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Abstract

Novel Channel Estimation Methods for GFDM Systems in High Mobility Scenario

Hamidreza Shayanfar

High-mobility wireless environments—such as those experienced in vehicular or aerial net-

works—pose significant challenges to reliable communication. Rapid time variations and frequency

dispersion in these environments lead to severe intersymbol interference and signal distortion. Con-

ventional modulation schemes and channel estimation methods, which are often based on a time-

frequency representation, struggle to maintain performance under such conditions. Generalized

Frequency Division Multiplexing (GFDM) has emerged as a promising modulation technique for

next-generation wireless networks due to its flexibility and efficient spectrum usage. However, its

conventional formulation does not adequately address the dynamic nature of high-mobility chan-

nels.

This thesis presents a novel approach that redefines the GFDM system model in the delay-

Doppler domain. The delay-Doppler domain offers a natural framework for representing channels

in high-mobility scenarios, as it captures the sparse structure of the channel more effectively than

the conventional time-frequency domain. By transforming the GFDM signal into the delay-Doppler

domain, our method exploits the inherent sparsity of the channel, thereby enabling more accurate

and efficient channel estimation. Additionally, a superimposed pilot scheme is introduced, whereby

pilot symbols are embedded within the data-bearing frame. This strategy eliminates the need for

dedicated pilot-only regions, thus significantly enhancing spectral efficiency.

Based on the new system model, we investigate two channel estimation methods. The first

approach employs a compressed sensing technique using the Subspace Pursuit (SP) algorithm. This

method reconstructs the channel vector from a limited number of measurements, leveraging the
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sparse nature of the channel. It offers low computational complexity, which is beneficial for real-

time implementations. However, the SP algorithm requires prior knowledge of the channel’s sparsity

level—a parameter that is often difficult to determine in practice.

To overcome this limitation, the second method adopts Sparse Bayesian Learning (SBL) for

channel estimation. SBL integrates prior information about the channel’s sparse structure directly

into a Bayesian inference framework, allowing it to both accurately estimate the key channel param-

eters and identify the positions of the non-zero elements without requiring a priori sparsity knowl-

edge. Simulation results demonstrate that the SBL-based estimator outperforms the SP algorithm,

particularly in scenarios where pilot overhead is constrained.

Building on these estimation techniques, the thesis further extends the proposed framework

to incorporate reconfigurable intelligent surfaces (RIS). RIS are composed of numerous passive

reflecting elements that can dynamically adjust their reflection coefficients. By optimizing these

coefficients, the RIS can steer the reflected signals to constructively combine with the direct path,

thereby enhancing the overall channel gain and system capacity. Hence, a low-complexity phase

optimization strategy is then employed to tune the RIS phase coefficients, maximizing the effective

channel gain and improving the achievable rate.

The extensive simulation results presented in this thesis validate the performance of the pro-

posed methods. Our findings indicate that the new GFDM system model in the delay-Doppler

domain leads to significant improvements in channel estimation accuracy and robustness in high-

mobility scenarios. The superimposed pilot scheme enhances spectral efficiency by embedding

pilot symbols within the data frame, and the SBL-based channel estimator demonstrates superior

performance over conventional greedy methods such as SP. Moreover, the integration of RIS with

optimized phase shifts further increases the achievable rate and overall system capacity compared

to systems with random phase configurations or without RIS support.
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Chapter 1

Introduction

1.1 Research Background

Over the past decade, wireless communication systems have evolved at an unprecedented pace

to meet growing demands for higher data throughput, broader coverage, and more reliable connec-

tivity. These demands arise from the growth of data-intensive applications such as high-definition

video streaming, interactive online gaming, and real-time data sharing, all of which require robust

and seamless network performance. As a result, service providers and system designers face the

dual challenge of maintaining consistent service quality while managing the growing complexity of

modern wireless networks[1].

The transition from 4G to 5G technologies marked a milestone in this evolution, featuring inno-

vations in network architectures, spectrum utilization strategies, and signal processing techniques.

In particular, 5G introduced capabilities such as massive Multiple-Input Multiple-Output (MIMO)

and millimeter-wave transmissions, enabling significant improvements in capacity and coverage [2].

Meanwhile, ongoing research into 6G technologies aims to further expand these boundaries by ad-

dressing emerging requirements such as ultra-low latency, enhanced energy efficiency, and massive

machine-type communications [1].

A key waveform technology employed in many current wireless standards (e.g., LTE, Wi-Fi

(IEEE 802.11), and 5G NR) is Orthogonal Frequency Division Multiplexing (OFDM) [3]. By di-

viding the available bandwidth into numerous narrow subcarriers, OFDM simplifies receiver design
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through single-coefficient equalization per subcarrier. The intrinsic orthogonality of these subcarri-

ers also reduces inter-carrier interference under ideal conditions, resulting in high spectral efficiency

and making OFDM highly suitable for applications demanding large data rates and robust perfor-

mance.

Despite its advantages, OFDM faces significant challenges in high-mobility environments—such

as vehicular communications, high-speed trains, and aerial networks—where rapid channel varia-

tions and Doppler effects complicate channel estimation [4]. In these scenarios, the channel co-

herence time is drastically reduced, and Doppler shifts can destroy the subcarriers’ orthogonality,

leading to increased inter-carrier interference (ICI) and degraded system performance. Additionally,

OFDM signals often exhibit a high peak-to-average power ratio (PAPR), requiring power amplifiers

with a large dynamic range and reduced power efficiency [5]. Although advanced signal processing

techniques and pilot designs can partially mitigate these issues, they become increasingly complex

and less effective as mobility increases.

In response to these challenges, researchers have investigated alternative waveforms and new

signal processing paradigms that can better handle fast-varying channels and improve channel es-

timation accuracy under mobility constraints. Among these, Generalized Frequency Division Mul-

tiplexing (GFDM) has gained significant attention as a promising candidate for next-generation

wireless systems [6]. Unlike OFDM, GFDM relaxes the requirement for strict orthogonality among

subcarriers, instead employing a non-orthogonal waveform structure with pulse-shaped subcarriers.

This approach offers multiple benefits: reduced out-of-band (OOB) emissions, potentially lower

PAPR, and improved robustness to Doppler shifts.

Nevertheless, GFDM’s non-orthogonality introduces new challenges for channel estimation,

since interference among subcarriers is no longer inherently mitigated by strict orthogonality. In

high-mobility scenarios, where the channel can vary significantly over short time intervals, design-

ing effective pilot patterns and developing reliable estimation algorithms become even more com-

plex. Effective channel estimation techniques for GFDM must account for the interplay between

pulse shaping, Doppler spread, and time-varying fading, while minimizing the overhead required

for pilot transmission. This makes GFDM a particularly rich and active area of research, especially

for applications involving rapid mobility.
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Consequently, the exploration of robust channel estimation strategies for GFDM systems is

critical to unlocking their full potential in future wireless networks. By effectively tracking chan-

nel variations and mitigating interference, GFDM can realize higher throughput and more reliable

connectivity under the stringent conditions of high-speed mobility. As such, advanced channel esti-

mation techniques for GFDM not only address the limitations of OFDM in these scenarios but also

pave the way for more efficient and flexible multi-carrier communication systems.

1.2 Literature Review

Channel estimation plays a crucial role in the performance of wireless communication systems,

where accurately determining channel characteristics can significantly affect the reliability and ef-

ficiency of data transmission. In the context of GFDM systems, traditional channel estimation

techniques [7, 8, 9, 10] have been designed with low-mobility scenarios in mind, where channel

conditions vary minimally during a transmission frame. In such environments, classical approaches

such as [7, 9], typically assume slow channel variations, enabling effective estimation with minimal

complexity and overhead. However, in high mobility scenarios, conventional channel estimation

techniques, which assume relatively constant channel characteristics throughout a frame, may be-

come ineffective. The application of such methods in high mobility scenarios can lead to challenges

such as increased computational complexity and reduced spectral efficiency due to the rapid vari-

ation in channel conditions over a symbol period. Recently, there have been a few studies aiming

to estimate time-varying channels for GFDM systems, such as [11, 12]. These approaches often

require the channel to be estimated and detected through interpolation and prediction at the data

symbols. However, they generally do not account for the sparse properties of the channel, which

could otherwise be leveraged for more efficient estimation.

Recently, a new modulation scheme known as Orthogonal Time Frequency Space (OTFS) has

been introduced specifically to address the challenges posed by high mobility environments [13].

OTFS operates in the delay-Doppler domain and is designed to convert a time-varying channel into

a quasi-static one for the duration of a transmission frame [14]. This unique capability ensures that
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the channel gain remains constant across all symbols within a frame, simplifying the channel es-

timation process and enhancing system robustness under high mobility scenarios. Exploiting this

stability, specialized estimation methods have been explored [15, 16, 17]. Research documented in

[15] used threshold-based channel estimation with a single pilot impulse, but this method is highly

sensitive to noise and increase the peak-to-average power ratio. To enhance estimation accuracy,

more sophisticated pilot arrangements have been proposed in [16], where multiple pilots trans-

form channel estimation into a sparse recovery problem tackled by three-dimensional orthogonal

matching pursuit (OMP). This approach, however, as part of an OFDM-based OTFS modulation

framework, introduces additional pilot symbols for channel estimation, thereby increasing over-

head. Further refinements involve sparse Bayesian algorithms to capture both integer and fractional

parts of Doppler [17], again at the cost of additional guard symbols and reduced spectral efficiency.

Despite the effectiveness of OTFS in handling time-varying channels, directly applying these

techniques to GFDM systems is difficult, as OTFS relies on an underlying OFDM-based structure.

This necessitates the development of novel channel estimation approaches tailored for GFDM sys-

tems that operate in the delay-Doppler domain in high mobility scenarios. Although OTFS demon-

strates strong Doppler resilience, GFDM remains an attractive option in moderate to high mobility

scenarios due to its flexible subcarrier pulse shaping, which can address high out-of-band (OOB)

emissions and large PAPR problems often seen in rectangular pulse-shaping filters [18, 19], which

is the common filter employed in the literature for the OTFS systems

While OTFS is particularly advantageous in high-mobility environments due to its robustness

against Doppler effects, GFDM performs effectively in moderate mobility scenarios, making it a

suitable choice for applications where channel conditions are less severe [20]. Furthermore, the

rectangular pulse shaping filter, which may lead to high OOB emissions and large PAPR [18], is the

common waveform employed in the literature for the OTFS systems. However, due to the flexibility

in prototype pulse shape configuration, GFDM can employ tailored pulse shaping filters to mitigate

out-of-band emissions and reduce PAPR, thereby enhancing spectral efficiency and power efficiency

[19]. This distinction highlights the need for specialized adaptations in GFDM channel estimation

techniques to fully leverage its potential in varying mobility conditions, bridging the gap between

traditional and novel approaches in the field.
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Another emerging area in wireless communication research involves the integration of Recon-

figurable Intelligent Surfaces (RIS) with traditional communication systems such as GFDM to fur-

ther enhance performance, especially in complex channel environments. RIS has the potential to

significantly improve the spectral and energy efficiency of communication systems. Existing chan-

nel estimation methods for RIS generally fall into two categories: separate channel estimation and

cascaded channel estimation [21]. For the former, based on the received pilots, the channels from

the BS/users to the RIS can be obtained separately at some sensing elements mounted on the RIS.

Accurate channel estimation in this way is a key challenge due to the limited number of sensing

components. Although compressed sensing can help overcome the limited number of sensing com-

ponents [22], the optimal distribution of these elements and the associated algorithms remain open

challenges [21]. On the other hand, in the cascade method, because there are no more such sens-

ing components on the RIS, the channel from BS/user to the RIS can not be estimated separately.

