and Godin (2023), Marzban et al. (2023b), Mikkilä and Kanniainen (2023), Raj et al. (2023)
and Wu and Jaimungal (2023). See also Hambly et al. (2023) and Pickard and Lawryshyn (2023) for related
surveys.
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hedging policies minimizing conventional risk metrics still contain a speculative component

in incomplete market settings, which would generalize the complete market conclusion of

Horikawa and Nakagawa (2024). We use a GARCH-based market setting as an illustrative

example. A GARCH model is chosen due to its simplicity and its ability to reflect one of

the most natural causes of market incompleteness in practice, namely time-varying volatility.

Among the GARCH family members, we picked the GJR-GARCH because it captures well

the negative skewness typically observed for S&P 500 index returns.

This study uses the CVaR (Rockafellar and Uryasev, 2002) as the risk measure driving the

optimization of the hedging strategy. The CVaR metric accounts for a large spectrum of risk

preferences depending on how the confidence level is set. As far as market risk management

by regulated financial institutions is concerned, the confidence level is usually set at a very

high level to account for a conservative risk management against extreme scenarios. But

more generally, the confidence level reflects the manager’s attitude toward risk, as illustrated

for example by Su and Li (2024): When the confidence level is set to zero, the CVaR reduces

to the expectation operator and the manager is risk-neutral; when it approaches 1, the CVaR

becomes the maximum operator and the extremely conservative manager only focuses on

the worst-case scenario. The CVaR is widely used in practice to measure risk, and its use

differentiates our work from Buehler et al. (2021) who rely on the entropy risk measure which

is not widely adopted by practitioners.

The paper is divided as follows. Section 3.2 provides the hedging problem formulation.

Section 3.3 describes the deep hedging framework used to solve the problem, and discusses

the delta hedging benchmark. Numerical experiments assessing the behavior of the deep

versus delta hedging difference strategy are provided in Section 3.4.16 Section 3.5 concludes.

16The Python code which allows replicating the numerical experiments from this paper can be found at
https://github.com/cpmendoza/DeepHedging_StatisticalArbitrage.git.
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3.2 Market model for hedging

This paper considers dynamic risk management strategies for European call options, which

involve the construction of a self-financing portfolio composed of the underlying asset and a

cash account. The portfolio is rebalanced daily to optimally offset the net risk exposure at

the option maturity, denoted as T days. The time-t underlying asset price is St. The trading

strategy is represented by the predictable process δ = {δt}Tt=1, where δt is the number of

underlying asset shares held during the interval (t− 1, t]. The time-t discounted gain made

by the hedging portfolio is Gδ
t =

∑t
k=1 δk(β

kSkeqΛ − βk−1Sk−1) with β = e−rΛ, where r is

the annualized continuously compounded risk-free rate, q is the annualized underlying asset

dividend yield, and the period length is Λ = 1
252

years. The time-t self-financing portfolio

value is

V δ
t (V0) = β−t(V0 +Gδ

t ), (3.1)

where V0 is the initial portfolio value that we set to the option price.

The hedging problem is a sequential decision problem where the holder of a short position in

a call option seeks for the best sequence of actions δ that minimizes the risk associated with

the hedging error

ξδT = max(ST −K, 0)− V δ
T (V0), (3.2)

where K is the call option strike price. The hedging problem is formulated as

δ∗ = argmin
δ

ρ
(
ξδT
)
, (3.3)

where ρ is the risk measure used by the agent to quantify risk. In this paper we consider

the Conditional Value-at-Risk (CVaRα) defined as ρ(ξδT ) = E[ξδT | ξδT ≥ VaRα(ξ
δ
T )], where

α ∈ (0, 1) and VaRα(ξ
δ
T ) is the Value-at-Risk defined as VaRα(ξ

δ
T ) = minc{c : P(ξδT ≤ c) ≥ α}.

The CVaR is a commonly used objective function in the deep hedging literature, see for

instance Carbonneau and Godin (2021), Cao et al. (2023) or Wu and Jaimungal (2023). In
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addition, an appealing feature of the CVaR is that it allows to finetune the investor’s attitude

towards risk through the confidence level. A high value of α puts more emphasis on risk

reduction, whereas a low value of α penalizes losses and rewards gains.

Each time-t action δt+1 is a feedback-type decision, being a function of the information

currently available on the market: δt+1 = δ̃(Xt) for some function δ̃ of the state variable

vector Xt.

3.3 Hedging strategies

3.3.1 Deep hedging

The deep hedging (DH) framework, introduced by Buehler et al. (2019), provides a solution

to the hedging problem (3.3) by leveraging RL techniques. The DH policy δ̃ is approximated

with a neural network δDH
θ with parameters θ, which returns a hedging position δt+1 when

provided with time-t input features Xt. The objective function to be minimized is thus

O(θ) = ρ
(
ξ
δDH
θ

T

)
. (3.4)

The approach to obtain optimized parameters θ is standard and based on mini-batch stochastic

gradient descent. All details pertaining to the optimization procedure and the considered

architecture for the neural network are provided in Appendix 3.6.1 and Appendix 3.6.2.

Note that agents are trained on training sets of 400,000 independent simulated paths, but

numerical results are obtained from test sets of 100,000 independent paths, which provide

out-of-sample results.

3.3.2 Delta hedging

Delta hedging aims to reduce the risk associated with price movements of an underlying asset

by adjusting the hedging portfolio positions in the underlying asset based on the sensitivity

(∆) of the option price to changes in the price of the underlying asset. Specifically, the time-t

position in the underlying asset is defined as the time-t sensitivity ∆t, which is the partial
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derivative of the time-t option price with respect to the underlying asset value.

3.3.3 Statistical arbitrage

Statistical arbitrage strategies, also known as "good deals" according to the terminology

of Cochrane and Saa-Requejo (2000), are profit-seeking trading strategies that capitalize

on statistical anomalies in the market. Bondarenko (2003) defines statistical arbitrage as a

trading strategy that makes a profit on average without requiring any initial capital investment.

Assa and Karai (2013) extend this definition to offer a more nuanced and comprehensive

evaluation, ensuring that the trading strategy is not only profitable on average, but also

resilient in terms of risk management. As in Assa and Karai (2013), we say that δ is a

statistical arbitrage opportunity if

ρ
(
−V δ

T (0)
)
< 0, (3.5)

that is, if the trading strategy δ which requires zero initial investment is deemed strictly less

risky than a null investment according to risk measure ρ. Such definition is also in line with

that of Buehler et al. (2021), who focus on the case of the entropy risk measure.

Horikawa and Nakagawa (2024) claim that in a complete market model that admits statistical

arbitrage, the difference between the deep hedging and the delta hedging strategies denoted

by

δ− = δDH −∆, (3.6)

is a statistical arbitrage strategy according to risk measure ρ. We wish to further extend

their study and examine if the trading strategy δ− behaves like a statistical arbitrage in more

general incomplete market dynamics, using a GARCH-based market model as a representative

candidate for illustration. In other words, we investigate whether the deep hedging approach

typically incorporates a speculative arbitrage-like component aimed at exploiting the structure

of the risk measure considered.

53



3.4 Numerical study

3.4.1 Stochastic market dynamics

We consider market dynamics based on a GARCH process to represent the underlying asset

log-returns. The GJR-GARCH(1,1) model introduced by Glosten et al. (1993) captures

time-varying volatility and accounts for the leverage effect. For t = 1, . . . , T , log-returns in

the model follow

Rt = µ+ σtϵt, σ2
t+1 = ω + σ2

t (α + γ1{ϵt<0})ϵ
2
t + βσ2

t , (3.7)

where µ, γ ∈ R, ω, α, β are positive, 1A is the dummy variable indicating if event A

occurs and {ϵt}Tt=1 are independent standard normal random variables. Parameter estimates

are obtained through maximum likelihood on a daily time series of the S&P 500 index

extending from January 4, 2016, to December 31, 2020. Estimated parameters are µ = 0.06%,

ω = 0.01%, α = 0.11, γ = 0.20 and β = 0.78. Furthermore, in all experiments, the annualized

continuously compounded risk-free rate and dividend yield are assumed to be constant with

values set to r = 1.67% and q = 1.65%, respectively. These values represent the historical

averages of the 1-year zero-coupon yield and the annualized S&P 500 dividend yield over the

period extending from 2016 to 2020.

The initial option price is computed using Monte Carlo simulation based on the risk-neutral

valuation formula

Call0 = e−rTΛEQ[max(ST −K, 0)], (3.8)

where Q is a risk-neutral measure.17

17The Q risk-neutral dynamics of the GARCH model are defined by the following equations:

Rt = (r − q)Λ− σ2
t

2
+ σtϵ̃t, σ2

t+1 = ω + σ2
t (α+ γ1{ϵ̃t−ηt<0})(ϵ̃t − ηt)

2 + βσ2
t ,

where ηt = (µ− (r− q)Λ+σ2
t /2)/σt and {ϵ̃t}Tt=1 are independent standard normal random variables under Q.
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The call option delta is also calculated through Monte-Carlo simulation based on the rela-

tionship

∆t = e−rτΛEQ
[
St+τ

St

1{St+τ>K} | Ft

]
(3.9)

where τ = T − t and Ft represents the available information at time t, i.e., that being

generated by the state Xt.

In this model the state space considered for the RL approach is represented by the vector

Xt = (V δ
t , log(St), σt+1, τ).

3.4.2 Comparative analysis of deep hedging and delta hedging strategies

In this section, we study the relationship between delta hedging and deep hedging. More

specifically, we investigate whether the difference between both strategies represents a

speculative overlay reminiscent of a statistical arbitrage. The comparison is conducted by

hedging the at-the-money (ATM) European call option, with S0 = K = 100, and maturity

T = 63 days. The leverage constraint is B = 100.

Table 3.1 presents the hedging performance of the deep hedging agents trained with the

CVaRα risk measure. We consider the following confidence levels α: 1%, 5%, 10%, 20%, 50%,

85%, 90%, and 95%. High values of α only put weight on the most adverse outcomes and

entail focusing purely on risk reduction. Conversely, low values for α both penalize losses and

reward gains, which leads to seeking risk-reward trade-offs. As such, the CVaRα with a low

confidence level does not align with the objective of limiting the variability of the hedging

error. Since the CVaRα is an increasing function of α, there are more statistical arbitrage

strategies becoming available as α decreases.

Columns labeled "Base strategies" display the risk measure applied to the hedging error for

the deep hedging strategy, and the difference between the risk provided by deep hedging and

that of delta hedging. Columns labeled "Difference strategy" provide statistics (hedging error

risk and expectation of net cash flow) of the trading strategy δ− representing the differential

position between deep hedging and delta hedging. Since such strategy reflects a long position
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on the deep hedge and a short position on the delta hedge, the option payoffs from the two

(long and short) positions cancel out. Hence, performance is assessed by looking at V δ−
T (0)

rather than ξδ−T .

Table 3.1: Performance assessment for deep hedging, delta hedging and their difference over
a short position on an ATM call option with maturity T = 63 days.

Base strategies Difference strategy

Metric ρ(ξδ
DH

T ) ρ(ξδ
DH

T )−ρ(ξ∆T ) ρ(−V δ−
T (0)) E[V δ−

T (0)]

CVaR1% -1.550 -1.436 -1.441 1.507

CVaR5% -1.484 -1.421 -1.300 1.507

CVaR10% -1.398 -1.394 -1.167 1.506

CVaR20% -1.203 -1.320 -0.927 1.506

CVaR50% -0.221 -0.806 0.003 1.505

CVaR85% 1.979 -0.004 1.280 -0.031

CVaR90% 2.412 -0.115 1.433 -0.126

CVaR95% 3.481 -0.081 1.810 -0.254

Results are computed using 100,000 out-of-sample paths. The initial price of the option
is 3.16. ξδT is the hedging error for trading strategy δ, with δDH being deep hedging and
∆ being delta hedging. The strategy δ− uses the underlying asset position defined by the
difference between that of the deep hedging and the delta hedging strategies.

For all confidence levels α below 50%, the strategy δ− exhibits both positive average prof-

itability E[V δ−
T (0)] and a CVaR value ρ(−V δ−

T (0)) that is negative. This corresponds to a

formal statistical arbitrage strategy. Moreover, for the case α = 50%, even if the risk measure

is positive, it is nevertheless negligible in comparison to expected profits. The strategy

δ−, though not a statistical arbitrage from the definition, is very close to one. Conversely,

difference strategies δ− using α ≥ 85% clearly do not qualify as statistical arbitrage; the

associated risk measure is high and the average profitability is negative.

