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Abstract

Artificial Intelligence for Spectrum-Aware Autonomous Wireless Networks

Nada AbdelKhalek, Ph.D.

Concordia University, 2025

Spectrum is one of the most vital public resources, carrying wireless communications for

mobile phones, satellites, and emergency services. Traditionally, spectrum has been exclusively

licensed, resulting in occasional underutilization. However, with the rapid proliferation of wireless

devices, spectrum congestion has become inevitable, especially in unlicensed networks such as the

Internet of Things (IoT), vehicular, and Unmanned Aerial Vehicles (UAVs), where devices rely

on a limited number of public frequency bands that may not support large-scale communications.

This contradiction between licensed spectrum underutilization and unlicensed spectrum congestion

necessitates a rethinking of spectrum allocation and management strategies. In this thesis, we draw

inspiration from Cognitive Radio (CR) technology, which equips radio devices with capabilities

such as perception, reasoning, and judgment, and extend it to “intelligent radio” that integrates

both cognition and learning capabilities. Our work advocates a shift from traditional model-driven

approaches that rely on domain knowledge and strong assumptions to data-driven methods that

learn directly from raw data and constant interactions with the environment. With the support

of Artificial Intelligence (AI), we design intelligent spectrum borrowing and spectrum-sharing

techniques that enable wireless devices to operate opportunistically on licensed bands. Specifically,

this thesis explores how AI can endow wireless devices with context-awareness, self-optimization,

and self-management capabilities for tasks such as dynamic spectrum access, power management,

resource allocation, and ensuring security. Additionally, we develop solutions and frameworks for

self-sustaining wireless devices that leverage Energy Harvesting (EH), bringing us closer to the
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realization of green networks. Our AI-driven algorithms are designed with computational efficiency

in mind to minimize the burden on resource-constrained devices.

To drive context-aware intelligence in large-scale cooperative networks, we develop various

unsupervised Machine Learning (ML) approaches for spectrum sensing. Unlike existing methods,

the proposed frameworks operate without the need for labeled data, prior knowledge of the radio

environment, or cooperation between licensed and unlicensed users. The approach ensures ro-

bust spectrum sensing while minimizing computational overhead for unlicensed users with limited

capabilities. Moreover, we investigate how dimensionality reduction can improve computational

efficiency and model generalizability. We expand the use of unsupervised learning to hybrid CR

networks to allow devices to detect all licensed network states, opening up new opportunities for

dynamic spectrum access.

To improve spectrum reasoning and analysis, we introduce some of the first fully unsupervised,

data-efficient deep representation learning frameworks. These frameworks are designed to learn

effective and disentangled representations of radio environment data. We demonstrate their ef-

fectiveness in significantly enhancing spectrum gap detection in small-scale cooperative networks.

Additionally, we tackle key challenges of unsupervised learning, such as sensitivity to initialization

and the need for predefined cluster counts. In large-scale networks, we propose a generative deep

representation model that not only learns efficient representations but also captures the distribution

of radio environment data, enabling the generation of new, unseen samples.

To facilitate edge intelligence and enhance the privacy of intelligent radios, we propose the first

fully unsupervised deep Federated Learning (FL) framework for secure and distributed spectrum

sensing in large-scale mobile networks. By leveraging user mobility across a large geographical area,

the method enhances spatio-temporal diversity without requiring the transmission of private data to

a central unit for processing. Instead, data is collected locally, and a shared model is collaboratively

trained in a decentralized manner, significantly reducing communication overhead and safeguarding

user privacy.

We tackle the growing challenge of spectrum scarcity in Cognitive IoT (CIoT) networks, where

the demand for spectrum is increasing due to the expansion of connected devices. To address

this, we develop intelligent and adaptive control algorithms for the joint management of network
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resources in spectrum-sharing environments. First, we formulate optimization problems under

various constraints and model the decision-making process of a CIoT agent in the dynamic radio

environment. We then propose two novel Deep Reinforcement Learning (DRL) algorithms that

enable devices to autonomously learn operational strategies to optimize network resources and

maximize long-term throughput without comprehensive prior knowledge. Additionally, we introduce

innovative exploration strategies to enhance the CIoT agent’s ability to identify optimal actions

that maximize data rates. Considering the resource limitations of these networks, the algorithms

are designed to be lightweight to reduce computational burdens on users. We also integrate EH

techniques, such as Wireless Power Transfer (WPT) and Simultaneous Wireless Information and

Power Transfer (SWIPT), to make these networks self-sustaining.

Finally, to develop dynamic strategies for navigating hostile spectrum-sharing environments

impacted by jamming attacks, we propose an intelligent DRL approach that does not rely on frequency

hopping. This algorithm is designed for rapid convergence, energy efficiency, and adaptability to

adversarial conditions. We begin by formulating the optimization problem of power control under

various constraints and modeling the decision-making process of the CIoT agent in such a hostile

environment. Then, we introduce a novel interference-aware exploration strategy that enables the

CIoT device to autonomously learn a transmission strategy, effectively mitigating jamming attacks

and maximizing performance. Furthermore, we leverage WPT EH to allow the CIoT agent to convert

jamming interference into a valuable resource for recharging.

In summary, the contributions of this thesis lay the foundation for a new generation of intelli-

gent, autonomous wireless networks that are both spectrum-aware and agile, capable of optimizing

resources and adapting to dynamic and complex environments.
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Chapter 1

Introduction

1.1 Overview

The evolution from Morse code to Sixth-Generation (6G) networks has profoundly transformed

human communication. Over the past three decades, the rapid advancement of wireless technologies

has driven numerous innovations that have reshaped daily life. From mobile devices and connected

vehicles to drone operations, emerging technologies have been on the rise. These developments

pave the way for an intelligently connected future with spectrum-intensive applications. While

the evolution of wireless networks continually reshapes modern society, the consequences of these

innovations on spectrum congestion are becoming increasingly evident. The demand for frequency

spectrum is rising exponentially as the number of connections in next-generation wireless networks,

including Fifth-Generation (5G) and beyond, continues to grow. These networks aim to offer

seamless access to diverse communication services, such as immersive metaverse experiences,

deep-sea exploration, and non-terrestrial communications. For instance, recent forecasts suggest

that the number of connected Internet of Things (IoT) devices will increase from 15.9 billion

in 2023 to 18.8 billion by 2025 [1]. This rapid expansion is fueling an unprecedented demand

for wireless communication resources, emphasizing the critical importance of efficient spectrum

management. Furthermore, the report [1] indicates that this surge in connectivity and high data rate

demands is expected to persist throughout the next decade, with no signs of abating. Consequently,

fixed spectrum allocation strategies are becoming increasingly unfeasible, resulting in significant
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inefficiencies in spectral utilization. To overcome these challenges, dynamic spectrum access and

management solutions are essential.

It has been nearly 30 years since Joseph Mitola III first introduced Cognitive Radio (CR) tech-

nology, which was envisioned to create “brain-powered” communications to address the challenges

of spectrum utilization efficiency. By equipping wireless devices with CR technology, they can

opportunistically borrow or share licensed spectrum bands. All that is required is an excellent

perception-action decision-making process, allowing devices to understand their surroundings and

efficiently borrow/share licensed spectral resources without interfering with licensed users. That is,

a CR system is one that possesses awareness of its spectral environment and responds to statistical

variations with two primary objectives: ensuring reliable communication and optimizing spectral

utilization efficiency. According to Ericsson’s latest analysis of emerging technology trends in

wireless communications, CR is expected to play a pivotal role in next-generation networks by em-

bedding autonomy at the core of network operations [2]. However, mere environment awareness and

responsiveness are not sufficient for a CR node to be genuinely cognitive. True cognition requires the

capability to learn from past experiences and adjust behavior accordingly. This is where Artificial

Intelligence (AI) becomes integral to CR networks. By leveraging AI, devices can actively and in-

telligently observe their surroundings, learn from environment patterns—such as channel dynamics

and licensed user activity—and make informed decisions that enhance their ability to efficiently

borrow or share spectral resources.

Learning is a crucial component of intelligent radio systems, particularly in scenarios where the

exact relationship between inputs and outputs is unknown. In such cases, learning techniques can

be utilized to approximate the system’s input-output function. For instance, in wireless communi-

cations, channels are inherently non-optimal and are highly dynamic. Consequently, learning-based

approaches enable nodes to adapt efficiently even without complete awareness of environment

characteristics or network topology. Moreover, when nodes operate in unfamiliar environments,

conventional decision-making techniques may be impractical due to their reliance on extensive sys-

tem information. As an example, the CR decision-making cycle can be formulated as a Markov

Decision Process (MDP), which is traditionally addressed using dynamic programming. However,

optimal solutions can be achieved through learning techniques such as Reinforcement Learning
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(RL) [3–6] without requiring knowledge of the model’s state transition probabilities. Learning-

driven optimization offers self-management capabilities for a wide range of challenges related to

network optimization and resource management [7]. Additionally, adopting low-complexity learn-

ing methods, which are characterized by their simple structure and computational efficiency, can

substantially reduce the complexity of intelligent radio systems.

1.2 Motivation

While cognitive systems have been extensively studied over the past three decades, most research

has relied on model-driven approaches that are heavily dependent on prior knowledge, strong

assumptions, or mathematical modeling. However, these methods come with inherent limitations.

For example, if the environment undergoes significant changes, the model may fail, and if users

operate in an unfamiliar context, the approach can become ineffective. To address these challenges,

this thesis shifts from model-driven to data-driven approaches, leveraging raw radio environment

data to enhance adaptability and performance. The central question driving the research presented

in this thesis is: How can we create a wireless communication system that operates autonomously in

a dynamic environment by only relying on raw collected data? We envisioned an intelligent system

capable of passively gathering data and, from that data alone, constructing its own operation models

and strategies. These would enable the system to optimize network aspects such as dynamic spectrum

access, power management, resource allocation, and security. In summary, the key motivations for

this thesis are:

(1) To develop data-efficient learning approaches that equip radio devices with AI-powered

context-awareness, allowing them to dynamically borrow licensed spectrum and identify

unused portions effectively by relying solely on raw collected spectrum data.

(2) To explore data-driven approaches that learn efficient radio data representation, without prior

knowledge or strong assumptions, aiming to improve spectrum reasoning and analysis capa-

bilities of intelligent radio devices.

(3) To design intelligent and adaptive control algorithms, alongside the use of energy harvesting
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technologies, that empower radio devices with self-optimization, self-management, and self-

sustaining capabilities, enabling them to perform in unknown or hostile dynamic spectrum-

sharing environments, without comprehensive precise knowledge.

Several studies have applied learning techniques to perform cognition tasks. However, most rely

on supervised learning, which requires labeled data—i.e., input featuresX paired with corresponding

outcome labels Y . To obtain these labels, some works assume communication with licensed users,

which contradicts the core principles of CR, while others rely on prior environment knowledge to

manually label the data. Neither of these approaches is practical for CR systems. Even if feasible

with increasing data volumes, these methods are not scalable. It has been shown that increasing

the number of cooperating, spatially diverse unlicensed users to collect spectrum data can improve

spectrum hole detection. However, as the number of users grows, the data dimensionality increases,

making it computationally expensive to train learning algorithms on such data. Furthermore, this

data often contains redundancies, which reduce efficiency. Therefore, there is a need to develop

mechanisms that preprocess spectrum data effectively to enhance the learning model’s capacity.

Additionally, considerations must be made for unlicensed users with limited capabilities. In some

cases, there may be a need to offload decision-making to a central entity with higher computational

capacity, which can process the data and learn an effective model to perform CR tasks. Given these

challenges, there is an urgent need for unsupervised, data-efficient learning frameworks that enable

frequency-domain context-awareness, allowing radio devices to intelligently identify and access

available spectrum.

Much of the existing research in CR has focused on designing expert-tuned functions to model,

shape, or adapt signals in complex radio environments. However, Deep Learning (DL) approaches

offer an alternative by allowing systems to autonomously extract meaningful features and uncover

hidden patterns in data, improving spectrum reasoning and analysis. Despite these advantages,

many prior works rely on large volumes of labeled data or computationally heavy architectures,

placing significant burdens on end users. Additionally, many approaches rely on extensive coop-

eration between unlicensed users to detect available spectrum gaps, which can lead to significant

communication overhead and inefficient use of resources. On the other hand, when unlicensed
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networks have fewer users, the available degrees of freedom are significantly reduced, making it

essential to explore how representation learning can boost performance in such situations. In other

cases, reasoning tasks are offloaded to centralized units or cloud servers, particularly in large-scale

networks. While this can enhance performance, it also introduces security vulnerabilities. These

challenges highlight the need for lightweight, scalable, and secure data-driven approaches that can

efficiently learn to automatically extract valuable features from radio environment samples, thereby

enhancing spectrum analysis.

Traditional offline optimization methods for resource management and allocation often struggle

in dynamic or large-scale environments, limiting their effectiveness. To enable self-managing

and self-optimizing networks, intelligent algorithms are needed to autonomously improve power

management, data rates, and security through direct interaction with the environment. However,

special considerations must be made when designing such algorithms for resource-constrained

unlicensed users, particularly to avoid overstraining their computational power and energy resources.

Cooperative learning-based optimization methods require a common objective among users and rely

on centralized training, making them vulnerable to security threats. Additionally, they are unsuitable

for ad-hoc scenarios where users frequently join and leave the network. Distributed methods, such

as those enabled by Multi-Agent Reinforcement Learning (MARL) frameworks, also encounter

convergence issues due to the need for state information exchange, which adds signaling overhead.

As the number of unlicensed users increases, these methods become less scalable. Similarly,

Reinforcement Learning (RL)-based non-cooperative strategies face scalability challenges as the

number of environment states and potential actions grows. Finally, the openness of the radio

environment creates vulnerabilities, especially when both attackers and unlicensed users are confined

to a single channel by the licensed network. Mitigating these attacks while ensuring smooth network

operations, avoiding resource strain, and maximizing gains is a significant challenge. These gaps

highlight the need for novel, robust intelligent approaches to resource management and allocation

in dynamic radio environments, enabling energy-constrained devices to operate autonomously,

sustainably, and securely.
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1.3 Contributions

In light of the prevailing contradiction between spectrum scarcity and congestion and the pre-

ceding discussions, this thesis aims to explore the potential of Artificial Intelligence (AI) frame-

works and Energy Harvesting (EH) mechanisms to equip radio devices with context-awareness,

self-optimization, self-management, self-sustaining capabilities, enabling them to optimize dynamic

spectrum access, power management, resource allocation, and security. The contributions of this

thesis are summarized as

ML-Driven Context-Awareness for Enhanced Spectrum Sensing. In Chapter 3, we focus on

developing unsupervised learning approaches tailored for spectrum sensing in large-scale cooperative

networks. Unlike existing learning-based methods, our proposed frameworks operate without the

need for labeled data, prior knowledge of the radio environment, or cooperation between licensed

and unlicensed users. We begin by analyzing a system model for large-scale cooperative networks

and subsequently propose several unsupervised learning frameworks with two key objectives: (1)

ensuring robust spectrum sensing and (2) minimizing computational overhead for unlicensed users

with limited capabilities. In this context, we investigate techniques for training supervised models

using unsupervised data, leveraging their superior performance without the need for labeled samples.

To further enhance computational efficiency and model generalizability, we explore dimensionality

reduction techniques for unsupervised learning. Finally, we extend the applicability of unsupervised

learning to hybrid CR networks. Unlike prior studies, which primarily focus on detecting idle or

busy states, we demonstrate how unsupervised learning can enable devices to identify the full range

of licensed network states, unlocking new possibilities for dynamic spectrum access. Our findings

demonstrate that our proposed unsupervised ML approaches achieve performance comparable to

supervised learning benchmarks without relying on labeled data, prior knowledge, or cooperation

with the licensed network.

Deep Representation Learning for Advanced Spectrum Reasoning and Analysis. In Chap-

ter 4, we explore unsupervised deep representation learning frameworks to equip intelligent radio

devices with advanced spectrum reasoning and analysis capabilities—without relying on prior knowl-

edge or large volumes of training data. We first examine their application in small-scale cooperative
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networks, where only a few users collaborate for spectrum gap detection, thereby limiting the

network’s degrees of freedom. However, we demonstrate that our proposed unsupervised Deep

Learning (DL) approaches, which learn effective representations of sensing data, can significantly

boost detection performance in such constrained settings. Additionally, we address key challenges

associated with unsupervised learning, including sensitivity to cluster centroid initialization and the

need for predefined cluster counts. Next, we extend our study to large-scale cooperative networks,

where our proposed method not only learns disentangled representations but also develops a gener-

ative model capable of producing new, unseen samples by capturing the underlying distribution of

sensing data in a latent space. Extensive simulations across diverse network configurations, propa-

gation environments, and fading conditions validate the effectiveness of our approach. Additionally,

our proposed methods achieve performance comparable to supervised DL-based techniques while

surpassing non-DL methods, underscoring their potential for robust spectrum analysis.

Distributed Learning in Large-Scale Mobile Spectrum-Aware Networks. In Chapter 5, we

design the first fully unsupervised deep Federated Learning (FL) framework for robust, distributed,

and secure spectrum sensing in large-scale cooperative mobile networks. Our approach leverages

user mobility across a vast geographical area to enhance spatio-temporal diversity. Unlike prior

works, our method does not require users to transmit private data to a central unit or cloud. Instead,

users collect data locally and collaboratively train a shared model in a fully decentralized manner.

This decentralized approach significantly reduces the communication overhead associated with

transmitting sensing data to a central unit for spectrum gap identification. At the same time,

it enhances the model’s generalization capacity and safeguards user privacy, giving individuals

control over their own data. Our proposed framework is data-efficient and does not require large

amounts of training samples. Moreover, our results demonstrate the effectiveness and scalability

of the proposed approach, highlighting its superior performance compared to existing DL and FL

methods for spectrum sensing.

Intelligent Algorithms for Adaptive Control and Resource Allocation in Spectrum Sharing

Networks. In Chapter 6, we tackle the spectrum scarcity challenge in Cognitive IoT (CIoT) networks,

which face an ever-growing demand for spectrum due to the exponential increase in connected devices

each year. In this context, we focus on two key challenges: (1) joint power control and channel
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access coordination in Wireless Power Transfer (WPT)-enabled CIoT networks and (2) joint time

and power management in Simultaneous Wireless Information and Power Transfer (SWIPT)-enabled

CIoT networks. Unlike prior works, our approach considers the competing interests of users in the

network, their limited computational capacity, and their energy constraints. To enhance practicality,

we incorporate realistic energy harvesting mechanisms that do not rely on a dedicated, stable source.

We formulate the optimization problems under multiple constraints, including channel occupancy,

competition, channel gain, energy arrival, battery capacity, and interference. To address these

problems, we first model the decision-making process of the CIoT agent as a model-free Markov

Decision Process (MDP). We then propose two Deep Reinforcement Learning (DRL) algorithms

that enable the agent to navigate the dynamic spectrum-sharing environment without requiring prior

knowledge or assumptions. These algorithms allow the agent to learn an effective strategy for

solving the joint optimization problems while maximizing the long-term achievable rate. To ensure

efficiency, our DRL algorithms are designed to be lightweight, minimizing computational overhead

for the user. Additionally, we incorporate novel exploration strategies to enhance the agent’s ability

to discover optimal actions that maximize data rates. We benchmark our proposed approaches

against existing DRL methods in the literature, demonstrating their ability to converge to a stable

state across various simulation settings while significantly outperforming baseline approaches.

Dynamic Strategies for Navigating Hostile Spectrum Sharing Environments. In Chapter 7,

we explore hostile spectrum-sharing environments impacted by jamming attacks. Most existing

works focus on frequency hopping or power control strategies to mitigate such threats. However,

these approaches may not always be viable. In scenarios where unlicensed users are confined to a

single shared channel, frequency hopping is not an option. Additionally, under spectrum-sharing

constraints, unlicensed users must carefully regulate their transmission power to remain below

the interference threshold tolerated by licensed users. Furthermore, power control strategies for

energy-constrained devices must be carefully designed to prevent excessive energy consumption. To

address these challenges, we first formulate the throughput optimization problem while considering

key factors such as jamming attacks, channel gain, and interference constraints. We then propose

an intelligent DRL algorithm that enables a CIoT agent to autonomously navigate hostile spectrum-

sharing environments and learn an optimal transmission strategy to maximize its own performance.
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Our algorithm is designed for fast convergence, improving energy efficiency and ensuring rapid

adaptability to adversarial conditions. Additionally, we consider a WPT-enabled network, allowing

the CIoT agent to harvest energy from jamming signals–transforming interference into a beneficial

resource rather than a harmful obstacle. To further enhance decision-making, we introduce a

novel exploration strategy that efficiently balances action discovery, maximizing user gains while

minimizing jammer interference. Our results demonstrate that, even in the presence of jamming

attacks, the proposed algorithm can dynamically switch between data transmission and energy

harvesting while performing power control to optimize network operations. Furthermore, our DRL

approach achieves its objectives with considerable success, significantly outperforming benchmarks.

The contributions mentioned above have been published in [8–16] or accepted for publication

in [17]. Additional research conducted during my PhD tenure has been published in [18].

1.4 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 provides the necessary back-

ground on key concepts that form the foundation of this work. Chapter 3 explores unsupervised

Machine Learning (ML) frameworks that enable network users to develop frequency-domain context

awareness, allowing for more robust and reliable spectrum sensing. In Chapter 4, we investigate deep

representation learning techniques through unsupervised DL for advanced spectrum reasoning and

improve the analytical capabilities of intelligent radio devices. Chapter 5 extends this discussion to

distributed learning, where we design an unsupervised deep Federated Learning (FL) framework to

strengthen spectrum awareness in large-scale mobile networks. In Chapter 6, we focus on intelligent

and adaptive control in energy-harvesting CIoT networks, leveraging DRL to tackle two critical

challenges: (1) optimizing joint power control and channel access coordination, and (2) managing

joint time and power allocation for efficient network operation. Building on this, Chapter 7 examines

how DRL can enable CIoT networks to make autonomous, intelligent decisions that enhance se-

curity in hostile spectrum-sharing environments while simultaneously improving performance and

extending network lifetime. Finally, Chapter 8 concludes the thesis with a summary of our findings,

key insights, and potential directions for future research.
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Chapter 2

Background

2.1 Brain-Powered Communications

Modern and future wireless networks are confronted with the pressing challenge of spectrum

scarcity and congestion. The continuous influx of data streams from numerous real-time monitoring

devices has already led to, and is expected to further drive, an exponential surge in wireless traffic.

Over time, the fixed spectrum allocation policy enforced by regulatory authorities, such as the

Federal Communications Commission (FCC), has raised significant concerns regarding spectrum

under-utilization. The paradox of licensed spectrum scarcity and unlicensed spectrum congestion

has spurred the advancement of opportunistic spectrum access, also referred to as Dynamic Spectrum

Access (DSA), enabled by Cognitive Radio (CR) technology. Under DSA, unlicensed Secondary

Users (SUs) opportunistically share or reuse spectrum bands originally assigned to licensed Primary

Users (PUs). Notable examples of licensed spectrum include TV white spaces and cellular frequency

bands [19].

The three primary CR access mechanisms are overlay, underlay, and interweave. Each CR

access type has unique characteristics and design considerations. In an overlay CR network, SUs must

collaborate with PUs to gain spectrum access rights. For instance, SUs can relay PUs’ transmissions,

allowing them to utilize the licensed band for their own data transmission. In underlay CR networks,

simultaneous spectrum access is permitted as long as SUs’ transmissions do not interfere with PUs’

communication. Consequently, SUs must regulate their transmit power to ensure they remain within
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the interference threshold of the PU receiver [20]. In an interweave CR network, SUs are only

allowed to access PUs’ bands when they are unoccupied, meaning concurrent transmissions with

PUs are not permitted. Under this scheme, SUs first perform spectrum sensing to acquire radio

environment information and identify available spectrum gaps [21]. If PUs reappear, SUs must

vacate the channel and search for alternative idle bands [22]. Fig. 2.1 illustrates the interweave and

underlay CR access models and their interactions in both time and frequency domains.

Before the emergence of the CR networking paradigm, perception and reasoning mechanisms

were not typically incorporated into wireless network architectures. Instead, terminal firmware

relied on hard-coded rules to guide observations and actions. The CR cycle consists of three key

phases: spectrum sensing, spectrum analysis, and spectrum decision. The first phase, perception,

is achieved through spectrum sensing and monitoring, enabling the CR node to detect ongoing

activities in its environment. Spectrum sensing is a crucial step, as the accuracy and reliability of the

sensed information directly impact subsequent stages in the cycle. Furthermore, SUs must monitor

the spectrum bands to promptly detect the sudden reappearance of PUs. Next, the CR node utilizes

its reasoning capability to interpret the sensed data during the spectrum analysis phase, where an SU
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Figure 2.1: Illustration of underlay and interweave access models in cognitive radio. In the interweave model,
SUs transmit only when PUs are inactive, as shown by the gaps in frequency and time. In contrast, the
underlay model allows SUs to transmit concurrently with SUs, subject to power constraints, as demonstrated
by overlapping regions of frequency and time.
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evaluates and processes the collected information. The final phase, spectrum decision, involves the

CR node employing its judgment abilities to determine which band the SU should utilize based on

its properties and user requirements. In addition to selecting the communication band, the SU also

configures transmission parameters, including modulation type and data rate [23]. As noted in [24],

intelligence is defined by three core conditions: perception, learning, reasoning, and judgment.

Consequently, for a CR to derive reasoning and judgment from perception, it must possess learning

capabilities. Learning requires that current actions be informed by both past and present observations

of the environment, making prior experiences a critical factor in the CR cognition cycle.

2.2 From Cognitive to Intelligent Radio

The term cognitive encompasses concepts such as awareness, perception, thinking, and decision-

making. As previously mentioned, for a CR node to derive reasoning and judgment from perception,

it must have the capacity to learn. Learning involves making decisions based on both past and present

observations of the environment. In the context of CR, Machine Learning (ML) enables devices to

actively recognize patterns and behaviors across various network topologies and modalities, leading

to improved network performance in new and unfamiliar environments without prior knowledge

[25,26]. This adaptability is a fundamental trait of intelligence. Traditional optimization techniques

in CR are not naturally suited to adapt to new and unforeseen circumstances, as they often depend on

fixed models and parameters, which are ill-equipped for dynamic environments or unexpected events.

Furthermore, traditional methods typically rely on mathematical models that require approximations

due to system complexity. In contrast, ML empowers the CR network to learn directly from historical

data, eliminating the need for approximations [27]. This allows the system to optimize multiple

network parameters simultaneously in an adaptive manner, a task that is challenging for traditional

optimization approaches [28].

Intelligent radio extends beyond merely learning to derive reasoning and judgment; it incorpo-

rates several characteristics that allow it to be truly intelligent. Below are some of the key features

that define intelligent radio.

Firstly, by harnessing their intelligence and predictive capabilities, intelligent radios effectively
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process large volumes of sensing and monitoring data, resulting in the development of a detailed

knowledge map of the spectral environment. This knowledge serves as a crucial asset for optimizing

multiple network parameters simultaneously, thus enhancing the network’s ability to access and

utilize available spectral resources. Moreover, intelligent radios can forecast future events, such as

shifts in traffic patterns [29], network congestion [30], energy harvesting potential [31], and spectrum

availability [32], based on the acquired knowledge.

Secondly, intelligent CR includes an advanced resource management framework that tackles

various challenges in different wireless networks, such as power control and resource allocation. In

contrast to traditional distributed optimization methods, which are typically performed offline or in a

semi-offline fashion, ML enables intelligent radios to coordinate decentralized actions in real-time,

fostering more efficient collaboration [33]. This dynamic decision-making capability, bolstered by

continuous learning and improvement, is a core feature of intelligent radio. At times, CRs must

conduct a search or optimization process to determine the best configuration for a given environment.

Although these tasks can be time-consuming and computationally expensive, ML models provide a

solution by learning and storing past case-solution pairs, facilitating faster decision-making in the

future [34]. Thus, the intelligence provided by ML enables adaptive and responsive behavior, which

is critical for next-generation wireless communications.

Thirdly, ML-enabled devices can exhibit self-organizing, self-healing, and self-optimizing abil-

ities, which help address a variety of challenges, such as security and energy efficiency. Intelligent

radios can autonomously enhance their security and privacy by effectively identifying and mitigating

different types of smart attacks, thus improving the resilience and reliability of wireless networks.

For example, CRs have the ability to answer a critical question: When should it be recognized that

the existing learning model is no longer suitable for the new environment and needs updating? The

solution lies in detecting current signals while leveraging previously acquired knowledge. CR nodes

can learn the typical behavior of the radio environment, and when deviations from this learned

behavior occur, the CR network can deduce the possible presence of security threats [35]. Addi-

tionally, ML-driven CR can optimize energy consumption and storage by intelligently harvesting

energy from various sources based on their availability, such as PUs, the radio environment, or

ambient sources. For instance, energy-harvesting CRs systems can develop the ability to fine-tune
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their transmission strategies to maximize data transfer rates. This allows them to select their energy

source, choosing between SUs and PUs depending on their availability [36]. This adaptive energy

management approach significantly extends the battery life of wireless devices in networks like

IoT, reducing the need for frequent battery replacements or recharging, which can be costly and

impractical in challenging environments. Thus, ML-based CRs can operate more efficiently and

sustainably, ensuring optimal performance and resource utilization.

Fourthly, the integration of ML in CR is particularly beneficial in large and heterogeneous

network environments, overcoming the constraints of traditional centralized and distributed opti-

mization methods that struggle with network scale and diversity. By utilizing learning techniques

such as Reinforcement Learning (RL), CR agents can factor in multiple crucial elements, such as

dynamic and unpredictable channel conditions, when making decisions. This comprehensive ap-

proach, as opposed to focusing on individual components or engaging in complex joint optimization,

enables CR agents to pursue both their individual and collective objectives [37]. As a result, ML-

driven CR facilitates broader and more efficient utilization of available spectrum resources, leading

to enhanced network performance across varied environments.

Finally, an important aspect of intelligent radio systems is the ability to learn and understand the

behavior and preferences of PUs in spectrum-sharing scenarios, such as overlay or hybrid modes.

By analyzing and modeling the interactions between PUs and SUs, intelligent radios can adjust

their spectrum access strategies to maximize the efficient use of available spectrum resources. By

learning the behavior [38] and preferences of PUs [39], intelligent radios can make more informed

decisions regarding spectrum allocation, power control, and access protocols. This enables a tailored

and efficient use of the spectrum, considering the specific requirements and usage patterns of the

primary network. For example, in overlay CR, SUs can develop the ability to balance their own

transmissions with the provision of relaying services to PUs. This decision-making process can

consider several factors, such as the available spectrum, channel quality, and expected network

lifetime [39, 40]. As a result, both the primary and secondary networks can benefit from enhanced

performance, reduced interference, and improved overall spectral efficiency.
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2.3 Artificial Intelligence Frameworks

Learning frameworks can be categorized into four types depending on the nature of the training

data or environment: supervised learning, unsupervised learning, and reinforcement learning.

2.3.1 Supervised Learning

Given a set of inputs and their corresponding outputs, the result of applying a supervised learning

algorithm can be represented as a function y = f(x), which takes a new input x and generates an

output y. The exact form of the function y = f(x) is determined during the training phase,

also known as the learning phase. Supervised learning problems are applicable when CR nodes

have some prior knowledge about the environment, often captured in a labeled data format. This

learning type is also referred to as learning by instruction [24], where the training data consists of

input feature vectors x and their corresponding target labels y, enabling the learning algorithm to

estimate the function y = f(x). In interweave CR networks, supervised learning is occasionally

applied to determine whether a channel is vacant or not [41]. These types of problems are known

as classification problems. Examples of supervised learning algorithms include Support Vector

Machine (SVM), Decision Tree (DT), and Random Forest (RF), among others.

2.3.2 Unsupervised Learning

In unsupervised learning, the training data consists of input vectors x without any corresponding

target labels y (i.e., unlabeled data). The goal of this type of learning is often to find clusters of similar

samples within the data, a process referred to as clustering, or to estimate the distribution of the input

space, known as probability density estimation. Unsupervised learning is particularly suitable for

CR nodes operating in unknown environments. In such cases, autonomous unsupervised learning

enables CR nodes to explore the environment properties and self-adapt without requiring prior

knowledge [11]. Algorithms such as k-means and Gaussian Mixture Model (GMM) are common

examples of unsupervised learning methods. Additionally, unsupervised learning can be employed

for dimensionality reduction, transforming high-dimensional input spaces into lower-dimensional
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ones for visualization purposes. Techniques like t-Distributed Stochastic Neighbor Embedding (T-

SNE) and Principal Component Analysis (PCA) are examples of such algorithms. Fig. 2.2 illustrates

the key differences between supervised and unsupervised learning models.

Supervised Learning Unsupervised Learning

Figure 2.2: Comparison of supervised and unsupervised learning models: On the left, supervised learning is
illustrated with data points colored according to their labels, where the model learns a classification boundary.
On the right, unsupervised learning is shown, where all points are uncolored due to the absence of label
information, requiring the model to group the data based on inherent patterns.

2.3.3 Reinforcement Learning

Reinforcement Learning (RL) focuses on determining the appropriate actions an agent should

take within a given environment to maximize its reward. Unlike supervised learning, where the

algorithm is provided with explicit optimal outputs, RL requires the agent to discover the optimal

actions through trial-and-error, also referred to as model-free learning. As shown in Fig. 2.3, the

agent interacts with its environment by transitioning between states and taking actions. The reward,

which is feedback from the environment, can be either positive or negative, signaling whether

the agent’s actions were beneficial or not. In many cases, the immediate action affects not only

the immediate reward but also future rewards across all subsequent time steps. A key concept in

RL is the trade-off between exploration and exploitation. Exploration involves the agent trying

new behaviors to assess their effectiveness, while exploitation focuses on using known actions

that maximize the reward. Excessive emphasis on either exploration or exploitation can lead to
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Figure 2.3: Illustration of the key components of the reinforcement learning process, including the agent,
environment, states, actions, rewards, and the learning mechanism. The agent interacts with the environment
by taking actions based on the current state, receiving feedback in the form of rewards or penalties, and
updating its policy to maximize cumulative reward over time.

suboptimal results. RL is widely used for decision-making within CR networks. Some popular

Reinforcement Learning (RL) algorithms include, but are not limited to, Q-learning, Actor-Critic

(AC), and Deep Deterministic Policy Gradient (DDPG).

2.3.4 Deep Learning

DL is a branch of ML that draws inspiration from our understanding of the human brain, statistics,

and applied mathematics. At its core, DL enables devices to learn and recognize patterns through

a hierarchical process of concept-building. Central to the DL approach are neural networks, also

referred to as Multilayer Perceptron (MLP) or Artificial Neural Network (ANN). A neural network,

illustrated in Fig. 2.4, consists of multiple interconnected layers of neurons, and when a neural

network contains more than one layer, it is called a Deep Neural Network (DNN). DNNs can be

employed to carry out tasks such as classification or regression, for example, predicting the actions

of primary users in a CR network to optimize goals such as Quality of Service (QoS), reliability,

and throughput. Various neural network architectures exist, including Recurrent Neural Networks

(RNNs) and Convolutional Neural Networks (CNNs), each suited for specific data types. DL can
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Figure 2.4: Illustration of the architecture of a feed-forward fully connected deep neural network. The
structure of the network consists of an input layer, two hidden layers, and an output layer. Each hidden layer
consists of multiple neurons that apply a non-linear activation function to the weighted sum of inputs.

be applied in both unsupervised and supervised settings. In unsupervised learning, approaches such

as representation learning or dimensionality reduction are used when unlabeled data is available.

