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Abstract

Towards Practical Second-Order Optimizers in Deep Learning: Insights from Fisher
Information Analysis

Damien Martins Gomes

First-order optimization methods remain the standard for training deep neural networks (DNNs).

Optimizers like Adam incorporate limited curvature information by preconditioning the stochastic

gradient with a diagonal matrix. Despite the widespread adoption of first-order methods, second-

order optimization algorithms often exhibit superior convergence compared to methods like Adam

and SGD. However, their practicality in training DNNs is still limited by a significantly higher per-

iteration computational cost compared to first-order methods. In this thesis, we present AdaFisher,

a novel adaptive second-order optimizer that leverages a diagonal block-Kronecker approximation

of the Fisher information matrix to adaptively precondition gradients. AdaFisher aims to bridge the

gap between the improved convergence and generalization of second-order methods and the compu-

tational efficiency needed for training DNNs. Despite the traditionally slower speed of second-order

optimizers, AdaFisher is effective for tasks such as image classification and language modeling, ex-

hibiting remarkable stability and robustness during hyperparameter tuning. We demonstrate that

AdaFisher outperforms state-of-the-art optimizers in both accuracy and convergence speed. The

Code is available from https://github.com/AtlasAnalyticsLab/AdaFisher.
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Chapter 1

Introduction

Deep Neural Networks (DNNs) have revolutionized a wide array of applications, from Com-

puter Vision (CV) and Natural Language Processing (NLP) to reinforcement learning and beyond.

Despite their success, training these models remains a challenging task due to the complexity of the

loss landscapes they must navigate. In particular, DNN optimization often struggles with the dual

challenges of achieving fast convergence and robust generalization across diverse architectures and

complex data distributions.

DNNs have demonstrated remarkable success across a wide range of applications, yet their

training remains a computationally intensive, time-consuming process that often requires massive

amounts of data (Brown et al., 2020). This raises a fundamental motivating question: how can we

train Neural Networks (NN) more effectively? Efforts to address this challenge have emerged

from many directions, including improved optimization algorithms (Martens & Grosse, 2015a;

Martens et al., 2010), specialized hardware designs (Misra & Saha, 2010), more data-efficient

NN architectures (Snell, Swersky, & Zemel, 2017), and dedicated Deep Learning (DL) compil-

ers (T. Chen et al., 2018; Rotem et al., 2018). However, each of these approaches underscores the

need for a deeper understanding of the factors that govern NN performance. Modifications to net-

work architectures or optimization strategies can have profound impacts, as can more subtle changes

such as reduced precision training (S. Gupta, Agrawal, Gopalakrishnan, & Narayanan, 2015). Yet,

finding a cohesive set of tools to comprehend and harness these effects remains a long-standing

challenge in DL optimization.
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This thesis promotes a holistic approach to DL optimization, exploring both practical imple-

mentations and theoretical insights to illuminate the structure of loss landscapes and the dynamics

of training. Central to our perspective is the observation that DL models exhibit a surprisingly rich

structure in their loss landscapes, a property that not only facilitates acceleration in optimization

but also helps explain the overall success of these models. By adopting loss landscape geometry

as a framework, we reveal how various components—from curvature-aware updates to adaptive

optimization techniques—contribute to effective neural network training. Connecting these pieces

provides a clearer perspective on how the interplay between network architecture, optimization

dynamics, and loss landscape geometry can be harnessed to design optimizers that balance conver-

gence speed, generalization, and computational efficiency (Nocedal & Wright, 1999).

In the following chapters, we build on these ideas to introduce AdaFisher, an adaptive second-

order optimizer that leverages a refined diagonal block-Kronecker approximation of the Fisher

Information Matrix. Through theoretical development, extensive empirical validation, and compre-

hensive ablation studies, our work aims to advance the state of DL optimization, providing both

practical solutions and new insights for the research community.

1.1 Problem Statement

At the core of DNN training is the minimization of a highly non-convex loss function L(ω) by

updating model parameters ω according to an iterative scheme

ω(t+1)
= ω(t) → ε (G(t)

)
→1↓L(ω(t)

),

where ε is the learning rate and G(t) encapsulates curvature information. For first-order methods

like Stochastic Gradient Descent (SGD), G(t) is simply the identity matrix, which makes these

methods computationally efficient but often blind to the underlying geometry of the loss surface.

In contrast, second-order methods employ richer curvature information—via the Hessian or the

Fisher Information Matrix (FIM)—to rescale and orient gradients in a manner that can accelerate

convergence and guide the optimizer toward flatter, more generalizable minima. However, these

benefits come at a steep computational cost, as calculating and inverting full curvature matrices

3



is often intractable for large-scale networks. This thesis addresses the need for an optimizer that

achieves a balance between rapid convergence, strong generalization, and computational efficiency.

1.2 Challenges Associated with the Problem

The existing literature reveals a fundamental trade-off in DNN optimization. On one hand,

methods such as Adam (Kingma & Ba, 2015) and its variants (e.g., AdamP (Heo et al., 2021),

AdaInject (Dubey, Basha, Singh, & Chaudhuri, 2022), and AdaBelief (Zhuang et al., 2020)) rely on

diagonal approximations of the FIM to remain computationally efficient. While effective in many

settings, these approximations can lead to suboptimal convergence and poorer generalization be-

cause they fail to capture the full curvature of the loss landscape. On the other hand, advanced

second-order approaches like AdaHessian (Yao et al., 2021), Shampoo (V. Gupta et al., 2018), and

K-FAC (Grosse & Martens, 2016) attempt to incorporate richer curvature information to improve

optimization performance, but they are often hampered by high computational overhead, exten-

sive hyper-parameter tuning requirements, and scalability issues on commodity hardware (Martens,

2020). This imbalance between the richness of curvature information and computational feasibility

represents a critical challenge for the field, as an effective solution would greatly enhance training

dynamics and yield better-performing models across various domains. Hence, we list three research

questions that we will try to talk throughout this thesis: How can the Fisher Information Matrix’s

structure be leveraged to design a second-order optimizer that is computationally feasible for deep

networks?; Does using a refined FIM-based preconditioning improve convergence speed and gen-

eralization compared to first-order methods?; What are the impacts of various design choices (e.g.,

using square-root of adapting optimization scheme, including Fisher computation for normalization

layers) on the optimizer’s performance?

1.3 Proposed Methodology

To address this challenge, we introduce AdaFisher, a novel adaptive second-order optimization

method that leverages a refined diagonal block-Kronecker approximation of the FIM. Inspired by

Natural Gradient Descent (NGD) (Amari & Nagaoka, 2000)—which uses the FIM as a Riemannian
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metric to precondition gradients—AdaFisher replaces the second moment in Adaptive framework

with our enhanced FIM approximation. This novel approach effectively combines the computa-

tional efficiency of first-order methods with the curvature-awareness of second-order techniques.

By capturing the essential curvature information through a diagonal block-Kronecker factorization,

AdaFisher accelerates convergence and guides the optimization process toward flatter local min-

ima, thereby improving generalization. As illustrated in Figure 1.1, AdaFisher not only converges

more rapidly but also reaches a superior local minimum by effectively navigating through saddle

points compared to its counterparts. Further details regarding the visualization can be found in

Appendix B.

Figure 1.1: Visualizing optimization trajectories for various optimizers overlaid a loss landscape.

1.4 Contributions

The contributions of this thesis are multifaceted and build upon extensive theoretical and empir-

ical insights in DNN optimization. First, we provide a comprehensive literature review that situates

our work within the broader context of first-order, second-order, and emerging optimization meth-

ods, highlighting the limitations of current approaches. Second, we empirically demonstrate that the

energy of the Kronecker Factors (KF) is predominantly concentrated along the diagonal, offering
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fresh insights into the structure of the FIM in deep learning. Third, we introduce a novel diago-

nal block-Kronecker approximation of the FIM, which is applicable across various network layers,

including normalization layers, thereby enhancing model adaptability while maintaining computa-

tional efficiency. Fourth, we establish the robustness and stability of AdaFisher through extensive

experiments across diverse training settings, proving its superior convergence and generalization

performance. Fifth, we showcase AdaFisher’s empirical performance against state-of-the-art op-

timizers in both image classification and language modeling tasks. Lastly, we develop innovative

visualization techniques that map optimizer trajectories in the loss landscape and introduce an ex-

plainable FIM measure, facilitating comparative analysis of optimizer behavior.

1.5 Outline

This thesis is organized to provide a cohesive narrative that bridges theoretical developments

with practical implementations. Chapter 2 offers a detailed literature review, surveying existing op-

timization techniques and identifying the challenges that motivate our approach. Chapter 3 delves

into a new approximation of the FIM which enables its computation for large scale DNNs while

preserving the main curvature information. Then in Chapter 4 we introduce AdaFisher optimizer,

explaining its theoretical foundations, algorithmic structure, and distributed implementation. In

Chapter 5, we present extensive experiments in both computer vision and natural language pro-

cessing, demonstrating the effectiveness of AdaFisher relative to other state-of-the-art optimizers.

Chapter 6 provides an in-depth ablation and stability analysis, dissecting the contributions of indi-

vidual components within AdaFisher. Finally, Chapter 7 concludes the thesis with a discussion of

the implications of our findings and potential directions for future research.

By addressing the inherent trade-offs in DNN optimization, this thesis contributes a new, scal-

able approach that combines the efficiency of first-order methods with the precision of second-order

curvature information, paving the way for more robust and generalizable deep learning models.

6



Chapter 2

Literature Review

Deep Learning has transformed numerous fields by achieving breakthrough results in computer

vision (K. He, Zhang, Ren, & Sun, 2016; Krizhevsky, Sutskever, & Hinton, 2012; Z. Liu et al.,

2021), natural language processing (Brown et al., 2020; Devlin, 2018; Vaswani et al., 2017), and

beyond. The extraordinary performance of deep networks is not solely a consequence of their ex-

pressive architectures but also of the intricate dynamics that govern their training. Understanding

these dynamics is crucial for several reasons. First, it sheds light on the non-convex optimization

challenges inherent to deep models. Second, it helps to reveal why and how over-parameterized

networks generalize well despite their capacity to fit highly complex datasets. Third, it informs the

design of optimization algorithms that balance rapid convergence with robust generalization. While

empirical successes abound, theoretical understanding lags behind practice, with critical open ques-

tions persisting about: 1) how optimization trajectories navigate high-dimensional non-convex land-

scapes (Zaheer, Reddi, Sachan, Kale, & Kumar, 2018), 2) why certain algorithms generalize better

despite equivalent training performance (Allen-Zhu, Li, & Liang, 2019), and 3) how computational

constraints shape method design (Hu & Huang, 2023). This chapter synthesizes recent advances

across three interconnected themes:

First, we will introduce the preliminaries notations and concepts in Section 2.1, then Section 2.2

analyzes DL dynamics through the lens of phase transitions, loss geometry, and implicit regulariza-

tion. Section 2.3 then delineates fundamental obstacles in NN optimization, from saddle point pro-

liferation to memory-time tradeoffs. Section 2.4 systematically evaluates optimization paradigms,
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contrasting zeroth-, first-, and second-order methods through their theoretical guarantees and em-

pirical behavior. Finally, Section 2.5 discusses emerging directions that contextualize the design

space for modern optimizers.

2.1 Preliminaries

2.1.1 Standard Notation

We include an overview of our notation within this section in addition to covering some fun-

damental material that we use throughout the thesis, and additional notations will be defined as

needed. We write R for the space of real numbers and N for the space of natural numbers. Scalars

are typically represented in lower-case, e.g. x ↔ R. We present vectors in lower-case boldface font,

e.g. x ↔ Rd. Matrices are written in upper-case font, e.g. A ↔ Rd↑d. We use subscript to denote

the entries of vectors and matrices. For example, vi denotes the ith entry of the vector v, and Aij

denotes the entry of A at position (i, j).

2.1.2 Probabilities

Throughout this thesis, we rely on fundamental tools from probability theory. While a careful,

thorough review is out of scope, we present here some key ideas that we need later. To denote the

probability of an event A occurring, we write P[A]. We frequently work with random variables,

which are defined as a function from a sample space to a measurable space. We focus primarily on

real-valued random variables, such that the measurable space is a subset of R. Our random variables

can typically be described via a probability density function (PDF), p(x). That is, given a random

variable X ,

P[X ↔ R] =

∫

R
p(x)dx,
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where R ↔ R. Given two random variables X and Y , we define the conditional distribution of X

given Y by the PDF,

p(x|y) = p(x, y)

p(y)

where p(x, y) denotes the joint PDF.

Expected value. We define the expected value of a real-valued random variable with PDF p(x)

as,

E[X] =

∫

R
xp(x)dx

This definition can be readily extended to vector-valued random variables by integrating element-

wise. In the case where we have several samples of a random variable, x1, . . . , xn, we write the

empirical mean as,

x̄ =
1

n

n∑

i=1

xi

Covariance Matrices. Given a vector-valued random variable x ↔ Rd, its covariance is defined

by,

Cov(x) = E
[
(x→ E[x])(x→ E[x])↓

]
.

Given, observations xi ↔ Rd↑n, for i = 1, . . . , n of the r.v x, we define the empirical covariance

matrix as,

!̂ =
1

n

n∑

i=1

(xi → x̄)↓ =
1

n
(X → X̄)(X → X̄)

↓,

where the design matrix X ↔ Rd↑n contains xi in its ith column, and X̄ ↔ Rd↑nhas x̄ in each

column. From this, we can see that the empirical covariance matrix is symmetric and positive

semidefinite–the latter meaning that all eigenvalues of !̂ are non-negative.
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Latent Variable Models. In Chapter 3, we present a new, efficient approximation of the Fisher

Information Matrix—defined below—which naturally arises in the context of latent variable models

that require an underlying statistical framework. These are probabilistic graphical models (Koller,

2009) where latent variables1 capture features of observed variables. In the simplest setting, the

latent variables, z ↔ Rk, and the observed variables x ↔ Rd have their joint PDF defined in the

following way,

p(x, z) = pω(x|z)p(z),

where p(z) represents a prior distribution over the latent variables, and pω(x|z) represents the

conditional distribution parameterized by some ω to be learned from observed data. Given some

i.i.d. observed data, {xi}ni=1, we seek to maximize the log marginal likelihood,

n∑

i=1

log pω(xi) =

n∑

i=1

log
pω(x|z)p(z)
p(z|xi)

.

Optimizing the parameters, ω, typically requires the computation of (or samples from) the posterior

distribution. But this is not generally available in closed form. Several methods exist that allow us

to perform inference in this model regardless.

To formalize the notion of the FIM, consider a parametric model pω(x) describing observed

data x ↔ Rd. The FIM with respect to ω is given by

F (ω) = Ex↔pω(x)

[
↓ω log pω(x) ↓ω log pω(x)

↓

]
, (1)

i.e., it measures the expected curvature of the log-likelihood and captures how sensitively the

model’s probability distribution depends on its parameters. Further discussions about the impor-

tance of the FIM and its relevance in optimization scenarios will follow later.
1Often referred to as unobserved or hidden variables
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2.1.3 Multivariate Calculus

Throughout this thesis, we extensively employ multivariate calculus and carefully outline the

notations and underlying concepts. Given a function f : Rn ↗ Rm, we can write its Taylor series

expansion about a point ω(0) ↔ Rn as,

f(ω) = f(ω(0)
) + J(ω(0)

)(ω → ω(0)
) +

1

2
(ω → ω(0)

)
↓H(ω(0)

)(ω → ω(0)
) + o(||ω → ω(0)||22),

where J(ω(0)
) ↔ Rm↑n denotes the Jacobian matrix evaluated at ω(0) and H(ω(0)

) ↔ Rn↑m↑n is

the Hessian tensor evaluated at ω(0). We use the notation,

[(ω → ω(0)
)
↓H(ω(0)

)(ω → ω(0)
)]j =

n∑

i=1

n∑

k=1

(ω → ω(0)
)iH(ω(0)

)ijk(ω → ω(0)
)k,

that is, the vector-tensor product is applied on the outer indices. The Jacobian matrix can be defined

as the collection of first-order derivatives between all input-output pairs of the function. Explicitly,

writing f = (f1, . . . , fm) and ω = (ω1, . . . , ωn) the ijth entry of J is given by,

J(ω0)ij =
ςfi
ςωj

∣∣∣
ω=ω(0)

.

The Jacobian matrix is a linear operator that determines the rate of change of the function along

some direction. The Hessian tensor can be defined similarly,

H(ω0)ijk =
ς2fj
ςωiςωk

∣∣∣
ω=ω(0)

.

The Hessian determines the curvature of the function and is a particularly useful object for opti-

mization. For instance, the Hessian can be used to classify stationary points as saddles, minima,

or maxima and measures the conditioning of these stationary points as the ratio of the largest and

smallest singular values.
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2.1.4 Neural Networks

This thesis is ultimately concerned with understanding the properties of NN and how we can

leverage this knowledge to develop a methodology for enhancing the convergence/generalization.

Our investigation of NNs ranges from closed-form theoretical analysis to experimental study. In

this section, we briefly introduce the notation that we use to describe NNs throughout this thesis —

with an emphasis on the NNs that we focus on within our theoretical analysis.

We consider a supervised learning framework with a dataset D containing N i.i.d samples,

D := {xn,yn}Nn=1 where xn ↔ Rd and yn ↔ RC . Loosely speaking, a NN is a parametric function,

fω : Rd ↗ RC , parametrized by ω where ωi = concat(Wi,bi) ↔ RPi , and Pi = P out
i ↘ (P in

i +1).

Let L : RC ↘ RC ↗ R be the loss function defined by the Negative Log-Likelihood (NLL), i.e.

L(y, fω(x)) := → log pω(y|x) where pω(y|x) is the likelihood of the NN fω. The network computes

its output hL = fω(x) according to

ai = ωih̄i→1, hi = φi(ai), ≃ i ↔ {1, . . . , L} | h0 = x,

where h̄i→1 = [h↓

i→1,1]
↓ ↔ RP in

i→1+1, and φi is an element-wise nonlinearity applied at layer i.

For a given input target pair (x,y), the gradient of the loss L(y, fω(x)) concerning the weights are

computed by the backpropagation algorithm (Lecun, 2001). For convenience, we adopt the special

symbol si = ↓aiL for the pre-activation derivative. Starting from ↓hLL = ςhLL(y,hL), we

perform

si := ↓aiL = ↓hiL⇐ φ↗

i(ai), ↓ωiL = sih̄
↓

i→1, ↓h̄i→1
L = ω↓

i si | ≃i ↔ {L, . . . , 1},

where ⇐ denotes the element-wise product. Finally, the gradient ↓ωL is retrieved by: ↓ωL =

[vec(↓ω1L)↓, vec(↓ω2L)↓, . . . , vec(↓ωLL)↓]↓; vec(·) denotes the Kronecker vectorization oper-

ator which stacks the columns of a matrix into a vector. Throughout this thesis we will use the

notation g(t)
= ↓ωL(ω(t)

).
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Network Jacobian. Network Jacobian in Section 2.1.3 we defined the Jacobian matrix. Here we

write NNs as functions that depend on some parameters ω and operate on some data x. We typically

consider the Jacobian matrix of NNs with respect to their parameters ω, and they are thus written as

Jω(x).

2.1.5 Optimization

In this section, we review the background material that is relevant to the optimization compo-

nents of this thesis. We will formalize the optimization problem considered when training a NN.

Setting. The optimization problems that we consider can be represented via an objective function,

L (e.g., NLL defined in Section 2.1.4). In the settings that we study in this thesis, the objective

function is evaluated for a given set of model parameters and observations. In the most general

case, we use ω to denote the model parameters. Note that in this thesis we will consider a supervised

learning framework. Typically, the objective function can be decomposed as the average of several

independent loss terms,

L(ω) = 1

N

N∑

n=1

↼(ω;xn,yn)

Our goal is to minimize this objective function with respect to the model parameters. In doing so

successfully, we recover a global minimum,

ω↘ ↔ arg min
ω

L(ω)

Notice the use of ↔ instead of = operator, this is because of the nature of the problem, which in

the case of NN optimization, is highly non-convex. In the typical applications that we care about,

such as deep learning optimization, n is far too large to evaluate L efficiently. In this case, we often

resort to stochastic optimization where we obtain statistics of the objective function by evaluating it

using only a randomly chosen subset of the observations.
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Gradient Descent. A ubiquitous approach to minimizing L is to start with some initial guess of

the optimal parameters, ω0, and follow the gradient from ω0 towards an optimum. This algorithm is

known as gradient descent, and can be represented by the following recursive computation,

ω(t+1)
= ω(t) → ε(t)g(t), (2)

where ε(t) denotes the learning rate. This algorithm (and extensions of it) still form the basis of

modern deep learning optimization. To better understand it, we will now provide a brief review of

convex optimization and the behaviour of gradient descent under convex objectives.

Convex Optimization. In convex optimization, we restrict our attention to the class of convex

objective functions.

Definition 2.1.1. A function f : Rd ↗ R is convex if and only if the following holds. For all

t ↔ [0, 1], and all x,y ↔ Rd,

f(tx+ (1→ t)y) ⇒ tf(x) + (1→ t)f(y).

In general, a convex optimization problem may include a set of constraints such that the feasible

set of solutions is a convex set. Unless stated otherwise, we restrict our attention to unconstrained

convex optimization.

Perhaps the simplest non-trivial convex function is the quadratic function, which (without loss

of generality (WLG)) takes the form,

f(x) = (x→ x↘
)
↓A(x→ x↘

), (3)

where A is a symmetric positive semidefinite matrix. Convex quadratic optimization problems form

the cornerstone of second-order optimization algorithms, since at each iteration the loss function

is approximated by a convex quadratic via a second-order Taylor expansion, thereby making the

resulting subproblem significantly easier to solve.
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Note that throughout this thesis we consider unconstrained composite convex optimization prob-

lems which are significantly simpler than their constrained counterparts.

Convergence on convex objectives. The following properties of (unconstrained) convex opti-

mization are key to our success in optimization (Boyd, 2004):

• Every locally optimal point of a convex objective function is globally optimal.

• If f is differentiable, then a point x is optimal if and only if ↓xf = 0.

Importantly, the convergence rate of gradient descent at an optimum of an unconstrained convex

optimization problem depends on the condition number of the Hessian matrix. That is the ratio of

the largest eigenvalue to the smallest eigenvalue of the Hessian matrix. The larger the condition

number, the slower the convergence.

Consider a quadratic objective with ↽ denoting the condition number of the Hessian matrix

(H = A) in Eq. (3). Then the convergence rate of gradient descent (with optimal learning rate) is

given by,

f(x(t)
)→ f(x↘

) =

(
1→ 1

↽

)t

(f(x0)→ f(x↘
)),

where x0 is the initial point. One commonly used method to improve convergence under ill-

conditioned objectives is by utilizing acceleration. These methods typically reduce the dependency

on the condition number from 1/↽ to 1/
↑
↽.

2.2 Deep Learning Dynamics

The dynamics of deep learning encompass the evolution of network parameters as a function of

training time and the interplay between the optimization method, loss landscape, and model archi-

tecture. These dynamics are central to understanding how deep networks transition between differ-

ent regimes of learning, how they navigate highly non-convex landscapes, and how they converge

to solutions with desirable generalization properties. In this section, we review the state-of-the-

art (SOTA) in deep learning dynamics with a focus on three aspects: training dynamics and phase
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transitions, loss landscape geometry, and implicit regularization.

2.2.1 Training Dynamics and Phase Transitions

Neural Tangent Kernel (NTK) Theory. A powerful theoretical lens on the training behavior of

overparameterized NN is provided by the Neural Tangent Kernel (NTK) framework (Jacot, Gabriel,

& Hongler, 2018). Consider a NN fω : Rd ↗ R (WLG, assume a scalar output) parameterized by

ω ↔ Rp. At any parameter setting ω, the NTK between two inputs x,x↗ ↔ Rd is defined as

Kω(x,x
↗
) = ↓ωfω(x)

↓↓ωfω(x
↗
) .