There are many studies on the cascade estimation in the literature. Early methods turned on one

RIS element at a time to measure its contribution [23], while subsequent work employed full-ON

RIS reflection patterns or more sophisticated compressed sensing approaches to reduce the number

of required time slots [24, 25, 26]. In particular, in [24], the authors propose a practical transmis-

sion protocol for RIS-enhanced OFDM systems, introducing an RIS reflection pattern to facilitate

channel estimation at the access point using uplink pilot signals. Based on the estimated CSI, they

optimize RIS reflection coefficients with a low-complexity algorithm that maximizes the strongest

time-domain signal path, achieving near-optimal performance with reduced computational com-

plexity. In [25], the authors propose two fast channel estimation schemes for RIS-assisted OFDM:

one reduces training time by shortening OFDM symbols, while the other exploits sampling-wise

RIS reflection variation for enhanced accuracy, particularly in LoS-dominant channels. In [26], the

authors propose a hybrid large intelligent surfaces (LIS) architecture with a few active elements to

reduce training overhead and hardware complexity. They developed two solutions: a compressive

sensing-based method to reconstruct full LIS channels and a deep learning-based approach to di-

rectly predict optimal reflection matrices. While these studies reveal considerable progress in RIS

channel estimation, their focus is predominantly on OFDM-based systems or other standard wave-

forms in low-mobility settings. Investigations on RIS-enhanced GFDM [27] have similarly been
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limited to scenarios with minimal Doppler effects, leaving high mobility scenarios unexplored. The

ability of RIS to dynamically alter the propagation environment presents a novel opportunity to

enhance GFDM systems, yet it also complicates channel estimation significantly. This indicates a

pressing need for innovative research to develop new channel estimation techniques that can harness

the reconfigurable nature of RIS to optimize performance in high mobility settings.

1.3 Motivation and Objectives

In practical wireless communication, channels are far from ideal. Signals face attenuation and

distortion due to multipath effects. These issues are more challenging in high mobility scenarios

like in high-speed vehicles or trains, where the channel conditions can change rapidly. Traditional

methods of boosting the signal power are insufficient for overcoming these challenges. Therefore,

precise channel estimation and equalization are crucial for maintaining reliable communication un-

der such conditions.

Traditional channel models, such as those based on time-frequency representations, often as-

sume a relatively static environment where the multipath components vary slowly. These models can

become overly complex and computationally intensive in high mobility scenarios because they must

account for frequent, significant variations in the channel’s characteristics. One effective method to

tackle the rapid changes in the channel is to represent it in the delay-Doppler domain, where the

channel’s characteristics are naturally sparse. This sparsity arises because only a few paths domi-

nate due to the high Doppler shifts associated with high mobility. Exploiting this inherent channel

sparsity can enable more efficient and rapid estimation techniques, significantly improving perfor-

mance under fast time-varying conditions.

To effectively work with the delay-Doppler channel model, it is essential to adapt the multicar-

rier system model to a representation in the delay-Doppler domain. One such approach involves

transforming the GFDM system, which is traditionally represented in the time-frequency domain,

into the delay-Doppler domain. This transformation is crucial because GFDM, in its conventional

form, focuses on managing inter-carrier interference and maximizing spectral efficiency within a

static or slowly varying channel environment. By representing GFDM in the delay-Doppler domain,
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the system can better accommodate and exploit the sparsity of the channel in scenarios characterized

by high mobility. This adaptation not only aligns the system model with the physical realities of the

channel but also enhances the system’s ability to handle rapid variations in the channel dynamics,

leading to more robust and efficient communication in high mobility environments.

Additionally, another innovative method to enhance communication systems involves the use of

RIS. RIS consist of numerous programmable elements that can manipulate the phase and amplitude

of incoming electromagnetic waves, allowing precise control over the wavefront. Specifically, RIS

can establish a virtual line-of-sight (LOS) link between transceivers, effectively bypassing obstacles

through smart reflections. This capability not only adds more signal paths in the desired direction

to improve the channel rank condition but also refines the channel statistics and suppresses inter-

ference, thereby enhancing overall communication quality. However, while RIS can significantly

improve signal propagation and reception, their integration introduces new complexities into the

channel estimation process. The dynamic nature of RIS elements adds additional variables to the

channel model, thereby increasing the difficulty of accurately modeling and adapting to changes in

the propagation environment. Addressing these challenges is essential, as advanced channel estima-

tion methods are required to harness the full potential of RIS without affecting system performance.

By exploiting the delay-Doppler domain representation and integrating RIS capabilities, the

objective of this thesis is to develop advanced channel estimation and equalization techniques for

GFDM systems in high-mobility environments. Specifically, the objective is to design methods that

take advantage of channel sparsity, using compressed sensing techniques and Bayesian learning,

to achieve efficient and robust performance despite rapid channel variations. In addition, the thesis

will explore new strategies for incorporating RIS into these systems to further improve signal propa-

gation and establish reliable virtual line-of-sight links. Through these contributions, the work seeks

to enhance the adaptability and overall quality of next-generation wireless communication systems,

especially in scenarios characterized by frequent and significant changes in channel conditions.
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1.4 Contributions of the Thesis

This thesis presents several notable contributions to wireless communication research, particu-

larly in high-mobility scenarios. These contributions have also led to two conference papers derived

from the core findings of this work. References to these papers are provided after the relevant

contribution points listed below.

(1) New Representation of the GFDM System in the Delay-Doppler Domain: A new model

of the GFDM system is formulated in the delay-Doppler domain [28]. By leveraging the

channel’s inherent sparsity under high-mobility conditions, this representation enables more

efficient channel estimation and improved system performance in rapidly changing environ-

ments.

(2) Superimposed Pilot Symbols Embedding: To boost spectral efficiency, we introduce a

strategy for embedding superimposed pilot symbols within GFDM data frames. By eliminat-

ing the need for separate pilot frames, the proposed method reduces overhead and maximizes

effective bandwidth utilization [28].

(3) Compressed Sensing Channel Estimation Using Sparse Priors: Building on the sparse

characteristics of the delay-Doppler channel, this work employs compressed sensing tech-

niques—specifically Subspace Pursuit (SP)—for robust channel estimation. This approach

minimizes both the number of measurements and the computational burden, making it partic-

ularly suitable for fast time-varying channels [28].

(4) Integration of RIS Panels and Bayesian Learning for Channel Estimation: To further

enhance communication quality, RIS panels are deployed in the communication system. A

Bayesian learning approach is adopted to perform channel estimation for the RIS-aided sys-

tems. This method aims to address the complexities introduced by RIS and provides a robust

framework for characterizing and optimizing the modified propagation environment [29].

These contributions not only address some of the fundamental challenges in high mobility wire-

less communications but also pave the way for more efficient and reliable communication tech-

nologies. By exploring new system models, innovative pilot embedding techniques, and advanced
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channel estimation methods, this thesis advances the state of the art in adapting wireless systems to

the demands of rapidly changing environments.

1.5 Organization of the Thesis

The remainder of this thesis is structured as follows: Chapter 2 provides the theoretical founda-

tion for wireless communication channels, beginning with frequency-selective and doubly-selective

(time-varying) channel models. It then reviews the conventional GFDM system model and intro-

duces a novel approach to represent GFDM in the delay-Doppler domain, laying the groundwork

for improved channel estimation in high-mobility scenarios. In chapter 3 we focus on the pro-

posed channel estimation technique using the new delay-Doppler GFDM framework. In particular,

a compressed sensing method is presented to leverage the channel’s sparsity for efficient estimation.

Subsequently, in chapter 4 the integration of RIS into GFDM is explored, and a Sparse Bayesian

Learning approach is introduced to handle the added complexity of RIS-enabled propagation paths.

Finally, Chapter 5 concludes the thesis by summarizing the key findings and their implications for

high-mobility wireless systems. It also outlines potential directions for future work, including ad-

vanced optimizations for RIS-assisted GFDM and further exploration of robust channel estimation

methods in complex propagation environments.
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Chapter 2

GFDM-Based Systems

2.1 Introduction

Wireless communication systems must deal with varying channel conditions that can signifi-

cantly affect their performance. Among these, frequency-selective channels, where different fre-

quency components of a signal experience varying degrees of fading, pose substantial challenges

in achieving reliable data transmission. Furthermore, in high mobility environments, these chan-

nels often exhibit doubly-selective behavior, where both time and frequency selectivity must be

addressed simultaneously. These time-varying channels are characterized by rapid changes in mul-

tipath components, leading to increased complexity in signal processing tasks at the receiver such

as equalization and channel estimation. To better understand these challenges, this chapter begins

by providing an overview of frequency-selective and delay-Doppler channel models, detailing their

mathematical representation and the implications for modern communication systems. This chap-

ter then shifts focus to the GFDM system, beginning with a detailed review of its conventional

time-frequency domain model, including its design principles, strengths, and limitations. While tra-

ditional GFDM performs well in low-mobility environments, it struggles to handle the rapid chan-

nel variations characteristic of doubly-selective channels. These challenges highlight the need for

enhanced system models and advanced signal processing techniques optimized for high-mobility

scenarios. To address this, the chapter concludes by proposing a novel representation of the GFDM
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system in the delay-Doppler domain, leveraging channel sparsity to improve performance in high-

mobility conditions.

2.2 Wireless Communication Channels

In this section, we explore the foundational concepts of wireless communication channels,

which are crucial for understanding the behavior and performance of wireless communication sys-

tems. We start by introducing frequency fading channels, providing insight into the challenges

posed by the multipath propagation effects, where signals take multiple paths of varying lengths to

reach the receiver. Following this, we explore doubly selective channels that exhibit variations both

in time and in frequency. This discussion is essential for understanding the delay-Doppler represen-

tation, an essential framework for designing communication systems that can perform effectively in

high-mobility scenarios.

2.2.1 Frequency and Time Selective Channels

Frequency-selective channels, also referred to as frequency-fading channels, are a fundamental

concept in wireless communication, where the channel’s frequency response varies significantly

across the bandwidth of the signal. This variation arises primarily from multipath propagation,

where transmitted signals traverse multiple paths of differing lengths before reaching the receiver.

Each path introduces a unique delay, causing time dispersion and frequency-selective fading in the

received signal. As a result, different frequency components of the signal experience varying levels

of attenuation and phase shift, making frequency-selective channels a critical consideration in the

design and optimization of wireless communication systems.

To fully understand frequency-selective channels, it is essential to describe their behavior in

terms of the channel impulse response (CIR) in the delay domain, denoted as h(Ä). The CIR char-

acterizes the time-dispersive nature of the channel by describing how an input signal is spread over

time as it travels through the channel. The relationship between the CIR and the frequency-selective

behavior of the channel is captured by its channel transfer function (CTF) in the frequency domain.

The CTF, denoted by H(f), is derived as the Fourier Transform (FT) of the CIR, mathematically
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expressed as

H(f) =

∫ ∞

−∞
h(Ä)e−j2ÃfÄ dÄ. (1)

This frequency-domain representation illustrates how different frequency components of the signal

are attenuated or phase-shifted due to the channel. The frequency selectivity of the channel is

primarily determined by the delay spread of the CIR, denoted by Äd, which reflects the range over

which significant multipath components arrive. The relationship between the delay spread and the

coherence bandwidth Bc of the channel can be approximated as Bc ≈ 1
Äd

. A larger delay spread

results in a smaller coherence bandwidth, indicating that the channel’s frequency response changes

more rapidly across the signal’s spectrum. This results in severe intersymbol interference (ISI)

as different frequency components of the signal experience different gains and delays. Without

effective mitigation strategies, selective fading across the channel’s bandwidth can severely degrade

communication reliability and performance.

In wireless communication systems, the assumption of a linear time-invariant CIR is often valid

in scenarios where the channel exhibits long coherence times and minimal variations. However, this

assumption fails in high-mobility environments or at higher carrier frequencies, where the channel

instead exhibits linear time-variant (LTV) characteristics. As a result, the LTV channel model has

attracted significant research interest due to its relevance in dynamic and rapidly changing propaga-

tion environments. An LTV channel introduces frequency shifts caused by the Doppler effect, which

leads to a spectral-smeared version of the transmitted signal. This phenomenon makes the channel

frequency-dispersive, with the degree of dispersion directly proportional to the Doppler spread. The

relationship between the Doppler spread, fd, and the coherence time, Tc, is given by Tc ≈ 1
fd
, where

fd denotes the maximum Doppler frequency. The time-selective nature of frequency-dispersive

channels arises from the rapid fluctuations in the channel’s time-domain fades, with these fluctua-

tions becoming more pronounced and increasingly separated as the Doppler spread increases.