Common unsupervised DL architectures include Autoencoders (AEs), Variational Autoencoders

(VAEs), and Generative Adversarial Networks (GANs). On the other hand, when labeled data

is accessible, several basic DL network architectures, such as CNN, RNN, and Long Short-Term

Memory (LSTM), can be employed.

2.3.5 Federated Learning

Federated Learning (FL) has introduced transformative changes as a distributed machine learning

approach. Recently developed by Google [42], FL enables coordination among various devices to

perform ML training without the need to share raw data, ensuring privacy protection and reducing

network resources required for data transmission. The concept of federated learning is depicted in

Fig. 2.5. The local model parameters are sent to the edge/cloud server for global model aggregation,

and the updated global model parameters are then transmitted back to the devices. As a result, FL

consumes fewer communication resources than centralized learning since only changes in model
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Figure 2.5: Illustration of the federated learning framework, where multiple decentralized devices (clients)
collaboratively train a shared learning model while keeping their data local. Each client performs local
model updates based on its data and sends only the updated model parameters to a central server. The server
aggregates the updates from all clients and refines the global model, which is then sent back to the clients for
further training.

parameters are exchanged rather than entire datasets. Various emerging wireless networks have

adopted FL to address critical issues such as security and reliability [43, 44], energy consumption,

and communication costs [45], as well as utilization efficiency and fairness [46], paving the way for

its integration into intelligent radio networks.

FL can greatly enhance learning scalability and address security vulnerabilities by enabling

many devices to train a learning model in parallel. This is especially valuable in situations where

the dataset is too large to be stored or processed centrally, or when data privacy concerns prevent

sharing. By allowing radio devices to train the model locally and only transmit small updates to

a central unit, FL reduces communication overhead and facilitates model training with extensive

spectrum data [43, 44]. Additionally, FL optimizes the learning process by enabling the model to

learn from diverse data sources. This approach improves the model’s generalizability and reduces

the likelihood of overfitting to a particular data distribution. Moreover, the model can continuously

improve as new data is gathered from various devices, eliminating the need for a central authority to

collect, store, and process all the data. These benefits make FL a promising solution for enhancing the

performance and security of wireless networks, underscoring the importance of addressing privacy
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and security concerns when designing intelligent radio systems.

2.4 Security and Privacy Threats to Intelligent Radio

In intelligent radio systems, security and privacy are critical due to the inherent vulnerabilities

of wireless communication channels. Major threats include jamming, eavesdropping, and the

falsification of sensing data, all of which can interfere with network operations, jeopardize the

confidentiality of transmitted data, and compromise the accuracy of sensing information. Below, we

explore some of the key attacks that present significant challenges in maintaining secure, reliable,

and trustworthy communication within intelligent radio networks.

2.4.1 Jamming Attacks

Jamming attacks are a significant threat to the physical layer of radio networks. In these attacks,

a jammer typically emits a high-powered signal over one or more frequency bands for varying

durations. These signals disrupt critical communications and reduce the Signal-to-Noise Ratio

(SNR) at the receivers. To mitigate such attacks, the use of frequency-hopping spread spectrum

techniques, which involve the transmitter rapidly and randomly switching between multiple channels,

has been strongly advised. Additionally, various jamming detection methods, including fuzzy logic,

game theory, and channel surfing, have been proposed in the literature.

2.4.2 Eavesdropping

Users within the broadcast range of a transmitter may be able to intercept shared secret commu-

nications. These users are referred to as eavesdroppers and are typically classified into active and

passive categories. Active eavesdroppers are identifiable users within the network who are unautho-

rized and untrustworthy, allowing them to obtain channel state information (e.g., TV transmission).

On the other hand, passive eavesdroppers, which are more common and realistic to consider, attempt

to intercept private communications without emitting harmful signals. While passive eavesdrop-

pers are often discussed in the literature, obtaining accurate wiretapping channel state information

remains challenging, particularly when the location of the passive eavesdropper is unknown.
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2.4.3 Spectrum Sensing Data Falsification Attacks

A spectrum sensing data falsification attack is a security threat in CR networks where an attacker

transmits false or deceptive spectrum sensing data to a CR node, aiming to disrupt or manipulate

network operations. For instance, an attacker could provide inaccurate information to a Fusion

Center (FC), leading it to make erroneous decisions regarding the availability of frequency channels.

This could disrupt legitimate communication or even grant the attacker unauthorized access to the

network. Such attacks are particularly harmful in critical systems, like emergency services, where

reliable communication is essential for public safety.

2.5 Energy Harvesting for Self-Sustaining Networks

Reducing energy consumption and carbon emissions is vital for the advancement of green

communications, particularly in wireless networks that rely on energy-constrained devices. The

frequent need for battery replacements is not only costly and impractical but also environmentally

damaging, making sustainable energy solutions necessary for long-term network sustainability.

Energy Harvesting (EH) plays a crucial role in green communications, enabling CR users to extend

battery life and maintain network continuity. The process of EH involves harvesting energy from

various renewable sources, such as solar, wind, vibration, and radio frequency waves [47]. This

process converts Alternating Current (AC) signals into Direct Current (DC) signals (electricity) to

power devices. EH offers numerous advantages, making it an attractive solution for various CR

networks. For example, it allows IoT devices and sensors to become self-sufficient, eliminating the

need for external recharging or battery replacements. Additionally, EH is particularly beneficial

in scenarios where using batteries is challenging or impractical, such as powering sensors and

monitoring devices in remote areas or emergency situations, where traditional power lines or battery

changes are unfeasible. It can also be applied to small electronics in wearables, smart homes, and

IoT devices. Furthermore, EH reduces dependency on non-renewable energy sources and lowers

carbon emissions [48], contributing to a reduction in fossil fuel reliance and advancing towards a

more sustainable future.
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2.5.1 Energy Harvesting Technologies

EH in wireless communication networks can be achieved through various methods, with WPT

and SWIPT being among the most widely used. WPT allows network nodes to recharge their batteries

by harnessing electromagnetic radiation. In WPT, green energy can be harvested in two ways: from

ambient signals or a dedicated power source, such as a base station, that provides controlled energy.

SWIPT is an advanced version of WPT that facilitates the simultaneous transmission of both energy

and data. However, the efficient implementation of SWIPT necessitates significant modifications

in the design of wireless communication networks. Traditionally, network performance is assessed

based on reception reliability and data transfer rates. With SWIPT, a key challenge is managing the

trade-off between the information rate and the energy harvested, as users extract energy from radio

signals. In a SWIPT system, performing EH and information decoding concurrently on the same

received signal is generally impractical, as the EH process tends to interfere with the signal’s data

content.

To implement SWIPT in practice, the received signal must be split into two separate parts. That

is, the receiver should be designed with an energy harvester circuit designed to carry out either Time

Switching (TS), Power Splitting (PS), Antenna Switching (AS). Below, we explain these protocols:

• Power Splitting (PS) Protocol: The received signal’s power is divided into two parts based on

a predefined power splitting factor. A portion of the power is allocated for energy harvesting

and stored in a battery or capacitor. The remaining power is used for information decoding.

• Time Switching (TS) Protocol: The entire received power is utilized within each time slot,

but the slot is divided between energy harvesting and information decoding. The duration

allocated to each function is determined by a time switching factor. Both WPT and SWIPT

play a vital role in enhancing the sustainability of wireless networks by providing efficient

energy solutions for autonomous and battery-constrained devices.

• Antenna Switching (AS) Protocol: A subset of the available antennas is allocated for EH,

while the remaining antennas are used for information decoding. In contrast to TS and PS,

AS is simpler and more attractive for practical SWIPT architecture designs.
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Chapter 3

Context-Aware Intelligence for

Enhanced Spectrum Sensing

3.1 Introduction

Cognitive devices use their perception and reasoning abilities to monitor the radio environment

and determine if the licensed channel is idle or busy in interweave access mode, as they can only use

the spectrum when licensed users are not actively using it. As a result, the main challenge in such

access mode is the accurate detection of PU activity through spectrum sensing. Traditional spectrum

sensing techniques include feature detection, matched filter detection, and energy detection [18].

However, these are model-driven methods that require prior knowledge of the environment and

often rely on strong assumptions that may not always be valid in real-world situations. In contrast,

underlay CR access permits SUs to share the spectrum with the primary network, as long as they

maintain interference within a tolerable threshold set by the PUs. The hybrid underlay-interweave

CR approach combines the strengths of both techniques. In such systems, SUs must adjust their

transmission parameters dynamically when PUs are active to minimize interference. When the

spectrum is idle, they can transmit at maximum power until the PUs reappear [49]. This interference

threshold is not fixed; it varies according to the primary network’s activity. By accurately detecting

this activity, SUs can optimize their spectrum usage–maximizing transmission power when feasible

and enhancing overall network performance.
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To tackle the above, this chapter moves from traditional model-driven approaches to data-driven

methods, enabling intelligent radio devices to learn from their environment. Specifically, we explore

unsupervised Machine Learning (ML) frameworks that enable CR networks to develop frequency-

domain context awareness. This capability empowers users to perform robust Cooperative Spectrum

Sensing (CSS) in both interweave and hybrid CR networks.

3.2 Related Works

For cognitive users to operate effectively in dynamic spectrum environments, they must move

beyond traditional rule-based methods and incorporate learning-driven decision-making. Artificial

Intelligence (AI) stands out as a powerful enabler, providing radio devices with the capability to

autonomously analyze, adapt, and optimize spectrum usage. Various AI techniques have been

explored in the literature on CR networks, including but not limited to Machine Learning (ML), DL,

and RL [18]. A comparative study in [50] examined different learning methods for performing CSS

and demonstrated that the Support Vector Machine (SVM) algorithm outperforms all benchmark

algorithms. Research like [51] explored the performance of learning-based CR networks that use

energy levels as features for spectrum sensing. In [52], a Gaussian Mixture Model (GMM) was

utilized for spectrum sensing in mobile environments. A spectrum sensing approach in [53] employed

a neural network that primarily relied on unlabeled data, with a small amount of labeled data gathered

when the PU were absent. In [54], a recurrent neural network was proposed for spectrum sensing,

and its performance was compared to that of SVM. Studies such as [41, 55, 56] have focused on

detecting PU activity in hybrid CR networks using supervised ML and DL.

Firstly, although CR systems have been extensively researched, several challenges remain, es-

pecially in the context of learning-based CR networks. A significant issue is that many existing

studies rely on supervised learning for spectrum sensing, which requires labeled data–i.e., spectrum

data that is paired with its channel occupancy state. Consequently, the effectiveness of supervised

learning methods is heavily reliant on the availability of labeled training data. For example, [57]

assumes that the primary network occasionally sends labeled data to the secondary network, a sce-

nario that not only contradicts the core principles of CR, but also introduces considerable SU-PU

24



communication overhead. Similarly, [53] assumes access to a small amount of labeled data gathered

when the PUs are inactive, which requires prior knowledge of their inactivity. Moreover, supervised

learning approaches depend on large amounts of labeled data, further intensifying the SU-PU com-

munication overhead. While these methods have shown strong performance, they come with notable

practical limitations. As a result, we believe there is a simpler and more feasible way to achieve the

performance of supervised learning-based spectrum sensing without the need for labeled data.

Secondly, to the best of our knowledge, there has been limited research on the development of

unsupervised learning-based sensing strategies for hybrid CR networks. Most existing studies, such

as [55,56], focus on detecting PU activity in hybrid CR networks. However, these studies primarily

concentrate on distinguishing between busy and idle states within the primary network, which

simplifies the spectrum sensing task. In hybrid CR networks, users must identify which PUs are active

at any given time in order to adjust their transmission parameters and avoid interference. Additionally,

works such as [41, 56] use supervised ML and DL techniques for spectrum sensing, which require

labeled data for training. This dependence on labeled data presents practical challenges, highlighting

the need for unsupervised learning approaches for more effective sensing.

3.3 Contributions

Motivated by the aforementioned gaps, we focus on developing unsupervised learning approaches

designed for Cooperative Spectrum Sensing (CSS) that do not require any labeled data, prior

knowledge about the radio environment, or secondary-primary user communication/cooperation.

Our contributions can be summarized as:

• We propose a system model for large-scale cooperative CR networks that addresses two key

challenges: (1) ensuring robust spectrum sensing and (2) minimizing computational overhead

for SUs, that have limited processing capabilities.

• We introduce an unsupervised learning framework that capitalizes on the prominent perfor-

mance of supervised models without requiring any labeled data for spectrum hole detection.

Specifically, we employ an unsupervised Gaussian Mixture Model (GMM) to learn the latent
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structure within the collected spectrum energy data and generate effective labels. These in-

ferred labels are then used to train a supervised Support Vector Machine (SVM) model for

accurate channel state prediction.

• To improve the efficiency of unsupervised learning in large-scale networks, where high-

dimensional energy data poses a computational challenge, we propose the GMM-PCA frame-

work for CSS. By leveraging Principal Component Analysis (PCA) for dimensionality re-

duction, this approach significantly enhances both the computational efficiency and training

performance of the GMM.

• Finally, we expand the applicability of the GMM-PCA framework to hybrid CR networks,

where SUs must distinguish between multiple primary network states beyond idle/busy classifi-

cation. By leveraging raw radio environment data, we demonstrate the potential of GMM-PCA

for multi-class classification in an entirely unsupervised manner.

• We comprehensively evaluate the performance of our proposed unsupervised ML frameworks

for CSS and benchmark them against other learning algorithms. Extensive simulations validate

their effectiveness in spectrum sensing, demonstrating their relevance across various network

settings. To ensure a rigorous assessment, we employ key performance metrics, including Re-

ceiver Operating Characteristics (ROC), Area Under the ROC Curve (AUC), Precision-Recall

(PR), Area Under the PR Curve (AUPR), training and testing accuracies, and training time.

Our results indicate that the proposed unsupervised frameworks for CSS achieve performance

comparable to supervised learning benchmarks–all while operating without labeled data or

direct SU-PU cooperation.

3.4 System Model

Consider a cooperative CR network consisting of N spatially distributed SUs (n = 1, ..., N )

and a primary network consisting of M potential PUs (m = 1, ...,M ). The PUs operate within

a dedicated bandwidth ω using a multiple access technique. We adopt a generalized model where

the PUs alternate between active and inactive states independently from one another. The SUs and
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PUs are scattered over a large geographical area, with the position coordinates of the n-th SU and

the m-th PU denoted by CSU
n and CPU

m , respectively. Each SU detects the spectrum’s energy level

using an energy detector and reports the result to the Fusion Center (FC), which then decides on

the spectrum’s availability. During a sensing period τ , each SU collects ωτ energy samples of the

spectrum. The i-th energy sample measured by the n-th SU is the sum of the signals from the active

PUs and the thermal noise, represented by

En(i) =

M∑︂
m=1

smhm,nXm(i) +Nn(i), (3.1)

where sm denotes the state indicator for the m-th PU. If the m-th PU is occupying the channel, then

sm is 1; otherwise, it is 0. The channel gain between the m-th PU and the n-th SU is represented

by hm,n, and Xm(i) is the symbol transmitted by the m-th PU. The thermal noise at the n-th

SU, denoted as Nn(i), is modeled as a Gaussian distribution with a mean µn = 0 and variance

σ2n = E[|Nn(i)|2]. Therefore, the PU detection problem can be framed as a binary hypothesis test,

where H0 = Nn(i) indicates an empty channel, and H1 = En(i) indicates otherwise. Each SU

estimates the energy level normalized by the Power Spectral Density (PSD) of the noise as

yn =
2

σ2n

wτ∑︂
i=1

|En(i)|2. (3.2)

yn follows a non-central chi-squared distribution of q = 2ωτ degrees of freedom and a non-centrality

parameter ζn as

ζn =
2τ

σ2n

M∑︂
m=1

smgm,nρm. (3.3)

gm,n = |hm,n|2 is the power attenuation from the m-th PU to the n-th SU given by

gm,n = PL(||CPU
m − CSU

n ||).ψm,n.νm,n. (3.4)

ψm,n and νm,n are the shadow fading and the multi-path fading components respectively, which are

assumed to be quasi-static during the time duration of interest.
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The path loss component PL(d) = d−α is evaluated based on the Euclidean distance ||.|| and the

path loss exponent α. The transmit power of the m-th PU ρm is given by

ρm =

∑︁wτ
i=1E[|Xm(i)|2]

τ
. (3.5)

The channel occupancy state of the PUs is represented by a vector S, which contains the states of

all M PUs. Given the current channel occupancy state vector s = (s1, ..., sM ), if the number of

channel samples, i.e., ωτ , is sufficiently large, the distribution of the energy level yn at the n-th

SU can be modeled as a Gaussian distribution. This distribution has a mean µyn|S=s and variance

σ2yn|S=s as

µyn|S=s = E[yn|S = s] = 2wτ +
2τ

σ2n

M∑︂
m=1

smgm,nρm, (3.6)

σ2yn|S=s = E[(yn − µyn|S=s)
2|S = s] = 4wτ +

8τ

σ2n

M∑︂
m=1

smgm,nρm. (3.7)

All SUs transmit their soft data, i.e., energy levels, to the FC, where an energy vector y =

(y1, ..., yN ) is constructed. Since each energy level reported follows a normal distribution, the

distribution of y conditioned on the current channel occupancy state s is modeled as a multivariate

Gaussian distribution with the following parameters

µy|S=s = (µy1|S=s, ..., µyN |S=s), (3.8)

Σy|S=s = diag(σ2y1|S=s, ..., σ
2
yN |S=s). (3.9)

diag(v) produces a square matrix with the elements of the vector v arranged along the principal

diagonal.
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3.5 Unsupervised Learning with Supervised Models for Spectrum

Hole Detection

In interweave CR, there is no cooperation between the primary and secondary networks, and

SUs must perform blind channel sensing. That is, for each energy vector y, the SUs must determine

the channel availability label d ∈ {H0, H1}. To train a supervised learning classifier, pairs of

data points (y, d) are required. In contrast, an unsupervised learning algorithm only needs a set of

energy vectors Y for training. This leads to the idea of using low-cost unsupervised learning to

generate labeled datasets for CR networks. Our aim is to design an unsupervised learning approach

that maintains the high performance of supervised models while operating without labeled data. In

this section, we present our proposed unsupervised learning framework for Cooperative Spectrum

Sensing (CSS), which is entirely based on historically acquired unlabeled data at the Fusion Center

(FC). The proposed framework is illustrated in Fig. 3.1. Using this approach, cooperating SUs send

their measured energy levels to the FC across L sensing periods, resulting in an unlabeled dataset

Y = {y1, ...,yL} consisting of the energy vectors. The training process begins by feeding the

Gaussian Mixture Model (GMM) a set of energy vectors Y for clustering and labeling. The labels

D = {d1, ..., dL} and the training energy vectors Y = {y1, ...,yL} are then used to train a SVM

classifier, which learns the classification model.

3.5.1 Unsupervised Clustering of Spectrum Data

The GMM is an unsupervised clustering technique that consists of k-multivariate Gaussian

distributions superimposed with different weights as follows

f(x|θ) =
K∑︂
k=1

vk.ϕ(x|µk,Σk), (3.10)

where θ denotes all the variables that form the GMM {µk,Σk, vk} for k = 1, ...,K Gaussian

densities, where K = 2M . The mixing weights must meet
∑︁K

k=1 vk = 1 and vk ≥ 0. ϕ(x|µk,Σk)
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Figure 3.1: The schematic diagram of the proposed unsupervised GMM-SVM framework at the FC.

represents the k-th Gaussian density such that

ϕ(x|µk,Σk) =
1

(2π)N/2|Σk|1/2
exp {−1

2
(x− µk)

TΣ−1
k (x− µk)}. (3.11)

At the FC, a received energy vector y is drawn from one of two Gaussian distributions: one

with a mean vector µy|S=0 and covariance matrix Σy|S=0, or another with mean vector µy|S=s and

covariance matrix Σy|S=s. Given this statistical structure, the GMM is well-suited for modeling

the distribution of energy vectors at the FC. In interweave CR networks, the primary focus is on

two clusters corresponding to hypotheses H0 and H1. The parameters associated with H0, namely

µy|S=0 and Σy|S=0, are known to the CR network before training. However, the parameters

µy|S=s and Σy|S=s, which characterize the k-th Gaussian distribution under hypothesis H1, remain

unknown. Additionally, the mixing proportions v1 and v2 are also unknown. Given a set of L

training energy vectors, Y = {y1, ...,yL}, the parameters θ can be estimated using a maximum

likelihood approach. The log-likelihood function for Y is given by

ω(Y|θ) =
L∑︂
l=1

ln (
K∑︂
k=1

vk.ϕ(yl|µk,Σk)). (3.12)
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A direct computation of (3.12) is infeasible, as it lacks a well-defined optimal maximum. To

estimate the set of unknown parameters θ that maximize the log-likelihood of Y, we utilize the

Expectation-Maximization (EM) algorithm–a coordinate descent method applied during training

[58]. During the expectation step (E-step), the “responsibility” γlk is calculated, representing the

degree to which each Gaussian component k contributes to an energy vector yl, as follows

γlk =
vkϕ(yl|µk,Σk)∑︁
j vjϕ(yl|µj ,Σj)

. (3.13)

During the maximization step (M-step), the algorithm utilizes γlk to update the parameter set θ,

ensuring that the likelihood of the observed data is maximized. By differentiating the log-likelihood

function in (3.12) with respect to µk, Σk, and vk, and equating the result to zero, we derive their

respective update rules as

µk =
1

Nk

L∑︂
l=1

γlkyl, (3.14)

Σk =
1

Nk

L∑︂
l=1

γlk(yl − µk)(yl − µk)
T , (3.15)

vk =
Nk

L
, (3.16)

where Nk is the effective number of points in cluster k given as

Nk =
L∑︂
l=1

γlk. (3.17)

After obtaining θ, the GMM computes the log-likelihood of each energy vector as follows

ω(yl|θ) = ln (v2.ϕ(yl|µ2,Σ2)− ln v1.ϕ(yl|µ1,Σ1)), for l = 1, ..., L, (3.18)

where ln (v2.ϕ(yl|µ2,Σ2) is the log-likelihood that energy vectoryl belongs to clusterH1. Similarly,

ln (v1.ϕ(yl|µ1,Σ1)) is the log-likelihood that energy vector yl belongs to clusterH0. For a decision

threshold of δ, if ω(yl|θ) ≥ δ, then dl = H1, otherwise dl = H0.
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3.5.2 Spectrum Hole Detection Via Support Vector Machines

Following the clustering of spectrum energy vectors using the GMM algorithm, each energy

vectoryl is assigned a corresponding channel occupancy label dl. This labeled dataset is then utilized

to train a Support Vector Machine (SVM) classifier. The primary goal of the SVM is to determine

an optimal hyperplane h that effectively separates the training energy vectors. By leveraging support

vectors, the SVM maximizes the margin of h while minimizing classification errors. However, due

to the inherent noise in the radio spectrum, the collected energy vectors are typically not linearly

separable. To overcome this limitation, a non-linear feature-space transformation function ϕ(.) is

employed to map the energy vectors into a higher-dimensional space. Given a set of L training

energy vectors Y = {y1, ...,yL}, the hyperplane h must satisfy

h(yl) = Ψ.ϕ(yl) + ψ0 = 0,

for l = 1, ..., L.

(3.19)

The objective is to determine a weight vector Ψ and a bias term ψ0, which shifts the hyperplane

h away from the origin, ensuring an effective linear separation of the data. However, even after

applying the transformation function ϕ(.), the hyperplane h may not perfectly separate all training

energy vectors due to the inherent complexity of the data distribution. To accommodate misclassified

energy vectors and mitigate classification errors, a slack variable ϵl is introduced into the model.

Consequently, for a given set of L training energy vectors and their corresponding channel state

labels D = {d1, . . . , dL}, the classifier must satisfy

dl[Ψ.ϕ(yl) + ψ0] ≥ 1− ϵl,

ϵl ≥ 0,

for l = 1, ..., L.

(3.20)
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ϵl is 0 ≤ ϵl ≤ 1 for marginal classification errors, and ϵl > 1 for misclassification. The convex

optimization problem for finding h is constructed as follows [59]

minimize:
1

2
||Ψ||2 + ζ

L∑︂
l=1

ϵl

subject to: dl[Ψ.ϕ(yl) + ψ0] ≥ 1− ϵl,

ϵl ≥ 0,

for l = 1, ..., L,

(3.21)

where ζ > 0 is a soft margin constant that controls the trade-off between reducing the classification

errors and increasing model complexity. Minimizing 1
2 ||Ψ||

2 has the same influence as maximizing

2/||Ψ||, which is the margin of the classifier. Let β̃l be the solution to the optimization problem in

(3.21). The final non-linear decision function is as follows [59]

Γ(x) = sgn

(︃ L∑︂
l=1

β̃ldlκ(x,yl) + ψ0

)︃
, (3.22)

where κ(x,y) = ϕ(x) ·ϕ(y) represents the kernel function, which computes the inner product of an

energy vector and the support vectors in the feature space. An energy vector yl qualifies as a support

vector if and only if β̃l > 0. The decision function Γ(x) can be interpreted as the sum of weighted

distances between a test energy vector x and the support vectors that define h. Common kernel

functions include linear, polynomial, and Gaussian kernels [60]. Selecting an appropriate kernel

function is crucial, as minimizing the number of support vectors reduces potential classification

errors. Once the decision function in (3.22) is obtained, the SVM algorithm classifies a new energy

vector y∗ as d = Γ(y∗).

3.6 Dimensionality Reduction for Efficient Spectrum Sensing and

Analysis

While the GMM-SVM approach has demonstrated considerable potential in clustering and

labeling spectrum sensing data, further improvements can be achieved by refining the clustering
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performance of the GMM. As the number of SUs, N , increases, the number of reported energy

levels (features) within an energy vector y also grows. Our previous work [8] highlighted that high-

dimensional data can lead to overfitting in the GMM, thereby reducing its generalization capacity.

To mitigate this issue, we employ Principal Component Analysis (PCA) to perform dimensionality

reduction on the multidimensional energy vectors before training a GMM for CSS. The proposed

unsupervised GMM-PCA learning framework at the FC is illustrated in Fig. 3.2.

Figure 3.2: Unsupervised sensing at the FC using the GMM-PCA learning approach.

3.6.1 Data Preprocessing Using Principal Component Analysis

PCA identifies the directions of maximum variance in high-dimensional data and projects it onto

a K-dimensional subspace using K principal components, thereby preserving most of the radio

information [61]. Consider a one-dimensional subspace (K = 1) with a direction represented by

an N -dimensional vector u1, where uT
1 u1 = 1. Given a set of energy vectors Y = {y1, ...,yL} ∈

RL×N , where N denotes the number of SUs, the sample mean µ and the data covariance matrix S

are defined as

µ =
1

L

L∑︂
l=1

yl,

S =
1

L

L∑︂
l=1

(yl − µ)(yl − µ)T .

(3.23)
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The projected data has a mean of uT
1 µ and variance of uT

1 Su1.

To maximize the variance with respect to u1, we use a Lagrange multiplier λ1 then implement

an unconstrained maximization such that

f(u1, λ1) = uT
1 Su1 + λ1(1− uT

1 u1). (3.24)

By setting the derivative ∂f
∂u1

= 0 and multiplying byuT
1 , we obtainuT

1 Su1 = λ1. This indicates that

the variance of the projected data is maximized when u1 corresponds to the eigenvector associated

with the largest eigenvalue λ1. This result can be extended to cases whereK > 1 through induction.

Consider a K-dimensional subspace defined by the K principal eigenvectors (u1, ...,uK) of S,

along with an additional direction vector uK+1, which is orthogonal to the existing eigenvectors.

The orthogonality constraint is enforced using Lagrange multipliers (η1, ..., ηK). To maximize the

variance uT
K+1SuK+1, a Lagrange multiplier λK+1 is introduced, leading to the maximization

function in (3.24):

g = uT
K+1SuK+1 + λK+1(1− uT

K+1uK+1) +
K∑︂
i=1

ηiu
T
K+1ui. (3.25)

By setting ∂g
∂uK+1

= 0 and multiplying by uT
j for j = 1, ...,K, we obtain SuK+1 = λK+1uK+1.

This implies that uK+1 must be an eigenvector of S. Consequently, the result holds for a subspace

of K + 1 dimensions, thereby completing the inductive step. Thus, it follows that the result is valid

for any K ≤ N .

3.6.2 Leveraging Gaussian Mixture Models for Unsupervised Spectrum Sensing

Given a set of low-dimensional training vectors z ∈ RK transformed by PCA, the GMM employs

the EM algorithm [58], as outlined in Algorithm 1, to estimate the mixture parametersθ and construct

the model in (3.10). Let ẑ ∈ RK represent a low-dimensional testing vector preprocessed by PCA.

The GMM calculates the log-likelihood of ẑ using the estimated parameters Θ as

ω(ẑ|θ) = ln
(︁
v2.ϕ(ẑ|µ2,Σ2)

)︁
− ln

(︁
v1.ϕ(ẑ|µ1,Σ1)

)︁
, (3.26)
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where ln
(︁
v2.ϕ(ẑ|µ2,Σ2)

)︁
is the log-likelihood that ẑ belongs to cluster H1. Likewise, ln

(︁
v1.

ϕ(ẑ|µ1,Σ1)
)︁

is the log-likelihood that the ẑ belongs to cluster H0. For a decision threshold of δ, if

ω(ẑ|θ) ≥ δ, then d = H1, otherwise d = H0.

Algorithm 1 Expectation-Maximization algorithm.

1: Input: The set of low dimensional energy vectors Z = {z1, . . . , zL}, initial parameters θ(0) =
{µk,Σk, vk}, number of clusters K

2: Output: Estimated parameters θ
3: Initialize: Set initial parameter values θ(0)

4: repeat
5: E-Step: Compute the responsibilities using (3.13) for l = 1, ..., L and k = 1, ...,K.
6: M-Step: Update the parameters θ(t) using (3.14), (3.15), and (3.16) for k = 1, ...,K.
7: Update iteration counter: t← t+ 1
8: until θ(t) converges
9: Return: Estimated parameters θ

3.7 Unsupervised Learning for Situational Awareness in Hybrid

Cognitive Radio Networks

In hybrid underlay-interweave CR systems, SUs are permitted to transmit data regardless of

PU activity. However, each SU dynamically adjusts its transmission power based on the prevailing

channel conditions. During idle spectrum periods, an SU can operate at its maximum allowable

power level ρmax. In contrast, when active PUs are present, the SU must regulate its transmission

parameters to ensure that the interference does not exceed the designated threshold Ith. This

interference threshold Ith is dictated by the activity status of each PU [62]. Specifically, if the m-th

PU is active (sm = 1), the permitted interference level is Im. Conversely, if the PU is inactive

(sm = 0), the interference constraint is considered non-binding. As a result, the interference

threshold Ith for the primary network is expressed as

Ith = min{I1, ..., IM}. (3.27)

The primary network can exist in C = 2M possible states, where each state c is characterized

by a vector sc = (s1, . . . , sM ), which indicates the activity status of all M PUs. Consequently,
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determining the channel state d of the primary network can be formulated as a C-hypothesis testing

problem, defined as follows

d ≜

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Hs1

...

HsC

(3.28)

where Hs1 indicates an empty channel and s1 is a zero vector. Each hypothesis Hsc represents a

specific licensed channel state characterized by an activity vector sc.

3.7.1 Extending the GMM-PCA Approach to Hybrid Cognitive Radio

In hybrid CR networks, acquiring labeled data is often unfeasible due to the lack of cooperation

between SUs and PUs, along with the absence of prior knowledge regarding the primary network’s

channel states. Moreover, spectrum sensing in hybrid CR systems extends beyond distinguishing

between idle and occupied spectrum; it also requires identifying active PUs during busy periods [41].

This identification is essential, as the interference tolerance of the primary network depends on the

activity status of the PUs [62]. Consequently, by detecting active PUs, SUs can dynamically regulate

their transmission power to adhere to the fluctuating interference threshold.

To address this, we formulate the channel state detection problem as an unsupervised clustering

task. We extend our proposed GMM-PCA approach to infer the primary network’s channel states d

based solely on the collected energy levels over L sensing periods, represented as Y = {y1, ...,yL}.

To enable SUs to accurately identify all 2M channel states, we first apply Principal Component

Analysis (PCA) (as discussed in Section 3.6.1) to reduce the dimensionality of the energy vectors

collected at the FC. This step enhances computational efficiency while preserving the most critical

information. Subsequently, we train an unsupervised Gaussian Mixture Model (GMM) using the

Expectation-Maximization (EM) algorithm (detailed in Section 3.5.1) to cluster the data into 2M

distinct groups, as opposed to just two groups in interweave CR. To ensure effective clustering, we

initialize the cluster mean vectors µk for k = 1, . . . ,K using the K-means algorithm. This method

provides a robust starting point by strategically assigning initial cluster centers, which improves both

the convergence speed and accuracy of the GMM.
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3.7.2 K-means Initialization for Robust GMM Clustering

K-means iteratively partitions the dataset into K clusters by assigning each data point to the

nearest centroid µk and updates the centroids until convergence. This assignment is performed using

the following rule

rlk =

⎧⎪⎪⎨⎪⎪⎩
1 if k = argminj ||yl − µj ||2

0 otherwise.
(3.29)

Accordingly, the cluster centroid µk of each Gaussian density in the GMM is computed as

µk =

∑︁L
l=1 rlkyl∑︁L
l=1 rlk

. (3.30)

Additionally, the mixture weights vk are set proportional to the fraction of data points assigned to

each cluster. The K-means clustering algorithm is detailed in Algorithm 2.

Algorithm 2 K-means clustering algorithm.
1: Input: The set of low dimensional energy vectors Z = {z1, . . . zL}, number of clusters K

2: Output: cluster centroids {µ1,µ2, ...,µK}

3: Initialize: cluster centroids {µ1,µ2, ...,µK} randomly from Z

4: repeat

5: Assignment Step: Assign each data point to the nearest centroid using (3.29) for l =

1, . . . , L.

6: Update Step: Compute new centroids as the mean of assigned points using (3.30) for

k = 1, . . . ,K.

7: until centroids converge

3.8 Simulation Results

In this section, we investigate the performance of a CR network that utilizes our proposed

unsupervised ML approaches for CSS.
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3.8.1 Setup

A secondary cooperative network is deployed in a geographical area spanning 25 Km2 in which

the SUs are equally spaced. Using a path loss model, the sensing ability is examined, taking into

account the impact of large-scale fading. Both the shadow fading ψm,n and the multi-path fading

components νm,n are unity. The PUs use the channel with equal probability p and transmit their

data independently of each other. The CR network simulation parameters are shown in Table. 3.1.

Table 3.1: Network simulation parameters

CR Parameters

Parameter Symbol Value

Simulation Area - 5× 5 Km2

Number of PUs m [1,2]

Number of SUs n [9:36]

PU Transmit Power ρm 200 mW

Bandwidth ω 5 MHz

Sensing Period τ 100 µs

path loss Exponent α 4

Noise PSD η -174 dBm

3.8.2 Results and Analysis

Unsupervised Learning with Supervised Models for CSS in Interweave CR

The proposed unsupervised GMM-SVM learning framework relies on the combined performance

of the GMM and SVM. The GMM is a computationally inexpensive learning algorithm that does

not require labeled data during training; however, it faces challenges with high-dimensional training

data. In contrast, the SVM is a supervised learning algorithm that outperforms the GMM but

necessitates labeled data. As a result, the detection performance of the proposed learning-based CR

network is influenced by both the number of training energy vectors l and the cooperation size n,

which corresponds to the dimensionality of the data. To analyze these effects, l is varied from 100 to
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2000, and n from 9 to 36, examining their joint impact on detection performance. The performance

is evaluated using Receiver Operating Characteristics (ROC) and Area Under the ROC Curve (AUC)

as metrics. To fine-tune the hyperparameters of the learning algorithms, a validation set of 800

energy vectors is employed. A linear kernel is chosen for the SVM, as it minimizes the number of

support vectors necessary to construct the hyperplane h. Finally, the proposed learning algorithm is

tested using 1000 energy vectors to assess performance.