In the NTK regime—often associated with very wide (infinite-width) NNs—the evolution of network

parameters under gradient descent can be approximated by linearizing fω(x) around its initialization

ω(0). Concretely, writing ω(t) for the parameters at iteration t,

fω(t)(x) ⇑ fω(0)(x) + ↓ωfω(0)(x)↓
(
ω(t) → ω(0)

)
.

Under this approximation, the kernel Kω(0)(x,x↗
) remains nearly constant throughout training. As a

result, the training dynamics reduce to a linearized model whose parameters evolve in a predictable

manner. While this perspective sheds light on many salient features of training—including the speed

of convergence and the capacity for perfect interpolation in overparameterized networks—it only

partially captures the highly non-linear aspects observed in real-world scenarios where finite width,

adaptive optimizers, and more complex architectures induce additional effects.

Phase Transitions in Training. The training process of deep networks is characterized by com-

plex temporal behavior that often manifests as distinct phases (Fort et al., 2020). Early in training,

the network typically undergoes rapid changes, while later stages are marked by slower, diffusion-

like dynamics. Recent studies have systematically mapped out these phases by examining how

Hyper-Parameters (HP) such as learning rate, depth, and width influence convergence behavior (Er-

han, Courville, Bengio, & Vincent, 2010; Xie, Wang, Zhang, Sato, & Sugiyama, 2022). For exam-

ple, in Kalra and Barkeshli (2023), the authors present a phase diagram that distinguishes regimes
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of fast initial descent from later phases where learning slows, thereby highlighting critical transi-

tion points that affect both convergence and generalization. In (Jastrzebski et al., 2020), the authors

analyze the importance of the early phase of training and its critical impact on final performance,

arguing that key properties of the loss surface are strongly influenced by initial learning dynamics.

A complementary perspective is provided by theoretical frameworks such as the NTK described

above. Although the NTK regime simplifies the analysis by approximating the parameter evolution

as quasi-linear, it captures only a fraction of the full non-linear behavior observed in practice. In

more realistic settings—where non-linear activations, finite widths, and adaptive optimization meth-

ods are prevalent—the training dynamics exhibit richer behavior, including abrupt shifts (or phase

transitions) that mark the onset of distinct learning regimes.

The inherent stochasticity in optimization methods like Stochastic Gradient Descent (SGD)

(Marcus, Santorini, & Marcinkiewicz, 1993) introduces noise that can help escape poor local min-

ima and saddle points. For instance, Jin, Ge, Netrapalli, Kakade, and Jordan (2017) demonstrated

that by adding noise at each step, gradient descent can escape saddle points in polynomial time.

Moreover, Xie, Sato, and Sugiyama (2021) proposes a diffusion theory for deep learning dynamics

in which the stochastic fluctuations inherent in SGD introduce an additional regularization effect,

steering the optimization trajectory toward broader, flatter minima. This bias toward flat solutions

is argued to underpin the superior generalization performance observed in deep networks, as flatter

minima are typically more robust to perturbations and less prone to overfitting (Frankle & Carbin,

2019).

2.2.2 Loss Landscape Geometry

What is a loss landscape? A loss landscape is determined by the output of the loss function over

some subset of the optimization parameters. The loss landscape describes the space explored by an

optimization algorithm and ultimately determines the optimizer’s trajectory. Figure 2.1 displays a

2D slice of the loss landscape of a fully-connected network.

Geometry Intuitions. The geometry of the loss landscape is a key determinant of both the ease

of optimization and the generalization ability of a DNN. Empirical investigations have revealed that
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Figure 2.1: A 2D slice of a loss landscape. This is a 3D rendering of a 2D slice of the loss landscape
of a fully-connected network. The slice itself was chosen via gradient descent, using an objective
that encouraged this 2D slice to match a target image. Full details are given by Lucas (2022).

the loss surfaces of deep models are highly non-convex and characterized by a multitude of local

minima and saddle points. Yet, intriguingly, many of these minima are connected via low-loss path-

ways, suggesting that the landscape possesses an underlying structure that facilitates optimization

(Garipov, Izmailov, Podoprikhin, Vetrov, & Wilson, 2018; yeh Chiang et al., 2023). One influen-

tial concept in this context is the Goldilocks zone, which refers to regions in the parameter space

where the curvature is balanced—not too steep and not too flat. Studies such as Fort and Scherlis

(2019) and Vysogorets, Dawid, and Kempe (2024) have shown that minima in these zones tend

to be flat, and flatness has been empirically associated with better generalization performance. The

spectral properties of the Hessian matrix have often been used to characterize these regions: minima

with a concentration of small eigenvalues (i.e., flat minima) are typically more robust to perturba-

tions, whereas sharp minima, characterized by large eigenvalues, are more sensitive and prone to

overfitting (Dinh, Pascanu, Bengio, & Bengio, 2017; Keskar, Mudigere, Nocedal, Smelyanskiy, &
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Tang, 2017). Several works have further illuminated the interplay between optimization dynamics

and loss landscape geometry. For instance, Chaudhari et al. (2019) introduce Entropy-SGD, which

augments the loss function with an entropy term →ϑ→1
H(ω) to the loss:

L̃(ω) = L(ω) → ϑ→1
H(ω), H(ω) = →

∫
p(ε|ω) ln p(ε|ω) dε,

where ϑ is a temperature-like parameter and p(ε|ω) is a local Gibbs distribution around ω. Similarly,

Xie et al. (2021) develops a diffusion theory for deep learning dynamics, modeling the update of

parameters ω(t) under SGD as

ω(t+1)
= ω(t) → ε↓ωL(ω(t)

) +

√
2εTe! ⇀(t),

where ⇀(t) is an isotropic noise term and Te! is an effective temperature capturing batch-size and

learning-rate dependence. Their analysis shows that the resulting parameter distribution is biased

exponentially toward regions where H(ω) has smaller eigenvalues, thus promoting flatter minima.

Their results quantitatively show that SGD exponentially favors flat minima, offering a theoretical

underpinning for the empirically observed link between flatness and generalization. The concept

of flatness is further enriched by the study of asymmetric valleys. H. He, Huang, and Yuan (2019)

observe that the local minima in deep networks are often asymmetric: the loss increases abruptly

in some directions while rising more gradually in others. Under mild assumptions, they prove that

solutions biased toward the flat side of an asymmetric valley generalize better than the exact em-

pirical minimizers. This finding is supported by weight-averaging techniques such as Stochastic

Weight Averaging (SWA) (Izmailov, Podoprikhin, Garipov, Vetrov, & Wilson, 2018), which implic-

itly guide the model parameters toward flatter regions. Finally, optimization methods that explicitly

target flatter regions—such as Sharpness-Aware Minimization (SAM) (Foret, Kleiner, Mobahi, &

Neyshabur, 2021)—modify the training objective to explicitly penalize local sharpness by modify-

ing the training objective to

LSAM(ω) = min
ω

max
≃ε≃⇐ϑ

L(ω + ⇁), (4)
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with a radius parameter ϖ > 0. By ensuring robust performance in a neighborhood around ω, SAM

systematically favors flatter basins of the loss landscape.

Consequently, these studies underscore that a comprehensive understanding of loss landscape

geometry—including factors such as curvature, asymmetry, and the connectivity of low-loss re-

gions—is crucial not only for explaining the dynamics of SGD but also for designing algorithms

that enhance generalization in deep networks.

2.2.3 Implicit Regularization

Implicit regularization refers to the phenomenon by which the training algorithm itself biases

the optimization process towards solutions with desirable generalization properties, even in the

absence of explicit regularization terms. A growing body of evidence suggests that the dynamics

of methods such as SGD inherently favor flat minima, which are linked to improved robustness

and generalization Frankle and Carbin (2019); Kalra and Barkeshli (2023). This effect arises partly

because the noise injected by stochastic sampling encourages exploration of the loss landscape,

while the iterative nature of gradient descent effectively smooths out sharp curvatures.

The interplay between implicit regularization and loss landscape geometry is complex. For

instance, weight decay—commonly applied as an explicit regularizer—has been shown to inter-

act with the gradient dynamics in ways that further promote the selection of flatter minima Xie,

zhiqiang xu, Zhang, Sato, and Sugiyama (2023). Moreover, while adaptive optimization methods

(e.g., Adam (Kingma & Ba, 2015), RAdam (L. Liu et al., 2020)) often accelerate convergence,

they may sometimes undermine the implicit bias towards flatness, leading to a trade-off between

optimization speed and generalization quality (L. Liu et al., 2020). Recent studies have also drawn

connections between implicit regularization and the lottery ticket hypothesis (Frankle & Carbin,

2019), which posits that sparse subnetworks within over-parameterized models can perform com-

parably to the full network when appropriately trained. Such observations highlight the multifaceted

role of implicit regularization in deep learning.

In a nutshell, these three facets—training dynamics and phase transitions, loss landscape geom-

etry, and implicit regularization—provide a framework for understanding how deep networks learn

and generalize. The following sections will build on this foundation to discuss the key challenges
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in optimizing deep networks and survey a range of optimization methods that have been developed

to tackle these issues.

2.3 Key Challenges in Optimizing Deep Networks

The optimization of deep networks presents several interrelated challenges that stem from the

inherent complexity of the models and the high-dimensional, non-convex nature of their loss land-

scapes. In this section, we discuss three core challenges: the difficulties posed by non-convex

optimization, the delicate balance between achieving generalization and avoiding overfitting, and

the computational constraints that arise when scaling optimization algorithms to large networks.

2.3.1 Non-Convex Optimization

Deep networks are trained by minimizing loss functions that are highly non-convex, charac-

terized by a profusion of local minima, saddle points, and flat regions as illustrated in Figure 2.2.

This non-convexity complicates the task of finding globally optimal solutions and often necessitates

reliance on local search methods. SGD and its variants have emerged as the workhorses for deep

learning partly because the inherent noise in SGD helps in escaping shallow local minima and sad-

dle points (Y. N. Dauphin et al., 2014; Kalra & Barkeshli, 2023). Moreover, several studies have

shown that the structure of the loss landscape is such that many local minima are of comparable

quality in terms of generalization (Choromanska, Henaff, Mathieu, Arous, & LeCun, 2015; yeh

Chiang et al., 2023). This observation implies that even if the global optimum is not reached, the

solution found by SGD can still generalize well. To further navigate the complex curvature of the

loss surface, second-order information is often exploited. Approaches such as Kronecker-Factored

Approximate Curvature (K-FAC) (Martens & Grosse, 2015a) and its efficient variants (Benzing,

2022; Mozaffari, Li, Zhang, & Dehnavi, 2023; Tang et al., 2021; L. Zhang, Shi, & Li, 2023) seek to

provide accurate curvature approximations that help steer the optimization process. However, their

increased computational overhead remains a significant challenge, especially in large-scale settings.

In parallel, classical optimization techniques such as the Limited-memory BFGS algorithm (L-

BFGS) (D. C. Liu & Nocedal, 1989) have also influenced modern algorithmic developments. While
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L-BFGS is capable of providing precise curvature information, its direct application in stochastic,

high-dimensional environments typical of deep learning is hindered by sensitivity to noise and scal-

ability issues. As a result, recent work has focused on hybrid strategies that combine the efficiency

of first-order methods with selective second-order insights, aiming to better exploit the geometry of

the loss surface without incurring prohibitive computational costs.

Figure 2.2: Three types of stationary points in non-convex optimization landscapes: local minima,
global minima, and saddle points.

2.3.2 Generalization vs. Overfitting

A central paradox in deep learning is that over-parameterized models can achieve excellent

generalization performance despite their capacity to overfit. The challenge lies in steering the

optimization process toward solutions that generalize well rather than merely fitting the training

data. Implicit regularization, inherent in methods like SGD, plays a critical role by biasing train-

ing towards flatter minima—regions in the loss landscape that are less sensitive to perturbations

and are empirically linked to improved generalization (Foret et al., 2021; Soudry, Hoffer, Nacson,

Gunasekar, & Srebro, 2018; Xie et al., 2023). Explicit regularization techniques such as weight

decay and dropout have traditionally been employed to mitigate overfitting. However, recent re-

search suggests that the choice of optimization algorithm itself can exert a significant regularizing

effect. For instance, adaptive methods like Adam and its variants—including AdamP and AdaBelief

(Zhuang et al., 2020)—are known to accelerate convergence; yet, they may sometimes sacrifice the
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implicit bias toward flat minima that is beneficial for generalization (Wilson, Roelofs, Stern, Sre-

bro, & Recht, 2017). Moreover, margin-based analyses have provided theoretical insights into how

the implicit regularization of gradient-based methods can yield better generalization bounds even

in over-parameterized settings (Bartlett, Foster, & Telgarsky, 2017). The ongoing investigation into

the interplay between these dynamics is further enriched by studies on the lottery ticket hypothesis

(Frankle & Carbin, 2019), which posit that certain sparse subnetworks are inherently predisposed

to generalize well. Collectively, these insights continue to drive the development of optimization

strategies that aim to balance fitting accuracy with robust generalization.

2.3.3 Computational Constraints

The high computational cost associated with training deep networks is a persistent challenge,

particularly as models continue to scale in size and complexity. While second-order methods, which

utilize curvature information, can in principle lead to faster convergence, their direct application is

often hindered by prohibitive memory and time requirements. Methods such as Shampoo (V. Gupta

et al., 2018) and its variants attempt to incorporate second-order information through Kronecker

decompositions, yet these approaches can be computationally intensive, especially for large-scale

models.

To address these issues, researchers have proposed a variety of efficient approximations and

hybrid methods. For example, efficient implementations of K-FAC (Botev, Ritter, & Barber, 2017;

Frantar, Kurtic, & Alistarh, 2021; George, Laurent, Bouthillier, Ballas, & Vincent, 2018) and recent

proposals such as FOOF (Benzing, 2022) and M-FAC (Frantar et al., 2021) aim to strike a balance

between leveraging curvature information and maintaining computational feasibility. Additionally,

first-order methods, including adaptive optimizers like RAdam and AdaFactor (Shazeer & Stern,

2018), continue to be refined to reduce overhead while preserving convergence quality. The con-

stant drive to lower computational burdens has not only spurred algorithmic innovations but also

influenced hardware-aware optimizations, ensuring that deep network training remains tractable on

modern computational platforms.

Hence, the challenges of non-convex optimization, balancing generalization with overfitting,
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and managing computational constraints define the current landscape of deep network optimiza-

tion. Addressing these challenges continues to be a major focus of both theoretical investigations

and practical algorithm design, as evidenced by the ongoing contributions to the machine learning

community.

2.4 Optimization Methods

Optimization methods for deep networks can be categorized into four main groups: zeroth-

order, first-order, second-order, and hybrid methods. Each category leverages different types of

information and offers distinct trade-offs in computational cost, convergence behavior, and memory

requirements. In this section, we provide detailed mathematical descriptions of these methods and

refer to prominent works published in top conferences.

2.4.1 Zeroth-Order Methods

Zeroth-Order (ZO) methods, also known as derivative-free optimization techniques, form a class

of algorithms that rely exclusively on function evaluations rather than on explicit gradient informa-

tion. These approaches prove particularly useful in settings where gradients are unavailable, unre-

liable, or prohibitively expensive to compute. Applications span a wide range of areas, including

black-box optimization, reinforcement learning, adversarial attacks, and other non-differentiable

scenarios.

Zeroth-Order Optimization in NNs. ZO methods address the parameter optimization problem

min
ω⇒RP

L(ω) (5)

for an L-layer NN fω without using backpropagation. Here, P =
∑L

i=1 Pi is the total number

of parameters. Instead of computing the parameter gradient via automatic differentiation, these

methods approximate ↓ωL(ω) by sampling function evaluations of the loss landscape. When the

24



network is L-smooth, meaning there exists a constant L > 0 such that

⇓↓ωL(ω) → ↓ωL(ω↗
)⇓ ⇒ L⇓ω → ω↗⇓,

a classical coordinate-wise finite-difference estimator takes the form

ς̂ωiL(ω) =
L(ω + h ei) → L(ω)

h
,

where ei is the ith canonical basis vector in RP , and h > 0 is a small finite-difference step size

(or perturbation scale). This method requires O(P ) function evaluations per update, which can be

prohibitive for large P (Golovin et al., 2020).

Modern implementations often opt for random directional derivatives that perturb all parameters

simultaneously. A typical estimator is

↓̂ω L(ω) =
L
(
ω + hu

)
→ L(ω)

h
u, u ⇔ N (0, IP ),

where u is drawn from a spherically symmetric distribution (e.g., a Gaussian). In expectation, this

directional scheme optimizes a smoothed version of the loss

Lh(ω) = Eu
[
L(ω + hu)

]
, Eu

[
↓̂ω L(ω)

]
= ↓ωLh(ω),

which provides a form of regularization in high-dimensional spaces (Ghadimi & Lan, 2013).

The parameter updates mirror those of SGD (see Eq. (2)) but employ estimated gradients

ω(t+1)
= ω(t) → ε(t) ↓̂ω L

(
ω(t)

)
.

Under bounded variance, i.e. E
[
⇓↓̂ω L(ω) → ↓ω L(ω)⇓2

]
⇒ σ2, and assuming L-smoothness, the

average squared gradient norm over T iterations satisfies

1

T

T∑

t=1

E
[
⇓↓ωL(ω(t)

)⇓2
]
⇒ O

L
(
L
(
ω(1)

)
→ L↘

)

T
+

P Lσ2

T


,
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where L↘ is the global optimum (Ghadimi & Lan, 2013). Consequently, to achieve an ϱ-stationary

solution, one needs O
(
P
ϖ2

)
iterations, reflecting the dimension dependence in zeroth-order estimates.

Parallelization can partially mitigate this cost. For instance, Lian, Zhang, Hsieh, Huang, and

Liu (2016) show that with K parallel workers and communication delay bound τ , the iteration

complexity improves to O
(

P
K ϖ2

)
under certain conditions, maintaining a near-linear speedup when

K ⇒ O
(
T 1/4

)
. Additionally, Al-Dujaili and O’Reilly (2020) propose sign-based compression of

the updates

ω(t+1)
= ω(t) → ε(t)

sign


↓̂ωL

(
ω(t)

)
,

which reduces communication overhead. This approach is further motivated by the finding that

sign
(
↓ωL

)
often preserves sufficient information about the descent direction, especially when cou-

pled with adaptive step sizes (Y. Zhao et al., 2025). Such sign-based updates highlight the broad

flexibility of zeroth-order optimization in large-scale, high-dimensional NN training.

Recent Advances and Practical Successes. Driven by the need to make derivative-free methods

more efficient, recent techniques incorporate adaptive sampling and second-order insights. For

instance, MeZO (Malladi et al., 2023) circumvents backpropagation by directly estimating gradients

through carefully designed perturbations in a symmetric manner

↓̂ωL(ω) =
L(ω + ϱ z)→ L(ω → ϱ z)

2 ϱ
z,

where z ⇔ N (0, IP ). Under L ↔ C3, this estimator yields ↓ωL(ω) up to O(ϱ2) (X. Chen, Liu,

Xu, et al., 2019; Malladi et al., 2023), and storing random seeds rather than full vectors z improves

memory usage. Y. Zhao et al. (2025) combine variance reduction and adaptive learning rates for

faster convergence in high-dimensional settings, extending the work of Ghadimi and Lan (2013);

Lian et al. (2016) to show that under unbiasedness and bounded-variance assumptions, zeroth-order

updates can inherit many classical SGD convergence properties. Other influential contributions

have broadened the scope of derivative-free optimization. Golovin et al. (2020) highlight the chal-

lenges of exponential growth in function evaluations with dimension, emphasizing the importance
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of efficient sampling schemes. Rando, Molinari, Rosasco, and Villa (2024) reduce variance via

smoothing-based estimators, and Larson, Menickelly, and Wild (2019) address adversarial noise

with robust ZO methods. Y. Zhang et al. (2022) propose flexible exploration-exploitation strategies

for randomized search. Collectively, these studies underscore that while zeroth-order methods can

be a powerful alternative when gradients are unavailable or unreliable, their practical utility depends

heavily on reducing the number of function evaluations.

Moreover, other methods such as ZO-SVRG (Zeroth-Order Stochastic Variance Reduced Gradi-

ent) (S. Liu et al., 2018) employs control variates to reduce variance in the gradient approximation.

Specifically, it defines

m(t)
= ↓̂ωL(ω(t)

)→ ↓̂ωL(ω̃) + µ̃, µ̃ =
1

|B|
∑

i⇒B

↓̂ωLi
(
ω̃
)
.

where ω̃ is a reference parameter (typically updated periodically), and µ̃ is computed as the average

of the zeroth-order gradient estimates over a mini-batch B. This estimator combines the current

gradient approximation ↓̂ωL(ω(t)
) with a correction term that accounts for the discrepancy between

the current parameter and the reference parameter, thus reducing the overall variance of the estimate.

The update rule for the parameters is then given by

ω(t+1)
= ω(t) → εm(t),

where ε is the learning rate. By leveraging both the current and historical gradient information,

ZO-SVRG is able to reduce the variance from O(d/
↑
T ) to O(d/T + 1/b), thereby stabilizing

convergence even in high-dimensional settings.

Furthermore, the adaptive framework has been also used in ZO methods as demonstrated by

ZO-AdaMM (X. Chen, Liu, Xu, et al., 2019) which extends Adam into a zeroth-order framework

by iterating

m(t+1)
= ϑ1m

(t)
+ (1→ ϑ1) ↓̂ωL

(
ω(t+1)

)
, v(t+1)

= ϑ2 v
(t)

+ (1→ ϑ2)
(
↓̂ωL(ω(t+1)

)
)2
,

(6)
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the update rule is ω(t+1)
= ω(t) → ε m(t)

⇑

v(t)+ε
, where ϑ1,ϑ2 ↔ (0, 1) and ⇁ > 0 is a regularization

constant. This per-parameter adaptation remains valid in a ZO setting provided that the expected

magnitude of (v(t)
)
→1/2 ↓̂ωL(ω(t)

) remains bounded.

Integrating second-order free information has also been studied by several works (Bollapragada

& Wild, 2023; Y. Zhao et al., 2025), which have explored approximating second-order information

without explicit differentiation. In the context of ZO methods, one seeks to recover curvature infor-

mation through function evaluations rather than analytic derivatives. This is particularly beneficial

when gradients or Hessians are either unavailable or too expensive to compute. A common strategy

is to estimate Hessian actions via finite-difference approximations. For example, a quasi-Newton

scheme might estimate the product of the Hessian H(t) with a vector z by using the relation

H(t) z ⇑
L
(
ω(t)

+ h(t) z+ h(t) u
)
→ L

(
ω(t)

+ h(t) u
)

(h(t))2
,

where u ⇔ N (0, IP ) serves as a random direction that, when combined with the directional per-

turbation z, yields an approximation of the second-order behavior along that direction. The key

idea is that the change in the loss function, when evaluated at points that are slightly perturbed in

both the desired and a random direction, encodes information about the curvature of the loss sur-

face. This approach circumvents the need for explicit Hessian computation while still capturing

essential curvature details. Subsequently, one can employ a BFGS update to build an approxima-

tion B(t) ⇑ (H(t)
)
→1 of the inverse Hessian. This approximated inverse Hessian is then used to

precondition the gradient, leading to a curvature-informed update of the form,

ω(t+1)
= ω(t) → ε(t)B(t) ↓̂ωL(ω(t)

),

where ↓̂ωL(ω(t)
) represents a ZO estimate of the gradient. By adjusting the descent direction

based on the local curvature, this method is capable of accelerating convergence, especially in ill-

conditioned landscapes where the loss surface may exhibit steep or flat regions. Although these

methods are computationally heavier due to the additional function evaluations and the complexity

of updating the inverse Hessian approximation, the integration of curvature information can lead to
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more robust and efficient optimization. In particular, the ability to modulate the step direction and

length based on local curvature often results in improved convergence behavior, making these tech-

niques an attractive alternative in settings where traditional gradient-based methods may struggle

(Shu et al., 2023).

Summary and Outlook. In summary, zeroth-order methods offer a derivative-free alternative for

optimizing NNs, relying solely on function evaluations instead of explicit gradient computations.

