
Towards LLM-Driven Code Generation: The Impact of
Process Models and Non-Functional Requirements on

Software Development

Feng Lin

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Science (Master of Applied Science Software Engineering) at

Concordia University

Montréal, Québec, Canada

May, 2025

© Feng Lin, 2025



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Feng Lin

Entitled: Towards LLM-Driven Code Generation: The Impact of Process Models

and Non-Functional Requirements on Software Development

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Master of Applied Science Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Yang Wang

Examiner
Dr. Emad Shihab

Examiner
Dr. Yang Wang

Supervisor
Dr. Tse-Hsun (Peter) Chen

Approved by
Joey Paquet, Chair
Department of Computer Science and Software Engineering

2025
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science



Abstract

Towards LLM-Driven Code Generation: The Impact of Process Models and
Non-Functional Requirements on Software Development

Feng Lin

Research on LLM-based code generation is growing but often overlooks the impact of Software

Engineering (SE) knowledge, such as software process models and non-functional requirements

(NFRs). This thesis explores how integrating SE practices with LLMs can help bridge this gap.

We first propose FlowGen to explore the impact of software process models on code generation.

We assign LLM agents to different development roles and study three models: FlowGenWaterfall,

FlowGenTDD, and FlowGenScrum. We evaluate FlowGen using GPT-3.5, comparing it against several

baselines on four code benchmarks (i.e., HumanEval, HumanEval-ET, MBPP, and MBPP-ET). Our

results show that FlowGenScrum outperforms the other process models, achieving a 15% improve-

ment in Pass@1 over RawGPT on average. Integrating a state-of-the-art technique (i.e., CodeT)

further boosts Pass@1 scores. Our findings also show that development activities impact code qual-

ity differently, and FlowGen enhances result stability across LLM versions and temperature settings.

Secondly, we investigate how variations in developer behavior affect how LLMs address NFRs

(e.g., expressing the same NFR using different wording). Robust LLMs should generate consistent

code despite such variations. We propose RoboNFR to evaluate LLM robustness in NFR-aware

code generation across four key dimensions—code design, performance, readability, and reliabil-

ity—using three methodologies: prompt variation, regression testing, and diverse workflows. Our

experiments show that RoboNFR effectively reveals robustness issues in tested LLMs. Overall,

across the three methodologies, incorporating NFRs tends to reduce Pass@1 scores while improv-

ing NFR-specific metrics, but also increases the standard deviation in both correctness and quality.

This thesis highlights the significant influence of software process models and NFRs, empha-

sizing the need for future work to incorporate such SE knowledge in the era of LLMs.
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Chapter 1

Introduction

1.1 Motivation

Recent research has extensively explored how Large Language Models (LLMs) can enhance

code generation, particularly in addressing complex coding challenges and improving code correct-

ness (Fan et al., 2023; J. Liu et al., 2024; Q. Zhang et al., 2024; Z. Zhang et al., 2024; Zheng et al.,

2024). Some LLM-based services—such as ChatGPT (OpenAI, 2023), GitHub Copilot (Copilot,

2024a), and Cursor (Cursor, 2024)—have become increasingly integrated into modern development

workflows. These tools are now widely adopted to assist developers in software development, par-

ticularly code generation tasks.

Current research has focused on enhancing the code generation capabilities of LLMs, partic-

ularly in terms of both functional and non-functional requirements (NFRs). For example, some

studies rely on prompt-based techniques: Huang, Bu, Qing, and Cui (2024) introduce Chain-of-

Thought prompting to improve code correctness through step-by-step reasoning, while Waghjale,

Veerendranath, Wang, and Fried (2024) explore how prompt engineering can ensure correctness

while also boosting code execution speed. Other studies adopt agent-based approaches. For in-

stance, Dong, Jiang, Jin, and Li (2023) propose a multi-agent system involving communication

between a developer, tester, and analyst to improve code correctness, and Nunez, Islam, Jha, and

Najafirad (2024) employ agents to enhance code security. Overall, these works primarily focus on

prompt-based or agent-based techniques to improve the accuracy and quality of generated code.
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Although these papers provide valuable insights, most existing studies emphasize syntactic cor-

rectness or benchmark scores, while rarely exploring the integration of LLMs into structured soft-

ware engineering practices. For example, real-world development teams often follow software pro-

cess models such as Waterfall or Scrum. The impact of deploying LLMs within such teams and

their development activities remains largely unexplored. Similarly, real-world teams care not only

about code correctness but also may use LLMs to address NFRs. Practical aspects such as prompt

selection and the effectiveness of LLMs across different NFR dimensions are still underexplored

and deserve further study.

Some studies have attempted to incorporate software engineering knowledge into code gener-

ation research. For example, Hong et al. (2024) introduce MetaGPT to explore how LLMs can be

integrated into the Waterfall model. However, the reason behind choosing Waterfall as the workflow

remains unclear, and whether better-suited workflows exist is still an open question. Furthermore,

their study focuses on how the Waterfall workflow affects code correctness, while largely ignor-

ing code quality metrics. Similarly, important details related to LLM usage—such as temperature

settings, model version selection, and prompt design—are also not discussed.

Hence, motivated by prior studies and the growing importance of applying LLMs in real-world

software development scenarios, this thesis presents a set of investigations aimed at providing in-

sights for both LLM users and developers. We conduct our study from two key perspectives: the

integration of LLMs into Software Process Models and the robustness of LLMs in NFR-aware

code generation. Based on these perspectives, we propose a series of approaches to investigate how

these factors influence LLM-generated code and to offer practical insights for future applications.

1.2 Thesis Overview and Contributions

The main research in this thesis is organized into two chapters, and this section offers an

overview of both, highlighting their contributions and providing a brief summary of each chapter.
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Chapter 2: SOEN-101: Code Generation by Emulating Software Process Models Us-

ing Large Language Model Agents

In this chapter, we investigate how LLM code generation capabilities vary when deployed within

different software process models. We introduce FlowGen, a framework designed to evaluate mod-

els such as FlowGenWaterfall, FlowGenTDD, and FlowGenScrum by assigning LLM agents to distinct

software development roles. We compare the code generated across these workflows and analyze

how specific development activities influence the outcomes. Furthermore, we examine how varia-

tions in temperature settings and model versions affect the results of these workflows. In addition,

we incorporate some State-Of-The-Art (SOTA) techniques with the studied workflows to demon-

strate how they can be combined to achieve better results.

Overall, FlowGen provides a practical framework for future studies to easily explore how work-

flow configurations impact LLM-generated code. Additionally, our findings offer guidance such

as workflow selection, development activity prioritization, and temperature settings that should be

considered when integrating LLMs into different development scenarios.

Chapter 3: Robustness of Large Language Models on Non-Functional Requirements

Aware Code Generation

In this chapter, we examine the robustness of LLMs in NFR-aware code generation, meaning we

evaluate how the generated code changes when users interact with LLMs in different ways to address

NFRs. To support this study, we present RoboNFR, which examines four NFR dimensions—code

design, readability, reliability, and performance—using three evaluation methodologies: prompt

variation, regression testing, and diverse workflows. Our findings reveal that different LLMs exhibit

varying degrees of change in their code generation capabilities under these conditions, highlighting

the robustness challenges of LLMs in NFR-aware code generation.

Overall, we show that existing LLMs face robustness issues in NFR-aware code generation.

RoboNFR provides a practical framework for monitoring the robustness of deployed LLMs, offer-

ing continuous quality assurance for LLM-based products. It offers insights for LLM users and

developers to select suitable prompts, apply robust model updates, and design workflows to guard

3



against unexpected output changes in their LLM-based products.

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 presents our study on software

process models, while Chapter 3 explores NFR-aware code generation using LLMs. Each section

includes subsections on methodology, evaluation, discussion, and related topics. In Chapter 4, we

summarize our findings, discuss key insights, and outline potential directions for future work.
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Chapter 2

SOEN-101: Code Generation by

Emulating Software Process Models

Using Large Language Model Agents

In this chapter, we explore a key aspect of software engineering knowledge: what happens when

LLMs are integrated into real-world software process models.

2.1 Abstract

Software process models are essential to facilitate collaboration and communication among soft-

ware teams to solve complex development tasks. Inspired by these software engineering practices,

we present FlowGen– a code generation framework that emulates software process models based on

multiple Large Language Model (LLM) agents. We emulate three process models, FlowGenWaterfall,

FlowGenTDD, and FlowGenScrum, by assigning LLM agents to embody roles (i.e., requirement en-

gineer, architect, developer, tester, and scrum master) that correspond to everyday development

activities and organize their communication patterns. The agents work collaboratively using chain-

of-thought and prompt composition with continuous self-refinement to improve the code quality. We

use GPT3.5 as our underlying LLM and several baselines (RawGPT , CodeT , Reflexion) to evalu-

ate code generation on four benchmarks: HumanEval, HumanEval-ET, MBPP, and MBPP-ET. Our
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findings show that FlowGenScrum excels compared to other process models, achieving a Pass@1

of 75.2, 65.5, 82.5, and 56.7 in HumanEval, HumanEval-ET, MBPP, and MBPP-ET, respectively

(an average of 15% improvement over RawGPT). Compared with other state-of-the-art techniques,

FlowGenScrum achieves a higher Pass@1 in MBPP compared to CodeT , with both outperforming

Reflexion. Notably, integrating CodeT into FlowGenScrum resulted in statistically significant im-

provements, achieving the highest Pass@1 scores. Our analysis also reveals that the development

activities impacted code smell and exception handling differently, with design and code review

adding more exception handling and reducing code smells. Finally, FlowGen models maintain sta-

ble Pass@1 scores across GPT3.5 versions and temperature values, highlighting the effectiveness

of software process models in enhancing the quality and stability of LLM-generated code.

2.2 Introduction

The recent surge of Large Language Models (LLMs) has sparked a transformative phase in pro-

gramming and software engineering. With tools like ChatGPT (OpenAI, 2023) or LLaMA (Tou-

vron et al., 2023), researchers have demonstrated the potential of LLMs in generating commit mes-

sages (Y. Zhang et al., 2024), resolving merge conflicts (Shen, Yang, Pan, & Zhou, 2023), generating

tests (Schäfer, Nadi, Eghbali, & Tip, 2023; Xie, Chen, Zhi, Deng, & Yin, 2023; Yuan, Lou, et al.,

2023), method renaming (AlOmar, Venkatakrishnan, Mkaouer, Newman, & Ouni, 2024), and even

facilitating log analytics (L. Ma et al., 2024; Z. Ma, Chen, Kim, Chen, & Wang, 2024).

Among all development activities, code generation has received much attention due to its poten-

tial to reduce development costs. As LLMs are becoming increasingly integral to software devel-

opment, various techniques have emerged in LLM-based code generation. For example, prompting

techniques like few-shot learning (Kumar & Talukdar, 2021; Yuan, Liu, et al., 2023) have been

shown to improve code generation results. In particular, few-shot learning coupled with few-shot

sampling (Kang, Yoon, & Yoo, 2023; Z. Ma et al., 2024) or information retrieval augmented tech-

nique (J. Chen, Lin, Han, & Sun, 2023; Nashid, Sintaha, & Mesbah, 2023) have been shown to

improve code generation. Moreover, one can integrate personalization in the prompt, instructing

LLMs to be domain experts in a specific field, which can further improve LLM responses (Shao,
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Li, Dai, & Qiu, 2023; White, Hays, Fu, Spencer-Smith, & Schmidt, 2023). Such personalization

techniques highlight the potential of using multiple LLMs working together to assist in complex

software development activities.

Given the complexity of software development, LLM agents stand out among various LLM

techniques. Agents are LLM instances that can be customized to carry out specific tasks that repli-

cate human workflow (Dong, Jiang, et al., 2023; Hong et al., 2023). Recently, multi-agent systems

have achieved significant progress in solving complex problems in software development by emu-

lating development roles (Dong, Jiang, et al., 2023; Hong et al., 2023; Qian et al., 2023). MetaGPT,

introduced by Hong et al. (2023), integrated development workflow using standard operating pro-

cedures by assigning specific roles (e.g., a designer or a developer) to LLM agents. Dong, Jiang,

et al. (2023) developed self-collaboration, which assigns LLM agents to work as distinct “experts”

for sub-tasks in software development. Qian et al. (2023) proposed an end-to-end framework for

software development through self-communication among the agents.

Despite the promising applications of LLMs in automating software engineering tasks, it is

pivotal to recognize that software development is a collaborative and multi-faceted endeavor. In

practice, developers and stakeholders work together, following certain software process models like

Waterfall, Test-Driven-Development (TDD), and Scrum. Even though there is a common community

agreement on the pros and cons of each process model (Fowler, 2005), the impact of adopting these

process models for LLM code generation tasks remains unknown. In particular, will emulating

different process models impact the generated code quality in different aspects, such as reliability,

code smell, and functional correctness?

While some research has explored integrating multi-agents within LLM frameworks (Qian et al.,

2023; Y. Xu et al., 2023; Yang, Yue, & He, 2023), their research focus diverges from the influence

of the software process model on code generations for several reasons: 1) Y. Xu et al. (2023) do not

adhere to specific process models, and 2) both Dong, Jiang, et al. (2023) and Qian et al. (2023) focus

solely on Waterfall-like models, neglecting TDD and Scrum, which may have different impact on

code generations. Importantly, none of the aforementioned studies conduct a fine-grain analysis of

how different development activities affect code quality metrics, such as code smell and reliability,

other than the Pass@1 score. Our study takes further steps to analyze the impacts of different agents
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within the process models on code generation and their influence on other code quality attributes.

This research presents a novel multi-agent LLM-based code generation framework named Flow-

Gen. FlowGen integrates diverse prompt engineering techniques, including chain-of-thought (J. Li,

Li, Li, & Jin, 2023; Wei et al., 2022), prompt composition (P. Liu, Yuan, Fu, Jiang, et al., 2023;

Yuan, Lou, et al., 2023), and self-refinement (Madaan et al., 2024), with a focus on emulating the

flow of development activities in various software process models. Specifically, we implemented

three popular process models into FlowGen: FlowGenWaterfall, FlowGenTDD, and FlowGenScrum.

Each process model emulates a real-world development team involving several LLM agents whose

roles (i.e., requirement engineer, architect, developer, tester, and scrum master) correspond to com-

mon software development activities. The agents work collaboratively to produce software artifacts

and help other agents review and improve the artifacts in every activity.

We evaluate FlowGen on four popular code generation benchmarks: HumanEval (M. Chen et

al., 2021), HumanEval-ET (Dong, Ding, et al., 2023), MBPP (Austin et al., 2021), and MBPP-

ET (J. Liu, Xia, Wang, & Zhang, 2023). We apply zero-shot learning to avoid biases in selecting

few-shot samples (J. Xu et al., 2022). To compare, we also apply zero-shot learning on GPT-3.5 as

our baseline (RawGPT). We repeat our experiments five times to account for variability in LLM’s

responses and report the average value and standard deviation. To study code quality, in addition to

Pass@1, we run static code checkers to detect the prevalence of code smells in the generated code.

Our evaluation shows that FlowGenScrum’s generated code achieves the highest accuracy (Pass@1 is

75.2 for HumanEval, 65.5 for HumanEval-ET, 82.5 for MBPP, and 56.7 for MBPP-ET), surpassing

RawGPT’s Pass@1 by 5.2% to 31.5%. While FlowGen, in general, is more stable than RawGPT ,

FlowGenScrum exhibits the most stable results with an average standard deviation of only 1.3%

across all benchmarks.

Additionally, we compare FlowGenScrum with state-of-the-art techniques: CodeT (B. Chen et al.,

2023) and Reflexion (Shinn, Cassano, Gopinath, Narasimhan, & Yao, 2024). Both FlowGenScrum

and CodeT outperform Reflexion significantly in terms of Pass@1 across all benchmarks, with

FlowGenScrum achieving a higher Pass@1 than CodeT in MBPP. Furthermore, the integration of

CodeT into FlowGenScrum demonstrates the highest Pass@1, highlighting the potential of integrat-

ing other techniques with FlowGen for improved code generation.
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We further study the impact of each development activity on code quality. We find that removing

the testing activity in the process model results in a significant decrease in Pass@1 accuracy (17.0%

to 56.1%). Eliminating the testing activity also leads to a substantial increase in error and warning

code smell densities. We also find that the design and code review activities reduce refactor and

warning code smells, and improve reliability by adding more exception handling code. Neverthe-

less, FlowGen consistently outperforms RawGPT by reducing code smells and enhancing exception

handling. Finally, we find that the GPT model version plays a significant role in the quality of gen-

erated code, and FlowGen helps ensure stability across different versions of LLMs and temperature

values.

We summarize the main contributions as follows:

(1) Originality: We introduce a multi-agent framework called FlowGen, incorporating software

process models from real-world development practice. We integrate agents acting as require-

ment engineers, architects, developers, testers, and scrum masters, and study how their inter-

action improves code generation and code quality.

(2) Technique: We integrate prompt engineering techniques like chain-of-thought, prompt com-

position, and self-refinement to facilitate interactions among the agents. We implement three

recognized process models: FlowGenWaterfall, FlowGenTDD, and FlowGenScrum, but the tech-

nique can be easily extended to emulate other process models or development practices (e.g.,

DevOps).

(3) Evaluation: We conduct a fine-grained evaluation on the quality of the generated code using

four popular code generation benchmarks: Humaneval (M. Chen et al., 2021), Humaneval-

ET (Dong, Ding, et al., 2023), MBPP (Austin et al., 2021), MBPP-ET (J. Liu et al., 2023),

comparing agent interactions and their effect on both accuracy (Pass@1) and other code qual-

ity metrics (e.g., smells). We manually checked the generated code and discussed the reasons

for test failures. Finally, we examined how model versions and temperature settings affect

code generation stability.

(4) Data Availability: To encourage future research in this area and facilitate replication, We

made our data and code publicly available online (Anonymous, 2024).
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Organization. Section 2.3 discusses background and related work. Section 2.4 provides the details

of FlowGen. Section 2.5 evaluates our FlowGen. Section 2.6 provides a discussion on future work.

Section 2.7 discusses threats to validity. Section 2.8 concludes the study.

2.3 Background & Related Works

In this section, we discuss the background of software process models and LLM agents. We

also discuss related work on LLM-based code-generation.

2.3.1 Background

Software Development Process. Software development processes encompass methodologies and

practices that development teams use to plan, design, implement, test, and maintain software. The

primary goal of a software process is to assist the development teams in producing high-quality

software. Generally, different software process models involve the same set of development activ-

ities, such as requirement, design, implementation, and testing, but differ in how the activities are

organized. Because of the variation, each software process model has its strengths and weaknesses

based on the project type, teams, and experience (Fowler, 2005).

