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Abstract
Social Interaction and Cultural Activities:

An Economic Analysis on Friendship Networks

Siming Xie, PhD
Concordia University, 2024

This thesis consists of three chapters on social networks, focusing on cultural activities and
social interactions.

Chapter 2 introduces a model of friendship formation that explores whether cultural activities
can help reduce segregation across racial groups. The model incorporates a bias in the matching
process, where individuals engaged in the same activities are more likely to form friendships. This
framework aligns with empirical findings, including increased friendships among club members
and reduced segregation when students from different racial backgrounds participate equally in
cultural activities.

Chapter 3 presents an empirical analysis of club participation, examining how individual de-
cisions are shaped by social norms. The findings indicate that white students participating in
basketball and black students in baseball are influenced by the size of their racial group, whereas
this effect is not observed for the reverse combinations. Using a Linear-in-Mean (LIM) model, the
study reveals that previous research may overestimate peer effects on individual decisions, mainly
due to the endogeneity of friendship networks. The results suggest that cultural clubs play a role in
fostering social cohesion across racial groups.

Chapter 4 presents a model that examines how social norms influence students’ decisions to
participate in clubs, highlighting a trade-off between the costs of participation and the benefits of
social engagement. The model predicts that as school size increases, participation rates decline, but
a higher proportion of devotee members are committed to the club. Moreover, social engagement
has a stronger influence on participation decisions in larger schools. Empirical data support these
predictions.
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Chapter 1

Introduction

1.1 Cultural Activities and Racial Segregation: A Network For-

mation Model

Social networks play a crucial role in shaping behaviors and facilitating the exchange of values

and information within societies. One key characteristic of these networks is homophily, the

tendency of individuals to connect with others who share similar traits, such as race, age, or gender.

This tendency often reinforces social segregation, which can influence various societal outcomes,

including the diffusion of knowledge and the establishment of collective norms.

While fixed traits like race have been extensively studied in the context of network formation,

the flexible nature of cultural activities presents a distinct opportunity for fostering cross-group

connections. This chapter explores the role of cultural activities in reducing social segregation

across racial groups.

The primary objective of Chapter 2 is to develop a model that captures key aspects of network

structures involving multi-dimensional social activities, while remaining tractable enough to allow

for closed-form solutions. In this model, each agent possesses two dimensions of traits: the first is

fixed, such as race, while the second is flexible, such as club participation. The model incorporates

a biased matching process, where agents who participate in the same cultural activities meet each
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other with a probability higher than their fraction in the overall population. Agents aim to maximize

their individual payoffs, and their strategies collectively define the network formation game.

The analysis focuses on stationary equilibria, where individuals’ behavior is time-invariant and

the inflows of agents in the matching process balance the outflows. These equilibria assume that the

initial market configuration aligns with equilibrium behavior, ensuring that the inflows and outflows

of each type of agent are balanced.

The model successfully replicates several empirical findings: (i) the number of social connec-

tions for club members increases with both the relative size of the student’s racial group and the

popularity of the club within the school; (ii) students participating in clubs have more social con-

nections than those who do not; and (iii) social segregation reaches its lowest levels when students

from different racial groups participate in cultural activities at similar rates.

1.2 Empirical Findings in Peer Effects and Friendship Connec-

tions

Chapter Three presents empirical findings regarding students’ club participation decisions and

their friendship connections.

In this analysis, I separate each student’s friends by race and employ a Linear In Mean (LIM)

model to estimate the spillover effects from different types of peers. Focusing on basketball

participation, I find that, for white students, the spillover effects from their Black friends are greater

than those from their white friends. These results suggest that prior studies may have overestimated

peer effects on individual decisions, primarily due to the endogeneity of friendship networks.

The reflection problem arises from two main sources: (1) the spillover effects of an individual’s

activities on their friends, and (2) the endogenous network structure, in which individuals tend

to form connections with those who are similar to themselves. To address these issues, I use

peers’ health conditions and energy levels as instrumental variables (IV). While the application of

IV effectively addresses the first issue, it does not fully account for the influence of endogenous
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network formation.

This chapter also presents additional empirical findings. First, I observe that white students in

basketball and Black students in baseball are strongly influenced by the size of their racial group,

but this pattern does not hold for the reverse combinations.

Compared to non-members, club members are more likely to form connections with other

members within the club and are also more likely to build cross-racial friendships. This finding

suggests that cultural clubs foster social cohesion across different racial groups in society.

The data further indicate that participation rates are significantly negatively correlated with

school size, mainly due to capacity limitations in clubs at larger schools. At the same time, a

stronger clustering effect is observed among club members in larger schools—these students are

more likely to form connections within the club rather than random connections across the school.

Additionally, I classify club members into two groups: devotees, who are intrinsically motivated

by the sport and participate in only one club, and connectors, who participate in multiple clubs with

the aim of building more social connections. On average, connectors have more friendships than

devotees and non-members, and their homophily index is higher than that of devotees but similar

to that of non-members. As school size increases, the participation rate among connectors declines

at a faster rate than that of devotees.

1.3 Benefits from Social Engagement: A model and Empirical

Analysis

Chapter Four develops a model that examines how prevailing social norms influence students’

decision-making processes regarding extracurricular club participation. The model focuses on the

tradeoff between the effort and time required to engage in a club and the social benefits derived from

forming connections within the club. Based on prevailing social norms, students form expectations

about their potential social payoffs, which in turn shape their individual decisions about whether or

not to join a club.
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In this model, I assume that students choose to join a club based on the expected social benefits,

driven by the likelihood of forming connections with peers who share similar traits, such as race or

shared hobbies. Each student aims to maximize their social payoff by optimally distributing their

effort between making friends within the club and outside it. The total effort, 𝐸 , is divided between

these two channels, and the number of friendships is determined by a concave function of effort,

which captures diminishing returns on increased effort.

The social payoff from joining a club, 𝑉 , is modeled as a function of the benefits per connection

within the club, 𝑣𝑚, and outside the club, 𝑣𝑠. Students allocate their effort to maximize the social

payoff. By solving the optimization problem, I derive the equilibrium allocation of effort and the

corresponding social benefits. I then estimate the net benefit of club participation, Δ𝑉 , as the

difference in payoffs between joining and not joining the club.

The model also incorporates the cost of participation, which is influenced by students’ individual

talents, assumed to be randomly distributed. The participation decision is shaped by a tradeoff be-

tween the benefits from forming social connections and the costs associated with club participation.

Using this framework, I estimate the equilibrium participation rate, which is the point where the

additional payoff from joining the club equals the participation cost. This equilibrium is influenced

by the size of the racial group, the participation rate of other students, and the benefits of forming

connections.

Specifically, the model predicts that the steady-state participation rate decreases as school size

increases, while the proportion of devoted members within clubs rises. Empirical data support

the model, confirming that social benefits significantly influence students’ club participation. The

benefits of each connection are greater in larger schools, both for connections within clubs and those

across the school, indicating that students’ participation decisions are increasingly driven by social

payoffs as school size grows.

The analysis in this chapter provides insights into the social dynamics within schools, showing

how club participation fosters cross-group interactions and promotes social cohesion. By estimating

the social benefits from friendship connections, this model contributes to a deeper understanding

4



of the role that cultural and sports clubs play in shaping students’ social networks.
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Chapter 2

Cultural Activities and Racial Segregation:

A Network Formation Model

2.1 Introduction

In social networks, individuals with similar traits tend to form connections at a higher rate

than those with different characteristics, a phenomenon known as homophily. This tendency has

been observed across various dimensions, including race, age, and occupation, and is a key driver

of social segregation. Segregation within a society significantly impacts information diffusion,

learning efficiency, and the speed at which consensus is reached among its members.

This research begins with the observation that individuals who share personal hobbies are

more likely to form social connections, potentially reducing segregation along racial lines. Unlike

immutable characteristics such as race or religion, personal interests and participation in cultural

activities are flexible traits that can transcend these predetermined categories. Since individuals are

embedded in multidimensional social networks, where they engage in different types of relationships

across various contexts, it is crucial to explore the interactions in these multiple dimensions. Instead

of focusing solely on fixed characteristics, this study shifts attention to traits that can be altered at a

relatively low cost.
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This chapter examines the role of cultural activities in shaping friendship networks in a society.

Cultural activities, such as joining clubs, provide a channel through which individuals can forge

new connections. From the empirical analysis, I find that club members are more likely to form

connections with each other within the club and they tend to have more connections than non-

members.1 Therefore, a key feature of my model is that individuals with shared hobbies have a

higher probability of forming connections.

This chapter explores the role of cultural activities in shaping friendship networks within a

society. Activities such as club participation serve as avenues for individuals to establish new

connections. The data indicate that club members are more likely to form friendships with other

members and tend to have more connections overall compared to non-members. Building on this

observation, the model developed in this study incorporates a key feature: individuals who share

common hobbies have a higher probability of forming connections. This framework allows for a

detailed analysis of how cultural activities influence the dynamics of network formation.

Currarini, Jackson, and Pin (2009) investigate the patterns of friendship networks in U.S.

high schools, where racial homophily among students is prevalent. They developed a model that

includes biases in both preferences and the meeting process, explaining empirical observations of

racial homophily. Building on their work, this study extends the analysis by considering interactions

between homophily effects in a two-dimensional model. To simplify the analysis, the model initially

focuses on two racial groups and one personal interest, such as basketball, which individuals either

like or dislike. The model introduces matching bias toward same-hobby friendships and a preference

bias favoring same-race connections.

The objective is to develop a model that can capture some important aspects of network structures

with multi-dimensional social activities while remaining tractable enough to yield closed-form

solutions. The analysis focuses on stationary equilibria, where individuals’ behavior is time-

invariant and the inflows of agents in the matching process balance the outflows. These equilibria

assume that the initial market configuration aligns with equilibrium behavior, ensuring that the

1This study uses data from the National Longitudinal Study of Adolescent to Adult Health (Add Health), a nationally
representative longitudinal survey of adolescents in grades 7-12 during the 1994-95 school year in the United States.
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inflows and outflows of each type of agent are matched.

Numerous studies demonstrate that individuals’ behaviors are influenced by their peers: for

instance, when adopting new technology, smoking, engaging in criminal activities, going to college,

etc. Social segregation enables groups to maintain distinct behaviors, norms, and cultures. At the

same time, agents in social networks not only choose their actions but often also have substantial

control over whom they interact with. The joint determination of actions and social connections

is a growing area of research, as it provides a more complete understanding of how behaviors and

networks co-evolve.

Unlike most behaviors, participation in cultural activities presents a distinct opportunity for

individuals to form new social ties at a relatively low cost, which in turn affects the structure of

social networks. The analysis suggests that when a sport or cultural activity becomes popular

among all students, racial segregation in schools decreases. However, in some schools, significant

differences in the popularity of activities among racial groups persist, leading to higher levels of

segregation.

My analysis show that, on average, students who join sports clubs such as basketball or baseball

have more friendship connections than those who do not. Additionally, the number of connections

increases with both the relative size of their racial group and the percentage of their friends who

join the club. This model helps to explain these patterns of friendship formation in the context of

cultural activities.

This study makes three primary contributions. First, it integrates the analysis of multilayer

networks with welfare considerations in network formation, providing insights into the interde-

pendencies between different network layers. The model provides a welfare-based approach to

understanding the structuring process in multidimensional networks. Ignoring these interdepen-

dencies can lead to erroneous conclusions about network formation.

Second, the model highlights the interaction between cultural activities and network structure.

Unlike other behaviors, cultural activities not only affect individual choices but also make individuals

build new connections and in turn reshape the social networks.
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Third, the model provides policy implications, particularly regarding the role of cultural activities

in reducing social segregation. Encouraging shared hobbies among different racial groups can

reduce segregation, especially for minority groups. Social coordination plays a key role in this

process. Shared hobbies are a striking example of strategic complementarity, where the incentive

to participate in an activity increases as more individuals in one’s social network choose the

same activity. By fostering participation in shared activities, new cross-group connections can

form, potentially disrupting segregated networks and leading to a new equilibrium with reduced

segregation.

The remainder of this chapter is organized as follows: Section 2.2 reviews the related literature.

Section 2.3 introduces the homophily index and presents the empirical observations from the data. In

Section 2.4, I introduce the baseline model, which assumes agents have a biased preference toward

same-race connections, and demonstrate that the weighted homophily index is minimized when

cultural activities are equally popular across racial groups. The advanced model, incorporating

biased preference toward both same-race and same-hobby connections, is then presented. Section

2.5 discusses the empirical context and shows consistency between the theoretical model and

empirical observations. Section 2.6 concludes. Proofs and derivations are provided in Appendix.

2.2 Related Literature

In this chapter, I develop a mechanism of network formation in which agents with shared personal

hobbies have a higher probability of meeting one another, and it explores the role that common

cultural activities play in reducing racial segregation within a society. Jackson (2014) and Jackson

et al. (2017) review how social network structures—such as connections, clusters, and centrality—

shape economic behaviors by influencing information flow, partnerships, and decision-making.

Economists have provided theoretical predictions on homophily, as seen in the works of Currarini

et al. (2009), Currarini et al. (2016), Bramoullé et al. (2012), and Iĳima and Kamada (2017). There

is supporting empirical evidence, including studies by Fong and Isajiw (2000), Baerveldt et al.
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(2004), and Bramoullé and Rogers (2009). Boucher (2020) finds that racial homophily is primarily

driven by the impact of students’ observable characteristics o n payoffs, rather than by network

effects. Jackson et al. (2023) examine the dynamics of friendship networks, finding that homophily

based on certain traits remains relatively stable over time. Karimi et al. (2018) develop a social

network model to evaluate how homophilic and heterophilic behaviors affect minorities within

social networks. Currarini et al. (2016) study the formation of homophilous social networks, and

how agents’ preferences and their meeting opportunities determine the observed mix of in-group

and cross-group ties. In their model, agents search in the matching pool for their own racial group

when the absolute group size is large enough, but search to population when their own type is a

small group. The anticipation of future interaction is also at the heart of Baccara and Yariv (2013),

where homophilous peer groups form in connected intervals along the preferences dimension.

At the same time, the analysis of multidimensional social networks has gained attention within the

network science community. Existing studies on network dynamics have often considered the role

of similarities across various dimensions, but these dimensions are typically estimated separately

or controlled for one another. Block and Grund (2014) demonstrate that while homophily across

various dimensions tends to have positive main effects, the interaction between these effects is often

negative. Atkisson et al. (2020) suggest that in multidimensional social networks, social ties are not

necessarily formed because two agents are optimal partners for each other in a specific domain, but

because they are connected in a more influential or significant layer of the network. To the best of

my knowledge, this research is the first to propose a model in which agents exhibit two-dimensional

homophilous behavior.

The co-evolution of links and actions in coordination games has been explored from various

perspectives. Ballester et al. (2006) show that their model results in “nested split graphs,” which

represent networks with a strict hierarchical structure. Hiller (2017) and Baetz (2015) model the

problem of network formation as a simultaneous game, where agents decide jointly on actions and

links. Ely (2002) examines a model in which players’ strategies and locations evolve simultaneously,

with only efficient strategies persisting. Badev (2021) proposes a model that captures the interplay
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between individual incentives, local peer effects, and social welfare, applying it to the study of

adolescent smoking behavior.

2.3 Background: Patterns of Friendship Networks and Ho-

mophily

In social contexts, individuals often have the freedom to choose their personal hobbies and

decide whether to participate in activities, such as joining a club. These cultural activities may bridge

predetermined societal divisions, including racial segregation. However, it is important to recognize

that actions and social connections co-evolve through strategic complementarity. Individuals may

select hobbies based on their friends’ interests and decide whether to join a club by considering its

racial composition.

2.3.1 Patterns of Friendship Networks

An example is depicted as a graph in Figure 2.1, using data from two U.S. middle schools. In

these graphs, students are represented as nodes, with colors corresponding to their racial groups.

The left graph illustrates racial homophily: white students predominantly form friendships with

other white students, while black students tend to connect with other black students. In contrast,

the right graph shows no significant clustering by race, but instead by grade level. The students

interviewed in the second school are in either grade 7 or grade 8, and they primarily form friendships

within their own grade.

In the friendship network depicted in the left graph, 52% of the students are white and 41%

are black. The right graph represents a network where 46% of the students are white and 28%

are black. In both schools, white students constitute the majority, and black students represent the

largest minority. Despite these demographic similarities, the patterns of network formation are

markedly different.
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Figure 2.1: Illustrative Friendship Networks
Friendship networks in two U.S. middle schools. Students are coded by race: yellow nodes for white; orange nodes for
black; green nodes for Asian; purple nodes for Indian; blue nodes for others.

Next, we turn to the composition of cultural activities in these schools. In the first school, 15%

of white students and 45% of black students joined the basketball club, while in the second school,

31% of white students and 35% of black students participated. As noted in previous sections, the

co-evolution of friendships and activities is complex. It is not immediately clear whether a less

segregated network structure leads to similar hobbies among racial groups, or if cultural activities

themselves reduce racial segregation. Further analysis is required to uncover the mechanisms

driving this phenomenon.

2.3.2 Measuring Homophily

In this section, I provide the definition of homophily index, which will later be used in the

matching model presented in Section 4.

Consider a society composed of 𝐾 distinct types of agents. Let 𝑁𝑔, where 𝑔 ∈ {1, ...𝐾}, denote

the number of type 𝑔 agents in the population, and let 𝑤𝑔 =
𝑁𝑔

𝑁
represent the proportion of type 𝑔

agents in the overall population, where 𝑁 =
𝐾∑︁
𝑔=1

𝑁𝑔 is the total population size. Let 𝑠𝑔 denote the
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average number of friendship connections that agents of type 𝑔 form with others of the same type,

and let 𝑑𝑔 represent the average number of connections that type 𝑔 agents form with individuals of

different types. The homophily index measures the proportion of connections formed within the

same type.

Definition of Homophily. Homophily index for type 𝑔 is defined as:

𝐻𝑔 =
𝑠𝑔

𝑠𝑔 + 𝑑𝑔
,

This index captures the extent to which individuals form connections within their own type

relative to their total number of connections.

Definition of Inbreeding homophily. Inbreeding homophily presents when the tendency to form

connections within one’s own type exceeds the group’s proportion in the population. Formally,

inbreeding homophily present when 𝐻𝑔 > 𝑤𝑔, where 𝑤𝑔 represents the proportion of group 𝑔 in

the population. This implies that agents are more likely to form friendships within their own group

than would be expected under random mixing.

The homophily index has been widely used in previous studies on social networks. In this

chapter, I introduce the concept of weighted homophily, which accounts for the homophily level

within groups that are further subdivided into subgroups. A detailed explanation of weighted

homophily is provided in Section 2.4.3.

2.4 Model

This section presents a mechanism of network formation, primarily based on the framework

introduced by Currarini et al. (2009)(CJP). In line with their study, the model assumes that agents

derive higher payoffs from forming connections with others who share the same racial group,

with diminishing marginal returns as the number of friendships increases. Agents participate in a

matching process each period, paying a fixed cost to establish new connections, and they exit the

process when the marginal payoff from forming a connection falls below this cost.
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Building on the foundation of CJP, this model introduces a key enhancement: agents possess two-

dimensional characteristics. Specifically, in addition to racial group identity, agents are characterized

by participation in cultural activities, such as shared personal hobbies. This modification allows

for an investigation into whether matching biased on one dimension (e.g., cultural activities) can

mitigate the homophily index on the other dimension (e.g., racial group).

In the model, each agent derives utility from forming connections, but the utility function

exhibits diminishing returns as the number of friendships increases. During each period, agents

pay a fixed cost to build a new connection and remain in the matching process until the marginal

payoff turns negative. A key assumption is that agents prefer connections with those similar to

themselves, gaining more utility from forming same-characteristic connections, whether based on

race or participation in the same cultural activities. Consequently, agents in the majority group tend

to stay longer in the matching process, building more connections by meeting same-type agents

with a higher probability.

This model incorporates a biased matching process, where agents with the same personal

hobbies—interpreted as participating in the same cultural activities—meet each other with a prob-

ability higher than their fraction in the overall population. The agents aim to maximize their

individual payoffs, and their strategies collectively constitute the network formation game.

I consider two models to represent agents’ biased preferences for same-type connections. The

baseline model assumes agents have a preference bias only toward within-race connections, gaining

higher utility when connecting with others from their racial group. This simplified model allows

us to derive key results, though it does not capture all empirical observations. To address this

limitation, I introduce the advanced model, where agents exhibit preference biases toward both race

and hobbies.

In this model, each agent is characterized by two dimensions. The first dimension represents

an inherent trait, such as race, language, or religion, while the second dimension corresponds to an

optional characteristic, such as participation in cultural activities or personal hobbies. For clarity,

the first dimension is referred to as "race," and the second as "hobbies." The second dimension
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is modeled as a binary variable 𝐻, where 𝐻 = 1 indicates that an agent participates in a cultural

activity, and 𝐻 = 0 otherwise.

In the network formation process, there exist matching bias in the second dimension (i.e., club

members to members) and biased preference in the first dimension (i.e., white to white). In the

advanced model, the biased preference extended on both dimensions.

The network formation process incorporates two forms of bias: matching bias in the second

dimension, where agents with the same traits are more likely to form connections (e.g., club members

connecting with other members), and biased preference in the first dimension, where individuals

receive a higher payoff for connecting with others of the same racial group (e.g., White-to-White

connections). In an extended version of the model, biased preferences apply to both dimensions.

The society consists of two racial groups, denoted as 𝑖 and racial group 𝑗 . where each racial

group is subdivided into two subgroups: those who join a club (𝐻 = 1) and those who do

not (𝐻 = 0). As a result, there are four distinct agent types in the population, represented as

𝑔 ∈ 𝐺 = {𝑖0, 𝑖1, 𝑗0, 𝑗1}. To simplify notation, the racial subgroups are defined as 𝑖 = {𝑖0, 𝑖1} and

𝑗 is 𝑗 = { 𝑗0, 𝑗1} corresponding to agents of racial types 𝑖 and type 𝑗 , respectively. Similarly, the

subgroup of agents who participate in cultural activities (𝐻 = 1) is denoted as 1 = {𝑖1, 𝑗1}, hose

who do not participate (𝐻 = 0) are denoted as 0 = {𝑖0, 𝑗0}.

A more general framework, where agents can belong to a finite set of types 𝑇 = {1, 2..., 𝐾} is

introduced in Section 2.4.6.

Let ℎ𝑖 denote the fraction of agents with the hobby in group 𝑖,

ℎ𝑖 =
𝑁𝑖1
𝑁𝑖

=
𝑁𝑖1

𝑁𝑖0 + 𝑁𝑖1
,

where 𝑁𝑖1 is the number of type-𝑖1 agents and 𝑁𝑖0 is the number of type-𝑖0 agents. Similarly, ℎ 𝑗

represents the fraction of agents with the hobby in group 𝑗 , such that ℎ 𝑗 = 𝑁 𝑗1/
(︁
𝑁 𝑗0 + 𝑁 𝑗1

)︁
, where

𝑁 𝑗1 and 𝑁 𝑗0 are the number of agents of type 𝑗1 and 𝑗0, respectively. The population proportions
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of the four agent types are denoted as

𝑊𝑔 =
(︁
𝑤𝑖0, 𝑤𝑖1, 𝑤 𝑗0, 𝑤 𝑗1

)︁
=

(︁
(1 − ℎ𝑖)𝑤𝑖, ℎ𝑖𝑤𝑖, ℎ 𝑗𝑤 𝑗 , (1 − ℎ 𝑗 )𝑤 𝑗

)︁
,

where 𝑤𝑖 is the proportion of agents in racial group 𝑖, and 𝑤 𝑗 = 1 − 𝑤𝑖 .

In the following section, I introduce a baseline model in which agents exhibit a preference for

connections within their own racial groups. In the extended model, I add the assumption that

type-1 agents also prefer to form connections with others of the same type due to shared personal

hobbies. The primary distinction between the two models lies in the differences in the agents’ payoff

functions.

2.4.1 Baseline: Biased Preference on Racial Groups

Setting of the Baseline Model

In this section, I begin by defining the agents’ payoffs. By solving the agents’ optimization

problem, I derive the number of friendships, 𝑡𝑔 (𝑞), as a function of the matching probability, 𝑞.

Next, I introduce the matching process and define the matching probability, 𝑞(𝑀) based on the the

stock of agents of each types 𝑀𝑔. Here, 𝑀𝑔 represents the cumulative presence of type 𝑔 agents in

the matching process, determined by the number of periods they participate. Finally, I define the

steady-state equilibrium as a triple (𝑡, 𝑀, 𝑞) where the inflows of agents for each group 𝑔 matches

the outflow.

Agents and Payoffs. The payoff function of an agent of type 𝑔, with 𝑠𝑔 being the number of

same-type friends and 𝑑𝑔 being the number of different-type friends, is represented by 𝑈𝑔 (𝑠𝑔, 𝑑𝑔).

The biased utility function for an agent of type 𝑔 is defined as:

𝑈𝑔 (𝑠𝑔, 𝑑𝑔) = (𝑠𝑔 + 𝛾𝑑𝑔)𝛼,

where 𝛾 ∈ (0, 1) represents the biased preference, indicating that agents of type 𝑖 gain 1 − 𝛾
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more utility from forming same-type connections than from cross-type connections. The parameter

𝛼 ∈ (0, 1) captures the diminishing returns to connections, reflecting the idea that as the number of

connections increases, the marginal utility of additional connections decreases.

To ensure that the utility function𝑈 is well-defined, I allow agents to form fractional friendship

connections, following the assumptions in Currarini et al. (2009) (CJP). Under this formulation, 𝑈

is a continuous function that is strictly increasing in the number of friendships, with continuous

first- and second-order partial derivatives. Furthermore, the utility function exhibits diminishing

marginal returns to additional friendships, meaning that the increase in utility decreases as the

number of same-type (𝑠𝑔) and different-type (𝑑𝑔) friends grows larger.

Diminishing returns to friendships are defined as:

𝑠𝑔𝑈𝑠 (𝑎𝑠𝑔, 𝑎𝑑𝑔) + 𝑑𝑔𝑈𝑑 (𝑎𝑠𝑔, 𝑎𝑑𝑔) < 𝑠𝑔𝑈𝑠 (𝑠𝑔, 𝑑𝑔) + 𝑑𝑔𝑈𝑑 (𝑠𝑔, 𝑑𝑔)

for all (𝑠𝑔, 𝑑𝑔) and 𝑎 > 1, where𝑈𝑠 and𝑈𝑑 denote the partial derivatives of𝑈 with respect to 𝑠𝑔 and

𝑑𝑔, respectively. This condition implies that the more connections an agent has already established,

the lower the marginal utility of forming additional connections. In this model, an agent must pay

a fixed cost 𝑐 to form each connection. As a result, when the marginal utility of a new connection

falls below the cost, the agent stops forming new connections.

The goal of this study is to analyze the relationship between cultural activities and racial

segregation. Thus, we interpret 𝑠𝑔 and 𝑑𝑔 as the number of connections within and across racial

groups, respectively. For example, for an agent of type 𝑔 = 𝑖0 (a member of racial group 𝑖 who

does not participate in cultural activities), the within-race connections 𝑠𝑔 represent connections with

other members of racial group 𝑖 = {𝑖0, 𝑖1}; while cross-race connections 𝑑𝑔 represent connections

with members of racial group 𝑗 = ∪ { 𝑗0, 𝑗1}.

Matching Process. For agents of type 𝑔, there is an inflow of agents of mass 𝑁𝑔 entering the

matching process per unit of time. For each unit of time spent in the matching pool, an agent forms

one new connection and incurs an opportunity cost 𝑐 > 0. Since the utility function 𝑈 exhibits
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diminishing returns to friendships, agents will leave the matching process once their expected utility

equals the cost of forming a new connection.

Let 𝑀𝑔 denote the stock of type-𝑔 agents in the matching pool. If agents of type 𝑔 remain in the

matching process for 𝑡𝑔 units of time, the steady-state stock of type-𝑔 agents in the matching pool is

given by 𝑀𝑔 = 𝑡𝑔𝑁𝑔. Therefore, the relative stock of agents of a given type increases either through

a higher inflow per unit of time or by remaining in the matching process longer.

The mix of friendships that agents form depends on the stocks 𝑀𝑔 of each type 𝑔 ∈ 𝐺. These

probabilities are endogenous to the equilibrium and determined by the steady-state stocks of agents

in the matching process. The matching process is described by a function 𝑓 : R4 → [0, 1]4×4, where

q4×4 = 𝑓
(︁
𝑀𝑖0, 𝑀𝑖1, 𝑀 𝑗0, 𝑀 𝑗1

)︁
represents the matching probabilities as a function of the stocks of

agents in the matching pool, and each element 𝑞𝑔,𝑔′ represents the probability that an agent of type

𝑔 meets an agent of type 𝑔′ per unit of time, with 𝑔, 𝑔′ ∈ 𝐺 = {𝑖0, 𝑖1, 𝑗0, 𝑗1}. For an agent of type

𝑔, the matching probabilities are given by a row in the matrix q𝑔 = (𝑞𝑔,𝑖0, 𝑞𝑔,𝑖1, 𝑞𝑔, 𝑗0, 𝑞𝑔, 𝑗1), and the

row sum
∑︁
𝑔′∈𝐺

𝑞𝑔,𝑔′ = 1.

Given the matching probabilities q, the utility function of an agent of type 𝑔 can be expressed

as:

𝑈𝑔 = (𝑠𝑔 + 𝛾𝑑𝑔)𝛼 = (𝑞𝑔,𝑠𝑡𝑔 + 𝛾𝑞𝑔,𝑑𝑡𝑔)𝛼 . (2.1)

Here, 𝑞𝑔,𝑠 represents the probability of forming a same-race connection, while 𝑞𝑔,𝑑 is the

probability of forming a cross-race connection for an agent of type 𝑔. For instance, for an agent of

type 𝑔 ∈ {𝑖0, 𝑖1}, the same-race group is 𝑠 = {𝑖0 ∪ 𝑖1} and the cross-race group is 𝑑 = { 𝑗0 ∪ 𝑗1}.

In steady-state equilibrium, the inflow of agents equals the outflow, and the stocks of each agent

type remain constant. Consequently, an agent of type 𝑔 faces the same matching probabilities in

each period and forms one new connection per period. Thus, the number of within-race connections,

𝑠𝑔, determined by the product of the matching probability for same-race agents 𝑞𝑔,𝑠 and the total

time spent in the matching process: 𝑠𝑔 = 𝑞𝑔,𝑠𝑡𝑔. Similarly, the number of cross-race connections is

𝑑𝑔 = 𝑞𝑔,𝑑𝑡𝑔 = (1 − 𝑞𝑔,𝑠)𝑡𝑔. Finally, since an agent forms one new connection per period, the total
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number of connections is equal to the total time in the matching process, i.e., 𝑠𝑔 + 𝑑𝑔 = 𝑡𝑔.

During the matching process, each agent forms exactly one new friendship per period, regardless

of the type of agent they meet. Agents continue to form additional friendships in each period until

the marginal utility of forming another connection falls below the fixed cost, 𝑐. Consequently,

agents of type 𝑔 chooses the optimal number of periods to stay in the matching process by solving

the following optimization problem:

max
𝑡𝑔
𝑈

(︁
𝑡𝑔, 𝑞𝑔,𝑠, 𝑞𝑔,𝑑

)︁
− 𝑐𝑡𝑔 (2.2)

For an agent of type 𝑔 ∈ 𝐺, the optimal number of connections 𝑡𝑔, given the matching probability

q𝑔, satisfies the first-order condition:

𝑞𝑔,𝑠𝑈𝑠
(︁
𝑠𝑔, 𝑑𝑔

)︁
+ 𝑞𝑔,𝑑𝑈𝑑

(︁
𝑠𝑔, 𝑑𝑔

)︁
= 𝑐

Solving this equation, we derive the number of connections for agents of type 𝑔, 𝑡𝑔, as a function

of their matching probability q𝑔:

𝑡𝑔 (q𝑔) = (𝛼
𝑐
) 1

1−𝛼 (𝑞𝑔,𝑠 + 𝛾𝑞𝑔,𝑑)
𝛼

1−𝛼 (2.3)

From (2.3) and the utility function (2.1), it follows that the utility of a type-𝑔 agent increases

linearly with the total number of connections they form:

𝑈𝑔 =
𝑐

𝛼
· 𝑡𝑔 .

Consequently, the agent’s total net payoff, accounting for the cost of forming all connections, is

given by:

𝑈𝑔 − 𝑐𝑡𝑔 =
𝑐(1 − 𝛼)

𝛼
· 𝑡𝑔 .

This result indicates that, holding 𝛼 and 𝑐 fixed, the overall payoff from friendship connections
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increases with the total number of connections, suggesting that agents derive higher net benefits

from maintaining a larger social network.

Metrics of Matching Probabilities. The model introduces a matching bias for agents who par-

ticipate in cultural activities, resulting in a higher probability of meeting one another. This bias

depends only on participation status and is independent of racial identity. Consequently, agents

with the same participation status (either participants or non-participants) share the same matching

probabilities, regardless of race. As a result, the full matching matrix q4×4 can be reduced to a

simplified q2×4 matrix. The first row represents the meeting probabilities for non-participants (type

0), and the second row corresponds to the meeting probabilities for participants (type 1).

The matching process introduces a bias based on agents’ participation status in cultural activities,

represented by the probabilities 𝑞1,1, 𝑞1,0, 𝑞0,1, and 𝑞0,0. For instance, 𝑞1,0 represents the probability

that an agent who participates in the activity meets an agent who does not. In the biased matching

process, agents who participate in the activity meet each other with a probability 𝑞1,1 exceeds their

relative proportion in society. The probability 𝑞1,1 increases with the strength of matching bias,

while the other three matching probabilities adjust accordingly.

The matching probabilities are defined as:

𝑞1,1 = ( 𝑀1
𝑀1+𝑀0

)𝑏,

𝑞1,0 = 1 − 𝑞1,1,

𝑞0,1 =
𝑀1
𝑀0
𝑞1,0,

𝑞0,0 = 1 − 𝑞0,1,

(2.4)

where 𝑏 ∈ [0, 1] represents the strength of matching bias. A lower value of 𝑏 indicates a stronger

bias, meaning that agents are more likely to meet others with the same participation status. Specif-

ically, when 𝑏 = 1, the matching is unbiased, while when 𝑏 = 0, the matching process is extremely

biased. The implications of these two extreme cases are discussed in Section 2.4.4.

In particular, the equation 𝑞0,1 =
𝑀1
𝑀0
𝑞1,0 in (2.4) follows from the symmetry of the matching
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Table 2.1: Matching Probability for Different Types of Agents

A. Matching Bias On The Dimension Of Hobbies

Meeting Type 0 Meeting Type 1

Agents of Type 0 𝑞0,0 𝑞0,1

Agents of Type 1 𝑞1,0 𝑞1,1

B. Matching Probability Is Unbiased On Racial Groups

Meeting Type 0 Meeting Type 1

i0 j0 i1 j1

Agents of Type 0 𝑀𝑖0
𝑀0
𝑞0,0

𝑀 𝑗0
𝑀0
𝑞0,0

𝑀𝑖1
𝑀1
𝑞0,1

𝑀 𝑗1
𝑀1
𝑞0,1

Agents of Type 1 𝑀𝑖0
𝑀0
𝑞1,0

𝑀 𝑗0
𝑀0
𝑞1,0

𝑀𝑖1
𝑀1
𝑞1,1

𝑀 𝑗1
𝑀1
𝑞1,1

process: the total number of friendships that type-1 agents form with type-0 agents must equal the

total number of friendships that type-0 agents form with type-1 agents. This condition is captured

by the equation 𝑀0𝑞0,1 = 𝑀1𝑞1,0.

In this model, the four matching probabilities defined (2.4) are illustrated in Table 2.1, Panel

A. Since the model assumes no bias along the racial dimension, the probability of meeting agents

from a particular racial group depends solely on their relative proportions within each participation

subgroup. For example, given that the probability of agents with hobbies meeting those without

hobbies is 𝑞1,0, the probability of meeting agents of type 𝑖0 is given by:

𝑞1,𝑖0 =
𝑀𝑖0
𝑀0

𝑞1,0,

where 𝑀𝑖0
𝑀0

denotes the relative stock of type 𝑖0 agents within subgroup 0. These disaggregated

probabilities are shown in Table 2.1, Panel B.

The complete set of matching probabilities for the q2×4 matrix is summarized in Table 2.2.

In this representation, the matching probabilities are independent of the agent’s racial identity.

Therefore, the full matching matrix q4×4 can be simplified to a q2×4 matrix.
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Table 2.2: Matching Probability Matrix

Meeting Type 0 Meeting Type 1
𝑖0 𝑗0 𝑖1 𝑗1

Agents of Type 0
𝑞0,𝑖0 = 𝑞𝑖0,𝑖0 𝑞0, 𝑗0 = 𝑞𝑖0, 𝑗0 𝑞0,𝑖1 = 𝑞𝑖0,𝑖1 𝑞0, 𝑗1 = 𝑞𝑖0, 𝑗1

= 𝑞 𝑗0,𝑖0 = 𝑞 𝑗0, 𝑗0 = 𝑞 𝑗0,𝑖1 = 𝑞 𝑗0, 𝑗1

Agents of Type 1
𝑞1,𝑖0 = 𝑞𝑖1,𝑖0 𝑞1, 𝑗0 = 𝑞𝑖1, 𝑗0 𝑞1,𝑖1 = 𝑞𝑖1,𝑖1 𝑞1, 𝑗1 = 𝑞𝑖1, 𝑗1

= 𝑞 𝑗1,𝑖0 = 𝑞 𝑗1, 𝑗0 = 𝑞 𝑗1,𝑖1 = 𝑞 𝑗1, 𝑗1

Steady-State Equilibrium

A steady-state equilibrium of the system, for a given set of inflows 𝑁𝑔 and a utility function 𝑈,

is defined as a specification of strategies for each type 𝑔, where the resulting stocks of agents in the

search process lead to matching probabilities q𝑔 that justify the strategies, and where the outflow

of agents equals the inflow. A steady-state equilibrium is represented as a triple
(︁
𝑡𝑔, 𝑀𝑔, q𝑔

)︁
for

agents in each group 𝑔 ∈ 𝐺 = {𝑖0.𝑖1, 𝑗0, 𝑗1} that satisfies the following conditions, and there is at

least one g such that 𝑡𝑔 > 0:

I. Agents optimize their payoff given meeting probabilities: The number of connections 𝑡𝑔 solves

the utility maximization problem given by (2.1) for each type 𝑔, subject to the matching

probability q𝑔.

