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Abstract 

Statistical Analysis of Energy Measures as Biomarkers of SARS-Covid-2 Variants and 

Receptors 

 

Khawla Ghannoum Al Chawaf 

 

The COVID-19 outbreak has made it evident that the nature and behavior of SARS-CoV-

2 require constant research and surveillance, owing to the high mutation rates that lead to variants. 

This work focuses on the statistical analysis of energy measures as biomarkers of SARS-CoV-2. 

Thus, three statistical tests are applied to the data: the multiple ANOVA test for equality of means, 

Bartlett’s test for equality of variances, and Levene’s test for assessing the homogeneity of 

variances. These tests aim to determine which energy measure can differentiate between SARS-

CoV-2 variants, human cell receptors (GRP78 and ACE2), and their combinations. 

To further investigate the specific pairwise differences between groups, Tukey’s HSD test 

was performed after the ANOVA. The Tukey test provided adjusted p-values (p-adj) for each 

pairwise comparison, allowing for a more detailed understanding of significant differences in 

energy measures across variants, receptors, and their combinations. 

The proposed approach combines energy measures and sequence data to develop 

classification systems and brings out the variety of the virus’ genetics and interaction mechanisms. 

This work aims to improve the accuracy of variant identification and contribute to creating tailored 

interventions, which would help address the COVID-19 issue and contribute considerably to the 

global fight against the pandemic. 

 

Keywords: SARS-CoV-2, COVID-19, statistical analysis, variant identification, human receptors, 

genetic sequences, ANOVA test, Bartlett’s test, Levene’s Test, Tukey’s HSD test.  
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Chapter 1 

1.1 Introduction 
 The scientific community faces a formidable foe in the relentless battle against the global 

COVID-19 pandemic: the ever-evolving severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2). The virus's unrelenting advance over the last three years has been fueled by its infectious 

nature and its capacity for constant mutation. These genetic differences have emerged as important 

determinants of the biological activities of the virus, regulating immune evasion and transmission 

dynamics, especially within the amino acid sequence of the surface spike (S) protein. As a result, 

the discovery and comprehension of these changes have become essential for developing focused 

treatment plans and implementing exact preventative and control measures around the globe. 

The ongoing evolution of SARS-CoV-2 has led to the emergence of multiple variants, each 

exhibiting distinct transmissibility and pathogenicity profiles. Developing successful treatment 

plans requires an understanding of the molecular interactions between these variations and host 

cell receptors. The angiotensin-converting enzyme 2 (ACE2) is the main receptor that allows 

SARS-CoV-2 to enter host cells, but new research has shown that the glucose-regulated protein 

78 (GRP78) is another receptor that may affect viral infectivity (Ibrahim et al., 2020). 

 Understanding the mechanisms behind viral entrance and infection can be gained by 

examining the binding affinities and interaction energies between SARS-CoV-2 variants and these 

receptors. Prior studies have evaluated the binding free energies of several SARS-CoV-2 variants 

with ACE2 using computational techniques, identifying variations in binding affinities that could 

be associated with higher transmissibility (Spinello et al., 2024). Similarly, studies have explored 

the interaction between the receptor-binding domain (RBD) of the virus and GRP78, suggesting a 

potential role for GRP78 in mediating viral entry (Elfiky, 2021).  

 It is crucial to use strong statistical techniques that can identify significant differences in 

interaction energy between several groups in order to methodically assess these interactions. A 

statistical technique called the analysis of variance (ANOVA) compares the means of three or 

more groups to see if the means of at least one of them deviate significantly from the others 

(Biology for Life, n.d.). Since ANOVA assumes identical variances among the groups being 

compared, it is crucial to confirm the assumption of homogeneity of variances across groups before 

doing the analysis. Bartlett's test is a statistical procedure used to assess the equality of variances 

across multiple groups, ensuring that the data meet the assumptions required for ANOVA (Six 

Sigma, n.d.). Additionally, we are performing in this study Levene’s Test; a statistical procedure 

used to assess the homogeneity of variances across different groups (Levene, 1960). It tests the 

null hypothesis that the variances are equal in all groups and is particularly useful when the data 

does not meet the assumption of normality. This test is robust to depart from normality, making it 

a widely preferred choice for ensuring that the assumption of equal variances is met in parametric 

tests such as ANOVA (Brown & Forsythe, 1974). In the context of this study, Levene’s Test was 

applied to evaluate whether the variance in energy measures differed significantly across SARS-

CoV-2 variants, receptors, and their combinations. The results of this test offer insight into the 
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reliability of the subsequent statistical analyses and ensure that any observed differences in means 

can be attributed to true effects rather than differences in variability. 

 Moreover, in this study, Tukey’s HSD test was performed following ANOVA to compare 

the energy measures between SARS-CoV-2 variants, receptors, and their combinations. Tukey’s 

Honest Significant Difference (HSD) test is a post-hoc analysis commonly used after conducting 

an ANOVA to identify specific pairwise differences between group means (Tukey, 1949). This 

test is known for controlling the Type I error rate across multiple comparisons and is widely used 

when there are more than two groups to compare. Tukey’s HSD provides a more detailed and 

specific understanding of where the significant differences lie, offering adjusted p-values (p-adj) 

for each pairwise comparison.  

 In this study, we aim to identify which energy measures can effectively differentiate 

between SARS-CoV-2 variants, the receptors ACE2 and GRP78, and their combinations. By 

applying multiple ANOVA to test for equality of means, Bartlett's test to assess the equality of 

variances, and Levene’s Test for assessing variance homogeneitywe seek to elucidate the statistical 

significance of observed differences in interaction energies. This comprehensive analysis will 

enhance our understanding of the molecular interactions governing SARS-CoV-2 infectivity and 

may inform the development of targeted therapeutic interventions. 

1.2 Research Problem and Goals 
1.2.1 General Problem of Identification of Variants 

 In public health, discovering variations within the SARS-CoV-2 virus presents a 

problematic barrier that must be addressed. The virus, distinguished by its fast mutation rate, 

develops many genetic variations or variants over time. This continual development not only adds 

to the adaptability of the virus, but it also needs a strategy for identification that is both smart and 

dynamic. 

Variant identification faces several challenges, one of the most significant of which is the 

vast variety of the viral genome. Many unique genetic sequences are produced because of the high 

mutation rate of SARS-CoV-2, which is constituted of ribonucleic acid (RNA), the virus's genetic 

material. Traditional techniques of identification, such as tests based on polymerase chain reaction 

(PCR), are often specifically designed for specific sequences and may have difficulty keeping up 

with the appearance of novel variations. As a result, there is a constraint inherent in the capability 

of traditional diagnostic methods to adapt to the ever-changing genetic landscape of the virus. 

Furthermore, regional variations in the frequency of distinct variants are brought about by 

the worldwide spread of SARS-CoV-2. Tracking these variations is essential for comprehending 

the virus's transmission patterns and developing region-specific public health strategies since 

different places may experience distinct variants. Finding variations becomes a logistical and 

scientific problem, including efficient coordination and data exchange between research institutes 

and health authorities worldwide. 

A further key obstacle is prompt and precise identification to provide quick interventions 

from the public health sector. Rapid action is required to deploy targeted treatments, such as 

revisions to vaccinations or modifications to public health measures, to combat the establishment 

of variations that have greater transmissibility or changed immune escape capabilities. There is a 

possibility that the efficacy of these measures might be compromised if identification is delayed, 

which would further add to the continued difficulties in controlling the pandemic. 
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1.2.2 The Goal of Research 

 The primary goal of this research is to identify which energy measures can effectively 

differentiate between SARS-CoV-2 variants, the receptors ACE2 and GRP78, and their 

combinations. Clarifying the molecular interactions that control viral entrance, and infectivity 

requires an understanding of these differences. This study aims to determine the statistical 

significance of observed variations by using Bartlett's test to assess the equality of variances, 

Levene’s test for assessing variance homogeneity, and several ANOVA tests to compare the means 

of interaction energies. Furthermore, the research uses Tukey's HSD test to pinpoint specific 

pairwise differences when significant group effects are observed. The broader objective is to 

enhance the understanding of viral-receptor interactions, contributing to the development of more 

accurate methods for variant identification and tailored therapeutic interventions. 

 

This research seeks to achieve the following specific objectives: 

1. To analyze and compare the interaction energies between different SARS-CoV-2 

variants and the ACE2 and GRP78 receptors, with a focus on identifying significant 

differences in energy profiles across these groups. 

2. To investigate whether combinations of variants and receptors exhibit distinct energy 

profiles that could influence viral binding and entry, thus enhancing the understanding of 

receptor-specific interactions and their role in viral infectivity. 

3. To assess the homogeneity of variances across groups using Bartlett's test and Levene's 

test. These tests ensure the validity of the ANOVA assumptions, allowing for more reliable 

conclusions about the differences between groups and the robustness of the variance across 

conditions. 

4. To identify which energy measure (e.g., binding free energy, mean interaction energy, or 

standard deviation) provides the most reliable differentiation between variants, receptors, 

and their combinations. Additionally, Tukey's HSD test will be employed for pairwise 

comparison to pinpoint specific differences between the group levels when significant 

effects are observed. 

 

By achieving these objectives, the study will contribute to a deeper understanding of the 

molecular mechanisms underlying SARS-CoV-2 infectivity and potentially inform the design of 

targeted therapeutic interventions. This innovative method seeks to improve the categorization 

system's precision and flexibility. In addition, the study tackles the challenges associated with 

classifying variations within the SARS family, going beyond general classifications to thoroughly 

examine individual variants. A more profound knowledge of the virus's infection processes is made 

possible by identifying and tagging specific human receptors, such as ACE2 and GRP78, and their 

unique families (Theerthagiri et al., 2020). This allows for more focused therapies. These efforts 

resulted in the creation of an extensive eight-class system that captures the complex interactions 

between variations and human receptors. This study stands out because of its ambitious 

classification strategy, which might significantly progress the area of SARS-CoV-2 variant 

identification. The study aims to provide a more comprehensive knowledge of the virus and its 

interaction with human receptors, with implications for medicinal approaches and public health 

initiatives. 
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Chapter 2 

2.1 Literature Review  
 Attiq et al. (2022) used integrated machine-learning templates as prediction tools to 

investigate the anti-SARS-CoV-2 significant protease potential of FDA-approved marine 

medicines. The study aimed to create pharmacophore field templates for SARS-CoV-2 repurposed 

drugs that have FDA approval, namely Nafamostat, Hydroxyprogesterone caporate, and Camostat 

mesylate, to block COVID-19 main protease (Attiq et al., 2022). The second objective is to create 

an activity atlas model to provide structurally relevant insights into the intricate relationship 

between marine materials and drugs repurposed from SARS-CoV-2. Lastly, utilizing molecular 

dynamics simulations, the study closely investigates the kinetics of Holichondrin B's interaction 

with the SARS-CoV-2 main protease (Attiq et al., 2022). 

Attiq et al. (2022) integrated machine-learning templates as prediction tools. The specific 

models applied were the pharmacophore field templates, the Activity atlas model, and the 

Molecular dynamics simulations. By achieving the set goals, the study hopes to improve our 

knowledge of and ability to identify viable treatment options for COVID-19. According to the 

research, the Results reveal that Holichondrin B's consistent interaction with the SARS-CoV-2 

major protease makes it a suitable lead drug for further investigation and possible clinical trials. 

The substance interacts with essential residues involved in protease activity, indicating that it may 

be used as a treatment, particularly for cancer patients' COVID-19 symptoms. 

That study by Qin et al. (2023) aimed to develop a rapid classification method for SARS-

CoV-2 variant strains using a machine learning-based label-free Surface-Enhanced Raman 

Scattering (SERS) strategy. Label-free Surface-Enhanced Raman Scattering (SERS) technology 

and Machine Learning (ML) algorithms, specifically Logistic Regression (LR), were the primary 

models applied. The authors acknowledge that the timely discovery of these genetic variations and 

their interaction with human receptors is one of the main challenges in managing the COVID-19 

pandemic effectively. Intending to bring innovative technologies into virology, the researchers 

fused machine learning (ML) algorithms with label-free surface-enhanced Raman scattering 

(SERS) technology to provide a possible rime for precise SARS-CoV-2 variant detection. The 

authors created a SERS spectrum database including variations of SARS-CoV-2. They showed 

that a diagnostic classifier using the logistic regression (LR) technique in less than ten minutes 

may provide precise findings (Qin et al., 2023). This technique makes it possible to identify and 

categorize variations in intricate biological materials. As a result, ML-based SERS technology is 

anticipated to distinguish between different SARS-CoV-2 variants correctly and may be used for 

quick diagnosis and treatment selection. The results of this source will expedite the discovery of 

variants and provide a more profound understanding of the complex interaction between viral 

alterations and human receptors. 

