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Abstract

Robust Design of a Manufacturing Network for Mass Personalization

Hoora Katoozian, Ph.D.
Concordia University, 2025

The Fourth Industrial Revolution (Industry 4.0 or I4.0) is transforming manufacturing through the
integration of cyber-physical systems, artificial intelligence, and the Internet of Things. At its core
is mass personalization (MP), enabling the production of customized products, particularly in high-
tech sectors such as aerospace, medical devices, and precision optics. These industries require
resilient supply networks to handle low-volume, high-complexity production and uncertainties
in customer demands and supplier performance. Traditional supply chain models fall short in
addressing these challenges, calling for advanced optimization frameworks.

This thesis explores the design of resilient and reconfigurable supply networks tailored to MP
under I4.0. It makes three primary contributions. First, a strategic mixed-integer programming
(MIP) model is proposed for optimizing supplier selection and order allocation, balancing design
complexity with economies of scale. Second, a two-stage stochastic programming (2SP) model
is developed for platform-based manufacturing networks, integrating crowdsourcing to enhance
resilience by assigning primary and backup suppliers under uncertain capabilities. Third, an ad-
justable robust optimization (ARO) model is introduced for multi-echelon networks, addressing
variability in supplier capacity and bill-of-material complexity, supported by an efficient math-
heuristic algorithm.

Extensive numerical experiments and sensitivity analyses validate the models’ effectiveness in
mitigating risk and improving resilience. This research offers actionable insights for high-tech
manufacturers aiming to build agile, cost-efficient supply networks that meet the evolving demands
of mass personalization in the era of Industry 4.0.
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Chapter 1

Introduction

1.1 Overview

The Fourth Industrial Revolution, or Industry 4.0 (I4.0), has transformed global manufacturing by
integrating cyber-physical systems (CPS), artificial intelligence (AI), and the Internet of Things
(IoT) to enable flexible, sustainable, and customer-centric production (Shrouf, Ordieres, & Mi-
ragliotta, 2014). A key pillar of I4.0 is mass personalization (MP), which shifts from mass cus-
tomization (MC) to a market-of-one, where products are tailored to individual customer specifica-
tions (Kumar, 2007; Wang, Ma, Yang, & Wang, 2017). This trend is particularly pronounced in
high-tech industries such as aerospace, medical devices, and precision optics, where low-volume,
highly customized products require sophisticated manufacturing processes and significant research
and development (R&D) efforts. MP demands reconfigurable and resilient supply networks capa-
ble of managing complex, customizable components while maintaining cost efficiency and short
lead times.

Traditional vertically integrated supply chains are increasingly replaced by collaborative networks
of specialized suppliers, third-party logistics providers, and manufacturers, interconnected through
cloud-based platforms (Chien, Chen, & Peng, 2010). However, the dynamic nature of MP intro-
duces challenges, including uncertain customer requirements, variable supplier capabilities, and
high production costs for small-batch, complex designs. These challenges necessitate advanced
decision-support tools to optimize supply network design (SND) and ensure resilience against
uncertainties. Motivated by these requirements, this thesis focuses on developing quantitative de-
cision models for designing reconfigurable and resilient supply networks in the context of MP
under I4.0, addressing the gap in practical, data-driven tools for smart supply chain management.

1.2 Literature Review and Research Gaps

Despite extensive work on traditional supply chain design for high-volume, standardized produc-
tion (Beamon, 1998; Garcia & You, 2015; Sha & Che, 2006), Industry 4.0’s shift toward mass
personalization exposes several critical gaps. First, while smart supply chain studies highlight dy-
namic meta-structures and modular platforms (Dolgui, Ivanov, & Sokolov, 2020; Min, Zacharia,
& Smith, 2019), they lack quantitative decision models that simultaneously integrate network re-
configuration, modular product design, and stochastic supplier performance (Jamrus, Wang, &
Chien, 2020; Oh & Jeong, 2019). Second, mass customization frameworks offer strategies for
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modular design and simultaneous product–network optimization (F. Salvador, 2004; Gupta & Kr-
ishnan, 1999; J. H. Mikkola, 2004; Lamothe, Hadj-Hamou, & Aldanondo, 2006; Zhang, Huang,
& Rungtusanatham, 2008), yet they assume fixed product catalogues and deterministic supplier
readiness, overlooking individualized BOMs and uncertain technological capabilities central to
mass personalization (Baud-Lavigne, Agard, & Penz, 2012). Third, research on customized sup-
ply chain design has begun to address complexity and integrated supplier selection (Changbai Tan
& Freiheit, 2022; Inman & Blumenfeld, 2014; Katoozian & Zanjani, 2022), but typically assumes
in-house production or neglects stochastic resilience for outsourced, complex modules. Finally,
robust and stochastic optimization techniques have advanced supply chain resilience under un-
certainty (Ben-Tal, Goryashko, Guslitzer, & Nemirovski, 2004; Ben-Tal & Nemirovski, 2002;
Bertsimas, Brown, & Caramanis, 2011; Birge & Louveaux, 2011; Pishvaee, Rabbani, & Torabi,
2011). However, existing applications to multi-echelon, customizable networks are scarce and
computationally prohibitive due to overlooking scalability.

1.3 Scope and Objectives

To address the gap in decision-support tools for MP in I4.0, this thesis develops a comprehensive
framework for designing resilient supply networks. More specifically, it investigates the design of
supply networks for manufacturing modular, customizable high-tech products in I4.0. The specific
objectives are:

(1) To propose a strategic planning model for designing a reconfigurable supply network that
supports MP, optimizing supplier selection and order allocation while considering design
complexity and economy of scale.

(2) To evaluate the impact of market conditions and supplier readiness on network configuration
and profitability through sensitivity analysis.

(3) To develop a decision model for the design of a platform-based manufacturing network,
enhancing resilience against uncertain technological capabilities of external suppliers.

(4) To formulate a robust decision model for the design of a multi-echelon manufacturing net-
work, ensuring robustness against supplier capacity variability and BOM complexity.

(5) To devise a computationally efficient math-heuristic algorithm to solve the robust model for
large-scale instances.

(6) To create a benchmark dataset and a scenario sampling technique to validate and efficiently
solve the above decision models.

(7) To conduct extensive numerical experiments, including Monte Carlo simulations, to com-
pare robust and deterministic approaches and derive managerial insights.

The above objectives are structured into three key problems, each addressed in a core chapter
based on a published paper. First, we consider the strategic formation of a reconfigurable sup-
ply network to support MP, where customers specify individualized product designs, leading to
variable bills-of-material (BOM). The goal is to select a pool of suppliers capable of delivering
standard and customizable components, optimizing profit and service level while accounting for
design complexity and economies of scale. Second, we explore platform-based manufacturing
networks (PBMNs) that leverage crowdsourcing to enhance resilience against supplier failures.
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This involves selecting primary and backup suppliers and determining production quantities un-
der uncertain technological capabilities, using a cloud-based platform to coordinate stakeholders.
Third, we address the design of a multi-echelon manufacturing network resilient to supplier capac-
ity variability, incorporating uncertainty in production rates due to BOM complexity and supplier
performance.

Each problem is formulated using advanced optimization techniques: mixed-integer programming
(MIP) for reconfigurable network design, two-stage stochastic programming (2SP) for platform-
based resilience, and adjustable robust optimization (ARO) for multi-echelon robustness. These
models account for real-world complexities such as piecewise linear cost functions, uncertain sup-
plier capabilities, and varying design complexities, ensuring applicability to industries like optics,
LiDAR, and biomedical instrumentation. The research also develops efficient solution methods,
including scenario sampling and math-heuristic algorithms, to address computational challenges
in large-scale instances.

1.4 Organization of the Thesis

This thesis is structured into five chapters. Chapter 1 provides the introduction, setting the I4.0
and MP context, defining the research scope, and summarizing contributions. Chapter 2 presents a
strategic MIP model for designing a reconfigurable supply network for MP, analyzing the impact
of design complexity and supplier capabilities. Chapter 3 introduces a 2SP model for a platform-
based manufacturing network, incorporating crowdsourcing and resilience against supplier fail-
ures, along with a benchmark dataset and solution heuristic. Chapter 4 develops an ARO model
for a robust multi-echelon manufacturing network, supported by a math-heuristic algorithm and
numerical experiments. Chapter 5 concludes the thesis, synthesizing findings, discussing practical
implications, and suggesting future research directions.
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Chapter 2

Supply Network Design for Mass
Personalization in Industry 4.0 Era

Abstract

The manufacturing industry is confronted with the growing demand of personalized products of
small batch sizes. In other words, the producers are faced with the satisfaction of heterogeneous
customer needs through individualization and the realization of scale effects along the value chain.
This study is among the first that proposes a mixed-integer programming model to obtain the op-
timal configuration of a supply network comprising of a pool of suppliers to satisfy the demand
of highly-customized and modular-structured products. The product individualization is incor-
porated into the model by considering different design complexity levels for the components/sub-
assemblies in the bill-of-material. Furthermore, the impact of batch size is modeled by considering
piece-wise production cost functions in different echelons of the network. Our numerical results
inspired by the case of tunable lasers indicate that the configuration of supply network varies as a
function of the demand at different design complexity levels. Whereas, the profitability of supply
network is closely tied to the market condition as well as the production capacity, flexibility of
processes, and cost structure of manufacturers.

2.1 Introduction

Align with the paradigm shift to the 4th Industrial revolution, the manufacturing sector has recently
witnessed major supply and market challenges. Industry 4.0 (I4.0) revolves around an industrial
production that is highly flexible in production volume and customization. It is also sustainable and
relies on an extensive integration between the main producer, suppliers, 3rd-party logistics (3PL)
providers, and customers by the application of cyber-physical systems (CPS) (Shrouf et al., 2014).
Mass customization (MC) is the use of flexible processes to produce varied and often individually
customized products and services at the price of standardized, mass-produced alternatives. There
has been a transition from MC to Mass Personalization (MP) from mid 90s, as customers have been
further involved into the design of individualized products. MP, as one of the key pillars of I4.0,
is a paradigm shift from a market segment of few in MC to a market-of-one Kumar (2007); Wang
et al. (2017). Making the customer involved in the design stage in MP is equivalent to offering a
product family with a high degree of flexibility (and variability) in the bill-of-material (BOM). In
other words, the customer has the possibility to alter both the structure of the product (e.g., height
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of BOM) and the design of its components. Nonetheless, this high level of individualization
in product structure calls for a flexible and reconfigurable supply network. This is in particular
crucial when the manufacturing of components and sub-assemblies are outsourced to external
suppliers/sub-contractors. More specifically, the successful implementation of MP heavily relies
on establishing a network of suppliers who are willing to share their scares technological resources
and manufacturing capacities to manufacture individually designed components at a low price and
a short lead-time.

Faced with the dynamic business ecosystem in the context of I4.0 revolution, supply chain (SC)
managers strive to improve the agility and flexible decision capabilities to meet the challenges of
smart and mass-personalized production Ivanov, Dolgui, and Sokolov (2019); Ivanov, Tsipoulani-
dis, and Schönberger (2019). Due to seamless integration via emerging technologies such as artifi-
cial intelligence (AI) and the Internet of Things (IoT), supply chain management (SCM) has been
undergoing a dramatic paradigm shift Jamrus et al. (2020). In particular, the visualization of SCs
by the aid of Cyber-Physical-Systems (CPS) ensures smooth inter-company operations, providing
real-time access to relevant product and production for all stakeholders in the network Brettel,
Friederichsen, Keller, and Rosenberg (2017). Consequently, global manufacturing paradigm has
shifted from conventional vertically integrated SCs towards collaborative value chains consist-
ing of many complementary and specialized production and distribution companies in value con-
stellations. In the same vein, global manufacturing competition is no longer between individual
companies but among supply chains and manufacturing networks, in which collaboration among
and vertical integration of horizontally specialized value providers are critical for the success of
individual companies and the entire business ecosystem Chien et al. (2010).

Connection and collaboration are among the key attributes of future-generation SCs that enable
them to be agile in adequately responding to market uncertainties. The recent advances in infor-
mation and communication technologies, hence, can be leveraged towards virtually connecting
the SC stakeholders on a cloud-based information platform, where those members can collabo-
rate with each other via sharing their real-time data. The concept of smart supply chain can be
interpreted as a large-scale business strategy that brings as many links of the chain as possible into
a closer working relationship with each other. The goal is to improve response time, production
time, and reduce costs and waste (Sun, Yamamoto, & Matsui, 2020).

Despite the increasing number of research publications on smart SCs in the context of I4.0, the
majority of existing contributions are mainly focused on the conceptual design of such cloud-
based manufacturing networks. This study is thus among the first that proposes a quantitative
decision model for the design of a reconfigurable supply network (SN) in the context of MP.
More precisely, we propose a strategic-level decision support tool for the formation of a pool
of component suppliers and sub-assembly manufacturers that enable the manufacturing of a set
of customizable modular-structured products to maximize the profit and service level. To adapt
supply network design (SND) model in the context of MP, we assume that a certain number of
sub-assemblies and components in the BOM can be customized by the customers. More precisely,
we categorize the items on the BOM as the standard and customizable ones. While the former
category entails the elements that are essential in product configuration, the latter group provide
the possibility of individualized (technical) features to the customers. Furthermore, to capture
the uncertainty inherent in the design features provided by different clients, we categorize the
customer requirements into different design complexities. The aforementioned assumptions are
valid in the context of advanced technical devices such as tunable filters and lasers that are in
general ordered in small batch sizes and are featured with several customization options. For
instance, the center wave-length, tuning range and linewidth are customizable in tunable lasers that
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could substantially differ from one category of customers (e.g, research centres) to another (e.g.,
manufacturing firms). Depending on the requested features, the design and manufacturing of these
devices would fall between relatively complex to very complex categories. It is noteworthy that the
above-mentioned approach to incorporate individualized designs in SND problem is substantially
distinct from the common assumption in the literature of SC design models for MC (e.g., Baud-
Lavigne et al. (2012); Lamothe et al. (2006)), where the customization is modeled as a catalogue
comprising of a predetermined product configurations.

Under a cloud manufacturing framework, we further assume that the focal company that receives
individualized orders (e.g., the manufacturer of tunable lasers) have access to a bank of suppliers
and manufacturers that are qualified to supply components and sub-assemblies at different com-
plexity levels. In other words, the proposed SND model aims to determine the optimal choice of
suppliers along with the order assignment to the selected pool while considering the design com-
plexity and quantity of the demand for different products as well as the technological capability,
capacity and cost of suppliers. The objective is to maximize the profit by considering a piece-wise
linear cost function for the supply of customizable components in the BOM. More precisely, due
to the considerably increased amount of time and resources involved for the design and manufac-
turing of products with complex features, their manufacturing cost is assumed to be a function
of order quantity. Furthermore, in order to introduce the notion of service level in this problem,
we consider the option of rejecting part of the demand (as lost-sale) due to lack of technological
capabilities and/or high price of certain requested designs/product features. The SND problem is
formulated as a mixed-integer programming (MIP) model after linearizing the piece-wise linear
cost functions.

The proposed SND model is implemented on a set of test instances with the goal of investigat-
ing the impact of key parameters unique to the context of MP on the configuration of the supply
network along with the profitability of the supply network. In particular, our sensitivity analy-
sis experiments aim to study the network structure and profit by varying parameters pertaining to
market condition for MP as well as industry readiness to offer highly-customized products at a
reasonable cost. To the best of authors’ knowledge, the SND model in this study is among the
first proposed in the context of MP that explicitly takes into account individual product designs via
introducing different design complexities. It is also unique in the sense that it provides a reconfig-
urable network comprising a pool of suppliers that can vary based on the demand structure in terms
of design complexity, suppliers’ cost structure as well as the targeted service level. Furthermore,
the proposed model is among the very few that incorporates the economy of scale when modeling
suppliers’ cost structure for manufacturing custom-designed components. The managerial insights
on the network configuration of the provided based on the sensitivity analysis results are among
other contributions of this study.

The remainder of this article is structured as follows. Section 2 summarizes the review of literature
relevant to this study. The problem description and formulation is provided in section 3. Section 4
entails our numerical experiments followed by concluding remarks in section 5.

2.2 Literature review

Supply chain design in the context of traditional manufacturing processes have been well estab-
lished since 1990s; however, the problem of SND in the context of I4.0 is suffering from lack
of quantitative decision models. According to Min et al. (2019), faced with the diversification of
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customer needs, companies would require an Omni-channel strategy that covers different SC con-
figurations ranging from a direct SC to a globally extended value chain. Furthermore, the adoption
of additive manufacturing technologies (e.g., 3D printing) could lead to less complex SC struc-
tures comprising of a focal farm, its immediate supplier, and customer. In the same vein, an open
platform enables the company to interact with a massive volume of customers and suppliers, which
result in reducing the SC complexity. In a recent study, Dolgui et al. (2020) argue that reconfig-
urability can be considered as the central direction to adapt the SCs to ever changing environments
in the presence of climate changes, frequent natural disasters, digitalization and CPS. The authors
also provide frameworks at the macro and micro levels for the design of SCs via introducing the
concepts of “dynamic SC meta-structures” and “dynamic autonomous services”. Malladi, Erera,
and III (2020) study the utilization of transportable modular production capacity along with the
inventory control to increase dynamic SC reconfiguration.

The research on decision-support models for tactical or operational planning in smart SCs is also
limited to a very few recent studies. The notion of smart manufacturing supply chains was in-
vestigated in Oh and Jeong (2019), where the authors provide a single-period tactical planning
model to determine production and transportation quantities along with the transportation routes
and adjusted capacities for each entity of the value chain on a pseudo real-time basis. Ivanov, Dol-
gui, Sokolov, Werner, and Ivanova (2016) propose a mathematical model and algorithm for supply
chain dynamic scheduling in the context of industry 4.0 smart factories. The coordinated schedul-
ing in supply chains is investigated in Jamrus et al. (2020) by considering the changing demands
of dynamic environments to empower smart production. The authors propose an integrated hybrid
particle swarm optimization and genetic algorithm to minimize the uncertain makespan.

SC design problem in a MC framework has been investigated by a handful of researchers. Ac-
cording to J. H. Mikkola (2004), designing modular components that can be configured into a
wide variety of end products and services seems to be the best way to achieve MC. Through stan-
dardization of interfaces, modularization permits components to be produced separately and used
interchangeably in different configurations without compromising system integrity. Postponement
is another strategic decision involved in MC, where the assembly process of components is post-
poned until specific customer requirements are known. Depending on the level of modularization
and postponement, the authors in J. H. Mikkola (2004) define four types of supply chain structure
that enable MC implementation. The authors in F. Salvador (2004) propose different supply chain
configurations for different customization levels (i.e., soft vs. hard customization). For a mod-
erate level of customization, the authors propose a moderately long distribution network; on the
contrary, a more direct distribution network is suggested for a hard MC strategy.

The notion of product family has been used by several authors in the context of product design for
MC. It refers as a set of module options to choose among in order to obtain different variants of the
product family and design their BOM in order to satisfy customers’ demand. Gupta and Krishnan
(1999) are among the first authors who investigated the simultaneous design of product family
and the corresponding SC. Lamothe et al. (2006) investigate a similar problem by considering a
generic BOM (G-BOM) in order to cover a set of predetermined customer requirements for the
final products. The proposed MIP model in this study provides the optimal product configurations
that cover all customer requirements in addition to the optimal configuration of the corresponding
SC. In a similar study, Zhang et al. (2008) investigate the simultaneous design of platform product
based on the G-BOM concept and the corresponding supply network. Baud-Lavigne et al. (2012)
demonstrate that the challenge in designing a product family is how to precisely define the BOM
for each final product that covers all product features that might be required by the customer.
To overcome the modeling challenge in designing such BOMs that in general leads to a large
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number of binary decision variables, the authors provide an alternative modeling approach for the
simultaneous product and SC design that relies on considering substitutable sub-assemblies and
components.

It is noteworthy that the proposed MIP programming models proposed in the literature for simul-
taneous design of product family and SC are limited to a MC context, where a limited number of
design options in the framework of a product catalogue is offered to the customer to choose. This
is essentially distinct from a MP context where the customer has the option to request individu-
alized features/design for certain components in the BOM. In other words, none of the existing
studies takes into account the uncertainty in terms of design features as well as the technological
capabilities of suppliers in manufacturing those individually designed components. This study
aims to fill this gap by proposing a generic SND model that is applicable in the context of MP and
cloud manufacturing networks.

2.3 Problem description and formulation

2.3.1 Problem description

In this study, we confine our attention to the case of advanced technical devices with a modular
structure that can be represented as a BOM, similar to one depicted in Figure 2.1. In this figure, the
numbers indicated in brackets correspond to the number of components/sub-assemblies involved
in the upper level item. We further assume that a sub-set of components and sub-assemblies in
the BOM are customizable depending on the individualized product features requested by the cus-
tomers. The rest of the items in the BOM are assumed to be standard that are common in all
designs. In the case of tunable lasers, for instance, the tunable filter is one of the customizable
sub-assemblies with a relatively complex to very complex design features. In the same vein, the
active and passive fibres are among the customizable components that should be chosen correctly
from the available products on the market and need further customization to meet the require-
ments. On the contrary, the laser pump and stepper motor are among the standard sub-assemblies
for each category of lasers. To further integrate an MP paradigm into our decision model, we
categorize the customizable items in the BOM into different design complexity levels (e.g., low,
moderate, and high). We further assume that the same complexity level is inherited by the cus-
tomizable sub-assemblies and components in the BOM of a product. For instance, if the product’s
design complexity level is 3, all of its corresponding customizable sub-assemblies and compo-
nents are also featured with highly-complex designs. It is worth noting that the manufacturing
cost of each complexity category increases with its complexity level due to additional R&D efforts
involved in the design of products with complex (personalized) features as well as adjusting corre-
sponding manufacturing processes. Consequently, the manufacturing cost of customizable items
is modeled as a piece-wise linear function of order quantity, where the cost drops as the order
size increases. This would also implicitly incorporate industry readiness for MP in the proposed
model. More precisely, if the manufacturing processes in a company are flexible enough to adjust
to complex designs at a relatively low cost, the order (production) quantity intervals for incremen-
tal cost reduce are assumed to be short. In other words, such companies are ready to embrace the
manufacturing of highly customized products with small lot-sizes at the cost of mass production.
In contrast, when the industry is not ready for MP, such cost interval are expected to be longer
given that the production cost of complex designs at small scale is very high due to significantly
higher set-up costs incurred to adjust the manufacturing processes.

For each item in the BOM, we consider a pool of qualified suppliers that have adequate techno-
logical capabilities to manufacture those items at different design complexities. In other words,
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Figure 2.1: Example of a BOM with design personalization options

we assume a horizontal collaboration among stakeholders in different echelons of the supply net-
work, similar to the network provided in Figure 2.2. Furthermore, it is assumed that suppliers’
information in terms of technological capabilities, manufacturing capacity and cost is available on
an open platform similar to the one in a cloud-manufacturing environment. By considering a focal
company that receives a given demand portfolio of final products, featured with different design
complexities and batch sizes, our goal is to construct the optimal network configuration that max-
imizes the profit and customer service level. In other words, depending on the design features, we
aim to identify the optimal sub-set of partnering suppliers in the pool along with their order quan-
tity such that a high service level and profit is guaranteed. It is worth to mention that this SN is a
reconfigurable manufacturing network, where the mix of suppliers at different echelons can vary
according to the quantity of demand at different design complexity levels; hence, it can facilitate
SC transformation towards a mass personalization paradigm. The mathematical formulation of the
SND problem described above is provide in the next section.

