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Montréal, Québec, Canada

May 2025

© Ons Abderrahim, 2025



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ons Abderrahim

Entitled: Advancing Behavior Modeling in Smart Buildings through Open Set,

Universal, and Generalized Domain Adaptation

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Quality Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Zachary Patterson

Examiner
Dr. Ali Ayub

Supervisor
Dr. Manar Amayri

Supervisor
Dr. Nizar Bouguila

Approved by
Chun Wang, Chair
Department of Concordia Institute for Information Systems Engi-
neering

2025
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science



Abstract

Advancing Behavior Modeling in Smart Buildings through Open Set, Universal, and
Generalized Domain Adaptation

Ons Abderrahim

Smart buildings use intelligent automation systems which optimize energy consumption while

improving occupant comfort and promoting sustainable development. The core of this vision de-

pends on strong Occupancy Estimation and Activity Recognition models which support dynamic

control of HVAC systems and lighting and other essential building operations. These models face

significant deployment challenges because real-world settings differ from training environments and

suffer from insufficient availability of labeled data and evolving activity patterns. This thesis exam-

ines how Open Set Domain Adaptation, Universal Domain Adaptation, and Generalized Domain

Adaptation enhance the adaptability and generalization potential of Occupancy Estimation and Ac-

tivity Recognition models in smart buildings. Our research begins with the exploration of Open

Set Domain Adaptation techniques designed to distinguish known activity classes from unknown

ones during domain shifts by implementing adversarial learning frameworks along with rejection-

aware classifiers specifically for smart building sensor data. Our work presents a combined Uni-

versal Domain Adaptation approach which uses optimal transport and angular margin constraints

to achieve flexible alignment between domains while operating without knowledge of overlapping

labels. Our study examines generalized domain adaptation methods that allow adaptation across

domain and label shifts in previously unencountered environments through self-training and hybrid

learning approaches combined with distribution-agnostic strategies. Extensive experiments show

that the proposed methods excel in classification accuracy, unknown class detection capabilities and

stability against label imbalance. The research provides scalable, privacy-conscious solutions for

adaptive behavior modeling in intelligent environments, which help improve the energy efficiency

of intelligent building systems.
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Chapter 1

Introduction

1.1 Problem statement

The evolution of cities toward smarter infrastructure necessitates smart buildings to play a fun-

damental role in managing energy use while improving indoor conditions and occupant comfort.

At the core of smart building intelligence are two key tasks: Occupancy Estimation (OE) Dal-

houmi, Amayri, and Bouguila (2022); Guo, Amayri, Bouguila, and Fan (2021); Nikroo, Amayri,

and Bouguila (2022); Zamzami, Amayri, Bouguila, and Ploix (2019) and Activity Recognition (AR)

Amayri, Ali, Bouguila, and Ploix (2021); Ploix, Amayri, and Bouguila (2021). Automated systems

use these tasks to adjust lighting, and HVAC (heating, ventilation, and air conditioning) systems in

response to current data about occupant presence and behavior. Building robust and transferable

models for the tasks of OE and AR remains an ongoing challenge despite their potential impact on

energy efficiency and automation. The majority of current OE and AR approaches utilize super-

vised learning methods that demand extensive collections of labeled data designed for the specific

deployment setting. The models show excellent performance in their initial environment but experi-

ence reduced accuracy when they face new buildings with different layouts or sensor arrangements

and occupant profiles. Domain shift represents a prevalent challenge in practical applications that

occurs when training data distributions (source) show significant differences from deployment data

distributions (target). New data collection for each building demands high expenses and extensive

labor while becoming impractical because of privacy issues along with limited sensor reach and
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variable activity patterns. Domain Adaptation (DA) techniques help reduce domain shift effects

by transferring knowledge between a labeled source domain and a target domain with little or no

labels. Traditional DA methods face limitations because they rely on restrictive assumptions. The

closed-set assumption represents a widespread limitation since it assumes that both the source and

target domains have identical activity or occupancy label sets. Dynamic smart building environ-

ments often invalidate this assumption because they produce previously unknown activities in the

target domain. Models that use closed-set assumptions during training tend to label unknown target

samples as known source classes resulting in decreased reliability and robustness. Traditional do-

main adaptation approaches which depend on full original training data availability are less suitable

because real-world situations often restrict access to source data through privacy rules or compu-

tational limitations. The need arises for domain adaptation strategies that can scale and respect

privacy constraints while managing label set mismatches and unknown target classes without the

necessity of source data availability.

1.2 Theoretical background and related works

1.2.1 Theoretical background of Domain Adaptation (DA)

Domain adaptation is a subfield of transfer learning where a model trained on one domain (re-

ferred to as the source domain) is adapted to work effectively on a different domain (referred to as

the target domain) Dridi, Amayri, and Bouguila (2024a). This is useful in cases where collecting

labeled data for the target domain is expensive or impractical Gheisari and Baghshah (2015). Do-

main adaptation aims to minimize the discrepancy between the source and target domains, ensuring

that the model performs well on the target domain despite differences in data distributions Lee and

Lee (2023b). Formally, a domain D is defined as a pair:

D = (X , P (X))

where X is the feature space (e.g., temperature, motion, CO2 levels), and P (X) is the marginal

probability distribution over the features.
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A learning task T associated with a domain is defined as:

T = (Y, f)

where Y is the label space (e.g., activity classes or occupancy states), and f : X → Y is the

predictive function that maps input features to corresponding labels.

In domain adaptation, we are given a source domain DS = (XS , PS(X)) with task TS =

(YS , fS) and a target domain DT = (XT , PT (X)) with task TT = (YT , fT ). Typically, XS = XT ,

but PS(X) ̸= PT (X), indicating a distribution shift between domains.

The goal of DA is to learn a function fT that performs well on the target domain DT , even in the

absence of labeled target data. In the unsupervised domain adaptation setting, the source domain

provides labeled samples:

DS = {(xSi , ySi )}
NS
i=1 with xSi ∈ XS , y

S
i ∈ YS

while the target domain provides only unlabeled samples:

DT = {xTj }
NT
j=1 with xTj ∈ XT

Depending on the relationship between the label spaces YS and YT , several domain adaptation

scenarios arise. In Closed-Set Domain Adaptation (CSDA), it is assumed that the source and target

domains share an identical label space, i.e., YS = YT . In contrast, Open Set Domain Adaptation

(OSDA) considers scenarios where the target domain contains unknown classes that are not present

in the source domain, such that YS ∩ YT ̸= ∅ and YT \ YS ̸= ∅. Universal Domain Adaptation

(UniDA) further generalizes this setting by making no assumptions about the overlap between label

spaces, allowing the model to adapt flexibly under partial or uncertain class correspondence. Finally,

Generalized Domain Adaptation (GDA) extends DA by jointly addressing both distributional shift

and label space mismatch, often in the absence of prior knowledge about the relationship between

source and target domains.
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The learning objective in domain adaptation is to minimize the expected risk on the target do-

main:

RT (f) = E(x,y)∼PT (X,Y )[ℓ(f(x), y)]

where ℓ is a suitable loss function (e.g., cross-entropy). Because target labels cannot be accessed

during training, most DA methods focus on creating domain-invariant features to help source-trained

models perform well across target environments. Domain adaptation enables smart buildings to

recognize occupancy and activities across different environments without extensive retraining or

manual labeling. The subsequent sections present a comprehensive examination of key domain

adaptation methods like CSDA, OSDA, UniDA, and GDA and discuss their application to behav-

ioral modeling through sensor data analysis.

1.2.2 Related works

Closed-Set Domain Adaptation (CSDA)

Closed-Set Domain Adaptation (CSDA) assumes that the source and target domains share the

same set of classes Dridi et al. (2024a). In this scenario, the goal of domain adaptation is to transfer

knowledge from the labeled source domain to the unlabeled target domain, assuming that both do-

mains contain only instances of the same classes Gretton, Borgwardt, Rasch, Scholkopf, and Smola

(2012). This assumption simplifies the adaptation process, as the model does not need to handle

new or unseen classes in the target domain Dridi et al. (2024a). CSDA has been applied to vari-

ous tasks, such as image classification and activity recognition, with successful results Long, Zhu,

Wang, and Jordan (2017). Popular methods in CSDA include discrepancy-based techniques like

Maximum Mean Discrepancy (MMD) and Correlation Alignment (CORAL), as well as adversarial-

based methods like Domain-Adversarial Neural Networks (DANN) Fu, Wu, Zhang, and Yan (2019);

Long et al. (2017). These methods have shown effectiveness in domains where the source and target

label spaces are identical Fu et al. (2019). However, CSDA has a critical limitation: it assumes that

all classes in the target domain are known and present in the source domain Gretton et al. (2012). In

dynamic real-world scenarios, such as smart buildings, new or unforeseen activities or occupancy

patterns may emerge in the target domain, which CSDA methods cannot handle effectively Long et
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al. (2017).

Open Set Domain Adaptation (OSDA)

Open Set Domain Adaptation (OSDA) is adapting models to a target domain that includes un-

known classes which are not represented in the source domain Engelbrecht and du Preez (2020).

The main challenge with OSDA is how to handle these unknown classes without compromising

performance on the known classes that it shares with the source domain Jang et al. (2022). There

are two very important tasks that must be accomplished in order to do OSDA properly. The first

task that the model must perform is to differentiate between the known classes and the unknown

ones Engelbrecht and du Preez (2020). It should precisely discriminate the known classes in the

source domain from the unknown classes in the target domain. The model should also not exhibit

negative transfer, which is when knowledge from known classes is applied to unknown classes in

a harmful way, thereby degrading performance Jang et al. (2022). The second requirement is that

the model has to focus on aligning the attributes across domains, ensuring that the known classes in

both the source domain and the target domain are properly matched, even when unseen classes are

present Jang et al. (2022). It is crucial to align the features correctly to make precise predictions on

the known classes, as any misalignment would degrade performance on the known class prediction

task Engelbrecht and du Preez (2020). Many OSDA methods have been developed to address these

issues. One of the original methods, OpenMax, builds on the softmax layer to allow for rejection of

unknown classes by predicting the probability of an input being from an unknown class Engelbrecht

and du Preez (2020). Another significant method, UADAL, uses adversarial learning to explicitly

distinguish known classes from unknown ones Jang et al. (2022). Finally, Soft Rejection techniques

have been incorporated, where the model automatically rejects samples deemed to have a high prob-

ability of belonging to one of the unknown classes based on confidence scores Singhal, Walambe,

Ramanna, and Kotecha (2023).
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Universal Domain Adaptation (UniDA)

UniDA extends DA by doing away with the need of the label set overlap knowledge between the

source and target domain Z. Cai, Zhang, Ma, and Jing (2022). In contrast to OSDA, which explic-

itly distinguishes between what is known and what is not known, UniDA can automatically identify

shared patterns during clustering of private target classes Chang, Shi, Tuan, and Wang (2022). As an

example of this endeavor, the Unified Optimal Transport (UniOT) framework provides novel opti-

mal transport-based alignment methods that enable the discovery of shared categories even without

thresholding Chang et al. (2022). Furthermore, UniOT builds on adaptive filling techniques to over-

come data imbalances and guarantee that knowledge can be transferred even when label is unequal.

With these evolutions UniDA is in a unique position to become an essential method for applications

in the real-world, especially in smart buildings where activity distribution is inherently dynamic and

changing.

