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ABSTRACT 

 

 

Vibration-based Damage Detection and Localization in Pipelines Using Data Analysis 

Mohammadsajad Salimi 

Pipelines are important indicators of modern infrastructure, which allow for easy transportation of 

significant resources like gas, water, and petroleum over long distances. They often cross very 

sensitive environments, and any damage to them poses severe and irreversible consequences for 

marine ecosystems. Also, global warming brings deterioration in infrastructure, which calls for 

urgent needs for advanced monitoring and maintenance solutions. Their challenges bring about the 

development of efficient and practical systems to meet the current and future demands of industry. 

This research focuses on the prediction of pipeline behavior through the vibration signals as a 

primary method for detection, location, and showing the difference in the extent of damage. 

Methods like this provide critical details about pipe structural integrity and hence notify early 

stages of a possible problem well before failure occurs.  In this work, pipeline conditions were 

simulated with numerical modeling using the ANSYS software and then validated with 

experimental data. Features extracted from sensors were specifically velocity and acceleration. 

Analysis was done by Principal Component Analysis (PCA), which tries to diffuse data complexity 

and emphasizes only the most significant variations, where the first principal component carries 

the most critical information about pipeline conditions and is used as our desirable feature. 

Independent Component Analysis (ICA) as a method for finding statistically independent 

components for refining the data is used for detection phase. Application of ICA in this area helps 

maximize the detection rate for anomalies such as corrosion or structural damage. Then, it 

combines Mahalanobis distance and K-nearest neighbor methods to accurately localize damage in 

the pipeline. Initial results using data reveal that the algorithm works well, hence may be applied 

to real life.  
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Chapter 1: Introduction  

 

 

 

1.1  Background 

Infrastructure forms the backbone of economic development and quality of life in any given 

society. Pipelines are the major subset of infrastructures and have been one of the most reliable, 

effective, and safe ways to transport energy resources across long distances.  Alberta is an example 

to be mentioned because it is an industrially developed area having a considerable volume of 

pipeline infrastructure. Alberta has a powerful pipeline network stretching over 446,092 kilometers 

with an average annual growth of approximately 1% for five years (Alberta Energy Regulator, 

2023, 2024). These are made up of different materials. Of the close to 388,000 kilometres of 

pipeline in Alberta, approximately 85% is steel and 15% non-metallic, predominantly 

polyethylene, fibreglass, and composites that resist corrosion at a better rate. The majority of the 

former are less than 6 inches in diameter and carry oil and gas products from individual wells to 

various processing facilities. Only 7% of the total pipeline network that comes under Alberta 

Energy Regulator is large diameter pipelines with a diameter of 12 inches or more. 

By comparing each of the three annual reports in sequence, from the Alberta Energy Regulator's 

annual expenses in the field of energy regulation, it came to CAD 203,753,000 in 2021, CAD 
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221,629,000 in 2022, and CAD 223,496,000 in 2023, up to CAD 243,568,000 in 2024. There 

should be a good response for the reason of bearing such a huge amount, which is needed for 

regulating pipelines, especially over the last two years when expenses were increasingly growing 

(Alberta Energy Regulator, 2022, 2023, 2024). 

Apart from the above-mentioned pipeline regulation costs, deterioration of the present 

infrastructure, including pipelines, is being accelerated by persisting problems on civil engineering 

structures caused by global issues like climate change and steel corrosion.  

Recently, with great steps of advance in sensing technology, it has adopted new practical methods, 

making maintenance process much more efficient. This makes it now possible to keep track of 

infrastructure assets almost in real time. In real time the amount of information produced by 

sensors is huge, with the number of measurements a sensor can gather per hour growing into 

millions. So, the infrastructure health can be much more precisely gauged than ever, and much 

quicker responses to possible problems, like premature deterioration, structural damage, can be 

obtained accordingly (Chen & Ni, 2018). 

While the volume of data brings its own set of issues, large volumes of data facilitate much better 

decision-making around when to maintain or repair something in order to reduce risk and extend 

the lives of an asset. Therefore, through the review of operational data by means of data analysis, 

a company can achieve the forecast of points of failure, timely repair, and thereby optimization of 

the repair and maintenance strategy. The prognosis of major failures decreases and extends pipeline 

reliability for longer periods by this proactive approach (Gulgec et al., 2017). 

Nowadays, some new methods like Machine Learning can analyze data as part of Artificial 

Intelligence; it may work towards creating algorithms with the objective of giving computers the 
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capacity for far superior data manipulation compared to previous techniques. By using these 

algorithms, a machine can generate an automatic knowledge base from data. The more data they 

process, the better they become at making predictions and improving results (Avci et al.,2021). 

Fundamentally, there are a few broad categories of applied machine learning techniques in health 

assessment: supervised and unsupervised learning. Supervised learning is focused on finding the 

mapping between the input data and the corresponding output. For infrastructure monitoring, 

however, it relies on the balanced data from undamaged and damaged structures, which is hard to 

collect. The methods for unsupervised learning aim at identifying patterns within the input data 

without any prior knowledge regarding the target outputs. These methods can make predictions on 

new, unseen data based on knowledge that is acquired during training (Santos et al., 2016). 

It has drawn increasing attention in recent years considering some certain characteristics 

(multivariate features) at the same time by developing some data fusion methods. These data 

analysis techniques try to combine certain information as selected features from various sensor 

sources with the purpose of enhancing the diagnostic processes' accuracy and effectiveness, or 

sometimes it could be a method for extracting desirable features out of selected features (Wu et 

al., 2018). 

In the context of the above, this work aims at developing a practical framework by considering the 

size of the pipeline (the focus is given to the pipes with a diameter less than 6 inches due to practical 

usage based on annual reports which have explained already) which leverages data-fusion and 

data-separation techniques and uses them as desirable features for detection and localization goals. 

The developed system will go beyond pipeline health monitoring on mere damage detection and 

localization but will also support companies in their further decision-making. 
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1.2 Objective of research 

The main objective of the present research is to develop a data-driven damage detection technique 

for pipelines using vibration data. Machine learning (ML) algorithms such as Artificial Neural 

Network (ANN) technologies are ideal for developing a data-driven model. To achieve the above 

objective, the following sub-goals and tasks have been identified. 

(1) Conduct a state-of-the-art review on the health monitoring of infrastructure, mainly 

infrastructures and particularly pipelines. For assessment, investigation would be done on 

traditional methods as well as new approaches using different methods including artificial 

intelligence. 

(2) Develop a surrogate model using ANSYS software, which would be verified through 

experimental results for opting selected features in order to extract desirable features. 

(3) Identify a suitable algorithm for analyzing the vibration data by leveraging the advantages of 

data fusion and data separation techniques to perform multivariate feature analysis. 

(4) Develop a suitable framework to provide for industrial use, focusing on detecting, localizing, 

and differentiating the extent of damage in a pipeline. 

1.3 Thesis structure 

 

Chapter 1: 

The first chapter consists of the introduction to the research. In this chapter, an effort is made to 

discuss the reasons for conducting the research, as well as its significance.  
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Chapter 2: 

This chapter presents a literature review of topics related to this research. These literature reviews 

vary in scope, including articles on machine learning and other related topics such as methods of 

data analysis and data fusion. 

Chapter 3: 

This chapter elaborates at great length on methodologies adopted for the research, while step-by-

step development of the finite element model is discussed. This includes a step-by-step 

explanation of how the model is made and used in the implementation. The next segment presents 

the process for data extraction from the model, considering essential steps to extract relevant data 

for analysis. In the final part, the framework of the anomaly detection and localization carried out 

is reviewed by describing techniques and processes applied in the identification and location of 

defect within the pipe. 

Chapter 4: 

In this chapter, the introduced frameworks for localization and detection are considered in five 

different scenarios. The first scenario considers a detailed analysis of the processes of localization 

and detection. Different steps involved in this scenario are elaborated in detail. For the process of 

detection, the steps involved in data fusion and data separation are elaborated, which lead to the 

detection of defects through the presented framework. The localization stage mainly presents the 

procedure of data fusion and the transformation of chosen data to desirable data. From the 

framework presented, the localization is performed using local Mahalanobis distance analysis.  

In the second case, similar to Case 1, the localization process is investigated and verified by 

presenting preliminary graphs with regard to LMD (Local Mahalanobis Distance) and the process 

of extracting greatest peak are rendered. The finding of defects in Scenario 3 is done on a pipe 
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containing two holes at different locations with variable sizes. In Scenario 4, the proposed 

approach has performed localization by increasing the distance between sensors in order to study 

the sensitivity of the approach. Mathematical models are introduced in Scenario 5 in order to 

differentiate between holes of various sizes. 

 

Chapter 5: 

In this chapter, the summary of the results is discussed, while the efficiency of the framework is 

reviewed. Also, some suggestions for future works is rendered. 

Chapter 6: 

In this chapter, an appendix which is related to necessary data are rendered. 
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Chapter 2: Literature Review 

 

 

 

 

2.1 Introduction 

 

Pipelines create a critical way of modern infrastructure; in many ways, they become vital for the 

survival of world economies and security. Since they usually act as conduits for key resources, 

their failure or hindrance often tends to be serious. Therefore, it is also a focus area for economic 

and industrial planners (Salimi and Bagchi., 2024). 

The current chapter is supposed to provide, based on reviewed literature, a critical review of 

vibration-based monitoring of the health of infrastructural elements. Attention has shifted to this 

method since it works effectively in monitoring and evaluating pipeline condition. By analyzing 

the behavior due to vibration, early damage or even wear is possible to detect as failure, which 

sustains pipeline reliability and safety. It reviews past research, technologies, and applications of 

vibration monitoring. Hence, it sheds light on methods being applied in reality to avoid major 

failures and increase the life span of a pipeline. 
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2.2 Methods of infrastructure health monitoring 

 

This overview of the available literature is categorized into two distinct classes (Avci et al., 2020). 

First, termed as local method, encompasses conventional methods that typically rely upon a high 

degree of expertise from a seasoned technician. The techniques either constitute close observation 

or a test the structure, and they have seen extensive application over many years and in those 

situations where structural or surface damage is evident. The second category, termed global 

method, involves all vibration-based methods in front of the growing understanding of the 

importance of vibrations in structural health. These methods make use of the analysis of vibration 

responses of structures for detection and assessment of damage and in many cases these methods 

are so similar to the human nervous systems (refer to Figure 1). Vibration-based methods have 

received considerable popularity because of the potential monitoring of a structure's internal health 

without direct access or invasive inspections. In the following sections, we will explore the 

different methods within these two categories in various types of infrastructure. 

 

 

 

 

  

Figure 2.1. similarity between SHM and nervous system source: https://civilresearchgroup.ulusofona.pt/research /structural-health-

monitoring 
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2.2.1 Local Methods 

Most techniques falling into this category would be called non-destructive testing (NDT). As 

previously mentioned, the Local methods seek to examine the damaged areas on a smaller scale. 

They also require the availability of qualified personnel in order to carry out the tests effectively 

and accurately. 

These methods also include Ultrasonic Testing, Infrared Thermography, Radiographic Testing, 

Magnetic Flux Leakage, Magnetic Particle Testing, Liquid Penetrant Tests (PT), Ground 

Penetrating Radar (GPR), Leak Testing and Visual Testing (VT), among the techniques used for 

sectional area testing of infrastructure (Rens et al., 1997; Sophian et al., 2001; Chang and Liu, 

2003; Dwivedi et al., 2018). Those who would like to go deeper, an array of references and texts 

involving extensive detail are suggested. 

 

 

 

 

 

 

 

 

 
 

Figure 2. 2. visual test for pipes _ sources: https://www.fbrcontrol.com/en/controllo-visivo/ 
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2.2.2 Vibration-based methods 

 

Starting to think about the vibration methods for damage detection, the historical background goes 

back to the beginning of the 1800s, when railway workers moved around and checked the condition 

of a train wheel by hitting it with a hammer and listening to the succeeding sound. Quite a modest 

approach that gave them a qualitative judgment whether the wheel was damaged or in good 

condition. Development of vibration methods for detecting damage was only possible in the 1980s 

due to improvements in computing sensing technologies and analysis the data. The latter 

technological improvements allowed more exact and data-driven approaches in determining 

structural damage (Simoen et al., 2015). 

Some of the features that have made vibration-based damage detection more feasible and also 

more reliable compared to the other methods, especially traditional ones include (Chen and Ni, 

2018): 

- Early detection of damage: In the vibration-based damage detection approach, the 

structure expresses different behavior throughout each stage of damage. Even minor wear 

or corrosion of a structure causes detectable changes either in the pattern or characteristics 

of the vibration like frequencies, mode shapes and damping, thus allowing early 

identification of any problems that may occur (Humar et al., 2006). 

- No need for prior knowledge of damage location: By having vibration data through data 

acquisition and selecting certain features and analyzing them, the process is going to be 

completed. Therefore, exactly where the damage will occur may not be known in advance. 
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- Portable and easy-to-use equipment: The equipment used for most vibration-based 

techniques is portable, easy to operate in terms of recording data, and can be quickly 

installed onto the structure being monitored. 

Various classifications have been proposed under infrastructure health monitoring category from 

different sources. In this study, based on the focus of the research which integrates experimental 

parts, numerical parts and any other methods, two broad classes are adopted: model-based 

approach and model-free approaches (Wang et al., 2023). 

Most of the work done in vibration-based infrastructure health monitoring is presented in the 

following sections. Reviewing the types of models, type of damage, and methods for obtaining 

results in different studies conducted with a focus on vibration analysis is the main theme of this 

review. 

2.2.2.1 Model-based approach 

 

The model-based approach uses some stem concepts, such as finite element analysis, for 

simulating the infrastructure (to build surrogate models in many cases) and extract some desired 

parameters useful for assessing structural health. While this indeed provides the user with greater 

freedom and flexibility to extract desirable features that facilitate more refined analyses and 

optimization, based on specific needs, this is heavily dependent on creating accurate models, which 

are able to predict the structure's behavior in various conditions. The next section shall present the 

papers classified in this category, in chronological order, so as to preserve the timeline of 

developments. 
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(Yeung and Smith, 2005) applied some damage detection techniques in bridges; the focus was to 

make use of neural networks for pattern recognition of vibration data. The test structure used is a 

suspension bridge, already over 100 years old, and simulated damage includes that of corrosion 

or loosening joints (reduced stiffness). A finite element model generates natural frequency 

response data under moving traffic loads, and this data is used to train two unsupervised neural 

networks for damage detection.  

Based on the framework developed by (Lee et al., 2005), a multi-girder bridge model was 

analyzed, with damage relating to loss of stiffness due to changes in the bending rigidity of 

structural elements. Modal data, such as mode shape differences between intact and damaged 

states, are used in this approach to train neural networks. Numerical simulations and real 

experimental tests on the bridge structure will generate the data. In this, a back-propagation neural 

network classifier is used for damage identification. 

The methodology for damage detection in beams having fixed boundary condition using finite 

element model was developed by (Pawar et al., 2006). The type of damage being studied here is 

that of stiffness reduction that may occur in beams. In this methodology, the use of spatial 

Fourier analysis of natural frequencies and mode shapes of the beam is made for quantifying the 

changes arising due to damage and subsequently making use of neural network for classification 

purpose.  

(Yuen and Lam, 2006) improved the damage detection techniques applied to the five-story building 

models with the motivation of identifying damages in forms such as reduction in inter-story 

stiffness at different levels. The developed technique uses a Bayesian probabilistic approach 

together with ANNs for the identification and classification of the type of damage based on natural 

frequencies and mode shapes.  



 

13 
 

A method was developed by (Lee and Kim, 2007) for structural damage detection using frequency 

domain analysis, with a focus on steel girder damages caused by loss of stiffness due to cracking 

or loosening connections. The structure analyzed in this research is a bridge model with steel 

girders, while the kind of damage studied involves saw-cut cracks and loosening of connection. 

Thus, a hybrid methodology is developed coupling experimental testing with finite elements 

simulations. dynamic response data, frequency response functions, are collected for the intact and 

damaged structure. The classification algorithm adopted in this work is a NN that processes, 

preferably, frequency response data to detect any damage in the bridge girders.  

(Mehrjoo et al., 2008) proposed an efficient method for damage estimation in the joints of two 

different truss bridges including Louisville Bridge in the U.S.A using back-propagation Artificial 

Neural Networks. The nature of the damage considered in this study is fatigue damage in the 

joints of truss structures, which is usually not easily detectable by conventional inspections. The 

modal data including natural frequencies and mode shapes are used as input to pinpoint damage in 

this study.  

(Gonzalez and Zapico, 2008) attempted to improve seismic damage identification in buildings, but 

they limited their field of study to the steel moment-frame structures that are most vulnerable to 

stiffness decreases due to beam and joint damage caused by seismic events. The method proposed 

neural networks to identify damage, the model requiring, as input for estimating changes in 

structural behavior, modal data such as natural frequencies and mode shapes. Data for the study 

come from finite element simulations of a 5-story office building under seismic conditions.  

(Lam and Ng., 2008) proposed a structural damage detection model using an intelligent hybrid 

ANN system for diagnosing the occurrence of damage in structures. The model under question is 

from a 10-story shear building, where the primary challenges faced are identifying the stiffness 
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reduction caused due to the presence of the damage at each story. According to the 

methodology, the simulation is carried out by executing a modal analysis with the aid of simulated 

data through the GRNNFA model, a general regression neural network combined with fuzzy ART 

(FA), for detection and localization of damage.  