In practice, high-mobility scenarios often give rise to doubly dispersive channels due to the

combined effects of multipath propagation and the Doppler effect, as illustrated in Fig. 2.1. This

channel is characterized by variations in both time and frequency, making them significantly more
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Figure 2.1: An illustration of frequency-selective, time-selective, and doubly-selective channel

models.

complex to model and analyze than frequency-selective or time-selective channels alone. The time-

varying CIR, denoted as h(Ä, t), captures both the temporal and spectral dynamics of the channel,

where Ä represents the delay dimension and t corresponds to time.

In doubly selective channels, the simultaneous presence of time dispersion (caused by multi-

path propagation) and frequency dispersion (resulting from Doppler shifts) leads to severe signal

impairments. These include ISI, due to overlapping multipath components in the delay domain,

and inter-carrier interference (ICI), caused by the loss of orthogonality between subcarriers in the

frequency domain. These impairments pose significant challenges to signal reception and require

sophisticated equalization and channel estimation techniques to mitigate their effects. Despite their

complexity, doubly dispersive channels in high-mobility environments also introduce additional de-

grees of freedom, which can be exploited to enhance communication reliability. By leveraging these

degrees of freedom through diversity-aided techniques, such as delay-Doppler domain processing

or advanced modulation schemes, it is possible to achieve improved performance even under chal-

lenging conditions.
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2.2.2 Delay-Doppler Domain Channels

LTV channels, while often represented in the time-delay domain, can also be equivalently de-

scribed in the time-frequency or delay-Doppler domains. Each of these representations provides

unique insights into the channel’s characteristics and plays a critical role in designing communica-

tion systems for different scenarios.

The time-frequency domain channel, denoted as h(t, f), is derived by applying the Fourier

Transform of h(t, Ä) with respect to the delay variable Ä . This representation highlights the chan-

nel’s frequency selectivity and time-variant behavior, where h(t, f) describes the channel transfer

function (CTF) at a specific time t and frequency f . However, in high-mobility scenarios, the co-

herence time and coherence bandwidth of the LTV channel, which define the limits of its stability

in time and frequency, are significantly reduced. As illustrated in Fig. 2.2, the coherence region

in the time-frequency domain is relatively small for such channels, necessitating frequent updates

to track their dynamics. This results in substantial signaling overhead and increased computational

demands, which complicates the application of time-frequency-based models in highly dynamic

environments.

In contrast, the delay-Doppler domain channel is obtained by applying the Fourier Transform of

h(t, Ä) with respect to time t, yielding h(Ä, ¿). In this representation, h(Ä, ¿) describes the channel’s

scattering function, capturing the contributions of scatterers with specific propagation delays Ä and

Doppler frequency shifts ¿. The delay-Doppler domain is particularly advantageous for modeling

LTV channels, as it reveals several beneficial features, such as separability, stability, compactness,

and often sparsity, as depicted in Fig. 2.2. These features make the delay-Doppler domain highly

suitable for addressing the challenges posed by high-mobility scenarios.

- Separability and Stability: The delay-Doppler domain allows the channel’s delay and Doppler

dimensions to be processed independently, enabling more efficient signal processing and channel

estimation techniques.

- Sparsity: In many practical scenarios, only a small subset of scatterers dominates the channel,

resulting in a sparse representation in the delay-Doppler domain. This sparsity can be exploited to

reduce computational complexity, signaling overhead, and pilot requirements, thereby enhancing
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Figure 2.2: LTV channels in the time-delay, time-frequency, and delay-Doppler domains [30].

Figure 2.3: The delay-Doppler vs. LTV time-frequency channel response [31].

system performance.

Fig. 2.3 and Fig. 2.4 show a comparison between the delay-Doppler domain on the one hand

and LTI and LTV time-frequency channel response on the other hand. As shown in these figures,

while the channel in the delay Doppler domain can be considered sparse, in the LTV time-frequency

channel response, more time-frequency coefficients are required to represent the channel accurately

[31]. By leveraging the properties of the delay-Doppler domain, it becomes possible to design

communication systems that are more robust to rapid channel variations. This representation not

only simplifies the mathematical modeling of LTV channels but also opens up opportunities for

advanced techniques in channel estimation, system optimization, and efficient resource allocation.
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Figure 2.4: The delay-Doppler vs. LTI time-frequency channel response [31].

2.3 New Representation of GFDM System in Doubly Selective Chan-

nels

As we update our approach to modeling channels for high-mobility environments, it’s important

to reconsider how we use modulation techniques like GFDM, which is usually defined in the time-

frequency domain. To fully exploit the sparsity properties of channels in high-mobility scenarios,

it is essential to redefine the GFDM system in the delay-Doppler domain as well. This approach

not only aligns with the evolving needs of modern wireless communication systems but also en-

hances the system’s performance by leveraging the sparse nature of the delay-Doppler domain. The

forthcoming sections will detail the traditional time-frequency domain representation of the GFDM

system, followed by introducing a novel representation in the delay-Doppler domain, highlighting

how this can be beneficial in rapidly changing channels.

2.3.1 GFDM System Model in Frequency Selective Channels

GFDM is a flexible and efficient modulation scheme designed to meet the demands of next-

generation wireless networks. Its inherent configurability and efficient utilization of the frequency

spectrum make it particularly well-suited for addressing the challenges of frequency-selective chan-

nels.

In a conventional GFDM system, MN data symbols dn,m (n = 0, · · · , N − 1 and m =
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0, · · · ,M − 1) are generated by mapping binary data into complex-valued Quadrature Amplitude

Modulation (QAM) symbols. These symbols are transmitted over a time-frequency resource block,

which consists of M subsymbols and N subcarriers, as illustrated in Fig. 2.5. The discrete base-

band transmit signal in a GFDM system is constructed as the summation of all subcarriers and

subsymbols, expressed mathematically as [20]:

s[q] =
N−1
∑

n=0

M−1
∑

m=0

dn,mgn,m[q], (2)

where q = 0, · · · ,MN − 1. The transmit filter gn,m[q] is given by:

gn,m[q] = g [ïq −mNðMN ] ej2Ãnq/N , (3)

where g[q] is the impulse response of the prototype filter with MN samples, and ï·ðMN denotes

the modulo operation that ensures circular shifting. This filter is circularly shifted in both the time

and frequency domains and can be represented as a column vector gn,m. The circular convolution

created by the modulo operation ensures that the resulting sequence remains of length MN , which

is computationally efficient for implementation [32].

The prototype filter, g[q], plays a pivotal role in GFDM systems. Common choices include the

Raised Cosine (RC) and Root Raised Cosine (RRC) filters, which are essential for controlling OOB

emissions and reducing ICI [33]. These characteristics are particularly beneficial in frequency-

selective channels, where multipath propagation can introduce significant distortion. Additionally,

the parameters of the prototype filter, such as the roll-off factor ´, allow for tuning the trade-off

between spectral efficiency and robustness against channel impairments, making GFDM a versatile

modulation scheme for a wide range of applications.

Similar to OFDM, a cyclic prefix (CP) is appended to the transmitted signal s[q] in (2) to mitigate

ISI caused by multipath propagation. The length of the CP, denoted as NCP, is typically chosen to

be longer than the maximum delay spread of the channel. This ensures that each GFDM block can

be decoded without interference from adjacent blocks, preserving the integrity of the transmitted

data.

The use of circular convolution and flexible pulse-shaping in GFDM makes it highly adaptable
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Figure 2.5: Time-frequency resource block of a GFDM system [33].

to various channel conditions. Its ability to manage ICI and reduce OOB emissions positions it as

a strong candidate for applications requiring high spectral efficiency and resilience to frequency-

selective fading. In contrast to OFDM, GFDM does not require strict orthogonality between subcar-

riers, allowing for greater flexibility in system design while maintaining robustness in challenging

wireless environments.

In matrix notation, the generation of the transmit samples s = s[q]T for q = 0, · · · ,MN − 1

can be expressed as:

s = Ad, (4)

where the data vector d is arranged as:

d =

(

d0,0 · · · d0,M−1 d1,0 · · · d1,M−1 · · · dN−1,M−1

)T

, (5)
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and the transmit filter matrix A is given by:

A =

(

g0,0 · · · g0,M−1 g1,0 · · · g1,M−1 · · · gN−1,M−1

)T

. (6)

After transmission through the frequency-selective channel and removal of the CP, the received

signal can be expressed as:

r = RCPHTTCPs + υ, (7)

where υ ∼ CN (0, Ã2INM ) represents complex additive white Gaussian noise (AWGN) with vari-

ance Ã2. Here, TCP and RCP are the cyclic prefix insertion and removal matrices, respectively. Also,

HT represents the channel matrix, which comprises the CIR elements and facilitates the convolution

operation with the transmitted signal. It can be shown that the product RCPHTTCP is equivalent to

a circulant matrix HC. This property simplifies channel equalization, as circulant matrices can be

diagonalized using the Discrete Fourier Transform (DFT). Specifically, a circulant matrix can be

represented as:

HC = F
H
MNHFMN ,

where FMN is the DFT matrix, and H is a diagonal matrix containing the frequency-domain repre-

sentation of the channel. This diagonalization allows efficient channel equalization using a single-

tap frequency-domain equalizer (FDE) [35]. The equalized signal is then given by:

seq = F
H
MNH

−1
FMNr = s + υ

′, (8)

where υ
′ is the noise after equalization. To recover the transmitted data d from the equalized

signal seq, a minimum mean square error (MMSE) receiver is employed to mitigate the effects of

the transmit filter A on the received signal [36]. This ensures accurate data recovery even in the

presence of noise and channel distortions.

So far, we have outlined the method for channel equalization in frequency-selective channels

using the conventional GFDM system model. However, in doubly selective channels, where both
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time and frequency variations occur, channel estimation and equalization become significantly more

challenging. This is because the traditional GFDM system model is not well-suited to handle the

additional complexity introduced by time-variant channels. To address these challenges, the next

subsection introduces a novel representation of the GFDM system in the delay-Doppler domain.

This new representation simplifies channel estimation and equalization in doubly selective channels,

leveraging the sparsity and stability of the delay-Doppler domain to enhance performance compared

to the conventional system model.

2.3.2 GFDM System Model in delay-Doppler Domain

As mentioned earlier, in doubly selective channels, the channel experiences variations in both

time and frequency domains. Consequently, the conventional representation in (7) cannot be directly

applied for channel estimation and equalization under these conditions. On the other hand, LTV

channels exhibit sparsity in the delay-Doppler domain, making it advantageous to represent the

GFDM system in this domain. To exploit this sparsity, we propose a novel representation of the

GFDM system model in the delay-Doppler domain, Fig. 2.6. This process involves transforming

the time-frequency domain data symbols into the delay-Doppler domain, applying the pulse-shaping

filter in this domain, and then transforming the result back to the time domain1, as illustrated in the

transmitter section of the system model in Fig. 2.6. Specifically, let an N ×M matrix D contain

all QAM data symbols dn,m, where n = 0, 1, · · · , N − 1 and m = 0, 1, · · · ,M − 1. To transform

these symbols from the time-frequency domain to the delay-Doppler domain, we use the symplectic

finite Fourier transform (SFFT) [37], defined as:

Dd[l, k] =
1√
NM

N−1
∑

n=0

M−1
∑

m=0

D[n,m]e−j2Ã( km
M

− ln
N ), (9)

where l = 0, 1, · · · , N − 1 and k = 0, 1, · · · ,M − 1. The SFFT can also be expressed in matrix

form as:

Dd = F
H
NDFM , (10)

1The receiver processing, including the inverse transformations and our proposed channel estimation method, will be

discussed in detail in the next chapter.
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where FN and FM represent the DFT matrices of size N × N and M ×M , respectively. Fol-

lowing (2), subcarriers are filtered using the transmit filter. Instead of performing convolution in

the time-frequency domain, we apply an element-wise multiplication in the delay-Doppler domain.