The objective of Torun et al. (2021) is to create a Meta-surface biosensor that will enable 

direct detection of SARS-CoV-2 in raw saliva. The three models used include Computational 

screening of gold Meta surfaces, Machine learning classifiers for differentiating viral variants, and 

Quantitative determination of viral concentration using machine learning. Two thousand one 

hundred gold Meta surfaces are screened computationally to improve nanostructures and increase 

sensitivity. The aim is to use machine learning to detect SARS-CoV-2 from Raman spectra with 

high sensitivity and specificity while optimizing light-virus interaction, which is essential for 
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molecular-level detection. The work uses machine learning classifiers to differentiate between 

different viral variations, such as wild-type, alpha, and beta. The precision of the biosensor in 

identifying viruses and differentiating between variants is shown by validation using 36 positive 

and 33 negative clinical samples. With a sensitivity and specificity of 95.2%, machine learning 

allows for the quantitative determination of viral concentration (Torun et al., 2021). The research 

highlights the biosensor's capacity for large-scale screening in raw saliva, providing a quick and 

precise preventative measure for controlling COVID-19, including the prompt detection of novel 

variations such as B.1.1.7 and B.1.351. This source introduces a metasurface biosensor that has 

been improved using machine learning, offering a novel method for SARS-CoV-2 detection. 

Utilizing sophisticated algorithms and computational screening guarantees excellent sensitivity 

and specificity in detecting the virus while also permitting the distinction of variations, providing 

a valuable instrument for efficient preventative screening and prompt reaction to new mutations 

such as B.1.1.7 and B.1.351. 

Rehman et al. (2023) have systematically reviewed identification and diagnosis techniques 

for COVID-19 using novel technologies. Their work intended to provide an update on recent 

developments, higher-level uses, limitations, and potential future research directions in this area. 

The authors also presented different machine learning and artificial intelligence techniques used 

in COVID-19 detection, such as the deep learning algorithm, CNNs, and SVMs. They spoke of its 

application in interpreting data from testing, including chest X-rays and CT scans, efficiently 

identifying illnesses. It also covered the use of machine learning in combination with other 

technologies, such as biosensors and smartphone-based systems for point-of-care applications. 

Based on this study, Rehman et al. established that machine learning-based techniques offered a 

much higher rate of COVID-19 identification coupled with much faster results than conventional 

processes. However, they also reported several limitations, such as the requirement for big and 

multiplexed data and the feature of model interpretability in clinical practice. 

Chen et al. (2021) extensively reviewed AI interventions in the fight against COVID-19. 

Specifically, their objectives involved understanding how AI is used in the battle against COVID-

19, such as identifying and diagnosing the infection and developing treatments such as drugs and 

vaccines. The study investigated several machine learning models, including deep learning 

networks, reinforcement learning, and natural language processing algorithms. Some of the aspects 

analyzed by the experts included the application of AI to medical images, spread modeling, and 

protein structures. The authors also noted that different AI approaches proved to be very effective 

in screening COVID-19 from pulmonary X-rays and CT scans, and the measures of accuracy 

explored included over 90 percent. They also pointed to the capability of using machine learning 

to collect data concerning virus-host interactions and to predict potential drug candidates. 

Nevertheless, Chen et al. call for more robust and applicable models to a broader population since 

the virus and its mutations change over time. 

Lee and Chen, 2021 addressed the application of deep learning to identify new drugs to 

treat COVID-19. The researchers use sophisticated machine learning technologies to unveil 

potential therapies. The researchers used GNNs and other transformer-based models to explain 

large, complex molecular and clinical datasets. A significant component of their strategy 

concerned the multimodal analysis of protein sequences, three-dimensional structures, and gene 

expression patterns. The study's integral conclusions involved identifying several new drugs with 

possible repurposing against SARS-CoV-2. Moreover, Lee and Chen (2021) identified the 

possibility of using deep learning methods to determine potential therapeutic agents quickly, which 

is especially valuable for responding to emerging virus variants. The models’ accuracy in 
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predicting drug-target interactions and possible side effects gave them essential data to guide 

candidates for clinical trials. 

Titus et al. (2022) also discussed the various electrochemical biosensors’ architectures for 

identifying SARS-CoV-2. Although the microwear biosensors were the primary emphasis of the 

paper, they delved into the application of machine learning algorithms for increasing the 

sensitivities and accuracy of the detection systems. This paper reviewed different biosensor 

formats focusing on aptamers, antibodies, and molecularly imprinted polymers. Such intelligent 

biosensors as artificial neural networks and support vector machines were employed for signal 

analysis of these biosensors. The authors also concluded that enhancing the biosensors with 

enhanced designs synchronized with the workings of machine learning algorithms significantly 

improved the speed and efficiency of testing for SARS-CoV-2. The sensitivity of some of the 

reviewed systems showed that viral particles could be detected at a femtomolar level. Titus et al. 

(2022) pointed out the need for these integrated approaches to offer a fast diagnostic solution on 

the patient’s side where various SARS-CoV-2 variants can be identified. 

In their study, Ribes-Zamora and Simmons (2022) provided a novel teaching strategy for 

undergraduates majoring in genetics where students analyze the COVID-19 virus using 

bioinformatics approaches online. Although their studies are not centered on the detection method, 

understanding their research helps appreciate how Willig and his team develop machine learning 

algorithms to identify the SARS-CoV-2 variant. The following bioinformatics tools and databases 

were employed in the study: Basic Local Alignment Search Tool (BLAST), Clustal Omega, and 

Virus Nucleotide Collection in NCBI. Students used these tools to sequence SARS-CoV-2, find 

mutations, and characterize what these may do to the protein. The authors also noted that such an 

approach was beneficial for increasing students’ knowledge of viral genetics and discerning more 

about the development of the SARS-CoV-2 variants. This study showed that integrating 

bioinformatics with educational 3D printing could help visualize the viral protein structures in 

future investigations concerning variant identification and description. 

In a recent study by Hazari and Pal Chaudhuri (2022), the coronavirus envelope protein 

was modeled via cellular automata. It is worth mentioning that they aimed to create a new 

computational method for analyzing the movement of viral proteins and possible interactions with 

host cells. In the study of the model, the cellular automata model was applied to explore the 

envelope protein under different situations. They also provided for the evaluation of protein 

folding and its conformation changes in time, among the key features of their approach (Hazari & 

Chaudhuri, 2022). The findings of their work enriched the knowledge about structural changes of 

the SARS-CoV-2 envelope protein, which could help investigate virus-host interactions further 

and design appropriate therapies. Nevertheless, this research is not explicitly devoted to machine 

learning for variant identification; however, it manifests a methodological direction to understand 

viral proteins by computational modeling, which can be helpful in future machine learning to 

detect and characterize new viral variants. 

Rampogu et al. (2021) studied marine drugs as therapeutic agents against SARS-CoV-2 by 

employing the essence dynamics and analysis of the free energy landscape. The authors planned 

to recognize prospective drug molecules from marine origin capable of interacting with the 

proteins of SARS-CoV-2. The researchers studied the interactions of marine compounds with viral 

proteins through molecular dynamics simulations and machine learning. Some of the activities 

they performed were applying principal component analysis (PCA) and free energy calculations 

of the complexes formed between the drug and the protein. In this paper, the researchers identified 

several components from marine sources with good anti-SARS-CoV-2 inhibitory activity. The 
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study by Rampogu et al. showed the importance of integrating computational approaches with 

machine learning solutions for the drug design against SARS-CoV-2 and its spawns. 

Similarly, Vangipuram and Appusamy (2021) proposed a machine learning-based COVID-

19 diagnosis system. Using several machine learning algorithms, their study sought to develop a 

correct and swift diagnostic tool. The authors used decision trees, random forests, and support 

vector machine analyses on the clinical and demographic datasets. Some of the highlights of their 

methods entailed the feature selection methods that would help to determine the most critical 

predictors of COVID-19 infection. This yielded a diagnostic model with impressive accuracy, 

sensitivity, and specificity. The study affirms that machine learning can help create fast and 

practical diagnostic tests for COVID-19 that can be modified to identify other virus versions. 

Parvathy et al. (2023) reported on a machine-learning approach for predicting COVID in a 

different study. In their work, they sought to create models for the early detection of potential 

patients with long-term complications caused by COVID-19. The authors utilized logistic 

regression, random forest, and neural network models to perform feature analysis on patients’ 

heterogeneous information. One of the significant aspects of their strategies was data merging, 

where patients’ clinical, laboratory, and demographic records were developed into detailed 

profiles. It was possible to create models to estimate the potential development of long COVID 

based on the outcomes found in the study. In their research, Parvathy et al. showed how machine 

learning could predict the pathophysiology of SARS-CoV-2 infection, which would be helpful, 

especially when dealing with various virus strains. 

Gantini and Christian (2022) proposed using data mining techniques to analyze the 3D 

protein models of the SARS-CoV-2 virus. Their study explored primary structural properties and 

searched for common overall structural themes in viral proteins that could be utilized in designing 

effective vaccines and drugs. The researchers employed a form of data mining known as clustering 

and association rule mining on the protein’s sequence and structure data. Some of the significant 

elements of their strategy embraced were the recognition of such conserved regions in different 

strains of the virus that may also hold the epitopes for the targets that can be vaccinated. The study 

also discovered several promising protein regions for subsequent analysis. Gantini and Christian’s 

work demonstrated how data mining and machine learning approaches can be applied at the 

molecular level concerning SARS-CoV-2, which might help discover effective treatments and 

vaccines for various stemming from various mutations. 
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Table 1. Summary of Literature Review 

 

Study Goal models Features  Main results & 

conclusion 
Attiq et al. (2022) Identify the anti-

SARS-CoV-2 

potential of marine 

drugs 

-Pharmacophore 

field templates 

-Activity atlas 

model 

-Molecular 

dynamics 

simulations 

FDA-approved 

marine drugs, 

SARS-CoV-2 

main protease 

Holichondrin B was 

identified as a potential drug 

candidate and insights into 

drug-protein interactions. 

Qin et al. (2023) Rapid 

classification of 

SARS-CoV-2 

variants 

Label-free 

Surface-Enhanced 

Raman Scattering 

(SERS) 

technology 

-Machine 

Learning (ML) 

algorithms, 

specifically 

Logistic 

Regression (LR) 

 

SERS spectra of 

SARS-CoV-2 

variants 

 

Results: The study 

achieved 100% 

accuracy in classifying 

SARS-CoV-2 variants 

(Beta, Delta, Wuhan, and 

Omicron) using a machine 

learning-based label-free 

SERS strategy. 

Additionally, the logistic 

regression (LR) model 

demonstrated 100% 

accuracy in blind tests on 

human nasal swab samples, 

effectively distinguishing 

between positive and 

negative samples. 

Conclusion: The machine 

learning-based SERS 

strategy offers a highly 

accurate and rapid method 

for classifying SARS-CoV-

2 variants and diagnosing 

infections, demonstrating 

its potential as a diagnostic 

tool for viral strain 

identification. 

Torun et al. (2021)  

Direct detection of 

SARS-CoV-2 in 

raw saliva 

-Computational 

screening of gold 

Meta surfaces 

-Machine learning 

classifiers for 

differentiating 

viral variants 

Gold meta-

surfaces, Raman 

spectra  

 

Results: The study utilized 

machine learning to analyze 

Raman spectra obtained 

from DNA aptamer meta 

surfaces, achieving a 

sensitivity and specificity of 

95.2% in distinguishing 

SARS-CoV-2 from 

negative 

samples. Additionally, the 

method effectively 

differentiated between wild-
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type, Alpha, and Beta 

variants of the virus.  

Conclusion: the integration 

of machine learning with 

DNA aptamer meta surfaces 

offers a rapid and accurate 

approach for detecting 

SARS-CoV-2 and its 

variants, highlighting its 

potential for effective viral 

surveillance and 

diagnostics. 

Rehman et al. 

(2023) 

Review COVID-

19 diagnosis 

techniques 

CNNs, SVMs Chest X-ray, CT 

scans, biosensors 

High accuracy, faster 

results, requires large 

datasets 

Chen et al. 

(2021) 

Review AI 

applications in 

COVID-19 

Deep learning, 

reinforcement 

learning, NLP 

Medical images, 

spread modeling, 

protein 

structures 

Results: The study 

surveys the diverse 

applications of artificial 

intelligence (AI) in the 

fight against COVID-19, 

covering AI-based 

diagnostic methods, drug 

discovery, and epidemic 

prediction models. 

Conclusion: AI 

technologies have proven 

effective in improving 

diagnostic accuracy 

(90%), supporting drug 

discovery, and providing 

insights into COVID-19 

spread and management, 

highlighting their crucial 

role in pandemic response 

strategies. 

Lee and Chen 

(2021) 

Identify new 

drugs for 

COVID-19 

GNNs, 

transformer-

based 

Protein 

sequences, 3D 

structures, gene 

expression 

Identified potential drug 

candidates, rapid drug 

discovery. 

In the study by Lee and 

Chen (2021), the deep 

learning model 

achieved an accuracy of 

90.6% in predicting the 

effectiveness of existing 

drugs for repurposing 

against COVID-19. 



 11 

 

 

This accuracy highlights 

the model’s effectiveness 

in identifying promising 

drug candidates based on 

their molecular 

characteristics and 

potential efficacy against 

SARS-CoV-2. 

 

Titus et al. 

(2022) 

Develop 

electrochemical 

biosensors for 

COVID-19 

ANNs, SVMs Aptamers, 

antibodies, 

molecularly 

imprinted 

polymers 

Main Results: The study 

reviews various 

electrochemical 

biosensor designs used 

for detecting the SARS-

CoV-2 virus. It discusses 

the different sensor types, 

including amperometry, 

potentiometric, and 

conductometric sensors, 

highlighting their 

sensitivity and 

application in detecting 

COVID-19. 