(Bakhary et al., 2010) presented an approach to damage detection in reinforced concrete slabs, 

focusing on detecting a reduction in stiffness arising from cracks due to loads applied to the 

structure. The structure considered in the analysis was a two-span concrete slab with controlled 

increasing loads that simulate various levels of simulated damage. Modal data, including natural 

frequencies and mode shapes obtained with finite element simulations and experimental testing, 

were considered as an input for the methodology, able to estimate changes occurred in structural 

behavior because of loadings. A multistage ANN classifier was employed for detection. 

(Jiang et al., 2011) developed a method for structural damage detection. The model analyzed in 

the study is a 7-degree-of-freedom building and a 12-story reinforced concrete frame. The types 

of damage considered are the stiffness reduction at various structural components to simulate 

damage patterns for extracting modal parameters. The methodology that was mainly adopted in 

this research work is the immobilization of rough set data and probabilistic neural network (PNN) 

for multi-sensor data fusion.  

(Jiang et al., 2011) improved structural damage detection based on a two-stage approach that 

combines fuzzy neural networks with data fusion techniques. A seven-story shear beam building 

serves as a model for analysis. The type of damage studied involves stiffness reduction at 

different story levels to simulate the deterioration of structures. Their methodology includes the 

use of modal parameters from vibration responses as inputs into models of FNNs. These 

parameters undergo data fusion to refine the results of the damage detection.  
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(Cury and Crémona, 2012) have proposed an identification methodology for monitoring two 

different models: a railway bridge in France and a simply supported beam with damage scenarios 

based on stiffness reductions simulating real structural modifications, considering the 

application of vibration data and modal properties - natural frequencies and mode shapes—

transformed into symbolic data, combined with Bayesian Decision Trees, Neural Networks, and 

Support Vector Machines for classification.  

(Goh et al., 2013) review the methods that have been in use for structural health monitoring in 

order to carry out analysis on a two-span continuous reinforced concrete slab with simulated 

damage scenarios made using stiffness reduction in some sections to represent actual structural 

damage. The approach here is the use of a multi-stage ANN model to first estimate unmeasured 

modal data and then detect and quantify the damage using this estimated data. This approach also 

uses probability tools to consider uncertainties in the measured data.  

(Betti et al., 2014) discussed the efficiency of combination techniques using ANNs and GAs in 

structural damage detection of a three-story steel frame. Progressive damage was simulated by 

cutting a steel column above the first story which took away some of the element stiffness 

and created structural weaknesses. The methodology involves an experimental layout with an 

instrumented steel frame using accelerometers to capture vibrational data in terms of natural 

frequencies with mode shapes under ambient vibration. Later, ANN is to be trained so as to assess 

the modal properties, natural frequencies and mode shapes, and for the determination of error 

functions by optimization using a Genetic Algorithm (GA).  

The work by (Zhou et al., 2014) was dedicated to enhancing damage localization techniques for 

cable-supported bridges; identification of structural damage is dealt with by applying frequency 

data of mode. The structures investigated represent two famous cable-supported bridges: Tsing Ma 
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Bridge and Ting Kau Bridge, which have simulated cases of damage in the form of a reduction of 

stiffness in deck units, stay cables, and bearings. The method that has been presented will create 

3D finite element models of these bridges, analyzing the change in modal frequencies due to 

damage introduced. The classifier acts within a Bayesian probabilistic framework that detects and 

localizes damage using the Probabilistic Neural Network classifier.  

(Hakim et al., 2015) conducted a study related to the detection of structural damage associated 

with beam-like structures using artificial neural network (ANN) as a classifier. The stiffness 

reduction due to cracks comes into focus. For analysis, the model made use of a steel I-beam 

structure. Types of damage analyzed include cracks at several locations. The experimental works 

are combined with FEA in order to generate desirable data comprising natural frequencies and 

mode shapes.  

Critical elements of the monitoring process, such as the identification of the natural frequency, 

modal analysis, and updating of finite element models, were conducted in a study by 

(Valinejadshoubi et al. 2016) through a case study approach. They acknowledged the effectiveness 

of M-FEM software for model updating through an iterative approach. A concrete beam was taken 

as a test object on which acceleration data allowed determining its natural frequency in two states, 

at pre- installation and post-installation of concrete blocks, by applying FFT analysis. Further, they 

also conducted modal analysis and finite element models to evaluate how structural damage could 

be identified in the beam. 

(El Mountassir et al., 2018) propose a new technique to reduce the impact of environmental and 

operational condition changes by using sparse estimation of monitoring signals. This approach 

involved comparing current signals, via sparse estimation, to a baseline database of signals from a 

healthy pipeline, with the estimation error serving as a damage index. It was applied to signals 
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collected from a small-scale pipeline in laboratory conditions. Tests with ultrasonic guided waves 

were conducted for data collection. 

(Lyapin et al., 2018) focused on identifying structural damages by monitoring variations in 

dynamic characteristics, eigenfrequencies and mode shapes, introduced by defects. The finite 

element modeling of changes in significant vibration modes allows for the identification of 

targeted damage and its location using a limited number of sensors. This investigation supports 

that when the mode shapes are well-defined with a sufficient number of measurement points, 

damage detection relies on factors such as damage severity, the number of trials performed to 

average the mode shapes, sensor placement relative to the damage, and measurement accuracy. 

(Houdek et al., 2022) propose a new approach to the problem of impact detection in three-

dimensional structures using the wavelet transform. The method uses an array of redundant sensors 

capturing the vibrations coming from impacts; it adopts Continuous Wavelet Transform with 

optimal partitioning of intervals to achieve accurate time-of-arrival estimates. 

(Mousavi et al., 2022) present a general review of vibration feature extraction using signal 

processing techniques. Various signal processing techniques that offer a view on works that use 

the process of feature extraction are organized into two main classes in a systematic way: time-

domain approaches and frequency-domain approaches. This will be relevant to enable the 

recognition of changes or damages in dynamic systems by means of vibration signals, which can 

be useful for detecting damage.. 

(Xie et al., 2023) performs acoustic emission tests to identify fatigue damage in oil and gas 

pipelines, even under harsh conditions of measured noise onto offshore platforms. The authors 

introduce the pipeline acoustic signal collection and later inject the signals with measured field 
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noise to simulate real-life conditions. Empirical mode decomposition and the probabilistic neural 

network are then applied for identification of noise from actual damage signals. The time 

difference method serves for preliminary positioning, refined with backpropagation neural 

networks for adjustment of results. 

Li et al. (2023) aimed to demonstrate how the presence and angular positions of defects affect 

the detection of defects based on the application of damage indices. Numerical models of 

laminated pipeline structures with different defect scenarios were designed in such a way that the 

defects' effects were analyzed for the damage indices. The models used in this section are a steel 

pipe, rigid polyurethane foam, and high-density polyethylene. The procedures consisted of signal 

averaging, a level 5 wavelet packet transform, and arranging computed damage index values in 

matrix format.  

(Alves and Cury, 2023) rendered an approach using filter-type feature selection. The workflow 

encompasses a multilevel feature extraction in time, frequency, and quefrency domains, combined 

with a subsequent unsupervised infinite feature selection technique for the actual filtering out of 

irrelevant redundancy from the feature set. The core of the proposed technique is an outlier 

analysis-based percentile intervals of filtered features, computing a damage-sensitive index that 

allows for the detection of anomalies relative to a healthy structure state. 

(Wang et al., 2023) have proposed a new enhanced damage detection methodology in 

infrastructures using data fusion and machine learning. They developed a framework that takes 

into consideration three major items of data, namely acceleration, deflection, and bending moment 

measured by sensors mounted on a simply supported bridge and a continuous bridge. Principal 

Component Analysis and Mahalanobis distance were applied to clean the data and extract the 
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features related to damage. Obtained features are then fed into a Deep Convolutional Autoencoder 

that classifies the normal and damaged conditions.  

2.2.2.2 Model-free approach 

 

The model-free approach applies to those detecting cases of damage through other means, such as 

through signal processing or statistical techniques, machine learning, among others. No 

comprehensive model of the structure or finite element model making is involved in this approach. 

Instead, the identification of anomalies and possible damage is done by applying data-driven 

methods based on signals or data gathered from the structure. We present these studies from this 

category next in chronological order.  

Damage detection by stiffness reduction due to the removal of braces is pursued for a four-story, 

two-bay steel frame structure by (Lam et al., 2008). This study features the ASCE benchmark 

model in which damage scenarios, including partial and full removal of braces, result in stiffness 

reduction at specific locations. It performs a combination of vibration analysis through dynamic 

response data generated under ambient and shaker excitation, extracting modal parameters such as 

natural frequencies and mode shapes. A Bayesian Artificial Neural Network classifier is then 

applied for the identification of damage. 

(Bao et al., 2013) proposed Autoregressive Moving Average (ARMA) model-based detection in 

subsea pipeline systems using signal and statistical methodologies to analyze data. First, this 

method preprocesses the vibration data to reduce the influence of variable loading conditions by 

partitioning, normalization, and the autocorrelation function, enhancing the quality of the signal 

and reducing the effects of noise. A good ARMA model is developed based on a Partial 

Autocorrelation Function analysis wherein the autoregressive parameters are considered to be 
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vectors representing the features of damage. A defined damage indicator corresponding to the 

Mahalanobis distance between ARMA models is applied for identification. 

(Ching-Tai Ng., 2014) attempts to investigate multi-story steel frame structural damage detection, 

particularly the stiffness reduction in the braces caused by the damages. A finite element model 

of a four-story steel frame was used in conducting research on various simulated damage 

conditions (Phase II IASC-ASCE SHM benchmark structure). The methodologies involved 

vibration feature collection in the form of natural frequencies and mode shapes from both 

undamaged and damaged structure states, which were processed with a Bayesian-designed 

artificial neural network to identify patterns of stiffness reduction.  

(Yang and zhao, 2022) proposes a leak detection and localization approach (not vibration based) 

in pipelines by incorporating a variant of artificial intelligence called BiLSTM, which can learn 

patterns in data sequences backward and forward. This will help solve the problem associated with 

traditional systems, which might get confused between normal changes in pressure and leaks. 

This works through pattern analysis of pressure changes versus time in order to differentiate an 

actual leak and normal fluctuations due to, for example, pumps working. These systems are trained 

on real pipeline data for accuracy and tested on simulated and actual pipeline data.  

2.3 Scope of Current Work 

 

Before discussing the scope of the current work, it is important to note that the nature of damage 

can be either intentional, due to deliberate actions like explosion or terrorist attack, or non-

intentional, such as damage caused by corrosion. Furthermore, depending on its nature, damage 

can take various shapes, such as an elliptical form. 
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In this project, a circular hole with a size of 1 mm on top of the pipe (+ 90 degree) is considered 

as the representative damage for a  basic model. This choice was made to focus on data analysis 

while minimizing the size of the defect for ensuring a more comprehensive assessment. 

Based on above explanation, most of the research which rendered in Sections 2.2.2.1 and 2.2.2.2 

has used natural frequencies and modal shapes as desirable features (the most frequency), with 

stiffness reduction as an indicator for damage which is highlighted. This project, by taking a 

different approach toward these desirable features, justifies itself and even makes it necessary. It 

is relevant to note that both processes in this project, detection and localization, will be carried out 

solely through signal processing.  

After data acquisition which will be explained in next chapter, to extract unique data, various 

techniques will have to be applied.  Among them, the process of data fusion for generating unique 

data by combining different data sources is used which has gained considerable attention over 

recent years (Wang et al., 2023). 

The Principal Component Analysis (PCA) usually is a method of unsupervised learning, although 

it can be applied to fuse the information in any other way. It cleans the data in two ways: 

dimensionality reduction and retaining the variance of data. In other words, the principal 

component analysis is one of the statistical methods that may convert a set of selected features 

onto a set of principal components while retaining the maximum variance of data (Tharwat, 2016).  

The purposes of using PCA for data fusion in the infrastructure project are two-fold. One is to do 

whitening (Hyvärinen et al. 2001), which will be elaborated more in the section for Independent 

Component Analysis, and the other is to apply data fusion on the selected features to obtain a 

desirable feature, then use it as an input to perform anomaly localization. 
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 For the final part, data which is combined by means of data fusion can be understood using 

distance metrics for classification or any other goals (refer to Figure 2.3). Among many distance 

metrics, such as Euclidean distance, Mahalanobis distance, and Minkowski distance, the 

Mahalanobis distance is used in this project. 

The Mahalanobis distance metric has a similar conceptual meaning to the Euclidean distance in 

algebra (Ghorbani, 2019). However, the two differ in that whereas Euclidean distance defines the 

distance between two points, Mahalanobis distance defines the variable distance between points 

and a set of points. It does this by combining two main capabilities: accounting for the correlation 

between variables and accounting for the differences in variances. It tends to put a little weight on 

the highly correlated variable as well as the variable with high variance; hence all the 

characteristics are weighed equally. 

 

 

 

 

 

 

 

Figure 2. 3. Health Monitoring steps source: https://civilresearchgroup.ulusofona.pt/research/structural-health-monitoring 
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2.4 summary 

This chapter presented an overview of major works conducted in the field of vibration-based SHM. 

The studies have been reviewed with regards to the type of damage analysis, structure under 

investigation, and methodology used for detecting the damage. It is certain from this review that 

stiffness reduction has been the most commonly used damage indicator in the majority of studies. 

The methodology of damage detection depended largely on the type of structure analyzed, and a 

great portion of the works reviewed fell into the category of the model-based approach. The main 

reasons why the model-based methods were preferred include their flexibility in feature extraction 

through the creation of a surrogate model. Guided by this insight, a model-based approach has 

been used in the development of the surrogate model and feature extraction in the current project. 

Therefore, in this context, an effective solution is to be proposed which could minimize the cost 

and consumption of time for damage localization. The next few chapters will introduce the method 

used along with the validation through a verified surrogate model experimentally. 
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Chapter 3: Methodology 

 

 

3.1  Introduction 

The objective of this chapter is to give an overview of the developed package for damage detection 

and damage localization. As discussed in Chapter 2 under the literature review, several studies 

have been undertaken on damage detection hinged on the model-based and model-free approaches 

outlined therein. Each of the methods presented has tackled damage detection and localization in 

a certain way, depending on the initial assumptions made during the selection of desirable features. 

These features are important for the identification and location of damage in a structure and are 

selected according to the approach that will be used to perform the analysis. 

What sets different studies apart is the selection of desirable features. In many cases, this aspect 

has led researchers to generate data specifically to identify these features. By creating a 

mathematical model (surrogate model), they are able to utilize the capabilities of the model to 

extract the required data. This makes the extraction of features more focused, powerful and 

economic, thus identifying the required insights in damage detection and analysis. The 

mathematical models can then be validated and may be calibrated with small-scale laboratory 

models. In this way, verification of numerical (surrogate) models will provide real conditions and 

enhance their reliability for further analysis and predictions in damage detection. Below is the 

package developed for damage detection and localization. This chapter elaborates on every step in 
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the proposed package, letter by letter, to ensure that everything is explained, and ambiguities are 

removed. It aims to give a complete understanding of the workflow in damage detection and 

localization. 

 

 

 

 

 

3.2  Description of Experimental model (Benchmark): 

This project incorporates experimentally obtained data and numerical modeling to study certain 

phenomena. The experimental part is based on the research reported in (Khazeli , 2018), serving 

as a benchmark for this project. In the above experiment, the pipe was segmented into ten equal 

parts. An accelerometer was mounted on the pipe, and impacts were delivered by a hammer at 

eleven points, including the pipe ends. Each point received five impacts, with results averaged to 

avoid potential noise interference. Data was transferred and stored using a data acquisition system 

(NI 4310). The process of collecting was complemented with (PCB-type) sensors and hammers, 

along with noise-suppressing cables to ensure data integrity. 

 Experimental work relies on modal tests conducted on a 3-meter-long pipe to determine its natural 

frequencies, allowing for the extraction of frequency and modal shape—crucial elements for 

validating the accuracy of the numerical model. More details on the experiment can be found in 

(Khazeli, 2018). 

 

Figure 3.1. Proposed package for detecting and localizing phase 
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3.3  Numerical model 

 

Following the steps outlined in Figure 3.1, a numerical base model is built using ANSYS 

Workbench to match the experimental model for verification purposes, ensuring that results are 

comparable to the experimental data. This section provides a detailed description of each step 

involved in building the numerical model, following the necessary sequence for accurate 

simulation and comparison with laboratory results. 

3.3.1 Model Description and Boundary Conditions 

 

A finite element simulation was conducted on a pipeline characterized by a circular cross-section 

3000 mm in length, with an inner radius of 25.14 mm, and an outer radius of 30.15 mm. Other 

characteristics of the pipeline are shown in Table 3.1. 

 

 

 

 

 

In this simulation, the target is to consider a boundary condition in such a way that numerical 

model closely simulated to experimental description as much as possible. Based on matching the 

frequency and modal shape with the laboratory conditions, two hinge supports are used for both 

sides of the pipe. Numerical modeling assumes homogeneous and isotropic pipe material with 

Table 3.1. Characteristics of material 

Characteristics  Values Unit 

E (Elasticity Modulus)  2e+11 pa 

µ (Poisson Ratio) 0.3 _ 

G (Shear Modulus) 7.7e+10 pa 

Coefficient of thermal 

expansion 

1.2e-05 1/C0 
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elastic behavior in the present analysis. This implies that the material properties are the same 

everywhere for the pipe, and stimulation (analysis) will be performed within the elastic limit.  