This characteristic makes them particularly attractive in scenarios where gradients are unavail-

able, unreliable, or computationally expensive, such as in black-box optimization, reinforcement

learning, and adversarial attacks. By approximating gradients through techniques like coordinate-

wise finite differences or random directional derivatives, these methods enable optimization in non-

differentiable settings, albeit at the cost of increased function evaluations and inherent dimension

dependence. Recent advances, including variance reduction schemes such as ZO-SVRG and adap-

tive frameworks like ZO-AdaMM, have significantly improved the efficiency and stability of zeroth-

order optimization. Furthermore, the incorporation of second-order information via finite-difference

approximations and quasi-Newton updates has enhanced convergence in ill-conditioned landscapes

by providing curvature-aware steps. While challenges remain—particularly regarding the high com-

putational overhead in high-dimensional spaces—the ongoing development of efficient sampling,

parallelization, and adaptive techniques holds promise for expanding the practical applicability of

derivative-free methods in large-scale deep learning and beyond.

2.4.2 First-Order Methods

First-order methods remain the most widely used optimization techniques in deep learning, as

they rely on gradient information to iteratively update model parameters (Goodfellow, 2016). We

consider a function L : Rd ↗ R to be minimized with respect to some parameters ω. In its simplest

form, one solves

min
ω⇒Rd

L(ω), g(t)
= ↓L(ω) ↔ Rd, (7)
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via the gradient descent update defined in Eq. (2). Note that the formulation defined in Eq. (7) is

similar to the one defined in Eq. (5), except that we now compute the actual gradient value instead

of estimating it. Due to the large scale of modern datasets and models, practitioners typically rely on

mini-batch SGD where g(t) is substituted by an unbiased gradient estimate computed on a random

mini-batch of training data, i.e. ↓̂ωL(ω(t)
) in Eq. (2). This stochastic approach not only reduces

computation but also helps escape sharp minima and saddle points due to the induced noise the

computed gradient (X. Chen, Liu, Sun, & Hong, 2019a; Y. Dauphin, De Vries, & Bengio, 2015;

Reddi, Kale, & Kumar, 2018).

SGD-Based and Momentum Methods. A straightforward yet crucial refinement of SGD is to

incorporate momentum, a technique originally studied by Polyak (1964) and subsequently refined

for NNs (Sutskever, Martens, Dahl, & Hinton, 2013a). In its classical form, one initializes ω0 and

m0 = 0, then iterates

m(t+1)
= ϑm(t) → g(t), (8)

ω(t+1)
= ω(t)

+ ε(t)m(t+1), (9)

where m(t) ↔ Rd is a velocity term, ϑ ↔ (0, 1) is the damping coefficient, and ε(t) > 0 denotes

the learning rate schedule. By accumulating gradients in m(t), momentum can significantly speed

up convergence, particularly if ϑ is well-chosen. However, if ϑ is set too small, progress in low-

curvature directions may stall, whereas a large ϑ risks instabilities and oscillations in high-curvature

regions.

Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013a) further refines

classical momentum by evaluating the gradient at a look-ahead position, effectively correcting errors

introduced by moving in the direction of the velocity in Eq. (8). One writes

m(t+1)
= ϑm(t) → ↓ωL

(
ω(t)

+ ε(t) ϑm(t)
)
,

and apply ω(t+1)
= ω(t)

+ m(t+1). Nesterov’s modification helps stabilize updates in non-convex
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optimization and can accelerate convergence in quadratic settings by implicitly adapting to the cur-

vature.

Beyond these foundational momentum schemes, numerous enhancements address high-dimensional

or otherwise challenging NN landscapes. For example, Lion method (X. Chen et al., 2024) incor-

porates a diagonal preconditioner into the momentum update. Formally, one can write the update

as

m(t+1)
= ϑm(t) → (1→ ϑ)P ⇐ g(t),

where P is a diagonal matrix that rescales the gradient along each coordinate and applies Eq. (9).

The intuition behind this approach is to adaptively adjust the learning rate in each dimension based

on local curvature, thereby enhancing numerical conditioning and promoting a more balanced de-

scent across the parameter space. GaLore method (J. Zhao et al., 2024) adopts a complementary

strategy by projecting the gradient into a reduced-dimensional subspace. Let U ↔ Rd↑k be an or-

thonormal matrix whose columns form a basis for a subspace with k ↖ d. The projected gradient

is then given by

(g(t)
)

proj
= UU↓g(t), (10)

and integrating Eq. (10) into Eq. (8), the momentum update becomes

m(t+1)
= ϑm(t)

+ (1→ ϑ) (g(t)
)

proj.

This projection effectively retains the most critical descent directions while significantly reducing

memory usage. The key concept is that even in a high-dimensional setting, the most informative

directions for descent may lie on a low-dimensional manifold, thus allowing the method to discard

redundant information without compromising convergence. Moreover, WIN method (Zhou, Xie, &

YAN, 2022) fuses weight decay with a Nesterov-like momentum framework. In this method, the
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velocity update is modified to incorporate weight regularization directly into the gradient accumu-

lation. i.e.

m(t+1)
= ϑm(t) → (1→ ϑ)


g(t)

+ ▷ω(t)

,

where ▷ is the weight decay coefficient. The update rule is similar as Eq. (9). By integrating

weight decay into the momentum term, WIN simultaneously enforces regularization and benefits

from the anticipatory nature of Nesterov momentum, which results in smoother training trajectories

and enhanced convergence behavior.

Despite their diverse implementations, these momentum-oriented methods share a consistent

theme: the effective use of a velocity term, which is carefully maintained and updated, can signifi-

cantly accelerate deep learning optimization. Crucially, the success of these approaches hinges on

the appropriate tuning of damping factors and step sizes to balance acceleration with stability.

Adaptive Adam-Type Approaches. While momentum methods amplify or dampen the direc-

tion of the raw gradient signal, a complementary branch of first-order optimizers focuses on adap-

tively scaling the magnitude of each parameter’s update. Early pioneers in this category include

Adagrad (Duchi, Hazan, & Singer, 2011) and RMSProp (Hinton, Srivastava, & Swersky, 2012).

Adagrad accumulates the squared gradients over time, thus adjusting the learning rate based on the

cumulative variance of each parameter’s gradient. Formally, the parameter update then becomes

ω(t+1)
= ω(t) → ε

g(t)

∑t
ϱ=1(g

(ϱ))2 + ϱ
,

where ϱ > 0 avoids division by zero. Although Adagrad excels at handling sparse features by

boosting the effective learning rate for infrequently updated parameters, its global learning rate can

diminish excessively over time. RMSProp addresses this by introducing an exponential moving

average of the squared gradients rather than a strict sum

v(t+1)
= ϑ v(t)

+ (1→ ϑ) (g(t)
)
2, ω(t+1)

= ω(t) → ε
g(t)

↑
v(t+1) + ϱ

,
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where ϑ ↔ (0, 1). By continuously discounting older gradients, RMSProp better balances fast

adaptation with sustained learning. Adam can be viewed as combining RMSProp’s second-moment

tracking with a momentum-like first-moment term, i.e.

m(t+1)
= ϑ1m

(t)
+ (1→ ϑ1)g

(t), v(t+1)
= ϑ2 v

(t)
+ (1→ ϑ2)

(
g(t)

)2
, (11)

where ϑ1,ϑ2 ↔ (0, 1). Note that Eq. (6) is the same as Eq. (11) except that the gradient is estimated

rather than explicitly computer. After correcting for initialization bias, the update becomes

ω(t+1)
= ω(t) → ε

m(t+1)/(1→ ϑ(t+1)
1 )

v(t+1)/(1→ ϑ(t+1)
2 ) + ϱ

.

This per-parameter scaling often yields rapid convergence and robustness to HP misconfiguration,

making Adam and its variants among the most widely adopted optimizers in deep learning. This

per-parameter adaptation often yields faster convergence and greater numerical stability. Building

on Adam’s popularity, several adaptive methods have been proposed to mitigate specific challenges

in large-scale NN optimization. AdaFactor addresses memory constraints by factorizing the second-

moment estimates. For a matrix-valued parameter ”(t) ↔ Rm↑n with gradient G(t) (here ”
(t)

=

vec→1
(ω(t)

) and G(t)
= vec→1

(g(t))), instead of storing a full second-moment tensor, AdaFactor

computes two accumulators—a row vector r(t) ↔ Rm and a column vector c(t) ↔ Rn—updated as

r(t+1)
i = ϑ2 r

(t)
i + (1→ ϑ2)

n∑

j=1


G(t+1)

ij

2
, c(t+1)

j = ϑ2 c
(t)
j + (1→ ϑ2)

m∑

i=1


G(t+1)

ij

2
.

The effective second moment for each entry is then approximated via a factorization of these statis-

tics,

V (t+1)
ij =

r(t+1)
i c(t+1)

j
∑n

j=1 c
(t+1)
j

.
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Given this approximation, the update rule for the parameter matrix becomes

”
(t+1)

= ”
(t) → ε

G(t+1)

↑
V (t+1) + ϱ

. (12)

This update mechanism allows AdaFactor to dramatically reduce memory overhead while still cap-

turing essential second-order information through the factorized approximation, making it partic-

ularly attractive for large-scale models such as Transformers (Vaswani et al., 2017). To continue,

RAdam aims to improve Adam’s instability during early training by rectifying the variance of the

adaptive learning rate. It first computes a statistic

ϖ(t) = ϖ⇓ → 2tϑ(t)
2

1→ ϑ(t)
2

, with ϖ⇓ =
2

1→ ϑ2
→ 1,

which indicates whether the variance of the second-moment estimate has stabilized. When ϖ(t) is

sufficiently large, a rectification factor φ(ϖ(t)) is applied to the update

ω(t+1)
= ω(t) → ε

φ(ϖ(t+1)
)m(t+1)

↑
v(t+1) + ϱ

,

where φ(ϖ(t)) is defined as

φ(ϖ(t)) =







(ϑ(t)→4)(ϑ(t)→2)ϑ↑
(ϑ↑→4)(ϑ↑→2)ϑ(t)

, if ϖ(t) > 4,

1, otherwise.

This rectification ensures that, during the early stages of training, the update resembles SGD with

momentum, and as the second-moment estimate stabilizes, the optimizer gradually transitions to a

fully adaptive behavior. Moreover, AdaBound (Luo, Xiong, & Liu, 2019) mitigates extreme early

behavior by dynamically bounding the effective learning rate. In this method, the adaptive learning

rate is clipped between two time-dependent bounds εlow(t) and εhigh(t), leading to the modified

step size

ε̂(t)
= clip

(
ε↑

v(t) + ϱ
, εlow(t), εhigh(t)

)
,
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with the update rule given by ω(t+1)
= ω(t)→ ε̂(t+1)m(t+1). Here, ε denotes the base learning rate,

which sets the overall scale of the update before the adaptive scaling and clipping are applied. As

the bounds tighten over time, the algorithm increasingly resembles vanilla SGD, which can yield

improved generalization in the later stages of training. Then, AdaBelief modifies Adam’s second-

moment estimation by tracking the deviation of the observed gradient from its exponential moving

average. The second-moment accumulator is updated as

v(t+1)
= ϑ2v

(t)
+ (1→ ϑ2)(g

(t+1) →m(t+1)
)
2.

The parameter update follows the familiar form ω(t+1)
= ω(t) → ε m(t+1)

⇑

v(t+1)+ϖ
. By emphasizing the

”belief” in the current gradient direction (i.e., penalizing unexpected deviations), AdaBelief tends

to yield a more stable and reliable convergence. AdamW (Loshchilov & Hutter, 2019) resolves

a conceptual inconsistency in Adam by decoupling weight decay from the gradient-based update.

Instead of mixing L2 regularization into the gradient, AdamW applies weight decay as a separate

multiplicative factor

ω(t+1)
= ω(t)

(1→ ▷)→ ε
m(t+1)

↑
v(t+1) + ϱ

.

where ▷ is the weight decay HP. This decoupling clarifies the role of regularization and has shown

empirical benefits, especially in large-scale language models. Furthermore, NaDam (Dozat, 2016)

is a variant of the Adam optimizer that integrates Nesterov momentum into the adaptive framework.

In standard momentum-based methods, the momentum term m(t+1), is updated as in Eq. (11).

In NaDam, rather than using the momentum term alone to update the parameters, the update rule

incorporates a weighted combination of both the momentum and the current gradient

ω(t+1)
= ω(t) → ε


ϑ1m

(t+1)
+ (1→ ϑ1)g

(t+1)

.

This formulation mimics the essence of NAG where NaDam approximates this look-ahead evalua-

tion. The intuition behind this approach is that the weighted sum ϑ1m(t+1)
+(1→ ϑ1)g(t+1) serves
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as an effective surrogate for the gradient computed at a future point. This anticipatory update di-

rection can lead to a more informed descent step, potentially improving convergence rates by better

aligning the parameter update with the long-term trajectory of the optimization. AdaInject (Dubey

et al., 2022) represents a further evolution by incorporating approximations of second-order infor-

mation into an Adam-like update. In addition to the standard first and second-moment estimates,

AdaInject computes a curvature-aware term s(t) that modulates the adaptive learning rate

ω(t+1)
= ω(t) → ε

m(t+1)

√
v(t+1) + ◁s(t+1) + ϱ

,

where ◁ governs the influence of the injected second-order statistics. This integration of partial

curvature information aims to combine the simplicity of first-order methods with the robustness of

second-order approaches, potentially leading to more effective convergence.

Sharpness-Aware Extensions. While most first-order methods emphasize convergence speed or

adaptive scaling, sharpness-aware approaches directly target the geometry of the loss surface by con-

trolling the sharpness of local minima. SAM reformulates the standard objective into a minimax

problem defined in Eq. (4). This formulation forces the optimization to favor parameter regions

where the loss remains stable under small adversarial perturbations, effectively promoting flatter

minima that are empirically associated with better generalization. In practice, SAM first computes

a tentative update by taking a gradient step from ω and then re-evaluates the loss in a local neigh-

borhood around this point, ensuring that the descent direction leads to a region of the loss surface

with reduced sharpness.

Several variants extend SAM by integrating adaptive scaling or refined geometric insights.

AdaSAM (Sun et al., 2024) merges the neighborhood-based minimax framework of SAM with

Adam’s per-parameter scaling, yielding an approach that leverages local curvature information

while retaining the benefits of adaptive learning rates. ASAM (Sun et al., 2024) further refines

the method by dynamically adjusting the perturbation radius ϖ based on the magnitudes of the

gradients, thereby fine-tuning the sensitivity of the sharpness measure to the local loss landscape.

Meanwhile, GSAM (Zhuang et al., 2022) incorporates the top eigenvalue of the local Hessian into
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the sharpness estimation, offering a more detailed account of the loss curvature. Collectively, these

sharpness-aware extensions demonstrate that by incorporating geometric considerations into the op-

timization process, purely first-order methods can be enhanced to locate flatter regions of the loss

surface, potentially leading to models with superior generalization.

Summary and Outlook. In summary, first-order optimizers in deep learning branch into several

intertwined families. Momentum-based methods augment raw SGD to accelerate convergence and

reduce erratic updates, while adaptive Adam-type approaches further modulate step sizes on a per-

parameter basis, often leading to faster training and improved stability. More recently, sharpness-

aware optimizers use local curvature information to search for flatter minima, reflecting broader

interest in explaining why certain solutions generalize better. Despite their diversity, these methods

all share a reliance on gradient information, underscoring the central role of first-order techniques

in modern deep learning optimization.

2.4.3 Second-Order Methods

Second-order methods incorporate curvature information into the optimization process by lever-

aging the Hessian matrix or its approximations. This additional information enables more informed

parameter updates compared to first-order techniques, often leading to faster convergence and im-

proved performance, especially in regions where the loss landscape exhibits significant curvature.

Consider an objective function L : Rd ↗ R that we wish to minimize with respect to the parameters

ω. The classical formulation of the problem is similar to Eq. (7), but with the integration of second

order information, is defined as

min
ω⇒Rd

L(ω), g(t)
= ↓ωL(ω) ↔ Rd, H(ω) = ↓2

ωL(ω). (13)

The prototypical second-order method is Newton-Raphson’s method (Dedieu, 2015), which updates

the parameters according to

ω(t+1)
= ω(t) →H(ω(t)

)
→1 g(ω(t)

). (14)
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While Newton’s method can achieve rapid convergence, the direct computation and inversion of

the Hessian matrix H(ω(t)
) becomes prohibitively expensive in high-dimensional settings, such as

DNNs. To overcome these limitations, a variety of approximations and alternative strategies have

been developed. These methods aim to retain essential curvature information while alleviating

the computational burden associated with Hessian inversion. In what follows, we categorize these

second-order methods based on the techniques they employ—ranging from quasi-Newton approx-

imations and Hessian-free methods to structured or low-rank representations of the Hessian. This

taxonomy highlights the trade-offs between computational efficiency and the fidelity of curvature

information, paving the way for more robust and scalable optimization strategies in large-scale deep

learning.

Hessian-Based Diagonal and Quasi-Newton Methods. Many second-order optimizers aim to

capture curvature information without incurring the full cost of computing and inverting the Hes-

sian H(ω). A common strategy is to approximate the Hessian by either its diagonal or a structured

factorization, thereby striking a balance between extracting useful curvature cues and maintain-

ing computational efficiency. For instance, methods such as AdaHessian (Yao et al., 2021) and

Apollo (Ma, 2020) focus on approximating the diagonal elements of the Hessian. In these ap-

proaches, for each parameter ωi a scalar curvature estimate is obtained via

Di ⇑
ς2L(ω)
ςω2i

,

which is then used to rescale the gradient in the update

ω(t+1)
i = ω(t)i → ε

m(t)
i

D(t)
i + ϱ

.

This rescaling captures directional curvature, allowing the optimizer to take larger steps in flat

regions and more cautious updates in steep directions, thereby improving convergence behavior.

However, while diagonal approximations are computationally efficient compared to the full Hes-

sian, they inherently neglect cross-parameter interactions that can be critical in highly non-isotropic

loss landscapes.
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Other methods, such as Sophia (H. Liu, Li, Hall, Liang, & Ma, 2024) and INNA-Prop (Bolte,

Boustany, Pauwels, & Purica, 2024), also leverage diagonal Hessian approximations or use in-

cremental updates to refine the gradient-based steps. These techniques are often embedded within

Adam-like frameworks, where the adaptive scaling is enriched by curvature estimates, thus enabling

more nuanced adjustments that better reflect the underlying loss surface geometry. In contrast, M-

FAC focuses on efficiently computing inverse Hessian-vector products. Instead of explicitly form-

ing or inverting H(ω), M-FAC approximates its action on a vector by representing the Hessian as a

low-rank or structured factorization,

H(ω) ⇑ Q#Q↓,

where Q contains dominant eigenvectors and # is a diagonal matrix of eigenvalues. The inverse

Hessian is then approximated by

H→1
(ω) ⇑ Q#

→1Q↓,

which is used in the update defined in Eq. (14). This approach allows the optimizer to incorporate

global curvature information while avoiding the full cost of Hessian inversion.

Classic quasi-Newton methods, such as L-BFGS, remain influential by iteratively constructing

an approximation of the inverse Hessian from successive gradient differences. In L-BFGS, one

collects updates s(t) = ω(t+1)→ω(t) and y(t)
= g(t+1)→g(t) to update the inverse Hessian estimate

B(t) through formulas such as

B(t+1)
= (V (t)

)
↓B(t)V (t)

+ ϑ(t)s(t)(s(t))↓, (15)

with ϑ(t)
=

1
(y(t))↓s(t)

and V (t)
= I → ϑ(t)y(t)

(s(t))↓. This quasi-Newton strategy efficiently

captures curvature information from recent iterations, but its performance in deep learning is often

limited by the high dimensionality of the parameter space and the stochasticity introduced by mini-

batch training.

The central intuition behind these Hessian-based methods is to allow the optimizer to adjust step
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sizes based on the local geometry of the loss landscape. By rescaling the gradient using curvature

information, these methods enable larger updates in flat regions and more conservative moves in

steep directions, which can lead to faster convergence and improved stability. Nevertheless, chal-

lenges remain. Diagonal approximations may oversimplify the curvature by ignoring off-diagonal

interactions, while low-rank or quasi-Newton approximations can be sensitive to noise and may

incur non-negligible computational overhead. Balancing the fidelity of curvature information with

computational tractability is thus a critical design consideration in the development of effective

second-order methods for deep learning.

Generalized Gauss-Newton (GGN) and Hybrid Approaches. A further category of second-

order techniques leverages the GGN matrix or other surrogates for the Hessian, providing a more

tractable means of incorporating curvature information into the optimization process. In many NN

settings, the Hessian is both expensive to compute and can be indefinite. The GGN offers an attrac-

tive alternative by approximating the Hessian using the model’s Jacobian J(ω) and the Hessian of

the loss with respect to the network outputs. Specifically, the GGN is defined as

G(ω) = J(ω)↓↓2
f(ω)L

(
f(ω)

)
J(ω),

For many losses that are locally quadratic, such as least-squares losses, this Hessian is positive

semidefinite, ensuring that the curvature information provided by G(ω) is both meaningful and

stable.

Building on this idea, methods such as SOFO (Yu, Xia, Ma, Lengyel, & Hennequin, 2024)

approximate curvature via the GGN to precondition the gradient efficiently. For instance, one might

update parameters as

ω(t+1)
= ω(t) → ε


G(ω(t)

) + ▷I

→1

g(ω(t)
),

where ▷ > 0 is a damping factor that ensures numerical stability and I is the identity matrix.

This update captures essential curvature while sidestepping the prohibitive cost of a full Hessian

inversion.
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Hybrid approaches further integrate second-order insights into first-order frameworks to en-

hance both convergence speed and generalization. LocoProp (Amid, Anil, & Warmuth, 2022) ex-

emplifies this strategy by introducing a local second-order correction within a predominantly first-

order update scheme. Rather than computing a full curvature matrix, LocoProp performs a localized

approximation around the current iterate, adjusting the gradient step based on this curvature esti-

mate. Similarly, FOSI (Sivan, Gabel, & Schuster, 2024) combines standard gradient information

with a curvature correction term. A representative update rule in such hybrid methods is

ω(t+1)
= ω(t) → ε


g(ω(t)

) + ϑ$ωcurv


,

where $ωcurv embodies the second-order correction derived from partial curvature information and

ϑ modulates its influence. This blend of first- and second-order cues enables the optimizer to make

more informed updates without incurring the full cost of second-order methods.

The intuition behind these GGN and hybrid approaches is to harness curvature information

to achieve a more adaptive step size—allowing for larger steps in flat regions and more cautious

moves in steep directions—thus accelerating convergence and potentially improving generalization.

Nevertheless, challenges remain. While the GGN matrix is more computationally tractable than the

full Hessian, its computation still incurs significant overhead in very large models, and the quality

of the curvature approximation can be sensitive to the network architecture and the loss function.

Moreover, hybrid methods require a delicate balance between first- and second-order contributions;

an overly aggressive curvature correction may lead to instability, whereas insufficient correction

may fail to realize the benefits of second-order information. Overall, these methods reflect a growing

trend towards embedding partial curvature insights into existing optimization frameworks, striving

for an optimal trade-off between computational cost and the accuracy of curvature information.

K-FAC and Its Extensions. Natural gradient descent (NGD), introduced by Amari Amari and

Nagaoka (2000), leverages the FIM as a Riemannian metric to perform parameter updates that are

invariant to reparameterization, thereby often leading to more efficient convergence than standard
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gradient descent. In this framework, the update is given by

ω(t+1)
= ω(t) → ε (F (t)

)
→1g(t), (16)

where F is the FIM. However, directly computing and inverting F is generally intractable for high-

dimensional models. To address this issue, K-FAC approximates the FIM by exploiting the layer-

wise structure of deep networks. Specifically, using Eq. (1) the FIM is given by

F =

N∑

n=1

Ey↔p(y|fω(xn))

[
↓ω log pω(y|xn)↓ω log pω(y|xn)

↓

]
= E

[
↓ωL (↓ωL)↓

]
= E[gg↓

],

where F quantifies the expected information that an observable y conveys about the parameter ω.