Generalized Domain Adaptation (GDA)

GDA goes beyond domain adaptation by concurrently resolving domain and label mismatch

Q. Wang, Okabe, Lee, and Koshinaka (2023) making certain that the models detect any novel,

unidentified actions that show up in their data source and help them check if these actions are also

showing up in their target or destination data. GDA uses methods including uncertainty estimation,

entropy minimization, and hybrid adversarial learning to enhance generalization, in contrast to con-

ventional methods that presume total overlap between source and target labels Long, Zhu, Wang,

and Jordan (2016). In order to provide strong adaptation even in cases when the target domain

shows high variance, recent studies have suggested GDA frameworks that combine self-training

with pseudo-label refinement. GDA demonstrates a significant advancement in smart buildings, al-

lowing users to engage with gadgets in various ways and carry out a variety of tasks. In contrast

to current work that is carefully planned beforehand, GDA enables behavior models to operate well

even in scenarios we have never constructed before. In recent work, concepts such as contrastive

learning and reducing entropy have been used, coupled with some more sophisticated training in-

volving adversarial material Boudiaf et al. (2020). We use all that advanced techniques in our new
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approach. In our work, we present GDA approaches specifically for smart buildings and identify

different activities that people do there. By focusing on one-dimensional data from IoT sensors -

which poses special difficulties such as shifting environmental conditions, different sensor locations,

and a range of occupant behaviors - our method sets itself apart from earlier studies F. Wang, Liu,

Shu, and Tao (2017). When evaluating how well these three methods function together to manage

various tasks, we combine them into a single, large unified framework.

1.3 Contributions

The research examines advanced domain adaptation techniques including Open Set Domain

Adaptation (OSDA), Universal Domain Adaptation (UniDA), and Generalized Domain Adaptation

(GDA) to find solutions for behavior modeling challenges in smart buildings. The contributions of

this thesis are listed as follows:

• Open Set Domain Adaptation for Behavior Modeling in Smart Buildings In this work, we

have adapted OSDA methods to solve the traditional domain adaptation methods’ limitations

within dynamic smart building environments. Specifically, we adapt four OSDA approaches:

The work presents four Open Set Domain Adaptation methods including OSDA by Back-

propagation and Soft Rejection OSDA together with Unknown-Aware Domain Adversarial

Learning (UADAL) and Adjustment and Alignment (ANNA). The proposed methods en-

able accurate identification of known and unknown activity classes in the target domain to

minimize negative transfer while boosting generalization performance. We apply adversarial

learning and calibrated decision boundaries to increase the accuracy of occupancy estimation

and activity recognition tasks with different sensor configurations and data distributions.

• Open Set and Universal Domain Adaptation for Enhancing Activity Recognition in

Smart Buildings In this work, we have adapted domain adaptation methods through the

integration of OSDA with UniDA inside a single framework dedicated to activity recogni-

tion tasks. We proposed an angular margin-based OSDA technique for better class separation

and developed a new UniDA model using optimal transport theory, which handles unknown

class distributions without requiring label set overlap information. The unified framework
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provides scalable activity recognition capabilities in diverse settings while improving system

adaptability to new behaviors and smart building conditions.

• Generalized Domain Adaptation for Scalable Activity Recognition Using IoT Sensor

Data In this work, we have adapted three advanced Generalized Domain Adaptation (GDA)

techniques - Stochastic Weight Averaging Densely (SWAD), Distribution-Free Domain Gen-

eralization (DFDG), and Empirical Risk Minimization (ERM) - for use in activity recogni-

tion through 1D IoT sensor data. Generalized Domain Adaptation enables models to handle

domain and label variations without requiring labeled target dataset unlike conventional Do-

main Adaptation methods. Our evaluation shows these models sustain recognition accuracy

through domain changes in real-world scenarios and prove their adaptability to new environ-

ments. Our work fosters scalable and energy-efficient intelligent systems that are ready for

deployment in smart building applications.

1.4 Thesis Overview

This thesis is organized into five chapters organized as follows:

• Chapter 1 provides background information and purpose of the research along with defining

the problem statement and reviewing domain adaptation theories and literature while high-

lighting the thesis main contributions.

• Chapter 2 examines OSDA approaches for modeling behaviors within smart buildings. The

chapter introduces different OSDA methods that handle unknown target domain classes. Oc-

cupancy estimation and activity recognition tasks provide the evaluation ground for these

methods when subjected to realistic domain shift conditions.

• Chapter 3 examines how OSDA and UniDA techniques can be combined to improve adapt-

ability in dynamic deployment scenarios. This chapter describes adaptable methods which

handle unknown target classes and varying degrees of label space overlap to boost model

generalization in diverse smart environments.
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• In Chapter 4 we examine three different GDA methods designed for sensor-based activity

recognition tasks to demonstrate their generalization abilities. The methods demonstrate their

ability to generalize across new domains and activity patterns without requiring labels from

those target domains.

• Chapter 5 concludes the thesis by summarizing its primary findings and contributions.
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Chapter 2

Open Set Domain Adaptation for

Behavior Modeling in Smart Buildings

2.1 Introduction

As global energy demands continue to rise and concerns about sustainability become more

pressing, optimizing energy usage in buildings has become a critical area of focus Hafez et al.

(2023). Smart buildings, which integrate advanced technologies to control and monitor building

systems, have emerged as a key solution to this challenge Dridi et al. (2024a). These buildings aim

to minimize energy consumption, and enhance indoor environmental quality (IEQ) by dynamically

adjusting heating, ventilation, air conditioning (HVAC), and lighting systems based on real-time

occupancy data and activity patterns Guo, Amayri, Najar, Fan, and Bouguila (2022). Accurate Oc-

cupancy Estimation (OE) and Activity Recognition (AR) are therefore essential for achieving these

goals Dridi (2023). However, developing machine learning models capable of performing OE and

AR in smart buildings presents significant challenges Dridi, Amayri, and Bouguila (2024b). The

sensor data collected in smart buildings is influenced by factors such as differences in sensor types,

building layouts, and occupant behavior Liu, Zhang, Sun, and Zhou (2023). This variability results

in a phenomenon known as domain shift, where the properties of data differ between environments

Guan and Liu (2023). For instance, the same sensor setup might behave differently in two build-

ings due to varying environmental factors such as temperature, humidity, and room occupancy rates
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Z. Chen et al. (2017). These differences complicate the task of training models that generalize well

across buildings, making it difficult to deploy robust OE and AR systems Alanne and Sierla (2021).

Traditional Closed-Set Domain Adaptation (CSDA) methods attempt to mitigate this problem by

enabling models trained on a labeled source domain (such as one building) to work effectively on

an unlabeled target domain (another building) Han, Xu, Chen, Liu, and Zhu (2022). However,

CSDA assumes that the target domain contains only known classes-i.e., the same classes present

in the source domain. This assumption does not hold in real-world scenarios where new, unseen

classes can emerge in the target domain Singhal et al. (2023). For example, an activity such as

”meeting” might be common in one building but absent in another, or new activities might arise in

the target domain that were not part of the training data. As a result, CSDA models often struggle

to estimate accurately occupancy or recognize activities in smart buildings when faced with novel

patterns, leading to decreasing of the model performance W. Li, Liu, Han, and Yuan (2023). Unlike

CSDA, OSDA is designed to handle the presence of unknown classes in the target domain. In an

open set scenario, the model is trained to transfer knowledge from the source domain to the tar-

get domain while also learning to recognize when it encounters previously unseen or ”unknown”

classes Jang et al. (2022). This flexibility makes OSDA particularly suitable for dynamic environ-

ments like smart buildings, where occupancy patterns and activities can change unpredictably. The

ability to distinguish between known and unknown classes allows for more robust and accurate OE

and AR, which in turn leads to more effective energy management, improved IEQ, and better occu-

pant comfort. Despite the potential of OSDA, there has been limited research on applying it to smart

building data for OE and AR tasks. Most existing OSDA approaches have been applied to computer

vision or natural language processing domains Ghaffari et al. (2023), where the nature of unknown

classes and domain shifts differ significantly from the challenges faced in smart buildings Fu et al.

(2019). To address this gap, we propose four novel OSDA techniques tailored specifically for smart

building environments. OSDA (Open Set Domain Adaptation) by Backpropagation Fu et al. (2019)

is an adversarial learning method that attempts to match the feature distributions of the source and

target domains. It works by training the feature extractor to fool the domain discriminator so that the

model learns domain-invariant features and therefore generalizes better. OSDA with Soft Rejection

Singhal et al. (2023) adds a rejection mechanism to the classifier so it can refuse to classify instances
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about which it is unsure instead of mislabeling them, this makes it better able to cope with unknown

classes. Unknown-Aware Domain Adversarial Learning (UADAL) Jang et al. (2022) is an extension

of the adversarial learning framework that adds an unknown class label into the domain discrimi-

nator so it can directly recognize unknown classes. While on the other hand ANNA (Adjustment

and Alignment for Unbiased OSDA) W. Li et al. (2023) attempts to align the feature space between

the source and target domains and then compensate the classifier for these ”unknown” classes so

that it is more accurate when the environment changes. By leveraging these approaches, we aim to

improve the generalization capabilities of OE and AR models in smart buildings, enabling them to

perform well across a range of environments and handle novel scenarios effectively. Through exten-

sive experimentation on smart building datasets, we demonstrate that our proposed OSDA methods

significantly outperform CSDA techniques in both accuracy and robustness. Our results suggest that

integrating OSDA into smart building management systems can lead to substantial energy savings,

reduced carbon emissions, and enhanced sustainability without compromising occupant comfort.

This chapter is structured as follows: Section 2 presents different OSDA techniques and explains

their implementation. Section 3 discusses the experimental setup and results.

2.2 The proposed approaches

In this section, we propose OSDA by backpropagation, OSDA with soft rejection, Unknown

Aware Domain Adversarial Learning (UADAL) for OSDA, and Adjustment and alignment (ANNA)

for unbiased OSDA methods, specifically designed to address the challenges of domain shift and

unknown classes in Occupancy Estimation (OE) and Activity Recognition (AR) within smart build-

ings. These methods leverage advanced techniques such as adversarial learning, and soft rejection

to enhance the performance of OE and AR models in dynamic environments.

2.2.1 OSDA by Backpropagation

We adapted the OSDA by Backpropagation method, originally developed for visual domains,

to the context of smart buildings, specifically for Activity Recognition (AR) and Occupancy Esti-

mation (OE) Fu et al. (2019). The original approach uses adversarial learning and was developed to
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deal with unknown classes, which are present in the target domain but not in the source domain. The

main objective of this method is to recognize the known classes in the target domain as accurately as

possible and reject the unknown classes. The feature extractor G, takes the input samples and maps

them down to a lower dimensional feature space, and the classifier C, takes the features and outputs

the probabilities of the various classes. This method uses adversarial training to map the source and

target domain features to the same distribution, but also incorporates a scheme to distinguish and re-

ject samples of unknown classes in the target domain Ganin et al. (2016). It predicts a probability for

each known class and has an extra dimension for unknown class detection. In adapting this method

to smart building data, we primarily focused on sensor data (such as motion sensors and CO2 levels)

for AR and OE tasks. This is unlike the original application in two-dimensional domains because

smart building data does not have distinct borders or patterns, but rather continuous variations due

to environmental changes, occupant behavior Lassen and Goia (2021). Therefore, additional pre-

processing steps and feature engineering were required to address these domain-specific challenges.

