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Abstract 

Robust optimization for an olive oil producer’s operations 

 

Lina El Hraiki 

 

This thesis examines how robust optimization can address the operational uncertainties faced by 
APIA, a major Moroccan olive oil producer. In an industry marked by fluctuating yields, shifting 
costs, and unpredictable market demand, robust optimization provides a practical approach to 
making decisions that remain reliable and nearly optimal, even when conditions change. The 
model developed in this research incorporates robust optimization techniques into APIA’s 
operations, balancing strategic long-term planning with the need for real-time adaptability. By 
allowing for scenario-based flexibility, the model tailors the level of conservatism to reflect 
specific uncertainties, ensuring solutions are both practical and resilient, even under worst-case 
scenarios. Scalable and computationally efficient, the model developed is designed to support key 
operational decisions in procurement, production, transportation and storage. Through numerical 
experiments, this thesis demonstrates how the model helps optimize APIA’s operations, reducing 
costs while maintaining operational stability. By managing variability effectively, this research 
offers APIA a strategic tool to navigate the complexities of the agro-industrial sector, improve 
profitability, and achieve sustainable growth. 

Keywords: robust optimization, operational parameter uncertainty, olive oil supply chain. 
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Chapter 1: Introduction 
 
1.1. Context: Importance of managing uncertainty in the olive oil industry 

The olive oil industry faces many challenges that can harm both production and profits. These 
challenges come from unpredictable factors such as changing weather, global price fluctuations, 
new regulations, and shifting consumer preferences. To remain stable and competitive, producers 
must find ways to manage these risks effectively. In an increasingly competitive and complex 
market, the ability to address these uncertainties is critical to achieving long-term growth and 
resilience. 

One of the biggest challenges for olive oil producers is the increasing number of extreme 
weather events. Climate change has disrupted olive farming, causing lower yields and making it 
harder to plan production. Long periods of drought and intense heat weaken olive trees and reduce 
their ability to produce fruit. At the same time, late spring frosts can damage flowers and prevent 
proper fruit development. These unpredictable weather patterns create unstable harvests, which 
make production planning more difficult. 

According to data from the Spanish Ministry of Agriculture, olive oil output dropped from 
1.48 million tons in 2021–2022 to just 660,000 tons in 2022–2023, a 55% decline (Bontemps, 
2023). Whether due to prolonged droughts or increasing competition for water resources, limited 
access to this essential input has forced many producers to rely more heavily on irrigation, driving 
up costs (Food and Agriculture Organization, 2024). These combined challenges, extreme weather 
and water scarcity, underscore the urgent need for effective risk management strategies to 
safeguard the future of the olive oil industry. 

1.2. Problem statement: Impact of variations in costs, yields, and capacities on economic 
performance 

Olive oil production is a complex process and depends on many factors, including the availability 
of raw materials, production methods used for olive processing, energy, maintenance and labor. 
All these phases in the production process have their associated costs, which directly influence 
profitability. These costs are often driven by external factors such as shifting economic conditions, 
environmental challenges, and changing regulatory requirements (Zhao et al., 2018). 

One other critical element is the efficient transportation of freshly harvested olives to 
processing facilities to minimize spoilage. Transportation expenses are largely determined by the 
distance between orchards and mills, and fuel prices which impact the overall cost structure. At 
the mill, olives go through several processes: cleaning, grinding, malaxation, and oil extraction. 
Some oil producers choose advanced techniques, such as cold pressing, which can enhance both 
the yield and quality of the oil. However, these methods require substantial investments in 
specialized equipment which adds to the overall cost (Aznar-Sánchez et al., 2019). 

Energy expenses are another key cost driver. Traditional energy sources are more prone to 
price volatility, making costs unpredictable. On the other hand, renewable energy sources, while 
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offering more stable pricing, require a substantial upfront financial commitment for installation 
and infrastructure. Similarly, labor costs are particularly high in areas where manual harvesting  
remains the dominant method. Automation offers a cost-effective alternative in the long term but 
demands considerable initial capital investment to implement (Ouyang & Lin, 2014). 

Compliance with environmental regulations also adds to the overall costs of production. 
Producers must invest in measures such as water conservation, emission reduction technologies, 
and waste treatment facilities to meet regulatory requirements. However, opting for more 
sustainable practices aligns with the increasing consumer demand for eco-friendly and organic 
products, giving producers an opportunity to enhance their market value (Bai et al., 2015). 

Adding to these factors, packaging and marketing costs can vary depending on the materials, 
design, and quality used. Additionally, maintaining appropriate storage conditions, such as 
controlling temperature and humidity, is essential for preserving the quality of olive oil, which 
increases operational costs (Aznar-Sánchez et al., 2019). 

1.3. Company overview: Key role in the olive oil industry and operational challenges 

In this setting, APIA, a major Moroccan olive oil producer, demonstrates both the challenges and 
the opportunities within the olive oil industry. Known for producing premium-quality olive oil and 
upholding Morocco’s agricultural heritage, APIA combines traditional practices with modern 
innovations. APIA works closely with local farmers, and ensures a steady supply of olives, which 
are processed using methods like cold pressing to retain their natural flavor and nutritional benefits. 
These techniques highlight the distinct qualities of APIA’s extra virgin olive oil, which are 
recognized both locally and internationally for their robust taste and health advantages. 

In addition to olive oil, APIA’s product range includes honey, jams, table olives, tapenades, 
and cosmetics, showcasing the diversity of Morocco’s agricultural sector. Despite APIA's success, 
the company faces several challenges that were identified following the meeting and discussion 
with the CEO and management team. These challenges affect the company’s ability to optimize 
production, maintain high quality, and ensure profitability. The key challenges include:    

- Supply chain risks and price volatility: The cost of raw olives can fluctuate significantly 
due to harvest quality, disruptions in supply chains, and trends in global markets. Poor 
harvests and increasing raw material prices often decrease profit margins (Zhao et al., 
2018). 

- Yield variability and harvest timing: Olive yields vary due to factors such as weather 
conditions, farming methods, and tree health. In Morocco, the harvest season occurs from 
October to December, making the timing crucial, any adverse conditions during these 
months can impact the quality and olive harvest. 

- Quality control and consistency: APIA’s reputation depends on delivering high-quality 
olive oil, but variations in olive quality, harvesting methods, and processing techniques 
can influence the final product’s flavor and nutritional value. 
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- Market competition and pricing pressure: The premium olive oil market is becoming 
increasingly competitive, with growing global demand encouraging new players. APIA   
must carefully balance competitive pricing with maintaining profitability, especially 
during periods of fluctuating global prices. 

- Logistics and distribution: Managing a complex supply chain adds to these challenges. 
From procurement and production to packaging and delivery, logistics require careful 
coordination. Weather-related disruptions or delays during peak demand periods can 
affect product availability and customer satisfaction. 

- Sustainability and environmental impact: Consumer awareness and regulatory focus on 
sustainability require APIA to continuously invest in renewable energy, eco-friendly    
packaging, and environmentally responsible practices. While these efforts strengthen the 
brand’s value, they also raise operational costs (Bai et al., 2015). 

- Regulatory compliance and certifications: Meeting international standards, including ISO 
22716, ISO 22000, ONSSA, and ECOCERT, is vital for market access. However, 
complying with diverse global regulations adds complexity and costs. 

By addressing these issues, APIA aims to strengthen its leadership in the olive oil sector while 
advancing sustainable practices. The company’s dedication to producing high-quality products 
reflects the evolving expectations of consumers worldwide, ensuring its continued growth and 
contribution to Morocco’s agricultural legacy. 
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Chapter 2: Literature review 
 
2.1.   Overview of classical and robust optimization concepts 

Over the past few decades, the fields of supply chain risk management and production planning 
have received extensive attention from researchers. This chapter explores the challenges inherent 
to food supply chains, with a particular focus on the olive oil industry. It also reviews strategies 
and planning methodologies used to address these risks, drawing insights from the Moroccan olive 
oil producer APIA. 

The olive oil sector plays a critical role in the global economy, generating over $15.11 billion 
in revenue in 2022, with projections to reach $19.77 billion by 2030 (Fortune Business Insights, 
2025). The economic importance of this industry highlights the pressing need for effective 
strategies to manage risks and improve operational efficiency. 

Historically, classical optimization has been a key tool for solving supply chain problems. 
This approach focuses on maximizing or minimizing an objective function while adhering to a set 
of deterministic constraints. Although useful under ideal conditions, it assumes that all input data 
is deterministic and known, which limits its applicability in real-world scenarios where uncertainty 
is a constant factor. If the uncertain data are random and obey a known probability distribution, 
then the problem can be handled using one of the Stochastic Optimization (SO) techniques (Ben-
Tal et al., 2009). “The SO approach is less conservative than the worst-case-oriented RO approach” 
(Ben-Tal et al., 2009) and the quality of SO based decisions depends upon the accuracy of 
probabilistic distribution.  

To address these limitations, robust optimization has emerged as an effective alternative. 
Robust Optimization (RO) is a methodology that complements stochastic programming and 
sensitivity analysis, focusing on solutions that maintain acceptable performance across various 
realizations of uncertain inputs. Unlike probabilistic methods, RO typically does not assume a 
known distribution for uncertain parameters, making it adequate for situations where estimation 
errors exist, hard constraints must always be met, or solutions are highly sensitive to change. It is 
a conservative, worst-case-oriented approach, often used in scenarios where low-probability, high-
magnitude risks cannot be tolerated, such as in critical infrastructure design (Pinar, 2005). This 
approach incorporates data uncertainties directly into the decision-making process, ensuring that 
solutions remain feasible and practical even under variable conditions. By focusing on resilience, 
robust optimization allows supply chain models to withstand disruptions and maintain 
performance in dynamic environments. 

Melvyn Sim (2004), in his thesis Robust Optimization, underscores the importance of 
accounting for uncertainty in optimization models. His work illustrates how robust optimization 
enhances decision-making by ensuring that strategies are both computationally efficient and 
resilient against variability. Organizations applying this approach can achieve greater reliability 
and flexibility in their operations.    
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2.2.  Robust stochastic optimization in Agri-Food production 

Stochastic optimization has become increasingly important in the agri-food sector, where 
unpredictable factors like yield fluctuations, market demand shifts, and resource availability create 
significant challenges for production planning. To tackle these uncertainties, Lotfi et al. (2022) 
developed a robust stochastic optimization model aimed at minimizing the Robust and  Resilience 
Mean Absolute Deviation (RRMAD). This metric assesses two key aspects of production 
planning: robustness, measured by the Mean Absolute Deviation (MAD), which calculates average 
prediction errors across different scenarios, and resilience, captured by the Standard Deviation 
(SD), which quantifies variability in those prediction errors. The model integrates constraints that 
align projected outputs with actual production data, ensuring greater stability while minimizing 
fluctuations. By incorporating techniques like polynomial regression and resiliency coefficients, it 
enhances adaptability to randomness and potential disruptions. Validated through correlation 
coefficients (𝑅²), this approach has demonstrated its effectiveness in managing uncertainty in 
agricultural operations, particularly in olive oil production. 

2.3.  Relevance to APIA's operations 

For APIA, robust optimization provides a strategic tool for managing the uncertainties inherent in 
olive oil production. The company faces several challenges, including fluctuations in olive yields 
caused by weather conditions and farming practices, price volatility in raw materials, and logistical 
disruptions that impact transportation and delivery schedules. By integrating robust optimization 
techniques, APIA can develop strategies that strike a balance between cost efficiency and 
operational resilience. 

Using tools like scenario analysis and adaptive decision-making, APIA can improve 
resource management and mitigate variability in its supply chain. Robust models can enable the 
company to determine optimal procurement quantities and production schedules that remain 
effective even when market conditions or environmental factors change unexpectedly. These 
models can also help minimize risks associated with unpredictable yields and price fluctuations, 
ensuring consistent product availability and quality. 

Beyond operational benefits, robust optimization plays a crucial role in helping APIA 
maintain its competitive edge in both domestic and international markets. By leveraging advanced 
methods to align production with market demand and enhance operational stability, the company 
can meet customer expectations while navigating the complexities of a highly competitive and 
uncertain industry. This strategic approach ensures sustainable growth, optimized resource 
utilization, and the flexibility to adapt to evolving market conditions. 

é
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Chapter 3: Robust optimization framework 
 
3.1.  Evolution of robust optimization: From conservative to practical approaches 

Robust optimization has evolved significantly over the past decades, transitioning from highly 
conservative methods to more balanced and practical frameworks. The fundamental challenge 
remains the same: how to make optimal decisions under uncertainty without being too cautious or 
overly exposed to risk. This section examines the key developments in robust optimization, 
focusing on the contributions of Soyster (1973), Ben-Tal and Nemirovski (1998), and Bertsimas 
and Sim (2002), and how these models have shaped modern decision-making under uncertainty. 

