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Abstract

Depth and Segmentation Aware frameworks for Multiple Object Tracking

Milad Khanchi

Multi-Object Tracking (MOT) remains a challenging problem, particularly in crowded scenes
with occlusion, appearance ambiguity, and non-linear motion. Conventional MOT frameworks of-
ten rely on appearance-based Re-Identification (Re-ID) and Intersection-over-Union (loU) of object
bounding boxes for object association. However, these cues become unreliable when objects are
visually similar or overlapping, and computing pixel-level loU for segmentation masks can be com-
putationally expensive.

In this thesis, we propose two complementary MOT frameworks that incorporate monocular
depth and segmentation cues to improve robustness in association. The first zero-shot depth-aware
framework is training-free and introduces a Hierarchical Alignment Score (HAS), a novel metric
that combines coarse bounding box IoU with fine-grained mask-level loU using promptable seg-
mentation. This hierarchical formulation improves matching precision in cluttered or occluded
scenes.

The second framework avoids computing segmentation loU altogether. Instead, it leverages a
self-supervised encoder to fuse and refine depth-segmentation features into temporally stable em-
beddings, which are then used as an additional similarity signal in the association process. This
reduces computational overhead while improving robustness to noise and appearance variation.

Both approaches operate under the efficient Tracking-by-Detection (TBD) paradigm and ex-
tend conventional 2D association strategies with spatially expressive cues. Evaluations on Dance-
Track and SportsMOT benchmarks with non-linear motion demonstrate competitive performance,
highlighting the utility of depth and segmentation as underutilized, yet powerful, cues for robust
non-linear MOT.
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Chapter 1

Introduction

1.1 Multi Object Tracking

Multi-Object Tracking (MOT) plays a crucial role in various real-world applications, includ-
ing autonomous driving, human-computer interaction, and intelligent surveillance systems. The
primary objective of MOT is to maintain the identity of multiple targets across a video sequence,
using video frames as input. This becomes more challenging in dynamic scenes due to frequent
occlusions, cluttered environments, and rapid motion, especially when targets are visually similar
or undergo appearance changes over time.

In this thesis, non-linear motion refers to object trajectories that change direction, speed, or ori-
entation in unpredictable ways. This is especially common in scenarios such as dance performances
and sports, where objects move freely without following predetermined paths. This behavior con-
trasts with the more linear motion patterns observed in pedestrian tracking, where subjects typically
move steadily across frames with fewer abrupt changes.

Modern MOT frameworks predominantly follow one of two paradigms: Tracking-by-Detection
(TBD) and Joint Detection-Reldentification (JDR). In the TBD paradigm, objects are first detected
in individual frames, and then an association algorithm links these detections across time to form
consistent trajectories. This modular design enables the use of state-of-the-art object detectors but
heavily depends on reliable detections and strong association cues [1-3]. Alternatively, JDR ap-

proaches aim to learn both object detection and identity embedding in a unified, end-to-end trainable



framework [4, 5]. These methods exploit shared feature representations to simultaneously localize
objects and compute appearance features for identity matching. While JDR approaches reduce
hand-crafted engineering between detection and tracking modules, they still struggle under linear
motion prediction and object similarity due to their reliance on 2D visual features (e.g., appearance
cues).

With the advent of deep leaming models, particularly those based on Convolutional Neural
Networks (CNNs) and Transformer architectures, substantial progress has been achieved [4-6].
These models have demonstrated competitive performance on public benchmarks and have even
been adopted in industrial-grade systems. However, challenges such as identity switches (IDSW),
detection noise, and long-term occlusions still persist. Occlusion, in particular, remains one of the
most persistent bottlenecks [7]. It occurs when one or more targets are partially or fully hidden
due to scene geometry, object overlap, or camera viewpoint. This causes degradation in both the
association and Re-Identification (Re-ID) components of MOT pipelines, often resulting in drift or
tracking failure [8,9].