Specifically, the filtered signal in the delay-Doppler domain is obtained as:

Xdd = Dd »W, (11)

where W represents the transmit filter in the delay-Doppler domain and is defined as:

W =
(

NFM

(

unvecN×M (gn,m)T
))T

. (12)

Here, gn,m is derived from gn,m[q], as defined in (2). To transform the signal back into the time

domain, which is necessary for transmission through the channel, we employ the inverse discrete

Zak transform (IDZT) [31], followed by a parallel-to-serial conversion. The transmitted signal s

can then be expressed as:

s = vec(S) = (FH
M ¹ IN )xdd, (13)

where S = XddF
H
M , xdd is the vectorized form of Xdd, ¹ represents the Kronecker product, and

IN is the identity matrix of size N . Finally, a cyclic prefix (CP) is appended to s before transmission

through the channel. With the help of [20], it can be shown that the signal s derived in (13) is

equivalent to the one obtained in (2), confirming the consistency of this new representation with the

conventional time-frequency approach2.

This new delay-Doppler domain representation will be utilized in subsequent chapters (3 and 4)

to simplify channel estimation and equalization in doubly selective channels by taking advantage

of the domain’s inherent sparsity. Hence, the proposed system provides a generalized multicarrier

framework that can be effectively employed in both low- and high-mobility scenarios, offering

advantages such as OOB emissions and PAPR compared to conventional OFDM-based multicarrier

systems.

2This new transceiver model is inspired by the framework in [20]. However, we propose a matrix-based system model,

which offers a more streamlined and potentially simpler representation than the one in [20].

21



SFFT IDZT

Time-varrying
Channel

DZT

s

Dealy-Doppler
Domain

Time
Domain

ISFFT
rS/

P
P/

SPulse
Shaping 

Pulse
Shaping 

Time-Frequency
Domain

Figure 2.6: New representation of GFDM system model in the delay-Doppler domain.

2.4 Conclusion

In this chapter, we highlighted the limitations of conventional time-frequency representations

in modeling the complex doubly selective channels, particularly in high-mobility scenarios. To

overcome these challenges, we emphasized the advantages of the delay-Doppler domain, where the

inherent sparsity of such channels can be effectively leveraged for efficient signal processing.

To exploit this sparsity, we proposed a novel representation of the GFDM system in the delay-

Doppler domain. By transforming the conventional time-frequency GFDM model, the system can

better align with the characteristics of the channel, simplifying channel estimation and equalization.

This transformation utilizes the symplectic finite Fourier transform (SFFT), delay-Doppler filtering,

and the inverse discrete Zak transform (IDZT) to prepare the signal for transmission. This new

GFDM system model forms the basis for advanced channel estimation techniques, which will be

developed in the next chapter to address the challenges posed by doubly selective channels in high-

mobility environments.
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Chapter 3

Compressed Sensing Based Channel

Estimation for GFDM systems in High

Mobility Scenario

3.1 Introduction

In this chapter, we introduce a novel compressed sensing-based scheme for channel estimation

designed for high-mobility scenarios. Unlike conventional methods that rely on dedicated pilot

locations within the time-frequency domain, the proposed approach transforms the entire GFDM

block into the delay-Doppler domain, where pilot and data symbols are superimposed. This elimi-

nates the need for reserving specific frame locations for pilots, allowing the entire frame to be used

for data transmission, thereby significantly enhancing spectral efficiency. To prevent interference

between the superimposed pilot and data symbols, a data-dependent sequence, unknown to the re-

ceiver, is added to the original data in the time-frequency domain. This ensures separation of the

pilot information from the data during the estimation process, without requiring guards between

pilot and data symbols. At the receiver side, both channel estimation and data detection are per-

formed directly in the delay-Doppler domain, by taking advantage of the sparsity of the channel in

this representation. The proposed method is compared with conventional OFDM systems in terms
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of mean squared error (MSE) and bit error rate (BER), demonstrating its superior performance in

high-mobility scenarios.

3.2 Compressed Sensing

Compressed Sensing (CS) is an innovative technique in signal processing that enables the re-

construction of sparse signals from significantly fewer measurements than would be required under

conventional Nyquist sampling [38], as shown in Fig. 3.1. This reduction in measurements is made

possible by exploiting the intrinsic sparsity (or compressibility) of signals in a suitable transform do-

main. However, successful recovery critically depends on the sensing matrix, Φ, possessing certain

favorable properties, such as low mutual coherence or satisfying the Restricted Isometry Property

(RIP) [39]. Mutual coherence quantifies the maximum correlation between different columns of

the sensing matrix, while RIP ensures that sparse vectors retain their distinct distance relationships

once projected into the lower-dimensional measurement space. Specifically, the RIP provides a

more generalized condition on a sensing (or measurement) matrix Φ. The matrix Φ ∈ C
M×N

satisfies RIP of order K if there exists a constant ¶K ∈ (0, 1) such that for any K-sparse vector x:

(1− ¶K) ∥xs∥22 f ∥Φxs∥22 f (1 + ¶K) ∥xs∥22. (14)

The Restricted Isometry Constant (RIC), ¶K , quantifies how well the sensing matrix preserves the

Euclidean norm of any K-sparse vector. A smaller ¶K implies better preservation of distances,

improving the performance of CS algorithms in accurately reconstructing sparse signals. However,

no polynomial-time methods are known to determine whether a given sensing matrix satisfies the

RIP. An alternative approach is to compute the mutual coherence of the sensing matrix.

The mutual coherence of a matrix, often denoted by µ(Φ), measures the maximum correlation

between any two distinct columns in the sensing matrix Φ. Formally, for columns ϕi and ϕj of Φ

the mutual coherence is defined as the maximum normalized absolute inner product given by:

µ(Φ) = max
i ̸=j

∣

∣ϕH
i ϕj

∣

∣

∥

∥ϕi

∥

∥

2

∥

∥ϕj

∥

∥

2

. (15)
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Figure 3.1: Illustration of a sparse signal xs and its measurement vector.

A lower mutual coherence indicates that the columns of Φ are less correlated, improving the condi-

tions for accurately identifying the positions of the non-zero entries in a sparse signal.

3.2.1 Principles of Compressed Sensing

CS leverages the insight that if a signal is sparse or compressible in some domain, it can be

reconstructed accurately using fewer samples than traditionally required, provided that the sensing

matrix exhibits low mutual coherence or satisfies the RIP. The essence of CS lies in projecting the

high-dimensional sparse signal onto a lower-dimensional measurement space, yet retaining enough

information to enable accurate recovery. As illustrated in Fig. 3.1, the number of elements in the

unknown vector xs can be greater than the number of measurements, but the signal remains recover-

able due to its sparsity, i.e., only a relatively small number of non-zero elements. This characteristic

is especially beneficial in scenarios where obtaining full measurements is impractical or resource-

intensive. A variety of algorithms exist for sparse signal recovery under the CS framework [39], and

they can be broadly categorized into two main groups:

(1) Convex Optimization Methods: These methods, such as Basis Pursuit, formulate the re-

covery process as a convex minimization problem (e.g., ℓ1-norm minimization). Although

they provide highly accurate recovery, their computational complexity can be prohibitive for

real-time wireless communication systems [40].

(2) Greedy Algorithms: Greedy algorithms have received considerable attention due to their
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balance between computational efficiency and recovery performance. Orthogonal Matching

Pursuit (OMP) [41] and Subspace Pursuit (SP) [42] are prominent examples. These algo-

rithms iteratively refine estimates of the sparse signal by selecting columns of the sensing

matrix most correlated with the current residual.

Among the greedy algorithms, SP has gained recognition for its robustness and computational

efficiency. In each iteration, SP identifies a set of K columns (subspace) in the sensing matrix

that exhibit the highest correlation with the measurement vector. The positions of the non-zero

elements in the sparse signal are then located, and their magnitudes are updated using techniques

such as least squares (LS) or minimum mean square error (MMSE) estimates. SP typically exhibits

lower computational complexity than OMP for signals with a slow decay of non-zero elements,

making it suitable for real-time communication systems. Another well-known greedy approach

is Compressive Sampling Matching Pursuit (CoSaMP) [43]. While CoSaMP shares similarities

with SP, it employs a slightly different strategy for selecting columns of the sensing matrix in each

iteration. Though the two algorithms demonstrate comparable performance in many scenarios,

SP often has a higher restricted isometry constant (RIC) threshold and enjoys well-characterized

convergence properties. This makes SP a practical choice for real-time systems requiring reliable

performance guarantees.

3.2.2 Subspace Pursuit (SP) Algorithm

Consider an unknown signal x ∈ R
N and its measurement vector y ∈ R

m, linked by

y = Φx, (16)

where Φ ∈ R
m×N is the sensing matrix. Define the support of a vector x = (x1, . . . , xN ), denoted

supp(x), as the set of indices corresponding to its non-zero elements. The cardinality of the support,

expressed by ∥x∥0, is also known as the ℓ0 norm, indicating the number of non-zero components in

x. The central challenge is to efficiently recover the sparse signal x from the measurements y. A
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common starting point is to minimize the ℓ0 norm,

min ∥x∥0 subject to y = Φx. (17)

However, this ℓ0 norm minimization is known to be NP-hard and thus impractical for real-world

applications due to its high computational demand [44]. As a remedy, it is common to shift towards

an ℓ1-minimization framework, a recognized simplification of the ℓ0 problem:

min ∥x∥1 subject to y = Φx, (18)

where ∥x∥1 =
∑N

i=1 |xi| denotes the ℓ1 norm. This relaxation is convex and can be solved us-

ing linear programming (LP) methods with computational complexity on the order of O
(

m2N3/2
)

[45]. Despite the efficiency of ℓ1 minimization, greedy algorithms such as the SP offer further com-

putational advantages for certain types of sparse signals. It offers a balance between computational

efficiency and reconstruction accuracy, making it well-suited for real-time communication systems.

The SP algorithm specifically addresses cases where the sparsity level, denoted by K, is relatively

low compared to the dimensions of the signal. In such cases, SP iteratively refines the support of

the non-zero elements of x, leading to efficient signal recovery under real-time constraints typical

of communication systems.

The main steps of the SP algorithm are summarized in Algorithm 1. The goal is to recover the

sparse signal x ∈ R
N satisfying y = Φx+ e, where e represents noise or modeling errors. In each

iteration, a set of K columns of Φ is selected and refined to determine the support indices of the

non-zero elements of x.

To clarify the key steps in Algorithm 1, note that projecting a vector y ∈ R
m onto the subspace

spanned by the columns of ΦI ∈ R
m×|I| (assuming Φ∗

IΦI is invertible) results in:

yp = Φ
 
IΦ

∗
Iy, yr = y − yp, (19)

where Φ
 
I =

(

Φ∗
IΦI

)−1
Φ∗

I is the Moore-Penrose pseudoinverse of ΦI . Moreover, ΦT is con-

structed from the columns of Φ indexed by the set T . As mentioned before, the main difference
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Algorithm 1 Subspace Pursuit Algorithm

1: Input: K, Φ, y

2: Initialization:

3: T 0 ← K indices of the largest entries in ΦHy.
4: y0

r ← resid
(

y,ΦT 0

)

.
5: Iteration: At the ℓth iteration:

6: T̃ ℓ ← T ℓ−1 ∪
{

K indices of the largest entries in ΦHyℓ−1
r

}

.

7: xp ← Φ
 

T̃ ℓ
y.

8: T ℓ ←
{

K indices of the largest entries of xp

}

.

9: yℓ
r ← resid

(

y,ΦT ℓ

)

.
10: if ∥yℓ

r∥2 > ∥yℓ−1
r ∥2 then T ℓ ← T ℓ−1 and stop.