In particular, three well-known and widely adopted software process models were created over

the years: Waterfall, Test-Driven-Development (TDD), and Scrum. Waterfall (Bassil, 2012) is often

used in safety-critical systems where development teams must adhere to a linear path, and each

software development activity builds upon the previous one. TDD and Scrum are both variants of the

agile development model. Compared to Waterfall, agile process models focus more on iterative and

incremental development and adapting to change. TDD (Maximilien & Williams, 2003) emphasize

writing tests before writing the actual code to improve software design and quality. Scrum highlights

the importance of collaboration and communication in software development. Scrum prescribes for

teams to break work into time-boxed iterations called sprints. During these sprints, teams focus on

achieving specific goals (e.g., user stories), ensuring a continuous discussion among teams to handle

any unexpected risks throughout the development process.
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LLM Agents. LLM agents are artificial intelligence systems that utilize LLM as their core compu-

tational engines to understand questions and generate human-like responses. LLM agents can refine

their responses based on feedback, learn from new information, and even interact with other AI

agents to collaboratively solve complex tasks (Hong et al., 2023; Park et al., 2023; Qian et al., 2023;

Y. Xu et al., 2023). Through prompting, agents can be assigned different roles (e.g., a developer or

a tester) and provide more domain-specific responses that can help improve the answer (Hong et al.,

2023; Shao et al., 2023; White et al., 2023).

One vital advantage of agents is that they can be implemented to interact with external tools.

When an agent is reasoning the steps to answer a question, it can match the question/response with

corresponding external tools or APIs to construct or refine the response. For instance, an LLM agent

that represents a data analysis engineer can apply logical reasoning to generate corresponding SQL

query statements, invoke the database API to get the necessary data, and then answer questions

based on the returned result. When multiple LLM agents are involved, they can collaborate and

communicate with each other. Such communication is essential for coordinating tasks, sharing

insights, and making collective decisions. Hence, defining how the agents communicate can help

optimize the system’s overall performance (Xi et al., 2023), allowing agents to undertake complex

projects by dividing tasks according to their domain-specific skills or knowledge.

The software development process plays a crucial role in software development, fundamentally

involving communication among various development roles. Given the demonstrated capability

of Large Language Model (LLM) agents to mimic domain experts in specific fields (Hong et al.,

2023; Qian et al., 2023; White et al., 2023), this study leverages LLM agents to represent diverse

development roles and conduct their associated duties. Our research establishes a collaborative

team of LLM agents designed to emulate these process models and roles, aiming to enhance code

generation.

2.3.2 Related Works

Code generation is a thriving field of research because of its potential to reduce development

costs. In particular, prompt-based and agent-based code generation techniques are two of the most

prevalent directions.
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Prompt-based Code Generation. Prompt-based code generation employs a range of techniques to

refine prompts, ultimately leading to the generation of expected code. For example, J. Li et al. (2023)

propose using structured prompts containing code information (e.g., branch and loop structures) to

improve the generated code. Nashid et al. (2023) retrieval code demos similar to the given task and

include them in the prompt to improve code generation. Ruiz, Grishina, Hort, and Moonen (2024)

use translation techniques for program repair, where buggy programs are first translated into natural

language or other programming languages. The translated code is used as a prompt to generate

new/fixed code with the same feature. Schäfer et al. (2023) iteratively refine prompts based on

feedback received from interpreters or test execution results. Kang et al. (2023) provide specific

instructions, test method signature, and bug report as part of the prompt for generating test code

to reproduce bugs. Xie et al. (2023) parse the code to identify the focal method and related code

context, which are given in the prompt for test code generation. Yuan, Lou, et al. (2023) apply

a prompt composition technique by first asking an LLM to provide a high-level description of a

method, and then the description is used as part of the prompt to enhance test code generation.

B. Chen et al. (2023) introduced CodeT , a framework that employs self-generated tests to evaluate

the quality of generated code. Shinn et al. (2024) presented Reflexion, which utilizes an evaluator

LLM to provide feedback for enhancing future decision-making processes.

Agent-based Code Generation. Agent-based code generation emphasizes on the importance of

role definition and communication among multiple LLM agents. Some approaches incorporate

external tools as agents. For example, Huang, Bu, Zhang, Luck, and Cui (2023) introduce the

test executor agent, employing a Python interpreter to provide test logs for LLMs. Zhong, Wang,

and Shang (2024) introduces a debugger agent that utilizes a static analysis tool to build control

flow graph information, guiding LLMs in locating bugs. Meanwhile, other studies (Dong, Jiang, et

al., 2023; Hong et al., 2023; Qian et al., 2023) task LLMs as agents by emulating diverse human

roles, including analysts, engineers, testers, project managers, chief technology officers (CTOs),

etc. Nevertheless, these studies miss key roles in the development activities (e.g., only has analysts,

coders, and testers (Dong, Jiang, et al., 2023)) or focus more on the business side of the roles (e.g.,

employ CTO and CEO) (Qian et al., 2023). In our work, we try to follow the Waterfall model

that is proposed in the software engineering literature and create agents that correspond to every
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Figure 2.1: An overview of FlowGenWaterfall, FlowGenTDD, and FlowGenScrum.

development activity. These approaches follow the Waterfall model to communicate among these

roles, with variation in the prompts and roles, ultimately improving code generation.

In comparison, our research leverages LLM agents to emulate multiple software development

process models, while prior research focuses only on the Waterfall model (Dong, Jiang, et al.,

2023; Hong et al., 2023; Qian et al., 2023). We implement several prompting techniques, but more

importantly, we emphasize on how various process models and the associated development activities

affect the generated code. Different from prior works which only study functional correctness, we

study several additional dimensions of code quality, including code design, code smell, convention

issues, and reliability. We also explore why the generated code fails the tests and the sensitivity of

the results across LLM model versions and temperature values.

2.4 Methodology

We propose FlowGen, an agent-based code generation technique based on emulating different

software processes. Figure 2.1 shows the overview of FlowGen: (1) define the roles and their

responsibilities; (2) use LLM agents to represent these roles; and (3) complete the interactions

among these agents according to the software process models. In each development activity, we

implement chain-of-thought and self-refinement to improve the quality of the generated artifacts.
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In particular, we study and compare three software process models: Waterfall, TDD, and Scrum.

Nevertheless, FlowGen can be easily adapted to different process models. We use zero-shot learning

in all our experiments to avoid biases in selecting data samples. Below, we discuss FlowGen in

detail.

2.4.1 Using LLM Agents to Represent Different Development Roles in Software Pro-

cess Models

In FlowGen, we create LLM agents who are responsible for the main development activities:

requirement, design, implementation, and testing. Hence, to emulate a software process model,

we reorganize the communication and interaction among different agents. The benefit of such a

design is that it maximizes the extensibility and reusability of the agents, and FlowGen can be

easily adapted to different process models. We implement four agents whose role corresponds to

the common development activities: Requirement Engineer, Architect, Developer, and Tester. For

Scrum, we introduce an additional role – Scrum Master.

We designed these roles to use the same prompt template across different process models (with

different terms such as user stories v.s. requirement) to investigate the effectiveness of process mod-

els on code generation. The exact words that we used for the prompts can be found online (Anony-

mous, 2024). The role-specific details of our prompt are:

1 {

2 "Role": "You are a [role] responsible for [task]",

3 "Instruction": "According to the Context please [role-specific instruction]",

4 "Context": "[context]"

5 }

In this prompt template (inspired by MetaGPT (Hong et al., 2023) and Self-Collaboration (Dong,

Jiang, et al., 2023)), role refers to one of the roles (e.g., Requirement Engineer) that corresponds

to the development activity, and task describes the duties for the role (e.g., analyze and cre-

ate requirement documents). Instruction leverages chain-of-thought reasoning (J. Li et al.,

2023; Wei et al., 2022) and refers to role-specific instruction listed in steps, such as 1) analyzing

the requirement and 2) writing the requirement documentation. Finally, Context contains the
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programming question, the agent conversation history, or the agent-generated artifacts. Context

includes all necessary information that helps the agents to make a next-step decision based on the

current conversation and generated results.

Table 2.1 shows the tasks, instructions, and contexts for every development role. In

general, every role takes the output from the prior development activities as input (i.e., context).

For example, an architect writes a design document based on the requirement document generated

by a requirement engineer. We design developers and testers to have multiple tasks. Developers are

responsible for writing code and fixing/improving the code based on suggestions. We design testers

using a prompt composition technique, which is shown to improve the LLM-generated result (P. Liu

et al., 2023; Yuan, Lou, et al., 2023). First, testers design a test. Then, testers write and execute

the tests based on the design. On average, FlowGen generates four tests for each problem before

the review meeting and six after the meeting. It is important to note that oracles are kept aside and

never used in the code-generation process. Finally, testers generate a test failure report.

Developers receive the test failure report to fix the code. In addition to the tasks described in

Table 2.1, all roles have one common task, which is to provide feedback to other roles for further

improvement (e.g., for code review).

2.4.2 Communications Among Agents

One of the most important aspects of LLM agents is how the agents communicate. A recent

survey paper (Xi et al., 2023) shows that one common communication pattern is sequential, i.e.,

ordered, where one agent communicates to the next in a fixed order. Another pattern is disordered,

where multiple agents participate in the conversation. Each agent gets the context separately and

outputs the response in a shared buffer. Then, the responses can be summarized and used in the

next decision-making process. Based on the software process models and the two aforementioned

communication patterns, we implement three interaction models for the agents: FlowGenWaterfall,

FlowGenTDD, and FlowGenScrum (Figure 2.1). The details of our multi-agent communication history

are available online (Anonymous, 2024).

FlowGenWaterfall

FlowGenWaterfall follows the Waterfall model and implements an ordered communication among
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Table 2.1: Tasks, instructions, and corresponding contexts that are used for constructing the prompts
for the development roles.

Role Task Instruction Context

Requirement
Engineer

Analyze and generate
requirement documenta-
tion from the context.

1) Analyze the requirement; and 2) Write a
requirement document.

Programming prob-
lem description.

Architect Design the overall struc-
ture and high-level com-
ponents of the software.

1) Read the context documents; and 2) Write
the design document. The design should be
high-level and focus on guiding the developer
in writing code.

Requirement docu-
ment.

Developer Write code in Python
that meets the require-
ments.

1) Read the context documents; and 2) Write
the code. Ensure that the code you write is
efficient, readable, and follows best practices.

Requirement and de-
sign documents.

Fix the code so that it
meets the requirements.

1) Read the test failure reports and code sug-
gestions from the context; and 2) Rewrite the
code.

Original code, test
failure report, and
suggestions for im-
provement.

Tester Design tests to ensure
the software satisfies
feature needs and qual-
ity.

1) Read context documents; and 2) Design
test cases.

Requirement and de-
sign documents.

Write a Python test
script using the unittest
framework.

1) Read the context documents; 2) Write a
Python test script; and 3) Follow the input and
output given by the requirement.

Test case design and
requirement docu-
ments.

Write a test failure re-
port.

1) Read the test execution result; and 2) Ana-
lyze and generate a test failure report.

Test execution result.

Scrum Mas-
ter

Summarize and break
down the discussion into
a task list for the scrum
team.

1) Read and understand the context; and 2)
Define the tasks for development roles.

Meeting discussion.

the agents. Given a programming problem, the problem goes through the requirement analysis,

design, implementation, and testing. One thing to note is that the test result from our generated tests

is redirected to the developer agent in our implementation of FlowGenWaterfall so developers can fix

and improve the code.

FlowGenTDD

In the design of FlowGenTDD, we follow the ordered communication pattern and organize the

development activities so that testing happens after design and before implementation. Once the

tests are written, the developer agent considers the test design when implementing the code. When
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the implementation is finished, we execute the tests. If a test fails, the developer agent is asked to

examine the code and resolve the issue.

FlowGenScrum

Compared to Waterfall and TDD, Scrum involves one additional role, the Scrum Master. There

are also additional Sprint meetings among the agents. Note that, different from FlowGenWaterfall, we

use the agile terminologies in the prompt (e.g., we use user story instead of requirement document)

when implementing FlowGenScrum. We follow a disordered communication pattern in the design of

FlowGenScrum, because, in sprint meetings, every development role can provide their opinion (e.g.,

to simulate the planning poker process). Every development role, except the Scrum Master, reads

the common context (e.g., description of the programming problem) from a common buffer. Then,

every role provides a discussion comment and is saved back in the buffer. Therefore, every role is

aware of all the comments. Then, the Scrum Master summarizes the entire discussion and derives a

list of user stories for each development role. During the sprint, similarly to Waterfall and TDD, the

four development roles carry out the development activities in sequence. At the end of the sprint,

the agents will start another sprint meeting to discuss the next steps, such as releasing the code or

needing to fix the code because of test failures.

Self-Refinement

We implement self-refinement (Madaan et al., 2024), which tries to refine the LLM-generated

result through iterative feedback, to further improve the generated artifacts from every development

activity. In all three variations of FlowGen, we assign other agents to review the generated artifacts

for every development activity and provide improvement suggestions. We assign the agents from

both the downstream activity and the tester to examine the generated artifacts and provide sugges-

tions. The suggestions are then considered for the re-generation of the artifacts. We include the

tester in every development activity to emulate the DevTestOps practice (Testsigma, n.d.), where

testers are involved in all development activities and provide feedback on the quality aspects. For

example, once a requirement engineer generates a requirement document, both the architect and

tester would read the document and provide suggestions for improvement. Then, the requirement

engineer will re-generate the requirement document based on the previously generated document

and suggestions. At the development and testing activity, the tester will generate a test failure report
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if any of the LLM-generated tests fail or if the code cannot be executed (e.g., due to syntax error).

The test failure report is then given to the developer for bug fixing. We repeat the process t times to

self-refine the generated code. In our implementation, we currently set t=3. If the code still cannot

pass the test, we repeat the entire software development process.

2.4.3 Implementation and Experiment Settings

Environment. We use GPT3.5 (version gpt-3.5-turbo-1106) as our underlying LLM due to its

popularity and wide usage in code generation research (Dong, Jiang, et al., 2023; J. Li et al., 2023;

Shinn et al., 2024). We leverage OpenAI’s APIs (version 0.28.1) to interact with GPT. We send

prompts using JSON format (White et al., 2023) and send all the conversation history as part of

the prompt (Hong et al., 2023). We set the temperature value to 0.8 and explore the effect of the

temperature value in RQ3. We implemented FlowGen using Python 3.9.

Benchmark Datasets. We follow prior studies (J. Li et al., 2023; Zhong et al., 2024; Zhou,

Yan, Shlapentokh-Rothman, Wang, & Wang, 2023) and evaluate the code generation result us-

ing four benchmarks: HumanEval, HumanEval-ET, MBPP (Mostly Basic Python Programming),

and MBPP-ET. These benchmarks contain both the programming problems and tests for evalua-

tion. Given a programming problem, we consider that a generated code snippet is correct if it

can pass all the provided tests. HumanEval (M. Chen et al., 2021) has 164 programming prob-

lems, and MBPP (Austin et al., 2021) has 427 programming problems (we use the sanitized version

released by the original authors) and three test cases for each problem. We also use the dataset pub-

lished by Dong et al. (Dong, Ding, et al., 2023), where they use the same problems as HumanEval

and MBPP but offer stronger evaluation test cases (around 100 test cases for each problem, called

HumanEval-ET and MBPP-ET). All these benchmarks use Python as the programming language.

Each programming problem contains the INPUT pairs <method signature, method description, in-

voke examples> and expect the code as OUTPUT.

Evaluation Metric. To evaluate the quality of the generated code, we use the Pass@K met-

ric (M. Chen et al., 2021; Dong, Jiang, et al., 2023). Pass@K evaluates the first K generated code’s

functional accuracy (i.e., whether the generated code can pass all the test cases). In this work, we

set K=1 to evaluate if the first generated code can pass all the provided test cases. A Pass@1 of
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Table 2.2: Average and standard deviation of the Pass@1 accuracy across five runs, with the best
Pass@1 marked in bold. The numbers in the parentheses show the percentage difference compared
to RawGPT . Statistically significant differences are marked with a “*”.

HumanEval HumanEval-ET MBPP MBPP-ET

RawGPT 64.4±3.7 49.8±3.0 77.5±0.8 53.9±0.7

FlowGenWaterfall 69.5±2.3 (+7.9%)* 59.4±2.5 (+19.2%)* 76.3±0.9 (-1.5%) 51.1±1.7 (-5.2%)*

FlowGenTDD 69.8±2.2 (+8.4%)* 60.0±2.1 (+20.5%)* 76.8±0.9 (-1.0%) 52.8±0.7 (-2.1%)*

FlowGenScrum 75.2±1.1 (+16.8%)* 65.5±1.9 (+31.5%)* 82.5±0.6 (+6.5%)* 56.7±1.4 (+5.2%)*

100 means 100% of the generated code can pass all the tests in the first attempt. We use Pass@1

because it is a stricter criterion, reflecting situations where developers do not have the groundtruth

for automatically evaluating multiple attempts.

2.5 Results

We evaluate FlowGen with four research questions (RQs).

RQ1: What is the code generation accuracy of FlowGen?

Motivation. In this RQ, we emulate the three process models using LLM agents and compare their

results on code generations. Such results may provide invaluable evidence for future researchers

seeking to optimize process models for code generation within their specific business domain.

Approach. As a baseline for comparison, we directly give the programming problems to ChatGPT

(which we refer to as RawGPT). Although prior works (Kang et al., 2023; Le & Zhang, 2023;

J. Li et al., 2023; Nashid et al., 2023) show that few-shot learning can improve the results from

LLMs, they can be biased on how the few-shot samples are selected (J. Xu et al., 2022). Hence,

we use zero-shot learning in our experiment. To control for randomness in the experiment, we

ensure all these experiments use the same temperature value (t=0.8) and the same model version

(gpt-3.5-turbo-1106). Finally, we repeat each FlowGen five times and report the average Pass@1

and standard deviation across the runs. We also conduct a student’s t-test to study if FlowGen’s

results are statistically significantly different from RawGPT .

Result. FlowGenScrum shows a consistent improvement over RawGPT, achieving 5.2% to 31.5%
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improvement in Pass@1. Table 2.2 shows the Pass@1 accuracy of FlowGen across different pro-

cess models on the benchmark datasets studied. As shown in the Table 2.2, for HumanEval and

HumanEval-ET, all of the studied process models have 7.9% to even 31.5% improvement in Pass@1

compared to RawGPT , and the improvements are all statistically significant (p <= 0.05). For MBPP

and MBPP-ET, FlowGenScrum also has statistically significant improvements of 5.2% to 6.5%, even

though we see a slight decrease when adopting FlowGenWaterfall and FlowGenTDD to MBPP and

MBPP-ET.

Despite slight variations in code generation responses form LLM across executions, we find

stable standard deviations of Pass@1, ranging from 0.6% to 3.7% across all process models

and benchmarks. In particular, FlowGenScrum has the lowest standard deviation (0.6% to 1.9%,

an average of 1.2%), while RawGPT has the highest standard deviation (0.5% to 3.7%, an average

of 2%). Following FlowGenScrum, FlowGenWaterfall has the second highest standard deviation, with

FlowGenTDD is ranking third. In conclusion, although the models generally have consistent Pass@1

across runs, FlowGenScrum consistently produces the most stable results.