Thus, the key adaptations were in feature extraction and unknown class rejection. We tailored the

feature extractor G to cope with smart building sensor data by adding domain-specific feature trans-

formations. This modification ensures that the extracted features represent the underlying activity or

occupancy level in smart environments. The rejection mechanism for unknown classes, essential for

detecting previously unseen activities or new occupancy patterns, was adapted to the smart building

context. We used a confidence threshold τ for OE to better detect unknown patterns that may arise

from new occupants or changes in building utilization Tzeng, Hoffman, Saenko, and Darrell (2017).

The adversarial loss aligns the feature distributions between the source and target domains, while the

classification loss ensures that the known classes are classified correctly and that unknown classes

are rejected M. Chen, Zhao, Liu, and Cai (2020). These loss functions were adapted for smart

buildings as follows: the adversarial loss forces feature alignment between the source and target do-

mains. This encourages the feature extractor G to learn domain-invariant features, meaning that the

source domain and target domain will have similar feature distributions. The domain discriminator

D is trained to distinguish between source and target features, while the feature extractor is trained

to confuse D. This minimax game encourages the learning of features that generalize well across

domains.
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The adversarial loss is defined as:

Ladv = −Ex∼PS(X) [logD(G(x))] − Ex∼PT (X) [log(1−D(G(x)))] (1)

where PS(X) and PT (X) represent the marginal distributions of the source and target domains,

respectively, and G(x) represents the features extracted from the input sample x. The classification

loss comprises two parts: the classification of known classes and the rejection of unknown classes.

For known classes, the loss is calculated using cross-entropy Martin-Donas, Gomez, Gonzalez, and

Peinado (2018). The classifier outputs a probability distribution over the known classes, and the

loss penalizes incorrect predictions. The classification loss for known classes is:

Lclassification = −E(x,y)∼DS

|YS |∑︂
k=1

yk logP (yk|x)

where P (yk|x) is the predicted probability for class k, and yk is the true label. For unknown classes,

the model minimizes a rejection loss. This mechanism recognizes and rejects samples that belong

to classes not observed in the source domain. The rejection loss penalizes misclassification of

unknown samples:

Lunk = Ex∼PT (X) [log(1−maxP (y|x))]

where maxP (y|x) is the maximum predicted probability for a known class, and the loss penalizes

samples that are not confidently classified, effectively rejecting them as unknown. The training

process follows an adversarial framework, with the feature extractor G and the domain discrimi-

nator D playing a minimax game Zhang and Davison (2021). The feature extractor is trained to

minimize the adversarial loss Ladv, ensuring that the source and target domain features are aligned.

Simultaneously, the classifier is trained to minimize the classification loss Lclassification, ensuring

that known classes are correctly classified and unknown classes are rejected. The combined loss

function for the entire model is:

Ltotal = Ladv + Lclassification

14



The model is trained using this total loss, allowing it to handle both known and unknown classes

effectively, resulting in a robust model that generalizes well to other domains in smart buildings.

2.2.2 OSDA with Soft Rejection

The OSDA with Soft Rejection algorithm was originally created for visual domains and was

designed to solve the open set domain adaptation problem of discerning known from novel classes

Singhal et al. (2023). This method introduces a mechanism of ”soft rejection” that does not rely on

hard classification rules or strict thresholds. Rather than simply rejecting those samples whose pre-

dicted class probability is below some threshold, it assigns weights to samples in the target domain

based on the entropy of the classifier’s predictions K. Li, Lu, Zuo, and Zhang (2024). This allows

for a much more dynamic and subtle approach to rejecting unknown classes. In our adaptation, this

method has been tailored to handle data from smart building environments, such as sensor data from

motion detectors or CO2 levels Dong, Prakash, Feng, and O’Neill (2019). The tasks are Activity

Recognition (AR) and Occupancy Estimation (OE). AR is concerned with recognizing what human

activity is taking place in a building, and OE focuses on counting how many people are in a room

Hao, Cha, and Kim (2019). In our version, the feature extractor G processes sensor data from the

smart building and outputs features that can be classified into one of the known activities or oc-

cupancy levels. The unique aspect of this method is the ”soft rejection” idea, meaning it doesn’t

quickly decide whether or not a sample belongs to an unknown class. Rather, it computes a confi-

dence score using the entropy of the classifier’s predictions and uses this to ”softly” reject samples

with high uncertainty. The feature extractor G takes in both the source domain (labeled data) and

the target domain (unlabeled data) and maps them to a common feature space J. Wang, Chen, Lin,

Sigal, and de Silva (2021). Classifiers C1 and C2 are trained to predict the known classes in the

source domain. For unknown class detection in the target domain, entropy-based confidence scores

are used for soft rejection. The classifiers are forced to provide low-entropy responses for known

classes, meaning the probability distribution must be a sharp function for these classes. The entropy

will be higher for unknown classes, which is used to assign soft rejection weights to target domain

samples that may belong to unknown classes. The loss function consists of the cross-entropy loss on

the known classes, the weighted classifier discrepancy (WCD) for domain adaptation, and the soft
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rejection loss for the unknown classes Xu and Klabjan (2022). These loss functions are tuned for

optimal performance across both tasks. The weighted classifier discrepancy (WCD) is calculated as

follows:

WCD(f1(x), f2(x)) = w(x) · |f1(x)− f2(x)| (2)

where f1(x) and f2(x) are the predictions of the two classifiers and w(x) is the entropy-based

weight of each sample:

w(x) =
1

Z
exp

⎛⎝−
|C|∑︂
c=1

pc(x) log pc(x)

⎞⎠ (3)

Here, Z is a normalization factor, pc(x) is the predicted probability for class c, and |C| is the

number of known classes. This weighting function guarantees that samples with greater entropy

(likely unknown classes) will be weighted less and essentially excluded from the adaptation process

Xu and Klabjan (2022). The total loss function is composed of three parts: Cross-Entropy Loss for

Known Classes: This loss ensures that the model classifies known classes correctly using labeled

source data.

Lknown = −E(xs,ys)∼DS

|C|∑︂
c=1

ys logP (ys | xs) (4)

where DS is the source domain and ys is the true label for some sample xs. Weighted Classifier

Discrepancy (WCD) Loss: This loss minimizes the difference between the predictions of the two

classifiers on target domain samples, allowing the feature extractor G to learn domain-invariant

features.

LWCD = Ext∼DT
w(xt) · |f1(xt)− f2(xt)| (5)

where DT is the target domain and w(xt) is the entropy weight of sample xt from the target data.

Soft Rejection Loss for Unknown Classes: This loss penalizes high-confidence predictions for un-

known samples, encouraging the model to reject them:

Lunk = Ext∼DT
[log(1−maxP (y | xt))] (6)
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The final objective is to minimize the total loss:

Ltotal = Lknown + λWCDLWCD + λunkLunk (7)

where λWCD and λunk are hyperparameters that weight the WCD loss and the soft rejection loss. The

training procedure alternates between training the classifiers C1 and C2 to maximize the WCD and

training the feature extractor G to minimize the WCD. This adversarial process forces the feature

extractor to learn domain-invariant features, and the classifiers improve their ability to identify sam-

ples that don’t fit into the known classes L. Li, Yang, Kong, Zhang, and Ma (2022). By leveraging

the soft rejection mechanism, the model is able to handle the presence of unknown classes more

effectively, particularly in the context of smart building data, where new activities or occupancy

patterns may emerge Barcina-Blanco, López Lobo, Bringas, and Del Ser (2024). This ensures more

precise predictions and makes the system more adaptable to real-life situations, leading to better

energy management and a safer environment for the occupants of the smart building. The main con-

tributions of our adaptation of the OSDA with Soft Rejection method for smart buildings include

the modification of the feature extraction process to handle sensor data, the implementation of an

entropy-based soft rejection mechanism tailored to activity recognition and occupancy estimation,

and the optimization of the loss functions to ensure robust performance in dynamic and evolving

smart building environments.

2.2.3 Unknown Aware Domain Adversarial Learning (UADAL)

The UADAL (Unknown-Aware Domain Adversarial Learning) approach was originally devel-

oped to address the challenges associated with open set domain adaptation (OSDA), specifically

dealing with unknown classes in the target domain that are absent from the source domain Jang et

al. (2022). This approach is unique in that it can match the known classes between the source and

target domain while separating the unknown classes. Other methods often fail because they attempt

to match unknown classes to known ones, which causes negative transfer. In our version of UADAL

for smart building data, we concentrated on AR and OE. In smart buildings, sensor data is influenced

not only by environmental parameters like temperature and CO2 concentration but also by dynamic
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human behaviors and occupancy patterns. These factors introduce significant domain shifts, mak-

ing traditional domain adaptation methods less effective A.K., Sanodiya, Jose, and Mathew (2023).

UADAL’s method of aligning the known classes while separating the unknowns lends itself well to

this type of dynamic, constantly changing data. The feature extractor G is used to extract domain-

invariant features from both the source and target domains. The domain discriminator D is a multi-

class discriminator that is trained to recognize features as originating from the source domain, the

target-known classes, or the target-unknown classes J. Li, Lü, and Li (2022). By introducing this

multi-class discriminator, UADAL explicitly segregates the target-unknown features from both the

source and target-known features, which is a significant improvement over traditional adversarial

learning methods that do not handle unknown classes effectively. The classifier C must not only

correctly classify the instances in the known class set but also recognize instances that do not be-

long to the known classes as belonging to the unknown class. This is accomplished using posterior

inference, which calculates the entropy of the classifier’s predictions and assigns a probability that

a sample belongs to the known or unknown class Nicora, Rios, Abu-Hanna, and Bellazzi (2022).

