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Abstract

Not Only the Last-Layer Features for Spurious Correlations: All Layer Deep Feature

Reweighting

Humza Wajid Hameed

Spurious correlations are a major source of errors for machine learning models, in particular

when aiming for group-level fairness. It has been recently shown that a powerful approach to

combat spurious correlations is to re-train the last layer on a balanced validation dataset, isolating

robust features for the predictor. However, key attributes can sometimes be discarded by neural

networks towards the last layer. In this work, we thus consider retraining a classifier on a set of

features derived from all layers. We utilize a recently proposed feature selection strategy to select

unbiased features from all the layers. We observe this approach gives significant improvements

in worst-group accuracy on several standard benchmarks. Another pain point in transfer learning

is with out-of-distribution tasks having large distribution shifts relative to the source task. Full

finetuning suffers in performance as it disturbs backbone parameter weights during the starting

few optimization steps and is forced to make drastic adaptations to correct for large losses initially

observed in training. Linear tuning is another approach shown to improve model generalization

capabilities and is especially effective for transfer learning on out-of-distribution downstream tasks.

We further evaluate the usefulness of intermediate layer information by incorporating it with a linear

tuning approach. Results over datasets from a common visual task adaptation benchmark show that

the empirical benefits from simply leveraging intermediate layers are similar to the proposed method

and there is no noticeable gain in accuracy from incorporating a linear tuning step.
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Chapter 1

Introduction

1.1 Introduction

Thanks to their performance capability, deep learning is increasingly applied across diverse do-

mains including healthcare. However, when trained with empirical risk minimization (ERM), deep

learning models may fail to learn stable features, which are those that hold across data distributions

collected at different times and places Shah, Tamuly, Raghunathan, Jain, and Netrapalli (2020). For

instance, it has been observed the tendency of convolutional neural networks (convnets) to often

prioritize image texture over more informative features such as shapes, which may be better pre-

dictors Geirhos et al. (2020); Hermann, Chen, and Kornblith (2020). This tendency arises from

models’ ability to exploit any shortcuts or spurious correlation present in training data which may

be sufficient to correctly predict training data, but may not hold in unseen test data. As a result,

this exposure to learning spurious correlation or any shortcut in data makes them vulnerable to a

potential drop in predictive performance.

Addressing the challenge of learning in the presence of such spurious correlations has motivated

several approaches in the literature. It is widely adopted the notion of groups (defined in Sec. 2), in

which to correctly classify instances from certain groups, it is expected that models should be robust

enough to spurious correlation. Assuming the presence of group annotations in training data, a well-

known alternative to ERM is group distributionally robust optimization (group DRO) Sagawa, Koh,

Hashimoto, and Liang (2020a), which minimizes the empirical worst-group risk. There exist meth-

ods that do not assume group information during training such as just train twice (JTT) E. Z. Liu
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et al. (2021), which divides the training time into two phases. The first phase trains the model with

ERM, while the second phase continues by up-weighing the loss of misclassified instances of the

first phase. Recently, it has been shown that the last-layer representations of ERM-trained models

already exhibit both robust and non-robust (to spurious correlation) features Izmailov, Kirichenko,

Gruver, and Wilson (2022); Kirichenko, Izmailov, and Wilson (2022). As a remedy, to decrease the

impact on non-robust features, deep feature reweighting (DFR) Kirichenko et al. (2022) has proven

effective, which only retrains the classifier with a balanced-group validation set.

DFR can be viewed as an instantiation of transfer learning, where there is a desire to exploit

robust and generalizing features from the source domain to build a good predictive model on the

target domain Tan et al. (2018). Here, the goal of the target domain is a dataset balanced according to

groups. In transfer learning literature, more advanced methods exist beyond retraining the classifier.

Indeed during supervised learning a network can learn to discard certain robust features present from

earlier layers to make the final prediction in the last layer, thus losing potentially useful features.

This paper considers a simple yet efficient transfer learning method, called Head2Toe Evci et al.

(2022). Unlike last-layer retraining, Head2Toe leverages all layer features, not just the last one,

to find a sparse network with the most transferable features. Therefore, we leverage Head2Toe to

complement DFR and aim to get the most transferable features while also decreasing the impact of

non-robust (to spurious correlation) features.

1.2 Contributions

For this thesis, we look to provide a robust model able to extract features from intermediate

layers of a neural network while also reducing its spurious feature bias to be performant on any

target task. Our contributions are summarized as follows

(1) We show how an efficient transfer learning method (Head2Toe here) can be incorporated

in a pipeline of a state-of-the-art method in spurious correlation learning (Deep Feature

Reweighting).

(2) We demonstrate that this incorporation can yield better performance on standard evaluation

benchmarks
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(3) We combine Head2Toe with ideas from another study regarding efficient transfer learning

and explain the shortcomings of this method

The contributions of Chapter 3 have been presented at the ECCV 2024 Fairness and ethics

towards transparent AI: facing the chalLEnge through model Debiasing (FAILED) workshop on

July 31, 2024: Not Only the Last-Layer Features for Spurious Correlations: All Layer Deep Feature

Reweighting by Humza Wajid Hameed, Geraldin Nanfack, Eugene Belilovsky. (Hameed, Nanfack,

and Belilovsky (2024))
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Chapter 2

Background and Related Work

2.1 Background

This chapter serves as a reference to detail spurious correlations, transfer learning, as well as

relevant works that were studied and considered throughout our efforts. Several approaches have

been developed to address the challenge of learning amidst spurious correlations, alongside various

methods aimed at efficient transfer learning. All of these methods align with the unique goal of

achieving robustness by employing techniques that lead to a model that can generalize over varying

and unseen environments.