In Fig. 3.3a, it is evident that the SVM outperforms the GMM as it benefits from ground truth,

i.e., labeled data. However, the surface of the proposed learning approach is positioned between

those of the SVM and the GMM. This can be attributed to the fact that the training process of the

algorithm relies on both the SVM and the GMM. As a result, the detection performance of the

studied CR network is influenced by the effectiveness of both models. Considering the AUC surface

of the GMM in Fig. 3.3a, for high values of n, such as n = 36 SUs, the detection performance

improves as l increases. This indicates that when the number of high-dimensional training vectors

is small, the GMM constructs a suboptimal clustering model and requires additional data samples

to enhance learning. When increasing n from 9 to 36 for small values of l, the AUC of the

GMM exhibits a concave trend–initially improving due to the inclusion of more spatially diverse

SUs, but then declining when the dimensionality becomes excessively high for small values of l.
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(b) The ROC curves at l= 140 vectors, n= 36 SUs, m= 1 PU,
and CPU

1 = (0.5km,0.5km).

Figure 3.3: Analysis of training energy vectors l and cooperating SUs n on sensing performance, with
comparative evaluation of our proposed GMM-SVM approach against other learning techniques.
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Conversely, analyzing the SVM surface reveals that increasing the number of SUs enhances detection

performance, as the SVM remains robust to high-dimensional data. A summary of the lower and

upper performance bounds in terms of AUC is presented in Table 3.2 for m = 1 and Table 3.3 for

m = 2.

In Fig. 3.3b, the GMM, SVM, and the proposed unsupervised learning approach are evaluated

at (l=140, n=36, and m=1), which corresponds to a global minimum on the GMM surface. The

results indicate that the proposed learning approach achieves detection performance comparable to

that of the SVM. In this scenario, the cooperation size is large (n=36), while the number of training

energy vectors is relatively small (l=140), leading to a suboptimal clustering model for the GMM.

However, the proposed sensing method effectively improves performance. This is because the SVM

does not reach a global minimum at (l=140, n=36) due to its resilience to high-dimensional data.

As shown in Table 3.2, the global minimum of the SVM surface occurs at (l=140, n=9), as the CR

network requires a higher number of spatially diverse SUs to effectively detect PU activity.

Table 3.2: Global minima for the GMM, SVM, and the proposed GMM-SVM approach when m = 2 PUs,
CPU

1 = (0.5km,0.5km), and CPU
2 = (-1.5km,0km).

Learning Number of Primary Users
Technique m= 1 PU m= 2 PUs
GMM (l= 140, n= 36, AUC= 0.5682) (l= 140, n= 36, AUC= 0.7991)
Proposed (l= 140, n= 36, AUC= 0.767) (l= 140, n= 36, AUC= 0.827)
SVM (l= 140, n= 9, AUC= 0.7043) (l= 140, n= 9, AUC= 0.888)

Table 3.3: Global maxima for the GMM, SVM, the proposed GMM-SVM learning framework when m = 2
PUs, CPU

1 = (0.5km,0.5km), and CPU
2 = (-1.5km,0km).

Learning Number of Primary Users
Technique m= 1 PU m= 2 PUs

GMM (l= 1000, n= 19, AUC= 0.88) (l= 1964 , n= 23, AUC= 0.897)
Proposed (l= 1000, n= 19, AUC= 0.901) (l= 1964 , n= 23, AUC= 0.9459)

SVM (l= 992, n= 19, AUC= 0.905) (l= 1960 , n= 23, AUC= 0.9534 )
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In Fig. 3.4a, the ROC of the GMM, SVM, and the proposed unsupervised GMM-SVM sensing

approach are compared at (l=1000, n=19, m=1), which corresponds to a global maximum on the

GMM surface. The results show that the proposed method achieves detection performance equivalent

to that of the SVM. This is because the GMM constructs a well-fitted clustering model when provided

with a sufficient number of training energy vectors (l=1000) and a moderate data dimensionality

(n=19). Moreover, the SVM further enhances detection accuracy. By leveraging the strengths of

both models, the proposed approach attains the same detection performance as supervised learning.

Examining the detection performance of the CR network under varying numbers of PUs, Fig. 3.4b

shows that the surface corresponding to m = 2 is elevated compared to the case when m = 1. This

indicates that as the number of PUs increases, the overall energy levels in the radio environment

rise. Consequently, the proposed unsupervised method can more effectively detect the presence of

PUs, as the clusters become more distinguishable from one another.
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(b) The effect of the number of active PUs on detection perfor-
mance of our proposed unsupervised GMM-SVM approach
when m = 2 PUs, CPU

1 = (0.5km,0.5km), and CPU
2 = (-

1.5km,0km).

Figure 3.4: Benchmarking the detection performance of the proposed GMM-SVM approach for cooperative
sensing and assessing the impact of intermittently active PUs on sensing performance.

42



Dimensionality Reduction for Efficient Sensing

To evaluate the effectiveness of the proposed GMM-PCA approach, we benchmark its sensing

performance against supervised learning methods, including Support Vector Machine (SVM), Ran-

dom Forest (RF), and Decision Tree (DT). Additionally, we compare it with the standard GMM. All

learning models are trained using 1200 energy vectors and tested on a separate set of 1500 held-out

energy vectors. A validation set of 800 energy vectors is employed to fine-tune the hyperparameters

of each learning algorithm, ensuring optimal training and classification performance. The SVM

kernel is chosen to be linear to reduce the number of support vectors required for constructing the

hyperplane h.

The detection performance of the proposed GMM-PCA framework is evaluated in Fig. 3.5a.

Since supervised learning algorithms rely on labeled data, Fig. 3.5a clearly shows a significant

performance gap between them and the GMM. Training the GMM with high-dimensional energy

vectors leads to a model with poor generalization ability (overfitting), which negatively affects the

overall sensing performance of the CR network. In contrast, SVM, RF, and DT are resilient to

high-dimensional data and can therefore generate more effective classification models, as illustrated

in Fig. 3.5a. However, by reducing the dimensionality of the training energy vectors, the proposed

framework achieves performance comparable to that of RF. In Fig. 3.5b, the cooperation size n is

reduced to 2 SUs. Comparing Fig. 3.5b to Fig. 3.5a reveals that increasing the number of spatially

diverse SUs enhances detection performance for all learning algorithms. Furthermore, Fig. 3.5b

emphasizes that using 2 SUs to sense the spectrum is not equivalent to using 25 SUs and reducing

the dimensionality of their sensing data to 2 dimensions.

The detection performance of the proposed GMM-PCA framework is analyzed in Fig. 3.6a for

different values of the number of principal components K. Fig. 3.6a illustrates that reducing the

dimensionality of the training energy vectors leads to an improvement in the classification accuracy

of the GMM-PCA approach. Additionally, it is evident from Fig. 3.6a that a 2-dimensional subspace

provides the best performance in terms of capturing the maximum variance in the training data.

PCA effectively preserves the majority of the sensing information while simultaneously reducing

computational complexity, thereby enhancing the overall generalization capability of the learning

43



(a) ROC Curves at n= 25 SUs and m= 1 PU. (b) ROC curves at n= 2 SUs and m= 1 PU.

Figure 3.5: Benchmarking the cooperative spectrum sensing performance of the proposed GMM-PCA against
multiple learning approaches.

(a) Performance of the GMM-PCA approach for varying K
with m= 1 PU.

(b) Benchmarking the testing accuracy of our proposed
GMM-PCA approach against other learning approaches for
varying ρm with m = 1 PU.

Figure 3.6: The effect of the number of principal components K and the PU transmit power ρm on the
performance of the intelligent radio network.

model. As a result, the proposed intelligent radio network can establish a decision boundary with

minimal classification errors, improving its detection performance and enabling the network to

benefit from the performance improvements gained through cooperation.

Fig. 3.6b illustrates the classification accuracy of the proposed learning-based spectrum sensing

method, comparing it with the SVM, RF, DT, and GMM frameworks under varying PU transmit

power ρm. The accuracy is defined as the ratio of energy vectors correctly classified by the intelligent

radio system to the total number of energy vectors. As ρm increases, the classification accuracy
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improves, indicating that the ability of SUs to detect primary network activity improves. This is

because, as shown in Fig. 3.7, the clusters move further apart, making them more distinguishable.

From Fig. 3.6b, it can be observed that the proposed unsupervised learning method achieves clas-

sification accuracy comparable to both the SVM and RF supervised learning algorithms, without

requiring labeled ground truth data or introducing communication overhead with the primary net-

work. Additionally, the unsupervised approach demonstrates strong performance even under low

SNRs.

The left plot in Fig. 3.7 shows the energy vectors projected onto a 2-dimensional subspace

using PCA before training the GMM algorithm. The right plot in Fig. 3.7 presents the clustering

result after training the GMM on the reduced-dimensional data. From the right plot, it is evident

that the proposed GMM-PCA learning framework successfully establishes a clear decision boundary

between the two clusters,H0 andH1, with a testing accuracy of 79.24%. Additionally, the difference

between the training and testing accuracies is only 1.50%, which suggests that a well-fitting model

with high generalization capability has been built. Fig. 3.8 shows the clustering results before and

after training the GMM-PCA framework. Comparing Fig. 3.8 with Fig. 3.7, it is evident that as

the number of PUs m increases, the clusters move further apart, making it easier for the proposed

learning-based CR network to detect the presence of PUs and accurately sense channel activity.

Figure 3.7: Clustering using the proposed GMM-PCA learning framework for m = 1 PU.
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Figure 3.8: Clustering using the proposed GMM-PCA learning framework for m = 2 PUs.

Figure 3.9: Benchmarking the detection performance of our proposed GMM-PCA approach to other learning
algorithms at n= 25 SUs and m = 2 PUs.

Fig. 3.9 illustrates that the proposed framework significantly outperforms the GMM and DT

algorithms and achieves detection performance comparable to RF. Furthermore, when comparing

Fig. 3.5a and Fig. 3.9 for the same number of SUs (n= 25), it can be concluded that the ROC and

AUC in Fig. 3.9 are higher than those in Fig. 3.5a. This improvement is due to the increase in the

number of PUsm in the channel, which raises the energy levels in the radio environment and causes

the clusters in Fig. 3.7 to separate further.
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Unsupervised Learning for Situational Awareness in Hybrid CR

In our performance evaluations, we use the ROC and AUC as primary metrics. However,

given that the ROC is not sensitive to data imbalance in multiclass classification, we also utilize the

Precision-Recall (PR) curve and Area Under the PR Curve (AUPR) to assess predictive performance.

To extend ROC and PR to multiclass prediction, we apply macro-averaging, which involves averaging

C curves at each distinct x-axis point. To evaluate our unsupervised learning approach, we compare

it with several supervised learning algorithms, including multinomial Logistic Regression (LR),

Support Vector Machine (SVM), Random Forest (RF), and Decision Tree (DT). These supervised

algorithms are trained on a balanced dataset containing 2800 energy vectors and tested on a separate

set of 2400 held-out energy vectors. Additionally, we fine-tune the hyperparameters of each algorithm

using a validation set consisting of 1900 energy vectors. The computations are performed on a 64-bit

computer with a core i7 processor (2.8 GHz clock speed) and 16 GB of RAM.

The detection performance of the intelligent hybrid radio network is evaluated in Fig. 3.10a.

Since supervised learning algorithms are trained with labeled data, Fig. 3.10a highlights the sig-

nificant performance gap between these algorithms and the pure GMM. Training the GMM with

high-dimensional energy vectors leads to an overfit model, which reduces the overall detection ca-

pability of the CR network. In contrast, multinomial LR, SVM, RF, and DT algorithms are robust

to high-dimensional data and are therefore capable of generating more accurate prediction models.

The proposed unsupervised GMM-PCA approach, however, performs comparably to both SVM and

multinomial LR by projecting the energy vectors onto a two-dimensional subspace. An analysis of

the PR curves in Fig. 3.10b demonstrates the impressive performance of our proposed GMM-PCA

approach. In comparison to SVM, RF, and DT, our approach not only surpasses them but also

achieves predictive accuracy similar to that of LR. The consistently high precision values observed

with our approach emphasize its effectiveness in handling imbalanced training data. This capability

is crucial, as biased learning models can negatively impact system performance. Incorrectly deter-

mining the channel state may lead to misguided decisions, potentially reducing throughput or, in

worse cases, causing interference with PUs. Consequently, our proposed approach not only excels

in detection performance but also plays a vital role in enhancing system reliability and reducing the
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(a) Assessment of the detection performance of the CR net-
work using the ROC curve.

(b) Assessment of the predictive capacity of the CR network
using the PR curve.

Figure 3.10: Benchmarking the detection performance and the predictive capacity of the proposed GMM-PCA
for hybrid CR networks against other learning algorithms.

risk of misclassification errors in hybrid networks.

Table. 3.4 presents the average training time across 100 trials for different numbers of training

samples. The GMM-PCA demonstrates the shortest training time at 5000 training samples, high-

lighting its computational efficiency in comparison to pure GMM trained on high-dimensional data.

Additionally, while both multinomial LR and GMM-PCA exhibit similar training times, GMM-PCA

is trained exclusively on unlabeled data, which is easily accessible and cost-effective to gather at the

FC. Therefore, our learning-based CR system effectively balances computational complexity with

practicality.

The impact of the number of principal componentsK on the detection performance of the GMM-

PCA framework is investigated in Fig. 3.11a. Reducing the dimensionality of the energy vectors

Table 3.4: Comparison of the average training time (in seconds) of the proposed GMM-PCA approach with
other learning methods in hybrid CR networks.

Training Machine Learning Algorithms Under Evaluation
Samples LR SVM RF DT GMM-PCA GMM

500 0.006 0.039 0.020 0.005 0.010 0.027
1000 0.009 0.246 0.032 0.009 0.011 0.075
2000 0.013 0.640 0.050 0.016 0.014 0.153
3000 0.019 1.351 0.062 0.026 0.018 0.196
5000 0.039 3.780 0.094 0.052 0.024 0.241
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improves the detection performance of the GMM-PCA. Furthermore, a two-dimensional subspace

is found to be optimal for capturing the maximum variance in the training data. PCA retains most

of the information gathered at the FC while reducing computational complexity and enhancing

the generalization capacity of the learning model. Consequently, the proposed learning-based CR

network is able to establish a decision boundary with minimal classification errors, thereby improving

detection performance and enabling the network to accurately predict the primary network’s channel

state.

The AUC of the GMM-PCA approach is compared to multinomial LR, SVM, RF, DT, and

GMM frameworks for varying PU transmit power ρm, with the results presented in Fig. 3.11b. It is

evident that as ρm increases, the AUC also increases, indicating that the ability of the SUs to detect

the primary network’s channel state improves. This improvement is attributed to the clusters in

Fig. 3.12 becoming more separable as they move farther apart. As shown in Fig. 3.11b, our proposed

unsupervised learning approach achieves detection performance comparable to that of supervised

learning, without requiring labeled ground truth data or incurring any communication overhead with

the PUs. Additionally, our unsupervised method performs well at low SNRs in comparison to the

GMM.

The clustering output before and after training the GMM-PCA framework at ρm = 80 mW is

presented in Fig. 3.12. Accuracy is defined as the ratio of correct predictions to the total number of

(a) Detection performance of the proposed learning approach
under varying K.

(b) Detection performance of the learning-based CR for var-
ious ρm.

Figure 3.11: Evaluating the detection performance of the hybrid CR network for varying K principal
components and ρm PU transmit power.
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Figure 3.12: Clustering using the proposed GMM-PCA learning approach for hybrid CR networks at ρm= 80
mW.

Figure 3.13: Clustering using the proposed GMM-PCA learning approach for hybrid CR at ρm= 200 mW.

predictions. Comparing Fig. 3.12 with Fig. 3.13, it becomes evident that as ρm increases from 80

mW to 200 mW, the clusters become more distinct, facilitating the hybrid CR network’s ability to

identify the patterns of PUs’s activity. It is important to note that a dummy classifier, which always

predicts the majority class, would achieve a testing accuracy of 25%. Given that the difference

between the training and testing accuracy is only 0.42%, it can be concluded that the GMM-PCA

method forms a learning model with a strong generalization capacity, enabling accurate and precise

identification of the primary network’s channel state.
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3.9 Conclusions

In this chapter, we tackled the challenge of labeled data scarcity in learning-based CR networks.

To address this issue, we proposed unsupervised machine learning frameworks that enhance context-

awareness and ensure robust sensing performance in both interweave and hybrid interweave-underlay

CR networks. Our approaches operate without relying on prior knowledge, labeled data, or cooper-

ation between secondary and primary networks. First, we demonstrated how unsupervised learning

can be utilized to generate labeled data cost-effectively, enabling the training of supervised mod-

els. Second, we illustrated how dimensionality reduction enhances both computational efficiency

and the generalization capacity of unsupervised learning, ultimately improving the CR network’s

detection performance. Finally, we showed that our unsupervised learning approach extends to

hybrid CR networks, enabling the system not only to distinguish between idle and busy channels

but also to identify different activity states of the primary network. Through extensive simulations

across diverse network settings, we have consistently demonstrated that our proposed unsupervised

approaches achieve performance comparable to supervised learning benchmarks.
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Chapter 4

Deep Representation Learning

Frameworks for Advanced Spectrum

Reasoning and Analysis

4.1 Introduction

Radio signals are all around us, and they play an important role in both communication and sens-

ing as our world becomes more connected and automated. Significant efforts have been dedicated

to designing and optimizing radio systems, focusing on how to represent, shape, adapt, and recover

signals in challenging environments characterized by loss, nonlinearity, distortion, and interference.

More recently, heavily expert-tuned functions have been substituted by feature learning using Deep

Neural Networks (DNNs). The integration of Deep Learning (DL) algorithms into wireless commu-

nications has enhanced existing solutions and enabled the development of entirely new approaches,

provided sufficient data is available. DL models inherently extract relevant features during training,

capturing more meaningful information and enabling scalability to larger data sets while improving

accuracy. In this chapter, we examine the transition from expert-designed representations to learned

representations in Cognitive Radio (CR) networks. This transition aims to enhance spectrum state
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identification and enable spectrum-aware networks that automatically translate channel measure-

ments into more efficient representations, improving reasoning and analysis in a fully unsupervised

manner.

4.2 Related Works

DL has notably enhanced the capabilities of CRs by applying data-driven models, particularly

in intelligent monitoring and sensing domains. [63] introduced a DNN that evaluates signal energy

and likelihood ratio statistics for spectrum sensing. A semi-supervised DL-based spectrum sensing

approach was proposed in [53], utilizing a Variational Autoencoder (VAE) that primarily learns

from unlabeled data. For non-orthogonal multiple access networks, [64] developed a Cooperative

Spectrum Sensing (CSS) method that integrates both unsupervised and supervised techniques,

including K-means, Gaussian Mixture Models (GMMs), and DNNs. [65] introduced an information

geometry-based K-means, an unsupervised clustering technique for CSS. A supervised recurrent

neural network was applied in [54] for spectrum sensing. A spectrum sensing technique combining

feature extraction through autoencoders and supervised feature classification using Support Vector

Machines (SVMs) was suggested in [66]. In [67], a stacked autoencoder neural network was used

to preprocess raw time-domain signal samples, followed by a logistic regression classifier to detect

PU transmissions.

The growing prevalence of learning-based CR operations, as highlighted by the studies above,

emphasizes their critical role in enhancing network autonomy. DL-based approaches [54, 63, 66,

67] have demonstrated superior detection performance over traditional sensing methods, thanks

to the neural network’s ability to learn key features from signal samples. However, most DL-

based techniques require a large amount of labeled data for training. In CR networks, acquiring

labeled data is particularly challenging since SUs perform blind sensing without prior knowledge

of the channel and cannot communicate with PUs. On the other hand, semi-supervised DL-based

sensing approaches, like those in [53], only require a limited amount of labeled data. Additionally,

unsupervised clustering techniques for sensing, such as those in [65], face initialization issues that

may result in suboptimal outcomes or require multiple attempts to obtain a satisfactory solution.
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Effective initialization necessitates prior knowledge of the sensing data, which is often unattainable.

While we have previously presented unsupervised CSS algorithms in [8, 9], they rely heavily on

extensive collaboration among multiple SUs to improve detection performance. However, increasing

the number of SUs introduces more communication overhead between them and the Fusion Center

(FC). Moreover, in some cases, only a subset of SUs may actively participate, limiting the available

data features. This, in turn, reduces the degrees of freedom in the CR network and leads to a decline

in overall performance.

4.3 Contributions

To address the aforementioned gaps, we introduce three representation learning frameworks to

boost CSS performance in intelligent radio networks: DeepSense, DEAP learning, and G-VAP.

Below, we summarize our contributions:

• We propose DeepSense which is the first fully unsupervised DL-based CSS approach for

CR networks with a few cooperating SUs. DeepSense employs a Sparse Autoencoder (SAE)

designed to be trained with a small amount of unlabeled low-dimensional sensing data. The

SAE discovers non-linear relations between the data features in a higher-dimensional sparse

space and learns a useful representation of the sensing data. A Gaussian Mixture Model

(GMM) is then used to perform unsupervised clustering on the learned representations and

determines the channel state.

• We enhance the DeepSense approach by introducing our award-winning DEAP learning, which

also employs an SAE for representation learning but leverages the Affinity Propagation (AP)

algorithm for representation clustering and spectrum state identification. Unlike traditional

clustering methods, AP does not require predefined cluster centroids or prior knowledge of

the number of clusters, as it infers them directly from the data. This makes DEAP learning

more versatile and adaptable.

• We propose G-VAP, the first fully unsupervised deep generative approach for CSS. G-VAP

employs a β-Variational Autoencoder (β-VAE) that automatically identifies independent latent
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variables and encourages accurate and disentangled representations of unsupervised sensing

data. Furthermore, G-VAP employs AP to cluster the learned representations and determine

the channel state.

• The effectiveness of all proposed DL-based CSS approaches is rigorously evaluated through

comprehensive simulations across various network settings and propagation conditions, with

their performance benchmarked against leading supervised and unsupervised learning-based

CSS techniques.

4.4 System Model

We consider a cognitive network comprising n = 1, . . . , N SUs and M m = 1, . . . ,M PUs, all

sharing a common channel with a bandwidth of ω. There is no information exchange between the

SUs and PUs, and the goal is to cooperatively detect the presence or absence of PUs. The channel

between the m-th PU and the n-th SU is denoted as hm,n. To model hm,n, we adopt a Nakagami-ν

distribution, which effectively represents both indoor and outdoor multipath fading channels. The

Probability Density Function (PDF) of the Nakagami-ν distribution is given by

fhm,n(γ) =
2

Γ(ν)
(
ν

γ
)νγ2ν−1 exp

(︃
− νγ

γ

)︃
, γ > 0, ν > 0. (4.1)

Here, ν ≥ 0.5 represents the Nakagami multipath fading parameter, which quantifies the severity

of fading. γ denotes the average received Signal-to-Noise Ratio (SNR), and Γ(.) is the Gamma

function. The Fusion Center (FC) can either be one of the SUs or an additional node with an external

connection, such as a cluster head or a base station. Each SU utilizes an energy detector to measure

the channel’s energy levels and transmits these measurements to the FC. The FC, in turn, applies

a DL algorithm to analyze the spectrum data and identify the spectrum state. The SUs conduct

energy measurements over a duration of τ seconds. The licensed activity detection problem can be
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formulated as a binary hypothesis test

H0 : En(i) = Nn(i), (4.2)

H1 : En(i) =
M∑︂

m=1

smhm,nXm(i) +Nn(i). (4.3)

Here, En(i) is the i-th channel measurement taken by the n-th SU. sm denotes the activity status

of the m-th PU, where sm = 1 indicates that the PU is actively using the channel, and sm = 0

means it is inactive. We adopt a generalized PU model in which multiple PUs transition between

active and inactive states. The channel is considered unavailable to the CR network if at least one

PU is active (sm = 1 for some m). It is deemed available only when all PUs are inactive (sm = 0

for all m). The unknown transmitted signal from the m-th PU is represented as Xm(i). No prior

knowledge of the PUs transmit power or the prior probability of each hypothesis is assumed. The

thermal noise Nn(i) follows a Gaussian distribution N (0, σ2n), where σ2n = E[|Nn(i)|2] represents

the noise’s Power Spectral Density (PSD). Consequently, the spectrum energy level at the n-th SU,

normalized by σ2n, is given by

yn =
2

σ2n

ωτ∑︂
i=1

|En(i)|2, (4.4)

where yn follows a non-central chi-squared distribution with q = 2ωτ degrees of freedom and a

non-centrality parameter ζn as

ζn =
2τ

σ2n

M∑︂
m=1

smgm,nρm. (4.5)

The power attenuation from the m-th PU to the n-th SU is

gm,n = |hm,n|2 = D−α
m,n · ψm,n · νm,n, (4.6)

whereD is the Euclidean distance,α is the path loss exponent,ψm,n is the shadow fading component,

and νm,n is the multipath fading component. Finally, the m-th PU’s transmit power is

ρm =

∑︁wτ
i=1 E[|Xm(i)|2]

τ
. (4.7)

56



Let S represent the activity state vector that captures the activity of the M PUs, such that

S = (s1, . . . , sM ). Assume that each SU collects ωτ signal samples during a sensing interval.

When ωτ is large, the central limit theorem suggests that the energy level yn reported by the n-th SU

can be approximated by a Gaussian distributionN (µyn|S=s, σ
2
yn|S=s), with the following parameters

µyn|S=s = E[yn|S = s] = 2ωτ +
2τ

σ2n

M∑︂
m=1

smgm,nρm, (4.8)

σ2yn|S=s = E[(yn − µyn|S=s)
2|S = s] = 4ωτ +

8τ

σ2n

M∑︂
m=1

smgm,nρm. (4.9)

It is important to note that the local users do not make any decisions; instead, the measured

energy levels are directly transmitted to the FC. The FC is the sole entity responsible for making

decisions based on the collected measurements from various users. It aggregates all the energy

levels from theN SUs to form an energy vector y = (y1, ..., yN ) ∈ RN . As a result, the distribution

of y, conditioned on the current activity state vector s, follows a multivariate Gaussian distribution

characterized by

µy|S=s = (µy1|S=s, ..., µyN |S=s) (4.10)

Σy|S=s = diag(σ2y1|S=s, ..., σ
2
yN |S=s). (4.11)

diag(v) creates a diagonal square matrix where the elements of the vector v are positioned along

its principal diagonal.

To construct a learning model with a good generalization capacity, the first step is to collect a

sufficient number of training energy vectors. Let Y = {y1, . . . ,yL} be the set L collected energy

vectors at the FC. Our goal is to utilize this data exclusively to learn an efficient representation that

improves the detection performance of the CR network. In other words, we use the raw collected

energy vectors without their corresponding channel state labels (H0/H1) to develop a learning model

capable of automatically determining the spectrum state. In the following sections, we introduce

three novel unsupervised representation learning frameworks designed to help the intelligent radio

network uncover hidden features and nonlinear patterns, enabling more effective channel state
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identification.

4.5 DeepSense

Each cooperating SU measures the spectrum energy and sends the data to the FC, which

constructs an energy vector y based on the reported energy levels. As the number of cooperating

SUs N increases, the dimensionality of the energy vectors also increases. However, when only

a small number of SUs are active, the energy vectors at the FC become low-dimensional, which

significantly reduces the degrees of freedom in the CR network and hampers its performance. To

enhance the detection capability of the CR network with a limited number of cooperating SUs, we

utilize an overcomplete autoencoder that maps the energy vectors to a higher-dimensional latent

space. This allows the autoencoder to learn meaningful representations of the sensing data and

identify non-linear relationships between the energy levels. As a result, the FC can better cluster the

sensing data, improving the overall PU detection performance.

4.5.1 Representation Learning Using Sparse Autoencoders

An autoencoder is a neural network comprising two components: an encoder and a decoder. We

use a fully connected Deep Neural Network (DNN) for both parts, as shown in Fig. 4.1. The input

layer of the autoencoder contains N neurons corresponding to the number of actively cooperating

SUs, with each input energy vector y = (y1, . . . , yN ) ∈ RN . The encoder has one hidden layer

with J neurons, where N < J . The output layer of the encoder consists of K neurons, where

N < J < K. The latent representation output of the encoder can be expressed as z = fθenc(y)

∈ RK , where θenc = {W(i),b(i)}i={1,2} denotes the weight matrices and vector biases of the

encoder network. On the other hand, the decoder’s goal is to reconstruct the original data from the

latent representation as follows ŷ = gθdec(z), where θdec = {W(i),b(i)}i={3,4} denotes the weight

matrices and vector biases of the decoder network. Thus, the encoder and decoder outputs can be
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Figure 4.1: The architecture of the sparse autoencoder for representation learning in the DeepSense approach.

written as

fθenc(y) = z = σtanh

(︃
σtanh(yW

(1) + b(1))W(2) + b(2)

)︃
, (4.12)

gθdec(z) = ŷ = σtanh

(︃
σtanh(zW

(3) + b(3))W(4) + b(4)

)︃
, (4.13)

where the superscript of W and b represents the layer number of the autoencoder. The activation

function σtanh represents the element-wise application of the hyperbolic tangent function. The tanh

function is chosen, since it is centered around zero, leading to faster convergence time. Additionally,

the tanh function introduces non-linearity into the model, enabling the SAE to learn non-linear

relationships between the energy levels reported by the SUs in the higher-dimensional sparse feature

space. This non-linearity is essential for modeling complex patterns in the sensing data, enhancing

the CR network’s ability to detect and classify primary user activity accurately.

Since an autoencoder aims to replicate its inputs at the output, it is essentially addressing a

regression problem. As a result, we use the Mean Squared Error (MSE) loss to measure the

reconstruction error during the training process, which is defined as

L(θenc, θdec;Y) =
1

T

T∑︂
t=1

∥yt − ŷt∥
2

=
1

T

T∑︂
t=1

⃦⃦(︁
yt − gθdec(fθenc(yt))

)︁⃦⃦2
.

(4.14)
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∥.∥ is the L2 norm. Y is a matrix T ×N which represents a batch of T energy vectors.

Let zk(yt) represent the output activation of the k-th neuron in the encoder’s output layer (latent

space) for a given input energy vector yt. The average activation of the k-th neuron over a batch of

T training energy vectors is then

γ̂k =
1

T

T∑︂
t=1

[︃
zk(yt)

]︃
. (4.15)

By copying the inputs to the outputs, the autoencoder essentially learns an identity function. However,

by imposing constraints on the network, it is possible to uncover interesting structures within the

sensing data. To achieve this, we introduce a sparsity penalty during training, ensuring that the

encoder’s output neurons remain inactive most of the time. Specifically, we aim to constrain γ̂k = γ,

where γ represents the sparsity parameter, typically set to a value close to -1. As a result, the training

loss function L in (4.14) becomes

Lsparse(θenc, θdec;Y) = L+ β

K∑︂
k=1

KL(γ||γ̂k), (4.16)

where KL(γ||γ̂k) = γ log γ
γ̂k

+ (1 − γ) log 1−γ
1−γ̂k

is the Kullback-Leiber (KL) divergence between

two Bernoulli random variables whose means are γ and γ̂k, respectively. β controls the weight of

the sparsity term. If γ̂k = γ then KL(γ̂k||γ) = 0, otherwise KL(γ̂k||γ) increases monotonically as

γ̂k diverges from γ.

During training, the goal is to optimize {θenc, θdec} such that the loss in (4.16) is minimum. That

is,

θ∗enc, θ
∗
dec = arg min

θenc,θdec
Lsparse(θenc, θdec;Y). (4.17)

The Backpropagation (BP) algorithm [68] is used to efficiently compute the gradient of the loss in

(4.16) with respect to w.r.t θenc = {W(i),b(i)}i={1,2} and θdec = {W(i),b(i)}i={3,4}. Considering
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a single training energy vector y, the gradient of the loss w.r.t weights of the SAE is as follows

∇w(1)L =
∂Lsparse

∂gθdec(fθenc(y))
·
∂gθdec(fθenc(y))

∂fθenc(y)
· ∂fθenc(y)

∂h(2)
· ∂h

(2)

∂w(1)
,

∇w(2)L =
∂Lsparse

∂gθdec(fθenc(y))
·
∂gθdec(fθenc(y))

∂fθenc(y)
· ∂fθenc(y)

∂w(2)
,

∇w(3)L =
∂Lsparse

∂gθdec(fθenc(y))
·
∂gθdec(fθenc(y))

∂h(3)
· ∂h

(3)

∂w(3)
,

∇w(4)L =
∂Lsparse

∂gθdec(fθenc(y))
·
∂gθdec(fθenc(y))

∂w(4)
.

(4.18)

Similarly, the gradient of the loss in (4.16) w.r.t to the bias vectors {∇b(i)L}i=1,...,4 can be obtained

by applying the chain rule.

Stochastic Gradient Descent (SGD) is then employed to iteratively adjust the parameters of the

SAE by calculating the gradient of the loss with respect to the weight matrices and bias vectors,

which are derived using the BP algorithm. Thus, the parameter update of the SAE for a batch of

energy vectors Y at each iteration is given by

θ∗enc := θenc − η∇θencLsparse(θenc, θdec;Y), (4.19)

θ∗dec := θdec − η∇θdecLsparse(θenc, θdec;Y), (4.20)

where η is the learning rate that determines the step size during each iteration of SGD.

4.5.2 Gaussian Mixture Models for Unsupervised Clustering

Let Z = {z1, ..., zL} be the set ofL transformed energy vectors using the encoder network of the

proposed SAE, where zl ∈ RK and K > N . The FC focuses on distinguishing between two main

clusters: channel available H0 and channel unavailable H1. Therefore, we train an unsupervised

Gaussian Mixture Model (GMM) to cluster the sensing data in the latent sparse space. The parameters

of the Gaussian densities N (µz|S=0,Σz|S=0) and N (µz|S=s,Σz|S=s), corresponding to clusters

H0 and H1 respectively, are unknown prior to training. Furthermore, the mixing weights v1 and v2

are unknown. The Expectation-Maximization (EM) algorithm [58] is therefore used to estimate the

collection of unknown parameters θ that maximizes the log-likelihood of Z [58]. The EM algorithm
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was detailed in Section 3.6.2.

Let z∗ ∈ RK be a testing feature vector, the log-likelihood of z∗ using the estimated parameters

θ∗ is

ω(z∗|θ∗) = ln (v∗2.ϕ(z
∗|µ∗

2,Σ
∗
2))− ln(v∗1.ϕ(z

∗|µ∗
1,Σ

∗
1)). (4.21)

ln (v∗2.ϕ(z
∗|µ2

∗,Σ2
∗)) is the log-likelihood thatz∗ belongs toH1. Similarly, ln (v∗1.ϕ(z∗|µ1

∗,Σ1
∗))

is the log-likelihood that z∗ belongs to H0. For a decision threshold of δ, if ω(z∗|θ∗) ≥ δ, then the

channel state is H1, otherwise it is H0. The probability of false alarm Pfa = P (ω(z∗|θ∗) ≥ δ|H0)

can be decreased at the expense of the probability of detection Pd = P (ω(z∗|θ∗) ≥ δ|H1) by

increasing δ since z∗ is more likely to be classified as H0 if the value of δ is high.