11: Output:

12: x̂ where x̂{1,...,N}\T ℓ = 0 and x̂T ℓ = Φ
 
T ℓy.

between OMP and SP is in the approach these two algorithms generate the set T . OMP selects

only one index during each iteration, and then this index remains in the set until the reconstruction

process is finished. However, in the SP algorithm, the set T is refined in each iteration. Hence,

some indices denoted to be wrong can be removed from the list in later iterations. The authors in

[42] show that the performance of reconstruction for the SP algorithm in terms of K outperforms

the OMP algorithm, especially for higher K.

In greedy algorithms, the number of iterations directly affects computational cost. For OMP,

each iteration selects one index, so finding all K indices requires K iterations, leading to O(mNK)

complexity, where m and N are the dimensions of the measurement vector and the original signal,

respectively. However, [42] shows that in wireless communication systems with power-law decay-

ing channel profiles, the number of iterations can often be upper-bounded by O
(

mN log(K)
)

. This

is significantly more efficient than ℓ1-LP methods, which exhibit O
(

m2N3/2
)

complexity. Conse-

quently, SP is well-suited for large-scale and real-time applications, making it an attractive choice

for channel estimation in high-mobility scenarios.

3.3 Proposed Chanel Estimation using Subspace Pursuit

In communication systems, synchronization plays a crucial role in maintaining system per-

formance, especially in high-mobility or multipath scenarios. Accurate timing synchronization is

28



essential to ensure that the receiver correctly identifies the beginning of each GFDM symbol block.

Any timing offset can result in ISI and ICI, leading to significant degradation in performance. To

focus exclusively on the evaluation of the proposed channel estimation methods, we assume perfect

time synchronization at the receiver throughout this work.

In this section, we propose a new channel estimation method tailored for high-mobility scenarios

using the Subspace Pursuit SP algorithm. We begin by revisiting the channel model in the delay-

Doppler domain and then evaluate the transmitted signal as it propagates through this channel.

As noted earlier, the delay-Doppler domain provides a more compact representation of geo-

metric channels compared to conventional time-delay or time-frequency domains, primarily due to

the limited number of reflectors around the receiver. This sparsity is particularly useful for coping

with rapidly time-varying channels. A generic LTV channel in the delay-Doppler domain can be

modeled as [31]

h(Ä, ¿) =

P
∑

i=1

hi¶(Ä − Äi)¶(¿ − ¿i), (20)

where P is the number of dominant reflectors, hi, Äi and ¿i are the path gain, delay and Doppler

shift of the ith path of the channel, respectively. Let ∆f and T be the subcarrier spacing and sym-

bol period, respectively. For notational purposes, we consider Äi =
li

N∆f and ¿i =
ki
MT , where li

and ki are integers1 and correspond to the delay and Doppler shift position in the delay-Doppler

discrete grid. Further, [0, Ämax] and [−¿max, ¿max] are assumed for the delay-Doppler domain chan-

nel h(Ä, ¿), where Ämax represents the maximum delay, and ¿max represents the maximum Doppler

offset. Therefore, consider lmax and kmax as the delay and Doppler taps corresponding to their

respective maximum values. Note that h(Ä, ¿) in (20) has a sparse representation, and thus, sparse

recovery algorithms can be applied for channel estimation.

In our proposed method, we employ the new representation of the GFDM system in delay-

Doppler domain, which is provided in section 2.3.2. Hence, the transmitted signal s in (13), is

passed through a LTV channel which is modeled in (20). After sampling and discarding the CP in

1The fractional delay and Doppler shift can be ignored if N and M are sufficiently large.
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the time domain, the received signal can be written as [18]

r[q] =
P
∑

i=1

hie
j2Ã

ki(q−li)

MN s[< q − li >MN ] + Å[q] (21)

where Å[q] is the complex additive white Gaussian noise (AWGN) with variance Ã2 and q =

0, · · · ,MN − 1. We rewrite (21) in the matrix form as

r = Hs+ υ, (22)

where r ∈ C
MN×1, υ ∼ CN

(

0, Ã2IMN

)

, and H ∈ C
MN×MN is the channel matrix defined as

[18]

H =
P
∑

i=1

h′
iΠ

li∆ki , (23)

with h′
i = hie

−j2Ã
kili
MN . Also, Π ∈ C

MN×MN denotes the permutation matrix used to model the

delays as

Π =

























0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0

























MN×MN

and ∆ ∈ C
MN×MN represents a diagonal matrix employed to model the Doppler shifts, which is

defined as

∆ = diag[1, e
j2Ã
MN , · · · , e

j2Ã(MN−1)
MN ]. (24)

Each propagation path introduces an li-step cyclic shift of the transmitted signal vector s, modeled

by Πli , and modulates it with a carrier frequency ki, represented by ∆ki .

To extract data symbols from (21), the channel coefficients require to be estimated and compen-

sated. This would pose a challenge in the time-frequency domain since the channel changes rapidly

during a GFDM symbol period in the time-varying channel. Hence, in the following, we develop

an efficient estimation method in the delay-Doppler domain by using the sparsity properties of the
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Figure 3.2: The block diagram of the new GFDM transceiver. All dotted blocks are associated with

the channel estimation and data detection.

time varying channel model presented in (20). To improve the spectral efficiency of channel esti-

mation, a superimposed scheme for pilot symbols and data is employed. In this approach, the entire

frame initially consists solely of data symbols in the time-frequency domain. After transforming

this frame into the delay-Doppler domain using SFFT, pilot symbols are superimposed onto spe-

cific locations of the newly transformed frame. This superposition involves adding pilot symbols to

designated regions within the delay-Doppler grid while leaving the majority of the frame dedicated

to data transmission. To address the interference caused by this superimposing, a data-dependent

sequence E is added to the original data D to remove the impact of the data on the locations of the

pilot symbols in the delay-Doppler domain, ensuring that the pilot symbols remain distinguishable

during the channel estimation process, as shown in Fig. 3.2. Specifically, by distorting the data

symbols in the time-frequency domain, their SFFT in the delay-Doppler domain at specific frequen-

cies can be made identically zero. This ensures that designated regions in the delay-Doppler grid

remain free of data interference, enabling pilot symbols to be clearly distinguishable for channel

estimation. The energy of the distortion matrix E should be minimized to avoid significant impact

on the overall data transmission. For a fixed energy in D, one effective solution for E is to com-

pute it as the cyclic mean of the data matrix D, which ensures the desired zero values at specific

frequencies. Mathematically, this is expressed as [47]

E = −((1/Q)1Q ¹ INr)D, (25)

where Q = N/Nr is an integer number, 1Q is a vector of ones with length Q and ¹ represents the

31



Kronecker product. Also, Nr = +Pg/M, is the minimum number of rows required to be zero in the

matrix Dd, where Pg = NPMP and NP and MP are the pilot symbols along the delay and Doppler

dimensions, respectively. In the delay-Doppler domain, arranging the data properly is critical to

ensure that the pilot symbols can be added effectively without interfering with the data. Since the

pilot symbols must occupy a dedicated frame in the middle of the delay-Doppler grid, it is necessary

to manipulate the structure of the distorted data matrix Dd. This manipulation ensures that specific

regions in the grid are reserved for pilots while redistributing the displaced data to other parts of

the frame. To achieve this, a data arrangement block is applied to Dd. Hence, in the delay-Doppler

domain, a data arrangement block is applied to the distorted data Dd to place the Nr zero rows next

to each other in the middle of the frame through a row switching operation on the obtained matrix

as shown in Fig. 3.3. To obtain a NP ×MP zero frame called pilot-guard frame in the middle of the

N ×M matrix D′
d, the data symbols inside this frame are distributed to the zero symbols outside

of this frame as shown in Fig. 3.3(b). Then, a known training matrix P containing NPMP pilot

symbols is added to the distorted data to provide the input signal of the pulse shaping filter block

(Fig. 3.4(a)). It is worth noting that based on the absolute value of the elements of matrix W shown

in Fig. 3.5, the lowest values are located in the middle of this matrix. Therefore, we place the pilot

symbols in this area, and then adjust their power to achieve an accurate estimation.

As mentioned before, to exploit the sparsity properties of the channel in the delay-Doppler

domain, estimation and equalization are performed in this domain. Using (13), we rewrite (22) in

the delay-Doppler form as [18]

ydd = (FM ¹ IN )r

= (FM ¹ IN )H(FH
M ¹ IN )xdd + (FM ¹ IN )υ

= H̃xdd + υ
′,

(26)

where ydd is the vectorized form of the matrix Ydd = RFM shown in Fig. 3.2. Furthermore,

H̃ = circ[H̃1, · · · , H̃N−1] is an MN ×MN block-circulant matrix of the channel in the delay-

Doppler domain, where [H̃1, · · · , H̃N−1] are M ×M circulant matrices [31]. Finally, it is easy to
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Figure 3.3: The discrete delay-Doppler grid for input and output matrix of data arrangement block.

(a): The input of data arrangement block (i.e. the matrix Dd). Nr zero rows are distributed with

period of Q when E is considered as (25). (b): Applying the row switching operation and distribut-

ing the data symbols inside the pilot-guard frame to the zeros symbols outside of this frame (Here,

consider Nr = 2, NP = 4 and MP = 6 to explain further how this data spreading is performed.)

see that vector υ′ has the same statistical properties as the noise in (22). Obtaining equation (26) for

the channel estimation prior to applying the pulse shaping filter in the receiver prevents noise from

being correlated.

For the channel estimation purpose, we rewrite (26) as a sparse signal recovery problem with

the sensing matrix A = (Xc »Pp,c) as

ydd = Ah+ υ
′, (27)

where Xc is an MN ×MN block circulant matrix obtained in the same way as the matrix H̃. Note

that for non-ideal waveforms, H̃ in (26) contains an extra phase factor in addition to the gain, delay

and Doppler shift of each path (i.e. h′
i, Äi and ¿i, respectively) [18]. We denote this factor as the

MN ×MN matrix

Pp,c(a, b) =















³i(l, k), l′i f l < N

³i(l, k)(
M−1
M )e−j2Ã(

<k−k′i>M
M

), 0 f l < l′i

(28)
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Figure 3.4: (a) The GFDM frame in the delay Doppler domain with pilots and guard intervals. (b)

The symbols used in the channel estimation and data detection parts at the receiver side. Assume

lmax = kmax = 1, NP = 4 and MP = 6.

Figure 3.5: The absolute value of each element in the matrix W (Raised cosine (RC) filter with a

roll-ff factor of 0.5) in the delay-Doppler domain, for M = N = 57.
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where ³i(l, k) = ej2Ã(
l−l′i
N

)
k′i
M , a = kN + l and b =< k′i >N ×N + l′i with l = 0, 1, · · · , N − 1,

k = 0, 1, · · · ,M − 1, l′i = 0, 1, · · · , lmax and k′i = −kmax, · · · , 0, · · · , kmax. Also, the sparse

vector h is the first column of the matrix H̃. For the channel estimation, we define yp,dd ∈

C
(MP−2kmax)(NP−lmax)×1, whose elements are extracted from the vector ydd corresponding to the

pilot part of the transmitted signal, specifically the symbols inside the red dotted-point box in

Fig. 3.4(b). Additionally, the matrix A will be updated to Ap based on this modified vector

yp,dd. Moreover, some indices in the vector h are always zero due to the values of lmax < N

and kmax < M . Hence, only (lmax + 1)(2kmax + 1) elements of h are considered in the SP algo-

rithm. Note that among these elements, only Ks elements are nonzero and should be estimated2. In

each iteration of the SP algorithm, a set of Ks columns of matrix Ap is chosen, and then, by refin-

ing the set, the final list of the indices is obtained. Specifically, during each iteration, the algorithm

selects iteratively a set of atoms that belongs to the subspace containing the largest energy of the

sparse signal.