The distribution of the profit and loss (P&L) for the trading strategy δ−, which is V δ−
T (0), is

depicted in Figure 3.1 for various confidence levels. This confirms that difference strategies
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associated with low confidence levels α (1%, 10% and 50%) are exactly or similar to statistical

arbitrage with very high average profits and a very fat left tail (high extreme loss potential).

The deep hedging agent is incorporating a strong speculative element in its trading strategy,

which is unsuitable in practice. Conversely, the strategies associated with higher values for α

do not exhibit characteristics of a statistical arbitrage and do not lead to concerns about the

suitability of the deep hedging strategy.

Figure 3.1: P&L distribution of the strategy δ−.

Distributions are computed using 100,000 out-of-sample paths. The P&L is simply defined
by the portfolio value V δ−

T (0) at maturity.

We analyze the statistical relationship between deep hedging and delta hedging strategies

through (i) sample Spearman (rank) correlations between underlying asset positions of both

strategies, and (ii) the regression model

δDH = κ0 + κ1∆+ ε, (3.10)

with δDH and ∆ being positions produced by the deep hedging and delta hedging strategies,

respectively. Metrics (regressions and correlations) are computed across all rebalancing points

of all paths in the test sets.
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Table 3.2 provides the Spearman correlation coefficient ϱ, which evaluates monotonic rela-

tionships between strategies, and the coefficient of determination R2, which measures the

strength of the linear association between the strategies. These metrics are computed for the

various CVaR confidence levels.

Table 3.2: Statistical relationships between positions of delta hedging and deep hedging.

Statistics

Metric ϱ R2

CVaR1% -0.270 0.003

CVaR5% -0.271 0.003

CVaR10% -0.272 0.003

CVaR20% -0.273 0.003

CVaR50% -0.273 0.003

CVaR85% 0.939 0.773

CVaR90% 0.963 0.816

CVaR95% 0.969 0.808

Results are for a short position on the ATM call option with a maturity of N = 63
days. They are computed using 100,000 out-of-sample paths. The metric ϱ denotes the
(unconditional) Spearman correlation between underlying asset positions of the delta
hedging strategy and the deep hedging strategy across all rebalancing days while R2

represents the R2 statistic obtained after regressing deep hedging positions onto delta
hedging positions.

Results presented in Table 3.2 show strong monotonic and linear association between deep

and delta hedging positions for high confidence levels α = 85%, 90% or 95%. The deep

hedging strategies can therefore be seen as alterations of the delta hedging procedure that

improve hedging performance. Conversely, for low confidence levels (50% or below), deep

hedging positions seem completely unrelated to delta hedging positions, indicating that the

agent has mostly abandoned its hedging objective and is rather attempting to speculate or

conduct statistical arbitrage.
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It is important to note that the hedging strategy associated with α = 50% exhibits a behavior

that is quite similar to a statistical arbitrage even if it does not qualify as a formal statistical

arbitrage. It indeed is highly speculative with large expected profits, a large left tail for the

P&L and a negative correlation with delta hedging positions. This indicates that the Buehler

et al. (2021) approach, which consists in using a change of measure under which statistical

arbitrage strategies are removed, could be insufficient to prevent speculative behavior from

the hedging agent.

3.4.3 Robustness assessment

This section assesses the robustness of the above findings with respect to modifications of the

baseline setup. In particular, we test the presence of statistical arbitrage over various option

maturities and moneyness levels, for parameters associated with various economic periods,

and for a straddle option instead of a vanilla one.

3.4.3.1 Robustness assessment across option maturities and moneyness levels

The arbitrage condition (3.5) for the trading strategy δ− is assessed along two dimensions:

the option maturity and the moneyless level. More precisely, the first dimension examines

maturities of 21, 63, and 126 days, representing short-, medium-, and long-term maturities,

when hedging an ATM call option. The second dimension considers out-of-the-money (OTM)

and in-the-money (ITM) options with strike prices of 110 and 90, respectively, while assuming

a hedged option maturity of 63 days.

Numerical results presented in Figure 3.2 demonstrate that the differential position between

deep hedging and delta hedging qualifies as statistical arbitrage for small values of α, regardless

of the maturity (Panel A) or the option moneyness (Panel B).
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Figure 3.2: Risk for the differential strategy, ρ(−V δ−
T (0)), evaluated across different maturi-

ties and moneyness levels.
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Panel B: Statistical arbitrage condition by moneyness level
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Results are computed using 100,000 out-of-sample paths. Panel A presents ρ(−V δ−
T (0)) for

an ATM call option across different maturity levels. Panel B examines ATM, OTM, and
ITM options with a 63-day maturity and strike prices of 100, 110, and 90, respectively.

The susceptibility to statistical arbitrage varies across the different option configurations. In

Panel A, we observe that higher values of α are needed to eliminate statistical arbitrage for

longer maturity options. This can be explained through time diversification of risk, with

repeated speculative actions becoming less and less risky in aggregate as time goes by due

to the law of large numbers. In Panel B, we see that the moneyness considered during the

training process also influences the presence of statistical arbitrage, with the ATM option

being the least susceptible to statistical arbitrage. Nevertheless, even for ITM/OTM options,

the speculative component can be avoided if α is sufficiently large. For instance the trading

strategy δ− does not qualify as statistical arbitrage when α = 85%, 90% or 95%, regardless

of the option configuration considered.

3.4.3.2 Robustness assessment across different economic conditions

As a second experiment, we examine whether our findings remain consistent under different

market conditions. Specifically, we investigate whether the differential position between deep

hedging and delta hedging qualifies as statistical arbitrage when simulated market dynamics
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are designed to replicate various economic conditions, including periods of economic crises.

In addition to the period considered in the analysis of Section 3.4.2, two more periods are

included: the first, from January 4, 1999, to December 31, 2003, which includes the Dot-com

bubble, and the second, from January 3, 2007, to December 31, 2010, which spans the Global

Financial Crisis.

Figure 3.3 illustrates the values of ρ(−V δ−
T (0)), the risk for the differential strategy δ−, across

different confidence levels and under three different economic conditions, when hedging an

ATM call option with a maturity of 63 days. Our results show that RL agents may exploit

this speculative component more aggressively during crisis periods at low confidence levels.

However, consistently with above experiments, if the confidence level is sufficiently high the

speculative component can be avoided regardless of economic conditions.

Figure 3.3: Risk for the differential strategy, ρ(−V δ−
T (0)), evaluated across different market

conditions.
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Results are computed using 100,000 out-of-sample paths for an ATM call option with
a 63-day maturity. The economic periods considered are approximated to cover three
crisis-related intervals: the Dot-com bubble (1999–2003), the Global Financial Crisis
(2007–2010), and the onset of the COVID-19 crisis (2016–2020)

3.4.3.3 The case of a straddle option

We extend our analysis to a different derivative instrument by examining an options portfolio

consisting of a straddle strategy. The straddle is composed of a long ATM call option and

a long ATM put option. Following the approach in Section 3.4.2, we evaluate whether the
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trading strategy δ− qualifies as a statistical arbitrage when used to hedge a straddle with a

maturity of 63 days.

Table 3.3 presents results pertaining to the following two key aspects: the hedging performance

of the deep hedging agents trained using CVaRα, and the statistical arbitrage assessment

for the differential position between the deep hedging and delta hedging strategies across

various confidence levels α. Our findings align with those of Table 3.1 which are obtained by

hedging a vanilla call option. Specifically, the strategy δ− qualifies as statistical arbitrage

for all confidence levels below 50%, while its behavior deviates significantly from that of a

statistical arbitrage at higher confidence levels (85%, 90%, and 95%).

Table 3.3: Performance assessment for deep hedging, delta hedging and their difference over
a short position on an ATM straddle strategy with maturity T = 63 days.

Base strategies Difference strategy

Metric ρ(ξδ
DH

T ) ρ(ξδ
DH

T )−ρ(ξ∆T ) ρ(−V δ−
T (0)) E[V δ−

T (0)]

CVaR1% -3.301 -2.872 -2.882 3.014

CVaR5% -3.167 -2.839 -2.600 3.014

CVaR10% -2.994 -2.785 -2.334 3.013

CVaR20% -2.603 -2.634 -1.854 3.013

CVaR50% -0.633 -1.602 0.007 3.012

CVaR85% 3.756 -0.016 2.559 -0.062

CVaR90% 4.632 -0.230 2.865 -0.253

CVaR95% 6.769 -0.163 3.620 -0.509

Results are computed using 100,000 out-of-sample paths. The initial price of the straddle
strategy is 5.42. ξδT is the hedging error for trading strategy δ, with δDH being deep
hedging and ∆ being delta hedging. The strategy δ− uses the underlying asset position
defined by the difference between that of the deep hedging and the delta hedging strategies.
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3.5 Conclusion

Consider the trading strategy whose underlying asset positions correspond to the difference

between these of deep hedging and delta hedging. What if there exist market models under

which such strategy is a statistical arbitrage? This would raise concerns about the suitability

of deep hedging procedures, as it raises the possibility that typical deep hedging strategies

could consist of conventional hedging strategies that are enhanced with speculative overlays

which are unrelated to hedging.

Our study shows that these concerns can be mitigated; if the risk measure considered in

the hedging optimization problem does not sufficiently penalize losses relative to rewards

provided for gains, the deep hedging strategy attaches a statistical arbitrage strategy overlay

to the delta hedging strategy. Nevertheless, when using a proper risk measure (the CVaR

with sufficiently high α in our case) within the optimization problem, the difference between

deep hedging and delta hedging does not exhibit statistical arbitrage-like behavior and cannot

be interpreted as a speculative strategy reaping profits while exploiting blind spots of the

chosen risk measure.

Moreover, our robustness assessments highlight that susceptibility to statistical arbitrage

may be influenced by option characteristics and economic conditions. Longer maturities and

specific moneyness levels are more vulnerable at low confidence levels, while crises amplify

speculative components. However, at high confidence levels (e.g., 85%, 90%, 95%), the

differential position between deep hedging and delta hedging consistently departs from a

statistical arbitrage, regardless of aforementioned factors. These findings emphasize the

importance of selecting a sufficiently high α to mitigate speculative behavior in deep hedging

strategies.

The two main conclusions from this study are therefore that (i) the objective function of

the deep hedging problem must be carefully selected to prevent the hedging agent from

abandoning its hedging objective and pursuing speculative behavior, and (ii) deep hedging
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can soundly achieve its hedging objectives when provided with a suitable risk measure. A

possibility could be to use risk measures that do not provide any reward for gains, such as the

semi-RMSE used in Carbonneau and Godin (2023). However, this would come with the cost

of negatively impacting the profitability of the strategy. More research is therefore required

to determine what risk measure could be used in the objective function to produce sound

hedging behavior.

3.6 Appendix

3.6.1 The deep hedging algorithm

The neural network is optimized with the Mini-batch Stochastic Gradient Descent method

(MSGD). This training procedure relies on updating iteratively all the trainable parameters

of the network based on the recursive equation

θj+1 = θj − ηj∇θÔ(θj), (3.11)

where θj is the set of parameters obtained after iteration j, ηj is the learning rate (step

size) which determines the magnitude of change in parameters on each time step, ∇θ is

the gradient operator with respect to θ and Ô is the Monte Carlo estimate of the objective

function (3.4) computed on a mini-batch. Automatic differentiation packages are used to

compute the gradient of Ô. Additional details are provided in Appendix 3.6.2.

For the neural network, we employ a fully-connected Feedforward Neural Network (FFNN)

architecture with four hidden layers of width 56 using a ReLU activation function. The

output FFNN layer, which maps the output of the hidden layer Z into the position in the

underlying asset position δDH
t+1 , is equipped with a dynamic upper bound on the activation

function to preclude excessive leverage. Indeed, agents have finite borrowing capacity in

practice. We impose that the time-t cash account value ϕt satisfies ϕt ≥ −B for all t and for
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some threshold B > 0. This is achieved by setting the final output layer activation to

f(Z, t) = min (Z, (Vt +B)/St) , (3.12)

which ensures that the cash amount borrowed in the portfolio remains below B > 0 (see

François et al. (2024)).

Agents are trained on training sets of 400,000 independent simulated paths with mini-batch

size of 1,000 and a learning rate of 0.0005 that is progressively adapted with the ADAM

(Kingma and Ba, 2014) optimization algorithm. The training procedure is implemented in

Python, using Tensorflow and considering the Glorot and Bengio (2010) random initialization

of the initial parameters of the neural network.