There are potential issues in the tests provided by the benchmarks, which may hinder the Pass@1

of FlowGen. Table 2.3 provides a breakdown of failure types from the Python Interpreter (Python,

2005) across various process models and benchmarks. For example, IndexError happens when

the generated code does not handle an out-of-bound index, causing an exception to be thrown. While

we repeat our experiment 5 times, the standard deviation across runs is low; hence, we represent

test failure from only one of the runs. Aligned with the findings from Table 2.2, FlowGenScrum

has the lowest AssertionError compared to other models (i.e., higher pass rate). We also no-

tice that SyntaxError is more evident in RawGPT , as expected due to the absence of a code

review and testing process. However, there are still higher test failures in FlowGenWaterfall and

FlowGenTDD caused by increased occurrences of ValueError, TypeError, IndexError

and NameError, for MBPP and MBPP-ET as seen in Table 2.3. Upon manual investigation of

prevalent test failures types, we discover that FlowGenWaterfall and FlowGenTDD introduce vari-

ous validations and enforce programming naming conventions in the generated code, which

may help improve code quality but cause tests to fail. For example, Listing 2.1 depicts the pro-

vided tests and the generated code for MBPP-582, of which the objective is to “Write a function to
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Table 2.3: FlowGen test failure categorization. Failure types are generated from Python Inter-
preter (Python, 2005). Darker red indicates higher percentages of the failure categories in the gen-
erated code across the models. Percentages are calculated by the ratio of specific failure types to the
total number of failed tests across different process models.

Failure Categories

Benchmarks Model Assertion Syntax Name Type Index Value Recursion Attribute Total

HumanEval RawGPT 36 (24%) 18 (100%) 11 (58%) 2 (17%) 2 (50%) 1 (12%) 0 (0%) 0 (0%) 70 (33%)

Waterfall 39 (26%) 0 (0%) 3 (16%) 3 (25%) 0 (0%) 1 (12%) 0 (0%) 0 (0%) 46 (22%)

TDD 39 (26%) 0 (0%) 4 (21%) 3 (25%) 1 (25%) 5 (62%) 0 (0%) 0 (0%) 52 (24%)

Scrum 38 (25%) 0 (0%) 1 (5%) 4 (33%) 1 (25%) 1 (12%) 0 (0%) 0 (0%) 45 (21%)

HumanEval-ET RawGPT 39 (21%) 9 (82%) 13 (43%) 1 (25%) 4 (57%) 2 (18%) 0 (0%) 0 (0%) 68 (27%)

Waterfall 49 (26%) 1 (9%) 7 (23%) 0 (0%) 1 (14%) 3 (27%) 0 (0%) 0 (0%) 61 (24%)

TDD 50 (26%) 1 (9%) 6 (20%) 2 (50%) 1 (14%) 4 (36%) 0 (0%) 0 (0%) 64 (25%)

Scrum 52 (27%) 0 (0%) 4 (13%) 1 (25%) 1 (14%) 2 (18%) 0 (0%) 0 (0%) 60 (24%)

MBPP RawGPT 66 (23%) 7 (70%) 7 (41%) 7 (25%) 2 (67%) 0 (0%) 1 (100%) 1 (50%) 91 (26%)

Waterfall 76 (27%) 1 (10%) 5 (29%) 6 (21%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 88 (25%)

TDD 86 (30%) 1 (10%) 5 (29%) 8 (29%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 100 (29%)

Scrum 58 (20%) 1 (10%) 0 (0%) 7 (25%) 1 (33%) 0 (0%) 0 (0%) 1 (50%) 68 (20%)

MBPP-ET RawGPT 133 (24%) 8 (57%) 22 (26%) 26 (24%) 2 (50%) 3 (8%) 1 (100%) 1 (100%) 196 (24%)

Waterfall 148 (27%) 2 (14%) 22 (26%) 27 (25%) 0 (0%) 15 (39%) 0 (0%) 0 (0%) 214 (27%)

TDD 147 (27%) 2 (14%) 23 (27%) 28 (26%) 1 (25%) 10 (26%) 0 (0%) 0 (0%) 211 (26%)

Scrum 123 (22%) 2 (14%) 18 (21%) 28 (26%) 1 (25%) 10 (26%) 0 (0%) 0 (0%) 182 (23%)

check if a dictionary is empty or not”. While RawGPT passed the provided tests, FlowGenWaterfall

and FlowGenTDD failed. This failure is because the generated code contains strict input valida-

tion to check that the input should be of type dict. However, the MBPP-582 provided test uses

an input of the type set, which fails the validation, causing a TypeError exception. Moreover,

FlowGenWaterfall and FlowGenTDD enforce the common naming convention format and more mean-

ingful function name (e.g., my_dict v.s. is_dict_empty), both of which causes NameError

exception due to wrong function declaration, causing test failure. More interestingly, we find that

such code standardization may also be misled by the requirement provided by the benchmark itself.

For example, the MBPP-582 requirement specifies expected input as dict, yet provides a set

type as the input to the test. The LLM code generation indeed captures this correct requirement by

validating that input must be of type dict. Such inconsistency in the benchmark may reduce the
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Pass@1.

1 # MBPP-582: check if a dictionary is empty

2 # MBPP Test Case

3 def Test():

4 assert my_dict({10})==False # {10} is a set not a dict

5 # rawGPT’s answer

6 def my_dict(dict1):

7 return len(dict1) == 0

8 # Waterfall/TDD’s answer, the input type must be a dict

9 def is_dict_empty(input_dict): # function name is renamed from my_dict

10 if not isinstance(input_dict, dict):

11 raise TypeError("Input is not a dictionary")

12 return True if not input_dict else False

Listing 2.1: MBPP-582 Test Failure due to Strict Input Validation and Wrong Function Name.

In MBPP-794 (Listing 2.2), test cases provided by MBPP-ET change the return value from a

boolean (as is the case in MBPP) to the string “match!”. Moreover, in MBPP-797, MBPP-ET’s

test capitalized the last word in uppercase (range v.s. “R”ange). Such non-standard evaluation

leads to unfair test results (leads to failure), which may bias the experimental results for MBPP-ET.

Such bias suggests that the decrease in Pass@1 rates for MBPP-ET is not solely due to an increase

in the number of provided tests.

1 # Example1: Changed return type from boolean to string

2 assert text_starta_endb("aabbbb") # MBPP 794

3 assert text_starta_endb("aabbbb")==(’match!’) # MBPP-ET 794

4 # Example2: Capitalized the last character in function name

5 assert sum_in_range(2,5) == 8 # MBPP-797

6 assert sum_in_Range(2,5) == 8 # MBPP-ET-797

Listing 2.2: MBPP-794 & MBPP-797 Test Failure due to Irregularity in Test Cases.

Fixing the issues largely improve FlowGen’s Pass@1: 16 to 28 improvement in HumanEval,

29 to 35 in HumanEval-ET, 15 to 21 in MBPP, and 28 to 42 in MBPP-ET. Namely, FlowGen’s

Pass@1 can achieve over 90 to 95 across all benchmarks. Even though we also observe improve-

ment in RawGPT’s Pass@1, the three FlowGen models had greater improvement. On average, the

three models have a Pass@1 that is 14%, 8%, 1.4%, and 5% better than RawGPT in HumanEval,
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HumanEval-ET, MBPP, and MBPP-ET, respectively.

The results underscore the deficiencies in the benchmarks, suggesting that the current Pass@1

score of FlowGen could represent a lower bound. These preliminary findings highlight the potential

of FlowGen and suggest that future research should improve the benchmarks by incorporating input

checking or consistent naming convention into the tests and subsequently re-evaluate existing code

generation techniques.

FlowGenScrum achieves the best results, with a Pass@1 that is 5.2% to 31.5% better than RawGPT .

FlowGenScrum also has the most stable results (average standard decision of 1.3% across all bench-

marks) among all models. Notably, while FlowGenWaterfall and FlowGenTDD enhance code qual-

ity, such improvements may result in test failures.

RQ2: How do different development activities impact the quality of the generated

code?

Motivation. As observed in RQ1, various process models can indeed affect the functional correct-

ness (Pass@1) of the generated code. However, it is equally crucial to understand code quality

issues such as code smells and the impact of a development activity on the generated code. This un-

derstanding is essential for assessing whether the generated code adheres to industry best practices.

Moreover, such insight may offer valuable opportunities for enhancing the design, readability, and

maintainability in auto-generated code.

Approach. To study the impact of each development activity on code quality, we remove each ac-

tivity separately and re-execute FlowGen. For example, we first remove the requirement activity

in FlowGenWaterfall and execute FlowGenWaterfall. Then, we add the requirement activity back and

remove the design activity. We repeat the same process for every development activity. Note that

we cannot remove the coding activity since our goal is code generation. Hence, we removed code

review at the end of the coding activity.

Code quality considers numerous facets beyond mere functional correctness (Yamashita & Moo-

nen, 2012; Yetiştiren, Özsoy, Ayerdem, & Tüzün, 2023). Other factors, such as code smells, main-

tainability, and readability, are also related to code quality. Hence, to gain a comprehensive un-

derstanding of how code quality changes, we 1) apply a static code analyzer to detect code smells
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Table 2.4: Pass@1 and Error/Warning/Convention/Refactor/Handled-Exception density (per 10
lines of code) in the full FlowGen (with all the development activities) and after removing a de-
velopment activity. A lower error/warning/convention/refactor is preferred, and a higher handled-
exception is preferred. Darker red indicates a larger decrease in percentages, while darker green
indicates a larger increase in percentages.

Model Dev. Activities

HumanEval MBPP

Pass@1 Error Warning Convention Refactor
Handled

Pass@1 Error Warning Convention Refactor
Handled

Exception Exception

RawGPT – 64.4 0.25 0.19 0.39 0.30 0.00 77.47 0.22 0.20 1.18 0.30 0.01

FlowGenWaterfall

full 69.5 0.01 0.12 0.24 0.21 0.37 76.35 0.03 0.12 0.47 0.23 0.67

rm-requirement -1.2 (1.7%) 0.0 (0.0%) -0.01 (8.3%) -0.02 (8.3%) -0.01 (4.8%) -0.06 (16.2%) +0.7 (0.9%) -0.02 (66.7%) -0.02 (16.7%) 0.0 (0.0%) +0.02 (8.7%) -0.09 (13.4%)

rm-design -1.2 (1.7%) +0.01 (100.0%) +0.02 (16.7%) +0.02 (8.3%) 0.0 (0.0%) -0.15 (40.5%) -1.64 (2.1%) -0.01 (33.3%) 0.0 (0.0%) +0.02 (4.3%) +0.01 (4.3%) -0.2 (29.9%)

rm-codeReview -2.4 (3.5%) 0.0 (0.0%) 0.0 (0.0%) -0.03 (12.5%) +0.02 (9.5%) -0.09 (24.3%) +0.46 (0.6%) -0.02 (66.7%) +0.07 (58.3%) -0.02 (4.3%) -0.02 (8.7%) -0.17 (25.4%)

rm-test -39.0 (56.1%) +0.17 (1700.0%) +0.01 (8.3%) +0.07 (29.2%) +0.1 (47.6%) +0.1 (27.0%) -23.7 (31.0%) +0.09 (300.0%) +0.05 (41.7%) +0.36 (76.6%) +0.01 (4.3%) -0.01 (1.5%)

FlowGenTDD

full 69.8 0.01 0.08 0.33 0.27 0.33 76.77 0.04 0.13 0.71 0.28 0.62

rm-requirement -2.9 (4.2%) +0.01 (100.0%) +0.01 (12.5%) 0.0 (0.0%) -0.03 (11.1%) -0.1 (30.3%) +1.92 (2.5%) -0.02 (50.0%) +0.02 (15.4%) +0.03 (4.2%) 0.0 (0.0%) -0.27 (43.5%)

rm-design -2.9 (4.2%) 0.0 (0.0%) +0.02 (25.0%) -0.06 (18.2%) +0.03 (11.1%) -0.13 (39.4%) +1.22 (1.6%) -0.02 (50.0%) -0.03 (23.1%) -0.03 (4.2%) +0.04 (14.3%) -0.24 (38.7%)

rm-codeReview -0.5 (0.7%) -0.01 (100.0%) +0.02 (25.0%) -0.04 (12.1%) +0.03 (11.1%) -0.09 (27.3%) +0.98 (1.3%) -0.03 (75.0%) +0.01 (7.7%) -0.05 (7.0%) +0.1 (35.7%) -0.09 (14.5%)

rm-test -11.9 (17.0%) +0.07 (700.0%) +0.04 (50.0%) -0.02 (6.1%) -0.05 (18.5%) -0.1 (30.3%) -17.3 (22.5%) +0.11 (275.0%) +0.14 (107.7%) +0.16 (22.5%) -0.01 (3.6%) +0.16 (25.8%)

FlowGenScrum

full 75.2 0.00 0.13 0.21 0.24 0.15 82.48 0.02 0.17 0.51 0.23 0.44

rm-requirement +1.0 (1.3%) 0.0 (0.0%) 0.0 (0.0%) +0.05 (23.8%) -0.01 (4.2%) +0.09 (60.0%) -1.92 (2.3%) +0.01 (50.0%) 0.0 (0.0%) +0.01 (2.0%) -0.01 (4.3%) +0.04 (9.1%)

rm-design +1.0 (1.3%) 0.0 (0.0%) -0.02 (15.4%) -0.03 (14.3%) 0.0 (0.0%) -0.03 (20.0%) +0.89 (1.1%) -0.01 (50.0%) -0.04 (23.5%) +0.11 (21.6%) +0.03 (13.0%) -0.19 (43.2%)

rm-codeReview -2.0 (2.7%) 0.0 (0.0%) 0.0 (0.0%) -0.03 (14.3%) 0.0 (0.0%) -0.03 (20.0%) +0.19 (0.2%) 0.0 (0.0%) -0.01 (5.9%) +0.01 (2.0%) +0.06 (26.1%) -0.1 (22.7%)

rm-test -14.2 (18.9%) +0.03 (588.2%) +0.06 (46.2%) 0.0 (0.0%) -0.03 (12.5%) +0.07 (46.7%) -26.5 (32.1%) +0.13 (650.0%) +0.1 (58.8%) +0.41 (80.4%) -0.03 (13.0%) +0.14 (31.8%)

rm-sprintMeeting -1.6 (2.1%) 0.0 (0.0%) -0.01 (7.7%) -0.02 (9.5%) -0.03 (12.5%) +0.1 (66.7%) -3.09 (3.7%) 0.0 (0.0%) -0.02 (11.8%) +0.05 (9.8%) -0.01 (4.3%) +0.21 (47.7%)

in the generated code and 2) study code reliability by analyzing the exception handling code. To

study code smell, design, and readability, we apply Pylint 3.0.4 (Dasgupta & Hooshangi, 2017;

Team, n.d.) (a Python static code analyzer) on the generated code. Pylint classifies the detected

code smells into different categories such as error, warning, convention, and refactor.

We study how the number of detected code smells in each category changes when removing

an activity. Since the generated code may have different lengths, we report the density of the code

smells in each category. We calculate the code smell density as the total number of code smell

instances in a category (e.g., error) divided by the total lines of code. To study reliability, we

calculate the density of handled exceptions (total number of handled exceptions divided by the total

lines of code) since exceptions are one of the most important mechanisms to detect and recover

from errors (Fetzer, Felber, & Hogstedt, 2004). For better visualization, we present the density

results as per every 10 lines of code. We also ensure reliability of our results by repeating all of the

aforementioned approach three times.

Result. Testing has the largest impact on the functional correctness of the code, while other de-

velopment activities only have small impacts. Removing testing causes Pass@1 to decrease by

17.0% to 56.1%. Table 2.4 presents changes in Pass@1 and the densities of code smell and
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handled exceptions. We show the results for HumanEval and MBPP because they share the same

programming problems and generated code with the other two benchmarks. Among all develop-

ment activities, testing has the largest impact on Pass@1, where removing testing causes a large

decrease in Pass@1 (17.0% to 56.1% decrease). The finding implies that LLM’s generated tests

are effective in improving the functional correctness of code. In both benchmarks, removing sprint

meetings in FlowGenScrum also causes Pass@1 to drop. However, removing other activities only

has a small and inconsistent effect on Pass@1. For example, in HumanEval, removing requirement,

design, and code review generally causes Pass@1 to decrease (except for FlowGenScrum), but re-

moving these activities improves Pass@1 in MBPP. In other words, most development activities do

not significantly contribute to the functional correctness of the generated code.

As shown in Table 2.4, eliminating test activities significantly boosts error and warning smell

densities by an average of 702.2% and 52.2%, respectively. Omitting design raises refactor smell

density by an average of 7.1%, and skipping code review leads to a 14.2% average increase in warn-

ing density. However, removing other development activities shows either a small or inconsistent

impact. We also find some differences in the artifacts generated by different roles. For example, al-

though both roles generate documents, requirement engineers specify the acceptance criteria, while

architects address time/space complexity. In short, the findings show that adding design, testing,

and code review can help reduce the density of code smell in the generated code.

Having design and code review activities significantly improves reliability by increasing the den-

sity of handled exceptions, while other development activities only have small or no impacts.

Removing design and code review activities separately causes the handled exception density to de-

crease from 20.0% to 43.2% and 14.5% to 27.3%, respectively. Namely, these two activities add

exception handling in the generated code, which may help improve reliability. Removing other

activities shows a mixed relationship with the density of the handled exception. For example, re-

moving testing in FlowGenTDD causes an increase of handled exception density by 25.8% in MBPP

(i.e., testing removes exception handling code) while causing a decrease of 30.3% in HumanEval

(i.e., testing adds exception handling code). While the effect of each development may be related

to the nature of the benchmarks, our findings show that, in both benchmarks, adding design and

code review activities can help improve code reliability by handling more exceptions in the
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generated code.

FlowGen shows consistent improvement over RawGPT in the quality of the generated code: de-

creasing the density of error/warning/convention/refactor code smells (6.7% to 96.0%) while sig-

nificantly increasing handled exception density. The code generated by RawGPT has higher er-

ror/warning/convention/refactor code smell densities than that of FlowGenWaterfall, FlowGenTDD,

and FlowGenScrum. This finding shows all three models improve the quality of the generated code

to different degrees. Specifically, compared to RawGPT , FlowGen decreases the error code smell

density by 81.8% to 96.0%, warning density by 15.0% to 57.9%, convention density by 15.4% to

60.2%, and refactor density by 6.7% to 30.0%. Meanwhile, RawGPT has fewer handled exceptions

than FlowGen. As Table 2.4 shows, in both HumanEval and MBPP, RawGPT has almost zero han-

dled exception, while FlowGenWaterfall generates the most handled-exception (0.37 and 0.67 handled

exceptions per every 10 LOC in the two benchmarks), FlowGenTDD ranks second (0.33 and 0.62),

and then FlowGenScrum (0.15 and 0.44). In short, FlowGen improves the quality of the generated

code by reducing code smells while adding more exception-handling code.