3.1.1.  Conservative method  

One of the earliest robust optimization models was introduced by Soyster (1973). His approach 
aimed to guarantee feasibility under all possible scenarios by assuming that every uncertain 
parameter simultaneously takes its worst-case value. This conservative assumption ensures that 
solutions remain feasible regardless of the uncertainty present in the system. 

Mathematically, this method incorporates column-wise uncertainty, where each column of 
the constraint matrix is treated as part of a convex uncertainty set. To achieve robustness, it 
introduces protective buffers in the constraints, effectively expanding the feasible region to 
account for all worst-case possibilities. However, while this method eliminates the risk of 
infeasibility, it comes at a significant cost: the resulting solutions are often overly conservative and 
inefficient. 

For example, in a supply chain context, this model may suggest over-purchasing inventory 
or securing excessive supplier contracts to mitigate risks. While this ensures that procurement 
remains viable in all cases, it greatly inflates costs and reduces operational efficiency. Critics, 
including Ben-Tal and Nemirovski (1998), argue that while Soyster’s model guarantees feasibility, 
its excessive conservatism limits its applicability in real-world scenarios where a balance between 
robustness and efficiency is required. 

3.1.2.  Reducing conservatism 

The Ben-Tal and Nemirovski (1998) model addresses uncertainty by using ellipsoidal 
uncertainty sets. An ellipsoid, in this context, is a convex region that bounds all possible variations 
of uncertain parameters around their nominal values. The center of the ellipsoid corresponds to the 
nominal values, while its size and shape are determined by the degree of uncertainty. This 
ellipsoidal representation allows for gradual variations in the uncertain parameters rather than 
assuming extreme worst-case deviations. The model guarantees that the solution will remain 
feasible even under the worst-case scenario, where uncertain parameters deviate from their 
nominal values within the ellipsoid. 

However, Bertsimas and Sim (2002) introduced a simplified interpretation of the Ben-Tal 
and Nemirovski (1998) robust optimization model, providing a clearer understanding of the trade-
off between protection against uncertainty and solution optimality. 
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Mathematical Formulation (Simplified Interpretation by Bertsimas and Sim, 2002) 

The simplified robust counterpart of the uncertain constraint is expressed as: 

 

max 𝑐𝑇 𝑥 

𝑎′𝑇𝑥 +  Ω ||Â𝑥||  ≤ 𝑏 

 

Where: 

- 𝑐𝑇𝑥 is the objective function to be maximized 

- 𝑎′𝑇𝑥 represents the deterministic (nominal) part of the constraint, where �̅�′are known 
coefficients. 

- Ω is the robustness parameter, which controls the trade-off between the level of 
protection and solution optimality. A larger Ω increases conservatism by allowing 
for greater deviations but offers stronger guarantees of feasibility. 

- Â is a diagonal matrix representing the standard deviations (or maximum deviations) 
of the uncertain parameters from their nominal values. The term ||Â𝑥|| measures the 
cumulative impact of uncertainty across all parameters. 

- 𝑏 is the right-hand side of the constraint, ensuring feasibility under uncertainty. 

According to Bertsimas and Sim (2002), this simplified representation of the Ben-Tal and 
Nemirovski model ensures probabilistic feasibility. Specifically, under the uncertainty set 
described, the probability that the constraint is violated is bounded above by: 

P(violation) ≤ 𝑒−
Ω2

2  

This probabilistic interpretation introduces a meaningful trade-off. Decision-makers can set a 
predefined confidence level for feasibility, balancing protection against uncertainty with the 
desire for optimal performance. 

A key innovation in this framework is the probabilistic feasibility guarantee. Unlike 
Soyster's (1973) worst-case method, which assumes all uncertainties simultaneously take their 
worst possible  values, the  ellipsoidal  uncertainty model  as interpreted by  Bertsimas and  Sim  
(2002) allows for a controlled and probabilistic level of protection. By adjusting Ω, decision-
makers can calibrate the level of conservatism in the solution.                                                                                                                                                                                                                         
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While this approach reduces conservatism and offers more adaptable and realistic solutions, 
it comes at the cost of increased computational complexity. The Ben-Tal and Nemirovski 
(1998) model is typically formulated as a second-order cone programming (SOCP) problem, 
requiring advanced optimization methods. Despite this, the model remains tractable and practical 
for many large-scale optimization problems in fields such as logistics, finance, and industrial 
planning. 

3.1.3.  Robust optimization framework  

While the Ben-Tal and Nemirovski (1998) model provides a strong guarantee of feasibility under 
uncertainty, it can be too conservative and computationally expensive when dealing with large-
scale problems. To address these issues, Bertsimas and Sim (2002) introduced an alternative robust 
optimization model that is designed to be more flexible and computationally efficient, while still 
ensuring feasibility under uncertainty. 

A key element of the robust framework is the introduction of the parameter 𝑇𝑖, a value that 
adjusts the level of robustness for each constraint in the optimization model. Specifically, 𝑇𝑖 
determines how many uncertain coefficients within a constraint are assumed to deviate 
concurrently. Its value lies within the interval [0, ∣ 𝐽𝑖 ∣], where ∣ 𝐽𝑖 ∣ represents the total number of 
coefficients subject to uncertainty in the 𝑖-th constraint.  

The role of 𝑇𝑖 can be summarized as follows: 

- Whole Deviations: The integer part of 𝑇𝑖 (⌊𝑇𝑖⌋) represents the number of coefficients 
assumed to deviate fully to their worst-case values. 

- Partial Deviation: The fractional part of 𝑇𝑖 (𝑇𝑖 − ⌊𝑇𝑖⌋) allows one additional coefficient 
to deviate partially, scaled by the uncertainty range (â𝑖𝑡). This feature fine-tunes the level 
of conservatism in the model.  

It is unlikely that all uncertain coefficients in a constraint to change simultaneously. Instead, 
the 𝑇𝑖 facilitates the protection against the most impactful subset of deviations, ensuring       
deterministic feasibility for up to 𝑇𝑖 deviations. By restricting the nature of adverse changes, the 
model provides a robust solution that remains effective under realistic worst-case scenarios.  

This robust approach aligns with the goal of achieving practical, reliable, and optimal solutions in 
the presence of uncertainty, making it an ideal framework for applications where data variability 
plays a significant role.  

Before incorporating uncertainty, the standard (deterministic) linear optimization problem is 
formulated as: 

max 𝑐𝑇 𝑥
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∑ 𝑎𝑖𝑗 𝑥𝑗 

𝑗

≤ 𝑏𝑖    ∀𝑖 

where: 

- 𝑐 represents the objective function coefficients. 

- 𝑥 is the decision variable vector.          

- 𝑎𝑖𝑗 represents the constraint coefficients, which may be subject to uncertainty. 

- 𝑏𝑖  is the right-hand side (RHS) limit of the constraint. 

To incorporate uncertainty in the constraint coefficients, the Bertsimas & Sim robust formulation 
modifies the constraints as follows:  

 

∑ 𝑎𝑖𝑗 𝑥𝑗 

𝑗

+ 𝑧𝑖Γ𝑖 + ∑ 𝑝𝑖𝑗 

𝑗∈𝐽𝑖

≤ 𝑏𝑖    ∀𝑖 

where: 

- 𝛤𝑖 is the robustness parameter that controls how many uncertain coefficients can 
simultaneously deviate from their nominal values. 

- 𝑧𝑖𝛤𝑖 represents the worst-case impact of uncertainty in constraint 𝑖, ensuring 
feasibility under uncertainty. 

- 𝑝𝑖𝑗  are auxiliary variables used to adjust for individual deviations in uncertain 
parameters. 

- 𝐽𝑖  is the set of uncertain coefficients in constraint 𝑖. 

The introduction of Γi  allows decision-makers to adjust the level of conservatism in the model, 
ensuring constraints remain feasible without introducing excessive caution that could lead to 
suboptimal decisions. The following additional constraints are used to complete the model (based 
on the duality of the original problem, see Bertsimas & Sim (2002)): 

 

𝑧𝑖 + 𝑝𝑖𝑗 ≥ â𝑖𝑗 𝑦𝑗 , ∀𝑖 , 𝑗 ∈ 𝐽𝑖    

where: 

- â𝑖𝑗 represents the maximum possible deviation of coefficient 𝑎𝑖𝑗  



10 

- 𝑧𝑖  provides a buffer for worst-case deviations, ensuring constraints remain feasible 
under uncertainty 

- 𝑦𝑗 is an auxiliary decision variable that bounds parameter variations and maintains 
computational efficiency. 

The key advantage of this formulation is that it allows decision-makers to fine-tune conservatism, 
instead of assuming that all uncertain coefficients reach their worst-case values at once. This makes 
the model more flexible and practical for real-world applications. 

3.1.4.  Comparison and evolution of robust optimization 

The evolution of robust optimization reflects a shift from highly conservative methods, like 
Soyster’s, to more balanced and scalable approaches, such as those proposed by Ben-Tal and 
Nemirovski (1998), and Bertsimas and Sim (2002). These advancements have transformed robust 
optimization into a critical tool for addressing uncertainty in decision-making. By balancing 
robustness, efficiency, and computational feasibility, modern robust optimization frameworks 
offer practical solutions for complex real-world challenges. 

 
Table 1: Summary comparison of robust optimization model 

 
 

 
Approach 
 

 
 Key concept 

 

 
Advantages 

 
Limitations 
 

 
Soyster Model 
 
 

 
Worst-case robustness: 
assumes all uncertain 
factors reach their worst 
values at once. 

 
Guarantees feasibility in 
all cases. 

 
Highly conservative, 
leads to inefficient and 
costly decisions. 

 
Ben-Tal & 
Nemirovski 
Model 
 

 
Probabilistic robustness: 
uncertainty modeled 
using ellipsoidal 
uncertainty sets. 

 
Allows gradual 
variations, reducing 
conservatism. 

 
Computationally 
complex due to reliance 
on second-order cone 
programming. 

 
Bertsimas & Sim 
Model 
 

 
Budgeted uncertainty: 
controls how many 
factors reach their worst 
values at once. 

 
More practical and 
computationally efficient, 
maintains linearity. 

 
Requires careful 
selection of the 
robustness budget (𝛤)  
for optimal performance. 
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Chapter 4: Materials and methods 
 
4.1.  Data collection and sources 

After discussions with the CEO, several key risks in the olive oil supply chain were identified, 
each carrying significant financial implications. To support our study, the company provided 
detailed financial reports covering the past six years (Table 2), offering valuable insights into 
trends and challenges affecting operations. 

The data was collected through direct discussions with APIA’s management and a thorough 
review of historical company records. It focuses on critical supply chain metrics and financial 
performance indicators that influence olive oil production, including harvest periods, production 
costs, market prices, and quality control parameters. These factors play a crucial role in 
maintaining efficiency and profitability. 

In Morocco, olives for oil production are harvested within a specific timeframe, typically 
from late October to December, to ensure optimal quality and yield. The collected data provides a 
comprehensive understanding of the dynamics shaping APIA’s supply chain, highlighting how 
risks such as yield variations, fluctuating production costs, and supply disruptions can directly 
impact the company's performance and profitability. 