3.3.2 Loading condition 

 

For the simulation of model, the behavior of the pipe is evaluated due to impact loading. Based on 

an experimental benchmark presented in (Khazeli, 2018), the calculation of impact loading takes 

into consideration the maximum permissible stress (Nisbett et al. 2015), adjusted by factors related 

to the endurance limit to incorporate various practical aspects like load, surface state, temperature, 

etc. (Refer to Appendix C). This impact loading equal to 300 N is applied at a fixed distance from 

the beginning of the pipe (in the models examined for damage detection and damage localization, 

a distance of 15 cm has been considered.). This kind of impulse aims to mimic the hammer test 

previously discussed. The whole period when the dynamic behavior of the pipe under the effect of 

an impact is investigated is 0.1 seconds, it should be mentioned that the dynamic load is applied 

at the time interval of 0.01 seconds and the time step is considered 0.001 seconds. 

 

 

 

 

 

 

 

 

Figure 3.2. The impact loading which is applied 15 cm from the start of pipe (transient Analysis step) 
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3.3.3 Mesh Sensitivity 

 

The most technical part of the simulation is related to how to mesh. Different techniques are 

examined through trial-and-error methods. For the pipe that is intact and modeled to match the 

experimental setup, a default mesh with moderate size was used during the simulation process. For 

the basic pipeline model, the number of nodes and elements are 36595 and 5586 respectively, also 

size of elements are 1 cm.  It is worthy to say that each hole in a model is located on the top of the 

pipeline (+90 degrees) and for models with holes, three different mesh techniques are used. The 

first technique is meshing with elements of fine, moderate, and coarse size, different models are 

built and due to the limitation of the number of nodes, elements, and proper accuracy, the moderate 

size is applied for the first step. The second step pertains to using a multi-zone technique with 

(Tetra) mesh type and (Hexa) mapped type for the zone with a hole because without applying a 

correct technique for the mentioned zone, different sorts of errors are reported through software. 

The last step refers to how to merge different zones, and for this step, meshes were edited with the 

refinement technique, these different zones are merged through the Node merge technique and 

different sorts of error messages are modified. (Refer to Figure 3.3) 

 

 

 

 

 

 

 

(a) 
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Figure 3.3. Examples of different views for the pipe (a) Considering two hinged supports at both ends based 

on remote displacement technic. (b) Section view of a typical mesh grid for pipe with no hole. (c)  and (d) 

Multizone technic for the pipe with hole (basic model) 

3.4  Dynamic Simulation 

 

In this modeling, different methods for dynamic simulation were tested. Finally, two methods were 

used for modeling because of selecting desirable features, including Modal analysis and transient 

analysis. Modal analysis is done to extract different mode shapes and frequencies that are 

 

(b) 

 

(c) 
 

(d) 
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necessary for verification purposes. Transient analysis is done to simulate impact loading (For all 

the models which explained in the next chapters impact loading is applied at the fixed distance of 

15 cm from the beginning of the pipe). The total simulation time for investigating transient analysis 

is 0.1 sec, divided into three stages which will be explained in the forthcoming sections. 

3.4.1 Modal Analysis 

 

Modal Analysis has been done for confirmation purposes and for conforming numerical model 

with experimental results. Based on Table 3.2, considering the most suitable support conditions 

for initiating a close state amongst numerical models with experimental work, support is modeled 

through the remote displacement technique in ANSYS Workbench. In the following, the frequency 

of four different mode shapes for two different states, including results of experimental work and 

numerical simulation are shown in Table 3.2. 

 

 

 

 

 

According to Table 3.2, frequency values and mode shapes are shown for modes 1 to 4. It is worthy 

to mention that all the steps for detecting and localizing damage are set based on mode 1 as 

dominant mode, other Modes are not participated for detecting and localizing purpose because of 

different reasons, like preventing to put sensors at node point.  

Table 3.2. Frequency (HZ) of mode for models 

Mode Experiment  with support  Error 

Mode1 40 38.6 2.6% 

Mode2 110.9 105.7 4.7% 

Mode3 216.6 205.6 3.4% 

Mode4 365.2 336.5 7.8% 
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 Based on Table 3.2, It could be seen that for mode 1 as the dominant mode, only 2.6% error has 

been calculated for the numerical model in comparison with experimental result (More than 97% 

precision). Also, for mode 2,  the calculated frequency error in comparison with experimental result   

is limited to 4.7 %. Moreover, for mode 3 and mode 4 the frequency error is computed up to 3.4% 

and 7.8% in order (even up to 93% precision for mode 4 as the lowest precision). By considering 

mode 1 as our target, it could be seen that there is a good correlation between simulation results 

and experimental states. 

 

 

 

 

 

 

 

 

3.4.2 Transient Analysis 

 

For the simulation of dynamic load (impact load), the transient analysis technic is applied, the 

analysis setting is set in three distinct stages with the chosen time step as 0.001 s, and based on 

Figure 3.2 the impact load is considered 300 N in the time interval between 1e-3 seconds and 1.1e-

2 seconds.           

 

Figure 3.4. The first and second mode for the pipe with hinged support 
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3.5 Data Acquisition 

 

Different models of pipes are numerically simulated in this work. In the initial stages of modeling 

done by the software, tries to correlate the numerical model developed as much as possible with 

the experimental model taken as the reference. The results reported in Table 3.2 depict this 

agreement quite well, where quite a good consistency between numerical simulations and 

experimental data is well appreciated. 

Table 3.2 reflects nearly a 2% error in the frequency of the first mode, which we are going to base 

our numerical modeling on from the experimental model. This corresponds to an accuracy of 98%. 

This minor deviation lies within the realizable and acceptable errors, as induced by the capacity 

and also the inherent limitations of the used ANSYS software for conducting the simulations. For 

localization and detection of damage, an undamaged or an intact pipe model has been used as a 

baseline model.  

Given the capabilities of ANSYS, it is possible to extract a wide range of data from both the 

baseline and damaged models. At the first glance, the extracted data, representing the structural 

responses, may appear quite similar. Therefore, selecting the right desirable features for analysis 

becomes a crucial and essential task.  

For this project, various types of data were extracted, including acceleration, velocity, 

displacement, and strain, etc. Ultimately, after simulating a total of 36 various models based on 

factors like location of holes, distance between sensors and applying other methods for extracting 

desirable features like wavelet transform, cross correlation technics for measuring the lag distance 

and etc., the use of two key parameters—velocity and acceleration—was prioritized. These 
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parameters were selected based on their effectiveness in distinguishing between the responses of 

the baseline and damaged models (supervised learning method). 

3.6  Algorithm for damage detection  

 

There are important aspects that have been examined in this part regarding different works related 

to vibration-based structural health monitoring, including but not limited to how damage is 

represented within the structure and the selection of desirable features. It seems that, by definition, 

damage detection is largely a problem of understanding how the data for response from a damaged 

structure behaves in comparison to that from an undamaged structure. The subsequent sections 

describe how the processing of the data is performed, with some concepts and formulations related 

to providing more details on how this might be accomplished in damage detection. 

3.6.1 Processing of Data  

 

Selection of desirable characteristics to detect and locate damage is a matter of prime importance, 

as inappropriate selection could render the entire analysis ineffective. The feature characteristics 

must be different in nature, but their behaviors must show similarities to have accurate and reliable 

results. Two of the primary features that are subsequentially applied to this project are velocity and 

acceleration. Both are inextricably linked, really, because instantaneous acceleration is defined as 

the velocity change over time. Here, the goal is to tie these two concepts together—velocity and 

its rate of change—to create data that effectively models the properties of each in providing a 

greater understanding of the dynamic performance of a system. 
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For this purpose, two types of signals are gathered from different points on the pipe, equally distant 

from one another. The defect-free pipe and the pipe containing a defect provide 12 signals for both 

velocity and acceleration. All such signals are different from one another, each reflecting pipelines 

velocity or acceleration regarding the specific point of monitoring. The key objective at this stage 

involves the processing of signals from the time series collected from various measurement points 

along the pipe. 

For this purpose, two different techniques are considered during the detection phase: the first 

technique is based on the PCA method (Shlens, 2005), which relies on data fusion and investigates 

the first principal component. 

The ICA method (Hyvärinen and Oja, 2000) is oriented towards data separation to complete it. In 

the localization step, which aims to identify defects by processing the signals between two 

consecutive sensors, both PCA and LMD (Local Mahalanobis Distance) methods are used. Each 

of these methods is described in more detail in the following sections. 

3.6.2 Principal Component Analysis for detection 

 

At this stage, the data extracted is organized into a matrix form in an Excel file. This matrix is a 

101x12 matrix; the 101 number represents the number of rows—the number of samples of that 

data—and the 12 columns correspond to the 12 sensors collecting that data. In other words, it 

would be divided further into 6 columns for the velocity data and another 6 column for the 

acceleration data. 

Including velocity and acceleration as raw data within a single matrix can also allow for the data 

to be correlated with one another, given that they are different physical quantities. The reason this 
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might be the case is that both sets of data, while different, are interrelated in such a way that one 

is a derivative of the other—that is, acceleration being the change in velocity over time. The nature 

of the data is different in this regard; hence, careful management of their relationships during the 

analysis is needed. Therefore, the aim here would be to remove the potential correlation that might 

exist among the data and reduce the dimensionality using the PCA technique. 

The PCA belongs to this class of unsupervised learning. This reduces dimensionality with a method 

that the important knowledge from data should be retained.  

The most salient feature of PCA is to capture most of the variance of the data. Put differently, PCA 

represents one of the statistical approaches in which a set of features selected can be linearly 

transformed to a set of principal components like PC1, PC2, in such a way that maximum possible 

variance is preserved (Tharwat, 2016). Figure 3.4. regarding first and second principal component 

and the mathematical relations associated with PCA are rendered below.  

The first step in calculating PCA is to perform standardization. Since velocity and acceleration are 

two quantities with different units, it is crucial to ensure that they contribute equally to the analysis. 

Therefore, scaling is done using the standard score (Z-Score) formula, which standardizes the data. 

This ensures that each feature is treated equally during the PCA process, so Z-Score is as follow: 

                                                       𝑧𝑖𝑗 =
𝑥𝑖𝑗−𝜇𝑗

𝜎𝑗
                                                                  (3.1) 

In the equation (3.1), xij is shown for the value of the jth variable for the i-th observation. The mean 

of the j-th variable is denoted by μj, and its standard deviation is represented by σj.  

In the second step a covariance matrix is calculated, the purpose is to determine how the variables 

in the input dataset deviate from their mean values and how they relate to each other.  
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Essentially, it helps identify if there are any correlations between the variables. Often, variables 

may be strongly correlated, leading to redundant information.  

                                         𝐶 =
1

𝑚−1
𝛴(𝑧𝑖𝑎−�̅�)(𝑧𝑖𝑏−�̅�)                                                      (3.2) 

Here, zia and zib are shown the variables located in the a-th and b-th columns of the i-th row of the 

matrix zm×n and z̅ is the mean of matrix. 

                                               𝑧̅ =
1

𝑚
∑ 𝑧𝑖

𝑚
𝑖=1                                                                       (3.3) 

 

In the equation (3.4) and (3.5), V and 𝛌 represent the eigenvectors and eigenvalues of the 

covariance matrix C, respectively.  

The process of finding these eigenvectors and eigenvalues is carried out through eigen 

decomposition.  

Since all elements in equation (3.4) are in matrix form, the eigen decomposition (equation (3.5)) 

is expressed using matrix operations to decompose the covariance matrix into its corresponding 

eigenvalues and eigenvectors. 

                                                      Cv = λv                                                                         (3.4) 

                                                       C = vλvT                                                                       (3.5) 

The method then orders the eigenvectors and their corresponding eigenvalues in decreasing 

magnitude of the eigenvalue. A new matrix, w, is then created by selecting t eigenvectors that have 

the highest eigenvalues, with t < n. Projected data—defined as principal component P—is then 
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achieved through a dot product between the matrix of eigenvectors w and the original data matrix 

z, as shown below:               

                                                   𝑃 = 𝑤. 𝑧                                                                     (3.6) 

 

 

 

 

 

 

 

 

3.6.3 Independent Component Analysis 

 

Here, the rationale behind the detection process using ICA in pipelines will be explained. We begin, 

for an introduction, with the well-known cocktail party example. This is a generally well-known 

example in signal processing, especially in source separation. The example shall try to illustrate 

how ICA will go about isolating individual signals from a mixture and therefore will be useful in 

identifying and separating various sources (Hyvärinen and Oja, 2000). Imagine there are some 

people talking at a party, and at the same time, there are some microphones (same number) 

capturing their voices. Each microphone picks up a combination of sounds (signals). The power 

 

Figure 3.5. Principal components   source: https://numxl.com/blogs/principal-component-analysis-pca-101/ 
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of using ICA lies in its ability to separate these combined signals into distinct, individual signals. 

This way, ICA can determine which signal corresponds to each person, effectively isolating their 

voices from the mix. In Figure 3.6, the overall functioning of ICA is presented. 

 

 

 

 

 

 

 

 

 

Here we explore the ICA technique to separate the signals that were previously combined using 

the PCA technique. This means that, through ICA, the process of separation is applied to 

multivariate signals (velocity and acceleration) to produce a set of components that are highly 

independent from one another and by selecting an appropriate feature—in this case, the greatest 

peak method—the independent components of the damaged pipe are compared with those of the 

baseline condition. 

We, below, offer brief descriptions of typical first assumptions and other relationships that provide 

the essential mathematics behind FastICA. 

 

Figure 3.6. Function of ICA_ source: https://onionesquereality.wordpress.com/tag/cocktail-party-problem/ 
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3.6.3.1 FastICA Method 

 

There are, in principle, two methods to maximize the statistical independence of the estimated 

outputs: either by minimizing the mutual information between the components or by maximizing 

their non-Gaussianity. The so-called FastICA algorithm follows the latter principle while 

considering the selfsame non-Gaussianity characteristics in order to render the components as 

independent as possible (Hyvärinen and Oja, 2000).  

The preprocessing is composed of two important processes, namely centering and whitening. In 

the centering step as the first step, the data is translated to have a zero mean, which is easier to 

work with. According to Equation (3.7), let x be the observed data and x̅ be the centered data 

obtained by subtracting the mean. 

x̅ = x − mean (x)                                          (3.7) 

In the whitening part as the second step, the centered data is transformed to make the components 

uncorrelated and ensure they each have unit variance (as velocity and acceleration are correlated 

to each other the process of whitening through PCA is necessary for removing this correlation). 

This transformation is achieved by performing eigenvalue decomposition on the covariance matrix 

of the data. 

 cov (x̅) = EDET
                                                          (3.8) 

In Equation (3.8), E represents the matrix of eigenvectors, while D is a diagonal matrix containing 

the eigenvalues. The data is then whitened (z), which is derived from the transformation using 

these matrices. 
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z = D(−1/2)ETx̅                                                            (3.9) 

For the following step which is Choosing a suitable function and initialize weight vectors, The key 

idea behind ICA is to find a transformation W such that the components of Equation (3.10) are as 

non-Gaussian as possible. One way to measure non-Gaussianity is to use the kurtosis or negentropy 

while here negentropy is used. For a random variable y, 

s=W.z                                                                  (3.10) 

                                 J(y)=H(ygauss)−H(y)                                                  (3.11) 

where H is the entropy and ygauss is a Gaussian variable with the same covariance as y. The higher 

the value of negentropy, the higher the non-Gaussianity. In this step of weight-update in a fixed-

point algorithm, FastICA uses a fixed-point iteration scheme so that it can maximize non-

Gaussianity. This iteration can be written as: 

𝜔+ = 𝔼{𝑧𝑔(𝜔𝑇𝑧)} − 𝔼{𝑔′(𝜔𝑇𝑧)}𝜔                                             (3.12) 

Where 𝜔 is the weight vector, g is a nonlinear function, often chosen as Equations (3.13) or (3.14) 

and g′ represents the derivative of g. 

g(u)=tanh(u)                                                                               (3.13)                                             

g(u)=u3                                                 (3.14) 

In this step the weight vectors should be Normalized and orthogonalized, that is, after each update, 

the weight vector 𝜔 is normalized. 

𝜔 =
𝜔

‖𝜔‖
                                                                (3.15) 
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The process should be Repeated until the independent components are identified. To ensure that 

each weight vector finds a distinct independent component, they need to be orthogonal to each 

other. Once the process converges, the weight vectors are orthogonalized using the Gram-Schmidt 

method. 

𝜔𝑙̇ = 𝜔𝑙̇ − ∑ (𝜔𝑖
𝑇𝜔�̇�

𝑖−1
𝑗=1 )𝜔�̇�                                                               (3.16) 

 

Once the weight matrix W is obtained, the independent components s can be extracted by: 

s = W.z                                                                   (3.17) 

3.7  Algorithm for Damage Localization 

 

After completing the damage detection process, the next step is localization or determining the 

possible location of the damage. This part, like the previous one, involves considering two models: 

one of the damaged pipe and the other of a healthy (intact) pipe. 

Each model is equipped with sensors placed at equal intervals, and these sensors, or elements, are 

responsible for recording acceleration and velocity data. Acceleration and velocity signals are 

extracted from both the damaged pipe (with a hole) and the intact pipe, and the data analysis 

process begins to determine the location of the damage between the sensors. 