Two primary strategies have emerged to address occlusion: (1) improving association strategies
by introducing stronger temporal cues, such as through sequence-level reasoning [10-12], and (2)
leveraging auxiliary signals like depth [13, 14] or memory modules [12] to maintain identity conti-
nuity across missing observations. While these approaches are promising, many are constrained by
reliance on synthetic training data or simplistic assumptions that fail under real-world complexity.

Therefore, there is a need for MOT models that are robust to occlusion, capable of maintaining
identity across challenging temporal gaps, and generalizable to varied motion patterns and scene
contexts. This thesis is motivated by these limitations, aiming to develop an MOT framework that
improves robustness under occlusion and enhances identity consistency by leveraging more spatial-

temporal cues.

1.2 Datasets

To evaluate our framework s effectiveness across a variety of challenging tracking environments,

we conduct experiments on DanceTrack [15], SportsMOT [16], MOT17 [17], and MOT20 [13].



Each dataset presents distinct scenarios.

1.2.1 DanceTrack:

This dataset introduces challenging tracking conditions, where individuals move in non-linear
patterns due to performance-based motion, and face frequent occlusions and crossovers. Dance-
Track is structured with 40 training, 25 validation, and 35 testing sequences, emphasizing ap-
pearance similarity and spatial overlap. This dataset’s complexity in non-linear motion and close-

proximity interactions makes it ideal for assessing performance in dynamic environments.

1.2.2 SportsMOT:

Like DanceTrack, SportsMOT involves dynamic, non-linear motions, capturing fast and un-
predictable subject movements typical in sports scenarios. Objects frequently interact and occlude
each other in rapid sequences, making appearance and motion cues critical for consistent tracking.
SportsMOT allows us to test the framework’s adaptability to scenarios with distinct motion patterns

and close-range activity.

1.2.3 MOT17 and MOT20:

Both MOT17 and MOT20 are established benchmarks for pedestrian tracking, with relatively
linear motion patterns compared to DanceTrack and SportsMOT. MOT17 captures various urban
scenes with moderate density and occasional occlusions, while MOT20 is densely crowded, featur-
ing significant overlap and occlusion among pedestrians. These datasets are essential for evaluating
tracking performance in crowded, urban scenes with a focus on linear trajectories. However, their
emphasis on tracking objects with temporally consistent orientations with respect to the camera may
limit the direct applicability of our framework, which is optimized for dynamic, non-linear motion

with temporally arbitrary orientations.



1.3 Evaluation Metrics and Notation

Multi-Object Tracking (MOT) metrics provide a quantitative basis for evaluating tracking per-
formance in terms of detection accuracy, identity preservation, and computational efficiency. These
metrics are grounded in fundamental counting variables, such as True Positives (TP), False Pos-
itives (FP), False Negatives (FN), and Identity Switch (IDSW), which are typically computed at
each frame and aggregated over time. Let ¢ denote the time or frame index in a video sequence.
We distinguish between detection-level quantities, denoted with the subscript I), which reflect er-
rors in object presence (irrespective of identity), and association-level quantities, denoted with the
subscript A, which reflect errors in maintaining identity continuity across frames (e.g., T Fp for

detection-level true positives and T'P,4 for correctly associated tracks).

1.3.1 Higher Order Tracking Accuracy (HOTA)

HOTA is designed to equally evaluate both detection and association performance. It is com-

puted as:

HOTA = +/DetA - AssA, (1

where DetA is detection accuracy, and AssA is association accuracy.

1.3.2 Association Accuracy (AssA)

AssA gquantifies how well the tracker maintains correct identity matches for already-detected

objects:

TP,

ASSA = B FPy L FNA

(2)

where TP, is the correct identity matches, F'P4 is the incorrect identity matches, and FN 4 is the

missed identity associations.