3.6.2 Details for the MSGD training approach

The MSGD method estimates the penalty function O(θ), which is typically unknown, through

small samples of the hedging error called batches. Let Bj = {ξ
δDH
θj

T,i }Nbatch
i=1 be the j-th batch

where ξ
δDH
θj

T,i denotes the hedging error of the i-th simulated path in the j-th batch defined as

ξ
δDH
θj

T,i = max(ST,ij −K, 0)− V
δDH
θj

T,i (V0),

where ST,ij is the price of the underlying asset at time T in the i-th simulated path, and

V
δDH
θj

T,i is the terminal value of the hedging strategy for that path when θ = θj. The penalty

function estimation for the batch B is

Ĉ(CVaR)(θj,Bj) = V̂aRα(Bj) +
1

(1− α)Nbatch

Nbatch∑
i=1

max

(
ξ
δDH
θj

T,i − V̂aRα(Bj), 0

)
,

where V̂aRα(Bj) = ξ
δDH
θj

T,⌈α·Nbatch⌉
is the estimation of the VaR obtained from the ordered sample

{ξ
δDH
θj

T,[i] }
Nbatch
i=1 and ⌈·⌉ is the ceiling function. These empirical approximations are used to
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estimate the gradient of the penalty function required in Equation (3.11).18

18Details about gradient of the empirical objective function are provided in Goodfellow et al. (2016).
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Chapter 4

Implied-Volatility-Surface-Informed Deep Hedging with

Options

Abstract

We propose an enhanced deep hedging framework to hedge portfolios of options,

which integrates implied volatility surface-informed decisions with multiple hedging

instruments. In presence of transaction fees, a state-dependent no-trade region

provides an optimal rebalancing frequency and improve hedging performance.

By leveraging information from the evolving implied volatility surfaces, our

approach consistently outperforms traditional delta and delta gamma hedging

approaches across diverse market conditions from 1996 to 2020. The inclusion

of no-trade regions drives optimal practitioner delta gamma solutions towards

minimal rebalancing frequencies, similar to static hedging. In contrast, deep

hedging strategies show superior adaptability, delivering enhanced performance

in both simulated environments and backtesting.

JEL classification: C45, C61, G32.

Keywords: Deep reinforcement learning, optimal hedging, implied volatility

surfaces.
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4.1 Introduction

This paper presents a reinforcement learning-based hedging framework that enhances deep

hedging with market-implied expectations. By incorporating the joint dynamics of implied

volatility and asset returns within a data-driven market simulator, we optimize hedging

decisions using multiple instruments. This approach extends the deep hedging paradigm

by integrating forward-looking information from the implied volatility surface, improving

adaptability to market fluctuations. This framework provides a scalable and dynamic solution

to hedge portfolios of options more effectively.19

A commonly used approach for hedging portfolios of derivatives is delta-gamma hedging,

which adjusts portfolio positions based on sensitivities to movements in the underlying asset’s

price. While effective in mitigating risk, this strategy often incurs significant transaction

costs, particularly when multiple hedging instruments, such as options, are involved. These

costs make it challenging to implement hedging strategies that are both risk-efficient and

cost-effective.

Methodologies such as those proposed by Coleman et al. (2007) and Kélani and Quittard-Pinon

(2017) address these challenges by minimizing local risk while incorporating standard options as

hedging instruments. The latter approach further accounts for transaction costs. While these

approaches provide values insights, the adequate incorporation of market expectations remains

unexplored. Additionally, complementing these frameworks, deep hedging, introduced by

Buehler et al. (2019), offers a data-driven alternative that leverages deep reinforcement learning

(DRL) to dynamically adapt to evolving market conditions, including shifting expectations

and historical market patterns. Despite its demonstrated flexibility and adaptability (e.g.,

Cao et al. (2020), Carbonneau (2021), and Cao et al. (2023)), integrating forward-looking

information into the deep hedging framework remains an open area of research.

Recent developments in deep hedging methodologies offer a promising avenue to address these

19In this paper, we consider a basket of European options written on the same underlying asset.
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limitations. For instance, François et al. (2024) makes a first attempt in this direction, showing

how deep hedging strategies can mitigate transaction costs across varying market conditions

while effectively incorporating insights from implied volatility (IV) surface dynamics. While

this research focused on hedging vanilla options using instruments such as the risk-free rate

and the underlying asset, the potential benefits of expanding the hedging set with additional

instruments and IV-informed policies remain largely unexplored.

In this paper, we propose a dynamic hedging framework to optimize hedging decisions while

minimizing the risk metric associated with terminal hedging error. Our framework extends

the deep hedging paradigm to accommodate a broader class of derivative instruments by

dynamically trading both the underlying asset and a liquid derivative instrument. Following

François et al. (2024), our hedging decisions are informed by factors driving the dynamics

of the IV surface, enhancing the model’s adaptability to market conditions and improving

hedging efficiency, both in the presence and absence of transaction fees..

To optimize rebalancing decisions, we incorporate no-trade regions, a concept widely studied in

portfolio optimization under transaction costs. For instance, Constantinides (1986) introduces

the idea that proportional transaction costs create regions where rebalancing is suboptimal,

further developed by Davis and Norman (1990) and Balduzzi and Lynch (1999), who focus on

portfolio allocation rather than rebalancing costs. These regions indicate when rebalancing

becomes cost-effective, balancing transaction costs with desired adjustments. In hedging,

optimal rebalancing based on delta changes has been explored by Henrotte (1993), Toft

(1996), and Martellini (2000), while Hodges and Neuberger (1989) examines no-trade bands

around delta, showing that exact replication is often infeasible or costly. They demonstrate

that higher transaction costs or risk aversion require tighter rebalancing regions. Building on

these ideas, our framework defines the no-trade region as a state-dependent subset, using a

distance measure in the portfolio allocation space to determine when rebalancing is optimal

relative to the objective function.
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To ensure our strategies remain optimal and aligned with sound risk management, we

control for speculative behaviors in our hedging strategies. François et al. (2024) show

that RL strategies can introduce doubling behaviors, where agents increase exposure to

recover from losses. To mitigate this, our framework incorporates a soft tracking error

constraint, aligning hedging decisions with risk management goals. Additionally, Buehler et al.

(2021) and Horikawa and Nakagawa (2024) highlight that deep hedging can unintentionally

include statistical arbitrage overlays. We test our approach to ensure that any performance

improvements are not driven by by speculative-like components.

We utilize the JIVR model, introduced by François et al. (2023), to capture the joint dynamics

of S&P 500 log-returns and implied volatility surfaces, which inform hedging strategy decisions.

These decisions are optimized by minimizing a risk measure applied to terminal hedging

errors. As an illustrative example, we hedge a straddle portfolio using the risk-free instrument,

the underlying asset, and a vanilla European call options as hedging instruments.

Through statistical analysis and sensitivity assessments, we investigate the relationship

between key state variables and hedge ratios, further validating the robustness of our

methodology. The performance of our framework is assessed in both a simulated environment

and through backtesting. Both evaluations demonstrate the superiority of out approach in

comparison to traditional delta and delta gamma hedging. Our deep reinforcement learning

framework consistently outperforms these methods across a range of market conditions,

providing a more resilient, cost-effective, and practical solution for risk management in

options trading.

The paper is organized as follows. Section 4.2 frames the hedging problem in terms of

a deep reinforcement learning framework. Section 4.3 provides the components of the

market simulator. Section 4.4 presents the numerical results, assessments, and global feature

importance analysis. Section 4.5 concludes.
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4.2 The hedging problem

In this section, we present the mathematical formulation of the hedging problem, along with

the computational scheme to obtain the numerical solution.

4.2.1 The hedging optimization problem

We propose dynamic hedging strategies for managing portfolios of options. Our approach

focuses on minimizing a risk measure applied to terminal hedging error while considering

variable market conditions and accounting for transaction costs.

The goal is to hedge a short position of a portfolio of contingent claims written on the same

underlying asset, St, over the hedging period 0, . . . , T . The time-t market portfolio value is

expressed as Pt = Ψt(St) for some function Ψt. For illustrative purposes, we use a straddle

portfolio with maturity T in our numerical examples. In this case, the value PT represents the

portfolio’s payoff, which is given by the mapping ΨT (ST ) = max(ST −K, 0)+max(K−ST , 0)

with K the strike price.

The hedging strategy involves managing a self-financing portfolio composed of the risk-free

asset, the underlying asset, and a hedging option. Specifically, the hedging option is a

European option on the same underlying asset with a longer maturity T ∗ > T . The strategy

is represented by the predictable process {ϕt}Tt=1, with ϕt = (ϕ
(r)
t , ϕ

(S)
t , ϕ

(O)
t ) where ϕ(r)

t is the

cash held at time t− 1 and carried forward to the next period, ϕ(S)
t denotes the number of

shares of the risky asset S and ϕ
(O)
t the number of shares of the hedging option, both held

during the interval (t− 1, t]. The time-t hedging portfolio value is

V ϕ
t = ϕ

(r)
t ert∆ + ϕ

(S)
t Steqt∆ + ϕ

(O)
t Ot(T

∗)

where Ot(T
∗) is the time-t hedging option value, ∆ = 1

252
represents the time increment

in years, rt is the time-t annualized continuously compounded risk-free rate and qt is the

annualized underlying asset dividend yield, both on the interval (t − 1, t]. To account for
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transaction costs the self-financing condition entails that for t = 0, . . . , T − 1,

ϕ
(r)
t+1 + ϕ

(S)
t+1St + ϕ

(C)
t+1Ot(T

∗) = V ϕ
t − κ1St | ϕ(S)

t+1 − ϕ
(S)
t | −κ2Ot(T

∗) | ϕ(O)
t+1 − ϕ

(O)
t |, (4.1)

where κ1 and κ2 represent the proportional transaction cost rates for the underlying asset and

the hedging option, respectively. In a practical financial context, transaction costs for options

are typically higher than those for the underlying asset, consequently, we assume κ1 << κ2.

The optimal sequence of actions ϕ = {ϕt}Tt=1 corresponds to those that minimize the applica-

tion of a risk measure ρ to the hedging error at maturity for a short position in the option

portfolio:

ξϕT = PT − V ϕ
T .

A positive value in ξϕT implies that the hedging strategy does not have enough funds to cover

the portfolio value PT . Therefore the hedging problem is

ϕ∗ = argmin
ϕ

{
ρ
(
ξϕT

)}
. (4.2)

Each time-t action ϕt+1 is a function of current available information on the market: ϕt+1 =

ϕ̃(Xt) for some function ϕ̃ with state variables vector Xt. Due to Equation (4.1), ϕ(r)
t+1 is fully

determined when ϕ
(S)
t+1 and ϕ

(O)
t+1 are specified, and as such the time-t action to be chosen is

(ϕ
(S)
t+1, ϕ

(O)
t+1).

This paper examines three widely recognized risk measures in the literature:

• Mean Square Error (MSE): ρ
(
ξϕT

)
= E

[(
ξϕT

)2]
.

• Semi Mean-Square Error (SMSE): ρ
(
ξϕT

)
= E

[(
ξϕT

)2
1{ξϕT≥0}

]
.

• Conditional Value-at-Risk (CVaRα): ρ
(
ξϕT

)
= E

[
ξϕT

∣∣∣ξϕT ≥ VaRα

(
ξϕT

)]
, where

VaRα

(
ξϕT

)
is the Value-at-Risk defined as VaRα

(
ξϕT

)
= minc

{
c : P

(
ξϕT ≤ c

)
≥ α

}
,

and α ∈ (0, 1).
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4.2.2 Reinforcement learning and deep hedging

The problem described in Equation (4.2) is addressed by directly estimating the policy

function (the investment strategy ϕ̃) using a policy gradient method. This approach leverages

a parametric representation of the policy function through an Artificial Neural Network (ANN).

Specifically, a parameter vector θ is introduced to define the policy ϕ̃, which is optimized

to minimize the risk measure ρ applied to the hedging error at maturity. Representing the

policy generated by the ANN as ϕ̃θ, the hedging strategy defined as ϕt+1 = ϕ̃θ(Xt). The

approximate optimization problem considered is therefore

argmin
θ

{
ρ
(
ξϕ̃θ

T

)}
.

Given the inherent continuity of ANNs, the mapping ϕt+1 = ϕ̃θ(Xt) may lead to frequent

small adjustments in the hedging position, potentially increasing long-term transaction costs.

To mitigate this effect, we introduce a no-trade region, within which there is no rebalancing.