After channel estimation, to improve the detection performance, the impact of the pilot symbols

on the data in the detection part needs to be removed. This task is accomplished by obtaining the

new vector y′
dd = ydd − Ĥp, where p is the vectorized form of the pilot matrix P, and Ĥ is the

estimated version of the matrix H̃. Hence, the GFDM demodulator such as MMSE [46] is applied

to the received signal y′
dd for equalization purpose. Then, it is necessary to correct the phases

introduced in (28) for the detection since they change based on different values of l and k in the

matrix Ydd. Finally, it is essential to remove the contribution of the distortion matrix E from the

data before data detection. In the ideal scenario, i.e., when the channel estimation error and AWGN

noise are absent, the output of the ISFFT block is equal to D − ((1/Q)1Q ¹ INr)D. Note that

((1/Q)1Q¹INr)D is small compared to D, and hence, it can be considered as extra additive noise.

Therefore, an iterative scheme can be performed to detect the original data from the distorted data

[47].

2For the distinct paths, Ks is considered the same as the number of channel path P .
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Table 3.1: Simulation Parameters for SP-based Algorithm

Parameter Value Description

M 57 Number of subsymbols

N 57 Number of subcarriers

fc 4 GHz Carrier frequency

∆f 15 kHz Subcarrier spacing

lmax 4 Maximum delay

kmax 4 Maximum Doppler (Speed: 300 kmph)

kmax 3 Maximum Doppler (Speed: 150 kmph)

³r 0.5 Roll-off factor (raised cosine filter)

3.4 Simulations

Simulation results for the proposed channel estimation method are presented in this section. The

simulation parameters are presented in Table 3.1. As shown in this table, the number of subcarriers

and subsymbols is 57 for each. Carrier frequency and subcarrier spacing are set to 4 GHz and 15

kHz, respectively. In this paper, a synthetic Rayleigh channel model is considered with a maximum

delay of 4 and a Doppler shift of 4 or 3. Hence, a maximum Doppler speed of 300 kmph and 150

kmph can be assumed in this scenario. Finally, we employ an RC prototype filter with a roll-off

factor of 0.5.

The mean squared error (MSE) of our proposed channel estimation method with different speeds

is shown in Fig. 3.6. Note that the minimum-variance unbiased (MVU) estimator derived in the

following serves as a benchmark since for linear equations it has the smallest variance among all

unbiased estimators3 [48]. We use (27) to estimate the channel through MVU estimator. Using the

components associated with the pilot-guard frame in the vector ydd, we can obtain the covariance

matrix estimation as Ch = Ã2(AH
p Ap)

−1. The figure illustrates how our proposed channel esti-

mator outperforms the conventional MVU one by exploiting the sparsity properties of the channel.

Specifically, for the same number of pilot symbols (i.e. MP = 15 and NP = 10), the MSEs of the

proposed method with different speeds are close to one another, which indicates that our channel

estimation method is not significantly sensitive to varying speeds. However, the MVU estimator

3For linear models, the MVU estimator attains the Cramér-Rao bound (CRB), meaning it has the lowest possible

variance among all unbiased estimators [48].
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Figure 3.6: MSE performance comparison of the proposed method at different speeds versus MVU

estimator.

cannot find the unique solution with this number of pilot symbols since the number of elements

used for channel estimation in the measurement vector yp,dd is less than the unknown elements of

h. On the other hand, only nonzero elements of the channel vector h, which is less than the size

of the measurement vector, are estimated in our method. Note that to achieve better results for the

MVU estimator, more pilot symbols will be required to assist in the channel estimation, as shown in

this figure. Hence, the MVU estimator can reach our proposed method at the cost of pilot overhead.

Fig. 3.7 is provided to support the discussion on the MVU estimator’s dependence on pilot

symbols. In other words, for a range of pilot numbers, the proposed method achieves lower MSE

compared to the unbiased estimators, highlighting the advantages of compressed sensing-based ap-

proaches. According to this figure, MSE is shown as a function of the number of pilot symbols4.

The purpose of this figure is to highlight the trade-off between pilot overhead and estimation accu-

racy, showing that while the MVU estimator can approach the performance of our proposed method,

it requires a significantly higher number of pilot symbols. The figure starts at Mp = Np = 9 because

4Note that we consider the same values for both Mp and Np in our comparison
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Figure 3.7: MSE performance comparison among the proposed SP-based channel estimator and

the theoretical benchmarks (CRB and Oracle-MMSE) at an SNR of 10 dB, where Mp = Np and

kmax = lmax.

we consider two different groups of pilot allocations. The first group corresponds to the minimum

number of pilots required in a compressed sensing-based approach, such as the SP method. This

number is derived based on the theoretical bound O(cKs log(Ns/Ks)), where c is a small constant

(around 0.28 in many scenarios [49]), Ks is the sparsity level (number of nonzero elements in the

channel), and Ns is the total length of the unknown channel vector h. The second group of pilot

allocations corresponds to a superimposed-pilot-data transmission scheme, where both pilot and

data symbols are sent in the same frame. To ensure proper separation between the pilot and data

regions, a guard interval, which is associated with the maximum delay and Doppler, is typically

introduced. Instead of leaving this guard interval empty (zero values), additional pilot symbols are

inserted, leading to improved channel estimation accuracy. In this figure, CRB is used as the bench-

mark for unbiased estimators, while the Oracle-MMSE serves as a benchmark for biased estimators

such as the SP algorithm. The Oracle-MMSE estimator, which assumes perfect knowledge of the

delay-Doppler domain channel, is given by ĥO-MMSE = ( 1
Ã2 )
(

1
Ã2A

H
0 A0 + IKs

)−1
AH

0 yp,dd [50].

In Fig. 3.8, we investigate the bit error rate (BER) performance of the proposed method in the

38



0 2 4 6 8 10 12 14 16 18 20

E
b
/N

0

10
-6

10
-4

10
-2

10
0

B
E

R

OFDM, Perfect Channel

GFDM Proposed Channel Est. (Iteration: 1)

GFDM Proposed Channel Est. (Iteration: 2)

GFDM Proposed Channel Est. (Iteration: 3)

GFDM, Perfect Channel

Figure 3.8: BER performance comparison of the proposed method versus perfect knowledge of the

channel available at the receiver side.

presence of a time-variant channel. The BER results are based on a 4-QAM modulation scheme

with convolution coding and the code rate of 1/2. The BER performance with perfect channel is

provided when the receiver has perfect knowledge of the channel information. As shown in this

figure, the BER performance of the GFDM system is superior to that of the OFDM system. This

is due to the poor performance of OFDM systems in the time-varying channel. Furthermore, we

employ the iterative detector to cope with the added distortion matrix E. As shown in this figure,

for higher SNR values, the BER of our proposed method using one iteration in the detector coincides

with that of the proposed method using a higher number of iterations. Also, at higher SNRs, the

BER of our proposed method approaches that of the GFDM system with perfect channels.

3.5 Conclusion

In this chapter, we introduced a novel method for channel estimation in GFDM systems using

the Subspace Pursuit (SP) algorithm, specifically designed for high-mobility scenarios. By leverag-

ing the inherent sparsity of channels in the delay-Doppler domain, we transformed the conventional
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GFDM system model into this domain to enhance estimation accuracy and computational efficiency.

We proposed a unique approach of embedding pilot symbols directly within the delay-Doppler do-

main, eliminating the need for dedicated pilot regions in the time-frequency domain. Additionally,

a data-dependent sequence was superimposed onto the original data in the time-frequency domain

to mitigate interference with pilot symbols, ensuring reliable channel estimation while maximizing

spectral efficiency. The effectiveness of this superimposed technique not only simplifies the channel

estimation process but also significantly improves the spectral efficiency compared to conventional

methods. Simulation results demonstrate that the proposed method not only enhances channel es-

timation accuracy but also achieves superior performance compared to traditional OFDM systems,

even when the latter have perfect channel state information at the receiver. These advancements pave

the way for more efficient and robust communication in rapidly changing wireless environments,

highlighting the potential of delay-Doppler domain-based approaches in future wireless communi-

cation systems.
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Chapter 4

Sparse Bayesian Learning Channel

Estimation in RIS-aided GFDM Systems

4.1 Introduction

The integration of RIS with GFDM systems represents a promising new direction in wireless

communications, offering the potential for enhanced spectral efficiency, improved coverage, and

greater energy savings. By adaptively controlling the reflection coefficients of an RIS, the propaga-

tion environment can be dynamically reshaped, leading to more favorable channel conditions. Fig.

4.1 illustrates several key functionalities of RIS in wireless communication systems. Firstly, RIS

can be employed for coverage extension, as shown in part (a) of the figure. In scenarios where di-

rect line-of-sight (LoS) communication is obstructed, RIS creates a virtual LoS link by reflecting the

signal, effectively overcoming coverage challenges. Additionally, as demonstrated in part (b), RIS

improves the channel rank condition by transforming low-rank channels into high-rank ones through

intelligent signal redirection, thereby enabling enhanced spatial multiplexing and data throughput.

Furthermore, part (c) highlights the capability of RIS to refine channel statistics by mitigating fast

Rayleigh fading and introducing slow or Rician fading characteristics, resulting in more stable and

reliable communication links. Finally, part (d) showcases the role of RIS in interference suppres-

sion, where it redirects interfering signals away from desired receivers, ensuring improved signal

quality and a higher quality of service [51]. These diverse capabilities make RIS a transformative
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technology for modern wireless communication systems. However, realizing its full potential re-

quires precise channel estimation, which becomes increasingly challenging in RIS-aided systems

due to the high dimensionality of the resulting channel matrices. Conventional channel estima-

tion methods often fall short in effectively addressing these challenges. Sparse Bayesian Learning

(SBL) has recently emerged as a particularly powerful method for channel estimation in scenar-

ios characterized by both high dimensionality and sparsity. Unlike traditional compressed sensing

techniques—and especially compared to greedy algorithms such as SP, which typically require prior

knowledge of the sparsity level and are highly sensitive to the choice of sensing matrix and stop-

ping threshold—SBL employs a data-driven approach to infer the optimal sparsity structure. Its

automatic relevance determination mechanism effectively mitigates the risk of error propagation

that can occur when greedy methods make an early incorrect atom selection. In other words, SBL

does not require a priori knowledge of the sparsity level, resulting in improved estimation accuracy

and resolution. By adaptively tuning its hyperparameters to match varying channel conditions, SBL

often outperforms conventional compressed sensing methods, making it a flexible and reliable so-

lution for modern wireless systems. However, while SBL’s excellent reconstruction accuracy and

robustness are key advantages, these benefits come at the cost of increased computational complex-

ity compared to greedy approaches.

In this chapter, we propose and investigate an SBL-based channel estimation strategy in RIS-

aided GFDM systems. Our novel framework leverages the inherent strengths of SBL and the recon-

figurability of RIS to address the fundamental challenges of next-generation wireless networks. By

doing so, we aim to demonstrate that SBL provides a superior alternative to conventional methods,

achieving higher accuracy, more efficient resource allocation, and greater reliability.

4.2 RIS-aided System Model

An RIS-aided GFDM system is depicted in Fig. 4.2, where a single-antenna base station (BS)

communicates with a single-antenna user moving at high speed. The RIS, placed to enhance the link

between the user and the BS, consists of NRIS passive reflecting elements. Although a large number

of RIS elements improves signal reflection power, it also increases overhead and complexity in
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Figure 4.1: Primary functions of RIS in wireless channel reconfiguration [51].

channel estimation and reflection optimization. Each RIS element is controlled by a smart controller

that dynamically adjusts its reflection coefficients.

Recall from (20) in the previous chapter that a general LTV channel in the delay-Doppler domain

can be expressed as:

h(Ä, ¿) =

P
∑

p=1

hp ¶(Ä − Äp) ¶(¿ − ¿p).

In the RIS-assisted scenario, we identify three main channels:

(1) Direct channel between the user and BS:

hd(Äd, ¿d) =

Pd
∑

p=1

hd,p ¶(Äd − Äd,p) ¶(¿d − ¿d,p),

(2) User-to-RIS channel:

hg(Äg, ¿g) =

Pg
∑

p=1

hg,p ¶(Äg − Äg,p) ¶(¿g − ¿g,p),
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Figure 4.2: RIS-assisted GFDM system with a single-antenna user and BS.