II. Strategies determine stocks: The stock of type-𝑔 agents in the matching pool is determined by

𝑀𝑔 = 𝑁𝑔 · 𝑡𝑔.

III. Stock determine matching probability: q2×4 = 𝑓
(︁
𝑀𝑖0, 𝑀𝑖1, 𝑀 𝑗0, 𝑀 𝑗1

)︁
; and they are homoge-

nous with respect to race.

As described in the model, the number of connections formed by type-𝑔 agents, 𝑡𝑔, is a function

of the matching probability q𝑔; the matching probability q𝑔 are functions of the stocks 𝑴1×4 in

the matching pool; and the stock of type-𝑔 agents, 𝑀𝑔, is a function of the number of connections

𝑡𝑔. A steady-state equilibrium is reached when the triple
(︁
𝑡𝑔, 𝑀𝑔, q𝑔

)︁
for all 𝑔 ∈ 𝐺, satisfy these

conditions simultaneously.
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Agents from majority racial groups benefit from a feedback effect. When an agent belongs to a

larger group, they have a higher probability of meeting others from the same racial group, which

enables them to form more advantageous connections. As agents from this group remain in the

matching pool for longer periods, the stock of type-𝑔 agents, 𝑀𝑔, increases in proportion to their

number of connections, 𝑡𝑔. This increase in stock further raises the probability of meeting agents

from the same group, thereby reinforcing the process. The feedback loop operates as follows: as

𝑡𝑔 increases, 𝑀𝑔 rises, which in turn increases the matching probability 𝑞.,𝑔, leading to a further

increase 𝑡𝑔. This positive feedback mechanism applies to any 𝑔 ∈ 𝐺, where larger groups inherently

gain advantages in forming connections due to their higher initial probability of meeting same-type

agents.

As in the CJP model, if agents’ utility functions are unbiased between within-race and cross-race

connections, then all agents in my model will also spend the same amount of time in the matching

pool. This implies that they will form the same number of connections.

Proposition 2.1: If utility function is type-neutral, such that 𝛾 = 1, then for any matching bias

and any steady-state equilibrium, all types of agents form the same total number of friendships.

If agents’ preferences are type-neutral, then the marginal utility of forming a new connection is

independent of their type and depends only on how long they have already spent in the matching

process. Therefore, all agents, regardless of their type, spend the same amount of time in the

matching process and form the same number of friendships. Moreover, the matching probability

for each type of friend corresponds to the relative size of that type in the population, such that:

𝑞𝑔,𝑔′ = 𝑤𝑔′

for all 𝑔 and 𝑔′ ∈ 𝐺.
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2.4.2 Homophily Index and Weighted Homophily

Matching Probability and Homophily Index

In this model, the homophily index for the four types of agents can be represented using the

matching probabilities. As defined in Section 3, the homophily index 𝐻𝑔 is given by:

𝐻𝑔 =
𝑠𝑔

𝑠𝑔 + 𝑑𝑔
,

where 𝑠𝑔 = 𝑞𝑔,𝑠𝑡𝑔 and 𝑑𝑔 = (1 − 𝑞𝑔,𝑠)𝑡𝑔 represent the number of within-race and cross-race

connections, respectively. Therefore, the homophily index for agents of any group 𝑔 is equivalent

to their matching probability with same-race friends:

𝐻𝑔 = 𝑞𝑔,𝑠 .

The specific homophily indices for each group are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Homophily of type i1 𝐻𝑖1 = 𝑞1,𝑖,

Homophily of type i0 𝐻𝑖0 = 𝑞0,𝑖,

Homophily of type j1 𝐻 𝑗1 = 𝑞1, 𝑗 = 1 − 𝑞1,𝑖,

Homophily of type j0 𝐻 𝑗0 = 𝑞0, 𝑗 = 1 − 𝑞0,𝑖 .

(2.5)

Here, 𝑞1,𝑖 represents the probability that agents with hobbies (type 1) meeting agents from group i,

where 𝑞1,𝑖 = 𝑞1,𝑖0 + 𝑞1,𝑖1; and 𝑞0,𝑖 is the probability that agents without hobbies (type 0) meet agents

from group i, where 𝑞0,𝑖 = 𝑞0,𝑖0 + 𝑞0,𝑖1.

Similarly, the matching probabilities for agents from racial group 𝑗 are given by the relations

𝑞1, 𝑗 = 1 − 𝑞1,𝑖 and 𝑞0, 𝑗 = 1 − 𝑞0,𝑖.
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Weighted Homophily

Within this framework, agents are characterized along two dimensions: a primary characteristic,

such as racial identity, which is associated with observed patterns of segregation, and a secondary

characteristic that differentiates agents within the same primary group, such as participation in

cultural activities. This secondary characteristic allows us to identify heterogeneity within each

primary group and analyze the variation in friendship connections formed by agents of the same

racial background.

For example, some agents from one racial group may participate in a cultural activity that is

predominantly associated with another racial group, making them more integrated into that group’s

social network. In contrast, other agents from the same racial group who do not participate in the

activity may remain more socially segregated.

To accurately measure social segregation, it is crucial to distinguish the connection patterns

within these subgroups. Ignoring secondary characteristics would obscure the diversity in con-

nection patterns within each primary group, preventing a comprehensive understanding of how

individuals build social networks and how participation in activities influences overall integration.

To evaluate social segregation between racial groups, it is essential to assess the overall con-

nection structure for all agents within a racial group. I introduce the Weighted Homophily Index to

measure the general level of homophily for all agents of type 𝑖, which includes both subgroups 𝑖0

and 𝑖1.

Definition of Weighted Homophily:

The Weighted Homophily index is defined as the proportion of within-type connections formed

by all type-𝑖 agents relative to the total number of connections formed by them:

𝑊𝐻𝑖 ≡ 𝑁𝑖0𝑠𝑖0 + 𝑁𝑖1𝑠𝑖1
𝑁𝑖0 (𝑠𝑖0 + 𝑑𝑖0) + 𝑁𝑖0 (𝑠𝑖1 + 𝑑𝑖1)

=
𝑤𝑖0𝑠𝑖0 + 𝑤𝑖1𝑠𝑖1
𝑤𝑖0𝑡𝑖0 + 𝑤𝑖1𝑡𝑖1

,
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where 𝑤𝑖0 = 𝑤𝑖 (1 − ℎ𝑖) and 𝑤𝑖1 = 𝑤𝑖ℎ𝑖 are the relative size of group 𝑖0 and 𝑖1, respectively. In this

context, type 𝑖 refers to racial groups. By dividing racial group 𝑖 into two subgroups, I can assess

the proportion of agents in each group who share the same hobby and examine the relationship

between racial segregation and the prevalence of cultural activities.

Proposition 2.2: For any matching process and steady-state equilibrium, if agents of one race-

type ℎ = {0, 1} are homophilous such that 𝐻𝑖ℎ > 𝑤𝑖 , then the agents of other race 𝑗 and the same

trait ℎ must be heterophilous such that 𝐻 𝑗 ℎ < 𝑤 𝑗 .

Proof. From (2.4), we know that:

𝐻 𝑗 ℎ = 1 − 𝐻𝑖ℎ and 𝑤 𝑗 = 1 − 𝑤𝑖 .

This implies that if 𝐻𝑖ℎ > 𝑤𝑖 , then

𝐻 𝑗 ℎ = 1 − 𝐻𝑖ℎ < 1 − 𝑤𝑖 = 𝑤 𝑗

for any ℎ = {0, 1}. □

2.4.3 Model Simplification and the Existence of the Steady-State Equilibrium

During the empirical analysis, I found that setting 𝛼 = 1
2 allows for flexibility in adjusting 𝛾

and 𝑏 to fit the data. To validate this specification, I estimated the model under two scenarios: one

where 𝛼 = 1
2 and another where 𝛼 is treated as a free parameter. The results show that the estimated

values for the number of connections are very similar across both cases, indicating that fixing 𝛼 = 1
2

does not significantly alter the model’s explanatory power. The detailed results of the parameter

estimates are provided in Section 2.5.2.

To enhance the tractability of the model, I set the utility curvature parameter 𝛼 = 1
2 . This

specification simplifies the structure of the model while preserving its core characteristics. Setting
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𝛼 = 1
2 does not restrict the generality of the results, as it reduces the nonlinearity of the utility

function, thereby facilitating both analytical derivations and empirical estimation.

By setting 𝛼 = 1
2 , the resulting utility function exhibits a linear relationship between the number

of friendships 𝑡𝑔 and the matching probability vector q𝑔:

𝑡𝑔 =
1

4𝑐2
(︁
𝑞𝑔,𝑠 + 𝛾𝑞𝑔,𝑑

)︁

In this framework, the overall number of friendships in the society is captured by the homoge-

neous cost 𝑐, while the discrepancies between racial groups are explained by the preference bias 𝛾

and matching bias 𝑏. Increasing the number of parameters can make the model easier to fit to the

data, but it also introduces the risk of overfitting.

Given these findings, I adopt the simplified linear model (2.4.3) for the remainder of the analysis.

This approach will be used to establish the following theoretical properties and proofs.

Matching probability 𝑞1,𝑖 and 𝑞0,𝑖

As described in (2.5), the homophily index 𝐻𝑔 for each group 𝑔 ∈ 𝐺 can be expressed in terms

of the matching probabilities 𝑞1,𝑖 and 𝑞0,𝑖. Given 𝐻𝑔, we can derive the number of friendships

𝑡𝑔 (𝐻𝑔) and the corresponding stocks of agents 𝑀𝑔 (𝑡𝑔).

Based on the matching process, the matching probabilities 𝑞1,𝑖 and 𝑞0,𝑖 are defined as:

𝑞1,𝑖 =
𝑀𝑖1
𝑀1

𝑞11 +
𝑀𝑖0
𝑀0

𝑞10,

𝑞0,𝑖 =
𝑀𝑖1
𝑀1

𝑞01 +
𝑀𝑖0
𝑀0

𝑞00, (2.6)

where 𝑀1 and 𝑀0 are the total stocks of participating and non-participating agents, respectively.

The homophily index 𝐻𝑔 for each group 𝑔 can then be obtained from (2.5), and the number of
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friendships is given by:

𝑡𝑔 =
1

4𝑐2
(︁
𝛾 + (1 − 𝛾) 𝐻𝑔

)︁
.

The total stocks for participants and non-participants are:

𝑀1 = 𝑀𝑖1 + 𝑀 𝑗1 = 𝑁𝑖1𝑡𝑖1 + 𝑁 𝑗1𝑡 𝑗1,

𝑀0 = 𝑀𝑖0 + 𝑀 𝑗0 = 𝑁𝑖0𝑡𝑖0 + 𝑁 𝑗0𝑡 𝑗0,

where 𝑁𝑔 denotes the population size of group 𝑔, and the time spent in the matching process

differs by group. Importantly, both 𝑀1 and 𝑀0 depend endogenously on the equilibrium connection

intensities 𝑡𝑔.

By substituting these expressions for 𝑀1 and 𝑀0 into (2.6), we obtain the following system:

𝑞1,𝑖 = 𝑓1(𝑞1,𝑖, 𝑞0,𝑖),

𝑞0,𝑖 = 𝑓2(𝑞1,𝑖, 𝑞0,𝑖).

Existence of the Steady-State Equilibrium

Conditions (𝐼) and (𝐼 𝐼) of the steady-state equilibrium are satisfied by construction:

(𝐼) 𝑡𝑔 solves the utility maximization problem subject to the matching probability q𝑔, and

(𝐼 𝐼) the stock of agents is defined as 𝑀𝑔 = 𝑁𝑔 · 𝑡𝑔.

Therefore, to establish the existence of a steady-state equilibrium, it remains to verify that

condition (𝐼 𝐼 𝐼) holds—namely, that the matching probability matrix satisfies:

q2×4 = 𝑓
(︁
𝑀𝑖0, 𝑀𝑖1, 𝑀 𝑗0, 𝑀 𝑗1

)︁
.

Given the matching probabilities 𝑞1,𝑖 and 𝑞0,𝑖, the corresponding number of friendships 𝑡𝑔 (𝑞𝑔,𝑖)

and stocks 𝑀𝑔 (𝑞1,𝑖, 𝑞0,𝑖) are are determined endogenously. Thus, the existence of a steady-state
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equilibrium is equivalent to finding a fixed point for the system of equations in (2.6).

Let 𝐾 = (0, 1)2 denote the two-dimensional space of matching probabilities. Since (𝑞1,𝑖, 𝑞0,𝑖) ∈

𝐾 is a compact and convex set, and the system (2.6) defines a continuous function 𝑓 : 𝐾 → 𝐾 , by

the Brouwer Fixed Point Theorem, there exists at least one fixed point (𝑞1,𝑖, 𝑞0,𝑖) such that

𝑓 (𝑞1,𝑖, 𝑞0,𝑖) =
⎡⎢⎢⎢⎢⎢⎣
𝑓1(𝑞1,𝑖, 𝑞0,𝑖)

𝑓2(𝑞1,𝑖, 𝑞0,𝑖)

⎤⎥⎥⎥⎥⎥⎦ .
This fixed point guarantees the existence of a steady-state equilibrium under the given conditions.

2.4.4 Results of the Baseline Model

In this section, I first present the matching probabilities for two special cases: the unbiased

matching process and the extremely biased matching process, denoted by 𝑞ub and 𝑞𝑒𝑏, respectively.

Then I describe how matching probabilities vary with the matching bias 𝑏 and the relative popularity

ratio 𝑟 .

Special Case: Unbiased Matching (𝑏 = 1)

The first case is the unbiased matching process. Under the condition 𝑏 = 1, the matching

probability becomes:

𝑞1,1 =

(︃
𝑀1

𝑀1 + 𝑀0

)︃𝑏
=

𝑀1
𝑀1 + 𝑀0

.

This means that the matching probabilities are proportional to the relative stocks of agents in the

society. From the general matching process described in (2.4), we have:

𝑞𝑔,𝑔′ =
𝑀𝑔′∑︁

𝑔′∈𝐺
𝑀𝑔′
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Table 2.3: Unbiased Matching for 𝑏 = 1

Meeting Type 0 Meeting Type 1

𝑖0 𝑗0 𝑖1 𝑗1

Agents of Type 0 𝑀𝑖0∑︁
𝑀𝑔

𝑀 𝑗0∑︁
𝑀𝑔

𝑀𝑖1∑︁
𝑀𝑔

𝑀 𝑗1∑︁
𝑀𝑔

Agents of Type 1 𝑀𝑖0∑︁
𝑀𝑔

𝑀 𝑗0∑︁
𝑀𝑔

𝑀𝑖1∑︁
𝑀𝑔

𝑀 𝑗1∑︁
𝑀𝑔

for all 𝑔′ ∈ 𝐺, implying that the matching probability for any other group is directly proportional

to its relative stock in the matching pool. In this scenario, the matching process is unbiased, and all

agents share the same matching probability. Table 2.3 illustrates the matching probabilities in this

case.

Proposition 2.3: In the unbiased matching process (𝑏 = 1), the meeting probabilities for all four

types of agents are equal and correspond to their relative stocks in society. Consequently, the

homophily index for agents within the same racial group is the same, i.e., 𝐻𝑖0 = 𝐻𝑖1 and 𝐻 𝑗0 = 𝐻 𝑗1.

Additionally, agents from the same racial group form the same number of connections, i.e., 𝑡𝑖0 = 𝑡𝑖1

and 𝑡 𝑗0 = 𝑡 𝑗1.

When 𝑏 = 1, the equilibrium meeting probabilities for an agent of racial group 𝑖 are given by:

𝑞∗1,𝑖 = 𝑞
∗
0,𝑖 =

𝑀𝑖0 + 𝑀𝑖1∑︁
𝑀𝑔

.

Since 𝑀𝑔 = 𝑤𝑔𝑡𝑔 and by substituting 𝑡𝑔 by:

𝑡𝑖0 = 𝑡𝑖1 =
1

4𝑐2
(︁
𝛾 + (1 − 𝛾)𝑞·,𝑖

)︁
.

We can derive the relationship between meeting probabilities as:

𝑞.,𝑖 =
𝑤𝑖

[︁
𝛾 + (1 − 𝛾)𝑞·,𝑖

]︁
𝑤𝑖

[︁
𝛾 + (1 − 𝛾)𝑞·,𝑖

]︁
+ (1 − 𝑤𝑖)

[︁
1 − (1 − 𝛾)𝑞·,𝑖

]︁ .
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Solving this equation, the unique solution for 𝑞·,𝑖 ∈ [0, 1] is:

𝑞∗𝑢𝑏1,𝑖 = 𝑞∗𝑢𝑏0,𝑖 =
2𝑤𝑖 (1 − 𝛾) − 1 +

√︁
(1 − 2𝑤𝑖)2 + 4𝛾2𝑤𝑖 (1 − 𝑤𝑖)

2(1 − 𝛾) (2𝑤𝑖 − 1) . (2.7)

The corresponding meeting probabilities for agents in racial group 𝑗 are given by:

𝑞∗𝑢𝑏1, 𝑗 = 𝑞∗𝑢𝑏0, 𝑗 = 1 − 𝑞∗0,𝑖 .

Finally, the optimal number of connections for each group are:

𝑡∗𝑖0 = 𝑡∗𝑖1 =
1

4𝑐2

(︂
𝛾 + (1 − 𝛾)𝑞∗·,𝑖

)︂
,

𝑡∗𝑗0 = 𝑡∗𝑗1 =
1

4𝑐2

(︂
1 + 𝛾 − (1 − 𝛾)𝑞∗·,𝑖

)︂
. (2.8)

Claim 1: In an unbiased matching process, the majority group tends to exhibit inbreeding ho-

mophily , while the minority group exhibits heterophily.

When 𝑤𝑖 > 𝑤 𝑗 , compared to agents of type 𝑗 , agents of type 𝑖 have a higher probability of

meeting same-type friends and thus form more connections. As a result of this feedback effect,

the matching probability for type-𝑖 agent in the steady-state equilibrium exceeds the relative size of

their group, i.e. 𝑞.,𝑖 > 𝑤𝑖. In contrast, for group 𝑗 , the matching probability satisfies 𝑞., 𝑗 > 𝑤 𝑗 .

Special Case: Extreme Matching Bias (𝑏 = 0)

When 𝑏 = 0, the system exhibits extreme matching bias, where agents with personal hobbies

meet only others who share the same hobbies, with no cross-type connections between type-1 and

type-0. From (2.4), we obtain:

𝑞1,1 = ( 𝑀1
𝑀1 + 𝑀0

)𝑏 = 1.

In this scenario, type-1 agents only interact with other type-1 agents, and type-0 agents only interact

with other type-0 agents. The matching probabilities for this case are given in Table 2.3.
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Table 2.4: Extremely Biased Matching for 𝑏 = 0

Meeting Type 0 Meeting Type 1

i0 j0 i1 j1

Agents of Type 0 𝑀𝑖0∑︁
𝑀0

𝑀 𝑗0∑︁
𝑀0

0 0

Agents of Type 1 0 0 𝑀𝑖1∑︁
𝑀1

𝑀 𝑗1∑︁
𝑀1

1. When hi = hj:

The matching probabilities simplify to:

𝑞∗0,𝑖 = 𝑞
∗
1,𝑖 =

𝑀𝑖0
𝑀0

=
𝑀𝑖1
𝑀1

.

Following the same steps as in the unbiased matching process (𝑏 = 1), we obtain the steady-

state matching probabilities are the same with those under unbiased matching in (2.7):

𝑞∗·,𝑖 = 𝑞
∗𝑢𝑏
·,𝑖 .

This indicates that the steady-state matching probabilities is independent of ℎ𝑖 nor ℎ 𝑗 .

2. If hi ≠ hj,

Then the matching probabilities are given by

𝑞0,𝑖 =
𝑀𝑖0
𝑀0

, and 𝑞1,𝑖 =
𝑀𝑖1
𝑀1

.

The steady-state matching probabilities depend on the relative popularity ratio,

𝑟
𝑖 𝑗

1 ≡ ℎ𝑖

ℎ 𝑗
.
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For type-𝑖1 agents, the homophily index:

𝑞∗𝑒𝑏1,𝑖 = 𝑞 (𝛾, 𝑤𝑖, 𝑟ℎ) =
(1 − 2𝛾)𝑤𝑖𝑟ℎ − (1 − 𝑤𝑖) +

√︁
[𝑤𝑖𝑟ℎ − (1 − 𝑤𝑖)]2 + 4𝛾2𝑤𝑖 (1 − 𝑤𝑖)𝑟ℎ

2(1 − 𝛾) [𝑤𝑖𝑟ℎ − (1 − 𝑤𝑖)]
.

(2.9)

Similarly, for type-𝑖0 agents, define the ratio

𝑟
𝑖 𝑗

0 ≡ 1 − ℎ𝑖
1 − ℎ 𝑗

,

and the homophily index is given by:

𝑞∗𝑒𝑏0,𝑖 = 𝑞(𝛾, 𝑤𝑖, 𝑟1−ℎ).

This function has the same form as the matching probability for type-1 agents, in (2.9), but with

𝑟𝑖
ℎ

replacing by 𝑟𝑖1−ℎ. The homophily index for agents in the opposite racial group are 𝑞∗1, 𝑗 =

1−𝑞∗1,𝑖, and 𝑞∗0, 𝑗 = 1−𝑞∗0,𝑖. In addition, the number of connections 𝑡∗𝑔 = 1
4𝑐2

(︂
𝛾 + (1 − 𝛾)𝑞∗𝑔,𝑠

)︂
.

When ℎ𝑖 = ℎ 𝑗 , the popularity ratio 𝑟ℎ = 𝑟1−ℎ = 1. This leads to equal matching probabilities for

type-1 and type-0 agents:

𝑞∗𝑒𝑏0,𝑖 = 𝑞∗𝑒𝑏1,𝑖 = 𝑞(𝛾, 𝑤𝑖, 1).

This represents a special case where the matching probabilities are equal, corresponding to the

matching probability described by (2.7).

Figure 2.2 provides an example illustrating homophily values under two matching processes: an

unbiased matching process (𝑏 = 1) and an extreme biased matching process (𝑏 = 0). In this example,

ℎ𝑖 > ℎ 𝑗 , leading to an increase in homophily for group 𝑖1 and 𝑗0 as the matching bias intensifies

(from 𝑏 = 1 to 𝑏 = 0). Conversely, homophily for groups 𝑖0 and 𝑗1 decreases with increasing bias.

In the graphs, values above the 45-degree line indicate inbreeding homophily, where the matching

probability with same-race agents is higher than their proportion in the population. In addition, note

that the homophily values are the same for all four groups under the unbiased matching process.
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Figure 2.2: Homophily Index under Unbiased and Extreme Biased Matching Conditions

Note: These two graphs show the values of homophily under the unbiased matching process and the extreme biased matching process.
The graph on the left displays homophily for racial group 𝑖, while the graph on the right shows the homophily index for group 𝑗. In
this example, the parameters are set as 𝛼 = 0.5, 𝛾 = 0.2, ℎ𝑖 = 0.6, and ℎ 𝑗 = 0.2.

Table 2.5: Biased Matching Process When 0 < 𝑏 < 1

Meeting Type 0 Meeting Type 1

Agents of Type 0 𝑞0,0 >
𝑀0

𝑀1+𝑀0
𝑞0,1 >

𝑀0
𝑀1+𝑀0

Agents of Type 1 𝑞1,0 <
𝑀0

𝑀1+𝑀0
𝑞1,1 >

𝑀1
𝑀1+𝑀0

Biased Matching Process: 0 < 𝑏 < 1

In the general matching process where the matching bias parameter 𝑏 lies strictly between

0 and 1, the matching probabilities exhibit distinctive characteristics. As shown in Table 2.5,

the probabilities 𝑞1,1 and 𝑞0,0—which represent the likelihood that agents meet others with the

same participation status—exceed the relative shares of participants and non-participants in the

population. This reflects the presence of positive matching bias favoring within-type interactions.

Proposition 2.4: If the popularity level of the cultural activity is the same across different racial

groups, that is , ℎ𝑖 = ℎ 𝑗 , then:

1. All agents have the same matching probabilities: q0,𝑔 = q1,𝑔 for any 𝑔 ∈ 𝐺. These probabil-

ities are identical to those under the unbiased matching process.

2. Agents within the same racial group have the same number of connections: ti0 = ti1 for any
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racial group 𝑖.

Proof. Suppose that the matching probability to same-race agents are the same for type-𝑖1 and

type-𝑖0 agents, 𝑞1,𝑖 = 𝑞0,𝑖. From (2.3), if the matching probabilities are equal, agents in these two

subgroups will remain in the matching process for the same number of periods, implying 𝑡𝑖0 = 𝑡𝑖1.

Under the condition ℎ𝑖 = ℎ 𝑗 this equality of connections ensures that the ratio of stocks within

and outside the cultural activity is balanced, i.e., 𝑀𝑖1
𝑀1

=
𝑀𝑖0
𝑀0

. Using equation (2.6), the homophily

values for these two groups are equal and correspond to their relative stocks:

𝑞1,𝑖 = 𝑞0,𝑖 =
𝑀𝑖1
𝑀1

=
𝑀𝑖0
𝑀0

.

Therefore, 𝑞1,𝑖 = 𝑞0,𝑖 is an equilibrium.

□

By following the same steps used to solve 𝑞 in the scenario 𝑏 = 0 and ℎ𝑖 = ℎ 𝑗 , we obtain the

same result as the closed-form solution (2.7) derived under the unbiased matching process,

𝑞∗·,𝑠 = 𝑞
∗𝑢𝑏
·,𝑠 if ℎ𝑖 = ℎ 𝑗 , for any ℎ𝑖, ℎ 𝑗 , and 𝑏 ∈ (0, 1)

which means, the homophily indices 𝐻𝑔are equivalent to those under unbiased matching process,

as long as ℎ𝑖 = ℎ 𝑗 .

In general cases where matching bias exists, agents who join cultural activities and those who

do not face different types of partners and have different matching probabilities for forming new

connections. However, when the cultural activity is equally prevalent among different racial groups

(ℎ𝑖 = ℎ 𝑗 ), agents from different races join the activity in the same proportion. In a steady-state

equilibrium, the inflow and outflow are constant in each period, so the relative stocks of agents from

each race and the composition of races in the search pool are the same both within the club and

outside it.

In this special scenario, agents inside and outside the club face the same matching probabilities,
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implying that the number of friendship connections depends only on agents’ racial types and not

on whether they join the club. Moreover, this results in the matching process yielding the same

steady-state equilibrium as the unbiased matching process, where the matching probabilities and

the number of connections depend solely on the relative sizes of each race, not on the popularity of

the cultural activities.

Although we cannot obtain closed-form solutions when 0 < 𝑏 < 1 and ℎ𝑖 ≠ ℎ 𝑗 , certain

properties of the matching process still hold.

Proposition 2.5: If the fraction of agents sharing the same hobby is greater in racial group 𝑖 than

in racial group 𝑗 (i.e., ℎ𝑖 > ℎ 𝑗 ), then, in the steady-state equilibrium:

1. Agents of type 𝑖 club participants are more homophilous and have more friendship connections

than type-𝑖 non-participants. Specifically, 𝐻𝑖1 > 𝐻𝑖0 ⇐⇒ 𝑞1,𝑖 > 𝑞0,𝑖 and 𝑡𝑖1 > 𝑡𝑖0.

2. In contrast, in racial group 𝑗 , club participants are less homophilous and have fewer friendship

connections than non-participants, i.e., 𝐻 𝑗1 < 𝐻 𝑗0 ⇐⇒ 𝑞1, 𝑗 < 𝑞0, 𝑗 and 𝑡 𝑗1 < 𝑡 𝑗0.

The proof of this proposition is provided in the Appendix.

From the expressions for 𝑞1,𝑖 and 𝑞0,𝑖 (see 2.6), we observe that the matching probabilities for

groups 𝑖1 and 𝑖0 (denoted by𝐻𝑖1 = 𝑞1,𝑖 and 𝐻𝑖0 = 𝑞0,𝑖) represent weighted averages of the relative

stocks. In the context where cultural activities are more popular among group 𝑖 than group 𝑗 , the

relative proportion of students from group 𝑖, compared to group 𝑗 , is higher within the club than

outside the club. Consequently, students from group 𝑖 who choose to participate (type 𝑖1) are more

likely to form friendships with same-race agents than those choose not to participate (type 𝑖0).

Furthermore, the number of friendship connections is an increasing function of the homophily

index. Proposition 2.5 also implies that when a cultural activity is more popular among group 𝑖,

students who participate in the activity form more friendship connections than those who do not,

i.e., 𝑡𝑖1 > 𝑡𝑖0. Additionally, students of type 𝑖1 experience higher payoffs compared to those of type

𝑖0.
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Proposition 2.6: The homophily index is a monotonic function of the matching bias 𝑏 and reaches

its upper or lower bound under the extreme matching bias scenario, where 𝑏 = 0.

1. When ℎ𝑖 > ℎ 𝑗 :

As the matching bias increases, homophily for groups 𝑖1 and 𝑗0 increases; while homophily

for groups 𝑖0 and 𝑗1 decreases.

2. When ℎ𝑖 < ℎ 𝑗 :

As the matching bias increases, homophily for groups 𝑖1 and 𝑗0 decreases; while homophily

for groups 𝑖0 and 𝑗1 increases.

Proof: Detailed proofs are provided in the Appendix.

Upper Bound and Lower Bound: By Proposition 2.6, the matching probability for any group 𝑔

is bounded by the matching probabilities in the two special cases: unbiased and extremely biased

matching process. When 0 < 𝑏 < 1, the steady-state matching probabilities for any group 𝑔 ,

denoted 𝑞∗𝑔, lie between those of the unbiased and the extremely biased process, for any given values

of ℎ𝑖 and ℎ 𝑗 ,.

For instance, if ℎ𝑖 > ℎ 𝑗 , we define :

1. Upper bound: 𝑞 *eb
1,𝑖 = 𝑞(𝛾, 𝑤𝑖, 𝑟ℎ), which is the steady-state matching probabilities for group

𝑖1 in the extremely biased case.

2. Lower bound: 𝑞 *eb
0,𝑖 = 𝑞(𝛾, 𝑤𝑖, 𝑟1−ℎ) which is the steady-state matching probabilities for group

𝑖0 in the extremely biased case.

where the function 𝑞(·) represents the matching probability in the case of extreme bias, as specified

by (2.9) in Section 4.4.2.

The matching probability 𝑞0,𝑖 and 𝑞1,𝑖 satisfy the inequality:

𝑞 *eb
0,𝑖 < 𝑞∗0,𝑖 < 𝑞

*ub
𝑖 < 𝑞∗1,𝑖 < 𝑞

*eb
1,𝑖 .
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Figure 2.3: Number of connections in the general biased matching process

Note: Matching bias 𝑏 = 0.5, and ℎ𝑖 = 0.6. The solid curve in the graph represents the case when ℎ𝑖 = ℎ 𝑗 , so the steady-state
matching probability 𝑞∗

𝑔 is equivalent to that under the unbiased matching process 𝑞∗ub
𝑔 , for any group 𝑔.

Similarly, for racial group 𝑗 :

𝑞 *eb
1 𝑗 < 𝑞∗1, 𝑗 < 𝑞

∗𝑢𝑏
𝑗 < 𝑞∗0, 𝑗 < 𝑞

*eb
0 𝑗 ,

where 𝑞0,𝑖 and 𝑞1,𝑖 correspond to the homophily indices 𝐻𝑖0 and 𝐻𝑖1 for racial group 𝑖, respectively;

while 𝑞0, 𝑗 and 𝑞1, 𝑗 represent homophily index for group 𝑗 .

If ℎ𝑖 < ℎ 𝑗 , the inequalities reverse, resulting in

𝑞 *eb
0,𝑖 > 𝑞∗0,𝑖 > 𝑞

*ub
𝑖 > 𝑞∗1,𝑖 > 𝑞

*eb
1,𝑖 ,

and similarly for racial group 𝑗 :

𝑞 *eb
1 𝑗 > 𝑞∗1, 𝑗 > 𝑞

∗𝑢𝑏
𝑗 > 𝑞∗0, 𝑗 > 𝑞

*eb
0 𝑗 .

One example is provided in Figure 2.3, As the proportion ℎ 𝑗 increases, number of connections

𝑡 𝑗1 and 𝑡𝑖0 increase, while 𝑡 𝑗0 and 𝑡𝑖1 decrease. This demonstrates how changes in the prevalence of

cultural activities among different racial groups impact the formation of social connections.
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Weighted Homophily

Given the matching probability, we can calculate the weighted homophily index for group 𝑖

using the following equation:

𝑊𝐻𝑖 =
𝑤𝑖0𝑠𝑖0 + 𝑤𝑖1𝑠𝑖1
𝑤𝑖0𝑡𝑖0 + 𝑤𝑖1𝑡𝑖1

=
𝑤𝑖 (1 − ℎ𝑖)𝑞𝑖0,𝑖𝑡𝑖0 + 𝑤𝑖ℎ𝑖𝑞𝑖1,𝑖𝑡𝑖1

𝑤𝑖 (1 − ℎ𝑖)𝑡𝑖0 + 𝑤𝑖ℎ𝑖𝑡𝑖1

=
(1 − ℎ𝑖)𝑞𝑖0,𝑖𝑡𝑖0 + ℎ𝑖𝑞𝑖1,𝑖𝑡𝑖1

(1 − ℎ𝑖)𝑡𝑖0 + ℎ𝑖𝑡𝑖1
.

Proposition 2.7: Weighted Homophily Index for both racial group 𝑖 and 𝑗 attain their minimum

when the participation rate are the same in the two racial groups ℎ𝑖 = ℎ 𝑗 .

In the formal mathematical proof, I employ the Jacobian method to assess the effect of partici-

pation rates ℎ𝑖 on the homophily indices for the two groups 𝑖1 and 𝑖0, by calculating 𝑑𝑞1,𝑖
𝑑ℎ𝑖

and 𝑑𝑞0,𝑖
𝑑ℎ𝑖

.

This analysis is only tractable under the condition ℎ𝑖 = ℎ 𝑗 , where the equations are significantly

simplified. When ℎ𝑖 ≠ ℎ 𝑗 , the complexity of the matching probability prevents a closed-form

solution for the Jacobian matrix. Consequently, I demonstrate that the weighted homophily index

attains a local optimum at ℎ𝑖 = ℎ 𝑗 , given any matching bias 𝑏. Further details are provided in the

Appendix.

In addition, I use MATLAB to compute the matching probabilities for various parameter settings,

each of which corresponds to a unique steady state. The results consistently show that the weighted

homophily indices for both racial groups, 𝑖 and 𝑗 achieve their minimum when ℎ𝑖 = ℎ 𝑗 . An example

is illustrated in Figure 2.4, where the weighted homophily indices reach their lowest values at

ℎ𝑖 = ℎ 𝑗 = 0.6 for both racial groups 𝑖 and 𝑗 .

To clarify the relationship between ℎ𝑖 and ℎ 𝑗 , Figure 2.5 presents the weighted homophily index

across the range ℎ𝑖, ℎ 𝑗 ∈ (0, 1), with other parameters held constant. These results confirm that the

weighted homophily index indeed attains a global minimum when ℎ𝑖 = ℎ 𝑗 .
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Figure 2.4: Weighted Homophily under ℎ𝑖 = 0.6

Figure 2.5: Weighted Homophily under 𝑤𝑖 = 0.4

Note: In this example, the parameters are set as 𝛼 = 0.5, 𝛾 = 0.5, and 𝑤𝑖 = 0.4
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2.4.5 Enhanced Model: Biased Preference on Two Dimensions

I now extend the analysis to networks where agents exhibit preference biases toward both race

and hobbies.

Model Setup.

We begin by specifying the utility function with two-dimensional biased preference. For agents

who do not participate in the cultural activity (𝑔 ∈ {𝑖0, 𝑗0} ), the utility function is:

𝑈𝑔∈{𝑖0, 𝑗0} (𝑠𝑔, 𝑑𝑔) = (𝑠𝑔 + 𝛾𝑑𝑔)𝛼 .

For agents who participate in the cultural activity (𝑔 ∈ {𝑖1, 𝑗1}), the utility function incorporates

an additional term reflecting their preference for same-hobby connections:

𝑈𝑔∈{𝑖1, 𝑗1} (𝑠𝑔, 𝑑𝑔) =
[︁
𝑠𝑔 + 𝛾𝑑𝑔 + 𝜎(𝑠𝑔,1 + 𝑑𝑔,1)

]︁
𝛼,

where 𝑠𝑔,1 and 𝑑𝑔,1 are the number of same-hobby connections within the same race and cross races,

respectively; 𝛾 ∈ (0, 1) denotes the preference bias toward agents from the same racial group, and

𝜎 ∈ (0, 𝛾) represents the preference bias toward agents who share the same hobby.

Expressing the utility functions in terms of matching probabilities and the number of connections

𝑡𝑔, we have:

for 𝑔 ∈ {𝑖0, 𝑗0}:

𝑈𝑔 (𝑡𝑔, 𝑞𝑔) = [𝑞0,𝑠𝑡𝑔 + 𝛾𝑞0,𝑑𝑡𝑔]𝛼,

and for 𝑔 ∈ {𝑖1, 𝑗1}:

𝑈𝑔 (𝑡𝑔, 𝑞𝑔) = [𝑞1,𝑠𝑡𝑔 + 𝛾𝑞1,𝑑𝑡𝑔 + 𝜎𝑞1,1𝑡𝑔]𝛼 .

Here:
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𝑞0,𝑠 is the probability that an agent not participating in the cultural activity meets a same-race

agent not participating;

𝑞0,𝑑 is the probability that such an agent meets a cross-race agent not participating;

𝑞1,𝑠 is the probability that an agent participating in the cultural activity meets a same-race agent

also participating;

𝑞1,𝑑 is the probability that such an agent meets a cross-race agent also participating;

𝑞1,ℎ is the probability that an agent participating in the cultural activity meets any other agent

participating in the activity (regardless of race).

We then solve each agent’s utility maximization problem:

max
𝑡𝑔
𝑈 (𝑡𝑔, 𝑞𝑔) − 𝑐𝑡𝑔 .