 
Table 2: APIA’s olive oil production cost breakdown (2017–2023) 

 
Time Yield Olive 

cost 
(dhs/ kg) 

Olive oil sale 
price per 
liter 

Processing 
cost/liter 

Warehousing 
Cost + inventory 
carrying cost 
(dhs/liter) 

Energy, labor, 
maintenance 
(dhs/liter) 

packaging and 
label (dhs/liter) 

Transportation 
cost per liter 

Oct-17 0.15 3.72 40.00 1.50 0.30 1.25 0.80 1.00 
Nov-17 0.17 3.72 40.00 2.50 0.30 1.25 0.80 1.00 
Dec-17 0.15 3.72 40.00 3.00 0.30 1.25 0.80 1.00 
Oct-18 0.15 6.26 55.00 2.30 0.50 1.25 0.90 1.00 
Nov-18 0.15 6.26 55.00 3.30 0.50 1.25 0.90 1.00 
Dec-18 0.20 6.26 55.00 0.34 0.50 1.25 0.90 1.00 
Oct-19 0.20 5.42 60.00 0.37 0.60 1.25 0.90 1.00 
Nov-19 0.20 5.42 60.00 1.70 0.60 1.50 0.90 1.00 
Dec-19 0.20 5.42 60.00 1.70 0.60 1.50 0.90 1.00 
Oct-20 0.19 6.78 70.00 2.00 0.80 1.50 0.95 1.25 
Nov-20 0.19 6.78 70.00 2.60 0.80 1.50 0.95 1.25 
Dec-20 0.20 6.78 70.00 2.70 0.80 1.50 0.95 1.25 
Oct-21 0.19 6.90 70.00 1.70 0.80 1.75 0.95 1.50 
Nov-21 0.18 6.90 70.00 2.00 0.80 1.75 0.95 1.50 
Dec-21 0.17 6.90 70.00 3.00 0.80 1.75 0.95 1.50 
Oct-22 0.16 11.23 90.00 3.00 1.20 1.75 1.00 1.60 
Nov-22 0.15 11.23 90.00 3.00 1.20 1.75 1.00 1.60 
Dec-22 0.15 11.23 90.00 2.30 1.20 1.75 1.00 1.60 
Oct-23 0.15 12.00 127.00 2.00 2.00 2.24 1.30 1.75 
Nov-23 0.15 12.00 127.00 2.50 2.00 2.24 1.30 1.75 
Dec-23 0.14 12.00 127.00 3.62 2.00 2.24 1.30 1.75 
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4.2.  Cost forecasts for 2024 based on inflation 

Economic forecasts for Morocco in 2024 indicate that the average inflation rate is expected to 
decline to 2.4%, a significant drop from 6.1% in 2023. This decrease is largely driven by falling 
food prices and a general slowdown in price increases. However, some factors may continue to 
exert inflationary pressure in the coming months, including the planned rise in butane gas prices 
and the impact of drought-related reductions in agricultural output (Alby S., 2024). 

Given these projections, cost forecasts for 2024 (Table 3) have been adjusted to reflect the 
2.4% inflation rate, allowing for a more reliable assessment of potential economic fluctuations 
affecting olive oil production. To account for uncertainty, possible deviations were estimated by 
analyzing historical data standard deviations and incorporating insights from the company’s past 
experience in the industry. This approach ensures a more reliable forecast, helping to navigate 
price volatility and optimize financial planning. 

 

Table 3 : Cost forecast for olive oil production in Morocco (2024) 

 
Time Olive Cost 

(dhs/kg) 
Olive Oil 
Sale Price 
(dhs/L) 

Processing 
Cost 
(dhs/L) 

Warehousing 
& Inventory 
Cost (dhs/L) 

Energy, 
Labor, 
Maintenance 
(dhs/L) 

Packaging 
& Label 
(dhs/L) 

Transportation 
Cost (dhs/L) 

23-Oct 12.00 127.00 2.00 2.00 2.24 1.30 1.75 
23-Nov 12.00 127.00 2.50 2.00 2.24 1.30 1.75 
23-Dec 12.00 127.00 3.62 2.00 2.24 1.30 1.75 

Adjusted for 
Inflation 
2.4% (2024) 12.29 130.05 3.73 2.05 2.29 1.34 1.79 

 
 
4.3.  Variable descriptions 

To facilitate the understanding of the models used in this study, Table 4 provides a detailed 
breakdown of the decision variables, auxiliary variables, and robustness adjustment variables, 
while Table 5 outlines the parameters and their descriptions. 

With these variables and parameters defined, the next section explores how robust optimization 
techniques are integrated into APIA’s supply chain to handle uncertainty. 
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Table 4 : Variable description 

 
Type Variable Description 

Decision Variable 𝑋𝑠(𝑖)  Quantity of olives purchased from supplier i. 
Decision Variable 𝑋𝑜  Total quantity of olive oil produced. 
Auxiliary Variable 𝑌𝑠(𝑖) Auxiliary variable ensuring feasibility of procurement under uncertainty.  
Auxiliary Variable 𝑌𝑜(𝑖) Auxiliary variable ensuring feasibility of production under uncertainty.  
Protection Variable 𝑃𝑠(𝑖)  Slack adjustment for purchasing cost uncertainty. 
Protection Variable 𝑃𝑜(𝑖) Slack adjustment for yield uncertainty. 
Protection Variable 𝑃𝑡𝑝𝑠(𝑖) Slack adjustment for transportation cost uncertainty. 
Protection Variable 𝑃𝑝𝑐 Slack adjustment for processing cost uncertainty. 
Protection Variable 𝑃𝑒𝑙 Slack adjustment for energy cost uncertainty. 
Protection Variable 𝑃𝑝𝑙 Slack adjustment for packaging cost uncertainty. 
Protection Variable 𝑃𝑤𝑐 Slack adjustment for warehousing cost uncertainty. 
Protection Variable 𝑃𝑟 Slack adjustment for revenue uncertainty. 
Robustness Adjustment Variable 𝑀𝑟 Worst-case adjustment buffer for procurement cost uncertainty. 
Robustness Adjustment Variable 𝑀𝑜 Worst-case adjustment buffer for yield uncertainty. 
Robustness Adjustment Variable 𝑀𝑡𝑝𝑠 Worst-case adjustment buffer for transportation cost uncertainty. 
Robustness Adjustment Variable 𝑀𝑝𝑐 Worst-case adjustment buffer for processing cost uncertainty. 
Robustness Adjustment Variable 𝑀𝑒𝑙 Worst-case adjustment buffer for energy cost uncertainty. 
Robustness Adjustment Variable 𝑀𝑝𝑙 Worst-case adjustment buffer for packaging cost uncertainty. 
Robustness Adjustment Variable 𝑀𝑤𝑐 Worst-case adjustment buffer for warehousing cost uncertainty 
Robustness Adjustment Variable 𝑀𝑟 Worst-case adjustment buffer for revenue uncertainty. 

 
 

Table 5 : Parameters 

 
Parameter Description 

𝐴𝑠(𝑖), 𝐵𝑠(𝑖) Nominal purchasing cost and uncertainty per supplier i. 

𝐴𝑜(𝑖), 𝐵𝑜(𝑖)  Yield coefficient and uncertainty for supplier i. 

𝐴𝑡𝑝𝑠(𝑖), 𝐵𝑡𝑝𝑠(𝑖) Transportation cost and uncertainty per supplier i. 

𝐴𝑝𝑐, 𝐵𝑝𝑐 Nominal and uncertainty in processing costs per liter of oil. 

𝐴𝑒𝑙, 𝐵𝑒𝑙 Nominal and uncertainty in energy costs per liter of oil. 

𝐴𝑝𝑙, 𝐵𝑝𝑙 Nominal and uncertainty in packaging costs per liter of oil. 

𝐴𝑤𝑐, 𝐵𝑤𝑐 Nominal and uncertainty in warehousing costs per unit of olives. 

𝐴𝑟, 𝐵𝑟 Nominal selling price per liter of oil and its uncertainty. 

𝑇𝑠, 𝑇𝑜, 𝑇𝑡𝑝𝑠, 𝑇𝑝𝑐, 𝑇𝑒𝑙, 𝑇𝑝𝑙, 𝑇𝑤𝑐, 𝑇𝑟 
  

  
Robustness parameters controlling the impact of uncertainty in 
procurement, yield, transportation, processing, energy, packaging, 
warehousing, and revenue.  
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Chapter 5: Experimentation 
 
5.1.  Deterministic optimization framework 

To establish a foundation for optimizing APIA’s supply chain operations, a deterministic 
optimization model was developed, assuming perfect knowledge of parameters. The primary 
objective of this model is to maximize APIA’s profit (𝑍) under fixed and predictable conditions, 
where all costs, yields, and revenues remain constant. This approach provides valuable insights 
into operational efficiency and serves as a baseline for decision-making. However, it does not 
account for real-world uncertainties, such as supplier price fluctuations, processing efficiency 
variations, and demand volatility. 

The deterministic formulation of the objective function is mathematically expressed in 
Equation: 

𝑍 =  (𝐴𝑟. 𝑋𝑜) −  ( ∑(𝐴𝑠(𝑖). 𝑋𝑠(𝑖))

3

𝑖=1

+ ∑(𝐴𝑡𝑝𝑠(𝑖). 𝑋𝑠(𝑖)) + (𝐴𝑝𝑐. 𝑋𝑜)

3

𝑖=1

+ (𝐴𝑒𝑙. 𝑋𝑜) +  (𝐴𝑝𝑙. 𝑋𝑜)

+ ∑(𝐴𝑤𝑐. 𝑋𝑠(𝑖))

3

𝑖=1

)            ∀𝑖 ∈ {1,2,3}         

Where: 
- Total revenue is represented by  𝐴𝑟 ×  𝑋𝑜 where 𝑋𝑜 is the quantity of oil produced and 

sold and 𝐴𝑟 is the unit sale price.  
- Cost components include:  

1. Procurement costs of olives from each supplier ∑ (𝐴𝑠(𝑖). 𝑋𝑠(𝑖))3
𝑖=1 , 

2. Transportation costs of olives from each supplier ∑ (𝐴𝑡𝑝𝑠(𝑖). 𝑋𝑠(𝑖))3
𝑖=1 ,  

3. Processing costs (𝐴𝑝𝑐. 𝑋𝑜),  
4. Energy, labor and maintenance costs (𝐴𝑒𝑙. 𝑋𝑜),  
5. Packaging and labeling costs (𝐴𝑝𝑙. 𝑋𝑜) 
6. Warehousing costs ∑ (𝐴𝑤𝑐. 𝑋𝑠(𝑖))3

𝑖=1 .  

The deterministic model considers three suppliers instead of a single source to assess supplier 
diversification and its impact on risk mitigation. While computationally efficient, it does 
not account for uncertainty in supplier costs, processing efficiency, and market prices, 
necessitating a robust optimization approach.  

5.2.  Bertsimas & Sim application to APIA’s supply chain optimization 

The Bertsimas & Sim (2002) approach is applied to APIA’s supply chain optimization to maximize 
profitability while effectively managing uncertainty in key cost components. This framework 
employs a control parameter (𝑇) to strike a balance between robustness and feasibility, ensuring 
that operational constraints remain practical without being overly conservative 
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Table 6 : Optimized constraints for APIA's supply chain using the Bertsimas & Sim robust model 

Constraint Equation Explanations 

Objective function  
𝑀𝑎𝑥 𝑍 = 𝑅𝐸𝑉 − 𝐶 

Maximizes total profit by optimizing revenue (𝑅𝐸𝑉) 
and minimizing costs (𝐶) while managing uncertainty 

Revenue Formulation  
𝐴𝑟. 𝑋𝑜 −  𝑃𝑟 −  𝑀𝑟. 𝑇𝑟 −  𝑅𝑒𝑣 ≥ 0 

Ensures revenue covers uncertainties in pricing. 
𝑃𝑟 captures fluctuations, 𝑀𝑟 buffers deviations, and 
𝑇𝑟 controls exposure to risk 
 

Revenue Risk   
𝑀𝑟 + 𝑃𝑟 − 𝐵𝑟. 𝑌𝑜(𝑖) ≥ 0     ∀𝑖 ∈ {1,2,3} 

Limits revenue fluctuations by keeping deviations 
within controlled bounds. 

Procurement Cost Constraint 
∑(𝐴𝑠(𝑖). 𝑋𝑠(𝑖) + 𝑃𝑠(𝑖))

3

𝑖=1

+ 𝑀𝑠. 𝑇𝑠 − 𝐶1 ≤ 0 ∀𝑖

∈ {1,2,3} 

Ensures procurement costs remain stable under 
supplier price variations. 𝑃𝑠(𝑖) captures uncertainty, 
𝑀𝑠  buffers deviations, and 𝑇𝑠  controls impact 

Procurement Risk Constraint  
𝑀𝑠 + 𝑃𝑠(𝑖) − 𝐵𝑠(𝑖). 𝑌𝑠(𝑖) ≥ 0 ∀𝑖 ∈ {1,2,3} 

Limits procurement cost fluctuations to maintain 
predictability 

Procurement Quantity 
Constraint 
 

 
𝑋𝑠(𝑖) − 𝑌𝑠(𝑖) ≥ 0 ∀𝑖 ∈  𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑠 

 
 
 
 
  

Ensures purchased quantity aligns with procurement 
limits under uncertainty. 
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Constraint Equation Explanations 

Transportation Cost 
Constraint 
 

∑(𝐴𝑡𝑝𝑠(𝑖). 𝑋𝑠(𝑖) + 𝑃𝑡𝑝𝑠(𝑖))

3

𝑖=1

+ 𝑀𝑡𝑝𝑠. 𝑇𝑡𝑝𝑠 −  𝐶2 ≤ 0  ∀𝑖

∈ {1,2,3} 

Keeps transportation costs stable despite 
price fluctuations. 