4.6 DEAP Learning

The DeepSense approach has potential in enhancing data clustering through the use of a Sparse

Autoencoder (SAE), mapping sensing data into a high-dimensional sparse latent space. While this

method improves clustering at the FC, it inherits limitations from its reliance on the GMM. Due

to the changing nature of the radio environment, a GMM faces challenges with cluster centroid

initialization and requires predefining the number of clusters expected in the data. This often leads

to multiple runs to achieve a satisfactory solution, which is not effective and is computationally

expensive. Additionally, the need for optimal initialization implies that prior knowledge about the

sensing data is required, which is not always feasible to obtain. To address these challenges, we

propose DEAP learning, which also capitalizes on representation learning by an SAE but instead

leverages the Affinity Propagation (AP) algorithm for clustering the latent representations of the

sensing data to determine the channel state (H0/H1).

4.6.1 Affinity Propagation: Unsupervised Clustering Based on Message-Passing

AP clusters data based on similarity measures. The algorithm takes as input a set of real-valued

similarities between data points. Let Z = {z1, . . . , zL} represent the set of L transformed energy

vectors obtained from the trained encoder network shown in Fig. 4.1, where each zl ∈ RK with

K > N . The similarity between points in Z is defined as the negative Euclidean distance, given by
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u(l, i) = −||zl − zi|| for {l, i} = 1, . . . , L and l ̸= i. Unlike K-means or GMMs, which require a

predefined number of clusters, AP employs a “preference” parameter to determine which data points

are more likely to be chosen as “exemplars” or cluster centers. Since the CR network lacks prior

knowledge about the sensing data, we assume all points have an equal likelihood of being exemplars

and set the preference to a common value.

During the training phase of the AP algorithm, two types of messages are exchanged between the

data points in Z. The first type, called “responsibility”, is transmitted from a point l to a candidate

exemplar i. The value of r(l, i) quantifies how well point i serves as an exemplar for point l, given all

potential exemplars for l. The second type, termed “availability”, is sent from a candidate exemplar

i to point l. The value of a(l, i) indicates the appropriateness of point l selecting point i as its

exemplar, considering the overall support for l from other points. The update rules for rt(l, i) and

at(l, i) are given as follows

rt(l, i)←− u(l, i)− max
i′s.t.i′ ̸=i

{a(l, i′) + u(l, i′)}, (4.22)

at(l, i)←−min

{︃
0, r(i, i) +

∑︂
l′s.t.l′ /∈{l,i}

max{0, r(l′, i)}
}︃
. (4.23)

Both rt(l, i) and at(l, i) are set to zero at the start of training and updated iteratively until convergence.

The “self-availability” is updated differently

at(i, i)←
∑︂

l′s.t.l′ ̸=i

max{0, r(l′, i)}. (4.24)

This message represents the gathered evidence indicating that point i serves as an exemplar, based

on the positive responsibilities received from other points considering it as a candidate exemplar.

To stabilize numerical oscillations during training, a damping factor λ is utilized. As a result,

the updates of r and a are described as

rt+1(l, i) = λ · rt(l, i) + (1− λ)rt+1(l, i), (4.25)

at+1(l, i) = λ · at(l, i) + (1− λ)at+1(l, i). (4.26)
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Here, t denotes the iteration step. At each iteration, a point i is designated as an exemplar if

a(i, i) + r(i, i) > 0. Additionally, AP assigns cluster centroids based on argmaxi[a(l, i) + r(l, i)]

for l = 1, ..., L. The update rules in (4.23) involve straightforward, local computations that are easy

to implement, requiring message exchanges only between pairs of points with known similarities.

Moreover, these computations can be significantly accelerated using hardware such as Graphical

Processing Units (GPUs) or Tensor Processing Units (TPUs).

The convergence criterion used in this work is based on monitoring whether local decisions

remain unchanged after a predefined number of iterations. Once this condition is met, the algorithm

is considered to have converged. Let z0 and z1 represent the cluster exemplars corresponding to

H0 and H1, respectively. The similarity between a test vector z∗ and z0 is given by u0, while

the similarity between z∗ and z1 is denoted as u1. For a given threshold δ, if u0 − u1 > δ, then

z∗ is assigned to cluster H0; otherwise, it is classified as belonging to H1. Increasing δ reduces

the probability of misdetection but at the expense of a higher false alarm probability, as a larger δ

increases the likelihood of z∗ being classified into cluster H1.

4.7 G-VAP

In the previous sections, we introduced DeepSense and DEAP learning, both designed for CR

networks with limited cooperating SUs, which results in reduced degrees of freedom. However,

another challenge arises when dealing with a larger pool of cooperating SUs. While increased

cooperation can enhance sensing capabilities, we have previously proved that it also introduces

complexities for unsupervised models due to the high-dimensional nature of the data [8]. To

address this, our goal is to develop an unsupervised deep representation learning model that learns

accurate, separable, and efficient representations of high-dimensional sensing data. This, in turn,

enables unsupervised clustering algorithms to better distinguish patterns and determine the channel

state with greater precision. To achieve this, we propose G-VAP, the first fully unsupervised

deep generative approach for CSS. G-VAP employs a β-Variational Autoencoder (β-VAE) that

automatically identifies independent latent variables and encourages accurate and disentangled

representations of unsupervised sensing data. Additionally, it incorporates the AP algorithm to
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cluster the learned representations, effectively determining whether a channel is vacant or occupied.

4.7.1 β-VAE: Joint Deep Generative Modeling and Representation Learning

Let Y = {y1, . . . ,yL} be the set L collected energy vectors at the FC. Our objective is for each

observed data point yl to be associated with a corresponding low-dimensional latent variable zl. To

do so, we are primarily interested in two tasks: (1) For a fixed set of model parameters θ, for each

yl, compute the posterior distribution pθ(zl|yl); (2) Maximize the likelihood of the observed data

under θ. However, solving the posterior pθ(zl|yl) using Bayes’ theorem is intractable due to the fact

that the denominator requires marginalizing over zl as

pθ(zl|yl) =
pθ(yl|zl)p(zl)∫︁
pθ(yl|zl)p(zl)dzl

. (4.27)

This marginalization requires solving an integral over all of the dimensions of the latent space, which

is not feasible to calculate. Estimating θ via maximum likelihood estimation also requires solving

the following integral

θ̂ := argmax
θ

L∏︂
l=1

pθ(yl)

= argmax
θ

L∏︂
l=1

∫︂
pθ(yl|zl)p(zl)dzl.

(4.28)

Variational Autoencoders (VAEs) find approximate solutions to the intractable inference prob-

lems (4.27) and (4.28) by relying on variational Bayesian inference to learn a latent-space represen-

tation of the sensing data. A VAE is a deep probabilistic model that consists of two main structures:

the encoder (inference model) and the decoder (generative model). The goal is to maximize the like-

lihood of the observed data under the generative model (decoder) pθ(y|z)p(z), effectively learning

the best set of parameters θ that explain the data distribution. p(z) is the prior on the latent space,

which we consider to be the centered isotropic multivariate Gaussian p(z) ∼ N (0, I). This prior

encourages disentanglement of the posterior qϕ(z|y) and regulates the latent space capacity.

Given the intractability of pθ(z|y), VAEs approximate this posterior with qϕ(z|y), which is

parameterized by the encoder network. That is, during training both ϕ and θ are iteratively optimized
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such that qϕ(z|y) ≈ pθ(z|y). The goal of the encoder is to learn a function that maps an input

energy vector y to a low-dimensional latent Gaussian variable z characterized by the parameters µϕ

and σϕ. That is,

z ∼ qϕ(z|y) = N (z;µϕ, σ
2
ϕI). (4.29)

Fig. 4.2 shows the graphical representation of the VAE model. Solid lines indicate the generative

process pθ(y|z)p(z), while dashed lines represent the variational approximation qϕ(z|y) to the

intractable posterior pθ(z|y).

The proposed VAE architecture is shown in Fig. 4.3. The encoder employs a Deep Neural

Network (DNN) with parameters ϕ = {W(i),b(i)}i=1,2, where W(i) and b(i) denote the weight

matrices and bias vectors, respectively, for each layer i. The encoder’s input layer consists of N

neurons, corresponding to the number of energy levels collected by the cooperative SUs. The

architecture includes one hidden layer with J neurons, where J < N , and an output layer, which

represents the latent space, containing K neurons such that K < J < N . The encoder’s output can

be mathematically expressed as

fϕ(y) = µϕ, σϕ =

(︃
tanh(yW(1) + b(1))

)︃
W(2) + b(2). (4.30)

In the proposed VAE, the tanh(·) function is used to capture non-linear relationships in the energy

Figure 4.2: Graphical representation of the VAE model. The encoder’s variational parameters ϕ are learned
alongside the decoder’s generative parameters θ during training.
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Figure 4.3: The architecture of the β-variational autoencoder for representation learning in the proposed
G-VAP approach.

levels gathered by the SUs. The decoder is a DNN with three layers containingK, J , andN neurons,

respectively. The parameters of the decoder are θ = {W(i),b(i)}i=3,4. The decoder’s role is to

reconstruct an energy vector ŷ from the latent variable z. The decoder’s output ŷ can be expressed

as

fθ(z) = ŷ = σsigmoid

(︃
tanh(zW(3) + b(3))

)︃
W(4) + b(4), (4.31)

where σsigmoid(x) is the sigmoid function defined as σsigmoid(x) = 1/(1 + e−x).

We employ an advanced variant of VAEs known as β-VAE. This model introduces a hyperpa-

rameter β to regulate reconstruction accuracy and the disentanglement of the latent representation

of the sensing data. The training process involves optimizing the following objective function

L(θ, ϕ;y, z, β) = −Eqϕ(z|y)

[︃
log pθ(y|z)

]︃
+ βDKL

(︃
qϕ(z|y)||p(z)

)︃
. (4.32)

The term Eqϕ(z|y)[log pθ(y|z)] in the objective function facilitates accurate reconstruction of the

sensing data. Meanwhile, the Kullback-Leibler divergence, DKL(.||.), ensures that the latent space

remains continuous and conforms to a standard multivariate Gaussian distribution. When qϕ(z|y) =

p(z), the divergence DKL is zero; otherwise, it increases monotonically as qϕ(z|y) diverges from

p(z). Setting β > 1 enforces a stricter constraint on the latent space, promoting the learning of

disentangled representations of the sensing data.

During training, the objective is to minimize the loss function in (4.32) by optimizing the
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parameters ϕ and θ. That is,

ϕ∗, θ∗ = argmin
ϕ,θ
L(ϕ, θ;Y), (4.33)

where Y denotes a T ×N matrix representing a batch of T energy vectors. The Backpropagation

(BP) algorithm [68] is utilized to efficiently compute the gradient of the loss in (4.32) with respect toϕ

and θ. However, the random sampling of z, as illustrated in Fig. 4.3, renders direct backpropagation

through the VAE nodes intractable. To address this, the reparameterization “trick” is employed,

enabling a more stable and efficient training process [69]. This technique allows gradient flow by

reformulating the sampling process as

z = µϕ + σϕ ⊙ ϵ, (4.34)

where ϵ ∼ N (0, I) and⊙ is the element-wise product. The parameters of the VAE are then updated

iteratively through the use of Stochastic Gradient Descent (SGD). During each iteration, a batch of

energy vectors Y is utilized, and the SGD update is executed as follows

ϕ∗ := ϕ− η∇ϕL(ϕ, θ;Y), (4.35)

θ∗ := θ − η∇θL(ϕ, θ;Y). (4.36)

The step size for each iteration of SGD is controlled by the learning rate, denoted as η.

4.7.2 Affinity Propagation for Self-Organizing Clusters

The proposed VAE is designed to effectively learn a meaningful representation of the sensing

data. However, in its standard form, it does not inherently facilitate direct clustering. To enable the

FC to determine channel activity status (H0/H1), an unsupervised clustering algorithm is required.

We utilize the Affinity Propagation (AP) algorithm, as it eliminates the need for cluster centroid

initialization and prior knowledge of the number of clusters, enhancing the versatility and robustness

of G-VAP. A detailed discussion of the AP algorithm [70] can be found in Section 4.6.1, with a

summarized version provided in Algorithm 3 for reference.

Given a set of transformed energy vectors Z = {z1, . . . , zL} obtained through the encoder
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network of the VAE, the AP algorithm identifies a set of exemplars (cluster representatives) and

automatically determines the number of clusters in the data. AP operates based on a message-passing

mechanism between data points. During training, the latent-space data points in Z iteratively

exchange responsibility and availability messages until convergence. We adopt a convergence

criterion that checks whether local decisions remain unchanged over a certain period. Additionally,

we assign a uniform likelihood for all points to be selected as exemplars. At convergence, a data

point is assigned to clusterH0 if its similarity measure toH0 is greater than its similarity toH1. We

use the negative Euclidean distance as the similarity measure.

Algorithm 3 Affinity Propagation algorithm.
1: Calculate the similarity u(l, i) = −||l − i|| for all pairs {l, i} = 1, . . . , L with l ̸= i.
2: Initialize responsibility r(l, i) = 0 and availability a(l, i) = 0.
3: Set the preference value
4: repeat
5: Update responsibility:

rt(l, i)←− u(l, i)− max
i′s.t.i′ ̸=i

{a(l, i′) + u(l, i′)}

6: Update availability:

at(l, i)←− min

{︃
0, r(i, i) +

∑︂
l′s.t.l′ /∈{l,i}

max{0, r(l′, i)}
}︃

7: For self-availability:
at(i, i)←

∑︂
l′s.t.l′ ̸=i

max(0, r(l′, i))

8: Calculate rt+1(l, i) and at+1(l, i) using (4.25) and (4.26)
9: Update iteration counter: t← t+ 1

10: until convergence is reached
11: Assign exemplars based on the highest responsibility + availability values.

4.8 Simulation Results

In this section, we examine the performance of a CR network that leverages our proposed

deep representation learning frameworks to boost CSS efficiency in both small- and large-scale

cooperative networks.
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4.8.1 Setup

We consider a cooperative CR network operating in an area of 1 km2. The simulation parameters

are summarized in Table. 4.1. The position coordinates of the n-th SU and the m-th PU are denoted

by Cn
SU and Cm

PU , respectively. We consider the shadow fading ψm,n component to be quasi-

static throughout the sensing period. Initially, we set the path loss exponent to α = 4 and the

Nakagami-ν shape factor to ν = 1. We then adjust these parameters to assess system performance

across different propagation environments and fading conditions. We employ a sophisticated SGD

method for updating parameters known as Adaptive Moment Estimation (Adam), which is favored

for its accelerated computation speed. We compare our proposed unsupervised DL-based CSS

approaches against supervised methods such as a fully connected Deep Neural Network (DNN) and

a Long Short-Term Memory (LSTM) recurrent neural network. Table 4.2 provides an overview of

the architectures of the proposed DL models, along with the benchmark models. However, it is

important to mention that training supervised algorithms requires labeled data, which is impractical

in real-world scenarios, as obtaining such labels would violate the fundamental principles of CR.

We consider the training loss of the supervised learning models to the binary cross entropy loss.

The sensing data is split into training, validation, and testing sets containing 2400, 1000, and 10000

samples, respectively. To evaluate sensing performance, the Receiver Operating Characteristics

(ROC) is used, which shows the probability of detection Pd as a function in the probability of false

alarm Pfa. The ROC can be obtained by varying the decision threshold δ. Furthermore, Area Under

Table 4.1: Simulation parameters

Parameters
Parameter Symbol Value
Number of PUs m [1:4]
Number of SUs n [1:9]
PU Transmit Power ρm 200 mW
Bandwidth ω 5 MHz
Sensing Period τ 100 µs
Noise PSD η -174 dBm
β-VAE Parameter β 1.5
Learning Rate η [10−4 − 10−3]
Batch Size T 100
Training Epoches - [100-120]

70



the ROC Curve (AUC) and testing accuracy were also chosen as performance evaluation metrics.

Table 4.2: Network architectures of the proposed deep learning models and baseline methods for CSS.

Network

Type
Layers

Neurons

in Each Layer

Hidden

Activation

Output

Activation

SAE (Proposed) 5 n,15,20,15,n Tanh None

β-VAE (Proposed) 6 n,3,2*2,2,3,n Tanh Sigmoid

DNN (Benchmark) 3 n,2,1 Tanh Sigmoid

LSTM (Benchmark) 2 n, 3, 1 Sigmoid Sigmoid

4.8.2 Results and Analysis

DeepSense

First, to illustrate the training process of the proposed SAE, Fig. 4.4 presents the training loss

Lsparse. The figure depicts both the training and validation loss per epoch, where an epoch represents

a complete pass through the training set of energy vectors. Each epoch comprises multiple batches

of sensing data. Observing the loss profile, we can infer that the training was effective, as both

loss curves have converged. Furthermore, the minimal gap between the validation and training loss

suggests that the model is well-fitted and exhibits strong generalization capabilities.

Fig. 4.5 evaluates the detection performance of the DeepSense approach across different latent

Figure 4.4: Training loss Lsparse of the proposed SAE.
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Figure 4.5: The effect ofK on the detection performance of the DeepSense approach when n= 2,m= 2, CSU
1 =

(1.5km,0.5km), CSU
2 = (-0.5km,0.5km), CPU

1 = (0km,0km), and CPU
2 = (0.5km,0.5km).

space dimensionalities K (i.e., the number of output neurons in the encoder). Analyzing the ROC

curves, we observe that the highest detection performance is achieved at K = 20 neurons. This

suggests that a 20-dimensional latent space is optimal for capturing the non-linear relationships

among the reported energy levels, enabling the SAE to learn a meaningful sparse representation of

the energy vectors. Consequently, the GMM can effectively cluster the sensing data and accurately

determine the channel state (H0/H1).

Fig. 4.6 presents a performance comparison between the DeepSense detector (K = 20), the

supervised DNN, and the unsupervised GMM. Since the DNN is trained in a supervised manner,

the figure emphasizes the considerable performance difference between the DNN and the GMM. By

employing an SAE to learn a representation of the sensing data in a higher-dimensional feature space,

the DeepSense approach outperforms the GMM, which operates directly on the collected energy

vectors. Moreover, the DeepSense approach achieves performance on par with the supervised DNN

without requiring any labeled data, prior knowledge, or high SU cooperation costs. This makes our

method both practical and suitable for the realistic deployment of learning-based CR systems.

Fig. 4.7 illustrates the effect of the number of intermittently active PUs (m) on the testing

accuracy of the learning-based CR network. The testing accuracy is defined as the percentage

of times the learning-based CR system correctly determines the channel state. As m increases,

the accuracy of all learning methods improves. However, a notable performance gap is observed
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Figure 4.6: Benchmarking the detection performance of DeepSense when n= 2, m= 2, CSU
1 = (1.5km,0.5km),

CSU
2 = (-0.5km,0.5km), CPU

1 = (0km,0km), and CPU
2 = (0.5km,0.5km).

Figure 4.7: The effect of m on the detection performance of the intelligent radio network utilizing various
learning approaches.

between the SAE-GMM and the GMM. Specifically, the CR network using the DeepSense detector

demonstrates its ability to learn a valuable representation of the sensing data, which makes the

detection performance more resilient to the number of intermittently active PUs.

DEAP Learning

Fig. 4.8 demonstrates the sensing performance of our proposed DEAP learning approach and

compares it with our previously proposed DeepSense detector [10], the supervised DNN, and the

unsupervised GMM. Unlike DeepSense, which relies on a GMM for clustering and requires prior
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Figure 4.8: Benchmarking cooperative sensing performance of DEAP learning at n = 2, m = 2, CSU
1 =

(1.5km,0.5km), CSU
2 = (-0.5km,0.5km), CPU

1 (0km,0km), and CPU
2 = (0.5km,0.5km).

knowledge such as the expected number of clusters and centroid initialization, DEAP learning

achieves comparable performance without needing such prior information. The results in Fig. 4.8

show a significant performance gap between the DNN and the GMM, with the DEAP learning

approach outperforming the GMM. Furthermore, DEAP learning attains performance similar to the

supervised DNN without the use of labeled data, offering a practical and cost-effective solution

for learning-based CR systems. These results underscore the effectiveness of the DEAP learning

approach in improving the sensing performance of practical intelligent radio systems.

In Fig. 4.9, we examine the effect of increasing the number of cooperating SUs n on the

performance of our DEAP learning approach for cooperative sensing. As n increases, there is

a noticeable improvement in the AUC for all learning algorithms compared to Fig. 4.8. This

improvement can be attributed to the higher number of features (energy levels) in the sensing

data received by the FC, which enables it to benefit from the spatial diversity of the SUs, thereby

providing the system with more degrees of freedom. With this enhancement, our DEAP learning

approach continues to outperform the GMM, achieving performance comparable to both DeepSense

and the supervised DNN. These results highlight the effectiveness of our approach in exploiting the

advantages of cooperation among SUs, while maintaining competitive performance with state-of-

the-art techniques.

Fig. 4.10 assesses the detection performance of the proposed DEAP learning approach at different
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Figure 4.9: Benchmarking cooperative sensing performance of DEAP learning at n = 4, m = 2, CSU
1 =

(1.5km,0.5km), CSU
2 = (-0.5km,0.5km), CSU

3 = (0km,1km), CSU
4 = (1km,0km), CPU

1 (0km,0km), and CPU
2 =

(0.5km,0.5km).

Figure 4.10: Effect of ρm on detection probability at Pfa= 0.1, n = 2, m = 2, CSU
1 = (1.5km,0.5km), CSU

2 =
(-0.5km,0.5km), CPU

1 (0km,0km), and CPU
2 = (0.5km,0.5km).

PU transmission power levels ρm. As shown in Fig. 4.10, the probability of detection Pd increases as

the ρm values rise. With higher ρm, the energy levels of the spectrum also increase, making it easier

for the CR network to distinguish between an unoccupied and an occupied channel. Importantly,

the Pd of the proposed DEAP learning approach closely aligns with that of the supervised DNN,

even though it does not rely on labeled data. At low ρm, all learning techniques exhibit similar

performance. However, as ρm increases, the DEAP approach outperforms the GMM, achieving

performance close to the supervised DNN.
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Fig. 4.11 shows the detection performance of the CR network as the number of intermittently

active PUs, denoted by m, increases from 2 to 3. Notably, the proposed DEAP learning approach

achieves performance comparable to that of DeepSense and the supervised DNN. Furthermore, asm

increases, there is a corresponding rise in the AUC across all learning algorithms, compared to the

results in Fig. 4.8. This improvement is due to the higher spectrum energy levels detected, which lead

to more distinguishable clusters (H0/H1) in the representation space. These findings demonstrate

that the CR network employing DEAP learning can effectively learn a valuable representation of the

sensing data, ensuring robust detection performance despite variations in the number of intermittently

active PUs.

To assess the performance of our proposed DEAP learning approach in different propagation

environments, we vary the path loss exponent α. Specifically, we simulate scenarios with α =

2.42 for outdoor line-of-sight (OL) environments, 3.5 < α ≤ 4 for non-line-of-sight (NLOS)

environments, and α = 4.5 for obstructed environments, such as those with buildings. As shown in

Fig. 4.12, the detection performance decreases as α increases, reflecting the increasing difficulty of

the environment, with the poorest performance observed in obstructed environments. However, the

DEAP learning approach maintains strong performance in both OL and NLOS environments.

Figure 4.11: Cooperative sensing performance at n = 2,m = 3,CSU
1 = (1.5km,0.5km),CSU

2 = (-0.5km,0.5km),
CPU

1 (0km,0km), CPU
2 = (0.5km,0.5km), and CPU

3 = (-0.5km,0km).
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Figure 4.12: Effect of propagation environment on cooperative sensing performance of DEAP learning at
n = 2, m = 2, CSU

1 = (1.5km,0.5km), CSU
2 = (-0.5km,0.5km), CPU

1 (0km,0km), and CPU
2 = (0.5km,0.5km).

G-VAP

Fig. 4.13 evaluates the detection performance of the learning-based CR network using our G-

VAP method across different latent space dimensions K. From the analysis of the ROC curves, it

is clear that selecting K = 2 yields the best detection performance. This is because increasing the

dimensionality of the latent space beyond this value may not sufficiently constrain the β-VAE model

during training, potentially leading to overfitting and reducing its effectiveness. Therefore, a latent

space with 2 dimensions is found to be the most effective for capturing the complex relationships

among the reported energy levels, enabling the proposed β-VAE to learn a meaningful representation

of the energy vectors in a lower-dimensional latent space. Consequently, the AP algorithm at the FC

can accurately cluster the sensing data, efficiently determining the channel state (H0/H1).

Fig. 4.14 compares the detection performance of the unsupervised G-VAP detector (K = 2) with

the supervised DNN and LSTM, along with the vanilla AP algorithm trained on high-dimensional

sensing data, against our proposed G-VAP approach. As shown, there is a significant performance

gap between the supervised DNN and LSTM and the AP algorithm. The unsupervised AP algorithm,

when trained on high-dimensional data, faces challenges in creating an effective clustering model. In

contrast, the G-VAP method, utilizing a β-VAE to learn a representation of the sensing data in a lower-

dimensional latent space, outperforms the vanilla AP algorithm. Furthermore, the proposed G-VAP

approach achieves performance comparable to the supervised DNN and LSTM, without requiring
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Figure 4.13: The effect of latent dimensionality K on the performance of G-VAP at n= 9, m= 1, and CPU
1 =

(0.5km,0.5km).

Figure 4.14: Benchmarking G-VAP against other learning strategies at n= 9,m= 1, andCPU
1 = (0.5km,0.5km).

labeled data, prior knowledge, or the increased costs of SU-PU cooperation. This efficiency makes

our method a promising and effective solution for real-world applications of unsupervised deep

learning in CR systems.

Fig. 4.15 illustrates the sensing performance of the G-VAP approach across various PU trans-

mission power levels, ρm. The figure reveals a positive correlation between the detection probability

Pd and the increase in transmission power ρm. As ρm increases, the spectral energy rises, enabling

the FC to more effectively distinguish between an empty channel with only noise and an occupied
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Figure 4.15: The effect of ρm on the detection performance when Pfa= 0.1.

channel. Notably, the detection performance of the G-VAP method closely matches that of the super-

vised DNN and LSTM, irrespective of the value of ρm, unlike the vanilla AP. At higher ρm levels,

the performance of all learning models converges, as the clusters H0/H1 become more separable.

Fig. 4.16 shows how the testing accuracy of the learning-based CR network is affected by the

number of intermittently active PUs, denoted as m. Testing accuracy is defined as the percentage

of times the learning-based CR system correctly determines the channel state. As m increases, a

noticeable improvement in accuracy is observed across all learning methods. This is due to the

increase in spectrum energy levels as more PUs use the channel, which enhances the separability

of clusters H0 and H1. However, the G-VAP approach exhibits a significant advantage over the

vanilla AP algorithm and achieves performance comparable to the supervised DNN and LSTM,

without requiring labeled data for training. The CR network employing G-VAP is highly effective in

learning a useful representation of the sensing data, ensuring robust detection performance despite

the varying number of intermittently active PUs.

To evaluate the performance of the G-VAP approach under different propagation conditions, we

adjust the path loss exponent α. We use α = 2.42 to represent outdoor line-of-sight (OL) settings,

3.5 < α ≤ 4 for non-line-of-sight (NLOS) environments, and α = 4.5 for obstructed conditions

such as buildings. As shown in Fig. 4.17, an increase inα results in decreased detection performance,

with the most challenging scenarios arising in obstructed environments. Despite this, the G-VAP
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Figure 4.16: The effect of the number of PUs m on G-VAP’s performance.

Figure 4.17: The effect of path loss exponent α on the performance of G-VAP.

approach continues to deliver strong performance in both OL and NLOS settings.

To further assess the G-VAP approach in fading conditions, we fix α = 4 and vary the fading

severity ν. Fig. 4.18 illustrates that higher ν values reduce the fading effects within the channel,

improving sensing performance. Conversely, lower ν values lead to stronger fading, causing a decline

in performance. Despite the fading challenges, the G-VAP approach remains resilient, maintaining

reliable sensing capabilities. This is attributed to the β-VAE’s ability to perform both preprocessing

and feature learning, which enables the FC to effectively mitigate the negative impact of fading.
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Figure 4.18: The effect of Nakagami-ν shape factor on the performance of G-VAP.

4.9 Conclusions

In this chapter, we introduced three deep representation learning frameworks—DeepSense,

DEAP learning, and G-VAP—designed to enhance spectrum reasoning and analysis for CSS in CR

networks. These frameworks leverage unsupervised DL techniques to effectively learn representa-

tions of sensing data, addressing key challenges associated with both limited and large-scale SU

cooperation. Moreover, they address key challenges in representation learning and clustering with-

out requiring labeled data or prior knowledge of signal distributions. DeepSense employs an SAE to

learn representations of sensing data, combined with GMM clustering. Building upon DeepSense,

DEAP learning was introduced to overcome the limitations associated with GMM-based cluster-

ing, particularly its sensitivity to cluster centroid initialization and the need for predefined cluster

counts. DEAP learning retains the SAE for representation learning but employs the AP algorithm

for clustering. Unlike traditional clustering methods, AP infers the number of clusters directly

from the data and does not require predefined centroids, making DEAP learning more adaptable to

dynamic spectrum environments. To address challenges associated with a larger pool of cooperat-

ing users and the resulting high-dimensional energy vectors, we introduced G-VAP, the first fully

unsupervised deep generative framework for CSS. G-VAP utilizes a β-VAE to learn disentangled

latent representations of high-dimensional sensing data, allowing for more precise and separable
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clustering. Unlike previous DL-based approaches for CSS, the proposed methods require signif-

icantly less training data, thereby reducing communication overhead between the SU and the FC.

Furthermore, extensive simulations across diverse network settings, propagation environments, and

fading conditions demonstrate that the proposed approaches are on par with supervised DL-based

methods and outperform non-DL techniques, highlighting their effectiveness.
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Chapter 5

Distributed Learning for Large-Scale

Mobile Spectrum-Aware Networks

5.1 Introduction

With the emergence of new wireless networks and applications, CR networks are expanding

to encompass larger regions, often involving multiple PUs. Due to factors such as path loss,

shadowing, and fading, the spectrum state perceived by users varies across different locations within

the network, depending on whether the SUs are within or beyond the transmission range of the PUs.

This variation complicates accurate spectrum sensing, particularly in non-cooperative scenarios.

To enhance spectrum state identification, Cooperative Spectrum Sensing (CSS) was introduced,

enabling spatially distributed users to collaborate and share sensing information to improve detection

accuracy. However, these approaches generally assume that users remain stationary and require a

significant number of SUs. Additionally, aside from the extensive cooperation and data exchange

required among SUs, transmitting sensing data may unintentionally reveal private user information,

posing security and privacy risks.
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5.2 Related Works

With advancements in neural networks, Deep Learning (DL) has demonstrated significant ad-

vantages in feature extraction, leading to notable improvements in spectrum sensing [18]. A semi-

supervised spectrum sensing approach utilizing a Variational Autoencoder (VAE) trained with a

Gaussian mixture prior was introduced in [53]. Likewise, [71] proposed a semi-supervised spec-

trum sensing method that integrates a Generative Adversarial Network (GAN) with a Convolutional

Neural Network (CNN) to enhance robustness at low Signal-to-Noise Ratios (SNRs). In [11], we

developed an unsupervised CSS technique that employs a Sparse Autoencoder (SAE) for sensing data

representation learning, followed by clustering using Affinity Propagation (AP). The work in [72]

presented a graph neural network-based CSS method, which transforms signals into graph topology

to capture latent structural relationships, thereby improving performance under noise uncertainty.

Additionally, [73] introduced a CNN-based dequantization method that enhances CSS by converting

low-bit sensing data into near full-precision values without incurring signaling overhead. A Feder-

ated Learning (FL)-based CSS framework was proposed in [43], enabling SUs to train a supervised

deep neural network locally and transmit gradients to a Fusion Center (FC) instead of raw data.

Furthermore, [74] presented a compressed sensing-based FL framework designed to improve data

aggregation efficiency while preserving privacy.

The growing integration of DL-based CR operations, as demonstrated in the aforementioned

studies, underscores their essential role in facilitating network autonomy. However, DL techniques

for CSS, such as those in [43, 53], depend on labeled training data, which is difficult to obtain in

CR networks where users perform blind sensing without prior channel knowledge and lack direct

communication with PUs. Furthermore, existing DL-based CSS approaches typically assume that all

SUs remain stationary. In large-scale networks, this assumption necessitates deploying a substantial

number of fixed SUs for spectrum sensing, which is often impractical or cost-prohibitive. Notably,

mobility is an intrinsic feature of wireless network users, and prior research has demonstrated that

user mobility can significantly enhance spatial-temporal diversity, thereby improving received signal

quality across different wireless environments. Additionally, studies such as [10,11,73,75] employ a

centralized learning-based CSS framework, requiring SUs to transmit their sensing data to a central
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entity for spectrum state identification. However, this centralized approach raises privacy concerns

and imposes substantial communication overhead.

5.3 Contributions

Motivated by the above, our contributions can be summarized as follows:

• We propose FeRAP, the first fully unsupervised deep FL approach for robust, distributed,

and secure CSS in large-scale mobile networks. By leveraging the mobility of a few SUs

across a wide geographical area, spectrum data is gathered locally and used to train a joint

model. Each SU then transmits its model parameters rather than spectrum data to the FC. This

distributed approach not only reduces communication overhead between the FC and SUs but

also enhances model performance by leveraging the users’ spatial diversity.

• A novel β-Variational Autoencoder (β-VAE) architecture is proposed that identifies indepen-

dent latent variables and learns disentangled representations of the sensing data in a lower-

dimensional space. In the training process, only a small amount of unlabeled raw spectrum

data is required.

• Affinity Propagation (AP) is then locally trained on the learned representations at each co-

operating user, allowing the SUs to infer the spectrum state automatically without requiring

prior knowledge of the number of spectrum states or cluster centroid initializations.

• We conduct extensive experiments that validate the effectiveness and scalability of FeRAP,

highlighting its superior performance over other deep learning and FL CSS methods.

5.4 System Model

We examine the large-scale CR network depicted in Fig. 5.1, which comprises n = 1, ..., N

mobile SUs and m = 1, ...,M PUs, each constrained by a limited transmission range. The number

of active PUs is unknown in advance. The spectrum consists of B channels (B ≥ M ), each with a

bandwidth of ω, where each active PU intermittently operates on one of these channels. Detecting
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Figure 5.1: The studied large-scale mobile CR network. Dashed lines represent the transmission range of each
PU. At various sensing points along a path (A,B,C,D), the n-th mobile SU encounters different occupancy
states of the primary network. Colored channels indicate those occupied by the respective PU.

PU activity is formulated as a binary hypothesis problem, where H0 represents an idle channel, and

H1 indicates an occupied channel. If channel b is in use, the channel occupancy indicator sb is set to

1 (H1); otherwise, it remains 0 (H0). The N SUs move at low speeds within the network, allowing

the Doppler effect to be neglected [75]. Typically, SUs follow predefined routes that account for the

geographical structure of the network, with each route being segmented into l = 1, ..., L sensing

locations.