Setting the First-Order Condition by equating the marginal utility of building a new connection

to the fixed cost 𝑐, we derive the optimal number of connections:

for 𝑔 ∈ {𝑖0, 𝑗0}:

𝑡𝑔 = (𝛼
𝑐
) 1

1−𝛼 [𝑞0,𝑠 + 𝛾𝑞0,𝑑]
𝛼

1−𝛼 ,

and for 𝑔 ∈ {𝑖1, 𝑗1}:

𝑡𝑔 = (𝛼
𝑐
) 1

1−𝛼 [𝑞1,𝑠 + 𝛾𝑞1,𝑑 + 𝜎𝑞1,1]
𝛼

1−𝛼 . (2.10)

Implication of the Enhanced Model: In the baseline model, as stated in Proposition 2.5, if a

cultural activity is less popular within an agent’s own racial group compared to the other group,

then agents who join the club are less likely to meet same-race friends and subsequently form fewer

connections than those who choose not to join. Conversely, when the activity is more popular

among their own race, agents who choose to join are more likely to meet same-race friends and thus

build more connections than non-members.
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The advanced model, however, introduces a new trade-off for agents belonging to a racial group

in which the cultural activity is relatively less popular. On the one hand, participating in the activity

reduces the probability of forming same-race connections, which diminishes the utility derived

from within-group friendships. On the other hand, agents gain additional utility from forming

connections with others who share the same hobby, regardless of racial identity. Thus, agents from

both racial groups may still benefit from participating in the activity and may build more connections

overall, even when the activity is less prevalent within their own racial group.

Empirical analysis in section 2.5 indicates that, on average, white students participate in basket-

ball clubs at a lower rate than black students. Nonetheless, white students who are club members

tend to build more connections than white students who do not join. In the empirical analysis, I

observe that compared to non-members, club members not only form more connections with other

members but also build a greater number of total friendships. This suggests that they receive a

higher marginal payoff from forming connections with others who share the same hobby. Overall,

the enhanced model aligns more closely with the observed data patterns and better captures the

nuanced dynamics of network formation driven by both racial homophily and shared hobbies.

2.4.6 General Model with Multiple Racial Types

In a society consisting of more than two racial groups 𝑖 ∈ {1, 2, ...𝐼}, the model setup remains

consistent with that of the two-race case. Specifically, the definition of cross-race connections

extends to include agents from all other racial groups. The utility function and the optimal number

of connections 𝑡𝑔 are determined by solving the same utility maximization problem. The stocks of

agents are defined as:

𝑀1 =
∑︁
𝑖

𝑀𝑖1, and 𝑀0 =
∑︁
𝑖

𝑀𝑖0.

Since the matching process is unbiased with respect to race, the probability of meeting a same-race

agent within the club is given by 𝑀𝑖1
𝑀1

, and outside the club by 𝑀𝑖0
𝑀0

.
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For a more general model with multiple racial groups, we can formulate a system of equations

analogous to (2.6), but extended to accommodate additional dimensions. For instance, if the society

consists of three racial groups 𝑖 ∈ {𝑎, 𝑏, 𝑐}, we need to solve for the matching probabilities 𝑞1,𝑎,

𝑞1,𝑏, 𝑞0,𝑎, and 𝑞0,𝑏 satisfy the equations. The homophily index for racial group 𝑐 can be expressed

as:

𝑞1,𝑐 = 1 − 𝑞1,𝑎 − 𝑞1,𝑏𝑀𝑖1, and 𝑞0,𝑐 = 1 − 𝑞0,𝑎 − 𝑞0,𝑏 .

Once the values of these four variables are obtained, we can calculate the number of connections 𝑡𝑔

and the stocks of agents 𝑀𝑔 for each group 𝑔. Thus, the condition for a steady-state equilibrium is to

find a solution to the system of equations defined as 𝑓 : 𝐾 → 𝐾 , where 𝐾 is the space 𝐾 = (0, 1)4

and
(︁
𝑞1,𝑎, 𝑞0,𝑎, 𝑞1,𝑏, 𝑞0,𝑏

)︁
∈ 𝐾 . By the Brouwer Fixed Point Theorem, there exists at least one

equilibrium satisfying: 𝑓
(︁
𝑞1,𝑎, 𝑞0,𝑎, 𝑞1,𝑏, 𝑞0,𝑏

)︁
=

(︁
𝑞1,𝑎, 𝑞0,𝑎, 𝑞1,𝑏, 𝑞0,𝑏

)︁
.

In a society with multiple racial groups, a racial minority group with the same population

proportion as in a two-race society would tend to build more connections. To illustrate, consider a

scenario where a large majority group is split into two subgroups. The relative size of each subgroup

decreases, thereby lowering the probability of agents forming same-race connections and reducing

the duration they spend in the matching process. Consequently, agents in the minority group—as

the third racial group—benefit from the reduced stocks of competing racial groups, which increases

their likelihood of forming same-race connections in the matching pool.

2.5 Data and Empirical results

2.5.1 Data Description

The National Longitudinal Study of Adolescent Health (Add Health) provides a comprehensive

dataset that includes detailed social network information for a nationally representative sample of

U.S. middle and high school students. In the survey, each student is asked to list up to 10 friends,

capturing the structure of friendship networks within their schools. For this chapter, I utilize data
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Table 2.6: Data Description

Individual-Level Statistics (63259 Students)

White Black Hispanic Asian other

Number of Students 38378 11001 13892 3467 16414
Proportion in the Sample(%) 46.2 13.2 16.7 4.2 19.7
Number of Connections 7.3 6.2 5.7 6.2 6.1
Avg. Homophily (%) 73.4 61.9 55.7 45.9 −

School-level Statistics (134 schools)

Average Number of Students 226 22 33.5 3 116

Maximum Number of Students 1420 814 2230 431 584

Average Proportion (%) 55.7 4.3 6.7 0.7 21.0

Maximum Proportion (%) 85.9 77.5 93.2 29.6 42.7

Average Homophily (%) 68.9 42.5 11.5 4.7 −
Maximum Homophily (%) 87.0 82.4 94.9 71.7 −

Notes: Some students identify with more than one racial category. If a student selects Hispanic as one of their racial identities, they are classified as
Hispanic, regardless of any additional racial categories selected. For students who report multiple non-Hispanic racial identities, they are categorized
under the "Others" group. This classification approach is consistent with the methodology used in previous studies employing the same dataset (e.g.,
CJP).

from Wave 1, based on the in-school questionnaire, which provides cross-sectional information

on social interactions. Since adolescents in middle schools typically have limited opportunities to

interact with individuals outside of their school environment, each school can be considered an

independent social unit.

For the purpose of this study, student groups are defined by two key characteristics: racial

identity and club participation status. Only groups with at least five students are included in the

analysis to ensure the robustness of our findings. However, school-level statistics—such as racial

proportions and participation rates—are calculated using the entire student body, including smaller

groups that do not meet the sample size threshold. This approach results in an analysis sample of

83152 students across 134 schools.

In this analysis, I focus on the participation rate in the basketball club, as it is identified as the

most popular club among students based on the survey data. To provide a broader context, Figure
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Figure 2.6: Student Participation Rates Across Clubs (Ranked by Popularity)

Figure 2.7: Histogram of Listed vs Identified Friends

2.6 displays the distribution of student membership across all 33 clubs included in the questionnaire,

ranked from the most to the least popular.

Figure 2.7 presents the distribution of students’ reported number of friendships. On average,

each student listed 6.5 friends, of which 3.9 could be matched to identifiable peers in the dataset.

Compared to non-participating students, those who join clubs tend to form more friendship

connections. Empirical data show that, among White students, the average number of friendships

is 7.6 for basketball club members and 7.1 for non-members, and 7.7 for baseball club members

compared to 7.1 for non-members. Among Black students, the pattern is similar: basketball club

46



Figure 2.8: Average Number of Friendship Connections by Club Participation Status

members report 6.5 friendships on average, compared to 6.1 for non-members; for baseball, the

averages are 6.9 and 6.0, respectively. These patterns are illustrated in Figure 2.8, which presents

the average number of friendship connections by club participation status, separately for White and

Black students.

This pattern is consistent with the model, in which club members derive higher utility from

forming friendships with peers who share similar interests. As a result, they remain engaged in the

matching process for a longer duration and ultimately establish more connections.

2.5.2 Fitting the Model

In this model, I assume that each school functions as an isolated society, with the matching pro-

cess reaching a steady-state equilibrium. Each group within a school is defined by a pair of character-

istics: race and club participation status. Race is represented as 𝑖 ∈ {White, Black, Hispanic, Asian, Others},

and basketball club participation rate is denoted as ℎ ∈ {0, 1}. I exclude groups with fewer than five

students to ensure the robustness of our estimations. This filtering results in 960 groups, comprising

247 White, 161 Black, 214 Hispanic, 81 Asian, and 257 Other-race groups. Of these, 442 groups

consist of club members, while 518 are non-members.

For each group within a school, I calculate the average number of friendship connections and

the proportion of friends within the same racial group, corresponding to 𝑡𝑖ℎ and 𝑞𝑖ℎ,𝑖, respectively, as

described in the model. Additionally, for club members (ℎ = 1), I calculate the average proportion
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Figure 2.9: Comparison of Club-Member Friendships: Members vs. Non-Members

of friends who are also club members, denoted as 𝑞1,1 in the model. Figure 2.9 illustrates the density

distribution of the proportion of club-member friends, comparing 𝑞1,1 for club members and 𝑞0,1

for non-members. As shown in the figure, groups of club members tend to have a higher proportion

of club-member friends than non-members. This observation is consistent with the theoretical

prediction 𝑞1,1 > 𝑞0,1 under biased matching (𝑏 < 1), thereby providing empirical support for our

model.

Estimating the Matching Bias Parameter (𝑏)

To estimate the relative stock of each group in the matching process, I compute the product

of the relative group size and the average number of connections for each group. Since the total

number of students in a school cancels out during the process, I do not factor in the total population

𝑁 . Specifically, for club members, the relative stock is given by 𝑀𝑖1 = 𝑤𝑖ℎ𝑖𝑡𝑖1, where 𝑤𝑖 represents

the relative size of racial group 𝑖, and ℎ𝑖 denotes the club participation rate. For non-members, the

relative stock is 𝑀𝑖0 = 𝑤𝑖 (1 − ℎ𝑖)𝑡01.

Then I compute the total stocks for club members and non-members, given by 𝑀1 =
∑︁
𝑖

𝑀𝑖1 and

𝑀0 =
∑︁
𝑖

𝑀𝑖0, respectively, and the ratio 𝑀𝑖1
𝑀1

and 𝑀𝑖0
𝑀0

. Using these relative stocks and a given value

of 𝑏, I calculate

𝑞1,1(𝑏) =
(︃
𝑀1
𝑀

)︃𝑏
, and 𝑞0,1(𝑏) =

𝑀1
𝑀0

(︄
1 −

(︃
𝑀1
𝑀

)︃𝑏)︄
.

By (2.4) and (2.6), I estimate the matching probability to their own racial group 𝑞̂𝑖1,𝑖 (𝑏) and 𝑞̂𝑖0,𝑖 (𝑏)
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for each racial group 𝑖. The optimal value of 𝑏 is the one that minimizes the sum of the squared

differences between the estimated value 𝑞̂𝑖ℎ,𝑖 (𝑏) and the observed value of 𝑞𝑖ℎ,𝑖:

min
𝑏

{︄∑︁
𝑖

(𝑞̂𝑖1,𝑖 (𝑏) − 𝑞𝑖1,𝑖)2 +
∑︁
𝑖

(𝑞̂𝑖0,𝑖 (𝑏) − 𝑞𝑖0,𝑖)2

}︄
,

where

𝑞̂𝑖1,𝑖 (𝑏) = 𝑞1,1(𝑏)
𝑀𝑖1
𝑀1

+ (1 − 𝑞1,1(𝑏))
𝑀𝑖0
𝑀0

,

𝑞̂𝑖0,𝑖 (𝑏) = 𝑞0,1(𝑏)
𝑀𝑖1
𝑀1

+ (1 − 𝑞0,1(𝑏))
𝑀𝑖0
𝑀0

.

The fitted value of 𝑏 is found to be 0.7050.

Estimating Other Parameters

Method 1: Estimating 𝛼, 𝛾, 𝜎, and 𝑐. Given the observed matching proportions within racial

groups 𝑞𝑖ℎ,𝑖 and within clubs 𝑞1,1, I estimate the number of connections 𝑡𝑖ℎ using (2.10). The

optimal values of the parameters are those that minimize the sum of squared differences between

the estimated 𝑡𝑖ℎ and the observed 𝑡𝑖ℎ. In this step, there are four parameters (𝛼, 𝛾, 𝜎, and 𝑐), and the

results are sensitive to the initial parameter values. To address this, I use 10, 000 different starting

point to find the global optimal value.

Method 2: Fixing 𝛼 = 1/2. As I state in section 4.1, setting 𝛼 = 1/2 does not lead to a loss

of generality. In (2.10), the total number of connections across all students is captured by the

cost parameter 𝑐. Discrepancies between racial groups are explained by the biased preference for

same-race connections (𝛾), while differences between club members and non-members are captured

by the preference bias parameter 𝜎. Estimating 𝛼 may increase the risk of overfitting; therefore, I

fix 𝛼 = 1/2 and focus on estimating the optimal values of 𝛾, 𝜎, and 𝑐.

When comparing the optimized results of the two methods, I find that the fitted values are nearly

identical. Specifically, for the 703 groups excluding the "Other" racial category, the sum of squared
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Figure 2.10: School-Level Friendship Trends by Race and Club Participation

differences between the estimates 𝑡1𝑖ℎ from Method 1 and 𝑡2𝑖ℎ from Method 2 is 0.0012. This indicates

that setting 𝛼 = 1/2 does not reduce the precision of the model’s fit.

Estimating Different Bias Preferences (𝛾𝑖) for Each Racial Group

The analysis reveals substantial differences in the number of connections across racial groups.

Figure 2.10 illustrates the relationship between the proportion of same-race connections (𝑞𝑖ℎ,𝑖) and

the number of connections ( 𝑡𝑖ℎ), grouped by race and participation status at the school level. The

previous estimation methods do not perform well in capturing these variations. Consequently, I

estimate the preference bias parameter 𝛾𝑖 separately for each racial group. Some racial groups,

for instance, build significantly more connections when students are more likely to meet same-race

friends. This suggests a high preference bias toward forming same-race connections, indicating

that students derive higher marginal utilities from these connections and therefore remain in the

matching process longer. For racial groups where the number of connections does not significantly

increase with race-based homophily, I expect a lower value for the preference-bias parameter.

Model Performance and Validation

Figure 2.11 illustrates the density distribution of observed friendship connections compared

to the predicted values from the model. Since the two methods (flexible 𝛼 and fixed 𝛼) yield

similar fits to the data, it is challenging to differentiate between their respective curves. All three

approaches show a limited ability to capture the full range of the observed distribution. Specifically,
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Figure 2.11: Density Distribution of Observed and Fitted Friendship Connections
The density curves corresponding to the flexible and fixed α αmethods show a high degree of overlap, indicating that the
fitted values are nearly identical. The estimated optimal parameters for the flexible 𝛼 method are 𝛼 = 0.513, 𝑐 = 0.196,
𝛾 = 0.805, and 𝜎 = 0.159. For the fixed 𝛼 = 0.5 method, the parameter estimates are 𝑐 = 0.186, 𝛾 = 0.795, and
𝜎 = 0.168, suggesting that fixing 𝛼at 0.5 does not significantly alter the results. When race-specific preference biases
(𝛾𝑖) are introduced, the optimal values are estimated as 𝑐 = 0.189, 𝛾white = 0.955, 𝛾black = 0.777, 𝛾Hispanic = 0.815,
𝛾Asian = 0.817, and 𝜎 = 0.177, indicating that accounting for racial differences in preferences provides a better fit to
the observed data.
Note: A discussion of this limitation and potential extensions that incorporate school-level heterogeneity is provided in
the Conclusion.

the observed number of connections is widely spread across the axis, with higher densities at both

the lower and upper ends. In contrast, the fitted values for all three methods are concentrated around

the center of the distribution, even though the inclusion of different preference biases 𝛾𝑖 for each

racial group slightly improves the fit to the observed data.

2.5.3 Linear Regression

The previous analysis shows that setting𝛼 = 1/2 does not significantly reduce the performance of

the model. Thus, I employ a linear regression model to analyze how the composition of connections

influences the total number of friendships within each group.

I express (2.10) under the assumption that 𝛼 = 1/2 in the following linear format:

𝑡𝑠𝑖ℎ = 𝛽0 + 𝜸𝑰𝑖𝑞𝑠𝑖ℎ,𝑖 + 𝜎ℎ𝑞𝑠𝑖ℎ,1 + 𝜖𝑠 + 𝜖𝑠𝑖ℎ

where 𝑡𝑠𝑖ℎ represents the average number of connections for group 𝑠𝑖ℎ (group defined by school

𝑠, race 𝑖, and club participation status ℎ); 𝜸 is a 1 × 4 coefficient vector, where each element 𝛾𝑖
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captures the impact of same-race connections for a specific racial group; 𝑰𝑖 is a 4 × 1 dummy

variable indicating race 𝑖 for each observation; 𝑞𝑠𝑖ℎ,𝑖 denotes the proportion of same-race friends,

and 𝑞𝑠𝑖ℎ,1 represents the proportion of friends within the club. The variable ℎ is a dummy indicator

of club participation, taking the value 1 for members and 0 otherwise. The error term 𝜖𝑠 accounts

for school-specific fixed effects, while 𝜖𝑠𝑖ℎ captures the group-level error.

Each observation in the regression corresponds to the average outcome of a racial group within

a particular school. Because these group-level averages are calculated from varying group sizes, it

is likely that the precision of the observed averages differs across observations. In particular, larger

racial groups within schools tend to yield more reliable average values, whereas smaller groups

may exhibit higher sampling variability. This implies potential heteroskedasticity in the error term,

which violates the classical OLS assumption of constant variance.

To address this issue, I estimate the model using both Weighted Least Squares (WLS) and

Feasible Generalized Least Squares (FGLS) in addition to the baseline OLS. In the WLS specifi-

cation, I use the group size as the weight, reflecting the idea that larger groups provide more stable

group-level averages and should therefore contribute more to the estimation. This approach helps

improve the efficiency of the estimated coefficients by accounting for differences in measurement

precision across observations.

Furthermore, to capture a more general form of heteroskedasticity that may arise from un-

observed school-level factors, I apply a Feasible Generalized Least Squares (FGLS) estimator.

Specifically, I allow the error variance to vary across schools—that is, all racial group observations

within the same school share a common error variance, but this variance may differ across schools.

This setup accommodates arbitrary differences in error variance at the school level while assuming

independence across schools.

The results of the OLS, WLS, and FGLS regressions are presented in Table 2.7.

52



2.5.4 Weighted Homophily

Empirical evidence from this study supports Proposition 2.7: the weighted homophily index

decreases as the proportion of students participating in basketball becomes more balanced between

the two racial groups. The index reaches its minimum when the fraction of white students playing

basketball closely matches the fraction of black students participating in the same activity.

A comparison between the weighted homophily observed in Figure 2.4 and the empirical patterns

depicted in Figure 2.12 shows a strong alignment between the theoretical model and the empirical

data. This indicates that the model accurately captures the impact of club participation on social

network formation and homophily.

Figure 2.12: Weighted Homophily with The Ratio ℎ𝑖
ℎ 𝑗

2.6 Conclusion

This chapter derives from the observation that individuals who participate in the same cultural

activities are more likely to form social connections. Conversely, people from different racial groups

often engage in different cultural activities. Understanding whether racial identity influences cultural

participation or whether individuals select hobbies based on existing social connections is crucial

to explaining patterns of segregation in society.
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To address this, I develop a model that introduces bias in the matching process to capture several

key empirical observations. My analysis demonstrates that individuals who share the same hobbies

are more likely to connect with one another and, on average, have more friendships compared to

those who do not participate in such activities. Additionally, the model reveals that segregation

among racial groups decreases as the proportion of individuals from different races participating in

the clubs becomes more balanced.

The empirical analysis in this chapter utilizes school-level data, which corresponds with the

steady-state equilibrium predicted by the model. The next two chapters introduce an individual-

level binary choice model, where students decide whether to join a club based on their personal

characteristics, school environment, and existing friendship networks.

Discussion

In Subsection 2.5.2, Fitting the Model, one potential improvement suggested by the committee

involves incorporating school-level heterogeneity into the model. In the current framework, some

schools exhibit systematically higher or lower levels of friendship connections, which may reflect

differences in local culture, neighborhood characteristics, or school-specific environments. As a

result, the fitted values tend to be more centralized compared to the observed connections. The

committee recommended allowing the cost of forming connections to vary across schools. However,

there are 134 schools in the dataset, and introducing a separate cost parameter for each school leads

to overfitting and a loss of model parsimony.

I attempted to allow different costs by racial group, but since the model already estimates group-

specific biased preference parameters ( 𝛾) by race, this adjustment did not improve model fit or

estimation accuracy.

As a potential future extension, I plan to introduce a school-specific scaling factor, 𝛼𝑖, based on

the average number of friendships formed by students in school 𝑖. The effective cost of forming

a connection in school 𝑖 would then be modeled as 𝛼𝑖𝑐, where 𝑐 is the baseline cost parameter to

be estimated. This approach maintains a single cost parameter while allowing for some variation
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across schools. However, since the primary objective of this research is to examine how racial

composition influences students’ decisions and the formation of friendship networks, introducing

school-specific parameters may confound the identification of racial preference bias, 𝛾, as variations

in 𝛼𝑖 could absorb effects driven by racial composition. This trade-off will be addressed in future

work.

55



Total Number of Connections
OLS WLS GLS

Baseline Fixed Effect Baseline Fixed Effect Baseline Fixed Effect
(Intercept) 5.92∗∗∗ 5.92∗∗∗ 5.89∗∗∗ 6.99∗∗∗

(0.09) (0.10) (0.06) (0.45)
White Homophily 1.83∗∗∗ 1.74∗∗∗ 1.82∗∗∗ 1.72∗∗∗ 1.93∗∗∗ 1.80∗∗∗

(0.16) (0.15) (0.14) (0.15) (0.10) (0.09)
Black Homophily 0.51∗ 0.62∗∗ 0.39∗ 0.50∗ 0.84∗∗∗ 0.73∗∗∗

(0.22) (0.22) (0.19) (0.24) (0.16) (0.14)
Hispanic Homophily 0.07 0.33 −0.47∗∗ 0.11 0.43 0.60∗∗

(0.28) (0.25) (0.17) (0.18) (0.23) (0.21)
Asian Homophily 0.36 0.67 0.52 0.80 0.84∗∗ 0.95∗∗∗

(0.38) (0.43) (0.30) (0.46) (0.30) (0.26)
Within Club Effect 1.18∗∗∗ 1.14∗∗∗ 1.05∗∗∗ 1.13∗∗∗ 1.11∗∗∗ 1.35∗∗∗

(0.20) (0.17) (0.18) (0.12) (0.06) (0.01)
R2 0.25 0.59 0.50 0.81
Adj. R2 0.24 0.48 0.49 0.76
Num. obs. 703 703 703 703 703 703
Num. groups: SCH 134 134 134
Log Likelihood −953.62 −763.21
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 2.7: Effect of Racial and Club Homophily on Average Connections
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Appendix to Chapter 2

Appendix A. Proof of Proposition 2.5

In a matching process, suppose that a triple
(︂
𝑡∗𝑔, 𝑀

∗
𝑔 , q∗

𝑔

)︂
is a steady-state equilibrium, then the

matching probabilities 𝑞1,𝑖 and 𝑞0,𝑖 satisfy 2.6. We rewrite it as:

𝑞1,𝑖 =
𝑀𝑖0
𝑀0

(1 − 𝑞11) +
𝑀𝑖1
𝑀1

𝑞11

𝑞0,𝑖 =
𝑀𝑖0
𝑀0

(1 − 𝑞01) +
𝑀𝑖1
𝑀1

𝑞01

Here, both 𝑞1,𝑖 and 𝑞0,𝑖 are weighted averages of the relative stocks 𝑀𝑖0
𝑀0

and 𝑀𝑖1
𝑀1

. Since 𝑞11 > 𝑞01

in a biased matching process , one of the following two inequalities must hold:

𝑀𝑖0
𝑀0

< 𝑞0,𝑖 < 𝑞1,𝑖 <
𝑀𝑖1
𝑀1

or
𝑀𝑖1
𝑀1

< 𝑞1,𝑖 < 𝑞0,𝑖 <
𝑀𝑖0
𝑀0

We aim to show that when ℎ𝑖 > ℎ 𝑗 , the inequality 𝑞1,𝑖 > 𝑞0,𝑖 must hold.

The proof proceeds by contradiction.

Assume that under the condition ℎ𝑖 > ℎ 𝑗 , the inequality 𝑞1,𝑖 < 𝑞0,𝑖 holds.

We express the stocks 𝑀𝑔 as functions of 𝑡𝑔, which gives:

𝑀𝑖1
𝑀1

=
𝑤𝑖ℎ𝑖𝑁𝑡𝑖1

𝑤𝑖ℎ𝑖𝑁𝑡𝑖1 + (1 − 𝑤𝑖)ℎ 𝑗𝑁𝑡 𝑗1
𝑀𝑖0
𝑀0

=
𝑤𝑖 (1 − ℎ𝑖)𝑁𝑡𝑖0

𝑤𝑖 (1 − ℎ𝑖)𝑁𝑡𝑖0 + (1 − 𝑤𝑖) (1 − ℎ 𝑗 )𝑁𝑡 𝑗0

Since ℎ𝑖 > ℎ 𝑗 , it follows that:
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𝑀𝑖1
𝑀1

>
𝑤𝑖𝑡𝑖1

𝑤𝑖𝑡𝑖1 + (1 − 𝑤𝑖)𝑡 𝑗1
𝑀𝑖0
𝑀0

<
𝑤𝑖𝑡𝑖0

𝑤𝑖𝑡𝑖0 + (1 − 𝑤𝑖)𝑡 𝑗0

Next, express 𝑡𝑔 as a function of the matching probabilities q:

𝑀𝑖1
𝑀1

>
𝑤𝑖

[︁
𝛾 + (1 − 𝛾)𝑞1,𝑖

]︁
𝑤𝑖

[︁
𝛾 + (1 − 𝛾)𝑞1,𝑖

]︁
+ (1 − 𝑤𝑖)

[︁
1 − (1 − 𝛾)𝑞1,𝑖

]︁
𝑀𝑖0
𝑀0

<
𝑤𝑖

[︁
𝛾 + (1 − 𝛾)𝑞0,𝑖

]︁
𝑤𝑖

[︁
𝛾 + (1 − 𝛾)𝑞0,𝑖

]︁
+ (1 − 𝑤𝑖)

[︁
1 − (1 − 𝛾)𝑞0,𝑖

]︁
Define the function:

𝑓 (𝑞) = 𝑤𝑖 [𝛾 + (1 − 𝛾)𝑞]
𝑤𝑖 [𝛾 + (1 − 𝛾)𝑞] + (1 − 𝑤𝑖) [1 − (1 − 𝛾)𝑞]

Substitute 𝑀𝑖0
𝑀0

and 𝑀𝑖1
𝑀1

into the inequality 𝑞1,𝑖 < 𝑞0,𝑖. This gives:

𝑓 (𝑞1,𝑖) < 𝑞1,𝑖 < 𝑞0,𝑖 < 𝑓 (𝑞0,𝑖)

which implies:
𝑓 (𝑞1,𝑖)
𝑓 (𝑞0,𝑖)

<
𝑞1,𝑖

𝑞0,𝑖

Hence:
𝑓 (𝑞1,𝑖)/𝑞1,𝑖

𝑓 (𝑞0,𝑖)/𝑞0,𝑖
< 1

We define a logarithmic function:

𝑔(𝑞) = = 𝑙𝑛

(︃
𝑓 (𝑞)
𝑞

)︃
= 𝑙𝑛 (𝑤𝑖 [𝛾 + (1 − 𝛾)𝑞]) − 𝑙𝑛 (𝑤𝑖 [𝛾 + (1 − 𝛾)𝑞] + (1 − 𝑤𝑖) [1 − (1 − 𝛾)𝑞]) − 𝑙𝑛 (𝑞)
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The derivative of 𝑔(𝑞) is:

𝑔′(𝑞) = 𝑤𝑖 (1 − 𝛾)
𝑤𝑖 [𝛾 + (1 − 𝛾)𝑞] −

(2𝑤𝑖 − 1) (1 − 𝛾)
𝑤𝑖 [𝛾 + (1 − 𝛾)𝑞] + (1 − 𝑤𝑖) [1 − (1 − 𝛾)𝑞] −

1
𝑞

Define

𝐴(𝑞) =
𝑤𝑖 (1 − 𝛾)

𝑤𝑖 [𝛾 + (1 − 𝛾)𝑞] −
1
𝑞

=
−𝛾

[𝛾 + (1 − 𝛾)𝑞] 𝑞
< 0

𝐵(𝑞) =
(2𝑤𝑖 − 1) (1 − 𝛾)

𝑤𝑖 [𝛾 + (1 − 𝛾)𝑞] + (1 − 𝑤𝑖) [1 − (1 − 𝛾)𝑞]

=
(2𝑤𝑖 − 1) (1 − 𝛾)

1 − (1 − 𝛾)𝑤𝑖 + (2𝑤𝑖 − 1) (1 − 𝛾)𝑞

If group 𝑖 is majority (𝑤𝑖 > 1
2 ), then 𝐵(𝑞) > 0, and thus 𝑔′(𝑞) = 𝐴(𝑞) − 𝐵(𝑞) < 0. If 𝑤𝑖 < 1

2 ,

then condition 𝛾 > 1
2 is necessary to ensure 𝑔′(𝑞) < 0.

Given 𝑔(𝑞) is decreasing with 𝑞, and 𝑞1,𝑖 < 𝑞0,𝑖, we get

𝑔(𝑞1,𝑖)
𝑔(𝑞0,𝑖)

=
𝑓 (𝑞1,𝑖)/𝑞1,𝑖

𝑓 (𝑞0,𝑖)/𝑞0,𝑖
> 1

This leads to a contradiction.

Therefore, under the condition ℎ𝑖 < ℎ 𝑗 , the inequality 𝑞1,𝑖 < 𝑞0,𝑖 does not hold. Instead, the

inequality 𝑞1,𝑖 > 𝑞0,𝑖must be satisfied when ℎ𝑖 > ℎ 𝑗

Similarly, we can prove that 𝑞1,𝑖 < 𝑞0,𝑖 holds under the condition ℎ𝑖 < ℎ 𝑗 .

Appendix B. Proof of Proposition 2.6:

(Monotonicity of the Homophily Index over 𝑏)

Consider the matching probabilities on the dimension of personal hobbies, denoted as 𝑞11, 𝑞10,

𝑞01, and 𝑞00, where 𝑏 ∈ [0, 1]. From (2.4), the derivatives of these probabilities with respect to 𝑏
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are given as:

𝑑𝑞11
𝑑𝑏

= (𝑀1
𝑀

)𝑏 · 𝑙𝑛(𝑀1
𝑀

) < 0

𝑑𝑞10
𝑑𝑏

= −𝑑𝑞11
𝑑𝑏

> 0

𝑑𝑞01
𝑑𝑏

=
𝑀1
𝑀0

· 𝑑𝑞10
𝑑𝑏

> 0

𝑑𝑞00
𝑑𝑏

= −𝑑𝑞10
𝑑𝑏

< 0

where 𝑀1 and 𝑀0 represent the number of individuals possessing trait 1 and trait 0 in the matching

pool, respectively, so that 𝑀1
𝑀

=
𝑀1

𝑀1+𝑀0
< 1.

Impacts on Homophily Index: The homophily index can be calculated using the group-specific

matching probabilities. As mentioned before, the homophily index for group 𝑖1 is given by𝐻𝑖1 = 𝑞1,𝑖,

and for group 𝑖0 is given by 𝐻𝑖0 = 𝑞0,𝑖. Additionally, the homophily indices for the other group 𝑗

are: 𝐻 𝑗1 = 1 − 𝑞1,𝑖 and 𝐻 𝑗0 = 1 − 𝑞0,𝑖

The group-specific matching probabilities are:

𝑞1𝑖 =
𝑀𝑖1
𝑀1

𝑞11 +
𝑀𝑖0
𝑀0

𝑞10

𝑞0𝑖 =
𝑀𝑖1
𝑀1

· 𝑞01 +
𝑀𝑖0
𝑀0

𝑞00

The derivative of 𝑞1,𝑖 with respect to 𝑏 is:

𝑑𝑞1,𝑖

𝑑𝑏
=

𝑀𝑖1
𝑀1

· 𝑑𝑞11
𝑑𝑏

+ 𝑀𝑖0
𝑀0

𝑑𝑞10
𝑑𝑏

=

(︃
𝑀𝑖1
𝑀1

− 𝑀𝑖0
𝑀0

)︃
𝑑𝑞11
𝑑𝑏
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Similarly, the derivative of 𝑞0,1is:

𝑑𝑞0,𝑖

𝑑𝑏
=

(︃
𝑀𝑖1
𝑀1

− 𝑀𝑖0
𝑀0

)︃
· 𝑑𝑞01
𝑑𝑏

Note: The lower the value of 𝑏, the higher the level of matching bias. This is because a smaller

𝑏 places a greater probability on agents with similar personal hobbies meeting each other.

We now consider two cases based on the comparison of homophily indices ℎ𝑖 and ℎ 𝑗 :

1. Case 1: ℎ𝑖 > ℎ 𝑗

When ℎ𝑖 > ℎ 𝑗 , we have 𝑀𝑖1
𝑀1

>
𝑀𝑖0
𝑀0

. Thus, it follows that:

𝑑𝑞1,𝑖

𝑑𝑏
< 0 and

𝑑𝑞0,𝑖

𝑑𝑏
> 0

The homophily index for group 𝑖1, 𝐻𝑖1, and the homophily index for group 𝑗0, 𝐻 𝑗0, decrease

as 𝑏 increases, and therefore, they increase with a higher level of matching bias. On the other

hand, 𝐻𝑖0 and 𝐻 𝑗1 increase with 𝑏 and decrease with the matching bias.

2. Case 2: ℎ𝑖 < ℎ 𝑗

When ℎ𝑖 < ℎ 𝑗 , have 𝑀𝑖1
𝑀1

<
𝑀𝑖0
𝑀0

. In this case, the homophily index𝐻𝑖1 and 𝐻 𝑗0 decrease as the

matching bias increases, while𝐻𝑖0 and 𝐻 𝑗1 increase with the matching bias.

3. Lower Bound (Upper Bound) of the Homophily Index

Since 𝐻𝑔, for any 𝑔 ∈ 𝐺, is a monotonic function over matching bias 𝑏, the lower bound

(upper bound) of homophily for group 𝑔 occurs under the extreme case of maximum matching

bias, i.e. 𝑏 = 0.

Appendix C. Impact of ℎ𝑖 on Homophily Index at ℎ𝑖 = ℎ 𝑗

In this section, we use Jacobian matrix to estimate the impact of proportion ℎ𝑖 on the matching

probabilities 𝑞1,𝑖 and 𝑞0,𝑖, and demonstrate that 𝑞1𝑖 increases while 𝑞0𝑖 decreases at the point where
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ℎ𝑖 = ℎ 𝑗 .

The homophily of group 𝑖1 and 𝑖0 can are measured by matching probabilities 𝑞1,𝑖 and 𝑞0,𝑖,

respectively. By the definition of the two probabilities in (2.6), we obtain the following system of

equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐺 (q, ℎ𝑖) = 𝑀𝑖1

𝑀1
𝑞11 + 𝑀𝑖0

𝑀0
𝑞10 − 𝑞1,𝑖 = 0

𝐻 (q, ℎ𝑖) = 𝑀𝑖1
𝑀1
𝑞01 + 𝑀𝑖0

𝑀0
𝑞00 − 𝑞0,𝑖 = 0

where 𝑞11 = (𝑀1
𝑀
)𝑏, 𝑞10 = 1 − 𝑞11, 𝑞01 =

𝑀1
𝑀0
𝑞10, and 𝑞00 = 1 − 𝑞01. In this system, ℎ𝑖 is the only

independent variable.

To explore the sensitivity of 𝑞1𝑖 and 𝑞0𝑖 with respect ℎ𝑖, we use the Jacobian matrix of functions

𝐺 and 𝐻 , which contains the partial derivatives with respect to q𝑞1𝑖 and 𝑞0𝑖:

𝐽 =

|︁|︁|︁|︁|︁|︁|︁
𝜕𝐺
𝜕𝑞1𝑖

𝜕𝐺
𝜕𝑞0𝑖

𝜕𝐻
𝜕𝑞1𝑖

𝜕𝐻
𝜕𝑞0𝑖

|︁|︁|︁|︁|︁|︁|︁
The derivatives of 𝑞1𝑖 and 𝑞0𝑖 with respect to ℎ𝑖 are given by:

𝑑𝑞1𝑖
𝑑ℎ𝑖

= −1
𝐽

|︁|︁|︁|︁|︁|︁|︁
𝜕𝐺
𝜕ℎ𝑖

𝜕𝐺
𝜕𝑞0𝑖

𝜕𝐻
𝜕ℎ𝑖

𝜕𝐻
𝜕𝑞0𝑖

|︁|︁|︁|︁|︁|︁|︁ , and
𝑑𝑞0𝑖
𝑑ℎ𝑖

= −1
𝐽

|︁|︁|︁|︁|︁|︁|︁
𝜕𝐺
𝜕𝑞1𝑖

𝜕𝐺
𝜕ℎ𝑖

𝜕𝐻
𝜕𝑞1𝑖

𝜕𝐻
𝜕ℎ𝑖

|︁|︁|︁|︁|︁|︁|︁ ,
respectively.

We now compute the partial derivatives involved in the Jacobian matrix and the above expres-

sions.