Transportation Risk 
Constraint 
 

 
𝑀𝑡𝑝𝑠 + 𝑃𝑡𝑝𝑠(𝑖) − 𝐵𝑡𝑝𝑠(𝑖). 𝑌𝑠(𝑖) ≥ 0    ∀𝑖 ∈ {1,2,3} 

Prevents excessive transportation cost 
variations. 

Processing Cost Constraint 
 

 
𝐴𝑝𝑐. 𝑋𝑜 + 𝑃𝑝𝑐 + 𝑀𝑝𝑐. 𝑇𝑝𝑐 − 𝐶3 ≤ 0 

Controls processing cost fluctuations by 
incorporating buffer terms. 

Processing Risk Constraint 
 

 
𝑀𝑝𝑐 + 𝑃𝑝𝑐 − 𝐵𝑝𝑐. 𝑌𝑜(𝑖) ≥ 0     ∀𝑖 ∈ {1,2,3} 

Maintains stability in processing costs. 

Energy, Labor & Maintenance 
Cost Constraint 
 

 
𝐴𝑒𝑙. 𝑋𝑜 + 𝑃𝑒𝑙 + 𝑀𝑒𝑙. 𝑇𝑒𝑙 − 𝐶4 ≤ 0 

Ensures operational costs remain stable under 
energy and labor fluctuations. 

Energy, Labor & Maintenance 
Risk Constraint 
 

 
𝑀𝑒𝑙 + 𝑃𝑒𝑙 − 𝐵𝑒𝑙. 𝑌𝑜(𝑖) ≥ 0       ∀𝑖 ∈ {1,2,3} 

Limits cost deviations in energy, labor, and 
maintenance. 

Packaging Cost Constraint 
 

 
𝐴𝑝𝑙. 𝑋𝑜 + 𝑃𝑝𝑙 + 𝑀𝑝𝑙. 𝑇𝑝𝑙 − 𝐶5 ≤ 0 

Keeps packaging costs within feasible limits 
despite material price variations. 
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Constraint Equation Explanations 

Packaging Risk Constraint 
 

 
𝑀𝑝𝑙 + 𝑃𝑝𝑙 − 𝐵𝑝𝑙. 𝑌𝑜(𝑖) ≥ 0        ∀𝑖 ∈ {1,2,3} 

Prevents excessive fluctuations in packaging costs. 

Warehousing Cost Constraint 
∑(𝐴𝑤𝑐. 𝑋𝑠(𝑖) + 𝑃𝑤𝑐)

3

𝑖=1

+ 𝑀𝑤𝑐. 𝑇𝑤𝑐 − 𝐶6 ≤ 0  
Ensures storage costs remain controlled despite price 
fluctuations. 

Warehousing Risk Constraint 
 

 
𝑀𝑤𝑐 + 𝑃𝑤𝑐 − 𝐵𝑤𝑐. 𝑌𝑠(𝑖) ≥ 0        ∀𝑖 ∈ {1,2,3} 

Limits deviations in warehousing costs. 

Yield Constraint 
∑(𝐴𝑜(𝑖). 𝑋𝑠(𝑖) − 𝑃𝑜(𝑖))

3

𝑖=1

− 𝑀𝑜 . 𝑇𝑜 − 𝑋𝑜 ≥ 0 ∀𝑖

∈ {1,2,3} 

Ensures feasible oil production despite uncertainties 
in yield.  

Yield Risk Constraint 𝑀𝑜 + 𝑃𝑜(𝑖) − 𝐵𝑜(𝑖). 𝑌𝑜(𝑖) ≥ 0 ∀𝑖 ∈   {1,2,3} Limits fluctuations in production efficiency. 

Capacity Constraints 
∑ 𝑋𝑠(𝑖) ≤ 

3

𝑖=1

 WarehouseProdCapacity 

𝑋𝑜 ≤ MaxOilProcessingCapacity 

Ensures procurement and production remain within 
operational limits. 
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This comprehensive framework offers a robust approach to optimizing profit in olive oil 
production while effectively addressing uncertainty. Decision variables  𝑋𝑗 represent the key 
quantities to optimize, determining procurement, production, and sales levels, while auxiliary 
variables 𝑌𝑗 adjust for uncertainty, ensuring that all constraints remain feasible under fluctuating 
conditions. 

Protection variables 𝑀𝑖 enhances the model’s robustness by acting as buffers that account for 
worst-case deviations in up to 𝑇𝑖 coefficients, thereby absorbing cost and yield variations without 
making the model excessively conservative. Adjustment variables 𝑝𝑖𝑗 capture the impact of 
uncertainty on constraints, enabling the model to react to fluctuations in supplier prices, yield rates, 
or other key parameters. 

Key parameters, including nominal values 𝐴𝑖𝑗  and uncertainty ranges 𝐵𝑖𝑗 , define allowable 
variation, balancing risk management with profit optimization. The robustness parameter 
𝑇𝑖 introduces flexibility, enabling the model to accommodate different risk tolerance levels 
ranging from conservative strategies, which prepare for extreme scenarios, to profit-maximizing 
approaches, which assume only limited deviations in key parameters.   

By integrating intermediate variables, protective adjustments, and cardinality-controlled 
uncertainty through 𝑇𝑖, the model supports reliable, adaptable, and practical decision-making 
across procurement, processing, and revenue generation. Ultimately, it achieves an effective 
balance between maximizing performance and managing risk, ensuring that the supply chain 
remains stable and profitable despite external fluctuations. 

5.3.  Comparative model: Ellipsoid approach 

In the context of APIA’s supply chain operations, the ellipsoid model is implemented to enhance 
decision-making under uncertainty by introducing a probabilistic feasibility framework. This 
method replaces rigid worst-case constraint buffers with ellipsoidal protection terms (𝐸𝐿𝑃), 
ensuring feasibility at a predefined confidence level while allowing for more adaptive risk 
management. 

The key modifications to the constraints include: 

- Ellipsoidal Uncertainty Representation: 
Instead of explicitly modeling a set number of worst-case deviations, each constraint 
integrates an ellipsoidal protection term (𝐸𝐿𝑃): 

Σ ⋅ 𝐸𝐿𝑃, where      𝐸𝐿𝑃2 = 𝐵2 𝑍2 

This probabilistic adjustment applies consistently across procurement, transportation, 
processing, energy, packaging, and warehousing constraints, capturing correlated uncertainties 
rather than independent worst-case deviations. 
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- Probabilistic Feasibility Guarantee: 
The model ensures feasibility at a predefined confidence level, providing a more flexible 
and adaptive treatment of uncertainty compared to rigid worst-case assumptions. 

By replacing the deterministic worst-case robustness framework with an adaptive, 
probability-driven structure, the ellipsoid model enables a smoother response to uncertainty, 
balancing robustness with computational efficiency while maintaining a high level of feasibility. 

5.4.  Model solving and implementation 

Both robust optimization models are implemented and solved using LINGO software, with the 
primary analysis and results focusing on the primal model (Bertsimas & Sim), while the Ellipsoid 
Model serves as a comparative benchmark. 

The integer programming formulation is specifically designed to address the optimization 
problem efficiently, leveraging LINGO's capabilities for both linear and nonlinear problem-
solving. The Bertsimas & Sim (2002) robust optimization framework is implemented first, with 
its LINGO code detailed in Table A1 and the corresponding mathematical formulation in Table 
A2. Each run was completed in under a second, ensuring computational efficiency. Since LINGO 
do not provide the guaranteed optimal solution for non-linear problems, the objective function 
value for the Ellipsoid Model may not be the best one. 

Additionally, the Ellipsoid Model is implemented as an alternative approach, with its LINGO 
code provided in Table A5 and its formulation in Table A6. A comparative analysis of both 
models, presented in Section 7.6, evaluates their trade-offs in terms of computational efficiency 
and solution conservatism, highlighting the practical advantages of each approach. 
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Chapter 6: Discussion on scenario design and modeling decisions  
 
6.1.  Scenario design: Evaluating procurement and yield uncertainty 

To evaluate the primal model's performance under varying conditions, we established different 
sets of scenarios. 

The robustness parameter for revenue (𝑇𝑟) was fixed at its best-case value across all scenarios. 
This decision aligns with the company’s strategic control over pricing, which allows for 
stabilization of revenue regardless of other uncertainties. By maintaining 𝑇𝑟 at its optimal value, 
the model ensures that revenue remains a stable factor, enabling a clearer analysis of the impact of 
procurement and yield uncertainties. 

Fixing 𝑇𝑡𝑝𝑠, 𝑇𝑝𝑐, 𝑇𝑒𝑙, 𝑇𝑝𝑙, 𝑇𝑤𝑐 as either all best-case or all worst-case acknowledges the 
correlation among operational costs. These parameters represent interconnected processes, such 
as transportation, processing, and storage. By grouping them into coherent sets, the scenarios 
provide a comprehensive view of how operational cost variability affects overall performance, 
isolating the effects of procurement and yield uncertainties for clarity. 

6.2.  Set of scenarios 1: Operational costs at best case 

In this set of scenarios, the robustness parameters for operational costs (𝑇𝑡𝑝𝑠, 𝑇𝑝𝑐, 𝑇𝑒𝑙, 𝑇𝑝𝑙, 𝑇𝑤𝑐) 
including transportation, processing, energy, packaging, and storage were fixed at their best-case 
values. This assumption reflects an optimistic scenario, where operational cost uncertainties are 
minimal. The robustness parameters for procurement (𝑇𝑠) and yield (𝑇𝑜) were changed to evaluate 
their isolated impacts under stable operational conditions.    

6.3.  Set of scenarios 2: Operational costs at worst case 

In this scenario 𝑇𝑡𝑝𝑠, 𝑇𝑝𝑐, 𝑇𝑒𝑙, 𝑇𝑝𝑙, 𝑇𝑤𝑐  were set to their worst-case values, representing a more 
conservative outlook where operational costs are highly variable and correlated. This set highlights 
the compounded effect of operational cost uncertainties on the model's performance. Similarly to 
the first set of scenarios, 𝑇𝑠 and 𝑇𝑜 were varied to evaluate their contributions under challenging 
operational conditions. 

This thesis employs a robust optimization framework to improve decision-making in the olive 
oil production process, accounting for uncertainties in procurement, yield, transportation, and 
operational costs. While the model provides a structured approach to handling uncertainty, this 
discussion examines further the rationale behind key modeling decisions specifically, the choice 
not to use midpoint values for robustness parameters (𝑇), the exclusion of statistical analysis and 
the implications of using LINGO's deterministic approach.  
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6.4.  Rationale for not using mid-point values for 𝑻 

The decision to exclude mid-point values for 𝑇 is based on the price of robustness which is the 
balance between maximizing profit and managing uncertainty. 𝑇 determines how many 
uncertainties, can fluctuate simultaneously. When 𝑇 is set to mid-point values (1 or 2), risk is 
distributed too evenly, making the model less effective in both stable and uncertain conditions. 

Mid-point values fail to fully account for disruptions, leading to poor inventory and cost 
planning. For instance, if two out of three suppliers experience lower yields but the model assumes 
only one will be affected, it underestimates the risk of shortages, potentially causing production 
delays. Similarly, if multiple suppliers raise prices but the model only anticipates   supply chain 
uncertainties are often interconnected, mid-point values don’t adequately capture cascading risks, 
ultimately reducing decision accuracy. 

From a computational perspective, mid-point values add complexity without significant 
benefits. Since LINGO applies fixed worst-case deviations, it has to evaluate multiple scenarios 
separately, making the process inefficient. By restricting 𝑇 to 0 (nominal conditions) or 3 (fully 
robust conditions), the model ensures a clearer strategy, either prioritizing profit when risks are 
low or fully preparing for potential disruptions. This approach enhances decision-making, 
efficiency, and overall supply chain resilience. Future research could explore dynamic robust 
optimization for more flexible risk management. 

6.5.  Keeping other robustness parameters at best-case and worst-case values 

The decision to group other robustness parameters such as those related to transportation, 
processing, energy, packaging, and storage costs into unified best-case or worst-case scenarios 
reflects their inherent interdependencies. In real-world operations, these costs are often correlated.  

For instance, if transportation costs increase due to external disruptions, it is likely that 
energy, processing, and other related costs will also rise. This interdependence is consistent with 
operational insights, such as those highlighted by Mulvey et al. (1995), where such parameters 
rarely vary in isolation. 