Figure 2.2: Supply network horizontal collaboration for mass personalization
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2.3.2 Problem formulation

In this section, we describe the mathematical notation used to formulate the SND problem, fol-
lowed by the corresponding MIP model.

Notation

I Sets
P: Set of final products indexed by p.
I: Set of product complexity levels indexed by i.
N: Set of sub-assemblies indexed by n.
M: Set of components indexed by m.
H: Set of sub-assembly producers indexed by h.
K: Set of component suppliers indexed by k.
J: Set of incremental production quantity intervals indexed by j.
M s: Sub-set of standard components.
M c: Sub-set of customizable components.
N s: Sub-set of standard sub-assemblies.
N c: Sub-set of customizable sub-assemblies.
N s

m: Sub-set of standard sub-assemblies that contain component m.
N c

m: Sub-set of customizable sub-assemblies that contain component m.

II Parameters
Final products:
Dpi: Demand of final product p at complexity level i.
FCpi: Production capacity of final product p at complexity level i.
Cpi: Cost of producing one unit of final product p at complexity level i.
αpi: Capacity consumption corresponding to one unit of final product p at complexity level
i.
CLpi: Cost of losing one unit of sale for final product p at complexity level i.
Lj
pi: Upper limit of the jth production quantity interval corresponding to product p at com-

plexity level i.
Sj
pi: Selling price of each unit of final product p produced at complexity level i within the

jth production quantity interval, where S1
pi > S2

pi > ... > SJ
pi and

Sj
pi:



S1
pi, qpi ≤ L1

pi

S2
pi, L1

pi < qpi ≤ L2
pi

.

.

SJ
pi, LJ−1

pi < qpi ≤ LJ
pi

Sub-assemblies:
PChn: Production capacity of producer h for standard sub-assembly n (n ∈ N s).
PChni: Production capacity of producer h for customizable sub-assembly n (n ∈ N c)
Cs
hn: Cost of producing one unit of standard sub-assembly n (n ∈ N s) by producer h.

ηnp: Units of sub-assembly n (n ∈ N ) needed to produce one unit of final product p.
Fh: Fixed cost of having a contract with producer h.
βs
hn: Capacity consumption corresponding to one unit of standard sub-assembly n (n ∈ N s)
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at producer h.
βc
hni: Capacity consumption corresponding to one unit of customizable sub-assembly n

(n ∈ N c) at complexity level i at producer h.

θshn:


1, If producer h is capable of producing standard sub-assembly

n (n ∈ N s).
0, otherwise

θchni:


1, If producer h is capable of producing customizable sub-assembly

n (n ∈ N c) at complexity level i.
0, otherwise

Lj
hni: Upper limit of jth production quantity interval corresponding to sub-assembly n

(n ∈ N c) at complexity level i for producer h.
Cj
hni: Cost of producing one unit of customizable sub-assembly n (n ∈ N c) by producer h

at complexity level of i within the jth production quantity interval, where C1
hni > C2

hni >
... > CJ

hni, and

Cj
hni:



C1
hni, qhni ≤ L1

hni

C2
hni, L1

hni < qhni ≤ L2
hni

.

.

CJ
hni, LJ−1

hni < qhni ≤ LJ
hni

Components:
SCkm: Capacity of supplier k for standard component m (m ∈ M s).
SCkmi: Capacity of supplier k for customizable component m (m ∈ M c).
Cs
km: Cost of purchasing one unit of standard component m (m ∈ M s) from supplier k.

λmn: Units of component m (m ∈ M ) needed to produce one unit of sub-assembly n
(n ∈ N ).
Fk: Fixed cost of having a contract with supplier k.
γskm: Capacity consumption corresponding to one unit of standard component m (m ∈ M s)
at supplier k.
γckmi: Capacity consumption corresponding to one unit of customizable component m (m ∈
M c) at at complexity level i at supplier k.

σs
km:


1, Supplier k is capable of offering standard component

m (m ∈ M s).
0, otherwise

σc
kmi:


1, Supplier k is capable of offering customizable component

m (m ∈ M c) at complexity level i.
0, otherwise

Lj
kmi: Upper limit of jth procurement quantity interval corresponding to component m

(m ∈ M c) at complexity level i for supplier k.
Cj
kmi: Cost of purchasing one unit of customizable component m (m ∈ M c) from supplier

k at complexity level i within the jth order quantity interval, where C1
kmi > C2

kmi > ... >
CJ
kmi, and
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Cj
kmi:



C1
kmi, qkmi ≤ L1

kmi

C2
kmi, L1

kmi < qkmi ≤ L2
kmi

.

.

CJ
kmi, LJ−1

kmi < qkmi ≤ LJ
kmi

III Decision Variables
qcjkmi: Total units of customizable component m (m ∈ M c) purchased at complexity level i
from supplier k within the jth interval.
qskm: Total units of standard component m (m ∈ M s) purchased from supplier k.
qcjhni: Total units of customizable sub-assembly n (n ∈ N c) produced by producer h at com-
plexity level i within the jth production quantity interval.
qshn: Total units of standard sub-assembly n (n ∈ N s) produced by producer h.
qjpi: Total quantity of final product p produced at complexity level i within the jth production
quantity interval.
wpi: Total units of lost sale for product p at complexity level i.

xk:

{
1, If supplier k is selected.
0, otherwise

yh:

{
1, If producer h is selected.
0, otherwise

zjpi:


1, If the production quantity of product p at complexity

level i is within the jth interval.
0, otherwise

ujhni:


1, If the production quantity of sub-assembly n by producer h

at complexity level i is within the jth interval.
0, otherwise

vjkmi:


1, If the purchased quantity of component m from supplier k

at complexity level i is within the jth interval.
0, otherwise

Mathematical formulation

Maximize
∑
p

∑
i

∑
j

Sj
piq

j
pi −

∑
p

∑
i

∑
j

Cpiq
j
pi −

∑
h

∑
n

Cs
hnq

s
hn −

∑
h

∑
n

∑
i

∑
j

Cj
hniq

cj
hni−∑

k

∑
m

Cs
kmqskm −

∑
k

∑
m

∑
i

∑
j

Cj
kmiq

cj
kmi −

∑
h

Fhyh −
∑
k

Fkxk −
∑
p

∑
i

CLpiwpi

(2.1)
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Subject to

∑
j

qjpi + wpi = Dpi, ∀p ∈ P , ∀i ∈ I (2.2)

∑
j

αpiqpi ≤ FCpi, ∀p ∈ P , ∀i ∈ I (2.3)

βs
hnq

s
hn ≤ PChnθ

s
hnyh, ∀h ∈ H, ∀n ∈ N s (2.4)∑

j

βc
hniq

c
hni ≤ PChniθ

c
hniyh, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I (2.5)

γskmqskm ≤ SCkmσs
kmxk, ∀k ∈ K, ∀m ∈ M s (2.6)∑

j

γckmiq
c
kmi ≤ SCkmiσ

c
kmixk, ∀k ∈ K, ∀m ∈ MC , ∀i ∈ I (2.7)

qjpi ≤ Lj
piz

j
pi, ∀p ∈ P , ∀i ∈ I, ∀j ∈ J (2.8)

zjpi(L
j−1
pi + 1) ≤ qjpi, ∀p ∈ P , ∀i ∈ I, ∀j ∈ J\{1} (2.9)∑

j

zjpi = 1, ∀p ∈ P , ∀i ∈ I (2.10)

qcjhni ≤ ujhniL
j
hni, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I, ∀j ∈ J

(2.11)

ujhni(L
j−1
hni + 1) ≤ qcjhni, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I, ∀j ∈ J\{1}

(2.12)∑
j

ujhni = 1, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I (2.13)

qcjkmi ≤ vjkmiL
j
kmi, ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I, ∀j ∈ J

(2.14)

vjkmi(L
j−1
kmi + 1) ≤ qcjkmi, ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I, ∀j ∈ J\{1}

(2.15)∑
j

vjkmi = 1, ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I (2.16)

∑
h

qshn =
∑
i

∑
j

ηnpq
j
pi, ∀n ∈ N s, ∀p ∈ P (2.17)

∑
h

∑
j

qcjhni =
∑
j

ηnpq
j
pi, ∀n ∈ N c, ∀p ∈ P , ∀i ∈ I (2.18)

∑
k

qskm =
∑
h

∑
n∈Ns

m

λmnq
s
hn +

∑
h

∑
n∈Ns

m

∑
i

∑
j

λmnq
cj
hni, ∀m ∈ M s (2.19)

∑
k

∑
j

qcjkmi =
∑
h

∑
n∈Nc

m

∑
j

λmnq
cj
hni, ∀m ∈ M c, ∀i ∈ I (2.20)

qcjkmi, q
s
km, qcjhni, q

s
hn, q

j
pi, wpi ∈ Z+,
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∀k ∈ K, ∀m ∈ M c, ∀m ∈ MS , ∀h ∈ H, ∀n ∈ N c, ∀n ∈ NS , ∀i ∈ I, ∀j ∈ J, ∀p ∈ P

(2.21)

xk, yh, z
j
pi, u

j
hni, v

j
kmi ∈ {0, 1}, ∀k ∈ K, ∀h ∈ H, ∀p ∈ P , ∀i ∈ I, ∀j ∈ J, ∀n ∈ N c, ∀m ∈ M c

(2.22)

The objective function 2.1 maximize the profit calculated as the difference between the revenue
earned from selling products and the cost incurred to: i) choose producers/suppliers; ii) produce
final products and sub-assemblies; iii) purchase components from suppliers; and iv) the cost of
not satisfying the demand (lost-sale cost). It is noteworthy that the fixed cost of producer/supplier
selection entails: i) the cost of signing contracts with those parties; ii) the transportation cost, as a
direct function of geographical distances; and iii) the investment costs incurred by the focal com-
pany to upgrade the manufacturing processes and/or train operators in the suppliers’/producers’
facilities. Furthermore, the unit production cost incorporates both the R&D costs incurred for
the product design and the cost of adjusting the manufacturing processes to customized designs;
hence, it is increasing with the product complexity level. Constraint 2.2 ensures that the demand
is (fully) satisfied by manufacturing the products or a partial lost-sale occurs. It is evident that a
high lost-sale level is an indicator of a low customer service level in the network. Constraint 2.3
limits the production quantity of final products at different design complexity levels to the max-
imum production capacity. Constraints 2.4-2.7 correspond to similar capacity restrictions for the
production of sub-assemblies and components by producers and suppliers, differentiated for stan-
dard and customizable items. Constraints 2.8-2.10 are provided to linearize the step-wise linear
selling price of final products by considering corresponding price intervals defined for different
production quantity intervals. In particular, 2.8-2.9 correspond to disjunction constraints ensuring
that the production quantity and its corresponding selling price are assigned to the appropriate
interval; whereas constraint 2.10 ensures that only one interval is selected. Constraints 2.11-2.13
and 2.14-2.16 correspond to similar linearization conditions for customizable sub-assemblies and
components, respectively. Constraints 2.17-2.20 enforce the flow balance between the production
quantity of final products, (standard and customizable) sub-assemblies and components based on
the structure of the BOM. Constraints 2.21 and 2.22 are the domain constraints.

2.3.3 Complexity of the model

The proposed SND model 2.1-2.22 is a complex MIP model with (|K| + |H| + |P ||I||J | +
|H||N ||I||J |+|K||M ||I||J |) binary decision variables, (|K||M ||I||J |+|K||M |+|H||N ||I||J |+
|H||N |+|P ||I||J |+|P ||I|) integer decision variables and (3×|P ||I|+|H||N s|+2×|H||N c||I|+
|K||M s|+2×|K||M c||I|+(2×|P ||I||J |−|J |)+(2×|H||N c||I||J |−|J |)+(2×|K||M c||I||J |−
|J |)+ |N s||P |+ |N c||P ||I|+ |M s|+ |M c||I|) constraints. It’s obvious when the number of com-
ponents, sub-assemblies, supplier, and/or producers increases the size of the model will increase
drastically. In practice, solving such a large-scale model by commercial solvers will be challeng-
ing.

2.4 Numerical experiments

In this section, we aim to validate the proposed SND model 2.1-2.22 by the aid of a case study
inspired by a tunable laser manufacturer in Canada that produces a wide range of customized lasers
and filters with different batch sizes while collaborating with suppliers from China, Germany, US,
and Canada. Our second goal is to analyze the impact of several key model parameters on the
configuration and profitability of the supply network. All problem instances are solved by CPLEX
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12.9 on a Core i7 CPU 3.40 GHz computer equipped with 8:00 GB RAM under Windows 7.
The CPU time of solving these instances did not exceed a few seconds. In what follows, we
first describe our experimental settings and case study data, followed by the results of sensitivity
analysis experiments as well as some managerial insights.

2.4.1 Experimental design

We consider a tunable laser as an example of a highly customizable and complex product to man-
ufacture. The main laser parameters are the center wave-length, tuning range, linewidth, stability,
single-frequency operation and mode-hop free tuning that are in general customizable. For in-
stance, the center wavelength might vary between 780 to 3000 nano-meters (nm), whereas the
tuning range can be between 60 to 90 nm. The design of a customized tunable laser is a demand-
ing step carried-out by the manufacturer that involves the design of laser structure (e.g., linear,
loop, etc.) according to the features requested by the customer. Among major sub-assemblies of
this product, we might refer to the gain medium and tunable filter that can be both custom-designed
according to the customer specifications. The gain medium, on its turn, is a design-intensive sub-
assembly that encompasses active fibres, laser pump and passive fibres. While the laser pump is a
relatively standard component for each specific category of tunable lasers, the active and passive
fibres should be chosen correctly from the available products manufactured by a limited number
of suppliers and need to be customized to meet the requirements. The tunable filter is the other
major customizable sub-assembly of this product that can be also sold as a separate product. It
is composed of standard mechanical parts, such as a stepper motor, electronics, such as a stepper
motor driver, in addition to optical components that require custom design. These components are
comprised of several customizable elements such as lenses, prisms, gratings and collimators, some
of which are purchased from external suppliers, and some are custom-designed in-house. Finally,
the manufacturing of the tunable filter involves an implementation phase followed by calibration
and final testing.

In our numerical experiments, we consider two type of products that belong to the family of
tunable filters and lasers. Due to confidentiality issues in this highly competitive market, the
name of products, components and sub-assemblies are not provided. To keep the size of the SND
model manageable, only the most expensive and design-intensive sub-assemblies and components
are considered in the corresponding BOMs, depicted in figures 2.1 and 2.3. Among the 4 sub-
assemblies and 10 components, 3 sub-assemblies and 4 components are customizable, where two
of the customizable components are required for two different sub-assemblies (components 1 and
3).
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Figure 2.3: BOM for Product 2

Two different classes of producers/suppliers for standard sub-assemblies/components are taken
into consideration in our experiments, including local and international ones. Local produc-
ers/suppliers have a lower fixed cost and capacity and a higher production cost as compared with
the international ones that are active in low-wage countries (e.g. China). We also consider three
classes of producers/suppliers that differ in terms of their technological capabilities to manufacture
different design complexity levels, cost, and capacity. The list of producers/suppliers for differ-
ent sub-assemblies/components along with their manufacturing capabilities are provided in table
2.1. Among these entities, producers 1, 6, and 9 are the ones that manufacture all design com-
plexity levels. These producers represent the group of local or international high-tech companies
active in high-wage, industrialized countries (e.g., Canada, US, Germany, etc.) that do not re-
quire high investment cost to adapt their facilities for MP; hence a low fixed cost is associated with
them. These companies typically incur a relatively higher production cost for the manufacturing of
sub-assemblies at design complexity levels (1) (relatively complex) and (2) (moderately complex)
as compared to manufacturers that cannot manufacture highly complex products. Nevertheless,
these companies are very efficient at manufacturing sub-assemblies at design complexity level (3)
(highly complex) at a high capacity and relatively low production cost.

Producers 2, 7, and 10 can only produce sub-assemblies at design complexity levels (1) and (2).
They represent international companies active in low-wage countries (e.g., China) that have low
labor/production cost but a higher fixed cost due to their distant geographical locations. Finally,
producers 3, 8, and 11 represent North American research centers that are able to design and man-
ufacture highly complex items (i.e., level (3) sub-assemblies) at a significantly higher production
cost and lower capacities as compared with the first category of producers (2, 7, and 10). However,
they incur low transportation and fixed cost for signing contracts. In the same vein, suppliers 1, 6,
15, and 22 belong to the first category that provide components at all complexity levels. Suppliers
2, 7, 16, and 23 correspond to the second category that only supply components at complexity lev-
els (1) and (2). Suppliers 3, 8, 17, and 24 can only provide components at the highest complexity
level.
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Producers
SA 1 SA 3 SA 4

i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3
P 1 ✓ ✓ ✓
P 2 ✓ ✓
P 3 ✓
P 6 ✓ ✓ ✓
P 7 ✓ ✓
P 8 ✓
P 9 ✓ ✓ ✓

P 10 ✓ ✓
P 11 ✓

Suppliers
C 1 C 3 C 7 C 10

i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3
S 1 ✓ ✓ ✓
S 2 ✓ ✓
S 3 ✓
S 6 ✓ ✓ ✓
S 7 ✓ ✓
S 8 ✓
S 15 ✓ ✓ ✓
S 16 ✓ ✓
S 17 ✓
S 22 ✓ ✓ ✓
S 23 ✓ ✓
S 24 ✓

Table 2.1: Producers and suppliers capability matrix

Case study data

This section illustrates how data corresponding to different parameters of model 2.1-2.22 are gen-
erated. Table 2.2 summarizes different intervals from which the data corresponding to final prod-
ucts are generated. It is noteworthy that the demand, selling quantity interval, and the maximum
capacity of highly-complex products (i=3) are assumed lower than their counterparts for products
at the lowest complexity level (i=1). On the contrary, the production and lost-sale cost along with
the selling price of highly-customized products (i=3) are assumed higher as compared with the
ones for low-customized products (i=1). It should be also noted that three selling price intervals
are considered in our numerical experiments as demonstrated in this table.

Parameter Demand(Dpi) Capacity(FCpi) Production Cost(Cpi) Lost-sale Cost(CLpi)
Interval (70, 425) (315, 700) (140, 450) (2400, 5280)

Parameter Selling Price(Sj
pi) Production Quantity Interval(Lj

pi)
Interval (j=1) (2000, 4400) (150, 250)
Interval (j=2) (1800, 3960) (300, 500)
Interval (j=3) (1600, 3520) (315, 700)

Table 2.2: Final product data

Table 2.3 summarized data corresponding to the producers/suppliers standard sub-assemblies/components.

Parameters Fixed Cost(Fh, Fk) Capacity(PChn, SChn) Production Cost(Chn, Ckm)
Interval (1000, 2000) (1000, 3000) (50, 350)

Table 2.3: Data on producers/suppliers of standard sub-assemblies/components

The fixed costs (Fh and Fk) of producers/suppliers of customizable items are set to values in the
interval of (1000, 3000). More precisely, the fixed cost for category 2 companies are considered
twice as the one for the two other categories. The production costs (Cj

hni,C
j
kmi) and capacities

(PChni,SCkmi) of suppliers/producers of customizable items are presented in table 2.4.
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Parameter
Sub-assemblies

(i=1)
Sub-assemblies

(i=2)
Sub-assemblies

(i=3)
Parameter

Components
(i=1)

Components
(i=2)

Components
(i=3)

Capacity(PChn) (300, 750) (400, 1000) (160, 525) Capacity(SCkmi) (300, 1500) (400, 2000) (160, 1050)
Production Cost(Cj

hni, j=1) (150, 220) (180, 275) (315, 770) Procurement Cost(Cj
kmi,j=1) (130, 200) (195, 300) (480, 1200)

Production Cost(Cj
hni, j=2) (120, 176) (144, 220) (252, 616) Procurement Cost(Cj

kmi, j=2) (98, 150) (147, 225) (360, 900)
Production Cost(Cj

hni, j=3) (90, 132) (108, 165) (189, 462) Procurement Cost(Cj
kmi, j=3) (65, 100) (98, 150) (240, 600)

Production quantity Interval(Lj
hni, j=1) (100, 250) (134, 334) (54, 175) Procurement quantity Interval(Lj

kmi, j=1) (100, 500) (134, 667) (54, 350)
Production quantity Interval(Lj

hni,j=2) (200, 500) (268, 668) (108, 350) Procurement quantity Interval(Lj
kmi, j=2) (200, 1000) (268, 1334) (108, 700)

Production quantity Interval(Lj
hni, j=3) (300, 750) (400, 1000) (160, 525) Procurement quantity Interval(Lj

kmi, j=3) (300,1500) (400, 2000) (160,1050)

Table 2.4: Data on producers/suppliers of customizable sub-assemblies/components

2.4.2 Sensitivity analysis experiments

The goals of our sensitivity analysis experiments are two-fold. We first aim to obtain a threshold
value for the unit lost-sale cost that maximizes customer service level (minimizes the total lost-sale
cost). Afterwards, we confine our attention to investigate the impact of key model parameters, that
represent market condition and industry readiness for MP, on the network configuration (pool of
suppliers), profit, revenue, and production cost.

Sensitivity analysis on the lost-sale cost

The results of sensitivity analysis on the impact of changing unit lost-sale cost (CLpi), as a per-
centage of selling price (Sj

pi), on the profit, revenue and production cost are presented in figures
2.4, 2.5, and 2.6. As it can be observed in these figures, when the unit lost-sale cost is below 75%
of the selling price, the model choose to produce less in order to reduce the production cost and
maximize the profit. In contrast, by considering this cost equal to or above this value, it is more
beneficial to produce up to capacity rather than losing the orders. It is evident that a high unit lost-
sale cost is an indicator of a higher customer service level; therefore, the model enforces higher
production quantities (and higher revenue) to minimize the total lost-sale cost. Nevertheless, as a
consequence of increasing the production cost, the profit is reduced as compared with the former
case. Finally, our results indicate that increasing the unit lost-sale cost above 75% of the selling
price will not change the optimal solution. Therefore, this can be considered as an appropriate
threshold value for the unit lost-sale cost that guarantees a maximum service level.

Figure 2.4: Profit Values Results Figure 2.5: Revenue Values Results
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Figure 2.6: Production Cost Values Results

Analysis of the impact of market condition and industry readiness on supply network con-
figuration and profitability

In this section, we aim to investigate the impact of four key parameters, including the demand of
customized products with high design complexity level, unit lost-sale cost, production capacity for
high design complexity level, and incremental production cost interval (PCI) for the same design
complexity level on the optimal solution of the SND model. It is noteworthy that the demand
of highly complex designs and unit lost-sale cost for these products represent market condition
for MP; whereas, capacity and PCI are the indicators of industry readiness for embracing a MP
paradigm. By considering 2 extreme levels for these parameters, 16 scenarios are generated to run
the sensitivity analysis experiments. We also consider the primary scenario described in section
4.1 as the the base case; hence the low/high level for the above parameters are considered as a
percentage of the base case. More precisely, the demand, capacity, and PCI levels are defined as
±40% of base value, whereas, low/high levels for the unit lost-sale cost are considered as ±33% of
the base value. The aforementioned scenarios are summarized in table 2.5. We further consider a
benchmark case, denoted as “scenario 0” where the demand for design complexity level 3 is set to
zero. This case can be interpreted as a mass customization paradigm. The main key performance
indicators in our experiments incorporate profit, revenue, and production cost. We also investigate
the impact of changing these parameters on the pool of suppliers (network configuration).