In this way, UADAL can align the known class features while isolating the unknown classes in the

target domain, making it robust in the face of changing activities and occupancy trends in smart

buildings. The domain discrimination loss is key to ensuring that the model does not align target-

unknown samples with the source domain, thereby preventing negative transfer J. Li, li, and Lü

(2020). The domain discrimination loss is defined as:

Ld = Ex∼PS(X)[− logDs(G(x))]+Ex∼PT (X)[−wx logDtk(G(x))−(1−wx) logDtu(G(x))] (8)

where Ds(G(x)), Dtk(G(x)), and Dtu(G(x)) represent the output of the domain discriminator for

the source, target-known, and target-unknown classes, respectively. The weight wx is the probability

that a sample belongs to the target-known class, calculated using open-set recognition and posterior

inference. We also define the adversarial loss for the feature extractor G to ensure that the features

align properly Mayer, Paul, and Timofte (2021). The adversarial loss aims to align the source and
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target-known features while ensuring that the target-unknown features are not aligned:

LG = Ex∼PS(X)[− logDs(G(x))] + Ex∼PT (X)[−wx logDtk(G(x)) + (1− wx) logDtu(G(x))]

(9)

This alternating minimax game between the feature extractor and the domain discriminator allows

the model to align the known classes and learn to separate the unknown classes effectively. In

addition to the domain adversarial losses, we also define a classification loss Lcls that ensures correct

classification of known classes. This loss is defined as:

Lcls = E(xs,ys)∼DS
[Lce(C(G(xs)), ys)] + Ext∼DT

[(1− wx)Lce(C(G(xt)), yunk)] (10)

where Lce is the cross-entropy loss for classifying both known and unknown classes. For target-

known samples, the classifier minimizes the standard cross-entropy loss, while for target-unknown

samples, the model learns to reject them by minimizing the cross-entropy loss for the unknown

class. The total loss function is a combination of the domain adversarial loss and the classification

loss:

Ltotal = LG + λdLd + λclsLcls (11)

where λd and λcls are hyperparameters that balance the importance of domain alignment and

classification accuracy. In doing so, UADAL not only performs domain adaptation effectively but

also handles unknown classes in the target domain robustly. Our contribution to this method includes

adapting the feature extraction process for sensor data in smart buildings, modifying the posterior

inference for open-set recognition, and tailoring the loss functions to ensure optimal performance on

AR and OE tasks. These modifications enable UADAL to accommodate the dynamic and evolving

nature of smart building data, thereby enhancing energy management, occupant safety, and HVAC

system optimization.
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2.2.4 Adjustment and Alignment for Unbiased OSDA (ANNA)

The fourth and final approach, Adjustment and Alignment for Unbiased OSDA (ANNA) W. Li

et al. (2023), focuses on minimizing bias introduced by unknown classes during the feature align-

ment process. This method introduces adjustment techniques that ensure the model adapts to both

known and unknown classes without bias Lee and Lee (2023a). Front-Door Adjustment (FDA)

and Decoupled Causal Alignment (DCA) are two crucial modules in the ANNA method. These

modules aim to correct biased learning in the source domain and facilitate an unbiased transfer to

the target domain, which is essential for handling both known and unknown classes in Open Set

Domain Adaptation (OSDA). In our adaptation of ANNA to smart building data, specifically AR

and OE, we encountered sensor data with significant domain shifts caused by variations in human

behavior, environmental conditions, and sensor placement Ahn, Kim, and Jeong (2023). These fluc-

tuations cause new activity or usage patterns to develop over time, and thus a robust OSDA system

is necessary. The main problem is matching the known classes in the source and target domains

while separating the unknown classes to avoid negative transfer. This is why ANNA’s mechanism,

based on causality-driven debiasing, is well-suited to handle these fluctuations in smart buildings.

A feature extractor G is applied to the sensor data to obtain fine-grained features, which are then

fed into the FDA module to discover the novel class regions embedded in the data Zhu, Xu, and

Luo (2023). The DCA module separates the base and novel class regions so that the model can

adjust to the target domain without bias. The result of these two modules working together is that

ANNA performs domain adaptation without being hindered by the semantic bias and misalignment

problems that traditional methods face. The training process in ANNA focuses on two main com-

ponents: correcting the biased learning in the source domain using Front-Door Adjustment (FDA)

and transferring the model to the target domain using Decoupled Causal Alignment (DCA) W. Li

et al. (2023). These processes ensure that the distributions of both the base and novel classes are

aligned, preventing bias in the transfer of knowledge from one domain to another. The first part of

ANNA, FDA, identifies novel-class regions in the original data and applies a front-door adjustment

to them. The learning objective for FDA is defined as:

LFDA = ηbLb + ηnLn (12)
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where ηb represents the probability of the base region and ηn the probability of the novel-class

region. Lb is the normal closed-set classification loss used to optimize P (Y | Xb), while Ln is the

loss that maximizes the probability of the novel class over the Xn novel-class regions discovered.

Ln = − 1

|Xn|
∑︂

xn∈Xn

logP (y = K + 1 | xn) (13)

where P (y = K + 1 | xn) is the probability that a sample belongs to the unknown class. The

second part, DCA, separates the base and novel class regions in the target domain through the

creation of orthogonal masks. DCA loss matches the base and novel-class regions in the source and

target domains by using a double-head discriminator, one for the base-class head and one for the

novel-class head M. Cai et al. (2024). The alignment loss for DCA is defined as:

LDCA = −
|Xs|∑︂
i=1

∑︂
o∈{b,n}

M i
o,s log fo(x

i
s)−

|Xt|∑︂
i=1

∑︂
o∈{b,n}

M i
o,t log(1− fo(x

i
t)) (14)

where M i
o,s and M i

o,t are the orthogonal masks for the base and novel-class regions, and fo(x) is

the output of the respective head for a given input sample x. The total loss function for ANNA

combines the FDA and DCA losses with a baseline loss for the base-class alignment in the source

domain:

Ltotal = λ1LFDA + λ2LDCA + Lbase (15)

where λ1 and λ2 are hyperparameters that balance the contribution of FDA and DCA, and Lbase is a

baseline loss used for the base-class alignment in the source domain. The training process alternates

between optimizing the feature extractor G, the FDA module, and the DCA module, ensuring that

the model learns domain-invariant features while correctly identifying and isolating the novel-class

regions in the target domain Yang, Zhang, Li, Kim, and Wang (2022). This results in a model that

is robust to domain shifts and can handle unseen classes in dynamic smart building environments.

Our adaptation of ANNA to smart buildings involved modifying the feature extraction method to

handle sensor data, altering the front-door adjustment mechanism to accommodate the dynamic

nature of AR and OE tasks, and tweaking the loss functions to perform well in environments where

new activities or occupancy patterns frequently emerge. These modifications have improved energy
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management, occupant safety, and HVAC system optimization in smart buildings.

2.3 Experimental setup and results

2.3.1 Experimental Setup

To evaluate the effectiveness of the proposed OSDA methods, we conducted a series of exper-

iments on two specialized datasets designed for OE and AR in smart buildings. These datasets

reflect the dynamic and diverse nature of activities and occupancy patterns commonly found in

smart building environments.

Datasets

The private dataset used for OE was collected from two university offices (H355 and H358)

located at the Grenoble Institute of Technology Dridi et al. (2024b). This data is gathered from CO2

concentration sensors in the smart building, which monitor CO2 levels across different areas. CO2

levels correlate with the number of individuals present in a space; as occupancy increases, CO2

concentration rises, making it a dependable metric for estimating occupancy. The data ranges from

no one present, to one, two, three individuals, and finally, more than three individuals in the area.

In this research, the data was analyzed to determine occupancy levels and their impact on energy

usage and building system optimization. For AR, the data was sourced from the publicly available

Washington State University (WSU) dataset Tapia, Intille, and Larson (2004) available in this web-

site Intille et al. (2005). This data was collected through the use of Internet of Things (IoT) sensors,

mostly motion sensors collected from two single-person apartments during two weeks, using prox-

imity binary sensors attached to different appliances and objects. The sensors record the presence

of people in certain locations throughout the building. These sensors offer vital information on the

number of people in an area, how often they move around, and what they are doing. The dataset

contains a variety of daily human activities such as cooking, toileting, and watching TV. Specifically

in this research, it was limited to energy management, HVAC systems optimization, data privacy,

and occupant safety. The specific activities examined include toileting, cooking breakfast, watching

TV, cooking lunch, and cooking dinner. These are the activities that the models were tested on for
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this study, using the dataset, that captures the many different ways that occupants interact with their

surroundings, and how those activities relate to energy consumption. The AR and OE data sets were

very important because they were used to test the effectiveness of the new innovative methods as far

as energy efficiency and occupant comfort and data security in smart buildings.

Choice of Unknown Classes in OE and AR

The term ”Unknown classes” refers to new, unseen classes of data that are not present in the

source domain. In fact the goal of OSDA is to handle unknown classes and train the model on

known classes. To further validate the effectiveness of the OSDA methods, we take as example some

real-world-inspired scenarios that could be classified as unknown, like health monitoring contexts

in households with elderly occupants, activities like ”taking medication,” or activities involving

children, such as ”playing with toys,” introduced movement patterns that were distinct from adult

activities. Handling unknown classes is done either by rejecting it or classifying it as unknown.

Hence the importance of categorizing the classes in the OE and AR datasets as known and unknown.

For the OE dataset, the known classes in the source domain include ”no occupant,” ”one occupant,”

and ”two occupants.” The unknown classes include more complex occupancy levels like three or

more than three occupants. In AR, the known classes in the source domain included common

activities such as ”sleeping,” ”eating,” and ”watching TV.” The unknown classes in the target domain

were less frequent or more complex activities, such as ”taking medication,” ”doing laundry,” and

”listening to music.”

Evaluation Metrics

The following evaluation metrics were used to assess the performance of the OSDA methods:

Accuracy is defined as the proportion of correct predictions made by the model out of the total

number of predictions. Mathematically, it is expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(16)
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where TP (True Positives): The number of correctly predicted positive samples. TN (True Nega-

tives): The number of correctly predicted negative samples. FP (False Positives): The number of

incorrectly predicted positive samples. FN (False Negatives): The number of incorrectly predicted

negative samples.

These metrics evaluate the model’s ability to correctly identify known classes, particularly focusing

on minimizing misclassification of unknown classes.

Precision measures the accuracy of the model’s positive predictions. It is calculated as:

Precision =
TP

TP + FP
(17)

This represents the proportion of true positives out of all predicted positives.

Recall (also known as Sensitivity or True Positive Rate) measures how well the model identifies

actual positives. It is calculated as:

Recall =
TP

TP + FN
(18)

This represents the proportion of true positives out of all actual positives.

F1-Score is the harmonic mean of Precision and Recall, providing a single metric that balances both

concerns. It is calculated as:

F1-Score =
2× Precision × Recall

Precision + Recall
(19)

The F1-Score provides a balance between precision and recall, especially useful when the data are

imbalanced.

Unknown Class Detection Rate (UCDR) is used to evaluate how well the model identifies and

correctly rejects samples from unknown classes. It is defined as the proportion of correctly identified

unknown class samples out of the total number of unknown samples:

UCDR =
True Unknowns Detected

Total Unknowns in Target Domain
(20)
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This metric is crucial in open set domain adaptation, where the model must distinguish between

known and unknown classes. The following tables show the performance of the proposed OSDA

methods on the OE and AR tasks. We compare the techniques based on accuracy, F1-score, and the

Unknown Class Detection Rate (UCDR) which measures their performance on known and unknown

classes in the target domain.