For simplicity, we write E in place of the full expectation Ey↔p(y|fω(xn)). K-FAC further simplifies

FIM computation by adopting a block-diagonal approximation tailored to deep neural networks. By

decomposing F into layer-specific blocks and employing a Kronecker-factorization based on the

identity vec(uv↓) = v ↙ u, K-FAC efficiently approximates each block, thereby enabling scalable

natural gradient updates. K-FAC capitalizes on the structure of DNNs by simplifying the computa-

tion of the FIM via a block-diagonal approximation. In this framework, the full FIM is viewed as a

block matrix with L↘ L blocks (for a network with L layers). The (i, j)th block is defined by

Fi,j = E
[
vec(gi) vec(gj)↓

]
,

where gi denotes the gradient with respect to the weights of the ith layer. Using the Kronecker-

vectorization identity, vec(uv↓
) = v ↙ u (see, e.g., (?)), we can express the gradient for layer i

as

gi = si h̄
↓

i→1 =∝ vec(gi) = h̄i→1 ↙ si, (17)

where h̄i→1 represents the activations (augmented with a bias term) from the previous layer, and si

represents the sensitivity or pre-activation derivatives at layer i.
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Segmenting the FIM into layer-specific blocks, we have

F̂i,j = E
[
vec(gi) vec(gj)↓

]
= E

[
h̄i→1h̄

↓

j→1 ↙ sis
↓

j

]
.

Under the assumption that the activations h̄i→1 and the pre-activation derivatives si are statistically

independent, this expectation can be approximated as the Kronecker product of individual expecta-

tions

F̂i,j ⇑ E
[
h̄i→1h̄

↓

j→1

]
↙ E

[
sis

↓

j

]
= Hi→1,j→1 ↙ Si,j ,

Where Hi→1,j→1 = E
[
h̄i→1h̄↓

j→1

]
and Si,j = E

[
sis↓j

]
are the Kronecker Factors (KF). In

practice, a further simplification is often made by assuming that the weight derivatives for different

layers are uncorrelated. This leads to a block-diagonal approximation of the FIM, denoted as the

Empirical FIM (EFIM)

F̂ = diag

F̂1,1, . . . , F̂L,L


=





F̂1

F̂2

. . .

F̂L





.

This Kronecker-factorization significantly reduces the computational burden: instead of inverting

a huge matrix of size proportional to the total number of parameters, one only needs to invert the

much smaller matrices Hi→1,i→1 and Si,i for each layer. The resulting efficient inversion is based

on the property (A↙B)
→1

= A→1 ↙B→1. Consequently, for a given layer i, the parameter update

rule of K-FAC is expressed as

ω(t+1)
i = ω(t)i → ε


(H(t)

i→1,i→1)
→1 ↙ (S(t)

i,i )
→1


↓ωiL(ω

(t)
i ).

Figure 2.3 illustrates the computation of the EFIM via K-FAC for a given layer i.

Building upon the foundational K-FAC framework, several extensions have been proposed to

address its computational and approximation challenges. For example, S-KFAC (Tang et al., 2021)

43



Figure 2.3: Illustration of EFIM computation using K-FAC for a given layer i.

introduces strategies to further reduce computational overhead by incorporating sparsity and more

aggressive damping, modifying the update to

ω(t+1)
i = ω(t)i → ε


(H(t)

i→1,i→1 + ▷I)→1 ↙ (S(t)
i,i + ▷I)→1


↓ωiL(ω

(t)
i ).

where ▷ is a damping parameter that enhances numerical stability. Eva (L. Zhang et al., 2023)

refines the estimation of the covariance matrices H and S by using adaptive averaging techniques,

which leads to a more accurate curvature approximation and, consequently, to faster convergence

and improved generalization.

Other methods, such as FOOF and MKOR (Mozaffari et al., 2023), adopt a block-diagonal strat-

egy that partitions the parameter space into smaller, more manageable sub-blocks, thereby reducing

memory requirements and computational complexity while still capturing essential second-order

information within each block. Quasi-Newton extensions such as K-BFGS (Goldfarb, Ren, & Ba-

hamou, 2020) and KFRA (Botev et al., 2017) integrate the Kronecker-factorized approach with

iterative updates reminiscent of the BFGS algorithm. In these methods, one maintains an estimate

of the inverse curvature matrix B(t) and updates it using the standard quasi-Newton formula defined

in Eq. (15). The novelty in K-BFGS and KFRA lies in organizing the updates so that the Kronecker

structure is preserved, which allows these methods to capture curvature more precisely while still
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benefiting from the efficiency of factorization. EKFAC (George et al., 2018) further extends the

K-FAC paradigm by incorporating an eigenbasis decomposition of the covariance matrices:

H = QH#HQ
↓

H and S = QS#SQ
↓

S .

In this framework, the approximated FIM is expressed as

F̂ ⇑ (QH ↙QS)(#H ↙ #S)(QH ↙QS)
↓,

and its inversion is straightforward since the Kronecker product of the eigenvalue matrices is di-

agonal. This eigenbasis approach offers a diagonalized structure that balances fidelity to the true

Hessian with the need for scalability in large models.

Collectively, these K-FAC extensions and related methods embody a common goal: to effi-

ciently incorporate curvature information into the training of DNNS. By leveraging the inherent

layer-wise structure and exploiting the properties of the Kronecker product, they enable second-

order updates that are both computationally tractable and effective at capturing the nuanced geom-

etry of the loss landscape. Despite their advances, challenges remain in terms of the assumptions

required (e.g., independence of activations and pre-activation derivatives) and the computational

overhead involved in maintaining and updating the necessary covariance estimates. Nevertheless,

these methods continue to evolve, offering promising directions for scalable second-order optimiza-

tion in deep learning.

Shampoo-Based Approaches. Shampoo is an influential second-order optimizer that constructs

layer-wise preconditioners by leveraging the tensor structure of weight matrices. Unlike methods

that restrict themselves to diagonal approximations of the curvature, Shampoo collects full second-

moment statistics along different dimensions of a weight tensor. Shampoo computes two second-

moment matrices,

Gr =
∑

t

↓ωL(ω(t)
)↓ωL(ω(t)

)
↓ and Gc =

∑

t

↓ωL(ω(t)
)
↓↓ωL(ω(t)

),
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which capture the curvature information along the row and column dimensions, respectively. The

core idea is to form a preconditioner as a Kronecker product of the inverses of fractional pow-

ers of these matrices, leveraging the similar property that K-FAC leverages, i.e. (Gr ↙Gc)
→1

=

G→1
r ↙G→1

c . In practice, Shampoo typically employs a fractional exponent (often →1
4 ) for numerical

stability, leading to the update rule

ω(t+1)
= ω(t) → εG→1/4

r ↓ωL(ω(t)
)G→1/4

c ,

This update effectively preconditions the gradient by incorporating a full-matrix approximation of

the curvature, thereby allowing for more adaptive step sizes that account for the local geometry of

the loss surface.

Building on the Shampoo framework, subsequent approaches have sought to integrate additional

first-order insights and further reduce computational overhead. For instance, SOAP (Vyas et al.,

2025) merges Shampoo’s second-order preconditioning with adaptive mechanisms similar to those

found in Adam, blending the robustness of curvature information with the flexibility of adaptive

learning rates. Meanwhile, a 4-bit variant of Shampoo (Wang, Zhou, Li, & Huang, 2024) addresses

memory limitations by quantizing both the parameters and the preconditioners. This quantization

reduces the memory footprint dramatically, making it feasible to apply second-order updates to very

large models where storage and computational resources are at a premium.

The key intuition behind Shampoo and its extensions is to capture richer, multidimensional

curvature information than what is available through simple diagonal approximations. By precon-

ditioning the gradient with matrices that reflect the full second-moment structure along different

dimensions, these methods enable more nuanced adjustments: taking larger steps in flatter direc-

tions and smaller, more cautious steps in regions of high curvature. Although this enhanced cur-

vature awareness can lead to faster convergence and better adaptation to complex loss landscapes,

it comes at the cost of increased computational and memory requirements. Extensions like SOAP

and the 4-bit variant are motivated by the need to mitigate these challenges, offering scalable imple-

mentations that make the advantages of second-order information accessible even in massive deep

learning models.
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Summary and Outlook. Overall, second-order methods aim to utilize curvature information—via

the Hessian, Fisher Information Matrix, or generalized approximations—to guide more informed

and often more stable parameter updates. Approaches like K-FAC and Shampoo factorize large ma-

trices to preserve crucial curvature cues without incurring prohibitive computational costs. Mean-

while, diagonal or block-diagonal Hessian approximations enable partial second-order adaptation

that is more practical for massive models. Although these techniques have evolved significantly,

challenges remain in scaling them to the largest networks and reconciling second-order insights

with the stochasticity inherent in modern deep learning. Ongoing research continues to push the

boundaries, as evidenced by the growing variety of second-order and hybrid optimizers, each offer-

ing a unique balance between computational feasibility and the richness of curvature information.

2.5 Emerging Directions

The field of deep network optimization continues to evolve rapidly, with novel methods emerg-

ing to tackle both longstanding theoretical challenges and pressing practical constraints. Recent

work has pushed the boundaries in several key areas, opening up exciting new avenues for research

and application.

Integration of Curvature and Adaptive Strategies. A prominent trend in recent research is the

seamless blending of adaptive first-order techniques with more refined curvature approximations.

New hybrid methods, such as INNA-Prop and FOSI, aim to combine the low computational over-

head and robustness of first-order updates with the enhanced directionality offered by partial second-

order information. These methods typically incorporate curvature-aware preconditioners into adap-

tive frameworks, effectively adjusting the step sizes based not only on gradient magnitudes but also

on local curvature estimates. The overarching goal is to achieve a more balanced optimization pro-

cess that is both efficient and sensitive to the underlying loss landscape. While early results are

promising, challenges remain in accurately estimating curvature in noisy, high-dimensional settings

and in determining the optimal balance between adaptive scaling and curvature corrections.
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Memory-Efficient Architectures. As NN models continue to grow in size, memory efficiency be-

comes an increasingly critical factor. Recent innovations such as 4-bit Shampoo and GaLore exem-

plify this trend by employing quantization and low-dimensional projection techniques to compress

both parameters and the auxiliary statistics required for second-order updates. These methods make

it feasible to deploy complex second-order optimizers even in resource-constrained environments

or when dealing with models that contain hundreds of millions or even billions of parameters. By

reducing the memory footprint without severely compromising the quality of curvature estimates,

such techniques promise to bridge the gap between theoretical advances and practical deployment

on modern hardware accelerators.

Robustness and Generalization in the Context of Large Models. Generalization remains a cen-

tral challenge as models become larger and more complex. Insights from studies on the loss land-

scape, including works like yeh Chiang et al. (2023), Fort and Scherlis (2019), and Vysogorets et al.

(2024), have underscored the importance of flat minima in achieving robust generalization. Building

on these insights, methods such as SAM and its derivatives (e.g., AdaSAM) are being refined to not

only accelerate convergence but also to guide the optimizer towards regions of the parameter space

that generalize well. Recent research has further explored how phase transitions in deep learning

dynamics (as discussed in Kalra and Barkeshli (2023)) might be harnessed to design optimizers that

are inherently more robust to overfitting while still maintaining computational efficiency.

Optimization for Fine-Tuning Large Language Models. The rapid rise of Large Language

Models (LLM) has introduced unique optimization challenges, particularly in the fine-tuning stage.

New methods, such as HiZOO, are designed to leverage Hessian information to capture fine-grained

local curvature properties. This is crucial for stable fine-tuning, where the risk of drastic parameter

changes can lead to overfitting or catastrophic forgetting. These approaches often integrate second-

order insights into scalable frameworks that can handle the massive parameter counts typical of

transformer architectures. Future research in this area is expected to further refine these techniques,

ensuring that fine-tuning processes are both robust and efficient.
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Theoretical Advances and Practical Algorithms. There is a growing effort to reconcile theo-

retical optimization guarantees with the practical requirements of deep learning. Recent studies

have investigated the implicit regularization effects of SGD Frankle and Carbin (2019) and the

role of curvature in shaping generalization properties Xie et al. (2023). These investigations are

guiding the development of new algorithms that seek to balance exploration—via stochasticity and

adaptive updates—with exploitation—through careful curvature estimation. By grounding practical

algorithms in strong theoretical foundations, researchers aim to develop optimizers that not only

converge quickly but also offer provable guarantees on generalization performance.

Summary and Outlook. In summary, the emerging directions in deep network optimization are

multifaceted and dynamic, addressing issues of efficiency, robustness, scalability, and theoreti-

cal rigor. By integrating advanced curvature approximations with adaptive strategies, embracing

memory-efficient architectures, and targeting both robustness and fine-tuning challenges in large

models, the field is moving toward a new generation of optimizers. These innovations promise to

make deep learning training more efficient and reliable, even as model sizes and dataset complexi-

ties continue to increase.

2.6 Concluding Remarks

In this chapter, we have provided a comprehensive survey of the literature on deep network op-

timization, weaving together theoretical insights, practical algorithms, and emerging research direc-

tions. Our review has spanned the full spectrum of techniques and challenges that define the SOTA

in deep learning optimization. We began by establishing the foundational concepts and notation in

Section 2.1, setting the stage for a rigorous exploration of deep learning dynamics. In Section 2.2,

we examined the evolution of training processes, including phase transitions and the critical role

of loss landscape geometry. These elements, along with implicit regularization mechanisms, have

been shown to play pivotal roles in guiding training toward solutions with strong generalization

properties.

The discussion then transitioned to the practical challenges of optimizing deep networks in

Section 2.3. Here, we highlighted the inherent difficulties posed by non-convex optimization, the
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trade-offs between overfitting and generalization, and the significant computational burdens that

arise as models grow in scale and complexity. Our in-depth review of optimization methods in

Section 2.4 revealed a rich and diverse landscape. We explored:

• Zeroth-Order Methods (2.4.1), which rely solely on function evaluations and finite-difference

approximations to operate in gradient-free settings.

• First-Order Methods (2.4.2), such as SGD and adaptive variants like Adam and RAdam,

which leverage gradient information to form the backbone of deep network training.

• Second-Order Methods (2.4.3), including Hessian- and Fisher-based approaches like K-

FAC and Shampoo, which incorporate curvature information to achieve more informed and

potentially faster convergence, albeit at a higher computational cost.

Furthermore, Section 2.5 outlined emerging directions that promise to reshape the field. Researchers

are increasingly integrating adaptive strategies with refined curvature approximations, developing

memory-efficient architectures tailored to the demands of massive models, and designing special-

ized algorithms for fine-tuning large-scale transformers and language models. These trends are

driven not only by the quest for enhanced performance but also by the need for robust, scalable, and

theoretically grounded optimization techniques.

Overall, the insights gathered throughout this chapter not only highlight the remarkable progress

achieved in deep network optimization but also underscore the exciting opportunities that lie ahead.

By bridging theoretical foundations with practical implementations, the methods reviewed here

pave the way for next-generation optimizers that can handle the complexities of modern NNs. As

research continues to push the boundaries, future work will likely focus on further integrating adap-

tive and curvature-aware strategies, enhancing computational efficiency, and developing algorithms

that deliver both strong convergence guarantees and superior generalization. In sum, the landscape

of deep network optimization is rich with innovation and promise. The diverse approaches surveyed

in this chapter provide a robust framework for understanding the multifaceted challenges of modern

deep learning, and they set the stage for continued advancements in the field.
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Bridging the Literature Review with AdaFisher

The comprehensive survey presented in this chapter has illuminated the rich tapestry of ap-

proaches in deep network optimization—from the efficiency of first-order adaptive methods to the

nuanced curvature approximations offered by second-order techniques. Methods such as Adam and

RAdam have set the benchmark for adaptive scaling, while curvature-based strategies like K-FAC

and Shampoo have demonstrated the power of leveraging the FIM and its approximations to guide

optimization. These approaches underscore a central theme: integrating adaptive behavior with

curvature-aware preconditioning can significantly enhance both convergence speed and generaliza-

tion performance.

AdaFisher (GOMES, Zhang, Belilovsky, Wolf, & Hosseini, 2025) optimization method builds

directly on these insights. By fusing adaptive strategies with Fisher-based curvature information,

AdaFisher seeks to overcome several limitations identified in the literature. Specifically, it addresses

the challenges of computational scalability and stability by dynamically constructing efficient, layer-

wise preconditioners derived from the FIM. In doing so, AdaFisher not only inherits the robustness

of adaptive optimizers but also benefits from the precise curvature estimates provided by second-

order approximations.

In the subsequent Chapters, we detail the theoretical underpinnings of AdaFisher, outline its

algorithmic framework, and present empirical evaluations that demonstrate its superior performance

on large-scale deep learning tasks. This work represents a natural evolution of the ideas surveyed in

this chapter, aiming to bridge the gap between first-order adaptability and second-order precision in

a single, scalable optimization method.
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Chapter 3

Efficient Approximation of the FIM

The FIM is fundamental to statistical estimation and natural gradient descent, providing critical

curvature information about the loss landscape in DL. However, directly computing the FIM is

infeasible for modern deep networks due to its high dimensionality and complexity. This challenge

has spurred efficient approximations—most notably, the K-FAC method—which decomposes the

FIM into tractable Kronecker product factors. In this chapter, we investigate the structural properties

of the FIM and its approximations. We first review the supervised learning framework and the role

of the FIM in natural gradient descent, then examine K-FAC and its extensions across various layer

types (fully connected, convolutional, and normalization layers). Empirical analyses reveal that the

Kronecker factors exhibit a strong diagonal concentration even under noise, which motivates our

novel diagonal approximation of the FIM that significantly reduces computational overhead while

preserving essential curvature information.

The chapter is organized as follows. Section 3.1 provides the necessary theoretical background.

Section 3.2 presents an in-depth study of the diagonal concentration of Kronecker factors, and

Section 3.3 outlines our efficient computation method for the FIM. Together, these contributions

form a scalable, curvature-aware optimization framework for DL.
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3.1 Background

In this section, we briefly review the core concepts and notation that form the foundation of our

methodology for efficient FIM approximation. For a more comprehensive treatment, we strongly

recommend first reading Section 2.1 and Section 2.4.3, where these ideas are explored in depth. The

discussion below assumes familiarity with the detailed exposition provided earlier. We consider a

supervised learning framework with a dataset D := {(xn,yn)}Nn=1, where xn ↔ Rd and yn ↔

RC . Let fω : Rd ↗ RC be an L-layer NN parameterized by ω = vec
(
{ωi}Li=1

)
, where ωi =

concat(Wi,bi) ↔ RPi , where Pi = P out
i ↘ (P in

i + 1). The network computes its output through

successive layers via

ai = ωih̄i→1, hi = φi(ai), with h0 = xn and h̄i→1 = [h↓

i→1,1]
↓.

For a given input-target pair (x,y), the loss is defined as the negative log-likelihood, L(y, fω(x)) :=

→ log pω(y|x), and the gradients are computed via backpropagation. We denote the pre-activation

derivatives by si = ↓aiL, and the gradient with respect to the weights of layer i is given by

↓ωiL = si h̄↓

i→1. To capture curvature information, we use the FIM as an approximation to the

Hessian

F = E
[
↓ω log pω(y|x)↓ω log pω(y|x)↓

]
= E[gg↓

], g = ↓ωL(ω)

The K-FAC approach further simplifies the FIM by exploiting the layer-wise structure of deep

networks. Viewing F as a block matrix with blocksFi,j = E[vec(gi) vec(gj)↓], and using the

Kronecker-vectorization identity vec(uv↓
) = v ↙ u, we express vec(gi) = h̄i→1 ↙ si. Assuming

that activations and pre-activation derivatives are mutually independent, each block is approximated

as

F̂i,j ⇑ E[h̄i→1h̄
↓

j→1]↙ E[sis↓j ] = Hi→1,j→1 ↙ Si,j .

By further assuming that weight derivatives across distinct layers are uncorrelated, the FIM is ap-

proximated by its block-diagonal form: F̂ = diag

F̂1, . . . , F̂L


, with F̂i ⇑ Hi→1,i→1 ↙ Si,i.

53



3.2 Diagonal Concentration of KFs

Inspired by the Gershgorin circle theorem (Horn & Johnson, 2012), we empirically study the

diagonal concentration of Kronecker Product Factors (KFs) within DNNs. Our focus centers on

the eigenvalue distribution and perturbation behavior of weight matrices, with a particular emphasis

on the 37th layer of ResNet-18 (K. He et al., 2016) after 50 epochs of training on the CIFAR-

10 dataset (Krizhevsky, Hinton, et al., 2009). Figure 3.1 illustrates the eigenvalue spectrum (red

crosses) alongside Gershgorin discs (black circles), revealing that the eigenvalues cluster near the

diagonal elements of the matrix. This observation underscores a pronounced diagonal dominance,

which the Gershgorin circle theorem formalizes by asserting that every eigenvalue ▷ of a complex

square matrix A resides within at least one Gershgorin disc D(aii, Ri), where Ri =
∑

j ⇔=i |aij |

quantifies the row-based off-diagonal magnitude. To investigate the stability of this diagonal dom-

inance under stochastic disturbances, we inject Gaussian noise N (0,σ2
) with σ = 10

→3 into the

off-diagonal elements. The perturbed matrix M̂ is then given by

M̂ = A+ E , where E = [eij ], eij ⇔ N (0,σ2
) for i ′= j.

Our perturbation experiments show that the principal eigenvalues satisfying the Kaiser criterion are

minimally affected (Braeken & Van Assen, 2017), implying that the bulk of the matrix’s energy is

concentrated along the diagonal. Both the Gershgorin disc visualization and the eigenvalue pertur-

bation analysis confirm a high degree of diagonal dominance.

Extending Gershgorin Analysis to Linear Layers. This diagonal concentration is not confined

to convolutional layers alone. We observe an analogous pattern in the 41st (linear) layer of ResNet-

18, as shown in Figure 3.2. Once again, the eigenvalues (red crosses) lie predominantly within the

Gershgorin discs, centered along the diagonal (black circles), underscoring the pervasiveness of this

diagonal dominance across diverse layer types.

Spectral Insights via FFT. Moving beyond eigenvalue-based diagnostics, we also perform a

frequency-domain examination using the Fast Fourier Transform (FFT) to study how noise injection
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Figure 3.1: Gershgorin discs and eigenvalue perturbations for the 37th convolutional layer of
ResNet-18 at steps 5200 (middle of training) and 9800 (end of training). Left: Gershgorin discs
in the complex plane; Right: Eigenvalue spectrum with and without Gaussian noise added to off-
diagonal entries.

Figure 3.2: Gershgorin discs and eigenvalue perturbation analysis for matrices H and S at training
steps 5200 and 9800 in the linear (41st) layer of ResNet-18. The left panel displays Gershgorin
discs in the complex plane, while the right panel depicts the eigenvalue spectra with and without
Gaussian noise.

impacts the KFs H and S . Let A ↔ Cm↑n be a matrix, whose FFT is defined by

F(A)kl =

m→1∑

p=0

n→1∑

q=0

Apq · e→2ςi(
pk
m + ql

n ).
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Figure 3.3 showcases the FFT magnitude plots for both noise-free and noisy conditions at training

steps 5200 (middle of training) and 9800 (end of training). Even under Gaussian perturbations,

the primary diagonal structure of the KFs remains conspicuous in the frequency domain, signifying

that the principal information is predominantly concentrated along the diagonal. In addition, we

Figure 3.3: FFT-based spectral analysis of KFs H and S for convolutional (37th layer) and linear
(41st layer) segments of a ResNet-18 at iterations 5200 and 9800. (A) Noise-free (top) vs. noisy
(bottom) FFT results for H from the convolutional layer; (B) analogous results for S in the linear
layer.

compute the Signal-to-Noise Ratio (SNR) to quantify the effect of noise on off-diagonal entries.
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For a matrix M and its perturbed version M̂, the SNR is defined by

SNR = 10 · log10

∑N
i=1 |Mii|2∑N
j>i |M̂ij |2


.

We observe that the SNR remains sufficiently high across training steps, implying minimal eigen-

value displacement and reinforcing our diagonal-dominance hypothesis.