The core method of data analysis in this section is Mahalanobis distance. Based on Figure 3.7, 

unlike the Euclidean distance, which considers a relationship between two single points about the 

correlation between them, Mahalanobis distance is a statistical concept that calculates the 

relationship between several points and one distribution or a set of points. Another advantage of 
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Mahalanobis distance is that it can process multi-dimensional signals. This aspect of flexibility 

makes it suitable for the analysis of complex data where different types of measurements are 

concerned. Normally, a spike in Mahalanobis distance is marked as an anomaly; that means a point 

has a high difference from the normal pattern and can show some abnormality or irregularity in 

the data. 

 

 

 

 

 

 

 

 

3.7.1 Principal Component Analysis for Localization 

  

As it was discussed previously, the choice of appropriate features for damage localization matters. 

In this project, velocity and acceleration were chosen as the desirable features because they are 

interrelated parameters: acceleration is defined in terms of velocity and vice-versa. This relation 

makes them very powerful in picking out the key characteristics required for good localization. 

Acceleration is the instantaneous rate of change of velocity at any point in time, so in this case we 

do data fusion for two variables: velocity and its instantaneous rate of change. Performing PCA 

 

Figure 3.7. Mahalanobis distance and Euclidean distance in one frame_ source: 
https://ouzhang.rbind.io/2020/11/16/outliers-part4/ 
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for data fusion of these two variables serves the purpose not only because of dimensionality 

reduction but also because it produces a new dataset that concentrates and retains information of 

highest importance, namely the maximum variance in this context. The mathematical equations 

related to PCA were presented in Section 3.6.2, so they are not included in this section. 

3.7.2  K- nearest neighbor 
 

k-NN is a nonparametric statistical method that can be applied for regression and classification. In 

other words, in parametric methods, the model is defined by a set of parameters, such as weights, 

which are estimated during training and subsequently used for decision-making. Nonparametric 

models do not depend on predefined parameters like weights. Therefore, such methods are 

applicable even for small-sized datasets. 

Non-parametric methods are instance-based. In non-parametric methods, the model relies upon 

labeled examples. Such labeled examples then serve as the basis for decisions. Because of this 

reason, such techniques are also known as instance-based learners. In instance-based learning for 

a variable x, the process of decision-making involves selecting k of the nearest instances and 

finding out which class recurs again and again. This recurring class is assigned to the variable. 

One important advantage of the k-NN algorithm is that it is nonlinear, meaning that the decision 

boundary given by k-NN can be very complex and is not confined to a linear state. This technique 

strongly relies on the choice of the values of k, for which usually odd numbers are preferred in 

order to avoid any ties at the time of classification. To define the decision boundary, a 

neighborhood is assigned to every point such that all the points within that neighborhood have the 

given point as their nearest neighbor. In short, Voronoi tessellation is done, and with an increment 
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in k, the decision boundary between different classes, represented by the Voronoi tessellation, 

becomes smoother. 

The choice of k is very important (refer to Figure 3.7), since for values of k that are too low (such 

as k = 1) the variance is high and there can be a great chance of overfitting. On the contrary, for 

larger values of k, the bias is very high and underfitting is most likely to happen. Other than 

implementing k-NN, other considerations include the distance metric (Cunningham and Delany, 

2021), which in k-NN refers to the distance between points. The general forms of distance metrics 

are in the form of Euclidean distance, Mahalanobis distance, Minkowski distance and etc. In the 

following section, we will elaborate on Mahalanobis distance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Different state of fitting based on k value_ source: https://medium.com/30-days-of-machine-learning/day-3-k-nearest-

neighbors-and-bias-variance-tradeoff-75f84d515bdb 
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3.7.3 Mahalanobis Distance 

 

The goal of this section is to present the mathematical equations related to the Mahalanobis 

distance in a concise manner. The general formula for Mahalanobis distance is shown in Equation 

(3.18) below, where x represents a multivariate vector with a mean of μ and 𝜮 as in Equation (3.19) 

is the covariance matrix (Ghorbani, 2019). 

 

Dm(x) = √((x − μ)TΣ′(x − μ))                                                          (3.18) 

   𝜮 = [
Var(X)  ⋯ Cov(X, Z)

⋮ ⋱ ⋮
Cov(Z, X) ⋯ Var(Z) 

]                                                   (3.19) 

Var(ϰ) = ∑(xi − xave)2 ∕ (n − 1)                                                     (3.20) 

Cov (X, Y)  =  ∑(Xi −  Xave) ∗ (Yi − Yave)/(n − 1)                             (3.21)     

As could be seen in Equation (3.19), the Σ includes some element which based on Equation (3.20) 

and (3.21) are Variance and Covariance.  

3.7.4 Local Mahalanobis Distance  

 

Unlike the standard Mahalanobis distance that relies on a global covariance matrix with the aim 

of measuring the sensitivity of data, in Local Mahalanobis Distance, LMD primarily focuses its 

attention on analyzing sensitivity in a local manner. In this approach, local statistical techniques 

such as k-nearest neighbors used throughout this project estimate the sensitivity of data on a local 
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basis rather than on a global one. This is an important approach because, instead of taking the 

entire dataset for examination and a one-time calculation of the Mahalanobis distance, datasets 

will be split into smaller subsets. Then the Mahalanobis distance computation is performed 

multiple times on these subsets to allow a more local and fine-grained evaluation of sensitivities 

within the data. This processing of data leads to a better sensibility of the anomalies detection. In 

order to compute LMD (Local Mahalanobis Distance) as in Eq. 22, local mean as in Equation 

(3.22) and local covariance matrix as in Equation (3.23) are calculated utilizing the computational 

power of k-nearest neighbors (k-NN) based on the explanation stated in section 3.7.2  as follows. 

 

μloc = 1/k ∑ (xi)xi∈Nk
                                                   (3.22) 

𝜮𝒍𝒐𝒄𝒂𝒍(𝒙) = 𝟏/(𝒌 − 𝟏) ∑ (𝒙𝒊 − 𝝁𝒍𝒐𝒄𝒂𝒍)𝒙𝒊∈𝑵𝒌
(𝒙𝒊 − 𝝁𝒍𝒐𝒄𝒂𝒍)𝑻)                 (3.23) 

 

𝑫𝒍𝒎(𝒙) = √((𝒙 − 𝝁𝒍𝒐𝒄𝒂𝒍)𝑻𝜮𝒍𝒐𝒄𝒂𝒍
′(𝒙 − 𝝁𝒍𝒐𝒄𝒂𝒍))                              (3.24) 
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Summary  

This chapter has presented the details of the steps taken for damage detection and localization. 

First, the experimental model was presented as the benchmark along with presenting the 

characteristics of modes 1 through 4. Then, the construction of the numerical model was explained 

in order to make feature extractions that are desirable. 

Such steps involve modal analysis to extract mode shapes for the calibration of the numerical 

model with the experimental setup and also transient analysis to get the desirable features. 

Following the construction of the numerical model and identification of desirable features, a 

process of data separation and data fusion is presented to execute the detection and localization 

tasks together with the mathematical equations involved. 
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Chapter 4: Results and Discussion 

 

 

4.1. Introduction:  

This chapter presents the analysis of five different pipeline scenarios. Later, the performance of 

the proposed methods for damage detection and localization is evaluated using data extracted from 

ANSYS software, considering various scenarios based on time history of desirable features, 

including the effect of changing the hole location, distance between sensors, hole size, and the 

impact of two simultaneous holes on the pipeline. In the next part, after explanation of scenario, 

some sample outputs of one of the models are shown for illustrative purposes before providing the 

results on damage detection and localization. 

4.2 First Scenario for Detection and Localization 

The model specifications will be explained first in order to explain the first scenario. This first 

scenario, therefore, explains these specifications in detail, while most of the repetitive details are 

omitted in the ensuing scenarios to avoid redundancy. Two 6-meter pipes with identical 

characteristics are modeled in this section. The first model is a 6-meter pipe without any holes - 

intact and serving as the baseline. Another model is also a 6-meter pipe, but it includes a hole with 

a radius of 1 mm that is positioned 4.4 meters from the starting point of the pipe. It is considered 

that the pipe will be subjected to a dynamic load of 300 N, placed 15 cm from the beginning of the 

pipe. In conformity with Figure 3.2 this load zooms during a time interval starting from 1e-3 sec 

up to 1.1e-2 seconds. The model shall be studied in the period of 0 to 0.1 seconds with the time 
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step of 0.001 seconds. Figure 4.1 shows that there are six acceleration-measuring sensors and also 

six velocity-measuring sensors distributed along the pipe at equal distances. 

 

 

 

 

 

4.2.1 Data Acquisition 

 

As has been discussed in a previous section, each numerical model has 12 sensors which catch the 

data about velocity and acceleration. Before diverting into the topics of damage detection some 

examples of raw data are given in the following figures. These figures illustrate acceleration and 

velocity of a sensor that is located 3 meters away from the beginning of the pipe. Because of the 

great volume of the data, here only a sample of them is shown here, and the rest are brought in the 

appendix. 

 

 

 

 

  

(a) 

 

 

(b) 

 

 
Figure 4.1. Schematic figure of the intact pipe with sensors and the force 
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Figure 4.2. Examples of time series data regarding acceleration and velocity at 3m from the beginning of 

the pipe (a) and (b) acceleration and velocity for pipe with no hole. (c) and (d) acceleration and velocity for 

the pipe with hole which located 4.4m from the beginning of the pipe 

 

Examples of raw acceleration and velocity time series data extracted from a sensor located 3 meters 

from the start of the pipe are shown in Figure 4.2. From these examples and considering that there 

is a hole of radius 1 mm, which is 4.4 meters from the start of the pipe, the acceleration and velocity 

graphs show very negligible noticeable differences between intact and damaged states. Both sets 

of data are very much alike. 

4.2.2 Damage detection 

As explained in Chapter 3, the process of damage detection involves a two-step process. This stage 

covers the analysis of data extracted from the software, following the procedure of data fusion 

through Principal Component Analysis (PCA) on the velocity time history and acceleration time 

history extracted from the software. Each pipe has 12 signals—6 signals obtained from velocity 

and 6 signals obtained from acceleration. The reduction through data fusion has reduced these 

signals to 6 signals. In this way, the characteristics of the data may be preserved with the reduction 

 

(d) 

 

 

(c) 
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of complexity in data. For it selects the first principal component in which the variance is 

effectively guided, which is very important for the detection of anomalous behavior. 

The goal of the next step is to transform the 6 principal components into 6 maximally independent 

components. In Chapter 3, when considering ICA for the first time, two of the most salient features 

regarding the 6 principal components were that they are statistically independent and that they 

have non-Gaussian properties. Therefore, data separation is conducted in order to enhance those 

independent features. 

The other reason for applying Principal Component Analysis in this project is that Independent 

Component Analysis requires pre-processing in order to remove the correlation—a process well-

known as whitening. It has always been the case that PCA is one of the most common methods 

applied for whitening. Hence, detection here is meant to extract the desirable features in the most 

efficient methodology. Therefore, the greatest peak was chosen as the desirable feature technique, 

as it normally represents arrival or conversion points in wave modes within complex signals. 

4.2.2.1 Calculating PCA 

At this stage, Principal Component Analysis (PCA) is separately conducted for the damaged pipe 

and the intact pipe, where velocity and acceleration signals are combined at each station. Based 

on the data matrix provided in the appendix, the velocity and acceleration signals coming from 

sensors positioned at distances of 1, 2, 3, 4, 5, and 6 meters are combined. Figures (4.3) and (4.4) 

shows samples of the projected data onto the first principal component (since the first principal 

component (PC1) represents more than 90% of the variance in both velocity and acceleration, 

other components especially (PC2) are not considered in this stage). In the sequel, the principal 
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components extracted from each location are arranged in a matrix to carry on the Independent 

Component Analysis (ICA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. PC1 and PC2 for ST(4) for both no hole and with hole data 

 

 

Figure 4.4.  PC1 and PC2 for ST(5) for both no hole and with hole data 
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First, it should be mentioned that since velocity and acceleration are of different dimensions, the 

data was normalized by performing z-score scaling as described in chapter 3. Also, as it has already 

been described, the first principal component was dominating, the plot of PC1 against time is 

provided in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

4.2.2.2 Calculating ICA 

As mentioned in section 4.2.2, in this stage, the Independent Component Analysis (ICA) method 

will be applied to each of the first principal components retrieved in the previous stage. According 

to the discussions presented in Chapter 3, the maximize non-Gaussianity approach will be adopted 

to extract the independent components using FastICA since it would produce maximally 

independent components. Since all pipes, which were either damaged or intact, are with 6 principal 

 

Figure 4.5.  PC1_time  for ST(4) for both no hole and with hole data 
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components each, the same number, i.e., independent components, will be produced using this 

technique as below Figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Looking at Figure 4.6, components IC2, IC4, and IC5 show a large percentage of difference from 

the pipe with a hole to the pipe without. For instance, the value of IC2 is about 5 for the pipe with 

a hole, while for the intact pipe, it is 2—a difference of over 100%. While other components such 

as IC1, IC3, and IC6 show approximately similar values from both the damaged pipe and the intact 

one. For instance, IC6 shows an almost identical value of 2 for either condition.  

Let’s delve into another aspect, the two pipes represent, respectively, two people who have 

different voice tones in explanations given in using the cocktail party analogy in Chapter 3. Using 

two different receivers, a mix of both individual sounds is recorded. The power of Independent 

 
 

Figure 4.6. Independent components for both pipe with hole and without hole 
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Component Analysis (ICA) is to associate sounds with the right person. In this regard, if the 

healthy pipe is taken as our reference, any disagreement from the independent components of the 

healthy pipe will indicate a defect or damage, thus making damage detection in the pipe possible. 

This finding might suggest that some ICs are insensitive to the presence of a hole, as they tend to 

give very similar values regardless of the pipe’s state. To further verify the sensitivity of these ICs, 

a pipe with two different holes will be investigated in the succeeding sections. 

4.2.3 Damage Localization Through LMD 

This section calculates the local Mahalanobis distance (LMD) for each of the first principal 

components derived in Section 4.2.2.1. The concept of using the first principal components from 

both the intact pipe and pipe with a hole is to further refine the data by fusing the velocity and 

acceleration which are our desirable features. As discussed in the prior chapter, whereas 

Mahalanobis distance relies on the usage of a global mean and global covariance, Local 

Mahalanobis distance uses local mean and local covariance, which enhances the sensitivity 

significantly. To this end, the k-NN algorithm assigns each data point in the dataset to its nearest 

neighbors. For this identified nearest neighbor, the local mean and local covariance are calculated, 

which are used in the computation of the local Mahalanobis distance. Therefore, Mahalanobis 

distance is computed from every data point from the local distribution. Taking advantage of k-NN, 

Mahalanobis distance can be computed several times for each data point in the dataset, with an 

advisable k value around 5 to 6 percent of the data points, according to some references (Sarmadi 

et al., 2020). 

In reference to Equation (3.21) in Chapter 3, regarding the covariance matrix, the feature that 

makes the Mahalanobis distance far more powerful than the Euclidean distance is its ability to 
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make measurements of the dispersion of data relative to their mean as well as how two variables 

or data points vary in relation to each other. This capability is made possible with a covariance 

matrix since it embodies both variance and covariance in one matrix. 

The strategy followed for localization on this project intends to localize the defect between two 

consecutive sensors with aid from signal processing. To this effect, the proposed method for the 

interpretation of the results involves collating every three consecutive sensors into a single group. 

Before going deep into the methodology of sensor grouping and result interpretation, it has to be 

underlined that in each of the intact and defective pipes there are 12 sensors measuring velocity 

and acceleration. For each station, the acceleration and velocity data have been fused using 

Principal Component Analysis (PCA) in order to retrieve the first principal component. So, for 

each defective pipe, the six first principal components will be compared with the six first principal 

components of the intact pipe using Local Mahalanobis Distance in the computation process. 

After calculating the Local Mahalanobis Distance corresponding to each sensor and the baseline, 

the greatest peak method is applied in order to extract the peak value from the Local Mahalanobis 

Distance index. This method assigns a particular numerical value to a sensor because of its peak 

distance index. 

It is the stage where peak values obtained for each sensor are grouped. According to sensors ST(1) 

through ST(6), four different groups are defined as shown in Figure 4.7. The group 1 includes 

ST(1), ST(2), and ST(3); Group 2 includes ST(2), ST(3), and ST(4); Group 3 includes ST(3), 

ST(4), and ST(5); and Group 4 includes ST(4), ST(5), and ST(6). 

This is where, as already said, the highest peak output of each of the signals should be considered 

as the desired feature in this step. Maximum values in a signal indicate the arrival or transformation 
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points within a given signal because some peaks appear to get affected differently compared to 

other peaks. In Group 4 of Figure 4.7, three consecutive phases are visible: the build-up phase, the 

spike phase, and the decline phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth mentioning that different approaches for structuring the extracted data were tried. 