At time t, the no-trade region is determined by the distance between the current portfolio

position, ϕt, and the next position proposed by the ANN, ϕ̃θ(Xt). Specifically, rebalancing

occurs only if the cumulative deviation in positions across hedging instruments exceeds a

threshold l:

ϕt+1 =


ϕt, if |ϕ(S)

t − ϕ̃
(S)
θ (Xt)|+ |ϕ(O)

t − ϕ̃
(O)
θ (Xt)| ≤ l,

ϕ̃θ(Xt), otherwise.

(4.3)

This formulation expresses the no-trade region in terms of the number of shares, providing a

measure of the distance at which rebalancing becomes cost-effective, capturing the trade-off

between transaction costs and maintaining proximity to the desired portfolio adjustments. In

this framework, both the ANN parameters θ and the rebalancing threshold l are treated as

learnable parameters, allowing the model to jointly optimize the size of rebalancing actions
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and decisions of whether or not to rebalance.

As shown in François et al. (2024), the policy ϕ̃θ may inadvertently incorporate speculative

elements, such as doubling strategies, where agents continuously increase their exposure in

an attempt to recover successive losses. Such strategies are undesirable as they deviate from

sound risk management principles. To reduce the likelihood of encountering this problem, we

introduce a soft tracking error constraint that penalizes the network during training if the

time-t tracking error, ξ(ϕ̃θ, l)
t = Pt − V

(ϕ̃θ, l)
t , exceeds the initial hedging portfolio value at any

time t. This constraint is defined as:

SC(θ, l) = P
(

max
t∈{0,...,T}

[
Pt − V

(ϕ̃θ, l)
t

]
> V0

)
. (4.4)

This design leaves gains unpenalized, consistent with the asymmetric nature of rational agents.

As a result, the penalty function employed in our approach is

Oλ(θ, l) = ρ
(
ξ
(ϕ̃θ, l)
T

)
+ λ · SC(θ, l), (4.5)

where λ is a penalty parameter that controls the weight of the soft constraint in the opti-

mization process. Its optimal value is determined independently using a validation set as

part of the model selection procedure.

4.2.2.1 Neural network architecture

We employ a Recurrent Neural Network with a Feedforward Connection (RNN-FNN), in-

tegrating Long Short-Term Memory (LSTM) networks with Feedforward Neural Network

(FFNN) architectures. This hybrid design has demonstrated superior training performance

compared to conventional ANN architectures, as shown in Fecamp et al. (2020) and François

et al. (2024). The RNN-FNN network is defined as a composition of LSTM cells {Cl}L1
l=1 and
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FFNN layers {Lj}L2
j=1 under the following functional representation:

ϕ̃θ(Xt) = (LJ ◦ LL2 ◦ LL2−1 ◦ ... ◦ L1︸ ︷︷ ︸
FFNN layers

◦CL1 ◦ CL1−1... ◦ C1︸ ︷︷ ︸
LSTM cells

)(Xt).

The explicit formulas for this ANN are detailed in Appendix 4.6.1.1.

4.2.3 Neural network optimization

The RNN-FNN network ϕ̃θ(·), along with the rebalancing threshold l, are optimized with the

Mini-batch Stochastic Gradient Descent method (MSGD). This training procedure relies on

updating iteratively all the trainable parameters of the optimization problem based on the

recursive equations

θj+1 = θj − η
(1)
j

∂

∂θ
Ôλ(θ, l), (4.6)

lj+1 = lj − η
(2)
j

∂

∂l
Ôλ(θ, l), (4.7)

where η(1)j and η(2)j are the learning rates that determine the magnitude of the change of the

parameters per time-step, these rates are dynamically adjusted using the Adam optimization

algorithm.20 Additionally, Ô(θ, l) is the Monte-Carlo estimate of the penalty function defined

at Equation (4.5). Further details can be found in Appendix 4.6.1.2.

4.3 Market simulator

Our approach incorporates a market simulator to replicate the joint dynamics of the S&P

500 price and its associated IV dynamics. Indeed, optimal actions are characterized by the

behavior of the underlying asset and hedging instrument prices. Using a simulator provides

the advantage of generating a large diversity of scenarios, enabling RL agents to explore the

state space while identifying optimal policies. This alleviates the issue of scarcity in real

market data.
20Adam is an adaptive learning rate method designed to accelerate training in deep neural networks and

promote rapid convergence, as detailed in Kingma and Ba (2015).
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The optimization of hedging strategies in our framework requires specifying the joint dynamics

of the underlying asset and of options on such asset. As such, we leverage the JIVR model

from François et al. (2023), which models the temporal dynamics of S&P 500 returns and

various factors driving the IV surface, along with their interdependencies. The JIVR has

the advantage of being data-driven, allowing to replicate multiple realistic shapes of the IV

surface encountered in practice. It has been calibrated on a extensive data sample including

multiple crises; it can therefore reflect a broad array of economic conditions. Finally, the

multi-factor nature of the model leads to a flexible relationship between the underlying asset

price and volatility surfaces. Such feature allows reflecting self-contained properties of the

option market, consistently with the “instrumental approach" of option pricing detailed in

Rebonato (2005). This section describes the JIVR model providing joint dynamics of the

S&P 500 index price and its associated IV surface.

4.3.1 Daily implied volatility surface

The time-t IV of an option with time-to-maturity τt = T−t
252

years and moneyness Mt =

1√
τt
log Ste(rt−qt)τt

K
is given by:

σ(Mt, τt, βt) =
5∑

i=1

βt,ifi(Mt, τt). (4.8)

The vector βt = (βt,1, βt,2, βt,3, βt,4, βt,5) represents the IV factor coefficients at time t, while

the functions {fi}5i=1 capture the effects of the long-term at-the-money (ATM) level, time-

to-maturity slope, moneyness slope, smile attenuation, and smirk, respectively. A detailed

description of the functional components of the IV surface, {fi}5i=1, can be found in Appendix

4.6.2.1.

4.3.2 Joint Implied Volatility and Return

The JIVR model introduced by François et al. (2023) builds upon the IV representation in

Equation (4.8), offering an explicit formulation for the joint dynamics of the IV surface and
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the S&P 500 price. More precisely, this joint representation is based on an econometric model

for (i) the underlying asset returns, and (ii) fluctuations of the IV surface coefficients βt along

a mean-reversion component for their volatility ht. The multivariate time series formulation

of the JIVR model is provided in detail in Appendix 4.6.2.2.

The JIVR model is used in subsequent simulation experiments to generate paths of the

state variables (St, {βt,i}5i=1, ht,R, {ht,i}5i=1), which drive the market dynamics, where ht,R and

{ht,i}5i=1 are volatilities for the S&P 500 and each of the IV factors. Estimates of model

parameters and volatility series {ĥt,i}Nt=1 with i ∈ {1, . . . , 5, R} are taken from François et al.

(2023), who apply maximum likelihood on a multivariate time series made of S&P 500 returns

and surface coefficients estimates {β̂t}Nt=1, with sample dates extending between January 4,

1996 and December 31, 2020.

4.4 Numerical study

4.4.1 Market settings for numerical experiments

We model a discrete-time financial market with daily trading opportunities over a time

horizon of T days. The initial conditions of the JIVR model, ({β0,i}5i=1, h0,R, {h0,i}5i=1), are

randomly sampled from the estimated values in our data set, covering the period from

January 4, 1996, to December 31, 2020. Across all experiments, the annualized continuously

compounded risk-free rate and dividend yield are assumed to remain constant, with values

fixed at r = 2.66% and q = 1.77%, respectively.21

The initial value of the underlying asset is set to S0 = 100 for simplicity. The hedged portfolio

is an ATM straddle with a maturity of T = 63 days. At any time t < T , the portfolio value

Pt is determined using the IV surface prevailing at that moment. At maturity, at time t = T ,

PT represents the final portfolio cash flow.

We assume the use of the risk-free asset, the underlying asset, and an ATM European call

21The annualized average rates of the S&P 500 dividend yield (1.77%) and the zero-coupon yield (2.66%)
are calculated using OptionMetrics data over the sample period from January 4, 1996, to December 31, 2020.
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option with a maturity longer than that of the straddle, specifically an ATM call option with

a maturity of T ∗ = 84 days, as the hedging instruments. The time-to-maturity of the hedging

option decreases over time and is not reset to 84 days on each rebalancing day. The positions

in both the underlying asset and the hedging option are rebalanced daily.

The hedge follows the self-financing dynamics described in Equation (4.1), incorporating

different levels of proportional transaction costs for the hedging option. The proportional

transaction cost for call options on the S&P 500 index has an average value of 0.95%, as

reported in the study of Chaudhury (2019). To assess the impact of transaction costs on

rebalancing the hedging option, we consider several values we consider several values around

the same range, specifically κ2 ∈ {0.5%, 1%, 1.5%, 2%}. In contrast, the transaction cost for

the underlying asset is almost negligible, with values around 0.047%, according to Bazzana

and Collini (2020). For illustrative purposes, we set κ1 to 0.05%. The initial value of the

hedging portfolio is set equal to the price of the straddle, i.e, V0 = P0.

4.4.2 Benchmarks

We benchmark the performance of our framework against several established approaches: (i)

the RL method proposed by François et al. (2024), which incorporates IV-informed decisions

using only the underlying asset as a hedging instrument, (ii) delta hedging (D), where only

the underlying asset is used for hedging, and (iii) delta gamma (DG) hedging, which includes

one additional hedging option in the portfolio.

For the second and third benchmarks, the delta and gamma of financial instruments are

computed using the practitioner’s approach. This involves inserting the IV for each instrument

into the closed-form expressions for Black-Scholes’ delta and gamma. In the case of delta

hedging, the delta is adjusted based on the correction introduced by Leland (1985), which

accounts for the impact of proportional transaction costs on the underlying asset position.

This adjusted delta reverts to the standard Black-Scholes delta when no transaction costs

are applied. In both benchmarks, the volatility parameter is updated daily according to the
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prevailing IV surface, which aligns the hedging strategies with dynamic market conditions.

The explicit formulas for these two benchmarks are provided in Appendix 4.6.3.

For all three strategies, we further enhance the performance by incorporating the no-trade

region, as defined in Equation (4.3), to ensure a fair and consistent comparison.22 Additionally,

the inclusion of the rebalancing threshold l improves the performance of each strategy, with l

optimized based on the risk measure used to benchmark our framework (further details are

provided subsequently).

4.4.3 Neural network settings

4.4.3.1 Neural network architecture

We consider a RNN-FNN architecture with two LSTM cells (L1 = 2) of width 56 (di = 56

for i = 1, 2), two FFNN-hidden layers (L2 = 2) of width 56 with ReLU activation function

(i.e. gLi
(X) = max(0, X) for i = 1, 2),23 and one two-dimensional output FFNN layer with a

linear activation function. Numerical experiments suggest that λ = 1 is a relevant choice. A

detailed description of the experimental procedure can be found in Appendix 4.6.4.

Agents are trained as described in Section 2.2.2.2 on a training set of 400,000 independent

simulated paths with mini-batch size of 1000 and a learning rate of 0.0005. In addition, we

include dropout regularization method with parameter p = 0.5 as in François et al. (2024).

The training procedure is implemented in Python, using Tensorflow and considering the

Glorot and Bengio (2010) random initialization of the initial parameters of the neural network.

Numerical results are obtained from a test set of 100,000 independent paths.

4.4.3.2 State space

The state space considered in our RL framework includes the state variables generated by

the JIVR model, along with a new set of state variables associated with the straddle and

22The optimization process is carried out as detailed in Section 2.2.2.2, following Equation (4.7), using
Mini-batch Stochastic Gradient Descent.

23The rectified linear unit or ReLU function is commonly used in deep learning to reduce the probability of
gradient vanishing and introduce sparsity into the inference process.
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hedging portfolio. These variables are detailed in Table 4.1.

Table 4.1: State variables

Notation Description

St Underlying asset price
τt Time-to-maturity of the straddle
{βt,i}5i=1 IV factors described in Section 4.3.1
{ht,i}5i=1 IV coefficients’ variances
ht,R Conditional underlying asset return variance
Pt Straddle value
∆P

t Delta of the straddle
γPt Gamma of the straddle
Ot Hedging option price
V

(ϕ̃θ, l)
t

Hedging portfolio value
ϕ
(S)
t Underlying asset position
ϕ
(O)
t Hedging option position

In our illustrative example, the straddle serves as a contract-specific reinforcement learning

task, as defined in Peng et al. (2024), where the optimization problem is solved for a specific

option with given contract parameters. While the state variables associated with the target

portfolio (Pt, ∆P
t , and γPt ) are not required in this setting, our numerical experiments

demonstrate that in practice their inclusion enhances performance across all risk measures

(details in Appendix 4.6.5). This improvement is likely due to the suboptimal convergence

of ANNs in finite settings. Furthermore, incorporating these state variables extends our

framework to a more general contract-unified reinforcement learning task, allowing for the

optimization of portfolios with any combination of options and contract parameters.