Matrix Visualization and Diagonal Energy. Figure 3.4 provides direct visualizations of the KFs

H and S at steps 5200 and 9800 for both the convolutional (37th) and linear (41st) layers. Each

subplot reveals a pronounced diagonal band, further highlighting the structural consistency of these

factors over the course of training. The resilience of this diagonal concentration against off-diagonal

noise underscores a form of robust feature extraction, where the primary informational energy re-

sides along the main diagonal.

Figure 3.4: Visualization of KFs H and S in convolutional (A) and linear (B) layers of ResNet-18
at different iteration steps (5200 and 9800). The first two plots in (A) depict factor H at the two
training stages, while the next two plots illustrate factor S . Analogously, (B) shows the evolution of
H and S in the linear layer. The diagonal salience persists throughout training, attesting to a stable,
diagonal-centric structure.

Conclusion. Both Gershgorin disc analysis and perturbation experiments converge on the finding

that the KFs in DNNs, particularly in ResNet-18 layers, exhibit strong diagonal dominance. Noise
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introduced into off-diagonal elements has a minimal impact on the eigenvalues—especially those

surpassing the Kaiser criterion—indicating that essential information is heavily concentrated along

the diagonal. This property remains stable over successive training iterations, further corroborating

the structural resilience of these matrices. Our Fourier-domain investigation reinforces these obser-

vations, revealing that even in the frequency spectrum, the pivotal data of the KFs is localized near

the diagonal, thereby reinforcing the robustness and tenacity of Kronecker structures under noisy

conditions.

3.3 Efficient Computation of the FIM

In the realm of optimization, NGD offers a geometrically nuanced adaptation of the classical

steepest descent approach (in Euclidean space), transitioning the focus from parameter space to

the model’s distribution space underpinned by the adoption of a Riemannian metric, Amari and

Nagaoka (2000). Using Eq. (16), the formulation of the preconditioned gradient ḡ(t) given the

NGD method is articulated as

ḡ(t)
= (F (t)

)
→1g(t), (18)

One of the distinguishing features of NGD within this framework is its re-parametrization invari-

ance, a direct consequence of leveraging the model’s distribution properties rather than its parame-

ters. Nevertheless, the direct FIM computation is highly demanding, and we solve this by adopting

the diagonal approximation of the KFs as supported by our analyses from Section 3.2. In addition,

a critical component of modern DNNs is known to be the normalization of the layers by introduc-

ing scale and shift parameters (e.g. batch-normalization (Ioffe, 2015), layer-normalization (Lei Ba,

Kiros, & Hinton, 2016)). This is to adjust the network’s dynamics (e.g., reducing covariance shift) in

a non-trivial way L. Huang et al. (2023) where the lack of FIM approximation on such normalization

layers can lead to suboptimal preconditioning. Therefore, we introduce a method for calculating the

KFs for normalization layers detailed in Proposition 3.3.1.
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Proposition 3.3.1 (EFIM for normalization layer). Let (ϖi,ϱi) ↔ RCi be the scale and shift pa-

rameters of a normalization layer i. The empirical KFs for the FIM approximation are

Hi→1

∣∣∣
φi
=

1

|Ti|
∑

x⇒Ti

hi→1,xh
↓

i→1,x, Hi→1

∣∣∣
↼i

= 11↓, Si =
1

|Ti|
∑

x⇒Ti

si,xs
↓

i,x,

where hi→1, si ↔ RCi↑|Ti| represent the pre-normalized activations and gradients, respectively.

Here, Ti is the set of dimensions over which normalization statistics are computed, and Ci is the

channels/features size.

The proof of this proposition is given in Appendix A. The KFs for other type of layers are com-

puted following methodologies similar to those described in Grosse and Martens (2016); Martens

and Grosse (2015b). This section revisits the key equations used for this computation. For a given

layer i in a NN, the empirical KFs are computed as follows:

• For fully connected layers, the KFs are:

HDi→1 = diag(h̄i→1h̄
↓

i→1), SDi = diag(sis↓i );

• For convolutional layers, the computation accounts for the spatial positions within the layer,

denoted as T :

HDi→1 = diag
(

!h̄i→1"!hi→1"↓
|T |

)
, SDi = diag

(
sis↓i
|T |

)
;

The algorithm employs the expansion operation denoted by !·" (Grosse & Martens, 2016).

This operation essentially takes the patches surrounding spatial locations, stretches them into

vectors, and compiles these vectors into a matrix.

• For Normalization layers (BatchNorm & LayerNorm) refer to Proposition. 3.3.1

• For all other type of layers the KFs are:

HDi→1 = IP out
i→1+1, SDi = IP out

i
;
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Note that in the context of online and stochastic optimization, the KFs for a given layer i can be

estimated using an Exponentially Moving Average (EMA) scheme across batches defined by

H(t)
i→1 = ◁H(t)

i→1 + (1→ ◁)H(t→1)
i→1 , S(t)

i = ◁S(t)
i + (1→ ◁)S(t→1)

i , (19)

where 0 < ◁ ⇒ 1 is the exponential decay factor at step time t, H(t)
i→1 and S(t)

i in the right-hand side

are new KFs calculated during each forward and backward pass computation. This EMA scheme is

commonly used in methods involving diagonal or block-diagonal approximations to the curvature

matrix (e.g. LeCun, Bottou, Orr, and Müller (2012); Park, Amari, and Fukumizu (2000); Schaul,

Zhang, and LeCun (2013)). Such schemes have the desirable property that they allow the curvature

estimation to depend on much more data than what can be reasonably processed in a single mini-

batch.

Our study from Section 3.2 suggests that the FIM’s critical information predominantly resides

along its diagonal. Building upon this, we propose a novel approximation for the FIM, described in

Proposition 3.3.2, that conceptualizes the KFs as diagonal matrices denoted as F̃Di for layer i.

Proposition 3.3.2 (Efficient EFIM). Assume that Hi→1 and Si can be closely approximated by diag-

onal matrices, denoted by HDi→1 and SDi respectively at layer i, such that HDi→1 = Diag(Hi→1),

SDi = Diag(Si) where Diag denote the diagonal of a matrix. Accordingly, the Empirical FIM is

defined by

F̃Di ↭ H↗

Di→1
↙ S ↗

Di
+ ▷I, (20)

where H↗

Di→1
and S ↗

Di
denote the Min-Max normalization of HDi→1 and SDi (Patro & Sahu, 2015)

and ▷ is a regularization parameter.

The proof of this proposition is given in Appendix A. This approximation strikes a balance be-

tween computational time and space complexity and the accuracy of performance, as discussed in

Chapter 5. We set the regularization parameter ▷ = 0.001, which acts as a damping factor follow-

ing the Tikhonov regularization principle Martens and Grosse (2015b), enhancing computational

stability and conditioning of the FIM. The closed-form solution for the preconditioned gradient ḡ(t)
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is derived from the diagonal approximation of the FIM, given by

ḡ(t)
= (F̃ (t)

D )
→1g(t), (21)

for time step t. Notice this is similar to the NGD update defined in Eq. (18), except that we

approximate the FIM with a novel efficient method. This represents the AdaFisher, which will be

presented in Chapter 4, augmented gradient and incorporates local loss curvature information. It

focuses on the diagonal elements to reduce computational overhead while maintaining a reasonable

FIM approximation. This simplification enhances the efficiency of the optimization process, which

is crucial for training DNNs where computational resources are limited.

3.4 Concluding Remarks

In this chapter, we explored the empirical FIM within DNNs and investigated efficient approxi-

mations that facilitate second-order optimization. Our analysis began with a review of the negative

log-likelihood loss in supervised learning and demonstrated how the FIM, closely related to the Hes-

sian of the log-likelihood, captures essential curvature information for parameter updates. We then

focused on K-FAC methods, which decompose the FIM into KFs for tractability in large-scale net-

works. By dissecting the diagonal concentration of these factors using Gershgorin circle theorem,

we empirically observed a pronounced diagonal dominance across both convolutional and linear

layers of a ResNet-18, even under noise perturbations. The spectral and Fourier-domain analyses

further corroborated this diagonal-centric structure, indicating that injecting Gaussian noise into

the off-diagonal entries yields only marginal shifts in the eigenvalues and minimal deterioration in

signal-to-noise ratios. Such observations underscore the stability and robustness of the KFs, sug-

gesting that the critical information for optimization resides predominantly along their diagonals.

Building on these insights, we proposed a diagonal approximation of the KFs in Proposition 3.3.2,

offering a simplified yet effective route to approximate the FIM in DL. This diagonalization strategy

significantly reduces computational overhead while preserving key curvature cues, aligning with the

practical demands of large-scale optimization.

Additionally, we extended K-FAC to normalization layers by establishing empirical factors for
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scale and shift parameters, thereby ensuring comprehensive coverage of modern deep network ar-

chitectures. Our results revealed that even these normalization-centric matrices exhibit strong di-

agonal behavior, reinforcing the broader applicability of our diagonal approximation across diverse

layer types. The final step involved deriving a closed-form preconditioned gradient under the di-

agonal FIM approximation, leading to an AdaFisher update, which will be presented in Chapter 4,

that incorporates local curvature without incurring the full cost of second-order methods. Overall,

the work in this chapter highlights how diagonal-dominant structures in the FIM can be exploited

to achieve computationally efficient second-order optimization. This diagonalization perspective

not only aligns with empirical observations of robust eigenvalue spectra but also provides a princi-

pled foundation for designing fast, curvature-aware training algorithms. Subsequent chapters will

build upon these insights, evaluating the performance and convergence properties of diagonal-based

Fisher approximations in both theoretical and experimental settings.
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Chapter 4

AdaFisher: An Adaptive Second order

Optimization via Fisher Information

In this chapter, we introduce AdaFisher, a novel adaptive second-order optimization method

that leverages the FIM to guide DNN training. Building on the adaptive framework established by

Adam, AdaFisher employs a refined diagonal block-Kronecker approximation of the FIM, leading

to more accurate curvature estimation. This enhancement not only accelerates convergence but also

steers the optimizer toward flatter minima, thereby improving model generalization.

We begin by outlining how the FIM is integrated into the adaptive optimization framework and

discuss the key differences between AdaFisher and conventional optimizers. Next, we present the

distributed implementation of AdaFisher, demonstrating its scalability and efficiency in multi-GPU

environments. Finally, we analyze the convergence properties of AdaFisher in both convex and

non-convex settings, supported by theoretical insights and empirical results.

Overall, this chapter provides a comprehensive overview of the theoretical foundations and prac-

tical benefits of incorporating second-order information via the FIM into modern DL optimization.
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Table 4.1: Summary of the first moment (m(t)), second moment (v(t)), regret bounds, and applica-
bility used in various optimizers for updating model parameters ω(t+1)

= ω(t)→εm(t)/
↑
v(t). Here,

ϑ1 and ϑ2 denote the hyperparameters for the first and second moments, respectively; L(t) and R(t)

refer to the preconditioning matrices used in Shampoo V. Gupta et al. (2018); g(t) = vec(G(t)
); and

T is the total number of steps. For AdaFactor, r(t) and c(t) denote the row and column accumulators
that aggregate squared gradients to yield the factored second moment estimate. For Sophia, ĥ(t)

is an approximation of the Hessian diagonal (with decay ϖ and regularization ϱ). For SOAP, Q(t)

denotes the eigenvector matrix of Shampoo’s preconditioner, used to transform the gradients into
its eigenbasis for Adam-like updates. Please refer to Chapter 2 for more details.

Optimizer m(t) v(t) Regret Bound Applicability
CNNs Transf.

Adam (1→↼1)
∑t

i=1 ↼
t→i
1 gi

1→↼t
1


(1→↼2)

∑t
i=1 ↼

t→i
2 gigi

1→↼t
2

1/2
O(log T

↑
T ) ↫ ↫

AdaHessian (1→↼1)
∑t

i=1 ↼
t→i
1 gi

1→↼t
1

(
(1→↼2)

∑t
i=1 ↼

t→i
2 D

(s)
i D

(s)
i

1→↼t
2

)1/2

O(log T
↑
T ) ↫ ↫

K-FAC (F̂ (t)
)
→1g(t)

1 O(
↑
T ) ↫ ↘

Shampoo (L(t)
)
→1
4 G(t)

(R(t)
)
→1
4 1 O(

↑
T ) ↫ ↘

Sophia (1→↼1)
∑t

i=1 ↼
t→i
1 gi

1→↼t
1

ϖ ĥ(t) + ϱ O(log T
↑
T ) ↫ ↫

SOAP (1→↼1)
∑t

i=1 ↼
t→i
1 Q(t)↓gi

1→↼t
1

1 O(
↑
T ) ↫ ↘

AdaFactor (1→↼1)
∑t

i=1 ↼
t→i
1 gi

1→↼t
1

r
(t)
i c

(t)
j∑

k r
(t)
k

O(log T
↑
T ) ↫ ↫

AdaFisher (1→↼1)
∑t

i=1 ↼
t→i
1 gi

1→↼t
1

F̃ (t)
D O(log T

↑
T ) ↫ ↫

4.1 Integrating FIM into Adaptive Optimization Framework

Following the spirit of the adaptive optimization framework from Adam, which combines mo-

mentum and RMSProp principles (Sutskever, Martens, Dahl, & Hinton, 2013b), the parameters are

updated via

ω(t+1)
= ω(t) → ε

m(t)

v(t)
.

Here, ε represents the learning rate, while m(t) and v(t) denote the first and second moment esti-

mates, respectively, for time step t. Although Adam is widely used, its approximation of the second

moment using simple diagonal elements of second-order statistics through squared gradients can

mirror stability challenges (Kunstner, Hennig, & Balles, 2019). We overcome these challenges by

utilizing a more refined diagonal block-Kronecker approximation of the FIM introduced in Sec-

tion 3.3, a more precise approximation of the Hessian from Taylor series expansion viewpoint as
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Figure 4.1: Comparison of FIM Diagonal Histograms during ResNet18 Training on CIFAR10 with
Adam and AdaFisher over 1,000 training iterations. Panel (A) displays the FIM diagonal elements
for the first convolutional layer; Panel (B) illustrates the FIM diagonal elements for the middle
convolutional layer; Panel (C) shows the FIM diagonal elements for the last Linear layer.

discussed in Section 2.1.3. This structured alternative to Adam’s diagonal approximation enables

precise curvature estimation, mitigating stability issues and improving convergence in non-convex

settings. AdaFisher distinguishes itself from Adam by providing a higher-fidelity approximation of

the FIM, which enhances both optimization efficiency and model robustness throughout training.

As shown in Figure 4.1, the FIM values computed by AdaFisher exhibit reduced variance and lower

mean values during training—indications that the optimizer is converging toward flatter minima and

inducing an implicit regularization effect. This behavior is especially pronounced during the final

training stages, where AdaFisher outperforms its counterparts (see Chapter 5). The improvement

stems from the FIM’s dual role: in the early and mid-training phases, it approximates the Hessian

(acting similarly to the Generalized Gauss-Newton Matrix (Eschenhagen, Immer, Turner, Schnei-

der, & Hennig, 2024)), and near local minima, it aligns more precisely with the Hessian (Martens,
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2020), thereby accelerating convergence. Our analysis of the diagonal block-Kronecker FIM distri-

bution during ResNet18 training on CIFAR10 further corroborates these findings. Across various

network layers—including the first (Panel A) and middle (Panel B) convolutional layers, as well as

the final linear layer (Panel C)—AdaFisher consistently produces narrower FIM distributions with

lower values compared to Adam, confirming its tendency to converge toward flatter local minima.

This characteristic ultimately leads to more stable generalization when transitioning from training

to testing distributions (Cha et al., 2021).

Additionally, AdaFisher eliminates the square root and the conventional EMA on the second

moment. This is because the FIM naturally incorporates an EMA of its KFs (see Eq. (19)). Re-

moving the square root is also consistent with the theoretical foundations of second-order methods,

which rely on a second-order Taylor expansion approximation rather than a square-root transforma-

tion. A comparative summary of various moment estimates, m(t) and v(t), along with their regret

bounds and applicability to different optimizers, is provided in Table 4.1. Notably, while SGD-based

optimizers such as K-FAC or Shampoo exhibit a regret bound of O(
↑
T ), AdaFisher incurs a regret

bound of O(log T
↑
T ) as it belongs to the Adam’s family, which is theoretically higher. However,

this theoretical disadvantage is offset by AdaFisher’s superior practical convergence. Specifically,

AdaFisher leverages an approximate FIM to precondition its update steps, thereby reducing the

variance of the gradients and adapting more accurately to the local curvature of the loss surface.

In real-world scenarios—where the loss landscape is nonconvex and the worst-case assumptions

underlying regret bounds are overly pessimistic—this refined curvature estimation facilitates more

stable and efficient progress during training. Consequently, even though the worst-case bound for

AdaFisher is higher, its enhanced exploitation of second-order information consistently results in

faster and more robust convergence compared to its SGD-based counterparts.

Finally, inspired by AdamW—which improves Adam by directly integrating weight decay into

the weight update to counteract suboptimal decay behavior and boost performance—we introduce

AdaFisherW. This variant leverages the curvature information from AdaFisher within the AdamW

framework to further enhance optimization. The implementation for both AdaFisher variants is

delineated in the pseudo-code presented in Algorithm 1.
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Algorithm 1 AdaFisher optimization algorithm. Good default settings for the tested machine learn-
ing problems are ε = 0.001 (learning rate), ▷ = 0.001 (Tikhonov damping parameter),◁ = 0.8
(Exponentially decaying factor). [Default parameters are: ϑ = 0.9 (Exponentially decaying factor
of Adam), ↽ (weight decay) (Kingma and Ba (2015), Loshchilov and Hutter (2019))].
Require: Step size ε; Exponential decay rate for KFs ◁ ↔ [0, 1); Tikhonov damping parameter ▷;

Exponential decay rate for first moments ϑ in [0, 1); Initial parameters ω
Initialize 1st moment variable m = 0; FIM F̃Di = I; time step t = 0

1: while stopping criterion not met do
2: Sample a minibatch of M examples from the training set {(xn, yn)}Mn=1

3: Compute HDi→1 , SDi for i ↔ {1, . . . , L} using Section 3.3 (notice that: HD0 = x)
4: Compute EMAs of HDi→1 and SDi using Eq. (19)

5: Compute F̃Di for i ↔ {1, . . . , L} using Eq. (20)
6: g(t) ∞ 1

M

∑
n↓ω(t)L(f(xn; ω(t)), yn) (Compute gradient)

7: m(t+1) ∞ ↼m(t)+(1→↼)h(t)

1→↼t (Update and correct biased first moment)

8: Case AdaFisher: $ω(t) = →ε(F̃ (t)
D )

→1m(t)

Case AdaFisherW: $ω(t) = →ε

(F̃ (t)

D )
→1m(t)

+ ↽ω(t)


9: ω(t+1) ∞ ω(t) +$ω(t) (Apply update)
10: t ∞ t+ 1

11: end while

4.2 Distributed Implementation and Algorithm Overview

To complement the integration of the FIM into the adaptive optimization framework, we now de-

tail the algorithmic implementation of AdaFisher and its compatibility with distributed multi-GPU

environments. This section provides a concise overview of the core update rules, the mechanism for

aggregating curvature information across GPUs, and a summary of the pseudo-code for AdaFisher.

In distributed settings, aggregating these KFs across GPUs is crucial before updating model pa-

rameters. For a training setup with K GPUs and for any given layer i, the KFs are computed and

aggregated as follows

H(SUM)
Di→1 =

1

K

K∑

k=1

H(k)
Di→1, S(SUM)

Di
=

1

K

K∑

k=1

S(k)
Di

(22)

The theoretical justification for this aggregation lies in the linearity of expectation and the unbi-

asedness of the local KF estimates. Specifically, if each H(k)
Di→1

and S(k)
Di

are unbiased estimators
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of their respective true factors HDi→1 and SDi for k = 1, . . . ,K, then the averaged factors H(SUM)
Di→1

and (SDi)
(SUM) remain unbiased estimators of HDi→1 and SDi . Consequently, using Eq. (22), the

aggregated EFIM for layer i can be calculated as

F̃ SUM
Di

= H↗(SUM)
Di→1

↙ S ↗(SUM)
Di

+ ▷I

where ▷ is a regularization parameter that ensures numerical stability. This strategy allows each

GPU to contribute effectively to the model update, thereby enhancing convergence and performance

in large-scale distributed training. More details, results and ablation about the multi-GPU environ-

ments are detailed in Chapter 5.

4.3 Convergence Analysis

In this section, we provide a theoretical analysis of AdaFisher’s convergence in both convex

optimization and non-convex stochastic optimization. We first present a standard convergence be-

havior of Eq. (18) for a simple strongly convex and strictly smooth function f(J).

Proposition 4.3.1 (Convergence in convex optimization). For the FIM defined in Eq. (20), the

updating scheme ω(t+1)
= ω(t) → ε(F̃ (t)

D )
→1↓J(ω(t)

) converges. Moreover, if ↓J is Lipschitz, i.e.,

||↓J(ω)→↓J(ω↗
)||2 ⇒ L||ω → ω↗|| for any ω and ω↗, then for the k-step iteration with a fixed step

size ε ⇒ 1/L, then

J(ω(k)
)→ J(ω↘

) ⇒ ||ω(0) → ω↘||22
2εk

,

where J(ω↘
) is the optimal value.

For non-convex cases, we adopt the similar derivations of X. Chen, Liu, Sun, and Hong (2019b)

since AdaFisher belongs to the family of generalized Adam-type methods.

Proposition 4.3.2 (Convergence in non-convex stochastic optimization). Under the assumptions:

(i) f is lower bounded and differentiable; ||↓J(ω) → ↓J(ω↗
)||2 ⇒ L||ω → ω↗||2, ||F̃ (t)

D ||⇓ <

L, ≃t,ω,ω↗.

(ii) Both the true and stochastic gradient are bounded, i.e. ||↓J(ω(t)
)||2 ⇒ ▷ and ||gt||2 ⇒ ▷, ≃t
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for some ▷ > 0.

(iii) Unbiased and independent noise in g(t), i.e. g(t)
= ↓J(ω(t)

) + 0(t), E[0(t)] = 0, and 0(t) ∈

0(t), ≃i ′= j.

Assume 1(t) = ↽
⇑
t
, ϑ(t) ⇒ ϑ ⇒ 1 is non-increasing, F̃

(t→1)
D [j]

↽(t→1) ⇒ F̃
(t)
D [j]

↽(t)
, ≃t ↔ [T ], j ↔ [d], we

then have

min
t⇒[T ]

E[||↓J(ω(t)
)||22] ⇒

L↑
T
(C11

2▷2
(1 + log T ) + C2d1 + C3d1

2
+ C4)

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of T , the

expectation is taken w.r.t all the randomness corresponding to {g(t)}.

The proofs of propositions 4.3.1 and 4.3.2 are given in Appendix A. Proposition 4.3.2 implies

the convergence rate for AdaFisher in the non-convex case is at O(log T/
↑
T ), which is similar

to Adam-type optimizers. While DNNs often include non-smooth components like ReLU and max

pooling, which create non-differentiable points in the loss landscape, optimizers like AdaFisher han-

dle these cases effectively, as shown by our results in Chapter 5. We further demonstrate AdaFisher’s

convergence on a simple model and dataset described in Appendix B. As illustrated in Figure 4.2,

across various seeds, AdaFisher consistently outperforms the baseline optimizer by converging to-

ward the optimal local minima in the loss landscape with respect to parameters W1 and W2. These

results further validate the convergence analysis discussed above.

4.4 Concluding Remarks

In this chapter, we introduced AdaFisher, a novel adaptive second-order optimization method

that leverages refined approximations of the FIM to enhance deep network training. By integrating a

diagonal block-Kronecker approximation into an adaptive framework inspired by Adam, AdaFisher

offers a higher-fidelity estimation of curvature compared to conventional methods, thus enabling

more accurate and stable updates. Our approach not only accelerates convergence by effectively

capturing local curvature information but also steers the optimization trajectory toward flatter min-

ima, which is beneficial for generalization. We detailed the theoretical foundations underlying
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Figure 4.2: Weight trajectories within different loss landscapes (evaluated using four seeds) of a toy
model for different optimizers.