62



𝜕𝐺

𝜕𝑞1𝑖
=

𝜕𝐺

𝜕𝑡𝑖1

𝜕𝑡𝑖1
𝜕𝑞1𝑖

− 1 =
1 − 𝛾
4𝑐2

𝜕𝐺

𝜕𝑡𝑖1
− 1,

𝜕𝐺

𝜕𝑞0𝑖
=

𝜕𝐺

𝜕𝑡𝑖0

𝜕𝑡𝑖0
𝜕𝑞0𝑖

=
1 − 𝛾
4𝑐2

𝜕𝐺

𝜕𝑡𝑖0
,

𝜕𝐻

𝜕𝑞1𝑖
=

𝜕𝐻

𝜕𝑡𝑖1

𝜕𝑡𝑖1
𝜕𝑞1𝑖

=
1 − 𝛾
4𝑐2

𝜕𝐻

𝜕𝑡𝑖1
,

𝜕𝐻

𝜕𝑞0𝑖
=

𝜕𝐻

𝜕𝑡𝑖0

𝜕𝑡𝑖0
𝜕𝑞0𝑖

− 1 =
1 − 𝛾
4𝑐2

𝜕𝐻

𝜕𝑡𝑖0
− 1.

Let us denote:

𝑏1 ≡ 𝜕𝐺

𝜕𝑡𝑖1
, 𝑏2 ≡ 𝜕𝐺

𝜕𝑡𝑖0
, 𝑏3 ≡ 𝜕𝐻

𝜕𝑡𝑖1
, 𝑏4 ≡ 𝜕𝐻

𝜕𝑡𝑖0
.

Similarly, we define:

𝑎1 ≡ 𝜕𝐺

𝜕ℎ𝑖
, 𝑎2 ≡ 𝜕𝐻

𝜕ℎ𝑖
.

We have:

𝑏1 =
𝜕𝐺

𝜕𝑡𝑖1
=

𝜕

𝜕𝑡𝑖1

(︃
𝑀𝑖1
𝑀1

)︃
× 𝑞11 +

𝜕𝑞11
𝜕𝑡𝑖1

(︃
𝑀𝑖1
𝑀1

− 𝑀𝑖0
𝑀0

)︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=0 if ℎ𝑖=ℎ 𝑗

𝑏2 =
𝜕𝐺

𝜕𝑡𝑖0
=

𝜕

𝜕𝑡𝑖0

(︃
𝑀𝑖0
𝑀0

)︃
× 𝑞10 +

𝜕𝑞11
𝜕𝑡𝑖0

(︃
𝑀𝑖1
𝑀1

− 𝑀𝑖0
𝑀0

)︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=0 if ℎ𝑖=ℎ 𝑗

𝑏3 =
𝜕𝐻

𝜕𝑡𝑖1
=

𝜕

𝜕𝑡𝑖1

(︃
𝑀𝑖1
𝑀1

)︃
× 𝑞01 +

𝜕𝑞01
𝜕𝑡𝑖1

(︃
𝑀𝑖1
𝑀1

− 𝑀𝑖0
𝑀0

)︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=0 if ℎ𝑖=ℎ 𝑗

𝑏4 =
𝜕𝐻

𝜕𝑡𝑖0
=

𝜕

𝜕𝑡𝑖0

(︃
𝑀𝑖0
𝑀0

)︃
× 𝑞01 +

𝜕𝑞01
𝜕𝑡𝑖0

(︃
𝑀𝑖1
𝑀1

− 𝑀𝑖0
𝑀0

)︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=0 if ℎ𝑖=ℎ 𝑗
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For 𝑎1and 𝑎2:

𝑎1 =
𝜕𝐺

𝜕ℎ𝑖
=

𝜕

𝜕ℎ𝑖

(︃
𝑀𝑖1
𝑀1

)︃
× 𝑞11 +

𝜕

𝜕ℎ𝑖

(︃
𝑀𝑖0
𝑀0

)︃
× 𝑞10 +

𝜕𝑞11
𝜕ℎ𝑖

(︃
𝑀𝑖1
𝑀1

− 𝑀𝑖0
𝑀0

)︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=0 if ℎ𝑖=ℎ 𝑗

𝑎2 ≡ 𝜕𝐻

𝜕ℎ𝑖
=

𝜕

𝜕ℎ𝑖

(︃
𝑀𝑖1
𝑀1

)︃
× 𝑞00 +

𝜕

𝜕ℎ𝑖

(︃
𝑀𝑖0
𝑀0

)︃
× 𝑞00 +

𝜕𝑞01
𝜕ℎ𝑖

(︃
𝑀𝑖1
𝑀1

− 𝑀𝑖0
𝑀0

)︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=0 if ℎ𝑖=ℎ 𝑗

Under the condition ℎ𝑖 = ℎ 𝑗 , the terms involving
(︂
𝑀𝑖1
𝑀1

− 𝑀𝑖0
𝑀0

)︂
vanish.

Next, we compute the values of 𝑏1, 𝑏2, 𝑏3,and 𝑏4:

𝑏1 =
1 + 𝛾
4𝑐2

𝑁2𝑤𝑖 (1 − 𝑤𝑖)ℎ2
𝑖

𝑀2
1

𝑞11,

𝑏2 =
1 + 𝛾
4𝑐2

𝑁2𝑤𝑖 (1 − 𝑤𝑖) (1 − ℎ𝑖)2

𝑀2
0

𝑞10,

𝑏3 =
1 + 𝛾
4𝑐2

𝑁2𝑤𝑖 (1 − 𝑤𝑖)ℎ2
𝑖

𝑀2
1

𝑞01,

𝑏4 =
1 + 𝛾
4𝑐2

𝑁2𝑤𝑖 (1 − 𝑤𝑖) (1 − ℎ𝑖)2

𝑀2
0

𝑞00.

For 𝑎1, we have:

𝑎1 =
𝑁𝑤𝑖𝑡𝑖1𝑀 𝑗1

𝑀2
1

𝑞11 −
𝑁𝑤𝑖𝑡𝑖0𝑀 𝑗0

𝑀2
0

𝑞10

=
𝑁𝑤𝑖𝑡𝑖𝑀 𝑗1

𝑀1

[︃
1
𝑀1

𝑞11 −
1
𝑀0

(1 − 𝑞11)
]︃ (︃

since
Mj1

M1
=

Mj0

M0
and ti1 = ti0 = ti

)︃
=

𝑀𝑖𝑀 𝑗1

𝑀1

(︃
𝑞11
ℎ𝑖𝑀

− 1 − 𝑞11
(1 − ℎ𝑖)𝑀

)︃
(since 𝑀1 = ℎ𝑖𝑀 and 𝑀0 = (1 − ℎ𝑖)𝑀)

=
𝑀𝑖𝑀 𝑗1

𝑀1𝑀

(︃
𝑞11
ℎ𝑖

− 1 − 𝑞11
1 − ℎ𝑖

)︃
Similarly for 𝑎2:
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𝑎2 =
𝑁𝑤𝑖𝑡𝑖1𝑀 𝑗1

𝑀2
1

𝑞01 −
𝑁𝑤𝑖𝑡𝑖0𝑀 𝑗0

𝑀2
0

𝑞00

=
𝑀𝑖𝑀 𝑗1

𝑀1𝑀

(︃
𝑞01
ℎ𝑖

− 1 − 𝑞01
1 − ℎ𝑖

)︃
We define a constant 𝑙:

𝑙 ≡
𝑀𝑖𝑀 𝑗1

𝑀1𝑀

Since 𝑀𝑖 < 𝑀 and 𝑀 𝑗1 < 𝑀1, we can get 𝑙 = 𝑀𝑖𝑀 𝑗1
𝑀1𝑀

< 1. Therefore,

𝑎1 = 𝑙

(︃
𝑞11
ℎ𝑖

− 1 − 𝑞11
1 − ℎ𝑖

)︃
, 𝑎𝑛𝑑 𝑎2 = 𝑙

(︃
𝑞01
ℎ𝑖

− 1 − 𝑞01
1 − ℎ𝑖

)︃
.

The Jacobian determinant 𝐽 is:

𝐽 =

|︁|︁|︁|︁|︁|︁|︁
𝜕𝐺
𝜕𝑞1𝑖

𝜕𝐺
𝜕𝑞0𝑖

𝜕𝐻
𝜕𝑞1𝑖

𝜕𝐻
𝜕𝑞0𝑖

|︁|︁|︁|︁|︁|︁|︁ =
(︃
1 − 𝛾
4𝑐2 𝑏1 − 1

)︃ (︃
1 − 𝛾
4𝑐2 𝑏4 − 1

)︃
−

(︃
1 − 𝛾
4𝑐2

)︃2
𝑏2𝑏3

The derivatives of 𝑞1,𝑖 and 𝑞0,𝑖 with respect to ℎ𝑖 become:

𝑑𝑞1𝑖
𝑑ℎ𝑖

= −1
𝐽

[︃
𝑎1

(︃
1 − 𝛾
4𝑐2 𝑏4 − 1

)︃
− 𝑎2

1 − 𝛾
4𝑐2 𝑏2

]︃
,

𝑑𝑞0𝑖
𝑑ℎ𝑖

= −1
𝐽

[︃
𝑎2

(︃
1 − 𝛾
4𝑐2 𝑏1 − 1

)︃
− 𝑎1

1 − 𝛾
4𝑐2 𝑏3

]︃
.

To simplify the notation, let us define:

• Denominator 𝐽 as 𝑓1,

• Numerator of 𝑑𝑞1𝑖
𝑑ℎ𝑖

as 𝑓2,

• Numerator of 𝑑𝑞0𝑖
𝑑ℎ𝑖

as 𝑓3,
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We will prove that 𝑓1 > 0, 𝑓2 < 0, and 𝑓3 > 0. Therefore,

𝑑𝑞1𝑖
𝑑ℎ𝑖

= − 𝑓1
𝑓3
> 0, 𝑎𝑛𝑑

𝑑𝑞0𝑖
𝑑ℎ𝑖

= − 𝑓2
𝑓3
< 0.

Proof of the Signs of 𝑓1, 𝑓2, 𝑓3 We aim to demonstrate the following inequalities to show how

the matching probabilities 𝑞1𝑖 and 𝑞01 change with respect to ℎ𝑖 when ℎ𝑖 = ℎ 𝑗 :

1. 𝑓1 =

(︂
1−𝛾
4𝑐2 𝑏1 − 1

)︂ (︂
1−𝛾
4𝑐2 𝑏4 − 1

)︂
−

(︂
1−𝛾
4𝑐2

)︂2
𝑏2𝑏3 > 0

2. 𝑓2 = 𝑎1

(︂
1−𝛾
4𝑐2 𝑏4 − 1

)︂
− 𝑎2

1−𝛾
4𝑐2 𝑏2 < 0

3. 𝑓3 = 𝑎2

(︂
1−𝛾
4𝑐2 𝑏1 − 1

)︂
− 𝑎1

1−𝛾
4𝑐2 𝑏3 > 0

Proof of (1): Showing that 𝑓1 > 0

𝑓1 =

(︃
1 − 𝛾
4𝑐2 𝑏1 − 1

)︃ (︃
1 − 𝛾
4𝑐2 𝑏4 − 1

)︃
−

(︃
1 − 𝛾
4𝑐2

)︃2
𝑏2𝑏3

=

(︄
1 − 𝛾
4𝑐2

1 + 𝛾
4𝑐2

𝑁2𝑤𝑖 (1 − 𝑤𝑖)ℎ2
𝑖

𝑀2
1

𝑞11 − 1

)︄ (︄
1 − 𝛾
4𝑐2

1 + 𝛾
4𝑐2

𝑁2𝑤𝑖 (1 − 𝑤𝑖) (1 − ℎ𝑖)2

𝑀2
0

𝑞00 − 1

)︄
−

(︃
1 − 𝛾
4𝑐2

)︃2 1 + 𝛾
4𝑐2

𝑁2𝑤𝑖 (1 − 𝑤𝑖) (1 − ℎ𝑖)2

𝑀2
0

𝑞10
1 + 𝛾
4𝑐2

𝑁2𝑤𝑖 (1 − 𝑤𝑖)ℎ2
𝑖

𝑀2
1

𝑞01

Since 𝑀1 = ℎ𝑖𝑀 and 𝑀0 = (1 − ℎ𝑖)𝑀 , it follows that:

ℎ2
𝑖

𝑀2
1
=

(1 − ℎ𝑖)2

𝑀2
0

=
1
𝑀2

Define the constant:
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𝑘 ≡ 1 − 𝛾
4𝑐2 · 1 + 𝛾

4𝑐2 · 𝑁
2𝑤𝑖 (1 − 𝑤𝑖)

𝑀2

=
𝑁2𝑤𝑖 (1 − 𝑤𝑖) (1 − 𝛾2)

16𝑐4𝑀2

where, 𝑀 = 𝑁

(︂
𝑤𝑖𝑡𝑖 + (1 − 𝑤𝑖) ( 1+𝛾

4𝑐2 − 𝑡𝑖)
)︂
≥ 𝑁 (1+𝛾)

8𝑐2 . This implies:

𝑘 ≤ 𝑁2(1 − 𝛾2)/4
𝑁2(1 + 𝛾)2/4

< 1.

Substituting 𝑘 , we simplify 𝑓1:

𝑓1 = (𝑘𝑞11 − 1) (𝑘𝑞00 − 1) − 𝑘2𝑞10𝑘𝑞01

= (𝑘𝑞11 − 1) (𝑘𝑞00 − 1) − 𝑘2 (1 − 𝑞11) (1 − 𝑞00)

= (𝑘 − 1) [𝑘 (𝑞11 + 𝑞00) − (1 + 𝑘)]

Since 𝑘 < 1, we have

𝑞11 + 𝑞00 < 2 <
1 + 𝑘
𝑘

Therefore, 𝑓1 > 0

Proof of (2): Showing that 𝑓2 < 0
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𝑓2 = 𝑎1

(︃
1 − 𝛾
4𝑐2 𝑏4 − 1

)︃
− 𝑎2

1 − 𝛾
4𝑐2 𝑏2

= 𝑙

(︃
𝑞11
ℎ𝑖

− 1 − 𝑞11
1 − ℎ𝑖

)︃
(𝑘𝑞00 − 1) − 𝑙

(︃
𝑞01
ℎ𝑖

− 1 − 𝑞01
1 − ℎ𝑖

)︃
𝑘𝑞10

=
𝑙

ℎ𝑖 (1 − ℎ𝑖)
{[(1 − ℎ𝑖) 𝑞11 − ℎ𝑖 (1 − 𝑞11)] (𝑘𝑞00 − 1) − [(1 − ℎ𝑖) 𝑞01 − ℎ𝑖 (1 − 𝑞01)] 𝑘𝑞00}

=
𝑙

ℎ𝑖 (1 − ℎ𝑖)
{(𝑞11 − ℎ𝑖) (𝑘𝑞00 − 1) − (𝑞01 − ℎ𝑖) 𝑘𝑞10}

=
𝑙

ℎ𝑖 (1 − ℎ𝑖)
{(ℎ𝑖 − 𝑞11) + 𝑘 (𝑞11 − 𝑞01) (1 − ℎ𝑖)}

Since 𝑞10 = 1−𝑞11 and 𝑞00 = 1−𝑞01, and under ℎ𝑖 = ℎ 𝑗 , we have 𝑞11 = ℎ𝑏
𝑖

and 𝑞01 =
ℎ𝑖

1−ℎ𝑖 (1−ℎ
𝑏
𝑖
).

We can write:

𝑓2 = 𝑙 (1 − 𝑘)
ℎ𝑖 − ℎ𝑏𝑖
ℎ𝑖 (1 − ℎ𝑖)

Since 𝑙 (1 − 𝑘) is a positive constant and ℎ𝑖 − ℎ𝑏𝑖 < 0, the entire expression is negative.

Therefore, 𝑓2 < 0.

Proof of (3): Showing that 𝑓3 > 0

𝑓3 = 𝑎2

(︃
1 − 𝛾
4𝑐2 𝑏1 − 1

)︃
− 𝑎1

1 − 𝛾
4𝑐2 𝑏3

= 𝑙

(︃
𝑞01
ℎ𝑖

− 1 − 𝑞01
1 − ℎ𝑖

)︃
(𝑘𝑞11 − 1) − 𝑙

(︃
𝑞11
ℎ𝑖

− 1 − 𝑞11
1 − ℎ𝑖

)︃
𝑘𝑞01

=
𝑙

ℎ𝑖 (1 − ℎ𝑖)
{[(1 − ℎ𝑖) 𝑞01 − ℎ𝑖 (1 − 𝑞01)] (𝑘𝑞11 − 1) − [(1 − ℎ𝑖) 𝑞11 − ℎ𝑖 (1 − 𝑞11)] 𝑘𝑞01}

=
𝑙

ℎ𝑖 (1 − ℎ𝑖)
{(𝑞01 − ℎ𝑖) (𝑘𝑞11 − 1) − (𝑞11 − ℎ𝑖) 𝑘𝑞01}

=
𝑙

ℎ𝑖 (1 − ℎ𝑖)
{(ℎ𝑖 − 𝑞01) + 𝑘ℎ𝑖 (𝑞01 − 𝑞11)}

= 𝑙 (1 − 𝑘)
ℎ𝑏
𝑖
− ℎ𝑖

(1 − ℎ𝑖)2

Therefore, 𝑓3 > 0.
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Conclusion: Since 𝑓1 > 0, 𝑓2 < 0, and 𝑓3 > 0, we have:

𝑑𝑞1𝑖
𝑑ℎ𝑖

= − 𝑓1
𝑓2
> 0, 𝑎𝑛𝑑

𝑑𝑞0𝑖
𝑑ℎ𝑖

= − 𝑓2
𝑓3
< 0.

This implies:

• The probability 𝑞1𝑖 (agents with hobbies meeting type 𝑖) increases with ℎ𝑖.

• The probability 𝑞0𝑖 (agents without hobbies meeting type 𝑖) decreases with ℎ𝑖.

Implications for Homophily Indices:

• The homophily index for agents of type 𝑖1 is 𝐻𝑖1 = 𝑞1𝑖, which increases with ℎ𝑖.

• The homophily index for agents of type 𝑖0 is 𝐻𝑖0 = 𝑞0𝑖, which decreases with ℎ𝑖.

• The homophily index for agents of type 𝑗1 is 𝐻 𝑗1 = 1 − 𝑞1𝑖, which decreases with ℎ𝑖.

• The homophily index for agents of type 𝑗0 is 𝐻 𝑗0 = 1 − 𝑞0𝑖, which increases with ℎ𝑖.

Thus, the inbreeding homophily indices for types 𝑖1 and 𝑗0 increase with ℎ𝑖, while those for types

𝑖0 and 𝑗1 decrease with ℎ𝑖.

Appendix D. Weighted Homophily 𝑊𝐻𝑖 and 𝑊𝐻 𝑗 Reaches Local Optimum

When ℎ𝑖 = ℎ 𝑗

In the following proof, we fix ℎ 𝑗 and treat ℎ𝑖 as a variable that influences the matching process.

We demonstrate that the weighted homophily indices for both groups reach their minimum as ℎ𝑖

approaches to ℎ 𝑗 .

1. Homophily Index for Racial Group 𝑖 The Weighted Homophily Index is defined as
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𝑊𝐻𝑖 =
(1 − ℎ𝑖)𝑞0,𝑖𝑡𝑖0 + ℎ𝑖𝑞1,𝑖𝑡𝑖1

(1 − ℎ𝑖)𝑡𝑖0 + ℎ𝑖𝑡𝑖1

Setting 𝛼 = 1
2 , we have:

𝑡𝑖0 =
1

4𝑐2

[︁
𝛾 + (1 − 𝛾)𝑞0,𝑖

]︁
, 𝑡𝑖1 =

1
4𝑐2

[︁
𝛾 + (1 − 𝛾)𝑞1,𝑖

]︁
.

Substituting these into the expression for𝑊𝐻𝑖:

𝑊𝐻𝑖 =
(1 − ℎ𝑖)𝑞0,𝑖

[︁
𝛾 + (1 − 𝛾)𝑞0,𝑖

]︁
+ ℎ𝑖𝑞1,𝑖

[︁
𝛾 + (1 − 𝛾)𝑞1,𝑖

]︁
(1 − ℎ𝑖)

[︁
𝛾 + (1 − 𝛾)𝑞0,𝑖

]︁
+ ℎ𝑖

[︁
𝛾 + (1 − 𝛾)𝑞1,𝑖

]︁
=

𝛾
[︁
(1 − ℎ𝑖)𝑞0,𝑖 + ℎ𝑖𝑞1,𝑖

]︁
+ (1 − 𝛾)

[︂
(1 − ℎ𝑖)𝑞2

0,𝑖 + ℎ𝑖𝑞
2
1,𝑖

]︂
𝛾 + (1 − 𝛾)

[︁
(1 − ℎ𝑖)𝑞0,𝑖 + ℎ𝑖𝑞1,𝑖

]︁
Relationship Between Weighted Homophily and 𝐸 (ℎ𝑖, 𝑞) We aim to show that the weighted

homophily index𝑊𝐻𝑖 reaches a local minimum when ℎ𝑖 = ℎ 𝑗 , where ℎ 𝑗 is the participation rate of

the other group and is considered exogenous.

Define the average matching probability 𝐸 (ℎ𝑖, 𝑞)as

𝐸 (ℎ𝑖, 𝑞) ≡ (1 − ℎ𝑖)𝑞0,𝑖 + ℎ𝑖𝑞1,𝑖

Similarly, the average of the squares is given by:

𝐸 (ℎ𝑖, 𝑞2) = (1 − ℎ𝑖)𝑞2
0,𝑖 + ℎ𝑖𝑞

2
1,𝑖

Since the function 𝑓 (𝑥) = 𝑥2 is convex, according to Jensen’s Inequality, we have

𝐸 (ℎ𝑖, 𝑞2) ≥ [𝐸 (ℎ𝑖, 𝑞)] 2
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Thus, the weighted homophily index satisfies:

𝑊𝐻 =
𝛾𝐸 (ℎ𝑖, 𝑞) + (1 − 𝛾)𝐸 (ℎ𝑖, 𝑞2)

𝛾 + (1 − 𝛾)𝐸 (ℎ𝑖, 𝑞)

≥ =
𝛾𝐸 (ℎ𝑖, 𝑞) + (1 − 𝛾) [𝐸 (ℎ𝑖, 𝑞)]2

𝛾 + (1 − 𝛾)𝐸 (ℎ𝑖, 𝑞)
= 𝐸 (ℎ𝑖, 𝑞)

where the equality holds if and only if 𝑞0,𝑖 = 𝑞1,𝑖.

Showing 𝐸 (ℎ𝑖, 𝑞) Reaches a Local Minimum at ℎ𝑖 = ℎ 𝑗 (which implies𝑞1,𝑖 = 𝑞0,𝑖) We need a

detailed analysis using the Jacobian method (see Appendix C).

First Derivative of 𝐸 (ℎ𝑖, 𝑞) The derivative of 𝐸 (ℎ𝑖, 𝑞) with respect to ℎ𝑖 is:

𝑑𝐸

𝑑ℎ𝑖
=

𝜕𝐸

𝜕ℎ𝑖
+ 𝜕𝐸

𝜕𝑞1𝑖

𝑑𝑞1𝑖
𝑑ℎ𝑖

+ 𝜕𝐸

𝜕𝑞0𝑖

𝑑𝑞0𝑖
𝑑ℎ𝑖

= 𝑞1𝑖 − 𝑞0𝑖 + ℎ𝑖
𝑑𝑞1𝑖
𝑑ℎ𝑖

+ (1 − ℎ𝑖)
𝑑𝑞0𝑖
𝑑ℎ𝑖

At ℎ𝑖 = ℎ 𝑗 :

• 𝑞0,𝑖 = 𝑞1,𝑖,

• From Appendix B, we have 𝑑𝑞1𝑖
𝑑ℎ𝑖

= − 𝑓2
𝑓1

, and 𝑑𝑞0𝑖
𝑑ℎ𝑖

= − 𝑓3
𝑓1

. Given 𝑓2 = 𝑙 (1 − 𝑘) ℎ𝑖−ℎ𝑏𝑖
ℎ𝑖 (1−ℎ𝑖) and 𝑓3 =

𝑙 (1 − 𝑘) ℎ𝑏
𝑖
−ℎ𝑖

(1−ℎ𝑖)2
, where 𝑙 (1− 𝑘) is a constant positive, we can conclude ℎ𝑖 𝑓2 + (1− ℎ𝑖) 𝑓3 = 0.

Therefore,
𝑑𝐸 (ℎ𝑖,𝑞)
𝑑ℎ𝑖

= 𝑞1𝑖 − 𝑞0𝑖 + ℎ𝑖
(︃
− 𝑓2
𝑓1

)︃
+ (1 − ℎ𝑖)

(︃
− 𝑓3
𝑓1

)︃
= 0

Second Derivative of 𝐸 (ℎ𝑖, 𝑞) Compute the second derivative:

𝑑2𝐸 (ℎ𝑖, 𝑞)
𝑑ℎ2

𝑖

= 2
(︃
𝑑𝑞1𝑖
𝑑ℎ𝑖

− 𝑑𝑞0𝑖
𝑑ℎ𝑖

)︃
+ ℎ𝑖

𝑑2𝑞1𝑖

𝑑ℎ2
𝑖

+ (1 − ℎ𝑖)
𝑑2𝑞0𝑖

𝑑ℎ2
𝑖
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Computing 𝑑𝑞1𝑖
𝑑ℎ𝑖

− 𝑑𝑞0𝑖
𝑑ℎ𝑖

:

𝑑𝑞1𝑖
𝑑ℎ𝑖

− 𝑑𝑞0𝑖
𝑑ℎ𝑖

= − 𝑓2
𝑓1

+ 𝑓3
𝑓1

= − 𝑓2 − 𝑓3
𝑓1

From Appendix B, ℎ𝑖 = ℎ 𝑗 :

𝑓2 = 𝑙 (1 − 𝑘)
ℎ𝑖 − ℎ𝑏𝑖
ℎ𝑖 (1 − ℎ𝑖)

, 𝑎𝑛𝑑 𝑓3 = 𝑙 (1 − 𝑘)
ℎ𝑏
𝑖
− ℎ𝑖

(1 − ℎ𝑖)2 ,

where 𝑙 (1 − 𝑘) > 0.

Therefore:

𝑓2 − 𝑓3 = 𝑙 (1 − 𝑘)
(︄
ℎ𝑖 − ℎ𝑏𝑖
ℎ𝑖 (1 − ℎ𝑖)

−
ℎ𝑏
𝑖
− ℎ𝑖

(1 − ℎ𝑖)2

)︄
= 𝑙 (1 − 𝑘)

ℎ𝑖 − ℎ𝑏𝑖
ℎ𝑖 (1 − ℎ𝑖)2

So:

𝑑𝑞1𝑖
𝑑ℎ𝑖

− 𝑑𝑞0𝑖
𝑑ℎ𝑖

= −
𝑙 (1 − 𝑘) ℎ𝑖−ℎ𝑏𝑖

ℎ𝑖 (1−ℎ𝑖)2

𝑓1

Computing ℎ𝑖 𝑑
2𝑞1𝑖
𝑑ℎ2

𝑖

+ (1 − ℎ𝑖) 𝑑
2𝑞0𝑖
𝑑ℎ2

𝑖

:

The second derivatives are:

𝑑2𝑞1𝑖

𝑑ℎ2
𝑖

= −
(︃
𝑑

𝑑ℎ𝑖

(︃
𝑓2
𝑓1

)︃)︃
= −

(︃
𝑓 ′2
𝑓1

−
𝑓 ′1 𝑓2

𝑓12

)︃
,

𝑑2𝑞0𝑖

𝑑ℎ2
𝑖

= −
(︃
𝑑

𝑑ℎ𝑖

(︃
𝑓3
𝑓1

)︃)︃
= −

(︃
𝑓 ′3
𝑓1

−
𝑓 ′1 𝑓3

𝑓12

)︃
.

Adding the terms:

ℎ𝑖
𝑑2𝑞1𝑖

𝑑ℎ2
𝑖

+ (1 − ℎ𝑖)
𝑑2𝑞0𝑖

𝑑ℎ2
𝑖

= −
(︃
ℎ𝑖 𝑓

′
2 + (1 − ℎ𝑖) 𝑓 ′3

𝑓1
−
𝑓 ′1
𝑓12 (ℎ𝑖 𝑓2 + (1 − ℎ𝑖) 𝑓3)

)︃
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But from earlier, ℎ𝑖 𝑓2 + (1 − ℎ𝑖) 𝑓3 = 0, so:

ℎ𝑖
𝑑2𝑞1𝑖

𝑑ℎ2
𝑖

+ (1 − ℎ𝑖)
𝑑2𝑞0𝑖

𝑑ℎ2
𝑖

= −
ℎ𝑖 𝑓

′
2 + (1 − ℎ𝑖) 𝑓 ′3

𝑓1

Computing ℎ𝑖 𝑓 ′2 + (1 − ℎ𝑖) 𝑓 ′3:

𝑓 ′2 = 𝑙 (1 − 𝑘)
(︁
ℎ𝑖 − ℎ𝑏𝑖

)︁
(2ℎ𝑖 − 1) + ℎ𝑖 (1 − ℎ𝑖)

(︁
1 − 𝑏ℎ𝑏−1

𝑖

)︁
ℎ2
𝑖
(1 − ℎ𝑖)2

𝑓 ′3 = 𝑙 (1 − 𝑘)
2
(︁
ℎ𝑏
𝑖
− ℎ𝑖

)︁
+ (1 − ℎ𝑖)

(︁
𝑏ℎ𝑏−1

𝑖
− 1

)︁
(1 − ℎ𝑖)3

and

ℎ𝑖 𝑓
′
2 + (1 − ℎ𝑖) 𝑓 ′3 = 𝑙 (1 − 𝑘)

ℎ𝑏
𝑖
− ℎ𝑖

ℎ𝑖 (1 − ℎ𝑖)2

ℎ𝑖
𝑑2𝑞1𝑖

𝑑ℎ2
𝑖

+ (1 − ℎ𝑖)
𝑑2𝑞0𝑖

𝑑ℎ2
𝑖

= −𝑙 (1 − 𝑘) 𝑓 −1
1

ℎ𝑏
𝑖
− ℎ𝑖

ℎ𝑖 (1 − ℎ𝑖)2

Second Derivative Simplification:

Substituting back:
𝑑2𝐸

𝑑ℎ2
𝑖

= −
2 ( 𝑓2 − 𝑓3) + ℎ𝑖 𝑓 ′2 + (1 − ℎ𝑖) 𝑓 ′3

𝑓1

Using previous results:

𝑑2𝐸

𝑑ℎ2
𝑖

= 𝑙 (1 − 𝑘)
ℎ𝑏
𝑖
− ℎ𝑖

ℎ𝑖 (1 − ℎ𝑖)2
1
𝑓1

Sign of the second derivative:

• Since 0 < 𝑏 < 1, ℎ𝑏
𝑖
> ℎ𝑖 for ℎ𝑖 ∈ (0, 1),

• 𝑙 (1 − 𝑘) > 0,

• 𝑓1 > 0.
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Therefore:
𝑑2𝐸

𝑑ℎ2
𝑖

> 0 at ℎ𝑖 = ℎ 𝑗 .

Conclusion:

𝐸 (ℎ𝑖, 𝑞) reaches a local minimum at ℎ𝑖 = ℎ 𝑗 when 0 < 𝑏 < 1.

Implications for the Weighted Homophily Index𝑊𝐻𝑖 Since 𝐸 (ℎ𝑖, 𝑞) reaches a local mini-

mum at ℎ𝑖 = ℎ 𝑗 and𝑊𝐻𝑖 ≥ 𝐸 (ℎ𝑖, 𝑞) with equality only when 𝑞1𝑖 = 𝑞0𝑖, we conclude that:

The weighted homophily index for group 𝑖,𝑊𝐻𝑖, reaches a local minimum when ℎ𝑖 = ℎ 𝑗 .

2. Weighted Homophily Index for Racial Group 𝑗 The weighted homophily index for group 𝑗

is defined as:

𝑊𝐻 𝑗 =
(1 − ℎ 𝑗 )𝑞0,𝑖𝑡 𝑗0 + ℎ 𝑗𝑞1, 𝑗 𝑡 𝑗1

(1 − ℎ 𝑗 )𝑡𝑖0 + ℎ 𝑗 𝑡 𝑗1

We need to prove𝑊𝐻 𝑗 attains its minimum when ℎ𝑖 approaching ℎ 𝑗 .

Define the average matching probability for groups 𝑗0 and 𝑗1 as:

𝐸 𝑗 (𝑞) = (1 − ℎ 𝑗 )𝑞0, 𝑗 + ℎ 𝑗𝑞1, 𝑗

Similar with previous proof for group 𝑖, we show that the weighted homophily index is no less

than the average matching probability:

𝑊𝐻 𝑗 ≥ 𝐸 (𝑞 𝑗 )

where the equality holds if and only if 𝑞0, 𝑗 = 𝑞1, 𝑗 .

From the properties of the homophily index, there exists a negative linear relationship between
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the matching probabilities of group 𝑖 and group 𝑗 , such that:

𝑞0, 𝑗 = 1 − 𝑞0,𝑖, and 𝑞1, 𝑗 = 1 − 𝑞1,𝑖

Thus, we rewrite 𝐸 𝑗 (𝑞) as:

𝐸 𝑗 (𝑞) = 1 −
[︁
(1 − ℎ 𝑗 )𝑞0, 𝑗 + ℎ 𝑗𝑞1, 𝑗

]︁
The first derivative of 𝐸 𝑗 (𝑞) with respect to ℎ𝑖 is:

𝑑𝐸 𝑗

𝑑ℎ𝑖
= −ℎ 𝑗

𝑑𝑞1𝑖
𝑑ℎ𝑖

− (1 − ℎ 𝑗 )
𝑑𝑞0𝑖
𝑑ℎ𝑖

From the previous proof, we know that:

𝑑𝑞1𝑖
𝑑ℎ𝑖

= − 𝑓2
𝑓1
𝑞0,𝑖, and

𝑑𝑞0𝑖
𝑑ℎ𝑖

= − 𝑓3
𝑓1

Thus, the derivative becomes:

𝑑𝐸 𝑗

𝑑ℎ𝑖
=

ℎ 𝑗 𝑓2 + (1 − ℎ 𝑗 ) 𝑓3
𝑓1

In the previous proof, we established that:

ℎ𝑖 𝑓2 + (1 − ℎ𝑖) 𝑓3 = 0

Since ℎ𝑖 = ℎ 𝑗 in this proof, we conclude that:

𝑑𝐸 𝑗

𝑑ℎ𝑖
= 0
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Next, we compute the second derivative of 𝐸 𝑗 (𝑞) with respect to ℎ𝑖:

𝑑2𝐸 𝑗

𝑑ℎ2
𝑖

= −ℎ 𝑗
𝑑2𝑞1𝑖

𝑑ℎ2
𝑖

− (1 − ℎ 𝑗 )
𝑑2𝑞0𝑖

𝑑ℎ2
𝑖

From the previous proof, we know:

ℎ𝑖
𝑑2𝑞1𝑖

𝑑ℎ2
𝑖

+ (1 − ℎ𝑖)
𝑑2𝑞0𝑖

𝑑ℎ2
𝑖

= −𝑙 (1 − 𝑘) 𝑓 −1
1

ℎ𝑏
𝑖
− ℎ𝑖

ℎ𝑖 (1 − ℎ𝑖)2

Since ℎ 𝑗 = ℎ𝑖, we can substitute and rewrite the second derivative as:

𝑑2𝐸 𝑗

𝑑ℎ2
𝑖

= 𝑙 (1 − 𝑘) 𝑓 −1
1

ℎ𝑏
𝑖
− ℎ𝑖

ℎ𝑖 (1 − ℎ𝑖)2 > 0

Therefore, 𝐸 𝑗 (𝑞) reaches a local minimum at ℎ𝑖 = ℎ 𝑗 . Since 𝑊𝐻 𝑗 ≥ 𝐸 𝑗 (𝑞) and equality only

when 𝑞1𝑖 = 𝑞0𝑖, we conclude that:

The weighted homophily index for group j,𝑊𝐻 𝑗 , attains a local minimum when ℎ𝑖 = ℎ 𝑗 .
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Chapter 3

Empirical Findings in Peer Effects and

Friendship Connections

3.1 Introduction

In social network, the term homophily describes the tendency that individuals are more likely

to form connections with others who share similar characteristics, such as race, personal interests,

and behaviors. Additionally, peer effects refer to the process by which the behaviors, attitudes,

and characteristics of individuals influence those around them. Because networks formed through

homophily consist of individuals with aligned interests or traits, the transmission of new behaviors

or the reinforcement of existing ones can occur more rapidly and effectively.

In essence, homophily sets the stage for forming networks that are not only cohesive but are also

ripe environments for peer effects to take place. Within such networks, peer influences are potent

because all members are initially similar, and thus more receptive to adopting shared behaviors or

beliefs. This mutual receptivity amplifies the impact of peer effects, making them more pronounced

than in heterogeneous groups. Thus, homophily and peer effects together create a feedback loop:

homophily leads to the formation of homogeneous groups, which facilitate stronger and more

efficient peer effects due to their coherence. These peer effects, in turn, reinforce the homogeneity
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of the group, making its structure even more robust against dissimilar influences.

This chapter explores how such dynamics influence club participation among students, posing

the question: How is the decision to join a basketball club influenced by the racial composition

of a school? How does it affect the friendship connections? This question is influenced by

social customs: both sides have expectations about who is more likely to join the club, and these

expectations are shaped by what other people have done in similar circumstances. The general

point is that the stability of a convention depends on its welfare consequences for individuals. The

prevailing convention emerges from the decisions of many agents, each based on their information.

Under repeated interactions by numerous myopic agents, an equilibrium such as “basketball is more

popular among black students” will emerge as the convention. This social norm forms common

expectations before any games are played.

Consider the example of driving on the left or right side of the road. The choice of side is not

crucial for social welfare; what matters is the existence of a convention where expectations and

behaviors align. However, some equilibria can be suboptimal from a social welfare perspective.

Kandori et al. (1993) provide a framework for understanding how conventions evolve and stabilize.

It shows how repeated interactions can establish behavioral norms or conventions that, while stable

societally, might not be optimal for individuals. This is the case with cultural norms in our

society—they are stable but not necessarily the best state for individuals.