Compared to RawGPT , FlowGen remarkably improves the quality of the generated code by re-

ducing code smells and adding more exception handling. Testing has the most significant impact

on Pass@1 and code smells among all development activities, while having design and code

review greatly improve the exception-handling ability.

RQ3: How stable is the FlowGen generated code?

Motivation. In LLM, the stability of generated responses can be influenced by several parameters:

1) temperature, affecting the randomness in the generated responses, and 2) model versions, which

may introduce variability due to changes in optimization and fine-tuning (L. Chen, Zaharia, & Zou,

2023a). Understanding and improving the stability of LLMs is crucial for enhancing their trustwor-

thiness, thereby facilitating their adoption in practice. Therefore, in this research question (RQ),

we investigate the stability of our FlowGen in Pass@1 across four benchmarks, considering various

temperature values and model versions.

Approach. We evaluate the Pass@1 of FlowGen across four versions of GPT3.5: turbo-0301, turbo-

0613, turbo-1106, and turbo-0125. The latest version is turbo-0125 (published in January 2024),

26



Figure 2.2: Pass@1 across GPT3.5 versions.

and the earlier version is turbo-0301 (published in March 2023). To avoid the effect of the model

version when we vary the temperature, we use the same model version (turbo-1106, the version that

we used in prior RQs) to study the effect of temperature values. We set the temperature to 0.2, 0.4,

0.6, and 0.8 in our experiment. We execute RawGPT and the three variants of FlowGen three times

under each configuration and report the average Pass@1.

Result. RawGPT has extremely low Pass@1 in some versions of GPT3.5, while FlowGen has

stable results across all versions. FlowGen may help ensure the stability of the generated code

even when the underlying LLM regresses. Figure 2.2 shows the Pass@1 for RawGPT and the three

FlowGen across GPT3.5 versions. In earlier versions of GPT3.5 (0301 and 0613), RawGPT has very

low Pass@1 on all benchmarks (e.g., 20 to 30 in HumanEval and HumanEval-ET). In 0301, MBPP’s

Pass@1 is even lower with a value around 5. The findings show that model version may have a

significant impact on the generated code. However, we see that, after adopting our agent-based

techniques, all three variants of FlowGen achieve similar Pass@1 across GPT3.5 versions. The

results indicate that FlowGen can generate similar-quality code even if we have an underperformed

baseline model.
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Figure 2.3: Pass@1 across temperature values.

All techniques have a relatively similar Pass@1 when the temperature value changes. Figure 2.3

shows the Pass@1 for all the techniques when the temperature value changes. There is a slight

downward trend for RawGPT when t increases, but the changes are not significant (Pass@1 is

decreased by 2 to 5). For FlowGen, and especially FlowGenScrum, we see similar Pass@1 regardless

of the temperature value. Although we see a slight increase in the Pass@1 of FlowGenScrum when

t=0.4 (2 to 5 higher compared to when t=0.8 across the benchmarks), the difference is small, and the

Pass@1 is almost the same when t is either the lowest (0.2) or largest value (0.8). In short, although

temperature values may have an impact on the generated code, the effect is relatively small for

FlowGen.
FlowGen generates stable results across GPT versions, while we see large fluctuations (14 times

difference) in RawGPT’s Pass@1. Pass@1 is generally consistent across all models when the

temperature value changes.
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RQ4: How does FlowGen compare with other techniques?

Motivation. FlowGen is designed to organize agents to emulate process models and can be combined

with other code generation techniques. However, it is crucial to evaluate its performance relative to

these techniques to assess the effectiveness in emulating software process models for code genera-

tion. While many code generation results use the same benchmarks, our evaluation results cannot be

directly compared with other agent-based code generation works (B. Chen et al., 2023; Hong et al.,

2023; Huang, Bu, & Cui, 2023; Huang, Bu, Zhang, et al., 2023; Shinn et al., 2024) due to missing

information on model versions, temperature values, post-processing steps, specific prompts, or the

selection of few-shot samples. Therefore, in this RQ, we compare FlowGenScrum with other LLM-

based baselines under the same environment settings. Moreover, we evaluate an integrated version

of FlowGenScrum to showcase how existing prompting techniques can be combined with FlowGen.

Approach. We compare against two state-of-the-art techniques: CodeT (B. Chen et al., 2023) and

Reflexion (Shinn et al., 2024). CodeT employs self-generated tests to evaluate the quality of gener-

ated code, which is similar to the testing phase of FlowGen. Reflexion is an agent-based technique

that achieves state-of-the-arts Pass@1 on the benchmarks. We apply these two using their released

code, replacing the LLM version and temperature with those used by FlowGenScrum, and repeat the

experiment five times.

Result. While FlowGenScrum and CodeT achieve similar results, with FlowGenScrum having a

higher Pass@1 in MBPP, they both have higher Pass@1 than Reflexion on all benchmarks (sta-

tistically significant). Table 2.5 shows the Pass@1 of the techniques. FlowGenScrum has a statisti-

cally significantly higher Pass@1 than CodeT in MBPP and similar Pass@1 in other benchmarks

(no statistically significant difference). Both techniques achieve higher Pass@1 than Reflexion (sta-

tistically significant). Reflexion’s MBPP results are even worse than RawGPT . This observation

aligns with the original study (Shinn et al., 2024) where reported similar performance degradation.

Integrating CodeT to FlowGenScrum further brings statistically significant improvements of Pass@1

by up to 5%. CodeT is a general technique where it repeats the code generation and selects the code

that passes the most self-generated tests. Hence, as a pilot study, we made the developer agent

repeats the implementation activity multiple times to produce several versions of the code (i.e.,
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Table 2.5: Average and standard deviation of Pass@1 across five runs, with the best Pass@1 marked
in bold.

HumanEval HumanEval-ET MBPP MBPP-ET

Reflexion 71.3±1.5 55.7±2.8 71.7±0.8 52.0±0.7

CodeT 75.7±0.4 66.9±0.4 79.9±1.3 56.7±0.9

FlowGenScrum 75.2±1.1 65.5±1.9 82.5±0.6 56.7±1.4

FlowGenScrum+Test 79.3±1.6 67.7±1.1 83.8±0.6 58.7±1.3

FlowGenScrum+Test). The developer agent then generates multiple test assertions to identify the ver-

sion with the highest pass rate. The selected code is subsequently submitted to the next stage: the

testing activity. Our findings indicate that FlowGenScrum+Test outperforms FlowGenScrum and CodeT ,

achieving an average Pass@1 score of 83.8, 58.3, 79.3, and 67.7 on HumanEval, HumanEval-ET,

MBPP, and MBPP-ET, respectively. This provides statistically significant improvement over both

FlowGenScrum and CodeT .

Our finding highlights the potential of FlowGen in boosting the performance of other code gen-

eration techniques (and vice versa). Future studies can refine FlowGen to incorporate enhancement

to each activity for further improvement.

To support these efforts, we have made our code publicly available (Anonymous, 2024) to facil-

itate further adoption and allow researchers to experiment with different software process models.

Both FlowGenScrum and CodeT outperform Reflexion in Pass@1 across all benchmarks, with

FlowGenScrum and CodeT demonstrating similar results. The incorporation of CodeT into

FlowGenScrum further enhances performance, achieving the highest Pass@1 scores, highlighting

the potential of FlowGen for code generation tasks.

2.6 Discussion & Future Works

Role of Human Developers in FlowGen. Although software process models were originally de-

signed for human-centric development rather than for LLMs, our empirical findings suggest that

certain elements of these processes can contribute to better code quality. Every activity in the pro-

cess model also has different impacts on the generated artifacts. Future research should examine the

incorporation of human developers into various phases of the code generation process. Specifically,
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humans can play critical roles in the following stages: (1) Pre-Execution of FlowGen: different

process models exhibit varying quality (e.g., smell and accuracy). Humans are instrumental in se-

lecting the most appropriate model for a given task. Humans are also essential in providing initial

requirements and design specifications. (2) During FlowGen Execution: Humans can oversee re-

view meetings and assist in reviewing/improving generated artifacts. For example, humans can

validate the generated requirements with product managers, or verify the quality of the generated

code by manual inspection and debugging. The improvement in each activity can also impact the

subsequent activities and, hence, affect the final artifacts. (3) Post-Execution of FlowGen: Follow-

ing the code-generation phase, humans can either accept the generated artifact or request further

refinements, offering additional requirements as needed to better meet project goals.

Quality of Code Generation Benchmarks We manually validated all coding problems that failed

the tests. We found that the majority of quality issues within the benchmark were in MBPP and

MBPP-ET (e.g., bad naming convention or inconsistent test definition). These issues may contribute

to reduced Pass@1 scores due to factors beyond logic in the code. It is also important to acknowl-

edge that other benchmarks might present unique challenges that could similarly affect Pass@1

evaluations. Hence, a crucial research direction is to conduct a thorough evaluation of benchmarks

for more diverse and accurate evaluations of code generation approaches.

2.7 Threats to Validity

Internal validity. Due to the generative nature of LLM, the responses may change across runs.

Variables such as temperature and LLM model version can also impact the generated code. We set

the temperate value to be larger than 0 because we want LLMs to be more creative. To mitigate the

threat, we execute the LLMs multiple times. As found in RQ1, the standard deviation of the results

is small, so the generated results should be consistent. In RQ3, we conducted the experiments

using different temperature and versions. The temperature only has a small effect on Pass@1, and

versions have a large impact on RawGPT . In RQ2, we study the impact of removing every activity.

However, having multiple activities may have a tandem effect that further improves code quality.

Future studies are needed to study the effects of different combinations of development activities in
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code generation.

External validity. We conduct our study using state-of-the-art benchmarks. However, as we dis-

cussed, there exist some issues in the provided tests. Moreover, the programming problems are

mostly algorithmic, so the findings may not generalize to other. Future studies should consider ap-

plying FlowGen on different programming tasks. We use GPT3.5 as our underlying LLM. Although

one can easily replace the LLM in our experiment, the findings may be different. Future studies on

how the results of FlowGen change when using different LLMs.

Construct validity. We implement an agent system that follows various software development

processes. However, there are many variations of the same process model, and some variations may

give better results. Future studies should explore how changing the process models affect the code

generation ability. One limitation is the correctness of the generated tests. However, we found that

the generated tests still contribute to improving the quality of the generated code. Similar findings

are reported on CodeT (B. Chen et al., 2023), where generating tests helps improve code correctness.

However, future studies should focus on further improving the generated tests by using traditional

software engineering techniques to estimate the oracles or select higher-quality tests (e.g., mutation

testing).

2.8 Conclusion

In this research, we emulate various roles in software development, using LLM agents, and

structuring their interactions according to established process models. We introduce FlowGen, a

framework that implements three renowned process models: FlowGenWaterfall, FlowGenTDD, and

FlowGenScrum. We evaluated how these models affect code generation in terms of correctness and

code quality on four benchmarks: HumanEval, HumanEval-ET, MBPP, and MBPP-ET. Our find-

ings show that FlowGenScrum notably enhances Pass@1 by an average of 15% over RawGPT , while

maintaining the lowest standard deviation (averaging 1.2%). Moreover, we find that development

activities such as design and code review significantly reduce code smells and increase the pres-

ence of handled exceptions. This indicates that FlowGen not only boosts code correctness but

also reduces code smells and improves reliability. Compared with other state-of-the-art techniques,
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FlowGenScrum and CodeT achieved similar results, with both outperforming Reflexion. Integrat-

ing CodeT into FlowGenScrum further resulted in statistically significant improvements, achieving

the highest Pass@1 scores. These insights pave the way for future research to develop innovative

development models tailored for LLM integration in software development processes.

In this study, we introduced FlowGen, a framework designed to emulate software process mod-

els using Large Language Model (LLM) agents, each representing roles such as requirement engi-

neers, architects, developers, and testers. We implemented three variations of FlowGen: FlowGenWaterfall,

FlowGenTDD, and FlowGenScrum. Our evaluation across four benchmarks–HumanEval, HumanEval-

ET, MBPP, and MBPP-ET–demonstrated the superior performance of FlowGenScrum, achieving up

to 31.5% improvement in Pass@1 over RawGPT .

Our results showed that incorporating software process models into LLM-based code generation

significantly enhances code correctness, reduces smells, and improves exception handling. Flow-

GenScrum consistently outperformed other models, achieving the highest Pass@1 and the lowest

standard deviation, indicating more stable and reliable code generation.

Additionally, our comparative analysis with state-of-the-art techniques revealed that FlowGen-

Scrum and CodeT achieved similar results, both outperforming Reflexion. Notably, integrating

CodeT into FlowGenScrum resulted in statistically significant improvements, achieving the highest

Pass@1. This highlights the robustness and potential of combining structured software development

practices with LLM capabilities.

Future research should focus on refining these models, incorporating more sophisticated inter-

actions, and expanding the scope of evaluation to include a broader range of development tasks

and environments. By doing so, we can better understand the capabilities of LLMs in software

engineering and improve their integration into practical development workflows.
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Chapter 3

RobuNFR: Evaluating the Robustness of

Large Language Models on

Non-Functional Requirements Aware

Code Generation

In Chapter 2, we observed that software engineering knowledge influences LLM code gener-

ation. For instance, different versions of GPT-3.5-turbo exhibited notable differences in Pass@1

scores. However, their impact on NFRs remains unclear. In this chapter, we further explore NFR-

aware code generation, with a focus on evaluating the robustness of LLM.

3.1 Abstract

When using LLMs to address Non-Functional Requirements (NFRs), developers may behave

differently (e.g., expressing the same NFR in different words). Robust LLMs should output con-

sistent results across these variations; however, this aspect remains underexplored. We propose

RoboNFR for evaluating the robustness of LLMs in NFR-aware code generation across four NFR

dimensions—design, readability, reliability, and performance—using three methodologies: prompt
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variation, regression testing, and diverse workflows. Our experiments show that RoboNFR reveals

robustness issues in the tested LLMs when considering NFRs in code generation. Specifically, under

prompt variation, including NFRs leads to a decrease in Pass@1 by up to 39% and an increase in the

standard deviation from 0.48 to 2.48 compared to the baseline without NFRs (i.e., Function-Only).

While incorporating NFRs generally improves overall NFR metrics, it also results in higher prompt

sensitivity. In regression settings, some LLMs exhibit differences across versions, with improve-

ments in one aspect (e.g., reduced code smells) often accompanied by regressions in another (e.g.,

decreased correctness), revealing inconsistencies that challenge their robustness. When varying

workflows, the tested LLMs show significantly different NFR-aware code generation capabilities

between two workflows: (1) integrating NFRs and functional requirements into the initial prompt

and (2) enhancing Function-Only-generated code with the same NFR.

3.2 Introduction

Code quality is a critical aspect of software development, alongside code correctness, and re-

quires developers to consider Non-Functional Requirements (NFRs) throughout the development

process. With the rise of Large Language Models (LLMs) (Q. Zhang et al., 2024), many LLM-based

services, such as ChatGPT (OpenAI, 2023), GitHub Copilot (Copilot, 2024a), and Cursor (Cursor,

2024), have become increasingly integrated into modern development workflows. These services

are now widely adopted for addressing code generation tasks related to NFRs, either by generating

new code with NFR considerations in mind or by enhancing existing code to meet those require-

ments.

In real-world scenarios, users employ LLMs to address NFRs in various ways. For example,

different users might use distinct prompts to express the same NFRs, and these variations can lead

to different outcomes, depending on the robustness of the LLM’s NFR-aware code generation ca-

pabilities. Figure 3.1 illustrates this scenario: for the same coding problem, the outcomes vary

depending on whether performance is considered, and further differences emerge when different

prompts are used to address performance requirements. Even when generated by the same LLM,

code generated without explicit performance requirements relies on exhaustive iteration, leading to
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{Task}                                         Model: gpt-3.5-turbo-0125         
                                                   Data: HumanEval-83
def starts_one_ends(n):
    """ 
    Given a positive integer n, return the count of the 
numbers of n-digit positive integers that start or end with 1.
    >>> starts_one_ends(1)
    1
    >>> starts_one_ends(2)
    18
    """

Performance - Prompt 1
Optimize for performance while solving the following code generation task: {Task}
1 def starts_one_ends(n):

2     if n == 1:

3     return 2

4     else:

5     return 2 * 9 * 10 ** (n - 2) + 10 ** (n - 1)

Test (AssertionError)
6 assert starts_one_ends(2) == 18

7 assert starts_one_ends(18) == 180000000000000000

Function-Only Performance - Prompt 2
Finish the following code generation task: {Task} Keep performance in mind while solving the following code generation task: {Task}

1 def starts_one_ends(n): 1 def starts_one_ends(n):

2     count = 0 2     if n == 1:

3     for i in range(10**(n-1), 10**n): 3     return 1

4     if str(i)[0] == '1' or str(i)[-1] == '1': 4     else:

5         count += 1 5     count = 2 * 9 * 10 ** (n - 2)

6     return count 6     return count

Test (TimeOut) Test (Pass)
7 assert starts_one_ends(2) == 18 7 assert starts_one_ends(2) == 18

8 assert starts_one_ends(18) == 180000000000000000 8 assert starts_one_ends(18) == 180000000000000000

Figure 3.1: Simplified examples of Generated Code: One Without Performance Considerations, and
Two With Performance Considerations Using Different Prompts.

a Timeout for large loop sizes. Moreover, even when performance is considered, Prompt 1 misleads

the LLM into generating code that improves speed but raises an AssertionError, whereas Prompt

2 achieves both correct functionality and enhanced performance. This motivates the necessity of

systematically evaluating LLMs’ NFR-aware code generation capabilities—such as by examining

how prompt variations affect the resulting code.

In this research, we introduce RoboNFR, an automated framework that evaluates the robust-

ness of LLMs in code generation while incorporating NFRs (i.e., NFR-aware code generation).

RoboNFR examines four commonly targeted dimensions of NFRs (Rasheed et al., 2024) and consid-

ers three methodologies for evaluating LLMs in NFR-aware code generation. Specifically, RoboNFR

examines NFR dimensions—including Code Design, Reliability, Readability, and Performance—using

associated metrics to evaluate the generated code. While considering these NFRs, RoboNFR intro-

duces the following methodology: 1) Prompt Variations—to examine how generated code correct-

ness and NFR quality change when users apply different prompts targeting specific NFR dimen-

sions; 2) Regression Testing—to investigate how an LLM’s NFR-aware code generation capabili-

ties evolve after updates to the same model; and 3) NFR-Aware Code Generation Workflows—to

explore how different workflows for applying LLMs to address NFRs affect the resulting code.
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Through these NFR dimensions and methodologies, RoboNFR is able to reveal potential robustness

issues in LLMs when generating code with NFR awareness.