Finally, inspired by a classic earthquake sequence with three phases, build-up, spike, and decline, 

the groups were analyzed. The method proposed in this project predicts the defect between the 

 

 

Figure 4.7.  LMD for both pipe with hole and without hole 
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build-up and spike phase. Figure 4.7 shows that Group 4 behaves coherently according to the 

proposed methodology. This group has ST(5) representing the sensor at Station 5m, giving an 

LMD index of 145.1 for the spike phase observed over the period of time. Furthermore, its 

predecessor and successor give LMD indices of 38 and 32.3 for the build-up and decline phases, 

respectively, fitting well in these three defined phases. In Groups 1 and 3, however, the three 

defined phases are not observed: during the decline phase of Group 3, the maximum value is 

reached, while for Group 1, it happens during the build-up phase. Looking at the modeled pipe, it 

is clearly seen that the location of the hole is at 4.4 meters from the starting of pipe, exactly between 

the build-up and spike phases between sensors ST(4) and ST(5), proving the efficiency of the 

proposed method. 

4.3 Second Scenario for Localization 

As in Section 4.2, all model specifications—length, material, mode shapes, dynamic load 

application, and sensor placement—are identical except that this section has the hole location 

moved 3.4 meters from the start of the pipe. This scenario aims to revalidate the proposed method 

for damage localization, adding the feature of presenting LMD graphs over time so that a clearer 

view of the behavior of the LMD index and its effectiveness regarding the defect detection can be 

noticed. 

4.3.1 Graphs for Local Mahalanobis Distance 

In this section, model set up is the same as in Scenario 1. In both pipes under study, one intact and 

the other with a hole located 3.4 meters away from the start, sensors are placed in an identical 

arrangement to that used in Scenario 1. Under the action of a dynamic load of 300 N applied at 

0.01 seconds, velocity and acceleration are measured in a timeframe of 0 to 0.101 seconds with a 

time step of 0.001 seconds. Firstly, data fusion is done through Principal Component Analysis, 
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showing how the first principal components can be calculated for each sensor. It captures the 

maximum invariance of the data, so calculation includes the computation of the covariance matrix, 

computation of eigenvectors and eigenvalues, projection of the data onto these eigenvectors to 

operate the principal components, and selection of the principal components based on the 

computed eigenvalues. The LMD values of sensors ST(3), ST(4), and ST(5) for the given time 

window are plotted in Figures 4.8 and Figure 4.9. Figures in each, show the LMD values in the 

selected time window by two successive sensors, and their maximum peak is monitored for each 

sensor. For instance, ST(3)'s maximum magnitude is 31.5, for ST(4) it is 135.4, and for ST(5) it is 

43.8. The power of LMD is in amplifying the tiniest difference between the first principal 

components corresponding to the damaged pipe and the intact pipe. These graphs are intended to 

illustrate this amplification—as best as possible—driven principally by the covariance matrix 

behavior. This magnification can considerably enhance defect detection by emphasizing minute 

differences. 

 

 

 

 

 

 

 

 
 

Figure 4.8. LMD for both pipe with hole and without hole 
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Figure 4.9. LMD for both pipe with hole and without hole 

 

 

 

Figure 4.10. LMD for both pipe with hole and without hole 
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In Figure 4.10, the sensors_ from ST(1) to ST(6)_ are arranged in sets of three. The procedure 

followed here is in accordance with that in Section 4.2.3, where every column corresponds to the 

greatest peak LMD. Considering Groups 1 to 4 and examining the buildup, spike, and decline 

phases using the approach suggested in this research, Group 3 reflects what is expected. 

Specifically, for Group 3, the LMD value is 31.5 in the buildup phase, 135.4 in the spike phase, 

and 43.8 in the decline phase. Using this method, a defect is likely located between the buildup 

and spike phases. Since the hole is 3.4 meters from the beginning, this method accurately predicts 

the defect location for this model. 

This trend is not followed by the rest of the groups. For example, in Group 1 and Group 4, the 

peak values of LMD are 131 and 135.4, respectively, and lie in the buildup phase. In Group 2, the 

peak value of 135.4 lies in the decline phase, which does not agree with the sequence of phases as 

proposed. 

4.4 Third Scenario for Detection 

In this section, the sensitivity of independent components to two simultaneous holes will be 

assessed, as previously discussed in Section 4.2.2.2. Model specifications remain consistent with 

Scenarios 1 and 2, with the only change being the addition of two holes: a 1 mm hole at 2.4 meters 

and a 1.5 mm hole at 4.3 meters from the pipe’s start. 

A 300 N dynamic load is applied, and desirable features, specifically velocity and acceleration, are 

selected from Stations 1 through 6. To analyze these selected data, data fusion is conducted using 

Principal Component Analysis (PCA) for dimensionality reduction and feature extraction. As 

noted earlier, PCA is employed as a preprocessing step to eliminate signal correlation, also known 

as signal whitening. 
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For defect detection at this stage, data separation is carried out using FastICA to extract 

independent components, with a focus on maximizing non-Gaussianity. A key difference between 

ICA and PCA is that, unlike PCA—where the number of inputs will be reduced in the outputs (e.g., 

reducing 12 selected features to 6 for each pipe in the previous section)—ICA retains an equal 

number of inputs and outputs.  

4.4.1 Graphs for ICA 

For this section, we have 6 inputs (PC1 to PC6) for each pipe, so, through ICA  6 outputs will be 

extracted as desirable features (IC1 to IC6). An important aspect for using ICA is that if the 

independent components (ICs) of two pipes (damaged or intact) are similar, it indicates that both 

pipes are likely in a similar condition. On the other hand, if the ICs are different, by using one pipe 

as a baseline, the defect in the other pipe will be detected. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. ICA for both pipe with hole and without hole 
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According to Figure 4.11, where the blue columns represent the intact pipe as a baseline, increasing 

the number of holes to two clearly highlight differences in the values of IC1 through IC6 between 

the two pipes, indicating that all components are sensitive to the presence of defects. For instance, 

IC1, IC2, IC3, IC5, and IC6 shows a 50% difference between the intact and defective pipes, while 

IC4 shows the difference for more than 100%. Also, in this scenario LMD values for pipelines 

with two holes are also investigated and as observed from Figure 4.12  the pattern of start, spike 

and decline phases could not be detected from this graph, which means that due to different reasons 

like the signal interference damage localizing could not be confirmed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. LMD for both pipe with hole and without hole 
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4.5 Fourth scenario for sensitivity  

This section is devoted to the analysis of the performance of the proposed method in defect 

localization by considering the increase of distances between sensors on the pipeline. 

Consequently, by increasing the sensor spacing by 50%, the sensors are placed successively at 1.5 

m, 3 m, 4.5 m, and 6 m intervals. all the other conditions are the same, for example, the 

characteristics of the pipe and the application of dynamic load. Acceleration and velocity sensors 

will be attached for both pipes at ST(1.5), ST(3), ST(4.5), and ST(6). One pipe is intact, free of 

holes, used as a reference; the other has a 1 mm hole, which is located 3 meters from the start of 

the pipe. Of particular interest in this setup is not only to study the effect of increasing sensor 

spacing but also to verify the performance of the proposed methodology in detecting defects at the 

location of the sensor. At present, the selected desirable features pertain to the four sensors of both 

velocity and acceleration components; hence, there are eight features for each pipe. For 

localization proposed here, PCA is adopted in order to conduct data fusion with dimensionality 

reduction. Hence, each pipe now has four first principal components. Using the LMD technique, 

a pair of the two first principal components at each station, one from the baseline pipe and one 

from the target pipe, are compared. The highest peak method represents the result of this 

comparison at each station as one value. Hence, for localization, there are four measurements 

generated at the four sensors. From Figure 4.13, it can be observed that the four sensors are split 

into two groups: group 1 consists of ST(1.5), ST(3), and ST(4.5), and group 2 is made up of ST(3), 

ST(4.5), and ST(6). It is observable from Figure 4.13 that Group 2 reflects all three consecutive 

phases: build-up, spike, and decline, with values of 6.9, 14.7, and 8.1, respectively. The proposed 

method estimates the position of the hole to fall between the build-up and spike phases, which also 

satisfies the assumptions made for the problem. In Group 1, the peak value of 14.7 falls in the 

decline phase; hence, it is not suitable for our study.  
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4.5.1 Graphs for Local Mahalanobis distance 

Based on the presence of sensor in 3 m from the start of the pipe, which is a special state, the values 

of LMD are shown below (Fig. 4.13). 

 

 

 

 

 

 

 

 

 

 

 

Comparison of the LMD values in Figure 4.13 and those in Figure 4.10 and Figure 4.7 shows that 

the LMD indices in these latter figures are higher. For instance, in Figure 4.10, where Group 3 was 

selected, the spike phase is at index 135.4. In Figure 4.7, the spike phase is at index 145.1 for the 

selection of Group 4. Increasing the distances between sensors results in a smaller value of LMD, 

but this does not impact prediction accuracy. 

 

Figure 4.13.  LMD for both pipe with hole and without hole 
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4.6 Fifth scenario for sensitivity investigation 

In this section, the effect of increasing in diameter of the pipe is investigated. In this case, the inner 

and outer diameters are 37.71 mm and 42.22 mm, respectively (50% increase from the previous 

cases), while other specifications of pipeline remain similar to previous scenarios. In this part, one 

pipe of 6 m length was used as baseline while the other one has a hole of 1 mm which is located 3 

m from the start of the pipe. 

Based on this scenario and through several steps like extracting features like velocity and 

acceleration, the process of data fusion is done and 12 first principal components from both 

scenarios acted as input for computing ICA. After converting multivariate signal into maximally 

independent signal through ICA, both ICs (from both pipe with hole and without hole) are 

compared with each other (applying ICA in supervised learning style). 

By referring to Figure 4.14, small mismatch between the components (except IC5) are detected, 

hence the detection is confirmed, but there is a point which needs more explanation and refers to 

the lower sensitivity of ICs by increasing the size of the diameter and having a constant impact 

load of 300 N. 

After detecting a hole, localizing the hole between two sensors through analyzing data should be 

done. In this regard, 12 first principal components from both pipelines should be used as the input 

for computing local Mahalanobis distance. 
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Figure 4.14. ICA for both pipe with hole and without hole 

 

 

 
 

Figure 4.15.  LMD for both pipe with hole and without hole 
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By referring to Figure 4.15 and based on the analysis of results in group of three, desirable group 

includes three different phases which are start, spike and decline. In this regard, group 2 conformed 

with the definition and location of hole estimated between ST2 (start) and ST3 (spike). Based on 

this definition, localizing damage between two sensors is confirmed. 

4.7 Sixth scenario for size of hole investigation 

This section aims to evaluate the performance of statistical models in distinguishing pipe behavior 

when two different hole sizes, namely 1 mm and 2 mm, are present.  Since the approach in 

modeling is somewhat different here, the models will be described in detail. Here, the length of 

the pipes is 3 m and the inner and outer radius are 25.14 mm and 30.15 mm, respectively. The 

dynamic loading is as for the above sections: an impact load of 300 N is applied 15 cm from the 

start of the pipe in a 0.01 sec timeframe. The behavior of the pipes is then analyzed over a 0.1sec.  

In this section, the acceleration is measured by only one sensor placed at the end of the pipe. First 

is an intact model serving as a baseline. In addition to the model serving as the baseline, 10 diverse 

models of pipes with a 1 mm hole and 10 diverse models with a 2 mm hole are built. Each step, 

the holes in the created models are 30 cm apart. 

4.7.1 Comparison between model with hole and model without hole 

The behaviors of the pipe due to dynamic loadings for two different hole sizes, 1 and 2 mm, can 

be visualized by graph provided via Total Acceleration technique which are different from each 

other, based on Figure 4.16. It is observable from mentioned Figures that with increasing the hole 

size, the amount of acceleration under the impact load effect has a tangible decrease—about one 

unit in the maximum state. Its causes could be different, and one of them refers to the effect of 

damping. It is worthy to say, the signal, while traveling through the structure, may continuously 
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lose energy due to certain reasons such as damping. Notably, the amplitude of damping tends to 

increase with the increase of damage severity which is interpreted as the hole size in our modeling 

(Cao et al., 2017).  

Another subject which is considered in our simulation refers to neglecting the noise effect which 

we don’t have it in our simulation through ANSYS.  

The raw data for 20 different models which is only acceleration will be extracted and analyzed by 

using mathematical models in the next stage. 

4.7.2 Mathematical and statistical investigation 

In this regard, mathematical and statistical models are used to summarize the results into graphs 

form for better comprehension. Based on research (Ying et al. 2013), six different mathematical 

models have been used in analyzing extracted signals on this project as follow:  

- Skewness: The degree of probability distribution takes a measure with the use of 

Skewness, and the value of the respective Skewness is interpreted as normal distribution 

(SK = 0), left side with more weight (SK>0), right side with more weight (SK < 0). (refer 

to Figure 4.18) 

- curve length: For time-scale changes using the curve length of the signal is a good solution. 

An abrupt change in the curve length of a signal may relate to several reasons, such as an 

abrupt change in the modal amplitude. (refer to Figure 4.19) 

- Pearson product-moment correlation: The Pearson product-moment correlation 

coefficient is another way of assessing the relationship between two variables. This statistic 

varies between -1 and 1. (refer to Figure 4.20) 
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- Kurtosis: Kurtosis is a function used in measuring the tailedness of the distribution. It 

comprises mesokurtic as medium kurtosis, platykurtic as low kurtosis, and leptokurtic as 

high kurtosis, moving up to more liability to anomaly. (refer to Figure 4.21) 

-  L2 norm: the vector from a certain source is calculated by using the data analysis method 

of the L2 norm. The related figures are presented in the following. (refer to Figure 4.17). 

All relevant mathematical equations are provided in the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18. Skewness of the data 

 

 

Figure 4.19. Curve length of the data 

 

 

 

 

 

 

Figure 4.17. L2 Norm of the data 

 

 

Figure 4.16. Time history response of total 

acceleration 
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The curve length and L2-Norm index diagrams are quite different in gravity, as shown in Figures 

(4.19) and (4.17), respectively, and in terms of values of curve length and L2Norm, the pipe with 

a 2 mm hole is even lower than that with a 1 mm hole. If we want to investigate regarding the 

reason, and by considering that the graphs extracted from time acceleration, from Figure 4.16 as 

the time acceleration signal, with the increase in the hole size, the transmission acceleration 

decreases and this decrease shows it self as reduction about 1 unit at the peak point (t = 0.02 sec). 

The remaining indices, such as skewness, correlation, and kurtosis (refer to Figures 4.18, 4.20, and 

4.21), also point out differences between types of damages but not as clear as L2-Norm and CL. 

However, the most significant feature of these graphs is distinguishing between pipes with and 

without holes.  

Figure 4.18 shows that the skewness index ranges from 1.1 to 1.15 when the pipe has no hole 

(green line). Figure 4.20 indicates the correlation index is one for an intact pipe, while it falls 

between 0.4 and 0.7 when the pipe has a hole. Figure 4.21 shows that the kurtosis index ranges 

from 1.4 to 1.6 for an intact pipe and drops between 0 and 0.8 when the pipe has a hole. 

 

Figure 4.20. Correlation of the data 

 

 

Figure 4.21. Kurtosis of the data 
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Summary 

This chapter presented the package we developed for localization and detection over different 

scenarios. Each of these scenarios was introduced with an objective to be able to research the 

different sides of the topic. While Scenario 1 and Scenario 2 were about localization and detection, 

respectively, Scenario 3 looked into the performance analysis of ICA on a pipe with two 

simultaneous holes, and Scenario 4 and 5 focused on the case of increased distance between 

sensors and diameter change (increase) for comparing the sensitivity. It is to be noticed that in all 

these scenarios (except of considering two holes at the same time), the detection and localization 

method developed here works effectively. Lastly, mathematical models have been developed and 

used to analyze the effect of hole size. From that, some of the statistical relationships are able to 

determine different hole sizes. 
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Chapter 5: Conclusion and Future work 

 

 

5.1 Conclusion 

In this project, we present the statistical framework that copes with the challenge of detecting and 

localizing the damage on a 6-meter pipeline. Our strategy for addressing the target of this thesis 

which is localizing damage only through data analysis, is based on the integration of data fusion 

techniques on selected features by an innovative application of Independent Component Analysis 

for detection scope. We also engage a Mahalanobis Distance with a nearest neighbor approach to 

deeply analyze multiple signals. Pieced together, this comprehensive methodology subsumes into 

a thorough statistical package that is suited quite effectively for the identification and localization 

of damage. We confirm this analysis with the implementation of a surrogate model from data taken 

in a prior experiment as a benchmark. A small defect is introduced, represented by a little hole, to 

simulate real conditions. This defect was the object of study and allowed us to analyze the behavior 

of the pipeline in different situations. 

Acceleration and velocity data were collected for all of pipeline scenarios as part of our data 

analysis. First principal components were computed based on the gathered datasets, which are very 

important in describing maximum variance in the data and as a crucial step toward enhancing the 

model sensitivity. In the following some main results are rendered: 

- Feature selection is one of the main steps in any developed model for the purpose of 

detection and localization. In this project, velocity and acceleration were selected as main 
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features after several experiments in a trial-and-error manner. The main reason behind such 

a choice is that even though these two are different concepts, they are correlated to each 

other in such a way that by combing them through PCA, desirable feature (first principal 

component) could be obtained.   

- ICA indeed became very effective in such monitoring of pipeline conditions and damage 

detection. The effectiveness mainly lies in the processing and extraction of the independent 

components of signals. Since ICA needs a pre-processing stage to remove the correlations 

between data, using PCA in the whitening process is very helpful. 