1.3.3 1ID-based F1 Score (IDF1)

IDF1 evaluates identity preservation by computing the harmonic mean of identity precision and

identity recall:

2.-1DTP

IDFl = o T 5TrP Y IDFP T IDFN"

(3)

where I DT P is the number of correctly identified detections, I DF' P is the number of false identity
assignments, and ] DFN is the number of missed identity matches. IDF1 is computed over the

entire sequence to assess global identity consistency across time.

1.3.4 Multi-Object Tracking Accuracy (MOTA)

MOTA combines detection and identity-switch errors. It is computed as:

_ S.(FN, + FP, + IDSW,)

MOTA =1
> GT}

; (4)

where FN; is false negatives at frame t, F'F% is false positives at frame £, ] DSW; is identity
switches at frame £, and GT; is Total ground truth objects at time f.

Although MOTA includes identity switches, the dominant terms in the numerator are often FIV
and F'P, which are pure detection errors. As reported in [19], identity switches typically occur less
frequently than missed or spurious detections. Therefore, a tracker with strong detection but poor
identity consistency can still achieve a high MOTA score. This causes MOTA to be biased more

toward detection quality than association performance.

1.3.5 Detection Accuracy (DetA)

DetA measures how accurately objects are detected, independent of their identities:

TP,

DetA = TPp+ FPp+ FNp'

(3)

where T Pp is correctly detected objects, F Pp is false detections, and F'Np is missed detections.



1.3.6 Frames Per Second (FPS)

FPS measures the speed of the tracking algorithm:

N
FPS = T (6)

where N is number of video frames processed, T is total processing time (seconds).

Among these metrics, HOTA, IDF1, and AssA provide deeper insights into identity preservation,
while MOTA and DetA emphasize detection quality. FPS captures runtime efficiency.

1.4 Thesis Statement

The field of Multi-Object Tracking (MOT) has witnessed substantial improvements with the in-
tegration of deep learning models. However, despite advances in Tracking-by-Detection [1-3,6,20]
and Joint Detection-Reldentification frameworks [4, 5], the persistent challenge of maintaining con-
sistent object identities in crowded, occluded, and dynamically changing scenes remains unsolved.
Specifically, identity switches (IDSW), missed associations, and trajectory fragmentation persist as
critical 1ssues in benchmark evaluations [21].

There is an ongoing discussion in the MOT community regarding two key directions for im-
provement: enhancing model architectures and enabling more effective multi-frame (temporal)
data association. Although many works focus on improving model architectures, such as through
attention mechanisms [6, 12] or by modeling sequence-level context using graph-based reason-
ing [10, 11], these methods often fall short under real-world occlusions and long-term disocclusion
intervals.

This thesis addresses the persistent problem of degraded tracking performance under occlusion
and identity confusion. Our goal is to develop an MOT framework that (i) better preserves identity
consistency across severe occlusions and motion clutter, (ii) is robust to noisy detections and partial
observability, and (iii) can generalize to diverse scenes with non-linear object dynamics. To this end,
we propose novel models that leverage enriched spatial-temporal cues with depth and segmentation

masks and advanced association strategies to overcome the limitations of Tracking-by-Detection



frame-wise models. Thus, we seek to bridge this gap through methods that move beyond conven-

tional 2D reasoning by incorporating rich geometric cues into the MOT pipeline.

1.5 Summary of Contributions

This thesis aims to address key challenges in Multi-Object Tracking (MOT), particularly in sce-
narios characterized by non-linear motion, frequent occlusions, and appearance ambiguity. We pro-
pose a novel, training-free framework that integrates spatial-temporal cues with a novel alignment
strategy. In addition, we present a complementary method that leverages self-supervised depth-
segmentation encoded features for enhanced association. The primary contributions of these works

are summarized as follows:

= Depth-aware Object Association: We introduce the first MOT frameworks that explicitly
incorporate monocular depth estimation as an independent cue during data association. By
leveraging zero-shot depth maps, our methods enable robust spatial differentiation between

overlapping or interacting objects.