Scenarios Demand Lost Sale Cost Capacity PCI Scenarios Demand Lost Sale Cost Capacity PCI
1 Low Low Low Low 9 High Low Low Low
2 Low Low Low High 10 High Low Low High
3 Low Low High Low 11 High Low High Low
4 Low Low High High 12 High Low High High
5 Low High Low Low 13 High High Low Low
6 Low High Low High 14 High High Low High
7 Low High High Low 15 High High High Low
8 Low High High High 16 High High High High

Table 2.5: Scenario settings

The optimal decisions in terms of selection of sub-assemblies producers and components suppliers
for different items in the BOM are summarized in the tables 2.6 and 2.7, respectively. The results
indicate that under the primary and other scenarios where the demand for highly-customized prod-
ucts is low and/or production capacity for the manufacturing of such products is high, the third
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category of producers and suppliers (i.e. research centers) that only produce design complexity
level (3) are not selected. On the contrary, under scenarios 9, 10, 13, and 14, where the market
for MP is thriving but industry is not ready to respond (i.e. under high demand and low capaci-
ties for the production of highly-complex products), the expensive research centres are selected to
satisfy the demand of complex sub-assemblies and avoid lost-sale. In the same vein, suppliers 3
and 8 are selected under scenarios 13 and 14 as a response to a highly demanding market and high
lost-sale cost. The proposed suppliers’/producers’ category of highly equipped research centers
is an excellent illustration of redundancy. As the results show, this group of suppliers/producers
is not selected when the conditions are not extreme (when market is very demanding and/or in-
dustry is not ready). When the situation is complicated, however, these redundant sources are
chosen to meet the surplus demand. As expected, under scenario 0, featured by zero demand for
design complexity level (3), only the second category of producers/suppliers that provide design
complexity levels (1) and (2) are selected. This is mainly due to considerably lower manufac-
turing costs in these facilities as compared with the first category of suppliers that produces all
design complexities levels. These results indicate that the (cost) competitive advantage of second-
category suppliers is only effective when the demand for highly-customized designs is zero. In
other words, manufacturers in the first category (high-wage countries) can capture the market of
highly-complex personalized products by further investing in capacity expansion and enhancing
flexibility of their manufacturing processes. It is noteworthy that the pool of suppliers/producers
represents the flexibility and reconfigurability of the proposed SND model. More precisely, as the
results show, when market condition and industry readiness indicators change, the configuration
of the selected pool of suppliers/producers will change accordingly.
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SA 1
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P2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P3 ✓ ✓ ✓ ✓

SA 3
P6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P8

SA 4
P9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P11

Table 2.6: Optimal producer selection
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C 1
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S2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S3 ✓ ✓

C 3
S6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S8 ✓ ✓

C 1
S15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S17

C 1
S22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S23 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S24

Table 2.7: Optimal supplier selection

Figure 2.7 represents the changes in profit under generated scenarios. It is interesting to observe
that the maximum profit is attained under the benchmark “Scenario 0”, featured with zero de-
mand for highly-complex designs. This can be attributed to the lower production cost of sub-
assemblies/components with relatively to moderately-complex designs, manufactured by the sec-
ond category of suppliers, as compared with the third category of items that can only be manufac-
tured by the first and third group of suppliers. Therefore, if the focal company aims to extend its
market towards MP, efforts must be exerted to enhance the productivity of the aforementioned sup-
pliers to manufacture highly-customized products at a lower cost. For instance, investments must
be made to transform suppliers’ manufacturing technology towards more flexible and automated
processes. In a similar fashion, scenarios 1 to 8, featured with low demand for highly-customized
products, have higher profit compared to the primary scenario. In other words, given that the
market is not demanding for such products, the production quantity (and cost) remains low as
compared to the base case; hence the profit is increased.

In contrast, under scenarios 9 to 16 that represent a demanding market for highly-customized
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products, the model considers a trade-off between production and lost-sale cost. In other words,
the profitability of manufacturing these products depends on industry readiness, modeled as the
capacity of production and the PCI. As anticipated, scenarios 11 and 15, where suppliers have the
highest capacity and consider shorter order quantity intervals to decrease the cost (shorter PCI),
lead to highest profit compared to other scenarios in this group. As a consequence, scenarios
9, 10, 13, and 14, featuring low industry readiness, result the lowest profit among all scenarios.
Scenarios 13 and 14, in particular, correspond to the least profitable circumstances given that the
major portion of demand cannot be fulfilled (and goes to lost-sale) due to low production capacity
for highly-complex designs.

The production revenue and cost under different scenarios are, respectively, shown in figures 2.8
and 2.9. As expected, scenarios 9 to 16, corresponding a demanding market, lead to higher rev-
enue (and a higher production cost) as compared to low-demand scenarios 1 to 8. As mentioned
earlier, the readiness of the industry plays an important role in determining the production quan-
tity. Consequently, scenarios 11, 12, 15, and 16 result in higher revenue (and higher production
cost) as compared with the primary scenario due to higher readiness level of the industry. Vice
versa, under scenarios 9, 10, 13, and 14, the production revenue (and cost) are lower compared
to the primary scenario; Nevertheless, the revenue (and cost) under these scenarios are still higher
than the scenarios with low and zero demand for design complexity level (3). Furthermore, the
production revenue (and cost) for scenarios 1 to 8 do not vary as a response to changes in the lost-
sale cost and industry readiness factors. These results indicate that under low-demand scenarios,
it is always beneficial to produce and satisfy the demand rather than incurring lost-sale cost. In
scenarios 9, 10, 13, and 14, featured with a demanding market, the revenue is lower compared to
the primary scenario since industry is not sufficiently ready to satisfy the demand.

Figure 2.7: Profit Values Results Figure 2.8: Revenue Values Results
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Figure 2.9: Production Cost Values Results

2.4.3 Managerial insights

Our numerical results indicate that transforming traditional manufacturing processes to more au-
tomated, smart and reconfigurable systems would be an effective strategy for the manufacturers in
high-wage, industrialized countries to compete with international manufacturers (e.g. China) that
are not equipped with such advanced manufacturing technologies; yet have considerably lower
production cost for the manufacturing of standard and mass-customized products. In particular,
when the market is in high demand for personalized products, some of which featured with highly-
complex designs, the focal company is expected to increase its capacity of production for this cat-
egory of products. Furthermore, given that such orders typically arrive at small batch sizes, the
company requires to decrease the incremental price interval to accommodate MP. In other words,
the selling price of products with high design complexity levels must be reduced as close as pos-
sible to the price of standard products. To this end, the manufacturing cost must be decreased
by promoting automation in the production line and upgrading the manufacturing technology to-
wards more flexible and reconfigurable processes, in-line with I4.0 paradigm. Furthermore, simi-
lar investments must take place in the manufacturing facilities of the sub-assembly producers and
component suppliers to guarantee the profitability of manufacturing mass-personalized products.
The goal is to enhance customer service level and avoid lost-sale when the market is thriving for
this category of products. In addition, excess demand can be also fulfilled via close collabora-
tion with research centers that are equipped with state-of-the-art technologies for the design and
manufacturing of complex components.

2.5 Concluding remarks

Motivated by the concepts of mass-personalization (MP) and cloud-manufacturing in the frame-
work of I4.0, in this study, a MIP model was proposed for SND while explicitly considering the
uncertain nature of personalized product designs and non-linear production cost of such prod-
ucts that is a function of design complexity level and batch size. By assuming the availability
of suppliers’ information in terms of technological capabilities, capacities and prices on a cloud
manufacturing platform, the model seeks the best combination of suppliers for the manufacturing
of sub-assemblies and components constituting the BOM of personalized products to satisfy the
demand. The objective is to maximize the profit and service level while maintaining the cost of
manufacturing at a minimum level. By conducting a set of sensitivity analysis experiments, we
demonstrated that the configuration of the network in terms of pool of suppliers can change as a
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response to the nature of demand in terms of design complexity level. Therefore, the proposed
model provides a decision support tool for designing a reconfigurable SN for MP. Furthermore,
our numerical results indicate that the transition towards MP is an effective action plan for high-
tech manufacturers to compete with the producers active in low-wage countries. Nevertheless, the
success of such initiative is tied to investing in upgrading the manufacturing facilities in different
echelons of the SN to facilitate manufacturing of personalized products with small batch sizes at
low cost.

The proposed SND model can be modified in a straightforward manner to include product fam-
ily design while considering individualized design options for customizable components in the
BOM. Nevertheless, efficient decomposition algorithms needs to be developed to overcome the
increased computational complexity. Current study can be further extended by incorporating var-
ious uncertain parameters plausible to the manufacturing of highly-customized products, such as
the technological capabilities of suppliers and the volume of demand for complex designs. Fi-
nally, given that the suppliers and producers in the network are independent entities that aim for
maximizing their own profit, designing efficient collaboration mechanisms among these partners
to facilitate information sharing would be another important research direction to pursue.
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Chapter 3

Design of Resilient, Platform-based
Manufacturing Networks for
Highly-Customized Production

Abstract

Inspired by the growing interest in enhancing the lead time and cost of mass personalization in the
industrial sector, this study investigates the design of a Platform-based manufacturing network in
the context of highly customized production. The uncertain technological capabilities of suppliers
in manufacturing customized components with intricate design specifications have been explicitly
addressed by establishing a stochastic decision framework. The proposed two-stage stochastic
programming model determines the optimal choice of suppliers, producers, and logistics carriers,
in addition to the quantities of production and transportation in a platform-based network. Two
types of corrective actions, namely emergency orders to backup entities and purchasing from the
open market, have been foreseen to mitigate the risk of suppliers’ failure in delivering customized
items. The objective is to maximize the expected profit under uncertain scenarios. In addition,
a scenario sampling heuristic is developed to overcome the computational complexity of the pro-
posed model. Our numerical experiments underline the effectiveness of the proposed decision
framework in identifying more reliable entities as the primary partners in the network. Moreover,
the results emphasize the critical role of accurate supplier failure prediction and a broader selection
of suppliers in enhancing network profitability and resilience.

3.1 Introduction

Customers in today’s unpredictable and swiftly changing markets seek options that suit their spe-
cific needs; consequently, the demand for highly customized and personalized products has been
constantly growing (Pallant, Sands, & Karpen, 2020). This trend is particularly pronounced in
the advanced technology sector, such as aerospace/avionic systems, Light Detection and ranging
(LiDAR) scanners, medical imaging devices, optical devices, and sensors. Such products typically
involve intensive Research & Development (R&D) efforts and require advanced manufacturing
processes while being produced at low volumes. For instance, LiDAR development requires ex-
pertise in many fields such as optics, artificial intelligence, computer vision, hardware design,
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embedded software, and much more (Singer, 2025). While there is a core design, LiDAR’s de-
sign must be elaborated in different applications (e.g., autonomous vehicles). The low volume
of production and complexity of manufacturing customized modules significantly drive up the
production cost. To overcome this challenge, companies typically outsource the manufacturing of
intricate modules (e.g., lasers, lenses, sensors, etc.) while maintaining the core elements, assembly,
and testing in-house to ensure compliance with extremely challenging performance requirements.

Outsourceing R&D and manufactruing activities to external suppliers, on the other hand, is prone
to various challenges, such as supplier reliability in delivering the highly customized modules
within the promised lead-time and design specifications. The competitiveness of the highly cus-
tomized manufacturing sector thus steadily relies on establishing efficient, flexible, and resilient
supply chains (SCs) to improve quality and shorten the delivery time at minimum cost. In par-
ticular, the selection of reliable suppliers that possess the capability to deliver customizable items
with a high degree of design complexity is of vital importance for ensuring the financial viability
of such industries.

To address the aforementioned challenges in SCs, several studies, like Kohler (2015), Chida, Kai-
hara, Fujii, and Kokuryo (2019), and Xu, He, Zhou, and Cheng (2023) have proposed crowdsourc-
ing as a promising strategy. By embracing the concept of an open company, this approach seeks
to overcome organizational boundaries and leverage the resources and capabilities of dispersed
stakeholders across the SC. Aligned with the concept of Platform-Based Supply Chains (PBSCs)
(Veile, Schmidt, Müller, & Voigt, 2024), the cyber platform for crowdsourcing enables a manufac-
turer to explore external knowledge and resources by coordinating the design and manufacturing
activities among the stakeholders through a cooperative manufacturing network.

Despite the increasing market trend for highly-customized manufacturing, the research on de-
veloping decision-support tools that adequately tackle the particular challenges of this industrial
sector remains insufficient thus far. The main target of this study is to promote the crowdsourc-
ing concept in PBSCs to enhance the financial viability of manufacturing advanced customizable
products (e.g., optical devices). We develop a robust decision model for the design of a manufac-
turing network that is resilient against the uncertain capabilities of external suppliers in delivering
intricate customized modules involved in the manufacturing of such custom-made products. The
idea is to establish a platform-based manufacturing network (PBMN) that harnesses the combined
R&D, design, manufacturing, and logistics resources operating by various entities to effectively
meet the demand of such products. The proposed model, specifically, enhances network resilience
by recommending corrective actions such as selecting back-up or emergency suppliers in response
to the failure of the initial supplier pool to deliver the customized modules within the design spec-
ifications.

Our first original contribution is centered on proposing a two-stage stochastic (2SP) mixed-integer
programming (MIP) model that identifies the optimal choice of primary and secondary (backup)
network partners, along with determining their respective production/transportation quantities.The
2SP approach (Birge & Louveaux, 2011), is a suitable methodology to incorporate the uncertain
supplier failure into the proposed network design model as it allows the inclusion of recourse (cor-
rective) actions to hedge against excessive lost sales. In addition, it overcomes the conservative
nature of the robust optimization (Ben-Tal & Nemirovski, 2002) approach by modeling the uncer-
tainty as a discrete scenario set with a known probability distribution. By assuming a Bernoulli
distribution for uncertain suppliers’ technological capabilities, the proposed 2SP model designates
a group of companies as the primary partners in the corresponding PBMN without full knowledge
of their technical capabilities. A set of corrective actions, such as resorting to backup suppliers
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and outsourcing the orders to open markets, are also envisaged to mitigate the risk of suppliers’
failure to produce customized items. The objective is to maximize the expected revenue while
simultaneously minimizing the expected costs associated with production, emergency orders, and
lost sale penalties. This model is distinct from the existing robust SC design model in the liter-
ature as it specifically accounts for various design complexity levels of product components in
the bill-of-material (BOM) as well as increased production cost incurred for manufacturing highly
complex items with small batch sizes.

Considering the novelty of this type of decision model in the literature, there is a clear need for gen-
erating benchmark problem instances for validation purposes. Our second contribution is, hence,
focused on proposing a procedure for the systematic generation of random problem instances of
varying sizes that provide reasonable outcomes. Generating such data sets is not a trivial task
owing to the large number of parameters involved in formulating the proposed decision model,
reflecting the challenges of designing a resilient PBMN for customized manufacturing.

Our third contribution revolves around addressing the computational complexity of the model,
which becomes increasingly challenging due to the exponential growth in the number of uncertain
scenarios corresponding to suppliers’ failure in real-size problem instances. A scenario sampling
heuristic is developed that relies on a new scenario sampling procedure that overcomes the short-
comings of a Monte Carlo sampling technique in underestimating the impact of suppliers’ failure in
the proposed 2SP model. More specifically, the proposed sampling method ensures the generation
of more conservative scenarios as compared with a pure random sampling technique, commonly
used in the Sample-Average-Approximation (SAA) scheme (Shapiro & Homem-de Mello, 2000).
It, thus, enhances the robustness of the manufacturing network structure when confronted by sup-
pliers’s failure. Finally, we conduct computational experiments to assess the effectiveness of the
proposed model and the efficiency of the solution method and ultimately provide some managerial
insights. Monte-Carlo simulation experiments have been particularly designed to highlight the
advantages of the proposed model and solution method in terms of protecting the manufacturing
network under extreme scenarios and ultimately increasing its resilience.

The rest of this article is organized as follows. Section 3.2 describes the review of relevant lit-
erature. Section 3.3 contains the problem description and formulation. Section 3.4 describes the
solution algorithms. The numerical results are discussed in Section 3.5 and concluding remarks
are exposed in Section

3.2 Literature review

The supply chain design (SCD) problem has been broadly studied in the literature. The majority of
existing studies are focused on the mass production of standard products. The studies in Fragoso
and Figueira (2021); Pan and Nagi (2013); Sha and Che (2006) are among several studies that fo-
cus on the design of multi-echelon production value chains. A literature review on SC design and
optimization is provided in (Garcia & You, 2015). Within the same mass production paradigm,
numerous studies have also incorporated uncertainty into SCD problems to enhance SC perfor-
mance and resilience (See, e.g., Masruroh, Putra, Mulyani, and Rifai (2023); Omrani, Adabi, and
Adabi (2017); Şen, Yaman, Güler, and Körpeoğlu (2014)). Two-stage stochastic programming
(Birge & Louveaux, 2011) and robust optimization (Ben-Tal & Nemirovski, 2002) approaches are
among the most prevalent methodologies that have been explored in this context. Several stud-
ies (e.g., Simchi-Levi et al. (2015)) specifically focus on assessing the resilience of multi-echelon
SCs in the manufacturing sector. Taghizadeh, Venkatachalam, and Chinnam (2021) provide a

26



framework relying on discrete-event simulation for the resilience assessment of deep-tier supply
networks. The study in Sanci, Daskin, Hong, Roesch, and Zhang (2022) provides a variety of
mitigation strategies against automobile parts supply disruption risks, such as reserving backup
capacity from the primary and secondary suppliers, and holding backup inventory. Nonetheless,
none of the above-mentioned studies incorporate the challenges of customized manufacturing into
the SCD problem.

SCD optimization within the scope of highly customized manufacturing has only recently been
studied by a handful of researchers. Inman and Blumenfeld (2014) are among the first to study
the impact of product design complexity on SC disruptions and delays. The authors develop
mathematical models for estimating the SC reliability based on the availability of components
in the BOM of complex products and the probability of delayed deliveries from the suppliers of
those components to assembly facilities. Nonetheless, they do not provide any network design
model that incorporates uncertain suppliers’ failure in producing complex modules in the BOM.
Changbai Tan and Freiheit (2022) develop a concurrent optimization framework that integrates
the selection of manufacturing processes and suppliers into the architectural design of personal-
ized products. By considering a cost model based on product architecture, process, and supplier
portfolio, a MIP model is formulated that maximizes the potential profit of a product family based
on customer preferences. By assuming that all product modules are manufactured in-house, this
study does not address the optimal configuration of the SC when some complex, customized mod-
ules are outsourced to external producers with limited technological resources. To facilitate mass
personalization, Katoozian and Zanjani (2022) develop an MIP model for determining the optimal
selection of a pool of suppliers to satisfy the demand for highly customized products. Although
this study touches upon several challenges involved in producing modular products at different
customization levels and small batch sizes, it does not fully capture the uncertain factors inherent
in personalized manufacturing.

The above literature survey reveals the increasing trend of research on the efficient design of SCs
for facilitating customized manufacturing. Nonetheless, the existing studies do not thoroughly
capture the intricate design complexity and technological challenges involved in manufacturing
highly customized product modules prevalent in the advanced technology sector. In the same vein,
they do not discuss the need for the design of a crowd-sourced manufacturing network that pro-
vides flexibility in terms of supplier selection to mitigate the risk of suppliers’ failure in producing
customized parts. The present study fills this research gap by proposing a stochastic decision
framework that relies on crowd-sourcing the manufacturing of intricate customized modules in a
PBMN while explicitly integrating the uncertain technological capabilities of external suppliers.

3.3 Problem description and formulation

In this section, we first present a formal description of the PBMN design problem under investiga-
tion. We then elaborate on modeling the uncertain manufacturing capability of suppliers/producers
and develop a 2SP formulation.

3.3.1 Problem description

We consider a multi-echelon manufacturing network comprised of i) a main company that man-
ufactures highly-customized, modular-structured products (e.g., LiDAR scanners); ii) a pool of
producers/suppliers at the upstream echelons, differentiated in terms of capacity, technological
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capabilities, and cost; and iii) a group of logistics carriers, at the downstream echelon, distin-
guished in the sense of their cost and delivery lead time. We further assume that the above entities
in the network are connected to a digital platform where the main company shares the design
specification of custom orders while the suppliers and logistics carriers provide quotes for the
manufacturing and delivery of those orders. The customizable nature of the end products has been
captured by considering different customization options (e.g. low, moderate, and high) for a subset
of sub-assemblies and components in the BOM. In the case of complex customization levels, the
quotes would also include the preliminary technical analysis as proof of suppliers’ technological
capabilities.

To reflect the technical limitation of suppliers in the PBMN, we consider a technological capability
matrix (TCM) with binary values representing the qualification/disqualification (1/0) of each entity
in manufacturing a given customizable item at a certain customization level. This matrix can be
prepared by the main company based on the historical performance of suppliers. In addition,
a piece-wise linear cost function for the manufacturing of customizable items is considered to
better reflect the cost implications of producing these components at small batch sizes. Finally, we
consider different modes of delivery (e.g., expedited and regular) for customizable end products.
A similar matrix is also considered for logistics carriers, where a value of 1 is equivalent to the
possibility of a given delivery option (e.g., expedited).

In this context, the PBMN design problem consists of determining the optimal choice of sub-
assembly producers, part suppliers, and logistics carriers (among the available pool) in addition to
the production/transportation quantities at different echelons of the network to satisfy the demand
of customizable final products at different design customization levels and delivery options. More
precisely, the objective is to maximize revenue while minimizing the costs invoked by production,
transportation, and lost sales. The mathematical formulation of the problem in a deterministic
context is provided in A.1.

3.3.2 Modeling the uncertain technological capabilities

In the scope of manufacturing advanced technology products (e.g., LiDARs) with complex, cus-
tomized features, it is not always straightforward to deliver the product according to the design
specifications. This is mainly attributed to the technological limitations of the producers/suppliers
of complex sub-assemblies (e.g., lasers) and parts (e.g., lenses). The higher the design customiza-
tion level, the lower the chance of manufacturing those items by the suppliers that are not equipped
with state-of-the-art technologies and R&D resources. Therefore, the elements of suppliers’ TCM
are random binary variables following a Bernoulli distribution. To model this uncertainty, for each
entity in the pool of producers/suppliers, we assume a random failure probability for manufactur-
ing each customizable item at a given design customization level. In other words, a 0/1 value is
assigned to a given entity in the TCM at a given probability (e.g., 80%/20%). This indicates that
the supplier won’t be able to manufacture the item with the probability of 80% and only in 20% of
the cases the item at the desired design customization level might be delivered by that supplier. It
is worth mentioning that the probability of failure for those suppliers is, in general, estimated by
the main company based on historical data.

To incorporate the uncertain TCM into the PBMN design model, we define a (finite) set of scenar-
ios with known probabilities. Each scenario represents a possible outcome in terms of suppliers’
technological capabilities. For instance, by considering 2 customizable items (P1/P2) with a very
complex design, two potential suppliers for each item (S1 & S2 for P1 and S3 & S4 for P2), and
the probability of failure for all suppliers equal to 80%, 24 scenarios with their corresponding
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probabilities can be defined as summarized in Table 3.1.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P1/S1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
P1/S2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
P2/S3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
P2/S4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Probability 0.0016 0.0064 0.0064 0.0256 0.0064 0.0256 0.0256 0.1024 0.0064 0.0256 0.0256 0.1024 0.0256 0.1024 0.1024 0.4096

Table 3.1: Example of TCM scenarios

As can be observed in this table, the scenarios represent all possibilities in terms of the suc-
cess/failure of the supplier in manufacturing the items. The number of such scenarios grows
exponentially by increasing the number of items with complex designs in the BOM and the size of
the pool of potential suppliers.