- Since most of the work in the K-Nearest Neighbor algorithm, including training and testing, 

is done at test time, selection of the value of k becomes crucial. A small value of k will 

suffer from high variance—overfitting, while a large value of k may cause underfitting. 

Hence, after trial and error, the value of k has been restricted to 5 in this project which is 

almost 5% of the data for a typical sensor and preferably k should be odd number. 

- Curve length and L2 norm index have the potential to indicate differences in damage 

severity. Specifically, as the size of the hole increases, the values of these metrics tend to 

decrease. 

- Increasing the distance between sensors results in LMD reduction but predicting hole 

location is correct. 
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5.2 Future works 

 

The current study examines concepts such as detection and localization in pipelines by presenting 

a comprehensive package. The purpose of this section, as a future work suggestion, is to expand 

upon the current study. The following points are proposed to continue this research: 

- Expanding the current model in a way that brings it as close as possible to real-world 

conditions, for example, by considering a real project with actual boundary conditions, so 

that factors such as environmental effects are incorporated into the modeling as much as 

possible. 

- In respect of such a potentiality of the ICA, further consideration on several models, each 

representing the type and multiplicity of damage, is recommended. Further, the ICA 

components in extracting desirable features are recommended to be used, using the curve 

length and L2 norm capabilities. Also, the issue of models with different holes and physical 

characteristics can be explored. 

- As in this research, the location of hole on the top of the pipe (+ 90 degrees) is investigated, 

examining hole location on the side of pipeline will be suggested.  

- Considering other types of hole shaped like elliptical shape and investigating the pipeline 

behavior is suggested. 

- Decision-making, as the final stage of health monitoring in consideration of the continuity 

of the monitoring process, becomes highly significant when projects involve several 

kilometers of pipeline length. Methods designed for this purpose should be employed; 

applying reinforcement learning and also game theory in this field is suggested for future 

works. 
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Appendices 

Appendix A: 

Python code: 

In this part python codes are provided in three parts, the first part related to calculation of principal 

component analysis, the second part related to independent component analysis and the last one 

related to local Mahalanobis distance.  

 

A.1 PCA (Principal Component Analysis) calculation 

#PCA calculation-pipe 6m 

import pandas as pd 

from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

# Load the Data 

file_path = '/content/model6m+12sensor - 2hole.xlsx' 

xls = pd.ExcelFile(file_path) 

# Load both sheets 

nohole_df = pd.read_excel(xls, 'nohole') 

hole3m_df = pd.read_excel(xls, 'hole3m') 

# Defineing groups  

nohole_groups = { 

    'group1': ['Acc(1m)', 'Vel(1m)'], 

    'group2': ['Acc(2m)', 'Vel(2m)'], 

    'group3': ['Acc(3m)', 'Vel(3m)'], 

    'group4': ['Acc(4m)', 'Vel(4m)'], 

    'group5': ['Acc(5m)', 'Vel(5m)'], 
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    'group6': ['Acc(6m)', 'Vel(6m)']} 

hole3m_groups = { 

    'group1': ['acc(1m)', 'vel(1m)'], 

    'group2': ['acc(2m)', 'vel(2m)'], 

    'group3': ['acc(3m)', 'vel(3m)'], 

    'group4': ['acc(4m)', 'vel(4m)'], 

    'group5': ['acc(5m)', 'vel(5m)'], 

    'group6': ['acc(6m)', 'vel(6m)']} 

# Applying PCA Function 

def apply_pca_to_groups(df, groups): 

    pca_results = {} 

    for group_name, columns in groups.items(): 

        scaler = StandardScaler() 

        standardized_data = scaler.fit_transform(df[columns]) 

        pca = PCA(n_components=1) 

        principal_components = pca.fit_transform(standardized_data) 

        pca_results[group_name] = pd.DataFrame(data=principal_components, 

columns=[f'{group_name} Principal Component 1']) 

    return pca_results 

# Apply PCA to groups 

nohole_pca_results = apply_pca_to_groups(nohole_df, nohole_groups) 

hole3m_pca_results = apply_pca_to_groups(hole3m_df, hole3m_groups) 

# Combine  

output_file_path = 'pca_results_groups.xlsx' 

with pd.ExcelWriter(output_file_path) as writer: 

    for group_name, pca_df in nohole_pca_results.items(): 

        noh3m_result_df = pd.concat([nohole_df[nohole_groups[group_name]], pca_df], axis=1) 

        noh3m_result_df.to_excel(writer, sheet_name=f'nohole_{group_name}', index=False) 

    for group_name, pca_df in hole3m_pca_results.items(): 

        hole3m_result_df = pd.concat([hole3m_df[hole3m_groups[group_name]], pca_df], axis=1) 
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        hole3m_result_df.to_excel(writer, sheet_name=f'hole3m_{group_name}', index=False) 

#  variance ratios for each group 

explained_variance_nohole = {group_name: 

PCA(n_components=1).fit(StandardScaler().fit_transform(nohole_df[nohole_groups[group_nam

e]])).explained_variance_ratio_ for group_name in nohole_groups.keys()} 

explained_variance_hole3m = {group_name: 

PCA(n_components=1).fit(StandardScaler().fit_transform(hole3m_df[hole3m_groups[group_na

me]])).explained_variance_ratio_ for group_name in hole3m_groups.keys()} 

explained_variance_nohole, explained_variance_hole3m 

 

 

 

 

A.2  ICA (Independent Component Analysis) calculation 

The chosen approach to solve this problem is with the use of FastICA via scikit-learn (source: 

https://scikit-learn.org /stable/modules/ generated/ sklearn. decomposition.FastICA.html). 

#ICA calculation _pipe6m_hole4.4m 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import FastICA 

import matplotlib.pyplot as plt 

# Loading data  

file_path = '/content/PCA_vel_acc_6m_2 hole.xlsx' 

data = pd.read_excel(file_path, sheet_name=None) 

# nohole sheet as baseline 

nohole_data = data['nohole'] 

# hole3m sheet for comparing 

hole3m_data = data['hole3m'] 
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# Columns  

nohole_columns = ['Acc(6m)', 'Acc(5m)', 'Acc(4m)', 'Acc(3m)', 'Acc(2m)', 'Acc(1m)'] 

hole3m_columns = ['acc(6m)', 'acc(5m)', 'acc(4m)', 'acc(3m)', 'acc(2m)', 'acc(1m)'] 

# Standardizing data 

scaler_nohole = StandardScaler() 

scaler_hole3m = StandardScaler() 

# Standardizing for nohole 

nohole_scaled = scaler_nohole.fit_transform(nohole_data[nohole_columns]) 

# Standardizing for hole3m 

hole3m_scaled = scaler_hole3m.fit_transform(hole3m_data[hole3m_columns]) 

# Apply ICA 

ica = FastICA(n_components=len(nohole_columns), max_iter=2000, tol=0.01) 

# Fit the ICA to nohole 

nohole_ica = ica.fit_transform(nohole_scaled) 

hole3m_ica = ica.transform(hole3m_scaled) 

#  DataFrames for ICA  

nohole_ica_df = pd.DataFrame(nohole_ica, columns=[f'IC{i+1}' for i in 

range(nohole_ica.shape[1])]) 

hole3m_ica_df = pd.DataFrame(hole3m_ica, columns=[f'IC{i+1}' for i in 

range(hole3m_ica.shape[1])]) 

# Saving ICA results 

nohole_ica_df.to_csv('nohole_ica_results.csv', index=False) 

hole3m_ica_df.to_csv('hole3m_ica_results.csv', index=False) 
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A.3 LMD (Local Mahalanobis Distance) calculation 

##LMD calculation for vel+acc+PCA+ pipe 6m_2 hole 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import StandardScaler 

from sklearn.neighbors import NearestNeighbors 

import matplotlib.pyplot as plt 

# Loading data 

file_path = '/content/PCA_vel_acc_6m_2 hole.xlsx' 

data = pd.read_excel(file_path, sheet_name=None) 

# nohole as baseline 

nohole_data = data['nohole'] 

# hole3m to compare 

hole3m_data = data['hole3m'] 

# column names  

print("Nohole columns:", nohole_data.columns) 

print("Hole3m columns:", hole3m_data.columns) 

# Columns for use 

columns_nohole = ['Acc(6m)', 'Acc(5m)', 'Acc(4m)', 'Acc(3m)','Acc(2m)', 'Acc(1m)'] 

columns_hole3m = ['acc(6m)', 'acc(5m)', 'acc(4m)', 'acc(3m)', 'acc(2m)', 'acc(1m)' ] 

# Standardizeing data 

scaler = StandardScaler() 

nohole_scaled = scaler.fit_transform(nohole_data[columns_nohole]) 

hole3m_scaled = scaler.fit_transform(hole3m_data[columns_hole3m]) 

#  DataFrame  

nohole_df = pd.DataFrame(nohole_scaled, columns=columns_nohole) 

hole3m_df = pd.DataFrame(hole3m_scaled, columns=columns_nohole)  # Ensuring the same 

column names 

# Local Regions and Calculate Local Mahalanobis Distance 

def calculate_local_mahalanobis(nohole_col, hole3m_col, k=5): 
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    nbrs = NearestNeighbors(n_neighbors=k).fit(nohole_col.values.reshape(-1, 1)) 

    distances, indices = nbrs.kneighbors(nohole_col.values.reshape(-1, 1)) 

    local_means = [] 

    local_vars = [] 

    for idx in indices: 

        neighborhood = nohole_col.iloc[idx].values 

        local_mean = neighborhood.mean() 

        local_var = np.var(neighborhood)  # Use variance instead of covariance for 1D 

        local_means.append(local_mean) 

        local_vars.append(local_var) 

    local_means = np.array(local_means) 

    local_vars = np.array(local_vars) 

    distances = [] 

    for i in range(len(hole3m_col)): 

        diff = hole3m_col.iloc[i] - local_means[i] 

        if local_vars[i] == 0:  # Avoid division by zero 

            md = 0 

        else: 

            md = np.sqrt(diff ** 2 / local_vars[i]) 

        distances.append(md) 

    return distances 

#  plot Local Mahalanobis Distance  

for column in columns_nohole: 

    lmd = calculate_local_mahalanobis(nohole_df[column], hole3m_df[column]) 

    lmd_df = pd.DataFrame(lmd, columns=[f'Local Mahalanobis Distance ({column})']) 

    plt.figure(figsize=(10, 6)) 

    plt.plot(lmd_df) 

    plt.title(f'Local Mahalanobis Distance for {column}') 

    plt.xlabel('Observation') 

    plt.ylabel('Local Mahalanobis Distance') 
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    plt.show() 

    # Save LMD 

    lmd_df.to_csv(f'local_mahalanobis_distances_{column}.csv', index=False) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

91 
 

Appendix B: 

B.1 First scenario 

In this part the data related to the first scenario are rendered 

B.1.1 Data related to baseline pipe (without hole):  

B.1.1.1 Acceleration for intact pipe  

     Acc(6m)     Acc(5m)   Acc(4m)    Acc(3m)  Acc(2m)  Acc(1m) 

1.13E-01 0.35027 7.65E-01 1.35E+00 2.44E+00 5.83E+00 

1.63E-01 0.44394 0.9753 1.79E+00 3.67E+00 1.06E+01 

1.33E-02 0.17603 0.36784 5.07E-01 6.59E-01 8.12E+00 

0.15374 0.74555 1.71E+00 3.06E+00 3.31E+00 4.82E+00 

0.25374 0.91162 2.29E+00 4.79E+00 6.70E+00 1.60E+00 

0.22918 4.51E-01 1.5371 4.75E+00 8.52E+00 1.13E+00 

7.64E-02 0.7081 0.65691 2.74E+00 8.31E+00 2.35E+00 

0.14915 1.8677 3.3032 8.42E-01 6.38E+00 2.41E+00 

0.35345 2.6467 5.6097 4.49E+00 3.59E+00 1.69E+00 

0.44106 2.4608 6.539 7.20E+00 1.01E+00 8.58E-01 

3.55E-01 1.0764 5.4629 8.04E+00 8.35E-01 0.35662 

0.10245 1.5197 2.4857 6.86E+00 1.02E+00 3.36E-01 

0.24342 4.3384 1.6771 4.31E+00 1.79E-01 7.82E-01 

0.56666 6.8415 5.5279 1.54E+00 9.80E-01 1.40E+00 

0.75486 8.1566 7.9783 4.61E-01 1.57E+00 1.72E+00 

7.40E-01 7.8042 8.2703 6.65E-01 1.11E+00 1.49E+00 

5.23E-01 5.7907 6.4018 9.07E-01 3.63E-01 7.76E-01 

0.17462 2.6048 3.1116 3.18E+00 2.15E+00 1.28E-01 

1.93E-01 0.96632 0.51676 5.21E+00 3.49E+00 6.75E-01 

4.68E-01 4.0682 3.0343 5.90E+00 3.58E+00 5.70E-01 

5.79E-01 6.1183 3.8217 4.70E+00 2.15E+00 5.41E-01 

5.20E-01 6.9188 2.7967 1.81E+00 5.29E-01 1.86E+00 

0.34665 6.6868 0.59333 1.95E+00 3.27E+00 3.21E+00 

0.15102 5.9552 2.1741 5.17E+00 5.17E+00 3.88E+00 

2.08E-02 5.1837 4.0701 6.83E+00 5.29E+00 3.37E+00 

4.49E-03 4.6916 4.7288 6.41E+00 3.34E+00 1.60E+00 

9.34E-02 4.5354 4.1833 4.24E+00 3.21E-01 1.08E+00 

0.22922 4.5214 3.0018 1.23E+00 4.29E+00 3.81E+00 

0.33157 4.3644 2.0179 1.53E+00 7.52E+00 5.82E+00 

3.36E-01 3.7462 1.862 2.81E+00 8.90E+00 6.41E+00 

2.22E-01 2.6193 2.6949 2.35E+00 8.02E+00 5.31E+00 
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2.60E-02 1.2496 4.1644 5.54E-01 5.25E+00 2.77E+00 

0.17417 0.24097 5.5297 1.82E+00 1.58E+00 5.36E-01 

0.29277 0.67967 5.947 3.24E+00 1.80E+00 3.75E+00 

0.27299 0.46449 4.8687 3.05E+00 3.76E+00 6.13E+00 

0.11358 0.72961 2.3564 1.10E+00 3.92E+00 7.26E+00 

0.12706 1.9849 0.92457 2.16E+00 2.56E+00 7.16E+00 

0.35177 3.0091 3.8409 5.46E+00 5.55E-01 6.23E+00 

0.46253 3.1331 5.3792 7.66E+00 1.70E+00 5.01E+00 

0.40016 2.0472 4.8973 7.94E+00 2.62E+00 3.91E+00 

0.16989 0.31066 2.4784 6.21E+00 2.30E+00 3.13E+00 

0.158 2.8805 1.1598 3.15E+00 1.09E+00 2.58E+00 

0.47297 5.3522 4.6174 2.23E-01 2.69E-01 2.03E+00 

6.65E-01 6.8037 6.7922 2.51E+00 1.02E+00 1.14E+00 

6.67E-01 6.7515 6.9134 3.16E+00 7.19E-01 3.69E-01 

0.4768 5.173 4.9363 2.12E+00 6.78E-01 2.04E+00 

0.16078 2.5097 1.5364 1.78E-01 2.20E+00 3.72E+00 

1.75E-01 0.52268 2.2145 1.83E+00 3.17E+00 4.87E+00 

0.42294 3.0732 5.0702 2.53E+00 2.86E+00 5.06E+00 

5.16E-01 4.6252 6.3165 1.53E+00 9.82E-01 4.21E+00 

4.47E-01 4.9715 5.8879 1.10E+00 2.09E+00 2.62E+00 

0.26804 4.3078 4.2883 4.27E+00 5.39E+00 9.72E-01 

6.67E-02 3.1052 2.4038 6.90E+00 7.79E+00 4.63E-01 

7.51E-02 1.8351 1.1039 7.96E+00 8.36E+00 5.52E-01 

0.1122 0.77684 0.79697 6.98E+00 6.79E+00 1.00E+00 

5.42E-02 6.91E-02 1.4175 4.28E+00 3.53E+00 2.98E+00 

4.29E-02 0.73982 2.5268 8.12E-01 4.43E-01 5.26E+00 

0.1036 1.6156 3.368 2.20E+00 3.70E+00 7.01E+00 

6.91E-02 2.8364 3.2792 3.78E+00 5.29E+00 7.52E+00 

7.44E-02 4.3746 2.1195 3.52E+00 4.77E+00 6.48E+00 

0.28668 5.946 0.36113 1.81E+00 2.44E+00 4.12E+00 

4.88E-01 7.1433 1.4534 4.52E-01 8.25E-01 1.07E+00 

5.94E-01 7.4546 2.0847 2.01E+00 3.78E+00 1.98E+00 

0.54703 6.6405 1.2064 2.15E+00 5.49E+00 4.22E+00 

0.34918 4.8247 1.1415 6.72E-01 5.52E+00 5.29E+00 

6.07E-02 2.5249 4.254 2.05E+00 4.14E+00 5.23E+00 

0.21895 0.53079 7.0585 4.71E+00 2.05E+00 4.39E+00 

0.38905 1.0677 8.4687 6.27E+00 4.00E-01 3.30E+00 

3.87E-01 1.1563 7.8334 5.98E+00 1.10E+00 2.30E+00 

0.21298 0.27724 5.1997 3.78E+00 1.02E+00 1.57E+00 

6.73E-02 1.7722 1.3203 3.52E-01 2.32E-01 1.05E+00 

3.48E-01 3.5061 2.6092 3.17E+00 5.71E-01 5.17E-01 

5.23E-01 4.4761 5.38 5.63E+00 6.79E-01 4.67E-01 

0.52395 4.1829 6.2071 6.32E+00 6.17E-01 1.71E+00 

0.34743 2.5672 4.9991 5.23E+00 2.48E+00 3.18E+00 

5.35E-02 8.18E-02 2.3645 3.06E+00 4.65E+00 4.48E+00 
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0.25816 2.8313 0.64571 9.14E-01 6.16E+00 5.06E+00 