4.4.4 Benchmarking of hedging strategies

4.4.4.1 Benchmarking in the absence of transaction costs

We begin by evaluating the hedging performance of both benchmark methods and RL agents

trained using three different risk measures: MSE, SMSE, and CVaR95%. This evaluation

considers the estimated values of each risk measure alongside the sample average of the

80



hedging error, mean
(
ξ
(ϕ̃θ, l)
T

)
= 1

N

∑N
i=1 ξ

(ϕ̃θ, l)
T,i , where ξ

(ϕ̃θ, l)
T,i represents the i-th terminal

hedging error in the test set of size N . Additionally, we incorporate the sample standard

deviation of the terminal hedging error, std
(
ξ
(ϕ̃θ, l)
T

)
, as a metric to quantify the variability

of hedging errors within the test set. Our analysis is conducted under the assumption of zero

transaction costs, i.e., κ1 = κ2 = 0.

Table 4.2 presents the optimal values of the risk measures for the various hedging strategies

in two cases. In the first case, the hedging instruments are limited to the risk-free asset

and the underlying asset (columns labeled as St). In the second scenario, an ATM call

option is introduced as an additional hedging instrument (columns labeled as St + Ot). The

columns under RL correspond to different risk measures used as objective functions during

training, while each row represents the performance metric computed from test set hedging

errors. In both cases, RL strategies consistently outperform the benchmarks and achieve

the optimal values when the performance assessment metric matches the risk measure used

during training.

Table 4.2: Hedging performance metrics under the assumption of zero transaction costs.

Instruments St St+Ot

Strategy D
RL

DG
RL

MSE SMSE CVaR95% MSE SMSE CVaR95%

mean
(
ξ
(ϕ̃θ, l)
T

)
-0.713 -0.543 -0.656 -0.681 -0.069 -0.035 -0.089 -0.087

std
(
ξ
(ϕ̃θ, l)
T

)
1.756 1.392 1.526 1.702 0.811 0.324 0.325 0.326

MSE 3.593 2.232 2.760 3.362 0.663 0.106 0.114 0.114

SMSE 1.193 0.546 0.424 0.596 0.338 0.038 0.025 0.027

CVaR95% 3.606 2.549 2.208 2.031 1.927 0.648 0.516 0.514

Results are computed using 100,000 out-of-sample paths in the absence of transaction
costs (κ1 = κ2 = 0). Agents are trained according to the conditions outlined in Section
4.4.3. D stands for delta hedging, whereas DG refers to delta gamma hedging. The
average initial straddle value is $7.55.
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Moreover, our numerical results highlight the benefits of incorporating a second hedging

instrument. Specifically, all strategies that include an option as an additional hedging

instrument exhibit lower risk by standard deviation, MSE, SMSE, and CVaR95%, compared

to those relying solely on a single hedging instrument, including RL-based strategies. Notably,

the delta gamma hedging strategy achieves a reduction in standard deviation of at least 42%,

calculated by comparing the minimum standard deviation among single-instrument strategies,

1.392, with that of the DG strategy, 0.811. Similarly, delta gamma hedging results in a 70%

reduction in MSE, a 20% decrease in SMSE, and a 5% reduction in CVaR compared to the

lowest values of these performance metrics across all strategies under the column St.

Furthermore, RL agents utilizing multiple hedging instruments yield significantly less risky

strategies than the DG strategy, as evidenced by a reduction in standard deviation of at least

60%, calculated by comparing the maximum standard deviation among RL strategies with

two hedging instruments, 0.326, to that of the DG strategy, 0.811. Likewise, this advantage

is further supported by other performance metrics, such as CVaR95% and SMSE, which show

reductions of at least 92% and 73%, respectively.

Figure 4.1 illustrates the distribution of hedging errors for the various strategies. Panel A

compares the hedging error distributions of the benchmark and RL agents, each using only

the underlying asset as hedging instruments, against the traditional DG hedging strategy. In

this case, the inclusion of an option in the hedging strategy helps reduce the loss distribution

tail. Panel B compares the DG strategy with the RL-MSE strategy, both incorporating

two hedging instruments, highlighting the superior performance of the RL approach, as it

significantly reduces the variance, consistent with the results shown in Table 4.2. Finally,

Panel C presents a comparison of the three RL agents, demonstrating that the distribution

achieved with asymmetric risk measures exhibits greater skewness.
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Figure 4.1: Hedging error distribution in the absence of transaction costs.

Results are computed using 100,000 out-of-sample paths according to the conditions
outlined. The initial average straddle value is $7.55.

4.4.4.2 Benchmarking in the presence of transaction costs

In this analysis, we incorporate the no-trade region, as defined by Equation (4.3), to determine

the optimal rebalancing frequency while accounting for transaction costs. The rebalancing

threshold l for the benchmarks is estimated using Equation (4.7) on the training set, consid-

ering the possible combinations of risk measures and transaction cost levels as independent

optimization problems. For the RL strategies, this parameter is jointly estimated alongside

the other ANN parameters during the training process. Table 4.3 presents the optimal values

of the rebalancing threshold l across different transaction cost levels for both the DG and RL

strategies, considering all risk measures.
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Table 4.3: Optimal rebalancing threshold l values of DG and RL strategies.

Risk measure MSE SMSE CVaR95%

κ1 κ2 DGl RLl DGl RLl DGl RLl

0% 0% 0.0 0.0 0.0 0.0 0.0 0.0

0.05% 0.5% 0.904 0.013 1.777 0.019 2.011 0.018

0.05% 1% 1.107 0.017 2.425 0.023 2.520 0.026

0.05% 1.5% 1.205 0.032 2.502 0.032 2.671 0.033

0.05% 2% 1.498 0.033 2.517 0.034 2.706 0.034

Optimal values are computed across different transaction cost levels using 100,000 out-of-
sample paths.

The numerical results presented in Table 4.3 show a monotonic increase in rebalancing

threshold values as transaction costs rise, a pattern consistently observed across all risk

measures for both benchmarks and RL agents. This trend reflects broader no-trade regions at

higher transaction cost levels, suggesting that small adjustments increasingly degrade hedging

performance as transaction costs increase, regardless of the risk measure or approach. The

incorporation of no-trade regions proves beneficial, as evidenced by the non-zero rebalancing

threshold values when transaction costs are introduced into the hedging problem. In contrast,

the zero threshold values obtained through the optimization process, when transaction costs

are absent, are expected. This is because, under these conditions, rebalancing does not

negatively affect hedging performance.

Notably, the optimal rebalancing thresholds for RL agents are consistently lower than for non-

RL strategies (columns 2, 4 and 6), often approaching zero across all transaction cost levels.

This suggests that the no-trade region may function as a noise-reduction mechanism within

the RL framework. In this context, the likelihood of observing identical hedging positions

between consecutive time steps in the traditional deep hedging framework is typically zero

due to the continuity of the ANN. This results in small adjustments that, over time, increase

84



transaction costs and ultimately degrade hedging performance. However, the no-trade region

effectively addresses this behavior by preventing such adjustments.

In terms of hedging performance, Table 4.4 presents the optimal values of the risk measures

for two cases: when the hedging instruments are restricted to the risk-free asset and the

underlying asset (column labeled St), and when an ATM call option is added as an additional

hedging instrument (column labeled St + Ot). This comparison is illustrated across two

panels: Panel A considers strategies without a no-trade region (i.e., l = 0), while Panel B

incorporates the no-trade region, highlighting its impact on the results.

The impact of the no-trade region can be assessed by comparing the performance of each

strategy between Panel A and Panel B. For benchmark strategies, our numerical results

indicate that in the case of DG hedging, incorporating a no-trade region significantly enhances

hedging performance across all risk measures, particularly as transaction costs for the hedging

option increase. For instance, when optimizing the rebalancing threshold using MSE, the

optimal MSE for DG strategies decreases by 15%, from 0.837 (Panel A) to 0.711 (Panel B),

when the hedging option’s transaction cost is set to κ2 = 0.5%. The improvement becomes

even more significant as transaction costs increase to κ2 = 2%, where the MSE drops by 38%,

from 1.957 to 1.197, after incorporating the no-trade region.

On the other hand, for delta hedging, the improvement from introducing a rebalancing

threshold is minimal, as transaction costs on the underlying asset remain nearly negligible.

Similarly, for RL agents, the performance gains from the no-trade region are less pronounced,

confirming that it acts as a regularization mechanism that smooths the ANN mapping. This

aligns with the consistently low rebalancing threshold values reported in Table 4.3.
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Table 4.4: Optimal risk measure values of deep hedging, delta hedging, and delta gamma
hedging.

Risk measure MSE SMSE CVaR95%

Instruments St St+Ot St St+Ot St St+Ot

κ1 κ2 Dl RLl DGl RLl Dl RLl DGl RLl Dl RLl DGl RLl

Panel A (l = 0)

0% 0% 3.593 2.232 0.663 0.106 1.193 0.424 0.338 0.025 3.606 2.031 1.927 0.514

0.05% 0.5%

3.384 2.145

0.837 0.124

1.395 0.693

0.723 0.058

3.880 2.281

2.581 0.704

0.05% 1% 1.092 0.144 1.018 0.099 2.857 0.784

0.05% 1.5% 1.465 0.165 1.414 0.132 3.159 0.952

0.05% 2% 1.957 0.193 1.919 0.151 3.487 1.010

Panel B (l ̸= 0)

0% 0% 3.593 2.232 0.663 0.106 1.193 0.424 0.338 0.025 3.606 2.031 1.927 0.514

0.05% 0.5%

3.383 2.145

0.711 0.122

1.361 0.689

0.490 0.052

3.842 2.278

1.935 0.647

0.05% 1% 0.821 0.136 0.616 0.069 2.015 0.733

0.05% 1.5% 0.986 0.156 0.803 0.098 2.213 0.863

0.05% 2% 1.197 0.179 1.025 0.141 2.429 0.972

Optimal values of risk measures are computed using 100,000 out-of-sample paths. The
initial average straddle value is P0 = 7.55.

Considering that the no-trade region has a favorable impact on hedging performance, we now

focus on the analysis of Panel B, which incorporates this feature. The results indicate that

RL agents consistently outperform the benchmarks across all risk measures in both cases:

with and without a hedging option. As observed previously, the inclusion of the ATM call

option significantly enhances hedging performance. This improvement is particularly evident

for the DG strategy, which achieves better metrics than RL agents without the hedging

option when evaluated using the MSE risk measure. However, this advantage vanishes for

asymmetric risk measures when the transaction costs associated with the hedging option

become excessively high, for example 1.5% or greater for SMSE and 2% for CVaR. In such

cases, DG strategies fail to outperform RL agents using a single risky hedging instrument.

This can be attributed to the increased transaction costs associated with trading the hedging

options, which offset the potential benefits of including them in the DG portfolio.

86



Furthermore, the advantages of incorporating a hedging option are particularly evident for

RL agents. As shown in the column labeled St + Ot, RL agents consistently outperform

all benchmarks across a range of transaction cost levels and risk measures. This can be

obseverved by the values highlighted in bold at each risk merasure column. For example, the

RL agent trained using MSE with two hedging instruments (columns St+Ot under MSE) and

optimized with the no-trade region (Panel B) achieve an MSE of 0.106. In comparison, other

benchmarks yield significantly higher values: 3.593 for delta hedging, 2.232 for RL strategies

with only one hedging instrument, and 0.663 for delta-gamma hedging when transaction

costs are set to 0%. This improvement becomes even more pronounced as transaction costs

increase. A similar trend is observed across other risk measures.

Moreover, to further emphasize the benefits of using RL over DG, Figure 4.2 presents

the histogram of hedging error distributions at maturity for both DG and RL strategies,

considering two different combinations of transaction cost levels. As shown in the figure,

RL agents consistently generate narrower distributions across all risk measures compared

to the DG strategy, demonstrating greater resilience to increases in transaction costs. This

characteristic is particularly advantageous from a risk management perspective, as it reflects

enhanced stability in performance despite increasing costs.

Figure 4.2: Hedging error distribution in the presence of transaction costs.