We apply RoboNFR to three popular LLM families (Minaee et al., 2024; W. X. Zhao et al.,

2025) in our study: GPT-3.5-turbo and GPT-4o from OpenAI, and Claude-3.5 from Anthropic. Us-

ing four widely adopted coding benchmarks (Huang, Bu, Zhang, et al., 2023; Lin, Kim, Tse-Husn, &

Chen, 2024)—HumanEval, HumanEval-ET, MBPP, and MBPP-ET—we investigate the robustness

of each model using RoboNFR’s evaluation methodology. RoboNFR evaluates the robustness of

LLMs’ NFR-aware code generation capabilities by analyzing both functional correctness and NFR-

related metrics (i.e., code smells, readability, exception handling, and execution time), along with

their average values and STandard DEViations (STDEV). Our experimental results demonstrate

that RoboNFR effectively uncovers robustness issues in the tested LLMs through each methodol-

ogy. While code generation without considering NFRs (i.e., RawGPT) achieves stable Pass@1

scores (with an average STDEV of 0.48) across prompt variations, using different prompts to guide

LLMs in addressing NFRs can reduce Pass@1 scores by up to 39% compared to RawGPT . It also

results in a significantly higher STDEV of 2.48, indicating greater variation and reduced robust-

ness. Incorporating NFRs in the prompt generally helps improve NFR quality metrics. However,

NFR metrics, especially related to readability and exception-handling, are more sensitive to prompt

variation, where they have higher STDEV across prompts.

We found that different versions of the LLM may introduce some trade-offs between code cor-

rectness and NFR metrics. For example, the newer version of GPT-4o reduces code correctness

in favor of improved performance (shorter execution time). However, not all LLMs exhibit clear

trade-off patterns. For instance, GPT-3.5-turbo shows completely opposite trends across the two

benchmarks, HumanEval and MBPP compared to GPT-4o. This inconsistency may make it diffi-

cult for users to understand the model’s NFR-aware code generation capability or for developers to

identify areas for improvement, highlighting potential robustness issues in LLMs. We also found

robustness issues when changing the interaction workflows with the LLMs. Integrating NFRs and

functional requirements into a single prompt (i.e., NFR-Integrated) generally produces code with

higher correctness compared to asking the LLM to enhance RawGPT-generated code with the same

NFRs (i.e., NFR-Enhanced). Nevertheless, NFR-Enhanced performs better in reducing code smells
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and improving readability, while NFR-Integrated is more effective at adding exception-handling

statements and optimizing execution time. Overall, these findings suggest that robustness issues

exist in the NFR-aware code generation capabilities of LLMs, highlighting the need for carefully

selecting suitable prompts, model versions, and well-designed workflows during development.

We summarize our contributions as follows:

• We propose RoboNFR, a novel framework for systematically evaluating the robustness of LLMs

in addressing Non-Functional Requirements (NFRs) during code generation.

• We reveals potential robustness issues within popular LLM families (e.g., GPT and Claude).

Their ability to generate NFR-aware code is significantly affected by prompt variations, model

updates, and different workflows, impacting both code correctness and NFR metrics.

• Our comprehensive experiments emphasize the importance of establishing continuous quality as-

surance when integrating LLMs into real-world development. Frameworks like RoboNFR can be

used to monitor the robustness of deployed LLMs in real-world scenarios, preventing unexpected

changes in LLM-based product behavior.

• We provide the replication package and data to support reproduction and future studies (A. Anony-

mous, 2024).

Research Organization. Section 3.3 reviews related work. Section 3.4 describes how RoboNFR

works. Section 3.5 presents our experiment with RoboNFR. Section 3.6 discusses the key find-

ings and their implications. Section 3.7 outlines potential threats to validity. Finally, Section 3.8

concludes the study.

3.3 Related Work

Non-Functional Requirements (NFRs) in Coding. Prior studies proposed approaches for ex-

amining or refining existing source code to meet the NFRs. Pereira dos Reis, Brito e Abreu, de

Figueiredo Carneiro, and Anslow (2022) summarized a series of studies on detecting and visual-

izing code smells that negatively impact code design. Vitale, Piantadosi, Scalabrino, and Oliveto

(2023) trained models to improve the readability of given code snippets and Z. Li et al. (2023) iden-

tified readability issues from logging code. J. Zhang et al. (2020) proposed an automated approach
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to generate exception handling code based on existing source code to improve the overall software

reliability. Biringa and Kul (2023) proposed a program analysis framework that provides continu-

ous feedback on the performance impact of pending code updates, while Q. Zhao, Chabbi, and Liu

(2023) developed tools to help developers identify and resolve performance inefficiencies. All these

studies highlight the importance of NFRs in real-world software development; however, they are

limited to study only specific types of NFR tasks and a narrow set of metrics. In contrast, our work

investigates how code quality changes across four NFR dimensions using multiple metrics, offering

a more comprehensive aspects for studying code quality.

Exploring NFRs in Code Generation with LLMs. Several studies have explored the potential of

LLMs in addressing NFRs to improve code quality across various dimensions. For instance, Wu

et al. (2024) integrated LLMs with traditional code smell detection tools to automatically reduce

code smells. Y. Xu et al. (2025) leveraged LLMs to enhance code readability through automated

refactoring. Han, Kim, Yoo, Lee, and won Hwang (2024) incorporated software requirements from

textual descriptions to enable NFR-aware code generation, improving aspects such as reliability.

Gao, Gao, Gu, and Lyu (2024) utilized LLMs to optimize the execution efficiency of source code.

Unlike prior studies that focus on specific NFR-related tasks or refining existing code, our work

emphasizes the inherent capabilities of LLMs in generating NFR-aware code. In addition, recent

research has pointed out that addressing NFRs may negatively impact the functional correctness of

generated code. For example, Singhal, Aggarwal, Awasthi, Natarajan, and Kanade (2024) proposed

a new benchmark to evaluate LLM in NFR-aware code generation and found that current models

often struggle with such tasks. Waghjale et al. (2024) studied how to improve code execution speed

while preserving functional correctness. While these works focus on identifying or addressing NFR-

related issues in LLM-generated code, our study examines how the NFR-aware code generation

capabilities of LLMs vary across different usage scenarios and exploring the associated robustness

challenges.

Studying the Robustness of LLMs in Code Generation. Wang et al. (2022), J. Chen, Li, Hu, and

Xia (2024), and Shirafuji et al. (2023) explored robustness by perturbating different components in

the prompts (e.g., problem descriptions, docstrings) with diverse patterns. L. Chen, Zaharia, and
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Zou (2023b) and Lin et al. (2024) reported that ChatGPT’s performance on code generation can

change substantially between different versions of the same model. Mishra et al. (2024) examined

how robustness varies across various models and model sizes. These studies primarily focused

on the functional correctness of the generated code. Given the critical role of NFRs in software

development, our study addresses the importance of exploring the impact of incorporating NFR

considerations into various coding workflows for LLM-based code generation. We also study the

stability on the functional and NFR code quality across semantically equivalent prompts and model

versions. 2

3.4 Methodology

In this research, we propose RoboNFR, an automated framework that evaluates the robustness

of LLMs when addressing Non-Functional Requirements (NFRs) in code generation. (i.e., NFR-

aware code generation). In this section, we provide details of RoboNFR, including the four NFR

dimensions along with their associated metrics, as well as the three complementary methodologies

it incorporates.

3.4.1 Overview of RoboNFR

NFRs, such as maintainability and readability, are critical aspects of code quality. However,

existing studies on code generation often overlook NFRs and only focus on functional correctness

metrics. For example, Pass@1 (L. Chen et al., 2023b; M. Chen et al., 2021) is commonly used to

assess whether the code generated by the LLM passes all test cases on its first attempt. However,

without considering NFRs, the generated code might be only functionally correct but lack reliability,

readability, or efficiency. Such neglect can lead to significant maintenance challenges and impact

software quality (Chung & do Prado Leite, 2009). When users leverage LLMs to address NFRs,

they may do so in different ways—for example, by using varied prompts to express the same NFRs,

by asking LLM to generate NFR-aware code, or by asking the LLM to improve existing code while

considering NFRs. These different usage patterns can lead to different results (J. Chen et al., 2024;

Shirafuji et al., 2023; Wang et al., 2022). A robust LLM should produce consistent outputs when
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Figure 3.2: Overview of RoboNFR. RoboNFR leverages three methodologies to evaluate the code
generation capabilities of LLM across NFR dimensions using various code benchmarks, aiming to
reveal potential robustness issues in the LLM under test.

addressing the same NFRs, regardless of how the request is phrased or applied. However, measuring

the robustness of LLMs in this context remains a challenging task. Hence, RoboNFR is designed

to study the capability and robustness of LLMs in addressing NFRs during the code generation

process.

As shown in Figure 3.2, for the given LLM, RoboNFR integrates existing coding benchmarks

(e.g., HumanEval) with a set of specified NFR dimensions (e.g., Code Design) and employs three

distinct evaluation approaches to generate comprehensive evaluation results. Specifically, our frame-

work adopts three evaluation methodologies: 1) Prompt Variations, assessing whether the func-

tional and non-functional quality of LLM-generated code varies when using different prompts that

convey the same NFRs; 2) Regression Testing, evaluating differences in the NFR-aware code gener-

ation capabilities of an LLM after updates to the same model; and 3) NFR-Aware Code Generation

Workflows, analyzing the impact on how LLMs generate NFR-aware code when NFRs are ad-

dressed either through a one-shot prompt or sequentially. During the evaluation process, RoboNFR

provides a comprehensive set of metrics to assess both the functional correctness and code quality

of the generated code that addresses NFRs. These metrics capture changes in LLM-generated code

during evaluation, thereby highlighting potential robustness issues in NFR-aware code generation.
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3.4.2 Studied NFR Dimensions and Metrics

In addition to functional correctness, RoboNFR evaluates four NFR dimensions that contribute

to a code’s maintainability, reliability, and efficiency. Below, we describe functional correctness and

each NFR dimension, along with the corresponding metric used for evaluation.

Functional Correctness refers to whether the generated code satisfies the intended functionality.

We use Pass@1 (M. Chen et al., 2021) to determine whether the code passes all test cases on its first

attempt.

Code design refers to the structural and architectural quality of code, where bad designs can sig-

nificantly hinder maintainability and scalability (Fowler, 2018; Walter & Alkhaeir, 2016). We use

the Refactor checker of Pylint (PyCQA, 2024b) to detect code smells. It includes predefined static

code checkers to detect various code smells. We calculate and report the code smell density as the

number of detected smells per 10 Lines Of Code (LOC) since the generated code may have different

lengths.

Reliability is the code’s ability to handle unexpected inputs and ensure stable execution under

various scenarios (e.g., exception handling) (Pham, 2000; J. Zhang et al., 2020). In particular,

we measure whether the generated code includes exception-handling mechanisms, such as try-catch

blocks, to gain insight into how well the code anticipates and manages potential errors. We calculate

exception density as the number of exception-handling statements per 10 lines of code, as this metric

highlights the extent of error-handling logic (De Padua & Shang, 2017).

Readability is how easily code can be understood and modified. Readable code should follow cod-

ing style guidelines and conventions to ease understanding and collaboration (Piantadosi, Fierro,

Scalabrino, Serebrenik, & Oliveto, 2020). Similar to code design, we use use the Convention

checker of Pylint (PyCQA, 2024a) to detect issues like inconsistent naming, incorrect indentation,

and missing comments. We also report the density of readability issues per 10 lines of code.

Performance assesses the efficiency of code, where performance issues (e.g., slower execution) can

cause higher operational costs and reduce user satisfaction (Malik, Hemmati, & Hassan, 2013). We

measure the execution time in milliseconds for all tests associated with each coding problem. To

minimize measurement fluctuations, we run each test case five times and calculate the mean.
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Table 3.1: LLM generated prompt templates to consider non-functional requirements in code gen-
eration.

Error-handle Code Smell Readability Performance

Incorporate various error handling techniques Investigate various strategies to handle code smell Evaluate different coding practices for readability Optimize for performance

Implement multiple exception handling strategies Minimize code smell Investigate various techniques to enhance readability Focus on enhancing performance

Apply different error handling mechanisms Eliminate code smell Improve the code readability Ensure the code runs efficiently

Investigate different methods of managing exceptions Identify and address different code smells Ensure the code is readable Prioritize runtime optimization

Integrate diverse error handling approaches Apply best practices to reduce code smell Apply coding practices that enhance readability Keep performance in mind while solving

Utilize multiple error management techniques Mitigate code smell Focus on readability Aim for high-performance execution

Experiment with various ways to handle exceptions Tackle different code smell issues Enhance the readability of the code Reduce computational overhead

Combine different error handling practices Implement techniques to prevent code smell Implement strategies to make the code more readable Emphasize speed and efficiency

Evaluate multiple exception management strategies Resolve code smell problems Optimize the code for better readability Ensure minimal resource consumption

Develop a range of error handling solutions Optimize code to avoid code smell Adopt coding practices for improved readability Maximize performance in your solution

3.4.3 Evaluation Methodology 1: Prompt Variations

Prior research (J. Chen et al., 2024; Shirafuji et al., 2023; Wang et al., 2022) suggests that varia-

tions in prompt templates, even when preserving semantic context, can generate significantly differ-

ent code. Hence, we repeat the code generation process using different but semantically equivalent

prompts. To mitigate potential biases introduced by manually altering the prompts, we leverage

GPT-4o-mini to generate various prompts for each dimension of NFRs while preserving the same

semantics. This approach allows us to evaluate the stability of the results by measuring variations

across different prompt templates, thereby clarifying how changes in prompts influence the code

generated by LLMs. In other words, if the results remain stable, it indicates that the LLM is robust

to variations in prompts.

Constructing Diverse NFR-Aware Prompts. Table 3.1 shows the semantically equivalent prompt

templates generated for each dimension of NFRs. Initially, we manually crafted a seed prompt with

the structure: “Consider [NFR] and complete the following code”, where “[NFR]” corresponds

to specific non-functional requirements, such as code design or readability. We then provided the

seed prompt to ChatGPT to generate 10 semantically equivalent prompts for the experiment. We

incorporate all 10 prompt variants to assess the robustness of the LLM against semantic preserving

changes in the prompt. In total, we execute NFR-aware code generation 40 times (10 variations

per NFR) for each workflow and each LLM version. Although our experiments are conducted on

existing code generation benchmarks (e.g., HumanEval and MBPP), RoboNFR is highly adaptable.

Future studies can easily tailor its process to accommodate new NFRs and additional benchmarks.
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3.4.4 Evaluation Methodology 2: Regression Testing

Previous research has shown that robustness issues exist in LLMs during version updates (L. Chen

et al., 2023b; Lin et al., 2024). Although developers may claim that an LLM’s code generation

ability remains consistent after an update, the actual results often vary depending on the coding

benchmark used. This discrepancy becomes even more pronounced in NFR-aware code generation

tasks, where robustness issues may be more deeply concealed.

To address this challenge, RoboNFR leverages the concept of regression testing to monitor ro-

bustness issues, specifically in NFR-aware code generation tasks. In particular, RoboNFR incorpo-

rates several key components of regression testing:

Fixed Test Suite and Metrics: RoboNFR evaluates both the older and newer versions using the

same test suites (e.g., code generation benchmark) and metrics, guaranteeing a fair comparison.

Baseline Establishment: We define both the RawGPT (i.e., requirements contain only functional

features without any additional NFRs) and the older model version as baselines, enabling a direct

comparison of their behaviors.

Impact Analysis: By maintaining consistent evaluation criteria, RoboNFR tracks trends in NFR-

aware code generation and quantifies the extent of change.

RoboNFR employs regression testing to reliably identify robustness issues during model up-

dates. In other words, if a newer version of an LLM demonstrates consistent NFR-aware code

generation capabilities across all regression test cases, it can be considered robust with respect to

version changes.

3.4.5 Evaluation Methodology 3: NFR-Aware Code Generation Workflows

In addition to generating functional code, modern code generation tools, such as Cursor (Cur-

sor, 2024) and GitHub Copilot (Copilot, 2024a), provide two typical workflows for NFR-aware

code generation (Copilot, 2024b). 1) NFR-integrated code generation involves developers provid-

ing both the functional and non-functional requirements in one prompt to generate the complete

code in one shot. 2) NFR-enhanced code refinement refers to the process by which developers
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Figure 3.3: RoboNFR defines three workflows as part of its NFR-aware code generation evalua-
tion methodology. These workflows include Function-Only code generation, NFR-Integrated code
generation, and NFR-Enhanced code refinement. We compare the functional and non-functional
quality of the generated code across these workflows.

‚Function-Only Code Generation
Complete the following code.
## Input: ‘{Problem Description}’
## Response: ‘{Code}’

‚NFR-Integrated Code Generation
Given the problem description, generate code by considering {NFR}.”
## Input: ‘{Problem Description}’
## Response: ‘{NFR-aware Code}’

‚NFR-Enhanced Code Refinement
Step 1 - Existing code to be refined -> ‘{Code}’
Step 2 - Refine the code with NFR
Given the following code, your goal is to improve its {NFR}.”
## Input: ‘{Code}’
## Response: ‘{NFR-aware Code}’

Figure 3.4: A simplified example of a prompt template for NFR-Aware code generation workflows.

use an LLM to refine existing code, thereby enhancing code quality and better aligning it with spe-

cific requirements (White, Hays, Fu, Spencer-Smith, & Schmidt, 2024). Figure 3.3 provides an

overview of these workflows. The baseline workflow considers only the functional requirement

(i.e., Functional-Only Code Generation, denoted as Functional, and two NFR-aware code genera-

tion workflows (i.e., NFR-Integrated and NFR-Enhanced).
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While both workflows provide the instruction to generate code that satisfies specific require-

ments, the final output may be different, as the ways of interacting with LLMs may significantly

affect the generated results (Lee, Jang, Jang, Lee, & Yu, 2024). Therefore, in RoboNFR, we con-

sider both of these two workflows to incorporate the four NFRs into the code. In the remainder of

the research, we denote NFR-integrated code generation as NFR-Integrated and NFR-aware code

enhancement as NFR-Enhanced for conciseness. To analyze the results, we compare the functional

and non-functional code quality metrics across the code generated by three distinct workflows, ex-

amining the impact of NFR-aware code generation on overall code quality.

Figure 3.4 shows the prompt templates for each workflow. Functional only contains the func-

tional requirement in the prompt. NFR-Integrated incorporates NFRs directly into the prompt

template. For example, when considering reliability, the prompt asks the LLM to generate code

that meets the functional requirements and optimize reliability in a single prompt. NFR-Enhanced

adopts a two-step process. It leverages the code generated by Functional, and it sends a separate

prompt asking the LLM to enhance the code by addressing a specific NFR. Both NFR-Integrated

and NFR-Enhanced use the same NFR-aware prompt templates outlined in Table 3.1.