2.1.1 Convolutional Neural Networks

A fundamental component of this study are Convolutional Neural Networks (CNNs), a sub-

set of neural networks in deep learning often leveraged for computer vision and image processing

tasks. The ability of CNNs to effectively learn spatial patterns or features in images is one of the

reasons they are frequently at the core of many vision architectures. Traditional CNN architectures

consist of convolutional layers that apply filters to inputs, creating feature (or activation) maps that

capture various aspects of the image; pooling layers that reduce the dimensionality of the input

image as it passes through different layers, thereby reducing the number of parameters and decreas-

ing computation load; and fully-connected layers that process the learned features from previous

layers into a prediction (O’Shea and Nash (2015)). CNNs are renowned for their ability to extract
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relevant features from data, making them a critical component of this study. Our proposed method

emphasizes the importance of feature selection, further motivating a deeper exploration of CNNs.

To illustrate the strength of CNNs, Alabsi, Anbar, and Rihan (2023) presents a CNN-CNN method

to detect Internet of Things (IoT) attacks. Given the vast number of connected devices, detecting

attacks from network traffic is a significant challenge addressed by this paper through the use of two

CNN models. Following thorough preprocessing, the first CNN model extracts relevant features,

which are then fed into a second model to determine IoT attacks from network traffic. This ap-

proach highlights the importance of feature extraction and demonstrates the effectiveness of CNNs

in independently identifying critical details in data. By leveraging the CNN-CNN method, the study

showcases how CNNs can autonomously learn and select pertinent features. It provides validation

of using CNNs as an intermediary feature selection step (similar to our proposed method having a

separate feature selection step) in improving the performance of deep learning models, particularly

in complex scenarios involving large-scale data. CNNs directly relevant to this study are residual

networks, a residual learning framework presented in He, Zhang, Ren, and Sun (2015). The paper

explains that following the discovery of the value of depth when constructing network architectures,

one of the problems encountered was oversaturation and degradation of accuracy. Their deep resid-

ual learning framework addresses this through shortcut connections. By using blocks consisting of

stacked layers, the original input is added to the block output. Instead of fitting the mapping M(x),

it fits the residuals and adds back the input, which they explain is easier to optimize:

R(x) = M(x)− x (1)

For instance, the ResNet-50 (He, Zhang, Ren, and Sun (2016)) model employed in our method,

is a residual network consisting of 50 varying layers including convolution, batch normalization,

activation, pooling and fully connected layers. They further emphasize that this framework can

easily be extended by increasing depth for improved accuracy.
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2.1.2 Learning with Spurious Correlation

To better illustrate concepts around learning in the presence of Spurious Correlation, we con-

sider the Waterbirds dataset (Sagawa et al. (2020b)). Given images of waterbirds and landbirds,

an evident observation is that waterbirds, in a large portion of the dataset, appear on water whereas

landbirds are seen on land. This relationship, although prevalent throughout the dataset, is not deter-

ministic of the bird class. Spurious correlations refer to associations between elements consistently

observed along with the variable of interest. In the case of the Waterbirds dataset, the spurious at-

tribute is the background, and the target variable would be the class of bird. Images of landbirds on

water and waterbirds on land are scarcely present in the dataset and are considered minority groups.

Without consideration of spurious features, a model may build a bias on a water background to rec-

ognize waterbirds and a land background to recognize landbirds instead of identifying the bird class

itself. Without consideration of spurious attributes, learning models may build a bias towards un-

stable features and struggle to correctly classify images in minority groups, as well as in completely

different environments.

(a) Cardinal in a forest (b) Cardinal on a beach

Figure 2.1: Left: A cardinal (landbird) from the waterbirds dataset (Sagawa et al. (2020b)), often

observed by the model in its natural land habitat is correctly classified as a landbird. Right: A

cardinal with a beach background, scarcely observed in such settings is incorrectly classified as a

waterbird when the spurious feature (background) is disregarded during training

Data augmentation techniques appear to be the standard approach to fight against minority

groups Agarwal, Shetty, and Fritz (2020); Chen et al. (2020); Shetty, Schiele, and Fritz (2019).
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For example, Plumb, Ribeiro, and Talwalkar (2022) introduces a data augmentation technique by

generating counterfactual data, which adds or removes object parts responsible for identified spuri-

ous patterns. There exist methods that analyze representations throughout the training dynamics to

understand how the bias to spurious features arises. For instance, Dreyer, Pahde, Anders, Samek,

and Lapuschkin (2023) propose a method to reduce model reliance on spurious features by penal-

izing the gradient in directions of spurious features. Several other works have been done to analyze

stochastic gradient descent (SGD) directions, leading to modified versions of SGD or loss func-

tions Nagarajan, Andreassen, and Neyshabur (2020); Pezeshki et al. (2021); Rahaman et al. (2019).

Although most of these methods address the spurious correlation problem, it has been recently

shown the ability of ERM to competitively learn robust-to-spurious-correlation features Kirichenko

et al. (2022); Zong, Yang, and Hospedales (2022). Despite the use of data with labeled spurious

features in DFR, it differs from the above works by directly using balanced data where each group-

ing of class label and spurious feature are equally represented, resulting in a decrease in bias toward

spurious or unstable features.

2.1.3 Efficient Transfer Learning

Transfer learning leverages a model initially trained in a specific setting and later repurposed for

a new but related task of interest. Although the issue of spurious correlations in machine learning

models has been addressed, a crucial element in this study is the ability to achieve efficient trans-

fer learning. While spurious correlations can be mitigated to reduce bias towards non-predictive

elements, there remains a need to finetune the model’s hyperparameters and backbone to optimize

performance on new, unseen tasks. This necessitates the development of sophisticated transfer

learning techniques that can generalize knowledge from one domain to another, thereby improving

the model’s adaptability and robustness.

Transfer learning still has its own challenges that are addressed across various works, and there

are differing techniques established to improve downstream task performance. Yazdanpanah et al.

(2022) presents a method that consists of training affine parameters in batch normalization layers.

It explains how training these shift and scale parameters used in the normalization step can have

a noticeable impact, especially in scarce data settings. Downstream tasks where there is minimal
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divergence in distribution from the pre-trained model seldom have difficulty learning on a new

dataset when employing finetuning. This assumes that the pre-trained model is otherwise sufficient

for the downstream task and improvements can be attained through leveraging batch normalizations

alone. Kumar, Raghunathan, Jones, Ma, and Liang (2021) explains that these in-distribution tasks

struggle most when exposed to data with significant deviations in distribution from the source task.