In the context of social conventions, particularly cultural activities, there is an opportunity to

address entrenched segregation among different groups. Consider the dynamics within a basketball

club as an illustration. If white students anticipate a higher presence of black students in the club,

reducing their chances of forming same-race friendships, they may choose to leave the club in

pursuit of higher payoffs through same-race connections. However, if the white population within

the society is sufficiently large, they have more influence in the coordination and might collectively

decide to participate in basketball, finding value in meeting others who share their hobby as well as

their racial identity.

Many studies showed people decide to adopt some behavior based on their friends’ behaviors:
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for instance, when adopting new technology, smoking, engaging in criminal activities, going to

college, etc. Social segregation in the network enables different groups to maintain different

behaviors, norms, and cultures.

Unlike many other types of behavior, joining cultural activities offers individuals the opportunity

to forge new friendship connections at relatively low cost, which can, in turn, influence the structure

of social networks. By comparing friendship networks over a one-year period, the empirical data

from this study indicate that students who join the same club are more likely to form new friendships

with one another, thereby crossing established racial boundaries. This effect is particularly strong

in large schools, where club members are twice as likely as non-members to form new friendships

with other members, indicating strong cohesion among club members.

The empirical analysis begins with the application of the Linear-in-Means (LIM) model to

assess peer effects, allowing us to distinguish the influence of black and white peers on students’

participation decisions. We find that using instrumental variables (IV) does not fully address the

reflection problem. The reflection problem consists of two components: (1) the reciprocal nature

of influence, where an individual’s behavior can both shape and be shaped by their peers, creating a

circular causality issue, and (2) the endogenous formation of networks, where individuals with sim-

ilar characteristics are more likely to form connections. While the IV approach can mitigate issues

related to reciprocal influence, it cannot account for the bias introduced by network endogeneity.

This limitation is particularly significant in contexts where club participation itself contributes to

the formation of friendship networks, as students often form friendships predominantly with other

club members. Consequently, this structure can lead to an overestimation of peer effects from fellow

club members, as our results demonstrate.

To further delve into the dynamics of social interaction, I analyze the average participation rate

within racial groups as an indicator of social influence, considering it an exogenous factor. I compare

the participation behaviors of white and black students in baseball and basketball clubs, noting a

recognized trend that baseball is more popular among white students. I find that the participation

rate for black students in baseball positively correlates with their racial representation within the
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community, suggesting a coordination effect in their decision to join, which is similar to the pattern

observed among white students in basketball. This behavior seems to be driven by the intuitive

understanding that a higher presence of peers from one’s own race increases the chances of forming

same-race friendships within the club, thereby enhancing the overall benefits of participation.

Furthermore, our findings highlight that club members are significantly more likely to forge new

friendships with fellow club participants, underscoring the presence of matching bias within club

circles. Notably, the tendency towards racial homophily is less pronounced among club participants

compared to non-participants, pointing to a nuanced interplay between club involvement and social

connection patterns.

The remainder of this chapter is organized as follows: Section 3.2 presents the coordination

game model, emphasizing the role of prevailing social norms in shaping individual decisions and

the structure of social networks. Section 3.3 introduces an advanced LIM model to identify peer

effects from different racial groups, along with an alternative approach that uses group averages as

exogenous variables. Section 3.4 provides the empirical analysis for both methods, along with other

empirical observations. These include: the differing behavior between two types of club members—

devotees and connectors; comparisons between large and small schools; and the cohesive behavior

observed among club members. Section 3.5 concludes.

3.2 Background and Literature Review

To provide context for our discussion on social norms and individual decision-making, the

subsequent discussion employs a coordination game as an illustrative example. Specifically, we

explore the scenario where white students perceive a basketball club as predominantly black, it may

deter their participation due to a perceived reduction in opportunities to form same-race friendships,

a factor highly valued for its social payoff. However, as the white population within a community

grows, they may collectively gravitate towards the club, seeking a harmonious blend of shared

interests and racial identity reinforcement.
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Table 3.1: Coordination Game Between Two White Students

White Student 2

Join Not Join

White Join 𝑎, 𝑎 𝑐, 𝑏

Student 1 Not Join 𝑏, 𝑐 𝑑, 𝑑

For instance, let’s imagine a society with two white students and one student of another race.

The white students face a choice: to join the basketball club or not, and they need to pay a cost of 1

to learn the skill. To simplify my model, I assume basketball players only meet fellow players, while

non-players only meet other non-players. The two white students achieve a payoff only if they meet

each other. If both choose not to join and meet, they gain a payoff of 2 from making a same-race

friend. In contrast, if both choose to join and meet, they attain a higher payoff of 4, deriving value

from making a friend who is not only of the same race but also shares their hobby.

This scenario is a classic coordination game, as illustrated in Table 3.1,where the two Nash

equilibria are both players joining or both abstaining. They prefer both joining or both not joining

the club over divergent choices. Because the payoff matrix is symmetric, the equilibrium (𝐽, 𝐽) is

risk dominant if and only if 𝑎 − 𝑏 ≥ 𝑑 − 𝑐. Conversely, equilibrium (𝑁, 𝑁) is risk dominant if the

opposite inequality holds.

The twist in this game is the uncertainty surrounding the third student’s decision. If the white

students believe the third student is more likely to join, their probability of meeting by not joining

increases, and vice versa. The risk-dominant state is influenced by their beliefs about this third

student’s choice. To illustrate, let’s consider two extreme scenarios presented in table 3.2. In the

first scenario (table a), they believe the student of another race will definitely not join; thus, in

state (𝑁, 𝑁), a white student meets the other with a 50 probability, leading to an expected payoff

of 1. Therefore, (𝐽, 𝐽) is the risk-dominant state. In the second scenario (table c), they believe the

third student will definitely join. Thus, they are certain of meeting in state (𝑁, 𝑁) but only have a

50% chance in state (𝐽, 𝐽) with an expected payoff of 1. In this scenario, equilibrium(𝑁, 𝑁) is risk

dominant.
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Table 3.2: Payoff Matrix Between Two White Students

White Student 2
Join Not Join

White Join 3, 3 −1, 0
Student 1 Not Join 0, −1 1, 1

(𝑎) 3𝑟𝑑 student not join

White Student 2
J N

J 2, 2 −1, 0
N 0, −1 1.5, 1.5

(𝑏) evenly split

White Student 2
J N

J 1, 1 −1, 0
N 0, −1 2, 2
(𝑐) 3𝑟𝑑 student will join

Table (b) presents a payoff matrix where the third student’s decision is balanced, indicating

an equal likelihood of choosing either option. This table represents a hybrid of the previous two

scenarios, each weighted at 50%. In this situation, (𝑁, 𝑁), becomes the risk-dominant state, while

(𝐽, 𝐽) remains payoff dominant.

In our society, the situation is much more complex. The dynamics of coordination are influenced

by two key factors: the racial composition of the student population and the total size of the

population.

The proportion of white students plays a critical role in determining their collective influence on

coordination outcomes. For instance, in the example featuring two white students and one student of

another race, the choices made by the white students considerably shaped the outcome. In contrast,

if the scenario involved two white students and ten students of other races, the influence of the white

students in steering the coordination would be markedly diminished.

Society at large consists of numerous agents and is saturated with an abundance of information,

making the alteration of prevailing social norms a challenging endeavor. According to the principles

of stochastically stable equilibria Foster and Young (1990) and Young (2020), the stability of these

norms depends on both the size of the population and the extent of information available to people

when making decisions. In contexts where people have extensive information and engage in

widespread interactions, the inertia can be substantial. Once an equilibrium is reached, it tends to

remain stable for extended periods before a significant event causes a shift.

In contrast, middle schools provide a more personal and secure environment vital for adolescent

development. Far more than mere educational institutions, they act as pivotal social platforms where

students explore their interests, forge social connections, and begin to define their cultural identities.
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Figure 3.1: Racial Group Size v.s. Participation Rate of White and Black Students ( by School Size)

Note: I categorize the schools into four size types: very small schools (𝑛 ≤ 300) , small schools (300 < 𝑛 ≤ 550) , large schools
(550 < 𝑛 ≤ 800) , and very large schools (𝑛 ≥ 800) , where n represents the total number of students in each school.
The data show a clear negative correlation between students’ participation rates and school size, which may be attributed to capacity
limitations within clubs. The differing patterns of behavior between White and Black students can be explained by their social
motivations. While White students tend to form more connections after joining a club, participation does not increase the total number
of connections for Black students but influences the type of friends they make. When there is a sufficient presence of Black peers
within the community, Black students are more likely to build same-race connections without incurring the cost of club participation.

These early social interactions are instrumental in questioning and potentially revising established

social norms. Through fostering more inclusive and interconnected communities, middle schools

play a significant role in the social fabric of future societies, breaking down barriers and championing

diversity and integration during these critical formative years.

Empirical evidence indicates a positive correlation between the proportion of white students in

a school and the popularity of basketball among this demographic. As proportion of white students

in schools increases, there is a noticeable rise in the variability of basketball’s popularity levels

among white students across these schools, as illustrated in Figure 3.1. A similar pattern is observed

among black students with respect to baseball club participation, where the relative size of the black

student population in a school enhances their participation likelihood.

Jackson (2014) and Jackson et al. (2017) review how social network structures—such as con-

nections, clusters, and centrality—shape economic behaviors by influencing information flow,

partnerships, and decision-making.

Karimi et al. (2018) develop a social network model to evaluate how homophilic and heterophilic

behaviors affect minorities within social networks. Boucher (2020) finds that racial homophily is

primarily driven by the impact of students’ observable characteristics on payoffs, rather than by
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network effects. Jackson et al. (2023) examine the dynamics of friendship networks, finding that

homophily based on certain traits remains relatively stable over time.

Currarini et al. (2016) offer a model of homophilous social networks in which agents shift their

search behavior depending on group size—searching within-group when large, and to the population

when small.Baccara and Yariv (2013) emphasize the role of anticipated future interaction in forming

homophilous peer groups over preferences, modeling such groups as intervals in a trait space.

In the realm of social interactions and cultural activities, particularly within the context of

coordination games, the propensity for individuals with similar traits to engage and form connections

plays a pivotal role. Bramoullé et al. (2012) suggest that such similarities bolster the likelihood of

interaction, fostering friendship formation. This concept is particularly relevant in networks where

local interactions predominate, as agents primarily interact with a proximate set of peers. However,

in networks facilitating global interactions, agents have the opportunity to connect with a broader,

potentially global set of individuals. Sandholm (2010) points out that while local interactions tend

to decelerate the process, allowing for a greater diversity of strategies, global interactions may

hasten coordination, potentially leading to homogenized behaviors. Building on a matching and

search framework, Immorlica et al. (2010) study the extent to which cooperation can be sustained

in equilibrium. Pin and Rogers (2015) apply a similar framework to examine immigration policy.

Block and Grund (2014) explore multidimensional homophily and show that although each

dimension tends to reinforce tie formation, interactions between them can produce negative effects—

highlighting trade-offs in social similarity. Ushchev and Zenou (2020) compare the local-average

model (LIM) and local-aggregate model in peer influence, finding the LIM model better explains

homophilous network patterns. Boucher (2016) finds that peer effects increase with the number of

peers but with diminishing marginal impact, suggesting saturation in social influence.

Hiller (2017) and Baetz (2015) frame network formation as a simultaneous game where agents

choose both actions and connections, allowing for a co-evolution of behavior and network. Ely

(2002) models dynamic networks where strategy and location evolve together, with efficient strate-

gies surviving over time. Badev (2021) develops a model that jointly considers individual incentives,
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peer influence, and welfare outcomes, applying it to adolescent smoking behavior. Bramoullé et al.

(2014) further formalize strategic interactions in networks by distinguishing local complementarities

and substitutabilities and showing how network topology shapes equilibrium outcomes.

Boucher and Bramoullé (2020) develop a framework for analyzing binary decisions in network

settings where outcomes depend linearly on peers’ choices. By characterizing equilibrium existence

and uniqueness, they extend peer effect models to binary outcomes while preserving tractable and

interpretable linear structures.

In understanding the mechanics of peer influence, Manski (1993) and Brock and Durlauf (2001)

categorize interaction effects into endogenous effects, reflecting the reciprocal influence among

peers, and exogenous effects, which include unaltered peer metrics by current behaviors. Man-

ski’s model encapsulates social interactions through anticipated outcomes from social equilibrium

but acknowledges the "reflection problem"-the challenge in distinguishing influences from actual

behaviors versus contextual factors due to potential linear correlations with exogenous variables.

A significant challenge, as discussed by Moffitt (2001), is differentiating correlations in outcomes

caused by social interactions from those arising from correlated, unobserved variables. This

dilemma is further compounded by the "exclusion bias", a concept introduced by Guryan et al.

(2009) to describe the misleading negative correlation between an individual’s attributes and the

group’s average when the individual is excluded from the peer group. This bias, however, diminishes

as the group size approaches infinity. Caeyers and Fafchamps (2016) not only address this bias but

also provide a method to test the existence of endogenous peer effects.

Addressing the endogeneity of peer effects, two main approaches prevail. The first one is using

instrumental variables (IV) to address endogeneity. One popular IV in network economics is the

exogenous characteristics of my friend’s friend (e.g., Bramoullé et al. 2009; De Giorgi et al. 2010).

These characteristics satisfy the exclusion restriction since they directly affect the behavior of my

peers but not mine. However, this approach is not suitable for situations where individuals are

partitioned into mutually exclusive groups. The other prevalent IV, which is also adopted in this

chapter, utilizes the exogenous characteristics of friends as the instrumental variable (Boucher et al.
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(2024)).

The second approach employs spatial autoregressive (SAR) models, as detailed by Kelejian and

Prucha (1998; 2010), Lee (2004; 2007), and Drukker et al. (2013). In the SAR model, the dependent

variable for a given spatial unit is explained not only by its own independent variables (exogenous

inputs) but also by the values of the dependent variable for neighboring units. This is typically

represented by a spatial lag term, which is a weighted average of the dependent variable values for

the neighboring units. However, in the analysis of participation behavior in this study, the social

interaction effect is varied with school size. There exists identification problem in the application

of SAR.

Recent work in structural modeling has focused on how to identify peer effects and strategic

behavior in settings with discrete outcomes and equilibrium multiplicity. Chesher and Rosen

(2012) formalize the identification of simultaneous equations models for discrete choices, laying

out the coherence and completeness conditions needed for estimation. Galichon and Henry (2011)

extend this to the case of multiple equilibria by introducing a set-identification approach, allowing

the researcher to recover bounds on parameters even when the equilibrium selection process is

unknown. Similarly, Tamer (2003) proposes a method to partially identify parameters in discrete

response models under incomplete information and multiple equilibria.

In the context of discrete games, Bajari et al. (2010) develop a two-step estimator that separates

agents’ beliefs from their structural payoffs, enabling identification without solving the full game in

estimation. Aguirregabiria and Mira (2007) offer an alternative strategy using sequential estimation

for dynamic discrete games, which preserves tractability while maintaining valid inference.

These tools have been applied to estimate peer effects in school and adolescent settings.

Soetevent and Kooreman (2007) use maximum likelihood to estimate a discrete choice model

of teen behavior with social interactions, identifying endogenous effects by exploiting variation

across school-level peer groups. Nakajima (2007) models youth smoking behavior by incorporating

overlapping peer groups into a structural framework, distinguishing peer effects from contextual

and correlated influences. Dieye et al. (2017) study gender-based heterogeneity in peer influence
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on obesity, identifying structural peer effects using classroom-level variation in composition.

Lastly, Menzel (2016) develops asymptotic methods for games with many players, showing how

consistent inference can still be obtained in large-network settings where equilibrium is not unique.

3.3 Peer Effects and Social Interaction

In this section, I initially analyze the impact of social interactions on white students’ participation

in basketball clubs to understand how peer influence shapes their decisions. Subsequently, I extend

the analysis to black students, examining the two group’s participation patterns in baseball and

football clubs.

The analysis begins with the application of a Linear-in-Means (LIM) model to assess the

peer effects on white students’ participation, considering influences from both white and black

peers separately. However, a challenge arises: the endogeneity of friendship networks leads to

an overestimation of the influence that club friends have. While applying instrumental variables

(IV) to peers’ decisions helps isolate the influence of peers’ decisions, eliminating the direct effect

from the focal student, this approach unfortunately exacerbates the overestimation issue due to the

endogenous nature of the networks.

3.3.1 LIM Model:

Linear-in-Means (LIM) model is widely used in peer-effect studies. For example, a student’s

decision on participating the sports club is assumed to impacted by the average participation rate of

his friends.

The adjacency matrix 𝐺 = [𝑔𝑖 𝑗 ]𝑛×𝑛 with 𝑔𝑖 𝑗 = {0, 1} denotes individual’s direct friendship

connections. By definition, 𝑔𝑖 𝑗 = 1 if and only if student nominates student 𝑗 as friend; otherwise,

𝑔𝑖 𝑗 = 0. The connection in the network is directed, which means 𝑔𝑖 𝑗 and 𝑔 𝑗𝑖 are potentially different,

and has no self-loops 𝑔𝑖𝑖 = 0 for all 𝑖. Student 𝑖’s neighbors is defined as 𝑁𝑖 =
{︁
𝑗 |𝑔𝑖 𝑗 = 1

}︁
, and the

row sum 𝑑𝑖 =
∑︁
𝑗≠𝑖

𝑔𝑖 𝑗 is the degree of connections for individual 𝑖. Finally, 𝐺̃ = [𝑔̃𝑖 𝑗 ]𝑛×𝑛 denotes the
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row-normalized adjacency matrix defined by 𝑔̃𝑖 𝑗 = 𝑔𝑖 𝑗/𝑑𝑖 for 𝑑𝑖 > 0 and 𝑔̃𝑖 𝑗 = 0 otherwise.

The Linear-in-Means Models (LIM) describe student’s best-response function as:

𝑦𝑖 = 𝛾𝑦̄−𝑖 + 𝛽Xi + 𝜖𝑖 (3.1)

where 𝑦−𝑖¯ =
𝑛∑︁
𝑗=1

𝑔̃𝑖 𝑗 𝑦 𝑗 =
1
𝑑𝑖

∑︁
𝑔𝑖 𝑗=1

𝑦 𝑗 is the weighted average activity of individual 𝑖’s neighbors; 𝛾 is

the peer-effect parameter.

Boucher et al. (2024) study peer effects in a context in which peers do not necessarily react to the

average behavior of their neighbors. Their findings reveal that in areas such as GPA, self-esteem,

exercise, and study effort, individuals tend to be influenced more by peers who demonstrate higher

levels of effort, providing greater positive spillovers. Conversely, in behaviors associated with

negative outcomes like trouble at school, fighting, and drinking, the influential peers are those who

exhibit lower effort levels. Their model also considers social clubs, highlighting that students who

participate in clubs tend to exert a stronger influence on their peers who view them as friends.

However, most of these peer-effect studies set a strong assumption that the social networks are

exogenous, potentially overlooking selection bias in the formation of friendships. For instance,

students with higher GPAs are more likely to become friends, as are those engaged in similar

activities, including club participation and study efforts. Club participation, in particular, serves as

a venue for forming new connections. Empirical data indicates that students who join the clubs are

indeed more likely to form new connections with fellow members.

Enhanced LIM Model

The racial group index is defined as 𝑟 ∈ {𝑤, 𝑏, 𝑜}, where 𝑤, 𝑏, and 𝑜 represent White, Black,

and Other, respectively. I estimate the peer effects exerted by peers from each racial group on each

of these three racial categories. The model is specified as follows:

𝑦𝑖𝑟𝑠 = 𝛾1𝑟
∑︁
𝑗∈𝑤

𝑔̃𝑖 𝑗 𝑦 𝑗 + 𝛾2𝑟
∑︁
𝑗∈𝑏

𝑔̃𝑖 𝑗 𝑦 𝑗 + 𝛾3𝑟
∑︁
𝑗∈𝑜

𝑔̃𝑖 𝑗 𝑦 𝑗 + 𝛽𝑋𝑖𝑟𝑠 + 𝜖𝑠 + 𝜖𝑖𝑟𝑠 (3.2)
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where dummy variable 𝑦𝑖𝑟𝑠 represents the participation decision of individual 𝑖 from racial group 𝑟

in school 𝑠, with 1 indicating participation and 0 indicating non-participation. The term
∑︁
𝑗∈𝑟

𝑔̃𝑖 𝑗 𝑦 𝑗

denotes the weighted average activity level of peers from racial group 𝑟, where 𝑟 ∈ {𝑤, 𝑏, 𝑜}. 𝛾1𝑟 ,

𝛾2𝑟 , and 𝛾3𝑟 denote the peer effect parameters for White peers, Black peers, and peers from Other

racial groups on students belonging to racial group 𝑟. 𝑿𝑖 is a vector capturing student-specific

characteristics1. 𝜖𝑠 represents school-level fixed effects, and 𝜖𝑖𝑟𝑠 is an individual-specific error term.

The peer effect parameters, 𝛾1𝑟 , 𝛾2𝑟 , and 𝛾3𝑟 are defined as follows:

𝛾1𝑟 = (𝛾1𝑤, 𝛾1𝑏, 𝛾1𝑜) · 𝑅3×1
𝑖 ,

𝛾2𝑟 = (𝛾2𝑤, 𝛾2𝑏, 𝛾2𝑜) · 𝑅3×1
𝑖 ,

𝛾3𝑟 = (𝛾3𝑤, 𝛾3𝑏, 𝛾3𝑜) · 𝑅3×1
𝑖 ,

where 𝑅𝑖 is a dummy vector indicating the race of student 𝑖.

If peer spillovers within and across racial groups are equivalent, such that 𝛾1𝑟 = 𝛾2𝑟 = 𝛾3𝑟 , the

enhanced model simplifies to the standard LIM model in (3.1). However, allowing for 𝛾1𝑟 , 𝛾2𝑟 , and

𝛾3𝑟 to differ captures potential asymmetries in peer influence due to racial group identity, thereby

reflecting differential exposure to peer behaviors.

In this peer-effects analysis, I use peers’ health conditions and energy levels as IVs for their par-

ticipation decisions. These IVs are based on peers’ exogenous characteristics and are not influenced

by student 𝑖’s decisions, helping to address the reflection problem by mitigating endogeneity.

The utility function for each connected individual 𝑖 is defined as

𝑈𝑖𝑟𝑠 (𝑦𝑖𝑟𝑠, 𝑦 𝑗 , g) = 𝑦𝑖𝑟𝑠 ⎛⎜⎝𝛾1𝑟
∑︁
𝑗∈𝑤

𝑔̃𝑖 𝑗 𝑦 𝑗 + 𝛾2𝑟
∑︁
𝑗∈𝑏

𝑔̃𝑖 𝑗 𝑦 𝑗 + 𝛾3𝑟
∑︁
𝑗∈𝑜

𝑔̃𝑖 𝑗 + 𝑦 𝑗 𝛽𝑋𝑖𝑟𝑠 + 𝜖𝑠 + 𝜖𝑖𝑟𝑠
⎞⎟⎠

1In this analysis, individual characteristics include gender, age, health status, energy levels, attention difficulties,
academic performance, and perceived social acceptance. Additionally, a student is classified as a ’connector’ if they
participate in more than one sport.
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which equates to the optimal response function in the enhanced LIM model 3.2 when 𝑦𝑖𝑟𝑠 = 1; and

to 0 when 𝑦𝑖 = 0.

3.3.2 Social Interaction Term

To address the problem stemming from endogenous networks, I revise the methodology by

updating the variable to the average participation rate within a specific racial group. This rate is

calculated as 1
𝑛𝑟𝑠−1

𝑛𝑟𝑠∑︁
𝑗=1, 𝑗≠𝑖

𝑦 𝑗 , where 𝑛𝑟𝑠 represents the size of the racial group 𝑟 in school 𝑠, 𝑗

denotes other students within the same group 𝑔, and the decision of the student is defined in the

regression function provided in (3.3). This approach is chosen because the average activity level

of a group—assuming the group size is sufficiently large—can be considered a variable unaffected

by the network’s structure and thus assumed to be exogenous. This adjustment allows us to better

understand the influence of social norms on a student’s decision to participate, by relying on a

measure that remains stable regardless of individual network connections.

Student’s Participation Decision is formally expressed as:

𝑦𝑖𝑟𝑠 = 𝜆

⎛⎜⎜⎜⎝
1

𝑛𝑟𝑠 − 1

𝑛𝑟𝑠∑︁
𝑗=1, 𝑗≠𝑖
𝑗∈𝑟,𝑠

𝑦 𝑗

⎞⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
social interaction effects

+ 𝛽1𝑤−𝑟,𝑠⏞ˉ̄⏟⏟ˉ̄⏞
effect of other race

+ 𝛽2𝑋𝑖⏞⏟⏟⏞
individual 𝑐ℎ𝑎𝑟.

+ 𝛽3𝑍𝑠⏞⏟⏟⏞
school char.

+ 𝜖𝑖

with 𝑖 = 1, ..., 𝑛𝑟𝑠 (3.3)

where 𝑦𝑖𝑟𝑠 represents the participation of student 𝑖 in racial group 𝑟, school 𝑠; the term 1
𝑛𝑟𝑠−1

∑︁
𝑗≠𝑖 𝑦 𝑗

captures the social interaction effects, calculated as the average participation rate of other students

within the same race 𝑟 in school 𝑠, excluding student 𝑖 himself; 𝑛𝑟𝑠 denotes the number of students

in group 𝑟𝑠. The error term 𝜖𝑖 is assumed to be independently and identically distributed according

to a logistic distribution.

Let 𝑤−𝑟,𝑠 denotes the participation in sports by other racial groups within the same school ,
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aiming to gauge the impact of inter-racial interactions on participation; 𝑋𝑖 encompasses individ-

ual characteristics,2 𝑍𝑠 outlines school characteristics, including factors like school size, racial

composition, type, location, and region.3

In this study, I examine the interaction between the participation rates of students from racial

groups other than one’s own and the significant presence (exceeding 2%) of a specific racial group

(black or white) within the school. For instance, when evaluating the participation of white students,

I consider the impact of participation rates from all non-white groups, but only in scenarios where

black students make up more than 2% of the school population.

Additionally, as a robustness check, I explore the interaction specifically between the partici-

pation rate of black students and their presence in the school. This approach, however, tends to

produce less reliable results due to the lack of proportionate data on the black student population.

I further assess how the effect of social interactions might vary with school size by introducing

an interaction term between the average participation rate and the size of the school. This analysis

helps us understand if and how the influence of peer participation shifts in larger versus smaller

school settings.

Let X𝑖𝑟𝑠 = {𝑤𝑟𝑠, 𝑋𝑖, 𝑍𝑠} denote the set of characteristics encompassing the effect of other

races, individual traits, and school attributes. Additionally, 𝑦̄−𝑖𝑟𝑠 = 1
𝑛𝑟𝑠−1

∑︁
𝑗∈𝑟𝑠, 𝑗≠𝑖 𝑦 𝑗 represents the

average participation rate among students within the same racial group as student 𝑖. The probability

that student 𝑖 in group 𝑟𝑠 chooses to participate in clubs can be expressed as:

𝑃𝑟 (𝑌𝑖𝑟𝑠 = 1|X𝑖𝑟𝑠) =
1

1 + 𝑒−𝜂𝑖𝑟𝑠

2In the analysis, individual characteristics include gender, age, duration of school attendance, health status, energy
level, academic performance, and perceived social acceptance. I also incorporate control variables to account for
each student’s participation in other clubs, including basketball, baseball, football, track, other sports, and non-sport
clubs. This consideration is essential as the seasonal nature of sports in US middle schools could influence students’
participation decisions across different activities.

3At the school level, control variables encompass the type of school (public, Catholic, or private), its location
(urban, suburban, or rural), and its geographical region (West, Midwest, South, or Northeast).
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Here, 𝜂𝑖𝑔 is the linear predictor part of the model, defined as:

𝜂𝑖𝑟𝑠 = 𝜆𝑦̄−𝑖𝑟𝑠 + 𝛽X𝑖𝑟𝑠

This formulation allows us to estimate the likelihood of club participation for student 𝑖, factoring in

both the average participation rate of their peers and a combination of other significant characteristics

through a logistic regression model.

In the framework, individual choices 𝑦𝑖𝑟𝑠 are characterized as the outcome of maximizing a

payoff function𝑈, with each student’s decision within group 𝑟𝑠 being:

𝑦𝑖𝑔 ∈ arg max𝑈
(︁
X𝑖𝑟𝑠, 𝜇

𝑒
𝑖 (𝑦−𝑖𝑟𝑠), 𝜖𝑖𝑔

)︁
Here, 𝜇𝑒

𝑖
(𝑦−𝑖𝑟𝑠) represents individual 𝑖’s beliefs about the behavior of other members in their

group 𝑔. This model, which incorporates social interactions, is refined through assumptions

specifying how 𝑦̄−𝑖𝑔, the average behavior of peers, is established. The payoff function is given by:

𝑈𝑖𝑔 (𝑦𝑖𝑟𝑠, 𝑦̄−𝑖𝑟𝑠,X𝑖𝑟𝑠) = 𝜆𝑦𝑖 𝑦̄−𝑖𝑟𝑠 + 𝛽𝑦𝑖X𝑖𝑟𝑠

My model assumes that students’ beliefs about their peers’ choices are self-consistent: 𝑦̄−𝑖𝑔 =

𝜇(𝑦−𝑖𝑟𝑠 |𝐹𝑖). This assumption of self-consistency, commonly adopted in both theoretical and econo-

metric literature, bridges the model by enforcing an equilibrium condition. It aligns subjective

beliefs, 𝜇𝑒
𝑖
(𝑦−𝑖𝑟𝑠) with the objective conditional probabilities of others’ behaviors given the in-

formation set 𝐹𝑖, ensuring that individual beliefs about peer behavior accurately reflect observed

patterns.
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Table 3.3: Data Description

White Black Hispanic Asian Other

Number of Students 32635 7579 8860 2859 11326
Proportion in The Sample (%) 46.1 12.9 17.3 4.0 19.7
Homophily in The Sample (%) 73.4 63.6 523.0 46.9 −
Number of Connections 7.46 6.77 6.32 6.44 6.75

Club Participation Rate

Basketball Participation (%) 17.0 27.8 14.5 15.1 22.2
Baseball Participation (%) 18.8 14.3 15.3 7.5 17.4
Football Participation (%) 11.7 15.6 13.0 8.1 14.8
Track Participation (%) 12.4 18.8 9.4 9.6 14.7

Notes: The sample consists of 63,259 students from 134 schools. This sample size is smaller than that used
in Chapter 2 (which includes 83,152 students) due to missing information on certain control variables (e.g.,
average grade, health, and energy) for specific students.

3.4 Empirical Analysis

3.4.1 Data Description

The analysis in Chapter Two is conducted at the school level, assuming that each school reaches

its steady-state equilibrium. As a result, all students from the target schools are included in the

sample. In contrast, the empirical analysis in this chapter focuses on the individual level, leading to

a smaller sample size. Certain observations are excluded from the sample for the following reasons:

(1) missing individual characteristics for some students and (2) students reporting participation in

more than ten clubs. Consequently, the sample size decreases from 83152 in Chapter Two to 63259

in this chapter (Chapter Three). Data description is provided in Table 3.3.

3.4.2 Peer Effects in LIM

The estimated peer effect coefficients for the model with different racial groups are presented in

Table 3.4, while the full regression results, including some other parameters, are provided in Table

3.7 in the Appendix.

Approximately 19.7% of students reported having no friends. I assign separate school-level
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Table 3.4: Peer Effects for Three Racial Groups

White Black Others
𝜆1𝑟 3.05∗∗∗ 1.54 0.57

(0.44) (1.04) (0.50)
𝜆2𝑟 4.54∗∗∗ 2.39∗∗∗ 4.96∗∗∗

(0.78) (0.36) (0.32)
𝜆3𝑟 3.02∗∗∗ 1.77∗∗∗ 0.73

(0.49) (0.42) (0.51)
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

fixed effects (𝜖𝑠) for two groups within each school: students with no friends and students with

at least one friend. Testing the null hypothesis 𝐻0 : 𝜆1𝑤 = 𝜆2𝑤 evaluates whether peer effects

from White and Black peers are significantly different for white students. The p-value is 0.074,

suggesting a marginally significant difference.

If the same fixed effect is assigned to all students within the same school, the peer effect

coefficients decrease due to the inclusion of isolated students. Under this specification, the peer

effect estimates are 𝜆̂1𝑤 = 1.42 with standard error 𝜎̂1𝑤 = 0.29 and 𝜆̂2𝑤 = 3.70 with 𝜎̂2𝑤 = 0.77.

The p-value for the null hypothesis 𝐻0 : 𝜆1𝑤 = 𝜆2𝑤 is 0.0043, indicating a significant difference

between the spillovers from White and Black peers.

These analysis suggests that the observed greater peer effect from black friends, compared to

white friends, may be attributed to selection bias in the formation of friendships. Friendships are not

formed randomly but are influenced by preferences. White students may have more opportunities

to connect with other white peers, while interactions with black peers are more likely to occur in the

context of basketball clubs. Ignoring the endogenous nature of network connections in estimating

peer effects could lead to an overestimation of the influence of black students.

Following this, I analyze the impact of joining sports clubs on white students’ friendship

connection. Table 3.8 presents the effects of the three most popular sports—basketball, baseball,

and football—on the number of black and white friends reported by white students. The dependent

variables are each white student’s white friends number or black friends number; the factors I
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considered here include the relative size of the corresponding racial group in a school and a dummy

variable for club participation, and the interaction term of club participation and relative group

size. There might exists some unobservable variables impact both club participation and friendship

connections, including personalities and social abilities. I use student’s general health condition

and energy level as IV on the variable of basketball participation.

The empirical results indicate that while participation in basketball clubs doesn’t significantly

affect the number of white friends among white students, it does increase their number of black

friends. This points to the endogeneity of network structures in such settings. Ignoring the

friendships formed through club participation can lead to a biased estimation of peer effects.

Specifically, the influence of club members on each other’s behavior might be overvalued. Moreover,

these findings support the idea that cultural activities, like being part of a club, encourage students

to form new friendships across racial lines, helping to reduce racial segregation.

My analysis reveals distinct preferences for club participation among white and black students,

with baseball being the top choice for white students, and basketball preferred by black students.

This preference hierarchy leads to a noticeable racial disparity in club memberships, particularly

in basketball. To delve deeper into how the popularity of sports affects student behavior across

different racial groups, I focus the analysis on basketball and baseball clubs.

I observe a clear pattern of coordination within racial groups, evidenced by the positive correla-

tion between the proportion of a racial group in a school and its participation rate in specific sports:

an increase in the white student population at a school is associated with higher participation in

basketball clubs among white students; similarly, a higher presence of black students in a school

leads to increased enrollment in baseball clubs by black students. This pattern does not replicate

for white students in baseball or black students in basketball, indicating a unique interplay between

sports participation and prevailing social norms.

The decision to participate in a sports club often transcends simple interest in the sport itself,

serving instead a social function by offering avenues for new friendships. This underlines the

significant role of the social aspect of these clubs in forming friendship networks and potentially
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easing racial divisions.

3.4.3 Estimates on Social Interaction Term

Analysis on White students in Basketball Participation

This section delves into the factors influencing the decision of white students to join basket-

ball clubs. My analysis utilizes two metrics of group size: the total student population at each

school and the specific population of white students. The outcomes are detailed in the regression

results presented in Table 3.9, with a robustness check utilizing the white student population as an

explanatory variable.

Racial proportion: The racial makeup of a school significantly impacts student choices. The

Average Marginal Effects (AME), detailed in Table 3.11, suggest that an increase in the white student

proportion by 1% raises the likelihood of their participation in basketball clubs by 0.03%. This

finding implies that the influence of societal norms on individual behavior diminishes in schools

with a higher concentration of white students, who thereby exert more significant influence within

their social circles. However, it’s crucial to note that AME may not capture non-linear relationships

between population proportion and participation rate effectively, especially in the context of large

schools which dominate the binary choice analysis. Additionally, the predominance of students

from larger schools in the binary choice analysis means that the AME may not accurately reflect

the dynamics in smaller schools. To address this, I further disaggregate the analysis by separating

students from smaller and larger schools to more precisely estimate the effects of social interactions.

Participation Rate: My findings indicate that social interaction plays a crucial role in club par-

ticipation decisions. Specifically, a 1% increase in white students’ participation rate correlates with

a 0.42% increase in the likelihood of a white student joining the basketball club. In contrast, high

participation rates among other racial groups can deter white students’ participation, particularly

if the black student population exceeds 3% in the school. This complex interplay highlights the

significant role of cultural activities in fostering communal ties and understanding the multifaceted
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nature of students’ decision-making processes.

School Size: The size of the school emerges as a critical factor, with larger schools showing a

negative impact on the likelihood of students joining basketball clubs. This relationship is quantified

in the AME for school size, which indicates increasing the school size by a factor of 𝑒 reduces

club participation probability by 1.73%. These findings suggest that beyond facility constraints,

larger school environments may dilute personal interactions and weaken social cohesion, affecting

students’ extracurricular engagement.

Intersection of School Size and Club Participation: I introduce an interaction term between

school size and club participation. This term reveals that in larger schools, the influence of a club

on student choices becomes significantly more pronounced. This insight suggests that as schools

grow in size, the role of clubs in shaping social networks and providing a sense of belonging gains

importance, potentially counteracting the impersonal nature of larger school environments. This

may be due to greater cohesion among club members in these settings.

Black Students in Basketball Participation:

The analysis of black students’ decisions to join basketball clubs is detailed in Table ??. Unlike

what might be expected, the data reveals that the rate of participation among black students in

basketball clubs is not influenced by the proportion of black students within the school. This suggests

that having a larger number of black students in a school does not necessarily lead to increased

participation in basketball among black students. This finding points to a lack of coordinated group

behavior or peer influence among black students regarding participation in this sport.

Participation in Baseball Club

The analysis extended to the participation decisions of white and black students in baseball

clubs, with results documented in Table 3.12 for white students and Table ?? for black students.

Baseball’s popularity traditionally leans more towards white students.

An interesting discovery from the analysis is that the participation of black students in baseball

97



clubs shows a positive correlation with the proportion of black students within the school, suggesting

a significant coordination effect. A higher presence of black students seems to foster an environment

where forming same-race friendships within the club is more likely, thus increasing the perceived

value of joining the club for black students.