Results are computed using 100,000 out-of-sample paths according to the conditions
outlined in Section 4.4.3. The transaction cost for the underlying asset is set to κ1 = 0.05%.
The initial average straddle value is P0 = 7.55.
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4.4.4.3 Impact of no-trade regions

Since the no-trade region is determined by the rebalancing threshold, we analyze its impact by

examining how the rebalancing threshold influences both the rebalancing frequency defined

as the proportion of days on which portfolio positions are adjusted along a given path,

RFl =
1

T

T−1∑
t=0

1{ϕt+1 ̸=ϕt}, (4.9)

and the hedging cost as the sum of discounted transaction costs over a given path,

HCl =
T−1∑
t=0

e−r∆tHCt (4.10)

where the transaction cost at time t, HCt, is given by:

HCt = κ1St | ϕ(S)
t+1 − ϕ

(S)
t | +κ2Ot(T

∗) | ϕ(O)
t+1 − ϕ

(O)
t | . (4.11)

This analysis enables the evaluation of the trade-off between portfolio adjustment frequency

and the associated transaction costs. The impact of the rebalancing threshold on both

rebalancing frequency and hedging cost is illustrated in Figure 4.3 across all risk measures

and transaction cost levels.
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Figure 4.3: Evolution of rebalancing day proportions and average hedging costs at different
transaction cost levels.
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Results are computed over 100,000 out-of-sample paths according to the conditions
outlined in Section 4.4.3.

Results depicted in Figure 4.3 show that RL agents yield a higher average rebalancing

frequency compared to DG strategies, which tend to behave more like semi-static approaches

with fewer rebalancing days. This finding aligns with the observations of Carr and Wu

(2014), who show that increasing the rebalancing frequency does not necessarily improve

the performance of option tracking frameworks such as delta hedging in the presence of

transaction cost.

In terms of hedging cost, although the difference between strategies is minimal, RL agents

exhibit greater robustness to increasing κ2. Despite their higher rebalancing frequency, their

performance deteriorates less noticeably as transaction costs rise, demonstrating their ability
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to adapt and maintain effective hedging even in high-cost environments.

4.4.5 Assessing the presence of speculative components in hedging positions

In this section, we explore whether the risk management strategies incorporate speculative

elements, such as "good deals" which refer to capitalizing on the benefits derived from the

risk premium. This scenario would be considered undesirable in practice, as it deviates from

sound risk management practices.

4.4.5.1 Risk premium and good deals

As a second test, we analyze if RL agents exploit "good deals" in terms of seeking benefit

form the risk premium offered by the hedging option, specically an ATM call option with

maturity of T ∗ > T days and strike K∗. In this analysis we consider the risk premium (RP)

as the difference between the expected payoff at time t and the option price at time t, i.e.,

RPt = exp(−rt(T ∗ − t))E[max(ST ∗ −K∗, 0) | Ft]− Ot(K
∗, T ∗) , (4.12)

where Ft denotes the information available at time t. The risk premium is calculated using a

stochastic-on-stochastic simulation approach, where the present value of the expected payoff

is simulated at each time step, nested within the simulated paths. In this framework, state

vectors are randomly sampled from the test set to serve as initial points for the simulation. By

repeatedly simulating from various initial conditions, the risk premium captures the dynamic

behavior of the system under diverse potential paths.

In this analysis, we examine whether there is a statistical relationship between the risk

premium RPt and the position in the hedging instrument ϕ(O)
t+1, with the goal of determining

whether RL agents capitalize on RPt. Figure 4.4 presents the scatter plot of ranked data

between these two variables, using a sample of 20,000 data points from 100,000 out-of-sample

paths across all risk measures. The scatter plot does not reveal any strong dependence

patterns, suggesting weak or no significant relationship. This finding is further supported by
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the sample correlations, which range from -0.001 to -0.006 across all scenarios. These results

imply that RL agents do not appear to engage in strategies specifically aimed at capturing

risk premium benefits.

Figure 4.4: Scatter plot from ranked data of risk premium and hedging option positions.
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Results are computed using a sample of 20,000 data points from 100,000 out-of-sample
paths. Transaction cost levels are set to 0%.

As a complementary analysis, we assess whether our approach incorporates speculative

elements, such as statistical arbitrage overlays, that may not align with sound risk management

practices. Our results suggest that RL agents do not adopt in such strategies, regardless of

the risk measure used during the optimization task. Further details can be found in Appendix

4.6.6.

4.4.6 Statistical study and sensitivity analysis of hedging strategies

4.4.6.1 Statistical analysis of hedging option positions: Benchmarks vs RL agents

We start by analyzing the relationship between the hedging option positions recommended

by the DG strategy and those generated by RL agents. This analysis aims to understand

how the outperformance documented in Sections 4.4.4.1 and 4.4.4.2 is achieved by RL agents

by examining the positions taken by the hedger. Figure 4.5 presents the sample correlation

between the hedging option positions for DG and RL agents, φ(O,DG) and φ(O,RL), when both

are optimized using three risk measures: MSE, SMSE, and CVaR95%. The sample correlation

is computed daily over the entire hedging period, considering two scenarios: one without
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transaction costs and another with transaction costs set to κ1 = 0.05% and κ2 = 1%, for

illustration purposes.

Figure 4.5: Pearson correlation between DG and RL agent’s hedging option positions.
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, 

Results are based on a sample of 100,000 out-of-sample paths. Agents are trained under
the conditions described in Section 4.4.3.

Our numerical results reveal a clear pattern across all risk measures, with a significant

difference in the correlation between the RL agent and DG hedging strategies, particularly at

the beginning of the hedging horizon. At the onset, the RL agent adopts a fundamentally

different approach, leading to low or even negative correlation with the DG strategy. As the

hedging period progresses, and in the absence of transaction costs, the correlation gradually

increases, albeit slowly, reaching approximately 50% by mid-period. This slow convergence is

striking, as it suggests that the RL agent continues to employ a hedging strategy that differs

from the traditional DG approach. The eventual convergence towards higher correlation

levels is expected, as the payoff structure becomes clearer close to maturity. However, the

inclusion of transaction costs results in the RL agent maintaining a distinct approach, with

the correlation remaining near zero for a considerable period. This suggests that the RL

agent has learned to manage hedging costs more effectively, avoiding myopic decision-making,

in contrast to DG, which focuses on option tracking. This behavior is likely driven by the

optimization objective of the RL agent, which explicitly targets minimizing the terminal

hedging error rather than tracking the option price, as is the case in DG hedging.
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Additionally, a potential secondary source of divergence between these strategies may stem

from differences in rebalancing size. While the frequency of rebalancing influences the timing

of adjustments, the magnitude of these adjustments could also play a key role in differentiating

the hedging behaviors of the various strategies. Figure 4.6 illustrates the average hedging

option position, along with the interquartile range, over time for all risk measures. The

analysis is presented for two scenarios: one without transaction costs (first row), and another

with transaction costs set to κ1 = 0.05% and κ2 = 1% (second row).

Figure 4.6: Distribution of hedging option positions.
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Results are computed over 100,000 out-of-sample paths according to the conditions
outlined in Section 4.4.3.1. IQR stands for the interquartile range, representing the range
between the 25th and 75th percentiles.

Our findings reveal that RL agents tend to have lower option positions during the initial stages

of the hedging period, a tendency that becomes increasingly evident with the introduction of

transaction costs. This behavior likely stems from the significant trading costs associated

with the hedging option, suggesting that RL agents employ more frequent rebalancing with

smaller positions early in the period, gradually increasing their hedge sizes over time. This

suggests that the agent initially maintains a lower exposure to the volatility risk premium,

gradually increasing its hedge positions over time. By deferring full engagement with the
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hedge, the agent seeks to balance cost efficiency with effective risk management. In contrast,

DG strategies tend to overutilize options early on to fully neutralize gamma risk. However,

this approach incurs prolonged exposure to the volatility premium, which proves suboptimal.

4.4.6.2 Sensitivity analysis

We analyze the sensitivity of the RL agents’ positions to variations in the risk factors defining

the IV surface, exploring how the agents leverage information from its shape. We begin by

examining the policy behavior of the RL positions across different initial scenarios for the state

variables ({βt,i}5i=1, ht,R). To evaluate the impact of each state variable, we sort the sample

of initial state vectors in our test set according to each variable and observe the resulting

hedging positions in the same order. This approach accounts for the interdependence between

these state variables and the other components of the state vector, as detailed in Table 4.1,

and illustrates how variations in the selected variable influence the direction of the hedging

positions. We focus on the initial state vector to ensure comparable market conditions in

terms of initial underlying asset price and maturity, i.e., at T = 63 days-to-maturity.

Figure 4.7 illustrates the hedging positions of the RL agent trained with the MSE risk measure

while assuming no transaction costs. This scenario is selected for simplicity, as François et al.

(2024) demonstrate that RL agents trained under MSE, SMSE, and CVaR exhibit sensitivity

to similar state variables, even though the degree of sensitivity may differ across the risk

measures. Each panel displays the hedging positions when the initial state vectors are sorted

by each of the state variables, ({βt,i}5i=1, ht,R).
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Figure 4.7: Marginal impact on hedging positions with respect to IV coefficients and
underlying asset volatility.

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
os

iti
on

Panel A

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
os

iti
on

Panel B

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
os

iti
on

Panel C

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
os

iti
on

Panel D

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
os

iti
on

Panel E

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
os

iti
on

Panel F

Results are computed using a sample of 20,000 data points from 100,000 out-of-sample
paths for an ATM straddle with maturity of T = 63 days. Transaction cost levels are set
to 0%.

These empirical results suggest that the position in the hedging option exhibits a more

pronounced decreasing trend with respect to the conditional variance of the underlying asset

returns, the long-term ATM level β1, the time-to-maturity slope β2, and the smirk β5 of the

IV surface. As noted in François et al. (2024), this highlights that RL agents utilize both

the historical variance process and market expectations of future volatility to adjust their

positions. Overall, the results indicate that the RL agent reduces its exposure to the hedging

option when higher risk is perceived at the onset.

4.4.7 Backtesting

In this section, we benchmark our approach using historical paths from the JIVR model,

spanning from January 5, 1996, to December 31, 2020, to evaluate the effectiveness of the RL

agents. This experiment assesses the performance of risk management strategies based on the

historical series (Rt, βt). Specifically, we evaluate the hedging performance by introducing a

new ATM straddle instrument with a maturity of 63 days every 21 business days along the
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historical paths. The initial values for the hedging portfolio are determined by the straddle

prices, which are calculated using the prevailing implied volatility surface on the day the

hedge is initiated.

To assess the robustness of our approach in more general market conditions, we compare

cumulative P&Ls, which are computed as the running totals of the P&L achieved by each

strategy at the maturity of each instrument during the analysis period. Figure 4.8 displays

the cumulative P&L evolution across two panels corresponding to different transaction cost

levels.

Figure 4.8: Cumulative P&L for a ATM straddle instruments with a maturity of 63 days
under real asset price dynamics.
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Results are computed based on the observed P&L from hedging 296 straddle instruments
under real market conditions observed from May 1, 1996, to December 31, 2020. A new
ATM straddle is considered every 21 business days.

As illustrated in Figure 4.8, RL strategies consistently outperform the benchmarks in both

scenarios, with and without transaction costs. Notably, the gap between the cumulative

P&L of RL agents and the benchmarks widens significantly as transaction costs increase,

highlighting the adaptability of the RL approach to diverse market conditions. Additionally,

RL strategies optimized using the MSE function yield lower cumulative P&L compared to

those optimized with asymmetric risk measures, reflecting the inherent differences in the

objectives of these risk measures.

For hedging errors, we examine their distribution under real asset price dynamics by analyzing
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the errors generated by 296 ATM straddles over the period from May 1, 1996, to December

31, 2020. Figure 4.9 displays the histogram of hedging errors for both benchmarks and RL

agents across all risk measures, with transaction costs excluded for simplicity.

Figure 4.9: Hedging error distribution under real asset price dynamics.
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Results are computed based on the observed P&L from hedging 296 straddle instruments
under real market conditions observed from May 1, 1996, to December 31, 2020. Transac-
tion cost levels are set to 0%.

As shown in Figure 4.9, RL agents demonstrate not only superior cumulative P&L over

the analysis period but also a less pronounced right tail in the hedging error distribution.

Furthermore, the hedging error distributions produced by RL agents are shifted more toward

the left, underscoring their ability to effectively manage risk. These findings highlight the

robustness of the RL approach, with the observed performance under historical data providing

evidence of its reliability.