(3) RIS-to-BS channel:

hb(Äb, ¿b) =

Pb
∑

p=1

hb,p ¶(Äb − Äb,p) ¶(¿b − ¿b,p),

where Pd, Pg, and Pb denote the dominant path counts of the direct link, the user-RIS link, and the

RIS-BS link, respectively. The notation Ä·,p and ¿·,p represent the delay and Doppler shift of the pth

path in each channel.

To derive the time-domain input-output relationship for an RIS-aided system, consider first the

signal contributed by the ith RIS element. Let r(i) ∈ C
MN×1 be the received signal due to the

user-RIS-BS path through element i, modeled as

r(i) = ϕ(i)B(i)G(i) s, (29)

where ϕ(i) = φi e
j¹i is the reflection coefficient of the ith RIS element, with amplitude φi and

phase shift ¹i. G(i),B(i) ∈ C
MN×MN denote the time-domain channel from the user to the ith

RIS element, and from the ith RIS element to the BS, respectively. Following the channel matrix
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introduced in (23), each channel matrix G(i) and B(i) can be expressed in terms of delay and

Doppler shifts:

G(i) =

Pg
∑

³=1

g′(i)³ Π l
(i)
³ ∆ k

(i)
³ , B(i) =

Pb
∑

´=1

h
′(i)
´ Π

l
(i)
´ ∆

k
(i)
´ , (30)

where

g′(i)³ = g(i)³ exp
(

−j 2Ã k³ l³
MN

)

, h
′(i)
´ = h

(i)
´ exp

(

−j 2Ã k´ l´
MN

)

,

and Π, ∆ are the permutation (cyclic shift) and Doppler diagonal matrices, respectively, as defined

in (23). The end-to-end input-output relationship in the presence of noise in the time domain can be

obtained by summing the received signals from all RIS elements as

r =

(

Hd +

NRIS
∑

i=1

ϕ(i)B(i)G(i)

)

s+ υ

= (Hd +HrisΦ)s+ υ

= H̄s+ υ,

(31)

where Hris = [(H
(1)
ris ), (H

(2)
ris ), · · · , (H

(NRis)
ris )] is the cascade channel with H

(i)
ris = B(i)G(i). Also,

Φ ∈ C
NRISMN×MN is a matrix comprising the reflection coefficients of NRIS elements. Specifi-

cally, we have

Φ =
[

φ1e
j¹1 , φ2e

j¹2 , . . . , φNRIS
ej¹NRIS

]T
¹ IMN ,

where¹ denotes the Kronecker product and each diagonal entry corresponds to a reflection element

at the RIS. By manipulating the reflection coefficients ϕ(i) = φie
j¹i , one can dynamically shape

the propagation environment to improve link quality, even in high-mobility scenarios. However, as

NRIS increases, accurate channel estimation and efficient reflection design become more challeng-

ing. The following section explores these challenges and introduces advanced estimation techniques

and low-complexity reflection optimization to manage the RIS-aided system’s complexity.
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4.3 Proposed Channel Estimation with Sparse Bayesian Learning

In this section, we introduce a novel channel estimation framework based on SBL for RIS-aided

GFDM systems. The inherent sparsity of the channel in the delay-Doppler domain, especially in

high-mobility environments, is exploited to obtain accurate estimates of the cascaded channels. This

precise estimation is essential not only for reliable data detection in GFDM but also for optimizing

the reflection coefficients of the RIS. Our proposed method is executed in two distinct phases [24].

In the first phase, a pre-designed reflection coefficient pattern is employed to estimate the effective

channel H̄ in (31). This pre-designed reflection coefficient pattern enables us to isolate and exploit

the cascaded channel associated with each RIS element, thereby facilitating robust channel esti-

mation via SBL. In the second phase, these estimated channels are used to optimize the reflection

coefficients represented by the matrix Φ. The phase optimization aims to align the reflected signals

constructively at the receiver, thereby enhancing the overall system performance. The detailed dis-

cussion of both channel estimation and reflection coefficient optimization follows in the subsequent

subsections.

4.3.1 Channel Estimation Algorithm

We begin by considering the overall effective channel in the system, denoted as H̄ in (31),

which integrates both the direct channel and the cascaded channels via the RIS. In our framework, as

mentioned before, not only must the channel coefficients be estimated, but the reflection coefficients

Φ of the RIS also need to be determined. To this end, our transmission protocol divides each GFDM

frame into two sub-frames, as illustrated in Fig. 4.3(a). The initial sub-frame consists of (NRIS+1)

consecutive pilot symbols, while the remaining sub-frame carries pure data symbols. By using this

protocol, we first estimate the entire effective channel H̄ from the received pilot signals.

Once the effective channel is estimated, we can further decompose it to extract the individual

cascaded channels corresponding to each RIS element. This is achieved by transmitting the set

of (NRIS + 1) GFDM pilot symbols, which enables us to reversely isolate the cascade channels

associated with each RIS element. The superimposed pilot scheme discussed in Section 3 is applied

here to enhance spectral efficiency—pilot symbols are embedded within the data, and a pilot-guard
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Figure 4.3: The transmission protocol; (a) NRIS + 1 pilot symbols for the training phase followed

by pure data symbols. (b) One of the pilot symbols considered in the training phrase. Assume

l′max = k′max = 1, NP = 5 and MP = 7.

frame in the delay-Doppler domain is formed by removing the data interference at the designated

pilot locations (see Fig. 4.3(b)).

In the delay-Doppler domain, the received signal through the effective channel is given by

ydd = (FM ¹ IN ) r

= (FM ¹ IN ) H̄ (FH
M ¹ IN )xdd + (FM ¹ IN )υ

= H̃eff xdd + υ
′,

(32)

where H̃eff = H̃d + H̃risΦ, with H̃d and H̃ris representing the direct channel and the cascaded

channels in the delay-Doppler domain, respectively. The first column of H̃eff contains P̆ non-zero
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elements, where Pd f P̆ f Pd +NRISPgPb. Since P̆ jMN , we can formulate the estimation of

the effective channel as a sparse signal recovery problem:

ydd = Ah+ υ
′, (33)

where the sparse vector h is the first column of H̃eff , and the sensing matrix A = (Xc » Pp,c)

has been detailed in Chapter 3. Note that the effective channel matrix H̃eff maintains the block-

circulant structure of the system, and hence we can employ the sparse recovery algorithms for

channel estimation. Furthermore, during the estimation stage, we focus solely on the entries of ydd

corresponding to the pilot region (indicated by the red dotted box in Fig. 4.3(b)).

Having formulated the sparse recovery problem in (33), we now focus on SBL, a probabilistic

framework that leverages the channel’s inherent sparsity for improved estimation performance. By

integrating prior knowledge about the channel’s sparse structure into the Bayesian inference process,

SBL is capable of not only accurately estimating the key channel parameters but also identifying

the most likely locations of the non-zero elements in the sparse representation.

In the SBL framework for channel estimation, the noise term υ
′ in (33) is modeled as Gaussian

white noise with zero mean and a precision ³0 (i.e., the reciprocal of the variance). Its probability

density function is given by

p(υ′ | ³0) = N
(

υ
′ | 0, ³−1

0 I
)

, (34)

where I is the identity matrix. We further assume that ³0 follows a Gamma distribution parameter-

ized by the hyperparameters a and b:

p(³0; a, b) = Γ(³0 | a, b). (35)

This modeling framework enables us to express the likelihood function of the received signal ydd

as

p(ydd | A,h, ³0) = N
(

ydd | Ah, ³−1
0 I
)

. (36)

Within the SBL framework, the sparse channel vector h is modeled by a Gaussian distribution with

zero mean and a diagonal covariance matrix Λ, where Λ = diag(α) and α comprises individual
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precision parameters:

p(h | α) = N (h | 0, Λ). (37)

Each component ³i of α is assumed to follow an independent Gamma distribution:

p(³i;¼) = Γ
(

³i | 1,
¼

2

)

, i = 1, . . . , L, (38)

where L is the number of elements in h. Moreover, to further promote sparsity, a Laplace prior may

be applied to each element hi of h:

p(hi | ¼) = Laplace
(

0,
1√
¼

)

, i = 1, . . . , L. (39)

Combining these elements, the joint probability density function of the model is

p(ydd,h,α, ³0) = p(ydd | h, ³0) p(h | α) p(α) p(³0). (40)

The posterior probability of h given the observed data ydd is then derived as a Gaussian distribution

[54]:

p(h | ydd,α, ³0) = N (h | µ,Σ), (41)

with mean µ and covariance Σ defined by µ = ³0ΣAT ydd, Σ =
(

³0A
T A + Λ−1

)−1
. To

estimate the hyperparameters α and ³0, we employ the Expectation-Maximization (EM) algorithm

[55]. The hyperparameters are iteratively updated by maximizing the expected log-likelihood:

(αnew, ³new
0 ) = argmax

α,³0

E

[

ln p(ydd,h,α, ³0)
]

. (42)

The iterative updates for the hyperparameters are given by [56]:

³new
i =

√

1 + 4¼
(

Σii + µ2
i

)

− 1

2¼
, i = 1, . . . , L, (43)

³new
0 =

2a− 2 + PY

2b+ E
[

∥ydd −Ah∥22
] , (44)
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where Py = (Mp − 2K ′
max)× (Np − l′max) is the number of received channel estimation symbols,

and the expectation is given by

E
[

∥ydd −Ah∥22
]

= ³−1
0

L
∑

i=1

(

1− ³iΣii

)

+ ∥ydd −Aµ∥22. (45)

These updates form part of an iterative process to maximize the expected log-likelihood, thereby

refining the estimates of the sparse channel h and its associated hyperparameters. The complete

procedure for SBL-based channel estimation is summarized in Algorithm 2. Note that in step 7 of

this algorithm, there are two conditions for terminating the iteration. If either condition is satisfied,

the iteration process is stopped. The first condition is given by
∥αnew−α∥22

∥α∥22
< 10−5, while the sec-

ond condition is reaching the predefined maximum number of iterations (e.g., 150 in many cases).

Moreover, the SBL algorithm has been proved to converge in various scenarios [57].

Algorithm 2 Sparse Bayesian Learning-Based Channel Estimation Algorithm

1: Initialize: Set initial values for ³0, α, and hyperparameters a, b; set iteration counter j = 0.

2: Input: ydd, A, Py, L
3: repeat

4: Compute µ and Σ using the current ³0 and α

5: Update α and ³0 using (43) and (44)

6: Set j = j + 1
7: until a stopping criterion is met

8: Output: ĥ=µ

Ultimately, through this estimation process we obtain the effective channel matrix, H̃eff , which

encompasses both the cascaded channel via the RIS and the direct channel between the user and

the BS. By transmitting NRIS + 1 GFDM pilot symbols, we can reliably extract these channel

components. These channel estimates form the basis for the subsequent RIS phase optimization,

which will be discussed in the next subsection.

Note that, in terms of computational complexity, the SBL algorithm has a complexity ofO
(

J ×

KsL
2
)

, where Ks and L represent the number of nonzero elements and the total length of the

channel vector h, respectively, and J is the maximum number of iterations in Algorithm 2. In

contrast, the SP algorithm exhibits a computational complexity of O
(

PyL log(Ks)
)

in scenarios

where h is highly sparse. Therefore, while SBL achieves better performance, it does so at the cost

50



of higher computational complexity compared to the SP algorithm.

In RIS-assisted scenarios, however, the number of nonzero elements in the effective channel

vector increases due to the presence of reflected paths. As a result, the channel becomes less sparse,

and the complexity of the SP algorithm increases to O
(

PyLKs

)

, since the previous complexity

expression is only valid for highly sparse vectors.

4.3.2 A Low-Complexity Scheme with RIS Phase Optimization

The choice of reflection coefficients for the RIS elements is crucial to system performance.