Conversely, an interesting pattern emerges where the involvement of white students in baseball

clubs appears to encourage greater participation among black students, marking a departure from

the basketball participation trends. In basketball, increased popularity of the sport among black

students has been associated with a reduced participation rate among white students. This con-

trast underscores the complex interplay of majority and minority group dynamics within societal

structures. While majority groups might predominantly seek connections within their racial or

ethnic circles, minority groups navigate the dual objectives of strengthening intra-group bonds and

integrating more extensively with the broader community, as reflected in their diverse participation

patterns in school clubs.

Small Schools v.s. Large Schools.

My analysis further reveals that white students exhibit more variability in their club participation

rates when they are in the majority within smaller schools. Notably, in smaller schools where white

students form the majority, their participation rates significantly exceed the general social norm,

although this average participation rate can vary considerably from one school to another.

To explore the differences between small and large schools, I divided students into two categories

based on school size and conducted separate logit regressions for each group. The outcomes of this

analysis are detailed in Table 3.16.

In small schools, the relationship between students’ decisions to join the basketball club and

their racial proportion exhibits a quadratic increase, indicating a nonlinear growth in participation

as the proportion of their racial group increases. Conversely, in large schools, this relationship is

more linear, with the participation decision showing a direct proportionality to their racial makeup.

Moreover, the influence of racial proportion on club participation diminishes as school size increases,
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suggesting that social norms wield less sway in a small micro-social environment.

The social interaction effects appear more pronounced in larger schools than in smaller ones.

This phenomenon could be attributed to a higher level of clustering among club members in

larger schools, where club participants are more inclined to form friendships with fellow members

compared to non-members. In contrast, small schools show minimal differences in friendship

patterns between club members and non-members, indicating lower levels of matching bias and

homophily. This differentiation points to the complex dynamics of social interaction and club

participation across schools of varying sizes, highlighting the influence of institutional scale on the

formation of social networks within school clubs.

3.4.4 Dynamics in Friendship Connections

Stylized Facts 1. Club members tend to make more friends within their club. A stronger clustering

effect is observed among club members in larger schools.

A comparison of friendship networks between two waves, one year apart, shows that club

members are more likely to form new connections with other members. Despite the formation of

new friendships and the dissolution of old ones, the total number and composition of friendships

remain stable across the sample. Club members tend to build more connections with other members,

with the proportion of within-club friends exceeding the club participation rate at the school. In

contrast, non-members’ friendships are more randomly distributed across the school.

To investigate the dynamics of student friendships over time, I analyzed the transition from wave

1 (1984-1985) to wave 2 (1986), focusing on those who participated in home interviews during both

years. Students were asked to list up to ten friends, with a maximum of five male and five female

friends. By integrating this subset of individuals with data from school questionnaires collected in

the first year, I crafted a dataset of 1, 557 students, laying the groundwork for the analysis.4

A comparative study was conducted to explore the changes in the number of friendships reported

4The analysis is grounded in a subset of this data, in which students were asked to nominate no more than 10 friends.
However, most of the interviews solicited information on no more than micro-social environment friends. Despite the
smaller sample size, this subset offers rich insights into the dynamics of friendship connections over time.
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Figure 3.2: Distribution of Students by Change of Friendship Connections
Note: The mean of this difference is −0.47, indicating that, on average, students have 0.47 fewer friends in the second
year than in the first. The first quantile, median, and third quantile of the difference are −2, 0, and 1 connection,
respectively.

at the two time points. The variation in friendship counts is depicted in 3.2, showing a distribution

that approximates a normal curve, primarily clustered around zero. This pattern suggests a general

stability in the number of friendships over the studied period.

From the second wave’s responses, I documented 8, 687 friendship connections, averaging 5.6

friends per student. Among these, 4, 063 friends were identifiable from the first wave’s in-school

questionnaires, offering concrete insights into the continuity and evolution of these friendships.

A detailed analysis of the students’ friendship networks, especially focusing on newly established

connections within the last year, allowed us to identify recent friendships and critically assess

potential biases in friendship selection reflected in the empirical findings.

Of the 4, 063 traceable connections, 2, 289 represented new friendships formed during the

second wave. This fluidity—where students dissolve old ties and create new ones—reveals that, on

average, 56% of the connections are newly formed. This suggests that while individual friendships

are dynamic, the overall network size maintains equilibrium.

This exploration into the dynamics of friendship formation within schools, especially in relation

to basketball club participation, unveils key insights into how these cultural activities influence

social networks.

There’s a notable distinction in friendship network structures between small and large schools.

In larger schools, there’s a marked trend among club members to form friendships within their
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Table 3.5: Matching Bias in Friendship Networks (Across School Sizes)

Type of schools Type of students New friends-Part. Total Friends-Part. Sample size

Small Non-participants 52.80% 51.85% 67
(52.1% participation) Club participants 62.14% 70..48% 73

Medium Non-participants 35.05% 33.21% 101
(40.6% participation) Club participants 62.38% 67.91% 69

Large Non-participants 15.84% 14.78% 1066
(14.4% participation) Club participants 30.24% 32.12% 180

Note: This analysis includes 1, 557 students from 12 schools, categorized by school size: small (six schools with
fewer than 100 students), medium (four schools with 100 to 200 students each), and large (two schools with student
populations of 776 and 1, 743, respectively). The variables "New friends-Part." and "Total Friends-Part." in the
table represent, respectively, the percentage of new connections that are club participants and the overall
percentage of a student’s friends who are club participants in wave 2, differentiated by various student groups.

group, indicating a strong matching bias. This contrasts with small schools, where the networks

of club participants and non-participants are more integrated, suggesting less segregation based on

club involvement.

The detailed breakdown in table 3.5 shows how friendship compositions vary with school size

and club participation. In smaller schools, where the club participation rate averages 52.1%, club

members show a slight preference for forming new connections within their group, with 62.1% of

new friendships being intra-club for participants. For non-participants, 52.8% of new friendships

are still within the club circle, albeit to a lesser extent.

The trend intensifies in medium-sized schools, where 62.4% of new friendships by club mem-

bers are within the club, against 35.1% for non-participants. This pattern suggests an escalating

inclination towards forming connections within the club as school size grows.

Large schools exhibit the most pronounced matching bias, with club members making 30.2%

of their new friendships within the club, starkly contrasting the 15.8% rate among non-participants.

This disparity highlights a significant preference for intra-club socialization in larger settings,

solidifying the club’s role as a key social junction.

These trends align with my regression analyses regarding the interplay between social interaction

effects and school size. It highlights the nuanced impact of school size on the nature of social
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Figure 3.3: Club Participation and Devotee Proportion by School Size

interactions within clubs. While the likelihood of joining a basketball club decreases with increasing

school size, the social cohesion and intensity of interactions within clubs grow in larger schools,

promoting the development of robust, club-centric social networks.

3.4.5 Participation Rate and Ratio of Devotee by School Size

Stylized Facts 2. In this analysis, students are classified as either Connectors or Devotees. As

school size increases, the overall participation rate decreases, but the proportion of Devotees among

club members rises.

A club member is defined as a Devotee if basketball is the only club they participate in; otherwise,

they are categorized as a Connector. Connectors tend to join clubs to expand their social networks,

while Devotees are primarily motivated by a passion for the sport.

The data show that Connectors have more friendships than both Devotees and non-members,

while Devotees’ friendships are more diverse across racial groups.

School size. The relationship between school size and club participation is visually represented in

left-hand graph in Figure 3.3, highlighting the clear negative correlation. This trend is largely due

to the capacity constraints faced by the clubs. As school size increases, these constraints become

more significant, reducing students’ opportunities to engage in club sports.
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Devotee and Connectors:

In this analysis, I classify students into two types: Connectors and Devotees. A club member is

identified as a Devotee if basketball is the only club they participate in; otherwise, they are labeled

a Connector. Connectors typically join clubs to expand their social networks, while Devotees are

motivated by their passion for the sport.

Connectors measure success by the quantity and quality of interpersonal connections they

develop. These agents value the social structure of the club and are motivated by the opportunity to

engage with more people. In contrast, Devotees are agents who join the club due to their intrinsic

love for the sport the club focuses on. They derive their primary satisfaction from the level of skill

and talent present within the club environment. Their decisions within the club are motivated by

opportunities to improve their own abilities and to engage in high-level competitions or practices.

The data reveals that Connectors tend to have more social connections than Devotees—for

instance, white Connectors have an average of 7.8 connections, compared to 6.7 for white Devotees.

However, Connectors are more affected by school size; the proportion of Connectors in a club

decreases as school size increases, regardless of racial group. This trend is illustrated in right-hand

graph in Figure 3.3. This decline is largely driven by the rising costs of participation due to capacity

constraints in larger schools. While Devotees benefit from the competitive, high-talent environment

that larger schools often provide, Connectors do not gain the same advantages in such settings.

On the other hand, White Devotees form more connections across racial groups than both

Connectors and Non-Members, as illustrated in Table 3.6 and Figure 3.4. From a social planning

perspective, increasing the capacity for extracurricular activities to include more Devotees could

enhance social cohesion. Additionally, as more Connectors join the clubs, they tend to build more

connections. Although their level of homophily may not change, the increase in connections can still

contribute to greater social integration. Furthermore, White Connectors serve as a bridge between

White students outside the club and White Devotees, creating indirect links between White students

and club members from other racial groups.
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Figure 3.4: Homophily Index for Different Types of Students
Note: Students are categorized into three groups: Connectors, Devotees, and Non-Members. The first row of the graph represents
White students, while the second row corresponds to Black students. The homophily index is defined as the proportion of connections
within the same racial group, and the graph displays the average homophily across schools.
If connections were formed randomly, the homophily index would align with the racial proportion, represented by the 45-degree line
on the graph. A point above this line indicates that students in that school are more likely to form connections within their own racial
group, reflecting inbreeding homophily. The further the point is above the 45-degree line, the greater the level of racial segregation.

Table 3.6: Homophily Indices by Student Type (%)

Non-Members Connector Devotee
White 73.0 71.7 64.1
Black 62.6 59.9 58.9
Hispanic 58.6 36.4 45.6
Asian 45.8 46.5 47.1

Notes: Among white students, 17.0% are club members, of which 10.0% are devotees.
Among black students, 27.8% are club members, of which 19.6% are devotees. Among
Hispanic students, 14.5% are club members, of which 17.0% are devotees. Among
Asian students, 15.1% are club members, of which 14.9% are devotees.
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3.5 Conclusion

This study delves into sports club participation among US adolescents, shedding light on the

the role of cultural activities in shaping social interactions. A central finding from the peer-effects

analysis is the overvaluation of peer effects due to the endogenous nature of networks structures.

Social clubs emerge as pivotal platforms for social engagement, serving as essential venues for

establishing new connections.

While instrumental variables (IV) help mitigate the direct spillover effects of an individual’s

activities on their friends, they fall short of addressing the underlying endogeneity within the network

structure itself. My analysis reveals that compared with white peers, black peers exert more spillovers

on white students’ decisions to participate in basketball, with the use of IV potentially magnifying

this discrepancy.

Further examination of basketball participation’s impact on friendship connections among white

students shows that while it does not significantly affect the number of white friends, it notably

increases the number of black friends. This outcome underscores the endogenous selection bias

inherent in evaluating peer effects and confirms the complex interplay between club participation

and friendship formation.

Building on this, the study leverages average school-wide club participation rates as an exogenous

factor to investigate how social interactions influence club membership decisions. A significant

discovery from this analysis is that white students show a higher propensity to engage in basketball

clubs as their representation increases within the school. Conversely, black students are more

inclined to participate in baseball clubs when they form the majority. This trend suggests a form

of coordination among students, with each group gravitating towards sports that are traditionally

favored by the other racial group.

A comparison between smaller and larger schools reveals contrasting participation dynamics and

network structures. While cultural activities and club participation rates are lower in larger schools,

these institutions foster stronger connections among club members compared to non-members. This
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finding is consistent with regression results, which suggest that the influence of social interactions

on club participation decisions is more pronounced in larger schools.

Additionally, previous studies have highlighted lower levels of racial homophily in smaller

schools. My research extends this understanding by suggesting that the high rates of participation

in cultural activities within small schools may contribute to this phenomenon. Recognizing the

coordinated nature of students’ participation, policymakers can implement more nuanced and

context-specific interventions. For instance, providing targeted subsidies for basketball programs

in predominantly white neighborhoods and for baseball in predominantly black neighborhoods

could encourage diverse participation and promote inclusivity. This tailored approach addresses the

unique cultural preferences of different communities and fosters social cohesion through strategic

support for sporting and cultural activities.
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Table 3.7: Peer Effects on Club Participation Across Racial Groups

Club Participation
Split Fixed Effects Pooled Fixed Effects

Baseline IV IV Baseline IV IV
White 𝛾1 2.63∗∗∗ 3.05∗∗∗ 2.93∗∗∗ 2.43∗∗∗ 1.42∗∗∗ 1.37∗∗

(0.15) (0.44) (0.68) (0.08) (0.29) (0.42)
White 𝛾2 2.72∗∗∗ 4.54∗∗∗ 4.58∗∗∗ 2.44∗∗∗ 3.70∗∗∗ 3.63∗∗∗

(0.36) (0.78) (0.76) (0.39) (0.77) (0.74)
White 𝛾3 2.25∗∗∗ 3.02∗∗∗ 2.91∗∗∗ 2.03∗∗∗ 1.54∗∗∗ 1.38∗∗∗

(0.14) (0.49) (0.56) (0.12) (0.36) (0.42)
Black 𝛾1 2.59∗∗∗ 1.54 1.74 2.14∗∗∗ −1.25 −1.35

(0.47) (1.04) (1.23) (0.48) (0.97) (1.00)
Black 𝛾2 2.02∗∗∗ 2.39∗∗∗ 2.68∗∗∗ 1.59∗∗∗ 0.57∗ 0.45

(0.20) (0.36) (0.55) (0.12) (0.29) (0.34)
Black 𝛾3 1.60∗∗∗ 1.77∗∗∗ 1.96∗∗∗ 1.17∗∗∗ 0.01 −0.13

(0.18) (0.42) (0.55) (0.17) (0.36) (0.40)
Other 𝛾1 1.42∗∗∗ 0.57 0.49 1.10∗∗∗ −1.52∗∗∗ −1.63∗∗∗

(0.15) (0.50) (0.70) (0.11) (0.32) (0.48)
Other 𝛾2 2.99∗∗∗ 4.96∗∗∗ 5.03∗∗∗ 2.62∗∗∗ 3.98∗∗∗ 3.90∗∗∗

(0.21) (0.32) (0.40) (0.16) (0.29) (0.39)
Other 𝛾3 1.69∗∗∗ 0.73 0.81 1.37∗∗∗ −1.31∗∗∗ −1.55∗∗

(0.11) (0.51) (0.71) (0.10) (0.35) (0.47)
Black 0.71∗∗∗ 0.66∗∗∗ 0.61∗∗∗ 0.75∗∗∗ 0.84∗∗∗ 0.85∗∗∗
White −0.43∗∗∗ −0.55∗∗∗ −0.53∗∗∗ −0.49∗∗∗ −0.65∗∗∗ −0.66∗∗∗
Gender 0.45∗∗∗ 0.45∗∗∗ 0.44∗∗∗ 0.49∗∗∗ 0.50∗∗∗ 0.50∗∗∗
Age −0.08∗∗∗ −0.08∗∗∗ −0.08∗∗∗ −0.07∗∗∗ −0.11∗∗∗ −0.12∗∗∗
Health 0.12∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.13∗∗∗ 0.13∗∗∗
Energy 0.20∗∗∗ 0.20∗∗∗ 0.20∗∗∗ 0.20∗∗∗ 0.21∗∗∗ 0.21∗∗∗
Connector 1.23∗∗∗ 1.16∗∗∗ 1.16∗∗∗ 1.23∗∗∗ 1.25∗∗∗ 1.26∗∗∗
Ctrl. Var. ✓ ✓ ✓ ✓ ✓ ✓
Clustered SE ✓ ✓

Log Likelihood −24334.66 −25217.60 −25217.67 −24563.24 −25356.50 −25359.29
Deviance 48669.32 50435.21 50435.34 49126.47 50713.01 50718.57
Observations 63230 63259 63230 63259 63259 63259
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Notes: Split Fixed Effects Method refers to assigning separate school-level fixed effects for students with no friends and those with at
least one friend within each school. Pooled Fixed Effects Method uses the same school-level fixed effect for all students, regardless of
their friendship status.
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Table 3.8: Impact of Sports Activities on the Racial Composition of White Students’ Friendships

Number of White Friends Number of Black Friends
White White White IV Black Black Black IV Black IV Black IV

OwnRacialProp 3.44∗∗∗ 3.18∗∗∗ 2.69∗∗∗ 0.84∗∗∗ 0.74∗∗∗ 0.86∗∗∗ 0.76∗∗∗ 0.76∗∗∗
(0.08) (0.09) (0.13) (0.02) (0.02) (0.03) (0.05) (0.05)

Basketball 0.27∗∗∗ −0.70∗∗∗ 6.94∗∗∗ 0.04∗∗∗ −0.00 0.09 0.06 0.05
(0.04) (0.15) (0.54) (0.01) (0.01) (0.05) (0.06) (0.05)

Basketball×RacialProp 1.55∗∗∗ 0.72∗∗∗ 0.77 0.89∗
(0.23) (0.06) (0.56) (0.43)

Baseball 0.44∗∗∗ 0.43∗∗ −1.00∗∗∗ 0.00 0.00 −0.01 −0.01 −0.01
(0.04) (0.14) (0.13) (0.01) (0.01) (0.01) (0.02) (0.01)

Baseball×RacialProp 0.02 0.02 0.04
(0.22) (0.05) (0.10)

Football 0.28∗∗∗ 0.06 −0.52∗∗∗ 0.01∗ 0.01 0.01 −0.00 0.01
(0.05) (0.17) (0.09) (0.01) (0.01) (0.01) (0.01) (0.01)

Football×RacialProp 0.34 0.10 0.09
(0.27) (0.07) (0.10)

Log(SchSize) 0.20∗∗∗ 0.20∗∗∗ 0.63∗∗∗ 0.01 0.00 0.01 0.01 0.01
(0.02) (0.02) (0.05) (0.00) (0.00) (0.01) (0.01) (0.01)

Gender −0.51∗∗∗ −0.51∗∗∗ −0.78∗∗∗ −0.01∗∗ −0.01∗∗ −0.01∗∗ −0.01∗∗ −0.01∗∗
(0.03) (0.03) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00)

Age −0.03∗∗ −0.03∗∗ 0.18∗∗∗ −0.01∗∗∗ −0.01∗∗∗ −0.00∗ −0.00∗ −0.00∗
(0.01) (0.01) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

Years 0.13∗∗∗ 0.13∗∗∗ 0.08∗∗∗ 0.00∗∗ 0.00∗∗ 0.00∗ 0.00∗∗ 0.00∗∗
(0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Avg.Grade −0.38∗∗∗ −0.38∗∗∗ −0.12∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(0.02) (0.02) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 0.09 0.09 −0.73 0.05 0.06 0.05 0.05 0.05
Adj. R2 0.09 0.09 −0.73 0.05 0.06 0.05 0.05 0.05
Num. obs. 33690 33690 33690 33690 33690 33690 33690 33690
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Note: ’RacialProp’ refers to the proportion of a specific racial group within a school. The first three columns assess the impact of club participation on the number
of white friends among white students, facilitating comparison with the impact on the number of black friends depicted in the last five columns. The Variance
Inflation Factor (VIF) shows elevated levels in the regression of the 2𝑛𝑑 column and reaches extremely high levels in the 3𝑟𝑑 column. Especially, a negative
𝑅2 value in the Instrumental Variable (IV) analysis concerning white friendships indicates that basketball participation does not contribute to an increase in the
number of white friends. The first three columns are included for comparative analysis regarding the number of black friends.
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Table 3.9: White Students’ Choices in Basketball Club

White Students’ Participation in Basketball Club
(1) (2) (3) (4) (5) (6)

(Intercept) −0.57∗ −0.12 −0.53 0.32 0.25 0.88∗
(0.28) (0.31) (0.32) (0.35) (0.35) (0.41)

White Participation −𝑖 4.29∗∗∗ 4.15∗∗∗ 4.28∗∗∗ 3.79∗∗∗ 2.25∗∗ 1.17
(0.20) (0.22) (0.26) (0.24) (0.85) (1.04)

White Proportion 0.50∗∗∗ 0.31∗∗ 0.43∗∗∗ 0.29∗ 0.30∗∗ 0.29∗
(0.11) (0.11) (0.11) (0.13) (0.12) (0.13)

log(School Size) −0.14∗∗∗ −0.12∗∗∗ −0.09∗∗ −0.15∗∗∗ −0.18∗∗∗ −0.25∗∗∗
(0.03) (0.03) (0.03) (0.04) (0.04) (0.05)

Gender 0.50∗∗∗ 0.25∗∗∗ 0.25∗∗∗ 0.24∗∗∗ 0.25∗∗∗ 0.24∗∗∗
(0.03) (0.04) (0.04) (0.04) (0.04) (0.04)

Age −0.15∗∗∗ −0.15∗∗∗ −0.14∗∗∗ −0.15∗∗∗ −0.14∗∗∗ −0.15∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Years −0.02 −0.01 −0.02 −0.02 −0.01 −0.02
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Health 0.20∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Energy 0.27∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.15∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Avg.Grade −0.24∗∗∗ −0.26∗∗∗ −0.26∗∗∗ −0.26∗∗∗ −0.25∗∗∗ −0.25∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

AttentionDiff 0.14∗∗∗ 0.10∗∗ 0.10∗∗ 0.10∗∗ 0.10∗∗ 0.10∗∗
(0.03) (0.04) (0.04) (0.04) (0.04) (0.04)

Accepted 0.19∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.14∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Other Ptcp.× Black Pres. −0.54∗∗∗ −0.51∗∗∗ −0.34 −0.54∗∗∗ −0.44∗
(0.13) (0.14) (0.19) (0.14) (0.19)

Other Race Participation 0.12
(0.30)

White Ptcp.−𝑖 ×log(Size) 0.32∗ 0.43∗∗
(0.14) (0.16)

Individual Ctrl Var. ✓ ✓ ✓ ✓ ✓
School Ctrl Var. ✓ ✓

Log Likelihood −13947.60 −11852.37 −11858.50 −11095.64 −11849.80 −11092.35
Deviance 27895.20 23704.74 23717.01 22191.28 23699.61 22184.71
Observations 35590 35590 35590 33227 35590 33227
Schools 139 139 139 123 139 123
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
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Table 3.10: Black Students’ Choices in Basketball Club

Black Students’ Participation in Basketball Club
(1) (2) (3) (4) (5) (6)

(Intercept) −0.65 0.25 −0.16 0.62 2.12∗ 2.00
(0.54) (0.60) (0.64) (0.71) (0.88) (1.06)

Black Participation −𝑖 3.09∗∗∗ 2.98∗∗∗ 2.64∗∗∗ 2.85∗∗∗ −3.41 −1.56
(0.35) (0.38) (0.42) (0.43) (2.25) (2.57)

Black Proportion −0.65∗∗∗ −0.35∗ −0.55∗∗ −0.39 −0.31 −0.38
(0.16) (0.17) (0.21) (0.21) (0.17) (0.21)

log(School Size) −0.10 −0.08 −0.03 −0.12 −0.35∗∗ −0.32∗
(0.06) (0.06) (0.07) (0.07) (0.11) (0.13)

Gender 0.97∗∗∗ 0.79∗∗∗ 0.79∗∗∗ 0.85∗∗∗ 0.79∗∗∗ 0.85∗∗∗
(0.06) (0.07) (0.07) (0.08) (0.07) (0.08)

Age −0.09∗∗∗ −0.12∗∗∗ −0.12∗∗∗ −0.13∗∗∗ −0.13∗∗∗ −0.13∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Years −0.06∗ −0.03 −0.03 −0.03 −0.02 −0.03
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Health 0.12∗∗∗ 0.07 0.07 0.08∗ 0.07∗ 0.08∗
(0.03) (0.03) (0.03) (0.04) (0.03) (0.04)

Energy 0.22∗∗∗ 0.18∗∗∗ 0.18∗∗∗ 0.16∗∗∗ 0.18∗∗∗ 0.16∗∗∗
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Avg.grade −0.08∗ −0.10∗ −0.10∗ −0.10∗ −0.10∗ −0.10∗
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

AttentionDiff 0.12∗ 0.14∗ 0.14∗ 0.13∗ 0.14∗ 0.13∗
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

Accepted 0.07∗ 0.05 0.05 0.03 0.05 0.03
(0.03) (0.04) (0.04) (0.04) (0.04) (0.04)

Other Ptcp.× White Pres. 0.31 0.05 0.23 0.17 0.25
(0.37) (0.41) (0.54) (0.41) (0.53)

Other Race Participation 1.13
(0.68)

Black Ptcp.−𝑖 ×log(Size) 0.98∗∗ 0.67
(0.34) (0.38)

Individual Ctrl Var. ✓ ✓ ✓ ✓ ✓
School Ctrl Var. ✓ ✓

Log Likelihood −4126.26 −3419.31 −3417.95 −3037.95 −3415.22 −3036.45
Deviance 8252.51 6838.62 6835.89 6075.90 6830.43 6072.90
Observations 7774 7774 7774 6878 7774 6878
Schools 101 101 101 88 101 88
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
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Table 3.11: Impact of Key Factors on Club Participation: AME Analysis

Average Marginal Effects (AME) of Factors on Club Participation Choice
Basketball Participation (10−2) Baseball Participation (10−2) Football Participation (10−2)
White Stds. Black Stds. White Stds. Black Stds. White Stds. Black Stds.

Same-Race Ptcp.−𝑖 (%) 0.42∗∗∗ 0.44∗∗∗ 0.60∗∗∗ 0.32∗∗∗ 0.61∗∗∗ 0.21∗∗
(0.03) (0.06) (0.04) (0.09) (0.04) (0.06)

Race Proportion(%) 0.03∗ −0.06 0.00 0.12∗∗∗ 0.01 −0.03
(0.01) (0.03) (0.01) (0.03) (0.01) (0.02)

Log(SchoolSize) −1.73∗∗∗ −1.97 0.74 0.98 0.78 −0.76
(0.40) (1.09) (0.42) (0.86) (0.31) (0.69)

Other-Race Ptcp.(%) −0.02∗ 0.03 0.05∗∗∗ 0.28∗∗∗ 0.03∗∗ 0.03
(0.01) (0.07) (0.01) (0.07) (0.01) (0.07)

Age −1.58∗∗∗ −1.99∗∗∗ −0.24 −0.10 −0.46∗∗∗ −0.53∗
(0.15) (0.37) (0.15) (0.30) (0.12) (0.26)

Gender 2.60∗∗∗ 12.83∗∗∗ −0.43 0.72 27.97∗∗∗ 32.95∗∗∗
(0.42) (1.10) (0.45) (1.03) (0.67) (1.09)

Avg.Grade −2.71∗∗∗ −1.56∗ −1.13∗∗∗ −0.26 0.59∗∗ −0.01
(0.26) (0.66) (0.27) (0.56) (0.20) (0.49)

Accepted 1.54∗∗∗ 0.42 0.97∗∗∗ 0.62 1.25∗∗∗ −0.04
(0.23) (0.57) (0.25) (0.49) (0.19) (0.43)

Black/White Pres. −1.07∗ 0.61 1.97∗∗∗ 5.22∗∗∗ 1.00∗∗ 0.38
(0.47) (1.29) (0.54) (1.23) (0.38) (0.98)

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Note: This table presents the key factors influencing students’ decisions to participate in basketball, baseball, and football, as
determined by Average Marginal Effect (AME) analysis. The AME reveals the average impact of a one-unit change in each
variable on the likelihood of club participation, accounting for any non-linear relationships. The values are expressed in terms of
exponential 10−2, reflecting the percentage change in participation rates per unit change in the factors.
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Table 3.12: White Students’ Choices in Baseball Club

White Students’ Participation in Baseball Club
(1) (2) (3) (4) (5) (6)

(Intercept) −2.31∗∗∗ −2.70∗∗∗ −2.60∗∗∗ −2.83∗∗∗ −2.40∗∗∗ −2.78∗∗∗
(0.24) (0.26) (0.25) (0.28) (0.33) (0.38)

White Participation −𝑖 5.34∗∗∗ 4.72∗∗∗ 4.15∗∗∗ 4.83∗∗∗ 3.20∗∗ 4.54∗∗∗
(0.23) (0.24) (0.31) (0.27) (1.15) (1.36)

White Proportion 0.24∗ 0.09 −0.15 0.03 0.09 0.04
(0.10) (0.10) (0.10) (0.12) (0.10) (0.12)

log(School Size) 0.01 0.07∗ 0.06∗ 0.06 0.02 0.05
(0.03) (0.03) (0.03) (0.03) (0.05) (0.06)

Gender 0.41∗∗∗ −0.05 −0.05 −0.03 −0.05 −0.03
(0.03) (0.03) (0.03) (0.04) (0.03) (0.04)

Age −0.09∗∗∗ −0.03∗∗ −0.02∗ −0.02 −0.03∗∗ −0.02
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Years −0.03∗∗ −0.04∗∗ −0.04∗∗∗ −0.05∗∗∗ −0.04∗∗ −0.05∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Health 0.11∗∗∗ 0.05∗ 0.05∗∗ 0.06∗∗ 0.05∗ 0.06∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Energy 0.27∗∗∗ 0.19∗∗∗ 0.19∗∗∗ 0.18∗∗∗ 0.19∗∗∗ 0.19∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Avg.grade −0.07∗∗∗ −0.09∗∗∗ −0.08∗∗∗ −0.09∗∗∗ −0.09∗∗∗ −0.09∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

AttentionDiff 0.04 −0.03 −0.03 −0.03 −0.03 −0.03
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Accepted 0.13∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Other Ptcp.× Black Pres. 0.21 0.96∗∗∗ 0.95∗∗∗ 0.94∗∗∗ 0.94∗∗∗
(0.18) (0.20) (0.26) (0.20) (0.26)

Other Race Participation 1.05∗∗
(0.33)

White Ptcp.−𝑖 ×log(Size) 0.26 0.05
(0.19) (0.22)

Individual Ctrl Var. ✓ ✓ ✓ ✓ ✓
School Ctrl Var. ✓ ✓

Log Likelihood −16005.35 −13534.65 −13541.13 −12590.72 −13533.74 −12590.70
Observations 35590 35590 35590 33227 35590 33227
Schools 139 139 139 123 139 123
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
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Table 3.13: Black Students’ Choices in Baseball Club

Black Students’ Participation in Baseball Club
(1) (2) (3) (4) (5) (6)

(Intercept) −2.72∗∗∗ −4.00∗∗∗ −4.27∗∗∗ −3.85∗∗∗ −3.75∗∗∗ −3.94∗∗∗
(0.52) (0.56) (0.62) (0.64) (0.86) (0.96)

Black Participation −𝑖 3.83∗∗∗ 3.76∗∗∗ 4.13∗∗∗ 2.99∗∗∗ 1.84 3.73
(0.56) (0.59) (0.58) (0.69) (5.02) (5.61)

Black Proportion 0.48∗ 1.19∗∗∗ 0.88∗∗∗ 1.06∗∗∗ 1.18∗∗∗ 1.07∗∗∗
(0.20) (0.21) (0.18) (0.26) (0.21) (0.26)

log(School Size) −0.01 0.12 0.17∗ 0.09 0.08 0.11
(0.06) (0.07) (0.08) (0.08) (0.12) (0.14)

Gender 0.58∗∗∗ 0.11 0.11 0.07 0.11 0.07
(0.07) (0.09) (0.09) (0.09) (0.09) (0.09)

Age −0.05∗ −0.02 −0.03 −0.01 −0.02 −0.01
(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)

Years −0.03 0.01 0.01 0.02 0.01 0.02
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Health 0.09∗ 0.02 0.02 −0.00 0.02 −0.00
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Energy 0.14∗∗ 0.08 0.08 0.07 0.08 0.07
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Avg.Grade −0.02 −0.00 0.01 −0.02 −0.00 −0.02
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

AttentionDiff 0.07 0.03 0.03 −0.01 0.03 −0.01
(0.07) (0.07) (0.07) (0.08) (0.07) (0.08)

Accepted 0.07 0.05 0.04 0.06 0.05 0.06
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Other Ptcp.× White Pres. 2.30∗∗∗ 2.60∗∗∗ 3.08∗∗∗ 2.60∗∗∗ 3.09∗∗∗
(0.59) (0.62) (0.71) (0.62) (0.72)

Other Race Participation 2.63∗∗
(0.86)

Black Ptcp.−𝑖 ×log(Size) 0.31 −0.12
(0.82) (0.91)

Individual Ctrl Var. ✓ ✓ ✓ ✓ ✓
School Ctrl Var. ✓ ✓

Log Likelihood −3039.08 −2645.67 −2649.99 −2363.51 −2645.60 −2363.50
Deviance 6078.16 5291.34 5299.97 4727.03 5291.20 4727.01
Observations 7774 7774 7774 6878 7774 6878
Schools 101 101 101 88 101 88
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
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Table 3.14: White Students’ Choices in Football Club

White Students’ Participation in Football Club
(1) (2) (3) (4) (5) (6)

(Intercept) −5.44∗∗∗ −6.14∗∗∗ −5.95∗∗∗ −6.66∗∗∗ −5.94∗∗∗ −6.30∗∗∗
(0.28) (0.31) (0.31) (0.35) (0.33) (0.36)

White Participation −𝑖 7.26∗∗∗ 7.14∗∗∗ 6.24∗∗∗ 8.21∗∗∗ 7.44∗∗∗ 8.78∗∗∗
(0.38) (0.41) (0.69) (0.47) (0.44) (0.50)

White Proportion 0.18 −0.00 −0.22 0.14 −0.03 0.06
(0.13) (0.14) (0.13) (0.15) (0.14) (0.16)

log(School Size) −0.03 0.08∗ 0.06 0.11∗∗ 0.06 0.08∗
(0.03) (0.04) (0.04) (0.04) (0.04) (0.04)

Gender 3.66∗∗∗ 3.67∗∗∗ 3.66∗∗∗ 3.75∗∗∗ 3.67∗∗∗ 3.75∗∗∗
(0.09) (0.09) (0.09) (0.09) (0.09) (0.10)

Age −0.10∗∗∗ −0.08∗∗∗ −0.07∗∗∗ −0.06∗∗∗ −0.08∗∗∗ −0.06∗∗∗
(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

Years −0.02 −0.01 −0.01 −0.03 −0.01 −0.03
(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

Health 0.17∗∗∗ 0.09∗∗∗ 0.10∗∗∗ 0.09∗∗ 0.09∗∗∗ 0.09∗∗
(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)

Energy 0.13∗∗∗ 0.02 0.02 0.01 0.02 0.01
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Avg.Grade 0.07∗∗ 0.12∗∗∗ 0.12∗∗∗ 0.08∗∗ 0.12∗∗∗ 0.08∗∗
(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)

AttentionDiff 0.15∗∗∗ 0.10∗ 0.10∗ 0.11∗∗ 0.10∗ 0.11∗∗
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Accepted 0.22∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.17∗∗∗
(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)

Other Ptcp.× Black Pres. 0.36 0.88∗∗∗ 0.78∗∗ 0.82∗∗∗ 0.67∗
(0.22) (0.24) (0.30) (0.24) (0.30)

Other Race Participation 1.13∗
(0.53)

White Ptcp.−𝑖 ×log(Size) −0.11 −0.20∗∗
(0.06) (0.06)

Individual Ctrl Var. ✓ ✓ ✓ ✓ ✓
School Ctrl Var. ✓ ✓

Log Likelihood −9557.61 −8225.54 −8230.06 −7704.03 −8223.80 −7699.21
Deviance 19115.22 16451.08 16460.12 15408.06 16447.60 15398.41
Observations 35590 35590 35590 33227 35590 33227
Schools 139 139 139 123 139 123
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

114



Table 3.15: Black Students’ Choices in FootballClub

Black Students’ Participation in Football Club
(1) (2) (3) (4) (5) (6)

(Intercept) −4.20∗∗∗ −4.16∗∗∗ −5.64∗∗∗ −3.88∗∗∗ −3.94∗∗∗ −3.54∗∗∗
(0.60) (0.66) (0.72) (0.74) (0.67) (0.76)

Black Participation −𝑖 3.61∗∗∗ 3.61∗∗∗ 1.80∗ 2.69∗∗∗ 3.62∗∗∗ 2.48∗∗
(0.59) (0.63) (0.74) (0.76) (0.63) (0.77)

Black Proportion −0.33 −0.05 −0.35 −0.24 −0.06 −0.28
(0.20) (0.22) (0.21) (0.29) (0.23) (0.29)

log(School Size) −0.12 −0.10 0.07 −0.10 −0.11 −0.12
(0.07) (0.07) (0.08) (0.08) (0.07) (0.08)

Gender 3.77∗∗∗ 3.87∗∗∗ 3.88∗∗∗ 3.82∗∗∗ 3.86∗∗∗ 3.81∗∗∗
(0.14) (0.15) (0.15) (0.16) (0.15) (0.16)

Age −0.04 −0.05 −0.05 −0.06∗ −0.05 −0.06
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Years −0.08∗ −0.07∗ −0.07∗ −0.05 −0.07 −0.05
(0.03) (0.04) (0.04) (0.04) (0.04) (0.04)

Health 0.20∗∗∗ 0.13∗∗ 0.14∗∗ 0.15∗∗ 0.13∗∗ 0.15∗∗
(0.04) (0.05) (0.05) (0.05) (0.05) (0.05)

Energy 0.17∗∗ 0.12∗ 0.13∗ 0.12∗ 0.12∗ 0.13∗
(0.05) (0.06) (0.06) (0.06) (0.06) (0.06)

Avg.Grade −0.05 0.00 −0.00 0.00 0.00 0.00
(0.05) (0.05) (0.05) (0.06) (0.05) (0.06)

AttentionDiff 0.18∗ 0.22∗∗ 0.22∗∗ 0.20∗ 0.22∗∗ 0.20∗
(0.07) (0.08) (0.08) (0.08) (0.08) (0.08)

Accepted 0.05 0.02 0.02 −0.01 0.02 −0.01
(0.04) (0.05) (0.05) (0.05) (0.05) (0.05)

Other Ptcp.× White Pres. 0.63 −0.26 0.43 0.02 0.81
(0.72) (0.79) (0.96) (0.80) (0.98)

Other Race Participation 5.32∗∗∗
(1.25)

Black Ptcp.−𝑖 ×log(Size) −0.20∗ −0.25∗
(0.10) (0.12)

Individual Ctrl Var. ✓ ✓ ✓ ✓ ✓
School Ctrl Var. ✓ ✓

Log Likelihood −2329.92 −1978.66 −1969.54 −1777.04 −1976.65 −1774.67
Deviance 4659.83 3957.31 3939.09 3554.09 3953.30 3549.35
Observations 7774 7774 7774 6878 7774 6878
Schools 101 101 101 88 101 88
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
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Table 3.16: Compare Students’ Participation Between Small and Large Schools

White Student’s Participation in Basketball Club
Small Schools Large Schools

(1) (2) (3) (4)
(Intercept) −0.95 −0.27 0.84 1.21∗

(0.52) (0.57) (0.56) (0.60)
White Participation −𝑖 3.91∗∗∗ 3.98∗∗∗ 4.50∗∗∗ 4.46∗∗∗

(0.32) (0.32) (0.33) (0.33)
White Proportion −0.28 −2.58∗∗∗ 0.50∗∗∗ −0.66

(0.21) (0.78) (0.14) (0.72)
White Proportion2 2.27∗∗ 1.12

(0.74) (0.68)
log(School Size) −0.01 −0.01 −0.26∗∗∗ −0.28∗∗∗

(0.06) (0.06) (0.06) (0.06)
Gender 0.40∗∗∗ 0.40∗∗∗ 0.17∗∗∗ 0.17∗∗∗

(0.06) (0.06) (0.05) (0.05)
Age −0.11∗∗∗ −0.13∗∗∗ −0.14∗∗∗ −0.14∗∗∗

(0.02) (0.02) (0.02) (0.02)
Years 0.07∗∗∗ 0.07∗∗∗ −0.08∗∗∗ −0.08∗∗∗

(0.02) (0.02) (0.02) (0.02)
Health 0.10∗∗ 0.10∗∗ 0.17∗∗∗ 0.17∗∗∗

(0.04) (0.04) (0.03) (0.03)
Energy 0.18∗∗∗ 0.18∗∗∗ 0.13∗∗∗ 0.13∗∗∗

(0.04) (0.04) (0.03) (0.03)
Avg. Grade −0.30∗∗∗ −0.30∗∗∗ −0.21∗∗∗ −0.21∗∗∗

(0.04) (0.04) (0.03) (0.03)
Accepted 0.15∗∗∗ 0.15∗∗∗ 0.14∗∗∗ 0.14∗∗∗

(0.03) (0.03) (0.03) (0.03)
Black Presence × Other Race Ptcp. −0.86∗∗∗ −0.71∗∗ −0.73∗∗∗ −0.64∗∗

(0.24) (0.24) (0.20) (0.21)
Log Likelihood −4073.33 −4068.70 −7802.67 −7801.35
Deviance 8146.67 8137.40 15605.34 15602.70
Num. obs. 9933 9933 25910 25910
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
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Chapter 4

Benefits from Social Engagement: A Model

and Empirical Analysis

4.1 Introduction

In Chapter 3, an enhanced Linear-in-Means (LIM) model was used to estimate peer effects

on students’ decisions regarding basketball participation. The analysis revealed that the influence

of White students on their Black peers was stronger than the reverse. Additionally, it was found

that homophily exists among club members, who tend to build new connections with each other.