3.3.3 Two-stage stochastic programming formulation

Two-stage stochastic programming (2SP) (Birge & Louveaux, 2011) is a viable approach for re-
formulating linear programming (LP) models that include random parameters into a single deter-
ministic equivalent model and has been applied in a variety of SC planning problems (see, e.g.,
(Kazemi Zanjani, Nourelfath, & Aı̈t-Kadi, 2011; Leung, Wu, & Lai, 2006)). This approach is par-
ticularly suitable when the uncertain parameters can be represented as a finite number of scenarios
(outcomes) with known probabilities. In addition, it provides a flexible decision framework by
designating corrective actions to compensate for the constraints violation under some scenarios.
In this method, the decision variables are categorized as the first (here-and-now) and second stage
(recourse) decisions that are determined, respectively, before and after the outcome of uncertainty
is revealed to the decision maker. Therefore, the stages are distinguished in terms of the availability
of information on random parameters. The objective is to optimize an expected performance mea-
sure over all scenarios. A more detailed description of this approach is provided in section A.2.
This method is, in particular, suitable for the problem investigated in this study as the random
TCM is modeled as a finite scenario set. Furthermore, a PBMN is supposed to provide a flexible
platform where the focal company can modify the supplier pool as a response to the failure of the
existing partners.

In the PBMN design problem, the choice of (primary) producers/suppliers and logistic carriers
must be made without complete knowledge of their technological capabilities. Therefore, the
first-stage decisions correspond to assigning an initial set of producers and logistics careers. This
is primarily driven by the contractual terms established with the key upstream and downstream
partners that serve as the main collaborators of the company. Upon designating an initial pool of
suppliers, the main company shares the statement of work (SOW) with them (on the interface of the
manufacturing platform) based on the orders received for customized products. Thereafter, those
entities submit their detailed technical proposals for the design and manufacturing of customizable
items along with the quote (cost estimation and manufacturing lead time).

After receiving the quotes from the main partners and reviewing the initial R&D analysis, the
company gains a clear picture of suppliers’ capabilities for the delivery of custom items. At this
(second) stage, critical decisions are made, including assigning the actual orders to the upstream
entities (i.e., issuing purchase orders (POs)), determining optimal production quantities within the
(main) company’s facilities, and planning the flow of final products to transportation carriers. If
some (primary) suppliers prove to be incapable of delivering items on time or meeting the re-
quested design specifications, the company considers two types of corrective (recourse) actions
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to mitigate the risk of significant lost sales. The first action involves engaging backup suppliers/
producers on an emergency basis. To this end, the focal company shares the SOW with a list of
backup suppliers on the platform and finalizes the potential pool based on the submitted propos-
als/quotes. Signing a contract with these entities during the second stage incurs a higher fixed
cost compared to first-stage contracts, due to the urgent nature of these late orders. Under some
scenarios, where none of the partners provide an adequate proposal, the second type of recourse
action involves purchasing the item from the open market, if available. This option allows the
company to acquire items with complex designs, albeit at a significantly higher cost. If neither of
these corrective actions is feasible, the orders are classified as lost sales.

Within the decision framework described above, the 2SP approach would be a natural choice to
formulate the PBMN design problem. The objective of this 2SP model is to maximize the expected
profit of the main company under a set of scenarios that represent the random manufacturing
capability of producers/suppliers. It is noteworthy that this modeling framework is expected to
propose the most reliable suppliers (featured with the lowest chance of failure) as the primary
partners. This is typically achievable by considering the cost of recourse actions (i.e., resorting to
emergency suppliers, open market, and lost sale) significantly higher than the first-stage costs. In
other words, even though the cost of signing contracts with more reliable manufacturers might be
initially high, to minimize the expected cost of emergency orders and lost sales under worst-case
scenarios, the model is expected to favor the most reliable partners. The proposed 2SP model is
described as follows. The corresponding notations are provided in section A.3.

Two-stage Stochastic Programming Model
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Demand constraints:∑
j
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Price/Cost linearization constraints:

qjpil(ω) ≤ Lj
piz

j
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Primary/Secondary supplier constraints:

yh + y′h(ω) ≤ 1, ∀h ∈ H, ∀ω ∈ Ω
(3.25)

xk + x′k(ω) ≤ 1, ∀k ∈ K, ∀ω ∈ Ω
(3.26)

Open market constraints:

qopennil (ω) = 0, ∀n /∈ N ′c, ∀i ∈ I ′, ∀l ∈ L, ∀ω ∈ Ω
(3.27)
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∀i ∈ I, ∀j ∈ J, ∀n ∈ N c, ∀m ∈ M c, ∀l ∈ L, ∀ω ∈ Ω
(3.30)

The objective function (3.1) maximizes the expected profit over all scenarios. This equation com-
prises the expected revenue from selling the end products minus the expected costs of i) trans-
portation of end products; ii) manufacturing end products and sub-assemblies along with purchas-
ing components from the primary/secondary producers/suppliers and the open market; iii) lost
sales; and iv) the fixed cost of signing contracts with the primary and backup producers/suppliers
and logistics carriers. It is worth mentioning that the unit production/procurement cost of sub-
assemblies/components heightens as the customization level is increased. The idea is to adjust
producers’/suppliers’ costs to the elevated design and manufacturing resources engaged to deliver
the desired customization level.

Constraint (3.2) ensures that demand is either satisfied by manufacturing the end products or goes
to a lost sale. Constraint (3.3) imposes capacity restrictions on producing end products at dif-
ferent customization levels. Constraints (3.4)-(3.5) enforce capacity limitations for standard sub-
assemblies/components provided by producers/suppliers; whereas Constraints (3.6)-(3.9) guaran-
tee that the production quantities of customizable sub-assemblies and components do not exceed
the maximum available capacity of primary and backup producers and suppliers. Constraint (3.10)
is a capacity limitation constraint for logistic carriers. It must be noted that constraints (3.3)-(3.10)
ensure that items can be manufactured/delivered by different entities only if they are qualified to
provide items with corresponding customization levels/delivery options (according to the TCM)
and have been selected as primary or secondary partners.

By considering different pricing intervals set by the main company for various manufacturing
quantity intervals and customization levels, constraints (3.11)-(3.13) are provided to linearize the
step-wise linear selling price of end products. More precisely, constraints (3.11)-(3.12) ensure
that the production amount and its corresponding selling price are assigned to the proper interval,
while constraint (3.13) ensures that only one interval is selected. Similar linearization criteria
for customizable sub-assemblies and components are represented by constraints (3.14)-(3.16) and
(3.17)-(3.19), respectively based on the cost intervals set by the upstream partners for customizable
items.

Constraints (3.20) imply the flow balance conditions for the delivery of manufactured end prod-
ucts. Constraints (3.21)-(3.24) impose flow balance conditions based on the structure of BOM.
In other words, they formulate the logical flow between the production quantity of end products,
sub-assemblies, and components according to the corresponding BOM.

Constraints (3.25)-(3.26) ensure that each producer and supplier is selected either as a primary
or backup provider. Nonetheless, these constraints would be redundant if two separate sets of
companies are considered as primary and backup suppliers. Constraints (3.27)-(3.28) state that
only a subset of customizable sub-assemblies and components are available for purchase from the
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open market. Constraints (3.29)-(3.30) are the domain constraints.

3.4 Solution Methodology

3.4.1 Complexity Analysis of the 2SP PBMN Design Problem

The 2SP model (3.1)-(3.30) is a MIP model that contains (|K|+ |H|+ |G|+ |K||Ω|+ |H||Ω|+
|P ||I||J ||L||Ω| + |H||N ||I||J ||L||Ω| + |K||M ||I||J ||L||Ω|) binary variables. The majority of
these variables are indexed by scenarios. As highlighted in section 3.2, the number of TCM sce-
narios (|Ω|) grows exponentially as the number of customizable items in the BOM and their corre-
sponding pool of suppliers is increased. Therefore, the number of binary variables in model (3.1)-
(3.30) would grow exponentially when considering multiple customizable modules and a large
supplier pool. Consequently, it becomes excruciatingly challenging to solve this model when con-
sidering all TCM scenarios. This motivated us to propose a scenario sampling heuristic (SSH) that
relies on solving the original 2SP model by considering a sample of scenarios randomly generated
from the underlying probability distribution.

3.4.2 Scenario Sampling heuristic

When adopting a sampling approach for approximating the original uncertainty set to a smaller
scenario set, the choice of scenarios in the sample would be crucial considering that some 2SP
models are highly sensitive to these scenarios (Shapiro & Homem-de Mello, 2000). Our pre-
liminary numerical experiments revealed the shortcomings of a Monte-Carlo sampling approach,
commonly applied within the Sample Average Approximation (SAA) algorithm (Mak, Morton, &
Wood, 1999; Shapiro & Homem-de Mello, 1998, 2000). More specifically, even at large samples
(500 scenarios), a random sampling technique generates optimistic scenarios for the technological
capabilities of suppliers that are featured with a high failure probability. This leads to the selection
of unreliable (cheaper) suppliers in the 2SP model, which is not a desirable outcome as this cate-
gory is prone to higher failure rates for manufacturing complex custom items. When the chance
of suppliers’ failure is high (above 60 %), the worst-case scenarios (i.e., the ones corresponding
to the failure of the majority of unreliable suppliers) should have a higher chance of occurrence
in the scenario set. Nevertheless, the Monte-Carlo sampling method is not capable of generating
such worst-case scenarios unless a very large scenario sample is generated which is not practical.

To fix this drawback, we propose a heuristic scenario sampling approach that guarantees a more
realistic occurrence of suppliers’ failure scenarios in the sample based on the corresponding failure
probability. Considering a sample of size N , this procedure ensures that each producer/supplier,
featured with X% probability of failure, would receive zero values for corresponding TCM el-
ements (i.e., fails to deliver the item) under X% of scenarios in the sample. For instance, let us
assume 70% and 90% failure probabilities for suppliers S1 and S2. By considering the sample size
equal to 100, this approach ensures that in 70 and 90 scenarios, S1 and S2, respectively, receive
zero values. Nonetheless, the choice of scenarios where zero TCM elements appear for each sup-
plier is randomized within the sample. As such, for each supplier, the algorithm randomly selects
the scenario subset S′ ⊂ S in which that supplier would fail to deliver the customized item and
sets the corresponding TCM element to zero. For other scenarios that do not belong to S′, the
TCM elements are set to 1 for that supplier. The scenario sample S is completed by repeating this
step for all suppliers.

Proposition: The worst-case TCM scenarios for suppliers with high failure probability have a
higher chance of occurrence in the proposed SSH as compared to the Monte-Carlo sampling
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method.

Proof: When sampling from a Bernoulli distribution, the failure probability of suppliers can not
be explicitly incorporated into a Monte-Carlo sampling framework. To generate a scenario by
this method, for each supplier, a random number between (0,1) is generated (based on their cor-
responding Bernoulli distribution) to represent their failure/success. Since equal probabilities are
considered for the generated scenarios, this method does not guarantee an adequate occurrence of
failures for unreliable suppliers (with high failure probabilities) in the scenario set when consider-
ing small to medium sample sizes. The SSH, on the contrary, explicitly incorporates the probabil-
ity of failure when generating scenarios; hence, it generates (identical) worst-case scenarios in the
sample more frequently. Therefore, even though the individual scenarios have equal probabilities
in the sample, by cumulating the probabilities of identical counterparts, such worst-case scenarios
would ultimately receive a higher probability.

According to the above proposition, the worst-case scenarios have a higher weight in the objective
function of the 2SP model when applying the SSH method as compared to pure random sampling.
This is a desirable feature in the PBMN design model as it provides more protection (robustness)
against worst-case scenarios and ultimately enhances network resilience. This characteristic will
be further validated in our numerical experiments.

3.5 Numerical Results

In this section, we describe the results of numerical experiments carried out to evaluate the effec-
tiveness of the proposed 2SP-PBMN design model and the efficiency of the solution algorithm.
First, we present the experimental setup and data structure corresponding to the parameters of the
proposed 2SP model. Thereafter, we thoroughly analyze the outcomes of this model under dif-
ferent parameter settings and shed light on some interesting managerial insights. In addition, the
superiority of a stochastic programming approach versus a deterministic one is underscored by as-
sessing the value of stochastic solution (VSS) across the problem instances. Finally, we showcase
the efficiency of the SSH algorithm in solving larger problem sets. All numerical experiments
are coded/run in Python using the Callable Library of CPLEX 12.9 on a Core i7 CPU 3.40 GHz
computer equipped with 8.00 GB RAM under Windows 10.

3.5.1 Experimental Design

Considering the lack of benchmark instances in the literature, we propose a procedure to systemat-
ically generate random problem instances of varying sizes, ensuring reasonable optimal solutions
are obtained. The generated instances differ in terms of the total number of finished products (|P |),
sub-assemblies (|N |), components (|M |), and producers/suppliers for each customization level of
sub-assemblies/components (|H| and |K|). Without loss of generality, we consider three different
customization levels for non-standard (customizable) components, sub-assemblies, and final prod-
ucts as low, moderate, and highly customized. Moreover, two categories of producers/suppliers are
considered for subassemblies/components, namely local and the ones located overseas, that differ
in terms of their fixed and variable production costs and capacity. For highly customizable sub-
assemblies/components (level 3), the two categories of producers/suppliers also differ in terms of
their technological capabilities. More specifically, the following two classes of producers/suppliers
have been considered:

(1) Reliable Suppliers/producers: featured with higher fixed and variable production costs, but
a lower chance of failing to deliver customized orders.
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(2) Unreliable Suppliers/producers: featured with lower fixed and variable costs, but a higher
probability of failing to fulfill customized orders.

In our numerical experiments, we only consider uncertain technological capabilities for the pro-
ducers/suppliers of subassemblies/components with the highest level of design customization (level
3) to reflect the challenging nature of manufacturing items in this category. However, this param-
eter can be also considered random for lower customization levels. Additionally, we consider
regular and expedited delivery as two distinct types of delivery options. Accordingly, two classes
of logistic carriers are distinguished: one is more expensive and offers both types of delivery, while
the other is cheaper and only offers a regular delivery option.

Table 3.2 provides an overview of various intervals from which data for final products is derived.
It’s worth noting that the production and lost-sale costs and selling price of highly customized
products are anticipated to be higher than ones with a lower customization level. The idea is
to reflect the challenging nature of highly customized manufacturing as well as the priority of
delivering products with complex customized designs to the customers. Additionally, as shown
in the table, three selling price and production cost intervals are considered that are reliant on the
order quantity. It is noteworthy that transportation costs are considered lower for regular delivery
compared to fast delivery options.

Parameter
customization

Level
Interval Parameter

customization
Level

Interval Parameter customization Level
Quantity

Interval
Interval Parameter customization Level

Production
Quantity
Interval

Interval

Demand
1 (50 - 220)

Production
Cost

1 (200 - 300)

Selling
Price

1
1 (2000 - 3500)

Production
Quantity
Interval

1
1 (300 - 462)

2 (100 - 350) 2 (400 - 600) 2 (1200 - 2100) 2 (616 - 924)
3 (150 - 600) 3 (800 - 1200) 3 (720 - 1260) 3 (1232 - 1848)

Capacity
1 (840 - 1260)

Lost Sale
Cost

1 (3000 - 4000)
2

1 (2500 - 5250)
2

1 (185 - 278)
2 (1200 - 1800) 2 (4000 - 6000) 2 (1500 - 3150) 2 (370 - 555)
3 (1512 - 2268) 3 (6000 - 8000) 3 (900 - 1890) 3 (739 - 1109)

Parameter
Delivery

Mode
Interval Parameter

Delivery
Mode

Interval
3

1 (3750 - 7000)
3

1 (112 - 169)

Transportation
Variable Cost

Regular (50 - 125) Transportation
Fixed Cost

Regular (1000 - 1500) 2 (2250 - 4200) 2 (222 - 337)
Fast (125 - 200) Fast (2000 - 3000) 3 (1350 - 2520) 3 (442 - 673)

Table 3.2: Final Products Data Intervals

Table 3.3 demonstrates the data corresponding to the capacity and production cost of produc-
ers/suppliers of standard sub-assemblies/components.

Parameter (Sub-assembly) Interval Parameter (Component) Interval
Production Cost (50 - 150) Production Cost (30 - 100)

Fixed Cost (1000 - 3000) Fixed Cost (1000 - 3000)

Table 3.3: Standard Suppliers/Producers Data Intervals

In our numerical settings, we considered the unit capacity consumption rates for the sub-assemblies
and components equal to their level of customization. The number of sub-assemblies/components
required to make one unit of its upper-level part in the BOM is represented by an integer generated
randomly from the set {1,2}. The capacity of each supplier or manufacturer to produce standard
and customizable products (for the base cases) is determined by multiplying the unit capacity con-
sumption rates and the number of units required at the upper-level item by the demand in each
generated instance. The idea is to strike a balance between capacity and demand in base instances.
In addition, the production/procurement quantity intervals are generated such that the third inter-
val for each design customization level (and delivery option) is equal to the total capacity of the
suppliers/producers. The first and second intervals are set as half of the second and third intervals,
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respectively. The open market prices have been considered twice the highest variable cost among
the suppliers of customizable items.

Table 3.4 summarizes the cost intervals for the first category of suppliers (located overseas) for the
low and moderate customized parts as well as the unreliable suppliers for highly customized parts:

Parameter (Sub-assembly)
customization

Level
Interval Parameter (Component)

customization
Level

Interval

Variable
Production Cost

Overseas Supplier 1 (100 - 200)
Variable

Production Cost

Overseas Supplier 1 (50 - 100)
Overseas Supplier 2 (200 - 300) Overseas Supplier 2 (150 - 250)
Reliable Supplier 3 (350 - 500) Reliable Supplier 3 (250 - 400)

Fixed Cost
Overseas Supplier 1 (1000 - 1500)

Fixed Cost
Overseas Supplier 1 (1000 - 1500)

Overseas Supplier 2 (1000 - 1500) Overseas Supplier 2 (1000 - 1500)
Reliable Supplier 3 (3000 - 4500) Reliable Supplier 3 (3000 - 4500)

Table 3.4: Customizable Suppliers/Producers Data Intervals

The variable and fixed cost structure for customizable sub-assemblies/components have been gen-
erated randomly for different suppliers/producers as follows. For the suppliers/producers of cus-
tomizable items, the variable cost for the second category of suppliers (local/reliable) is considered
20% higher than the first category (overseas/unreliable). Furthermore, since the production costs
are considered piece-wise linear in these instances, the cost of the third and second intervals is con-
sidered to be 60% of the costs of the second and first intervals for all suppliers/producers and all
customization levels, respectively. Finally, the fixed cost for all local/reliable suppliers/producers
(for all customization levels) is considered twice higher than the overseas/unreliable ones. The
second-stage fixed cost of signing contracts with backup entities is three times higher than the
first-stage ones for all suppliers and producers.

3.5.2 Analysis of the 2SP-PBMN design model

This section presents the results of sensitivity analysis experiments conducted on small problem
instances generated based on the procedure described in the previous section. In these instances,
we consider one customizable end product, two subassemblies, and four components. The corre-
sponding BOM for this product is shown in figure 3.1. Only one subassembly and one component
are considered customizable; the other items are standard. In the base case, we assume 10% and
90% failure probabilities for reliable and unreliable suppliers/producers, respectively. It is also
assumed that only the customizable sub-assemblies/components at the third customization level
(highly customized parts) are available for purchase from the open market. One of the advantages
of examining small instances is the opportunity to closely analyze the structure of the optimal
solution, thereby gaining insights into the impact of influential model parameters on this solution.

Figure 3.1: BOM in Small Problem Instances
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The goal of our sensitivity analysis experiments is to examine the solutions obtained from the
2SP model, particularly in terms of the choice of first-stage and backup suppliers under different
supplier failure probability, demand levels, and supplier selection fixed costs. The selection of
parameters for sensitivity analysis is guided by their influence on the supplier pool selection. This
process is informed by an initial set of parameter screening tests, along with the potential man-
agerial insights these parameters can provide. Within these experiments, we further analyze the
benefits of adopting a stochastic programming approach versus a deterministic one to address the
PBMN design problem by assessing the VSS that can be calculated as follows.

Let us denote the optimal objective function value of the stochastic model as 2SP and the ex-
pected profit of the deterministic solution as EDS. The latter is calculated by fixing the value
of first-stage decisions in model (3.1)-(3.30) as their optimal value obtained from solving the de-
terministic model (A.1). Thereafter, EDS is calculated accordingly as the objective function of
this model. The V SS (for the maximization problem under investigation) is calculated as the
difference between EDS and 2SP , as indicated in the following equation:

V SS(%) =
2SP − EDS

2SP
× 100 (3.31)

It can be easily proved that V SS ≥ 0 (Birge & Louveaux, 2011). In fact, in a complete recourse
2SP model, where the recourse actions are defined such that the model remains feasible for all
scenarios, the optimal (first-stage) solution of the deterministic model is a feasible solution to the
2SP model; hence provides a sub-optimal objective function value. However, the VSS is highly
sensitive to the model parameters, specifically, the choice of scenarios (and their probabilities) in
addition to the cost of first- and second-stage decision variables.

The number of TCM scenarios in small instances is 16 as only two items in the BOM are consid-
ered customizable and for each item (at the highest level of customization), two potential providers
with uncertain TCM are available. The structure of such scenarios is similar to the example pro-
vided in Table 3.1; however, their probabilities are different since a significantly larger failure
probability (90%) is assumed for the unreliable suppliers versus a small probability (10%) for
the reliable ones. Table 3.5 summarizes the results of 8 problem instances by considering dif-
ferent failure probabilities for unreliable suppliers of customizable items (at the highest level of
customization) where the failure probability for the reliable ones is set to 10%. In this table, the
optimal objective value (”OBJ”), as well as supplier assignment decisions (in terms of the choice
of reliable/unreliable ones), are reported for the deterministic and 2SP models. Furthermore, the
optimal solution of the 2SP model is presented separately for the first and second stage (backup)
supplier selections. Under the ”EDS” column, we also report the assignment of backup suppliers
under different scenarios based on the initial assignment obtained from the deterministic model.
Finally, the V SS(%) and its absolute value are reported in the last two columns of this table. The
CPU time of CPLEX for solving small problem instances does not exceed a few seconds.