Occupancy Estimation (OE)

The results for OE are summarized in Table 2.1 and Table 2.2. The proposed OSDA methods

showed good performance, with Adjustment and Alignment for Unbiased OSDA (ANNA) outper-

forming the other methods in all metrics. ANNA achieved the highest accuracy at 90.1%, precision

at 89.0%, recall at 88.6%, and F1-score at 88.8%. Its UCDR was also the highest at 85.7%, reflect-

ing its strong ability to detect unknown occupancy patterns.This is mainly because of ANNA’s use

of FDA(Front-Door Adjustment) and DCA(Decoupled Causal Alignment) modules, which allow it

to effectively realign features while minimizing bias from the unknown classes. Unknown Aware

Domain Adversarial Learning (UADAL) also performed well, achieving an accuracy of 88.4%, pre-

cision of 87.2%, and a recall of 87.0%. UADAL’s UCDR of 80.6% indicates that it was effective at

handling unknown classes, though slightly less so than ANNA. OSDA with Soft Rejection achieved

87.1% accuracy and a UCDR of 78.3%. Its soft rejection mechanism worked well but was less pre-

cise at distinguishing unknown classes compared to ANNA and UADAL, leading to slightly lower

performance in recall and F1-score. OSDA by Backpropagation achieved 85.6% accuracy and a

UCDR of 72.8%, the lowest among the OSDA methods. Its threshold-rejection scheme was good

at aligning features, but it was not as effective at recognizing unknown classes, leading to lower

precision and recall. Furthermore, for each model, we compared the precision on known classes

to that on unknown classes in the target. By comparing the two, one can easily see how well each

model does at classifying what it knows versus what it doesn’t know. The results in Table 3 show

the precision of each OSDA method for known and unknown classes.
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Table 2.1: Occupancy Estimation Results for OSDA Methods
Method Accuracy Precision Recall F1-Score

OSDA BP 85.6% 83.8% 84.2% 84.0%
OSDA SR 87.1% 85.5% 86.2% 85.8%
UADAL 88.4% 87.2% 87.0% 87.1%
ANNA 90.1% 89.0% 88.6% 88.8%

Table 2.2: Unknown Class Detection Rate for OSDA Methods
Method Unknown Class Detection Rate

OSDA BP 72.8%
OSDA SR 78.3%
UADAL 80.6%
ANNA 85.7%

Table 2.3: precision in terms of known unknown
Method Precision (Known) Precision (Unknown)
OSDA BP 83.8% 72.1%
OSDA SR 85.5% 75.8%
UADAL 87.2% 80.3%
ANNA 89.0% 84.5%

Activity Recognition (AR)

The results for AR, summarized in Table 2.4 and table 2.5, show that ANNA again outperformed

the other methods, achieving the highest accuracy of 88.1%, precision of 86.8%, recall of 86.5%,

and F1-score of 86.6%. ANNA’s UCDR of 84.9% demonstrates its strong ability to detect unknown

activities, which is a crucial metric in open set scenarios with unknown activities. UADAL achieved

85.6% accuracy and a UCDR of 79.0%, demonstrating its ability to handle unknown classes, though

its precision and recall were slightly lower than ANNA, particularly in AR tasks where activities are

more dynamic and varied. OSDA with Soft Rejection performed slightly worse, with an accuracy of

83.3% and a UCDR of 75.0%. Its soft rejection mechanism struggled more with activity variability,

leading to a higher rate of false positives compared to ANNA and UADAL. OSDA by Backprop-

agation performed the lowest, with an accuracy of 81.2% and a UCDR of 70.1%, highlighting its

limitations in handling the complexity of activity recognition, especially with novel or unknown

activities.

The AR results show that ANNA’s alignment and bias correction mechanisms are effective at
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Figure 2.1: Accuracy vs number of unknown classes.

Table 2.4: Activity Recognition Results for OSDA Methods
Method Accuracy Precision Recall F1-Score

OSDA BP 81.2% 79.5% 78.8% 79.1%
OSDA SR 83.3% 81.5% 80.8% 81.1%
UADAL 85.6% 84.3% 84.1% 84.2%
ANNA 88.1% 86.8% 86.5% 86.6%

Table 2.5: Unknown Class Detection Rate for OSDA Methods in AR Dataset
Method Unknown Class Detection Rate

OSDA by BP 70.1%
OSDA with SR 75.5%

UADAL 79.0%
ANNA 84.9%

distinguishing between known and unknown tasks. UADAL’s performs well but lacks the precision

of ANNA, especially in environment as dynamic as AR. OSDA with Soft Rejection and Back-

propagation performed adequately but showed limitations in handling the complexities of open set

domain adaptation, especially when faced with unknown activities. The results demonstrate that the

combination of feature alignment and bias correction mechanisms of ANNA give the best method

for adapting to new occupancy patterns in smart building. UADAL also used adversarial learning

to differentiate between known and unknown classes and this worked effectively, and OSDA with

Soft Rejection and Backpropagation performed well overall but struggled more with recognizing

27



Figure 2.2: Comparison of Precision Across Methods and Scenarios.

unknown classes. The results in Table 6 illustrate the performance of each OSDA method in terms

of precision for known and unknown classes in the AR dataset. The results of these experiments

Table 2.6: precision in terms of known unknown
Method Precision (Known) Precision (Unknown)
OSDA BP 79.5% 68.3%
OSDA SR 81.5% 72.4%
UADAL 84.3% 78.1%
ANNA 86.8% 82.3%

shed light on how each approach deals with the problems of domain adaptation, or more specifically,

unknown class detection, and adaptation to unseen data in the context of the Occupancy Estimation

(OE) and Activity Recognition (AR) tasks. To better understand the models’ scalability and lim-

itations, we also evaluated the performance of each class, particularly in terms of the maximum

number of unknown classes each model could handle. We found that ANNA could handle well 5

unknown classes, proving to be a stable classifier of unknown patterns. UADAL was able to manage

4 unknown classes, but after that its performance started to fall off. The OSDA with Soft Rejection

did a great job with 3 unknown classes, but after that it started to fall apart. The most restrained

was OSDA by Backpropagation, it could only handle 2-3 unknown classes before its performance

dropped off dramatically. This experiment gives a better sense of just how well each method copes
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Figure 2.3: OSDA Methods Performance Comparison - Occupancy Estimation.

with the rising number of ”unknown classes” and where each method truly excels and fails.
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Figure 2.4: OSDA Methods Performance Comparison - Activity Recognition.
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Chapter 3

Open Set and Universal Domain

Adaptation for Enhancing Activity

Recognition in Smart Buildings

3.1 Introduction

Smart buildings are an important part of current infrastructure through the use of intelligent

automation to improve both energy efficiency and sustainability and, consequently, user comfort

Moreno, Santa, Zamora, and Skarmeta (2014). AR is the basis for accomplishing these goals since

it enables the construction of systems that can intuitively adjust to future occupant activities L. Chen,

Hoey, Nugent, Cook, and Yu (2012). Classical supervised learning models are hard to generalize

across buildings as data distribution, the use of sensor and the appearance of a new activity pattern

can evolve Qiu et al. (2022). There has been a great deal of use of DA techniques to overcome

these challenges so that models trained in one domain can be generalized across different domains

Dridi (2023). On the other hand, closed-set DA methods assume the same label sets in the source

and target domain, which makes the DA methods ineffective in the real-world scenarios Jing, Liu,

and Ding (2021). To overcome these limitations, Open Set DA and Universal DA provide effec-

tive solutions by allowing models to identify and adapt for oversampling novel activities in novel
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environments Q. Li, Wen, Zheng, Zhang, and Fu (2024). This paper presents OSDA and UniDA

frameworks that are specifically designed for smart buildings, with the goal of improving activity

recognition for better energy efficiency and environmental quality of indoor space. We adapt two

methods, which integrates adversarial learning and optimal transport theory, to enhance domain

alignment and the classification accuracies. Experimental evaluation on an AR dataset show signif-

icant improvements in adaptive AR, achieving accuracy up to 88.3% and F1-scores to 87.9% that

highlight the real-world applicability for energy-conserving smart buildings.

3.2 The proposed approaches

In this research, we introduce two domain adaptation-based schemes for AR in smart building

systems. The traditional OSDA-based approach is applied to adapt OSDA via Angular Margin

Separation to sensor data from smart buildings X. Li, Li, Du, Zhu, and Li (2022). This version

guarantees a better structured partition of known and unknown activities and uses sophisticated

kernel techniques to further improve classification accuracy. The second one is based on UniDA,

by which we adapt the Unified Optimal Transport framework for UniDA in order to address AR

sensor-based tasks. In this adaptation, the domain aligning process is refined, allowing the model to

adaptively identify shared and private activities in the target domain without assumption of a priori

label set. In combination, these two methods can deliver effective solutions for the variability and

dynamicism involved in AR in smart environments. Before detailing the approaches, we formally

define the source and target domains. Let the source domain be represented as: the source domain

and the target domain. The source domain is defined as

Ds = {(xsi , ysi )}ni=1,

where xsi ∈ Rd denotes the feature vector obtained from sensor data in a controlled or pre-labeled

environment, and ysi ∈ Cs represents the corresponding known activity class. In contrast, the target

domain is given by

Dt = {(xtj , ytj)}mj=1,
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with xtj ∈ Rd representing sensor data captured in dynamic smart building settings, and ytj ∈ Ct,

where the label set Ct encompasses both known and potentially unknown activity classes. The inher-

ent domain shift is reflected in the differing distributions Ps(x) and Pt(x). The distributions, Ps(x)

and Pt(x), are different because of domain shifts. In our frameworks, we go beyond standard non-

linear discriminative learning, by introducing a feature extraction function f(x) that takes the input

sensor curve to the latent space, angular margin m and scaling factor s, discriminative learning cost

matrices and optimal transport cost matrices to establish correspondence between these domains.

These mathematical representations underlie the OSDA and UniDA approaches described below.

3.2.1 Open Set Domain Adaptation-based Approach

We modified the Interpretable OSDA via Angular Margin Separation technique to smart build-

ings, particularly, the AR using sensor-based data in CSV format. In contrast to conventional OSDA

approaches, where all unknown activities are unified into one category, this approach introduces an

angular margin-based separation strategy to increase the discriminability between known and un-

known activities while preserving their interpretability X. Li et al. (2022). Adapting to smart build-

ing environments required substantial changes to feature extraction due to the nature of sensor data

(one-dimensional data) with its unstructured spatial patterns within the data, could be mapped upon

separable and robust latent space. One of the most important changes is the refinement of feature

space representation using angular margin constraints to drive discriminative feature alignment. For

a given feature input x, we train an embedding function f(x) to the maximum discriminability be-

tween known and unknown activity Ying, Yan, Dang, and Soong (2011). The model optimizes the

additive angular margin loss:

LArc =
1

N

N∑︂
i=1

− log
es cos(θi,yi+m)

es cos(θi,yi+m) +
∑︁

j ̸=yi
es cos(θi,j)

, (21)

where N is the total number of samples in the batch, s is a scaling factor that amplifies the cosine

similarity scores, and m is the angular margin that enforces additional separation between classes.

Here, θi,yi is the angle between the feature vector f(xi) of the ith sample and the prototype cor-

responding to its true label yi, while θi,j represents the angle between f(xi) and the prototype of
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any other class j (with j ̸= yi). To prevent the collapse of feature representations, an angular

regularization term is introduced:

Lreg =
1

N

N∑︂
i=1

− cos(θi,yi). (22)

In this equation, the term cos(θi,yi) quantifies the similarity between the feature f(xi) and its corre-

sponding class prototype, ensuring that the features remain sufficiently distinct. This modification

guarantees that patterns of activity are kept separate, but that new patterns of activity can be detected

more easily. In contrast to the conventional approaches, a distance-based outlier-detection-reliant

approach, the angular margin-based method explicitly defines a decision boundary able to handle

seen and unseen activity variations. Regarding classification, a kernelized decision function adapted

to this setting is used to further refine the boundary between classes of activities. Based on an in-

put feature x, the classifier outputs a confidence score as the maximum of the SoftMax Xia and

Bouganis (2024) probabilities. If the confidence is less than a pre-assumed threshold τ , the sample

is considered as unknown:

y∗ =

⎧⎪⎪⎨⎪⎪⎩
argmax g(f(x)) if max g(f(x)) > τ,

unknown otherwise,
(23)

where f(x) is the feature extraction function that maps the raw sensor input x to a latent space,

and g(f(x)) denotes the kernelized decision function outputting confidence scores for each class.