0.48721 5.225 2.9484 2.50E-01 6.27E+00 4.50E+00 

0.56995 6.6575 3.8507 2.72E-01 4.73E+00 2.75E+00 

5.01E-01 6.9585 3.2602 2.20E+00 1.90E+00 1.66E-01 

0.33089 6.316 1.6648 4.72E+00 1.27E+00 2.66E+00 

0.14159 5.1845 0.50635 6.71E+00 3.61E+00 4.90E+00 

1.05E-02 3.9641 1.6242 7.21E+00 4.21E+00 5.96E+00 

2.18E-02 2.9166 1.8393 5.80E+00 2.70E+00 5.63E+00 

3.34E-02 2.0798 1.1537 2.83E+00 5.10E-01 4.15E+00 

1.21E-01 1.3111 1.55E-01 7.52E-01 4.42E+00 2.21E+00 

0.1673 0.38849 0.51224 3.75E+00 7.78E+00 6.53E-01 

0.1188 1.0566 0.33121 5.22E+00 9.54E+00 5.59E-01 

3.49E-02 2.6656 1.4314 4.77E+00 9.23E+00 4.71E-01 

0.25085 4.2633 3.3781 2.81E+00 7.13E+00 1.79E+00 

0.44883 5.3705 5.0851 3.50E-01 4.06E+00 3.89E+00 

0.54332 5.4884 5.6748 1.85E+00 1.15E+00 5.95E+00 

0.48017 4.3865 4.6389 2.47E+00 7.14E-01 7.31E+00 

0.26171 2.2106 2.0185 1.51E+00 1.12E+00 7.61E+00 

5.00E-02 0.52088 1.5033 5.40E-01 3.33E-01 6.89E+00 

0.35415 3.0669 4.7949 2.64E+00 1.27E+00 5.53E+00 

0.54797 4.71 6.7869 3.76E+00 2.45E+00 3.98E+00 

0.56595 5.0056 6.7848 3.17E+00 2.77E+00 2.57E+00 

4.05E-01 3.9408 4.7932 8.61E-01 2.09E+00 1.46E+00 

0.12577 1.9408 1.5314 2.53E+00 8.20E-01 5.30E-01 

0.16965 0.33676 1.9589 5.83E+00 4.11E-01 4.66E-01 
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B.1.1.2 Velocity for the intact pipe  

Vel(6m) Vel(5m) Vel(4m) Vel(3m) Vel(2m) Vel(1m) 

1.13E-04 3.50E-04 7.65E-04 1.35E-03 2.44E-03 5.83E-03 

2.76E-04 7.94E-04 1.74E-03 3.14E-03 6.11E-03 1.64E-02 

2.89E-04 6.45E-04 1.40E-03 2.69E-03 6.75E-03 2.46E-02 

1.36E-04 2.44E-04 4.52E-04 6.26E-04 3.56E-03 2.93E-02 

1.18E-04 1.04E-03 2.62E-03 5.27E-03 3.50E-03 3.08E-02 

3.47E-04 1.46E-03 4.14E-03 9.95E-03 1.20E-02 2.98E-02 

4.24E-04 8.73E-04 3.62E-03 1.27E-02 2.02E-02 2.76E-02 

2.75E-04 1.28E-03 6.84E-04 1.20E-02 2.66E-02 2.53E-02 

7.88E-05 3.77E-03 5.50E-03 7.61E-03 3.01E-02 2.36E-02 

5.20E-04 6.18E-03 1.20E-02 1.10E-03 3.09E-02 2.28E-02 

8.75E-04 7.22E-03 1.73E-02 7.98E-03 3.02E-02 2.25E-02 

9.78E-04 5.81E-03 1.98E-02 1.48E-02 2.92E-02 2.22E-02 

7.34E-04 1.64E-03 1.82E-02 1.91E-02 2.91E-02 2.14E-02 

1.67E-04 5.63E-03 1.27E-02 2.05E-02 3.01E-02 2.01E-02 

5.87E-04 1.36E-02 4.77E-03 2.01E-02 3.16E-02 1.84E-02 

1.33E-03 2.14E-02 3.79E-03 1.95E-02 3.27E-02 1.70E-02 

1.85E-03 2.72E-02 1.02E-02 2.03E-02 3.23E-02 1.62E-02 

2.02E-03 2.98E-02 1.33E-02 2.34E-02 3.02E-02 1.63E-02 

1.83E-03 2.88E-02 1.29E-02 2.86E-02 2.67E-02 1.68E-02 

1.36E-03 2.47E-02 9.93E-03 3.45E-02 2.32E-02 1.72E-02 

7.85E-04 1.87E-02 6.20E-03 3.92E-02 2.12E-02 1.68E-02 

2.66E-04 1.18E-02 3.50E-03 4.10E-02 2.17E-02 1.49E-02 

8.09E-05 5.15E-03 2.91E-03 3.92E-02 2.50E-02 1.17E-02 

2.32E-04 8.93E-04 4.77E-03 3.40E-02 3.01E-02 7.98E-03 

2.53E-04 5.99E-03 8.64E-03 2.73E-02 3.53E-02 4.80E-03 

2.57E-04 1.07E-02 1.33E-02 2.09E-02 3.86E-02 3.43E-03 

3.50E-04 1.52E-02 1.75E-02 1.66E-02 3.83E-02 4.47E-03 

5.80E-04 1.97E-02 2.05E-02 1.54E-02 3.40E-02 8.12E-03 

9.11E-04 2.41E-02 2.25E-02 1.68E-02 2.65E-02 1.38E-02 

1.25E-03 2.78E-02 2.43E-02 1.95E-02 1.76E-02 2.00E-02 

1.47E-03 3.03E-02 2.69E-02 2.19E-02 9.62E-03 2.53E-02 

1.49E-03 3.16E-02 3.11E-02 2.24E-02 4.40E-03 2.80E-02 

1.32E-03 3.17E-02 3.66E-02 2.06E-02 2.86E-03 2.75E-02 

1.03E-03 3.12E-02 4.25E-02 1.74E-02 4.66E-03 2.37E-02 

7.54E-04 3.09E-02 4.74E-02 1.44E-02 8.41E-03 1.77E-02 

6.41E-04 3.16E-02 4.98E-02 1.33E-02 1.23E-02 1.05E-02 

7.68E-04 3.36E-02 4.88E-02 1.54E-02 1.48E-02 3.41E-03 

1.12E-03 3.65E-02 4.50E-02 2.07E-02 1.52E-02 3.07E-03 

1.58E-03 3.95E-02 3.96E-02 2.83E-02 1.37E-02 7.98E-03 

1.98E-03 4.14E-02 3.47E-02 3.62E-02 1.12E-02 1.18E-02 

2.15E-03 4.12E-02 3.23E-02 4.25E-02 9.11E-03 1.49E-02 

1.99E-03 3.83E-02 3.34E-02 4.56E-02 8.09E-03 1.75E-02 
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1.52E-03 3.31E-02 3.81E-02 4.55E-02 8.33E-03 1.95E-02 

8.56E-04 2.64E-02 4.49E-02 4.30E-02 9.23E-03 2.06E-02 

1.89E-04 1.98E-02 5.18E-02 4.00E-02 9.80E-03 2.03E-02 

2.88E-04 1.48E-02 5.67E-02 3.79E-02 9.13E-03 1.83E-02 

4.48E-04 1.23E-02 5.82E-02 3.79E-02 6.94E-03 1.46E-02 

2.74E-04 1.27E-02 5.61E-02 3.97E-02 3.80E-03 9.71E-03 

1.49E-04 1.56E-02 5.10E-02 4.22E-02 1.20E-03 4.73E-03 

6.65E-04 2.01E-02 4.47E-02 4.37E-02 9.38E-04 7.25E-04 

1.11E-03 2.50E-02 3.88E-02 4.26E-02 2.20E-03 2.21E-03 

1.38E-03 2.93E-02 3.45E-02 3.84E-02 7.42E-03 3.06E-03 

1.45E-03 3.24E-02 3.22E-02 3.15E-02 1.51E-02 2.82E-03 

1.37E-03 3.42E-02 3.13E-02 2.35E-02 2.34E-02 2.67E-03 

1.26E-03 3.50E-02 3.07E-02 1.66E-02 3.01E-02 3.67E-03 

1.21E-03 3.49E-02 2.93E-02 1.24E-02 3.36E-02 6.61E-03 

1.25E-03 3.42E-02 2.68E-02 1.16E-02 3.32E-02 1.18E-02 

1.35E-03 3.26E-02 2.34E-02 1.38E-02 2.95E-02 1.87E-02 

1.42E-03 2.98E-02 2.01E-02 1.75E-02 2.42E-02 2.61E-02 

1.35E-03 2.54E-02 1.80E-02 2.10E-02 1.95E-02 3.24E-02 

1.06E-03 1.94E-02 1.78E-02 2.28E-02 1.70E-02 3.66E-02 

5.71E-04 1.23E-02 1.93E-02 2.23E-02 1.79E-02 3.76E-02 

2.27E-05 5.00E-03 2.14E-02 2.03E-02 2.16E-02 3.57E-02 

5.70E-04 1.90E-03 2.26E-02 1.82E-02 2.71E-02 3.16E-02 

9.19E-04 6.65E-03 2.14E-02 1.75E-02 3.26E-02 2.64E-02 

9.80E-04 9.13E-03 1.72E-02 1.96E-02 3.67E-02 2.12E-02 

7.61E-04 9.45E-03 1.02E-02 2.43E-02 3.86E-02 1.68E-02 

3.72E-04 8.48E-03 1.88E-03 3.05E-02 3.87E-02 1.35E-02 

1.53E-05 7.54E-03 6.35E-03 3.65E-02 3.78E-02 1.12E-02 

2.28E-04 7.63E-03 1.15E-02 4.03E-02 3.69E-02 9.67E-03 

1.61E-04 9.40E-03 1.28E-02 4.07E-02 3.67E-02 8.63E-03 

1.87E-04 1.28E-02 1.02E-02 3.75E-02 3.72E-02 8.17E-03 

7.10E-04 1.72E-02 4.91E-03 3.19E-02 3.77E-02 8.61E-03 

1.23E-03 2.13E-02 1.82E-03 2.55E-02 3.72E-02 1.03E-02 

1.58E-03 2.38E-02 6.64E-03 2.03E-02 3.47E-02 1.35E-02 

1.64E-03 2.38E-02 8.99E-03 1.73E-02 3.01E-02 1.79E-02 

1.38E-03 2.10E-02 8.36E-03 1.64E-02 2.40E-02 2.29E-02 

8.90E-04 1.58E-02 5.44E-03 1.66E-02 1.77E-02 2.72E-02 

3.20E-04 9.16E-03 1.69E-03 1.63E-02 1.30E-02 3.00E-02 

1.81E-04 2.28E-03 1.95E-03 1.41E-02 1.11E-02 3.01E-02 

5.12E-04 4.17E-03 3.43E-03 9.46E-03 1.24E-02 2.74E-02 

6.54E-04 9.31E-03 3.17E-03 2.84E-03 1.60E-02 2.26E-02 

6.64E-04 1.32E-02 1.81E-03 4.55E-03 2.02E-02 1.67E-02 

6.42E-04 1.61E-02 9.51E-04 1.03E-02 2.29E-02 1.12E-02 

6.76E-04 1.82E-02 1.77E-03 1.32E-02 2.24E-02 7.14E-03 

7.96E-04 1.95E-02 1.86E-03 1.24E-02 1.80E-02 4.93E-03 

9.64E-04 1.98E-02 1.36E-03 8.67E-03 1.02E-02 4.35E-03 
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1.08E-03 1.88E-02 1.10E-03 3.45E-03 6.61E-04 4.55E-03 

1.05E-03 1.62E-02 2.28E-03 1.33E-03 8.58E-03 4.45E-03 

7.97E-04 1.19E-02 5.59E-03 4.13E-03 1.57E-02 2.80E-03 

3.48E-04 6.53E-03 1.07E-02 4.40E-03 1.98E-02 1.55E-03 

1.96E-04 1.22E-03 1.64E-02 2.71E-03 2.09E-02 7.30E-03 

6.76E-04 3.41E-03 2.10E-02 1.04E-03 2.02E-02 1.45E-02 

9.37E-04 5.61E-03 2.30E-02 1.97E-03 1.91E-02 2.21E-02 

8.87E-04 5.09E-03 2.15E-02 1.47E-03 1.89E-02 2.89E-02 

5.33E-04 2.05E-03 1.67E-02 1.81E-03 2.01E-02 3.45E-02 

1.47E-05 2.80E-03 9.91E-03 5.38E-03 2.26E-02 3.84E-02 

5.81E-04 7.73E-03 3.15E-03 8.48E-03 2.53E-02 4.10E-02 

9.86E-04 1.17E-02 1.72E-03 9.29E-03 2.74E-02 4.25E-02 

1.11E-03 1.36E-02 3.20E-03 6.76E-03 2.82E-02 4.30E-02 

9.42E-04 1.33E-02 1.29E-03 9.69E-04 2.79E-02 4.25E-02 
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B.1.2 Data related to pipe with hole (hole is located 4.4m from the beginning 

of pipe):  

B.1.2.1 Acceleration for pipe with hole 

acc(6m) acc(5m) acc(4m) acc(3m) acc(2m) acc(1m) 

0.11389 0.49475 7.73E-01 1.46E+00 2.50E+00 6.28E+00 

0.16536 0.65248 0.9921 1.99E+00 3.81E+00 1.14E+01 

1.48E-02 0.16402 0.38787 5.48E-01 8.18E-01 8.62E+00 

0.15365 0.94546 1.7013 3.07E+00 3.57E+00 5.16E+00 

0.25608 1.2513 2.3059 4.92E+00 7.02E+00 1.93E+00 

0.23419 0.75488 1.5987 5.05E+00 8.85E+00 1.54E+00 

8.28E-02 0.61983 0.76043 3.17E+00 8.59E+00 2.84E+00 

0.14447 2.0274 3.2947 8.58E-01 6.71E+00 2.80E+00 

0.3543 3.1251 5.548 4.56E+00 4.02E+00 1.89E+00 

0.45028 3.1331 6.5923 7.35E+00 1.42E+00 1.08E+00 

0.3727 1.7068 5.6656 8.29E+00 1.12E+00 5.45E-01 

0.12391 1.244 2.8187 7.18E+00 1.34E+00 4.69E-01 

0.22578 4.3942 1.5065 4.74E+00 4.15E-01 8.28E-01 

0.56179 7.4056 5.341 2.03E+00 8.88E-01 1.53E+00 

0.76929 9.1245 7.9002 4.31E-01 1.66E+00 2.00E+00 

7.74E-01 8.9436 8.4032 8.36E-01 1.35E+00 1.82E+00 

5.71E-01 6.8136 6.7727 9.66E-01 2.63E-01 1.02E+00 

0.22382 3.2597 3.647 3.12E+00 2.01E+00 1.29E-01 

0.15716 0.80943 0.22495 5.13E+00 3.57E+00 8.57E-01 

0.45676 4.3925 2.8195 5.94E+00 3.93E+00 9.08E-01 

0.59631 6.7615 3.8267 5.03E+00 2.70E+00 5.41E-01 

0.55985 7.643 3.0672 2.34E+00 3.05E-01 1.74E+00 

0.39551 7.2662 1.0788 1.71E+00 2.95E+00 3.23E+00 

0.19211 6.3267 1.943 5.08E+00 5.07E+00 4.23E+00 

4.13E-02 5.3461 4.0299 6.98E+00 5.61E+00 3.97E+00 

8.63E-04 4.7085 4.9279 6.81E+00 4.01E+00 2.27E+00 

7.14E-02 4.5255 4.5641 4.88E+00 6.54E-01 7.79E-01 

0.20367 4.6003 3.422 1.95E+00 3.81E+00 3.66E+00 

0.31835 4.6284 2.3569 1.40E+00 7.24E+00 6.14E+00 

0.34498 4.168 2.0557 3.10E+00 9.00E+00 7.13E+00 

0.25343 3.0382 2.6579 3.01E+00 8.55E+00 6.26E+00 

6.85E-02 1.476 3.9335 1.38E+00 6.09E+00 3.68E+00 

0.13925 0.19865 5.2811 1.40E+00 2.49E+00 8.82E-02 

0.28288 1.0684 5.9586 3.03E+00 1.29E+00 3.58E+00 

0.29643 1.0261 5.2408 3.21E+00 3.61E+00 6.42E+00 

0.16476 0.29686 3.0388 1.74E+00 4.18E+00 7.88E+00 

6.68E-02 1.6814 0.22141 1.50E+00 3.23E+00 7.90E+00 

0.30746 3.1575 3.2141 4.92E+00 1.30E+00 6.87E+00    
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0.45569 3.7602 5.1763 7.50E+00 1.77E+00 5.68E+00 