Instance
Unreliable

suppliers/producers
failure percentage

Deterministic
2SP EDS

VSS%
VSS
ValueOBJ

First Stage Suppliers Backup Suppliers
OBJ

First Stage Suppliers Backup Suppliers
OBJ Reliable Unreliable Reliable Unreliable Reliable Unreliable Reliable Unreliable Reliable Unreliable

Base 90 354,787 ✓ 219,970 ✓ ✓ 196,929 ✓ ✓ 10.48% 23,041
1 80 354,787 ✓ 232,073 ✓ ✓ 214,469 ✓ ✓ 7.58% 17,604
2 70 354,787 ✓ 244,176 ✓ ✓ 232,009 ✓ ✓ 4.98% 12,167
3 60 354,787 ✓ 257,574 ✓ ✓ 249,548 ✓ ✓ 3.12% 8,026
4 50 354,787 ✓ 271,619 ✓ ✓ 267,088 ✓ ✓ 1.67% 4,531
5 40 354,787 ✓ 285,663 ✓ ✓ 284,628 ✓ ✓ 0.36% 1,035
6 30 354,787 ✓ 302,167 ✓ ✓ 302,167 ✓ ✓ 0 0
7 20 354,787 ✓ 319,707 ✓ ✓ 319,707 ✓ ✓ 0 0
8 10 354,787 ✓ 337,247 ✓ ✓ 337,247 ✓ ✓ 0 0

Table 3.5: Sensitivity Analysis on Suppliers’ Technological Capabilities
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As anticipated, the deterministic model consistently selects unreliable suppliers, featured with
lower production costs, to maximize the profit by relying on their full capability to deliver cus-
tomized items. However, companies typically strive to minimize lost sales by contracting with
reliable suppliers. The 2SP model, on the contrary, assigns the items to reliable suppliers in the
first stage when the probability of failure for the unreliable ones is high (≥ 70%). The goal is
to minimize the expected cost of resorting to more expensive suppliers in the second stage, which
incurs a significantly higher fixed cost for signing the contract on an emergency basis. On the other
hand, this model selects unreliable suppliers as the first stage optimal decisions under a moderate
chance of failure (40%-60%). This is primarily due to the relatively low expected cost of resorting
to backup suppliers in the second stage under these circumstances. In other words, the probabil-
ities of scenarios where unreliable suppliers are unavailable are quite low in such circumstances.
Finally, under the low probability of supplier failure (≤ 30%), the model arbitrarily chooses reli-
able ones as there is not much difference between the two categories when it comes to the choice of
first and second-stage decisions. We also note that in all of the experiments, the 2SP model resorts
to an open market under some scenarios, where none of the suppliers are available, to satisfy the
demand and avoid lost sales. As anticipated, the V SS% is declined as the probability of supplier
failure is reduced and it reaches zero under low failure probabilities.

Table 3.6 compares the optimal objective value (”OBJ”), supplier assignment decisions, as well
as V SS% obtained from the deterministic and 2SP models under different demand profiles. The
supplier failure probability for unreliable suppliers is set to 90% (base case) in all these experi-
ments. In this table, the demand profiles are expressed as a percentage of base demand described
in section 3.5.1.

Instance Demand
Deterministic

2SP EDS
VSS%

VSS
ValueOBJ

First Stage Suppliers Second Stage Suppliers
OBJ

First Stage Suppliers Second Stage Suppliers
OBJ Reliable Unreliable Reliable Unreliable Reliable Unreliable Reliable Unreliable Reliable Unreliable

Base 354,787 ✓ 219,970 ✓ ✓ 196,929 ✓ ✓ 10.48% 23,069
1 -40% 218,575 ✓ 127425 ✓ ✓ 104,356 ✓ ✓ 18.10% 23,040
2 -20% 194,700 ✓ 74,187 ✓ ✓ 51,147 ✓ ✓ 31.06% 12,167
3 +10% 361,246 ✓ 213,788 ✓ ✓ 190,748 ✓ ✓ 10.77% 23,040
4 +20% 45,199 ✓ -114,898 ✓ ✓ -137,938 ✓ ✓ 20.053% 23,040

Table 3.6: Sensitivity Analysis on Demand

As can be observed in this table, the value of adopting a stochastic programming (SP) approach is
more emphasized when the demand is lower than the capacity (less than the base case). This im-
plies that when the capacity is too tight (base case), the negative consequences of the unavailability
of suppliers can be mitigated by adopting a stochastic approach only to some extent. Nevertheless,
when the model has more flexibility, better results are obtained from the 2SP model which is sig-
nificantly more advantageous to the deterministic approach. On the contrary, when the capacity is
over-committed, the increasing trend of V SS is less significant. It is notable that, when the de-
mand is significantly higher than the maximum manufacturing capacity (+120%), the SC won’t be
profitable anymore (negative profit). Finally, the results of these experiments indicate that under all
demand settings, the deterministic model selects the unreliable suppliers as the optimal decisions
whereas, the 2SP selects the reliable ones in the first stage.

Table 3.7 compares the optimal objective value (”OBJ”), supplier assignment decisions, as well as
V SS% obtained from the deterministic and 2SP models under different fixed supplier selection
costs. All other parameters are set at their base level. The results indicate the consistency of
the 2SP model in including the more reliable suppliers in the pool despite the increase in the
fixed cost of signing contracts with them. The cost increase, as expected, does not force the
deterministic model to select the more expensive category of reliable suppliers. The value of
adopting a stochastic solution is, hence, following the fixed cost trend.
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Instance Fixed Cost
Deterministic 2SP EDS

VSS %
OBJ Reliable Unreliable OBJ

First Stage Suppliers Second Stage Suppliers
OBJ

First Stage Suppliers Second Stage Suppliers
Reliable Unreliable Reliable Unreliable Reliable Unreliable Reliable Unreliable

1 +30% 354,787 ✓ 148,152 ✓ ✓ 147,115 ✓ ✓ 0.70%
2 +50% 354,787 ✓ 169,067 ✓ ✓ 167,543 ✓ ✓ 0.90%
3 +70% 354,787 ✓ 192,800 ✓ ✓ 177,456 ✓ ✓ 7.96%
4 +100% 354,787 ✓ 219,970 ✓ ✓ 196,929 ✓ ✓ 10.48%

Table 3.7: Sensitivity Analysis on Fixed Supplier Selection Cost

3.5.3 Performance Analysis of the SSH algorithm

In this section, larger problem instances of the 2SP-PBMN design model are solved with the aid of
a commercial solver, whenever possible, and the proposed SSH algorithm. Table 3.8 summarizes
the features of different families of instances in terms of the number of standard and customiz-
able sub-assemblies and components. We consider one final product and three potential produc-
ers/suppliers per MOB item across all instances. The size of these instances is realistic enough
within the motivational context of this study (customized optical devices). As can be observed
in this table, by increasing the number of customizable items in the BOM, the number of TCM
scenarios and consequently, the number of binary variables in the corresponding 2SP model grows
exponentially. Table 3.9 summarizes the results of applying this algorithm on 5 problem instances
in each family, distinguished by the scenario set generated by the SSH algorithm. The 2SP models
corresponding to all problem instances, except for the last group, incorporate all TCM scenarios
and are solved by a commercial solver (CPLEX), and the optimal objective value (“OBJ”) and
CPU time are reported under the ”2SP Results” column. Solving the last group of problem in-
stances by an off-the-shelf solver is not possible due to the very large number of binary variables.
It is noteworthy that these difficult instances correspond to extreme cases where six items in the
BOM are featured with very complex design specifications. This is justified by the fact that the
sub-assemblies in the BOM could represent complex modules of advanced optical devices, such as
tunable lasers, and sensors, that are typically outsourced, and suppliers’ failure is more prevalent
for extremely complex product modules.

All problem instances are also solved by the SSH algorithm by considering sample sizes equal to
50 and 100 for families 1 to 3 and 500 for family 4 for 5 independent samples. The CPU time
does not exceed a few seconds for solving these instances. The objective function values (“OBJ”)
of the five instances are reported under the “SSH Results” column for 50 scenarios. It is worth
mentioning that increasing the sample size from 50 to 100 has a negligible impact on the Mean
values. Moreover, the SD of objective values among the 5 batches of scenario samples is small
enough (less than 1% of the average). Therefore, 50 seems to be a reasonable sample size for these
problem instances. Column (“GAP”) represents the optimality gap, i.e., the difference between
the objective function of the 2SP model (by considering all scenarios) and the average objective
value across the 5 instances of SSH results. The average VSS value and % across the five sample
batches are also reported in this table. Due to the computational challenge of estimating EDS for
the last group of instances under all scenarios, the VSS has been approximated by solving the 2SP
model with 1000 scenarios after fixing the first-stage decisions by their optimal value from the
deterministic model.

Family
# of Sub-assembly (|N |) # of Component (|M |) # of

Scenarios
# of Binary

Decision VariablesStandard (|N s|) Customizable (|N c|) Standard (|M s|) Customizable (|M c|)
1 1 1 2 2 64 29,126
2 1 2 2 2 256 45,632
3 1 2 1 3 1024 72,836
4 1 3 2 3 4096 101,144

Table 3.8: Description of Problem Family Instance
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Family Instance
2SP Results SSH Results

Gap
VSS

OBJ CPU TIME (s) OBJ VSS Value VSS%

1

1

$ 1,827,100 10

$ 1,683,936

7.22 % $ 92,674 5.47 %
2 $ 1,712,718
3 $ 1,691,018
4 $ 1,697,034
5 $ 1,690,671

2

1

$ 3,215,723 74

$ 3,114,108

2.95 % $ 54,449 1.74 %
2 $ 3,131,209
3 $ 3,135,295
4 $ 3,114,122
5 $ 3,110,421

3

1

$ 2,667,114 300

$ 2,454,337

7.9 % $ 155,458 6.33 %
2 $ 2,463,821
3 $ 2,456,242
4 $ 2,436,411
5 $ 2,472,201

4

1

NA NA

$ 7,003,836

* $ 49,250 0.7 %
2 $ 7,004,756
3 $ 7,016,836
4 $ 7,017,342
5 $ 7,005,017

Table 3.9: Performance Analysis of the SSH Algorithm

The results indicate that approximating the original 2SP model by considering a very small sam-
ple size provides optimal first-stage solutions. This significant advantage is mainly attributed to
the effectiveness of the proposed scenario generation procedure within the SSH framework which
serves as an alternative to Monte Carlo sampling. Nonetheless, the reported optimality gaps (%
Gap) (average of 6% across the 3 instances) reflect the difference between the expected second-
stage revenues/costs calculated by the commercial solver and SSH. As expected, the conservative
scenario generation approach adopted in SSH assigns high probabilities to the worst-case scenar-
ios. Therefore, the expected profit estimated by this algorithm underestimates the profit of the
network. In the same vein, the VSS is also underestimated for the last family of instances when
considering 1000 scenarios among the full scenario set when estimating the EDS. Nonetheless, the
results of all instances highlight the advantages of the 2SP model when it comes to the selection
of primary SC partners as compared with a deterministic model that invariably prioritizes cheaper
producers/suppliers despite being less reliable.

Monte-Carlo simulation experiments are conducted to highlight the underestimation of expected
profit in the SSH approach. By using the same scenario generation technique adopted in this algo-
rithm, a significantly larger scenario set (e.g., 1000 as compared to 50 used by SSH) is generated
to obtain a more realistic estimation of the expected profit in the 2SP model. Afterward, the choice
of primary suppliers determined by the SSH algorithm is fixed in the 2SP model, corresponding to
the randomly generated scenarios, and the expected profit is calculated. Table 3.10 summarizes the
average expected profit obtained from the simulation experiments across the 4 problem instances.
For problem instance families 1 to 3, the expected profit is calculated by considering the full sce-
nario set. For the last group (4), solving the 2SP model for all scenarios is not possible; hence,
we solve the 2SP model for 1000 scenarios. The CPU times for calculating the expected profit
in the simulation runs are also reported. In addition, the (relative) gap between the simulation
results and the optimal objective function value of the 2SP model is reported for family instances
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1 to 3 under the ”GAP%” column. The negligible gaps across these instances demonstrate that
the SSH algorithm provides optimal first-stage and almost optimal second-stage (recourse) deci-
sions by only considering a small scenario sample. This is mainly attributed to the effectiveness
of the proposed scenario generation approach within this algorithm. For the largest instances, this
gap is calculated as the relative difference between the simulation results and the expected profit
reported by the SSH Algorithm in Table 3.9. This positive gap for the largest problem instances
further reveals the conservative (pessimistic) estimation of profit by the SSH algorithm.

Instance Simulation Results
Family Expected Profit CPU TIME (s) GAP%

1 1,827,143 2 0.0024
2 3,215,822 40 0.0031
3 2,667,702 210 0.0220
4 7,069,317 93 0.84∗

Table 3.10: Monte-Carlo Simulation Results

3.5.4 Managerial Insights

The numerical experiments conducted in this study demonstrate the significance of incorporating
uncertain technological capabilities of suppliers for manufacturing highly customized modules
when designing a PBMN. This is more critical when the main company offers individualized
designs with high complexity levels and the manufacturing of some key intricate modules is out-
sourced to external producers. The superiority of the proposed stochastic PBMN design model
versus a deterministic one is mainly attributed to the incorporation of random suppliers’ failure
in the model and considering the possibility of resorting to backup suppliers and/or open markets
as corrective actions. Specifically, as confirmed by the sensitivity analysis, the suggested decision
framework is most effective in situations where the network capacity is slightly higher than the
demand. In this context, the R&D and technological resources of the sub-assembly producers and
component suppliers must be considered as the primary factors for entering into a contract with
them. In other words, the manufacturing cost should play a secondary role in choosing SC part-
ners. Relatedly, our results demonstrated the high sensitivity of the proposed model to the failure
probability of suppliers. Therefore, exploring advanced analytics approaches, such as machine
learning and deep learning algorithms would be a promising path to accurately predict suppliers’
technical limitations and/or estimate a more precise probability for such undesirable events. Fi-
nally, identifying a set of best-in-class manufacturers and initiating collaboration with them as
the backup suppliers via establishing an efficient supplier development program would be utterly
crucial.

3.6 Concluding remarks

In this study, we developed a two-stage stochastic mixed-integer-programming model for the de-
sign of a PBMN designated for the manufacturing of highly customized products with hetero-
geneous individualized design intricacy levels and various delivery speeds. To the best of our
knowledge, the proposed model is among the first that explicitly addresses the unpredictable man-
ufacturing capabilities of entities in different echelons of the network when responding to the
highest degree of complexity in product features. More specifically, it seeks the optimal pool of
primary and backup suppliers, producers, and logistics carriers in a platform-based value chain to
maximize the expected profit under a scenario set plausible to uncertain suppliers’ failure. One of
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the main differences between this model with its deterministic counterpart revolves around pro-
viding various corrective actions when the main suppliers fail to manufacture customized items
due to technological limitations. Emergency orders to back up suppliers and resorting to open
markets, if available, are among such recourse actions. The proposed decision framework, thus,
provides flexibility in terms of choosing producers and logistics carriers. This could ultimately
lead to significant cost and time savings in the value chains when confronting suppliers’ failure in
producing items with intricate design features.

We further established a procedure for generating benchmark test instances of the problem that
could serve as a testbed for its future extensions. To overcome the computational complexity
of the model, we also developed a scenario sampling heuristic that can efficiently solve large-
scale problem instances. Our numerical experiments, conducted in a Monte-Carlo simulation
scheme, highlighted the advantages of the proposed decision model and solution algorithm over a
deterministic approach across various problem settings.

Our computational experiments have provided valuable insights into the benefits of incorporat-
ing uncertain suppliers’ defaults into the PBMN design problem. In particular, this model gives
priority to the most reliable suppliers as the primary entities even though they have higher manu-
facturing costs. As a result, the expected cost of corrective actions in the presence of unfavorable
scenarios in this model is significantly lower as compared with a deterministic model that desig-
nates cheaper, but less reliable suppliers. Therefore, the proposed stochastic decision framework
can potentially address the concerns regarding the cost and time associated with changing pro-
ducers in an SC. From a methodological perspective, the proposed scenario-generation procedure,
embedded within the heuristic, proves to be quite effective in terms of identifying the most reli-
able suppliers in the pool and ultimately enhancing the network resilience under extreme suppliers’
failure scenarios.

This study has the potential for extension from different perspectives. Notably, decomposition-
based algorithms could be developed to overcome the computational complexity of the proposed
decision model in the context of manufacturing custom products with complex BOMs. Further-
more, the model can be extended to a dynamic decision framework for the design of manufacturing
platforms where the composition of suppliers in different echelons needs to be dynamically recon-
figured as a response to the ongoing flow of individualized orders with unique features and BOM
structures. In addition, other uncertain factors such as suppliers’ capacity and manufacturing lead
time could be also encapsulated into the network design model. Finally, exploring the state-of-the-
art artificial intelligence algorithms to accurately estimate suppliers’ failure is another interesting
avenue of research.
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Chapter 4

Adjustable Robust Optimization for the
Design of a Manufacturing Netwrok for
Mass Customization

Abstract

Motivated by the growing interest in customized manufacturing in the high-tech sector, this study
investigates the design of a multi-echelon manufacturing network that integrates the uncertain pro-
duction rate (and capacity) of external suppliers in manufacturing intricate product modules. An
adjustable robust optimization (ARO) model is established based on an uncertainty budget that
determines the optimal choice of suppliers, in addition to their order quantities such that the profit
under worst-case scenarios in terms of suppliers’ capacities is maximized. A scenario sampling
approach is adopted to approximate the nonlinear ARO model into a linear mixed-integer-program
(MIP). In addition, a math-heuristic algorithm is developed to overcome the computational com-
plexity of the MIP model when considering multiple products with several customizable modules.
Our numerical experiments showcase the effectiveness of the proposed decision framework in
establishing a robust network configuration that is protected against suppliers’ capacity fluctua-
tions. Furthermore, the results emphasize the efficiency of the proposed math-heuristic in solving
large-scale problem instances.

4.1 Introduction

In today’s dynamic and fast-evolving markets, customers increasingly demand products tailored
to their unique preferences and requirements. As a result, the need for highly specialized and
customized manufacturing has seen consistent growth (Pallant et al., 2020). This trend is espe-
cially evident in advanced technology industries such as robotics, satellite communication systems,
biomedical instrumentation, and precision measurement tools. These products often require sig-
nificant investment in Research and Development (R&D) and involve sophisticated manufacturing
techniques, despite typically being produced in small quantities. For example, the development
of dental scanners (Mangano, Gandolfi, Luongo, & Logozzo, 2017) demands cross-disciplinary
expertise in precision optics, sensitive electronics, and user-centric software. While a foundational
architecture exists, each scanner must be customized in terms of scan resolution, interface design,
integration with CAD/CAM systems, and more. The combination of low production volume and
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technical complexity substantially increases manufacturing costs and lead time. To manage these
challenges, companies often delegate the fabrication of complex components (e.g., inertial sensors,
lasers, etc.) to specialized suppliers, while retaining control of core integration, final assembly, and
quality testing to meet stringent performance and regulatory standards.

Outsourcing R&D and manufacturing tasks to external companies presents its own set of chal-
lenges—the most notable being the volatile capacity of suppliers in delivering highly customized
components depending on the complexity of design requirements. In this context, the sustained
competitiveness of the custom manufacturing sector hinges on the development of a resilient man-
ufacturing network that is cost-effective and adaptable. This is essential for achieving shorter lead
times and improved product quality at a controlled cost. Above all, the ability to identify and col-
laborate with dependable suppliers—those capable of managing intricate designs and delivering
tailored solutions—is critical to maintaining the operational and financial sustainability of such
high-mix, low-volume industries.

Although demand for highly customized manufacturing continues to grow, research aimed at de-
veloping decision-support tools tailored to the unique challenges of this sector remains relatively
scarce. This study seeks to address that gap by developing a robust decision model for the design
of a multi-echelon manufacturing network that produces modular customizable high-tech products
with standard and customizable components, while resilient to the uncertain production capacity
of external suppliers, particularly in delivering sophisticated, custom-built components.

Our first contribution revolves around the formulation of the above-mentioned network design
problem as an adjustable robust optimization (ARO) model. This model integrates an interval-
based uncertainty set with an uncertainty budget to capture production rate uncertainty (capacity
consumption) due to supplier technological variability and BOM complexity. It further optimizes
supplier and producer selection, production and procurement quantities, and lost sales to maximize
profit under the worst-case outcomes of uncertainty. By incorporating a piecewise linear cost func-
tion to model economies of scale and employing a two-stage framework, the model determines the
strategic choice of suppliers before uncertainty realization and adjusts the order quantities and lost
sales based on the worst-case suppliers’ performance outcomes within the uncertainty set, ensuring
a resilient and cost-efficient manufacturing network. It is noteworthy that the two-stage framework
aligns with practical decision-making environments, where commitments to external partners are
often established under incomplete information regarding their operational capabilities. Subse-
quent operational decisions are then made once the true characteristics of resource requirements
are disclosed. In addition, the ARO approach ensures the feasibility of the network configuration
by explicitly accounting for suppliers’ capacity constraints under uncertainty.

Our second contribution is centered on the development of a computationally efficient solution
methodology to address the complexity of the ARO model. A scenario sampling approach is
adopted to approximate the nonlinear ARO model into a linear mixed-integer-program (MIP).
Additionally, we propose a math-heuristic algorithm that fixes the binary variables in the MIP
model and solves the resulting linear programming (LP) subproblem using a commercial solver.
The algorithm operates in two phases: first, it constructs an initial feasible solution and a lower
bound (LB) for the original MIP model using a greedy heuristic; second, it improves the quality of
the initial LB through a local search (LS) heuristic - an approach that has been proved significantly
efficient in enhancing the performance of math-heuristics (see, e.g., Borreguero Sanchidrián et al.
(2024); Lu, Zhang, Kong, and Fathollahi-Fard (2025); Mischek and Musliu (2021)).

We also conduct extensive numerical experiments to investigate the performance of the ARO
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model across a variety of scenarios and uncertainty budgets, highlighting its effectiveness in mit-
igating the risks associated with supplier performance inconsistencies within the network. The
advantage of robustness is further illustrated through Monte Carlo simulation experiments, where
we compare the outcomes of the robust and deterministic models across a broad spectrum of
uncertainty realizations. Finally, we assess the scalability and computational efficiency of the pro-
posed math-heuristic algorithm, demonstrating its capability to solve large-scale instances that are
otherwise intractable for commercial solvers.

The remainder of the paper is organized as follows. Section 4.2 reviews the recent literature rele-
vant to this study. Section 4.3 briefly describes the fundamentals of the ARO approach. Section 4.4
details the problem definition, uncertainty modeling, and mathematical formulation. Section 4.5
describes the solution methodology, including the math-heuristic algorithm. Section 4.6 presents
computational experiments. Finally, the concluding section summarizes our findings and discusses
the practical implications of the proposed robust network design framework.

4.2 Literature Review

In this section, we first provide a brief review of recent studies on the design of manufacturing
networks and highlight their shortcomings in addressing the challenges of producing intricate cus-
tomized products. Afterward, we briefly review several applications of ARO approach in supply
chain planning problems.