Conclusion: 

Electrochemical 

biosensors provide an 

effective, rapid, and cost-

efficient approach for 

COVID-19 detection, 

offering significant 

advantages over 

traditional diagnostic 

methods, such as PCR 

tests, particularly in 

point-of-care settings. 

 

Ribes-Zamora 

and Simmons 

(2022) 

Teach 

bioinformatics 

for COVID-19 

analysis 

BLAST, Clustal 

Omega 

SARS-CoV-2 

sequences 

Improved student 

understanding, potential 

for variant identification 

Hazari and Pal 

Chaudhuri 

(2022) 

Model 

coronavirus 

envelope protein 

Cellular 

automata 

Protein structure Understanding of protein 

dynamics, potential for 

drug design 

Rampogu et al. 

(2021) 

Identify marine 

drugs against 

COVID-19 

PCA, free energy 

calculations 

Marine 

compounds, 

Identified potential drug 

candidates, integration of 

computational and ML 
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protein 

interactions 

Vangipuram and 

Appusamy 

(2021) 

Develop 

COVID-19 

diagnosis system 

Decision trees, 

random forests, 

SVM 

Clinical and 

demographic 

data 

Vangipuram and 

Appusamy developed 

CovFilter, a machine 

learning-based health 

monitoring framework 

for early COVID-19 

diagnosis. They trained 

supervised learning 

algorithms on vital sign 

data, achieving an F1 

score of 93.22%with the 

Multilayer Perceptron 

model. Notably, a 

weighted majority voting 

ensemble classifier 

outperformed individual 

models, reaching an F1 

score of 94.5%. These 

findings suggest that 

CovFilter could serve as 

an effective wearable 

device for at-home 

COVID-19 prediction. 

Parvathy et al. 

(2023) 

Predict long-

term COVID 

complications 

Logistic 

regression, 

random forest, 

neural networks 

Clinical, 

laboratory, and 

demographic 

data 

Parvathy et al. employed 

machine learning 

techniques to analyze 

patient data for predicting 

the prognosis of long 

COVID.By examining 

various clinical and 

demographic features, 

they developed predictive 

models aimed at 

identifying patients at 

higher risk for prolonged 

symptoms. The study 

underscores the potential 

of data-driven approaches 

to inform healthcare 

strategies for managing 

long COVID. 

Gantini and 

Christian (2022) 

Analyze SARS-

CoV-2 protein 

structures 

Clustering, 

association rule 

mining 

Protein 

sequences, 

structures 

Identified conserved 

regions, potential 

vaccines, and drug targets 
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2.2 Thesis Goals and Contributions 
2.2.1 Critique of the Literature  

The current literature on identifying and classifying SARS-CoV-2 variants using machine-

learning approaches is rich and multifaceted due to the high demand for knowledge on virus 

evolution due to the ongoing pandemic. The researchers have vigorously worked to employ 

different types of machine learning models for understanding viral genetic sequences, anticipating 

proteins’ structures, and finding potential drug targets. Nevertheless, there are some significant 

gaps and drawbacks of the studies available today, which should be addressed in future research. 

One major gap in the literature is the lack of coordination between energy measures and 

sequence data in the classification of SARS-CoV-2 variants. Numerous studies have examined 

genetic sequence analysis, with many articles describing the impact of mutations on viral evolution 

(Jackson et al., 2022). However, there is a relative scarcity of research incorporating energy 

measures alongside genetic sequence data to provide a more comprehensive view of virus-host 

interactions. Energy-based metrics can measure the functional effects of these changes by 

evaluating how they alter the viral binding affinity to receptors such as ACE2 and GRP78, even 

though genomic data identifies which mutations are present. While genetic data reveals which 

mutations are present, energy-based metrics can quantify the functional consequences of these 

mutations by assessing how they affect viral binding affinity to receptors like ACE2 and GRP78. 

By combining sequence and energy data, classification accuracy could be improved, as a 

mutation’s impact on infectivity is not solely dictated by its presence in the genome but also by 

the energetic stability of the resulting protein structure. Our capacity to describe viral variations 

and forecast their likelihood of increased transmission or immune evasion would be improved by 

combining the two data types. 

Despite the value that energy measures can provide, the literature has yet to systematically 

address key questions: (a) how energy measures can differentiate between SARS-CoV-2 variants, 

(b) how energy measures distinguish between different host receptors, and (c) how energy 

measures can characterize the interactions between variants and receptors. The assumption that all 

mutations contribute equally to viral activity is made when variants are categorized solely on the 

basis of sequence, while in practice, their impacts rely on structural and energetic repercussions. 

In a similar vein, although ACE2 is generally acknowledged as the main receptor for SARS-CoV-

2, under certain circumstances, alternative receptors, such as GRP78, may promote viral entry 

(Ibrahim et al., 2020). More insight into alternate viral entry mechanisms would come from a more 

thorough examination of the differences in energy measurements across various receptor contacts. 

Additionally, it may be possible to determine whether specific mutations preferentially boost 

binding to one receptor over another by examining the energy differences between variant-receptor 

combinations. This could have implications for tissue tropism and the severity of disease. 

From a biological perspective, energy measures should be considered potential biomarkers 

for characterizing viral variants and receptors due to their direct influence on viral infectivity and 

host adaptation. One important factor in determining transmissibility is the viral spike protein's 

affinity for binding to its receptor; changes that boost infectivity while decreasing binding energy 

likely to impair viral entry (Nguyen et al., 2021). Unlike sequence data alone, which provides a 

static view of mutations, energy measures capture the dynamic biophysical effects that drive viral 

evolution. A deeper functional knowledge of how mutations impact viral behavior is made possible 

by examining how energy measures distinguish interactions between variations and receptors. 
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Certain mutations in the receptor-binding domain (RBD), for instance, may not substantially 

change the genetic sequence but may cause a large shift in the interaction energy, which could 

result in either an increase or decrease in binding affinity. Understanding these energetic changes 

is crucial for assessing the emergence of new variants with altered pathogenicity or resistance to 

neutralizing antibodies. 

In conclusion, whereas machine learning and sequence-based techniques have greatly 

advanced the classification of SARS-CoV-2 variants, the literature has mostly ignored the function 

of energy measurements in distinguishing variants, receptors, and their interactions. In addition to 

increasing classification accuracy, filling in these gaps would advance our biology knowledge of 

viral-host interactions and possibly direct the creation of focused antiviral tactics. 

  

2.2.2 Addressing the Gaps 

Understanding the interactions between SARS-CoV-2 variants and their host receptors is 

essential for predicting viral infectivity and informing therapeutic strategies. A crucial gap in the 

statistical characterization of energy-based interaction effects between variations and receptors 

still exists, even though a great deal of research has concentrated on using structural modeling and 

genetic mutations to describe these interactions. Most studies have emphasized sequence 

mutations, receptor-binding domain (RBD) structural changes (Starr et al., 2020), or machine 

learning-driven classification models (Maher et al., 2022), but few have rigorously assessed 

whether energy measures can serve as statistically significant biomarkers for viral-host binding. 

This thesis addresses that gap by investigating whether energy-based metrics provide a robust and 

interpretable means of distinguishing SARS-CoV-2 variants, receptors, and their combinations. 

From a biological standpoint, existing literature has primarily focused on how amino acid 

substitutions in the spike protein affect binding affinity to ACE2 and other potential receptors 

(Barton et al., 2021). However, instead of performing a statistical study of energy distributions 

among variations and receptors, these investigations frequently depend on molecular docking or 

free energy perturbation simulations. While it is well established that certain spike mutations 

enhance binding affinity (Li et al., 2020), this thesis extends previous work by systematically 

testing whether energy variations are statistically significant across different variants and receptor 

interactions. Beyond qualitative structural insights, this study empirically validates whether energy 

metrics may distinguish viral interactions in a meaningful way using ANOVA, Bartlett's test, and 

Levene’s test. 

A second gap exists in the field of computational virology, where energy measures are 

often used to estimate binding affinities but rarely subjected to rigorous statistical testing. Few 

research has investigated whether energy variances across many variants and receptors follow 

separate statistical patterns, as many have relied on single-case energy calculations to compare 

SARS-CoV-2 variants (Gobeil et al., 2021). By using hypothesis-driven statistical testing to 

ascertain whether energy and mean energy significantly distinguish variations, receptors, and their 

combinations, this thesis overcomes this constraint. By doing so, it ensures that conclusions about 

binding interactions are not based on isolated case studies but rather on statistically supported 

findings. 

A third gap lies in the methodological approach of variant classification. The majority of 

classification models frequently mix machine-learning approaches with genomic and protein 

sequence data. Although these models are capable of accurately classifying variants, they usually 

lack interpretability and a biological foundation in interactions based on energy. This research 
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provides an alternative approach by evaluating whether energy measures alone can offer 

statistically significant differentiation without the need for complex classification algorithms. This 

contribution is particularly important because it allows researchers to assess variant-receptor 

interactions based on fundamental thermodynamic properties rather than relying solely on 

predictive computational models. 

By filling in these gaps, this thesis advances a more statistically sound comprehension of 

the interactions between SARS-CoV-2 variants and offers a framework for further research aiming 

to incorporate energy-based characterization into viral epidemiology and treatment planning. This 

study highlights the importance of statistical validation in energy calculations and establishes a 

foundation for future investigations into how energy measures can serve as reliable biomarkers for 

viral evolution and host susceptibility. 

2.2.3 Thesis Goals 

The primary goal of this thesis is to identify which energy measurements can be used as 

trustworthy biomarkers to differentiate between host receptors (ACE2 and GRP78), SARS-CoV-

2 variants, and their combinations. This study advances the statistical analysis of viral-host 

interactions by thoroughly examining the variations in energy-based metrics using well-

established statistical techniques, such as ANOVA for mean comparisons, Bartlett's test for 

variance homogeneity, and Levene’s test to assess the robustness of variance assumptions. Unlike 

previous research that often relies on machine learning classification, this study focuses on a purely 

statistical approach to ensure interpretability and reproducibility in the findings. 

 

This thesis makes three key contributions: 

1. Which energy measures can significantly differentiate between SARS-CoV-2 

variants, receptors, and their combinations? 

By applying multiple ANOVA tests, this study identifies which energy metrics—

interaction energy, mean energy, or the standard deviation of energy—show statistically 

significant differences across viral variants, receptor types, and their combined 

interactions. To further investigate significant pairwise differences, Tukey's HSD test is 

applied. The results offer a quantitative foundation for evaluating binding differences and 

advance our knowledge of how molecular interactions differ among SARS-CoV-2 strains 

(Ibrahim et al., 2020; Spinello et al., 2024). 

2. Do energy variances provide meaningful differentiation across groups, and are they 

statistically significant? 

The study investigates whether there are significant differences in energy variances, mean 

energy, and standard deviation of energy among variations, receptors, and their 

combinations using Bartlett's test and Levene's test. Identifying whether energy variance 

can serve as a distinguishing feature enhances our understanding of how stable or variable 

these interactions are, and whether certain energy fluctuations indicate stronger or weaker 

viral binding affinities (Elfiky, 2021). 

3. Can a statistical approach provide a robust and interpretable method for assessing 

SARS-CoV-2 variant interactions? 

This study ensures that the results are not only statistically valid but also simple for 

academics and physicians to understand by avoiding machine learning categorization and 

concentrating on strong statistical testing. The results are more reliable when hypothesis-

driven statistical techniques are used, which makes them suitable for additional 



 16 

 

 

experimental validation and practical biological interpretation (Biology for Life, n.d.; Six 

Sigma, n.d.). 

These contributions advance the statistical analysis of SARS-CoV-2 interactions by 

identifying which energy measures provide meaningful differentiation and whether variance 

in these measures plays a role in distinguishing viral-host binding behaviors. The incorporation 

of Levene’s test ensures that the variance assumptions are robust, and the application of 

Tukey's HSD test enhances the interpretation of pairwise differences. This work lays the 

foundation for future studies that aim to integrate statistical findings with experimental 

validation, ultimately contributing to a deeper understanding of viral infectivity and therapeutic 

target identification. 

 

2.2.4 Thesis Contributions 

This thesis offers several significant contributions to the field of computational virology and 

statistical bioinformatics by introducing an energy-based perspective in the differentiation of 

SARS-CoV-2 variants, receptors, and their combinations. Most categorization efforts in the 

present literature primarily rely on genomic sequence data and machine learning models, 

frequently ignoring viral-host contact’s thermodynamic and molecular interaction elements. These 

contributions are meant to close this significant gap. 

1- This research introduces the integration of energy measures as an additional feature, 

alongside traditional sequence data, to aid in the identification of SARS-CoV-2 variants 

and their receptor interactions. This thesis suggests that the physical and chemical binding 

energy information adds an extra layer of biological relevance, even though the majority 

of previous research focuses on classifying variations based only on sequence changes 

(Kumar et al., 2022). Incorporating these energy metrics can potentially enhance 

differentiation and provide a more stable and biologically meaningful basis for assessing 

variant behavior. 

2- This study identifies which specific energy measures show statistically significant 

differences across SARS-CoV-2 variants. It has been shown using ANOVA, Bartlett, and 

Levene’s tests that there are significant differences in interaction energy between various 

viral strains. According to Nguyen et al. (2021), this discovery advances our understanding 

of how structural modifications to the viral spike protein affect binding energetics and, 

consequently, infectivity. 