3.5 Evaluation

Although RoboNFR is not limited to specific benchmarks or LLMs under evaluation, in our

study, we selected several popular models and coding benchmarks to demonstrate how RoboNFR

can reveal robustness issues in the NFR-aware code generation capabilities of LLMs.

Studied LLMs. We selected two widely recognized LLM families mentioned in recent LLM-

focused surveys (Minaee et al., 2024; W. X. Zhao et al., 2025). Specifically, we evaluated GPT-

3.5-turbo and GPT-4o from OpenAI, as well as Claude-3.5-Sonnet and Claude-3.5-Haiku from

Anthropic, as these models allow for a comparison of different LLMs within the same family, shar-

ing similar architectures and development processes. To support regression testing, we included

two released versions for each LLM (e.g., gpt-3.5-turbo-1106 and gpt-3.5-turbo-0125 for GPT-3.5-

turbo). All interactions with the models were conducted via vendor-provided APIs. To minimize

output variance and ensure deterministic responses, we set the temperature parameter to 0.
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Benchmark Datasets. RoboNFR can be applied to any code generation benchmark across differ-

ent programming languages. In our study, we selected four commonly used datasets: HumanEval,

HumanEval-ET, MBPP (Mostly Basic Python Programming), and MBPP-ET. These benchmarks

are widely adopted in code generation research (Huang, Bu, Zhang, et al., 2023; Lin et al., 2024) and

include test cases for evaluating the functional correctness of generated code. HumanEval (M. Chen

et al., 2021) comprises 164 programming problems, while MBPP (Austin et al., 2021) includes 427

programming problems (we used the sanitized version provided by the original authors). Further-

more, HumanEval-ET and MBPP-ET, published by Dong, Ding, et al. (2023), use the same prob-

lems as HumanEval and MBPP but offer more test cases with approximately 100 test cases for each

problem.

Environment. Our experiments were conducted on a Mac Mini (Apple M4, 10 cores, 16GB RAM),

using Python 3.9.19 to implement RoboNFR and the evaluation scripts. The OpenAI API library

used was version 1.14.3, and the Claude API library used was version 0.39.0. For detecting code

smells and readability issues, we used Pylint version 3.2.5. We have made our framework code and

evaluation data publicly available to support future research (A. Anonymous, 2024).

RQ1: How do variations in prompts affect the robustness of LLMs in NFR-aware

code generation?

Motivation. Different users may express the same NFRs using diverse prompts when instructing an

LLM to generate code. This research question explores how variations in prompt wording influence

the LLMs in producing code that adheres to NFRs and functional correctness.

Approach. We adopt Evaluation Methodology 1 (i.e., Prompt Variations) as discussed in Section 3.4.3.

We compute the Pass@1 and NFR metrics for generating four types of NFR-aware code—design,

reliability, readability, and performance—using different prompts. Pass@1 measures the functional

correctness of the code by evaluating whether the first generated solution successfully passes all the

provided tests (M. Chen et al., 2021). A Pass@1 of 100 means the first generated code can pass all

the tests in 100% of the coding problems in a benchmark. Additionally, we compare the changes

in average (AVG) and standard deviation (STDEV) relative to our baseline (RawGPT), where code

is generated considering only functional requirements. We then extend our study across various
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models and four benchmarks, as discussed in Section 3.5.

Results. Integrating NFRs almost always reduces Pass@1 scores across all models and bench-

marks by up to 39%. Notably, some models appear more susceptible to the challenges posed

by NFR dimensions. Table 3.2 presents the results for the baseline (RawGPT) and all four NFR

dimensions using different prompts that convey the same meaning. The Pass@1 scores for the

NFR dimensions are mostly lower than that of the baseline, particularly in the Reliability dimen-

sion, where the Claude-3.5-Haiku model shows a 39% reduction in Pass@1. Additionally, we

observed that the average Pass@1 score dropped by 9.76% between the Claude-3.5-Sonnet and

Claude-3.5-Haiku models, compared to a 3.45% drop between GPT-3.5-turbo and GPT-4o. This

type of comparison—between two generations of the Claude family and two generations of the

GPT family—highlights potential directions for improving model architectures and training pro-

cesses. Our results show that models from the Claude family tend to be more adversely affected by

the additional challenges introduced by the NFRs.

Compared to the baseline (RawGPT), all models exhibit consistently higher STDEV values

in Pass@1 when handling NFR dimensions, indicating increased robustness issues. As shown

in Table 3.2, the STDEV for RawGPT’s Pass@1 is generally lower than that for NFR dimensions

across all models and benchmarks. For example, the STDEV for RawGPT’s Pass@1 is between

0.00 to 1.16 across all the models and benchmarks, while the STDEV, when considering Code De-

sign, is between 0.77 to 5.47. This suggests that when users employ different wordings in prompts

to convey the same meaning in NFR dimensions, the Pass@1 of the LLMs varies more than in

RawGPT dimensions. Additionally, our analysis indicates that different NFR dimensions exhibit

varying levels of robustness issues. In particular, the Reliability dimension presents the largest vari-

ance in certain models. For instance, as shown in Table 3.2, GPT-3.5-turbo reaches a peak STDEV

of 13.93 across all four NFR dimensions, while Claude-3.5-Haiku achieves a peak STDEV of 4.21.

These results suggest that certain prompts can significantly impact code correctness for these mod-

els, indicating that less robust models may be more sensitive to variations in Pass@1 scores under

the reliability dimension.

Incorporating NFRs into prompts generally improves code quality by reducing code smells

and enhancing readability. As shown in Table 3.3, incorporating NFRs generally reduces code
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Table 3.2: The Pass@1 column represents the Pass@1 scores, along with their STDEV across 10
semantically equivalent prompts. � indicates the percentage difference in Pass@1 of the same
model version between the NFR-aware results and the Function-Only result.

NFR Dimension Model
HumanEval HumanEval-ET MBPP MBPP-ET

Pass@1 STDEV �(%) Pass@1 STDEV �(%) Pass@1 STDEV �(%) Pass@1 STDEV �(%)

Function-Only

GPT-3.5-turbo 72.50 0.73 - 64.33 1.05 - 67.82 0.48 - 47.21 0.39 -

GPT-4o 90.55 1.16 - 80.18 0.96 - 74.43 0.55 - 53.37 0.34 -

Claude-3.5-Sonnet 89.39 0.33 - 78.54 0.51 - 75.97 0.27 - 54.94 0.13 -

Claude-3.5-Haiku 86.22 0.33 - 75.61 0.43 - 72.37 0.00 - 52.93 0.00 -

Code Design

GPT-3.5-turbo 72.87 1.82 0.51 64.51 2.15 0.28 67.68 1.40 # 0.21 47.61 1.08 0.85

GPT-4o 89.33 0.77 # 1.35 79.63 1.08 # 0.69 73.37 1.12 # 1.42 52.58 1.10 # 1.48

Claude-3.5-Sonnet 84.02 1.85 # 6.01 72.56 1.93 # 7.61 70.87 2.58 # 6.71 49.79 2.23 # 9.37

Claude-3.5-Haiku 80.73 2.42 # 6.37 70.12 2.62 # 7.26 64.73 5.47 # 10.56 45.67 3.93 # 13.72

Readability

GPT-3.5-turbo 73.17 2.80 0.92 64.33 1.91 0.00 68.76 1.51 1.39 48.41 1.19 2.54

GPT-4o 91.40 1.64 0.94 80.98 1.60 1.00 75.04 0.87 0.82 53.63 0.89 0.49

Claude-3.5-Sonnet 86.46 1.80 # 3.28 75.85 1.81 # 3.43 73.35 2.64 # 3.45 51.66 1.52 # 5.97

Claude-3.5-Haiku 84.02 3.41 # 2.55 73.78 3.26 # 2.42 61.55 7.79 # 14.95 44.31 5.41 # 16.29

Reliability

GPT-3.5-turbo 68.29 3.50 # 5.81 59.09 3.62 # 8.15 42.93 13.93 # 36.70 29.46 9.60 # 37.6

GPT-4o 88.29 1.25 # 2.50 76.22 1.52 # 4.94 71.59 0.88 # 3.82 50.02 0.70 # 6.28

Claude-3.5-Sonnet 81.83 2.64 # 8.46 70.12 2.96 # 10.72 69.32 1.81 # 8.75 46.79 1.96 # 14.83

Claude-3.5-Haiku 73.05 2.26 # 15.27 62.20 2.02 # 17.74 47.45 4.21 # 34.43 32.04 2.68 # 39.47

Performance

GPT-3.5-turbo 70.79 3.45 # 2.36 61.83 2.93 # 3.89 66.63 1.92 # 1.75 47.82 1.47 1.29

GPT-4o 89.33 2.12 # 1.35 80.18 1.61 0.00 74.07 0.72 # 0.48 53.56 0.80 0.36

Claude-3.5-Sonnet 83.29 1.53 # 6.82 74.02 1.40 # 5.76 72.04 1.76 # 5.17 51.43 2.08 # 6.39

Claude-3.5-Haiku 81.32 1.98 # 4.81 71.95 0.96 # 4.84 70.73 2.36 # 2.27 49.41 2.39 # 6.65

smells—achieving an average reduction of 34.93% compared to RawGPT —and enhance readabil-

ity, with an average improvement of 24.32% across all models and benchmarks. We also observed

that the extent of these improvements varies across models. Claude models consistently generating

code with fewer smells and better readability compared to GPT models. For instance, in the Code

Design dimension, Claude-3.5-Sonnet and Claude-3.5-Haiku achieved code smell density values

of 0.02 and 0.01, compared to GPT-3.5-turbo and GPT-4o at 0.22 and 0.06. Although all models

improve over the baseline, Claude models show a more pronounced reduction in code smell—a

trend consistent across all NFR dimensions and benchmarks, especially in Readability dimension.

However, differences in the Reliability and Performance dimension are less distinct.

Incorporating NFRs into prompts results in higher STDEV values for the code smell, un-

readability, and exception-handling metrics, suggesting that different prompts introduce greater

variability in the NFR-aware code generation capabilities of LLMs. Table 3.3 shows that the
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Table 3.3: Columns code smell density, unreadability density, exception-handling density, and ex-
ecution time (millisecond) represent the NFR metrics (Section 3.4.2). Each metric includes stan-
dard deviations and �%, which indicates the percentage difference between NFR-aware results and
RawGPT results.

NFR Dimension Model
HumanEval MBPP

code smell(�%) unreadability(�%) exception-handling(�%) execution time(�%) code smell(�%) unreadability(�%) exception-handling(�%) execution time(�%)

Function-Only

GPT-3.5-turbo 0.31±0.01 3.42±0.04 0.036±0.003 112.63±48.09 0.27±0.01 3.44±0.03 0.011±0.000 43.18±7.96

GPT-4o 0.12±0.01 2.62±0.03 0.026±0.005 75.92±4.23 0.12±0.00 3.18±0.02 0.130±0.005 37.23±1.37

Claude-3.5-Sonnet 0.10±0.01 2.03±0.01 0.037±0.003 57.06±2.93 0.08±0.00 2.67±0.01 0.069±0.002 40.92±3.68

Claude-3.5-Haiku 0.06±0.00 2.60±0.02 0.022±0.000 70.31±13.75 0.03±0.00 2.69±0.00 0.041±0.000 34.40±0.30

Code Design

GPT-3.5-turbo 0.22±0.03 (#29.0) 2.68±0.20 (#21.6) 0.051±0.038 (41.7) 92.93±32.03 (#17.49) 0.28±0.03 (3.7) 4.68±0.48 (36.0) 0.117±0.106 (963.6) 58.78±11.12 (36.13)

GPT-4o 0.06±0.00 (#50.0) 1.27±0.15 (#51.5) 0.091±0.018 (250.0) 81.22±6.32 (6.98) 0.05±0.00 (#58.3) 1.79±0.08 (#43.7) 0.363±0.029 (179.2) 38.30±3.03 (2.87)

Claude-3.5-Sonnet 0.02±0.01 (#80.0) 0.79±0.10 (#61.1) 0.148±0.064 (300.0) 47.27±15.87 (#17.16) 0.03±0.01 (#62.5) 1.66±0.18 (#37.8) 0.454±0.142 (558.0) 36.42±0.18 (#11.00)

Claude-3.5-Haiku 0.02±0.01 (#66.7) 1.54±0.50 (#40.8) 0.176±0.118 (700.0) 55.95±1.23 (#20.42) 0.01±0.01 (#66.7) 1.95±0.64 (#27.5) 0.445±0.171 (985.4) 35.18±1.83 (2.27)

Readability

GPT-3.5-turbo 0.18±0.03 (#41.9) 2.47±0.24 (#27.8) 0.016±0.005 (#55.6) 120.41±49.29 (6.91) 0.24±0.02 (#11.1) 4.14±0.49 (20.3) 0.013±0.006 (18.2) 49.45±10.22 (14.52)

GPT-4o 0.06±0.01 (#50.0) 1.25±0.07 (#52.3) 0.029±0.007 (11.5) 84.49±5.31 (11.29) 0.07±0.01 (#41.7) 1.86±0.19 (#41.5) 0.107±0.033 (#17.7) 36.39±2.33 (#2.26)

Claude-3.5-Sonnet 0.04±0.02 (#60.0) 0.97±0.20 (#52.2) 0.084±0.042 (127.0) 44.04±13.54 (#22.82) 0.05±0.02 (#37.5) 1.54±0.24 (#42.3) 0.261±0.097 (278.3) 39.04±8.94 (#4.59)

Claude-3.5-Haiku 0.02±0.01 (#66.7) 1.38±0.20 (#46.9) 0.088±0.040 (300.0) 61.56±10.61 (#12.44) 0.02±0.01 (#33.3) 1.61±0.10 (#40.1) 0.226±0.086 (451.2) 35.33±1.56 (2.70)

Reliability

GPT-3.5-turbo 0.34±0.10 (9.7) 2.81±0.40 (#17.8) 1.342±0.247 (3627.8) 117.86±41.17 (4.64) 0.36±0.07 (33.3) 3.25±0.62 (#5.5) 1.601±0.222 (14454.5) 40.96±0.67 (#5.14)

GPT-4o 0.10±0.04 (#16.7) 1.45±0.16 (#44.7) 0.942±0.157 (3523.1) 90.48±4.98 (19.18) 0.17±0.08 (41.7) 2.61±0.19 (#17.9) 1.584±0.204 (1118.5) 35.09±0.27 (#5.75)

Claude-3.5-Sonnet 0.05±0.01 (#50.0) 1.07±0.05 (#47.3) 1.177±0.152 (3081.1) 53.22±7.62 (#6.73) 0.05±0.01 (#37.5) 1.98±0.45 (#25.8) 1.354±0.107 (1862.3) 43.66±15.62 (6.70)

Claude-3.5-Haiku 0.03±0.01 (#50.0) 1.76±0.16 (#32.3) 1.006±0.079 (4472.7) 81.29±41.04 (15.62) 0.01±0.00 (#66.7) 1.48±0.20 (#45.0) 1.115±0.075 (2619.5) 34.69±0.43 (#0.84)

Performance

GPT-3.5-turbo 0.27±0.04 (#12.9) 3.21±0.22 (#6.1) 0.016±0.005 (#55.6) 63.48±33.85 (#43.64) 0.28±0.06 (3.7) 5.99±0.30 (74.1) 0.011±0.002 (0.0) 51.61±10.93 (19.52)

GPT-4o 0.08±0.00 (#33.3) 1.64±0.13 (#37.4) 0.027±0.010 (3.8) 74.34±1.00 (#2.08) 0.12±0.02 (0.0) 3.26±0.18 (2.5) 0.103±0.026 (#20.8) 34.50±0.43 (#7.33)

Claude-3.5-Sonnet 0.05±0.02 (#50.0) 1.67±0.11 (#17.7) 0.028±0.005 (#24.3) 35.20±1.72 (#38.31) 0.05±0.00 (#37.5) 2.51±0.12 (#6.0) 0.096±0.047 (39.1) 34.62±0.64 (#15.40)

Claude-3.5-Haiku 0.02±0.01 (#66.7) 2.33±0.08 (#10.4) 0.033±0.008 (50.0) 98.39±24.43 (39.94) 0.02±0.00 (#33.3) 2.42±0.11 (#10.0) 0.070±0.027 (70.7) 37.19±2.53 (8.11)

STDEV values for RawGPT across the three NFR metrics (i.e., code smell, unreadability, and ex-

ception handling) are generally lower compared to the STDEV values observed in all four NFR

dimensions across all models and benchmarks. For instance, when analyzing exception-handling

density in HumanEval, GPT-3.5-turbo’s STDEV in RawGPT is 0.003, which increases to 0.247 for

the generated code under the Reliability dimension. Specifically, this substantial increase suggests

that varying prompts significantly impact the exception-handling density of the generated code, in-

dicating a robustness issue in LLMs when different prompts are used in the Reliability dimension.

However, such a trend was not evident in the execution time metrics. For example, in the Hu-

manEval, Claude-3.5-Haiku has a STDEV of 13.75 in the RawGPT , which increases to 24.43 in

the Performance dimension—indicating that the generated code execution time varies more when

different prompts are used to improve code performance. In contrast, Claude-3.5-Sonnet shows a

STDEV of 2.93 in the RawGPT setting and a lower value of 1.72 in the Performance dimension,

suggesting that this LLM’s generated code performance is less affected by prompt variations. This

finding suggests that the impact of prompt variations on code performance differs across models,

highlighting the importance of using RoboNFR to evaluate robustness issues in different LLMs.
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Summary of RQ1: Integrating NFRs reduces Pass@1 scores by up to 39% and increases output

variability, revealing robustness issues across all models. While incorporating NFRs generally

helps reduce code smells and improve readability, it also leads to higher STDEV values, indicat-

ing that code quality varies significantly with prompt variations.

RQ2: Are LLMs robust to model updates in their NFR-Aware code generation capa-

bilities?

Motivation. When relying on LLMs for NFR-related tasks, users often need to choose which model

version to use. This is especially relevant when using the default version, which automatically

switches to the latest one. In such cases, users may experience unexpected changes in outcomes due

to model updates. Therefore, this study investigates how updates to LLM versions influence their

ability to generate NFR-aware code.

Approach. We adopt Evaluation Methodology 2 (i.e., Regression Testing) as discussed in Sec-

tion 3.4.4 to compare the results of functional correctness and NFR metrics among different ver-

sions of LLMs. We compute the Pass@1 and NFR metrics for four types of NFRs—code design,

reliability, readability, and performance—generated by different versions of the same LLM model.

We then compare the results within each model. Our study covers three LLM models, and for

each, we compare the two most recent versions (at the time of the experiments). Specifically, we

used gpt-3.5-turbo-1106 and gpt-3.5-turbo-0125 for GPT-3.5-turbo, gpt-4o-2024-05-13 and gpt-

4o-2024-08-06 for GPT-4o, and claude-3-5-sonnet-20240620 and claude-3-5-haiku-20241022 for

Claude-3.5. We selected these two versions from the Claude family because they share the same

underlying LLM architecture and similar code generation capabilities (Anthropic, 2024), and they

were the only ones available to us.