The threshold τ is a predetermined value such that if the maximum confidence does not exceed τ ,

the sample is classified as “unknown”. The final predicted label is denoted by y∗. This dynamic

thresholding mechanism permits detection of the new activities, but simultaneously maintains high

classification rates of known activities. The implementation of this approach for smart buildings en-

vironments greatly enhances its robustness towards the variability of real-world activity patterns by

using structured feature decomposition and interpretability, and therefore is applicable for dynamic

sensor-based AR.
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3.2.2 Universal Domain Adaptation-based Approach

We adapted the Unified Optimal Transport (UniOT) framework to improve UniDA for AR in

smart environments Chang et al. (2022). In contrast to its original application to 2-dimentional data,

the adaptation of our work regards the processing of sensor-based time-series data, such as motion,

temperature, and CO2 concentration, in order that our model can identify known and unknown

activities. The key challenge in this domain lies in handling variable distributions across different

smart building environments, where the relationship between activities and sensor readings is highly

dynamic. To handle this, we adaptively improved the feature extraction procedure to incorporate

temporal relations and adaptively optimized the optimal transport (OT) in the formulation for sensor

data. UniOT works through the adapation of source feature distribution and target distribution as

well as the classification of the shared and the private classes Chang et al. (2022). As the label sets

in the source and target domains cannot be predicted in advance, the network automatically divides

the target space into shared and private activities. The adaptation procedure changes and fine-

tunes the feature representation to fit the sensor-based data, and also introduces domain-specific

pre-processing methods to guarantee strong cross-domain alignment. For this, we use statistical

transformations and temporal feature grouping to increase the discriminability of activity patterns

in the embedding space. The UniOT adaptation to AR in smart buildings is represented by the OT

problem, balancing feature distributions on domains and addressing imbalanced class distributions.

To align the source and target feature distributions, we formulate the OT problem as:

OTε(M,α, β) = arg min
Q∈U(α,β)

Tr(QTM)− εH(Q), (24)

where M is the cost matrix that measures dissimilarity between source and target features, α and

β are the marginal distributions (or weight vectors) for the source and target domains, respectively,

and Q is the transport plan aligning these distributions. The set U(α, β) comprises all valid transport

plans with the given marginals, Tr(QTM) computes the total cost, ε is a regularization parameter,

and H(Q) denotes the entropy of Q. Since the source and target domains have different sets of
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activities, we use an unbalanced OT (UOT) formulation:

UOTε,K(M,α, β) = arg min
Q∈U(α,β)

Tr(QTM)− εH(Q)

+ κ
(︂
DKL(Q1 ∥α) +DKL(Q

T1 ∥β)
)︂
, (25)

where κ is a penalty parameter that governs the influence of the divergence terms, and DKL(· ∥ ·)

denotes the Kullback-Leibler divergence measuring the discrepancy between the induced marginals

Q1 and QT1 (obtained by summing Q over rows and columns, respectively) and the prescribed

distributions α and β Chhabra, Venkateswara, and Li (2023). In order to identify population classes,

the model matches source prototypes against target samples by the following equation:

Qst = UOTε,K

(︂
Sst,

1

B
1B,

1

|Cs|
1|Cs|

)︂
, (26)

where Sst is the similarity matrix between source prototypes and target samples, B is the batch

size, and |Cs| is the number of source (known) classes. The vectors 1B and 1|Cs| are ones-vectors

of lengths B and |Cs|, respectively. For private class discovery, a second OT problem is additionally

solved to match discovered target prototypes to target samples:

Qtt = argmin
Q>0

OTε

(︂
Stt,

1

K
1K ,

1

2B
12B

)︂
, (27)

where Stt represents the similarity matrix among target samples and target prototypes, K is the num-

ber of prototypes used for clustering unknown activity patterns, and 2B is a scaling factor reflecting

the grouping of target samples. Here, 1K and 12B are ones-vectors corresponding to dimensions K

and 2B, respectively. For coping with the special difficulties of smart building environments, we

adapted the feature extractor in order to deal with the 1-dimensional structured sensor data properly.

Since the data is sensor data, the embedding representation has to be adapted with some convolu-

tional (CNN) and recurrent layers (LSTM) to model long-term dependencies. In contrast to visual

data, which displays spatial coherence, sensor data is characterized by random influences (i.e., en-

vironmental variation and occupant behavior) Eldib, Deboeverie, Philips, and Aghajan (2018). In
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order to address these problems, we used statistical feature engineering methods to achieve domain

generalization among smart buildings. OT components were then refined, to allow robust similarity

of activity patterns between domains. We designed a class-threshold-free detection strategy, thus

eliminating the requirement of user-defined class thresholds and improving. This adaptation enables

the system to generalize efficiently in changing, dynamic, building environments where patterns of

activity change over time. The tailored UniOT framework offers a number of significant benefits for

AR in smart homes. Initially, the introduction of automatically adjusted thresholds makes it more

robust and thus real-world deployment-feasible. Second, the flexibility of the model to generalize to

novel activities means it has long term scalability and head-room. At last, the refined AR workflow

contributes to a better energy efficiency through precise control of building automation systems and

consequently, an optimized energy usage and the improved indoor environmental quality.

3.3 Experimental setup and results

3.3.1 Experimental Setup

We performed a series of experiments to compare our OSDA and UniDA methods. We used

tailored datasets designed specifically for AR in smart buildings. These datasets reflect the het-

erogeneous and time-varying nature of real-world systems. It can capture changes in both activity

pattern and sensor configuration. This experimental setup allows us to assess model performance

under realistic human energy-related activity scenarios.

Dataset

In this work, the AR dataset is the publicly available Washington State University (WSU) Tapia

et al. (2004). This dataset was acquired through IoT sensors. Its main application is using proximity

binary sensors on a variety of home appliances and inanimate objects. Data was collected in two

single-room apartments for two weeks. Sensors monitor the presence of people in certain areas,

recording how they move around and interact with the environment. Activities (e.g. toileting,

breakfast preparation, TV watching, lunch preparation, dinner preparations) were chosen due to

their direct applicability to energy management, HVAC control, occupant safety, and data protection
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in smart buildings. The dataset provides the various ways in which individuals interact with their

environment and how those interactions affect energy use. The inclusion of this dataset was essential

to assess the applicability of the proposed methods because it allowed us to measure the performance

of the models that respond to changes in activity patterns. Using the OSDA-based and UniDA-based

methods on this dataset, we evaluated the models’ generalization capability to the different activity

distributions, improved the energy efficiency and the occupant comfort.

Choice of Unknown Classes

In the AR dataset, unknown classes are activities that are not explicitly labeled in the source

domain but exist in the target domain. The AR dataset includes a wide range of activities performed

by humans, such as toileting, cooking breakfast, etc. However, in the real world in smart building

environments, there may also exist other activities which are outside the scope of the labeled dataset,

such as working on a computer or interacting in new ways with appliances. These tasks are treated as

unseen classes in the training process. In both OSDA and UniDA, we use preparing food, toileting,

listening to music, watching TV, and cleaning as known classes. All remaining activities were

considered unknown. The proposed OSDA and UniDA approaches set definitive limits on what

is known and either exclude or learn from novel behavior. We systematically tested the models’

capacity to identify or reject new behaviors, all of which simulated ideal conditions in smart building

applications.

Evaluation Metrics

In the evaluation, we put the performance of our methods to the test using common classification

metrics (accuracy, precision, recall, F1-score) and the Unknown Class Detection Rate (UCDR). Let

TP (true positives) be the number of correctly identified positive instances, TN (true negatives) the

correctly identified negatives, FP (false positives) the misclassified negatives labeled as positive, and

FN (false negatives) the misclassified positives labeled as negative. According to these definitions,

accuracy is the proportion of correct predictions among all predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
. (28)
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Precision represents the number of correctly predicted positive classes out of all predicted positive

classes:

Precision =
TP

TP + FP
. (29)

Recall is the proportion of true positives among the correctly identified ones:

Recall =
TP

TP + FN
. (30)

F1-score is the harmonic mean of precision and recall, representing a balance between the two:

F1-score = 2 × Precision × Recall
Precision + Recall

. (31)

In order to measure the model’s sensitivity of detecting unseen classes, we present the Unknown

Class Detection Rate (UCDR). Let UT be the number of correctly identified unknown samples, and

UF be the number of unknown samples that are incorrectly classified into known samples. The

UCDR is thus:

UCDR =
UT

UT + UF
. (32)

Higher UCDR indicates better identification and discrimination between novel events.

3.3.2 Results

Performance of the proposed OSDA-based and UniDA-based models was assessed on the WSU

AR dataset. The experiments focused on assessing the models’ ability to classify known activities

while effectively identifying unknown activities. For this purpose, we calculated standard classifica-

tion measures (accuracy, precision, recall, F1 score, and Unknown Class Detection Rate (UCDR)).

The comparison of both models is presented in Table 1. The OSDA-based approach yielded an F1-

Table 3.1: Comparative performance.
Evaluation Metric OSDA (%) UniDA (%)

Accuracy 84.7 88.3
Precision 83.5 87.1

Recall 86.2 89.5
F1-score 85.4 87.9
UCDR 78.2 81.5
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score of 85.4% for known activities and showed a UCDR of 78.2%, showing its excellent ability to

perform the rejection for the unknown classes, with high classification accuracy for known activities

maintained. The kernelized classifier learning mechanism effectively improved class separation, al-

lowing the model to differentiate between similar activity patterns more efficiently. However, it un-

derperformed slightly when applied to dynamic test cases with intentional sensor position changes,

indicating that OSDA is sensitive to domain-specific feature consistency. The UniDA-based model,

based on the Unified OT framework, showed stronger invariance in open-set contexts. The model

obtained an F1-score of 87.9% and a UCDR of 81.5%, and it surpassed the OSDA-based method

with respect to both metrics. Dynamic warping of source and target distributions by UniDA allowed

it to generalize more effectively when test conditions varied. Figure 2 gives a comparison of results

regarding the most important performance indexes, such as accuracy, precision, recall, F1 score,

and UCDR, of OSDA and UniDA.

Figure 3.1: OSDA and UniDA Performance Comparison.

The results show that although both methods can accurately classify known activities, the UniDA-

based method consistently outperforms all other methods in terms of all the metrics. This improve-

ment can be attributed to the OT alignment strategy, which ensures better consistency of features

across domains. Figure 3 shows the performance of the unknown class detection by plotting the

UCDR as a function of the detection threshold (τ ). The findings demonstrate that UniDA provides
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a higher UCDR for all values across thresholds, validating its greater ability to identify novel activi-

ties. It shows that UniDA is better at dealing with new human actions in smart rooms, which makes

it a perfect candidate for adaptive energy-smart systems.

Figure 3.2: Unknown Class Detection Performance.

Figures 4 and 5 provide the confusion matrices of the two methods, showing the distribution

of classification across activity classes. The OSDA-based confusion matrix reflects a higher mis-

classification rate of activities, whereas the UniDA-based confusion matrix reflects a more balanced

classification performance, also in terms of capturing complex human exchanges. The UniDA-

based approach showed better classification robustness in previously unseen activity patterns, so it

is more practical in the real world scenario.
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Figure 3.3: Confusion Matrices for OSDA.