3- This research determines which energy measures are statistically different across host 

receptors. Mean energy, in particular, is a crucial distinction between the ACE2 and GRP78 

receptors, according to the study, which offers a thermodynamic explanation for 

differences in receptor vulnerability. Previous studies have focused on the structural 

compatibility of the receptors (Yan et al., 2020), but this thesis extends that knowledge by 

statistically validating the energetic differences in their interactions. 

4- The study reveals which energy measures show significant differences across the combined 

variant-receptor interactions. This thorough method highlights the combined impact of 

viral evolution and receptor diversity on binding behavior by enabling the identification of 

energy parameters that are sensitive to both the host receptor and the viral variation. Such 

insights have been largely absent from previous computational studies, which typically 

analyze variant-receptor interactions in isolation (Shoemark et al., 2021). 
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All of these contributions highlight the value of thermodynamic data in enhancing sequence-based 

methods and provide a new statistical viewpoint on SARS-CoV-2 variant identification and 

receptor interaction analysis. In addition to improving our knowledge of viral-host binding 

mechanisms, the results of this thesis could help guide future treatment approaches that focus on 

receptor interactions unique to variants. 



 18 

 

 

Chapter 3 

3.1 Methodology 

The objective of this study is to identify which energy measure can effectively differentiate 

between SARS-CoV-2 variants, receptors, and their combinations. The study employs several 

statistical hypotheses testing techniques, including Multiple ANOVA tests, Bartlett's tests for 

equal variances, and Levene's test for equality of variances as indicated in Figure 1. These tests 

are designed to assess differences in energy measures across categorical groups (variants, 

receptors, and combinations). Energy measurements for various biological structures are 

categorized by receptors, variants, and combinations of both. 

Energy Measures: 

1. Energy (S1): The Binding Energy 

• Energy (s1) represents the binding energy between SARS-CoV-2 variants and their target 

receptors. This energy is calculated using molecular docking simulations, specifically 

using SwarmDock. 

• Binding energy measures the strength of the interaction between two molecules (e.g., the 

viral spike protein and the ACE2 receptor). A lower (more negative) binding 

energy indicates a stronger interaction, meaning the variant binds more tightly to the 

receptor, while a higher (less negative or positive) binding energy indicates a weaker or 

less favorable interaction. 

• SwarmDock simulates these interactions and provides binding energy as part of its output, 

which helps researchers assess the likelihood and strength of interactions between the virus 

and various receptors. 

2. Mean Energy (S2): The Average Binding Energy Across Each Group 

• Mean Energy (s2) is the average binding energy for a specific group of variants, receptors, 

or combinations of both. 

• In the analysis, the mean energy of multiple SARS-CoV-2 variants (or variants*receptor 

combinations) interacting with a specific receptor can be calculated. This means that we 

are taking the binding energy values (s1) from all individual interactions and calculating 

their average. 

• This value gives an overall representation of how strongly the variants, on average, interact 

with the receptor in a given group. For example, if a group of variants has a high mean 

energy, it suggests that, on average, these variants interact weakly with the receptor. 

Conversely, a low mean energy suggests stronger, more efficient interactions. 

3. Standard Deviation of Energy (S3): Variability in Binding Energy 

• Standard Deviation of Energy (s3) is a statistical measure that quantifies how much the 

individual binding energies (s1) deviate from the mean energy (s2) within a given group. 

It tells how consistent or variable the interactions are across the group. 

• A low standard deviation means that the binding energies for the variants or combinations 

in that group are relatively similar to each other, suggesting that the interaction strength is 

consistent. 
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• A high standard deviation, on the other hand, indicates that the binding energies vary 

greatly, meaning that there is a wide range of interaction strengths within the group. This 

could suggest that certain variants have a much stronger or weaker affinity for the receptor 

than others in the same group. 

Why These Measures Matter: 

These three energy measures are crucial for understanding: 

• Energy (S1): This shows us the strength of the interaction between SARS-CoV-2 variants 

and receptors. 

• Mean Energy (S2): Provides a general overview of how the group of variants or 

combinations interacts with the receptor on average, helping to identify which variants or 

receptor groups are more likely to bind strongly. 

• Standard Deviation of Energy (S3): Reveals the variability in the interaction strength, 

which can indicate the reliability or consistency of those interactions across different 

variants or receptors. High variability could suggest that some variants interact more 

strongly, while others do so weakly. 

These energy measures, calculated through SwarmDock simulations, are then analyzed 

statistically to assess whether the differences in energy between variants, receptors, or 

combinations are significant. 

To evaluate differences in the mean and variance of these energy measures, the following statistical 

tests were performed: 

1. Multiple ANOVA Tests (for Mean Differences): 

ANOVA tests assess whether the means of energy measures differ significantly between groups. 

The ANOVA tests were applied in the following categories and explained in Figure 2: 

1. ANOVA across Variants: Determines if there are significant differences in mean energy 

(s2) between different SARS-CoV-2 variants. 

2. ANOVA across Receptors: Assesses significant mean differences in energy (s2) among 

different receptors. 

3. ANOVA across Variants*Receptors Combinations: Evaluates if the interaction 

between variants and receptors leads to significant differences in mean energy measures 

(s2). 

For each ANOVA test: 

1. The null hypothesis (H₀) assumes that the mean energy measures (s2) are equal across all 

groups. 

2. The p-value and F-statistic are calculated. 

3. If the p-value is less than the significance level (e.g., 0.05), H₀ is rejected, indicating 

significant differences in mean energy measures across groups. 

2. Bartlett’s Test for Equal Variances: 

Bartlett's test was used to assess if the variances in energy measures are equal across the groups. 

This test checks for the homogeneity of variances across categories. Bartlett’s test was conducted 

in the following categories and explained in Figure 3: 

1. Bartlett’s Test across Variants: Assesses if the variance in energy (s1) differs between 

SARS-CoV-2 variants. 

2. Bartlett’s Test across Receptors: Tests for significant variance differences in energy (s1) 

among receptors. 

3. Bartlett’s Test across Variants*Receptors Combinations: Evaluates if variance in 

energy (s1) differs for the interaction between variants and receptors. 
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For each Bartlett's test: 

1. The null hypothesis (H₀) assumes that all groups have equal variances. 

2. The Bartlett’s test statistic and p-value are calculated. 

3. If the p-value is less than the significance level (e.g., 0.05), H₀ is rejected, suggesting 

significant variance differences. 

3. Levene’s Test for Equality of Variances: 

Levene’s test was performed alongside Bartlett’s test to assess the homogeneity of variances, 

especially when normality assumptions may be violated. Levene’s test is more robust than 

Bartlett’s when the data is not normally distributed. It checks whether the variances across groups 

are equal. Levene’s test was conducted for the same categories as Bartlett’s test and explained in 

Figure 4: 

1. Levene’s Test across Variants: Assesses variance differences in energy measures (s1) 

between SARS-CoV-2 variants. 

2. Levene’s Test across Receptors: Tests if there are significant differences in the variance 

of energy (s1) among receptors. 

3. Levene’s Test across Variants*Receptors Combinations: Evaluates variance 

differences in energy (s1) for the interaction between variants and receptors. 

For each Levene’s test: 

1. The null hypothesis (H₀) assumes that the variances are equal across groups. 

2. The Levene’s test statistic and p-value are computed. 

3. If the p-value is less than the significance level (e.g., 0.05), H₀ is rejected, suggesting 

significant variance differences. 

4. Post-hoc Tukey’s HSD Test: 

When ANOVA reveals significant differences among groups, Tukey’s Honest Significant 

Difference (HSD) test is used to determine which specific pairs of groups differ. This test is ideal 

for multiple pairwise comparisons as it controls the family-wise error rate and identifies which 

group means differ significantly from each other. 

 

Mean of the Mean and Variance of the Variance: 

To summarize and compare the mean energy (s2) and variance of energy (s1) across the groups, 

we compute the mean of the mean and variance of the variance: 

• The mean of the mean refers to the average of the mean energy values (s2) for all groups 

(variants, receptors, combinations). 

• The variance of the variance reflects the variation in the variance (s3) across groups. These 

calculations are essential for performing statistical tests like ANOVA and 

Bartlett’s/Levene’s tests, as they provide a clearer picture of how the energy measures 

differ across groups. 

Software and Libraries: 

All statistical analyses, including the ANOVA, Bartlett’s test, and Levene’s test, were conducted 

using Python. The following libraries were used: 

• Pandas: For data manipulation and organization. 

• Scipy: For statistical testing (ANOVA, Bartlett’s, and Levene’s tests). 

• Matplotlib: For data visualization and plotting results. 

This methodology enables a thorough assessment of how energy measures (mean energy and 

variance) differ across SARS-CoV-2 variants, receptors, and their combinations, providing 

insights into the underlying interactions.  
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Figure 1. FLOWCHART OF STATISTICAL ANALYSES  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2. Multiple ANOVA Tests for Equality of Means Across Variants 
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Figure 3. Multiple-sample Tests for Equal Variances (Bartlett) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Multiple-sample Tests for Equality of Variances (Levene) 
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Chapter 4 

4.1 Data Collection and Experimental 

Results 
4.1.1 Data collection 

The dataset would comprise the RNA sequences of SARS-CoV-2 variants of concern, such 

as the Alpha, Beta, Gamma, Delta, Omicron, and others, and the human receptor sequences of 

ACE2 and GRP78. These sequences would be retrieved from authentic genomic databases such as 

GISAID or GenBank. Conventional molecular biology bioinformatics software will further 

translate the RNA sequences into protein sequences. Figure 5 displays an example of a SARS-

CoV particle. 

 

Figure 5. A SARS-CoV Particle 

 
From: Centers for Disease Control and Prevention (CDC, 2024). 

 

In this experiment, the RNA sequence for each SARS-COV-2 variant for ACE2, GRP78, 

and wildtype RBD domain was downloaded and converted to protein sequence. The RBD of the 

original SARS-Cov-2, the GRP78 region, and the common ACE2 allele were sequenced first as 

wildtype (WT). However, a specific region for each was used in this experiment. The sequence 

from 334 to 530 in the wild-type RBD region was chosen based on its mutations within the ACE2 

binding site that have appeared in many lineages/clades of SARS-CoV-2. For example, the N501Y 

mutation has appeared in Beta (B.1.351; 20 H/501Y.V2), Gamma (P.1;20 J/501Y.V3), Alpha 

(B.1.1.7; 20I/501Y.V1), and Omicron (B.1.1.529; 21M/501Y). So, the mutations of SARS-CoV-

2 were found in this specific region of the RBD wild-type domain. The ACE2 region in this 
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experiment is the region where it interfaces with SARS-COV-2 RBD, in which 16 residues of 

SARS-COV-2 RBD were shown to be in contact with 20 residues of ACE2 (Lan et al., 2020). 

However, for Grp78 (also known as HSPA5), the region where Grp78 and SARS-COV-2 RBD 

interact was sequenced and expressed.  

 SARS-COV-2 variants were sequenced based on their mutations in the RBD domain. The 

Alpha variant has one mutation located on N501Y, and Zeta/Lota/Eta also has one on E484K; thus, 

they have the same sequence. Delta has two mutations located at L452R and T478K. Beta has 

three mutations located on K417N, E484K, and N501Y. Gamma has three mutations on K417T, 

E484K, and N501Y. However, Omicron has fifteen mutations located at G339D, S371L, S373P, 

S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and 

Y505H.  

 Homology modeling is then used to generate a 3D protein model from the target sequence 

and evolutionary-related protein structures. Practical information will be gathered and used as a 

template. The first step in the SWISS-MODEL was the input of data: an amino acid sequence in 

FASTA text was input in the SWISS-MODEL of the target protein. UniProtKB was used to help 

build the FASTA text (UniProt, 2016). The target proteins in our experiment are the SARS-COV-

2 variants (Omicron, Delta, Gamma, Eta, Zeta, Lota, Beta, Alpha), RBD domain, ACE2, and 

Grp78. The second step was to search the template using SWISS-MODEL. Two database search 

methods were used to perform this task: HHblits (Remmert et al., 2011) and Blast (Altschul, 1997). 

In the case of remote homology, HHblits would add sensitivity; however, the BLAST method can 

find closely related templates, which provides high and fast accuracy. So, the input data would be 

used in this step to search for protein structures that are evolutionarily related to the input against 

the template library of the SWISS-MODEL (SMTL) (Waterhouse et al., 2018).  

 The third step would be template selection. After the templates had been completed and 

estimated by Quaternary Structure Quality Estimate (QSQE) (Bertoni et al., 2017) and Global 

Model Quality Estimate (GMQE) (Biasini et al., 2014), and according to the expected quality of 

the resulting models, templates would be ranked (Waterhouse et al., 2018). For example, different 

models were built in the RBD domain, and many templates were selected automatically. So, to 

choose the best template, the SWISS-MODEL provides many alternative template options. Each 

template has a descriptive set of features that allow the user to select the best fit with the target 

protein. So, template 6vw.1.1. B was used in the RBD domain because it is a SARS-CoV-2 

chimeric receptor-binding domain complexed with its human receptor ACE2. This template was 

selected because of its defining features and good interactive graphical views.  