As each SU moves, it gathers spectrum data by measuring the energy level of channel b using

a basic energy detector, storing the results locally. Each SU remains at a sensing location l for τ

seconds, during which it accumulates ωτ energy for channel b. Throughout the sensing period, we

assume that hm,n remains constant, a reasonable assumption given that the sensing duration can be

designed to be shorter than the channel coherence time. The energy sample recorded at the i-th

instance by the n-th SU for channel b is

En,b(i) = sbhm,nXm(i) +Nn(i), (5.1)

where Xm(i) is the transmitted m-th PU signal. The channel gain between the m-th PU and n-th

SU, hm,n, is modeled using a Nakagami-ν distribution, suitable for outdoor multipath fading. Its
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Probability Density Function (PDF) is given by

fhm,n(y; ν,Ω) =
2

Γ(ν)
(
ν

Ω
)νy2ν−1 exp

(︃
− νy2

Ω

)︃
, (5.2)

where ν ≥ 0.5 denotes the Nakagami shape parameter, which quantifies the severity of fading. The

spread parameter is given by Ω = E[h2m,n] > 0, while Γ(.) represents the Gamma function. The

thermal noise Nn(i) at the n-th SU follows a Gaussian distributionN (0, σ2n), with a power spectral

density expressed as σ2n = E[|Nn(i)|2]. As a result, the energy level of channel b at the n-th SU,

normalized by σ2n, is

yn,b =
2

σ2n

ωτ∑︂
i=1

|En,b(i)|2. (5.3)

yn,b follows a non-central chi-squared distribution with q = 2ωτ degrees of freedom and a non-

centrality parameter ζn,b defined as

ζn,b =
2τ

σ2n
sbgm,nρm, (5.4)

where ρm represents the transmit power of the m-th PU, expressed as

ρm =

∑︁ωτ
i=1E[|Xm(i)|2]

τ
. (5.5)

gm,n represents the power attenuation from the m-th PU to the n-th SU defined as

gm,n = |hm,n|2 = D−α
m,n · ψm,n · νm,n, (5.6)

whereDm,n is the Euclidean distance, α is the path loss exponent, ψm,n accounts for shadow fading,

and νm,n represents the multipath fading component.

Normally, if the number of energy samples ωτ is large, the energy level yn,b observed by the n-th
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SU in channel b can be modelled as a Gaussian distribution N (µyn,b|sb , σ
2
yn,b|sb), with parameters

µyn,b|sb = E[yn,b|sb] = 2ωτ +
2τ

σ2n
sbgm,nρm, (5.7)

σ2yn,b|sb = E[(yn,b − µyn,b|sb)
2|sb] = 4ωτ +

8τ

σ2n
sbgm,nρm. (5.8)

As the n-th SU moves along its path while sensing channel b, the energy level recorded at the l-th

location is denoted as yln,b. Given a total ofL sensing locations along the path, the complete spectrum

sensing data gathered by the n-th SU is represented as an energy vector yn,b = {y1n,b, ..., yLn,b}. It

is important to note that SUs do not require synchronization during the sampling process, and the

number of sensing locations may vary among them. However, for simplicity, we assume that all SUs

have the same number of sensing locations.

5.5 FeRAP: A Deep Federated Representation Learning Approach for

Secure and Distributed Cooperative Sensing

Federated Learning (FL) is a decentralized machine learning framework that leverages local

sensing data from each SU to collaboratively train a model, enhancing overall performance. In

this study, we propose FeRAP, a novel deep federated representation learning approach for mobile

CSS, as illustrated in Fig. 5.2(a). Due to the challenge of obtaining labeled data in CR networks,

FeRAP operates in an unsupervised fashion, relying solely on unlabeled sensing data for training.

It utilizes an advanced variant of generative Variational Autoencoders (VAEs) to model the sensing

data distribution while simultaneously performing non-linear compression of the high-dimensional

input space. This not only enhances sensing accuracy but also facilitates the generation of previously

unseen synthetic data. During each training iteration, SUs transmit their model parameters to the

Fusion Center (FC), which aggregates them and distributes the updated parameters back. This

collaborative training strategy preserves the privacy of SUs while enabling them to benefit from

shared insights without directly exposing their raw data.
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Figure 5.2: The proposed FeRAP approach and the VAE architecture at the n-th SU.

5.5.1 Deep Federated Representations through β-VAE

A Variational Autoencoder (VAE) is a deep probabilistic generative model that employs varia-

tional Bayesian inference to learn a probabilistic representation of sensing data in a latent space. We

propose a VAE architecture built using Deep Neural Networks (DNNs), as depicted in Fig. 5.2(b),

consisting of a probabilistic encoder (inference model) and a probabilistic decoder (generative

model). The decoder is trained locally at each SU n to model the joint distribution pθn(yn,b, zn,b) =

pθn(yn,b|zn,b)pθn(zn,b), where pθn(zn,b) ∼ N (0, I) is a prior. In VAEs, computing the exact

posterior distribution pθn(zn,b|yn,b) is often infeasible due to its complexity [53]. To address this,

variational inference approximates the posterior using qϕn(zn,b|yn,b), where the probabilistic en-

coder estimates the latent variables from the observed data yn,b. The prior pθn(zn,b) plays a crucial

role in encouraging disentanglement within qϕn(zn,b|yn,b). Ensuring alignment with the prior ef-

fectively manages the latent capacity and promotes statistical independence. During training, both

ϕn and θn are optimized to minimize divergence between qϕn(zn,b|yn,b) and pθn(zn,b|yn,b). The

encoder produces the parameters µϕn and σϕn for the distribution qϕn(zn,b|yn,b), which is defined

as

zn,b ∼ qϕn(zn,b|yn,b) = N (zn,b|µϕn , σ
2
ϕn
I). (5.9)

The proposed VAE architecture at each SU n consists of a fully connected DNN encoder.

This encoder is parameterized by ϕn = {W(i),b(i)}i=1,2, where W(i) and b(i) denote the weight

matrices and biases, and the superscripts i refer to the layer numbers. The input layer of the encoder

contains L neurons, corresponding to the energy levels gathered along the SU’s path. The encoder

has a hidden layer with J neurons, where J < L. The output of the encoder consists of two
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components, µϕn and σϕn , each represented by K neurons, where K < J < L. The encoder’s

output can therefore be expressed as

fϕn(yn,b) = µϕn , σϕn =

(︃
tanh(yn,bW

(1) + b(1))

)︃
W(2) + b(2). (5.10)

In each VAE, the hyperbolic tangent activation function, tanh(.), is used to capture the non-linear

relationships in the energy levels collected by an SU. The choice of tanh is based on its symmetry

around zero, which facilitates faster convergence. The decoder’s architecture consists of a DNN

with three layers containing K, J , and L neurons, respectively. The decoder’s parameters are

θn = {W(i),b(i)}i=3,4, and its purpose is to reverse the encoder’s function by reconstructing the

energy vector ỹn,b from the input zn,b. Therefore, the output ỹn,b is defined as

fθn(zn,b) = ỹn,b = σsigmoid

(︃
tanh(zn,bW

(3) + b(3))

)︃
W(4) + b(4), (5.11)

where σsigmoid(x) is the sigmoid function, defined as σsigmoid(x) =
1

1+e−x , ensuring that the VAE

outputs are constrained between 0 and 1.

We utilize an advanced variant of VAEs, known as β-VAE, which incorporates a hyperparameter

β to regulate the trade-off between reconstruction accuracy and the disentanglement of the latent

representation of the sensing data. The training objective at each SU is therefore

L(θn, ϕn;yn,b, zn,b, β) = −Eqϕn (zn,b|yn,b)[log pθn(yn,b|zn,b)] + βDKL(qϕn(zn,b|yn,b)||pθn(zn,b)).

(5.12)

The term Eqϕn (zn,b|yn,b)[log pθn(yn,b|zn,b)] encourages the accurate reconstruction of the sens-

ing data, while DKL(.||.) denotes the Kullback-Leibler divergence, which ensures that the la-

tent space remains continuous and conforms to a standard multivariate Gaussian distribution. If

qϕn(zn,b|yn,b) = pθn(zn,b), then DKL = 0; otherwise, DKL increases as qϕn(zn,b|yn,b) deviates

from pθn(zn,b). By setting β > 1, a stronger constraint is applied to the latent space, promoting

disentangled representations of the sensing data. The training objective of each SU is to minimize
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the loss function in (5.12) by optimizing ϕn and θn.

ϕ∗n, θ
∗
n = arg min

ϕn,θn
L(ϕn, θn;Yn,b). (5.13)

Here, Yn,b represents a T ×Lmatrix, containing a batch of T energy vectors. The Backpropagation

(BP) algorithm [68] is employed to compute the gradient of the loss in (5.12) with respect to ϕn

and θn efficiently. However, the random sampling of zn,b, as shown in Fig. 5.2(b), makes direct

Backpropagation (BP) through the VAE impractical. To address this, the reparameterization “trick”

is utilized, which facilitates a more stable and efficient training process [69], by reformulating the

sampling procedure as

zn,b = µϕn + σϕn ⊙ ϵ, (5.14)

where ϵ ∼ N (0, I) and ⊙ denotes the element-wise product. Parallel gradient descent is used to

iteratively update the parameters of the VAEs at each SU. In each iteration, an SU processes a batch

of energy vectors Yn,b, and as a result, the parallel Stochastic Gradient Descent (SGD) update for

all N SUs is performed as

ϕ∗n := ϕn − η∇ϕnL(ϕn, θn;Yn,b), (5.15)

θ∗n := θn − η∇θnL(ϕn, θn;Yn,b). (5.16)

The step size for each SGD iteration is determined by the learning rate η. In this work, we use a

refined SGD method called Adaptive Moment Estimation (Adam), preferred for its faster computation

speed [9, 53].

At each iteration, the SUs update their VAE parameters ϕn and θn and send them to the FC for

aggregation. To improve security, differential privacy and secret sharing techniques can be applied

to obscure any parameters sent [43]. The FC aggregates the parameters as ϕn =
∑︁N

n=1 ϕn

N and

θn =
∑︁N

n=1 θn
N , then sends them back to the SUs for model refinement as shown in Fig. 5.2(a).

Unlike traditional DL-based CSS, FeRAP transmits model parameters rather than data, reducing

communication overhead and ensuring the privacy of each SU while maintaining control over the

training process. After training is complete, all SUs share the final model parameters.
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It is noteworthy that SUs only require the encoder fϕn(.) to map newly collected energy vectors

onto the latent space. The decoder fθn(.), on the other hand, is solely used to generate synthetic

samples based on the learned data distribution within the latent space. If this functionality is not

needed, SUs may discard the decoder’s parameters without affecting their ability to process new

data. An additional advantage of our proposed approach is that a newly joining SU can simply

download the β-VAE parameters from the FC and immediately use them to transform its collected

spectrum data. It is also important to highlight that learning algorithms typically assume that the

data collected at each SU is independent and identically distributed (i.i.d.). However, in real-world

scenarios, this assumption may not hold, potentially causing the learning model to struggle with

generalization once deployed. Furthermore, it is generally assumed that the data distribution remains

stable after deployment. If the distribution changes, leading to a situation known as dataset shift

due to a non-stationary environment, it may become necessary to retrain the model to maintain

performance.

5.5.2 Clustering with Affinity Propagation via Message Passing

The proposed VAE is structured to effectively capture a representation of the sensing data in latent

space at each SU. However, it is essential to note that the VAE does not inherently support clustering.

Therefore, an unsupervised clustering algorithm is required for each SU to identify the spectrum state

(H0/H1). The dynamic nature of the radio environment makes unsupervised clustering challenging,

especially for widely used methods like k-centers algorithms. These approaches begin with randomly

selected exemplars and iteratively refine them to minimize the sum of squared errors. However, their

high sensitivity to the initial choice of exemplars often necessitates multiple runs with different

starting points to achieve reliable results. Additionally, these methods require prior knowledge of

the expected number of clusters/spectrum states.

To overcome these limitations, we use the Affinity Propagation (AP) algorithm, as detailed in

Section 4.6.1, for clustering. The AP algorithm seeks to identify a representative set of data points,

called exemplars, within the encoder’s latent space and assigns labels to the remaining data points

based on their proximity to these exemplars. By representing each data point as a node in a network,

the AP algorithm facilitates the exchange of real-valued messages (responsibility and availability)
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between nodes until an optimal set of exemplars and clusters is determined. There are two types of

messages exchanged between data points, each considering a different aspect of competition. The

“responsibility” r(l, i), illustrated in Fig. 5.3(a), is sent from data point l to candidate exemplar point

i, indicating the accumulated evidence of how well-suited point i is as the exemplar for point l,

considering other potential exemplars. The “availability” a(l, i), shown in Fig. 5.3(b), is sent from

candidate exemplar point i to point l, reflecting the accumulated evidence of how appropriate it is for

point l to select point i as its exemplar, while accounting for the support from other points suggesting

that point i should be an exemplar. The AP algorithm is presented in detail in Algorithm 3.

Let Zn,b = {z1n,b, . . . , zTn,b} be the set of T transformed energy vectors by the n-th SU’s encoder

fϕn(Yn,b). Let z0n,b and z1n,b denote the exemplars for clusters H0 and H1, respectively. We use the

negative Euclidean distance as a similarity metric, where the similarity between points in Zn, b is

defined as u(l, i) = −||zln, b − zin,b|| for l, i = 1, . . . , L and l ̸= i. For a transformed test vector

z∗n,b using the VAE’s encoder, its similarity to z0n,b is u0, and to z1n,b, u1. With a threshold δ, if

u0 − u1 > δ, z∗ is assigned to cluster H0; otherwise, it is assigned to H1. The FeRAP framework

is detailed in Algorithm 4.

Candidate 
exemplar 

Compe�ng 
candidate exemplar

Data point

Candidate 
exemplar 

Compe�ng 
candidate exemplar

Data point

(a) Sending responsibili�es (b) Sending availabili�es

Figure 5.3: Messages passed during training of the Affinity Propagation algorithm (a) “Responsibility” r(l, i)
is the message sent from data points to candidate exemplars, representing how strongly a data point prefers
a particular candidate exemplar over others. (b) “Availability” a(l, i) is the message sent from candidate
exemplars to data points, reflecting the extent to which a candidate exemplar is suitable to serve as a cluster
center for a given data point.
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Algorithm 4 The proposed FeRAP approach for cooperative spectrum sensing in mobile large-scale
networks.

1: Mobile SUs are deployed to collect sensing data Yn,b

2: Initialize each SU’s VAE model parameters ϕn and θn.
3: Set iteration counter t = 0
4: while t ≤ MaxEpoch do
5: SUs train their VAE model and send their updated parameters to FC.
6: Aggregate the VAE’s model parameters at FC.
7: FC broadcasts the final VAE’s model parameters ϕ∗ and θ∗ back to the SUs.
8: t = t+ 1
9: end while

10: SUs utilize the collaboratively learned VAE parameters to map Yn,b onto the encoder’s latent
space, generating Zn,b.

11: SUs independently train the AP algorithm on Zn,b to determine the number of clusters and
exemplars.

12: Determine the state of the primary channel.

5.6 Simulation Results

In this section, we evaluate the performance of our proposed FeRAP approach, which leverages

deep federated representation learning for CSS in large-scale mobile CR networks.

5.6.1 Setup

We consider a large-scale CR network covering a 6×6 km2 area, consisting ofn = 4 SUs moving

along straight paths, each path containing L = 80 data points. Notably, FeRAP’s performance

remains independent of the specific routes, allowing SU paths to be tailored according to the

geographical environment in real-world applications. The sensing duration for each SU is set to

τ = 100µs. The primary network includes m = 2 PUs. There are b = 2 channels, each with a

bandwidth of ω = 5 MHz, with two SUs sensing channel 1 and the other two sensing channel 2 as

they traverse the area. The PUs transmit independently with a power of ρm = 250 mW. Importantly,

the mobile SUs do not have access to the transmission power information of the PUs. The noise

power spectral density is η = −174 dBm. Initially, the path loss exponent is set to α = 4, and the

Nakagami-ν shape factor is set to ν = 1, after which these parameters are adjusted to evaluate the

system’s performance under different propagation environments and fading conditions. The shadow

fading component ψm,n is assumed to be quasi-static during sensing, and the VAE loss parameter β
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in (5.12) is set to 1.5.

To evaluate our unsupervised FeRAP approach for CSS, we compare it to two supervised DL

methods: a standalone, fully connected DNN and a FL model with a fully connected DNN at each

SU n. Additionally, we compare FeRAP to the vanilla unsupervised AP algorithm. The proposed

VAE architecture consists of 6 layers with 80, 3, 2 × 2, 2, 3, and 80 neurons, respectively. The

fully connected DNN has 3 layers with 80, 2, and 1 neurons. However, it is important to note

that generating labeled data (i.e., sensing data and the corresponding label H0/H1) for supervised

learning is impractical in realistic CR networks. All models are trained with an Adam optimizer

(learning rate η = 10−3) for 120 epochs, using batches of 100 energy vectors. The dataset of each SU

is split into training, validation, and testing sets with 2400, 1000, and 10,000 samples, respectively.

The sensing performance is evaluated using the Receiver Operating Characteristics (ROC) and the

Area Under the ROC Curve (AUC).

5.6.2 Results and Analysis

Fig. 5.4 compares the detection performance of the unsupervised FeRAP approach with that of

the supervised standalone and federated DNNs. It also evaluates the performance of the vanilla AP

algorithm trained on high-dimensional sensing data against FeRAP. The results in Fig. 5.4 reveal a

significant performance gap between the supervised DNN and the AP algorithm, as the unsupervised

AP fails to form a reliable clustering model in high-dimensional data. In contrast, FeRAP, which

Figure 5.4: Benchmarking the detection performance of our proposed FeRAP approach.
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utilizes a VAE to learn a low-dimensional latent representation of the sensing data, significantly

outperforms the vanilla AP. Moreover, FeRAP outperforms the standalone DNN without the need

for labeled data, prior knowledge, or transmitting private sensing data to the FC. Impressively, it

achieves performance similar to the supervised federated DNN by leveraging joint model training

and the spatial diversity of the SUs.

Fig. 5.5 examines the sensing performance of the FeRAP approach at different levels of PU

transmission power ρm. Wireless standards, such as IEEE 802.11, GSM, and LTE, define various

transmission power settings to adapt to changing channel conditions [11], making it essential to

assess FeRAP’s detection probability Pd over a range of ρm values. The figure demonstrates a

positive correlation between detection probability Pd and increasing transmission power ρm; as ρm

increases, the spectral energy rises, enabling the SUs to better distinguish between idle spectrum

(with only noise) and occupied spectrum. Notably, FeRAP’s detection performance closely matches

that of the supervised federated DNN across all ρm values, in contrast to the vanilla AP. Furthermore,

FeRAP outperforms the standalone DNN in detection performance.

To assess FeRAP under various propagation conditions, we modify the path loss exponent α.

Specifically, we set α = 2.42 for outdoor line-of-sight (OL) environments, select 3.5 < α ≤ 4 for

non-line-of-sight (NLOS) conditions, and choose α = 4.5 for obstructed environments. As illus-

trated in Fig. 5.6, detection performance declines with increasing α, with obstructed environments

presenting the most difficult conditions. However, FeRAP maintains strong performance in both OL

Figure 5.5: Effect of ρm on detection performance.
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and NLOS conditions. To further evaluate FeRAP under fading effects, we keep α = 4 constant

and adjust the fading severity ν. As shown in Fig. 5.7, higher values of ν reduce the impact of

fading, improving sensing performance, while lower values of ν increase fading effects, leading

to decreased performance. Despite the challenges posed by fading, FeRAP consistently delivers

reliable sensing performance, thanks to the VAE’s role in both preprocessing and feature extraction,

along with the collaborative federated training, which allows SUs to effectively mitigate the adverse

effects of fading.

To assess the scalability of our FeRAP approach for CSS, we vary the number of cooperating

SUs n and the number of PUs m. The results in Fig. 5.8 clearly show that as the number of SUs

n involved in the joint FeRAP training increases, the sensing performance improves significantly.

Figure 5.6: Effect of α on detection performance of FeRAP.

Figure 5.7: Effect of Nakagami-m fading parameter on detection performance of FeRAP.
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Figure 5.8: The detection performance of FeRAP under various n SUs and m PUs.

This indicates that the collective participation of SUs strengthens FeRAP’s ability to accurately

detect spectrum usage. Additionally, increasing the number of PUs m utilizing the spectrum, while

keeping the number of SUs constant, leads to a noticeable improvement in detection performance.

This enhancement is likely due to the greater ability of the SUs to differentiate between unoccupied

and occupied spectrum bands. These results underscore FeRAP’s scalability and its potential to

support large-scale CR networks with an increasing number of devices.

5.7 Conclusions

In this chapter, we introduced FeRAP, the first unsupervised deep federated representation

learning approach for cooperative sensing in large-scale mobile CR networks. FeRAP offers several

key advantages over existing DL-based CSS methods. First, its distributed learning approach

significantly reduces the communication overhead seen in centralized CSS techniques, which require

SUs to send their sensing data to a fusion center. Additionally, FeRAP enhances sensing performance

by capitalizing on cooperation among spatially diverse SUs. Second, this distributed framework

ensures sensing data privacy, placing control back into the hands of the SUs. Thirdly, this framework

enables a newly joined SU to download the trained β-VAE model parameters, allowing it to transform

spectrum data for analysis and decision-making. Moreover, these downloaded parameters also allow

the SUs to generate new synthetic samples, as the β-VAE is a generative model. FeRAP is a
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fully data-driven solution, requiring no prior knowledge, and can be trained using locally collected

data. Our results demonstrate that FeRAP outperforms traditional non-deep learning methods while

achieving performance comparable to supervised federated learning. Additionally, we showcased its

scalability across different node deployments and its robustness in diverse network configurations,

propagation environments, and fading conditions.
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Chapter 6

Towards Self-Managing and Sustainable

Spectrum Sharing Networks

6.1 Introduction

The rise of the Internet of Things (IoT) has significantly transformed how we interact with the

world. As the number of interconnected devices increases, the IoT has opened up new opportunities

for remote monitoring, automation, and the creation of intelligent urban environments. However, the

ongoing expansion of devices and services, along with the growing demand for spectrum resources,

has shifted the focus toward enhancing spectral efficiency [76]. Additionally, IoT devices must coexist

with other technologies like Bluetooth and Wi-Fi [77], leading to unavoidable spectrum congestion

within the allocated IoT bands. To address these issues, CIoT, a combination of CR technology

and IoT networks, has emerged as a solution for optimizing spectrum utilization efficiency [18, 60].

Using the underlay CR approach, CIoT devices operate as SUs that are permitted to use spectrum

resources allocated to PUs, provided their transmissions do not interfere with PUs communications

[41, 78]. Furthermore, CIoT devices compete with each other due to their varied requirements,

ranging from ultra-reliable, low-latency communications (URLLCs) to maximizing QoS [79]. This

diversity introduces challenges related to fairness and interference. Additionally, interference in

CIoT networks can arise from both PUs and SUs, given their shared use of the channel. This may

result in a degradation of signal quality and a reduction in overall performance. Consequently,
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effective channel access schemes are crucial for ensuring efficient spectrum sharing.

The main challenge in underlay CIoT is to develop a dynamic power control strategy that enables

secondary devices to adjust their transmit power while remaining below the PUs’ interference

threshold and maximizing their throughput [80, 81]. Power control strategies in CR networks are

classified into cooperative and non-cooperative categories. Cooperative strategies involve SUs

collaborating to optimize power levels for a shared goal, while non-cooperative strategies have SUs

independently determining their power levels without considering the overall network performance.

Power control becomes especially complex for energy-constrained CIoT devices, which must also

prioritize extending the network’s lifetime. Energy Harvesting (EH) is an emerging solution to

enhance the sustainability of energy-limited CIoT networks, as radio frequency EH enables CIoT

devices to harvest energy from radio frequency sources generated by nearby devices [82].

6.2 Related Works

Reinforcement Learning (RL) has recently gained significant attention for its ability to navigate

complex and dynamic environments, such as those encountered in CIoT, without the need for

detailed or accurate prior knowledge [18]. Several studies have investigated Deep Reinforcement

Learning (DRL), which integrates RL with Deep Learning (DL), to devise power control strategies.

However, centralized DRL methods, like those in [36,83,84], often face issues related to convergence

and security. While distributed power control strategies in CIoT networks have been explored in

works such as [79, 85, 86], they mostly rely on Multi-Agent Reinforcement Learning (MARL).

Although MARL enables collaborative learning through the exchange of state information, it brings

about convergence challenges and increases signaling overhead. As the number of agents grows,

maintaining stable and efficient multi-agent power control becomes more difficult. Moreover,

MARL approaches require substantial communication and resource utilization, which makes them

less feasible for energy-limited devices.

To address these challenges, recent studies have moved towards RL and DRL-based non-

cooperative power control strategies. In [80], a convolutional DeepQ-Network (DQN) was employed

for power control in full-duplex CR, successfully meeting QoS and interference constraints. [6]
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proposed a power control strategy using a DQN, considering factors such as channel occupancy,

channel gain, and energy arrival to optimize the total achievable rate of an EH-enabled CR device.

A DQN-based power control strategy for an SU transmitter was suggested in [87], which adhered

to interference and energy constraints while employing a Time Switching (TS) protocol to switch

between EH and data transmission. The study in [88] introduced a power control approach based on

a DQN within a CR network with a single SU and a primary network consisting of one PU.

CIoT devices, which may be owned by various organizations with different objectives, can have

conflicting goals, leading to competition for spectrum access. A non-cooperative game for power

control is presented in [89], where dynamic learning is used to optimize power allocation for multiple

SUs with minimal overhead. However, the authors assume a simplistic feedback mechanism from

the primary user base station, which is unrealistic due to the lack of cooperation between primary

and secondary networks [9, 10]. In [90], the power control problem in CR networks was addressed

using an Asynchronous Advantage Actor-Critic (A3C) DRL approach, implemented by multiple

competing SUs in parallel. The authors of [91] proposed a Q-learning-based distributed power

control method for multiple SUs, aiming to maximize energy efficiency while respecting QoS and

interference constraints. Although effective,Q-learning faces scalability issues, particularly in large

state spaces. Additionally, Q-learning’s inability to generalize across similar contexts limits its

adaptability to evolving environments.

Based on the analysis of the aforementioned works, studies such as [6, 80, 87] have largely

focused on developing non-cooperative power control strategies, often overlooking the interactions

among different SUs. It is important to recognize that CIoT devices often have conflicting interests.

In pursuit of higher transmission rates, each device naturally aims to optimize its transmit power.

However, this individualistic approach can lead to increased interference levels. Furthermore, works

like [6, 87] make the unrealistic assumption of a consistently stable radio signal source for EH.

While [89, 90] acknowledge the presence of competing SUs, they fail to consider their energy

constraints. Additionally, the assumption made in [89] regarding PU-SU communication is not

feasible in underlay CR environments [9, 10]. Moreover, [90] overlooks the varied capabilities of

learners within the CR network, assuming uniformity across devices. However, CIoT networks

typically involve a wide range of devices with differing capabilities [18]. These gaps highlight the

102



urgent need for a new approach to joint power control and channel access coordination, specifically

designed for energy-constrained CIoT networks.

Most studies that apply DRL to optimize transmission in CRs have primarily concentrated on

managing either power [36, 80] or time allocation [92] individually. Additionally, they overlook the

potential of an integrated approach that could significantly improve both data transmission efficiency

and EH. While [93] proposed a joint strategy to optimize both time and power, they took a multi-

agent Device-to-Device (D2D) perspective, where CRs not only share common objectives but can

also harvest energy from each other’s transmissions. Likewise, [94] explored the joint optimization

of time and power allocation, but their approach relies on offline optimization methods that require

prior knowledge and assumptions about the radio environment. [87] developed a DRL-based power

control strategy for EH-enabled CR networks, but it treats time allocation for CR activities as a fixed

hyperparameter. This approach not only requires prior knowledge for optimal performance but also

limits adaptability to changes in the environment. This highlights the need for more dynamic and

flexible learning approaches that can not only manage power more effectively but also optimize time

allocation in the ever-changing CIoT environments.

6.3 Contributions

Based on the identified gaps in the literature and the pressing need for innovative solutions in

the field of CIoT networks, our contributions focus on two critical aspects. First, we address the

challenge of developing an intelligent strategy that effectively manages and optimizes joint power

control and channel access coordination. Second, we introduce a dynamic learning approach that

efficiently manages power and time allocation in dynamic CIoT scenarios. We summarize our

contributions below:

• We first introduce a system model for a Wireless Power Transfer (WPT)-enabled CIoT network

with multiple competing users, where a battery-operated CIoT Tx must intelligently manage

its transmit power and decide whether to harvest energy or transmit data. We define the

optimization problem to maximize the long-term achievable sum rate of the CIoT network,

considering channel occupancy, competition, channel gain, energy arrival, battery capacity,
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and interference constraints. This formulation guides the coordination of joint power control

and channel access within the CIoT network, modelled as a Markov Decision Process (MDP)

without cooperation between devices for state information.

• Subsequently, we introduce a novel Deep Q-Network (DQN)-based DRL algorithm that fea-

tures an innovative non-linear activation function designed to combat the “dying neuron”

problem, facilitating quicker convergence and improving the overall dynamics of the learning

process. To further enhance stability and expedite convergence, we propose a novel initializa-

tion method based on Kaiming (He) [95] for setting the DQN’s parameters. Additionally, we

present a thoughtfully designed scheduler that dynamically adjusts the learning rate (gradient

update rate) based on the model’s performance.

• We introduce a system model for a Simultaneous Wireless Information and Power Transfer

(SWIPT)-enabled CIoT network, where the network gains greater flexibility by controlling both

its transmit power and the time allocated to each activity (EH and transmission). Furthermore,

we adopt a more realistic EH approach, enabling the agent to recharge from ambient sources

without relying on a dedicated stable source. We define the optimization problem to maximize

the long-term achievable sum rate while accounting for channel occupancy, channel conditions,

energy arrival, battery capacity, and interference constraints. The problem is then modelled

as a discrete-time model-free MDP with continuous states and discrete actions.

• To intelligently manage the allocation of time between EH and transmission, we propose

a novel lightweight Double Deep Q-Network (DDQN) designed to autonomously learn an

operation policy for the CIoT agent. Furthermore, the Double DeepQ-Network (DDQN) also

allows the CIoT agent to dynamically adjust its transmit power to optimize both long-term

achievable throughput and network lifetime, considering factors such as channel occupancy,

energy arrival patterns, and interference constraints. Additionally, we introduce an Upper

Confidence Bound (UCB) strategy that effectively optimizes decision-making in the CIoT

environment.

• We evaluate the performance of the proposed DRL algorithms and benchmark them against
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other works in the literature. Extensive simulations demonstrate the effectiveness of the

proposed algorithms, showcasing their ability to converge to a stable state across various

simulation settings. Moreover, in terms of average sum rate, average achievable reward,

and interference ratio, the proposed algorithms significantly outperform existing baseline

approaches.

6.4 Joint Power Control and Access Coordination in WPT-EH CIoT

6.4.1 System Model and Problem Formulation

Cognitive IoT System

Consider the time-slotted communication system depicted in Fig. 6.1 (a), which operates over a

finite set of time slots indexed by t = 1, ..., T , each of duration τ . Each time slot t is divided into two

distinct phases: a controlling phase and an operation phase. In the controlling phase, a CIoT device

must sense the presence of PUs and decide whether to transmit data or engage in energy harvesting

for that time slot. Furthermore, the device must determine its transmit power according to a strategy.

In the operation phase, the CIoT device carries out either its data transmission or energy harvesting

process.

In an underlay CIoT network, a secondary Transmitter-Receiver (Tx-Rx) pair shares the spectrum

allocated to the primary network. The system model under consideration is illustrated in Fig. 6.1

(b). There are N additional CIoT devices indexed by n = 1, .., N , with whom the CIoT Tx must

coordinate channel access. We adopt a model where only one CIoT device can use a time slot at

any given moment. This structure ensures that when a single CIoT device occupies multiple time

slots, it is equivalent to multiple CIoT devices, each occupying one slot. This design enables the

system to scale effectively as the number of CIoT devices grows. The CIoT Tx is equipped with a

rechargeable battery of capacity Bmax and is capable of Wireless Power Transfer (WPT) EH. The

number of time slots used by PUs for transmission is denoted by L, where 1 < L < T , and a PU

Tx transmits consistently at a power level of P t
p in all L slots. In the t-th time slot, if the PU Tx is
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Figure 6.1: Illustration of the designed WPT-enabled CIoT network: (a) its time-slotted operation and (b) its
system model.

active, the PU status indicator ωt
p is set to 1; otherwise, it is set to 0. That is,

ωt
p =

⎧⎪⎪⎨⎪⎪⎩
1 if the PU Tx is using time slot t,

0 otherwise.
(6.1)

Similarly, if the n-th CIoT device is transmitting data in the t-slot, the status indicator ωt
n is then 0,

otherwise it is 1. Consequently,

ωt
n =

⎧⎪⎪⎨⎪⎪⎩
0 if the n-CIoT device is using time slot t,

1 otherwise.
(6.2)

In underlay CR, a CIoT Tx can use the same slot as a PU Tx as long as it adheres to the

interference threshold Ith. That is, the CIoT Tx needs to adjust its transmit power P t
s such that

P t
sg

t
sp ≤ Ith, (6.3)

where gtsp represents the channel power gain between the CIoT Tx and the PU Rx. However, CIoT

devices must coordinate their transmissions to avoid interference. Specifically, if the n-th CIoT

device is using the t-th time slot, i.e., ωt
n = 0, the CIoT Tx should refrain from transmitting data.

106



The channel power gains for the CIoT Tx-Rx pair gtss, the PU Tx and CIoT Rx pair gtps, and the CIoT

Tx and PU Rx pair gtsp, are modeled as independently and identically distributed (i.i.d.) Rayleigh

fading channels. These channel power gains are assumed to remain constant within a time slot, but

may vary independently across different time slots.

We represent the CIoT device’s decision between transmission and energy harvesting as dt. If

dt = 0, the CIoT device engages in data transmission mode; conversely, if dt = 1, the CIoT device

harvests energy. Accordingly,

dt =

⎧⎪⎪⎨⎪⎪⎩
0 Data transmission mode in time slot t,

1 Energy harvesting mode in time slot t.
(6.4)

When the t-th time slot is idle, the achievable rate of the CIoT Tx is

Rt
0 = log2

(︃
1 +

P t
sg

t
ss

σ2

)︃
, (6.5)

where P t
s is the transmit power of the CIoT Tx, and σ2 is the channel noise variance. If the channel

is occupied by a PU Tx at the t-th time slot, the achievable rate of the CIoT Tx decreases due to the

interference of the PU, which is given by

Rt
1 = log2

(︃
1 +

P t
sg

t
ss

P t
pg

t
ps + σ2

)︃
. (6.6)

Therefore, the achievable rate of the CIoT Tx at a time slot t can be written as

Rt = ωt
n(1− dt)

[︁
(1− ωt

p)R
t
0 + ωt

pR
t
1

]︁
. (6.7)

Energy Harvesting Model

The Energy Harvesting (EH) process is modeled as an energy arrival process, where energy

is harvested in independent and identically distributed time slots. The energy harvested at time

t = 0 is set to e0 = 0. It is assumed that the energy harvested during each time slot et follows a

uniform distribution: et ∼ U(0, Emax). The value of Emax depends on the radio signals, which are
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influenced by the presence of the other N CIoT devices and the PU Tx in each time slot. Therefore,

Emax is

Emax =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
P t
p if ωt

p = 1, PU transmitting,

P t
n if ωt

n = 0, CIoT n transmitting,

P t
p + P t

n if ωt
p = 1 and ωt

n = 0.

(6.8)

where P t
n is the transmit power of the n-th CIoT device. It should be noted that the EH process does

not result in any further increase in energy consumption for PUs or other CIoT devices [86].