= Hierarchical Alignment Score (HAS): We propose a novel alignment score that combines
bounding box Intersection-over-Union (loU) with pixel-level mask similarity. Unlike stan-
dard mask-loU approaches that rely solely on geometric overlap, our method incorporates

semantic similarity for robust matching.

= Training-free Generalization and Robust Performance: One of our proposed methods
operates without task-specific training or fine-tuning. Nevertheless, it achieves competi-
tive or state-of-the-art results on non-linear motion benchmarks such as DanceTrack and

SportsMOT, particularly excelling in association metrics including HOTA, IDF1, and AssA.

= Self-supervised Encoder for Feature Refinement: We design a self-supervised encoder
that refines noisy depth-segmentation embeddings, enhancing temporal stability and spatial
discriminability while reducing the computational complexity of pixel-level similarity com-

putations.



The codebases for both frameworks are publicly available:

* Depth-Aware Scoring and Hierarchical Alignment:

https://github.com/Milad-Khanchi/DepthMOT

= Self-Supervised Depth and Mask-Aware Association:

https://github.com/Milad-Khanchi/SelfTrEncMOT

1.6 Thesis Outline

This thesis is composed of four chapters, with Chapters 2 and 3 based on two onginal re-
search manuscripts. These chapters present distinct, yet complementary, depth-aware frameworks

for Multi-Object Tracking (MOT).

= Chapter 2 is based on our accepted paper at the [EEE ICIP 2025, titled Depth-Aware Scor-
ing and Hierarchical Alignment for Multiple Object Tracking [22]. This chapter proposes a
training-free MOT framework that leverages zero-shot monocular depth estimation and intro-
duces a novel Hierarchical Alignment Score (HAS) to combine bounding-box and pixel-level
similarity. This method demonstrates generalization across occluded and crowded scenes

without dataset-specific fine-tuning.

= Chapter 3 is based on our paper under-review at the BMVC 2025. It presents a comple-
mentary approach titled Fast Self-Supervised Depth and Mask-Aware Association for Multi-
Object Tracking. This framework avoids computing explicit mask IoU by introducing a self-
supervised encoder that fuses depth and segmentation features into temporally consistent em-
beddings. These embeddings serve as an additional similarity signal, enhancing robustness

and computational efficiency.

= Chapter 4 concludes the thesis by summarizing key findings and discussing potential direc-
tions for future research, particularly toward making MOT more scalable and generalizable

using geometry-aware representations.


https://github.com/Milad-Khanchi/DepthMOT
https://github.com/Milad-Khanchi/SelfTrEncMOT

Chapter 2

Depth-Aware Scoring and Hierarchical

Alignment For Multiple Object Tracking

2.1 Introduction

Multiple object tracking (MOT) [1, 20, 23] involves detecting objects in video frames and con-
tinuously tracking them across time, requiring the simultaneous resolution of object detection, data
association, and trajectory prediction. Challenges include noisy observations, occlusion, rapid mo-
tion, or similar objects. Recent research has focused on hybrid models that integrate both motion and
appearance-based features. However, even with appearance cues, these approaches remain limited
in scenarios that require spatial differentiation. For instance, two visually similar objects at different
distances from the camera may appear indistinguishable in both motion and appearance, leading to
frequent tracking errors. Moreover, occlusion scenarios often disrupt trajectory continuity, as tra-
ditional 2D Intersection over Union (IoU) based association is ineffective when objects overlap or
move along similar paths. Furthermore, appearance-based approaches only extract appearance from
cropped bounding boxes, neglecting the spatial context within each frame.