Traditional peer effects analysis often relies on the assumption that network structures are exogenous;

however, social networks and individual behaviors are interdependent, evolving together. When

individuals decide on their actions, they form expectations about the types of friendships they will

establish within a given social environment. This dynamic introduces selection bias in friendship

formation, as individuals are more inclined to connect with others who share similar traits.

To better understand the motivations behind these behaviors, this chapter develops a model that

examines how social norms influence students’ decision-making processes. The model emphasizes

the trade-off between the effort required to participate in a club and the benefits gained from forming

friendships within the club. Based on prevailing social norms, students form expectations about
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their payoffs from social engagement when deciding whether to participate.

Using this framework, the equilibrium participation rate is estimated, representing the point at

which the additional payoff from joining the club equals the participation cost. This equilibrium

is influenced by the size of the racial group, the participation decisions of other students, and the

benefits derived from social engagement.

The empirical findings support the model, confirming that social engagement significantly

influences students’ club participation. Fitting the model to the data reveals that social engagement

is more valuable for students in larger schools. The estimated parameters also highlight differing

patterns of behavior between White and Black students. While White students tend to develop more

friendships after joining the club and receive larger net benefits, Black students do not increase their

total number of friendships as much. Instead, they form more connections within the club. When

the Black racial group is large enough to facilitate interactions outside the club, Black students are

less likely to participate, a behavior contrasting with that of White students.

Among White students, club members establish more connections than non-members (7.7

versus 7.2 friends per student, and 5.4 versus 4.5 friends identified in the data). Additionally, racial

homophily is lower among White club members compared to other White students (73.0% versus

70.9%), indicating that club participation helps to alleviate racial segregation.

The analysis presented in this paper provides insights into the social dynamics within schools,

demonstrating how club participation fosters cross-group interactions and promotes social cohe-

sion. By estimating the benefits derived from friendship connections, this model enhances our

understanding of the role that cultural and sports clubs play in shaping students’ social networks.

4.2 Model

In this model, student’s decision to join is influenced by personal talent in the club’s activity

and the prevailing social norms regarding participation, denoted as ℎ. The analysis examines the

balance students face between the benefits of joining and the costs, exploring the conditions under
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which they choose to participate and how these decisions affect overall participation rates across

different racial groups.

The primary benefit of joining a club lies in enhanced social connections. Drawing on findings

from previous studies on homophily and social networks, I propose that students derive greater

payoffs by forming friendships with peers who share similar interests or racial backgrounds. The

expected benefits are higher when the likelihood of forming such friendships increases.

The social norm is common knowledge among all students, shaping their expectations and

choices. a student’s expected payoff is intricately connected to their personal choices, and the pre-

vailing cultural norm ℎ which is endogenously determined by each student’s participation decision.

4.2.1 Students’ Social Payoff and Optimization Problem

If students choose to join the club, then he need to distribute their efforts between two spheres:

within the club and outside the club. The total effort, denoted by 𝐸 , is the sum of effort spent on

forming friendship with club members (𝑥𝑚) and with other students in the school (𝑥𝑠), such that

𝑥𝑚 + 𝑥𝑠 = 𝐸 .

The primary goal for students is to maximize their social payoff, which is modeled as:

𝑉𝐽 (𝑥𝑚, 𝑥𝑠) = 𝑣𝑚𝑥𝛼𝑚 + 𝑣𝑠𝑥𝛼𝑠

subject to the constraint

𝑥𝑚 + 𝑥𝑠 = 𝐸.

The variable 𝑣𝑚 and 𝑣𝑠 represents the benefits per friend within and outside the club, respectively.

The function 𝑥𝛼 describes the number of new friendships as a function of effort 𝑥, where 𝛼 in the

interval (0, 1) signifies diminishing returns on increased effort. The number of friends for a club

member is defined as 𝑛𝑚 = 𝑥𝛼𝑚 for within-club connections, and 𝑛𝑠 = 𝑥𝛼𝑠 for external connections.

The optimal allocation of effort between the two channels is determined by setting the marginal

utilities derived from each type of effort equal to each other: 𝜕
𝜕𝑥𝑚

(︁
𝑣𝑚𝑥

𝛼
𝑚

)︁
= 𝜕

𝜕𝑥𝑠

(︁
𝑣𝑠𝑥

𝛼
𝑠

)︁
. Simplifying
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the equation, we arrive at the relationship:

𝑥𝑚

𝑥𝑠
=

(︃
𝑣𝑚

𝑣𝑠

)︃ 1
1−𝛼

.

From this, the efforts 𝑣𝑚 and 𝑣𝑠 are calculated as following:

𝑥𝑚 =
𝑣

1
1−𝛼
𝑚

𝑣
1

1−𝛼
𝑠 + 𝑣

1
1−𝛼
𝑚

𝐸

𝑥𝑠 = 𝐸 − 𝑥𝑚

Under the optimal effort allocations, the social payoff from joining the club can be expressed as:

𝑉∗
𝐽 =

(︃
𝑣

1
1−𝛼
𝑚 + 𝑣

1
1−𝛼
𝑠

)︃1−𝛼
𝐸𝛼 .

The net benefit of club participation, Δ𝑉 (ℎ), represents the additional payoff from social en-

gagement. It is calculated as the difference in payoffs from joining versus not joining:

Δ𝑉 (𝑣𝑚, 𝑣𝑠, 𝛼, 𝐸) = 𝐸𝛼
[︄(︃
𝑣

1
1−𝛼
𝑚 + 𝑣

1
1−𝛼
𝑠

)︃1−𝛼
− 𝑣𝑠

]︄
where the payoff of not joining the club is given by 𝑣𝑠𝐸𝛼. In this scenario, students spend all their

effort, 𝐸 , on making friends outside the club and receive a per-connection benefit of 𝑣𝑠 for each

friend. Given that 1
1−𝛼 is greater than 1, by the property of function1 𝑓 (𝑥) = (𝑎𝑥 + 𝑏𝑥)1/𝑥 , the

additional payoff Δ𝑉 is guaranteed to be positive, reinforcing the utility of club participation.

1Property of 𝑓 (𝑥) = ((𝑎𝑥 + 𝑏𝑥)1/𝑥 , where 𝑥 > 1:

• If 𝑥 → 1, 𝑓 (𝑥) approaches 𝑎 + 𝑏

• If 𝑥 → ∞, 𝑓 (𝑥) approaches 𝑚𝑎𝑥 {𝑎, 𝑏}

• In general, for any 𝑥 > 1, 𝑓 (𝑥) ∈ (𝑚𝑎𝑥 {𝑎, 𝑏} , 𝑎 + 𝑏).
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4.2.2 Cost of Participation

This model assumes that each student’s cost of joining a basketball club is determined by a

fixed baseline cost reduced by their individual talent. Talent captures unobserved heterogeneity

in students’ ease of participation, including factors such as motivation, physical ability, or prior

experience.

Assumption 4.1: Distribution of Participation Cost Each student 𝑖 faces a participation cost

given by:

𝑐𝑖 = 𝑎 − 𝜃𝑖,

where 𝑎 > 0 is a constant and 𝜃𝑖 represents individual talent. A higher value of 𝜃𝑖 implies a

lower participation cost. When 𝜃𝑖 > 𝑎, the cost becomes negative, indicating that participation

provides a net intrinsic benefit to the student.

The talent parameter 𝜃𝑖 is independently and identically distributed across students. I consider

two benchmark distributions for 𝜃𝑖:

Example 1 (Exponential Talent Distribution)

𝜃𝑖 ∼ 𝐸𝑥𝑝(𝜆), with support [0,∞).

Example 2 (Normal Talent Distribution)

𝜃𝑖 ∼ N(𝜇, 𝜎2), with support (−∞,∞).

This formulation interprets the cost of participation as decreasing in the student’s natural talent.

The parameter 𝑎 reflects the highest possible cost that a student with no talent would face, while 𝜃𝑖

introduces randomness in student ability.

Because 𝑐𝑖 can be negative, some students experience net utility gains from participating in the

club, independent of peer influences or prevailing social norms. These students are intrinsically
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motivated to participate, regardless of their peers’ choices or the prevailing social norms. In the

context of evolutionary game theory, such individuals resemble ’mutants’—agents whose optimal

strategy deviates from the social equilibrium due to their inherent characteristics.

In each period, a proportion of new students joins the school, and they decide whether to

participate in clubs based on their individual costs. By the Law of Large Numbers, as the school

population increases, the average cost for these new students converges in probability to the expected

value. In smaller schools, however, the costs for these new entrants are more likely to deviate from

the broader population distribution, leading to greater variation and instability in social norms. In

contrast, larger schools have a higher number of new students, resulting in cost distributions that

align more closely with the overall population, making shifts in established social norms less likely.

4.2.3 Equilibrium Analysis

In the model, the participation rate threshold ℎ∗ that determines the decision to join or not is

defined by equalizing the additional payoff from joining and the corresponding cost (Δ𝑉 = 𝐶̄):

𝐸𝛼

[︄(︃
𝑣

1
1−𝛼
𝑠 + 𝑣

1
1−𝛼
𝑚

)︃1−𝛼
− 𝑣𝑠

]︄
= 𝑎 − 𝐹−1(1 − ℎ) (4.1)

where 𝐹−1(1 − ℎ) represents the inverse cumulative density function (CDF) of talent 𝜃. The left-

hand side (LHS) of (4.1) quantifies the additional payoff from joining the club, while the right-hand

side (RHS), denoted as 𝐶, represents the cutoff cost level when a proportion ℎ of the population

joins the club. This cutoff cost is the highest expense at which only agents with costs lower than or

equal to this threshold will choose to participate in the club.

The variable ℎ represents the participation rate, indicating that students with higher talent—and

correspondingly lower learning costs— decide to participate. The cumulative distribution function

(CDF), denoted as 1 − ℎ = 𝐹 (𝑥), indicates that a proportion 1 − ℎ of students have natural talent

less than or equal to 𝑥. This establishes a cost threshold at 𝑎 − 𝑥 = 𝑎 − 𝐹−1(1 − ℎ). Consequently,

the fraction ℎ, comprising students with higher talent, faces costs not exceeding this threshold.
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Therefore, in a sufficiently large population that accurately reflects the actual talent distribution,

a rational and well-informed student should join the club if and only if their talent exceeds the

threshold talent level, determined by 𝐹−1(1 − ℎ∗). The value ℎ∗ is derived from the equilibrium

condition specified in the equation (4.1). Consequently, the cost threshold, which corresponds to

the participation rate ℎ, is defined as:

𝐶̄ (ℎ) = 𝑎 − 𝐹−1(1 − ℎ)

Closed-Form under Exponential Talent Distribution When individual talent follows an expo-

nential distribution with rate parameter 𝜆 > 0, we have:

𝐹 (𝜃𝑖) = 1 − 𝑒−𝜆𝜃𝑖 , for 𝜃𝑖 ∈ [0,∞).

Thus, the inverse CDF2 is:

𝐹−1(1 − ℎ) = − 𝑙𝑛(ℎ)
𝜆

,

and the equilibrium condition becomes:

𝐸𝛼

[︄(︃
𝑣

1
1−𝛼
𝑠 + 𝑣

1
1−𝛼
𝑚

)︃1−𝛼
− 𝑣𝑠

]︄
= 𝑎 + 𝑙𝑛(ℎ

∗)
𝜆

where 𝑣𝑚 (𝑤,ℎ∗) is the benefit under the equilibrium state ℎ∗.

Our model specifically addresses the payoff dynamics for students from racial group 𝑔, con-

sidering the relative group size 𝑤 within the interval (0, 1). We analyze the participation rate for

group 𝑔, denoted by ℎ; and use ℎ𝑏 to represent the average participation rate of other racial groups,

considered as an exogenous factor. The per-connection benefits 𝑣𝑚 (𝑤, ℎ) and 𝑣𝑠 (𝑤) are influenced

by both the relative size and the participation rate of group 𝑔. This framework builds on previous

research on homophily, which highlights type-sensitive preferences as a key factor.

2The inverse cumulative density function is defined as 𝐹−1 ((1 − ℎ), 𝜆) = − 𝑙𝑛(ℎ)
𝜆

, which behaves as an increasing
and concave function. Specifically, as ℎ approaches 0 from the positive side, the RHS tends to negative infinitive
(lim 𝑅𝐻𝑆ℎ→0+ = −∞), and as ℎ approaches 1 from the negative side, the RHS converges to 𝑎 (lim 𝑅𝐻𝑆ℎ→1− = 𝑎).
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Assumption 4.2 (Type-Sensitive Preference). Students prefer interacting with peers who share

similar traits. The expected value of friendships formed through a particular channel increases

with the likelihood of encountering peers with the same traits.

1. The benefits per connection 𝑣𝑚 (𝑤, ℎ) and 𝑣𝑠 (𝑤), monotonically increase with the relative

size 𝑤 of a given racial group, as expressed by 𝜕𝑣𝑚
𝜕𝑤

> 0 and 𝜕𝑣𝑠
𝜕𝑤

> 0.

2. For club members, the benefit per connection, 𝑣𝑚 (𝑤, ℎ), also increases with their racial

group’s participation rate ℎ, as expressed by 𝜕𝑣𝑚
𝜕ℎ

> 0.

Random Matching Example. In the random matching model, students are assumed to choose

their friends randomly. This simplification allows us to focus on how the racial composition of the

overall population influences the per-connection benefits, which are solely impacted by the racial

proportions within the population. Specifically, the benefits are calculated as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑣𝑚 = 𝑐 + ℎ𝑤𝑖

ℎ𝑤+ℎ𝑏 (1−𝑤) 𝑣ℎ𝑜𝑚𝑜

𝑣𝑠 = 𝑤𝑣ℎ𝑜𝑚𝑜

where 𝑣ℎ𝑜𝑚𝑜 represents the baseline benefit from homophilous race friendship, ℎ𝑏 is the participation

rate for other racial groups, and 𝑐 is a constant that benefits of club membership.

Other Cases: Biased Matching. We further explore the dynamics of club participation under

conditions where matching is not random but biased, meaning students from the same racial group

𝑔 are more likely to encounter each other. This scenario better reflects realistic social interactions

and can lead to different outcomes in terms of club benefits:

1. Example 1: Power Bias. The benefit within the club is expressed as a power function of the

racial proportion: 𝑣𝑚 = 𝑐 +
(︂

ℎ𝑤𝑖

ℎ𝑤+ℎ𝑏 (1−𝑤)

)︂𝑏
𝑣ℎ𝑜𝑚𝑜, and outside the club as 𝑣𝑠 = 𝑤𝑏𝑣ℎ𝑜𝑚𝑜 where

𝑏 ∈ (0, 1) quantifies the degree of bias in matching.

2. Example 2: Linear-Threshold Bias. Within the club, the benefit increases linearly up to

a threshold: 𝑣𝑚 = 𝑐 + 𝑑 ℎ𝑤
ℎ𝑤+ℎ𝑏 (1−𝑤) 𝑣ℎ𝑜𝑚𝑜, where 𝑑 > 1, applicable when 𝑑 ℎ𝑤

ℎ𝑤+ℎ𝑏 (1−𝑤) ≤ 1;

124



𝑣𝑚 = 𝑐 + 𝑣ℎ𝑜𝑚𝑜 otherwise. Outside the club, the biased matching benefit is: 𝑣𝑠 = 𝑑𝑤𝑣ℎ𝑜𝑚𝑜

when 𝑑𝑤 ≤ 1.

These examples demonstrate how variations in the bias of matching processes influence the degree

of racial homophily in social connections, which in turn affects the net benefits derived from club

participation. The first example illustrates a gradual and continuous increase in both the probability

of matching and the associated benefits as the racial proportion, 𝑤, increases. In the second example,

the benefit within the club increases linearly until the proportion of same-race meetings maxes out

at one, at which point the benefit curve exhibits a distinct kink, indicating that further increases in

racial proportion yield no additional benefits.

Lemma 4.1 (Monotonic Growth of Joining Payoff Advantage). An individual’s net benefit

Δ𝑉 (𝑤, ℎ) increases monotonically with the participation rate ℎ among students form the same

group, as indicated by 𝜕Δ𝑉
𝜕ℎ

> 0. This suggests that the incentive to join the club strengthens as more

students participate.

In particular, we demonstrate in the Appendix that 𝜕Δ𝑉
𝜕ℎ

= 𝑥𝛼𝑚
𝜕𝑣𝑚
𝜕ℎ

, and from Assumption 4.2,

we derive that 𝜕Δ𝑉
𝜕ℎ

> 0. The essence of Lemma 4.1 captures the internal dynamics of the club: as

the participation rate ℎ among students of racial group 𝑔 increases, so does the likelihood of a club

member from this group matching with another member of the same racial group. This dynamic

fosters a clear, positive trend in the net benefit Δ𝑉 (ℎ), which aligns individual decisions to join with

the growing communal participation. Proof of Lemma 4.1 is provided in Appendix D on page 149.

Lemma 4.2 (Advantage of Racial Majority in Club Benefits). For any fixed participation rate ℎ,

as the racial proportion increases, students receive a greater net benefit, Δ𝑉 (𝑤, ℎ), if the within-club

benefit 𝑣𝑚 increases faster than that of an outside-club friendship connection 𝑣𝑠. This relationship

is formally expressed as: 𝜕Δ𝑉
𝜕𝑤

> 0 if 𝜕𝑣𝑚
𝜕𝑤

>
𝜕𝑣𝑠
𝜕𝑤

, regardless of the specific values of 𝑤 and ℎ.

Lemma 4.2’: (Influence of the Ratio of Club Benefits on Net Benefits). For any fixed partic-

ipation rate ℎ, as their group’s racial proportion increases, students receive a greater net benefit,
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Δ𝑉 (𝑤, ℎ), if the ratio between within-club benefit 𝑣𝑚 and outside-club benefit 𝑣𝑠 increases. This

relationship is formally expressed as: 𝜕Δ𝑉
𝜕𝑤

> 0 if 𝜕
𝜕𝑤

(︂
𝑣𝑚
𝑣𝑠

)︂
> 0.

As the racial group becomes larger within the society, students from this group are more likely

to encounter each other in both matching scenarios. Increased same-race matching within the

club, as compared to outside, enhances the benefits derived from club participation. This lemma

validates that increased racial homophily within the club leads to a higher net benefit, underlining

the advantage of a racial majority in club benefits. The detailed proof of this relationship is provided

in the Appendix on page 150.

Using the example of unbiased matching, when the participation rate ℎ is less than ℎ𝑏 and the

relative size 𝑤 of a racial group is large, we find that the condition 𝜕𝑣𝑚
𝜕𝑤

>
𝜕𝑣𝑠
𝜕𝑤

is satisfied. The

proof is provided in the Appendix. This outcome is supported by empirical data, which demonstrate

that when the relative size of a racial group, such as white students, is sufficiently large, there is a

positive correlation between their participation rate and their proportion within the population.

It is also essential to recognize that the dynamics of racial homophily affecting club benefits

are not limited to unbiased matching scenarios but also extend to any form of biased matching. In

such environments, the per-connection benefits, both within (𝑣𝑚) and outside (𝑣𝑚) the club, tend to

increase more significantly as racial proportion 𝑤 enlarges. This increase in benefits is influenced by

the degree of bias present in interactions both within and outside the club. Generally, if the matching

bias favoring same-race interactions is stronger within the club than outside, the conditions outlined

in Lemma 4.2 (Lemma 4.2’) are less stringent and more likely to be met. This scenario suggests

that increased club internal homophily can amplify the advantages conferred by a racial majority,

reinforcing the pattern of higher participation rates among larger racial groups.

Assumption 4.3 (Cost Dominance at Full Participation). The maximum potential cost, 𝑎, ex-

ceeds the highest possible net payoff for joining the club, especially as the proportion of club

members ℎ approaches 1. This can be formally expressed as: 𝑎 > Δ𝑉 (ℎ), when ℎ → 1.

This assumption ensures that even if all students in society opt to join the club, there will be
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some, particularly those with the least talent and consequently higher relative costs, for whom the

payoff from joining does not exceed the payoff from not joining. This assumption prevents a corner

solution where all students uniformly decide to join the club, maintaining diversity in strategic

behavior.

Proposition 4.1 (Existence of Equilibrium). The existence of equilibrium state is guaranteed

under Assumption 4.3.

Solving (4.1) for ℎ, we can determine the proportion ℎ∗ in the equilibrium state. As ℎ → 0,

the cost approaches negative infinite for the most talent students int he society, where Δ𝑉 > 𝐶𝑜𝑠𝑡.

Conversely, as ℎ → 1, it follows from Assumption 4.3 that Δ𝑉 < 𝐶𝑜𝑠𝑡, ensuring the presence of at

least one solution ℎ∗ whereΔ𝑉 = 𝐶𝑜𝑠𝑡 within the interval ℎ ∈ (0, 1). Assuming private information

about talent, a student will choose to join the club if and only if his talent is high enough such that

his cost is lower than the cutoff point 𝑐 ≤ 𝑐∗ = 𝑎 − 𝐹−1(1 − ℎ∗). By Assumption 4.3, at least one

solution for ℎ∗ exists, guaranteeing an equilibrium state.

Proposition 4.2 (Equilibrium Uniqueness under Single Crossing Condition). Let Δ𝑉 (𝑤, ℎ)

denote the average marginal benefit from club participation, where 𝑤 ∈ (0, 1) is fixed, and ℎ is the

endogenous participation rate. Let 𝐶̄ (ℎ) denote the cutoff cost of participation for students.

Define the function as:

𝐹 (ℎ) ≡ Δ𝑉 (𝑤, ℎ) − 𝐶̄ (ℎ).

Under the single crossing condition, if 𝐹 (ℎ) is strictly decreasing in ℎ on the interval ℎ ∈ (0, 1), then

the equilibrium participation rate ℎ∗ ∈ (0, 1), defined by the fixed-point condition Δ𝑉 (ℎ∗) = 𝐶̄ (ℎ∗),

exists and is unique.

Corollary 4.2.1 (Equilibrium Uniqueness under Exponential Talent Distribution). Suppose

talent 𝜃𝑖~𝐸𝑥𝑝(𝜆), and cost is given by 𝑐𝑖 = 𝑎 − 𝜃𝑖. The uniqueness of the equilibrium participation

rate ℎ∗ ∈ (0, 1) depend on the average talent level, given by E[𝜃𝑖] = 1/𝜆 .
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A unique equilibrium exists when 1/𝜆 is sufficiently large. In contrast, multiple equilibria may

arise when the average talent level is low.

To analyze equilibrium uniqueness, define the function: 𝐹 ≡ Δ𝑉 − 𝐶̄, and consider the partial

derivative 𝜕𝐹
𝜕ℎ

= 𝜕Δ𝑉
𝜕ℎ

𝜕𝑣𝑚
𝜕ℎ

− 𝜕𝐶𝑜𝑠𝑡
𝜕ℎ

. then we can get the equation

𝜕𝐹

𝜕ℎ
= 𝑥𝛼𝑚

𝜕𝑣𝑚

𝜕ℎ
− 1
𝜆

1
ℎ

where 𝑥𝛼𝑚 represents the number of friends a student builds within the club. If 𝜕𝐹
𝜕ℎ
< 0 throughout

the interval ℎ ∈ (0, 1), then there is only one intersection between the curves Δ𝑉 and 𝐶𝑜𝑠𝑡.

The specific condition, which determines the uniqueness or multiplicity of the equilibrium

states, depends on the functional forms of 𝑣𝑚. In the scenario, for instance, that students meet others

randomly, the per-connection benefit is defined as:

𝑣𝑚 = 𝑐 + ℎ𝑤

ℎ𝑤 + ℎ𝑏 (1 − 𝑤) 𝑣ℎ𝑜𝑚𝑜

The derivative is expressed as:

𝜕𝑣𝑚

𝜕ℎ
=

ℎ𝑏𝑤(1 − 𝑤)
(ℎ𝑤 + ℎ𝑏 (1 − 𝑤))2 𝑣ℎ𝑜𝑚𝑜 <

1
4ℎ

Therefore, the condition 𝜕𝐹
𝜕ℎ
< 0 is satisfied if 1

𝜆
> 1

4𝑥
𝛼
𝑚𝑣ℎ𝑜𝑚𝑜.

When 1
𝜆

is high, implying a small rate parameter 𝜆 in the exponential distribution, talent is

more evenly distributed across different levels. Consequently, the cost function increases gradually

across all ℎ ∈ (0, 1). However, if 1
𝜆

is small, the exponential distribution is highly skewed towards

less talented students, and the cost increases steeply from negative infinity as ℎ increase from 0 but

becomes flat when ℎ is high.

Assuming that Black students, on average, have higher basketball talent than White students,

the exponential talent distribution for Black students is flatter, corresponding to a higher average

talent level (1/𝜆). This results in a more gradual increase in the cost curve as the participation
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a. Unique Equilibrium under High 1/𝜆
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ℎ
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b. Two Stable Equilibria Under Low 1/𝜆

Figure 4.1: Equilibria Under Different 𝜆 Condition

Note: The left panel illustrates the case with 1/𝜆 = 7, representing a higher average talent level. The right
panel shows the case with 1/𝜆 = 2.8 corresponding to a lower average talent level.

rate rises. Figure 4.1(a) illustrates this scenario, where the higher 1/𝜆 yields a unique equilibrium

due to the flatter cost curve. In contrast, 4.1(b) presents the case of a lower 1/𝜆, where the cost

curve increases steeply at low participation rates and then levels off as ℎ approaches one, reflecting

the scarcity of high-talent individuals in the population. Multiple equilibria may arise under such

conditions, where the cost curve intersects the benefit curve more than once.

In scenarios where the majority of students in a racial group are less talented, the cost curve

exhibits a higher degree of concavity compared to cases with a more uniformly distributed talent.

This might result in multiple equilibria. The low participation equilibrium characterizes situations

where only the rare talented students choose to join at low cost, while the high participation

equilibrium describes scenarios where students can receive a relatively high benefit from club

participation when the participation rate in their own racial group is sufficient to cover the high

learning cost.

In states of multiple equilibria, the net benefit curve and cost curve intersect more than once.

Because the net benefit curve is above cost curve near ℎ = 0 and below it near ℎ = 1, there exists

an odd number of intersections between the two curves, as shown in Figure 4.1. This figure depicts
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a cost curve that increases dramatically at the beginning and then becomes relatively flat, with

three intersections; however, only the first and third intersections represent stable equilibria. If the

participation rate h h deviates from these stable points and falls between the two equilibria, it will

eventually trend towards either the low or high participation equilibrium.

If ℎ deviates between the first stable (low participation) and the unstable equilibrium, students

at this level experience costs that exceed the net benefits (Δ𝑉 (ℎ) < 𝐶𝑜𝑠𝑡 (ℎ)). In this situation,

students whose talent and associated costs make participation less rewarding than the net benefits

at h h will opt out or choose not to join, leading to a decrease in ℎ. This adjustment continues until

ℎ stabilizes at the low-participation equilibrium, where the net benefits equal the costs.

Conversely, if ℎ deviates between the unstable and the third stable (high participation) equilib-

rium, students will perceive that the benefits of joining outweigh the costs (Δ𝑉 (ℎ) > 𝐶𝑜𝑠𝑡 (ℎ)). As

a result, more students will decide to join, causing ℎ to increase. This adjustment will continue

until the participation rate reaches the high-participation equilibrium, where the costs and benefits

are balanced.

This self-correcting mechanism ensures that deviations in the participation rate ℎ lead it to

converge to the nearest stable equilibrium, whether that is a state of lower or higher participation.

Lemma 4.3 (Equilibrium Stability via Deviation Conditions). We defined the function 𝐹 ≡

Δ𝑉 −𝐶𝑜𝑠𝑡. In a stable equilibrium state ℎ∗, the partial derivative 𝜕𝐹
𝜕ℎ

must be negative in the vicinity

of the equilibrium.

This condition ensures that any slight deviation from the equilibrium participation rate motivates

students in the following period to adjust back towards the equilibrium state, thereby confirming its

stability. To satisfy this condition, the net benefit curve Δ𝑉 must cross the cost curve from above.

Proposition 4.3 (Stability of the Equilibrium States).

• If a unique equilibrium state ℎ∗ exists, it is stable.

• If multiple equilibrium states {ℎ∗1, ℎ
∗
2, · · · ℎ

∗
𝐼
}, where 𝐼 = 3, 5, 7, ... (an odd number), are
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present, then the minimum ℎ∗
𝑚𝑖𝑛

and maximum ℎ∗𝑚𝑎𝑥 participation rates are stable.

Proposition 4.4 (Net Benefit and Participation Equilibrium). In a stable equilibrium state, as

a racial group’s proportion increases, leading to a greater net benefit ( 𝜕Δ𝑉
𝜕𝑤

> 0), then the stable

participation rate ℎ∗ of the racial group will correspondingly increase.

Proof. Define 𝐹 ≡ Δ𝑉 −𝐶𝑜𝑠𝑡 = 0 as previously discussed, where Δ𝑉 is a function of group size

𝑤 and the participation rate ℎ, and 𝐶𝑜𝑠𝑡 = 𝑎 + 𝑙𝑛(ℎ)
𝜆

is a function that depends solely on ℎ. The rate

of change of the participation rate ℎ with respect to racial proportion 𝑤 is given by the derivative:

𝑑ℎ

𝑑𝑤
= −

𝜕𝐹
𝜕𝑤

𝜕𝐹
𝜕ℎ

= −
𝜕Δ𝑉
𝜕𝑤

𝜕𝐹
𝜕ℎ

From Lemma 4.3, we know that in any stable equilibrium state, the partial derivative 𝜕𝐹
𝜕ℎ

is negative.

Therefore, the sign of 𝑑ℎ
𝑑𝑤

is determined by the sign of 𝜕Δ𝑉
𝜕𝑤

. This relationship can be formally

expressed as: if 𝜕Δ𝑉
𝜕𝑤

> 0, then 𝑑ℎ
𝑑𝑤
> 0.

This proposition reinforces the critical insight that an increase in the racial proportion, which

enhances net benefits (Δ𝑉), directly contributes to an increase in participation rates within that racial

group. This substantiates the significant influence of racial dynamics on social engagement patterns.

Additionally, Lemma 4.2 and its extended version, Lemma 4.2’, establish the conditions under which
𝜕Δ𝑉
𝜕𝑤

is positive, further articulating how changes in racial proportion affect club benefits.

Proposition 4.4’ (Impact of Racial Composition on Participation Equilibrium) In a stable

equilibrium state, as a racial group’s proportion increases, if the benefit per connection within club

𝑣𝑚 increases faster than that of outside club 𝑣𝑠, then the participation rate ℎ∗ of the racial group

correspondingly rises. This relationship is captured by two key conditions near the equilibrium

point ℎ∗:

1. 𝜕𝑣𝑚
𝜕𝑤

>
𝜕𝑣𝑠
𝜕𝑤

implies 𝑑ℎ∗

𝑑𝑤
> 0;

2. 𝜕
𝜕𝑤

(︂
𝑣𝑚
𝑣𝑠

)︂
> 0 implies 𝑑ℎ∗

𝑑𝑤
> 0.
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Figure 4.2: Increased Cost

Note: When costs uniformly increase across all agents, the constant in the cost dis-
tribution rises. Consequently, the cutoff curve shifts upwards, reflecting the elevated
cost levels.

4.2.4 Uniform Cost Increase and Its Implications

The participation rate within a school’s club is influenced by the school size, which potentially

imposes a capacity limit on club membership. The empirical data from this study indicates a

clear negative correlation between the participation rate and school size. In larger schools, where

competition to join clubs is more intense due to these capacity constraints, students are often

required to invest more time in developing their skills. We hypothesize that this results in a uniform

increase in costs across all students. Consequently, while the talent distribution remains unchanged,

the cost curve uniformly shifts upward. An increase in the constant maximum potential cost 𝑎 is

depicted in Figure 4.2.

As the cost cutoff curve 𝐶̄ (ℎ) shifts upward due to increased competition and capacity limits, the

higher participation equilibria may no longer be sustainable. However, the lowest stable equilibrium

persists regardless of how significantly costs escalate. Moreover, if multiple equilibria exist, when

the cost increase is substantial enough, the lowest stable equilibrium becomes the only one remaining,

effectively resulting in a unique stable equilibrium.

Next, we examine the impact of these cost increases on a specific stable equilibrium. Generally,

as costs rise uniformly across all students, those whose original costs were marginally below the net
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benefit may no longer find club participation economically feasible under the new cost structure.

Consequently, only students with higher talent, who can absorb the increased costs, continue to

participate. Therefore, in a specific stable equilibrium state, the stable equilibrium ℎ∗ decreases as

costs systematically increase.

Proposition 4.5 (Equilibrium Response to Cost Increases). When costs increase uniformly

across a school:

• The lowest stable equilibrium remains.

• The stable participation rate ℎ∗ for any racial group decreases within the same equilibrium.

Proof. Consider the cost function 𝑎 + 𝑙𝑛(ℎ)
𝜆

. Define 𝐹 ≡ Δ𝑉 − 𝐶𝑜𝑠𝑡 = 0. The rate of change of the

participation rate ℎ with respect to the cost parameter 𝑎 is given by:

𝑑ℎ

𝑑𝑎
= −

𝜕𝐹
𝜕𝑎

𝜕𝐹
𝜕ℎ

= −
− 𝜕𝐶𝑜𝑠𝑡

𝜕𝑎

𝜕𝐹
𝜕ℎ

=
1
𝜕𝐹
𝜕ℎ

Given that 𝜕𝐹/𝜕ℎ is negative in any stable equilibrium, as established in Lemma 4, it follows that

𝑑ℎ/𝑑𝑎 is negative. This indicates that the stable participation rate ℎ∗ decreases as the generalized

cost parameter 𝑎 increases.

In addition, in cases with multiple stable equilibria, this shift in the cost curve may cause

initial conditions that previously converged to a higher equilibrium to now converge to the lower

equilibrium.

4.2.5 Connectors and Devotees:

The analysis in this section is conducted under the assumption that talent follows an exponential

distribution. This assumption allows for analytical tractability and enables a clear characterization

of threshold behavior.

The exponential distribution was therefore chosen because it allows for a transparent and inter-

pretable structure in which type differentiation can be rigorously derived.
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Building on our previous analysis, this section differentiates between two club participant types:

Connectors and Devotees. This classification allows us to delve deeper into the motivations and

behavioral patterns that differentiate members within the club setting.

In this section, we differentiate between Connectors and Devotees to better understand the

underlying mechanisms that drive club participation. Connectors are individuals who join clubs

primarily to expand their social networks, appreciating the club’s social structure for its broad

networking opportunities. Conversely, Devotees are motivated by a passion for the club’s activities,

such as sports or other specific interests, focusing on skill enhancement and personal achievement

within the club environment.

For Connectors, the utility function is defined as:

𝑈𝑐 = Δ𝑉 (𝑣𝑚, 𝑣𝑠, 𝛼, 𝐸)

where Δ𝑉 represents the net benefits derived from social connections.