The initial battery level of the CIoT transmitter is denoted asB0, andBt represents the available

battery energy at the t-th time slot. Following the assumption in [84], we consider the rechargeable

battery to be ideal, meaning there are no energy losses during storage or retrieval. Energy consump-

tion in CIoT devices is solely due to data transmission. Furthermore, any excess harvested energy

that exceeds the battery’s full capacity is considered discarded. Time slots are normalized, allowing

for the interchangeable use of the terms “energy” and “power” [84]. At any given time t, the transmit

power P t
s selected by the CIoT Tx must not exceed the total energy available in the battery, Bt. To

this end,

0 ≤ (1− dt)P t
sτ ≤ Bt, (6.9)

where τ is the duration of the time slot. In each time slot t, the battery’s energy storage or usage

depends on the choice between energy harvesting and data transmission. At the next time slot, t+1,

the available energy is updated based on the decision dt made by the CIoT device, as follows

Bt+1 = min
{︁
Bt + dtet − (1− dt)P t

sτ,Bmax

}︁
. (6.10)

Problem Formulation

Our goal is to develop a dynamic algorithm for joint power control and channel access coordi-

nation in the CIoT network, aiming to ensure continuous energy availability while improving the

likelihood of successful data transmissions. The primary challenge is to maximize the sum rate of

the CIoT network by optimizing both transmit power P t
s and the decision dt. This optimization

process considers factors such as the interference threshold Ith, coordination of channel access with
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N other CIoT devices, the available battery energy Bt, and the harvested energy et. Therefore, the

task of maximizing the sum rate for the CIoT transmitter is formulated as a constrained optimization

problem, expressed as

max
dt,P t

s

T∑︂
t=1

ωt
n(1− dt)

[︁
(1− ωt

p)R
t
0 + ωt

pR
t
1

]︁
(6.11a)

s.t.
k∑︂

t=1

P t
sτ ≤ B0 +

k−1∑︂
t=0

et, ∀k, (6.11b)

0 ≤ (1− dt)P t
sτ ≤ Bt, dt ∈ I ≜ {0, 1}, (6.11c)

dt = 1, ∀ωt
n = 0 for n = 1, ..., N, (6.11d)

ωt
pg

t
spP

t
s ≤ Ith, ωt

p ∈ Ω ≜ {0, 1}, (6.11e)

where k denotes the number of slots the CIoT Tx decides to transmit. (6.11b) ensures that the

transmission power P t
s stays within the bounds of the initial battery energy B0 and the cumulative

harvested energy across all time slots within the frame. (6.11c) requires that the CIoT Tx transmits

with a maximum power level equal to the current battery energy Bt during any given time slot

t. (6.11d) prevents the usage of time slots t that are concurrently used by other competing CIoT

devices. Finally, (6.11e) ensures that the CIoT transmitter adheres to the interference threshold Ith

to avoid causing harmful interference to the PU in every time slot t.

To achieve the optimization objective in (6.11a), the CIoT Tx must learn to make intelligent

decisions regarding both dt and P t
s by leveraging locally observable information such as PU and

CIoT activity, remaining energy, and channel quality. If the CIoT Tx had prior knowledge of

such factors, the problem could be addressed using classical offline methods [36]. However, by

implementing a Deep Reinforcement Learning (DRL) algorithm, the CIoT Tx can optimize its

decision-making process effectively without requiring prior knowledge about the environment.

We model the decision-making process of the CIoT Tx as a stochastic control process within a

discrete-time system. The Markov property indicates that the next state of a system depends only

on its current state and action, not on any previous states. In our system, the stochastic behavior of

states, including the activities of the PU and CIoT devices, as well as energy arrivals, adheres to the
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Markov property. Consequently, the problem of learning the optimal strategy for power control and

channel access can be effectively formulated as a discrete-time Markov Decision Process (MDP)

with continuous states and discrete actions. The MDP tuple is defined as (S,A,P ,R, T ), where

S represents the set of states of the environment, A denotes the set of actions, P is the set of

state transition probabilities, R is the set of rewards associated with the state-action pairs, and T

represents the time step.

In practical scenarios, obtaining the exact Probability Density Function (PDF) of energy and

channel fading is challenging, making it difficult to acquire the exact state transition probabilities

P [6]. As a result, we adopt a model-free MDP and develop a DRL framework to estimate R given

S and A without needing P . In this model, the CIoT agent 1 learns a policy π : S → A through

continuous exploration and training with the environment, which maximizes the accumulated reward.

Therefore, the model-free MDP tuple becomes (S,A,R, T ). Below, we define the components of

the MDP tuple.

State Space S: In each time slot, the CIoT Tx, as a learning agent, observes the state of the

environment and uses this information for decision-making. The state space consists of all states

across T time slots. At each time st, the agent considers factors such as the current battery level Bt,

the energy harvested in the previous time slot et−1, whether the slot is occupied by a PU Tx or any

of the N other CIoT devices, and the channel power gains gtps, gtsp, gtss. Therefore, the state at the

t-th time slot is represented by

st = {Bt,et−1, ω
t
p, ω

t
n, g

t
ps, g

t
sp, g

t
ss},

for n = 1, ..., N.

(6.12)

The environment in (6.12) is defined by the occupancy status of the N CIoT devices, allowing it

to accommodate a diverse range of devices, each with different capabilities. The occupancy state

remains independent of the specific capabilities of the devices, which highlights the flexibility of

CIoT networks.

Action Space A: The action space consists of all possible actions that the CIoT agent can

take. Based on the state of the environment st, the CIoT agent must decide whether to transmit data
1The term CIoT agent refers to the CIoT Tx within the examined network.
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(dt = 0) or harvest energy (dt = 1). Additionally, it must determine the appropriate transmit power

P t
s . Thus, the action of the CIoT agent at the t-th time slot is represented as at = [dt, P

t
s ], where

dt ∈ I ≜ {0, 1} and P t
s ∈ P .

Reward R: The CIoT agent evaluates the quality of its chosen action based on the reward it

receives, which helps refine its decision-making strategy. As such, we consider the achievable rate

as the reward when the CIoT Tx transmits data and adheres to the constraints in (6.11). If the CIoT

Tx opts to harvest energy, the reward is 0. If the CIoT Tx selects an action at that violates the

constraints in (6.11), a negative reward is assigned as a penalty. Therefore, the reward rt for the

CIoT agent at each time slot t is expressed as

rt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt
0 dt = 0, ωt

p = 0, ωt
n = 1, 0 ≤ P t

sτ ≤ Bt,

Rt
1 dt = 0, ωt

p = 1, ωt
n = 1, 0 ≤ P t

sτ ≤ Bt, P
t
sg

t
sp ≤ Ith,

0 dt = 1, P t
sτ > Bt,

−ϕ others.

(6.13)

Time Step T : We define each transition from time slot t to t + 1 as a single step. We iterate

through each state-action pair for all time slots T .

6.4.2 Deep Q-Network with ϵ-Greedy Exploration Strategy

In the model-free MDP, the CIoT agent faces the challenge of determining the state-action value

without prior knowledge of P . However, by employing Reinforcement Learning (RL), the CIoT

agent can approximate the state-value function and develop a strategy π to select actions based on

the current state of the environment. The goal is to maximize the long-term cumulative reward (rate)

using π, while adhering to the constraints of the CIoT system. Q-learning, an RL algorithm, is used

to estimate the expected state-action value function, known as the Q-function. The Q-function can

be expressed as

Qπ(s, a) = E[rt + γmax
a

Qπ(st+1, a)|st = s, at = a], (6.14)

where rt represents the immediate reward for a given actionat and state st. The termγmax
a
Qπ(st+1, a)

represents the discounted expected future reward, with γ ∈ {0, 1} being the discount factor. The

111



value of γ controls the weight of future rewards compared to immediate rewards, with larger values

emphasizing long-term rewards. The objective of the CIoT agent is to determine the optimal action

a that maximizes the Q-value at each time slot t.

The Proposed Deep Q -Network Architecture

Q-learning can sometimes experience slow convergence when trying to identify the best actions

to resolve a problem [85]. As a result, we utilize a Deep Q-Network (DQN), an enhanced version

of Q-learning that uses a Deep Neural Network (DNN) to approximate the Q-function. The DQN

predicts the cumulative reward (i.e.,Q-value) for each possible action a in a specific state s. In other

words, the DQN adjusts its parameters θ to ensure that

Qπ(s, a;θ) ≈ Qπ(s, a). (6.15)

The DQN is implemented using a fully connected DNN. The input layer of the DQN contains j

neurons, which correspond to the dimensionality of the state space S. The DQN also includes two

hidden layers, with h1 and h2 neurons in each layer, respectively. The output layer consists of z

neurons. The parameters θ = {W(i),b(i)} for i = {1, . . . , 4}, represent the weights and biases of

the DQN network layers.

To initialize the weights of the DQN, we use Kaiming (He) initialization [95]. This approach

initializes the weights by sampling from a Gaussian distribution N (0, 2
νi
), where νi represents

the number of input neurons in each layer i. By applying He initialization, faster convergence is

encouraged, and generalization during training is improved. Additionally, a leaky Rectified Linear

Unit (ReLU) activation function f(.) is used within the Q-network architecture. The leaky ReLU

activation helps prevent the “dying ReLU” problem (where neurons output zero) by ensuring that all

neurons contribute to the learning process, which leads to faster convergence and enhanced learning

dynamics. The leaky ReLU activation is defined as

f(x) =

⎧⎪⎪⎨⎪⎪⎩
x, if x ≥ 0,

αx, if x < 0,

(6.16)
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where α ∈ {0, 1} is the “slope” used to adjust the “leakiness” of the ReLU.

During training, a Target DQN is utilized, initially identical to the DQN. However, as training

progresses, the parameters of the Target DQN are updated less frequently than the DQN, typically

spanning multiple training steps. The update rate of the Target DQN is denoted as κ. To train the

proposed DQN, the Mean Squared Error (MSE) loss L is employed to compute the MSE between

the predicted Q-values and the target Q-values as

L(θ) = E

[︄[︃
(rt + γ argmax

a∈A
Qπ(st+1,a;θ

′))−Qπ(st,at;θ)

]︃2]︄
, (6.17)

where θ′ represents the parameters of the target DQN. The DQN is trained using experience

replay [83]. Specifically, an experience replay buffer of size m is utilized to store past experiences

(st, at, rt, st+1) in the memoryM. When the memory reaches its capacity, the dataset of state-action

pairs is sampled into mini-batches of experiences, which are then used during training to update the

parameters of the DQN. This approach helps mitigate temporal correlations in the data, reducing the

potential for training instability.

During training, the goal is to minimize the loss in (6.17) over a mini-batch of state-action pairs

(s,a). That is,

θ̂ = argmin
θ
L(θ; s,a). (6.18)

The backpropagation algorithm [68] can be used effectively to calculate ∇θL(θ; s,a), which is the

gradient of the loss with respect to the DQN’s parameters given the state-action pairs. Using the

obtained∇θL(θ; s,a), Stochastic Gradient Descent (SGD) can be used to update the parameters of

the DQN accordingly as

θ = θ − η∇θL(θ; s,a), (6.19)

where η ∈ {0, 1} is the learning rate, which controls the step size at each iteration of SGD.

Additionally, a well-designed learning rate scheduler is utilized. It starts with an initial learning

rate that guarantees stable learning in the early stages. As training progresses, the scheduler

adapts the learning rate dynamically, taking into account factors such as model performance and a

defined patience period. This approach helps achieve efficient convergence and enhances overall
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performance.

ϵ-Greedy Exploration Strategy

To investigate the environment and identify the best strategies, we utilize an ϵ-greedy exploration

method. This strategy effectively manages the balance between exploitation and exploration. In the ϵ-

greedy method, the CIoT agent selects the action that maximizes the estimatedQ-value (exploitation)

with probability 1 − ϵ, while opting for a random action (exploration) with probability ϵ. Lower

values of ϵ encourage exploitation, whereas higher values promote exploration. To enhance early

exploration, we implement a dynamically decaying ϵ with a decay rate λ. This method enables the

agent to gather crucial environment knowledge in the early stages of training and gradually shift

towards exploiting this knowledge to maximize rewards.

In Fig. 6.2, the proposed DRL algorithm is depicted. Initially, the DQN processes the current

state of the environment st and selects an action at based on the current policy π. The reward rt

is then calculated, and the next state st+1 is determined. The experience tuple (st, at, rt, st+1) is

stored in the replay memory M until the memory reaches its full capacity. Once the memory is

full, the DQN begins training by randomly sampling a mini-batch X of experiences from the replay

memoryM to update its parameters θ using (6.19). After every κ episodes, the parameters θ′ of the

Target Q-network are updated by copying the parameters θ from the DQN. The training continues

until the episodes are completed.
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Figure 6.2: The proposed ϵ-greedy-based DQN algorithm.
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The algorithm for joint power control and channel access coordination, based on the CIoT system

operation and the proposed DRL framework, is provided in Algorithm 5. It is important to note that

the use of non-linear function approximators, such as other DRL methods, eliminates any guarantees

of convergence [96, 97]. Consequently, it is very challenging to provide a precise upper bound or

confirm convergence [84]. However, the simulation results demonstrate consistent learning without

requiring modifications or additional assumptions about the environment.

6.4.3 Simulation Results

This section presents the results of comprehensive simulations showing the performance of the

proposed DRL strategy for joint power control and channel access coordination in WPT-enabled

CIoT networks.

Setup

Table 6.1 contains the simulation parameters used. The channel power gains gtss and gtsp follow

an exponential distribution with a mean of 0.1 and 0.2 respectively. Without loss of generality, we

consider gtsp = gtps. For our proposed DQN architecture, we utilize four fully connected layers, each

with a specific number of neurons: j = 7, h1 = 128, h2 = 64, and z = 22. The Leaky ReLU’s

hyperparameter is set to α = 0.02. Regarding the learning rate, we begin with η = 4 × 10−4,

which then decreases by a factor of 50% every 500 episodes. An advanced SGD-based parameter

update method called Adaptive Moment Estimation (Adam) is used during training, as it offers faster

computation time. A penalty value of ϕ = 7 is assigned when the CIoT agent violates the constraints

outlined in (6.11) during the training process.
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Algorithm 5 Algorithm for joint power control and channel access coordination to solve problem
(6.11).

1: Input: Cognitive radio environment simulator and its parameters.
2: Output: Optimal action at in each time slot t.
3: Initialize experience replay memoryM with size m.
4: Initialize battery level B0.
5: Initialize ∀θ ∈ θ, θ ∼ N (0, 2

vi
), and set θ′ ← θ.

6: Initialize η and set the scheduler’s reduction factor and patience period.
7: Initialize ϵ and set the decay rate λ.
8: Initialize γ and κ.
9: for episode = 1 to episodes do

10: for t = 1 to T do
11: Observe the state st.
12: ifM is not full then
13: Sample a random action at.
14: Get the reward rt and observe the next state st+1.
15: Store (st, at, rt, st+1) inM.
16: else
17: Sample p ∼ U(0, 1).
18: if p > ϵ then
19: Get action at according to current policy π.
20: else
21: Sample a random action at.
22: end if
23: Get the reward rt.
24: Sample a mini-batch X fromM.
25: Predict Target Q-values using:

rt + γmax
a∈A

Qπ(st+1,a;θ
′)

26: Predict Q-values using Qπ(s,a;θ).
27: Calculate the loss in (6.17).
28: Update θ of DQN online using (6.19).
29: if (episode ·t) mod κ = 0 then
30: Update θ′ of Target DQN: θ′ ← θ.
31: end if
32: end if
33: Update η using scheduler.
34: Update ϵ.
35: Update the state st+1 ← st.
36: end for
37: end for
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Table 6.1: Simulation parameters for the proposed DRL-driven WPT-enabled CIoT Network.

Parameters Value
Number of time slots T 30
Duration of each time slot τ 1 s
Number of PU transmission slots L 20
Transmission power of PU Pp 0.2 W
Interference threshold Ith 0.01 W
Battery capacity Bmax 0.5 W
Transmission power range of CIoT Tx P 0.01 ∼ 0.1 W
Number of competing CIoT devices N [2, 10]
Transmission power of CIoT devices Pn 0.1 W
Noise power σ2 1e-3 W
Experience replay memory size m 10,000
Training episodes 2500
Mini-batch size 100
Learning rate η 4 ∗ 10−4

Learning rate reduction factor 50%
Learning rate patience period 500 episodes
Penalization ϕ 7
Discount factor γ 0.99
Exploitation rate ϵ 0.1
Exploration decay rate λ 1 ∗ 10−8

Leakiness parameter α 0.02
Update rate of Target DQN κ 200

To evaluate the effectiveness of our proposed DRL strategy, which employs the DQN-driven

design discussed in Section 6.4.2, we conduct a comparative analysis with the following strategies:

• A learning strategy in which the CIoT agent selects an action at at each step of the environment

based on the policy derived from the proposed DQN outlined in [98].

• A random strategy, where the action at is chosen randomly at each step from the action space,

without any intelligent decision-making or cognition.

• A fixed strategy, based on rule-based approaches derived from the constraints outlined in

(6.11), which does not incorporate any learning processes. In this approach, the CIoT agent

determines its action at at each step according to these predefined rules.

In our study, we analyze both the sum rate and the achievable reward over the course of the training

episodes. To evaluate these metrics, we apply a weighted moving average to reduce the effect of

short-term fluctuations, with the goal of identifying trends in the sum rate and reward. This method

balances recent changes with historical data, providing a more comprehensive analysis of the training
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episodes. The weighted moving average is calculated as follows

averagenew = (1− δ)× averageold + δ × value, (6.20)

where δ is the weight assigned to the new value and 1 − δ is the weight assigned to the previous

average. For our considerations, we set δ to 0.01.

Results and Analysis

In Fig. 6.3, we display the Average Sum Rate (ASR) attained by the CIoT agent employing our

proposed DQN-based strategy. During the initial stages of training, the CIoT agent utilizing our

approach incurs penalties due to exploratory actions, resulting in lower performance compared to

the fixed strategy and performance similar to the random strategy. However, as training progresses,

the CIoT agent using our strategy gradually surpasses both the fixed and random strategies. This

improvement is attributed to the agent’s ability to consider long-term performance, leading to more

efficient resource utilization and ASR. It is important to note that the fixed strategy does not incur

penalties, as it follows predefined operational rules and constraints. However, despite avoiding
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Figure 6.3: The CIoT agent’s ASR performance across training episodes, employing diverse strategies for
joint power control and channel access coordination.
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penalties, the fixed strategy does not achieve maximum throughput. Overall, the performance

gap between our proposed learning approach and the fixed and random strategies highlights the

limitations of relying solely on predefined rules or random actions to optimize data rates in dynamic

CIoT environments. As a result, Fig. 6.3 emphasizes the importance of utilizing learning algorithms

to effectively optimize data rates in response to the continuously changing radio environment.

Furthermore, we observe that both our proposed DRL strategy and the method used in [98] converge,

validating the effectiveness of our training approach. However, a noticeable performance gap emerges

between our proposed DQN and the approach in [98], highlighting not only the faster convergence

and adaptability of our DQN, but also its consistent ability to deliver superior performance.

In Fig. 6.4, the average reward achieved by the CIoT agent in each training episode is shown.

As seen in the figure, our proposed method consistently outperforms all other strategies in terms of

average reward. Comparing Fig. 6.3 and Fig. 6.4, it is evident that the ASR is consistently higher

than the average reward for all strategies. This discrepancy arises because the average reward plot

takes into account both negative rewards (penalties) and positive rewards (sum rate), whereas the

ASR plot only reflects positive rewards. Fig. 6.4 demonstrates that both our proposed DRL strategy

and the method in [98] show convergence. However, the CIoT Tx using the DQN from [98] incurs

substantial penalties early in training, ultimately converging to a lower average reward compared to

our approach, which leads to slower convergence. In comparison to the fixed strategy, the approach
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Figure 6.4: The CIoT agent’s average achievable reward during episodes of training while utilizing various
types of strategies for joint power control and channel access coordination.
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in [98] initially yields almost identical average rewards. However, upon examining Fig. 6.3, it

becomes clear that the approach in [98] achieves a considerably higher ASR than the fixed strategy.

This difference occurs because the CIoT Tx using the DQN in [98] attempts to learn a policy that

maximizes the ASR, leading to penalties during training, whereas the fixed strategy avoids penalties.

As shown in Fig. 6.4, the random strategy employed by the CIoT Tx leads to numerous penalties

over time, resulting in an overall negative reward.

Fig. 6.5 shows the effect of different ϵ values used in the ϵ-greedy exploration strategy on the

average reward of the CIoT agent employing our DRL method. As the values of ϵ vary, changes in the

CIoT agent’s behavior and the corresponding effect on the average reward are observed. Specifically,

when ϵ = 0.1, the highest average reward is achieved. This indicates that lower values of ϵ provide

an optimal balance between exploration and exploitation, enabling the CIoT agent to make decisions

based on its acquired knowledge while occasionally exploring new possibilities. However, as ϵ values

increase, a decline in the average reward is seen. The poorest performance is observed at ϵ = 0.7,

suggesting that the CIoT agent is overly focused on exploration. This excessive exploration results

in frequent penalties, as the CIoT agent selects actions randomly or with minimal consideration of

its learned knowledge, leading to suboptimal choices and a decrease in performance.
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Figure 6.5: Effect of the ϵ parameter in the ϵ-greedy exploration strategy on the average achievable reward of
the CIoT agent using our proposed DRL-driven strategy.
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Fig. 6.6 illustrates the impact of the initial battery level B0 on the ASR achieved by the CIoT

agent using our proposed DRL approach. The lowest performance is observed when the CIoT agent

starts with B0 = 0, leading to a decline in performance as the agent frequently incurs penalties for

attempting data transmission without adequate energy. In this case, the CIoT agent focuses on energy

harvesting to ensure enough energy for transmission whenever possible. On the other hand, when

the initial battery level is non-zero (B0 > 0), the agent becomes less focused on energy harvesting

and can concentrate more on identifying actions that maximize data transmission. Consequently, the

optimal scenario is when the CIoT agent begins training with a fully charged battery (B0 = Bmax),

allowing the agent to prioritize actions that maximize its reward while also contributing to a longer

network lifetime.

Fig. 6.7 illustrates the effect of increasing the maximum battery capacity Bmax on the ASR of

the CIoT agent. As shown, our proposed approach consistently outperforms other strategies across

a range of Bmax values. This demonstrates the flexibility of our approach in optimizing the ASR,

whether the battery capacity is large or small. With a higher Bmax, energy harvesting improves,

enabling the CIoT agent to sustain data transmission over extended periods, which results in higher

ASR values. Moreover, increasingBmax reduces battery overflow (harvesting energy beyondBmax),
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Figure 6.6: The effect of starting battery level B0 on the ASR of the CIoT agent using our proposed DRL-
driven approach.
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Figure 6.7: The effect of the maximum battery capacity Bmax of the CIoT agent on the ASR while using
different types of strategies for joint power control and channel access coordination.

leading to fewer penalties for the SU. However, after a certain threshold, further increases in battery

capacity yield diminishing returns, indicating a point of resource saturation where additional capacity

does not result in proportional improvements in performance.

Fig. 6.8 shows the impact of varying the total number of time slots T on the ASR of the CIoT

Tx. As T increases, there is a corresponding rise in ASR for all strategies. This trend is due to the

larger number of time slots, which provide the CIoT Tx with more opportunities for transmission,

resulting in a higher ASR. However, our proposed DRL strategy consistently outperforms all other

strategies in terms of ASR across all values of T . In situations with fewer time slots (small T values),

the CIoT system faces limitations from the reduced number of transmissions, leading to lower ASR.

Interestingly, for smaller T values, both the fixed strategy and the approach in [98] demonstrate

similar performance, suggesting that the latter is less effective at maximizing ASR in such scenarios.

In contrast, the performance of our proposed DRL strategy significantly exceeds that of all other

strategies, highlighting its exceptional effectiveness and adaptability across different communication

system conditions.

To demonstrate the adaptability of our proposed approach to various primary network scenarios,

we vary the number of time slots occupied by the PU and analyze its impact on the performance of the

122



20 22 24 26 28 30
Number of time slots T

0

20

40

60

80

100

Av
er

ag
e 

Su
m

 R
at

e 
(b

its
/s

/H
z)

Proposed Strategy
DQN Strategy in [98]
Fixed Strategy
Random Strategy

Figure 6.8: The effect of the number of time slots T on the CIoT agent’s ASR under different strategies.

CIoT agent. Fig. 6.9 shows the effect of the PU’s occupied slotsL on the ASR of the CIoT agent, with

the total number of time slots fixed at T = 30. Notably, our DRL strategy consistently outperforms

all other strategies for different values of L. As L increases, the CIoT Tx gains more opportunities

for energy harvesting. However, to adhere to the interference threshold Ith, the transmission power

is reduced during theL slots, leading to a more cautious approach to data transmissions and a decline

in ASR. It is important to note that for higher values of L, particularly when L ≥ 28, all strategies

attain similar performance. In this case, the PU occupies nearly all available slots, leaving the CIoT

agent with very limited action choices, resembling a fixed strategy.

Fig. 6.10 evaluates the achievable ASR of the CIoT Tx using our proposed DRL approach

across various PU transmission power levels Pp, comparing it to benchmark strategies. The figure

clearly shows that as Pp increases, the ASR improves for all strategies, reflecting enhanced energy

harvesting with higher PU transmission power. Notably, our proposed DRL strategy surpasses all

other strategies by a significant margin. This highlights our approach’s ability to optimally leverage

harvested energy, maximizing the ASR while complying with operational constraints. Even in

scenarios with low Pp, our DRL approach demonstrates superior learning in power control and

channel access strategies, resulting in better ASR than alternative strategies. In contrast, the DQN

in [98] struggles to effectively exploit the energy gains from higher PU power, indicating suboptimal
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Figure 6.9: The effect of the number of PU transmission slots L on the CIoT agent’s ASR under different
strategies.

0.10 0.12 0.14 0.16 0.18 0.20
PU Transmit Power Pp (W)

0

20

40

60

80

100

Av
er

ag
e 

Su
m

 R
at

e 
(b

its
/s

/H
z)

Proposed Strategy
DQN Strategy in [98]
Fixed Strategy
Random Strategy

Figure 6.10: The effect of the PU transmit power Pp on the CIoT agent’s ASR under various strategies.

performance. Although it also employs a DQN-based approach, it fails to fully capitalize on

harvested energy, further emphasizing the effectiveness of our proposed approach.

In Fig. 6.11, we increase the number of competing CIoT devices from N = 2 to N = 10 and

examine the CIoT agent’s interference rate throughout the training episodes. The interference rate
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Figure 6.11: The CIoT agent’s interference rate under various strategies when the number of competing CIoT
devices N= 10. The legend shows the ASR at convergence.

is defined as the percentage of time slots during which the CIoT agent interferes with other CIoT

devices in the network. The legend of the figure also shows the ASR at convergence. Notably,

the random strategy results in the highest interference. In contrast, the fixed strategy ensures no

interference among users, as it adheres to the CR constraint, which prevents transmission when other

CIoT devices are present, resulting in a 0% interference rate. For both our proposed DRL approach

and the DQN in [98], interference initially increases during the exploration phase. However, as

training progresses, the interference decreases and stabilizes. While our proposed DRL approach

results in slightly higher interference compared to the DQN in [98], it achieves a higher ASR,

indicating that our approach ultimately provides a more effective joint power control and channel

access coordination strategy. Furthermore, it is clear that as the number of CIoT devicesN increases,

there is a slight decline in performance when comparing the ASR values at convergence in Fig. 6.3

with those shown in Fig. 6.11. This performance drop is due to the increased competition for

available time slots, resulting in fewer transmission opportunities for the CIoT agent.
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6.5 Joint Time and Power Management in SWIPT-EH CIoT

Unlike Wireless Power Transfer (WPT), Simultaneous Wireless Information and Power Trans-

fer (SWIPT) allows devices to divide a communication slot between energy harvesting and data

transmission using the Time Switching (TS) protocol, rather than limit the slot to a single function.

Therefore, dynamic decision-making is essential for energy-constrained CIoT devices to intelligently

select the optimal TS ratio and transmission power. In this section, we design a DRL algorithm that

enables devices to develop self-adaptation capabilities and optimize their operations in a SWIPT-

enabled CIoT network, aiming to maximize the long-term achievable sum rate.

6.5.1 System Model and Problem Formulation

Cognitive IoT System

Consider a CIoT network comprising a Tx-Rx pair that operates alongside a primary Tx-Rx

pair, as illustrated in Fig. 6.12. The communication system is structured into time slots, each with

a duration of τ seconds, and a total of T slots of equal length. The CIoT Tx is equipped with a

finite battery capacity of Bmax and supports SWIPT-EH. To regulate the SWIPT process within

each time slot t, the Time Switching (TS) protocol is utilized, governed by the TS factor 0 ≤ ρt ≤ 1.

Specifically, the CIoT agent can switch between EH and data transmission, where each time slot τ

is divided into two segments: ρtτ is allocated for EH, while the remaining (1− ρt)τ is used for data

Occupied 
time slots ...

PU Rx

Primary Network CIoT Network

Data Transmission by PU Data Transmission

SWIPT-EH

Ambient 
RF

CIoT Tx

CIoT Rx

PU Tx

Channel Gain

Figure 6.12: Illustration of the designed system model for the SWIPT-enabled CIoT network under study.
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transmission.

The PU Tx is allocated L time slots for transmission, during which it operates at a constant

transmit power of P t
p. The activity of the PU Tx in slot t is indicated by the status variable ωt

p,

which is set to 1 when active and 0 otherwise. In underlay CR, the CIoT Tx is allowed to transmit in

the same slot as the PU Tx, provided it adheres to the interference threshold Ith. This constraint is

expressed as P t
sg

t
sp ≤ Ith, where P t

s represents the transmit power of the CIoT Tx, and gtsp denotes

the channel power gain between the CIoT Tx and the PU Tx. The channel power gains gtss, gtps,

and gtsp are modeled as independently and identically distributed (i.i.d.) Rayleigh fading channels,

remaining constant within each time slot [14]. The channel power gain gtij follows an exponential

distribution with the PDF given by fgtij (y) = λij exp (λijy). The fading parameterλij is determined

by the device separation distance dij and the path loss exponent α, expressed as λij = d−α
ij .

When the channel is unoccupied, the achievable rate of the CIoT Tx during the t-th time slot is

Rt
0 = log2

(︃
1 +

P t
sg

t
ss

σ2

)︃
, (6.21)

where σ2 denotes the variance of the channel noise. If the PU Tx occupies the channel during the

t-th time slot, the achievable rate of the CIoT Tx is reduced due to interference from the PU, as

specified by

Rt
1 = log2

(︃
1 +

P t
sg

t
ss

P t
pg

t
ps + σ2

)︃
. (6.22)

The EH process is modeled as an energy arrival system with independently and identically

distributed time slots. At t = 0, the harvested energy is initialized as e0 = 0. The energy from

ambient sources follows a Gamma distribution, denoted as ê ∼ Γ(k, β), where k and β represent

the shape and scale parameters, respectively. As a result, the harvested energy in each time slot is

given by et = µê, where 0 ≤ µ ≤ 1 represents the energy conversion efficiency. In the subsequent

time slot t+ 1, the available battery level is updated based on the CIoT device’s chosen parameters,

(ρt, P
t
s), as follows

Bt+1 = min
{︁
Bt + ρtetτ − (1− ρt)P t

sτ,Bmax

}︁
. (6.23)

ρt indicates the fraction of the time slot’s duration that the CIoT device decided to harvest and (1-ρt)
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indicates the remaining time slot’s duration that the CIoT will transmit data.

Optimization Problem Formulation

In the studied network, the CIoT Tx aims to optimize both its TS factor ρt and transmit power P t
s

to maximize its long-term achievable sum rate while accounting for the interference threshold Ith,

the available battery energy Bt, and the energy harvested et. Thus, the maximization of the CIoT

Tx’s rate can be formulated as a constrained optimization problem as follows

max
ρt,P t

s

T∑︂
t=1

(1− ρt)τ
[︁
(1− ωt

p)R
t
0 + ωt

pR
t
1

]︁
(6.24a)

s.t.
T∑︂
t=1

P t
s(1− ρt)τ ≤ B0 +

T−1∑︂
t=0

etτ, ∀T (6.24b)

0 ≤ P t
s(1− ρt)τ ≤ Bt, ρt ∈ [0, 1] (6.24c)

ωt
pg

t
spP

t
s ≤ Ith, ωt

p ∈ Ω ≜ {0, 1}. (6.24d)

We address the optimization problem by modeling the action-taking process of the CIoT Tx as a

stochastic control process within a discrete-time system. According to the Markov property, the next

system state depends solely on the current state and action. In our framework, the stochastic nature

of state variables, such as PU activities and energy arrivals, adheres to this property. Consequently,

determining the optimal operational strategy can be framed as a Markov Decision Process (MDP).

This MDP is defined by the tuple (S,A,P ,R, T ), where S is the set of environment states, A is

the set of possible actions, P is the state transition probabilities, R specifies the rewards associated

with each state-action pair, and T indicates the time step.

In practical scenarios, accurately determining the PDF of energy arrivals and channel fading

is challenging. Additionally, the CIoT network lacks precise knowledge of the state transition

probabilities governing the primary network’s occupancy states, making it infeasible to determine

P exactly. To address this, we adopt a model-free MDP approach and design a Deep Reinforcement

Learning (DRL) framework to approximate R based on S and A, eliminating the need for P .

Consequently, the model-free MDP formulation is reduced to the tuple (S,A,R, T ), where the
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components are defined as follows

(1) State Space S: The state space comprises all potential states over T time slots. At each state

st, the CIoT agent must account for multiple factors, including the current battery level Bt,

the energy harvested in the previous time slot et−1, the occupancy status of the slot by the PU

Tx, and the channel power gains gtps, gtsp, and gtss. Therefore, the environment state at any

given time slot t is represented as st = {Bt, et−1, ω
t
p, g

t
ps, g

t
sp, g

t
ss}.

(2) Action Space A: The action space comprises all feasible actions the CIoT agent can take.

Given the current environment state st, the agent must determine the TS factor ρt and the

appropriate transmit power P t
s . Consequently, the action selected by the CIoT agent at each

time slot t is represented as at = [ρt, P
t
s ], where ρt ∈ [0, 1] and P t

s ∈ P .

(3) Reward R: The reward is defined based on the achievable rate while ensuring compliance

with all constraints outlined in (6.24). If the CIoT agent selects an action at that violates any

of these constraints, it incurs a negative reward (penalty). Accordingly, the reward rt for the

CIoT at each time slot t is given by:

rt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ρ′tR

t
0 ωt

p = 0, 0 ≤ P t
sρ

′
tτ ≤ Bt

ρ′tR
t
1 ωt

p = 1, 0 ≤ P t
sρ

′
tτ ≤ Bt, P

t
sg

t
sp ≤ Ith

−ϕ others,

(6.25)

where ρ′t represents (1− ρt).

(4) Time Step T : We characterize each progression from time slot t to t+ 1 as a single step and

systematically evaluate each state-action across all time slots T .

6.5.2 Double Deep Q-Network with Upper Confidence Bound Exploration Strategy

We present our proposed DRL framework, which enables the agent to effectively approximate

the state-value function and derive a policy π for selecting actions based on the current state of

the environment. The objective of π is to maximize the long-term cumulative reward (rate) while
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ensuring compliance with the constraints of the CIoT system. Given that energy-constrained CIoT

devices operate at low transmission power levels and the Time Switching (TS) ratio is restricted

to 0 ≤ ρ ≤ 1, the action space remains relatively small. This characteristic allows for efficient

discretization, thereby reducing computational complexity.

The Proposed Double Deep Q-Network Architecture

Deep Q-Networks (DQNs) have been widely employed to determine optimal actions in discrete

action spaces. However, they are prone to overestimation bias, which can lead the learning agent

to favor overly optimistic actions, ultimately resulting in suboptimal performance. To mitigate this

issue, we adopt a Double Deep Q-Network (DDQN) architecture to estimate the cumulative reward

(Q-value) for a given action a in state s. The DDQN is designed to optimize its parameters θ such

that Qπ(s, a;θ) ≈ Qπ(s, a). It is implemented as a lightweight fully connected neural network,

where the input layer comprises j neurons corresponding to the dimensions of the state space S. The

network further consists of two hidden layers with h1 and h2 neurons, respectively, and an output

layer containing z neurons. The DDQN parameters, θ = {W(i),b(i)} for each network layer i,

represent the associated weights and biases.