It explains that with a randomly initialized linear head, finetuning results in larger fluctuations in

parameter weights during the earlier training steps as the whole network needs to adjust to what it

considers an unusual dataset relative to the source task. First keeping the pretrained backbone frozen

and training the linear head before unfreezing and finetuning allows the model to better adapt and

transfer to out-of-distribution downstream tasks. Here, instead of drawing focus to just one layer,

the assumption is that a better initialization of the classifier will lead to improved finetuning on the

downstream task. Qiu, Potapczynski, Izmailov, and Wilson (2023) deals with the out-of-distribution

transfer learning problem through the use of a weighted loss function. It proposes Automatic Feature

Reweighting (AFR), a method that reweighs the loss among groups with fewer examples to push the

model to better adjust and adapt for these minority group examples. This method has the additional

benefit of not relying on spurious features. This approach leans similar to the DFR method by

rebalancing groups to avoid unstable features from dominating the learning process although it does

it through a loss function instead of group counts. With these different approaches to efficient

transfer learning, the motivation for our method is derived from the use of Head2Toe’s unique

feature selection process. Unlike the above-mentioned methods, Head2Toe focuses on searching

for information found throughout the network instead of relying solely on the penultimate layer.

Head2Toe extracts useful intermediate layer features Evci et al. (2022) and concatenates them to

create a linear layer. This newly initialized linear layer, combined with Deep Feature Reweighting

(DFR) Kirichenko et al. (2022), is trained on an unseen balanced dataset under our approach. With

Head2Toe improving feature extraction by incorporating early layer information and DFR reducing

unstable feature bias through balanced data training, our method is motivated to address challenges

in efficient transfer learning.
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2.1.4 Finetuning

Finetuning (FT) methods, a subset of transfer learning, involve adjusting parameter weights

throughout a pre-trained neural network to effectively adapt to a new domain. This process is

predicated on the assumption that a model can be efficiently tuned and adapted to various different

but related tasks. As discussed previously, existing methods often face difficulties in adapting to

downstream tasks when the target task distribution sufficiently diverges from the source data used

to pre-train the network. Although FT can provide improvements in results over time, the cost

of fully tuning a model with the classical approach remains significant. This issue is particularly

pronounced with large models, such as language models. As shown in Zhai et al. (2020), full

finetuning generally outperforms the simpler transfer learning method, referred in this thesis as

NaiveTL, where only the output head weights are adapted to the target task domain using some

pretrained model. Despite this notable improvement in performance, finetuning requires storing

and updating the weights through the entire network at every iteration during training, making this

a costly solution for larger models. To address the high computation costs observed in classical FT,

Lv et al. (2024) introduces LOwMemory Optimization (LOMO). Through an improved optimizer,

gradient computations and parameter updates are done simultaneously to reduce memory costs,

distinguishing it from traditional methods by not requiring all parameter gradients to be kept in

memory at once.

2.1.5 Parameter-Efficient Fine-Tuning (PEFT)

This then motivates the need for less costly methods that do not require fully tuning a network’s

weights. An alternative to FT is Parameter-Efficient Fine-Tuning (PEFT). Classical and modern

PEFT methods provide an alternative to deal with some of the challenges encountered in the FT

approaches. PEFT methods primarily apply within the context of large language models as they

generally require much more computational efficiency. Despite this, these methods can provide

insight on approaching vision problems as well. In the context of this paper, a part of the method

presented requires training a processed concatenation of all layers, which increases the complexity
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and computational requirements. Xu, Xie, Qin, Tao, and Wang (2023) explains the memory effi-

ciency of PEFT methods, which significantly reduce the number of parameters to be tuned instead

of potentially tuning all the billions of parameters tuned in FT. Low-Rank Adaptation (LoRA), pre-

sented in Hu et al. (2021) is a classical PEFT method in which trainable parameters are drastically

reduced. LoRA is able to achieve results comparable to FT by freezing the weight matrix, W0, and

redefining it as:

W0 +B ·A (2)

with lower-rank matrices B and A as opposed to solely relying on matrix W0. By rewriting the

weight matrix in this manner, W0 can be updated by training the lower-rank matrices B and A,

resulting in reduced computation costs. Sparse-Tuning, as shown in T. Liu et al. (2024), is another

PEFT approach adapted to vision problems. By merging less informative pieces of the input im-

age in each layer, Sparse-Tuning eventually produces a layer where uninformative pieces of the

image are masked, and the focus is shifter to parameters representing elements essential for im-

age recognition. In the context of the Waterbirds dataset, this approach could involve combining

a large portion of the water or land background, thereby effectively reducing the focus on these

non-predictive parts of the image. Merging the tokens for those pieces of the image can reduce the

amount of computation needed and focus can remain on the bird itself. Xin et al. (2024) explores

visual PEFT methods and categorizes these into three main categories that are further segmented

into sub-categories. These three categories are as such: addition-based approaches that essentially

introduces additional trainable elements to achieve parameter efficiency, partial-based methods that

focus on training a fraction of parameters while keeping the rest of the network parameters and

structures the same, and unified-based methods that combine different tuning techniques into a

framework capable of leveraging the different tuning methods into a single architecture. Xin, Du,

Wang, Lin, and Yan (2023) is a PEFT method adapted to vision tasks by presenting a Vision Multi-

Task Adapter (VMT-Adapter) that facilitates interactions between different tasks and allows for

efficient multi-task adaption. A parameter-sharing scheme is also used to reduce the total trainable

parameters and improve computation load. The aforementioned PEFT methods all provide insight

into potential deviations and directions from our proposed method as the feature selection process
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is a computation heavy process.