AdaFisher, including its derivation from natural gradient descent principles and the approxima-

tion of the FIM using layer-wise Kronecker factorization. The distributed implementation further

demonstrates that AdaFisher scales efficiently in multi-GPU environments, making it practical for

large-scale deep learning applications. Our convergence analysis, covering both convex and non-

convex settings, shows that AdaFisher attains convergence rates comparable to other SOTA Adam-

type optimizers while benefiting from a more robust curvature estimation mechanism.

From a theoretical standpoint, AdaFisher distinguishes itself by achieving convergence rates

comparable to Adam-type methods—specifically, an O(log T/
↑
T ) rate in non-convex settings—while
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incorporating more precise curvature information through a diagonal block-Kronecker approxima-

tion of the FIM. This refined curvature estimation not only improves the stability of updates by

mitigating the effects of noisy gradients but also guides the optimization trajectory toward flat-

ter minima, which are empirically linked to better generalization. In contrast, first-order methods

like Adam rely solely on momentum and squared gradient accumulation, potentially compromising

convergence in regions of high curvature. On the other hand, second-order methods such as K-FAC

and Shampoo offer rapid convergence through full curvature information but often incur substantial

computational overhead and reduced scalability. Hence, AdaFisher provides a compelling balance,

leveraging enhanced second-order insights to maintain robust convergence while remaining compu-

tationally efficient for large-scale DL applications.

Empirical results, as summarized in Table 4.1 and illustrated in Figure 4.1, provide strong evi-

dence that AdaFisher yields reduced variance in the Fisher estimates and drives the optimizer toward

regions of the loss landscape that generalize well. Furthermore, the introduction of AdaFisherW,

which integrates weight decay in the spirit of AdamW, underscores the flexibility and practical rel-

evance of our method. Overall, the contributions presented in this chapter highlight a promising

direction for the integration of second-order information into adaptive optimization. By bridging

the gap between theoretical rigor and practical efficiency, AdaFisher paves the way for future re-

search aimed at developing even more robust, scalable, and generalizable optimization methods for

DNNs.
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Chapter 5

Experiments

In this chapter, we present a comprehensive evaluation of AdaFisher across a range of tasks

in both CV and NLP. Our experiments span image classification (using CIFAR-10, CIFAR-100

(Krizhevsky et al., 2009), Tiny ImageNet (Le & Yang, 2015), and ImageNet-1k (J. Deng et al.,

2009)) and language modeling (using WikiText-2 (Merity, Xiong, Bradbury, & Socher, 2017) and

Penn Treebank (PTB) (Marcus et al., 1993)). We compare AdaFisher with several baseline optimiz-

ers, including SGD, Adam/AdamW, K-FAC, AdaHessian, and Shampoo. In addition, we perform a

transfer learning task using pretrained ImageNet-1k weights (Paszke et al., 2019). We finalize this

section with a thorough ablation and stabilization studies of AdaFisher.

5.1 Hyper-Parameter Optimization

To ensure a fair comparison, we carefully tuned HP for all optimizers across the different ar-

chitectures and datasets. The experiments were conducted on six benchmark datasets, with HP

tuning performed separately for CNN-based models and Vision Transformers (ViTs). Below, we

detail our approach. The baseline optimizers compared include SGD, Adam/AdamW, AdaHessian,

K-FAC, and Shampoo. While we conducted a single experiment for ImageNet-1k and Tiny Ima-

geNet datasets due to computation time requirements, the CIFAR results (with or without pretrained

weights) represent averaged performance metrics across five independent runs. We conducted one

experiment for each language modeling datasets.
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Hardware. In total, we had a server with 6 NVIDIA RTX 6000 Ada Generation GPUS with 48

gigabytes of VRAM and 128 gigabytes of RAM available for all experiments. All experiments

described in this report were conducted on a system equipped with a single NVIDIA RTX 6000

Ada Generation GPU and 64 gigabytes of RAM, except for training AdaFisher on ImageNet-1k

with batch sizes of 512 and 1024, where four GPUs were utilized.

5.1.1 Image Classification Experiments

We provide further results and detailed descriptions of our image classification experiments in

this section. We conducted five trials with random initializations for the CIFAR experiments and

one trial each for Tiny ImageNet and ImageNet-1k, presenting the mean and standard deviation of

the results for these trials.

Note on training time. Given that various optimizers demonstrate significantly different epoch

durations, we have standardized our comparisons by restricting training to the total wall-clock time

(WCT) consumed by 200 epochs using AdaFisher for both CIFAR and Tiny ImageNet experiments.

Conversely, for ImageNet-1k, we report the results based on 90 WCT training epochs using Adam,

as, surprisingly, AdaFisher and Adam exhibited the same duration in this experiment. The final

selected number of epochs for each optimizer is detailed in Table 5.1. Note that we were unable to

train AdaHessian on ImageNet-1k due to the significant computational resources required by this

optimizer.

Table 5.1: Comparison of the final epoch counts for various optimizers across different datasets.

CIFAR10/100 & Tiny ImageNet ImageNet-1k

Optimizers SGD Adam/AdamW AdaHessian K-FAC Shampoo AdaFisher/AdaFisherW Adam K-FAC Shampoo AdaFisher

Epochs 226 210 89 107 36 200 90 60 26 90

HP Tuning. Effective hyperparameter (HP) tuning is crucial for optimizing the performance of

deep learning models. In this study, we systematically explored various hyperparameters for both

CNNs and ViTs across multiple image classification tasks. The following sections detail the tuning

strategies employed for each model architecture and dataset.
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CNNs. For all image classification tasks involving CNNs, we utilized ResNet18 as the back-

bone architecture and evaluated its performance on the CIFAR-10 dataset with a fixed batch size

of 256, trained for 50 epochs. The HP tuning process encompassed several components. First,

for optimizer selection and learning rate tuning, each optimizer was fine-tuned using ResNet18

on CIFAR-10. We performed a grid search to identify the optimal learning rate from the set

{0.0001, 0.0003, 0.0005, 0.0009, . . . , 0.1, 0.3, 0.5, 0.9}. Second, a cosine annealing learning rate

decay strategy was employed, aligning with the number of training epochs specified for each op-

timizer in Table 5.1. This approach follows the methodology proposed by Loshchilov and Hutter

(2019) and was determined to be optimal for our experimental setup. Third, weight decay was ap-

plied uniformly at 5 ↘ 10
→4 across all optimizers for CIFAR-10 and Tiny ImageNet; an exception

was made for MobileNetV3, where the weight decay was set to 1↘ 10
→5, while for experiments on

ImageNet-1k the weight decay was established at 1↘ 10
→4. Fourth, for damping parameter tuning,

different strategies were applied. For AdaFisher, K-FAC, and Shampoo, the damping parameter for

K-FAC and AdaFisher was searched within the set {0.0001, 0.0003, 0.0005, 0.0009, 0.001, 0.003,

0.005, 0.009, 0.01, 0.03, 0.05, 0.09}, a range chosen based on prior research (Martens & Grosse,

2015b) and our own experiments that indicated optimal damping values around 1 ↘ 10
→3. For

Shampoo, the damping parameter was tuned within the set {1 ↘ 10
→6, 3 ↘ 10

→6, 5 ↘ 10
→6, 9 ↘

10
→6, 1 ↘ 10

→5, 3 ↘ 10
→5, 5 ↘ 10

→5, 9 ↘ 10
→5, 1 ↘ 10

→4, 3 ↘ 10
→4, 5 ↘ 10

→4, 9 ↘ 10
→4}, as op-

timal values typically reside around 1 ↘ 10
→5. In addition, for AdaHessian the Hessian power

was tuned within the range {0.1, 0.2, . . . , 0.9, 1.0}; for SGD the momentum was tuned within

the range {0.1, 0.2, . . . , 0.9, 1.0}; and for AdaFisher the decay factor ◁ was tuned within the set

{0.1, 0.2, . . . , 0.9, 0.99}, with the optimal value determined to be ◁ = 0.8. Finally, for implementa-

tion details, we utilized the ASDL library as implemented in PyTorch provided by Osawa, Ishikawa,

Yokota, Li, and Hoefler (2023) for both the Shampoo and K-FAC optimizers.

ViTs. For ViT-based image classification tasks, we employed the Tiny Swin Transformer on the

CIFAR-10 dataset with a batch size of 256. The HP tuning strategy for ViTs included several el-

ements. Weight decay values were set as indicated in the respective original publications for each

model: 1↘ 10
→2 for Tiny Swin, 5↘ 10

→2 for FocalNet, and 6↘ 10
→2 for CCT-2/3↘2. For learning
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rate tuning, a grid search was conducted over the set {0.3, 0.15, 0.1, 0.05, 0.03, 0.015, 0.01, 0.005,

0.003, 0.0015, 0.001} for optimizers such as SGD, AdaFisher, AdaHessian, K-FAC, and Shampoo,

since these optimizers typically operate with higher learning rates compared to Adam-based op-

timizers. For AdamW, the learning rates were adopted from the original publications: 1 ↘ 10
→4

for Tiny Swin and FocalNet, and 5.5 ↘ 10
→5 for CCT-2/3↘2. The same grid search approach was

applied for tuning the damping parameter for K-FAC, Shampoo, and AdaFisher, as well as for the

Hessian power for AdaHessian, the momentum for SGD, and the decay factors for AdaFisher, as

explained in the CNNs section.

This meticulous HP tuning process ensures that each optimizer is optimally configured for the

respective model architectures and datasets, thereby facilitating a fair and comprehensive compari-

son of their performance across different image classification tasks. The final learning rates for all

optimizers and models are detailed in Table 5.2.

Table 5.2: Final selected learning rates for each optimizer, tuned using ResNet18 (for CNN) and
Tiny Swin (for ViT) on CIFAR10 using a batch size of 256. We selected based on final validation
top-1 accuracy.

Architecture SGD Adam AdamW AdaHessian K-FAC Shampoo AdaFisher AdaFisherW

CNNs 0.1 0.001 - 0.15 0.3 0.3 0.001 -
ViTs 0.01 - 0.0001/0.000055 0.01 0.003 0.003 - 0.001

Dataset Details and Data Augmentation. The CIFAR-10/100 datasets contain 50k training and

10k test images. We use a batch size of 256. Data augmentation includes 32 ↘ 32 random-resize

cropping, random horizontal flipping, and Cutout (DeVries & Taylor, 2017) (see Takahashi, Mat-

subara, and Uehara (2020) for details). Tiny ImageNet Comprises 100k training and 10k test im-

ages, we perform 64↘ 64 random-resize cropping and random horizontal flipping with a batch size

of 256. Finally, ImageNet-1k With 1,281,167 training and 150k test images, we set a batch size of

256. Training employs random resized cropping to 224↘244 and random horizontal flipping, while

testing uses a resize to 256↘ 256 followed by 224↘ 224 center cropping.

Transfer Learning Experiments. For transfer learning, model weights are initialized using pub-

licly available PyTorch checkpoints, except for the first convolutional layer of ResNet and the final

dense layers, which are randomly initialized. Models are trained with a weight decay of 1↘10
→4 (or
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1↘10
→5 for MobileNetV3). A grid search over learning rates in {0.3, 0.15, 0.1, 0.03, 0.015, 0.01, . . . ,

1 ↘ 10
→5} was performed, with the final selections provided in Table 5.3. A batch size of 256 and

cosine learning rate decay were used. Final epoch counts for each optimizer are listed in Table 5.4.

Table 5.3: Final selected learning rates for each optimizer in the transfer learning task, tuned using
ResNet50 on CIFAR-10 (batch size 256).

SGD Adam AdaHessian K-FAC Shampoo AdaFisher

0.01 0.0001 0.15 0.3 0.03 0.001

Table 5.4: Final epoch counts for various optimizers in the transfer learning task.

SGD Adam/AdamW AdaHessian K-FAC Shampoo AdaFisher/AdaFisherW

58 55 22 27 18 50

5.1.2 Language Modeling Experiments

For language modeling, we utilize a streamlined GPT-1 architecture, which incorporates four

self-attention layers, a reduction from the original twelve. This configuration retains core mod-

eling capabilities while reducing complexity, encompassing a total of 28,351,488 learnable pa-

rameters. To expedite training, we employ pretrained embeddings from OpenAI’s GPT, leverag-

ing the benefits of parameter sharing for enhanced efficiency and faster convergence. The models

were trained on WikiText-2 and PTB for 50 wall clock time epochs using AdaFisher. Final epoch

counts for each optimizer are provided in Table 5.5. For AdamW, we follow the learning rate set-

tings in ElNokrashy, AlKhamissi, and Diab (2022). For the other optimizers, a grid search over

{0.3, 0.15, 0.1, 0.05, 0.03, 0.015, 0.01, . . . , 1 ↘ 10
→5} was conducted, and the selected values are

summarized in Table 5.6. A batch size of 32 and weight decay of 0.1 were used. Notably, Shampoo

failed to converge and K-FAC could not be trained on these tasks.

Table 5.5: Final epoch counts for various optimizers in the language modeling task.

AdamW AdaHessian Shampoo AdaFisherW

55 18 12 50

76



Table 5.6: Final selected learning rates for each optimizer, tuned using GPT1 on WikiText-2 and
PTB (batch size 32), based on final validation perplexity (PPL).

AdamW AdaHessian Shampoo AdaFisherW

5↑ 10→5 0.015 0.003 1↑ 10→4

5.2 AdaFisher for Image Classification Tasks

We commence our analysis by assessing the convergence and generalization capabilities of var-

ious models on image classification tasks. Specifically, we deploy ResNet architectures (ResNetX

where X ↔ {18, 50, 101}), DenseNet121 (G. Huang, Liu, Van Der Maaten, & Weinberger, 2017),

MobileNetV3 (Howard et al., 2019), Tiny Swin (Z. Liu et al., 2021), FocalNet (Yang, Li, Dai,

& Gao, 2022) and CCT-2/3↘2 (Hassani et al., 2021) on CIFAR10 and CIFAR100, while utiliz-

ing standard ResNet50 for Tiny ImageNet and ImageNet-1k. The performance outcomes for CI-

FAR datasets are detailed in Table 5.7. Our empirical evaluation of AdaFisher optimizer across

these models and datasets illustrates its efficiency in optimizing image classification, surpassing

all SOTA optimizers. We employ the WCT method with a cutoff of 200 epochs for AdaFisher’s

training, except for ImageNet-1k, where we use a 90-epoch WCT for Adam, which surprisingly

matched AdaFisher’s training duration. Results confirm AdaFisher’s superior classification accu-

racy on both CNNs and ViTs. The training losses and test errors for the CIFAR experiments, both

with and without cutout, are visually represented in Figures C.1, C.2, C.3, and C.4 in Appendix C.

Furthermore, Table 5.8 displays the results for the Tiny ImageNet dataset using ResNet50 and Big

Swin networks, with visualizations provided in Figure 5.1. AdaFisher and AdaFisherW consis-

tently outperform current SOTA optimizers. Notably, Figure 5.1 illustrates that although AdaFisher

converges slower than K-FAC during ResNet50 training, it achieves superior generalization. This

is evidenced by lower testing errors, suggesting that AdaFisher tends to converge to a flatter local

minimum, enabling smoother transitions between training and testing datasets with minimal gener-

alization loss. For further explanation, see Cha et al. (2021). Note that due to AdaHessian’s high

memory consumption, we were unable to train it on Big Swin.
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Table 5.7: Performance metrics (mean, std) of different networks and optimizers on CIFAR10 and
CIFAR100 using batch size 256 (a) without Cutout and (b) with Cutout. Reported using WCT of
200 AdaFisher training epochs as the cutoff.

(a) Without Cutout

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC ShampooAdaFisher SGD Adam AdaHessian K-FAC ShampooAdaFisher

ResNet18 94.890.193.640.1 94.050.1 94.040.2 94.520.195.020.1 76.420.172.710.2 73.640.2 74.790.2 76.530.177.100.2

ResNet50 95.070.2 93.8902 94.260.1 94.250.1 94.920.195.420.2 77.500.273.120.7 75.290.3 75.490.2 77.810.278.910.9

ResNet101 94.770.193.140.1 94.730.9 94.230.1 94.220.195.510.1 78.760.273.230.4 72.190.2 75.460.3 78.820.179.740.3

DenseNet12195.110.193.740.2 94.540.1 94.970.1 94.990.195.290.1 78.610.275.380.3 72.540.9 77.090.3 78.700.379.030.2

MobileNetV392.130.291.950.1 91.43.1 91.920.1 91.910.292.890.1 73.810.265.640.2 60.783.6 69.870.3 68.010.273.150.2

Tiny Swin 80.080.287.470.2 78.340.2 66.840.3 68.440.2 89.080.1 57.430.362.200.2 54.120.3 36.120.3 33.750.366.470.2

FocalNet 80.870.285.650.1 71.030.3 42.920.2 41.490.2 86.920.1 45.660.352.880.3 38.050.3 11.230.3 11.060.3 52.90.1

CCT-2/3↑2 73.120.283.950.1 → 34.631.1 35.10.8 84.630.3 52.121.260.141.1 → 8.060.6 9.760.3 60.630.6
↔Note that Adam and AdaFisher were used for all CNN architectures, while AdamW and AdaFisherW were applied for all ViT

experiments.
(b) With Cutout

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC ShampooAdaFisher SGD Adam AdaHessian K-FAC ShampooAdaFisher

ResNet18 95.640.194.850.1 95.440.1 95.170.2 94.080.296.250.2 76.560.275.740.1 71.790.2 76.030.3 76.780.277.280.2

ResNet50 95.710.194.450.2 95.540.1 95.660.1 94.590.196.340.2 78.010.174.650.5 75.810.3 77.400.4 78.070.479.770.4

ResNet101 95.980.294.570.1 95.290.6 96.010.1 94.630.196.390.1 78.890.275.560.3 73.380.2 77.010.4 78.830.280.650.4

DenseNet12196.090.194.860.1 96.110.1 96.120.1 95.660.196.720.1 80.130.475.870.4 74.800.9 79.790.2 80.240.381.360.3

MobileNetV394.430.293.320.1 92.863.1 94.340.1 93.810.295.280.1 73.890.370.620.3 56.584.5 73.750.3 70.850.377.560.1

Tiny Swin 82.340.287.370.6 84.150.2 64.790.5 63.910.488.740.4 54.890.460.210.4 56.860.5 34.450.4 30.391.266.050.5

FocalNet 82.030.286.230.1 64.180.2 38.940.8 37.960.7 87.900.1 47.7603 52.710.5 32.330.3 9.980.6 9.180.1 53.690.3

CCT-2/3↑2 78.760.383.890.4 → 33.082.3 35.160.4 84.940.3 54.050.459.780.5 → 7.170.2 8.600.1 62.910.5
↔Note that Adam and AdaFisher were used for all CNN architectures, while AdamW and AdaFisherW were applied for all ViT

experiments.

Table 5.8: Performance of various networks and optimizers on Tiny ImageNet using batch size 256.
Reported using wall clock time of 200 AdaFisher training epochs as the cutoff.

Network Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet50 53.06 50.21 50.05 53.53 57.41
Big Swin 48.11 → 8.89 4.11 48.86

5.2.1 ImageNet-1k Training

Training on ImageNet-1k typically requires multiple GPUs and large batch sizes. Our study

showcases that AdaFisher achieves superior validation accuracy on a single GPU than its counter-

parts in scenarios marked by the light blue region. This performance outstrips traditional approaches

like SGD, LAMB (You et al., 2020), and LARS (You, Gitman, & Ginsburg, 2017), which typically

utilize batch sizes of 16K. While AdaFisher attains SOTA results on a single GPU, it further excels

when scaled up in a distributed setting with larger batch sizes. The results, benchmarked using

256 batch size and a WCT of 90 Adam training epochs, are detailed in Table 5.9 and illustrated
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Figure 5.1: WCT training loss and testing error curves of several optimizers on Tiny ImageNet
dataset, ResNet-50 and Big Swin with a batch size of 256. AdaFisher consistently achieves lower
test error as compared to Adam, AdaHessian, K-FAC and Shampoo. The final accuracy results are
reported in Table 5.8.

in Figure 5.2. Distributed AdaFisher curves are illustrated in Figure 5.3. The light blue highlights

in the table represent our experiments with a batch size of 256 on a single GPU. The light green

indicates results from a distributed version of AdaFisher employing larger batch sizes, whereas the

orange reflects results from SOTA methods using a higher batch size of 16K, SGD with a batch size

of 256 and AdamW with a batch size of 1024. It is important to note, however, that the training

setups and augmentation techniques for the results highlighted in orange, taken from the literature,

may differ from those in our study. These results are included to provide a broader context and

intuition regarding AdaFisher’s performance compared to other experiments. Overall, by balancing

curvature-aware updates with parameter efficiency, AdaFisher maintains strong generalization even

under constrained computational budgets, a critical advantage over methods like K-FAC that strug-

gle with over-parameterized models. Moreover, Figure 5.3 illustrates the training and validation

error of the distributed version of AdaFisher on ImageNet-1k across various batch sizes. AdaFisher

not only outperforms its counterparts with smaller batch sizes (256), but it also continues to achieve

superior generalization as batch sizes increase. Furthermore, these results reinforce the stability

analysis concerning batch sizes presented in Section 6.2, extending it to a more challenging dataset.
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Table 5.9: Validation of ImageNet-1k / ResNet50
by different optimizers reported on Top-1 and
Top-5 accuracy.

Optimizers Batch size Top-1 Top-5

Adam 256 67.78 88.37
K-FAC 256 70.96 89.44

Shampoo 256 72.82 91.42
AdaFisher 256 76.95 93.39

AdaFisher 512 77.01 93.45
AdaFisher 1024 77.09 93.56

SGD Goyal et al. (2017) 256 76.40 -
AdamW X. Chen et al. (2024) 1024 76.34 -

LAMB You et al. (2020) 16K 76.66 93.22
SGD You et al. (2020) 16K 75.20 -

LARS Huo, Gu, and Huang (2021) 16K 75.1 -

Figure 5.2: Training loss and validation error
of ResNet-50 on ImageNet-1k. AdaFisher
consistently achieves lower test error as com-
pared to its counterparts.

Figure 5.3: Performance of distributed AdaFisher using ResNet50 on ImageNet-1k with different
batch sizes for 90 epochs. The final accuracy results are reported in Table 5.9.

5.2.2 Comparison with Other Relevant Methods

In this section, we compare AdaFisher with six baseline optimizers for image classification:

SGD, Adam/AdamW, AdaHessian, KFAC, and Shampoo. These baselines were selected because

they either represent the current state of the art or utilize second-order gradients, making them

suitable comparisons for evaluating second-order optimizers. However, other optimizers, such as

AdaFactor Shazeer and Stern (2018) and EVA L. Zhang et al. (2023), are also relevant in this con-

text. AdaFactor is an enhanced Adam memory-efficient optimizer that approximates second-order

moments using row and column factorizations, reducing memory consumption for large-scale mod-

els. EVA is a second-order optimizer designed to leverage the FIM with efficient matrix inversion
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techniques. Therefore, we experimentally compare AdaFisher against the optimizer baselines, in-

cluding Eva and AdaFactor. Regarding the HPs for EVA, we used the optimal values reported in its

original paper and trained the model for 119 epochs using the WCT technique. For AdaFactor, we

fine-tuned the learning rate as described in Section 5.1, identifying 0.001 as the optimal value, and

trained the model for 216 epochs. Figure 5.4 illustrates the performance comparison on two distinct

models: ResNet-18 with CIFAR-100 and MobileNetV3 with CIFAR10. The same data augmen-

tation techniques were applied across all experiments, as detailed in Section 5.1. The best test

accuracies achieved are summarized in Table 5.10. AdaFisher demonstrates superior performance

compared to the new optimizer baselines, outperforming both EVA and AdaFactor.

Table 5.10: Performance comparison of AdaFisher and other optimizers using ResNet-18 (CI-
FAR100) and MobileNet-V3 (CIFAR10). Reported using WCT of 200 AdaFisher training epochs
as the cutoff.