Figure 3.4: Confusion Matrices for UniDA.
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In general, the results validate that both models can be used to improve AR in smart buildings,

and UniDA offers a more flexible and resilient solution. The results show that the application

of domain adaptation approaches can be potentially used to build energy-efficient and intelligent

building automation systems, and UniDA possesses the feature of better generalization ability in

the dynamic real world setting.
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Chapter 4

Generalized Domain Adaptation for

Scalable Activity Recognition Using IoT

Sensor Data

4.1 Introduction

In smart buildings, precise recognition of activities has become essential for enhancing automa-

tion, managing energy consumption, and ensuring the safety of occupants Vijayan, Rose, Arvindan,

Revathy, and Amuthadevi (2020). This capability relies on the analysis of sensor data to accu-

rately identify human actions, which is regulating heating, ventilation, and air conditioning (HVAC)

systems, optimizing energy use, and maintaining security by identifying abnormal behaviors Dridi

(2023). Smart buildings utilize different sensors - such as motion sensors, proximity detectors,

and environmental monitors - to collect information regarding the behavior of occupants Nguyen

and Aiello (2013). This collected data plays a crucial role in automating control systems, enhanc-

ing resource efficiency, and elevating the living experience for individuals within these buildings.

Nonetheless, the success of such systems heavily relies on the precision of activity recognition

models. Unfortunately, these models frequently encounter challenges when implemented in un-

familiar settings. Traditional supervised learning methods for activity recognition rely heavily on
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large amounts of labeled training data to achieve optimal results. However, collecting sufficient

labeled data for each new environment is both time-consuming and expensive Dridi, Amayri, and

Bouguila (2023). Each setting has unique layouts, sensor setups, and occupant behaviors, making

it impractical to manually generate the necessary data for every new deployment. Furthermore, su-

pervised models excel at learning all the details of the training environment, which can limit their

ability to generalize to new situations or previously unobserved activities Chou, Chuang, Chou, and

Oliva (2023). This limitation poses a significant barrier to the development of scalable and adapt-

able smart building solutions. Domain adaptation techniques were created to allow models trained

in one context to operate effectively in another related context. Domain adaptation techniques work

based on the belief that similar activities exist in both contexts Dridi et al. (2024a). This assump-

tion proves problematic since unexpected activities can emerge in different contexts. Generalized

Domain Adaptation (GDA) permits models to recognize both familiar and novel activities when

applied in a new context, even without prior exposure to labeled data from that specific environ-

ment Mitsuzumi, Irie, Ikami, and Shibata (2021). This adaptability is crucial for smart buildings,

where occupant behaviors can vary widely across different locations, including homes, offices, hos-

pitals, and senior care facilities S. Chen et al. (2021).This study examines how well three GDA

methodologies namely Stochastic Weight Averaging Densely (SWAD), Distribution-Free Domain

Generalization (DFDG), and Empirical Risk Minimization (ERM) function in classifying 1D-sensor

data of activities. Learning across domains requires various approaches to understand applicable

knowledge while adapting to completely new environmental conditions. Our work assesses how

the performance of GDA models varies across different smart building environments. We evaluate

the stability and strength of performance when models operate across various domains. It develops

scalable activity recognition systems for smart environments through solutions to the cross-domain

generalization challenge. We evaluate how models with GDA work reliably and flexibly across

different smart buildings, and measure these models by their effectiveness when there are changes

from one kind of building to another. Our results highlight the potential of GDA to reduce the need

for extensive manual annotations while maintaining high recognition accuracy across diverse smart

building environments. By addressing the challenge of cross-domain generalization, this research

contributes to the development of more adaptive and scalable activity recognition systems for future
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smart environments. To evaluate the effectiveness of the proposed GDA framework, we conduct

extensive experiments using the Massachusetts Institute of Technology (MIT) Smart Home dataset,

where different functional spaces are treated as independent domains to simulate real-world domain

shifts. The experimental results demonstrate that the proposed approach significantly improves ac-

tivity recognition performance in unseen environments while maintaining real-time feasibility for

deployment in smart buildings. The structure of the remaining sections of this paper is as follows.

The related work section examines existing domain adaptation methods with a special focus on

Generalized Domain Adaptation approaches that apply to activity recognition. Afterward the pa-

per presents theoretical background to explain the fundamental principles behind SWAD, DFDG,

and ERM. The framework of the suggested method is described and the adaptation of these tech-

niques for activity recognition with 1D sensors is explained. The experiments section describes

the experimental framework including dataset partitioning and evaluation metrics before detailing

the research workflow which leads to a discussion of the results. The analysis examines the find-

ings while identifying both strengths and weaknesses in the proposed approach. The final section

presents an overview of important contributions and proposes directions for future research.

4.2 The proposed approaches

This section introduces our GDA framework which enables activity recognition in smart build-

ings through the use of 1-dimensional data. The majority of domain adaptation studies focus on

high-dimensional image or text data so converting these methods for 1D-sensor signals requires

overcoming distinct obstacles. Activity recognition systems in smart buildings depend on signals

from IoT-based sensors unlike 2-dimensional data. The signals obtained from sensors present dis-

crete binary data which mirrors the way humans interact with their surroundings Saives, Pianon,

and Faraut (2015). Our approach integrates three state-of-the-art domain adaptation techniques

including Stochastic Weight Averaging Densely (SWAD), Distribution-Free Domain Generaliza-

tion (DFDG) and Empirical Risk Minimization (ERM). The adapted techniques analyze 1D activ-

ity recognition data to identify meaningful patterns while enhancing generalization capabilities in

diverse building environments. Our neural architecture for sequential data processing maintains
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consistent performance even when domain shifts result from changes in sensor placements, user

behavior patterns or home layouts. The following subsections detail our adaptation process.

4.2.1 Stochastic Weight Averaging Densely (SWAD)

SWAD works as a standard deep learning method to stabilize optimization through the aver-

aging of model weights at various training iterations P. Tang et al. (2019). Domain adaptation for

smart building activity recognition benefits from this method because sensor locations and resident

activities create unforeseeable activity recognition pattern changes. The continuous feature distribu-

tions found in image-based domain adaptation differ from our scenario because we handle discrete

binary sensor activations which benefit from SWAD to enhance generalization. We utilize a Tem-

poral Convolutional Network (TCN) to serve as the feature extractor C. Li, Shen, Zhang, Sun, and

Meng (2021) when adapting SWAD to 1D activity recognition data. Given a sequence of sensor

activations:

X = [x1, x2, ..., xT ], xt ∈ Rd (33)

where T is the time window, and d represents the number of sensors, the TCN extracts temporal

patterns using dilated convolutions:

ht =

k∑︂
i=0

Wi · xt−i (34)

where Wi are the convolutional filters with a dilation rate increasing exponentially with layer depth.

During training, instead of relying on a single optimal weight configuration, we compute the moving

average of model parameters across multiple iterations:

θ̄t =
1

T

t∑︂
i=t−T+1

θi (35)

where θt represents the model weights at training step t, and T is the averaging window. This weight

averaging smooths optimization trajectories, preventing overfitting to domain-specific variations in
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sensor placement or occupant habits. The final loss function for SWAD in GDA is:

min
θ̄

E(x,y)∼DS
[ℓ(fθ̄(x), y)] (36)

where fθ̄ represents the TCN model with SWAD-averaged parameters, ensuring robustness against

domain-specific biases.

4.2.2 Distribution-Free Domain Generalization (DFDG)

DFDG allows models to transfer learned knowledge to new domains without needing explicit

domain alignment procedures Tong et al. (2023). Traditional domain adaptation methods estimate

target distribution through statistical similarities but DFDG functions independently of target do-

main information. Smart buildings benefit from this approach because deploying models into unfa-

miliar homes or offices creates unpredictable domain shifts. Our 1D activity recognition approach

incorporates a Domain-Invariant Feature Extractor that merges Gated Recurrent Units (GRUs) He,

Li, Xu, Zhu, and Lu (2024) with Self-Attention Mechanisms. The GRU extracts temporal depen-

dencies:

ht = GRU(xt, ht−1) (37)

while the self-attention mechanism assigns importance weights to sensor activations over time:

αt =
exp(Wht)∑︁
j exp(Whj)

(38)

where αt represents the attention weight for time step t. To prevent the model from overfitting to

specific sensor layouts, we introduce contrastive learning, which forces the feature representations

of different source domains to align:

LCL = −
∑︂
i

log
exp(f(xSi ) · f(xSj )/τ)∑︁
k exp(f(x

S
i ) · f(xSk )/τ)

(39)

where τ is a temperature parameter and xSj represents a positive sample from a different domain,

while xSk is a negative sample. The final objective of DFDG ensures balanced feature representations
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across multiple domains:

min
θ

n∑︂
i=1

E(x,y)∼Pi
[ℓ(fθ(x), y)] (40)

subject to:

D(fθ(Pi), fθ(Pj)) < ϵ, ∀i, j (41)

where D(·, ·) ensures that no single source domain dominates the learned representations.

4.2.3 Empirical Risk Minimization (ERM)

The Empirical Risk Minimization (ERM) approach serves as the fundamental technique for do-

main adaptation by training the model exclusively with labeled source data and without utilizing

any specific adaptation methods Montanari and Saeed (2022). ERM cannot work independently in

GDA since it operates under the assumption that source and target domains share identical char-

acteristics. The classification system for 1D activity recognition utilizes an MLP-based Classifier

enhanced through dropout regularization Mondal, Pal, and Dey (2024):

y = MLP(f(x)) (42)

where f(x) is the feature representation extracted using a TCN-GRU hybrid model. We enhance

generalization by applying Entropy Minimization Shore and Johnson (1981) which pushes the

model to produce more confident target domain predictions:

H(p) = −
C∑︂
c=1

pc log pc (43)

where pc is the predicted probability for class c. This results in the following adaptation-enhanced

ERM loss:

LERM−GDA = LERM + λH(fθ(x
T )) (44)

min
θ

NS∑︂
i=1

ℓ(fθ(x
S
i ), y

S
i ) + λH(fθ(x

T )) (45)

where λ is a hyperparameter balancing the ERM loss and target entropy minimization.
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4.3 Experimental setup and results

4.3.1 Experimental Setup

Our experimental design tests the proposed GDA framework for smart building activity recogni-

tion and evaluates how our method performs in generalizing between various environments without

needing labeled target data. The research analyzes various smart home environments where each

serves as a separate domain.

Datasets

We have applied the GDA framework to activity recognition tasks by evaluating it with the

Massachusetts Institute of Technology (MIT) Smart Home dataset in smart building environments

Tapia et al. (2004). The dataset collects real-time data from binary proximity sensors and motion

detectors along with door sensors and temperature monitors throughout a completely instrumented

residential environment. The smart home contains various functional areas with each area having

its own specific sensors for monitoring distinct activities. Sensors installed on kitchen appliances

and storage units enable monitoring of food preparation activities such as cooking and dishwashing.

Motion and furniture sensors monitor the living room to detect activities including watching TV and

reading along with working. The bedroom is equipped with pressure sensors installed on the bed

and motion detectors that monitor sleep patterns and wake-up times. The bathroom contains water

flow sensors and door monitors along with presence detectors which capture bathroom activities

including toileting and showering as well as handwashing. Proximity sensors have been installed in

hallways and transitional spaces for monitoring movements between areas. Traditional supervised

learning models face significant difficulties because the dataset exhibits domain shifts resulting from

different sensor placements and occupant behaviors in various room layouts. We evaluated GDA’s

ability to generalize by organizing the dataset into source and target domains through separate clas-

sification of each functional space. The training process utilized data from three spatial domains

while keeping the fourth domain unseen as the target for evaluation. In this configuration the model

received training data from the kitchen, living room, and bathroom domains but used the bedroom

as the target domain. Through a different configuration approach the model received training using
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kitchen, bedroom and hallway data while it underwent testing on living room data which it had never

seen before. This division mirrors real-world scenarios where activity recognition models trained in

particular settings need to adapt to unexplored layouts without having access to labeled data from

those new environments. The GDA framework employs SWAD, DFDG, and ERM-based models

to evaluate its real-time performance and adaptation efficiency in smart buildings. Automated ac-

tivity recognition systems demonstrate effective operation without extensive manual labeling which

enables them to scale across various residential settings.