Mass production, focused on standardized high-volume production, has been extensively stud-
ied since the 1990s, establishing well-founded manufacturing network design (MND) frameworks
aimed at network configuration, cost minimization, and performance optimization Beamon (1998);
Fattahi, Mahootchi, and Moattar Husseini (2016); Garcia and You (2015); Sha and Che (2006).
Over time, these foundational models have been extended to incorporate uncertainty, with a pre-
dominant focus on supply and demand variations Dong, Zhang, Yan, and Nagurney (2005); Jeihoo-
nian, Zanjani, and Gendreau (2017); Rezaee, Dehghanian, Fahimnia, and Beamon (2017); Zanjani,
Bajgiran, and Nourelfath (2016). The challenges of MND in the context of mass customization
(MC) Da Silveira, Borenstein, and Fogliatto (2001), on the contrary, have been only investigated
in a handful of studies. In the MC paradigm that introduces dynamic customer design inputs,
resulting in complex, customizable BOM structures, the studies in Baud-Lavigne, Bassetto, and
Agard (2016); Nepal, Monplaisir, and Famuyiwa (2012) are among the first that address MND by
matching product architectures with supply chain (SC) configurations for customizable products.
Inman and Blumenfeld (2014) discuss the impact of product design complexity on SC disruptions
and delays. The authors develop models for estimating the SC reliability based on the availability
of components in the BOM of complex products. The challenges of designing the manufacturing
network that incorporates uncertain suppliers’ failure in producing complex modules have not been
investigated in this study. Changbai Tan and Freiheit (2022) develop an integrated optimization
framework that combines the selection of manufacturing processes and suppliers into the archi-
tectural design of personalized products. By assuming that all product modules are manufactured
in-house, this study does not address the optimal configuration of the SC when some complex,
customized modules are outsourced to external producers with limited technological resources.
Katoozian and Zanjani (2022) developed a supply network design model focusing on supplier
selection for the manufacturing of modular products that can be customized at different design
complexity levels. Although this study has included several complicating aspects of MC, it does
not explicitly address the uncertainty associated with the fluctuating capacity of external suppliers
in the delivery of complex custom-made modules.
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Robust optimization (RO) approach Bertsimas et al. (2011); Bertsimas and Sim (2004) has gar-
nered significant attention in incorporating uncertainty into optimization models due to its ability
to generate solutions that remain feasible under worst-case scenarios, thus ensuring performance
even when key parameters such as cost, demand, or supply reliability deviate from their nominal
values. This approach has been also explored to manage uncertainties in SC design problems (see,
e.g., Pishvaee et al. (2011); Prakash, Kumar, Soni, Jain, and Rathore (2020); Zokaee, Jabbarzadeh,
Fahimnia, and Sadjadi (2017)). However, static RO models often produce overly conservative so-
lutions, limiting their adaptability in dynamic environments Bertsimas et al. (2011). ARO, on the
contrary, addresses these limitations by employing a two-stage framework, where strategic deci-
sions are fixed before uncertainty realization, and tactical adjustments adapt to revealed conditions
Ben-Tal et al. (2004). This method has been applied in several network design problems (see,
e.g., Kafiabad, Zanjani, and Nourelfath (2022); Zeng and Zhao (2013)). Although effective in
reducing the degree of conservatism of the decision models, this approach suffers from significant
computational challenges, specifically when dealing with MIP models. Several exact and heuristic
algorithms have been proposed in the literature to overcome this drawback Bertsimas, Litvinov,
Sun, Zhao, and Zheng (2012); Gabrel, Murat, and Thiele (2014); Kafiabad et al. (2022).

Despite some recent advances in supply chain design for MC, significant gaps persist in addressing
uncertain technological limitations of external suppliers that impact their capacity for manufactur-
ing complex, customized product modules. This study aims to fill this gap by proposing a novel
ARO model, relying on an interval-based uncertainty set moderated by an uncertainty budget, that
facilitates a robust supplier selection to mitigate their capacity variability.

4.3 Adjustable Robust Optimization

The adjustable robust optimization (ARO) approach Zeng and Zhao (2013) relies on determining
the optimal first-stage (here-and-now) decisions such that the cost of second-stage decisions under
worst-case scenarios within a given uncertainty set/budget is minimized. First-stage decisions are
established prior to the realization of uncertain parameters, whereas second-stage decisions are
executed with complete awareness of uncertainty outcomes. Let x and y represent the first-stage
and second-stage decision variables, respectively, and let Ω signify the uncertainty set. An ARO
model in a general form can be formulated as follows:

U(x, y) = min
x

cTx+max
ω∈Ω

min
y∈F (x,ω)

bT y (4.1)

s.t. Ax ≥ d, x ∈ Px (4.2)

where F (x, ω) = {y ∈ Py : Gy ≥ h− Ex−Mω} with Py ⊆ Rm′′
+ and Px ⊆ Rm′

+ .

The model defined by (4.1)-(4.2) constitutes a nonlinear program that integrates a max-min term
associated with the second-stage problem in the objective function. Two types of methodologies
have been proposed in the literature to reduce the computational complexity linked to this category
of models. The initial technique involves representing the second-stage decision variables as affine
functions of uncertain parameters, followed by the resolution of the ARO model as illustrated in
Bertsimas et al. (2011). The alternative approach reformulates model (4.1)–(4.2) into a bi-linear
programming model by discretizing the original uncertainty set into a scenario set. Benders-dual
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cutting plane Bertsimas et al. (2012); Gabrel, Lacroix, Murat, and Remli (2014) and column-
and-constraint generation (Zeng and Zhao (2013)) algorithms have been widely accepted methods
proposed for the efficient resolution of the resulting bi-linear model.

Although effective for addressing specific categories of RO models, the aforementioned algo-
rithms rely on the dual of the second-stage decisions across separate iterations; therefore, they are
not applicable for solving ARO models that include binary and/or integer second-stage variables.
Considering that the uncertainty set Ω comprises a finite number of scenarios, another alternative
could be accounting for all such scenarios. Nevertheless, this would significantly increase the
complexity of the associated ARO model. As a result, some studies (e.g., Kafiabad et al. (2022))
propose to approximate this model by examining a subset of scenarios, randomly selected from
the uncertainty set Ω. This equates to loosening restrictions related to situations excluded from the
chosen sample, thus offering a legitimate relaxation (and, subsequently, a lower bound) of the op-
timal objective value of the original ARO model. By using ωs as a potential result of the uncertain
parameter in scenario s, model (4.1)–(4.2) can be approximated as a MIP as follows:

Û(x, ys, θ) : min
x

cTx+ θ (4.3)

s.t.
Ax ≥ d (4.4)

θ ≥ bT ys, s = 1, . . . , p (4.5)

Ex+Gys ≥ h−Mωs, s = 1, . . . , p (4.6)

x ∈ Px, ys ∈ Py (4.7)

By introducing variable θ in the objective function that captures the maximum of bT ys over all
scenarios based on restrictions (4.5), the non-linear max-min term in (4.1) is linearized in models
(4.3)– (4.7). Additionally, set F (x, ω) in (4.1) is clearly expressed as restrictions (4.6), where
scenarios serve as indexes for the second-stage decision variables.

4.4 Problem Description and Formulation

In this section, we first present a comprehensive overview of the manufacturing network design
(MND) problem under investigation, emphasizing the impact of supplier performance uncertainty
on the on-time delivery of highly customized products. Subsequently, we introduce a framework
for modeling the uncertainty in supplier performance, specifically focusing on variations in unit
capacity consumption, which directly affects their ability to deliver custom-made parts by the
delivery due dates. Finally, we present an ARO model for the MND problem.

4.4.1 Problem Description

This study focuses on the design of a multi-echelon manufacturing network that facilitates the
production of highly customized, modular-structured products. The products are featured with
a BOM encompassing both standard and custom components at different customization levels.
The network consists of a main manufacturer, in charge of final assembly, and a pool of upstream
semi-finished items producers and part suppliers. The MND problem under investigation seeks the
optimal choice of upstream partners in addition to the optimal production quantities at different
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entities of the network. The primary goal is to maximize profit while ensuring the efficient and re-
liable fulfillment of customer demand. The non-homogeneity of the upstream partners in terms of
technological capabilities, production rates/capacities, as well as cost structures critically impacts
the choice of producers/suppliers for the main manufacturer.

Customizable parts in the BOM (e.g., advanced sensors) present unique challenges, as higher
complexity levels demand advanced technologies, substantial research and development (R&D)
efforts, and longer production cycles. These requirements increase variability in supplier perfor-
mance and elevate production costs. To model these dynamics, the study employs a piecewise
linear cost function. This cost structure captures economies of scale, where larger batch sizes
benefit from reduced unit costs, while smaller, specialized orders incur higher costs due to ineffi-
ciencies in setup and resource utilization.

The variability in production rates for customizable parts, particularly at higher complexity levels
adds further complexity to the MND problem. Facing technological constraints and/or extended
R&D timelines required to produce intricate custom items, the producers in the network typically
experience variable resource capacity consumption rates. The latter represents the amount of re-
source usage required by suppliers and producers to fulfill production demands, influenced by the
complexity of products, resource availability, and operational constraints. Such variabilities could
reduce the production capacity of producers and consequently lead to high lost sales. Therefore,
a robust optimization framework would be a suitable modeling approach to control the lost sales
and ensure the resilience of the manufacturing network under worst-case outcomes of uncertainty.

4.4.2 Modeling the Uncertainty

To address the variability inherent in the capacity consumption of customized items across dif-
ferent producers, this study adopts an interval-based approach for modeling the uncertainty. Let
β̃c
hni and γ̃ckmi denote the unit capacity consumption parameters for customizable sub-assemblies

and components per item, complexity level, and producer/supplier, respectively. In a determinis-
tic context, these parameters are assumed to be fixed and equal to the nominal values, β̄c

hni and
γ̄ckmi. However, to account for their variability, a (positive) drift value for the capacity consump-
tion per item, complexity level, and producer/supplier is considered as ∆hni/∆kmi. Therefore, the
uncertain capacity consumption factors can be modeled within predefined bounds as follows:

β̃c
hni = β̄c

hni +∆hni, γ̃ckmi = γ̄ckmi +∆kmi,

To avoid excessive conservatism, the budget of uncertainty Γni and Γmi are introduced to control
the number of producers or suppliers that can experience capacity consumption deviations per each
customizable item and complexity level. The uncertainty set is therefore defined as:

ΩΓniΓmi =


β̃c
hni ∈ R+

0 := β̄c
hni + ζhni∆hni, γ̃ckmi ∈ R+

0 := γ̄ckmi + ρkmi∆kmi,

ζhni, ρkmi ∈ {0, 1},
∑
h∈Hc

ζhni ≤ Γhni,
∑

m∈Mc

ρkmi ≤ Γkmi,

∀n ∈ N c, ∀h ∈ Hc, ∀m ∈ M c, ∀k ∈ Kc

 (4.8)
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4.4.3 Adjustable Robust Optimization Model

We formulate the MND problem as an ARO model by leveraging the framework outlined in Sec-
tion 4.3 and a sample of scenarios randomly generated from the uncertainty set ΩΓniΓmi , defined
in Section 4.4.1. As such, we define the first-stage decisions as the selection of suppliers (xk)
and producers (yh). These decisions are established before the acknowledgment of uncertainty
and remain constant in all scenarios within the uncertainty set. The second-stage decisions, com-
prised of production quantities (qjpi(ω), q

j
hni(ω)), procurement quantities (qjkmi(ω)), and lost sales

(wpi(ω)), are established after the actual capacity of suppliers is revealed to the focal company.
This division guarantees that the model maintains a balance between resilience in strategic choices
and adaptability in tactical modifications. The objective function of this problem aims to maxi-
mize the profit under worst-case scenarios within the uncertainty set. This formulation ensures
that decisions remain robust against the worst-case realizations of uncertain parameters, mitigat-
ing potential excessive lost sales. The ARO mathematical formulation of the MND problem under
consideration is introduced in the next subsection, with the associated notations detailed in A.4.

Mathematical Formulation

The scenario-based ARO model is formulated as follows:

maximize ν (4.9)

Subject to:

Worst-case Profit

ν ≤
∑
p

∑
i

∑
j

Sj
piq

j
pi(ω)−

∑
p

∑
i

∑
j

Cpiq
j
pi(ω)−

∑
p

∑
i

CLpiwpi(ω)−
∑
h

∑
n

Cs
hnq

s
hn(ω)

−
∑
h

∑
n

∑
i

∑
j

Cj
hniq

cj
hni(ω)−

∑
k

∑
m

Cs
kmqskm(ω)−

∑
k

∑
m

∑
i

∑
j

Cj
kmiq

cj
kmi(ω)

−
∑
h

Fhyh −
∑
k

Fkxk ∀ω ∈ Ω (4.10)

Demand Satisfaction Constraints∑
j

qjpi(ω) + wpi(ω) = Dpi, ∀p ∈ P, ∀i ∈ I, ∀ω ∈ Ω (4.11)

Capacity Constraints∑
j

qjpi(ω) ≤
FCpi

αpi
, ∀p ∈ P, ∀i ∈ I, ∀ω ∈ Ω (4.12)

qshn(ω) ≤
PChn

βs
hn

θshnyh, ∀h ∈ H, ∀n ∈ N s, ∀ω ∈ Ω (4.13)
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∑
j

qchni(ω) ≤
PChni

βc
hni(ω)

θchniyh, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I, ∀ω ∈ Ω (4.14)

qskm(ω) ≤ SCkm

γskm
σs
kmxk, ∀k ∈ K, ∀m ∈ M s, ∀ω ∈ Ω (4.15)

∑
j

qckmi(ω) ≤
SCkmi

γckmi(ω)
σc
kmixk, ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I, ∀ω ∈ Ω (4.16)

BOM Flow Conservation Constraints∑
h

qshn(ω) =
∑
p

∑
i

∑
j

ηnpq
j
pi(ω), ∀n ∈ N s, ∀ω ∈ Ω (4.17)

∑
h

∑
j

qcjhni(ω) =
∑
p

∑
j

ηnpq
j
pi(ω), ∀n ∈ N c, ∀i ∈ I, ∀ω ∈ Ω (4.18)

∑
k

qskm(ω) =
∑
h

∑
n∈Ns

m

λmnq
s
hn(ω)

+
∑
h

∑
n∈Ns

m

∑
i

∑
j

λmnq
cj
hni(ω), ∀m ∈ M s, ∀ω ∈ Ω (4.19)

∑
k

∑
j

qcjkmi(ω) =
∑
h

∑
n∈Nc

m

∑
j

λmnq
cj
hni(ω), ∀m ∈ M c, ∀i ∈ I, ∀ω ∈ Ω (4.20)

Cost Linearization Constraints

qjpi(ω) ≤ Lj
piz

j
pi(ω), ∀p ∈ P, ∀i ∈ I, ∀j ∈ J, ∀ω ∈ Ω (4.21)

zjpi(ω)(L
j−1
pi + 1) ≤ qjpi(ω), ∀p ∈ P, ∀i ∈ I, ∀j ∈ J \ {1}, ∀ω ∈ Ω (4.22)

∑
j

zjpi(ω) = 1, ∀p ∈ P, ∀i ∈ I, ∀ω ∈ Ω (4.23)

qcjhni(ω) ≤ ujhni(ω)L
j
hni, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I, ∀j ∈ J, ∀ω ∈ Ω (4.24)

ujhni(ω)(L
j−1
hni + 1) ≤ qcjhni(ω), ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I, ∀j ∈ J \ {1}, ∀ω ∈ Ω (4.25)

∑
j

ujhni(ω) = 1, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I, ∀ω ∈ Ω (4.26)
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qcjkmi(ω) ≤ vjkmi(ω)L
j
kmi, ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I, ∀j ∈ J, ∀ω ∈ Ω (4.27)

vjkmi(ω)(L
j−1
kmi + 1) ≤ qcjkmi(ω), ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I, ∀j ∈ J \ {1}, ∀ω ∈ Ω (4.28)

∑
j

vjkmi(ω) = 1, ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I, ∀ω ∈ Ω (4.29)

Domain Constraints

ν, qcjkmi(ω), q
s
km(ω), qcjhni(ω), q

s
hnl(ω), q

j
pi(ω), w

j
pi(ω) ≥ 0,

∀k ∈ K, ∀m ∈ M c, ∀m ∈ MS , ∀h ∈ H, ∀n ∈ N c, ∀n ∈ NS , ∀i ∈ I, ∀j ∈ J, ∀p ∈ P , ∀ω ∈ Ω

(4.30)

xk, yh, z
j
pi(ω), u

j
hni(ω), v

j
kmi(ω) ∈ {0, 1},
∀k ∈ K, ∀h ∈ H, ∀p ∈ P , ∀i ∈ I, ∀j ∈ J, ∀n ∈ N c, ∀m ∈ M c, ∀ω ∈ Ω

(4.31)

The objective function (4.9) maximizes the worst-case profit. Constraints (4.10) define the profit
across worst-case capacity consumption scenarios and incorporate revenue from selling final prod-
ucts while deducting costs associated with production, procurement, lost sales, and establishing
contracts with external manufacturers. The demand satisfaction constraints (4.11) ensure that the
total demand for each product and customization level is either met through production or recorded
as lost sales.

Capacity constraints (4.12)–(4.16) impose limits on production and procurement quantities to en-
sure feasibility within the capacity of selected suppliers and manufacturers. Constraint (4.12)
restricts the production of final products to their available manufacturing capacities. Constraint
(4.13) applies capacity limits to standard sub-assemblies, while constraint (4.14) extends these
restrictions to customizable sub-assemblies, explicitly incorporating uncertainty in the capacity
consumption factor. Similarly, constraints (4.15) and (4.16) govern the procurement of standard
and customizable components, respectively, ensuring that procurement remains feasible under all
scenarios. The material flow conservation constraints (4.17)–(4.20) enforce consistency across
the network. These constraints ensure that the production of sub-assemblies and procurement
of components align with the requirements of final products, as defined in the BOM. Constraint
(4.17) ensures sufficient production of standard sub-assemblies, while constraint (4.18) guaran-
tees that customizable sub-assemblies meet the demand for final products. Constraints (4.19)
and (4.20) regulate the procurement of standard and customizable components to maintain logi-
cal material flows. Cost linearization constraints (4.21)–(4.29) improve computational tractabil-
ity by representing production and procurement costs as piece-wise-linear functions. Constraints
(4.21)–(4.23) assign production quantities of final products to appropriate price intervals, reflect-
ing economies of scale and capturing cost structure variations. Similarly, constraints (4.24)–(4.26)
apply linearization to customizable sub-assemblies, and constraints (4.27)–(4.29) extend this logic
to customizable components. Finally, (4.30) and (4.31) represent the domain constraints.
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4.5 Math-Heuristic Algorithm

The ARO model (4.9)-(4.31) is a MIP model that includes two classes of binary variables cor-
responding to the network configuration (choice of suppliers/producers) and production volume
intervals. Solving this model becomes challenging when considering a large pool of manufactur-
ers in the network and a large scenario set for uncertain resource consumption factors. To tackle
this computational complexity, a math-heuristic algorithm is proposed that revolves around fixing
the above-mentioned binary variables and solving the remaining linear programming (LP) model
by a commercial solver. More specifically, the algorithm includes two phases corresponding to
constructing an initial feasible solution, and a lower bound (LB) to the original MIP model with
the aid of a greedy heuristic, followed by enhancing the quality of the initial LB with the aid of a
local search heuristic.

Phase 1: Constructing the Initial Feasible Solution. The objective of this phase is to con-
struct an initial network configuration by systematically identifying a pool of producers/suppliers
(xk, yh) for all items of the BOM, in addition to fixing the corresponding production volume in-
terval (ujhni, v

j
kmi) for customizable items, while ensuring operational feasibility. To this end, the

algorithm sorts the entities by ascending variable production cost. Considering that the standard
items are featured with a fixed capacity consumption factor, the algorithm determines the mini-
mum number of required entities by dividing the demand for items at different BOM levels over
the average capacity of suppliers/producers. It then assigns the necessary entities to standard items
starting from the highest-ranked item in the sorted list.

For customizable items, the algorithm initializes a set U for all customizable items and selects the
cheapest entities to them from the sorted list. For the initial set of assigned entities, it then sets
the production intervals to their maximum level and solves the resulting ARO model (an LP) by a
commercial solver (e.g., CPLEX). If the model becomes infeasible, the algorithm commands the
solver to identify the suppliers/producers whose production intervals cause violations of capacity
constraints. The infeasibility is then resolved by reducing those intervals until a feasible solution is
obtained. The list of assigned entities for customizable items is gradually expended by adding en-
tities to the network for all items until the selected entities are assigned a production volume above
a minimum threshold (τ ). If adding the next entity results in an allocation below (τ ), the algorithm
fixes the pool to the previously selected feasible configuration and removes the corresponding item
from U . This continues until U is empty, ensuring all customizable items have received sufficient
suppliers/producers.

The outcome of this phase is an initial feasible solution and an LB to the optimal objective value of
ARO model. While this step fixes the size of the suppliers/producers pool for all items, the choice
of entities within the pool is further refined in phase 2 to increase the LB.

Phase 2: Solution Refinement and Improvement. This step corresponds to a local search (LS)
procedure within the vicinity of the initial feasible solution. The LS seeks alternative network
configurations by randomly swapping suppliers from the available pool per customizable item
while maintaining the size of the pool based on the outcome of phase 1. Similar to the previous
phase, the local search is implemented per customizable item of BOM. After fixing the choice of
suppliers and the production intervals, the remaining LP model is solved by a commercial solver.
As such, the production volume intervals for the customizable items are also adjusted to maintain
the feasibility of the new configuration. If the new configuration results in an improved objective
value, it is recorded as the best-known feasible solution (and LB). For small and medium instances,
the algorithm exhaustively evaluates all possible swaps of entities to guarantee optimality. For
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large instances, the process is terminated after a predefined number of iterations (Tstop) without
improvement in the LB, striking a balance between computational efficiency and solution quality.

The pseudocode for the math-heuristic algorithm is presented in Algorithms 1 and 2, detailing the
steps involved in both phases.

Algorithm 2 :Math-heuristic- Phase 2

1: Input: Stopping criterion (T stop), LB= The objective function value obtained in Phase 1, Best
solution=The solution obtained in Phase 1

2: Initialize no improvement = 0
3: while no improvement < T stop do
4: for each customizable item n,m do
5: Randomly select an entity from the pool of assigned suppliers/producers, and one from

the pool of unassigned ones
6: Swap the entities identified in step 5 and set the corresponding production intervals to

the maximum level
7: Solve the resulting ARO model by a commercial solver
8: while infeasible do
9: Identify the suppliers/producers, recently added to the pool that cause capacity

violations, and reduce their production intervals by one level
10: Resolve the ARO model by a commercial solver
11: end while
12: if objective value improves over the current LB then
13: Update the pool of selected suppliers/producers accordingly
14: Update LB and best solution
15: no improvement = 0
16: else
17: no improvement = no improvement+ 1
18: end if
19: end for
20: end while
21: Output: Best-known feasible solution

4.6 Numerical Experiments

In this section, we present the findings from a comprehensive series of numerical experiments
conducted to evaluate the performance of the proposed ARO model and the efficiency of the math-
heuristic algorithm. We begin by outlining the experimental setup, including the procedure for
generating scenarios for the sample-based ARO model. In addition, we elaborate on the Monte-
Carlo simulation framework adopted to analyze the out-of-sample performance of the ARO model
and estimate the value of robustness in the MND problem under investigation. Subsequently, we
analyze the performance of the ARO model under diverse scenarios and uncertainty budgets, em-
phasizing its ability to effectively address the risk of suppliers’ performance inconsistencies in the
network. The value of robustness is further demonstrated through Monte Carlo simulation exper-
iments via comparing the performance of robust and deterministic models across a wide range of
uncertainty realizations. Finally, we evaluate the scalability and computational efficiency of the
math-heuristic algorithm, showcasing its ability to solve large-scale instances that are intractable
for commercial solvers. All experiments are implemented in Python using the Callable Library of
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Algorithm 1 :Math-heuristic - Phase 1
1: Input: Production Threshold (τ )
2: Sort all suppliers h ∈ H for each n ∈ N and producers k ∈ K for each m ∈ M by ascending

variable production cost
3: Initialize the pool of selected suppliers and producers for standard items (Hn = ∅, Km = ∅)
4: for each standard item n ∈ M s,m ∈ M s do
5: Compute the demand at item level (Dn, Dm) based on BOM structure
6: Calculate the required number of suppliers/producers by dividing Dn, Dm over the aver-

age capacities of corresponding entities
7: Starting from the highest-ranked item on the sorted list in step 2, add the necessary suppli-

ers/producers to sets Hn and Kn and fix the corresponding binary variables to 1 in the ARO
model

8: end for
9: Initialize a set U = ∅ as the pool of selected suppliers/producers for all customizable items

(n ∈ M c,m ∈ M c)
10: Add the cheapest supplier/producer from the list in step 2 to U for all customizable items and

fix the corresponding binary variables to 1 in the ARO model
11: Set the production intervals to their maximum level for the suppliers/producers, selected in

steps 7 and 10, and fix the corresponding binary variables to 1 in the ARO model
12: Solve the resulting ARO model (by a commercial solver) after fixing the binary variables in

steps 7, 10, and 11
13: while infeasible do
14: Identify suppliers/producers causing capacity violations and reduce their production inter-

vals by one level
15: Resolve the ARO model by a commercial solver
16: end while
17: while U ̸= ∅ do
18: Add the next cheapest supplier to the selected pools for all items in U and fix the corre-

sponding binary variables to 1 in the ARO model
19: Set corresponding production intervals to their maximum level and fix the associated bi-

nary variables to 1 in the ARO model
20: Solve the resulting ARO model (by a commercial solver) after fixing the binary variables

in steps 18 and 19
21: while infeasible do
22: Identify the suppliers/producers, recently added to the pool that cause capacity viola-

tions, and reduce their production intervals by one level
23: Resolve the ARO model by a commercial solver
24: end while
25: for each item in U do
26: if t thenhe production quantities allocated to the most recent supplier/producer < τ
27: Remove the entity and item from U
28: end if
29: end for
30: end while
31: Output: Initial LB and feasible solution
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CPLEX 12.10 and executed on a Core i7 CPU 3.60 GHz server with 32 GB of RAM under Linux.