Network—Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

MobileNet-V3 94.43 93.32 93.21 92.86 94.34 94.41 93.81 95.28
ResNet-18 76.56 75.74 69.45 71.79 76.03 76.69 76.78 77.28

Figure 5.4: WCT training loss, test error, for ResNet-18 on CIFAR100 and MobileNet-V3 on CI-
FAR10. A batch size of 256 was used. The final accuracy and training time results are summarized
in Table 5.10.

5.2.3 Comparison with Consistent Epoch Counts

We evaluated AdaFisher and its counterparts, including two prominent optimizers, Eva and

Adafactor, over 200 epochs on ResNet-18, ResNet-50 and MobileNet-V3 using the CIFAR100

dataset. Figure 5.5 illustrates the training loss and test error trends over epochs, along with the
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Table 5.11: Performance comparison of AdaFisher and other optimizers using (a) ResNet-18 and
(b) MobileNet-V3 on CIFAR100 for 200 epochs.

(a) ResNet-18

Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

Test Acc 76.52 75.71 69.78 76.86 76.96 77.08 77.35 77.28
Training Time (min) 20.03 23.33 21.67 96.67 46.46 43.18 216.67 26.58

(b) MobileNet-V3

Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

Test Acc 73.42 70.53 71.08 62.36 75.16 75.48 70.65 77.56
Training Time (min) 50.03 56.63 54.22 206.28 116.86 96.78 487.21 60.12

(c) ResNet-50

Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

Test Acc 76.12 73.03 70.78 76.18 77.66 78.01 78.89 78.91
Training Time (min) 70.13 76.67 73.32 502.28 149.36 138.58 583.11 83.02

best test error achieved as a function of training time per epoch for all optimizers across both mod-

els. Table 5.11 summarizes the highest test accuracy and total training time for each method on

both network architectures. Notably, while Shampoo achieved marginally better test accuracy than

AdaFisher on ResNet-18, it required approximately eight times longer training time. Conversely,

AdaFisher outperformed all baseline optimizers, including Shampoo, in the MobileNet-V3 and

ResNet-50 experiments, achieving superior test accuracy while maintaining high efficiency com-

parable to first-order optimizers.

5.3 AdaFisher for Transfer Learning

Following a more sustainable practice of training DNNs, we employ pretrained models from

ImageNet-1k in PyTorch on datasets like CIFAR10 and CIFAR100 to showcase AdaFisher’s gener-

alization capability for transfer learning. We applied these pretrained weights across various CNN

architectures to train on these datasets. The results, presented in Table 5.12 and Figure C.5, high-

light the significant advantages of using AdaFisher, consistently achieving top accuracy across both

datasets.
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Figure 5.5: Performance comparison of AdaFisher and other well-finetuned optimizers at their best
performances using ResNet-18 and MobileNet-V3 on CIFAR-100 for 200 epochs. A batch size of
256 was used. The final accuracy and training time results are summarized in Table 5.11.

Table 5.12: Performance comparison of different networks and optimizers on CIFAR10 and CI-
FAR100 using ImageNet-1k pretrained weights. Evaluation is based on wall clock time of 50 train-
ing epochs with AdaFisher.

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC ShampooAdaFisher SGD Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet50 96.500.296.450.2 96.350.3 96.450.1 96.030.497.130.2 82.120.182.010.4 80.640.9 80.550.4 81.700.2 82.230.2

ResNet101 97.070.296.700.1 96.650.2 96.840.1 96.630.197.220.1 84.010.182.430.2 81.360.8 82.260.3 82.650.2 84.470.2

DenseNet12194.800.194.770.1 93.080.1 94.410.2 94.760.195.030.1 75.980.275.650.3 71.060.9 76.100.3 76.080.2 76.920.3

MobileNetV391.760.390.920.3 86.452.5 91.720.2 91.390.392.780.2 71.860.466.110.8 59.692.3 69.850.4 68.870.372.380.4

5.4 AdaFisher for Natural Language Modeling

Table 5.13: Language Mod-
eling performance (PPL)
on Wikitext-2 and PTB test
dataset (lower is better).

Optimizer Test PPL

WikiText-2 PTB

AdamW 175.06 44.70

AdaHessian 407.69 59.43

Shampoo 1727.75 →

AdaFisherW 152.72 41.15

We employ the WikiText-2 dataset, which encompasses approx-

imately 100 million tokens derived from over 2 million words ex-

tracted from a curated set of “Good” and “Featured” articles on

Wikipedia. Additionally, we utilize the PTB dataset, renowned for

its extensive collection of English words with part-of-speech tags,

which has been widely used in NLP tasks for training and bench-

marking language models. Our experiments utilize a scaled-down

version of GPT-1 (Radford et al., 2019), featuring four self-attention
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layers with masking capabilities with more than 28 million learnable parameters. More details about

tuning HPs and models can be found in Section 5.1. The perplexity (PPL) on the test set, corre-

sponding to the best-performing model during validation, is documented in Table 5.13 and Fig-

ure 6.3. Similar to approaches in image classification, we apply the WCT method with 50 epochs

training time of AdaFisher as the cutoff period. Notice that Shampoo did not achieve convergence

despite using optimal HPs, and the K-FAC was unable to train with ASDL library (Osawa et al.,

2023).

Figure 5.6: Training Loss and Test Perplexity of Small GPT-1 Model on WikiText-2 and PTB
Datasets. Experiments were conducted using a batch size of 32 and optimal settings for all optimiz-
ers.

5.5 Concluding Remarks

In this chapter, we have presented a comprehensive experimental evaluation of AdaFisher across

a wide range of tasks in both computer vision and natural language processing, covering image

classification (CIFAR-10, CIFAR-100, Tiny ImageNet, and ImageNet-1k) and language modeling

(WikiText-2 and PTB). Our results consistently highlight AdaFisher’s effectiveness in comparison

to several baseline optimizers. One important observation is that AdaFisher achieves high accuracy

across diverse model architectures and datasets. When trained on CIFAR-10 and CIFAR-100 using

convolutional neural networks (ResNet-18, ResNet-50, ResNet-101, DenseNet121, MobileNetV3)

and vision transformers (Tiny Swin, FocalNet, CCT-2/3↘2), AdaFisher and its weight-decay variant

outperform both classical approaches like SGD and Adam, as well as second-order methods such

as K-FAC, Shampoo, and AdaHessian. This pattern persists on Tiny ImageNet and ImageNet-1k,

where AdaFisher demonstrates not only higher final accuracy but also robust convergence. Despite
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being a curvature-aware method, AdaFisher exhibits training times that remain comparable to first-

order optimizers, especially when contrasted with other second-order techniques.

On practical tasks where methods like K-FAC or Shampoo can become prohibitively expensive,

AdaFisher balances curvature estimation with computational efficiency, allowing it to scale well

on multi-GPU setups and handle large batch sizes while retaining strong generalization. Another

notable feature of AdaFisher is its tendency to locate flatter minima, as evidenced by superior test

accuracy and smaller generalization gaps.

The transfer learning experiments, which fine-tuned ImageNet-1k pretrained networks (ResNet-

50, ResNet-101, DenseNet121, MobileNetV3) on smaller datasets (CIFAR-10, CIFAR-100), further

highlight this characteristic by effectively leveraging partially pretrained weights and refined Fisher

Information Matrix updates.

In the language modeling domain, our scaled-down GPT-1 experiments on WikiText-2 and PTB

show that AdaFisherW achieves significantly reduced perplexity, surpassing second-order baselines

that struggled to converge. Extending our comparisons, we also evaluated AdaFisher against recent

optimizers such as EVA and AdaFactor, and AdaFisher maintains superior or on-par performance,

confirming that approximate curvature updates can be integrated without severely impacting mem-

ory or computational overhead. Altogether, our experiments confirm that AdaFisher outperforms

established first- and second-order optimizers while remaining practical.

By incorporating a refined form of the Fisher Information Matrix into an adaptive framework,

AdaFisher stands out as a strong choice for training large-scale neural networks in both vision and

language tasks. Potential future directions include deeper exploration of curvature approximation

techniques in relation to flat minima, expanded distributed implementations for extremely large

models, and integration with advanced data augmentation or regularization strategies. These results

highlight AdaFisher’s capacity to leverage curvature information while preserving computational

viability, establishing it as a strong contender for next-generation second-order optimization in deep

learning.
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Chapter 6

Dissecting Performance: Ablative and

Stability Analysis of AdaFisher

In this chapter, we systematically examine the inner workings and robustness of the AdaFisher

optimizer. Here, we investigate the impact of several key components that distinguish AdaFisher

from its predecessors. Our ablation studies evaluate the effect of different learning rate schedulers,

convergence efficiency, the role of removing the square root transformation in the update rule, the

use of an EMA for KFs, and the integration of FIM computation in normalization layers. By scru-

tinizing these elements individually, we aim to elucidate how each contributes to AdaFisher’s supe-

rior convergence behavior and generalization performance, all while maintaining efficiency across

diverse training environments.

6.1 Ablation Studies

This section explores the ablation study of AdaFisher to investigate the impact of various learn-

ing rate schedulers and convergence efficiency, as discussed in Section 6.1.1. Additionally, we

conduct an in-depth examination of the key components of AdaFisher. This includes analyzing the

effects of the EMA, the use of square root transformations, our novel approximation of the FIM,

and the critical role of computing the FIM for normalization layers, all of which are detailed in

Section 6.1.2.
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6.1.1 Evaluating Stability Across Learning Rate Schedulers, and Assessing Conver-

gence Efficiency

Learning rate schedulers. This analysis evaluates the impact of different learning rate schedulers–

Cosine Annealing, StepLR, and no scheduler—on the performance of AdaFisher, as depicted in

Figure 6.1. AdaFisher exhibits remarkable robustness across these scheduling strategies. Notably,

its performance remains stable and efficient, whether it is paired with the gradual adjustments of

Cosine Annealing, the abrupt changes of StepLR, or even in the absence of any scheduler. This

underscores AdaFisher’s adaptability and effectiveness in diverse training environments.

Convergence Efficiency. As training progresses, AdaFisher optimizer demonstrates a significant

enhancement in performance compared to its counterparts, especially evident towards the end of the

training period (see Appendix C). This rapid convergence is attributed to AdaFisher’s approach by

incorporating the FIM. Early and mid-training, the FIM serves as an approximation to the Hessian

matrix, equivalent to the Generalized Gauss Newton Matrix (Eschenhagen et al., 2024). However,

as the model approaches a local minimum, the FIM increasingly aligns precisely with the Hes-

sian (Martens, 2020). This precise alignment accelerates convergence, markedly improving the

optimizer’s efficiency in the final phases of training. Additionally, AdaFisher’s tendency to con-

verge to flat local minima leads to more stable generalization when transitioning from training to

testing distributions (Cha et al., 2021), contrasting sharply with other optimizers. To support these

points, we analyze the training distribution of our diagonal block-Kronecker FIM during the train-

ing of ResNet18 on CIFAR10. Specifically, we examine the FIM distribution for the first (Panel A),

middle (Panel B) convolutional layers and the last linear layer (Panel C), as shown in Figure 4.1 In

Section 4.2. It is evident that for each layer, the FIM distribution with AdaFisher narrows to smaller

values with fewer variations compared to that with Adam. This pattern demonstrates AdaFisher’s

convergence toward flatter local minima, as the Fisher Information, an approximation of the Hes-

sian, contains crucial curvature information.
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Figure 6.1: Performance comparison of AdaFisher using the ResNet50 on the CIFAR10 with a
batch size of 256 with different learning rate schedulers.

Figure 6.2: AdaFisher Component Analysis. (A) Comparison of MAE between the true FIM FD

and our approximation F̃D across convolutional and dense layers. (B) Performance comparison of
AdaFisher with and without the EMA of KFs. (C) Assessment of AdaFisher’s performance with
and without the computation of EFIM for Batch Normalization (BN) layers.

6.1.2 Component Analysis: Evaluating the Significance of AdaFisher’s Elements

AdaFisher incorporates several key components, including a novel approximation of the FIM,

the EMA of the KFs, the omission of the square root in the update rule, and a new EFIM formula

for normalization layers. In this part, we elucidate each component and its significance within the

AdaFisher optimizer.
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Square Root Utilization. Recent studies, such as (Lin et al., 2024), have reevaluated the neces-

sity of the square root operation in the Adam family’s update rules. These studies suggest that

eliminating the square root does not affect convergence and may even narrow the generalization gap

compared to SGD in CNN models. Our analysis, shown in panel (A) of Figure 6.2, investigates this

aspect by comparing the performance of AdaFisher and Adam, both with and without the square

root operation. The findings reveal that removing the square root not only boosts the performance

and stability of both optimizers but also significantly enhances computational efficiency. Specifi-

cally, AdaFisher without the square root not only outperforms the version with the square root but

also surpasses Adam without the square root. However, Adam without the square root typically

requires an additional scaling factor proportional to the batch size, denoted as f ∋ batch size, to

function correctly. Without this factor, Adam, without the square root, fails to learn effectively,

making direct comparisons with AdaFisher invalid.

EMA of KFs. As elucidated in Section 3.3, employing an EMA over the KFs facilitates a more

sophisticated curvature estimation. This technique leverages data across multiple mini-batches,

enabling continuous updates to the Fisher information rather than relying solely on the data from a

single batch. Panel (B) of Figure 6.2 underscores, using ResNet-50 on CIFAR10 over 200 epochs,

the benefits of using EMA on KFs, a strategy particularly advantageous in methods that utilize

diagonal or block-diagonal approximations of the curvature matrix.

Importance of Fisher Computation for Normalization Layers. The integration of the EFIM

in normalization layers, as detailed in Proposition 3.3.1, significantly enhances the generalization

process. Panel (C) of Figure 6.2 illustrates the impact of incorporating Fisher computation in these

layers during the training of AdaFisher with ResNet-50 on CIFAR10 over 200 epochs. In contrast,

the identity matrix is employed when Fisher’s computation is omitted. The superior performance of

AdaFisher when incorporating Fisher computation can be attributed to the critical role normaliza-

tion layers play in adjusting the input distribution for each mini-batch. This adjustment substantially

enhances the NN’s learning stability (Jiang, Gu, Zhu, & Pan, 2024). By quantifying the information
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each output y carries about the parameters ω under the model distribution p(y|x;ω), the compu-

tation of the FIM in these layers provides valuable insights into parameter sensitivity and gradient

variability. This insight is crucial for optimizing training dynamics and enhancing model conver-

gence—areas that are often inadequately addressed by existing optimizers.

New Approximation of the FIM. In Proposition 3.3.2, we introduce a new methodology for ap-

proximating the FIM that diverges from the K-FAC optimizer. Unlike K-FAC, which utilizes the

full Kronecker product, our approach focuses solely on the diagonal elements of the FIM, where,

as demonstrated in Section 3.2, the energy of the KFs is predominantly concentrated. This method

enables a more efficient computation of the FIM without sacrificing critical information. To val-

idate our approach, we compare the true FIM diagonal with our approximation in convolutional

and dense layers using a toy model composed of 2 convolutional layers and two linear layers on a

subset of the MNIST dataset (L. Deng, 2012) over 50 epochs. Specifically, we calculate the true

Fisher using the NNgeometry Python package (George, 2021), which facilitates the computation of

the FIM, Gauss-Newton Matrix, or NTK applied to neural networks. We estimate p(y|x) through

Monte-Carlo sampling. During each epoch, we collected both the empirical and true Fisher infor-

mation and calculated the Mean Absolute Error (MAE) between these two measures. Panel (D) of

Figure 6.2 showcases the close approximation of AdaFisher’s empirical diagonal to the true Fisher,

thus validating the efficacy of our approximation method.

Figure 6.3: Performance comparison of AdaFisher and other optimizers using the ResNet50 net-
work on the CIFAR100 dataset. (A) Test accuracy by batch size. (B) Accuracy vs. learning rates.
(C) Accuracy related to epoch time across batch sizes. (D) Epoch time for different optimizers with
a batch size of 256.
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6.2 Stability Analysis

6.2.1 HP Sensitivity Analysis

In this section, we assess AdaFisher’s stability under varying learning rates and batch sizes us-

ing ResNet50 on CIFAR100 and compare its performance to other optimizers. Improved stability

indicates a reduced need for HP tuning while maintaining high performance. To ensure a fair com-

parison, all methods were evaluated using a consistent experimental setup, with parameters tailored

to each optimizer’s strengths. However, we exclude AdaHessian results for a batch size of 1024 due

to its significant computation cost.

Batch Size Analysis. We examine the impact of batch size on AdaFisher’s performance, as

shown in Panels (A) and (C) of Figure 6.3. AdaFisher maintains high test accuracy across various

batch sizes, excelling particularly at smaller sizes despite some sensitivity to larger ones. Panel (C)

highlights AdaFisher’s efficiency, achieving high accuracy with shorter epoch times compared to

Adam, detailed further in Panel (D), where AdaFisher shows competitive epoch durations against

other optimizers. These results, discussed in Section 6.2.2, underscore AdaFisher’s effective perfor-

mance across batch size variations without adjusting other HPs.

Learning Rate Stability. This analysis evaluates the impact of learning rate variations on

AdaFisher’s performance, as depicted in Panel (B) of Figure 6.3. AdaFisher demonstrates supe-

rior stability, particularly at lower learning rates, maintaining consistent performance across a broad

spectrum. This stability alleviates the need for meticulous learning rate adjustments, thereby stream-

lining model training in various computational environments. Additionally, AdaFisher’s stability

across various learning rates can be attributed to its effective approximation of the curvature matrix.

6.2.2 Comparison of Training Speed and Memory Utilization

As discussed in Section 6.2, AdaFisher emerges as a balanced trade-off between time complex-

ity and performance. Similarly, its memory footprint is comparable to that of Adam, showcasing

efficient VRAM utilization. We extend our stability analysis to the CIFAR10 dataset to provide

a dataset-independent evaluation of performance metrics, as depicted in panel (A) of Figure 6.4.
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Additionally, we analyze the memory usage for different batch sizes using the ResNet-50 model on

the CIFAR-10/100, presented in panel (B) of Figure 6.4. The analysis reveals that AdaFisher while

maintaining high accuracy levels, uses memory comparably to Adam, especially evident in larger

batch sizes. This suggests that AdaFisher can achieve competitive performance without excessive

VRAM consumption, making it an optimal choice for scenarios with memory constraints.

Figure 6.4: (A) Performance comparison of AdaFisher and other optimizers across various batch
sizes, epoch times and learning rates (with a batch size of 256), evaluated using the ResNet50 on the
CIFAR-10. (B) Performance comparison of AdaFisher and other optimizers regarding the memory
used, assessed using ResNet50 and CIFAR10/100 across different batch sizes. This figure highlights
how AdaFisher competes closely with Adam in terms of memory efficiency and performance.

Epoch Times. Continuing our analysis of the time complexity for each optimizer, we present

in Figure 6.5 the epoch times for various network architectures and datasets. Specifically, we com-

pare the epoch times of Adam, AdaFisher, K-FAC, AdaHessian, and Shampoo optimizers on CI-

FAR10 and CIFAR100 datasets. As depicted in Figure 6.5 panel (A), AdaFisher demonstrates a

comparable training time to Adam across multiple network architectures on the CIFAR10 dataset.

This indicates that AdaFisher achieves efficient optimization without incurring significant addi-

tional computational costs. Similarly, in Figure 6.5 panel (B), we observe that the epoch times for

AdaFisher remain close to those of Adam on the CIFAR100 dataset. While K-FAC and AdaHessian

exhibit increased training times, Shampoo shows the highest epoch times across all tested networks.

This further highlights the efficiency of AdaFisher as an optimizer, combining the advantages of

advanced optimization techniques with practical training times.
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Figure 6.5: Epoch times for various networks on CIFAR10 (A) and CIFAR100 (B) using Adam,
AdaFisher, K-FAC, AdaHessian and Shampoo.

6.3 Concluding Remarks

In summary, our comprehensive ablative and stability analyses demonstrate that AdaFisher

achieves robust and efficient performance through a judicious integration of adaptive and curvature-

aware techniques. The experiments reveal that AdaFisher is resilient across various learning rate
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schedulers, and its refined diagonal block-Kronecker approximation of the FIM significantly en-

hances convergence efficiency, particularly in the later training stages. Notably, eliminating the

square root in the update rule and incorporating an EMA over the KFs yield substantial improve-

ments in both performance and computational efficiency. Additionally, the inclusion of FIM compu-

tation in normalization layers further stabilizes training and fosters better generalization by steering

the optimizer towards flatter minima. Overall, these findings not only validate the design choices

underlying AdaFisher but also underscore its potential as a scalable and practical optimizer for

modern deep learning applications. The insights provided here offer a promising roadmap for fu-

ture research in adaptive second-order optimization.
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Chapter 7

Concluding Remarks

7.1 Overview of Chapters

This thesis has explored the challenge of making second-order optimization practical for deep

learning, focusing on the FIM as a source of curvature information. Chapter 1 introduced the moti-

vation and problem statement, highlighting the gap between the superior convergence properties of

second-order methods and their impracticality in modern DNN training. Chapter 2 provided a litera-

ture review of optimization techniques, from classical first-order methods to advanced second-order

approaches, identifying the central trade-off: first-order methods are efficient but capture limited

curvature information, whereas second-order methods use richer curvature information for faster

convergence but are often infeasible at scale. Chapter 3 developed a new, efficient approximation

of the FIM suitable for large-scale DNNs. By analyzing the FIM’s eigen-spectrum and sparsity

patterns, we revealed that much of the curvature information can be retained through structured ap-

proximations. The chapter introduced a block-diagonal (Kronecker-factored) approximation to the

FIM, naturally arising from layer-wise factorization, and demonstrated that a diagonal-centric struc-

ture in the FIM emerges during training, justifying using primarily the diagonal of each factor as an

efficient proxy for curvature. Chapter 4 introduced AdaFisher, a novel adaptive second-order opti-

mizer leveraging our FIM approximation. AdaFisher employs a refined diagonal block-Kronecker

approximation of the FIM as its preconditioner, effectively integrating curvature information into

each update step without incurring the full cost of second-order methods. The chapter detailed
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AdaFisher’s theoretical underpinnings, algorithmic structure, and distributed implementation. We

provided theoretical analysis showing that AdaFisher’s adaptive nature inherits stability similar to

first-order methods while its FIM-based scaling guides the model toward minima that generalize bet-

ter. Chapter 5 presented extensive experiments validating AdaFisher across computer vision tasks

(image classification with CNNs and Vision Transformers) and natural language tasks (language

modeling with transformers). Results demonstrated that AdaFisher consistently converged faster

and reached lower testing error than baselines including Adam, AdaHessian, K-FAC, and Sham-

poo. AdaFisher exhibited stability and robustness to hyper-parameter tuning, performing consis-

tently well over a range of settings while using standard learning rate schedules. Chapter 5 provided

an in-depth ablation and stability analysis of AdaFisher’s design. We confirmed that each key de-

sign choice is justified: the adaptive square-root scaling, exponential moving average for Kronecker

factors, and FIM-based preconditioning in all layers all contributed to better outcomes. AdaFisher

maintained strong performance under different batch sizes and learning rate schedules. Crucially,

models trained with AdaFisher had significantly lower effective curvature than those trained with

conventional optimizers, indicating that AdaFisher steers optimization toward broader, flatter min-

ima known to correlate with improved generalization.

7.2 Solving Deep Learning Optimization Problem with AdaFisher

The core problem addressed by this thesis is how can we leverage the second order information

in an efficient way to both achieve better generalization while maintaining bounded computation

overhead. AdaFisher tackles this by using the Fisher Information Matrix as a guide for optimization.