Results. When model version updates occur, trade-offs emerge between code correctness and NFR

metrics. As illustrated in Table 3.4, improvements in one area—such as a reduction in code smell

density—are often offset by declines in other metrics, like Pass@1 or ET-Pass@1. For instance,

in GPT-3.5-turbo on HumanEval under the RawGPT , the pass rate drops by 5.18% and 3.74%,

while the code smell metric improves significantly by 18.42%. This pattern suggests that tuning to

enhance certain qualitative aspects may come at the expense of Pass@1, and vice versa.
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Table 3.4: This table compares various metrics for the same LLM model across different versions.
The Pass@1(�%) column shows the Pass@1 score for the older version along with the percentage
change relative to the newer version, while the ET-Pass@1(�%) column presents the same metric
for the ET-version dataset. Additionally, the NFR metrics—including code smell density, unread-
ability density, exception-handling density, and execution time (in milliseconds)—report the older
version’s results with standard deviations and the corresponding percentage differences compared
to the newer version.

Model Dataset NFR Dimension Pass@1(�%) ET-Pass@1(�%) code smell(�%) unreadability(�%) exception-handling(�%) execution time(�%)

GPT-3.5
(20231106)

vs
(20240125)

HumanEval

Function-Only 76.46±0.77 #5.18 66.83±0.51 #3.74 0.38±0.01 #18.42 2.77±0.04 "23.47 0.011±0.003 "227.27 110.78±46.55 "1.67

Code Design 72.44±2.71 "0.59 64.63±2.80 #0.19 0.25±0.01 #12.00 1.79±0.10 "49.72 0.055±0.058 #7.27 97.55±49.53 #4.74

Readability 73.29±3.56 #0.16 64.82±2.88 #0.76 0.21±0.04 #14.29 1.58±0.09 "56.33 0.015±0.007 "6.67 97.58±46.15 "23.39

Reliability 65.73±4.29 "3.89 57.62±4.40 "2.55 0.40±0.10 #15.00 1.92±0.23 "46.35 1.362±0.311 #1.47 117.04±54.46 "0.70

Performance 72.26±1.58 #2.03 63.54±2.13 #2.69 0.32±0.06 #15.63 2.41±0.18 "33.11 0.014±0.003 "14.29 62.87±3.01 "0.97

MBPP

Function-Only 63.47±0.55 "6.85 44.75±0.64 "5.50 0.32±0.01 #15.63 3.64±0.02 #5.49 0.006±0.000 "83.33 48.84±1.33 #11.59

Code Design 66.53±1.05 "1.73 46.49±0.85 "2.41 0.35±0.04 #20.00 3.71±0.18 "26.17 0.126±0.118 #7.14 51.66±11.29 "13.78

Readability 66.93±2.38 "2.73 47.26±1.60 "2.43 0.30±0.03 #20.00 3.42±0.28 "21.05 0.012±0.005 "8.33 52.02±5.54 #4.94

Reliability 45.11±11.71 #4.83 30.80±8.21 #4.35 0.45±0.12 #20.00 2.72±0.54 "19.49 1.785±0.212 #10.31 42.01±3.51 #2.50

Performance 65.95±2.16 "1.03 47.14±1.41 "1.44 0.32±0.05 #12.50 5.18±0.22 "15.64 0.011±0.003 (0.00) 47.05±6.29 "9.70

GPT-4o
(20240513)

vs
(20240806)

HumanEval

Function-Only 92.56±0.85 #2.17 81.52±1.00 #1.64 0.13±0.01 #7.69 2.50±0.04 "4.80 0.040±0.002 #35.00 77.40±13.78 #1.91

Code Design 90.73±1.49 #1.54 80.12±1.93 #0.61 0.06±0.01 (0.00) 1.35±0.17 #5.93 0.095±0.027 #4.21 81.57±6.25 #0.43

Readability 92.74±1.30 #1.44 81.89±1.52 #1.11 0.07±0.01 #14.29 1.38±0.15 #9.42 0.038±0.012 #23.68 81.52±9.24 "3.64

Reliability 89.09±1.92 #0.90 76.46±2.23 #0.31 0.10±0.03 (0.00) 1.66±0.19 #12.65 0.910±0.136 "3.52 87.69±1.44 "3.18

Performance 90.18±1.56 #0.94 80.73±1.63 #0.68 0.07±0.01 "14.29 1.38±0.11 "18.84 0.023±0.008 "17.39 79.44±8.68 #6.42

MBPP

Function-Only 75.34±0.58 #1.21 53.91±0.49 #1.00 0.10±0.00 "20.00 2.72±0.03 "16.91 0.129±0.007 "0.78 34.69±0.21 "7.32

Code Design 73.79±0.74 #0.57 52.95±1.04 #0.70 0.06±0.01 #16.67 2.23±0.12 #19.73 0.363±0.049 (0.00) 38.64±4.47 #0.88

Readability 73.72±1.32 "1.79 52.67±0.74 "1.82 0.08±0.01 #12.50 2.26±0.10 #17.70 0.122±0.031 #12.30 37.39±2.32 #2.67

Reliability 71.59±0.83 (0.00) 50.35±1.01 #0.66 0.18±0.08 #5.56 2.75±0.15 #5.09 1.588±0.192 #0.25 35.44±1.81 #0.99

Performance 73.54±0.47 "0.72 52.95±0.67 "1.15 0.13±0.02 #7.69 3.31±0.19 #1.51 0.107±0.039 #3.74 36.25±2.48 #4.83

Claude-3.5
(20240620)

vs
(20241022)

HumanEval

Function-Only 89.39±0.33 #3.55 78.54±0.51 #3.73 0.10±0.01 #40.00 2.03±0.01 "28.03 0.037±0.003 #40.54 57.06±2.93 "23.24

Code Design 84.02±1.85 #3.92 72.56±1.93 #3.36 0.02±0.01 (0.00) 0.79±0.10 "94.94 0.148±0.064 "18.92 47.27±15.87 "18.37

Readability 86.46±1.80 #2.82 75.85±1.81 #2.73 0.04±0.02 #50.00 0.97±0.20 "42.27 0.084±0.042 "4.76 44.04±13.54 "39.82

Reliability 88.29±1.25 #17.26 76.22±1.52 #18.39 0.05±0.01 #40.00 1.07±0.05 "64.49 1.177±0.152 #14.53 53.22±7.62 "52.75

Performance 83.29±1.53 #2.37 74.02±1.40 #2.80 0.05±0.02 #60.00 1.67±0.11 "39.52 0.028±0.005 "17.86 35.20±1.72 "179.50

MBPP

Function-Only 75.97±0.27 #4.74 54.94±0.13 #3.66 0.08±0.00 #62.50 2.67±0.01 "0.75 0.069±0.002 #40.58 40.92±3.68 #15.93

Code Design 70.87±2.58 #8.66 49.79±2.23 #8.27 0.03±0.01 #66.67 1.66±0.18 "17.47 0.454±0.142 #1.98 36.42±0.18 #3.40

Readability 73.35±2.64 #16.09 51.66±1.52 #14.23 0.05±0.02 #60.00 1.54±0.24 "4.55 0.261±0.097 #13.41 39.04±8.94 #9.50

Reliability 71.59±0.88 #33.72 50.02±0.70 #35.95 0.05±0.01 #80.00 1.98±0.45 #25.25 1.354±0.107 #17.64 43.66±15.62 #20.54

Performance 72.04±1.76 #1.82 51.43±2.08 #3.93 0.05±0.00 #60.00 2.51±0.12 #3.59 0.096±0.047 #27.08 34.62±0.64 "7.42

Interestingly, not every model clearly exhibits trade-off patterns within the same metric groups.

Some models appear to be less robust, such as GPT-3.5-turbo, which exhibits inconsistent trade-

off patterns across benchmarks, indicating greater robustness issues in these LLMs. As shown

in Table 3.4, the impact of certain model updates is clearly not uniform across NFR dimensions

or datasets. For instance, the metric groups Pass@1 and unreadability for newer GPT-3.5-turbo

52



show inconsistent trade-off patterns. Specifically, on the MBPP dataset, the newer GPT-3.5-turbo

shows an improvement in RawGPT , with a 6.85% increase in Pass@1 scores and a 5.49% de-

crease in unreadability density, suggesting improved correctness and code quality compared to its

older version. In contrast, on the HumanEval dataset, the newer GPT-3.5-turbo shows a decline in

RawGPT , with a 5.18% decrease in Pass@1 and a 23.47% increase in unreadability density, indicat-

ing that it performs worse in both aspects compared to the older one. This inconsistent trend across

datasets highlights potential robustness issues in GPT-3.5-turbo updates, making it more difficult to

accurately assess the LLM’s NFR-aware code generation capabilities. Notably, some models, like

GPT-4o, appear to be more robust, as their trade-off patterns are more consistent. For the same

metric group—Pass@1 and unreadability—the newer GPT-4o consistently achieves lower Pass@1

scores and higher unreadability density, as shown in Table 3.4. Although these results indicate that

the newer GPT-4o performs worse than its older version, they clearly highlight how its NFR-aware

code generation abilities change with model updates. This insight can help users make informed

decisions about its usage and assist LLM developers in debugging.

Additionally, GPT-4o exhibits smaller percentage changes overall, indicating more stable

NFR-aware code generation capabilities when updated to a new LLM version. For example,

when examining Pass@1 for GPT-4o across all NFR dimensions, the percentage change ranges

from 0.00% to 2.17%, compared to GPT-3.5, which ranges from 0.59% to 6.85%, and Claude-3.5,

which ranges from 1.82% to 33.72%. This indicates that when GPT-4o is updated, it experiences

only minor variations on both the HumanEval and MBPP datasets. Compared to GPT-3.5 and

Claude-3.5, the results suggests that GPT-4o is more robust to version updates among the models

we tested.

As discussed above, GPT-4o appears to be the most robust among the three models, which is

evident when examining only the results from the Reliability dimension. This means that the Relia-

bility dimension is the most effective in identifying robustness issues in LLMs’ NFR-aware code

generation capabilities when the model is updated. As shown in Table 3.4, Claude-3.5 exhibited

significant changes, with a 17.26% decrease in Pass@1 on HumanEval and a 33.72% decrease on

MBPP, while GPT-3.5 also showed percentage changes of 3.89% on HumanEval and 4.83% on

MBPP. In contrast, GPT-4o displayed minimal changes, with only a 0.90% change on HumanEval
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and no change (0.00%) on MBPP. These smaller percentage changes indicate that when the model

is updated, GPT-4o is more robust compared to the other two models, aligning with the findings

discussed above. A potential reason is that the Reliability dimension requires LLMs to add excep-

tion handling, which typically alters the code structure more and introduces additional statements

compared to other NFR dimensions.

Overall, these findings highlight that different LLM models exhibit varying changes in NFR-

aware code generation capabilities when updated. This underscores the importance of using robust-

ness evaluation frameworks like RoboNFR to identify potential issues in LLMs, whether for user

adoption or developer debugging.

Summary of RQ2: When LLMs are updated, they introduce trade-offs between code correct-

ness and NFR metrics. Some models are less robust—such as GPT-3.5-turbo exhibits inconsistent

trade-offs after an update—while GPT-4o appears more robust, as it maintains more consistent

trade-offs and exhibits smaller percentage changes across all metrics. Among the NFR dimen-

sions, the Reliability dimension serves as a strong indicator for monitoring LLM robustness in

NFR-aware code generation, as it represents the degree of change between newer and older ver-

sions of the same model.

RQ3: Do robustness issues exist in LLMs’ NFR-aware code generation when different

workflows are applied?

Motivation. As discussed in Section 3.4.5, users primarily rely on NFR-Integrated or NFR-Enhanced

when using LLMs for NFR dimensions. Therefore, this research question investigates the NFR-

aware code generation capabilities of the two workflows, comparing them based on both code cor-

rectness (measured by Pass@1) and NFRs metrics.

Approach. We adopt Evaluation Methodology 3 (i.e., NFR-Aware Code Generation Workflows) as

discussed in Section 3.4.5. For this experiment, we use the same models as in RQ2 (see Section 3.5),

namely GPT3.5-1106, GPT3.5-0125, GPT4o-0513, GPT4o-0806, Claude3.5-0620, and Claude3.5-

1022. We also use the 10 prompts discussed in RQ1 (see Section 3.5) to compute the average

Pass@1 and the standard deviation (STDEV). Finally, we average these values to obtain the final

comparison.
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Table 3.5: Pass@1 AVG: This column shows the average Pass@1 score computed across all exper-
imental models. �: The � symbol indicates the Pass@1 difference between the results of various
NFR dimensions and the baseline (RawGPT) results.

Workflow NFR Dimension
HumanEval HumanEval-ET MBPP MBPP-ET

Pass@1 AVG �(%) Pass@1 AVG �(%) Pass@1 AVG �(%) Pass@1 AVG �(%)

- RawGPT 84.61±0.70 0 74.50±0.74 0 71.57±0.41 0 51.19±0.33 0

NFR-Integrated

Code Design 81.69±1.84 #3.46 71.93±2.09 #3.45 69.50±2.06 #2.89 49.18±1.71 #3.91

Readability 83.51±2.42 #1.30 73.61±2.16 #1.20 69.89±2.75 #2.34 49.66±1.89 #2.99

Reliability 77.71±2.64 #8.15 66.95±2.79 #10.13 58.00±5.56 #18.96 39.91±4.03 #22.03

Performance 81.32±1.98 #3.89 72.04±1.78 #3.30 70.49±1.57 #1.50 50.39±1.47 #1.56

NFR-Enhanced

Code Design 72.43±7.54 #14.40 64.02±6.84 #14.07 53.48±12.12 #25.27 37.73±8.64 #26.28

Readability 76.05±5.96 #10.12 66.87±5.29 #10.25 57.41±8.08 #19.78 40.67±5.51 #20.55

Reliability 72.75±4.54 #14.02 62.09±4.36 #16.66 61.04±4.08 #14.71 42.38±2.93 #17.21

Performance 77.02±2.70 #8.97 68.23±2.49 #8.41 68.53±2.01 #4.24 48.98±1.67 #4.30

Results. NFR-Integrated almost always achieves better Pass@1 than NFR-Enhanced. In Table

3.5, our finding shows that a two-step approach has a negative impact on Pass@1, and the difference

can be over 20% (e.g., between NFR-Integrated and NFR-Enhanced for Code Design in MBPP), de-

pending on the specific NFR and dataset. For code design and readability, the decrease is even more

notable in NFR-Enhanced (10% to over 20% compared to RawGPT) compared to NFR-Integrated

(1.3% to 3.91% over RawGPT). In contrast, even though exception handling (i.e., Reliability) has

the largest decrease in NFR-Integrated, the difference with NFR-Enhanced is smaller. Performance

has relatively more stable results between NFR-Integrated and NFR-Enhanced. As NFR-Integrated

shows an average 2.56% decrease compared to RawGPT in the performance dimension, and NFR-

Enhanced shows a 6.48% decrease, the gap between them is only 3.92%—much smaller than in

other NFR dimensions (e.g., Code Design shows a 16.58% gap between NFR-Integrated and NFR-

Enhanced).

Our findings show that the one-step approach may allow the LLM to balance the objectives

better, and generative models may perform worse at Pass@1 on a two-step code enhancement,

especially if the NFR is more related to re-structuring the code (i.e., code design and readability).

Incorporating NFRs reduces the capability of LLMs in stably generating functionally correct

code, resulting in more variable Pass@1. NFR-Integrated and NFR-Enhanced consistently exhibit
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Table 3.6: Columns code smell density, unreadability density, exception-handling density, and ex-
ecution time (millisecond) represent the NFR metrics (Section 3.4.2). Each metric includes stan-
dard deviations and �%, which indicates the percentage difference between NFR-aware results and
RawGPT results.

Dataset Workflow NFR Dimension code smell(�%) unreadability(�%) exception-handling(�%) execution time(�%)

HumanEval

- Function-Only 0.18±0.01 2.66±0.03 0.029±0.003 84.02±21.55

NFR-Integrated

Code Design 0.10±0.01 (# 44.4) 1.57±0.20 (# 41.0) 0.103±0.054 (" 255.2) 76.08±18.54 (# 9.45)

Readability 0.10±0.02 (# 44.4) 1.51±0.16 (# 43.2) 0.045±0.019 (" 55.2) 81.60±22.35 (# 2.88)

Reliability 0.17±0.05 (# 5.6) 1.78±0.20 (# 33.1) 1.123±0.180 (" 3772.4) 91.27±25.12 (" 8.63)

Performance 0.14±0.02 (# 22.2) 2.11±0.14 (# 20.7) 0.024±0.006 (# 17.2) 68.95±12.11 (# 17.94)

NFR-Enhanced

Code Design 0.06±0.02 (# 66.7) 1.23±0.20 (# 53.8) 0.090±0.039 (" 210.3) 73.03±26.91 (# 13.08)

Readability 0.07±0.02 (# 61.1) 1.24±0.15 (# 53.4) 0.056±0.013 (" 93.1) 75.14±24.52 (# 10.57)

Reliability 0.09±0.02 (# 50.0) 1.41±0.16 (# 47.0) 0.855±0.150 (" 2848.3) 81.50±27.27 (# 3.00)

Performance 0.10±0.02 (# 44.4) 1.62±0.10 (# 39.1) 0.035±0.011 (" 20.7) 78.41±18.92 (# 6.68)

MBPP

- Function-Only 0.15±0.01 3.06±0.02 0.064±0.002 39.88±2.47

NFR-Integrated

Code Design 0.13±0.02 (# 13.3) 2.67±0.28 (# 12.7) 0.311±0.103 (" 385.9) 43.16±5.32 (" 8.22)

Readability 0.12±0.02 (# 20.0) 2.47±0.23 (# 19.3) 0.124±0.043 (" 93.8) 41.60±5.15 (" 4.31)

Reliability 0.20±0.06 (" 33.3) 2.47±0.36 (# 19.3) 1.504±0.169 (" 2250.0) 38.64±3.72 (# 3.11)

Performance 0.15±0.02 (# 0.0) 3.78±0.19 (" 23.5) 0.066±0.024 (" 3.1) 40.21±3.88 (" 0.83)

NFR-Enhanced

Code Design 0.05±0.02 (# 66.7) 2.18±0.46 (# 28.8) 0.224±0.059 (" 250.0) 43.02±5.56 (" 7.87)

Readability 0.07±0.02 (# 53.3) 2.36±0.23 (# 22.9) 0.152±0.031 (" 137.5) 44.15±6.64 (" 10.71)

Reliability 0.13±0.05 (# 13.3) 2.23±0.24 (# 27.1) 1.327±0.182 (" 1973.4) 41.12±3.79 (" 3.11)

Performance 0.13±0.02 (# 13.3) 3.14±0.19 (" 2.6) 0.089±0.036 (" 39.1) 41.25±2.32 (" 3.44)

higher standard deviations (STDEV) of Pass@1 across all benchmarks compared to RawGPT . For

example, in HumanEval, the STDEV for Pass@1 ranges from 1.84 to 2.64 for NFR-Integrated

and 2.70 to 7.54 for NFR-Enhanced, both much higher than the STDEV of 0.70 for RawGPT .