0.43931 2.9869 5.2413 8.29E+00 3.04E+00 4.46E+00 

0.24569 0.83603 3.2953 7.00E+00 2.98E+00 3.48E+00 

7.06E-02 2.2629 0.34096 4.17E+00 1.80E+00 2.74E+00 

0.40596 5.2601 3.8187 8.99E-01 2.05E-01 2.19E+00 

0.64557 7.3496 6.3831 2.19E+00 1.00E+00 1.51E+00 

0.70549 7.8011 7.1079 3.43E+00 1.16E+00 3.01E-01 

0.5637 6.4254 5.7165 2.88E+00 4.05E-01 1.76E+00 

0.2677 3.5974 2.6777 1.04E+00 1.78E+00 3.50E+00 

8.40E-02 0.23719 1.1833 1.27E+00 2.91E+00 5.04E+00 

0.3789 3.0658 4.4245 2.36E+00 3.07E+00 5.64E+00 

5.32E-01 5.176 6.2335 2.03E+00 1.72E+00 5.06E+00 

0.51375 5.8536 6.3855 4.80E-01 1.14E+00 3.46E+00 

0.35908 5.2187 5.1955 3.58E+00 4.49E+00 1.69E+00 

1.47E-01 3.7868 3.3603 6.55E+00 7.42E+00 5.23E-01 

3.38E-02 2.242 1.7541 8.21E+00 8.76E+00 9.49E-01 

0.11993 0.91718 0.98552 7.88E+00 7.95E+00 8.17E-01 

9.93E-02 0.14979 1.1554 5.60E+00 5.14E+00 2.42E+00 

1.18E-02 0.7116 2.0013 2.12E+00 1.21E+00 4.58E+00 

7.10E-02 1.4273 3.0699 1.37E+00 2.71E+00 6.90E+00 

7.97E-02 2.473 3.4656 3.73E+00 5.02E+00 8.07E+00 

2.01E-02 3.9487 2.7959 4.27E+00 5.33E+00 7.57E+00 

0.2101 5.664 1.2453 3.06E+00 3.59E+00 5.45E+00 

4.25E-01 7.2368 0.82771 8.50E-01 5.73E-01 2.21E+00 

0.57742 8.1039 1.8187 1.34E+00 2.89E+00 1.27E+00 

0.59589 7.7555 1.5513 2.25E+00 5.23E+00 4.13E+00 

0.45535 6.121 0.21484 1.60E+00 5.95E+00 5.76E+00 

0.19157 3.5836 3.0074 9.88E-01 5.20E+00 6.01E+00 

0.1094 1.0629 6.0283 3.75E+00 3.34E+00 5.17E+00 

0.34247 1.2318 8.1188 5.91E+00 1.26E+00 3.98E+00 

0.42352 1.9934 8.4071 6.48E+00 1.23E+00 2.80E+00 

0.32247 1.2769 6.6096 5.05E+00 1.63E+00 1.80E+00 

7.62E-02 0.75212 3.1632 1.98E+00 9.84E-01 1.05E+00 

0.22384 2.8857 0.91378 1.76E+00 1.17E-01 5.08E-01 

4.66E-01 4.6358 4.3753 4.96E+00 8.22E-01 4.31E-01 

0.55724 5.1147 6.1997 6.65E+00 5.78E-01 1.49E+00 

0.46178 3.9981 5.9419 6.42E+00 1.76E+00 2.81E+00 

0.20913 1.4997 3.8776 4.65E+00 3.78E+00 4.19E+00 

0.11613 1.7251 0.87483 2.27E+00 5.60E+00 5.31E+00 

0.4076 4.8007 1.9507 4.11E-01 6.40E+00 5.39E+00 

0.57701 6.9668 3.67E+00 1.74E-01 5.72E+00 4.15E+00 

0.58564 7.8058 3.935 1.10E+00 3.53E+00 1.71E+00 

0.45528 7.353 2.8677 3.45E+00 3.99E-01 1.40E+00 

0.25521 6.0603 1.1272 5.87E+00 2.55E+00 4.32E+00 

7.11E-02 4.5441 1.1828 7.26E+00 4.20E+00 6.25E+00 
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3.09E-02 3.1578 2.0589 6.86E+00 3.81E+00 6.69E+00 

3.02E-02 2.112 1.8936 4.59E+00 1.37E+00 5.62E+00 

4.23E-02 1.3357 0.9875 1.18E+00 2.43E+00 3.56E+00 

0.12082 0.65458 0.23229 2.54E+00 6.38E+00 1.75E+00 

0.13629 0.52119 0.41063 5.12E+00 9.24E+00 6.22E-01 

4.91E-02 1.9593 0.86978 5.87E+00 1.01E+01 8.00E-01 

0.1306 3.6455 2.3914 4.73E+00 8.93E+00 1.17E+00 

0.34364 5.2348 4.1639 2.32E+00 6.15E+00 2.91E+00 

0.50473 6.096 5.3482 8.09E-01 2.85E+00 5.11E+00 

0.53735 5.71 5.2611 2.38E+00 1.75E-01 7.17E+00 

0.40708 3.9422 3.6232 2.44E+00 1.26E+00 8.19E+00 

1.39E-01 1.1161 0.63149 1.16E+00 1.24E+00 7.94E+00 

0.18673 2.0543 2.9007 1.17E+00 4.17E-01 6.65E+00 

0.46492 4.6805 5.7359 3.04E+00 1.99E+00 5.03E+00 

0.60182 6.0103 7.0119 3.62E+00 3.05E+00 3.36E+00 

5.52E-01 5.6894 6.2392 2.40E+00 3.04E+00 1.89E+00 

0.3345 3.8932 3.7281 5.85E-01 2.00E+00 6.86E-01 

2.87E-02 1.3034 0.36684 3.93E+00 7.57E-01 3.64E-01 
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B.1.2.2 Velocity for pipe with hole 

     vel(6m)    vel(5m)    vel(4m)       vel(3m)     vel(2m)       vel(1m) 

1.14E-04 4.95E-04 7.73E-04 1.46E-03 2.50E-03 6.28E-03 

2.79E-04 1.15E-03 1.76E-03 3.45E-03 6.31E-03 1.77E-02 

2.94E-04 1.01E-03 1.44E-03 3.12E-03 7.11E-03 2.63E-02 

1.40E-04 1.64E-04 5.78E-04 7.71E-04 4.09E-03 3.12E-02 

1.16E-04 1.20E-03 2.58E-03 5.42E-03 4.45E-03 3.24E-02 

3.50E-04 1.94E-03 4.17E-03 1.01E-02 1.32E-02 3.14E-02 

4.33E-04 1.46E-03 3.74E-03 1.31E-02 2.18E-02 2.94E-02 

2.88E-04 9.86E-04 7.99E-04 1.29E-02 2.83E-02 2.70E-02 

6.61E-05 3.82E-03 5.74E-03 8.93E-03 3.18E-02 2.52E-02 

5.16E-04 6.85E-03 1.21E-02 2.26E-03 3.24E-02 2.41E-02 

8.89E-04 8.54E-03 1.74E-02 8.33E-03 3.14E-02 2.36E-02 

1.01E-03 7.52E-03 2.00E-02 1.55E-02 3.03E-02 2.32E-02 

7.87E-04 3.17E-03 1.88E-02 2.01E-02 3.02E-02 2.23E-02 

2.25E-04 4.84E-03 1.37E-02 2.17E-02 3.10E-02 2.10E-02 

5.44E-04 1.36E-02 5.96E-03 2.14E-02 3.24E-02 1.94E-02 

1.32E-03 2.24E-02 3.35E-03 2.06E-02 3.35E-02 1.80E-02 

1.89E-03 2.92E-02 1.01E-02 2.10E-02 3.35E-02 1.71E-02 

2.11E-03 3.24E-02 1.37E-02 2.38E-02 3.15E-02 1.70E-02 

1.96E-03 3.16E-02 1.39E-02 2.88E-02 2.80E-02 1.74E-02 

1.50E-03 2.72E-02 1.13E-02 3.47E-02 2.46E-02 1.77E-02 

9.03E-04 2.06E-02 7.60E-03 3.97E-02 2.25E-02 1.72E-02 

3.43E-04 1.31E-02 4.60E-03 4.21E-02 2.27E-02 1.56E-02 

5.26E-05 5.91E-03 3.53E-03 4.07E-02 2.57E-02 1.25E-02 

2.45E-04 6.55E-04 4.84E-03 3.60E-02 3.06E-02 8.91E-03 

2.86E-04 5.77E-03 8.25E-03 2.92E-02 3.58E-02 5.74E-03 

2.86E-04 1.05E-02 1.28E-02 2.25E-02 3.93E-02 4.19E-03 

3.58E-04 1.50E-02 1.74E-02 1.76E-02 3.96E-02 4.97E-03 

5.61E-04 1.96E-02 2.08E-02 1.57E-02 3.58E-02 8.28E-03 

8.80E-04 2.41E-02 2.31E-02 1.65E-02 2.86E-02 1.37E-02 

1.22E-03 2.82E-02 2.49E-02 1.91E-02 1.97E-02 1.99E-02 

1.48E-03 3.11E-02 2.74E-02 2.21E-02 1.12E-02 2.57E-02 

1.55E-03 3.26E-02 3.12E-02 2.35E-02 5.25E-03 2.93E-02 

1.41E-03 3.27E-02 3.65E-02 2.25E-02 2.99E-03 2.94E-02 

1.12E-03 3.19E-02 4.24E-02 1.97E-02 4.27E-03 2.59E-02 

8.28E-04 3.12E-02 4.77E-02 1.65E-02 7.87E-03 1.96E-02 

6.63E-04 3.14E-02 5.07E-02 1.48E-02 1.19E-02 1.23E-02 

7.30E-04 3.31E-02 5.06E-02 1.59E-02 1.47E-02 4.77E-03 

1.04E-03 3.61E-02 4.74E-02 2.04E-02 1.56E-02 3.23E-03 

1.49E-03 3.95E-02 4.22E-02 2.76E-02 1.48E-02 8.55E-03 

1.93E-03 4.22E-02 3.70E-02 3.56E-02 1.27E-02 1.25E-02 
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2.18E-03 4.28E-02 3.38E-02 4.24E-02 1.05E-02 1.57E-02 

2.11E-03 4.05E-02 3.41E-02 4.66E-02 9.18E-03 1.85E-02 

1.70E-03 3.54E-02 3.79E-02 4.75E-02 8.97E-03 2.05E-02 

1.06E-03 2.84E-02 4.43E-02 4.57E-02 9.59E-03 2.19E-02 

3.51E-04 2.09E-02 5.14E-02 4.28E-02 1.02E-02 2.21E-02 

2.13E-04 1.48E-02 5.71E-02 4.04E-02 9.83E-03 2.05E-02 

4.81E-04 1.13E-02 5.98E-02 3.97E-02 8.05E-03 1.70E-02 

3.97E-04 1.11E-02 5.87E-02 4.10E-02 5.16E-03 1.20E-02 

1.79E-05 1.39E-02 5.44E-02 4.33E-02 2.28E-03 6.66E-03 

5.14E-04 1.87E-02 4.83E-02 4.50E-02 1.46E-03 2.10E-03 

1.03E-03 2.43E-02 4.19E-02 4.46E-02 1.95E-03 2.19E-03 

1.39E-03 2.94E-02 3.67E-02 4.10E-02 6.14E-03 3.60E-03 

1.53E-03 3.32E-02 3.33E-02 3.45E-02 1.32E-02 3.34E-03 

1.50E-03 3.55E-02 3.21E-02 2.63E-02 2.14E-02 3.32E-03 

1.38E-03 3.64E-02 3.16E-02 1.88E-02 2.88E-02 4.08E-03 

1.28E-03 3.63E-02 3.07E-02 1.35E-02 3.36E-02 6.50E-03 

1.27E-03 3.56E-02 2.88E-02 1.14E-02 3.48E-02 1.10E-02 

1.34E-03 3.42E-02 2.57E-02 1.27E-02 3.22E-02 1.74E-02 

1.42E-03 3.17E-02 2.22E-02 1.62E-02 2.72E-02 2.48E-02 

1.40E-03 2.78E-02 1.94E-02 2.01E-02 2.19E-02 3.16E-02 

1.19E-03 2.21E-02 1.84E-02 2.31E-02 1.83E-02 3.69E-02 

7.64E-04 1.50E-02 1.92E-02 2.40E-02 1.79E-02 3.91E-02 

1.87E-04 7.03E-03 2.10E-02 2.27E-02 2.08E-02 3.79E-02 

4.09E-04 1.05E-03 2.26E-02 2.04E-02 2.60E-02 3.44E-02 

8.64E-04 7.11E-03 2.24E-02 1.88E-02 3.19E-02 2.93E-02 

1.06E-03 1.07E-02 1.94E-02 1.97E-02 3.68E-02 2.37E-02 

9.46E-04 1.15E-02 1.35E-02 2.34E-02 3.96E-02 1.87E-02 

6.04E-04 1.03E-02 5.59E-03 2.93E-02 4.06E-02 1.47E-02 

1.80E-04 8.63E-03 3.71E-03 3.58E-02 4.02E-02 1.19E-02 

1.42E-04 7.69E-03 1.03E-02 4.08E-02 3.92E-02 1.01E-02 

2.18E-04 8.44E-03 1.34E-02 4.28E-02 3.85E-02 9.08E-03 

5.81E-06 1.12E-02 1.25E-02 4.11E-02 3.85E-02 8.69E-03 

4.71E-04 1.56E-02 8.17E-03 3.61E-02 3.87E-02 9.10E-03 

1.03E-03 2.04E-02 2.09E-03 2.94E-02 3.85E-02 1.06E-02 

1.49E-03 2.44E-02 5.03E-03 2.30E-02 3.68E-02 1.34E-02 

1.70E-03 2.58E-02 8.80E-03 1.84E-02 3.34E-02 1.75E-02 

1.58E-03 2.41E-02 9.67E-03 1.61E-02 2.81E-02 2.23E-02 

1.18E-03 1.93E-02 7.75E-03 1.58E-02 2.18E-02 2.70E-02 

5.98E-04 1.24E-02 4.11E-03 1.59E-02 1.61E-02 3.06E-02 

1.28E-05 4.77E-03 8.49E-04 1.49E-02 1.26E-02 3.23E-02 

4.42E-04 2.81E-03 3.20E-03 1.17E-02 1.22E-02 3.09E-02 

6.98E-04 8.83E-03 3.83E-03 6.19E-03 1.47E-02 2.66E-02 

7.69E-04 1.32E-02 3.24E-03 1.80E-03 1.89E-02 2.10E-02 

7.38E-04 1.62E-02 1.82E-03 8.60E-03 2.27E-02 1.50E-02 

7.08E-04 1.84E-02 1.58E-03 1.32E-02 2.41E-02 9.80E-03 
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7.50E-04 1.97E-02 2.43E-03 1.43E-02 2.17E-02 6.26E-03 

8.71E-04 2.03E-02 2.40E-03 1.17E-02 1.53E-02 4.51E-03 

1.01E-03 1.98E-02 2.02E-03 6.61E-03 6.05E-03 4.02E-03 

1.06E-03 1.80E-02 2.31E-03 8.51E-04 4.15E-03 4.30E-03 

9.26E-04 1.43E-02 4.26E-03 4.00E-03 1.30E-02 3.91E-03 

5.82E-04 9.11E-03 8.41E-03 6.32E-03 1.92E-02 1.46E-03 

7.73E-05 3.16E-03 1.38E-02 6.02E-03 2.20E-02 5.26E-03 

4.60E-04 2.72E-03 1.90E-02 3.97E-03 2.21E-02 1.20E-02 

8.67E-04 6.65E-03 2.25E-02 1.79E-03 2.09E-02 1.97E-02 

1.01E-03 7.77E-03 2.30E-02 1.85E-03 1.99E-02 2.73E-02 

8.20E-04 5.71E-03 2.01E-02 1.42E-03 2.03E-02 3.39E-02 

3.55E-04 1.06E-03 1.44E-02 3.85E-03 2.23E-02 3.89E-02 

2.47E-04 5.02E-03 7.48E-03 7.03E-03 2.53E-02 4.23E-02 

7.99E-04 1.07E-02 1.28E-03 9.10E-03 2.83E-02 4.42E-02 

1.13E-03 1.46E-02 2.61E-03 8.52E-03 3.03E-02 4.48E-02 

1.16E-03 1.58E-02 2.80E-03 4.60E-03 3.08E-02 4.45E-02 
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C. Endurance Limit Factors : 

Endurance limit (Se) which is modified force by considering some modification factors are 

rendered in the following (Nisbett et al. (2015)): 

Se=Se′⋅Cs⋅Cz⋅Cl⋅Ct⋅Cr⋅Cm                                                   

Based on the Se formulation, the definition of different components are rendered as: 

Se′ : Unmodified endurance limit 

Surface Factor (Cs): Accounts for surface roughness.  

Size Factor (Cz): Adjusts for the size of the component 

Load Factor (Cl): Reflects the type of loading (e.g., axial, bending, torsion) 

Temperature Factor (Ct): Accounts for operating temperatures 

Reliability Factor (Cr):  Higher reliability results less allowable stress. 

Miscellaneous Factors (Cm): Account for other specific conditions like corrosion 

 

 