2.1.6 Domain Generalization

At the core of this study lies the objective of developing a system capable of adapting to diverse,

unseen environments. Achieving a robust model necessitates the incorporation of domain general-

ization concepts. Our method demonstrates the ability to learn in the presence of spurious corre-

lations and generalize across various unseen tasks by minimizing the focus on elements that may

be prevalent in the target dataset but should not significantly influence the model’s decision-making

process. With this in mind, this section details relevant domain generalization methods. Sagawa et

al. (2020b) minimizes the worst-case training loss to push the model towards performing even in

scarce data groups with their regularized group distributionally robust optimization (group DRO)

method. Group DRO assumes there is a label for each input regarding their spurious attribute (e.g.

an image of a waterbird will have target label ’waterbird’ and spurious attribute ’water’, identifying

the background of the target) and balances the learned features weights for robustness during train-

ing. Group DRO is able to outperform ERM when applying regularization with group DRO. The

paper explains that group DRO on its own is not sufficient to outperform ERM. Using a stronger

regularizer is what ultimately produces performing results. With a stronger regularizer, the model

no longer converges to a loss near 0 and worst-group accuracies improve significantly under such

regularization.

As shown in, Arjovsky, Bottou, Gulrajani, and Lopez-Paz (2020), another way to near domain

generalization is generating a predictor invariant of the environment it is exposed to. This is sim-

ilar to what we observe in learning with the presence of spurious correlations, where the aim is to

remove bias towards any spurious components often observed but not predictive of the target itself.

The developed method, Invariant Risk Minimization (IRM), suggests searching for a representation

of the data which, upon training, results in the same classifier across different environments. In

essence, by producing such a data representation, regardless of the environment, the optimal predic-

tor will remain consistent. This new representation will always result in a classifier invariant to the

environment it is exposed to. By putting emphasis on training with an improved data representation,

the model is less likely to form bias towards spurious features and is better able to generalize on
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out-of-distribution tasks or unseen environments.

2.1.7 Group-Lasso Regularization

Regularization is a technique used in machine learning to reduce complexity and variance by

penalizing and shrinking large parameter weights. It is often needed to prevent overfitting and there

are many studies that extend this idea through various methods. Sparse Feature Selection involves

extracting a subset of relevant features from a high-dimensional dataset. Through regularization

techniques, we are able to achieve sparse features by reducing focus towards noisy or unimportant

features. Following Scardapane, Comminiello, Hussain, and Uncini (2017), we first introduce the

Standard Lasso penalty and then cover the more relevant regularizer for our study’s feature selection

process, Group-Lasso.

Standard Lasso minimizes a loss function subject to parameter weights β and shrinks them by

applying a penalty. Group-Lasso (Yuan and Lin (2006)) is an extension of Standard Lasso, as a

method to introduce sparsity in the features of the weights matrix. Each feature, represented by

a row of the weights matrix is a grouping g. The advantage of Group-Lasso being that by group-

ing weights specific to each row (or feature) in the weights matrix, during training, regularization

will penalize entire features (through their weights) and result in a more thorough feature selection

process. By penalizing by group instead of individual weights, all weights related to an irrelevant

feature will be shrunk together and all weights grouped for relevant features will be kept with more

defined weights. The following equations show how Standard Lasso (3) aims to minimize weights,

regardless of which feature they pertain to, whereas Group-Lasso (5) applies group-wise regulariza-

tion. The selected features in Group-Lasso will have more pronounced weights in their parameter

weights vector βg

Standard Lasso: min
β







L(X, y;β) + λ

p
∑

j=1

|βj |







(3)

L2-norm: ∥βg∥2 =

√

∑

j∈g

β2

j (4)
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Group-Lasso: min
β







L(Xg, y;βg) + λ

G
∑

g=1

√

|βg|∥βg∥2







(5)

Where:

• L(X, y;β) is the chosen loss function (often cross-entropy loss for classification settings).

• X is the matrix of inputs.

• y is the vector of target variables.

• β is the vector of coefficients (parameter weights).

• λ is the regularization parameter.

• G is the number of groups (or features).

• p is the total number of parameter weights.

• |βj | is the absolute value of the coefficient for the j-th feature

• βg is the vector of coefficients for the g-th group (feature).

• |βg| is the number of weights for the g-th vector βg.

• ∥βg∥2 is the L2-norm of the coefficients for the g-th group.

2.1.8 Fairness

The discussion on learning with spurious correlations, transfer learning and domain general-

ization, necessitates detailing fairness within the context of AI systems. As detailed in Mehrabi,

Morstatter, Saxena, Lerman, and Galstyan (2022), fairness becomes a concern when AI systems ex-

hibit discriminatory behavior due to biases developed during training. The paper explains that many

of these tools, developed for real-world applications, may often use data that reflects certain demo-

graphics, groups, or individuals. It is crucial to ensure they do not disproportionately disadvantage

any particular group.
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Zafar, Valera, Gomez-Rodriguez, and Gummadi (2019) provides a framework to limit these bi-

ases and discusses some fairness notions that may be useful in building less discriminative systems:

Disparate treatment necessitates decisions to be independent of sensitive attributes such as race or

gender; Disparate mistreatment where outcomes may differ because there may be different rates

of false positives and false negatives for individuals within a group who have a different sensitive

feature.

In the context of this thesis, fairness can be tied to the spurious correlation problem. One of our

goals is to limit inherent bias towards unstable features and use the right metrics to evaluate results,

striving towards a fair model. With the spurious attribute being labeled in a dataset, it can be used

to create groups with the target variable. For example, in the Waterbirds dataset, there were four

groups: land birds on land, land birds on water, water birds on land, and water birds on water. The

background serves as the spurious label. A large amount of the data consists of birds in their natural

habitat, but it also includes samples of birds outside their usual location. These small-sized groups

are considered minority groups and may be incorrectly classified if models do not consider the

spurious attribute and have inherent bias based on the type of background. To improve fairness, we

employ worst-group accuracy (WGA) as a measure to quantify changes in the accuracy of minority

and majority groups.
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Chapter 3

Head2Toe-DFR

3.1 Related Works

Here we provide context and discuss works that were directly employed in our proposed method.