Aligning these robustness parameters at unified extremes ensures the model accurately 
represents practical scenarios. Keeping them at best-case values reflects ideal operating conditions, 
optimizing for profitability. Conversely, grouping them at worst-case values accounts for potential 
cost surges, prioritizing resilience and feasibility under adverse conditions. This approach ensures 
the model provides meaningful insights for strategic decision-making while avoiding unrealistic 
assumptions about the independence of these costs. 

Furthermore, maintaining unified best-case or worst-case scenarios supports computational 
efficiency and interpretability. As noted by Goldfarb and Iyengar (2003), introducing unnecessary 
granularity in correlated parameters can overly complicate the model without yielding 
proportionate improvements in decision quality. By grouping these parameters, the model 
simplifies the optimization process while still capturing the critical impacts of uncertainty on 
operational  costs. This  structured approach  not  only  mirrors real-world cost behaviors but also
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allows the model to focus on actionable insights, enabling robust and practical decision-making 
in olive oil production. 

6.6.  Exclusion of statistical analysis 

Statistical methods for modeling uncertainty typically rely on probability distributions based on 
historical data to predict potential outcomes. While these approaches can be effective, they require 
extensive, high-quality data that accurately reflects variations in key parameters.  

However, in olive oil production, uncertainties such as supplier costs, yield fluctuations, and 
market dynamics are influenced by unpredictable external factors like weather conditions, global 
market volatility, and supply chain disruptions. Because these factors often lack sufficient 
historical data, a purely statistical approach may not be reliable. 

To address this challenge, this study adopts a robust optimization framework that does not 
depend on probabilistic assumptions. Instead, it manages uncertainty by defining parameter 
ranges, making it particularly useful in real-world scenarios where data may be incomplete, 
unreliable, or affected by external sources. As Bertsimas and Sim (2002) demonstrated, robust 
optimization offers a flexible and computationally efficient way to balance robustness and 
optimality. Their framework allows decision-makers to account for the most significant 
uncertainties without being overly conservative, ensuring that solutions remain practical and 
feasible. 

Earlier models, like those introduced by Soyster (1973), adopted a highly conservative 
approach, assuming that all parameters could reach their worst-case values simultaneously. 

In contrast, Ben-Tal and Nemirovski (1998) introduced more refined models that focus on 
protecting against selected deviations while maintaining operational feasibility. This balance 
between robustness and performance is particularly important in dynamic systems like olive oil 
production, where multiple interconnected uncertainties can arise.  

Mulvey et al. (1995) further emphasized the value of robust optimization in supply chain 
management, highlighting its ability to generate reliable solutions without requiring precise 
probabilistic data. Likewise, Bertsimas and Pachamanova (2008) demonstrated how robustness 
parameters can be adapted to address evolving uncertainties over time, making robust optimization 
a practical tool for managing dynamic and unpredictable environments. Additionally, Bienstock 
(1996) pointed out that statistical methods often struggle with assumptions about data 
distributions, which can lead to inaccuracies in decision-making when those assumptions do not 
hold. 

By leveraging a robust optimization framework, this study ensures that decision-making 
remains resilient to worst-case scenarios while minimizing reliance on statistical models. This 
approach provides a practical and effective method for optimizing olive oil production, addressing 
the limitations of probabilistic techniques while maintaining operational feasibility and near-
optimal performance under uncertainty. 
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Chapter 7: Results  

This chapter presents the results of applying the Bertsimas & Sim (2002) robust optimization 
framework to APIA’s olive oil supply chain. By analyzing the relationship between procurement, 
yield, operational costs, and revenue under varying scenarios, this section highlights the findings 
in terms of decision variables, auxiliary variables, and robustness parameters. The findings are 
contextualized within the proposed mathematical model, illustrating its capability to manage 
uncertainties while enhancing profitability. A complete set of results for all scenarios is presented 
in the appendix. 

7.1.  Objective value 

The experiments are performed by varying two uncertain parameters: procurement cost 
(TS) and yield (TO). Both parameters have two levels: 

- TS index: 0 (best) and 3 (worst) 

- TO index: 0 (best) and 3 (worst) 

This results in four combined scenarios represented as (TS, TO): (0,0), (0,3), (3,0), and (3,3). 

Each scenario is evaluated under two operational cost assumptions: best-case and worst-case 
operational costs. The objective is to measure the impact of these uncertainties on profit 
maximization. 

Figure 1 shows how procurement costs (𝑇𝑆) and yield variability (𝑇𝑂) shape profitability, with 
both factors playing a significant role in financial performance. 

- In the best-case operational scenario, where all conditions are optimal, profit starts 
at 5,089,770 DHS (𝑇𝑆 = 𝑏𝑒𝑠𝑡, 𝑇𝑂 = 𝑏𝑒𝑠𝑡) but declines as uncertainty increases. A 
drop in yield alone (𝑇𝑆 = 𝑏𝑒𝑠𝑡, 𝑇𝑂 = 𝑤𝑜𝑟𝑠𝑡) reduces profit to 4,022,252 DHS, 
while a rise in procurement costs (𝑇𝑆 = 𝑤𝑜𝑟𝑠𝑡, 𝑇𝑂 = 𝑏𝑒𝑠𝑡) leads to a steeper decline 
to 2,835,832 DHS, suggesting that procurement costs put more financial pressure on 
profitability than yield fluctuations. The worst-case combination of both factors 
(𝑇𝑆 = 𝑤𝑜𝑟𝑠𝑡, 𝑇𝑂 = 𝑤𝑜𝑟𝑠𝑡) results in 1,810,861 DHS, highlighting the 
compounding effect of rising costs and declining yields.  

- Under worst-case operational costs, where inefficiencies further constrain 
profitability, the trend is similar but starts at a lower level (4,556,720 DHS, (𝑇𝑆 =
𝑏𝑒𝑠𝑡, 𝑇𝑂 = 𝑏𝑒𝑠𝑡). A worsening 𝑇𝑂 alone (𝑇𝑆 = 𝑏𝑒𝑠𝑡, 𝑇𝑂 = 𝑤𝑜𝑟𝑠𝑡) reduces profit 
to 3,496,598 DHS, while a rise in procurement costs (𝑇𝑆 = 𝑤𝑜𝑟𝑠𝑡, 𝑇𝑂 = 𝑏𝑒𝑠𝑡) 
drops it to 2,382,911 DHS, reinforcing that procurement costs have a stronger impact 
than yield variability. The lowest profit, 1,360,074 DHS (𝑇𝑆 = 𝑤𝑜𝑟𝑠𝑡, 𝑇𝑂 =
𝑤𝑜𝑟𝑠𝑡), confirms the severe financial strain caused when both factors deteriorate 
together. 
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These findings highlight that while both procurement costs and yield variability reduce 
profitability, rising 𝑇𝑆 is the bigger risk. Cost control is essential for financial stability, but 
mitigating both procurement and yield uncertainties together is key to long-term resilience. 

 

Figure 1 : Impact of olive cost and yield variability on profit fluctuations 

 

 
 

 
 

7.2.  Supplier selection and procurement quantities (𝑿𝒔(𝒊)) 

Figure 2 shows that procurement costs (𝑇𝑆) have the biggest influence on supplier selection, while 
yield variability (𝑇𝑂) affects how much can be procured rather than which suppliers are chosen. 

- When procurement costs are low and yields are stable (𝑇𝑆 = 𝑏𝑒𝑠𝑡, 𝑇𝑂 = 𝑏𝑒𝑠𝑡), the 
model relies entirely on Supplier 3, sourcing 700,000 kg to maximize cost efficiency. 
Even when , 𝑇𝑂 worsens (𝑇𝑆 = 𝑏𝑒𝑠𝑡, 𝑇𝑂 = 𝑤𝑜𝑟𝑠𝑡), supplier selection remains 
unchanged, meaning that fluctuations in yield alone do not trigger supplier shifts as 
long as costs stay low. 

- However, when 𝑇𝑆 increases (𝑇𝑆 = 𝑤𝑜𝑟𝑠𝑡, 𝑇𝑂 = 𝑏𝑒𝑠𝑡), the model begins 
diversifying, adding Supplier 1 (131,683.2 kg) while reducing reliance on Supplier 3 
(568,316.8 kg). In the worst-case scenario (𝑇𝑆 = 𝑤𝑜𝑟𝑠𝑡, 𝑇𝑂 = 𝑤𝑜𝑟𝑠𝑡), Supplier 1’s 
share decreases slightly to 123,148.1 kg, while Supplier 3’s share rises to 576,851.9 
kg. This suggests that higher procurement costs push the model to diversify, while 
worsening yields primarily affect procurement feasibility rather than supplier choice. 
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Interestingly, Supplier 2 is never selected, likely due to higher costs or less favorable terms. 
These results highlight the importance of a flexible procurement strategy that responds to cost 
changes while ensuring supply stability, balancing cost efficiency with risk mitigation. 

Figure 2 : Impact of olive cost and yield variability on optimal supply quantity 

 

 

7.3.  Production quantity (𝑿𝒐) 

Figure 3 shows that yield variability (𝑇𝑂) has a bigger impact on production than procurement 
costs (𝑇𝑆). 
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reaches its peak at 133,000 liters. But when yields drop (𝑇𝑆 = 𝑏𝑒𝑠𝑡, 𝑇𝑂 = 𝑤𝑜𝑟𝑠𝑡), 
production falls to 124,299.1 liters, showing how directly yield availability affects 
output. 

- On the other hand, when procurement costs increase but yields remain stable  (𝑇𝑆 =
𝑤𝑜𝑟𝑠𝑡, 𝑇𝑂 = 𝑏𝑒𝑠𝑡), production only decreases slightly to 131,683.2 liters, meaning 
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(𝑇𝑆 = 𝑤𝑜𝑟𝑠𝑡, 𝑇𝑂 = 𝑤𝑜𝑟𝑠𝑡), production drops further to 123,148.1 liters, 
confirming that yield variability plays the biggest role in determining output. 

These results highlight that while controlling procurement costs is important, managing yield 
fluctuations is even more critical to maintaining stable production levels.
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Figure 3 : Impact of olive cost and yield variability on optimal production volume 

 
 

 

7.4.  Uncertainty protection mechanism 

This section presents the protection variables calculated by the robust optimization model to help 
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especially when procurement costs are favorable. This heavy reliance increases risk exposure when 
uncertainties occur, requiring larger protective measures. 

The same trend appears in transportation. Supplier 3 needs an additional 230,740.7 kg of 
transportation capacity to manage potential disruptions, compared to 82,120.3 kg for Supplier 1 
and 91,560.4 kg for Supplier 2. This highlights the logistical risks tied to Supplier 3’s dominant 
role in the supply chain. 

The model also recommends extra capacity for warehousing and processing to absorb fluctuations 
in supply and production. It identifies the need for an additional 115,370 kg of warehousing space 
and 43,101 liters of processing capacity under worst-case conditions. 

These findings confirm that Supplier 3 presents the highest risk, not just in procurement but across 
the supply chain. Its high protection values underline the importance of reducing dependency on a 
single supplier. To improve resilience, APIA should consider diversifying its suppliers and 
strengthening transportation, storage, and processing capabilities. 

 

Figure 4 : Protection variables under maximum uncertainty 
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7.5.  Comparative analysis: Evaluating Model 1 (Robust Optimization) against Model 2 
(Ellipsoid Approach)  
 
The previous section focused on evaluating the performance of Model 1, based on the framework 
of Bertsimas and Sim (2002). This section extends the analysis by comparing its effectiveness 
against an alternative  Model 2, assessing the trade-offs between strict robustness and probabilistic 
feasibility in decision-making under uncertainty. 

Parameters for comparative study 

- Bertsimas & Sim model (𝑇 = 3): This approach represents a fully robust scenario, 
where up to three uncertain coefficients can simultaneously reach their worst-case 
deviations. By incorporating uncertainty directly into constraints, the model 
ensures strict feasibility, leading to conservative but highly reliable decisions under 
extreme conditions. 

- Ellipsoid model (𝛴 = 0.14, 𝛴 = 0.45)  : The Ellipsoid Model provides probabilistic 
feasibility, meaning that constraints hold with a probability dependent on 𝛴. The 
probability of feasibility is computed as: 

𝑃feasibility = 𝑒−
Σ2

2  

The impact of 𝛴 on feasibility and financial performance varies: 

- For 𝛴 = 0.14, feasibility is approximately 99%, offering a moderate balance 
between robustness and flexibility. 