During training, a Target DDQN is utilized, which initially mirrors the DDQN. As training

advances, the parameters of the Target DDQN are updated at a slower rate compared to those of the

DDQN, often across several training steps. The proposed DDQN is trained using the Mean Squared

Error (MSE) loss L to compute the MSE between predicted and target Q-values for a mini-batch of

state-action pairs (s,a) as

L(θ) = E

[︄[︃
rt + γQπ

(︃
st+1, argmax

a∈A
Qπ(st+1,a;θ);θ

′
)︃
−Qπ(st,at;θ)

]︃2]︄
, (6.26)

The Target DDQN’s parameter set θ′ is updated using an experience replay buffer, which stores past

experiences (st, at, rt, st+1) to reduce temporal correlations. Once the buffer reaches a predefined

threshold κ, mini-batches of experiences are randomly sampled to update the DDQN parameters.

During training, the goal is to minimize the loss function L(θ) over a mini-batch of state-action
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pairs, with the objective θ̂ = argmin
θ
L(θ; s,a). The backpropagation algorithm is used to compute

the gradient ∇θL(θ; s,a), which quantifies how the loss changes with respect to the parameters

of the DDQN for the given state-action pairs. Using Stochastic Gradient Descent (SGD) and the

calculated gradients, the DDQN parameters are updated as θ = θ − η∇θL(θ; s,a). The learning

rate 0 < η < 1 is fine-tuned with the Adaptive Moment Estimation (Adam) optimizer for more

efficient computation, while a learning rate scheduler is employed to gradually reduce the learning

rate, ensuring stable learning and faster convergence.

Upper Confidence Bound Exploration Strategy

To allow the CIoT agent to explore the environment, discover optimal strategies, and balance the

exploration-exploitation trade-off, we employ the Upper Confidence Bound (UCB) algorithm. This

algorithm updates the Q-values with Qπ
(s, a) = Qπ(s, a)+U t

a, where U t
a represents the computed

expected reward, defined as

U t
a = r̂ta +

√︄
c′ ln t

Ct
a

, (6.27)

with c′ being a hyperparameter of the UCB algorithm. The computed expected reward U t
a incorpo-

rates the estimated reward r̂ta along with an adjustment factor that depends on the current time period

(frame number * T + t) and the number of times action a has been chosen, denoted Ct
a. If action at

has been selected Ct
a times by the end of time slot t (ranging from 0 to t), then r̂ta is computed as

r̂ta =

∑︁Ct
a

i=1 r
t
a,i

Ct
a

, (6.28)

where rta,i represents the reward for action at during the ith selection. Following this, the action

selected by the UCB algorithm is integrated into the DDQN training, and both the action count Ct
a

and the expected reward r̂ta are updated accordingly.

The update of theQ-value using the UCB strategy is depicted in Fig. 6.13. The training procedure

for the DRL algorithm is detailed in Algorithm 6. The robustness of the UCB algorithm stems from

the assumption that the agent receives immediate feedback to update its confidence. However, it is
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Figure 6.13: The proposed double deep Q-network architecture with upper confidence bound exploration
strategy.

important to note that in real-world scenarios, delays can cause feedback from different time steps

to be revealed simultaneously, meaning the CIoT agent might receive multiple pieces of feedback at

once or receive none at certain times.
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Algorithm 6 The proposed UCB-driven DRL algorithm to solve (6.24).
1: Input: Cognitive IoT environment simulator and parameters.
2: Output: Optimal action at in each time slot t.
3: Initialize experience replay memoryM with size m.
4: Initialize B0, η, γ, κ, and c′.
5: for episode = 1 to episodes do
6: for t = 1 to T do
7: Observe the state st.
8: ifM is not full then
9: Sample a random action at.

10: else
11: Calculate U t

a ← r̂ta +
√︂

c′ ln t
Ct

a
.

12: Adjust Q-value: Qπ
(s, a)← Qπ(s, a) + U t

a.
13: Get action at according to the policy based on the adjusted Q-value.
14: end if
15: Get the reward rt using (6.25).
16: Observe the next state st+1.
17: Store (st, at, rt, st+1) inM.
18: Update action count: Ct

a ← Ct
a + 1.

19: Update r̂ta ←
∑︁Ct

a
i=1 r

t
a,i

Ct
a

.
20: Sample a mini-batch X fromM.
21: Predict Target Q-values using:

rt + γmax
a∈A

Qπ(st+1,a;θ
′)

22: Predict Q-values using Qπ(s,a;θ).
23: Calculate the loss in (6.26).
24: Update θ of DDQN online.
25: if (episode · t) mod κ = 0 then
26: Update θ′ of the target DDQN: θ′ ← θ.
27: end if
28: end for
29: Update ϵ and update the state st+1 ← st.
30: Update η using the scheduler.
31: end for
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6.5.3 Simulation Results

This section provides an in-depth analysis of simulation results, demonstrating the effectiveness

of the proposed DRL strategy for optimizing both time and power management in SWIPT-enabled

CIoT networks.

Setup

We consider a channel noise variance of σ2 = 10−3 and a path loss exponent of α = 4. The

device distances are dsp = dps = 1.8m and dss = 1.5m. Time-slotted transmissions are considered

over T = 30 slots (each lasting τ = 1 s), with the PU Tx using L = 18 slots at Pp = 0.2W and

an interference threshold of Ith = 0.1W. The CIoT Tx’s battery capacity is Bmax = 0.5W, with

dynamic selection of ρt ∈ [0, 0.1, . . . , 1] and P t
s ∈ [0, 0.01, . . . , 0.1]. The harvested energy at a time

slot t follows et ∼ Γ(0.5, 1) and the energy efficiency factor is µ = 0.9. The DDQN architecture

has four layers with j = 6, h1 = 512, h2 = 128, and z = 121 neurons, updating the target network

every 200 iterations. Training uses an initial learning rate of 2× 10−4, halved every 500 episodes,

over 2500 episodes with mini-batches of 80 frames. Constraint violations incur a penalty ϕ = 7.

The Target DDQN is updated every 200 iterations. The replay buffer holds κ = 333 experiences,

with a discount factor γ = 0.99 and UCB hyperparameter c′ = 2.5.

Results and Analysis

In Fig. 6.14, we present a thorough comparison of the Average Sum Rate (ASR) achieved by the

CIoT agent using our proposed DRL approach against various existing benchmarks. The strategies

included for comparison are as follows: the random strategy, where actions are selected randomly

at each time step; the DRL strategy from [87], which utilizes a fixed TS factor (ρt = 0.5) and a

learnable transmission power P t
s ; and the DQN and Dueling Deep Q-Network (D3QN) strategies

from [99]. We employ both the ϵ-greedy and UCB methods to balance the exploration-exploitation

trade-off for each of these learning strategies.

At the beginning of the training process, all DRL strategies focus on action exploration, which

results in penalties, as depicted in Fig. 6.14. However, as training progresses, our DDQN-UCB
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Figure 6.14: Benchmarking the ASR performance of our proposed DDQN-UCB strategy in comparison to
the existing strategies in the literature.

strategy gradually outperforms all the other methods. This improvement is primarily due to the

proposed UCB exploration, which effectively explores actions that optimize long-term performance,

thus improving resource allocation efficiency and increasing ASR. Nonetheless, this enhancement is

not solely attributed to UCB; replacing the DRL framework with DQN or Dueling DeepQ-Network

(D3QN) while using UCB does not lead to the optimal strategy, highlighting that the combination of

the DDQN architecture and UCB is superior. Additionally, the performance gap between DDQN-

UCB and D3QN-UCB clearly demonstrates that more complex architectures, such as D3QN, do

not always guarantee improved performance, which can be attributed to the extra layers in D3QN.

Moreover, restricting the TS factor ρ as in [87] and focusing exclusively on power optimization does

not lead to the most effective strategy for maximizing performance. Neglecting to jointly optimize

both the TS factor and transmission power results in suboptimal outcomes.

In Fig. 6.15, we examine the effect of the number of slots occupied by the PU, denoted by L,

on the ASR of the CIoT agent using our proposed DDQN-UCB strategy. The results are compared

across different numbers of time slots T . As shown in the figure, an increase in L leads to a decrease

in ASR, primarily due to the additional constraints on the CIoT agent’s actions. With a higher

number of PUs, the CIoT agent must adhere to the interference threshold across more slots, which

increases the likelihood of penalties and reduces the transmission data rate. On the other hand, when
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Figure 6.15: Illustrating the effect of varying the number of slots occupied by PU L and the number of time
slots T on our proposed DDQN-UCB strategy.

the number of time slots T in each episode is increased, the ASR improves. This is because the CIoT

agent gains more opportunities for transmission or energy harvesting, leading to an overall increase

in the achieved ASR.

In Fig. 6.16, we analyze the impact of varying the initial battery level B0 and the duration of

each time slot τ on the ASR achieved by the CIoT agent using our proposed DDQN-UCB strategy.

As observed, increasing B0 leads to a higher ASR, which can be attributed to the CIoT agent facing

fewer penalties, particularly in the early time slots when it has a higher battery capacity. Moreover,

the figure highlights that as τ increases, the ASR also rises. This is because longer time slots provide

more time for energy accumulation during the energy harvesting period ρtτ , enhancing the CIoT

agent’s ability to transmit data in subsequent slots. Additionally, the transmission period (1− ρt)τ

benefits from a longer duration, allowing for the transmission of more data. Overall, the consistent

convergence of our UCB-driven DRL strategy across different scenarios demonstrates its potential

to effectively enhance CIoT system performance in various settings.
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Figure 6.16: Presenting the impact of varying the initial battery level B0 and the duration of each time slot τ
on our proposed DDQN-UCB strategy.

6.6 Conclusions

In this chapter, we advanced the application of DRL for intelligent control in CIoT networks

by introducing two innovative frameworks tailored for WPT-enabled and SWIPT-enabled systems.

Our first contribution involved developing a system model for a WPT-enabled CIoT network with

multiple competing users, where a battery-operated Tx must intelligently balance energy harvest-

ing and data transmission. To optimize the long-term achievable sum rate under constraints, we

introduced a novel DQN-based DRL approach. Expanding on this, we introduced a more flexible

system model for SWIPT-enabled CIoT networks, where both transmit power and time allocation

were dynamically optimized. To address this challenge, we designed a lightweight DDQN algorithm

that simultaneously learns an optimal time-switching ratio and adaptively adjusts transmit power.

Additionally, we integrated a UCB exploration strategy to refine decision-making under uncertainty,

ensuring efficient resource utilization while mitigating interference. Comprehensive simulations

validated the effectiveness of our proposed DRL solutions, demonstrating their superiority over

existing benchmark approaches in terms of achievable sum rate, learning stability, and interference

management. Our results highlight the transformative potential of DRL-driven techniques in intelli-

gent spectrum sharing, adaptive power control, and energy-efficient communications in the evolving

landscape of cognitive IoT.
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Chapter 7

Navigating Hostile Spectrum Sharing

Environments

7.1 Introduction

Cognitive IoT networks are inherently susceptible to jamming attacks due to the broadcast nature

of radio wave propagation [100]. As noted in [101], advancements in software-defined radio have

increased the accessibility of jamming attacks, underscoring the urgent need to protect wireless net-

works from both intentional and unintentional interference. In such scenarios, a jammer can disrupt

communication by transmitting continuous jamming signals or short pulses over one or multiple fre-

quency bands, thereby degrading the SNR [101]. This interference results in diminished throughput

capacity and, in extreme cases, a complete disruption of transmission [102]. Consequently, jamming

attacks present a significant challenge to CIoT transmissions, especially within the constraints of

energy efficiency and spectrum sharing. To address these challenges, robust and intelligent coun-

termeasures are crucial not only for enhancing CIoT network performance but also for improving

security and extending operational lifetime. In this chapter, we introduce an innovative strategy for

a battery-powered CIoT Transmitter (Tx) that enables autonomous decision-making to maximize

long-term network throughput under spectrum-sharing constraints, mitigate jamming interference,

and extend network lifespan. The proposed approach empowers the CIoT Tx to actively counter

jamming attacks within the same channel.
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7.2 Related Works

Although game-theoretic strategies have been investigated for anti-jamming communications

[103–106], they often depend on impractical assumptions, such as prior knowledge of the jamming

pattern, and may struggle against adaptive jamming tactics [107]. As a result, intelligent algorithms

have gained attention in anti-jamming communications due to their ability to introduce unpredictabil-

ity for jammers by dynamically adjusting to the spectrum’s state [108]. By leveraging Reinforcement

Learning (RL) algorithms, jamming behaviors can be inferred through a “trial-and-error” learning

process within the environment, even without explicit information about the jammer. The works

of [109–114] have tackled jamming attacks in the spectrum domain by employing learning-based

frequency hopping techniques. The authors of [109] introduced an energy-efficient Dueling DeepQ-

Network (D3QN) for implementing an anti-jamming frequency hopping strategy in CIoT networks.

In [110], a convolutional Double Deep Q-Network (DDQN) was utilized to enable smart channel

selection as a defense against jamming attacks. The study in [111] proposed a convolutional DDQN

framework designed to mitigate interference and jamming in wideband spectrum while reducing

computational complexity.

Previous studies have primarily focused on mitigating jamming attacks under the assumption

that multiple channels are available and that jammers can target all channels simultaneously. Con-

sequently, cognitive users can either select channels with a lower probability of being jammed or

switch to an alternative channel when interference is detected. However, in certain scenarios, CRs

are constrained to opportunistically transmit data over a certain channel. In such cases, power control

strategies have been investigated as an alternative approach to counter jamming in wireless commu-

nications. The work in [115, 116] explored power control schemes that assess channel conditions

and adjust transmit power to mitigate jamming effects. In [115], the authors introduced a dynamic

anti-jamming model based onQ-learning to determine the optimal anti-jamming power in situations

where users lack prior knowledge of the game model. While Q-learning has been applied for power

control, it suffers from prolonged convergence times when dealing with a large number of states and

may occasionally fail to converge [116].

Deep Reinforcement Learning (DRL), which integrates RL with Deep Learning (DL), has been
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employed to address the limitations of Q-learning. The authors of [117] proposed a DDQN-

based approach to develop an efficient communication policy that manages both channel access and

transmission power adjustments to counter various jamming scenarios. Similarly, the work in [102]

introduced a transformer encoder-based DDQN to facilitate channel and transmit power selection

for a secondary transmitter operating in the presence of a jammer. In [118], a DDQN was trained

using clear channel assessment data to enable a CR agent to dynamically switch channels and select

optimal transmit power as part of an anti-jamming strategy. The study in [119] presented a multitask

DQN framework tailored for multi-agent environments, aiming to maintain the required Quality of

Service (QoS) by dynamically adjusting transmit power and frequency hopping across a wideband

spectrum. Meanwhile, the authors of [116] introduced a convolutional DQN for power control in

CIoT networks under jamming conditions, evaluating its effectiveness in real-world scenarios with

hardware constraints.

The work in [120] investigated a power control strategy to mitigate jamming attacks in CR

networks. However, the proposed cooperative mechanism may not be well-suited to the dynamic

nature of CIoT networks, where users frequently join and leave on an ad-hoc basis. Additionally,

it assumes a unified objective among users, which may not always hold in practice. To date, only

a limited number of studies, such as [109, 116], have explicitly examined anti-jamming techniques

tailored for CIoT networks, highlighting a significant research gap in this field. The authors of [109]

proposed a DRL algorithm with a focus on energy efficiency, aiming to develop a system archi-

tecture that optimizes energy consumption. However, we argue that prioritizing energy-efficient

DRL algorithms alone may not fully capture the broader energy constraints, especially in scenarios

involving battery-powered CIoT devices. Furthermore, the approach in [116], which counters jam-

ming by increasing CIoT device transmit power, poses significant challenges in energy-constrained

environments. This issue is particularly pronounced in underlay CR settings, where secondary users

share the spectrum with primary users. Studies such as [109, 116, 121] have largely disregarded

spectrum-sharing scenarios in CR networks. Moreover, [116, 121] fail to consider the effects of

channel fading, further emphasizing the need for a more comprehensive solution.
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7.3 Contributions

To the best of our knowledge, no previous research has considered designing an intelligent

algorithm that aims to maximize the CIoT network’s throughput under interference limits, energy

constraints, and jamming attacks. Our main contributions are, therefore:

• We introduce a novel strategy for a battery-powered CIoT transmitter, enabling autonomous

decision-making to enhance long-term network throughput within spectrum-sharing limits,

mitigate jamming interference, and extend network life. Our method uniquely positions the

CIoT transmitter to counter jamming attacks directly in the same channel. Additionally, we

evaluate the influence of small-scale fading and implement an effective Energy Harvesting

(EH) model, allowing the CIoT transmitter to exclusively harvest energy from active radio

frequency transmissions without dedicating infrastructure for charging.

• We formulate the throughput optimization problem for the CIoT transmitter while taking into

account factors such as channel occupancy, jamming attacks, channel gain, energy arrival,

battery limits, and interference constraints. This approach directs the power control and

transmission decisions in the CIoT network, modelled as a model-free Markov Decision

Process (MDP).

• We develop a novel DRL algorithm to learn the optimal transmission strategy that maximizes

throughput without prior knowledge about the channel or jamming patterns. Our algorithm

uses a DDQN designed to enable faster convergence and enhance the algorithm’s energy ef-

ficiency. Additionally, we introduce an innovative Upper Confidence Bound (UCB) strategy,

named UCB interference-aware (UCB-IA), meticulously designed to efficiently mitigate jam-

ming interference and optimize the decision-making framework within the CIoT environment.

• We offer an analysis of convergence and performance of the proposed DRL algorithm that is

benchmarked against alternative methodologies found in existing literature across various test

scenarios. For performance evaluation, we utilize metrics such as average sum rate, average

achievable reward, and jammer interference ratio. Simulations show that under the presence
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of jamming attacks, the proposed learning algorithm can dynamically choose between data

transmission and EH and perform power control to find the optimal solution for the network.

7.4 System Model

7.4.1 Cognitive IoT Network

Consider the spectrum-sharing CIoT network depicted in Fig. 7.1, which consists of a CIoT

Transmitter-Receiver (Tx-Rx) pair. The Tx is powered by a rechargeable battery and has Wireless

Power Transfer (WPT) Energy Harvesting (EH) capabilities. The CIoT network shares its spectrum

with the primary network, which includes a primary Tx-Rx pair. The CIoT Tx has the ability to

autonomously and dynamically adjust its transmit power P t
s . The CIoT system operates in a time-

slotted fashion, with T time slots, each lasting τ seconds. For the CIoT Tx, each time slot t consists

of two phases: the decision-making phase and the operation phase. During the decision-making

phase, the CIoT device decides whether to transmit data or harvest energy according to a defined

policy. The decision, represented by dt, is set to 0 when transmitting messages and to 1 when

harvesting energy. Consequently,

dt =

⎧⎪⎪⎨⎪⎪⎩
0 Data transmission mode in time slot t,

1 Energy harvesting mode in time slot t.
(7.1)

The operation phase involves the CIoT device executing the chosen decision dt. It is assumed that

the primary user (PU) Tx uses L slots, where 1 < L < T , and can continuously transmit at a power

level of P t
p in each slot.

The spectrum-sharing constraint permits the CIoT Tx to operate within the same time slot as

the PU Tx, as long as the interference remains below the threshold Ith. Thus, the CIoT device

must determine its transmission power P t
s to ensure compliance with the interference constraint,

expressed as

P t
sg

t
sp ≤ Ith, (7.2)

where gtsp is the channel power gain between the CIoT Tx and PU Rx. The PU status indicator is
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Figure 7.1: The system model of the studied CIoT network under jamming attacks and spectrum-sharing
constraints.

defined as

ωt
p =

⎧⎪⎪⎨⎪⎪⎩
1 if the PU Tx is using time slot t,

0 otherwise.
(7.3)

The power gain of the channel between the CIoT Tx-Rx pair is gtss, the channel between the PU Tx

and the CIoT Rx is gtps, and the channel between the CIoT Tx and the PU Rx is gtsp. These channels

are modeled as Rayleigh fading channels that are independently and identically distributed (i.i.d.).

It is assumed that the channel power gains remain constant within each time slot, but they may vary

independently from one time slot to the next.

7.4.2 Jamming Model

We consider a jammer that targets the CIoT network with jamming attacks, as illustrated in

Fig. 7.1. The objective of the jammer is to make the shared spectrum appear “busy”, thereby

preventing the CIoT Tx from accessing it and potentially draining the CIoT device’s battery. It is

assumed that the jammer can only target the CIoT transmissions, which may be due to the severe

penalties faced by attackers if identified by the PUs, or because the jammer cannot approach the

PUs. Furthermore, practical methods such as cyclostationary detection or matched filter detection
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can be employed by jammers to distinguish between the PU and CIoT transmissions. Thus, at the

start of each time slot, the jammer determines whether the PU is active before initiating the jamming

attack. If the jammer decides to launch an attack, it will continue for the entire duration of the time

slot [122]. The jammer executes the attack with powerP t
j , while the CIoT Tx has no prior knowledge

of which time slots will be subject to jamming attacks.

Attackers often favor a random jamming strategy, as it allows for intermittent periods of inactivity

[122]. This approach not only extends the jammer’s operational lifespan but also reduces the

likelihood of detection. Hence, we consider the scenario of intermittent jamming, where the jammer

alternates randomly between periods of active jamming and rest. Specifically, the jammer conducts

attacks for a duration of ζ ∼ U(0, ζmax) slots, followed by a rest period lasting T − ζ slots, where

ζmax represents the maximum number of slots the jammer can maintain attacks. Consequently, the

probability of initiating an attack is given by U(0, ζmax)/T . By introducing randomness in the

jammer’s actions, the jamming behavior becomes less predictable for the CIoT Tx. In this study,

we assume that the effect of a single jammer launching attacks is equivalent to multiple coordinated

jammers targeting specific time slots for their attacks. This framework makes our system scalable to

accommodate several coordinated jammers, each executing a jamming attack in separate time slots.

The CIoT agent determines the jammer’s status indicator at the beginning of each time slot using

broadband sensing capabilities [122]. The jammer’s status indicator, which indicates whether a

jamming attack is being launched during time slot t, is defined as follows

ωt
j =

⎧⎪⎪⎨⎪⎪⎩
0 Jammer is launching an attack at time slot t,

1 otherwise,
(7.4)

where ωt
j = 0 indicates that the CIoT agent detects the presence of a jamming attack, with a

probability of U(0, ζmax)/T , and ωt
j = 1 signifies that the CIoT agent does not detect a jamming

attack, with a probability of 1− U(0, ζmax)/T .
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7.4.3 Energy Harvesting Model

The CIoT Tx is capable of charging its finite battery Bmax through WPT EH 1. At the onset, the

harvested energy is set to zero. It is assumed that the amount of energy collected in each time slot,

et, follows a uniform distribution ranging from 0 to Emax, where et ∼ U(0, Emax). However, the

maximum energy that can be harvested, Emax, is influenced by the radio frequency signals, which

are influenced by the activity of both the jammer and the PU Tx during each time slot. Consequently,

the value of Emax varies depending on the following

Emax =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
P t
p if ωt

p = 1, PU transmitting,

P t
j if ωt

j = 0, jammer is attacking,

P t
p + P t

j if ωt
p = 1 and ωt

j = 0.

(7.5)

The energy collected in each time slot is stored in the battery and is exclusively used for operations in

future time slots. However, due to hardware limitations, the CIoT Tx cannot perform EH and access

the spectrum opportunistically simultaneously. It is important to note that the energy harvesting

process does not result in any additional energy consumption for PUs or other devices.

The starting battery level of the CIoT Tx is denoted as B0, with Bt representing the energy

available in the battery at the t-th time slot. Following the framework in [84], we assume the battery

to be ideal, meaning there are no losses of energy during storage or retrieval. For the CIoT Tx,

energy consumption occurs solely due to data transmission. Furthermore, any harvested energy

that is beyond the battery’s capacity is discarded. The concept of normalized time slots is also

employed, which allows treating “energy” and “power” synonymously [84]. At any given time slot

t, the selected transmission power P t
s by the CIoT Tx must not exceed the battery’s available energy,

Bt. That is,

0 ≤ (1− dt)P t
sτ ≤ Bt, (7.6)

where τ is the duration of each time slot. The change in the battery’s energy level is determined by

the CIoT device’s decision dt to either harvest energy or transmit data at time slot t. In the following
1The implementation of circuits responsible for the process of radio frequency EH is beyond the scope of this work.
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time slot, t+ 1, the available energy is updated based on dt. Therefore, the battery update is given

by:

Bt+1 = min
{︁
Bt + dtet − (1− dt)P t

sτ,Bmax

}︁
. (7.7)

Consequently, the total energy consumed by the CIoT device cannot exceed the total energy collected

in the battery. That is,
k∑︂

t=1

P t
sτ ≤ B0 +

k−1∑︂
t=0

et,∀k. (7.8)

where k represents the total number of time slots in which the CIoT device decides to transmit.

7.4.4 Transmission Model

The CIoT Tx is responsible for adjusting its transmit power P t
s to maximize its total rate while

under jamming attacks, ensuring it does not cause interference to the licensed network. During an

idle t-th time slot, the achievable sum rate by the CIoT Tx is

Rt
0 = log2

(︃
1 +

P t
sg

t
ss

σ2

)︃
, (7.9)

where σ2 represents the variance of the channel noise. If the PU Tx occupies the channel during the

t-th time slot, the CIoT Tx’s achievable sum rate will be reduced due to interference from the PU, as

given by

Rt
1 = log2

(︃
1 +

P t
sg

t
ss

P t
pg

t
ps + σ2

)︃
. (7.10)

Hence, the achievable sum rate for the CIoT Tx during a time slot t can be expressed as

Rt = ωt
j(1− dt)

[︁
(1− ωt

p)R
t
0 + ωt

pR
t
1

]︁
. (7.11)

According to (7.11), if the jammer is launching an attack during the t-th time slot, i.e., ωt
j = 0, the

achievable sum rate Rt of the CIoT Tx will be reduced to zero.
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7.5 Optimization Problem Formulation

In this section, we aim to define the optimization problem and develop a dynamic algorithm that

maximizes the total sum rate of the studied CIoT network. The algorithm will navigate challenges

such as jamming attacks, channel fading, interference, and energy constraints. The CIoT device

must learn to optimize both its transmission power P t
s and decision dt to maximize the network’s

throughput. Specifically, the CIoT device must strategically decide whether to transmit data, which

consumes battery and may be affected by jamming, or to harvest energy, thereby forgoing immediate

transmission opportunities. The optimization problem can therefore be formulated as follows

max
dt,P t

s

T∑︂
t=1

ωt
j(1− dt)

[︁
(1− ωt

p)R
t
0 + ωt

pR
t
1

]︁
, (7.12a)

s.t.
k∑︂

t=1

P t
sτ ≤ B0 +

k−1∑︂
t=0

et, ∀k, (7.12b)

0 ≤ (1− dt)P t
sτ ≤ Bt, dt ∈ I ≜ {0, 1}, (7.12c)

dt = 1, ∀ωt
j = 0, (7.12d)

ωt
pg

t
spP

t
s ≤ Itth, ωt

p ∈ Ω ≜ {0, 1}. (7.12e)

Constraint (7.12b) ensures that the transmission power P t
s of the CIoT device remains within the

limits defined by the initial battery level B0 and the energy harvested over all time slots during the

period. Constraint (7.12c) guarantees that the CIoT device’s transmission power does not exceed the

available energy in the current battery,Bt, during any specific time slot t. Constraint (7.12d) ensures

that the CIoT device avoids transmission during time slots when the jammer is active. Furthermore,

constraint (7.12e) mandates that the CIoT device’s transmission adheres to the interference threshold

Ith, preventing interference with the primary user (PU) during each time slot t. In the following

discussion, we present a solution to the optimization problem defined in (7.12a) by using a model-free

Markov Decision Process (MDP).
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7.5.1 The Model-Free Markov Decision Process

The process of learning the optimal strategy to maximize the throughput of the CIoT network can

be framed as an MDP. The MDP is represented by the tuple (S,A,P ,R, T ), where S denotes the

set of possible states in the CIoT environment, A represents the set of actions available to the CIoT

agent 2, P represents the set of state transition probabilities, R includes the rewards associated with

state-action pairs, and T is the time step. In practical CR scenarios, it is challenging to accurately

determine the PDF of energy and channel fading [6]. Furthermore, when under jamming attacks,

calculating transition probabilities would require precise knowledge of the jammer’s behavior. Since

the jammer’s aim is to disrupt the transmissions of the CIoT network, it intentionally does not

reveal its information, making the accurate estimation of state transition probabilities unfeasible. To

address this challenge, a model-free MDP approach is adopted. In this case, Deep Reinforcement

Learning (DRL) is employed to infer R from S and A, without requiring knowledge of P . As a

result, the CIoT device is trained to learn a policy π : S → A through continuous interaction with

the environment, thereby identifying the actions that yield the highest cumulative reward. This leads

to a modified model-free MDP structure: (S,A,R, T ). The components of this revised MDP tuple

are further described below.

State Space S: In each time slot, the CIoT device, acting as a learning entity, evaluates the

state of the unknown environment (channel) to inform its decision-making process. The state space

consists of all potential states across the T time slots. For any given environment state st, the CIoT

agent must take into account several factors: the current battery levelBt, the energy harvested in the

previous time slot et−1, the presence of a primary user (PU) transmitter, the presence of jamming

attacks, and the channel power gains denoted as gtps, gtsp, and gtss. Consequently, the state of the

CIoT environment at the t-th time slot is described by these components as follows

st = {Bt, et−1, ω
t
p, ω

t
j , g

t
ps, g

t
sp, g

t
ss}. (7.13)

Action Space A: The action space includes all possible actions the CIoT agent can take. To

optimize throughput, both the decision dt and the transmit power P t
s should be considered as integral

2In this context, “ciot agent/device” refers to the transmitter in the studied network.
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components of the action. Given the environment state st, the CIoT agent must decide whether to

transmit data (dt = 0) or harvest energy (dt = 1), and set the transmission power P t
s accordingly.

Therefore, the action taken by the CIoT agent at time slot t is defined as

at = [dt, P
t
s ], where dt ∈ I ≜ {0, 1}, and P t

s ∈ P. (7.14)

P is the set of possible transmission powers by the CIoT agent.

RewardR: The CIoT agent assesses the effectiveness of its chosen actions based on the acquired

rewards, using this feedback to adjust its decision-making strategy. The reward is determined by the

data transmission rate achieved by the CIoT Tx, provided it adheres to the constraints specified in

(7.12). If the agent opts to harvest energy, the reward is set to 0. If the CIoT Tx performs an action

at that violates the constraints in (7.12), a negative reward is assigned as a penalty. Therefore, the

reward rt for the CIoT agent at time slot t is defined as

rt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt
0 dt = 0, ωt

p = 0, ωt
j = 1, 0 ≤ P t

sτ ≤ Bt,

Rt
1 dt = 0, ωt

p = 1, ωt
j = 1, 0 ≤ P t

sτ ≤ Bt, P
t
sg

t
sp ≤ Ith,

0 dt = 1, P t
sτ > Bt,

−ϕ others.

(7.15)

Time Step T : The transition from the current time slot t to the next slot t + 1 represents a

discrete time step. In this setup, we consider all possible state-action pairs over the span of T time

slots, evaluating each pair systematically as the time slots progress. This iterative process ensures

that the CIoT agent can adjust its actions based on the evolving environment, optimizing its strategy

as it interacts with the system throughout the time steps.

7.6 DRL-Driven Throughput Optimization Under Malicious Jamming

In the context of the model-free MDP, the CIoT agent must determine the value of state-action

pairs without having direct access to the state transition probabilities, P . To address this, the CIoT

agent leverages Reinforcement Learning (RL) to approximate the state-value function. By interacting
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with the environment, the agent can learn an optimal policy π that dictates the selection of actions at

based on the current environment state st. The goal is to maximize the cumulative reward, which in

this case corresponds to the sum rate, by making informed decisions despite the challenges posed by

malicious jamming, spectrum sharing requirements, energy constraints, fluctuating energy arrivals,

and unpredictable channel conditions. Through this approach, the CIoT agent adapts its strategy to

optimize network throughput over time.

A policy π is a function π : S → A that maps states to actions. We refer to the execution of

policy π when, in state s, the corresponding action taken is a = π(s). In the model-free MDP, the

expected value of the state-action value function, often referred to as the Q-function or Bellman

equation, can be expressed as

Qπ(st, at) = E
[︃
rt + γmax

a
Qπ

(︁
st+1, a

)︁
|st, at

]︃
, (7.16)

where rt denotes the immediate reward for taking action at in state st. The term γmaxaQ
π(st+1, a)

represents the discounted expectation of future rewards, with γ being the discount factor between

0 and 1, determining the weight given to future rewards in comparison to immediate ones. Larger

values of γ give greater importance to long-term rewards. The goal of the CIoT agent is to determine

the optimal action at that maximizes the Q-value at each time slot t.

Using the Q-learning algorithm, the CIoT agent calculates the Q-value at each step and stores it

in a Q-table to find the optimal solution. The fundamental approach for updating the action-value

function is outlined in [123] is

Qπ(st, at) = Qπ(st, at) + η

[︃
rt + γmax

a
Qπ(st+1, a)−Qπ(st, at)

]︃
, (7.17)

where η ∈ [0, 1] denotes the learning rate. However, Q-learning can face slow convergence when

determining the optimal actions for solving the problem [121]. To address this, we explore deep

Q-learning, combining concepts from both Reinforcement Learning (RL) and Deep Learning (DL),

to estimate the Q-value function using a deep neural network, commonly referred to as a Double

DeepQ-Network (DDQN). This method aims to improve the approximation of theQ-value function

for more efficient training. A comprehensive illustration of the proposed DRL algorithm, along
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Figure 7.2: The proposed DRL algorithm featuring the UCB-IA action exploration strategy.

with our UCB-IA exploration strategy, is shown in Fig. 7.2, which will be further discussed in

Subsection 7.6.2.

7.6.1 The proposed DDQN-Driven DRL Approach

In this subsection, we introduce our novel DDQN architecture, developed to identify the optimal

policy for improving transmission efficiency in the CIoT network amidst malicious jamming attacks.

The goal of our DDQN is to estimate the total expected reward (i.e., the Q-value) for each possible

action at in a given state st. This is achieved by iteratively adjusting the DDQN parameters θ to

ensure that

Qπ(s, a;θ) ≈ Qπ(s, a). (7.18)

The DDQN parameters, θ = {W(i),b(i)}, represent the weights and biases of the network’s layers,

where i = {1, . . . , 4}. The DDQN utilizes a fully connected neural network architecture. The input

layer consists of j neurons, corresponding to the dimensionality of the state space S. Furthermore,

the network has two hidden layers, with h1 and h2 neurons, respectively. The output layer is made

up of z neurons.

To accelerate the convergence of the DDQN and improve the stability of the training process, we

apply a weight initialization method known as Kaiming (He) initialization [95]. This approach

initializes the DDQN’s weights by sampling from a Gaussian distribution N (0, 2
νi
), where νi
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represents the number of input neurons for each layer i. To introduce non-linearity into the neural

network, we use the Rectified Linear Unit (ReLU) activation function. The basic ReLU function is

defined as f(x) = max(0, x), which offers computational benefits over other activation functions

like sigmoid or hyperbolic tangent. This is due to its simple thresholding at zero, which speeds

up the training process significantly. However, the ReLU function can suffer from the “dying

ReLU” problem (where neurons stop activating). To address this issue, we employ a leaky ReLU

function, ensuring that all neurons remain active during the learning process, which promotes faster

convergence and improves learning dynamics. The leaky ReLU activation function is defined as

f(x) =

⎧⎪⎪⎨⎪⎪⎩
x, if x ≥ 0,

αx, if x < 0,

(7.19)

where α ∈ {0, 1} represents the “slope” parameter that controls the degree of “leakiness” in the

ReLU function.