 A 3D protein model would be generated after selecting the template as defined by the 

alignment of the target template to conserved atom coordinates. A full-atom protein model and 

loop modeling would generate the residue coordinates from the constructed amino acid non-

conserved side chains. The SWISS-MODEL relies on the ProMod3 modeling engine and the 

OpenStructure computational structural biology framework to perform this step (Biasini et al., 

2013). After building models for the target proteins using the SWISS-MODEL, PDB files were 

downloaded and checked on the PyMOL System.  

 After getting the PDF files, they were submitted to docking software known as 

SwarmDock. SwarmDock, a memetic docking algorithm in which the conformational, 

orientational, and translational degrees of freedom were developed using normal modes to perform 

flexible docking and are simultaneously optimized with a Solis and Wets local search algorithm 

using the Particle Swam Optimisation (PSO) metaheuristic (Moal & Bates, 2010). SwarmDock 

was used instead of other algorithms due to its simplistic energy function, in which, upon binding, 



 25 

 

 

it will undergo significant conformational changes; thus, it can dock flexible structures 

successfully.  

 Compared to other docking methods, SwarmDock is different in that it filters the many 

putative structures using FFT correlations or combines the single independent trajectories’ results 

using search space (Moal & Bates, 2010). As an emergent proportion of the system, the 

exploitation of narrow regions containing lower energy structures would be switched between 

them and the exploration of diffuse areas in search space, which would depend on the nature of 

the energy of the landscape. Surrounding the binding site, a correlated energy landscape would be 

used by SwarmDock as swarm members found low-energy positions that act as attractors for some 

swarm members. Furthermore, the equation describing the velocities of the swarm members has a 

spatially varying repulsion term that prevents the contraction of a dispersed swarm from occurring. 

When a swarm concentrates its efforts on one specific location with many low-energy structures, 

such as the actual biological interface, it has less of an impact on its contraction (Moal & Bates, 

2010). 

In the docking technique, a standard energy function is incorporated. The approach 

employs van der Waals and Coulombic terms. These names are between i and j associative atoms 

within the receptor and ligand, respectively (Moal & Bates, 2010). Also, a switching function 

between 7 and 9 (Ron = 7 and roff = 9) is used to eliminate any interruptions in the standard 

relation and prevent long-distance mathematical associations with an insignificant contribution to 

the interaction energy (Moal & Bates, 2010). 

Energy function in the docking algorithm where energy is in kilo Joule per mole: 

Eint = ∑ × ∑ × 𝐸𝑎𝑡𝑜𝑚𝑠
𝑗

𝑎𝑡𝑜𝑚𝑠
𝑖 i,j                      (1) 

The PDB structures of binding proteins must follow three fundamental necessities: one of 

them is no missing residues, the other is the use of standard residues, and the TER phrase must be 

placed after each chain (Moal & Bates, 2010). The server will try substituting non-standard 

residues with standard residues if any criteria are not fulfilled. The server will also attempt to 

replace missing residues or residues with missing atoms if none of the conditions are met (Torchala 

et al., 2013). Afterward, the binding proteins are reduced and docked after being fixed (Moal & 

Bates, 2010).  

Depending on how the assignment was submitted, a job may be completed using either 

local docking or full-blind docking with limitations. A reliable distribution of beginning sites has 

been developed for the receptor. When using the previous approach, the user may choose which 

receptor residues will be utilized in the binding site, which allows for more customization (Moal 

& Bates, 2010). Therefore, the server only makes use of the starting positions in the line of sight 

of at least one of the receptor compounds that have been chosen. Consequently, the server only 

creates solutions in the proximity of the receptor site selected for examination by the user as a 

result of this consequence (Torchala et al., 2013). 

When submitting a task, the user can use either full-blind or local docking with constraints. 

Initially, starting points are formed homogeneously around the receptor. The user may choose the 

receptor residues as binding sites when using the latter technique. As a result, the server only 

utilizes the beginning points that are in the same line of sight as at least one of the receptors that 

have been selected. As a result, the server will only generate solutions near the receptor location 

specified by the user. The user will get an email with a link to retrieve the mended input structures, 

a ranked list of clusters, docked structures, information about the residue contacts, and the 

SwarmDock output file when the calculations have been completed. 



 26 

 

 

 

The dataset will include energy measures for different biological structures categorized by 

variants, receptors, and combinations, representing the sequence of variants and receptors. Then, 

the data will be presented in the tables below (Table 2 to Table 13) to evaluate differences in 

energy measures across these groups The boxplots shown in Figures 6 to 11 illustrate the 

distribution of energy measures (S1, S2, and S3) across the different groups (variants, receptors, 

and their combinations). The boxplots reveal considerable variability within the groups, with some 

plots showing distinct differences in the means. These visualizations suggest that there may be 

significant variations across the groups. Therefore, formal statistical tests, such as ANOVA, 

Bartlett's tests, and Levene’s test, were applied to assess the differences in the means and variances 

across the groups of variants, receptors, and their combinations. Also, Tukey's HSD test was 

applied to enhance the interpretation of pairwise differences. Examples of sequencing are shown 

below. 
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Sequence of variants and receptors 

RB domain from 334 to 530 sequence 

Wild type RBD (Using the template 6vw.1.1.B): 

NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF

TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN

YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV

VVLSFELLHAPATVCGPKKS 

Alpha (N501Y): 

NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF

TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN

YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRV

VVLSFELLHAPATVCGPKKS 

Zeta/Eta/ Lota (E484K): 

NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF

TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN

YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTNGVGYQPYRV

VVLSFELLHAPATVCGPKKS 

Beta (K417N/ E484K/ N501Y): 

NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF

TNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN

YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRV

VVLSFELLHAPATVCGPKKS 

Gamma (K417T/E484K/N501Y): 

NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF

TNVYADSFVIRGDEVRQIAPGQTGTIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN

YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRV

VVLSFELLHAPATVCGPKKS 

Omicron (G339D/S371L/ S373P/ S375F/ K417N/ N440K/ G446S/ S477N/ T478K/ E484A/ 

Q493R/ G496S/ Q498R/ N501Y/ Y505H):  

NLCPFDEVFNATRFASVYAWNRKRISNCVADYSVLYNLAPFFTFKCYGVSPTKLNDLCF

TNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSKNLDSKVGGNYN

YLYRLFRKSNLKPFERDISTEIYQASNKPCNGVAGFNCYFPLRSYSFRPTYGVGHQPYRV

VVLSFELLHAPATVCGPKKS 

Delta (L452R/ T478K):  

NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF

TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN

YRYRLFRKSNLKPFERDISTEIYQAGSKPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV

VVLSFELLHAPATVCGPKKS 

ACE2-Sequence: 

STIEEQAKTFLDKFNHEAEDLFYQSSLASW 

GRP78- Sequence (SBD=substrate-binding domain):  

CPLTLGIETVGGVMTKLIPRNTVVPTKKSQIFSTASDNQPTVTIKVYEGERPLTKDNHLLG

TFDLTGIPPAPRGVPQIEVT 
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Table 2: Affinity and kinetic data (mean and SD) for RBD variant Alpha after docking it with 

Grp78 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

The standard 

deviation of the 

mean energy 

6d.pdb -39.77 -33.683 3.641 

54a.pdb -37.18 -29.816 3.402 

4a.pdb -34.56 -34.56 0 

13a.pdb -32.57 -32.57 0 

31a.pdb -31.91 -31.91 0 

49a.pdb -31.13 -28.982 2.163 

67b.pdb -30.52 -30.52 0 

83d.pdb -29.97 -29.97 0 

4c.pdb -29.91 -29.91 0 

50b.pdb -29.90 -29.90 0 

 

Table 3: Affinity and kinetic data (mean and SD) for RBD variant either Zeta or Eta or Lota 

after docking it with Grp78 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

30a.pdb -39.36 -33.847 4.208 

17c.pdb -35.51 -35.51 0 

3c.pdb -34.99 -27.537 2.670 

53b.pdb -34.04 -25.226 4.635 

112a.pdb -32.40 -32.40 0 

84b.pdb -32.34 -32.34 0 

116b.pdb -31.98 -31.98 0 

114b.pdb -31.25 -25.410 5.840 

56d.pdb -30.92 -27.820 3.10 

33b.pdb -30.88 -26.315 4.565 
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Table 4: Affinity and kinetic data (mean and SD) for RBD variant Beta after docking it with 

Grp78 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

16b.pdb -40.76 -36.110 4.650 

18b.pdb -39.97 -39.97 0 

62a.pdb -38.09 -32.734 2.966 

19d.pdb -35.81 -35.81 0 

5a.pdb -34.92 -34.92 0 

73b.pdb -34.30 -34.30 0 

31d.pdb -34.10 -29.143 4.283 

45b.pdb -33.42 -28.624 4.696 

28a.pdb -33.22 -29.060 2.508 

123b.pdb -32.44 -29.767 2.653 

 

Table 5: Affinity and kinetic data (mean and SD) for RBD variant Gamma after docking it with 

Grp78 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

82c.pdb -39.63 -35.452 4.231 

45a.pdb -37.23 -37.23 0 

70a.pdb -37.22 -28.272 6.379 

79c.pdb -33.27 -29.185 4.085 

7d.pdb -32.88 -28.075 4.805 

69c.pdb -32.62 -32.62 0 

45b.pdb -32.44 -29.147 2.741 

18a.pdb -32.02 -26.284 2.837 

85b.pdb -31.85 -25.687 7.315 

34d.pdb -31.43 -31.43 0 
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Table 6: Affinity and kinetic data (mean and SD) for RBD variant Omicron after docking it with 

Grp78 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

31c.pdb -38.18 -33.297 3.993 

27b.pdb -37.48 -32.370 5.934 

126d.pdb -37.01 -31.603 4.742 

6d.pdb -36.63 -28.943 6.103 

99d.pdb -36.49 -36.49 0 

39d.pdb -36.27 -36.27 0 

18b.pdb -35.74 -34.33 1.410 

33a.pdb -35.68 -32.83 2.850 

45c.pdb -34.41 -34.41 0 

31b.pdb -33.86 -33.86 0 

 

Table 7: Affinity and kinetic data (mean and SD) for RBD variant Delta after docking it with 

Grp78 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

39c.pdb -46.53 -41.375 5.155 

88c.pdb -38.62 -37.645 0.975 

48a.pdb -35.66 -35.66 0 

45a.pdb -34.53 -30.757 2.674 

5c.pdb -33.26 -33.26 0 

61b.pdb -31.97 -31.97 0 

27d.pdb -31.49 -31.49 0 

111a.pdb -30.83 -30.83 0 

1c.pdb -29.79 -23.987 6.080 

66b.pdb -29.54 -29.54 0 
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Table 8: Affinity and kinetic data (mean and SD) for RBD variant Beta after docking it with 

ACE2 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

64b.pdb -32.69 -32.69 0 

30b.pdb -31.43 -31.43 0 

6b.pdb -31.31 -27.179 2.003 

63b.pdb -31.19 -31.19 0 

59d.pdb -30.23 -30.23 0 

111b.pdb -29.81 -25.993 3.422 

32a.pdb -29.76 -25.122 2.172 

33b.pdb -29.72 -29.72 0 

63d.pdb -29.56 -22.645 4.61 

41a.pdb -29.47 -25.957 2.671 

 

Table 9: Affinity and kinetic data (mean and SD) for RBD variant Gamma after docking it with 

ACE2 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

102b.pdb -40.38 -30.441 3.902 

55a.pdb -37.67 -37.67 0 

81a.pdb -32.44 -25.895 4.001 

79d.pdb -31.31 -29.555 1.755 

43c.pdb -30.75 -28.15 2.018 

2a.pdb -30.43 -30.43 0 

84b.pdb -30.04 -30.04 0 

63b.pdb -30.03 -30.03 0 

70a.pdb -29.99 -29.99 0 

34b.pdb -29.74 -29.74 0 
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Table 10: Affinity and kinetic data (mean and SD) for RBD variant Omicron after docking it 

with ACE2 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

103d.pdb -39.11 -39.11 0 

33c.pdb -38.87 -29.416 3.655 

42a.pdb -37.48 -28.172 5.642 

43b.pdb -37 -37 0 

102c.pdb -33.42 -29.020 4.4 

47d.pdb -33.13 -28.510 4.62 

32d.pdb -33.08 -31.995 1.085 

57d.pdb -32.74 -32.74 0 

80d.pdb -32.52 -23.126 5.472 

80a.pdb -32.00 -32.00 0 

 

Table 11: Affinity and kinetic data (mean and SD) for RBD variant Delta after docking it with 

ACE2 using Swarm dock. The best ten standard structures were used.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

36b.pdb -30.27 -30.27 0 

104d.pdb -30.05 -30.05 0 

14d.pdb -29.82 -24.974 3.227 

43b.pdb -28.91 -28.91 0 

25d.pdb -28.00 -23.409 3.061 

13a.pdb -27.62 -22.050 4.675 

56a.pdb -27.60 -27.60 0 

19c.pdb -27.52 -27.52 0 

35d.pdb -27.02 -23.256 2.509 

13b.pdb -26.52 -23.114 2.636 
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Table 12: Affinity and kinetic data (mean and SD) for RBD variant Alpha after docking it with 

ACE2 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

43b.pdb -33.44 -33.44 0 

105c.pdb -33.24 -26.405 6.835 

44a.pdb -31.65 -31.65 0 

53b.pdb -31.0 -31.0 0 

107d.pdb -30.57 -24.442 3.142 

11c.pdb -30.2 -30.2 0 

78a.pdb -29.51 -29.51 0 

0a.pdb -29.16 -26.33 2.830 

55d.pdb -28.98 -28.98 0 

30a.pdb -28.9 -28.9 0 

 

Table 13: Affinity and kinetic data (mean and SD) for RBD variant either Zeta or Eta or Lota 

after docking it with ACE2 using Swarm dock.  