- For 𝛴 = 0.45, feasibility decreases significantly, but profitability increases, 
reflecting a riskier decision-making approach. This setting prioritizes expected 
performance over strict feasibility, making it more suitable for less risk-averse 
environments.  

 
To further illustrate the effect of 𝛴 on feasibility, Figure 5 provides a visualization of how 
increasing 𝛴 leads to a gradual decline in feasibility probability. This figure was developed using 
data generated from the Ellipsoid model simulations conducted in this study. 
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Figure 5 : Effect of sigma on feasibility in the Ellipsoid model 

 

 
 

 

Performance comparison 

Table 7 presents a comparative evaluation of both models based on key performance metrics, 
including profitability, feasibility guarantees, and robustness control mechanisms. 

Table 7 : Comparative analysis of the Bertsimas & Sim model and the Ellipsoid model 
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This comparison highlights a key trade-off between strict feasibility and probabilistic 

feasibility. The Bertsimas & Sim model (𝑇 = 3) guarantees feasibility even in the worst-case 
scenario, making it a highly reliable choice for high-risk environments where constraint violations 
are unacceptable. However, this strict robustness can limit financial performance by prioritizing 
stability over flexibility.  

On the other hand, the Ellipsoid Model, particularly at higher 𝛴 values, introduces greater 
profitability potential by leveraging correlated uncertainties, but this comes at the expense 
of reduced feasibility guarantees. As 𝛴 increases, the risk of constraint violations rises, making it 
a more adaptable but riskier approach.  

In our case, where ensuring feasibility is a top priority, the Bertsimas & Sim model is the 
preferred choice, as it provides the necessary robustness to withstand extreme uncertainty while 
maintaining operational stability. While the Ellipsoid Model may offer higher expected returns, its 
probabilistic feasibility introduces a level of risk that is not acceptable in this context. By 
prioritizing reliability over flexibility, the Bertsimas & Sim model ensures that decisions remain 
stable under worst-case conditions, making it the best fit for APIA’s strategic needs. 
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Chapter 8: Conclusion, recommendation and research perspectives  
 

8.1.  Conclusion 

This study demonstrates that the Bertsimas & Sim (2002) robust optimization framework is well-
suited for APIA’s olive oil supply chain, offering strong feasibility guarantees under uncertainty. 
While the Ellipsoid Model provides a probabilistic alternative, the primary results emphasize the 
effectiveness of the primal model in managing procurement decisions, yield fluctuations, and 
operational constraints with greater control and reliability. 

This thesis has presented a robust optimization framework customized for the intrinsic 
uncertainties within the olive oil production supply chain. The model integrates procurement, 
production, operational costs, and revenue considerations into one model to yield feasible and 
robust decisions. With the use of extreme 𝑇 values for the robustness parameters, this framework 
allows decision-makers to study the critical trade-offs between risk mitigation and profit 
maximization. This offers a structured approach to navigate the unpredictable nature of supply 
chains in the industry. 

The decision to adopt robust optimization, rather than statistical methods, reflects the 
practical constraints faced by the industry, such as limited and unreliable historical data. This 
approach prioritizes bounded uncertainty, ensuring feasibility across worst-case scenarios without 
requiring detailed probabilistic assumptions. This focus on practical applicability aligns with the 
operational realities of olive oil production, where seasonal variability, supply chain disruptions, 
and market dynamics necessitate adaptive planning. 

8.2.  Recommendations for APIA 

To enhance APIA’s supply chain resilience and long-term profitability, a strategic and data-driven 
approach is necessary to mitigate key risks related to procurement costs, yield variability, and 
transportation uncertainties. The findings highlight that procurement costs have the most 
significant impact on profitability, with supplier 3 being the most cost-effective yet highly 
vulnerable to fluctuations. To reduce risk exposure, APIA should diversify its procurement 
strategy by securing flexible contracts, exploring alternative suppliers, and negotiating price-lock 
agreements during low-cost periods to stabilize procurement expenses. 

Beyond procurement, yield variability presents a direct threat to production stability, making 
supply continuity a critical priority. APIA can mitigate this risk by strengthening supplier 
relationships, investing in predictive yield analytics, and maintaining strategic inventory buffers 
to prevent supply disruptions during low-yield seasons. Collaboration with farmers on sustainable 
farming practices and technological improvements can further enhance supply consistency. 

Transportation risks also pose significant challenges, particularly for supplier 3, where 
fluctuating costs add uncertainty to procurement operations. To minimize disruptions, APIA 
should assess alternative transport providers, negotiate more flexible logistics agreements, and 
implement real-time tracking systems to improve supply chain visibility. These measures will help 
anticipate transportation risks and adjust procurement schedules accordingly. 



32  

Additionally, fluctuations in warehousing and processing costs require efficiency 
improvements to maintain stable operations. Implementing a just-in-time (JIT) inventory strategy, 
refining processing workflows, and conducting regular cost-benefit analyses will help APIA 
balance cost efficiency with supply chain flexibility.  

To build a robust and optimized supply chain, APIA must integrate scenario-based risk 
management strategies, data-driven decision-making, and proactive supplier and logistics 
coordination. Strengthening collaboration with suppliers through long-term agreements, risk-
sharing mechanisms, and sustainability-focused partnerships will improve resilience against 
external market shifts. By adopting these targeted strategies, APIA can reduce financial risk, 
enhance operational efficiency, and establish a more sustainable and competitive position in the 
olive oil industry. 

While uncertainty is a constant in the olive oil industry, APIA can transform it into a 
competitive advantage through cost-sensitive procurement, strategic supplier diversification, 
adaptive yield management, and proactive risk mitigation. A dynamic, data-driven approach will 
enhance APIA’s profitability, supply chain stability, and long-term resilience in a rapidly changing 
market.   

8.3.  Research perspectives 

The robust optimization framework developed in this thesis lays a strong foundation for tackling 
the uncertainties and complexities of the olive oil production supply chain. However, there are still 
many opportunities for future research to refine its accuracy, expand its scope, and make it more 
applicable to other industries facing similar challenges. 

One major limitation of the current model is its reliance on historical data, which may be 
incomplete or unreliable. Future studies could address this by incorporating more advanced data 
sources, such as real-time data from Internet of Things (IoT) devices and sensors. These 
technologies could continuously monitor key variables, allowing for a more precise and adaptable 
optimization process. Additionally, integrating machine learning and artificial intelligence could 
help the model predict uncertainties related to supplier behavior, market fluctuations, and yield 
variations. By adjusting its parameters in response to real-time inputs, the model could become 
more responsive to the dynamic nature of the olive oil supply chain. 

While robust optimization is effective in managing uncertainty without requiring detailed 
probabilistic assumptions, a hybrid approach that combines it with probabilistic models could 
provide even greater flexibility. Future research could explore integrating robust optimization with 
statistical methods like Monte Carlo simulations, which would allow the model to account for 
different levels of uncertainty. This would enable decision-makers to maintain stability under 
worst-case scenarios while also leveraging probabilistic forecasts when reliable data is available, 
striking a balance between risk management and strategic planning. 

Currently, the model primarily focuses on balancing risk management with profit 
maximization. However, decision-makers in the olive oil industry and other sectors often must 
consider multiple, sometimes conflicting priorities, such as environmental sustainability,           
social responsibility, and long-term supply chain resilience. Future research could explore multi-
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objective optimization, which would allow the model to optimize financial performance while also 
incorporating sustainability goals and broader strategic considerations. Expanding the   framework 
in this way would provide businesses with more comprehensive decision-making tools that 
integrate economic, environmental, and social factors. 

Although this thesis focuses on procurement and production, robust optimization techniques 
could also be applied to other key areas of the supply chain, such as inventory management, 
demand forecasting, and logistics. A more holistic approach to supply chain optimization would 
help improve coordination across these interconnected areas. For example, incorporating demand 
forecasting could enhance responsiveness to market fluctuations, while improved inventory 
management strategies could prevent shortages or overstocking. Expanding the model in this way 
would create a more complete and practical solution for managing uncertainty across the supply 
chain. 

Collaboration among supply chain stakeholders is another promising area for future 
research. Developing models that incorporate risk-sharing mechanisms and information-sharing 
strategies between suppliers, distributors, and retailers could significantly improve supply chain 
resilience. Technologies like blockchain could enable secure and transparent data exchanges, 
fostering greater trust and coordination among stakeholders. Exploring collaborative strategies for 
mitigating risk could provide valuable insights into strengthening supply chain stability in 
unpredictable environments. 

A crucial next step in advancing this research is testing the model in real-world settings. 
While the theoretical framework outlined in this thesis provides a strong foundation, its practical 
effectiveness needs to be validated through pilot projects in actual olive oil production or similar 
industries. Implementing the model in an operational environment would provide valuable insights 
into its strengths and areas for improvement, helping refine it based on real-world feedback. 
Additionally, developing user-friendly decision-support tools could make advanced optimization 
techniques more accessible to industry professionals, facilitating their practical adoption. 

In conclusion, while the robust optimization framework presented in this thesis offers a 
promising approach to managing uncertainty in the olive oil supply chain, there is still plenty of 
room for further development. By incorporating real-time data sources, extending optimization to 
other areas of the supply chain, and conducting real-world testing, future research can enhance the 
model’s accuracy, adaptability, and practical value. The continued evolution of this framework 
holds great potential, not just for the olive oil industry, but also for other sectors dealing with 
similar challenges related to variability, risk, and complexity.  
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Appendix 
 

Table A1: The LINGO code (Bertsimas & Sim Model) 

SETS: 
Suppliers: Xs, As, Bs, Ys, Ps, Ao, Bo, Yo, Po, Atps, Btps, Ptps; 
ENDSETS 
DATA: 
Suppliers= 1 2 3; 
As= 13.00 14.50 12.29; 
Bs=2.00 2.30 2.50; 
Ao=0.18 0.17 0.19; 
Bo=0.03 0.02 0.02; 
Ar=130.05; 
Br=30.00; 
Atps = 1.79 1.70 1.70; 
Btps = 0.20 0.20 0.40; 
Apc = 3.73; 
Bpc = 0.35; 
Ael = 2.29; 
Bel = 0.01; 
Apl = 1.34; 
Bpl = 0.09; 
Awc = 2.05; 
Bwc = 0.20; 
WarehouseProdCapacity = 700000; 
MaxOilProcessingCapacity = 300000; 
Ts = 3; 
To = 3; 
Tr = 0; 
Ttps = 3; 
Tpc = 1; 
Tel = 1; 
Tpl = 1; 
Twc = 1; 
ENDDATA 
! Objective function ; 
MAX = Rev - C; 
C = C1+C2+C3+C4+C5+C6; 
! Purchasing constraint; 
@SUM(Suppliers(i): As(i)*Xs(i) + Ps(i)) + Ms*Ts - C1 < 0; 
@FOR(Suppliers(i): Ms + Ps(i) - Bs(i)*Ys(i) > 0); 
@FOR(Suppliers(i): Xs(i) - Ys(i) < 0); 
! Yield constraint; 
@SUM(Suppliers(i): Ao(i)*Xs(i) - Po(i)) - Mo*To - Xo > 0; 
@FOR(Suppliers(i): Mo + Po(i) - Bo(i)*Yo(i) > 0); 
! other costs ; 
@SUM(Suppliers(i): Atps(i) * Xs(i) + Ptps(i)) + Mtps * Ttps - C2 < 0; 
@FOR(Suppliers(i): Mtps + Ptps(i) - Btps(i) * Ys(i) > 0); 
Apc * Xo + Ppc + Mpc * Tpc - C3 < 0; 
@FOR(Suppliers(i): Mpc + Ppc - Bpc * Yo(i) > 0); 
Ael * Xo + Pel + Mel * Tel - C4 < 0; 
@FOR(Suppliers(i): Mel + Pel - Bel * Yo(i) > 0); 
Apl * Xo + Ppl + Mpl * Tpl - C5 < 0; 
@FOR(Suppliers(i): Mpl + Ppl - Bpl * Yo(i) > 0); 
@SUM(Suppliers(i): Awc * Xs(i) + Pwc) + Mwc * Twc - C6 < 0; 
@FOR(Suppliers(i): Mwc + Pwc - Bwc * Ys(i) > 0); 
@FOR(Suppliers(i): Xo - Ys(i) < 0); 
Ar * Xo - Pr - Mr * Tr - Rev > 0; 
@FOR(Suppliers(i): Mr + Pr - Br * Yo(i) > 0); 
@FOR(Suppliers(i): Xo - Yo(i) < 0); 
! Capacity; 
@sum(Suppliers(i): Xs(i)) <= WarehouseProdCapacity; 
Xo <= MaxOilProcessingCapacity;    