4.5 Conclusion

This study presents a deep hedging framework for portfolios of options using multiple

hedging instruments. The implementation incorporates state-dependent no-trade regions to

optimize rebalancing frequency in the presence of transaction costs. The hedging policies

leverage forward-looking volatility information through a functional representation of the IV

surface, combined with traditional backward-looking features. Furthermore, the optimization

framework includes a soft constraint to discourage speculative behavior, enabling the agent

to develop hedging strategies that prioritize effective risk management.
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Our approach consistently outperforms traditional benchmarks in both the absence and

presence of transaction costs, underscoring the hedging performance benefits of incorporating

additional instruments, such as options. Moreover, the inclusion of no-trade regions enhances

performance for both RL and DG strategies. Specifically, RL policies are smoothed, avoiding

unnecessary rebalancing, while DG strategies converge toward semi-static hedging approaches.

Our findings highlight a significant difference in correlation between RL and DG hedging

strategies, indicating that the RL agent maintains a distinct approach. With transaction costs,

the RL agent keeps correlation near zero for an extended period, suggesting an alternative

cost management strategy that avoids myopic decision-making, unlike DG’s focus on option

tracking.

The sensitivity analysis of RL policies with respect to IV features reveals that RL agents

effectively integrate both historical variance and market expectations of future volatility

into their hedging decisions. The observed decreasing trend in hedging option exposure in

response to higher conditional variance, long-term ATM levels, time-to-maturity slopes, and

IV smirk highlights the agents’ ability to dynamically mitigate risk, serving as a protective

mechanism against volatility fluctuations.

4.6 Appendix

4.6.1 Neural network settings

4.6.1.1 Network architecture

The RNN-FNN network is defined as a composition of LSTM cells {Cl}L1
l=1 and FFNN layers

{Lj}L2
j=1, represented by the following functional form:

ϕ̃θ(Xt) = (LJ ◦ LL2 ◦ LL2−1 ◦ ... ◦ L1︸ ︷︷ ︸
FFNN layers

◦CL1 ◦ CL1−1... ◦ C1︸ ︷︷ ︸
LSTM cells

)(Xt).
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Each LSTM cell Cl maps a vector Z(C, l−1)
t of dimension d(C, l−1) to a new vector Z(C, l)

t of

dimension d(C, l) based on the following equations, starting with Z
(C, 0)
t = Xt:

i(l) = sigm(W
(l)
i Z

(C, l−1)
t + b

(l)
i ),

o(l) = sigm(W (l)
o Z

(C, l−1)
t + b(l)o ),

c(l) = i(l) ⊙ tanh(W (l)
c Z

(C, l−1)
t + b(l)c ),

Z
(C, l)
t = o

(l)
t ⊙ tanh(c(l)),

where sigm(·) and tanh(·) represent the sigmoid and hyperbolic tangent functions, applied

element-wise, and ⊙ denotes the Hadamard product. The FFNN layer Lj maps the input

vector Z(L, j−1)
t of dimension d(L, j−1) to an output vector Z(L, j)

t of dimension d(L, j) by applying

a linear transformation TLj
(Z

(L, j−1)
t ) = WLj

Z
(L, j−1)
t + bLj

followed by a non-linear activation

function gLj
. Thus, the operation for layer Lj is expressed as:

Lj(Z
(L, j−1)
t ) = (gLj

◦ TLj
)(Z

(L, j−1)
t )

for j ∈ {1, ..., L2, J}, where the initial input to the first FFNN layer is Z(L, 0)
t = Z

(C,L1)
t .

The trainable parameters θ of the RNN-FNN network are defined as follows:

• For L1 ≥ l ≥ 1: W (l)
i , W (l)

o , W (l)
c ∈ Rd(C, l)×d(C, l−1) and b

(l)
i , b(l)o , b(l)c ∈ Rd(C, l)×1, with

d(C, 0) representing the original dimension of the input vector.

• For L2 ≥ j ≥ 1: WLj
∈ Rd(L, j)×d(L, j−1) and bLj

∈ Rd(L, j) , with d(L, 0) = d(C,L1).

• For j = J : WLJ
∈ R2×d(L, L2) and bLJ

∈ R.

The hyperparameter values chosen for our experiments are specified in Section 4.4.3.1

4.6.1.2 Details for the MSGD training approach

The MSGD method estimates the penalty function Oλ(θ, l), which is typically unknown, by

using small samples of the hedging error, referred to as batches. Let Bj =

{
ξ
(ϕ̃θj

,lj)

T,i

}Nbatch

i=1

99



be the j-th batch, where Nbatch is the batch size and ξ
(ϕ̃θj

,lj)

T,i denotes the hedging error for

the i-th path in the j-th batch. This is defined as

ξ
(ϕ̃θj

,lj)

T,i = Ψ(ST,(j−1)Nbatch+i)− V
(ϕ̃θj

,lj)

T,i for i ∈ {1, . . . , Nbatch}, j ∈ {1, . . . , N},

where ST,(j−1)Nbatch+i is the price of the underlying asset at time T in the ((j−1)Nbatch+ i)-th

simulated path, and V
(ϕ̃θj

,lj)

T,i represents the terminal value of the hedging strategy for the

path when θ = θj and l = lj, with the simulated states being Xi.

The penalty function estimation for batch B is as follows:

Ô(MSE)
λ (θj, lj,Bj) =

1

Nbatch

Nbatch∑
i=1

(
ξ
(ϕ̃θj

,lj)

T,i

)2

+ λ · ŜC(θj, lj,Bj),

Ô(SMSE)
λ (θj, lj,Bj) =

1

Nbatch

Nbatch∑
i=1

(
ξ
(ϕ̃θj

,lj)

T,i

)2

1{
ξ
(ϕ̃θj

,lj)

T,i ≥0

} + λ · ŜC(θj, lj,Bj),

Ô(CVaR)
λ (θj, lj,Bj) = V̂aRα(Bj) +

1

(1− α)Nbatch

Nbatch∑
i=1

max

(
ξ
(ϕ̃θj

,lj)

T,i − V̂aRα(Bj), 0

)
+ λ · ŜC(θj, lj,Bj),

where

ŜC(θj, lj,Bj) =
1

Nbatch

Nbatch∑
i=1

1{
maxt∈{0,...,T}

[
Pt,i−V

(ϕ̃θj
,lj)

t,i

]
>V

(ϕ̃θj
,lj)

0,i

},

and V̂aRα(Bj) = ξ
(ϕ̃θj

,lj)

T,[⌈α·Nbatch⌉]
is the value-at-risk estimation derived from the ordered sample{

ξ
(ϕ̃θj

,lj)

T,[i]

}Nbatch

i=1

, where ⌈·⌉ is the ceiling function. These empirical approximations are used

to estimate the gradient of the penalty function, which is required in Equations (4.6) and

(4.7). The gradient of these empirical objective functions has analytical expressions for

FFNN, LSTM networks, and RNN-FNN networks. Detailed calculations of the gradient of

the empirical objective function are provided in Goodfellow et al. (2016). We use the batch

size from François et al. (2024) (Nbatch = 1,000).
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4.6.2 Joint Implied Volatility and Return model

4.6.2.1 Daily implied volatility surface

The full functional representation of the IV surface model introduced by François et al. (2022)

is given by:

σ(Mt, τt, βt) = βt,1︸︷︷︸
f1: Long-term ATM IV

+βt,2 e−
√

τt/Tconv︸ ︷︷ ︸
f2: Time-to-maturity slope

+βt,3

(
Mt1{Mt≥0} +

e2Mt − 1

e2Mt + 1
1{Mt<0}

)
︸ ︷︷ ︸

f3: Moneyness slope

+ βt,4

(
1− e−M2

t

)
log(τt/Tmax)︸ ︷︷ ︸

f4: Smile attenuation

+βt,5

(
1− e(3Mt)3

)
log(τt/Tmax)1{Mt<0}︸ ︷︷ ︸
f5: Smirk

, τt ∈ [Tmin, Tmax]

(4.13)

As in François et al. (2022), Tmax is set to 5 years, Tmin = 6/252 and Tconv to 0.25.

4.6.2.2 Joint Implied Volatility and Return

The multivariate time series representation of the JIVR model introduced by François et al.

(2023) includes two components: one for the returns of the underlying asset and another for

the fluctuations of the IV surface coefficients. The first component follows an NGARCH(1,1)

process with NIG innovations, and is expressed as:

Rt+1 = ξt+1 − ψ(
√
ht+1,R∆) +

√
ht+1,R∆ϵt+1,R,

ht+1,R = Yt + κR(ht,R − Yt) + aRht,R(ϵ
2
t,R − 1− 2γRϵt,R), (4.14)

Yt =

(
ωR σ

(
0,

1

12
, βt

))2

,

where the equity risk premium is given by:

ξt+1 = ψ(−λ
√
ht+1,R∆)− ψ((1− λ)

√
ht+1,R∆) + ψ(

√
ht+1,R∆), (4.15)

and the process {ϵt,R}Tt=0 is a sequence of iid standardized NIG random variables with

parameters ζR and φR. The standard NIG random variable ϵ is fully defined by its probability
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density function, with parameters ζ and φ.24 Parameters for the excess return component of

the model are ΘR = (λ, κR, γR, aR, ωR, ζR, φR).

The second component of the model consists of five heteroskedastic autoregressive processes,

each having NIG innovations for the coefficients of the implied volatility factors. The evolution

of the long-term factor β1 is modeled as:

βt+1,1 = α1 +
5∑

i=1

θ1,jβt,j +
√
ht+1,1∆ϵt+1,1,

ht+1,1 = Ut + κ1(ht,1 − Ut) + a1ht,1(ϵ
2
t,1 − 1− 2γ1ϵt,1), (4.16)

Ut =

(
ω1 · σ

(
0,

1

12
, βt

))2

.

For the evolution of the other four coefficients, for i ∈ {2, 3, 4, 5}, we have:

βt+1,i = αi +
5∑

j=1

θi,jβt,j + νβt−1,2I{i=2} +
√
ht+1,i∆ϵt+1,i,

ht+1,i = σ2
i + κi(ht,i − σ2

i ) + aiht,i(ϵ
2
t,i − 1− 2γiϵt,i), (4.17)

where {ϵt,i}5i=1 are time-independent standardized NIG random variables with parameters

{(ζi, φi)}5i=1. Parameters for the various IV coefficient marginal processes are denoted

{Θi = (ω1, αi, θi,1, θi,2, θi,3, θi,4, θi,5, ν, σi, κi, ai, γi, ζi, φi)}5i=1.

24The standard NIG random variable ϵ is fully characterized by the following probability density function
with parameters ζ and φ:

f(x) =

B1

(√
φ6

φ2+ζ2 + (φ2 + ζ2)
(
x+ φ2ζ

φ2+ζ2

)2)

π

√
1

φ2+ζ2 + φ2+ζ2

φ6

(
x+ φ2ζ

φ2+ζ2

)2 e

(
φ4

φ2+ζ2
+ζ

(
x+ φ2ζ

φ2+ζ2

))
,

where B1(·) denotes the modified Bessel function of the second kind with index 1. The common (α, β, δ, µ)-
specification can be obtained by replacing β and γ (γ =

√
α2 − β2), with ζ and φ, respectively, and imposing

a null mean and unit variance to express δ and µ in terms of α, β. .
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Additionally, the JIVR model imposes a dependence structure on the contemporaneous

innovations ϵt = (ϵt,R, ϵt,1, ..., ϵt,5) through a Gaussian copula, which is parameterized using a

covariance matrix Σ of dimension 6× 6. Parameter estimates for the entire JIVR model are

sourced from Table 5 and Table 6 of François et al. (2023).

4.6.3 Benchmarks

The benchmarks presented in this appendix assume that implied volatilities adhere to the IV

model specified in Equation (4.8).

4.6.3.1 Leland Model

The Leland delta hedging strategy, introduced by Leland (1985), modifies the classical

option replication framework of Black and Scholes (1973) by incorporating transaction costs,

represented by the proportion κ, and the rebalancing frequency λ. The hedging position in

the underlying asset is given by:

ϕ
(S)
t+1 = e−qtτtΦ

(
d̃t

)
,

where

d̃t =
log
(
St

K

)
+
(
rt − qt +

1
2
σ̃2
t

)
τt

σ̃t
√
τt

with the adjusted volatility

σ̃2
t = σ(Mt, τt, βt)

2

[
1 +

√
2

π

2κ

σ(Mt, τt, βt)
√
λ

]
.