Evaluation Metrics

We use accuracy and F1-score to evaluate the performance of our GDA framework for smart

building activity recognition since these classification evaluation metrics are widely adopted. Ac-

curacy calculates the ratio between correctly recognized samples and the whole sample set:

Accuracy =
TP + TN

TP + TN + FP + FN
(46)

TP and TN stand for correctly predicted positive and negative instances respectively and FP and

FN represent the misclassified instances. The classification correctness measure accuracy fails to

recognize class imbalance that regularly appears within activity recognition datasets. To overcome

this limitation we utilize F1-score because it combines precision and recall to provide stronger

evaluation for datasets with imbalanced activity distributions Oak, Du, Yan, Takawale, and Amit

(2019). F1-score is defined as:

F1-score = 2× Precision × Recall
Precision + Recall

(47)

where precision and recall are computed as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(48)
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The F1-score delivers balanced assessment capabilities which become crucial in practical smart

building applications due to significant impacts caused by minority activity misclassification. Au-

tomation and energy management processes depend heavily on these outcomes.

4.3.2 Results

We performed a thorough evaluation of the proposed GDA framework to assess its performance

effectiveness in real-world smart building conditions. The experiments focused on classifying

sensor-based human activities without the need for labeled data collected from the deployment en-

vironment. The three chosen GDA techniques SWAD-GDA, DFDG, and ERM together while using

DisClusterDA H. Tang, Wang, and Jia (2022) as a baseline for comparison in the best-performing

scenario.

Scenario-Based Evaluation

To simulate real deployment, we designed three realistic evaluation scenarios to simulate deploy-

ment conditions. The model receives its training data from all domains except one domain which

functions as the target space that remains unseen. Each scenario reflects a distinct challenge in smart

building adaptation: low-motion routines, transitional activity noise, and sparse event frequency.

Scenario 1: Bedroom as Target Domain

The bedroom typically includes sparse, low-motion activities such as sleeping or resting. These

characteristics introduce difficulty for models trained primarily on active, high-traffic spaces. As

shown in Table 4.1, SWAD-GDA provides the most stable and accurate predictions. DisClusterDA,

evaluated only in this scenario where it performs best, shows substantially lower recall and F1-score,

reaffirming the need for structured GDA approaches.

Table 4.1: Scenario 1 - Bedroom as Target Domain

Method Accuracy Precision Recall F1-Score

ERM 72.4 70.8 69.5 70.1

DFDG 79.6 78.4 77.1 77.7

SWAD-GDA 84.9 83.7 82.2 82.9
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Scenario 2: Hallway as Target Domain

The hallway contains short-duration transitional movements, often without contextual activity

labels. This makes it particularly difficult for models to learn reliable patterns. Table 4.2 shows that

GDA methods, particularly SWAD-GDA, manage to generalize better to this high-noise domain.

Table 4.2: Scenario 2 - Hallway as Target Domain

Method Accuracy Precision Recall F1-Score

ERM 70.5 69.1 67.4 68.2

DFDG 77.2 75.3 73.9 74.6

SWAD-GDA 82.6 81.2 80.0 80.6

Scenario 3: Laundry Room as Target Domain

This utility space contains infrequent, irregular activity (e.g., washing, folding), making it a

sparse and unpredictable environment. Table 4.3 confirms that SWAD-GDA delivers the most con-

sistent performance, demonstrating robustness under domain shift and low data density.

Table 4.3: Scenario 3 - Laundry Room as Target Domain

Method Accuracy Precision Recall F1-Score

ERM 73.1 71.6 70.4 71.0

DFDG 81.4 79.9 78.7 79.3

SWAD-GDA 86.8 85.3 84.2 84.7

Through scenario-based evaluations it is demonstrated that the proposed GDA framework main-

tains real-world adaptability especially in smart building spaces with low visibility, high noise levels,

or those that remain underrepresented. SWAD-GDA demonstrates consistent high performance in

every condition which positions it as an excellent choice for scalable real-time application.

Overall Performance

Table ?? summarizes the performance of all methods across the complete testing setup. Metrics

include Accuracy, Precision, Recall, and F1-score. SWAD-GDA demonstrates clear superiority,

achieving the highest scores across all evaluation dimensions. ERM shows limited generalization,
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while DFDG performs competitively, confirming the value of distribution-aware adaptation strate-

gies.

Figure 2 illustrates how the three evaluated models perform in accuracy and F1-score compar-

isons. SWAD-GDA demonstrates superior performance against both ERM and DFDG by obtaining

the top scores in both accuracy and F1 metrics. SWAD-GDA achieves a 13.1% higher accuracy than

ERM while its F1-score shows an increase of 13.1 percentage points which confirms that weight

averaging stabilizes training and enhances generalization. For detailed performance evaluation,

Figure 4.1: Accuracy and F1-score comparison

Figure 3 shows confusion matrices for each method along with activity misclassification visual-

izations. According to the analysis SWAD-GDA achieves the lowest misclassification rates and

effectively distinguishes between similar activities such as ”Sleeping” and ”Watching TV” where

ERM shows difficulties. Figure 4 displays the confusion matrices for each method which reveal

misclassifications among various activities to further study classification performance. SWAD-

GDA demonstrates superior classification accuracy by achieving minimal misclassification rates

especially between similar activities like ”Sleeping” and ”Watching TV” where ERM encounters

difficulties. Domain adaptation techniques such as DFDG and SWAD-GDA produce fewer false

predictions than baseline ERM as shown by the confusion matrix. The SWAD-GDA technique
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Figure 4.2: Model Performance Across Domain Shifts

Figure 4.3: Confusion matrices ERM vs DFDG vs SWAD-GDA

outperforms both the empirical risk minimization (ERM) and distribution-free domain generaliza-

tion (DFDG) methods because it achieves higher accuracy and F1-score values while demonstrating

superior generalization capabilities. The SWAD-GDA achieved an accuracy rate of 87.3% which

shows that it surpasses ERM by 13.1% while advancing 5.2% beyond DFDG performance. The

F1-score for SWAD-GDA stands at 85.6% which demonstrates balanced activity classification per-

formance especially in environments with uneven class distributions. The increased performance

in both accuracy and F1-score confirms that generalized domain adaptation methods work well

for 1D sensor-based activity recognition systems. The baseline ERM approach fails to maintain
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performance in new environments because it lacks domain adaptation techniques which results in

reduced accuracy and F1-score values. These results show that domain-aware adaptation methods

must be used to address distributional shifts in sensor-based activity recognition. The DFDG model

achieves better performance than ERM but it still cannot reach the level of SWAD-GDA perfor-

mance. DFDG achieves good domain-invariant representation learning but SWAD-based weight

averaging contributes to stability in learning and boosts generalization performance. SWAD-GDA’s

ability to outperform DFDG proves that using stochastic weight averaging methods improves model

stability while preventing domain-specific feature overfitting within source domains. The proposed

GDA frameworks demonstrate higher accuracy while also delivering stable classification results

across various activity types. The effectiveness of these approaches becomes especially important

in smart building applications because even though activities like toileting or nighttime movement

happen infrequently they remain vital for both automation systems and ensuring occupant safety.

The research confirms that GDA-based activity recognition models maintain operational success

across unknown smart building settings by providing scalable solutions that adapt without needing

manual re-annotation of new sensor data. The proposed framework shows notable potential to be

applied in smart building systems that need robust handling of domain shifts arising from environ-

mental changes and variations in sensor placement and occupant behavior.
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Chapter 5

Conclusion

This thesis focused on developing OSDA approaches specifically for smart building systems

to enhance occupancy estimation and activity recognition features. Traditional domain adaptation

techniques function under the shared label space assumption for source and target domains but

this assumption fails to work in actual real-world applications. To overcome this, we proposed

four OSDA methods tailored to sensor-based data: Our sensor-based OSDA solutions include four

methods which are OSDA by backpropagation as well as Soft Rejection OSDA system and UADAL

together with ANNA. The four OSDA methods enable models to separate known activity classes

from unknown ones during distribution changes without requiring labeled target domain data. We

adapted our four methods to 1D smart building sensor data which underwent evaluation in both

balanced and imbalanced label settings. The joint implementation of UADAL with ANNA showed

exceptional ability to generalize across varied environments by effectively rejecting samples that

were not seen before. The task performance improved when researchers restricted activity classes

and occupancy levels to reduce complexity. OSDA approaches reached or exceeded the accuracy

of supervised models yet operated without target labels which makes them perfect for real-world

applications that prioritize privacy protection and scalability.

The second part of our study included an expansion to UniDA scenarios that require knowledge

of unknown relationships between source and target label spaces. We developed a joint framework

for OSDA and UniDA which integrates angular margin separation methods with optimal transport

alignment approaches. The framework is capable of processing intersecting partial labels and fully
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mismatched labels. Activity recognition tasks were conducted on one-dimensional sensor data from

diverse domains to evaluate the suggested techniques. UniDA approaches outperformed OSDA

baselines when tested in environments with significant changes in both class distributions and sensor

behaviors. UniDA models maintained stable performance across new domains especially when

only a limited number of classes were shared between domains. Real-world deployment benefits

substantially from these methods which function effectively even when the label configuration of the

target environment is unknown prior to deployment. Flexibility in label space assumptions enhances

transferability and reduces negative transfer risks.

We conducted research on GDA approaches to address domain shift and label shift problems

in scenarios where labeled target data does not exist. Our study evaluated three sophisticated GDA

approaches - SWAD, DFDG, and ERM - for 1D sensor-based activity recognition applications.

Baseline methods initially created for image-based tasks underwent modifications to enable com-

patibility with time-series sensor data for evaluations in target domains where completely new class

distributions appeared. SWAD demonstrated superior reliability across numerous tasks particularly

in situations with significant domain changes. DFDG and ERM produced competitive results while

they maintained reduced computational complexity. All tested methods demonstrated improved

stability and transferability through domain-general representations despite encountering domains

with highly varied label distributions. The findings indicate that GDA presents itself as a depend-

able choice for broad application in smart building systems when both labeled target data is absent

and environmental factors differ.

The thesis methods OSDA, UniDA, and GDA were individually modified to process 1D sensor

signals and demonstrated effective generalization capabilities in both occupancy estimation and

activity recognition tasks. OSDA and UniDA require label similarities between source and target

while GDA serves as a universal approach independent of predefined label relationships. Multiple

dataset evaluations reveal the potential for these methods to extend their usefulness beyond smart

buildings into fields such as healthcare monitoring and smart transportation systems.

Future research needs to develop training protocols that effectively merge the strengths of

OSDA, UniDA, and GDA. Integrating edge learning with multimodal sensor fusion and real-time

58



deployment would enhance system design scalability and privacy protection. Integration of self-

supervised and continual learning approaches would allow models to adapt step-by-step to fresh

domains and activities.
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