Structure Energy (kJ/mol) Mean Energy 

(kJ/mol) 

Standard Deviation 

of the mean energy 

56b.pdb -42.67 -32.750 9.92 

69c.pdb -34.33 -28.43 3.527 

69d.pdb -33.63 -30.7 2.310 

1a.pdb -32.50 -26.75 5.053 

55d.pdb -31.10 -30.075 1.246 

44c.pdb -30.93 -30.93 0 

45b.pdb -29.80 -24.24 3.954 

100a.pdb -29.10 -18.328 3.696 

11d.pdb -28.80 -28.80 0 

47b.pdb -28.56 -28.56 0 
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Figure 6. Variation in Binding Energy (S1) Across SARS-CoV-2 Variants 

 

Figure 7. Distribution of Mean Energy (S2) Across SARS-CoV-2 Variants 
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Figure 8. Distribution of Energy Variability (S3) Across SARS-CoV-2 Variants 

 

Figure 9. Energy Distribution (S1) Across ACE2 and GRP78 Receptors
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Figure 10. Distribution of Mean Energy (S2) Across ACE2 and GRP78 Receptors

 

 

Figure 11. Distribution of Energy Variability (S3) Across ACE2 and GRP78 Receptors
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4.1.2 Experimental Results 

 

The results section of this study presents the findings from the statistical analyses conducted 

on the binding energy measures (Energy (S1), Mean Energy (S2), and Standard Deviation of 

Energy (S3)) across different groups of SARS-CoV-2 variants, receptors, and their combinations. 

The analysis was performed on a sample of 6 SARS-CoV-2 variants and 2 receptors. Each group 

consists of 10 observations, with each observation corresponding to one of the best 10 PDB 

structures based on docking results from SwarmDock. For each variant-receptor combination, we 

considered the binding energy after docking and selected the 10 best PDB structures based on the 

most favorable binding interactions. 

The variants used in this study are as follows: 

• Variant 1: Alpha 

• Variant 2: Zeta  

• Variant 3: Beta  

• Variant 4: Gamma  

• Variant 5: Omicron  

• Variant 6: Delta  

 

The receptors used in this study are as follows: 

• Receptor 1: GRP78 

• Receptor 2: ACE2 

 

The primary objective was to assess whether these energy measures show significant 

differences across the different groups (Variants, Receptors, and Variants*Receptors 

Combinations). The statistical tests employed include Multiple ANOVA, Bartlett’s Test for Equal 

Variances, and Levene’s Test. The significance level used for these tests is 5% (p-value < 0.05). 

The statistical tests evaluate the following: 

1. Tests applied to variants: Whether the means of Energy (S1), Mean Energy (S2), and 

Standard Deviation of Energy (S3) differ significantly between the 6 variants. 

2. Tests applied to receptors: Whether the means of Energy (S1), Mean Energy (S2), and 

Standard Deviation of Energy (S3) differ significantly between the 2 receptors (GRP78 

and ACE2). 

3. Tests applied to combinations: Whether the means of Energy (S1), Mean Energy (S2), 

and Standard Deviation of Energy (S3) differ significantly for the interaction between 

variants and receptors. 

 

To further investigate which specific group comparisons showed significant differences, 

Tukey’s HSD test was performed after the ANOVA. The mean differences 

(meandiff) and adjusted p-values (p-adj) for each pairwise comparison was calculated. Table 16 

presents the results of Tukey’s Honest Significant Difference (HSD) post hoc test. This test was 

applied only to those comparisons where the ANOVA indicated statistically significant 

differences between group means. The purpose was to identify which specific pairs of groups 

contributed to the overall significance. 
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The detailed outcomes of the hypotheses tested, along with the results from the multiple 

ANOVA, Bartlett's Test, and Levene's Test, and Tukey’s HSD test, are presented in Table 14, 

Table 15, and Table 16. 

 

Table 14. Results of Multiple ANOVA Test on Energy Measures  

Null hypotheses (H0) & variables F-statistic p-value 

Tests applied to 6 variants   

H0: mean of S1 equal across all variants 

H1: at least one mean is different 

3.8249 

 

3.0636e-03 

H0: mean of S2 equal across all variants 

H1: at least one mean is different 

1.7909 1.2023e-01 

H0: mean of S3 equal across all variants 

H1: at least one mean is different 

1.4937 1.9736e-01 

Tests applied to 2 receptors   

H0: mean of S1 equal across both receptors 

H1: at least one mean is different 

22.6625 5.5317e-06 

H0: mean of S2 equal across both receptors 

H1: at least one mean is different 

19.3578 2.3903e-05 

H0: mean of S3 equal across both receptors 

H1: at least one mean is different 

0.5410 4.6348e-01 

Tests applied to combinations of 6 variants and 2 receptors   

H0: mean of S1 equal across all combinations 

H1: at least one mean is different 

5.8637 2.1419e-07 

H0: Mean of S2 equal across all combinations 

H1: at least one mean is different 

3.9013 9.1950e-05 

H0: Mean of S3 equal across all combinations 

H1: at least one mean is different 

1.1360 3.4097e-01 

The number of samples in each group is ten. The statistical significance level is set to 5%. 
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Table 15. Results of Bartlett's and Levene's Tests for Variance Equality 

Null hypotheses (H0) & variables Bartlet Test Levine Test 

 F-

statistic 

p-value F-

statistic 

p-value 

Tests applied to 6 variants 
  

  

H0: Variance of S1 is equal across all variants 

H1: at least one variance is different 

11.4619 4.2953e-

02 

0.5815 7.1409e-

01 

H0: Variance of S2 is equal across all variants 

H1: at least one variance is different 

10.1827 7.0220e-

02 

1.8082 1.1674e-

01 

H0: Variance of S3 is equal across all variants 

H1: at least one variance is different 

3.9343 5.5891e-

01 

1.6838 1.4409e-

01 

Tests applied to 2 receptors 
  

  

H0: Variance of S1 is equal across both receptors 

H1: at least one variance is different 

0.0042 9.4828e-

01 

0.6243 4.3105e-

01 

H0: Variance of S2 is equal across both receptors 

H1: at least one variance is different 

0.0470 8.2845e-

01 

0.1321 7.1692e-

01 

H0: Variance of S3 is equal across both receptors 

H1: at least one variance is different 

0.0404 8.4075e-

01 

0.6966 4.0561e-

01 

Tests applied to combinations of 6 variants and 

2 receptors 

  
  

H0: Variance of S1 is equal across all 

combinations 

H1: at least one variance is different 

40.2081 3.2958e-

05 

1.0889 3.7704e-

01 

H0: Variance of S2 is equal across all 

combinations 

H1: at least one variance is different 

13.3356 2.7196e-

01 

1.1452 3.3417e-

01 

H0: Variance of S3 is equal across all 

combinations 

H1: at least one variance is different 

8.3852 6.7844e-

01 

0.9459 5.0009e-

01 

The number of samples in each group is ten. The statistical significance level is set to 5%. 
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Table 16. Tukey HSD Post Hoc Comparison Results 

Test Grouping 

Factor 

Significant 

Comparisons 

(Reject = 

True) 

Meandiff p-adj 95% CI 

(Lower – 

Upper) 

1 Variant (S1 

Energy) 

1 vs 5 -3.8515 0.0072 -6.9951 – 

-0.7079 

 

1 Variant (S1 

Energy) 

 

5 vs 6 4.2775 0.0019 1.1339 – 

7.4211 

 

2 Receptor (S1 

Energy) 

 

1 vs 2 2.8997 0.0000 1.6935 – 

4.1059 

 

3 Receptor (S2 

Mean Energy) 

 

1 vs 2 2.9697 0.0000 

 

1.6331 – 

4.3064 

 

4 Variant 

Receptor (S1 

Energy) 

 

2 vs 12 5.034 0.0151 0.5328 – 

9.5352 

 

4 Variant 

Receptor (S1 

Energy) 

 

3 vs 7 5.038 0.0149 0.5368 – 

9.5392 

 

4 Variant 

Receptor (S1 

Energy) 

 

3 vs 9 5.186 0.0104 0.6848 – 

9.6872 

 

4 Variant 

Receptor (S1 

Energy) 

3 vs 12 7.37 0.0000 2.8688 – 

11.8712 

4 Variant 

Receptor (S1 

Energy) 

4 vs 12 5.726 0.0026 1.2248 – 

10.2272 

4 Variant 

Receptor (S1 

Energy) 

5 vs 7 5.51 0.0046 1.0088 – 

10.0112 
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4 Variant 

Receptor (S1 

Energy) 

 

5 vs 9 5.658 0.0031 1.1568 – 

10.1592 

4 Variant 

Receptor (S1 

Energy) 

 

5 vs 12 7.842 0.0000 

 

3.3408 – 

12.3432 

4 Variant 

Receptor (S1 

Energy) 

 

6 vs 12 5.889 

 

0.0016 1.3878 – 

10.3902 

4 Variant 

Receptor (S1 

Energy) 

 

11 vs 12 6.602 0.0002 2.1008 – 

11.1032 

5 Variant 

Receptor (S2 

Mean_Energy) 

 

5 vs 8 5.484 0.0337 0.2142 – 

10.7538 

5 Variant 

Receptor (S2 

Mean_Energy) 

 

5 vs 12 7.325 0.0006 2.0552 – 

12.5948 

5 Variant 

Receptor (S2 

Mean_Energy) 

 

3 vs 12 6.9285 0.0015 1.6587 – 

12.1983 

The number of samples in each group is ten. The statistical significance level is set to 5%. 
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Chapter 5  

5.1 Discussion  
Based on the results from the multiple ANOVA tests in Table 14, here are the main findings: 

1. Tests Applied to Variants 

• H0: Mean of S1 equal across all variants 

• H1: at least one mean of S1 is different across variants 

o F-statistic: 3.8249 

o p-value: 3.0636e-03 

o Interpretation: The p-value is below the standard significance level (0.05), so the 

null hypothesis is rejected. This suggests that the mean energy differs significantly 

across the variants. 

• H0: Mean of S2 equal across all variants 

• H1: at least one mean of S2 is different across variants 

o F-statistic: 1.7909 

o p-value: 1.2023e-01 

o Interpretation: Because the p-value is higher than 0.05, the null hypothesis cannot 

be rejected. This suggests no significant difference in the mean of mean energy 

across the variants exists. 

• H0: Mean of S3 is equal across all variants 

• H1: at least one mean of S3 is different across variants 

o F-statistic: 1.4937 

o p-value: 1.9736e-01 

o Interpretation: The null hypothesis cannot be rejected because the p-value is greater 

than 0.05. This suggests that there is no significant difference in the energy across 

the variants. 

2. Tests Applied to Receptors 

• H0: Mean of S1 equal across both receptors 

• H1: at least one mean of S1 is different across both receptors 

o F-statistic: 22.6625 

o p-value: 5.5317e-06 

o Interpretation: The null hypothesis is rejected due to the very small p-value (much 

smaller than 0.05). This indicates that the mean energy differs significantly across 

the receptors. 

• H0: Mean of S2 equal across both receptors 

• H1: at least one mean of S2 is different across both receptors 

o F-statistic: 19.3578 

o p-value: 2.3903e-05 

o Interpretation: The null hypothesis is rejected because the p-value is less than 0.05. 

This suggests a significant difference in the mean of mean energy across the 

receptors. 

• H0: Mean of S3 is equal across both receptors 

• H1: at least one mean of S3 is different across both receptors 

o F-statistic: 0.5410 
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o p-value: 4.6348e-01 

o Interpretation: The null hypothesis cannot be rejected since the p-value is greater 

than 0.05. This suggests no significant difference in the standard deviation of 

energy across the receptors. 

3. Tests Applied to Combinations 

• H0: Mean of S1 equal across all combinations 

• H1: at least one mean of S1 is different across all combinations 

o F-statistic: 5.8637 

o p-value: 2.1419e-07 

o Interpretation: The null hypothesis is rejected because the p-value is much smaller 

than 0.05. This indicates that the energy values differ significantly across the 

combinations of variants and receptors. 

• H0: Mean of S2 equal across all combinations 

• H1: at least one mean of S2 is different across all combinations 

o F-statistic: 3.9013 

o p-value: 9.1950e-05 

o Interpretation: The null hypothesis is rejected since the p-value is less than 0.05. 

This suggests that the mean energy differs significantly across the combinations of 

variants and receptors. 

• H0: Mean of S3 equal across all combinations 

• H1: at least one mean of S3 is different across all combinations 

o F-statistic: 1.1360 

o p-value: 3.4097e-01 

o Interpretation: The null hypothesis cannot be rejected because the p-value is greater 

than 0.05. This indicates no significant difference in the standard deviation of 

energy across the combinations of variants and receptors. 