Here, Φ denotes the cumulative distribution function of the standard normal distribution.

4.6.3.2 Delta gamma hedging

The delta gamma hedging strategy involves both the underlying asset S and an additional

hedging instrument, O. This setup allows for neutralizing both the delta and gamma of the

portfolio. The trading strategy ϕ is fully determined by the process (ϕ(S), ϕ(O)), expressed as:
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(ϕ
(S)
t+1, ϕ

(O)
t+1) =

(
∆P

t − ΓP
t

Γ
(O)
t

∆
(O)
t ,

ΓP
t

Γ
(O)
t

)
,

where ∆P
t and ΓP

t represent the Black-Scholes delta and gamma of the hedged portfolio, while

∆
(O)
t and Γ

(O)
t correspond to the Black-Scholes delta and gamma of the hedging option. The

explicit formulas for the Black-Scholes delta and gamma are given as follows:

∆ = e−qtτtΦ(dt), Γ = e−qτt
φ(dt)

Stσt
√
τt
,

where dt =
log(St

K )+(rt−qt+
1
2
σ(Mt,τt,βt)2)τt

σ(Mt,τt,βt)
√
τt

, σt is the implied volatility of the option, and Φ and

φ represent the cumulative distribution function and probability density function of the

standard normal distribution, respectively.

4.6.4 Soft constraint regularization

The estimation of the penalization parameter λ introduced in Equation (4.5), which governs

the weight of the soft constraint in the optimization process, is approached as a model

selection problem. In this framework, the model is trained multiple times using fixed values

of λ, iterating across a predefined grid of λ values. The optimal λ is then selected based

on an evaluation conducted on the validation set,25 considering two key factors: the soft

constraint value and the penalty function value.

To find the optimal value of λ, we hedge an ATM straddle instrument with a maturity of

T = 63 days in the absence of transaction costs (κ1 = κ2 = 0%). The hedging instruments

used in this experiment include the risk-free asset, the underlying asset, and an ATM call

option with a maturity of T ∗ = 84 days (four months). The optimization of hedging strategies

considers three penalty functions: MSE, SMSE, and CVaR95%. This process is repeated for

various values of the penalization parameter λ: 0, 0.5, 1, and 1.5. Figure 4.10 illustrates the

25The validation set consists of 100,000 independent simulated paths, generated as outlined in Section 4.4.1.
This set is distinct from the training and test sets described in Section 4.4.3.1.
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optimal values of the soft constraint and the penalty functions for various λ values, evaluated

on a validation set.

Figure 4.10: Optimal penalty function and soft constraint values for various penalization
parameter values, applied to a straddle with a maturity of T = 63 days.
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Results are computed over 100,000 out-of-sample paths according to the conditions
outlined in Section 4.4.3.1 using an ATM call option with maturity T1 = 84 days as the
hedging instrument under different transaction costs levels.

The results illustrated in Figure 4.10 highlight the heightened sensitivity of asymmetric

penalty functions to variations in the penalization parameter λ. The SMSE penalty function

exhibits significant sensitivity of ρ, achieving its minimum value at λ = 1, which aligns with

the corresponding minimum value of the soft constraint. For the CVaR penalty function,

the soft constraint demonstrates greater sensitivity compared to the penalty function itself,

indicating that CVaR is more susceptible to deviations from the hedged portfolio value in

the absence of the soft constraint. The minimum value of the soft constraint for CVaR also

occurs at λ = 1, corresponding to the stabilization point of the penalty function. In contrast,

the MSE penalty function is mildly affected by the soft constraint, yet its minimum value is

also observed at λ = 1, mirroring the behavior of the other penalty functions.

Based on these findings, we select λ = 1 for our subsequent experiments. This value ensures
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soft constraint levels remain below 0.025% across all penalty functions.

4.6.5 Impact of state variable inclusion on hedging performance

To evaluate the impact of including state variables Pt, ∆P
t , and γPt in the reinforcement

learning framework, we conduct additional numerical experiments. Specifically, we compare

the performance of RL agents trained with and without these variables across various risk

measures. The evaluation involves hedging a straddle position with a maturity of T = 63

days, ATM call option with a maturity of T ∗ = 84 days as the hedging instrument. Table 4.5

demonstrates that the inclusion of state variables consistently improves hedging performance,

likely because they provide additional structure and information that compensate for the

suboptimal convergence issues typically encountered in finite settings.

Table 4.5: Optimal risk measure values for different state space configurations.

State space MSE SMSE CVaR95%

S\{Pt,∆
P
t , γ

P
t } 0.199 0.086 0.693

S\{Pt} 0.131 0.059 0.687

S 0.106 0.025 0.514

Optimal values are computed using 100,000 out-of-sample paths. Transaction cost levels
are set to κ1 = κ2 = 0%. The full state space, as described in Table 4.1, is denoted by S.

4.6.6 Statistical arbitrage

In this analysis, we explore whether our framework can incorporate a speculative layer, such

as statistical arbitrage, which capitalizes on the underlying structure of the risk measure that

informs the hedging optimization problem.

In line with the definition provided by Assa and Karai (2013) and following studies such as

those by Buehler et al. (2021), Horikawa and Nakagawa (2024) and François et al. (2025), we

define statistical arbitrage strategies as profit-seeking trading strategies that exploit statistical

anomalies in the market. Specifically, we assess whether the difference between the RL

106



strategies, ϕRL, and DG strategies, ϕDG, denoted by

ϕ− = ϕRL − ϕDG, (4.18)

exhibits characteristics of statistical arbitrage with respect to a risk measure ρ by evaluating

the condition

ρ
(
−V ϕ−

T (0)
)
< 0. (4.19)

This condition implies that the trading strategy requires zero initial investment and is

considered strictly less risky than a null investment according to the risk measure ρ. We

aim to investigate whether the trading strategy ϕ− behaves like statistical arbitrage in our

framework. Specifically, we examine the difference strategy to determine if RL simply adds a

speculative component to the DG strategy, or if there is another underlying mechanism at

play. This analysis is conducted with the risk metrics ρ set to CVaR95% and SMSE.

Table 4.6 presents the hedging error risk associated with the trading strategy ϕ−, which

represents the differential position between the RL and DG strategies. This analysis is

conducted across the strategies obtained under different risk measures while hedging an ATM

straddle intrument with a maturity of T = 63 days.

Table 4.6: Statistical arbitrage statistic

ρ
(
−V ϕ−

T (0)
)

Risk
measure

κ1 = κ1 = 0% κ2=0.5% κ2=1% κ2=1.5% κ2=2%

SMSE 1.719 1.597 1.691 1.805 1.882

CVaR95% 1.721 1.583 1.644 1.782 1.767

Results are computed over 100,000 out-of-sample paths according to the conditions outlined
in Section 4.4.3.1. The transaction cost for the underlying asset is set to κ1 = 0.05%.

Our numerical results show no evidence of statistical arbitrage, as all hedging error risks
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produce positive values. To further illustrate the absence of arbitrage-like behavior, Figure 4.11

presents the profit and losses (P&L) of the strategy φ− at time T with no initial investment,

considering two scenarios: one without transaction costs and another with transaction cost

levels set at 0.05% for κ1 and 0.5% for κ2. The three panels display distributions that are

either symmetric around zero or shifted to the left, indicating the absence of profit-seeking

trading strategies. This reinforces the conclusion that the RL strategies within our framework

are solely focused on hedging, without introducing speculative overlays.

Figure 4.11: P&L distribution of the strategy φ−.
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Distributions are computed using 100,000 out-of-sample paths. The P&L is simply defined
by the portfolio value V φ−

T (0) at maturity.

4.6.7 Systematic outperformance of RL agents

We validate the outperformance of RL agents by hedging a straddle instrument with a

maturity of T = 63 days, incorporating an ATM call option with a maturity of T ∗ = 84 days

as a hedging instrument. In this validation, we analyze the empirical distribution of each

penalty function under transaction cost levels set to κ1 = 0.05% and κ2 = 0.5% for simplicity.

The empirical distributions are derived by bootstrapping the hedging error over 100,000 paths,

with batches of size 1,000. As shown in Figure 4.12, the RL approach consistently outperforms

the delta gamma strategy, as evidenced by the non-overlapping empirical distributions.
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Figure 4.12: Empirical distribution of penalty functions for a straddle with maturity of
T = 63 days.
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Results are computed using bootstrapping with a sample size of 1,000 over 100,000 out-
of-sample paths according to the conditions outlined in Section 4.4.3.1 using an ATM call
option with maturity T1 = 84 days as the hedging instrument. Transaction cost levels are
set to 0.05% for κ1 and 0.5% for κ2.

4.6.8 JIVR Model parameters

Table 4.7: Estimated Gaussian copula parameters

εt,R εt,1 εt,2 εt,3 εt,4 εt,5

εt,R 1.000

εt,1 -0.550 1.000

εt,2 -0.690 0.140 1.000

εt,3 0.030 -0.030 -0.010 1.000

εt,4 -0.220 0.250 0.120 0.280 1.000

εt,5 -0.340 0.170 0.370 0.130 -0.050 1.000
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Table 4.8: JIVR model parameter estimates

Parameter β1 β2 β3 β4 β5 S&P500

α 0.000899 0.008400 0.000770 -0.001393 0.000657 λ 2.711279

θ1 0.996290 -0.013869 0.002841

θ2 0.003669 0.877813 0.001300

θ3 -0.032640 0.997071 0.003722 -0.004198

θ4 0.980269

θ5 -0.047789 0.986019

ν 0.089445

σ
√
252 0.380279 0.052198 0.048641 0.051536

ω 0.267589 0.977291

κ 0.838220 0.965751 0.974251 0.945377 0.980844 0.888977

a 0.134152 0.098272 0.092646 0.102201 0.100502 0.056087

γ -0.111813 -1.482862 0.096766 0.060558 -0.102996 2.507796

ζ 0.143760 0.852943 0.029109 -0.159051 0.092664 -0.641306

φ 1.351070 1.538928 2.284780 1.449977 1.428477 2.039669
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Conclusion

This thesis investigates the application of deep reinforcement learning (DRL) techniques for

hedging financial derivatives in incomplete markets. Across the three papers presented, we

extend the deep hedging framework of Buehler et al. (2019) by developing and analyzing

trading strategies that enhance hedging performance across various market conditions, risk

measures, and hedging instruments.

The first paper introduces a novel deep hedging framework that integrates forward-looking

volatility information through a functional representation of the implied volatility surface,

combined with conventional historical features. Our implementation employs deep policy

gradient methods and a neural network architecture incorporating LSTM cells and feedfor-

ward layers, enhancing training efficiency and risk management effectiveness. The results

demonstrate that our approach consistently outperforms traditional benchmarks both in the

presence and absence of transaction costs. Additionally, global importance analysis confirms

that incorporating implied volatility features significantly enhances hedging performance, with

key factors such as conditional variance and the long-term at-the-money implied volatility

level playing a crucial role in decision-making.

The second paper explores whether deep hedging strategies embed speculative overlays that

could lead to statistical arbitrage when compared to conventional delta hedging. Our findings

reveal that if the risk measure used in the hedging optimization does not sufficiently penalize

losses relative to gains, deep hedging can incorporate speculative elements. However, when
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using an appropriate risk measure, such as CVaR with a sufficiently high confidence level,

deep hedging strategies do not exhibit statistical arbitrage-like behavior. This highlights

the critical role of carefully selecting risk measures to ensure that deep hedging remains

a sound risk management strategy. Our analysis further indicates that susceptibility to

statistical arbitrage is influenced by factors such as option maturity, moneyness, and economic

conditions, reinforcing the importance of proper risk measure selection.

The third paper extends the deep hedging framework to portfolios of options, incorporating

multiple hedging instruments and state-dependent no-trade regions to optimize rebalancing

frequency in the presence of transaction costs. The results confirm that deep reinforcement

learning strategies benefit from the inclusion of additional hedging instruments and that

state-dependent no-trade regions improve performance by reducing unnecessary rebalancing.

Furthermore, the study demonstrates that deep hedging agents dynamically adjust positions

based on both historical variance and market expectations of future volatility, showcasing a

nuanced and adaptive approach to risk management.

Overall, this thesis contributes to the advancement of deep reinforcement learning techniques

for financial derivative hedging by addressing key aspects such as the integration of implied

volatility information, the impact of risk measures on hedging behavior, and the optimization

of hedging strategies with multiple instruments and transaction cost considerations. The

findings reinforce the viability of deep hedging as a robust and adaptive approach for managing

financial risk in incomplete markets.
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