We consider a classification problem with a training set denoted by DTr = {(xi, yi)}
N
i=1

, where

xi ∈ X is the input and yi ∈ Y is its class label. For each data xi, there is a spurious attribute

value ai ∈ A of xi, where ai is non-predictive of yi, and A denotes the set of all possible spurious

attribute values. We denote by a group the pair g := (y, a) ∈ Y × A := G. Our goal is to learn

a parameterized model 1: fθ : X −→ Y that will maximize the expected accuracy and crucially

the worst performing group’s accuracy while avoiding learning spurious features. The worst-group

in terms of accuracy is often one scarcely present in the dataset. This means the model has not

been exposed to enough inputs from the group to adapt to its setting and may even have built biases

towards non-predictive elements frequently observed in the majority groups (groups with a larger

sample size throughout the dataset). This is why by improving upon worst-group accuracies, we

produce a more generalized model, capable of adapting to other unseen environments. We consider

a neural network model

fθ(.) = γ (h(.)) , (6)

where γ denotes its classifier layer and h denotes its feature network. Additionally, we denote by

DVal and DTe the validation and test sets, respectively. Assuming that we have the information of

1To simplify, we can omit subscripting parameters θ.
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groups on a sample D, we denote by DRW a balanced subset of D in which groups are uniformly

distributed, i.e., each group has the same number of examples.

3.1.1 Deep Feature Reweighting

Deep Feature Reweighting (DFR) Kirichenko et al. (2022) is a technique designed to mitigate

the influence of spurious features—the previously discussed non-predictive features that are highly

correlated with training targets but do not contribute meaningfully to the model’s generalizability.

DFR Training Phases.

DFR training involves two phases:

(1) Initial Training Phase: Initially, the model undergoes ERM using the unbalanced training

data (DTr), without information about the spurious attribute. During this phase, the model

learns both robust and non-robust features due to spurious correlations in the unbalanced

dataset. Since DTr is significantly larger than the balanced validation set (DRW
Val ), it serves

as the primary learning dataset, allowing the model backbone to effectively adapt parameter

weights to the target task despite developing a bias towards spurious features.

(2) Feature Reweighting Phase: In this phase, the feature network (h) is frozen, and the classi-

fier (γ) is retrained on a balanced validation set DRW
Val . Here, spurious attribute labels are used

to create groups (g := (y, a)), ensuring each group contains an equal number of samples.

Kirichenko et al. (2022) emphasize that retraining the last layer alone on DRW
Val is a cost-

effective step that achieves results comparable to other techniques addressing spurious learn-

ing. While the first phase facilitates the learning of important robust features, the reweighted

data training phase reduces reliance on unstable features.

The key takeaway from DFR is that a small validation set with spurious attribute labels is suffi-

cient for retraining purposes to reduce the inherited bias from ERM.

3.1.2 Head2Toe

Head2Toe Evci et al. (2022) is the efficient transfer learning method used as part of our pro-

posed model. It aims to select the most useful features from intermediate layers that better transfer
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Figure 3.1: Layer activations processing. Each layer activations go through 1D/2D strided average

pooling, flattening and normalization. The result is then concatenated with similar results from other

layers (Evci et al. (2022)

)

to a target or downstream task. Initially, as there is no insight on which features to select, Head2Toe

concatenates all processed feature maps (activations) from intermediate layers. The processing for

the activations in each layer (3.1) is 1D or 2D average strided pooling followed by flattening and

normalization to retain feature magnitudes and differences between layers (Evci et al. (2022)). Fol-

lowing this processing for all features, the resulting vectors are concatenated to produce hAF . This

serves as a basis of the set of features to filter through until those deemed most important are iden-

tified. Denoting the corresponding parameter weights for hAF as WAF , the paper explains that this

will be an immense weights matrix which can be quite expensive to tune.

This is where Head2Toe levarages the aforementioned Group-Lasso Regularization (2.1.7) .

Here, the L2-norm (4) will be the score for each row (feature) in WAF and will be the source for

ranking features in terms of importance. Using a threshold τ , Head2Toe can select the most useful

features (highest score rankings) that better transfer to the downstream task. It has been shown

that this method for transfer learning usually performs better than only retraining the linear head.

Head2Toe emphasizes it is especially beneficial for tasks differing significantly from the source
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task. These are labeled as low domain affinity tasks.

DomainAffinity = AccNaiveTL − AccS (7)

Where:

• AccNaiveTL is the accuracy of training a new output head onto a pretrained model (2.1.4)

• AccS is the accuracy of training the model from scratch

A low domain affinity would suggest that the target task is noteably out-of-distribution relative

to the source task. This implies training the model from scratch is resulting in better results than

using a pre-existing feature embedding and training a new output head on it. This then implies that

the target task features are largely different than the pretrained ones. The gain in performance from

Head2Toe in out-of-distribution settings shows the usefulness of searching for intermediate layer

features during the feature extraction process. In the following sections, we denote by hH2T the

feature network found by the Head2Toe method.

3.2 Method

Finetuning pretrained network to 
downstream task

�2

�3 �4

DTr

Head2Toe Features Selection
�1 �2

DVal 
RW

�3 �4

DFR with selected features classifier�1 �1 �2

DVal 
RW

�3
�4

Finetuning pretrained network to 
downstream task

�2

�3 �4

DTr

�1 DFR with selected features classifier�1 �2

DVal 
RW

�3
�4

Figure 3.2: Top Row - H2T-DFR Illustration of the different training phases for H2T-DFR. A

pre-trained network is tuned on a target task using unbalanced data followed by Head2Toe feature

selection with balanced training data. Balanced data consists of equal counts of group Gi, where

each group is a unique combination of target and spurious features. Lastly, a classifier comprised

of selected features is trained on an unseen validation dataset. Bottom Row - DFR Illustrates the

DFR baseline method in comparison, which excludes any feature selection
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Algorithm 1 Spurious Head2Toe (H2T-DFR)

Input: training, validation, testing sets: DTr, DVal, DTe; percentage of selected features

τ ; number of epochs T1 and T2 and TDFR. Finetuning for a downstream taskInitialize

model with pre-trained model f = γ ◦ h Finetune γ and h on DTr for T1 epochs

Feature Selection

Initialize the Head2Toe model fH2T with classifier consisting of all layers Get the set of

most important features HFS using group lasso Evci et al. (2022) on DRW
Val with T2 epochs

(see Section 3.2)

Deep Feature Reweighting: Balanced data retraining

Initialize the fH2T through hH2T with only selected features HFS Freeze hH2T and retrain

the classifier gH2T on DRW
Val for TDFR epochs

This section describes our method H2T-DFR, which is summarized in Figure 3.2 and Algorithm

1. It consists of three phases detailed below: (1) unbalanced training (or finetuning) on all the

training data (2) balanced data feature selection and finally using the features for (3) balanced data

linear classifier training.