Summary of Findings: 

1. S1: Significant differences in energy across variants, receptors, and combinations (i.e., 

rejected null hypotheses). 

2. S2: Only significant for receptors and combinations (rejected null hypotheses), but not for 

variants. 

3. S3: No significant differences observed for standard deviation across variants or 

combinations, but significant across receptors.  

This suggests that energy and mean energy are the key differentiators 

for receptors and combinations, while the standard deviation of energy does not show significant 

differences in most cases. 

 

Based on the results from the multiple Bartlett tests in Table 15, here are the main findings: 

1. Tests Applied to Variants 

• H0: Variance of S1 is equal across all variants 

o F-statistic: 11.4619 

o p-value: 4.2953e-02 

o Interpretation: The null hypothesis is rejected because the p-value is less than the 

common significance threshold of 0.05. This indicates that the variances of energy 

are significantly different across the variants. 
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• H0: Variance of S2 is equal across all variants 

o F-statistic: 10.1827 

o p-value: 7.0220e-02 

o Interpretation: The null hypothesis cannot be rejected because the p-value is greater 

than 0.05, indicating that the variances of the mean energy are not significantly 

different across the variants. 

• H0: Variance of S3 equal across all variants 

o F-statistic: 3.9343 

o p-value: 5.5891e-01 

o Interpretation: The null hypothesis cannot be rejected as the p-value is much higher 

than 0.05, indicating no significant difference in the standard deviations of energy 

across the variants. 

2. Tests Applied to Receptors 

• H0: Variance of S1 is equal across both receptors 

o F-statistic: 0.0042 

o p-value: 9.4828e-01 

o Interpretation: The null hypothesis cannot be rejected because the p-value is much 

greater than 0.05, suggesting that the variances of energy are equal across the two 

receptors. 

• H0: Variance of S2 is equal across both receptors 

o F-statistic: 0.0470 

o p-value: 8.2845e-01 

o Interpretation: The null hypothesis cannot be rejected because the p-value is greater 

than 0.05, suggesting that the variances of mean energy are equal across the two 

receptors. 

• H0: Variance of S3 is equal across both receptors 

o F-statistic: 0.0404 

o p-value: 8.4075e-01 

o Interpretation: The null hypothesis cannot be rejected because the p-value is greater 

than 0.05, indicating no significant difference in the standard deviations of energy 

across the two receptors. 

3. Tests Applied to Combinations 

• H0: Variance of S1 is equal across all combinations 

o F-statistic: 40.2081 

o p-value: 3.2958e-05 

o Interpretation: The null hypothesis is rejected because the p-value is much smaller 

than 0.05, indicating that the variances of energy differ significantly across the 

combinations of variants and receptors. 

• H0: Variance of S2 is equal across all combinations 

o F-statistic: 13.3356 

o p-value: 2.7196e-01 

o Interpretation: The null hypothesis cannot be rejected since the p-value is greater 

than 0.05, suggesting that the variances of mean energy are not significantly 

different across the combinations. 
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• H0: Variance of S3 is equal across all combinations 

o F-statistic: 8.3852 

o p-value: 6.7844e-01 

o Interpretation: The null hypothesis cannot be rejected because the p-value is much 

higher than 0.05, indicating that there is no significant difference in the standard 

deviations of energy across the combinations of variants and receptors. 

 

Summary of Findings: 

1. S1: Significant differences in the variances of energy across the variants and combinations 

(i.e., rejected null hypothesis), but no significant differences across receptors. 

2. S2: No significant differences in variances across any group (variants, receptors, 

combinations). 

3. S3: No significant differences in variances for standard deviation of energy across variants, 

receptors, or combinations. 

 

This indicates that S1 is the primary factor where variances differ across variants and 

combinations, while S2 and S3 show no significant differences. 

Based on Table 15, here are the main findings for Levene’s Test: 

 

4. Tests Applied to Variants 

• H0: Variance of S1 is equal across all variants 

o F-statistic: 0.5815 

o p-value: 0.7141 

o Interpretation: The null hypothesis is not rejected because the p-value is greater 

than the common significance threshold of 0.05. This indicates that the variances 

of Energy are not significantly different across the variants. 

• H0: Variance of S2 is equal across all variants 

o F-statistic: 1.8082 

o p-value: 0.1167 

o Interpretation: The null hypothesis is not rejected. The p-value exceeds 0.05, 

suggesting that the variances of Mean Energy are not significantly different across 

the variants. 

• H0: Variance of S3 equal across all variants 

o F-statistic: 1.6838 

o p-value: 0.1441 

o Interpretation: The null hypothesis is not rejected. This implies that the variances 

of S3 are not significantly different among the variants. 

 

5.  Tests Applied to Receptors 

 

• H0: Variance of S1 is equal across both receptors 

o F-statistic: 0.6243 

o p-value: 0.4311 

o Interpretation: The null hypothesis is not rejected. The variances of Energy are not 

significantly different between the two receptors. 
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• H0: Variance of S2 is equal across both receptors 

o F-statistic: 0.1321 

o p-value: 0.7169 

o Interpretation: The null hypothesis is not rejected, indicating that the variances of 

Mean Energy are not significantly different across receptors. 

• H0: Variance of S3 is equal across both receptors 

o F-statistic: 0.6966 

o p-value: 0.4056 

Interpretation: The null hypothesis is not rejected, so the variances of Std Energy are 

considered equal across the receptor groups. 

 

6.  Tests Applied to Combinations 

 

• H0: Variance of S1 is equal across all combinations 

o F-statistic: 1.0889 

o p-value: 0.3770 

o Interpretation: The null hypothesis is not rejected. Variances of Energy across 

variant-receptor combinations are not significantly different. 

• H0: Variance of S2 is equal across all combinations 

o F-statistic: 1.1452 

o p-value: 0.3342 

o Interpretation: The null hypothesis is not rejected, indicating that Mean Energy 

variances are not significantly different among the combinations. 

• H0: Variance of S3 is equal across all combinations 

o F-statistic: 0.9459 

o p-value: 0.5001 

o Interpretation: The null hypothesis is not rejected. There is no significant 

difference in Std Energy variances across the variant-receptor combinations. 

 

Summary of Findings: 

 

1. S1 (Energy): No significant differences in the variances across variants, receptors, 

or variant-receptor combinations (i.e., failed to reject the null hypothesis in all cases). 

2. S2 (Mean Energy): No significant differences in the variances across any group (variants, 

receptors, or combinations). 

3. S3 (Standard Deviation of Energy): No significant differences in the variances 

across variants, receptors, or combinations. 

 

Based on Table 16, the post-hoc Tukey HSD tests revealed several statistically significant pairwise 

differences, offering deeper insights into how variants, receptors, and their combinations affect the 

energy profiles of the structures analyzed. 

 

1. Effect of Variant on Energy (S1): Significant differences were observed between specific 

variant pairs, notably: 

• Variant 5 exhibited significantly lower energy levels compared to Variant 1, suggesting 

it may bind or stabilize more efficiently under the modeled conditions. 
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• Conversely, Variant 6 showed significantly higher energy levels than Variant 5, 

indicating potentially less favorable energetic interactions. 

These findings underscore the structural or sequence differences among variants that might 

influence binding affinity or stability. 

2. Effect of Receptor on Energy and Mean Energy (S1 & S2): The analysis also 

demonstrated that: 

• Receptor 2 yielded significantly higher energy values than Receptor 1, both in terms of 

raw energy (S1) and mean energy (S2). 

This could indicate that Receptor 2 introduces a less energetically favorable 

environment for binding, possibly due to conformational or electrostatic differences. 

3. Variant × Receptor Interactions (S1): The most pronounced differences emerged when 

analyzing combinations of variant and receptor: 

• Group 12 (Variant 6 with Receptor 2) consistently had significantly higher energy 

levels compared to multiple other groups, including Groups 2, 3, 4, 5, 6, and 11. 

• Notably, Groups 3 and 5 were significantly lower in energy compared to Groups 7, 9, 

and 12, reinforcing that group-specific interactions influence binding energy beyond 

the additive effects of variant or receptor alone. 

These findings highlight the importance of synergistic interactions between specific 

variants and receptors—a combination that may amplify or mitigate binding energy 

significantly. 

4. Variant × Receptor Interactions (S2 – Mean Energy): Mean energy comparisons further 

confirmed that: 

• Group 12 again displayed significantly higher mean energy compared to Groups 3 and 

5, reaffirming the earlier observation that this particular combination leads to less 

favorable binding. 

• Additionally, Group 8 showed higher mean energy than Group 5, albeit with less 

magnitude. 

 

These results emphasize that certain variant–receptor pairs are energetically more compatible, 

which could be crucial for targeted docking, therapeutic design, or understanding mutation 

impacts. 

 

Summary of findings: 

 

Overall, these statistically significant pairwise differences confirm that both the variant and 

receptor independently influence binding energy, but their interaction plays an even more critical 

role. Group 12 repeatedly emerged as the least favorable energetically, suggesting it could serve 

as a reference point or control in future experiments. 

The results from ANOVA, Bartlett’s test, and Levene’s test provide valuable insights into the 

differences in energy measures across SARS-CoV-2 variants, receptors, and their combinations. 

The findings suggest that energy (S1) and mean energy (S2) are the key differentiators in receptor 

and combination interactions, whereas the standard deviation of energy (S3) does not exhibit 

significant variability in most cases. These results have important implications for understanding 

how viral variants interact with host receptors and may inform the development of therapeutic 

strategies targeting these interactions. 
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The ANOVA results revealed significant differences in energy (S1) across variants, receptors, 

and their combinations, leading to the rejection of the null hypotheses for these groupings. This 

indicates that the interaction energies between SARS-CoV-2 variants and receptors differ 

significantly, supporting the idea that these energy measures can help distinguish between different 

viral strains and their binding affinities to host receptors. The significant differences in mean 

energy (S2) between receptors and combinations, but not among variants, highlight the relevance 

of receptor identity in influencing average binding energy. This suggests that while mean energy 

is an important metric for receptor-based comparisons, it may not be sufficient alone to 

differentiate between viral variants. 

In contrast, the standard deviation of energy (S3) did not show significant differences in means 

across variants, receptors, or combinations in the ANOVA analysis. This indicates that the 

variability in energy interactions remains relatively stable across these groups, making standard 

deviation a less informative measure for group differentiation. 

The Bartlett’s test, which assesses homogeneity of variances, indicated significant variance 

differences in energy (S1) across variants and variant-receptor combinations, but not 

across receptors. This finding suggests that while the receptor types exhibit consistent energy 

interaction variance, the SARS-CoV-2 variants and their combinations contribute more 

dynamically to variance changes. Conversely, no significant variance differences were observed 

for mean energy (S2) or standard deviation (S3) across any grouping in Bartlett’s test, implying 

stability in these metrics’ variability across conditions. 

To further assess variance consistency, the Levene’s test—a more robust test under 

violations of normality—was conducted. Unlike Bartlett’s test, Levene’s test results did not 

indicate any significant differences in variances for energy (S1), mean energy (S2), or standard 

deviation (S3) across variants, receptors, or combinations. This discrepancy suggests that the 

variance heterogeneity detected by Bartlett’s test for energy may be influenced by deviations from 

normality rather than true variance differences. Therefore, Levene’s results provide stronger 

evidence that the assumption of equal variances is generally upheld, and that the energy-related 

measures are consistent across groups in terms of variability. 

This cross-validation highlights the importance of using multiple statistical methods when 

evaluating assumptions. The consistency of Levene’s results across all metrics strengthens the 

argument that, while mean values differ meaningfully, particularly for S1 and S2, the underlying 

variance structure remains relatively stable, lending further robustness to the interpretation of 

ANOVA findings. 

The results from Levene's test differed from those of Bartlett’s test in assessing the 

homogeneity of variances. This discrepancy can be attributed to the underlying assumptions of 

each test. Levene's test does not require the assumption of normality, making it more suitable for 

data that may deviate from a normal distribution or contain outliers. In contrast, Bartlett’s test 

assumes normality, and its sensitivity to departures from this assumption can lead to misleading 

conclusions in such cases. 

Furthermore, Levene's test is more robust when applied to datasets with limited sample 

sizes, whereas Bartlett’s test may become unreliable under the same conditions. Therefore, in 

contexts where data may not meet strict normality assumptions or where sample sizes are 

constrained, Levene’s test provides a more dependable assessment of variance equality. 

The post-hoc Tukey HSD tests offered additional depth by identifying specific pairwise 

group differences underlying the significant ANOVA results. For energy (S1), Variant 5 was found 

to have significantly lower energy values than Variant 1, suggesting potentially more stable or 
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favorable interactions. In contrast, Variant 6 exhibited higher energy values than Variant 5, 

implying a less favorable binding affinity. At the receptor level, Receptor 2 displayed significantly 

higher energy values compared to Receptor 1, which could suggest conformational or electrostatic 

influences reducing binding efficiency. Moreover, the combined variant–receptor groups showed 

particularly pronounced differences. Group 12 (Variant 6 with Receptor 2) consistently emerged 

as the least favorable in terms of energy, with significantly higher values than several other 

combinations (e.g., Groups 2, 3, 4, 5, 6, and 11). For mean energy (S2), similar trends were 

observed, with Group 12 again standing out as having significantly higher mean energy than 

Groups 3 and 5. These pairwise differences provide compelling evidence that specific variant–

receptor pairings influence energy interactions in a synergistic manner and should be closely 

examined in future therapeutic and structural modeling efforts. 