38  

Table A2: Formulation (Bertsimas & Sim Model) 

MODEL: 
[_1] MAX= REV - C; 
[_2] C - C1 - C2 - C3 - C4 - C5 - C6 = 0; 
[_3] - C1 + 3 * MS + 13 * XS_1 + PS_1 + 14.5 * XS_2 + PS_2 + 12.29 * XS_3 + PS_3 <=0;  
[_4] MS - 2 * YS_1 + PS_1 >= 0; 
[_5] MS - 2.3 * YS_2 + PS_2 >= 0; 
[_6] MS - 2.5 * YS_3 + PS_3 >= 0; 
[_7] XS_1 - YS_1 <= 0; 
[_8] XS_2 - YS_2 <= 0; 
[_9] XS_3 - YS_3 <= 0; 
[_10] - 3 * MO - XO + 0.18 * XS_1 - PO_1 + 0.17 * XS_2 - PO_2 + 0.19 * XS_3 - PO_3>= 0;  
[_11] MO - 0.03 * YO_1 + PO_1 >= 0; 
[_12] MO - 0.02 * YO_2 + PO_2 >= 0; 
[_13] MO - 0.02 * YO_3 + PO_3 >= 0; 
[_14] - C2 + 3 * MTPS + 1.79 * XS_1 + PTPS_1 + 1.7 * XS_2 + PTPS_2 + 1.7 * XS_3 +PTPS_3 <= 0;  
[_15] MTPS - 0.2 * YS_1 + PTPS_1 >= 0; 
[_16] MTPS - 0.2 * YS_2 + PTPS_2 >= 0; 
[_17] MTPS - 0.4 * YS_3 + PTPS_3 >= 0; 
[_18] - C3 + 3.73 * XO + PPC + MPC <= 0; 
[_19] PPC + MPC - 0.35 * YO_1 >= 0; 
[_20] PPC + MPC - 0.35 * YO_2 >= 0; 
[_21] PPC + MPC - 0.35 * YO_3 >= 0; 
[_22] - C4 + 2.29 * XO + PEL + MEL <= 0; 
[_23] PEL + MEL - 0.01 * YO_1 >= 0; 
[_24] PEL + MEL - 0.01 * YO_2 >= 0; 
[_25] PEL + MEL - 0.01 * YO_3 >= 0; 
[_26] - C5 + 1.34 * XO + PPL + MPL <= 0; 
[_27] PPL + MPL - 0.09 * YO_1 >= 0; 
[_28] PPL + MPL - 0.09 * YO_2 >= 0; 
[_29] PPL + MPL - 0.09 * YO_3 >= 0; 
[_30] - C6 + 3 * PWC + MWC + 2.05 * XS_1 + 2.05 * XS_2 + 2.05 * XS_3 <= 0; 
[_31] PWC + MWC - 0.2 * YS_1 >= 0; 
[_32] PWC + MWC - 0.2 * YS_2 >= 0; 
[_33] PWC + MWC - 0.2 * YS_3 >= 0; 
[_34] XO - YS_1 <= 0; 
[_35] XO - YS_2 <= 0; 
[_36] XO - YS_3 <= 0; 
[_37] - REV + 130.05 * XO - PR >= 0; 
[_38] PR + MR - 30 * YO_1 >= 0; 
[_39] PR + MR - 30 * YO_2 >= 0; 
[_40] PR + MR - 30 * YO_3 >= 0; 
[_41] XO - YO_1 <= 0; 
[_42] XO - YO_2 <= 0; 
[_43] XO - YO_3 <= 0; 
[_44] XS_1 + XS_2 + XS_3 <= 700000; 
[_45] XO <= 300000; 
END 
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Table A3: Best-case operational costs (Bertsimas & Sim Model) 

Variable TS=best 
TO=best 

TS=best 
TO=worst 

TS=worst 
TO=best 

TS=worst 
TO=worst  

Objective value 5089770 4022252 2835832 1810861 
AR 130.05 130.05 130.05 130.05 
BR 30.00 30.00 30.00 30.00 
APC 3.73 3.73 3.73 3.73 
BPC 0.35 0.35 0.35 0.35 
AEL 2.29 2.29 2.29 2.29 
BEL 0.01 0.01 0.01 0.01 
APL 1.34 1.34 1.34 1.34 
BPL 0.09 0.09 0.09 0.09 
AWC 2.05 2.05 2.05 2.05 
BWC 0.20 0.20 0.20 0.20 
WAREHOUSEPRODCAPACITY 700000.00 700000.00 700000.00 700000.00 
MAXOILPROCESSINGCAPACITY 300000.00 300000.00 300000.00 300000.00 
TS 0.00 0.00 3.00 3.00 
TO 0.00 3.00 0.00 3.00 
TR 0.00 0.00 0.00 0.00 
TTPS 0.00 0.00 0.00 0.00 
TPC 0.00 0.00 0.00 0.00 
TEL 0.00 0.00 0.00 0.00 
TPL 0.00 0.00 0.00 0.00 
TWC 0.00 0.00 0.00 0.00 
REV 17296650.00 16165090.00 17125400.00 16015420.00 
C 12206880.00 12142840.00 14289560.00 14204560.00 
C1 8603000.00 8603000.00 10683520.00 10662100.00 
C2 1190000.00 1190000.00 1201851.00 1201083.00 
C3 496090.00 463635.50 491178.20 459342.60 
C4 304570.00 284644.90 301554.50 282009.30 
C5 178220.00 166560.70 176455.40 165018.50 
C6 1435000.00 1435000.00 1435000.00 1435000.00 
MS 1750000.00 1750000.00 0.00 0.00 
MO 3990.00 2485.98 3950.50 2462.96 
XO 133000.00 124299.10 131683.20 123148.10 
MTPS 280000.00 280000.00 227326.70 230740.70 
PPC 0.00 0.00 0.00 0.00 
MPC 46550.00 43504.67 46089.11 43101.85 
PEL 0.00 0.00 0.00 0.00 
MEL 1330.00 1242.99 1316.83 1231.48 
PPL 0.00 0.00 0.00 0.00 
MPL 11970.00 11186.92 11851.49 11083.33 
PWC 0.00 0.00 0.00 0.00 
MWC 140000.00 140000.00 113663.40 115370.40 
PR 0.00 0.00 0.00 0.00 
MR 3990000.00 3728972.00 3950495.00 3694444.00 
XS(1) 0.00 0.00 131683.20 123148.10 
XS(2) 0.00 0.00 0.00 0.00 
XS(3) 700000.00 700000.00 568316.80 576851.90 
AS(1) 13.00 13.00 13.00 13.00 
AS(2) 14.50 14.50 14.50 14.50 
AS(3) 12.29 12.29 12.29 12.29 
BS(1) 2.00 2.00 2.00 2.00 
BS(2) 2.30 2.30 2.30 2.30 
BS(3) 2.50 2.50 2.50 2.50 
YS(1) 133000.00 124299.10 131683.20 123148.10 
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Variable TS=best 

TO=best 
TS=best 
TO=worst 

TS=worst 
TO=best 

TS=worst 
TO=worst 

YS(2) 133000.00 124299.10 131683.20 123148.10 
YS(3) 700000.00 700000.00 568316.80 576851.90 
PS(1) 0.00 0.00 263366.30 246296.30 
PS(2) 0.00 0.00 302871.30 283240.70 
PS(3) 0.00 0.00 1420792.00 1442130.00 
AO(1) 0.18 0.18 0.18 0.18 
AO(2) 0.17 0.17 0.17 0.17 
AO(3) 0.19 0.19 0.19 0.19 
BO(1) 0.03 0.03 0.03 0.03 
BO(2) 0.02 0.02 0.02 0.02 
BO(3) 0.02 0.02 0.02 0.02 
YO(1) 133000.00 124299.10 131683.20 123148.10 
YO(2) 133000.00 124299.10 131683.20 123148.10 
YO(3) 133000.00 124299.10 131683.20 123148.10 
PO(1) 0.00 1242.99 0.00 1231.48 

PO(2) 0.00 0.00 0.00 0.00 

PO(3) 0.00 0.00 0.00 0.00 
ATPS(1) 1.79 1.79 1.79 1.79 
ATPS(2) 1.70 1.70 1.70 1.70 
ATPS(3) 1.70 1.70 1.70 1.70 
BTPS(1) 0.20 0.20 0.20 0.20 
BTPS(2) 0.20 0.20 0.20 0.20 
BTPS(3) 0.40 0.40 0.40 0.40 
PTPS(1) 0.00 0.00 0.00 0.00 
PTPS(2) 0.00 0.00 0.00 0.00 
PTPS(3) 0.00 0.00 0.00 0.00 
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Table A4: Worst-case operational costs (Bertsimas & Sim Model) 

Variable TS=best 
TO=best 

TS=best 
TO=worst 

TS=worst 
TO=best 

TS=worst 
TO=worst 

Objective value 4556720 3496598 2382911 1360074 
AR 130.05 130.05 130.05 130.05 
BR 30.00 30.00 30.00 30.00 
APC 3.73 3.73 3.73 3.73 
BPC 0.35 0.35 0.35 0.35 
AEL 2.29 2.29 2.29 2.29 
BEL 0.01 0.01 0.01 0.01 
APL 1.34 1.34 1.34 1.34 
BPL 0.09 0.09 0.09 0.09 
AWC 2.05 2.05 2.05 2.05 
BWC 0.20 0.20 0.20 0.20 
WAREHOUSEPRODCAPACITY 700000.00 700000.00 700000.00 700000.00 
MAXOILPROCESSINGCAPACITY 300000.00 300000.00 300000.00 300000.00 
TS 0.00 0.00 3.00 3.00 
TO 0.00 3.00 0.00 3.00 
TR 0.00 0.00 0.00 0.00 
TTPS 3.00 3.00 3.00 3.00 
TPC 1.00 1.00 1.00 1.00 
TEL 1.00 1.00 1.00 1.00 
TPL 1.00 1.00 1.00 1.00 
TWC 1.00 1.00 1.00 1.00 
REV 17296650.00 16165090.00 17125400.00 16015420.00 
C 12739930.00 12668500.00 14742490.00 14655340.00 
C1 8603000.00 8603000.00 10683520.00 10662100.00 
C2 1523200.00 1519720.00 1481851.00 1481083.00 
C3 542640.00 507140.20 537267.30 502444.40 
C4 305900.00 285887.90 302871.30 283240.70 
C5 190190.00 177747.70 188306.90 176101.90 
C6 1575000.00 1575000.00 1548663.00 1550370.00 
MS 1750000.00 1750000.00 0.00 0.00 
MO 3990.00 2485.98 3950.50 2462.96 
XO 133000.00 124299.10 131683.20 123148.10 
MTPS 0.00 0.00 0.00 0.00 
PPC 0.00 0.00 0.00 0.00 
MPC 46550.00 43504.67 46089.11 43101.85 
PEL 0.00 0.00 0.00 0.00 
MEL 1330.00 1242.99 1316.83 1231.48 
PPL 0.00 0.00 0.00 0.00 
MPL 11970.00 11186.92 11851.49 11083.33 
PWC 0.00 0.00 0.00 0.00 
MWC 140000.00 140000.00 113663.40 115370.40 
PR 0.00 0.00 0.00 0.00 
MR 3990000.00 3728972.00 3950495.00 3694444.00 
XS(1) 0.00 0.00 131683.20 123148.10 
XS(2) 0.00 0.00 0.00 0.00 
XS(3) 700000.00 700000.00 568316.80 576851.90 
AS(1) 13.00 13.00 13.00 13.00 
AS(2) 14.50 14.50 14.50 14.50 
AS(3) 12.29 12.29 12.29 12.29 
BS(1) 2.00 2.00 2.00 2.00 
BS(2) 2.30 2.30 2.30 2.30 
BS(3) 2.50 2.50 2.50 2.50 
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Variable TS=best 