Moreover, we find that NFR-Enhanced exhibits higher variability in Pass@1 than NFR-Integrated,

which aligns with our earlier finding that LLMs are better at generating functionally correct code

in one-step approach.

Unlike Pass@1, NFR-Enhanced leads to a larger improvement in certain non-functional

code quality than NFR-Integrated. While NFR-Integrated outperforms NFR-Enhanced in Pass@1,

NFR-Enhanced excels in improving NFR metrics. For code smell density, NFR-Integrated achieves

a reduction of 13.3% and 44.4% on HumanEval and MBPP, respectively, whereas NFR-Enhanced
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reduces by 66.7% for both datasets. Similarly, for readability, NFR-Integrated improves by 19.3%–

43.2%, while NFR-Enhanced achieves 22.9%–53.4% enhancements. Interestingly, an inverse pat-

tern emerges for reliability, where NFR-Integrated outperforms NFR-Enhanced with improvements

of 2250.0%–3772.4% for HumanEval and MBPP, compared to NFR-Enhanced’s 1973.4%–2848.3%.

A similar trend is observed for the performance metric, with NFR-Integrated reducing execution

time by 17.94% compared to NFR-Enhanced’s 6.68% in HumanEval, but no statistically significant

difference in MBPP (t-test’s p-value > 0.05).

Our findings suggest that the two NFR-aware code generation workflows have varying bene-

fits depending on the NFRs. While NFR-Enhanced is more effective for improving readability and

reducing code designs, NFR-Integrated may be better suited for addressing runtime-related require-

ments like exception handling and performance.

On average, NFR-Integrated and NFR-Enhanced share similar levels of stability in the NFR

metrics. RawGPT has the lowest STDEV across all NFR metrics, partly because of its lack of

consideration of NFRs. In comparison, NFR-Integrated and NFR-Enhanced have larger STDEVs,

but the values are often stable. For example, code smell density has an STDEV of 0.01–0.02, and

unreadability density has an STDEV of 0.15–0.23 for both NFR-aware workflows.

Overall, as revealed by RoboNFR, even minor differences in workflows—such as executing a

process like NFR-Integrated versus NFR-Enhanced—can lead to different outcomes. This high-

lights the importance of future research in designing clear workflows for deploying LLMs and eval-

uating their capabilities in NFR-aware code generation.

Summary of RQ3: When incorporating NFRs, NFR-Integrated consistently generates function-

ally correct code more frequently than NFR-Enhanced. While both approaches improve the rel-

evant metrics, NFR-Enhanced excels in readability and code structure, whereas NFR-Integrated

demonstrates superior performance in exception handling and runtime efficiency.
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3.6 Discussion

3.6.1 Discussion of Implications

Our findings highlight implications for two key groups of stakeholders: (i) practitioners and (ii)

LLM researchers.

For Practitioners. Our experiments with RoboNFR revealed various robustness issues in LLMs

that practitioners must consider, such as the fact that different prompts expressing the same mean-

ing can significantly affect NFR-aware code generation capability, making it crucial to carefully

experiment with and select the most effective prompt. Additionally, since the NFR-aware code gen-

eration ability of LLMs may vary across versions, users should either commit to a specific model

version instead of automatically adopting the latest release, or reevaluate their choice whenever an

update occurs. Moreover, even minor differences in workflows—such as executing a process in a

single iteration (i.e., NFR-Integrated) versus sequentially (i.e., NFR-Enhanced)—can lead to differ-

ent outcomes. Finally, our comparisons of functional correctness and NFR metrics demonstrate that

balancing competing objectives (e.g., Pass@1 versus non-functional code quality) is essential.

In practice, to ensure the expected outcomes of LLM-based products, it is important to establish

a continuous quality assurance mechanism—for example, using RoboNFR to monitor the robustness

of deployed LLMs in real-world scenarios and prevent unexpected changes in product behavior.

For LLM Researchers. The observed robustness issues and trade-offs between functional correct-

ness and non-functional quality point to key directions for improving research setups and training

processes. Future LLM studies should report the prompts used, the specific model version (in-

cluding its release date), and detailed workflow information, as our experiments demonstrate that

these factors significantly impact the NFR-aware code generation capabilities of LLMs. More-

over, research should focus on developing models that effectively address both functional and

non-functional requirements to reduce trade-offs and variability in functional and non-functional

code quality. Future studies should also monitor robustness across various code quality aspects and

benchmarks to optimize training and better align with complex software requirements.
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3.6.2 Discussion of Failure Examples When The LLM Attempts To Address Both

Functional And Non-Functional Requirements

To provide more insights on the robustness issues, we present some code examples exposed by

RoboNFR, demonstrating that LLMs make some mistakes when addressing NFRs, such as reliabil-

ity, readability, performance, and code design.

Reliability

To enhance reliability, LLMs often include additional exception-handling statements in the

code. However, they sometimes make errors, such as using incorrect try-except formats or raising

generic exceptions instead of returning specific results as described in the problem requirements.

For example, in Code 3.1, the LLM introduced extra exception-handling code that conflicts with

the specified functional requirements. The error-handling code introduces extra checks for the trian-

gle inequality theorem on lines 23-24, leading to failure. Specifically, the function’s docstring states

that such inputs should return False. However, the error-handling logic raises a ValueError instead,

resulting in failure. This discrepancy highlights that while NFR-aware code generation can pro-

duce functionally correct logic, it may conflict with the specified evaluation criteria. Furthermore,

such unexpected outputs might unfairly lead to a significant decrease in Pass@1 scores during LLM

evaluation, suggesting a potential direction for designing fairer benchmarks in the future.

1 def right_angle_triangle(a, b, c):

2 ’’’

3 Given the lengths of the three sides of a triangle. Return True if the three

4 sides form a right-angled triangle, False otherwise.

5 A right-angled triangle is a triangle in which one angle is right angle or

6 90 degree.

7

8 Example:

9 right_angle_triangle(3, 4, 5) == True

10 right_angle_triangle(1, 2, 3) == False

11 ’’’

12

13 # Type checking

14 for side in (a, b, c):

15 if not isinstance(side, (int, float)):
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16 raise TypeError(f"Invalid type: {side}. All sides must be numbers (int or

float).")

17

18 # Value checking

19 if a <= 0 or b <= 0 or c <= 0:

20 raise ValueError("All sides must be positive numbers.")

21

22 # Triangle inequality theorem

23 if a + b <= c or a + c <= b or b + c <= a:

24 raise ValueError("The given sides do not form a triangle.")

25

26 # Check for right angle using Pythagorean theorem

27 sides = sorted([a, b, c]) # Sort the sides to identify the longest side

28 return sides[0]**2 + sides[1]**2 == sides[2]**2

Listing 3.1: HumanEval-157 Test Failure Due to raise ValueError Which Violates the Functional

Requirement.

Code Design

When provided with only functional requirements, the LLM can generate correct code; however,

the generated code may still exhibit code smell issues. For instance, as shown in Code 3.2, the

function-only solution passes the evaluation but relies heavily on multiple if-else statements for

validation checks, introducing potential maintainability concerns.

1 def valid_date(date):

2 """You have to write a function which validates a given date string and

3 returns True if the date is valid otherwise False.

4 The date is valid if all of the following rules are satisfied:

5 1. The date string is not empty.

6 2. The number of days is not less than 1 or higher than 31 days for months

1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for

months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the

month 2.

7 3. The months should not be less than 1 or higher than 12.

8 4. The date should be in the format: mm-dd-yyyy

9 for example:

10 valid_date(’03-11-2000’) => True

11 valid_date(’15-01-2012’) => False

12 valid_date(’04-0-2040’) => False
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13 valid_date(’06-04-2020’) => True

14 valid_date(’06/04/2020’) => False

15 """

16 # Check if the date string is empty

17 if not date:

18 return False

19 # Check if the date string is in the correct format

20 if len(date) != 10 or date[2] != ’-’ or date[5] != ’-’:

21 return False

22 # Split the date string into month, day, and year

23 try:

24 month, day, year = map(int, date.split(’-’))

25 except ValueError:

26 return False

27 # Check if the month is valid

28 if month < 1 or month > 12:

29 return False

30 # Check if the day is valid based on the month

31 if month in {1, 3, 5, 7, 8, 10, 12}:

32 if day < 1 or day > 31:

33 return False

34 elif month in {4, 6, 9, 11}:

35 if day < 1 or day > 30:

36 return False

37 elif month == 2:

38 if day < 1 or day > 29:

39 return False

40 # If all checks pass, the date is valid

41 return True

Listing 3.2: HumanEval-124 correct but has code smell.

When processing NFR-aware code generation, LLMs may have the capability to avoid code

smells, but they can sometimes make mistakes. For instance, as shown in Code 3.3, when prompted

to avoid a specific code smell, the LLM attempted to mitigate it by using a regular expression

pattern. However, it failed to produce a correct and functional pattern. These inaccuracies resulted

in AssertionError exceptions during evaluation when the function was executed. This highlights

the potential risk that an LLM might alter the original intent when generating regular expressions.
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Future research could explore how robustly LLMs can handle regular expression logic during code

generation.

1 import re

2 def valid_date(date):

3 # Check if the date string is empty

4 if not date:

5 return False

6

7 # Define the regex pattern for the date format

8 date_pattern = re.compile(r’^(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])-(\d{4})$’)

9

10 # Check if the date matches the pattern

11 match = date_pattern.match(date)

12 if not match:

13 return False

14

15 # Extract month, day, and year from the date

16 month, day, year = map(int, match.groups())

17

18 # Define the number of days in each month

19 days_in_month = {

20 1: 31, 2: 29, 3: 31, 4: 30, 5: 31, 6: 30,

21 7: 31, 8: 31, 9: 30, 10: 31, 11: 30, 12: 31

22 }

23

24 # Check if the day is valid for the given month

25 if day < 1 or day > days_in_month[month]:

26 return False

27 return True

28 assert candidate("03-15-957") == True # match fail

Listing 3.3: HumanEval-124 Test Failure while LLM using re to avoid code smell but introduce

other error.

Readability

Similar to its ability to address code design, LLMs can enhance the readability of generated

code. However, we observed that LLMs sometimes prioritize suggesting strategies over producing

more readable code. For example, as shown in Code 3.4, while the LLM attempted to improve code
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readability, it occasionally failed to generate valid code. Instead, it returned strategy descriptions as

responses, which led to evaluation failures. When executed, this resulted in a SyntaxError during

evaluation. During our evaluation, we observed that earlier models (e.g., GPT-3.5-turbo) more

frequently generated instructional responses instead of actual code, as illustrated here. This suggests

that, to ensure the robustness of LLMs in code generation tasks, the development process should

include test cases that verify whether the model’s output contains valid code.

1 One way to enhance readability and improve the code is to add comments to explain the

logic and steps of the algorithm. This will make it easier for others (and yourself)

to understand the code.

2 Another way to improve the code is to use more descriptive variable names. For example,

instead of using "l" as the variable name for the list, you could use a more

descriptive name such as "input_list".

3 Additionally, you could extract the logic inside the function into smaller, more

descriptive functions. For example, you could create a function to check if a triple

of elements sum to zero, and then call that function inside the main function.

4 Lastly, you could add type hints to the function signature to make it clear what type of

input the function expects and what type of output it returns. This can improve

readability and help catch potential errors early on.

Listing 3.4: HumanEval-40 Test Failure while LLM improve readability.

Performance

In the absence of specific requirements for code generation, LLMs may prioritize generating

correct code while overlooking other critical factors, such as execution time. For instance, as shown

in Code 3.5, the RawGPT solution implements an algorithm with O(n2) time complexity. While

the code is functionally correct, it is computationally inefficient.

1 def car_race_collision(n: int):

2 """

3 Simulates the car collisions explicitly and calculates the number of collisions.

4 Arguments:

5 n -- Number of cars in each group (left-to-right and right-to-left)

6 Returns:

7 int -- Number of collisions

8 """

9

10 # Initialize collision count
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11 collisions = 0

12

13 # Iterate through each car in the left-to-right group

14 for _ in range(n):

15 # Each car collides with all cars in the right-to-left group

16 for _ in range(n):

17 collisions += 1

18 return collisions

Listing 3.5: HumanEval-41, Function-only-generated code, correct but slow.

When tasked with optimizing an algorithm’s runtime, the LLM occasionally makes mistakes,

such as using incorrect formulas to solve the problem. For instance, in Code 3.6, the correct formula

for calculating the number of collisions is n⇥n. However, the LLM sometimes employed alternative

mathematical formulas, resulting in incorrect outputs. During evaluation, these inaccuracies led to

AssertionError exceptions when the function was executed. Research on using LLMs to enhance the

execution speed of existing code may benefit from adding checkpoints to address such issues—for

example, by prompting the LLM to verify whether the generated mathematical formulas align with

the original functional requirements.

1 # Correct-Code:

2 def car_race_collision(n: int):

3 return n * n

4

5 # LLM NFR-aware Generated Code: Efficient but Incorrect

6 def car_race_collision(n: int):

7 return n * (n - 1) // 2

Listing 3.6: HumanEval-41 Test Failure while LLM improve performance but use wrong formula.

3.7 Threats to Validity

Internal Threats. The primary objective of our framework is to assess LLM robustness in NFR-

aware code generation by evaluating both Pass@1 and non-functional code quality. Although

RoboNFR is not explicitly pre-trained for code refinement, it mirrors how developers use LLMs,
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including prompt design, model version, and workflow choices—for both code generation and re-

finement tasks. The insights from our evaluation can inform improvements in future model archi-

tectures, guide the prioritization of code optimization efforts, and help develop strategies for more

effective and robust handling of non-functional requirements in generated code. Future work could

explore refining training processes or implementing targeted NFR optimization techniques during

code generation and refinement.

External Threats. We use a certain set of widely used LLMs to conduct the experiments. The

results may not apply to all models, as results may vary across different architectures and training

methods. Future studies could benefit from incorporating a broader range of models to validate

the results. In this study, we have primarily examined Python datasets. While Python is a widely

used language, the generalizability of our framework to other programming languages remains to

be fully explored. However, our framework is not inherently language-specific. It is expected to be

applicable to other languages and can be further verified by future studies.

3.8 Conclusion

This study examines the challenges and opportunities of integrating non-functional require-

ments (NFRs) into code generation using large language models (LLMs). We introduce RoboNFR,

a generalizable framework for evaluating LLM robustness in NFR-aware code generation by incor-

porating prompt variations, regression testing, and diverse workflows for leveraging LLM capabil-

ities. Our findings reveal potential robustness issues and significant trade-offs between functional

correctness and non-functional code quality attributes such as design, readability, reliability, and

performance.

Our study demonstrates that while incorporating NFRs into code generation reduces the func-

tional correctness metric (e.g., Pass@1), it yields notable improvements in non-functional code

quality. However, we also observed a heightened potential for robustness issues. Our analysis

of three evaluation methodologies highlights the importance of robustness: The selection of se-

mantically equivalent prompts can significantly impact both functional and NFR metrics; model
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updates require regression testing to maintain consistency; and different workflows—such as NFR-

Integrated and NFR-Enhanced —demonstrate varying degrees of effectiveness in addressing spe-

cific NFR aspects. By providing real-time feedback, RoboNFR facilitates continuous monitoring of

LLM robustness and helps identify the optimal combination of prompt design, model version, and

workflow selection, ultimately enhancing LLM-based solutions and development efficiency.
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Chapter 4

Conclusion

4.1 Summary

In this thesis, we explored the integration of software engineering knowledge with large lan-

guage models (LLMs). Chapter 2 examined how different software process models influence the

code generation capabilities of LLMs. Our findings show that FlowGen reduces variations in gener-

ated code across changes in temperature settings and model versions, while FlowGenScrum achieves

the best overall performance among the models evaluated. Testing activities have the most signifi-

cant impact on ensuring code correctness, whereas code design and review activities play a crucial

role in enhancing code quality. Moreover, combining FlowGen with additional practices, such as

increased testing (e.g., FlowGenScrum+Test), further boosts the Pass@1 score of generated code.

Chapter 3 further evaluates the robustness of LLMs in NFR-aware code generation. Our findings

indicate that integrating NFRs into prompts generally leads to a decrease in Pass@1 scores com-

pared to RawGPT , which does not mention NFRs—reflecting reduced accuracy in the generated

code. However, this integration improves code quality in terms of performance, design, reliability,

and readability. At the same time, incorporating NFRs reduces the robustness of LLMs’ code gen-

eration ability, as it introduces greater variation in the generated code across both correctness and

quality dimensions. We also observe that changes in model versions significantly affect both the

correctness and quality of NFR-aware code. Among the models evaluated, GPT-4o demonstrates
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the highest robustness. Furthermore, different prompting workflows yield distinct outcomes: NFR-

Integrated achieves higher code correctness, while NFR-Enhanced produces better code quality.

Overall, by examining two key aspects of software engineering knowledge, this thesis highlights

their importance—particularly in how they influence the code generation capabilities of LLMs. The

findings also suggest that human developers should incorporate software engineering principles

when integrating LLMs into real-world software development.

4.2 Discussion and Future Work

This thesis presents key findings on the importance of software engineering knowledge when

applying large language models (LLMs) for code generation, and highlights several interesting di-

rections for future applications and related research. Specifically, Chapter 2 demonstrates that pro-

cess models play a critical role, suggesting that the responsibilities of human developers may evolve

as LLMs are integrated into these workflows. However, since current process models are primarily

designed for human developers, future work should explore how to design new models that sup-

port effective human–LLM collaboration. In particular, it is important to investigate whether the

activities in existing models remain valuable in LLM-augmented workflows—that is, to study the

individual impact of each activity in modernized process models.

Meanwhile, Chapter 3 highlights the need for users to be cautious of LLM robustness issues,

particularly in NFR-aware code generation. Real-world LLM-based products must carefully prese-

lect stable prompts, workflows, and model versions to ensure consistent output and mitigate unex-

pected behaviors caused by robustness limitations. This also suggests the need for further research

that simulates real-world LLM usage—examining how developers interact with LLMs across var-

ious scenarios (e.g., different settings or versions), and how users address practical challenges be-

yond code correctness, such as reliability, readability, and performance.

Although the experiments in this thesis are subject to certain limitations due to resource con-

straints, the findings underscore the importance of incorporating software engineering knowledge

into LLM-related research. Future work should continue to integrate software engineering perspec-

tives when investigating the capabilities and applications of large language models.
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