Unbalanced Finetuning. As in the DFR approach our method starts by simple fine-tuning on the

entire dataset using ERM on DTr, denoting this trained backbone as hpretrained.

Balanced Feature Selection and Classifier Training. We follow an approach similar to Head2Toe:

we concatenate all the features from all layers and perform a group lasso feature selection. Using

hpretrained, we initialize a Head2Toe model which will have the linear layer gH2T. It should be noted

that gH2T in this stage is a linear classifier layer with inputs from all intermediate features in the

network as described in the Head2Toe background section. gH2T is then trained on DRW
Val using a

group-lasso regularization loss. The regularization allows the model to adjust weights in terms of

importance, and the resulting weights can be used to calculate relevance scores si Evci et al. (2022),

where si are the l2 norms of the final weights of each feature of the hpretrained network. The final

features selected correspond to the ones with the top τ percent scores, and the corresponding sparse

network is denoted by hH2T.
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Worst-group accuracy Mean group accuracy

Dataset Method Mean (%) Mean (%)

NaiveTL 48.44± 1.02 82.79± 0.30

DFR 85.99± 0.74 91.58± 0.15

CelebA Affine-DFR 85.49± 0.70 91.55± 0.14

H2T-DFR (ours) 88.59± 0.48 91.87± 0.17

NaiveTL 86.23± 1.56 92.90± 0.46

DFR 92.76± 0.37 94.54± 0.21

Waterbirds Affine-DFR 89.02± 0.37 94.13± 0.08

H2T-DFR (ours) 90.85± 0.45 93.51± 0.06

NaiveTL 50.11± 0.54 75.27± 0.52

DFR 67.31± 2.61 78.09± 0.91

HAM10000 Affine-DFR 53.63± 2.84 76.72± 0.68

H2T-DFR (ours) 69.69± 1.84 78.23± 0.46

Table 3.1: Mean and worst-group performance over 5 seeds. Mean group accuracy averages over

all group accuracies.

With features selected, our final model is initialized using the sparse network hH2T, which con-

tains only selected features instead of all features from the pre-trained network. We denoted by

fH2T = gH2T ◦ hH2T the full head2Toe model alongside its classifier. It should be noted that the

classifier here, gH2T, is a new linear layer with inputs hH2T features selected in Part 1. The back-

bone is frozen and gH2T trained on DRW
Val , where each batch has equal group counts and removes

the ability for the model to build a bias towards minority groups. The resulting model is what we

denote H2T-DFR. The difference here being that although DRW
Val has been used for feature selection

previously and is composed of equal group counts in each batch, more importantly, it has never

been introduced to the model for parameter updates. During our experiments, we observed that a

balanced dataset alone does not improve results. It is also required that the dataset has never been

previously used to train the model as in DFR.
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3.3 Experiments

We now discuss our experimental results. We focus our comparison to DFR which has shown

to be a powerful technique that can outperform existing methods such as groupDRO Izmailov et al.

(2022). We propose another baseline to compare to DFR and H2T-DFR, specifically Affine-DFR.

This approach mimics DFR and does not have an explicit feature selection phase. Similar to DFR,

Affine-DFR uses a balanced training phase but adapts only the affine parameters of batch-norm

layers.

Experiments for DFR, Affine-DFR and H2T-DFR were run over 5 seeds and table 3.1 shows

their respective performance on CelebA Z. Liu, Luo, Wang, and Tang (2015), Waterbirds Sagawa et

al. (2020a), and HAM10000 Hermann et al. (2020); Zong, Yang, and Hospedales (2023). The pre-

trained model employed is ResNet-50 He et al. (2016). Hyperparameters were selected to reproduce

result from the respective papers employed. For spuriousH2T, there is further hyperparameter tuning

done starting from the hyperparameters in table C as there is added complexities such as feature

selection fraction and layer target size to consider along with the different learning rates across the

3 training phases. Hyperparameters were originally set according to papers referenced for baseline

results and further tuned through a hyperparameter search similar to the DFR paper Kirichenko et

al. (2022).

Results. Our results shown in Tab. 3.1 are with the use of a balanced dataset for feature selection.

We observe improvement in the worst group accuracy for HAM10000 and CelebA, whereas Water-

birds does not show improvement from H2T features, the result being very close to that of the basic

DFR. We note however that this dataset is known to be simpler than the others considered. Indeed,

for Waterbirds, it was already observed that ImageNet pre-trained models already contain robust

features to easily get ≈ 88% of worst-group accuracy by just retraining the classifier Izmailov et al.

(2022). CelebA’s worst-group accuracy increased by 2.60% from our method relative to the baseline

(DFR). The medical dataset HAM10000 shows a 2.38% increase in worst-group accuracy. With all

3 datasets, the mean across group accuracies did not show a noticeable difference between the 3

methods.

To gain insight into the feature selection step, we illustrate the features selected depending on
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Figure 3.3: HAM10000 and H2T-DFR: Layerwise proportion of features extracted among the

overall top 5% features selected using balanced (top) and unbalanced data (bottom) for feature

selection. Layer depth displayed on the x-axis illustrates a minimal amount of features selected

from early layers while most attributes are retained from deeper layers. Note: The y-axis value for

each layer represents the portion of features selected from a given layer relative to the total number

of features selected



depth for HAM1000 in figure 3.3 (but note similar trends are observed in the other datasets). This

illustrates that despite not relying solely on the penultimate layer for feature selection, the most

crucial information is found towards the end layers of the network. We also compare to a feature

selection done on unbalanced data and observe that this tends to select more features from lower

layers, which we attribute to the presence of strong spurious features in lower layers that may be

selected for the unbalanced problem setting.