In summary, the findings indicate that energy (S1) is the most significant factor in 

differentiating between SARS-CoV-2 variants, receptors, and their combinations. Mean energy 

(S2) also exhibits discriminative power, particularly when comparing receptor types and their 

interactions with variants, though it is not sensitive enough to distinguish between variants alone. 

Standard deviation (S3) contributes little to group-level differentiation in both mean and variance 

measures. While Bartlett’s test initially suggested some heterogeneity in variance for energy across 

certain groups, the Levene’s test confirmed that variances are statistically equivalent across all 

categories—providing stronger support for homogeneity and reinforcing the reliability of energy 

as a comparative measure. These findings underscore the importance of considering energy-based 

metrics, particularly S1, when evaluating viral-receptor interactions and suggest a promising path 

for identifying binding patterns that could inform therapeutic strategies or vaccine development. 

. 

5.2 Performance Measures 
To assess and interpret the effectiveness of the statistical analyses conducted in this study, 

several performance measures were considered, particularly focusing on 

the sensitivity, specificity, and robustness of the statistical tests applied to the energy data (S1: 

Energy, S2: Mean Energy, S3: Standard Deviation of Energy). 

 

1.4 Significance Testing (p-values) 

The primary performance metric used was the p-value from ANOVA, Bartlett’s test, and Levene’s 

test. These p-values served to determine the statistical significance of differences in means or 

variances across SARS-CoV-2 variants, receptors, and their combinations. A p-value less than the 

alpha level (commonly set at 0.05) indicated a rejection of the null hypothesis and, therefore, a 

statistically significant difference. 

• ANOVA tests were used to detect mean differences across groups. 

• Bartlett’s test focused on detecting variance heterogeneity under the assumption of 

normality. 

• Levene’s test provided a robust measure of variance equality, especially under non-normal 

data distributions. 
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2.4 Robustness to Assumptions 

Robustness was evaluated by comparing results from Bartlett’s and Levene’s tests: 

• Bartlett’s test is sensitive to deviations from normality, which can lead to false positives. 

• Levene’s test, being more robust to non-normal distributions, was used to validate the 

variance equality assumptions found in Bartlett’s test. 

The alignment (or lack thereof) between the two tests helped determine whether variance 

differences were genuine or artifacts of distributional assumptions. 

 

3.4 Consistency Across Measures 

The consistency of statistical outcomes across S1, S2, and S3 provided a qualitative performance 

check: 

• S1 consistently showed statistically significant mean differences across variants, receptors, 

and combinations, indicating strong discriminative power. 

• S2 showed partial discriminative power, performing well with receptor-level differences 

but not variant-level. 

• S3 consistently lacked significant differences, suggesting that standard deviation was not 

a reliable performance metric for distinguishing group characteristics. 

 

4.4 Interpretability and Practical Relevance 

Performance was also gauged by the biological interpretability of the results: 

• Measures that aligned with known viral-receptor interaction mechanisms (e.g., S1 energy 

differentiation across receptors) were considered more biologically meaningful. 

• Metrics with low variability across groups (e.g., S3) were deemed less informative for 

practical applications such as drug targeting or receptor affinity profiling. 

 

Overall, the performance of the statistical tests supports the conclusion that S1 (Energy) is the 

most reliable and informative measure for distinguishing between variants, receptors, and their 

interactions. The use of multiple tests provided a comprehensive assessment of both central 

tendency and dispersion, with Levene’s test confirming the reliability of variance assumptions. 

These performance evaluations enhance the credibility and interpretability of the analytical 

framework applied in this study. 

. 

5.3 Merits of the Study and Implications 
This study offers several significant contributions to the field of virology and molecular 

biology: 

 

1. Novel Insight into Viral Interactions: This study provides a better understanding of the 

molecular mechanisms controlling viral binding and entry by examining the energy 

interactions between SARS-CoV-2 variants and the host receptors ACE2 and GRP78. 

These insights are crucial for explaining differences in infectivity and transmissibility 
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among variants, thus contributing to a deeper understanding of viral-host interactions and 

informing therapeutic strategies. 

2. Comparative Analysis Using Robust Statistical Methods: Utilizing multiple ANOVA 

tests to assess differences in means and Bartlett's test to check the equality of variances 

ensures a rigorous statistical comparison of interaction energies. Additionally, Levene’s 

test is used to robustly assess variance homogeneity, accounting for potential violations of 

normality. The application of Tukey’s HSD test for post-hoc analysis further strengthens 

the findings by identifying which specific group comparisons are significant. This 

comprehensive approach aids in determining the most discriminative energy metrics and 

enhances the reliability of the results. 

3. Identification of Potential Therapeutic Targets: Targeted antiviral treatments can be 

developed by identifying which energy measurements distinguish between variants and 

receptor interactions. Understanding the binding kinetics of GRP78, a developing 

alternative receptor, may open up new therapeutic approaches aimed at preventing viral 

entry, especially in cases where ACE2 is not the primary receptor involved. 

4. Contribution to Epidemiological Predictions: The results of this study on differential 

binding energies can help predict if new SARS-CoV-2 variants will be transmissible and 

harmful. By identifying variants with higher binding affinities that may confer increased 

transmission risks, this research could support vaccine development and public health 

efforts aimed at mitigating the spread of the virus. 

 

The implications of this study extend beyond theoretical knowledge, impacting both clinical 

and public health domains: 

 

1. Therapeutic Development: The discovery lays the groundwork for developing small 

compounds or antibodies that can interfere with variant-receptor interactions and possibly 

block viral entry. By identifying energy metrics that significantly differentiate these 

interactions, targeted therapies can be developed to neutralize the virus. 

2. Public Health Surveillance: Proactive public health interventions may be facilitated by 

the identification of energy profiles linked to highly transmissible variants, helping to 

develop early warning systems for new strains. This can enable faster response times and 

better-targeted measures to curb the spread of more dangerous variants. 

3. Vaccine Design and Efficacy: To improve cross-variant protection, vaccine developers 

can optimize immunogens targeting conserved areas involved in receptor binding. The 

insights gained from how various variants interact with ACE2 and GRP78 could guide the 

design of more broadly protective vaccines that are capable of neutralizing a wide range of 

SARS-CoV-2 variants. 

4. Broader Application to Viral Evolution Studies: The analytical framework used in this 

work can be extended to other viral systems, helping to better understand how mutations 

impact viral-host interactions and supporting broader studies of viral evolution. 

 

Overall, this study not only advances our knowledge of the interactions between SARS-CoV-

2 variants and their receptors but also offers actionable insights that may influence future treatment 

and prevention strategies for both current and future coronavirus threats. 
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5.4 Limitations of the Study 

While this study provides valuable insights into the interaction energies between SARS-CoV-

2 variants and the receptors ACE2 and GRP78, it is important to acknowledge its limitations: 

 

1. Reliance on Computational Modeling: The study depends on computational methods to 

estimate interaction energies, which rely on static structural data. While these methods 

are powerful for hypothesis generation, they may not capture the dynamic nature of 

protein-protein interactions in living systems. Therefore, the results might not fully 

reflect biological scenarios, and future studies should include experimental validation. 

2. Assumptions in Statistical Analysis: The study assumes normality and homogeneity of 

variances in its statistical analysis using ANOVA, which may oversimplify the 

interactions. Although Bartlett's test is used to check the equality of variances, violations 

of these assumptions could affect the validity of the results. Levene’s test, being more 

robust to non-normality, confirmed the consistency of variances across groups, providing 

additional support to the reliability of the findings. However, any violation of these 

assumptions could still limit the generalizability of the results. 

3. Limited Scope of Receptors: The study focuses on two specific receptors, ACE2 and 

GRP78, which limits its scope. Other receptors or co-receptors may influence SARS-

CoV-2 entry, meaning the findings may not fully capture the complexity of viral-host 

interactions. 

4. Generalizability of Results: The study examines specific SARS-CoV-2 variants relevant 

at the time of research. As new variants continue to emerge, the binding characteristics of 

the virus could change, potentially limiting the relevance of these findings to future 

variants. Additionally, not all energy measures examined may correlate directly with 

biological outcomes like infectivity or pathogenicity, which requires cautious 

interpretation. 

5. Overlooking Other Influential Factors: The study does not account for other factors 

such as post-translational modifications of the receptors, the membrane 

microenvironment, or interactions with other host proteins, which could affect binding 

energetics. These unconsidered variables could act as confounding factors, impacting the 

conclusions. 

 

To address these limitations, future research should include experimental validation, explore 

additional receptors and SARS-CoV-2 variants, and use more sophisticated statistical models that 

account for complex interactions and potential confounders. Despite these limitations, this study 

provides a valuable framework for understanding the molecular mechanisms of SARS-CoV-2 

variant interactions, paving the way for future investigations and therapeutic developments. 
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5.5 Future Research Directions 
 

This study lays the groundwork for understanding the interaction energies between SARS-

CoV-2 variants and the receptors ACE2 and GRP78, but there are several avenues for future 

research that could deepen and expand these insights. One important direction is to validate the 

computational findings through experimental methods. Laboratory-based assays, such as surface 

plasmon resonance or isothermal titration calorimetry, could provide direct measurements of 

binding affinities, confirming the interaction energies predicted in this study. Additionally, using 

cell-based systems to observe viral entry and infectivity would help link the computational data to 

real-world biological outcomes. This combined approach would strengthen the validity of the 

results and bridge the gap between theoretical predictions and experimental reality. 

Expanding the scope of the study to include other receptors and co-receptors involved in 

SARS-CoV-2 entry is another valuable direction. While ACE2 and GRP78 are significant, 

emerging research suggests that other proteins, such as Neuropilin-1 and CD147, might also 

facilitate viral entry. Investigating these additional receptors could provide a more comprehensive 

understanding of the viral-host interaction network and identify alternative therapeutic targets. 

Furthermore, as new SARS-CoV-2 variants continue to emerge, it is crucial to apply this study's 

framework to analyze these new strains. By comparing their interaction energies with those of 

previously studied variants, researchers can track evolutionary changes in binding characteristics 

that may influence transmissibility and pathogenicity. 

Another promising direction is to explore the influence of environmental and biological 

factors on interaction energies. For example, investigating how changes in pH, temperature, or 

glycosylation patterns affect the binding affinities could provide more realistic models of viral 

entry. Additionally, studying these interactions in the context of membrane microenvironments or 

in the presence of other host proteins would better reflect the complexity of cellular systems. To 

enhance the statistical robustness of future analyses, more advanced models, such as mixed-effects 

models or machine learning algorithms, could be employed to account for non-linear interactions 

and potential confounding factors. 

Finally, extending this research to investigate therapeutic interventions is a logical next 

step. By identifying energy measures that significantly differentiate between variants and 

receptors, future studies could design small molecules, peptides, or antibodies to disrupt these 

interactions. This could pave the way for novel antiviral therapies that specifically target variant-

specific binding mechanisms. In conclusion, while this study provides a strong foundation, 

pursuing these future research directions will lead to a more comprehensive understanding of 

SARS-CoV-2 variant interactions and potentially inform the development of effective therapeutic 

and preventive strategies. 
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Chapter 6  

6.1 Conclusion 
 

This study aimed to explore the interaction energies between different SARS-CoV-2 

variants and the host receptors ACE2 and GRP78, and to assess how these interactions could be 

differentiated using statistical measures of energy. By applying both ANOVA and Bartlett tests, 

the research highlighted significant differences in energy across variants, receptors, and their 

combinations, underscoring the potential of energy measures to distinguish between these groups. 

The findings revealed that energy, and specifically mean energy, are key differentiators in receptor 

and combination interactions, while the standard deviation of energy did not show significant 

differences in most cases. 

The Bartlett test further emphasized that energy variances differ notably across variants 

and combinations, though receptor variance remained consistent. These results suggest that while 

receptors play a consistent role in interaction dynamics, the variance in energy associated with 

different SARS-CoV-2 variants and their combinations is a critical factor in understanding the 

differences in binding and infectivity. To robustly verify these results, Levene’s test was used, 

providing additional evidence that the homogeneity of variances assumption holds, further 

validating the statistical findings across the groups. 

To further investigate the specific group comparisons, Tukey’s HSD test was applied, 

allowing for post-hoc analysis. This test revealed which particular variant-receptor combinations 

were significantly different from one another in terms of energy measures. The use of Tukey’s test 

allowed for a more granular understanding of which exact differences were driving the overall 

significant results from the ANOVA, providing deeper insight into the interaction energies at play. 

In conclusion, energy-based measures provide meaningful insights into the interactions 

between SARS-CoV-2 variants and host receptors, offering a reliable method for distinguishing 

between these interactions. While further experimental validation and exploration of additional 

factors such as post-translational modifications or other receptors are necessary, this research 

contributes to a deeper understanding of the molecular mechanisms that influence SARS-CoV-2 

infectivity. By improving our grasp of these interactions, this study lays the foundation for 

potential therapeutic strategies aimed at blocking viral entry and mitigating the spread of new 

variants. Future research will continue to refine these findings, expanding the scope to include a 

broader range of receptors and variants, and incorporating experimental data to solidify the 

computational predictions made here. 
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