TO=best 
TS=best 
TO=worst 

TS=worst 
TO=best 

TS=worst 
TO=worst 

YS(1) 133000.00 124299.10 131683.20 123148.10 
YS(2) 133000.00 124299.10 131683.20 123148.10 
YS(3) 700000.00 700000.00 568316.80 576851.90 
PS(1) 0.00 0.00 263366.30 246296.30 
PS(2) 0.00 0.00 302871.30 283240.70 
PS(3) 0.00 0.00 1420792.00 1442130.00 
AO(1) 0.18 0.18 0.18 0.18 
AO(2) 0.17 0.17 0.17 0.17 
AO(3) 0.19 0.19 0.19 0.19 
BO(1) 0.03 0.03 0.03 0.03 
BO(2) 0.02 0.02 0.02 0.02 
BO(3) 0.02 0.02 0.02 0.02 
YO(1) 133000.00 124299.10 131683.20 123148.10 
YO(2) 133000.00 124299.10 131683.20 123148.10 
YO(3) 133000.00 124299.10 131683.20 123148.10 
PO(1) 0.00 1242.99 0.00 1231.48 
PO(2) 0.00 0.00 0.00 0.00 
PO(3) 0.00 0.00 0.00 0.00 
ATPS(1) 1.79 1.79 1.79 1.79 
ATPS(2) 1.70 1.70 1.70 1.70 
ATPS(3) 1.70 1.70 1.70 1.70 
BTPS(1) 0.20 0.20 0.20 0.20 
BTPS(2) 0.20 0.20 0.20 0.20 
BTPS(3) 0.40 0.40 0.40 0.40 
PTPS(1) 26600.00 24859.81 26336.63 24629.63 
PTPS(2) 26600.00 24859.81 26336.63 24629.63 
PTPS(3) 280000.00 280000.00 227326.70 230740.70 
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Table A5: The LINGO code (Ellipsoid model) 

SETS: 
Suppliers: Xs, As, Bs, Ys, Ao, Bo, Yo, Atps, Btps, Zs, Zo, Ztps; 
ENDSETS 
DATA: 
Suppliers= 1 2 3; 
As= 13.00 14.50 12.29; 
Bs=2.00 2.30 2.50; 
Ao=0.18 0.17 0.19; 
Bo=0.03 0.02 0.02; 
Ar=130.05; 
Br=30.00; 
Atps = 1.79 1.70 1.70; 
Btps = 0.20 0.20 0.40; 
Apc = 3.73; 
Bpc = 0.35; 
Ael = 2.29; 
Bel = 0.01; 
Apl = 1.34; 
Bpl = 0.09; 
Awc = 2.05; 
Bwc = 0.20; 
Sigma=0.14; 
WarehouseProdCapacity = 700000; 
MaxOilProcessingCapacity = 300000; 
ENDDATA 
! Objective function ; 
MAX = Rev - C; 
C = C1+C2+C3+C4+C5+C6; 
! Purchasing constraint; 
@SUM(Suppliers(i): As(i)*Xs(i) + Bs(i)*Ys(i)) + Sigma * ELPs - C1 < 0; 
ELPs * ELPs = @SUM(Suppliers(i): Bs(i) * Bs(i) * Zs(i) * Zs(i)); 
@FOR(Suppliers(i): Xs(i) - Zs(i) - Ys(i) < 0); 
! Yield constraint; 
@SUM(Suppliers(i): Ao(i)*Xs(i) - Bo(i)*Yo(i)) - Sigma * ELPo - Xo > 0; 
ELPo * ELPo = @SUM(Suppliers(i): Bo(i) * Bo(i) * Zo(i) * Zo(i)); 
@FOR(Suppliers(i): Xo- Zo(i) - Yo(i) < 0); 
! other costs ; 
@SUM(Suppliers(i): Atps(i) * Xs(i)+ Btps(i)* Ys(i)) + Sigma * ELPtps - C2 < 0; 
ELPtps * ELPtps = @SUM(Suppliers(i): Btps(i) * Btps(i) * Ztps(i)* Ztps(i)); 
@FOR(Suppliers(i): Xs(i) - Ztps(i) - Ytps < 0); 
@SUM(Suppliers(i): Apc * Xo+ Bpc* Yo(i)) + Sigma * ELPpc - C3 < 0; 
ELPpc * ELPpc = Bpc * Bpc * Zpc * Zpc; 
@FOR(Suppliers(i): Xo - Zpc - Ypc < 0); 
@SUM(Suppliers(i): Ael * Xo + Bel* Yo(i)) + Sigma * ELPel - C4 < 0; 
ELPel * ELPel = Bel * Bel * Zel * Zel; 
@FOR(Suppliers(i): Xo- Zel - Yel < 0); 
@SUM(Suppliers(i): Apl * Xo+ Bpl* Yo(i)) + Sigma * ELPpl - C5 < 0; 
ELPpl * ELPpl = Bpl * Bpl * Zpl * Zpl; 
@FOR(Suppliers(i): Xo - Zpl - Ypl < 0); 
@SUM(Suppliers(i): Awc * Xs(i)) + Sigma * ELPwc - C6 < 0; 
ELPwc * ELPwc = Bwc * Bwc * Zwc * Zwc; 
@FOR(Suppliers(i): Xs(i) - Zwc - Ywc < 0); 
! Final production risk consideration; 
Ar * Xo - Sigma * ELPr - Rev > 0; 
ELPr * ELPr = Br * Br * Zr * Zr; 
Xo - Zr - Yr < 0; 
! Capacity; 
@SUM(Suppliers(i): Xs(i)) <= WarehouseProdCapacity; 
Xo<=MaxOilProcessingCapacity; 
! Probability factor; 
Probability = @EXP(-Sigma * Sigma / 2); 
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Table A6: Formulation (Ellipsoid model) 

[_1] MAX= REV - C; 
[_2] C - C1 - C2 - C3 - C4 - C5 - C6 = 0; 
[_3] - C1 + 0.14 * ELPS + 13 * XS_1 + 2 * YS_1 + 14.5 * XS_2 + 2.3 * YS_2 + 12.29 *XS_3 + 2.5 * YS_3 <= 0;  
[_4] ELPS * ELPS = ( 2 * 2 * ZS_1 * ZS_1 + 2.3 * 2.3 * ZS_2 * ZS_2 + 2.5 * 2.5 *ZS_3 * ZS_3); 
[_5] XS_1 - YS_1 - ZS_1 <= 0; 
[_6] XS_2 - YS_2 - ZS_2 <= 0; 
[_7] XS_3 - YS_3 - ZS_3 <= 0; 
[_8] - 0.14 * ELPO - XO + 0.18 * XS_1 - 0.03 * YO_1 + 0.17 * XS_2 - 0.02 * YO_2 +0.19 * XS_3 - 0.02 * YO_3 >= 0;  
[_9] ELPO * ELPO = ( 0.03 * 0.03 * ZO_1 * ZO_1 + 0.02 * 0.02 * ZO_2 * ZO_2 + 0.02* 0.02 * ZO_3 * ZO_3); 
[_10] XO - YO_1 - ZO_1 <= 0; 
[_11] XO - YO_2 - ZO_2 <= 0; 
[_12] XO - YO_3 - ZO_3 <= 0; 
[_13] - C2 + 0.14 * ELPTPS + 1.79 * XS_1 + 0.2 * YS_1 + 1.7 * XS_2 + 0.2 * YS_2 +1.7 * XS_3 + 0.4 * YS_3 <= 0;  
[_14] ELPTPS * ELPTPS = ( 0.2 * 0.2 * ZTPS_1 * ZTPS_1 + 0.2 * 0.2 * ZTPS_2 *ZTPS_2 + 0.4 * 0.4 * ZTPS_3 * ZTPS_3); 
[_15] - YTPS + XS_1 - ZTPS_1 <= 0; 
[_16] - YTPS + XS_2 - ZTPS_2 <= 0; 
[_17] - YTPS + XS_3 - ZTPS_3 <= 0; 
[_18] - C3 + 11.19 * XO + 0.14 * ELPPC + 0.35 * YO_1 + 0.35 * YO_2 + 0.35 * YO_3 <=0;  
[_19] ELPPC * ELPPC = 0.35 * 0.35 * ZPC * ZPC; 
[_20] XO - ZPC - YPC <= 0; 
[_21] XO - ZPC - YPC <= 0; 
[_22] XO - ZPC - YPC <= 0; 
[_23] - C4 + 6.87 * XO + 0.14 * ELPEL + 0.01 * YO_1 + 0.01 * YO_2 + 0.01 * YO_3 <=0;  
[_24] ELPEL * ELPEL = 0.01 * 0.01 * ZEL * ZEL; 
[_25] XO - ZEL - YEL <= 0; 
[_26] XO - ZEL - YEL <= 0; 
[_27] XO - ZEL - YEL <= 0; 
[_28] - C5 + 4.02 * XO + 0.14 * ELPPL + 0.09 * YO_1 + 0.09 * YO_2 + 0.09 * YO_3 <=0;  
[_29] ELPPL * ELPPL = 0.09 * 0.09 * ZPL * ZPL; 
[_30] XO - ZPL - YPL <= 0; 
[_31] XO - ZPL - YPL <= 0; 
[_32] XO - ZPL - YPL <= 0; 
[_33] - C6 + 0.14 * ELPWC + 2.05 * XS_1 + 2.05 * XS_2 + 2.05 * XS_3 <= 0; 
[_34] ELPWC * ELPWC = 0.2 * 0.2 * ZWC * ZWC; 
[_35] - ZWC - YWC + XS_1 <= 0; 
[_36] - ZWC - YWC + XS_2 <= 0; 
[_37] - ZWC - YWC + XS_3 <= 0; 
[_38] - REV + 130.05 * XO - 0.14 * ELPR >= 0; 
[_39] ELPR * ELPR = 30 * 30 * ZR * ZR; 
[_40] XO - ZR - YR <= 0; 
[_41] XS_1 + XS_2 + XS_3 <= 700000; 
[_42] XO <= 300000; 
END 
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Table A7: Results (Ellipsoid model) 

Variable Value (Σ = 0.14) Value (Σ = 0.45) 
Objective value 1019595 2082928 
AR 130.05 130.05 
BR 30.00 30.00 
APC 3.73 3.73 
BPC 0.35 0.35 
AEL 2.29 2.29 
BEL 0.01 0.01 
APL 1.34 1.34 
BPL 0.09 0.09 
AWC 2.05 2.05 
BWC 0.20 0.20 
SIGMA 0.14 0.45 
WAREHOUSEPRODCAPACITY 700000.00 700000.00 
MAXOILPROCESSINGCAPACITY 300000.00 300000.00 
REV 17197380.00 16981570.00 
C 16177790.00 14898650.00 
C1 10353000.00 9390500.00 
C2 1470000.00 1190000.00 
C3 1479728.00 1461160.00 
C4 908466.00 897065.90 
C5 531591.50 524920.60 
C6 1435000.00 1435000.00 
ELPS 0.00 1750000.00 
ELPO 5452.26 5383.84 
XO 132236.70 130577.30 
ELPTPS 0.00 0.00 
YTPS 700002.00 700000.00 
ELPPC 0.00 0.00 
ZPC 0.00 0.00 
YPC 132236.70 130577.30 
ELPEL 0.00 0.00 
ZEL 0.00 0.00 
YEL 132236.70 130577.30 
ELPPL 0.00 0.00 
ZPL 0.00 0.00 
YPL 132236.70 130577.30 
ELPWC 0.00 0.00 
ZWC 0.00 0.00 
YWC 700000.00 700000.70 
ELPR 0.00 0.00 
ZR 0.00 0.00 
YR 132236.70 130577.30 
PROBABILITY 0.99 0.90 
XS(1) 0.00 0.00 
XS(2) 0.00 0.00 
XS(3) 700000.00 700000.00 
AS(1) 13.00 13.00 
AS(2) 14.50 14.50 
AS(3) 12.29 12.29 
BS(1) 2.00 2.00 
BS(2) 2.30 2.30 
BS(3) 2.50 2.50 
YS(1) 0.00 0.00 
YS(2) 0.00 0.00 
YS(3) 700000.00 0.00 
AO(1) 0.18 0.18 
AO(2) 0.17 0.17 
AO(3) 0.19 0.19 
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Variable Value (Σ = 0.14) Value (Σ = 0.45) 
BO(1) 0.03 0.03 
BO(2) 0.02 0.02 
BO(3) 0.02 0.02 
YO(1) 0.00 0.00 
YO(2) 0.00 0.00 
YO(3) 0.00 0.00 
ATPS(1) 1.79 1.79 
ATPS(2) 1.70 1.70 
ATPS(3) 1.70 1.70 
BTPS(1) 0.20 0.20 
BTPS(2) 0.20 0.20 
BTPS(3) 0.40 0.40 
ZS(1) 0.00 0.00 
ZS(2) 0.00 0.00 
ZS(3) 0.00 700000.00 
ZO(1) 132236.70 130577.30 
ZO(2) 132236.70 130577.30 
ZO(3) 132236.70 130577.30 
ZTPS(1) 0.00 0.00 
ZTPS(2) 0.00 0.00 
ZTPS(3) 0.00 0.00 
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