3.3.1 Ablation

Ablation testing was performed to determine whether the improvements in WGA are due to an

increase in the number of features being used or if the actual features selected have a significant

impact on performance. This was done by running experiments on the CelebA dataset by randomly

selecting embeddings from the ResNet-50 backbone during the Head2Toe feature extraction phase

and running the remainder of the algorithm as described in 1.

Average WGA (%)

H2T-DFR(Random) 71.47± 2.30

H2T-DFR 81.12± 0.75

Table 3.2: Ablation testing results on CelebA dataset with τ = 56%. Average worst-group accuracy

is over 5 seeds.

We observed a drop in WGA (3.2) of 9.65% relative to our proposed method when using a

randomized feature selection step. For the ablation testing, τ was set to 56% as with a larger amount

of features selected, the impact of the selection process is more pronounced. We note that along

with H2T-DFR(Random) under performing, H2T-DFR also declined in WGA (compared to 3.1).

This could indicate that by forcing the model to select a larger subset of features, the possibility of

unstable features being chosen increases, leading to a decline in WGA. We conclude that the feature

selection process is an essential step and motivates research into other feature selection methods as

discussed in section 5.1. It also suggests that there are in fact unstable features since when random

features are selected, the model performance is compromised. This may be due to the model relying

on non-predictive elements as they are most likely to be among those selected when arbitrarily
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chosen.
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Chapter 4

Head2Toe with Linear Tuning

This chapter serves as a deeper look into the effectiveness of Head2Toe when combined with

other transfer learning methods to improve overall average accuracy (as opposed to WGA in previ-

ous sections).

4.1 Background

We performed experiments on combining Head2Toe with the ideas presented in Ren, Guo,

Bae, and Sutherland (2023). This paper takes a different approach at the transfer learning problem

by shifting focus on the output head instead of the network’s backbone. It acoomplishes this by

first linear tuning and then finetuning to diminish large disruptions to pretrained weights. Using

a random initialization of weights in the output head could cause significant disruptions in the

pretrained weights during the initial training steps, where the model is forced to drastically adjust

to reduce loss in subsequent steps.

For out-of-distribution tasks, full finetuning can destabilize pretrained parameters due to larger

losses observed from the initial training steps as the model is forced to make drastic changes to

correct for the large distribution shift (Kumar, Raghunathan, Jones, Ma, and Liang (2022)). This

paper by Kumar et al. (2022) performs experiments comparing three different approaches on both

in-distribution and out-of-distribution. Firstly, it shows that for in-distribution tasks, full finetuning

outperforms the NaiveTL 2.1.4 method of only training the output head on a frozen backbone.
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However, full finetuning suffers in performance for out-of-distribution tasks, where as NaiveTL is

able to achieve better results as it utilizes a frozen backbone and therefore cannot affect pretrained

weights by the large distribution shifts. Their Linear Probing and Finetuning (LP-FT) method

outperforms on in-distribution and out-of-distribution tasks both of the other two methods by having

a Linear Tuning step, which trains a customized linear head roughly adapted to the target task.

They are then able to attach this customized linear head to a pretrained backbone and perform full

finetuning.

With low domain affinity relative to the source task from the pretrained model, the initial shift

in the feature extractor weights would be drastic compared to a high domain affinity set. For this

reason, a potential solution is as follows:

(1) Linear Tuning Step: Initially, train an output head on the chosen pretrained network and stop

training at a certain threshold before loss and accuracy fully converge to produce a custom

output head

(2) Model Reset: With pretrained weights set back to their original values(e.g. through a newly

initialized model), connect the backbone to the custom output head.

(3) Finetune: Train the new model until convergence to finetune weights and adapt to down-

stream task

With this approach, the Model Reset will consist of an output head headed into the right direc-

tion, which in turn will reduce arbitrary fluctuations in parameter weights.

4.2 Method

Linear Tuning followed by full finetuning, as shown in Kumar et al. (2022)has proven to en-

hance generalization capabilities of models by reducing large disruptions that would otherwise be

present if the model was fully tuned on an out-of-distribution task. We aim to see if similar benefits

can be found when the linear head is not only derived from the last layer, and includes intermediate

layer information as in Head2Toe.
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Dataset Method Mean Accuracy(%)

EuroSAT H2T-FT 95.33

H2T-LT (ours) 95.24

Flowers102 H2T-FT 85.69

H2T-LT (ours) 85.56

SVHN H2T-FT 84.19

H2T-LT (ours) 84.41

Table 4.1: Mean test accuracy over 5 seeds.

4.2.1 Head2Toe with Linear Tuning (H2T-LT)

The proposed method, H2T-LT, begins with the Heda2Toe steps as described in 3.1.2 until

feature selection is complete with a pre-trained ResNet-50 He et al. (2016). Following feature

selection, a new Head2Toe model is initialized and given the set of selected features to produce its

extended linear layer head which will be used for classification. At this point, we perform the Linear

Tuning step (4.1) to produce our custom output head. A new Head2Toe model is initialized once

again with the same selected features as well as the custom output head weights from the previous

phase. It is then fully trained to convergence and produces our final results.

4.3 Results

H2T-LT experiments were performed for the following datasets from Zhai et al. (2020): Eu-

roSAT, Flowers102 and SVHN.

As seen in 4.1, there is a negligible difference in performance between our H2T-LT method and

regular Head2Toe with finetuning (H2T-FT).

Results suggest that there is no noticeable gain (or loss) in performance between the two meth-

ods but H2T-LT does have an extra step which we conclude to be unnecessary (given the results).

The shortcomings of this method can be explained through the framework Head2Toe relies on.