For Devotees, their utility is augmented by their intrinsic motivation to improve their skills,

formalized as:

𝑈𝑑 = Δ𝑉 (𝑣𝑚, 𝑣𝑠, 𝛼, 𝐸) + 𝛾𝐸
(︁
𝑡 𝑗 | 𝑗 in club

)︁
where 𝛾 ∈ [0, 1) represents a synergy factor, quantifying the additional utility derived from the

average talent level within the club; and 𝐸 (𝑡 𝑗 ) denotes the average talent of all club members.

The assumption that 𝛾 falls within the range [0, 1) ensures that students value the average talent

of the club members appropriately (less than their own talent level), preventing an overvaluation that

could disrupt the model’s stability. This assumption is critical, especially if agents can continuously

adjust their behavior based on average talents within the club.

Devotees, compared to Connectors, receive additional utility from their deeper engagement

with the club’s core activities, which influences their decision to remain active members even

under varying cost conditions. This distinction plays a crucial role in understanding how different

motivations impact participation thresholds and rates under dynamic club environments.
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I assume that student talent follows an exponential distribution with parameter 𝜆. For club

members categorized as either Connectors (𝑐) or Devotees (𝑑), the minimum talent threshold is

denoted as 𝑡𝑚, where 𝑚 ∈ {𝑐, 𝑑}. Thus, the participation rate among type-𝑚 students is defined as

ℎ𝑚 = 𝑃(𝑇𝑚 ≥ 𝑡𝑚) = 𝑒−𝜆𝑡𝑚 .

When cost changes are uniform across all students, the participation rates for Connectors and

Devotees shift at the same rate if and only if synergy parameter 𝛾 = 0. Under such scenario, if

there is a change in cost, Δ𝑐, the minimum talent threshold for both types of club members adjust

accordingly, such that 𝑡′𝑚 = 𝑡𝑚 + Δ𝑐. Consequently, given 𝛾 = 0, the new participation rate ℎ′𝑚

relative to the original rate ℎ𝑚 adheres to the rate ℎ′𝑚/ℎ𝑚 = 𝑒−𝜆Δ𝑐, applicable to both Connectors

and Devotees.

In scenarios where the systemic cost parameter, 𝑎, is identical for both Connectors and Devotees,

theoretical participation rates should align across student types. If 𝑎 differs, although distinct

participation rates, ℎ𝑐 ≠ ℎ𝑑 , emerge, the rate of change remains consistent, ℎ′𝑐/ℎ𝑐 = ℎ′
𝑑
/ℎ𝑑 ,

provided that 𝛾 = 0.

In contexts where synergy parameters 𝛾 > 0 and there is a uniform adjustment in costs across

students, the participation rate for Devotees will change at a slower rate compared to that for

Connectors. For example, with a systematic increase in costs, the requisite minimum talent, 𝑡𝑚,

escalates for both groups, thereby reducing the participation rates ℎ𝑐 and ℎ𝑚. Unlike the scenario

where 𝛾 = 0, Devotees potentially benefit from enhanced synergy in clubs with higher-skilled

members, resulting in a less pronounced decline in their participation rate compared to Connectors.

Proposition 4.6: (Differential Impact of Cost on Connectors and Devotees) If a synergy benefit

exists for Devotees (𝛾 > 0), their participation rate’s responsiveness to a uniform cost alteration is

slower compared to Connectors:

1. The participation rate for both Connectors and Devotees decreases, but the rate of decline is

faster for Connectors. This is represented by: ℎ
′
𝑐

ℎ𝑐
<

ℎ′
𝑑

ℎ𝑑
< 1;

2. When costs decrease: The participation rate for both types increases, but Connectors’ rate of
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increase is faster than that of Devotees. This relationship is captured by: 1 < ℎ′
𝑑

ℎ𝑑
<

ℎ′𝑐
ℎ𝑐

.

These adjustments in participation rates consistently show either an increase or decrease, depending

on the direction of the cost changes. Despite the increased benefits from synergy, the adverse effects

of higher costs on Devotees cannot be completely mitigated. A formal proof of this proposition is

provided in Appendix D on page 152.

4.3 Empirical Analysis and Model Validation

4.3.1 Methodology and Estimation Results

In this section, I fit the model to the data and estimate the key parameters to understand how

social dynamics influence club participation. The first step involves estimating the discount factor

𝛼 for both White and Black students, based on the observed number of friendships. The results

show that the factor for White students is less than one (0.787) , indicating they invest less effort

in forming friendships, with diminishing marginal utility from each additional connection. On the

other hand, the number of friendships among Black club members and non-members is relatively

similar, resulting in an estimated parameter for Black students close to one. This helps explain the

distinct participation behaviors observed: White students’ participation rates increase with racial

size, while those of Black students decrease.

With the estimated discount factor 𝛼̂, I proceed to determine the effort level 𝐸̂ for each student.

Using the theoretical model, I then conduct a counterfactual analysis to explore how each student’s

friendship structure would change if they were a club member versus a non-member. From this, I

derive the net benefits Δ𝑉̂ . Lastly, a reduced-form solution is employed to estimate the benefits of

cross-school ties 𝑣𝑠 within each school, showing how these benefits change with racial composition

and school size.
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Estimation of the discount factor 𝛼

At the outset, students are classified into two groups: club members and non-members. The

model posits that both types of students exert equivalent levels of effort in building social connec-

tions. However, empirical data reveal variability in the number of friends, ranging from 0 to 10,

which contradicts the initial assumption of uniform effort across student types. To address this

discrepancy, it is assumed that the effort in forming social connections for both groups follows an

identical distribution.

In the model, the number of friends for a club member is defined as 𝑛𝑚 = 𝑥𝛼𝑚 for within-club

connections, and 𝑛𝑠 = 𝑥𝛼𝑠 for external connections, where 𝑥𝑚 + 𝑥𝑠 = 𝐸 . The effort level for a club

member can thus be quantified by 𝐸𝐽ˆ = 𝑛
1/𝛼
𝑚 + 𝑛1/𝛼

𝑠 , and for a non-member by 𝐸̂𝑁𝐽 = 𝑛1/𝛼
𝑁𝐽

, where

𝑛𝑁𝐽 representing the number of friends for non-members. Determination of the optimal 𝛼 requires

minimizing the discrepancies between the distributions of 𝐸𝐽ˆ and 𝐸𝑁𝐽ˆ .

I employ the Kolmogorov-Smirnov Statistic (K-S test) to measure the maximum divergence

between the empirical cumulative distribution functions (ECDFs) of the two groups. Given that

the number of friends is concentrated on specific discrete values, the data contain exact duplicates,

leading to ties in the empirical cumulative distribution functions (ECDFs). As a result, the classical

computation of the K-S test is not applicable. To address this issue, a jittering method is introduced

by adding a small, random Gaussian noise 𝑁 (𝜇 = 0, 𝜎 = 0.01) to each estimated 𝐸𝑖ˆ , thereby

eliminating ties.

To enhance the reliability of our findings, given the slight variations introduced by jittering, we

adopt a bootstrap method. This involves:

1. Estimate Effort: Calculate effort 𝐸𝐽
ˆ for club members and 𝐸𝑁𝐽

ˆ for non-members.

2. Bootstrap Analysis: Conduct 10, 000 bootstrap iterations, each involving a resampled dataset com-
prising a total of 𝑁 students, with varying counts of each student type.

3. Jittering: In each iteration, add Gaussian noise 𝑁 (0, 0.01) on each 𝐸𝑖
ˆ .

4. Kolmogorov-Smirnov Test: Apply the K-S test in each iteration to identify the 𝛼 that minimizes
differences in the ECDFs of the two student groups, denoted as 𝛼̂.

5. Statistical Analysis of 𝛼: Analyze the 10, 000 𝛼̂ values to determine their statistical properties and
identify the optimal 𝛼̂.
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Figure 4.3: Bootstrap Distribution of Alpha Estimates

Figure 4.3 illustrates the distribution of the 10, 000 𝛼̂ values, showing a mean of 0.779, a mode

of 0.794, and a median of 0.787, with a 95% confidence Interval ranging from 0.637 to 0.884.

Subsequent analyses will use the median value of 𝛼̂ = 0.78733 is utilized. Figure 4.4 depicts the

density distributions of social efforts for both types of students.

Impacted by the value of 𝛼

In this model, the within-club friends and external friends for club members are denoted

as 𝑛𝑚 = 𝑥𝛼𝑚 and 𝑛𝑠 = 𝑥𝛼𝑠 respectively, while for non-club members, the number of friends are

represented as 𝑛𝑁𝐽 = 𝐸𝛼. In the specific case where 𝛼 = 1, the relation 𝑥𝛼𝑚 + 𝑥𝛼𝑠 = 𝐸𝛼 implies

𝑛𝑚 + 𝑛𝑠 = 𝑛𝑁𝐽 , indicating that students do not form additional friendship connections through club

participation. While they may form new friendships with other club members after joining, their

total number of social connections remains unchanged. Conversely, when 𝛼 < 1, the inequality

𝑥𝛼𝑚 + 𝑥𝛼𝑠 > 𝐸𝛼 suggests that students can establish more friendship connections as a result of club

participation. Therefore, compared to those whose total number of friendships remains constant,

students in this scenario gain greater benefits from joining the club. Furthermore, this disparity in

benefits becomes more pronounced as 𝛼 decreases.
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Figure 4.4: Comparison of Density Distributions for Social Effort (𝛼 = 0.787)
Note: In both distributions, random noise is added. For the non-members’ distribution, the original estimated consists of a limited
number of discrete values, leading to a multimodal distribution even after jittering. It is important to note that although the plot appears
smoothed, the actual distribution features more pronounced peaks.

The value of 𝛼 also influences the ratio benefits ratio 𝑟 𝑗 = 𝑣𝑚
𝑣𝑠

. In situations where 𝛼 approaches

1, the ratio 𝑣𝑚
𝑣𝑠

=

(︂
𝑥𝑚
𝑥𝑠

)︂1−𝛼
tends to 1, irrespective of the values of 𝑥𝑚 and 𝑥𝑠. Thus, the benefits ratio

𝑟 𝑗 hovers around 1 for any school 𝑗 . In such cases, club participation neither increases friendships

nor enhances the value of friendship connections. The benefits from social connections are similar

for all students, implying that a student’s decision to participate is primarily influenced by their

intrinsic qualities rather than by external factors like the relative size of their racial group.

Empirical analysis reveals that 𝛼 = 0.787 for white students, suggesting that white club members

establish more friendship connections than non-members (7.7 versus 7.2 friends per student ). In

contrast, 𝛼 = 0.96 for black students, resulting in a nearly equal number of social connections among

club members and non-members (6.4 versus 6.2 friends per student). This observation explains

why the participation rate among white students correlates with their relative group size, whereas

this trend is less pronounced among black students.
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Estimation of Net Benefit Δ𝑉

The model given in Section 4 provides the equation of net benefit, Δ𝑉 = 𝑣𝑚𝑛𝑚 + 𝑣𝑠𝑛𝑠 − 𝑣𝑠𝑛𝑁𝐽 ,

where 𝑣𝑚 and 𝑣𝑠 represent per-connection values; 𝑛𝑚, 𝑛𝑠, and 𝑛𝑁𝐽 denote a student’s number of

within-club connections, external connections, and the total connections if the student decides not

to join the club, respectively.

Empirical data reveal a broad variability in the friendship structure of club members. Some

members primarily form friendship connections within the club, while others build more external

connections. To accurately estimate how social connections impact students’ participation decisions,

it is assumed that each club member assigns a distinct value to the ratio 𝑟 = 𝑣𝑚
𝑣𝑠

. A higher value of

𝑟 implies that a club member tends to make more friends within the club, whereas a lower value

suggests a preference for external friendships.

The net benefit Δ𝑉 can thus be represented as:

Δ𝑉 = 𝑣𝑠 (𝑟 · 𝑛𝑚 + 𝑛𝑠 − 𝑛𝑁𝐽)

For club member 𝑖 in school 𝑗 , the ratio 𝑟𝑖 𝑗 can be calculated by:

𝑟𝑖 𝑗 =
𝑣𝑚𝑖 𝑗

𝑣𝑠𝑖 𝑗
=

(︃
𝑥𝑚𝑖 𝑗

𝑥𝑠𝑖 𝑗

)︃1−𝛼
=

(︃
𝑛𝑚𝑖 𝑗

𝑛𝑠𝑖 𝑗

)︃ 1−𝛼
𝛼

Since there is no direct data on a non-member’s network structure after they join the club, both

per-connection values 𝑣𝑚 and 𝑣𝑠 are context-dependent and vary by school. Therefore, the school-

level average rate 𝑟 𝑗 is used to evaluate non-members’ preferences, assuming it remains consistent

across all non-members within school 𝑗 . Defining the average within-club and external connections
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for club members of a particular race in school 𝑗 as 𝑛̄𝑚 𝑗
and 𝑛̄𝑠 𝑗 , respectively, the school-level

average rate 𝑟 𝑗 is estimated by:

𝑟 𝑗̂ =

(︃
𝑛̄𝑚 𝑗

𝑛̄𝑠 𝑗

)︃ 1−𝛼
𝛼

In the data, students are classified as either club members, who have two types of connections,

𝑛𝑚 and 𝑛𝑠, or non-members with total connections 𝑛𝑁𝐽 . Estimating the connections if a student

were of the opposite type involves using their calculated effort levels.

For instance, if student 𝑖 is a club member, their effort level 𝐸𝑖 𝑗ˆ .is estimated, and the number of

friends they would have if they were a non-member can be calculated as:

𝑛̂𝑁𝐽𝑖 𝑗 = 𝐸𝑖 𝑗
ˆ 𝛼

Conversely, for a non-member, determining the optimal allocation of their effort 𝐸𝑖ˆ on two types

of friends if they were to join a club is required. The optimal allocation is derived from:

𝑥̂𝑠𝑖 𝑗 =
𝐸𝑖 𝑗ˆ

𝑟
1

1−𝛼

𝑗
+ 1

𝑥̂𝑚𝑖 𝑗
= 𝐸𝑖 𝑗ˆ − 𝑥̂𝑠𝑖 𝑗

Thus, the number of friends for a num-member 𝑖 in school 𝑗 is driven as :

𝑛𝑠𝑖 𝑗ˆ (𝐸̂ 𝑖 𝑗 , 𝑟 𝑗̂ ) =

(︂
𝑥𝑠𝑖 𝑗ˆ (𝐸̂ 𝑖 𝑗 , 𝑟 𝑗̂ )

)︂ 𝛼̂
𝑛𝑚𝑖 𝑗

ˆ (𝐸̂ 𝑖 𝑗 , 𝑟 𝑗̂ ) =

(︂
𝑥𝑚𝑖 𝑗

ˆ (𝐸̂ 𝑖 𝑗 , 𝑟 𝑗̂ )
)︂ 𝛼̂
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Estimation of Net Benefit

The net benefit can finally be represented as:

Δ𝑉𝑖 𝑗ˆ = 𝑣𝑠 𝑗Δ𝑛𝑖 𝑗
ˆ

where Δ𝑛𝑖 𝑗ˆ denotes the relative discrepancy in the number of friends, which is given by (4.2).

The parameter 𝑣𝑠 𝑗 , representing the value of an external friendship in school 𝑗 , is the only parameter

not estimated in the preceding steps.

Δ𝑛𝑖 𝑗ˆ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑟𝑖 𝑗ˆ 𝑛𝑚𝑖 𝑗

+ 𝑛𝑠𝑖 𝑗 − 𝑛𝑁𝐽𝑖 𝑗ˆ if 𝑖 is a club member

𝑟 𝑗̂𝑛𝑚𝑖 𝑗
ˆ + 𝑛𝑠𝑖 𝑗ˆ − 𝑛𝑁𝐽𝑖 𝑗 if 𝑖 is a non-member

(4.2)

Figure 4.5 presents the density distributions for both the increase in number of friendships and

the relative discrepancy Δ𝑛𝑖 𝑗ˆ , with data grouped by student type. Compared to non-members, club

members exhibit a larger relative friendship discrepancy. This is because some members have

significantly more within-club connections, indicating a higher value placed on the ratio 𝑟 =
𝑣𝑚
𝑣𝑠

.

Consequently, under this scenario, the relative discrepancy is magnified.

4.3.2 Reduced form Estimation

In the subsequent analysis, a logistic regression model is adopted to verify the existence of the

impact from benefits Δ𝑛𝑖 𝑗ˆ on students’ participation decision. This model enables the estimation of

the value of social connections in the decision-making process and examines how the benefit per

connection 𝑣 𝑗 varies across different schools.
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Figure 4.5: Density Distributions of Friendship Gains and Relative Discrepancies by Student Type
Note: The first distribution (left) shows the Net Friendship Gain, representing the increase in the number of connections when a student
opts to join a club, calculated as 𝑛𝑚 + 𝑛𝑠 − 𝑛𝑁𝐽 . The second distribution (right) illustrates the Relative Connection Discrepancy,
defined as 𝑟 · 𝑛𝑚 + 𝑛𝑠 − 𝑛𝑁𝐽 , which measures the relative difference in friendship connections based on the type of student.

The logistic model primarily focuses on assessing the influence of social connections on partic-

ipation. Formally, the model is expressed as:

𝑦𝑖 𝑗 = 𝑣
𝑠
𝑗Δ𝑛𝑖 𝑗

ˆ + 𝛽𝑋 + 𝜖 𝑗 + 𝜖𝑖 𝑗 with 𝑖 = 1, ..., 𝑛 𝑗 and 𝑗 = 1, ..., 𝐽. (4.3)

where 𝑦𝑖 𝑗 represents the participation of student 𝑖 in school 𝑗 , Δ𝑛𝑖 𝑗ˆ denotes the potential social

engagement if the student opts to participate, 𝑣𝑠
𝑗

is the benefit per across-school friendship (𝑣𝑠)

in school 𝑗 , 𝛽𝑋𝑖 𝑗 captures the student’s personal characteristics, 𝜖 𝑗 represents the fixed effects for

school 𝑗 , and 𝜖𝑖 𝑗 is the individual error term.

The primary aim of this regression model is to determine whether benefits influence students’

decisions to participate in clubs. Additionally, it allows for the estimation of the per-connection

benefit 𝑣𝑠 in each school within the dataset, enabling further analysis of how these values 𝑣𝑠
𝑗
vary with

school size and the proportion of White students across different schools. The logistic regression is

conducted, and the results are presented in Table ??.
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Figure 4.6: Relationships Among 𝑣𝑚/𝑣𝑠, 𝑣𝑚, 𝑣𝑠, Racial Proportion, and School Size

Empirical Confirmation of Model Predictions: Benefits from Social Engagement and Partic-

ipation Rates

In the theoretical framework established in Section 4.2, Lemma 4.2’ asserts that if the ratio of

within-club to outside-club benefits, 𝑣𝑚
𝑣𝑠

, increases as the racial proportion rises, then the net benefits

Δ𝑉 will also increase with the racial proportion. Proposition 4.4’ further further explains that this

relationship leads to a corresponding rise in the stable participation rate ℎ∗ for the racial group in

question.

Empirical evidence aligns with this theoretical assertion, showing a clear trend among White

students where the ratio of per-connection benefits, 𝑣𝑚
𝑣𝑠

, increases as the racial proportion grows.

This relationship is illustrated in Figure 4.6 (a), which depicts a positive correlation between the

benefit ratio and racial proportion, thereby reinforcing the model’s predictions.

The subgraphs in Figure 4.6 illustrate how the per-connection values 𝑣𝑚 and 𝑣𝑠, as well as

the ratio 𝑣𝑚/𝑣𝑠, are influenced by racial proportion and school size, he corresponding correlation
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Table 4.1: Correlation Matrix for Variables Shown in Figure 8

Correlation Matrix Ratio 𝑣𝑚/𝑣𝑠 𝑣𝑚 𝑣𝑠
Relative Racial Size 𝑤 0.369 −0.427 −0.446
School Size −0.518 0.565 0.586

values are presented in Table 4.1. The estimates shown here are derived from regressions without

school-level fixed effects but account for various school characteristics, including location, region,

and type (private, public, or Catholic).

In the analysis, students were separated into members and non-members. A total of 24 schools

were removed from the dataset: 10 schools were excluded because they had fewer than three students

of at least one type (member or non-member); one school was excluded for yielding a negative value

when estimating the ratio 𝑣𝑚/𝑣𝑠; and 13 schools were excluded due to missing information on school

characteristics. Ultimately, the final dataset consisted of 110 schools.

Figure 4.7 presents the coefficients 𝑣𝑠
𝑗
in regression (4.3), standard errors, and p-values for each

group. Schools are categorized by size into four groups: 26 Small (<300 students), 30 Medium-

Small (300-550 students), 29 Medium-Large (550–800 students), and 25 Large (>800 students).

Generally, as school size increases, the value of both types of friendships rises, but the value

of across-school friendships (𝑣𝑠) grows at a faster rate than that of within-club friendships (𝑣𝑚).

Conversely, as the proportion of White students in the population increases, the per-connection

value for both types of friendships declines, with across-school friendships (𝑣𝑠) experiencing a

sharper decrease. These results, however, contradict the assumptions in the previous model, where

per-connection benefits were expected to increase as the racial proportion rises in a school.

In the data, we observe that the number of friendships increases with racial group size, indicating
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Figure 4.7: Coefficients, Standard Errors, and p-Values Grouped by School Size
Note: Schools are grouped by size in each graph.
(a) Coefficient Distribution (𝑣 𝑗 𝑠) by School Size
(b) Standard Error Distribution by School Size
(c) p-Value Distribution by School Size
(d) Histogram of p-Values
In total, there are 68 schools with p-values < 0.001, 12 schools with p-values < 0.01, 9 schools with p-values < 0.05, and 21 schools
with insignificant results.
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that students tend to have more friends in this scenario. One explanation is that when the proportion

of White students rises, the increased homogeneity may allow students to build friendship connec-

tions with less effort (𝑥𝑚 and 𝑥𝑠). This leads to two outcomes: an increase in the total number of

friends and a decrease in the absolute value of per-connection benefits (𝑣𝑚 and 𝑣𝑠). Additionally,

the value of across-school friendships (𝑣𝑠) may decrease more sharply, as students find it easier to

make same-race friends without needing to engage as much outside their existing circles.

4.4 Conclusion

In this chapter, I develop a benefit-driven model to provide a mechanism that explains the

interplay between social norms and students’ decisions, as well as its impact on social networks.

This model offers a framework to understand how students’ social interactions and participation

choices shape their broader social environment.

Previous research has suggested that smaller schools exhibit lower levels of racial homophily.

This study contributes to this discussion by demonstrating that high rates of participation in cul-

tural activities may play a crucial role in this phenomenon. This study provides insights that can

inform policy interventions aimed at promoting inclusivity and social cohesion. By recognizing the

coordinated behavior in students’ participation, social planners can design more targeted programs

that cater to the specific cultural preferences of different communities. For example, implement-

ing subsidies for basketball programs in predominantly White neighborhoods and for baseball in

predominantly Black neighborhoods could foster inclusivity and encourage diverse participation,

thereby enhancing social cohesion.

While this study provides valuable insights, it also has certain limitations. The analysis relies
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on cross-sectional data, which may not fully capture the temporal evolution of social networks and

participation decisions. Additionally, the study focuses on specific sports, which may limit the

generalizability of the findings to other types of cultural activities. Future research could expand

on this work by using longitudinal data to observe changes over time, or by exploring how other

extracurricular activities influence peer effects and social interactions across different demographic

groups.

148



Appendix to Chapter 4

Proof of Lemma 4.1 (Monotonic Growth of Joining Payoff Advantage).

We aim to demonstrate that the partial derivative of the net benefit Δ𝑉 with respect to the

participation rate ℎ, 𝜕Δ𝑉
𝜕ℎ

, is positive. This derivative can be expressed through the chain rule as

follows:

𝜕Δ𝑉

𝜕ℎ
=
𝜕Δ𝑉

𝜕𝑣𝑚

𝜕𝑣𝑚

𝜕ℎ

Given the functional form of the net benefit Δ𝑉 :

Δ𝑉 = 𝐸𝛼

[︄(︃
𝑣

1
1−𝛼
𝑚 + 𝑣

1
1−𝛼
𝑠

)︃1−𝛼
− 𝑣𝑠

]︄
we can get

𝜕Δ𝑉

𝜕ℎ
= 𝐸𝛼

(︃
𝑣

1
1−𝛼
𝑚 + 𝑣

1
1−𝛼
𝑠

)︃−𝛼
𝑣

𝛼
1−𝛼
𝑚

𝜕𝑣𝑚

𝜕ℎ

=
⎛⎜⎝ 𝑣

1
1−𝛼
𝑚

𝑣
1

1−𝛼
𝑠 + 𝑣

1
1−𝛼
𝑚

𝐸
⎞⎟⎠
𝛼

𝜕𝑣𝑚

𝜕ℎ

Using the relationship between effort allocation within the club 𝑥𝑚 and the per-connection

benefit 𝑣𝑚 and 𝑣𝑠, we have:

𝑥𝑚 =
𝑣

1
1−𝛼
𝑚

𝑣
1

1−𝛼
𝑠 + 𝑣

1
1−𝛼
𝑚

𝐸

Substituting 𝑥𝑚 into the derivative, we simplify 𝜕Δ𝑉
𝜕ℎ

:
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𝜕Δ𝑉

𝜕ℎ
= 𝑥𝛼𝑚

𝜕𝑣𝑚

𝜕ℎ

where 𝑥𝛼𝑚 is the number of connections a student builds within the club. Given that 𝜕𝑣𝑚
𝜕ℎ

> 0 by

Assumption 4.2, we conclude that

𝜕Δ𝑉

𝜕ℎ
> 0

This shows that the net benefit Δ𝑉 increases as the participation rate ℎ increases.

Proof of Lemma 4.2 (Advantage of Racial Majority in Club Benefits).

Δ𝑉 (𝑣𝑚, 𝑣𝑠, 𝛼, 𝐸) = 𝐸𝛼
[︄(︃
𝑣

1
1−𝛼
𝑠 + 𝑣

1
1−𝛼
𝑚

)︃1−𝛼
− 𝑣𝑠

]︄

𝜕Δ𝑉

𝜕𝑤
= 𝐸𝛼

[︃
(1 − 𝛼)

(︃
𝑣

1
1−𝛼
𝑚 + 𝑣

1
1−𝛼
𝑠

)︃−𝛼 (︃
1

1 − 𝛼𝑣
𝛼

1−𝛼
𝑚

𝜕𝑣𝑚

𝜕𝑤
+ 1

1 − 𝛼𝑣
𝛼

1−𝛼
𝑠

𝜕𝑣𝑠

𝜕𝑤

)︃
− 𝜕𝑣𝑠

𝜕𝑤

]︃

= 𝐸𝛼

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑣

𝛼
1−𝛼
𝑚

𝜕𝑣𝑚
𝜕𝑤

+ 𝑣
𝛼

1−𝛼
𝑠

𝜕𝑣𝑠
𝜕𝑤(︃

𝑣
1

1−𝛼
𝑚 + 𝑣

1
1−𝛼
𝑠

)︃𝛼 − 𝜕𝑣𝑠

𝜕𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎛⎜⎝𝐸 𝑣
1

1−𝛼
𝑚

𝑣
1

1−𝛼
𝑠 + 𝑣

1
1−𝛼
𝑚

⎞⎟⎠
𝛼

𝜕𝑣𝑚

𝜕ℎ
+ ⎛⎜⎝𝐸 𝑣

1
1−𝛼
𝑠

𝑣
1

1−𝛼
𝑠 + 𝑣

1
1−𝛼
𝑚

⎞⎟⎠
𝛼

𝜕𝑣𝑠

𝜕ℎ
− 𝐸𝛼 𝜕𝑣𝑠

𝜕𝑤

= 𝑥𝛼𝑚
𝜕𝑣𝑚

𝜕ℎ
+ 𝑥𝛼𝑠

𝜕𝑣𝑠

𝜕ℎ
− 𝐸𝛼 𝜕𝑣𝑠

𝜕𝑤

= 𝑥𝛼𝑚
𝜕𝑣𝑚

𝜕𝑤
+

(︁
𝑥𝛼𝑠 − 𝐸𝛼

)︁ 𝜕𝑣𝑠
𝜕𝑤

Given the assumption 𝜕𝑣𝑠
𝜕𝑤𝑖

≥ 0 (as stated in Assumption 4.2), and the relationship 𝑥𝑚 + 𝑥𝑠 = 𝐸 ,
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which implies 𝑥𝛼𝑚 + 𝑥𝛼𝑠 ≥ 𝐸𝛼, we conclude:

𝜕Δ𝑉

𝜕𝑤𝑖
≥ 𝑥𝛼𝑚

(︃
𝜕𝑣𝑚

𝜕𝑤𝑖
− 𝜕𝑣𝑠

𝜕𝑤𝑖

)︃

This expression demonstrates that the net benefit increases as the within-club benefit 𝑣𝑚 increases

faster than the outside-club benefit 𝑣𝑠.

Proof of Lemma 4.2’

Starting with the formula for the partial derivative of net benefit with respect to 𝑤, 𝜕Δ𝑉
𝜕𝑤

=

𝑥𝛼𝑚
𝜕𝑣𝑚
𝜕𝑤

+
(︁
𝑥𝛼𝑠 − 𝐸𝛼

)︁ 𝜕𝑣𝑠
𝜕𝑤

, we normalize by dividing through by 𝑥𝛼𝑠 , leading to:

𝜕Δ𝑉
𝜕𝑤

𝑥𝛼𝑠
=

(︃
𝑥𝑚

𝑥𝑠

)︃𝛼
𝜕𝑣𝑚

𝜕𝑤
+

(︃
1 −

(︃
1 + 𝑥𝑚

𝑥𝑠

)︃𝛼)︃
𝜕𝑣𝑠

𝜕𝑤

≥
(︃
𝑥𝑚

𝑥𝑠

)︃𝛼
𝜕𝑣𝑚

𝜕𝑤
− 𝑥𝑚
𝑥𝑠

𝜕𝑣𝑠

𝜕𝑤

=

(︃
𝑥𝑚

𝑥𝑠

)︃𝛼
𝜕𝑣𝑚

𝜕𝑤
−

(︃
𝑥𝑚

𝑥𝑠

)︃𝛼 (︃
𝑥𝑚

𝑥𝑠

)︃1−𝛼
𝜕𝑣𝑠

𝜕𝑤

=

(︃
𝑥𝑚

𝑥𝑠

)︃𝛼 (︃
𝜕𝑣𝑚

𝜕𝑤
− 𝑣𝑚

𝑣𝑠

𝜕𝑣𝑠

𝜕𝑤

)︃

where the inequality is derived from the property that (𝑥 + 1)𝛼 − 1 < 𝑥 for any 𝑥 > 0 and

𝛼 ∈ (0, 1).

Additionally, the partial derivative of the ratio 𝑣𝑚
𝑣𝑠

with respect to 𝑤 is given by: 𝜕
𝜕𝑤

(︂
𝑣𝑚
𝑣𝑠

)︂
=

1
𝑣𝑠

(︂
𝜕𝑣𝑚
𝜕𝑤

− 𝑣𝑚
𝑣𝑠

𝜕𝑣𝑠
𝜕𝑤

)︂
, implying that 𝜕

𝜕𝑤

(︂
𝑣𝑚
𝑣𝑠

)︂
> 0 is equivalent to 𝜕𝑣𝑚

𝜕𝑤
− 𝑣𝑚

𝑣𝑠

𝜕𝑣𝑠
𝜕𝑤

> 0. Thus, we can

conclude:

𝜕Δ𝑉

𝜕𝑤
> 0 if

𝜕

𝜕𝑤

(︃
𝑣𝑚

𝑣𝑠

)︃
> 0

Proof of 𝜕𝑣𝑚
𝜕𝑤

>
𝜕𝑣𝑠
𝜕𝑤

in unbiased matching:
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This proof examines the conditions under which 𝜕𝑣𝑚
𝜕𝑤

>
𝜕𝑣𝑠
𝜕𝑤

. We begin by detailing the formulas

for these derivatives in the context of random matching:

𝜕𝑣𝑚

𝜕𝑤
=

ℎℎ𝑏

[ℎ𝑤 + ℎ𝑏 (1 − 𝑤)]2 𝑣ℎ𝑜𝑚𝑜

𝜕𝑣𝑠

𝜕𝑤
= 𝑣ℎ𝑜𝑚𝑜

To understand how 𝜕𝑣𝑚
𝜕𝑤

compares to 𝜕𝑣𝑠
𝜕𝑤

, consider the expression [ℎ𝑤𝑖 + ℎ𝑏 (1 − 𝑤)]2 which

transitions: from ℎ2
𝑏

as 𝑤 → 0 to ℎ2 as 𝑤 → 1. This squared term in the denominator indicates that

the value of 𝜕𝑣𝑚
𝜕𝑤𝑖

depends critically on the magnitudes of ℎ and ℎ𝑏 relative to 𝑤:

1. Case ℎ < ℎ𝑏 : The derivative 𝜕𝑣𝑚
𝜕𝑤𝑖

starts lower than 𝜕𝑣𝑠
𝜕𝑤𝑖

when 𝑤 is small but surpasses it as 𝑤

increases, reflecting a transition as the racial group’s representation in the population grows.

2. Case ℎ = ℎ𝑏 : Here, 𝜕𝑣𝑚
𝜕𝑤𝑖

=
𝜕𝑣𝑠
𝜕𝑤𝑖

consistently across all 𝑤.

3. Case ℎ > ℎ𝑏 : In this scenario, 𝜕𝑣𝑚
𝜕𝑤𝑖

exceeds 𝜕𝑣𝑠
𝜕𝑤𝑖

for small 𝑤, suggesting that a greater

proportion of the same race within the club significantly enhances the net benefits right from

a lower threshold of racial proportion.

Proof of Proposition 4.6 (Differential Impact of Cost on Connectors and Devotees)

Assume that a proportion 𝛼 of club members are Connectors and 1−𝛼 are Devotees. Given the

initial participation rates for Connectors and Devotees as ℎ𝑐 and ℎ𝑑 respectively, the average talent

value among club members is expressed as 𝑡 = 𝛼𝑡𝑐̄ + (1−𝛼)𝑡𝑑̄ =
1−𝑙𝑜𝑔(ℎ𝛼𝑐 ℎ1−𝛼

𝑑
)

𝜆
.3 We use ℎ̃ = ℎ𝛼𝑐 ℎ

1−𝛼
𝑑

3By the property of exponential distributions, the expected talent, given survival beyond the threshold 𝑡, is
𝐸 (𝑇 |𝑇 ≥ 𝑡) = 1

𝜆
+ 𝑡 = 1−𝑙𝑜𝑔 (ℎ𝑚 )

𝜆
, where ℎ𝑚 = 𝑃(𝑇 |𝑇 ≥ 𝑡) represents the participation rate for type-𝑚 members.

Therefore, the general average talent 𝑡 is 𝛼 1−𝑙𝑜𝑔 (ℎ𝑐 )
𝜆

+ (1 − 𝛼) 1−𝑙𝑜𝑔 (ℎ𝑑 )
𝜆

, which can be simplified as 1−𝑙𝑜𝑔 (ℎ𝛼
𝑐 ℎ

1−𝛼
𝑑

)
𝜆

.
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denote the geometric mean of the participation rates.

Case: Increase in Costs (Δ𝑐 > 0)

Consider a scenario where the cost increases, denoted Δ𝑐 > 0. The new participation rate for

Devotees, ℎ′
𝑑

is calculated by:

ℎ′𝑑 = 𝑒−𝜆(𝑡𝑑+Δ𝑐−𝛾Δ𝑡) (4.4)

where Δ𝑡 = 𝑡
′ − 𝑡 = 1

𝜆
log

(︂
ℎ̃

ℎ̃
′

)︂
quantifies the change in average talent due to the cost adjustment.

Therefore, the ratio of the participation rate ℎ′
𝑑

ℎ𝑑
= 𝑒−𝜆(Δ𝑐−𝛾Δ𝑡) .

1. If ℎ̃′ < ℎ̃ , the term 𝛾Δ𝑡 =
𝛾

𝜆
log

(︂
ℎ̃

ℎ̃
′

)︂
is positive, indicating that: ℎ′

𝑑

ℎ𝑑
>

ℎ′𝑐
ℎ𝑐

= 𝑒−𝜆Δ𝑐.

This implies that the decrease in participation rate for Devotees is less severe than that for

Connectors due to the synergy benefits derived from the club’s talent composition.

2. If ℎ̃′ > ℎ̃, it leads to a contradiction.

As demonstrated in the statement above, we can get ℎ′
𝑑

ℎ𝑑
<

ℎ′𝑐
ℎ𝑐
< 1. However, this condition

suggests that if both groups’ participation rates decrease, the average rate ℎ̃must also decrease,

conflicting with the assumption that ℎ̃′ > ℎ̃.

We must next demonstrate that, under the condition where Δ𝑐 > 0, the inequality ℎ′
𝑑

ℎ𝑑
< 1 necessarily

holds.

We prove by contradiction. Assume Δ𝑐 > 0 leads to an increase in participation rate for

Devotees, ℎ′
𝑑
≥ ℎ𝑑 . According to formula 4.4, this increase suggests that the synergy benefits

outweigh the detrimental effects of increased cost, 𝛾Δ𝑡 ≥ Δ𝑐. From this, we derive: ℎ′̃

ℎ̃
≤ 𝑒

− 𝜆Δ𝑐
𝛾
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However, the new to old average participation rate ratio contradicts this, given by:

ℎ′˜

ℎ̃
=

ℎ′𝛼𝑐 ℎ
′1−𝛼
𝑑

ℎ𝛼𝑐 ℎ
1−𝛼
𝑑

>
ℎ′𝑐
ℎ𝑐

= 𝑒−𝜆Δ𝑐

Therefore, the participation rate among Devotees must decrease, (ℎ′
𝑑
< ℎ𝑑), when the cost

increases.

In conclusion, when costs increase, the ratio of the new to old participation rates satisfies

ℎ′𝑐
ℎ𝑐
<

ℎ′
𝑑

ℎ𝑑
< 1. Similarly, when costs decrease, we can establish that 1 <

ℎ′
𝑑

ℎ𝑑
<

ℎ′𝑐
ℎ𝑐

, showing an

increase in participation rates, with Devotees experiencing a less pronounced increase compared to

Connectors.
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