Each element’s reflection coefficient is expressed as φie
j¹i for i = 1, . . . , NRIS. For simplicity and

without loss of generality, we assume φi = 1 for all elements so that only the phase ¹i is opti-

mized. A key advantage of RIS is its ability to dynamically adjust these reflection coefficients in

response to changing channel conditions. Since our channel is represented in the delay-Doppler

domain—which exhibits slower variations than its time-frequency counterpart—the required fre-

quency of phase adjustments is reduced compared to RIS systems employing OFDM. Expanding

the effective channel in the delay-Doppler domain as in (32), the overall channel gain for the pth

path (p = 0, . . . , P̆ −1) can be expressed as hd,p+
∑NRIS

i=1 ej¹i hi,p, where hd,p represents the direct

channel gain and hi,p denotes the effective cascaded channel contribution from the ith RIS element

(obtained from B(i)G(i)). Ideally, the RIS would adjust its phases to ensure that the reflected signals

add constructively with the direct path, which would require

∠hd,p = ¹i + ∠hi,p, ∀ i = 1, . . . , NRIS and p = 0, . . . , P̆ − 1. (46)

In practice, however, a single phase shift per RIS element cannot simultaneously achieve coherent

combining for all multipath components, particularly in multi-tap channels.

A more practical approach is to optimize the RIS phases to maximize the overall system capac-

ity. The capacity for the RIS-assisted GFDM system is given by [58]

C =
1

MN
log2

∣

∣

∣

∣

∣

IMN +
Pt H̃

H
effH̃eff

MN Ã2

∣

∣

∣

∣

∣

, (47)
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where Pt is the transmit power. The corresponding optimization problem is formulated as

max
Φ

log2

∣

∣

∣

∣

∣

IMN +
Pt H̃

H
effH̃eff

MN Ã2

∣

∣

∣

∣

∣

,

s.t. 0 f ¹i < 2Ã, i = 1, . . . , NRIS.

(48)

Solving (48) directly can be computationally intensive. To reduce complexity, we propose to align

only the strongest delay-Doppler channel path. In our delay-Doppler-domain representation, the

channel power is localized and sparse; thus, we select the dominant path p̂ that maximizes the

effective channel gain:

p̂ = argmax
p

[

|hd,p|+
NRIS
∑

i=1

|hi,p|
]2

, p ∈ {0, . . . , P̆ − 1}. (49)

Once the dominant path p̂ is identified, the RIS phase coefficients are tuned to align the reflected

signals with the direct channel. Specifically, the optimal phase for each RIS element is given by

¹̂i = ∠hd,p̂ − ∠hi,p̂, i = 1, . . . , NRIS. (50)

This low-complexity approach effectively enhances the constructive combining of the reflected and

direct signals, thereby maximizing the overall channel gain and system capacity.

4.4 Simulations

In this section, we present simulation results to evaluate the performance of our proposed chan-

nel estimation and RIS phase optimization methods for RIS-assisted GFDM systems. The simula-

tion parameters are presented in Table 4.1. As shown in this table, the GFDM system employs 75

subcarriers and 75 subsymbols. The carrier frequency is set to 4 GHz, with a subcarrier spacing of

15 kHz. We use a synthetic Rayleigh channel model characterized by a maximum delay of 4 and

a maximum Doppler shift of 3, corresponding to an approximate maximum Doppler speed of 160

km/h. An RC prototype filter with a roll-off factor of 0.5 is applied throughout.

Fig. 4.4 shows the MSE vs SNR performance of the proposed channel estimation method for

52



Table 4.1: Simulation Parameters for SBL-based algorithm

Parameter Value Description

M 75 Number of subsymbols

N 75 Number of subcarriers

fc 4 GHz Carrier frequency

∆f 15 kHz Subcarrier spacing

lmax 4 Maximum delay

kmax 3 Maximum Doppler (Speed: 160 kmph)

³r 0.5 Roll-off factor (raised cosine filter)

different numbers of pilot symbols. The results demonstrate that the SBL-based estimator outper-

forms the SP algorithm when fewer pilot symbols are used, owing to the fact that the measurement

vector yp,dd contains fewer elements than the number of non-zero components in the channel vec-

tor h. Although the performance of the SP estimator improves with an increased number of pilot

symbols, this comes at the expense of spectral efficiency.

Figure 4.5 presents the MSE performance as a function of the number of pilot symbols for

the SBL-based approach. The proposed method achieves a lower MSE compared to standard ap-

proaches while remaining close to the Oracle-MMSE performance. As expected, increasing the

number of pilot symbols improves estimation accuracy, with the gap between different estimators

gradually reducing. The CRB remains the benchmark for unbiased estimators, while the Oracle-

MMSE serves as the lower bound for biased approaches. Note that the difference in the starting

point of the pilot number axis compared to Fig. 3.7 is due to the presence of the RIS in this sce-

nario. The inclusion of three different channels in our simulation necessitates a larger guard interval,

increasing the minimum required number of pilots compared to the previous chapter.

Fig. 4.6 illustrates the achievable rate for three scenarios: (i) with optimized RIS phase selec-

tion, (ii) with random RIS phase selection, and (iii) without RIS. In these simulations, the number

of RIS elements is fixed at 100. The results show that the optimized RIS configuration—where the

RIS phases are chosen based on the strongest delay-Doppler channel path—achieves the highest

rate. In contrast, the system with random phase selection yields an intermediate performance, while

the system without any RIS support attains the lowest achievable rate.
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Figure 4.4: MSE performance comparison between the proposed SBL-based channel estimator and

the SP algorithm at a Doppler speed of 160 km/h.
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Fig. 4.7 illustrates the achievable rate as a function of the number of RIS elements, at a fixed

SNR of 10 dB. The results clearly indicate that the performance gain of the RIS-assisted GFDM

system increases with the number of RIS elements, especially when the RIS phases are optimized

as opposed to being randomly assigned. This confirms the effectiveness of our low-complexity RIS

phase optimization strategy in enhancing the overall system capacity.

4.5 Conclusion

In this chapter, we presented a novel method for channel estimation in RIS-assisted GFDM

systems based on SBL. By leveraging the inherent sparsity of the channel in the delay-Doppler

domain, our approach utilizes the benefits of RIS to enhance system performance, notably in terms

of achievable rate and reliability. The RIS provides an additional degree of freedom by enabling

dynamic phase adjustments at its reflecting elements, which significantly improve the overall signal

quality and capacity.

A key advantage of our SBL-based method is its robustness compared to conventional greedy

algorithms, such as SP. Unlike SP, which requires a priori knowledge of the channel’s sparsity

level—a parameter that is difficult to determine in practice—the SBL framework inherently inte-

grates this uncertainty into its probabilistic model. Furthermore, SBL is less sensitive to the choice

of the sensing matrix, making it a more versatile and reliable tool for channel estimation in dynamic

wireless environments.

Overall, the integration of RIS with GFDM, combined with the robust channel estimation ca-

pabilities of SBL, offers a promising solution for high-mobility communication scenarios. This

approach not only enhances spectral efficiency and system capacity but also paves the way for more

reliable data detection under challenging propagation conditions.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have developed a comprehensive framework for enhancing channel estimation

and overall system performance in high-mobility wireless communications by leveraging a novel

representation of the GFDM system in the delay-Doppler domain. Traditional GFDM systems,

typically designed in the time-frequency domain, often struggle with rapidly time-varying chan-

nels encountered in high-speed scenarios. To address this challenge, we proposed a new system

model that transforms the GFDM signal into the delay-Doppler domain, where the channel ex-

hibits a sparse structure. This representation not only simplifies the mathematical modeling of the

channel but also enables more efficient signal processing techniques, particularly in the context of

compressed sensing and sparse recovery. In our proposed model, both pilot and data symbols are

superimposed in the delay-Doppler domain. This superimposed pilot scheme, which eliminates the

need for dedicated pilot-only regions, leads to enhanced spectral efficiency without compromising

the accuracy of channel estimation.

Based on the proposed system model, two channel estimation methods were investigated. In

the first approach, we employed a compressed sensing technique using the Subspace Pursuit (SP)

algorithm. This method exploits the sparsity of the channel by reconstructing the channel vector

from a limited number of measurements and offers low computational complexity, which is advan-

tageous for real-time applications. However, one limitation of the SP algorithm is its reliance on
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prior knowledge of the sparsity level, which can be challenging to determine in practice.

To overcome the limitations of the SP algorithm, we developed a second method based on Sparse

Bayesian Learning (SBL). Unlike conventional greedy algorithms, the SBL framework incorporates

prior information about the channel’s sparse structure directly into the Bayesian inference process.

This probabilistic approach is inherently robust to the choice of sensing matrix and does not require a

priori knowledge of the sparsity level, making it particularly well-suited for real-world applications

where such information is not readily available. Simulation results confirmed that the SBL-based

estimator achieved lower mean squared error (MSE) and superior performance compared to the SP

algorithm, especially in scenarios with limited pilot overhead.

Building on the SBL framework, we further extended our system to include RIS panels. The

incorporation of RIS into the GFDM system introduces additional degrees of freedom by enabling

dynamic adjustment of the reflection coefficients. These coefficients are optimized to enhance the

effective channel gain by aligning the reflected signals with the direct channel. Our RIS phase

optimization strategy was designed to maximize the overall system capacity while maintaining low

computational complexity. The optimization problem was formulated to maximize the achievable

rate, and a low-complexity solution was derived by focusing on the dominant path in the delay-

Doppler domain. The simulation results demonstrated that the RIS-assisted GFDM system, when

combined with the SBL-based channel estimator, significantly outperformed conventional systems,

both in terms of achievable rate and reliability.

The proposed methods were evaluated through extensive simulations. The results showed that

our approach not only improves channel estimation accuracy and system capacity but also exhibits

robustness under various mobility conditions and pilot configurations. In particular, the combination

of the delay-Doppler domain representation, the superimposed pilot technique, and the SBL-based

estimation provides a powerful tool for dealing with the challenges posed by high-mobility channels.

Moreover, the integration of RIS further enhances the performance by enabling adaptive control over

the propagation environment, leading to a more reliable and higher-capacity communication link.
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5.2 Future Work

While the proposed framework has demonstrated promising improvements in channel estima-

tion and RIS phase optimization for high-mobility GFDM systems, several research directions re-

main to be explored to further enhance performance and practicality.

One limitation of the current work is the assumption of integer Doppler shifts. In practical

scenarios, the Doppler shift often contains a fractional component due to the limited resolution of the

Doppler axis. Future work should extend the channel model to incorporate fractional Doppler shifts,

which will likely require the development of advanced signal processing techniques to accurately

resolve and compensate for these effects.

Another important direction is the extension of the current single-antenna framework to a multiple-

input multiple-output (MIMO) configuration. MIMO systems can provide significant improvements

in capacity and reliability by exploiting spatial diversity and multiplexing gains. Integrating MIMO

techniques with the delay-Doppler domain representation and RIS-assisted communications could

lead to substantial performance enhancements in high-mobility environments.

Reducing the computational complexity of the SBL algorithm is also a critical area for future re-

search. The current SBL formulation requires the inversion of a matrix in every iteration, which can

be computationally intensive. Investigating approximate inference methods or iterative techniques

that bypass full matrix inversion could yield a more efficient algorithm without compromising esti-

mation accuracy.

Furthermore, while our low-complexity RIS phase optimization strategy provides notable gains,

exploring alternative optimization algorithms could further improve system performance. Advanced

optimization techniques, such as deep learning-based approaches, may offer more precise phase

alignment, thereby maximizing the effective channel gain and overall system capacity.

Finally, the extension of the proposed framework to multi-user scenarios represents a significant

challenge and opportunity. In realistic wireless networks, multiple users share the communication

resources, and inter-user interference becomes a critical factor. Future work should investigate

multi-user scheduling, interference management, and resource allocation strategies within the con-

text of RIS-assisted GFDM systems to enhance overall network scalability and performance.

59



Addressing these challenges will pave the way for more robust, efficient, and scalable wire-

less communication systems capable of operating under diverse and dynamic conditions. The in-

sights gained from these future investigations are expected to further solidify the potential of delay-

Doppler domain-based techniques, RIS-assisted communications, and advanced channel estimation

algorithms in next-generation wireless networks.
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