When building a linear output head from intermediate layers of a pre-trained network, the selected

features possess parameter weights that are not arbitrary and are in fact heavily tuned on some

source task. This eliminates the need to have an linear tuning phase and thus we see there is no
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additional gain or loss in performance. With the output head weights being from the pre-trained

backbone, the model is less prone to large fluctuations in parameter weights and any changes are

simply to adapt to the target task, as opposed to correcting for some random initialization.
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Chapter 5

Conclusions and Future Work

In this thesis we studied the problem of efficient transfer learning in the presence of spurious

correlation. We propose H2T-DFR, a three-stage method that leverages Head2Toe (an efficient

transfer learning method) Evci et al. (2022), and incorporate it in the pipeline of DFR Kirichenko

et al. (2022), a state-of-the-art method to fight against spurious correlation. With Head2Toe pro-

viding a novel way of extracting intermediate layers and DFR reducing spurious feature bias, the

combination of these methods proved to be an effective approach. H2T-DFR selects the most trans-

ferable features from all layers before applying DFR. Experiments on standard evaluation bench-

marks demonstrate that H2T-DFR improves DFR, showing that efficient transfer learning methods

can boost the worst-group predictive performance of robust-to-spurious correlation methods.

We further experiment and expand Head2Toe by incorporating Linear Tuning ideas presented

in Ren et al. (2023). This proved to be ineffective and a redundant process as the features extracted

from Head2Toe were not initialized randomly (set weights sourced from pretrained backbone),

rendering the Linear Tuning step unnecessary.

5.1 Future Work

Finally, we discuss future direction and areas to expand upon based on the experiments and

studied literature.
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5.1.1 Extensions to Natural Language Settings

A large part of this thesis consisted of leveraging the novel idea presented in Head2Toe of

making use of intermediate features for vision problems. This idea can be further explored for

natural language models.

Implementing Head2Toe with the BERT (Bidirectional Encoder Representations from Trans-

former) model presented by Devlin, Chang, Lee, and Toutanova (2019) would be a sensible direc-

tion to explore the idea of leveraging intermediate features. BERT, as explained in the paper, is

designed to be transferable on various tasks through a new output layer, which means the backbone

architecture can remain stable (similar to the RESNET-50 which does not need to change for vision

experiments conducted). With differences in architecture and large language models requiring sig-

nificantly higher computation power, there remain certain points to consider to adapt Head2Toe for

natural language settings.

(1) Model size. With a larger model, the number of parameters at play is quite large in compar-

ison to the RESNET-50 employed for vision problems. The BERT base model is composed

of 110 million parameters, whereas the large BERT model has 340 million parameters (De-

vlin et al. (2019)). This is in comparison to the approximately 25.6 million parameters in

RESNET-50 (He et al. (2016)). The larger parameter count signifies a larger net of features

to cover during feature selection, meaning the Group-Lasso Regularization (2.1.7 step which

requires training with all parameters in a single matrix would be computationally expensive.

This motivates the need for a different feature selection approach.

(2) Feature Selection. Model size will affect computation capabilities, and one of the ways

to reduce this load is through a feature selection approach better suited for large language

models. 5.1.2 discusses some advanced methods but an alternative approach would be to

make use of a PEFT method such as LoRA (2.1.5) that can reduce the number of parameters

to tune when considering the large matrix in the Group-Lasso step.

After adapting Head2Toe for language problems, there remains many viable directions to fur-

ther improve performance such as combining Head2Toe, as per our proposed method, with DFR to

reduce effects of spurious correlations.
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5.1.2 Advanced Feature Selection

Feature selection in this thesis follows what is proposed in Head2Toe and leaves space for

further consideration.

Zhou, Jin, and Hoi (2010) provides a stricter form of Group-Lasso regularization, named Exclu-

sive Lasso. The added complexity comes from imposing competition within the groups themselves

(as opposed to between groups) and adjusts weights within groups so only most important compo-

nents retain importance. They prove this to be an effective approach for multi-task feature selection

and thus could be of interest when applying the ideas in this thesis to such settings. Two-layer

feature reduction method (TLFre) for Sparse-Group Lasso by Wang and Ye (2014) details a compu-

tationally efficient way of removing groups and features deemed insignificant to reduce load during

optimization. It directly addresses the problem of computational issues with larger complex systems

and could prove to be a powerful way of dealing with feature selection when considering Head2Toe

for natural language tasks. Zhang et al. (2025) suggests LLM-Lasso as a way to leverage context

from natural language and provide better direction for the Lasso regularization by tuning the penal-

ties applied to feature parameter weights based on what the LLM deems an important feature.
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A Appendix

Waterbirds CelebA HAM10000

Optimizer SGD SGD SGD

Learning Rate 0.003 0.0005 0.0003

Weight Decay 0.0004 0.0001 0.0001

Momentum 0.9 0.9 0.9

DFR Learning Rate 0.0001 0.0001 0.0005

DFR Weight Decay 0.0001 0.0001 0.0004

DFR Momentum 0.9 0.4 0.9

DFR Optimizer SGD SGD SGD

Epochs 20 6 100

DFR Epochs 100 50 500

Batch Size 32 128 128

Table A: DFR - Hyperparameter setting for the 3 datasets presented.
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Waterbirds CelebA HAM10000

Optimizer SGD SGD SGD

Learning Rate 0.003 0.0005 0.0003

Weight Decay 0.0004 0.0001 0.0001

Momentum 0.9 0.9 0.9

DFR Learning Rate 0.0001 0.0001 0.0005

DFR Weight Decay 0.0001 0.0001 0.0004

DFR Momentum 0.9 0.4 0.9

DFR Optimizer SGD SGD SGD

Epochs 20 6 100

DFR Epochs 100 50 500

Batch Size 32 128 128

Table B: Affine-DFR - Hyperparameter setting for the 3 datasets presented

Waterbirds CelebA HAM10000

Optimizer SGD SGD SGD

Learning Rate 0.0005 0.0005 0.0003

Weight Decay 0.0004 0.0001 0.0001

Momentum 0.9 0.9 0.9

DFR Learning Rate 0.0005 0.0005 0.0005

DFR Weight Decay 0.0003 0.0003 0.0004

DFR Momentum 0.9 0.9 0.9

DFR Optimizer SGD SGD SGD

Regularization Coefficient 0.00001 0.00001 0.0001

Epochs 70 20 100

DFR Epochs 500 300 500

Batch Size 32 128 128

Table C: H2T-DFR - Hyperparameter setting for the 3 datasets presented
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