4.6.1 Data Generation and Experimental Settings

In the absence of benchmark instances in the literature, a systematic procedure is proposed to gen-
erate problem instances of varying sizes, ensuring realistic and meaningful optimal solutions. The
generated instances vary in terms of the number of finished products (|P |), sub-assemblies (|N |),
components (|M |), and producers/suppliers for each customization level of sub-assemblies/components
(|H| and |K|). To ensure general applicability, we consider two categories of suppliers, referred
to as stable and volatile, distinguished by their production capacity, cost structure, and production
rate uncertainty for customizable items. These differences are particularly relevant for highly cus-
tomizable subassemblies/components, where the complexity of design and technological require-
ments is most pronounced. Stable suppliers are characterized by higher fixed and variable produc-
tion costs, yet, they maintain consistent and reliable production rates (i.e., 1/βc

hni and 1/γckmi).
In other words, their advanced R&D capabilities, coupled with sophisticated production systems,
enable them to manufacture highly customized items with minimal variability on resource con-
sumption factors. Volatile suppliers, in contrast, operate at lower fixed and variable costs but
exhibit significant variability in production rates when producing highly customized items. In our
numerical experiments, we specifically account for uncertain resource consumption factors (and
production rates) for subassemblies/components with the highest level of design customization
(level 3). However, the proposed MND model provides the possibility to consider production rate
uncertainty for all customization levels.

Table 4.1 summarizes demand, capacity, price, and various unit cost categories for final products
at different customization levels.

Table 4.1:Final Products Data Intervals

Parameter Customization Level Interval Parameter Customization Level Interval
Demand 1–3 [300, 1500] Production Cost 1–3 [200, 600]
Capacity 1–3 [1350, 2500] Selling Price 1–3 [2000, 10000]

Lost Sale Cost 1–3 [3000, 8000]

Tables 4.2 and 4.3 present the data intervals for the capacity and production costs of standard and
customizable subassemblies and components, respectively.

Table 4.2:Standard Subassemblies and Components Data Intervals

Sub-assembly Interval Component Interval
Variable Production Cost [50, 150] Variable Production Cost [30, 100]

Fixed Cost [1000, 3000] Fixed Cost [1000, 3000]
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Table 4.3:Customizable Subassemblies and Components Data Intervals

Sub-assembly
Complexity

Level
Interval ($) Components

Complexity
Level

Interval ($)

Variable
Production

Cost

Volatile Producers
1 [50, 200]

Volatile Suppliers
1 [50, 100]

2 [450, 600] 2 [200, 400]
3 [850, 1000] 3 [500, 700]

Stable Producers
1 [60, 240]

Stable Suppliers
1 [60, 120]

2 [540, 720] 2 [240, 480]
3 [1020, 1200] 3 [600, 840]

Fixed
Cost

Volatile Producers
1 [1000, 1500]

Volatile Suppliers
1 [1000, 1500]

2 [1500, 2000] 2 [2000, 3000]
3 [2000, 3000] 3 [3000, 4000]

Stable Producers
1 [1500, 2500]

Stable Suppliers
1 [2000, 3000]

2 [2500, 3000] 2 [4000, 6000]
3 [3000, 4500] 3 [6000, 8000]

Expanding on the parameter intervals provided in Tables 4.1 and 4.2, we consider the baseline
(nominal) capacity consumption factor for each supplier equal to the complexity level of the parts
being produced (i.e., levels 1, 2, and 3). To model the uncertainty, we consider a (positive) drift
over the nominal capacity consumption factors. More specifically, stable suppliers are assumed to
experience only minor fluctuations (+1 unit), while volatile ones are subject to larger deviations
(+3 unit) when producing highly customizable items.

In all numerical experiments, we consider three categories of problem instances—small, medium,
and large—each corresponding to varying sizes of manufacturing networks. Table 4.4 summarizes
the structural characteristics of these instances, detailing the number of final products, subassem-
blies, components, and suppliers involved.

Table 4.4:Problem Sizes for Experimental Settings

Instance Size Final Products (Range) Subassemblies (Total / Customizable) Components (Total / Customizable) Suppliers per Customizable Part
Small [2–4] [4–8] / [2–4] [8–10] / [4–5] [6–8]

Medium [4–8] [8–10] / [4–5] [10–20] / [5–10] [8–10]
Large [8–10] [10–20] / [5–10] [20–40] / [10–20] [10–12]

Scenario Generation in the ARO model

Generating representative scenarios is a critical step in the proposed scenario-sampled ARO model
to ensure the realistic modeling of suppliers’ production rates within a given uncertainty budget
and guarantee the robustness of manufacturing network configuration. Each scenario in the ARO
model corresponds to one random realization of resource consumption factor drifts among the
suppliers/producers of highly customized items. In addition, the uncertainty budget governs the
proportion of entities that are going to be subject to resource consumption factor variability for
producing such items under each scenario. To further guarantee the configuration robustness, when
randomly selecting entities among the pool of suppliers/producers per custom item, the priority is
given to volatile suppliers that experience higher drifts in capacity consumption factor. In our
experiments, given a certain uncertainty budget Γ, 70% of suppliers that would randomly receive
maximum drift are selected from the volatile category and only 30% are chosen from the stable
group. For instance, in a pool of 10 suppliers with a budget Γ = 50%, 5 out of 10 suppliers will be
randomly assigned the maximum drift, among which, 3-4 are selected from the volatile category
and 1-2 are from the stable ones.
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Monte Carlo Simulation Framework

This section outlines a Monte Carlo simulation framework designed to compare the network con-
figurations generated by the deterministic and ARO models under randomly generated scenar-
ios corresponding to suppliers’ capacity consumption variations for producing custom items with
intricate design features. The primary objective is to compare the robustness of these network
structures in terms of the expected profit under uncertain suppliers’ performance.

The simulation process receives the optimal network configuration decisions (xk, yh) determined
by the deterministic and ARO models as the inputs. Next, it fixes these variables in the ARO
model, based on these inputs, and solves it by considering one scenario for suppliers’ capacity
consumption factors, randomly generated from the uncertainty set, defined in section 4.4.2. The
optimal profit is then recorded for each scenario and model (deterministic/ARO). This Procedure
is repeated for a large number of replications (M = 1000) and the expected profit of both models
is calculated. The value of robust solution (VRS) is then estimated as the difference between
the expected profit of network configurations determined by the ARO and deterministic models.
Algorithm 3 outlines the detailed simulation procedure.

Algorithm 3 :Monte Carlo Simulation Framework
1: Step 1: Solve the deterministic model to obtain first-stage decision variables (xk, yh).
2: Step 2: Solve the ARO model, formulated based on a randomly generated scenario set (e.g.,

N = 100) and obtain the first-stage decision variables (xk, yh).
3: Step 3: Generate M = 1000 random capacity consumption scenarios (M ≫ N ) from the

uncertainty set, defined in Section 4.4.2.
4: for each scenario m ∈ {1, . . . ,M} do
5: Step 4: Fix the deterministic model’s first-stage decisions and solve for second-stage de-

cisions under scenario m to obtain the objective function value (fm
det).

6: Step 5: Fix the robust optimization model’s first-stage decisions and solve for second-
stage decisions under scenario m to obtain the objective function value (fm

ro ).
7: end for
8: Step 6: Calculate the VRS based on the average objective function values obtained from steps

4 and 5 over all M scenarios:
9: V RS = E[fro]− E[fdet]

Math-heuristic Parameter Tuning

To optimize the performance of the proposed math-heuristic algorithm, we tuned two critical pa-
rameters: the minimum production allocation threshold (τ ) in Phase 1 and the iteration limit for
local search termination (Tstop) in Phase 2. We set τ = 10 units for all customizable items, de-
termined through preliminary experiments to ensure sufficient supplier/producer allocations while
avoiding trivial assignments. It is worth noting that considering higher values (e.g., 15 units)
restricts supplier selection in small instances while adopting lower values (e.g., 5 units) yields
suboptimal solutions. We also set Tstop to 15 to balance exploration and efficiency. These settings
ensure scalability across different families of problem instances.

4.6.2 Performance Analysis of ARO Model

This section provides an in-depth evaluation of the proposed robust optimization model, beginning
with the analysis of its performance under different scenario sample sizes. This is followed by the
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comparison of network configuration (choice of suppliers) determined by the deterministic and
ARO models. The first analysis examines how different scenario sizes influence the performance
of the ARO model. Table 4.5 presents the results for medium-sized instances with scenario sample
sizes of N =50, 100, 200. The scenarios are generated using the approach described in the section
4.6.1 by considering 70% budget of uncertainty. Generally speaking, increasing N improves the
robustness of the solutions by capturing a wider range of uncertainty realizations. However, larger
scenario sizes also significantly increase the CPU time required to solve the model. Considering
that the difference between optimal objective value under N = 100 and N = 200 is negligible,
N = 100 would be a computationally efficient and effective choice for subsequent evaluations. It
is noteworthy that similar behavior is observed in the ARO model when considering other budgets
of uncertainty.

Table 4.5: Results of ARO Model for Different Scenario Sample Sizes

Number of Scenarios (N ) Objective Value (M$) CPU Time (Minutes)

Deterministic $4.765 few seconds
50 $4.334 1.5
100 $4.248 8.3
200 $4.220 43.0

To further demonstrate the advantages of ARO model over a deterministic one, the optimal choice
of producers/suppliers determined by these models are compared for medium- and large-sized
problem instances under a 70% uncertainty budget, as summarized in Table 4.6. The results
show that the robust model strategically diversifies supplier selection across stable and volatile
categories by leveraging the uncertainty budget, while the deterministic model relies entirely on
volatile suppliers. More specifically, in large problem instances, 70% of the suppliers selected by
the robust model belong to the stable category, compared to none in the deterministic model. This
demonstrates the robust model’s adaptability in managing variability in terms of entities’ capac-
ity consumption factor when manufacturing highly customized items. This diversification is less
pronounced in medium-sized instances due to the smaller number of customizable parts.

Table 4.6:Supplier Selection Comparison between Deterministic and Robust Models

Instance Size Entity Entity Category Deterministic Model ARO Model (N = 100)

Medium Producers (Sub-Assemblies) Stable 0 3
Volatile 4 1

Suppliers (Components) Stable 0 5
Volatile 9 4

Large Producers (Sub-Assemblies) Stable 0 7
Volatile 5 5

Suppliers (Components) Stable 0 10
Volatile 15 5

4.6.3 The Value of Robustness

In this section, we analyze the out-of-sample performance of ARO model through Monte Carlo
simulation experiments. More precisely, we showcase the value of robust network configuration
determined by the ARO model when compared with a deterministic approach. Comparing the
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profits reported by the deterministic and ARO models (Table4.5), the former may appear, at first
glance, to perform better. However, this comparison is not entirely fair, as the deterministic model
assumes nominal resource consumption factors and does not account for variability. In contrast,
the robust model incorporates worst-case scenarios (under an uncertainty budget), making its ob-
jective inherently different. To provide a more balanced evaluation, the out-of-sample performance
of both models is compared with the aid of Monte Carlo simulation framework described in Algo-
rithm 3. The results, presented in Table 4.7 under different uncertainty budgets, highlight that the
robust model consistently achieves higher and more stable expected profits across all instances,
demonstrating its adaptability and effectiveness in managing uncertainties. Additionally, the col-
umn VRS (%) in Table 4.7 corresponds to the value of robust solution (VRS) that quantifies the
(relative) profit improvement achieved by the robust model over the deterministic one. For in-
stance, under a 50% uncertainty budget for large-sized instances, the robust model delivers a 29%
improvement in expected profit compared to the deterministic model. The V RS is more signifi-
cant at 70% uncertainty budget, emphasizing the important role of uncertainty budget in protecting
the network configuration under worst-case uncertainty outcomes. These results underscore the ro-
bust model’s ability to mitigate the impact of variability and ensure more reliable decision-making
under uncertain conditions.

Table 4.7:Out-of-Sample Performance of Deterministic and Robust Models

Instance Size Budget of Uncertainty Expected Profit (Deterministic Model (M$)) Expected Profit (Robust Model (M$)) VRS (%)

Medium 50% $4.00 $4.80 20%
Medium 70% $3.70 $4.75 28%
Large 50% $6.50 $8.40 29%
Large 70% $5.80 $8.35 44%

The superior performance of the ARO model is attributed to the high quality of network configura-
tion (in terms of pool of suppliers) set by this model that are designed to ensure resilience against
production rate variability for highly customized items. In particular, by considering the entire
uncertainty set rather than a single realization, the robust model demonstrates adaptability and ef-
fectiveness across various random outcomes. Therefore, suppliers are selected among stable and
volatile categories, ensuring a balanced and reliable network configuration.

To further analyze the stability of the network structure determined by the ARO model under out-
of-sample scenarios, Table 4.8 presents the average and standard deviation (SD%) of expected
profits across five independent Monte Carlo simulation batches (each consisting 1000 scenarios).
The results show minimal variability in expected profits for both medium-sized and large-sized
instances, with standard deviations of 0.73% and 0.58%, respectively. This reflects the robust
model’s ability to consistently deliver stable solutions, even under diverse uncertainty realizations.

Table 4.8:Expected Profits Across Different Simulation Batches (M = 1000, Gamma = 70%)

Instance Size Batch 1 (M$) Batch 2 (M$) Batch 3 (M$) Batch 4 (M$) Batch 5 (M$) SD (%)

Medium 4.23 4.31 4.24 4.32 4.29 0.73%
Large 8.21 8.29 8.25 8.30 8.27 0.58%

4.6.4 Performance of the Math-Heuristic Algorithm

The performance of the proposed math-heuristic algorithm is evaluated across three categories of
problem instances, including small, medium, and large. Moreover, ten problem instances have
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been randomly generated under each category. The evaluation focuses on solution quality, com-
putational efficiency, and scalability. Small and medium-sized instances are particularly important
for analyzing the algorithm’s performance, as they allow comparisons with a commercial solver.
Large instances, on the other hand, are used to demonstrate the scalability and practicality of the
heuristic under computationally challenging conditions. All problem instances in this section are
solved by considering the uncertainty budget of 70% that represents a balanced level of conser-
vatism in practice.

The results for small problem instances are summarized in Table 4.9 where ”# iterations” and
”Optimality Gap (%)” columns, respectively represent the number of local search iterations in the
math-heuristic and the objective function gap between the solution of math-heuristic and a com-
mercial solver. These instances, being solvable by a commercial solver (CPLEX) by considering
0.1% optimality gap, provide a basis for evaluating the quality and efficiency of the math-heuristic.
According to these results, the math-heuristic achieves near-optimal solutions, with an average op-
timality gap of 1.9%. Furthermore, it demonstrates an average computational time improvement
of 20% compared to the commercial solver. These findings confirm the efficiency of the proposed
algorithm in solving small-scale problems while maintaining high solution quality. Additionally,
the minimal variability in performance across instances highlights its robustness.

Table 4.9:Math-heuristic Performance Results for Small Instances

Instance CPLEX Obj (M$) CPLEX CPU Time (s) Math-Heuristic Obj (M$) Math-Heuristic CPU Time (s) # Iterations Optimality Gap (%) CPU Time Improvement (%)

Small 1 2.87 151.95 2.78 116.15 20 3.23 23.59
Small 2 3.02 130.00 2.98 105.55 28 1.12 18.81
Small 3 2.99 121.63 2.94 98.09 20 2.45 19.33
Small 4 2.90 151.95 2.85 113.76 28 1.72 25.15
Small 5 3.01 123.96 2.95 102.41 26 1.99 17.41
Small 6 3.00 130.29 2.94 104.87 22 2.00 19.36
Small 7 2.97 138.34 2.93 109.22 23 1.35 21.12
Small 8 2.96 135.49 2.91 107.38 27 1.69 20.74
Small 9 2.92 145.17 2.87 113.21 21 1.71 22.03
Small 10 3.00 131.98 2.96 106.99 25 1.33 18.95

Average 2.96 136.88 2.91 107.66 24 1.91 20.15

Table 4.10 presents the results for medium-sized instances. These instances, while moderately
complex, can still be solved within a reasonable timeframe by the commercial solver. The results
indicate that the math-heuristic achieves an average optimality gap of 1.34% and a computational
time reduction of 44%. As problem complexity increases, the heuristic becomes increasingly ef-
fective at improving computational efficiency. These results further demonstrate its scalability and
ability to deliver high-quality solutions while saving significant time for medium-sized problem
instances.

Table 4.10:Math-heuristic Performance Results for Medium Instances

Instance CPLEX Obj (M$) CPLEX CPU Time (s) Math-Heuristic Obj (M$) Math-Heuristic CPU Time (s) # Iterations Optimality Gap (%) CPU Time Improvement (%)

Medium 1 6.37 378.77 6.22 167.93 20 2.38 55.69
Medium 2 6.48 297.67 6.40 81.84 20 1.20 72.54
Medium 3 6.44 549.85 6.37 222.90 28 1.09 59.47
Medium 4 6.42 617.09 6.35 340.08 28 1.15 44.88
Medium 5 6.50 725.73 6.42 285.73 28 1.23 60.64
Medium 6 6.46 314.72 6.38 236.42 28 1.25 24.93
Medium 7 6.47 307.77 6.39 231.89 29 1.23 24.47
Medium 8 6.45 322.73 6.36 239.12 27 1.40 25.74
Medium 9 6.44 317.18 6.36 237.45 28 1.24 25.16

Medium 10 6.49 306.42 6.41 233.89 30 1.23 23.71

Average 6.45 413.09 6.37 227.83 26.60 1.34 44.83

The results for large instances are shown in Table 4.11. These instances exceed the computational
capacity of the commercial solver, making the math-heuristic the only viable solution method.
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The algorithm solves all instances within an average computational time of 507 seconds. These
outcomes underscore the scalability and practicality of the heuristic in solving large, complex
MND problems.

Table 4.11:Math-heuristic Performance Results for Large Instances

Instance CPLEX Obj (M$)1 CPLEX CPU Time (s)2 Math-Heuristic Obj (M$) Math-Heuristic CPU Time (s) # Iterations Optimality Gap (%)3 CPU Time Improvement (%)4

Large 1 * * 8.30 512.25 35 * *
Large 2 * * 8.63 498.11 33 * *
Large 3 * * 8.46 505.47 32 * *
Large 4 * * 8.51 510.32 34 * *
Large 5 * * 8.54 507.89 36 * *
Large 6 * * 8.48 504.15 33 * *
Large 7 * * 8.47 509.78 34 * *
Large 8 * * 8.52 506.89 32 * *
Large 9 * * 8.55 506.78 36 * *
Large 10 * * 8.50 510.52 34 * *

Average * * 8.50 507.31 34.30 * *
’maskin

In summary, the math-heuristic algorithm demonstrates significant versatility and effectiveness.
It achieves high-quality solutions for small and medium-sized problems and scales efficiently to
tackle large, computationally intensive instances. These results establish the proposed algorithm
as a reliable tool for solving complex robust MND problems in a highly customized manufacturing
environment.

4.7 Conclusion

In this study, we developed an ARO model for the design of a manufacturing network that fa-
cilitates the manufacturing of highly customized, modular-structured products. We specifically
incorporated the uncertain production rate of the external suppliers for manufacturing complex
product modules. This aspect has been neglected in the existing literature while long production
lead time is one of the key challenges of MC. We modeled the uncertain resource utilization of
complex modules as an interval and considered an uncertainty budget that limits the number of
suppliers that might face the lowest production rate. The AOR model determines the optimal pool
of external producers/suppliers as the first-stage decision and sets the production quantity and lost
sale as a response the the outcome of uncertainty such that the profit under worst-case outcomes
of uncertainty is maximized. The nonlinear ARO model is reformulated as a MIP model by ap-
proximating the uncertainty set as a scenario set. A math-heuristic algorithm was also developed
to overcome the computational complexity of the MIP model when considering multiple products
with several complex custom-made items.

Our numerical experiments highlighted the significant advantages of the ARO model over a deter-
ministic network design model in terms of reducing the lost sale cost when the external suppliers
fail to deliver complex product components on time due to insufficient production capacity. The
model also strategically diversifies suppliers by incorporating both stable and volatile suppliers to
mitigate the risks associated with production capacity fluctuations, thereby ensuring a more con-
sistent performance under adverse conditions. The math-heuristic algorithm also proved effective
in generating near-optimal solutions within reduced computational times, particularly for small-
and medium-sized instances, and it scales well to tackle the more complex, large-scale problems
that are beyond the reach of standard commercial solvers.
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This study can be further extended by integrating adaptive uncertainty sets and/or leveraging data-
driven techniques to refine the uncertain intervals. In addition, other sources of uncertainty in-
volved in the manufacturing of high-tech customizable products can be incorporated into the net-
work design problem. Finally, expanding the proposed ARO model into a multi-period setting
where the configuration of the supply network can be dynamically adapted as a response to the
changes in products’ design specifications would be another avenue of research to explore.
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Chapter 5

Conclusion and Research Directions

5.1 Conclusion

This thesis tackled the pressing challenge of designing resilient and reconfigurable supply net-
works to support mass personalization (MP) within the Industry 4.0 (I4.0) framework. Driven by
the rising demand for customized high-tech products—such as those in aerospace, medical de-
vices, and precision optics—the research introduced advanced optimization models to enhance
strategic decision-making in supply network design (SND). The work was structured around three
core contributions, each derived from a published paper, which collectively push the boundaries
of supply chain management by addressing the unique complexities of MP in the I4.0 era.

In Chapter 2, a mixed-integer programming (MIP) model was developed for SND, explicitly ad-
dressing the uncertain nature of personalized product designs and the non-linear production costs
tied to design complexity and batch size. Leveraging a cloud-manufacturing platform that provides
real-time data on suppliers’ technological capabilities, capacities, and costs, the model optimizes
supplier selection and order allocation to maximize profit and service level while minimizing man-
ufacturing costs. Sensitivity analyses reveal how network configurations adapt to varying demand
complexities, underscoring the need for investments in advanced manufacturing facilities to enable
cost-effective production of small-batch personalized products. This model not only serves as a
decision-support tool for creating reconfigurable supply networks tailored to MP but also demon-
strates the strategic importance of aligning supplier capabilities with customization demands, of-
fering high-tech manufacturers a competitive edge in dynamic markets.