To improve the training process of the CIoT agent and increase data efficiency, we implement

experience replay. This approach utilizes a memory bufferMwith a capacity ofm to store previous

experiences in the form of tuples (st, at, rt, st+1). When the memory reaches its capacity, mini-

batches of experiences are randomly sampled from the stored state-action pairs and used to update

the DDQN’s parameters. By employing this technique, we effectively reduce temporal correlations

in the training data, which helps minimize the risk of instability during the training process [83].

DRL is known for its instability, and it may even diverge due to the use of a non-linear DDQNs

for approximating theQ-function. Several factors contribute to this instability. Small changes in the

Q-function can significantly alter the policy, which in turn affects the data distribution. Moreover,

the interdependence between action-values and target values, which are derived from maximizing

Qπ over all possible actions in the next state, exacerbates the instability. To address this issue, we

employ a Target DDQN during training. The Target DDQN is used to compute the target optimal

Q-function as

Y = rt + γQπ

(︃
st+1, argmax

a∈A
Qπ(st+1,a;θ);θ

′
)︃
, (7.20)

where θ′ represents the parameters of the Target DDQN. At onset, the Target DDQN is an identical
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copy of the DDQN, meaning θ′ = θ. As training progresses, the parameters of the Target DDQN

are updated at a slower rate than those of the DDQN, typically over several training steps. The rate

at which the Target DDQN is updated is denoted by κ.

To update the DDQN’s parameters, we utilize the Mean Squared Error (MSE) loss L(.) during

training to quantify the deviation between the estimated Q-values and the target Q-values across a

mini-batch of state-action pairs (s,a).

L(θ) = E

[︄[︃
Y −Qπ(s,a;θ)

]︃2]︄
. (7.21)

During the training phase, the objective is to minimize the loss described in (7.21) across a mini-batch

of state-action pairs. This entails

θ̂ = argmin
θ
L(θ; s,a). (7.22)

The backpropagation algorithm [68] is used to compute∇θL(θ; s,a), which represents the gradient

of the loss function with respect to the DDQN’s parameters for a batch of state-action pairs. Once this

gradient is computed, Stochastic Gradient Descent (SGD) [6] can be applied to adjust the DDQN’s

parameters in the following manner

θ = θ−η∇θL(θ; s,a),

where θ = {W(i),b(i)},

for i = {1, . . . , 4}.

(7.23)

η ∈ {0, 1} is the learning rate that determines the update rate in each iteration of SGD.

For this study, we adopt an advanced SGD-based parameter update method called Adaptive

Moment Estimation (Adam) due to its faster computation time [10,11]. Furthermore, we implement

a well-designed learning rate scheduler. At the beginning, it establishes a learning rate that promotes

stable learning during the initial stages. As the training progresses, the scheduler adjusts the learning

rate dynamically, considering factors like model performance and a defined patience period. This

approach supports efficient convergence and improves overall performance.
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7.6.2 UCB-IA: Interference-Aware Action Exploration Strategy

As widely recognized in the literature, there exists a trade-off between exploring new actions in

the action space (i.e., learning their mean reward) and exploiting known actions (i.e., maximizing the

empirical rewards). If the expected rewards of actions were known, the optimal policy would always

select the action that provides the highest expected reward. To enable the CIoT agent to explore the

environment, uncover optimal strategies, and balance the exploration-exploitation tradeoff, we apply

the principles of the Upper Confidence Bound (UCB) algorithm.

The classical UCB algorithm adjusts the Q-values based on

Q
π
(st,at) = Qπ(st,at) + U t

a, (7.24)

where U t
a is the actual-expected reward calculated as

U t
a = r̂ta +

√︄
c′ ln t

Ct
a

. (7.25)

c′ is a hyperparameter in the UCB algorithm. The actual-expected reward U t
a is a combination of

the expected reward r̂ta and an adjustment term that depends on the time period number, i.e., frame

number * T + t, and the number of times action a has been selected, Ct
a. If action at has been

selectedCt
a times by the end of time slot t (i.e., from 0 to t), then the expected reward r̂ta is calculated

as r̂ta = (
∑︁Ct

a
i=1 r

t
a,i)/C

t
a, where rta,i represents the reward of action at during its i-th selection. The

action returned by the UCB algorithm is then utilized in the DDQN training, and the action count

Ct
a and expected reward r̂ta are updated accordingly.

In this work, we introduce a novel variant of the UCB algorithm, referred to as Interference-Aware

UCB (UCB-IA), which is presented in Algorithm 7. The proposed UCB-IA exploration-exploitation

strategy not only considers the expected reward r̂ta for updating the Q-value but also incorporates

the actual-expected jammer interference λ̂
t

a. This modification enables the agent to enhance its

performance by identifying actions affected by jammer interference in any given state st, thereby

adjusting the Q-values to maximize the reward rate while minimizing jammer interference. As a
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result, under the UCB-IA strategy, the actual-expected reward U t
a is defined as

U
t
a = r̂taλ̂

t

a +

√︄
c′ ln t

Ct
a

. (7.26)

We express the actual-expected jammer interference λ̂
t

a as

λ̂
t

a =

∑︁Ct
a

i=1 λ
t
a,i

Ct
a

, (7.27)

where
∑︁Ct

a
i=1 λ

t
a,i represents the total number of times the CIoT agent has encountered a jamming

attack due to action a. Therefore, λ̂
t

a takes a value between 0 and 1. Consequently, for the proposed

UCB-IA algorithm, the adjusted Q-value is given by

Q
π
(st,at) = Qπ(st,at) + U

t
a. (7.28)

This adjustment, illustrated in Fig. 7.2, is applied to the Q-value output of the DDQN architecture,

enhancing the action selection policy in alignment with the proposed UCB-IA strategy.
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Algorithm 7 The proposed UCB-IA-driven DRL algorithm to solve (7.12)
1: Input: Cognitive IoT environment simulator and its parameters.
2: Output: Optimal action at in each time slot t.
3: Initialize experience replay memoryM with size m.
4: Initialize battery level with B0

5: Initialize ∀θ ∈ θ, θ ∼ N (0, 2
vi
) and initialize θ′ with θ′ ← θ.

6: Initialize η and set the scheduler’s reduction factor and patience period.
7: Initialize γ, κ, and c′.
8: for episode = 1 to episodes do
9: for t = 1 to T do

10: Observe the state st
11: ifM is not full then
12: Sample a random action at
13: Get the reward rt using (7.15) and observe the next state st+1

14: StoreM← (st, at, rt, st+1)
15: else
16: Calculate U t

a ← r̂taλ̂
t

a +
√︂

c′ ln t
Ct

a

17: Adjust Q-value Qπ
(s, a)← Qπ(s, a) + U

t
a

18: Get action at according to the policy of adjusted Q-value
19: Update action count, Ct

a ← Ct
a + 1

20: Get the reward rt using (7.15) and observe the next state st+1

21: end if
22: Update λ̂

t

a ← (
∑︁Ct

a
i=1 λ

t
a,i)/C

t
a

23: Update r̂ta ← (
∑︁Ct

a
i=1 r

t
a,i)/C

t
a

24: Sample a mini-batch X fromM
25: Predict Target Q-values using (7.20)
26: Predict Q-values using Qπ(s,a;θ)
27: Calculate the loss in (7.21)
28: Update θ of DDQN online using (7.23)
29: if episode * t mod κ = 0 then
30: Update θ′ of Target DDQN online as θ′ ← θ
31: end if
32: end for
33: Update η using scheduler
34: Update ϵ
35: Update the state st+1 = st
36: end for
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7.7 Simulation Results

In this section, we assess the effectiveness of our proposed DRL strategy featuring the proposed

DDQN and the UCB-IA exploration in enhancing the transmission efficiency of the EH-enabled

CIoT network detailed in Section 7.4.

7.7.1 Setup

The simulation parameters used are presented in Table 7.1. For the evaluation, we use several

performance metrics, including Average Sum Rate (ASR), average achievable reward, and jammer

interference rate across training episodes. The total achievable sum rate of the CIoT Tx agent over T

time slots (one episode) is calculated as
∑︁T

t=1R
t, whereRt is defined in (7.11). The ASR represents

the weighted moving average of the total achievable sum rate. In addition, the total reward is the

sum of all rewards accumulated by the CIoT Tx agent during one episode, expressed as
∑︁T

t=1 rt,

with rt provided in (7.15). The average reward is the weighted moving average of the total reward.

Finally, the jammer interference rate is determined by the ratio of the number of time slots in which

the CIoT agent transmits data while the jammer is active, to the total number of time slots under

jamming attacks. This is calculated as
∑︁T

t=1 λ
t/
∑︁T

t=1 ω
t
j , where ωt

j is defined in (7.4) and λt = 1

indicates that the CIoT agent was subjected to jamming in time slot t (with λt = 0 otherwise).

The calculation of the weighted moving average is as follows

averagenew = (1− δ)× averageold + δ × value. (7.29)

Here, δ represents the weight given to the most recent data point, with 1−δ reflecting the importance

of the accumulated historical average. In this study, we have set δ = 0.01. The use of a weighted

moving average helps to smooth out short-term fluctuations, making the underlying trends in both

sum rate and rewards clearer. This approach effectively strikes a balance between incorporating new

data and retaining the relevance of past information, thus improving the analysis of training episodes.
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Table 7.1: Simulation parameters for the proposed EH-enabled CIoT network under jamming attacks employ-
ing our proposed DRL approach with UCB-IA exploration strategy.

Parameters Value
Number of time slots T 30
Duration of each time slot τ 1 s
Number of PU transmission slots L 18
Transmission power of PU P t

p 0.2 W
Interference threshold Ith 0.01 W
Initial battery level B0 0.0 W
Battery capacity Bmax 0.5 W
Transmission power range of CIoT Tx P t

s 0.01 ∼ 0.1 W
Transmission power of jammer P t

j 0.1 W
Maximum time slots under jamming ζmax 12
Noise power σ2 1e-3 W
Experience replay memory size m 10,000
Training episodes 2500
Mini-batch size 200
Learning rate η 4 ∗ 10−4

Learning rate reduction factor 50%
Learning rate patience period 500 episodes
Penalization ϕ 7
Discount factor γ 0.99
Leakiness parameter α 0.02
Update rate of Target DDQN κ 100
UCB adjustment term c′ 1
Channel power gain of CIoT Tx-PU Rx gtsp 0.2 W
Channel power gain of CIoT Tx-Rx gtss 0.1 W
Channel power gain of PU Tx-CIoT Rx gtps 0.2 W
Number of neurons 7, 128, 64, 22

To evaluate the performance of our proposed DRL approach, we compare it with the following

strategies:

• The ϵ-greedy strategy, which is commonly used in the literature to balance exploration and

exploitation. With the ϵ-greedy strategy, the CIoT agent selects an action to maximize the

estimated Q-value (exploitation) with a probability of 1− ϵ, and randomly chooses an action

(exploration) with a probability of ϵ.

• The Fixed strategy, where the CIoT agent determines its action at at each time step using a

rule-based approach derived from the constraints in (7.12), without employing any learning

mechanisms [14].

• The Random strategy, in which the CIoT agent selects an action at at each time step randomly
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from the action space, without any intelligent decision-making.

7.7.2 Results and Analysis

To ensure a fair comparison between our UCB-IA strategy and the ϵ-greedy strategy, Fig. 7.3

demonstrates how different values of ϵ influence the performance of the DRL algorithm, helping us

select the optimal ϵ value to maximize the ASR. As ϵ varies, the ASR of the CIoT agent undergoes

significant changes. The highest ASR is achieved when ϵ = 0.1, indicating that lower ϵ values offer

an ideal balance between exploration and exploitation. This enables the CIoT agent to make informed

decisions based on its accumulated knowledge while still occasionally exploring new actions. On the

other hand, as ϵ increases, the CIoT agent’s ASR declines. The worst performance occurs at ϵ = 0.9,

where the agent predominantly explores, behaving almost like the random strategy. This excessive

exploration leads to frequent penalties, as the CIoT agent either selects random actions or disregards

its learned knowledge, resulting in suboptimal decisions and reduced performance. Therefore, we

select ϵ = 0.1 for the ϵ-greedy strategy to ensure a fair comparison with our proposed approach.

In Fig. 7.4, we show the ASR of the CIoT Tx over training episodes for various strategies. At

the beginning of training, both the proposed UCB-IA strategy and the ϵ-greedy strategy exhibit an

ASR similar to that of the random strategy, as the CIoT agent is still in the process of building its

Figure 7.3: The CIoT Tx’s ASR performance with ϵ-greedy strategy across training episodes, comparison of
different greediness value ϵ.
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Figure 7.4: The CIoT Tx’s ASR performance across training episodes, comparison of different strategies.

experience in the replay memory. However, at convergence, it becomes clear that the proposed UCB-

IA strategy achieves the highest ASR when compared to all other strategies. The high performance

of the CIoT agent using our DRL approach is attributed to the UCB-IA algorithm, which adjusts the

Q-value to help the agent balance the trade-off between exploitation and exploration, factoring in

both expected reward and jammer interference. As a result, the CIoT network can efficiently share

the spectrum with the primary network while maximizing throughput under malicious jamming

conditions. The ϵ-greedy strategy outperforms both the random and fixed strategies, but it still

significantly lags behind the UCB-IA strategy, indicating that it is not the optimal approach for

balancing the exploration-exploitation trade-off in such a dynamic CIoT environment. The random

strategy results in the lowest ASR due to its random action selection, which reduces the chances

of successful data transmission. The fixed strategy, which follows predefined rules, ranks second-

lowest in ASR, highlighting the limitations of its suboptimal action choices, as the agent cannot

explore all potential actions that could improve the ASR.

Fig. 7.5 presents the average rewards achieved by the CIoT agent over training episodes using

different strategies. The figure illustrates the convergence of all learning-based strategies, validating

the effectiveness of the training process. Both the proposed UCB-IA and ϵ-greedy strategies start

with zero rewards at the beginning of training, as the CIoT agent is accumulating experiences in

the replay buffer. Following this, both strategies experience a temporary drop in rewards, which is
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Figure 7.5: The CIoT Tx’s average achievable reward across training episodes under different strategies.

followed by an increase. This drop is due to the DRL-based strategies prioritizing long-term rewards

over short-term rewards as a result of exploration. Similar to the trends shown in Fig. 7.4, our

proposed DRL algorithm with the UCB-IA strategy achieves the highest average reward, followed

by the ϵ-greedy strategy and the fixed strategy, while the random strategy registers the lowest

reward. The fixed strategy maintains positive rewards throughout all training episodes, as it follows

predefined rules that avoid actions resulting in penalties. On the other hand, the random strategy

consistently yields negative rewards across all episodes due to its random action selection. By

comparing Fig. 7.4 and Fig. 7.5, it is evident that for both UCB-IA and ϵ-greedy, the ASR values are

higher than the corresponding reward values. This is because the average reward metric considers

penalties incurred during the exploration of new actions. Nonetheless, despite the penalties during

exploration, the reward of our proposed UCB-IA strategy remains higher than that of the ϵ-greedy

strategy.

In Fig. 7.6, we present the jammer interference rate across all training episodes for the four

strategies previously discussed. The results show that the random strategy experiences the highest

interference rate, approximately 50%. This indicates that, on average, the CIoT agent transmits

data during about half of the time slots when jamming signals are present, leading to penalties

and data loss. In contrast, the fixed strategy ensures a zero interference rate for the CIoT agent

throughout all training episodes. However, as shown in Fig. 7.4, its lower performance in achieving
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Figure 7.6: The jammer interference rate with the CIoT agent across training episodes under different strategies.

the ASR suggests that it is not the optimal approach. The zero interference rate achieved by the fixed

strategy is a result of its rule-based design, which follows the constraints specified in equation (7.12),

particularly constraint (7.12d). This constraint ensures that the agent switches to energy harvesting

if the jammer is active during time slot t. Initially, the jammer interference rate for both the ϵ-greedy

and UCB-IA strategies increases as the CIoT agent accumulates experiences. However, as training

progresses, the CIoT agent using the ϵ-greedy strategy learns the actions that maximize the ASR,

although those actions lead to a 5% interference rate with the jammer at convergence. In contrast,

when the CIoT agent employs the proposed UCB-IA strategy, it learns actions that not only optimize

long-term throughput but also result in a 0% interference rate with the jammer. This suggests that

the UCB-IA strategy enables the CIoT device to effectively manage jammer interference on the same

channel by harvesting energy from these interference signals, thereby improving battery levels and

transmission success in subsequent time slots.

In Fig. 7.7, we show the ASR for the four strategies across different values of the maximum

battery capacity Bmax of the CIoT device. As observed in the figure, increasing Bmax enables

the CIoT device to harvest more energy, leading to an increase in the ASR. Additionally, a larger

battery capacity reduces the chances of battery overflow (when harvested energy exceeds Bmax),

thereby minimizing the penalties encountered by the CIoT agent. However, once a certain threshold

is reached, further increases in battery size result in diminishing returns, indicating a point of
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Figure 7.7: The effect of the maximum battery capacity Bmax of the CIoT agent on the ASR across different
strategies.

resource saturation. At this point, additional capacity does not translate into further improvements

in performance. Despite this, our proposed DRL algorithm using the UCB-IA strategy consistently

outperforms all other strategies across various values of Bmax. This highlights the adaptability of

our approach in optimizing the ASR not only in scenarios with abundant battery capacity but also

in situations with constrained capacity. It is worth noting that, even at higher battery capacities, the

performance of the CIoT agent using the ϵ-greedy strategy remains inferior to that of our proposed

method.

In Fig. 7.8, we show the ASR of the CIoT agent using our proposed DRL algorithm combined

with the UCB-IA strategy across all training episodes, considering various initial battery levels B0.

The full battery configuration achieves the highest ASR among all initial battery levels, while the

empty battery configuration yields the lowest ASR. This is due to the fact that starting with an empty

battery restricts the CIoT agent’s available actions, increasing the likelihood of selecting actions

that result in penalties. Therefore, the agent focuses on energy harvesting in the initial time slots

to ensure sufficient power for data transmission in subsequent slots. In contrast, starting with a full

battery enables the CIoT agent to prioritize data transmission, thereby achieving higher rewards.

In Fig. 7.9, we display the ASR of the CIoT agent under different spectrum-sharing scenarios

by varying the number of slots occupied by the PU Tx L. As L increases, a noticeable decrease in
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Figure 7.8: The effect of starting battery level B0 on the ASR of the CIoT Tx using our proposed UCB-IA
approach.

Figure 7.9: The effect of the number of PU transmission slots L on the CIoT device’s ASR across different
strategies.

the ASR of all strategies occurs. This reduction is due to the growing restriction on action selection

by the CIoT agent as more slots are occupied. During an occupied slot, the agent faces a limitation

imposed by the interference threshold Ith, which requires selecting lower transmit power P t
s to avoid

penalties, leading to a lower ASR. Additionally, it is evident that at high values of L, all strategies

perform similarly, as the PU Tx occupies nearly all the slots. Conversely, at lower values of L, the

CIoT agent has more flexibility in selecting its transmit power, resulting in a higher ASR. Despite the
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variations in L, our proposed DRL algorithm with the UCB-IA strategy consistently outperforms

all other strategies. This demonstrates that our approach enables the CIoT network to maximize

throughput while effectively coexisting with the PU Tx, even as channel occupancy fluctuates.

In Fig. 7.10, we illustrate the ASR of the CIoT agent across various numbers of time slots T under

different strategies. It is clear that as the number of time slots increases, the ASR for all strategies

improves. This is because, with a fixed number of slots occupied by the PU Tx and targeted by

the jammer, an increase in the number of time slots T provides the CIoT agent more opportunities

for transmission without penalties. As shown in the figure, the proposed UCB-IA strategy and the

ϵ-greedy strategy exhibit a more substantial increase in ASR compared to the fixed and random

strategies. This difference can be attributed to the learning capabilities of these strategies, allowing

them not only to select the optimal action at each time slot but also to adjust the transmit power,

which directly affects the ASR. At 20 time slots, the ASR values for all four strategies converge and

are nearly identical. This occurs because, at T = 20, there are 18 slots occupied by the PU Tx and

10 slots experiencing jamming, limiting the available actions for the CIoT agent and resulting in

similar choices across all strategies. However, as T increases, the ASR of the UCB-IA and ϵ-greedy

strategies surpasses that of the fixed and random strategies by a significant margin.

Figure 7.10: The effect of the number of time slots T on the CIoT Tx’s ASR across different strategies.
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7.8 Conclusions

In this chapter, we explored the potential of deep reinforcement learning to enhance the security

and performance of spectrum-sharing cognitive IoT networks, particularly in adversarial radio envi-

ronments impacted by jamming attacks. We proposed a novel DRL algorithm specifically designed

to balance the exploitation-exploration trade-off, optimizing action selection for maximizing sum

rates in hostile jamming conditions. This algorithm allows the CIoT agent to not only mitigate

jamming attacks but also leverage the interference from jamming to achieve its objectives and extend

its operational lifespan. Our findings demonstrate that the proposed DRL algorithm, using the UCB-

IA strategy, successfully achieves its goals, significantly outperforming existing benchmarks. This

underscores the importance of customizing DRL techniques to the unique dynamics of the system.

We also validated the algorithm’s convergence across different network conditions, confirming its

potential to enhance CIoT network performance even in challenging environments.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Next-generation wireless networks are expected to offer ubiquitous access to a wide range of

communication services, supporting applications from smart cities and drone missions to aug-

mented and virtual reality. This rapid expansion, which shows no sign of slowing, demands a

reevaluation of spectrum utilization efficiency. Dynamic spectrum access, facilitated by Cognitive

Radio (CR) technology, is poised to play a crucial role in these networks. However, true cogni-

tion requires the ability to learn from experience, which is why Artificial Intelligence (AI) holds

immense potential in enhancing cognitive networks, elevating them to new levels of intelligence.

Through this thesis, we have demonstrated that the synergistic combination of AI and CR technol-

ogy enables autonomous decision-making, while providing wireless devices with context-awareness,

self-management, self-optimization, and self-sustaining capabilities. These advancements empower

intelligent radio devices to efficiently handle critical tasks such as dynamic spectrum access, power

management, resource allocation, and security. Furthermore, we have shown that by relying solely

on raw radio environment data and continuous interaction with the environment, we can develop

“brain-powered” autonomous systems capable of intelligently invoking their perception, reasoning,

and judgment capabilities.

In this thesis, we have addressed key challenges in AI-enabled spectrum-aware networks, propos-

ing innovative AI solutions while also exploring supporting technologies such as energy harvesting,
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which can contribute to the development of self-sustainable green networks. Specifically, we

have focused on developing unsupervised learning approaches to drive frequency-domain context-

awareness, enabling more accurate spectrum gap identification. This is crucial, as most existing

approaches rely on supervised learning, which are critical in CR contexts. Additionally, we have pi-

oneered some of the first unsupervised deep representation learning frameworks for robust spectrum

data representation, enhancing perception capabilities in both large- and small-scale cooperative

networks. To promote edge intelligence and improve privacy in mobile cognitive networks, we

introduced the first fully unsupervised and distributed learning framework. This framework allows

users to retain control over their spectrum data, eliminating the need to transmit it to a central entity

for aggregation. Furthermore, we have made significant advancements in developing intelligent

control algorithms for power management and resource allocation in resource-constrained Cognitive

IoT (CIoT) networks, equipping nodes with the ability to autonomously adapt to dynamic, uncer-

tain, and potentially hostile spectrum-sharing environments without requiring comprehensive prior

knowledge. The research presented in this thesis has resulted in a series of publications [8–18],

underscoring its substantial contributions to AI-driven spectrum-aware networks. A brief summary

of these achievements is provided below:

(1) To enable AI-driven context-awareness for enhanced spectrum sensing in large-scale coop-

erative CR networks, we have proposed several novel unsupervised Machine Learning (ML)

methods that require no labeled training data, are data-efficient, and function without relying

on communication with the licensed network. We have demonstrated that our proposed ap-

proaches achieve comparable sensing performance to traditional supervised learning models

that rely on labeled datasets.

• We have demonstrated how supervised models can be trained using unsupervised data,

achieving superior performance without the need for labeled data.

• By applying dimensionality reduction, we enhance the computational efficiency and

generalizability of unsupervised models, ultimately improving the detection performance

of idle spectrum.

• We have illustrated how unsupervised learning can be leveraged to intelligently determine
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the full range of licensed channel states, not just the idle/busy states. This approach,

applied in hybrid interweave-underlay CR access mode, capitalizes on the performance

gains that can result from accurately identifying these states.

(2) To enhance the reasoning and analysis capabilities of cognitive networks, we have made sig-

nificant strides by proposing some of the first fully unsupervised deep representation learning

frameworks. These frameworks efficiently learn disentangled representations of spectrum

data without relying on large datasets or complex architectures. Our proposed solutions

cater to both small-scale and large-scale cooperative CR networks. Extensive simulations

show that, across various environment settings, the proposed approaches achieve performance

comparable to supervised Deep Learning (DL)-based methods, while outperforming non-DL

approaches.

• We have revealed that, in small-scale networks with a limited number of cooperating users

for idle spectrum identification, deep representations can significantly boost performance

in such constrained settings.

• We have effectively addressed challenges associated with unsupervised learning, such as

sensitivity to cluster centroid initializations and the expected cluster count. This brings

us closer to fully automatic approaches that learn directly from the data, without explicit

knowledge, improving their practicality.

• We have validated that, through specialized architectures, we can not only learn disen-

tangled representations that improve sensing performance, but also develop generative

models capable of generating new, unseen examples by learning the data distribution in

latent space.

(3) To improve privacy in large-scale mobile cognitive networks, we have developed the first

unsupervised deep federated learning approach, enabling robust, distributed, and secure spec-

trum sensing. In this approach, we leverage user mobility to collect spectrum data, which is

then used to collaboratively and locally train a shared deep representation learning model that

performs non-linear compression.
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• Due to the mobility of multiple users, each experiences different channels and envi-

ronment conditions. As a result, each device collects data with significantly varied

distributions. This “data heterogeneity” improves the distributed training process, lead-

ing to better model generalizability and performance.

• In our proposed approach, instead of transmitting the actual measured spectrum data,

users send only the updated model parameters to the fusion center for aggregation. This

significantly reduces communication overhead by avoiding the transmission of large

amounts of data and also enhances user privacy, placing control back in the hands of the

users.

• With this approach, a newly joining user can download the model parameters from the

fusion center, enabling it to transform its collected spectrum data into a more efficient

representation, thereby enhancing its judgment capabilities.

(4) To develop intelligent and adaptive control algorithms for the joint management of various

network resources in resource-constrained Cognitive IoT (CIoT) networks, we have proposed

two novel lightweight Deep Reinforcement Learning (DRL) approaches. These approaches

are designed to autonomously learn operational strategies to optimize network resources in

spectrum-sharing networks, with the goal of maximizing long-term achievable throughput.

Against benchmarks, we have consistently demonstrated both the convergence of our proposed

approaches and their superior performance compared to other methods.

• We have indicated that through realistic energy harvesting models, which do not rely on

the presence of a stable source for recharging, devices can capitalize on spectrum energy

to recharge their limited batteries, bringing us closer to self-sustaining, green networks.

• We have established that DRL algorithms enable autonomous learning through con-

stant interactions with the dynamic environment, without requiring comprehensive prior

knowledge, advancing the development of autonomous spectrum-agile networks.

• We have demonstrated that the choice of action exploration strategy can significantly

improve the learning performance of the DRL algorithm, which in turn leads to higher

performance gains for the network.
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(5) To intelligently navigate hostile spectrum-sharing environments, we have developed a DRL-

driven approach that allows a CIoT agent to confront jamming attacks directly within the

same channel, without relying on frequency hopping strategies. The algorithm is designed for

fast convergence, enhancing energy efficiency and ensuring rapid adaptability to adversarial

conditions.

• We have demonstrated how both the proposed DRL algorithm and our novel interference-

aware action exploration strategy enable the CIoT device to intelligently learn a trans-

mission strategy that not only effectively mitigates jamming attacks but also maximizes

network performance.

• We have shown how jamming attacks in these networks can be turned into a benefit for

the user. When such attacks occur, the user can harvest energy from them, transforming

what would otherwise be a disruptive event into a valuable opportunity.

The future of wireless networks will undoubtedly depend on AI, and the research presented in this

thesis contributes to understanding the essential tools for developing a new generation of intelligent,

spectrum-aware, and spectrum-agile wireless networks.

8.2 Future Work

In this section, we outline promising research directions to build upon the findings presented in

this thesis.

Overcoming Labeled Data Scarcity in Wireless Communications. The scarcity of labeled

data in wireless communications stems primarily from data privacy concerns and the high cost

of data labeling. Additionally, spectrum availability fluctuates dynamically over time and space

due to variations in the number of users, interference, and environment factors. This variability

makes it challenging to obtain accurately labeled data that fully represents the range of possible

scenarios. To address these limitations, synthetic data generation techniques have been employed.

These techniques create model-driven artificial data that mimics real-world data while being more

cost-effective and easier to generate. However, the absence of real-world labeled data can hinder the
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effectiveness and generalizability of such approaches. Since synthetic data may not fully capture

the complexity of real-world radio environments, models trained on it may struggle in practical

applications. One way to mitigate this limitation is by constructing realistic wireless environments

using laboratory equipment and curating datasets accordingly. Alternatively, environment simulators

can be leveraged to virtually replicate real-world conditions. However, each approach has its trade-

offs: while lab-based simulations provide valuable data collection opportunities, they may not fully

reflect real-world conditions, whereas virtual simulators offer a controlled setting for data generation

but may lack complete real-world fidelity. To further address data scarcity, few-shot learning can be

utilized to train models with minimal labeled examples per class, while zero-shot learning enables

models to recognize and classify unseen examples without prior exposure. These approaches help

overcome the challenges posed by limited labeled data while improving model adaptability to real-

world scenarios.

Handling Missing or Erroneous Data. Data quality is crucial for the success of AI algorithms

in spectrum-aware networks, as these algorithms rely on accurate and reliable data from sensors and

devices. Errors or inconsistencies in the data can lead to flawed models, reducing the network’s

effectiveness. Therefore, it is essential to develop AI algorithms that can handle data inconsistencies

and errors while maintaining robust performance. Moreover, AI algorithms should be capable of

adapting to variations in data quality over time. This can be achieved through techniques such as

adaptive learning, which enables models to update their parameters in response to shifts in data

distribution. In scenarios where unlicensed users join and leave the network on an ad-hoc basis,

models expecting a fixed number of data features can encounter issues. Missing data may arise

when users leave, or an excess of features may be introduced when new users join. While a simple

approach like truncating extra features can be used to handle the latter, it reduces the model’s degrees

of freedom. On the other hand, missing data can create significant problems for model accuracy.

Future research should focus on developing AI algorithms capable of effectively handling missing

data during both training and prediction for cognition tasks.

Considering Imperfect Reporting Channels in Cooperative Networks. Cooperation among

unlicensed users in spectrum sensing enhances the likelihood of detecting licensed users by aggregat-

ing spectrum data from spatially diverse users, each subjected to different channel conditions, as well

172



as independent shadowing and fading effects. Additionally, cooperation helps mitigate the hidden

node problem, where an unlicensed user may struggle to detect signals from licensed users. This

advantage, known as cooperative gain, reduces the sensitivity requirements for unlicensed users, en-

abling the deployment of lower-cost radio devices without the need for highly precise measurements.

In cooperative networks, unlicensed users transmit their sensed spectrum data to a fusion center over

independent reporting channels. While many studies assume that fading affects only the channels

between PUs and SUs during local sensing, they often consider the reporting channels between SUs

and the fusion center to be ideal, ensuring error-free transmission of local decisions. However, in

real-world scenarios, these reporting channels also experience fading, introducing errors that can

degrade the accuracy of the fusion center’s global decision. Therefore, it is essential to analyze the

impact of imperfect reporting channels on the performance of learning-driven cooperative spectrum

sensing methods.

End-to-End Anomaly Detection Through Deep Autoencoder Architectures. The research

presented in this thesis demonstrates that deep representation learning using various autoencoder

architectures can significantly enhance the detection of spectrum gaps. These architectures typically

consist of two major components: the encoder and the decoder. The encoder maps spectrum data

onto a latent representation space, where the task of spectrum hole identification takes place. Beyond

improving performance, these architectures can also serve as a defense mechanism against sensing

data falsification attacks in CR networks. In such attacks, malicious users attempt to deceive the

fusion center by sending misleading spectrum sensing data. One way to mitigate this threat is

through end-to-end anomaly detection using autoencoder architectures. Specifically, the encoder

can be deployed locally on legitimate unlicensed users’ systems, while the decoder resides at the

fusion center. In this setup, when data originates from a legitimate unlicensed user, the decoder can

reconstruct it with minimal error. However, if an illegitimate user transmits raw, unencoded sensing

data, the decoder at the fusion center will fail to properly reconstruct it, allowing the system to detect

and flag the anomaly.

Designing Interpretable and Explainable AI Algorithms for Spectrum-Aware Networks.

Uncertainty in AI stems from the probabilistic nature of many learning models, which provide a

range of possible outcomes rather than definitive answers. This uncertainty can arise due to missing
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or noisy data, model complexity, or the inherent randomness of learning algorithms. Interpretability,

on the other hand, refers to the ability to understand how a model arrives at its predictions. This is

particularly crucial in autonomous CR systems, where the learning model’s decisions can have sig-

nificant consequences. Ensuring interpretability is essential for building trust, maintaining fairness

and accountability, and identifying potential biases. However, many AI models function as black

boxes, making their decision-making processes difficult to comprehend. To address this challenge,

there is growing interest in developing methods to enhance the interpretability and transparency of

AI models. Graphical models, for instance, offer a structured way to represent relationships between

variables, making dependencies and causal links easier to understand. Other inherently interpretable

learning models include Decision Trees (DTs) and Convolutional Neural Networks (CNNs). DTs

provide clear, visual decision pathways, offering transparency in model reasoning, while CNNs can

leverage techniques to highlight key regions influencing predictions. However, the applicability of

these models may be limited in certain problem domains. Despite ongoing advancements, uncer-

tainty in AI remains an open challenge, and further research is needed to develop robust, interpretable

solutions for complex decision-making tasks in spectrum-aware networks.

Combating Adversarial Attacks on Learning Models for Cognition Tasks. Integrating AI

with CR brings significant performance improvements but also introduces security vulnerabilities.

While security measures exist to protect communication layers, privacy-preserving techniques are

essential to safeguard the learning algorithms themselves. Any AI model can be stolen by extracting

its trained parameters or decision boundaries. A model is represented by the equation y = f(x,w),

where x is the input, y is the output, and w represents the model’s parameters. By feeding multiple

inputs into the model and recording its responses, an attacker can collect enough data to solve for

w, effectively replicating the model. This vulnerability makes learning models susceptible to adver-

sarial attacks, where carefully crafted inputs deceive the model, leading to incorrect predictions and

compromising both security and performance. Beyond security threats, relying entirely on learning

algorithms poses an additional risk—creating a single point of failure. If an attacker successfully

compromises the model, they could potentially control the entire network. To mitigate these risks,

decentralized AI models offer a promising solution by distributing the learning process across mul-

tiple devices, reducing the impact of a single compromised entity. While this approach alleviates
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the communication overhead of transmitting training data, it also introduces new challenges, such as

managing model updates across nodes, efficiently aggregating updates, and addressing synchroniza-

tion issues. These challenges must be carefully considered to develop resilient and secure learning

frameworks for CR tasks.
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