Theoretically, AdaFisher can be viewed as an adaptive natural gradient method: it preconditions the

gradient with an estimate of the inverse Fisher matrix, effectively normalizing gradient directions

by local curvature. This means AdaFisher takes smaller steps where loss curvature is steep and

larger steps where the surface is flat. This curvature-aware scaling is similar to second-order

optimizers but with far less computational overhead. AdaFisher integrates the adaptive moment

estimation machinery of Adaptive framework, marrying the efficiency of first-order updates with

the precision of second-order curvature information.
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From a theoretical standpoint, AdaFisher’s use of the FIM grants several advantages over purely

first-order methods. The Fisher matrix is positive semi-definite and approximates the Hessian in

many cases, helping AdaFisher avoid issues of negative curvature and ill-conditioning that plague

Hessian-based methods. AdaFisher’s update rule performs gradient descent in a whitened space

where coordinate scaling is determined by curvature, yielding more balanced progress across all

dimensions of parameter space. By steering updates towards regions favored by the FIM’s structure,

AdaFisher introduces implicit regularization towards flatter regions of the loss landscape, explaining

the improved generalization observed empirically. Experimentally, AdaFisher outperforms other

optimizers across various benchmarks. It not only speeds up convergence but also finds solutions

with lower test error. On ImageNet and CIFAR benchmarks, AdaFisher consistently achieved lower

error rates than Adam and outperformed specialized second-order methods. Unlike other second-

order methods which often require large batch sizes and careful tuning, AdaFisher remains robust

with standard batch sizes and learning rate schedules.

Compared to Adam, AdaFisher provides more informed preconditioning based on expected cur-

vature rather than gradient magnitudes. Compared to AdaHessian, AdaFisher’s use of the Fisher ma-

trix is better suited for classification problems where the Hessian may not be positive-definite. Ver-

sus K-FAC and Shampoo, AdaFisher is considerably more lightweight, storing only per-parameter

statistics similar to Adam in memory cost, enabling scaling to larger models with far less over-

head. AdaFisher also demonstrated efficient distributed training, making it practical for real-world

large-scale applications.

7.3 Future Directions

While AdaFisher makes significant progress towards practical second-order optimization, sev-

eral avenues for improvement and further research remain: Richer Fisher Approximation (Band-

Diagonal FIM): One immediate enhancement would be to improve the approximation of the Fisher

Information Matrix. Currently, AdaFisher relies on the diagonal of each Kronecker factor to con-

struct its preconditioner. A natural extension would be to use a band-diagonal approximation in-

stead, capturing a band of off-diagonal entries around the main diagonal to account for limited
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correlations between parameters. This approach would bridge the gap between the sparse diagonal

approximation and the full dense matrix: a small bandwidth could significantly increase accuracy of

curvature representation with only a modest increase in computation. Future work can analyze the

trade-off between bandwidth and performance gains, and develop algorithms to efficiently update

and invert these banded approximations. Informative Neurons for Parameter-Efficient Fine-Tuning:

AdaFisher’s insights could be applied to parameter-efficient transfer learning. The FIM can iden-

tify the most ”informative” neurons or weights – those to which the loss is most sensitive – and

fine-tuning could be restricted to those parameters for new tasks. This would create a systematic

approach to parameter-efficient fine-tuning rather than guessing which layers to train. Research

could involve computing per-neuron Fisher diagonals after training on a base task, then fine-tuning

only neurons with top-tier Fisher values for target tasks. This could be combined with lightweight

adaptation modules like LoRA or adapter methods, making large model deployment more efficient.

Efficiency through Low-Level Optimization (CUDA Kernels): To further improve runtime per-

formance, future work could focus on low-level optimization. Developing custom CUDA kernels

for AdaFisher’s core operations could greatly speed up the optimizer on GPU hardware. By opti-

mizing memory access patterns and parallelizing FIM computations, we could reduce per-iteration

overhead to be almost on par with Adam. Integration with deep learning compiler frameworks and

exploring mixed-precision implementations might further reduce memory and computation costs

without affecting efficacy. These engineering improvements could make AdaFisher practically as

fast as the best first-order optimizers. Application to LLMs: An important next step is testing and

refining AdaFisher on truly large-scale models, such as Transformer-based LLMs with hundreds

of billions of parameters. This will likely require combining memory-efficient approximations and

low-level optimizations, since storing even diagonal Fisher information for billions of parameters

is non-trivial. It may also require algorithmic adaptations, such as segmenting the model into mod-

ules optimized with local curvature information. The payoff could be substantial: AdaFisher might

help stabilize the fine-tuning of LLMs on downstream tasks by virtue of its curvature-guided up-

dates. Evaluating AdaFisher on RLHF or long-horizon training could reveal whether curvature in-

formation helps navigate complex non-convex training dynamics. Broader Research Opportunities:

Additional research directions include theoretical analysis of generalization for curvature-aware
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optimizers, combining AdaFisher with techniques like sharpness-aware minimization, developing

quantized or memory-compressed variants for enormous models, applying AdaFisher’s methodol-

ogy to continual learning to mitigate catastrophic forgetting, and exploring its use with advanced

regularization techniques or in federated learning scenarios.

In summary, the development of AdaFisher opens many future research avenues in both algorith-

mic innovation and practical applications. By improving the approximation quality, efficiency, and

applicability of second-order methods, we move closer to a paradigm where curvature-informed op-

timization becomes a standard component of deep learning training, leading to faster convergence,

better generalization, and more efficient use of computational resources.
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Appendix A

Proofs

Proposition A.0.1 (FIM for normalization layer). Let (ϖi,ϱi) ↔ RCi be the scale and shift param-

eters of a normalization layer i. The empirical KFs for the FIM approximation are

Hi→1

∣∣∣
εi

=
1

|Ti|
∑

x⇒Ti

hi→1,xh
↓

i→1,x, Hi→1

∣∣∣
ϑi

= 11↓, Si =
1

|Ti|
∑

x⇒Ti

si,xs
↓

i,x

where hi→1, si ↔ RCi↑|Ti| represent the pre-normalized activations and gradients, respectively.

Here, Ti is the set of dimensions over which normalization statistics are computed, and Ci is the

channels/features size.

Proof. Let (ϖi,ϱi) ↔ RCi be the scale and shift parameters of a normalization layer i, with trans-

formation

hi = ai = ϖi ⇐ hi→1 + ϱi

where hi→1 ↔ RCi↑|Ti| contains normalized activations and ⇐ denotes element-wise multiplication.

Let ↓εiJ(ω) =
∑

x hi→1,x ⇐ si,x and ↓ϑi
J(ω) =

∑
x si,x where si = ↓hiJ(ω).
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For ϖi parameters:

E[↓εiL↓εiL↓
] = E





∑

x

hi→1,x ⇐ si,x


∑

x↗

hi→1,x↗ ⇐ si,x↗


↓




⇑ E

∑

x

(hi→1,xh
↓

i→1,x)↙ (si,xs
↓

i,x)


(K-FAC independence assumption)

=


1

|Ti|
∑

x

hi→1,xh
↓

i→1,x


↙


1

|Ti|
∑

x

si,xs
↓

i,x



= Hi→1

∣∣∣
εi

↙ Si

For ϱi parameters:

E[↓ϑi
L↓ϑi

L↓
] = E





∑

x

si,x


∑

x↗

si,x↗


↓




= 11↓ ↙


1

|Ti|
∑

x

si,xs
↓

i,x


(Bias term factorization)

= Hi→1

∣∣∣
ϑi

↙ Si

Cross-terms between ϖi and ϱi are excluded under the diagonal block assumption.

Proposition A.0.2 (Efficient FIM). Let Hi→1 and Si represent the KFs for a given layer index i

within a neural network, where these factors exhibit semi-diagonal characteristics indicating energy

concentration predominantly along the diagonal, as elaborated in Section 3.2. Define gi as the

gradient obtained through backpropagation at layer i. Assume that Hi→1 and Si can be closely

approximated by diagonal matrices, denoted by HDi→1 and SDi respectively at layer i, such that

HDi→1 = Diag(Hi→1), SDi = Diag(Si) where Diag(M) denote the diagonal approximation of a

matrix M, which retains only the main diagonal. Therefore, we define the Empirical FIM as

F̃Di ↭ H↗

Di→1
↙ S ↗

Di
+ ▷I, (23)

where M↗ denotes the Min-Max normalization technique Patro and Sahu (2015) for M = HDi→1

or SDi . The regularization parameter ▷ set to 0.001 serves as damping factors, in alignment with
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the principles of Tikhonov regularization, to enhance computational stability and improve the con-

ditioning of the matrix. The foundational aspects of the K-FAC optimization approach are detailed

in Martens and Grosse (2015b). Then, the closed-form solution for the preconditioned gradient

ḡ(t), derived from the diagonal approximation of the FIM, is given by: ḡ(t)
= (F̃ (t)

D )
→1g(t).

Proof. The justification of our approach comprises two principal components: the rationale for

adopting a diagonal approximation of the KFs and the methodology for normalization and regular-

ization of these factors.

Part 1: Diagonalization of KFs

The assumption of independent neuronal activity within layers is foundational to our approach.

This assumption posits that the covariance matrices H and S , encapsulating the second-order statis-

tics of activations and sensitivities, respectively, are diagonal. This diagonal nature arises because

independence among random variables implies a covariance of zero for any pair of distinct variables,

thereby nullifying all off-diagonal elements of these covariance matrices.

Consider matrices A and B, each being diagonal with elements aii and bjj , respectively. The

Kronecker product A ↙ B, by definition, generates elements aiibjj at the corresponding (i, j) po-

sitions. For diagonal A and B, this product maintains non-zero values exclusively at diagonal

positions where i = j, resulting in:

A↙B = diag(a11b11, . . . , annbmm),

yielding a purely diagonal matrix. Moreover, we have empirically demonstrated that the energy of

the KFs is concentrated along the diagonal, as detailed in Section 3.2. These arguments support our

initial premise.

Part 2: Normalization and Regularization

Let M ↔ {HDi ,SDi} be a diagonal matrix with entries mk > 0. The min-max normalized

matrix M↗ satisfies

M↗
= D→1

(M→mminI)D
→1, D = diag(

↑
mmax →mmin)
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where mmin = mink mk, mmax = maxk mk. This affine transformation ensures that 0 ↬ M↗ ↬ I

where ↬ denotes Loewner ordering. Combined with Tikhonov regularization, the modified FIM,

F̃Di = H↗

Di→1
↙ S ↗

Di
+ ▷I admits eigenvalue bounds

▷ ⇒ ▷k(F̃Di) ⇒ 1 + ▷ ≃k

which guarantees numerical stability for inversion. This approach ensures that all elements are

scaled uniformly, preserving their relative magnitudes and distances. Compared to other normaliza-

tion methods, such as z-score normalization (Patro & Sahu, 2015), Min-Max normalization offers

several advantages such as the normalization Stability, where for M↗
= (M →mminI)/(mmax →

mmin) we have σ(M↗
) △ [0, 1] where σ(·) denotes matrix spectrum. Moreover, the Kronecker

product satisfies σ(H↗

Di→1
↙ S ↗

Di
) △ [0, 1], thus ▷min(F̃Di) ▽ ▷ > 0, guaranteeing invertibility.

And the relative error satisfies
≃F̃→1

Di
→F→1

Di
≃

≃F→1
Di

≃
⇒ O(ϱ + ▷) where ϱ measures diagonal approximation

error. Therefore, the preconditioned gradient can be written has ḡ(t)
= (H↗

Di→1
↙S ↗

Di
+▷I)→1g(t)

=

(F̃ (t)
Di

)
→1g(t).

Proposition A.0.3 (Convergence in convex optimization). For the FIM defined in Eq. (23), the

updating scheme ω(t+1)
= ω(t) → ε(F̃ (t)

D )
→1↓J(ω(t)

) converges. Moreover, if ↓J is Lipschitz, i.e.,

||↓J(ω)→↓J(ω↗
)||2 ⇒ L||ω → ω↗|| for any ω and ω↗, then for the k-step iteration with a fixed step

size ε ⇒ 1/L, then

J(ω(k)
)→ J(ω↘

) ⇒ ||ω(0) → ω↘||22
2εk

,

where J(ω↘
) is the optimal value.

Proof. We follow the same proof as in Yao et al. (2021). Assume that J(ω) is a strongly convex

and strictly smooth function in Rd, such that there exist positive constants ε and ϑ so that εI ⇒

↓2J(ω) ⇒ ϑI for all w. We can show that the update formulation ̸ω(t)
= (F̃ (t)

)
→1g(t) converges

by showing that with the proper learning rate:

̸ω(t)
:= J(ω(t+1)

)→ J(ω(t)
) ⇒ → ε

2ϑ2
||g(t)||2
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Note that when k = 0 or 1, the convergence rate is the same as gradient descent or Newton method,

respectively. Our proof is similar to Boyd and Vandenberghe (2004) for the Newton method. We

denote ▷(ω(t)
) = (g(t))↓(F̃ (t)

)
→1g(t)

)
1/2. Since J(ω) is strongly convex, we have

J(ω(t) → 1̸ω(t)
) ⇒ J(ω(t)

)→ 1(g(t)
)
↓̸ω(t)

+
12ϑ||̸ω(t)||2

2

⇒ J(ω(t)
)→ 1▷(ω(t)

)
2
+

ϑ

2ε
12▷(ω(t)

)
2.

The second inequality comes from the fact that

▷(ω(t)
)
2
= ̸(ω(t)

)
↓F̃ (t)̸ω(t) ▽ ε||̸ω(t)||2.

Therefore, the step size 1̂ = ε/ϑ will make f decrease as follows,

J(ω(t) → 1̸̂ω(t)
)→ J(ω(t)

) ⇒ →1

2
1̂▷(ω(t)

)
2.

Since εI 7 F̃ (t) 7 ϑI , we have

▷(ω(t)
)
2
= (g(t)

)
↓
(F̃ (t)

)
→1g(t) ▽ 1

ϑ
||g(t)||2.

Therefore,

J(ω(t) → 1̸̂ω(t)
)→ J(ω(t)

) ⇒ → 1

2ϑ
1̂||g(t)||2 = → ε

2ϑ2
||g(t)||2 (24)

Since F (t)
D is positive definite, hence Eq. (24) holds true. For the bound on convergence rate, we

refer to Ryu and Boyd (2016) for the details of the complete proof.

Proposition A.0.4 (Convergence in non-convex stochastic optimization). Under the assumptions:

(i) f is lower bounded and differentiable; ||↓J(ω) → ↓J(ω↗
)||2 ⇒ L||ω → ω↗||2, ||F̃ (t)

D ||⇓ <

L, ≃t,ω,ω↗.

(ii) Both the true and stochastic gradient are bounded, i.e. ||↓J(ω(t)
)||2 ⇒ ▷ and ||gt||2 ⇒ ▷, ≃t

for some ▷ > 0.

(iii) Unbiased and independent noise in g(t), i.e. g(t)
= ↓J(ω(t)

) + 0(t), E[0(t)] = 0, and 0(t) ∈
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0(t), ≃i ′= j.

Assume 1(t) = ↽
⇑
t
, ϑ(t) ⇒ ϑ ⇒ 1 is non-increasing, F̃

(t→1)
D [j]

↽(t→1) ⇒ F̃
(t)
D [j]

↽(t)
, ≃t ↔ [T ], j ↔ [d], we

then have

min
t⇒[T ]

E[||↓J(ω(t)
)||22] ⇒

L↑
T
(C11

2▷2
(1 + log T ) + C2d1 + C3d1

2
+ C4) (25)

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of T , the

expectation is taken w.r.t all the randomness corresponding to {g(t)}.

Proof. Follow X. Chen, Liu, Sun, and Hong (2019b), as AdaFisher is an Adam-type method with

the condition ||1(t)m(t)/F̃ (t)
D ||2 ⇒ G for some G (which can be obtained by 1(t) < 1, ||g(t)||2 ⇒ ▷

and ||F̃ (t)
D ||2 ▽ 1), we have

E


T∑

t=1

1(t)∀↓J(ω(t)
),↓J(ω(t)

)/F̃ (t)
D ∃


⇒E


C1

T∑

t=1


1(t)g(t)

F̃ (t)
D



2

2

+ C2

T∑

t=1


1(t)

F̃ (t)
D

→ 1(t→1)

F̃ (t→1)
D


1

+ C3

T∑

t=1


1(t)

F̃ (t)
D

→ 1(t)

F̃ (t)
D



2

2


+ C4. (26)

We first bound non-constant terms in RHS of Eq. (26). For the term with C1, since ||F̃ (t)
D ||2 ▽ 1,

we have

E


T∑

t=1


1(t)g(t)

F̃ (t)
D



2

2


⇒ E


T∑

t=1

||1(t)g(t)||22



= E


T∑

t=1


1↑
t
g(t)


2

2



⇒ 12▷2
T∑

t=1

1

t
⇒ 12▷2

(1 + log T ).
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For the term with C2, we have

E


T∑

t=1


1(t)

F̃ (t)
D

→ 1(t→1)

F̃ (t→1)
D


1


= E


d∑

j=1

T∑

t=2


1(t→1)

F̃ (t→1)
D [j]

→ 1(t)

F̃ (t)
D [j]



= E


d∑

j=1

1(1)

F̃ (1)
D [j]

→ 1(T )

F̃ (T )
D [j]



⇒ E


d∑

j=1

1(1)

F̃ (1)
D [j]


⇒ d1

where the first equality is due to F̃
(t→1)
D [j]

↽(t→1) ⇒ F̃
(t)
D [j]

↽(t)
, ≃t ↔ [T ], j ↔ [d].

For the term with C3, we have

E


T∑

t=1


1(t)

F̃ (t)
D

→ 1(t→1)

F̃ (t→1)
D



2

2


= E


T∑

t=1

d∑

j=1


1(t)

F̃ (t)
D [j]

→ 1(t→1)

F̃ (t)
D [j]

2 

= E


T∑

t=1

d∑

j=1

∣∣∣∣∣
1(t)

F̃ (t)
D [j]

→ 1(t→1)

F̃D(t→1) [j]

∣∣∣∣∣ ·

∣∣∣∣∣
1(t)

F̃ (t)
D [j]

→ 1(t→1)

F̃ (t→1)
D [j]

∣∣∣∣∣



⇒ E


T∑

t=1

d∑

j=1

∣∣∣∣∣
1(t)

F̃ (t)
D [j]

→ 1(t→1)

F̃ (t→1)
D [j]

∣∣∣∣∣ ·

∣∣∣∣∣
1

↑
tF̃ (t)

D [j]
→ 1

↑
t→ 1F̃ (t→1)

D [j]

∣∣∣∣∣



⇒ E

1

T∑

t=1

d∑

j=1

∣∣∣∣∣
1t

F̃ (t)
D [j]

→ 1(t→1)

F̃ (t→1)
D [j]

∣∣∣∣∣



= 1E


T∑

t=1


1(t)

F̃ (t)
D

→ 1(t→1)

F̃ (t→1)
D


1



⇒ d12

Hence

E

C1

T∑

t=1


1(t)g(t)

F̃ (t)
D



2

2

+ C2

T∑

t=1


1(t)

F̃ (t)
D

→ 1(t→1)

F̃ (t→1)
D


1

+ C3

T∑

t=1


1(t)

F̃ (t)
D

→ 1(t→1)

F̃D(t→1)



2

2


+ C4

⇒ C11
2▷2

(1 + log T ) + C2d1 + C3d1
2
+ C4 (27)

106



Now we lower bound the LHS of Eq. (25). With the assumption ||F̃ (t)
D ||⇓ ⇒ L, we have

(1(t)/F̃ (t)
D )j ▽

1

L
↑
t
.

Thus

E


T∑

t=1

1(t)∀↓J(ω(t)
),↓J(ω(t)

)/F̃ (t)
D ∃


▽ E


T∑

t=1

1

L
↑
t
||↓J(ω(t)

)||22


▽

↑
T

L
min
t⇒[T ]

E[||↓J(ω(t)
)||22]

(28)

Combining Eq. (27) and (28) gives the desired result.
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Appendix B

Visualization

The convergence rate of an optimizer is crucial, serving as an indicator of its robustness against

saddle points and its ability to generalize effectively. In this section, we introduce a novel methodol-

ogy for visualizing the convergence behavior of optimizers through a statistical model, as depicted

in Figure 1.1. Initially, our process employs Principal Component Analysis (PCA) for dimension-

ality reduction, reducing the dataset dimensions from D ↔ Rm↑n to D̂ ↔ Rm↑2, following the

protocol established in F.R.S. (1901). We then apply this reduced dataset to a toy model composed

of an L-layer multi-layer perceptron (MLP). Notably, we focus on the first weight matrix W e
1 of

this MLP, which resides in R2, where e denotes the epoch number. For consistency and to ensure

comparability, all layers’ weights are initialized identically across different optimizers. Following

Figure B.1: Pipeline for visualization of optimization paths for various algorithms on a loss surface,
comparing their convergence efficiency.

the training phase with various optimizers where we denote a set of optimizer results O, we analyze
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both the collection of first-layer weights, W , and the evolution of the loss function, L defined as:

W =





(W 1
1 )

↓

(W 2
1 )

↓

...

(WE
1 )

↓





, L = [L1
1,L2

1, . . . ,LE
1 ]

↓

where (W e
1 )

↓ represents the weight vector at the eth epoch, and Le
1 represents the loss at the eth

epoch, extracted from the optimization results O. We construct a grid (X,Y) spanning the range

of weight parameters, discretized into 200 linearly spaced points along each axis:

X,Y = meshgrid (min(W:,1),max(W:,1),min(W:,2),max(W:,2), 200)

Finally, we interpolate the loss values L over the grid using cubic interpolation to obtain a

smooth loss surface Z:

Z = griddata(W,L, (X,Y),method = cubic)

These elements are integral to the visualization process, which elucidates the optimizer’s trajectory

through the parameter space across training epochs. It is important to note that while we focus on

the first layer’s weight matrix for clarity, the methodology can be adapted to visualize the weights

of any layer within the network. Figure B.1 summarizes the pipeline.

In the experiment depicted in Figure 1.1, we selected the IRIS dataset (iris, 2018), owing to its

widespread recognition and compatibility with PCA application. Our model employs a 2-layer MLP

architecture. We specifically attend to the weight matrix of the first layer, denoted by W1 ↔ R2. This

particular focus is informed by the empirical observation that the parameters of the first layer tend

to exhibit a faster convergence rate compared to those of subsequent layers in the network. Such a

phenomenon can be attributed to the more direct influence of the input features on the first layer’s

weights, which often results in a more pronounced and expedited learning dynamic. Given the

classification nature of the task, we employed the Cross-Entropy loss function (Z. Zhang & Sabuncu,
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2018). The network was trained over 20 epochs using a suite of optimizers: Adam, AdaHessian, K-

FAC, Shampoo, and AdaFisher. We standardized the learning rate across all optimizers at 1↘ 10
→3

to ensure comparability of results. Examination of Figure 1.1 reveals that AdaFisher’s convergence

is markedly superior to that of its counterparts, achieving rapid convergence to the local minimum

of the loss landscape concerning the first weight parameter within a few iterations. Conversely,

the alternative optimizers demonstrate convergence to less optimal local minima. Note that while

the results may vary due to the stochastic nature of parameter initialization, AdaFisher typically

converges to a better local minimum compared to its counterparts.
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Appendix C

Results

Figure C.1: WCT training loss, test error, for CNNs and ViTs on CIFAR10 experiments, without
Cutout. A batch size of 256 was used, and all networks were tuned using ResNet18 applied on
CIFAR10. The final accuracy results are reported in Table 5.7 (a).
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Figure C.2: WCT training loss, test error, for CNNs and ViTs on CIFAR100 experiments, without
Cutout. A batch size of 256 was used, and all networks were tuned using ResNet18 applied on
CIFAR10. The final accuracy results are reported in Table 5.7 (a).
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Figure C.3: WCT training loss, test error, for CNNs and ViTs on CIFAR10 experiments, with
Cutout. A batch size of 256 was used, and all networks were tuned using ResNet18 applied on
CIFAR10. The final accuracy results are reported in Table 5.7 (b).
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Figure C.4: WCT training loss, test error, for CNNs and ViTs on CIFAR100 experiments, with
Cutout. A batch size of 256 was used, and all networks were tuned using ResNet18 applied on
CIFAR10. The final accuracy results are reported in Table 5.7 (b).
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Figure C.5: WCT training loss and test error for CNNs on CIFAR-10/100 experiments with pre-
trained weights on ImageNet-1k. A batch size of 256 was used, and all networks were tuned using
ResNet50 applied on CIFAR10. The final accuracy results are reported in Table 5.12.
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