Chapter 3 presented a two-stage stochastic programming (2SP) model tailored for platform-based
manufacturing networks (PBMNs), designed to produce highly customized products while en-
suring resilience against supplier failures. By integrating crowdsourcing and backup suppliers,
the model minimizes the expected costs of corrective actions and lost sales under uncertain sup-
plier capabilities. A scenario sampling heuristic was introduced to efficiently handle large-scale
instances, and Monte Carlo simulations validate its superiority over deterministic approaches, par-
ticularly in emphasizing the value of prioritizing reliable suppliers despite their higher initial costs.
This contribution highlights the critical role of proactive risk mitigation in maintaining operational
continuity, providing a flexible and scalable framework for managing the intricate uncertainties of
MP within the I4.0 paradigm.

In Chapter 4, an adjustable robust optimization (ARO) model was proposed for multi-echelon
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manufacturing networks, ensuring robustness against supplier capacity variability. The model
strategically diversifies suppliers to mitigate risks and employs a math-heuristic algorithm to solve
complex instances effectively. Numerical experiments, including detailed sensitivity analyses,
highlight its ability to reduce lost sales and enhance network resilience, offering a practical and
computationally viable tool for managing uncertainty in modular, high-tech production systems.
By balancing robustness and cost efficiency, the ARO approach equips manufacturers with a so-
phisticated mechanism to design supply networks capable of withstanding disruptions while meet-
ing the stringent demands of personalized production.

Together, these models advance supply chain management by providing theoretically sound, data-
driven, and practically viable solutions tailored to the challenges of MP in I4.0. The research
delivers actionable insights—such as the benefits of supplier diversification, the adaptability of
reconfigurable networks, and the necessity of proactive risk management—enabling high-tech
manufacturers to thrive in competitive, customization-driven markets. Beyond their immediate
applications, these contributions establish a comprehensive framework that integrates optimiza-
tion techniques, real-time data, and resilience strategies, aligning with the transformative vision of
I4.0 and setting a new standard for supply network design in the age of personalization.

5.2 Future Research Directions

This thesis lays a robust foundation for several avenues of future research, offering opportunities
to extend and refine the proposed methodologies while addressing emerging challenges in supply
chain management. Potential directions include:

(1) Expanding the models to incorporate additional sources of uncertainty—such as demand
volume fluctuations, supply chain disruptions due to natural disasters or geopolitical ten-
sions, and variable lead times—to create a more holistic representation of real-world dy-
namics and enhance the practical applicability of the frameworks.

(2) Developing dynamic decision frameworks that enable real-time supply network reconfigu-
ration in response to evolving customer demands, technological advancements, and market
shifts, potentially integrating adaptive algorithms to ensure continuous optimization under
changing conditions.

(3) Integrating artificial intelligence and machine learning techniques to predict supplier per-
formance, assess failure risks, and recommend optimal network configurations, thereby im-
proving the precision of uncertainty modeling and enabling more informed strategic decision-
making.

(4) Designing collaboration mechanisms—potentially leveraging game theory, blockchain tech-
nology, or smart contracts—to enhance information sharing, trust, and coordination among
supply chain partners, fostering a transparent and efficient ecosystem that supports the com-
plexities of MP.

(5) Extending the proposed frameworks to other industries beyond high-tech manufacturing,
such as fashion, consumer electronics, or automotive sectors, to evaluate their adaptability
and generalizability across diverse customization-driven contexts.

(6) Investigating the incorporation of sustainable practices into supply network design, such as
circular economy principles, green logistics, or carbon footprint minimization, to align with
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environmental goals and emerging regulatory requirements while maintaining economic vi-
ability.

(7) Exploring the use of digital twins and advanced simulation tools to model and optimize
supply network performance under a wide range of scenarios, providing deeper insights into
resilience, adaptability, and long-term strategic planning.

(8) Examining the socio-economic implications of resilient supply networks, including their
impact on workforce skill requirements, regional economic development, and global trade
patterns, to broaden the scope of the research beyond technical optimization.

These extensions promise to further strengthen the resilience, adaptability, and sustainability of
supply networks, ensuring their alignment with the evolving landscape of I4.0. By addressing
these research directions, future work can build on this thesis to drive innovation in supply chain
management, meeting the growing demand for personalized products while navigating the com-
plexities of an increasingly interconnected and uncertain global economy.
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Appendix A

My Appendix

A.1 Deterministic PBMN design Model for Highly-Customized Pro-
duction

Table A.1Decision Variables

qjpil Quantity of end product p produced at customization level i with delivery
option l within the jth production quantity interval.

wpil Quantity of lost sale for end product p at customization level i with delivery
option l.

rpigl Quantity of end product p at customization level i with delivery option l assi-
gned to logistic carrier g.

qshnl Quantity of standard sub-assembly n (n ∈ N s) with delivery option l produ-
ced by producer h.

qcjhnil Quantity of customizable sub-assembly n produced by producer h at custo-
mization level i with delivery option l within the jth production quantity int-
erval.

qskml Quantity of standard component m (m ∈ M s) purchased from supplier k
with delivery option l.

qcjkmil Quantity of customizable component m (m ∈ M c) purchased at customiza-
tion level i with delivery option l from supplier k within the jth interval.

zjpil 1 if the production quantity of product p at customization level i with deli-
very option l is within the jth interval, 0 otherwise.

ujhnil 1 if the production quantity of sub-assembly n by producer h at customiza-
tion level i with delivery option l is within the jth interval, 0 otherwise.

vjkmil 1 if the purchased quantity of component m by supplier k at customization
level i with delivery option l is within the jth interval, 0 otherwise.

yh 1 if producer k is selected, 0 otherwise.
xk 1 if supplier k is selected, 0 otherwise.
og 1 if logistic carrier g is selected, 0 otherwise.
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m

∑
i
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j
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l
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kmiq
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∑
h

Fhyh−
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k

Fkxk −
∑
g

Fgog −
∑
p

∑
i

∑
l

∑
g

Cpiglrpigl −
∑
p

∑
i

∑
l

CLpiwpil (A.1)

Subject to

Demand Constriants:∑
j

qjpil + wpil = Dpil, ∀p ∈ P , ∀i ∈ I, ∀l ∈ L (A.2)

Capacity Constraints:∑
j

∑
l

αpiq
j
pil ≤ FCpi, ∀p ∈ P , ∀i ∈ I (A.3)

∑
l

βs
hnq

s
hnl ≤ PChnθ

s
hnyh, ∀h ∈ H, ∀n ∈ N s (A.4)∑

j

∑
l

βc
hniq

c
hnil ≤ PChniθ

c
hniyh, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I (A.5)

∑
l

γskmqskml ≤ SCkmσs
kmxk, ∀k ∈ K, ∀m ∈ M s (A.6)∑

j

∑
l

γckmiq
c
kmil ≤ SCkmiσ

c
kmixk, ∀k ∈ K, ∀m ∈ MC , ∀i ∈ I (A.7)

∑
p

∑
i

rpigl ≤ Mµglog, ∀l ∈ L, ∀g ∈ G (A.8)
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Price/Cost Linearization Constraints:

qjpil ≤ Lj
piz

j
pil, ∀p ∈ P , ∀i ∈ I, ∀j ∈ J, ∀l ∈ L (A.9)

zjpil(L
j−1
pi + 1) ≤ qjpil, ∀p ∈ P , ∀i ∈ I, ∀j ∈ J\{1}, ∀l ∈ L (A.10)∑

j

zjpil = 1, ∀p ∈ P , ∀i ∈ I, ∀l ∈ L (A.11)

qcjhnil ≤ ujhnilL
j
hni, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I, ∀j ∈ J, ∀l ∈ L (A.12)

ujhnil(L
j−1
hni + 1) ≤ qcjhnil, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I, ∀j ∈ J\{1}, ∀l ∈ L

(A.13)∑
j

ujhnil = 1, ∀h ∈ H, ∀n ∈ N c, ∀i ∈ I, ∀l ∈ L (A.14)

qcjkmil ≤ vjkmilL
j
kmi, ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I, ∀j ∈ J, ∀l ∈ L (A.15)

vjkmil(L
j−1
kmi + 1) ≤ qcjkmil, ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I, ∀j ∈ J\{1}, ∀l ∈ L

(A.16)∑
j

vjkmil = 1, ∀k ∈ K, ∀m ∈ M c, ∀i ∈ I, ∀l ∈ L (A.17)

Flow Balance Constraints∑
j

qjpil =
∑
g

rpigl, ∀p ∈ P , ∀i ∈ I, ∀l ∈ L (A.18)

∑
h

qshnl =
∑
p

∑
i

∑
j

ηnpq
j
pil, ∀n ∈ N s, ∀l ∈ L (A.19)

∑
h

∑
j

qcjhnil =
∑
p

∑
j

ηnpq
j
pil, ∀n ∈ N c, ∀i ∈ I, ∀l ∈ L (A.20)

∑
k

qskml =
∑
h

∑
n∈Ns

m

λmnq
s
hnl +

∑
h

∑
n∈Ns

m

∑
i

∑
j

λmnq
cj
hnil, ∀m ∈ M s, ∀l ∈ L (A.21)

∑
k

∑
j

qcjkmil =
∑
h

∑
n∈Nc

m

∑
j

λmnq
cj
hnil, ∀m ∈ M c, ∀i ∈ I, ∀l ∈ L (A.22)

Domain Constraints:

qcjkmil, q
s
kml, q

cj
hnil, q

s
hnl, q

j
pil, w

j
pil ≥ 0,

∀k ∈ K, ∀m ∈ M c, ∀m ∈ MS , ∀h ∈ H, ∀n ∈ N c, ∀n ∈ NS , ∀i ∈ I, ∀j ∈ J, ∀p ∈ P , ∀l ∈ L

(A.23)

xk, yh, z
j
pil, u

j
hnil, v

j
kmil ∈ {0, 1},

∀k ∈ K, ∀h ∈ H, ∀p ∈ P , ∀i ∈ I, ∀j ∈ J, ∀n ∈ N c, ∀m ∈ M c, ∀l ∈ L

(A.24)

A.2 Two-Stage Stochastic Programming with Recourse

Consider the following linear programming (LP) model parameterized by the random vector ω ∈
Ω:
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Min cTx (A.25)

Subject to

Ax = b (A.26)

T (ω)x = h(ω) ∀ω ∈ Ω (A.27)

x ≥ 0 (A.28)

where T (ω) and h(ω) correspond to the random technological coefficients and right-hand-side
vector, respectively. This model is a semi-infinite optimization program that is not well-defined.
The 2SP approach aims to transform this ill-defined model into to a deterministic equivalent (DE)
model by modeling the uncertainty set Ω as a set of finite scenarios s ∈ S, each representing
a possible outcome of uncertainty, with known probabilities ps. The decision variables are then
grouped as the first- and second-stage variables that must be determined, respectively, before and
after the uncertain outcomes of uncertainty are revealed to the decision-maker. The first-stage
variables correspond to the here-and-now decisions that must be taken without full knowledge of
the uncertainty (e.g. choice of suppliers in a supply chain). The second-stage variables (e.g., order
allocation to suppliers), on the contrary, are determined after the uncertain events (e.g., demand)
take place and are indexed by scenarios. They are also denoted as the recourse (corrective) actions
as their role is typically to compensate the infeasibility of the uncertain constraints (A.27) for
random outcomes (scenarios). In other words, the uncertain constraints are assumed to be soft
conditions that are allowed to be violated; however, their infeasibility, measured by the recourse
variables, is penalized in the objective function, by considering a unit recourse cost vector q. The
objective function of the 2SP approach is to optimize the expected performance measure over all
scenarios. The DE of model (A.25)-(A.28) can be accordingly formulated as a single LP model as
follows:

Min cTx+
∑
s

psqT ys (A.29)

Subject to

Ax = b (A.30)

T sx+Wys = hs ∀s ∈ S (A.31)

x ≥ 0 (A.32)

ys ≥ 0 ∀s ∈ S (A.33)

where the objective function (A.29) minimizes the cost of first-stage decisions in addition to the
expected cost of recourse actions. The uncertain constraints are also defined for each scenario. It
is worth noting that the computational complexity of a 2SP model drastically increases as the size
of the scenario set grows.
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A.3 2SP Model Notations
Table A.2Sets

Sets:

P Set of end products indexed by p.
I Set of product customization levels indexed by i.
I ′ Sub-set of product customization levels available to purchase from the open

market.
N Set of sub-assemblies indexed by n.
M Set of components indexed by m.
L Set of delivery options indexed by l.
H Set of sub-assembly producers indexed by h.
K Set of component suppliers indexed by k.
G Set of transportation carriers indexed by g.
J Set of incremental production quantity intervals indexed by j.
M s Sub-set of standard components.
M c Sub-set of customizable components.
M ′ Sub-set of customizable components available to purchase from the open

market.
N s Sub-set of standard sub-assemblies.
N c Sub-set of customizable sub-assemblies.
N ′ Sub-set of customizable sub-assemblies available to purchase from the open

market.
N s

m Sub-set of standard sub-assemblies that contain component m.
N c

m Sub-set of customizable sub-assemblies that contain component m.
Ω Set of TCM scenarios indexed by ω.
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Table A.3Parameters

End Products:

p(ω) Probability of scenario ω.
Dpil Demand for end product p at customization level i with delivery option l.
FCpi Available capacity for end product p at customization level i.
Cpi Unit production cost of end product p at customization level i.
αpi Unit capacity consumption factor for producing end product p at customi-

zation level i.
µgl 1 if logistics carrier g is capable of delivering end product p by delivery

option l; 0 otherwise.
CLpi Unit lost sale cost for end product p at customization level i.
Fg Fixed contract cost of selecting logistic carrier g.
Cpigl Unit delivery cost of end product p at customization level i with delivery

option l by logistic carrier g.
Lj
pi Upper limit of the jth production quantity interval for end product p at

customization level i.

Sj
pil Unit selling price of end product p manufactured at customization

level i with delivery option l within the jth production quantity
interval, where S1

pil > S2
pil > ... > SJ

pil and

Sj
pil



S1
pil, qpil ≤ L1

pi

S2
pil, L1

pi < qpil ≤ L2
pi

.

.

SJ
pil, LJ−1

pi < qpil ≤ LJ
pi
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Sub-assemblies:

PChn Capacity of producer h for standard sub-assembly n (n ∈ N s).
PChni Capacity of producer h for customizable sub-assembly n (n ∈ N c)

at customization level i.
Cs
hn Unit production cost of standard sub-assembly n (n ∈ N s) by

producer h
ηnp Units of sub-assembly n (n ∈ N ) required to manufacture one

unit of end product p.
Fh Fixed contract cost of selecting producer h as a primary (first-

stage) producer.
F ′
h Fixed contract cost of selecting producer h as a backup (second-

stage) producer.
βs
hn Unit capacity consumption factor for producing standard sub-

assembly n (n ∈ N s) at producer h.
βc
hni Unit capacity consumption factor for producing customizable

sub-assembly n (n ∈ N c) at customization level i at producer h.
θshn 1 if producer h is capable of manufacturing standard subassembly

n (n ∈ N s); 0 otherwise (elements of TCM).
θchni(ω) 1 if producer h is capable of manufacturing customizable sub-

assembly n (n ∈ N c) under scenario ω; 0 otherwise (elements
of TCM).

Lj
hni Upper limit of jth production quantity interval for sub-assembly

n (n ∈ N c) at customization level i for producer h.
Copen
ni Unit purchase cost of customizable sub-assembly n (n ∈ N ′c) at

customization level of i from the open market.
Cj
hni Unit production cost of customizable sub-assembly n (n ∈ N c)

by producer h at customization level of i within the jth

production quantity interval.
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Components:

SCkm Capacity of supplier k for standard component m (m ∈ M s).
SCkmi Capacity of supplier k for customizable component m (m ∈ M c)

at customization level i.
Cs
km Unit purchase cost of standard component m (m ∈ M s) from su-

pplier k.
λmn Units of component m (m ∈ M ) required to manufacture one unit

of sub-assembly n (n ∈ N ).
Fk Fixed contract cost of selecting supplier k as a primary (first sta-

ge) supplier.
F ′
k Fixed contract cost of selecting supplier k as a backup (second sta-

ge) supplier.
γskm Unit capacity consumption for standard component m (m ∈ M s)

at supplier k.
γckmi Unit capacity consumption for customizable component m (m ∈

M c) at customization level i at supplier k.
Lj
kmi Upper limit of jth procurement quantity interval corresponding

to component m (m ∈ M c) at customization level i for supplier k.
Copen
mi Unit purchase cost of customizable component m (m ∈ M ′c) at

customization level of i from the open market.
σs
km 1 if supplier k is capable of offering standard component m (m ∈

M s); 0 otherwise (elements of TCM).
σc
kmi(ω) 1 if supplier k is capable of offering customizable component m

(m ∈ M s) under scenario ω; 0 otherwise (elements of TCM).
Cj
kmi Cost of purchasing one unit of customizable component m

(m ∈ M c) from supplier k at customization level i within the
jth order quantity interval.
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Table A.4Decision Variables

Decision Variables:

yh 1 if producer k is selected as a primary producer; 0 otherwise.
xk 1 if supplier k is selected as a primary supplier; 0 otherwise.
og 1 if logistic carrier g is selected; 0 otherwise.
yh

′(ω) 1 if producer h is selected as a backup producer under scenario ω;
0 otherwise.

xk
′(ω) 1 if supplier k is selected as a backup supplier under scenario ω;

0 otherwise.
zjpil(ω) 1 if the production quantity of product p at customization level i

with delivery option l is within the jth interval under scenario ω;
0 otherwise.

ujhnil(ω) 1 if the production quantity of customizable sub-assembly n (n ∈
NC) by producer h at customization level i with delivery option l
is within the jth interval under scenario ω; 0 otherwise.

vjkmil(ω) 1 if the purchased quantity of customizable component m (m ∈
M c) by supplier k at customization level i with delivery option l
is within the jth interval under scenario ω; 0 otherwise.

qjpil(ω) Quantity of end product p produced at customization level i with
delivery option l within the jth production quantity interval under
scenario ω.

wpil(ω) Quantity of lost sale for end product p at customization level i
with delivery option l under scenario ω.

rpigl(ω) Quantity of end product p at customization level i with delivery
option l assigned to logistic carrier g under scenario ω.

qshnl(ω) Quantity of standard sub-assembly n (n ∈ N s) with delivery opti-
on l produced by producer h under scenario ω.

qcjhnil(ω) Quantity of customizable sub-assembly n (n ∈ NC) produced by
primary producer h at customization level i with delivery
option l within the jth production quantity interval under
scenario ω.

q′cjhnil(ω) Quantity of customizable sub-assembly n (n ∈ NC) produced
by backup producer h at customization level i with delivery
option l within the jth production quantity interval under
scenario ω.

qopennil (ω) Quantity of customizable sub-assembly n (n ∈ N ′c) at custo-
mization level i with delivery option l purchased from the open
market under scenario ω.

qskml(ω) Quantity of standard component m (m ∈ M s) purchased from
supplier k with delivery option l under scenario ω.

qcjkmil(ω) Quantity of customizable component m (m ∈ M c) purchased at
customization level i with delivery option l from primary suppli-
er k within the jth interval under scenario ω.
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q′cjkmil(ω) Quantity of customizable component m (m ∈ M c) purchased at
customization level i with delivery option l from backup suppl-
ier k within the jth interval under scenario ω.

qopenmil (ω) Quantity of customizable component m (m ∈ M ′c) at custo-
mization level i with delivery option l purchased from the open
market under scenario ω.

A.4 ARO Model Notations

Sets:

Set Description Index
P Set of final products p
I Set of customization levels for products i
N Set of sub-assemblies n
M Set of components m
H Set of sub-assembly manufacturers h
K Set of component suppliers k
J Set of production or procurement quantity intervals j
M s Subset of components classified as standard and non-customizable −
M c Subset of components classified as customizable and adaptable to customer

specifications
−

N s Subset of sub-assemblies that are standardized and uniform across product de-
signs

−

N c Subset of sub-assemblies that are customizable for specific product configura-
tions

−

Ω Set of scenarios capturing the uncertainty in supplier performance ω

Parameters:

Final Products:

Parameter Description
Dpi Demand for product p at customization level i.
FCpi Maximum production capacity available for product p at level i.
Cpi Unit production cost for product p at level i.
CLpi Unit cost of unmet demand for product p at level i (lost sales).
Lj
pi Upper limit of the jth production interval for product p at level i.

Sj
pi Unit selling price for product p at level i within the jth interval.

ηnp Number of sub-assembly units n needed to produce one unit of product p.
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Sub-assemblies:

Parameter Description
PChn Maximum production capacity of manufacturer h for standard sub-assembly

n.
PChni Maximum production capacity of manufacturer h for customizable sub-

assembly n at level i.
Cs
hn Unit production cost for standard sub-assembly n at manufacturer h.

Cj
hni Unit production cost for customizable sub-assembly n at level i within the jth

interval at manufacturer h.
βs
hn Unit capacity required to produce standard sub-assembly n at manufacturer h.

βc
hni(ω) Unit capacity required to produce customizable sub-assembly n at level i at

manufacturer h under scenario ω.
θshn Binary parameter; 1 if manufacturer h can produce standard sub-assembly n,

0 otherwise.
θchni Binary parameter; 1 if manufacturer h can produce customizable sub-assembly

n at level i, 0 otherwise.

Components:

Parameter Description
SCkm Maximum capacity of supplier k for standard component m.
SCkmi Maximum capacity of supplier k for customizable component m at level i.
Cs
km Unit purchase cost for standard component m from supplier k.

Cj
kmi Unit purchase cost for customizable component m at level i within the jth

interval from supplier k.
λmn Number of component units m required to produce one unit of sub-assembly

n.
γskm Unit capacity required for supplier k to provide standard component m.
γckmi(ω) Unit capacity required for supplier k to provide customizable component m at

level i under scenario ω.
σs
km Binary parameter; 1 if supplier k can supply standard component m, 0 other-

wise.
σc
kmi Binary parameter; 1 if supplier k can supply customizable component m, 0

otherwise.

Decision Variables:
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Productions and Procurement:

Variable Description
wpi(ω) Quantity of lost sale for end product p at customization level i under scenario

ω.
qjpi(ω) Quantity of final product p produced at level i in the jth interval under scenario

ω.
qskm(ω) Quantity of standard component m procured from supplier k under scenario

ω.
qjkmi(ω) Quantity of customizable component m procured from supplier k at level i

within the jth interval under scenario ω.
qshn(ω) Quantity of standard sub-assembly n manufactured by manufacturer h under

scenario ω.
qjhni(ω) Quantity of customizable sub-assembly n produced by manufacturer h at level

i within the jth interval under scenario ω.

Binary Selection Variables:

Variable Description
xk Binary variable; 1 if supplier k is selected, 0 otherwise.
yh Binary variable; 1 if manufacturer h is selected, 0 otherwise.
zjpi(ω) Binary variable; 1 if production quantity of product p at level i is within the jth

interval under scenario ω, 0 otherwise.
vjkmi(ω) Binary variable; 1 if procurement quantity of customizable component m from

supplier k at level i is within the jth interval under scenario ω, 0 otherwise.
ujhni(ω) Binary variable; 1 if production quantity of customizable sub-assembly n from

producer h at level i is within the jth interval under scenario ω, 0 otherwise.

Worst-case profit

Variable Description
ν Worst-case profit
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