To address these challenges, we propose a novel depth-aware MOT framework that integrates
monaocular depth estimation into the tracking pipeline, allowing our framework to leverage 3D spa-

tial cues for more robust association. By introducing zero-shot depth estimation, our framework



differentiates between objects based on their distance from the camera, providing a strong discrimi-
native feature for association. Our depth-aware tracking model is further enhanced by a new Hierar-
chical Alignment Score (HAS) for association, which combines bounding box IoU with pixel-level
alignment, capturing both coarse and fine object alignment features to improve matching accuracy.
Unlike conventional loU-based approaches, HAS adaptively refines the alignment between objects
by emphasizing shape similarity in scenarios where bounding box overlap alone may be insuffi-
cient. Our HAS is hierarchical because it progressively combines coarse spatial alignment (via
bounding box IoU) with fine-grained pixel-level similarity (via segmentation loU) in a sequential
manner. This layered matching formulation mimics a top-down refinement process: initial matches
are scored based on geometric overlap, and only then enhanced by detailed shape consistency. Al-
though not iterative in the optimization sense, this structure imposes a hierarchy in the way spatial
and semantic alignment are composed, aligning with how object association evolves across frames.

To our knowledge, this is the first MOT framework to integrate monocular depth as an indepen-

dent factor in the object association process for MOT. Our contributions are:

= We introduce a depth-aware tracking framework that incorporates zero-shot monocular depth
estimation, providing robust spatial differentiation between objects based on their distance

from the camera, thus improving association in complex scenarios.

* We propose a Hierarchical Alignment Score (HAS), a novel score that combines bounding
box loU with pixel-level alignment, enabling our framework to achieve precise object match-

ing in cluttered and occluded environments.

= We present a comprehensive evaluation of our framework on challenging MOT benchmarks,
showing that our approach resolves ambiguities in scenarios, such as occlusions and visually
similar objects, without any training nor fine-tuning.

2.2 Related Works

MOT approaches have evolved from simple IoU-based matching to more sophisticated models

that incorporate appearance features, motion cues, and graph-based techniques. MOT approaches

10



can be broadly categorized into two paradigms: joint detection-Reldentification (JDR) [4, 5], and
Tracking-by-Detection (TBD) [1-3, 6,20].

Joint Detection-Reldentification (JDR): JDR frameworks streamline MOT by combining ob-
ject detection and association within an end-to-end model [4, 5]. For example, FairMOT [4] em-
ploys a parallel-branch architecture for simultaneous detection and Re-ID, improving robustness
in crowded scenes. TransCenter [5] leverages a deformable Transformer to enhance detection and
Re-1D across overlapping instances, achieving efficient network performance in complex scenes.

Tracking-by-Detection (TBD): Most high-performing MOT methods operate within a TBD
paradigm, where objects are detected in individual frames before being linked across time [1-3, 6,
20,24]. These models rely on consistent detection quality and effective data association strategies,
enabling strong tracking performance across benchmarks.

Tracking can be performed in a frame-wise manner [1-3, 6], where the model processes each
frame sequentially, utilizing information from previous frames. Alternatively, it can be conducted at
the sequence level [7,10,11], where the entire sequence of frames is available during the association

process.

2.2.1 Sequence-Level Tracking

Tracking by Segmentation: MOT and segmentation models have recently gained popular-
ity, leveraging segmentation cues to improve association accuracy. For example, Braso et al. [7]
proposed a graph-based structure for segmentation and tracking, enhancing robustness under occlu-
sions.

Tracking by Graph: Graph-based tracking methods represent detected entities as nodes and
use edges to capture associations. In works by Braso et al. [10] and Cetintas et al. [11], entities
across frames are represented as nodes, with edge classification guiding associations. Hierarchical
graphs, as seen in Cetintas et al. [11], process frame pairs in layers, iteratively refining associations
across the sequence.

Self-Supervised Tracking: Lu et al. [25] propose path consistency as a reliable self-supervised

signal to learn a robust object-matching model for MOT.
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2.2.2 Frame-Wise Tracking

Tracking by Attention: Attention-based methods leverage the Transformer architecture to as-
sociate objects. Zhu et al. [24] introduced a dual-matching attention network to match detected
objects, while TrackFormer [6] integrates detection and tracking in an end-to-end attention-based
model, further refined to MOTRv2 by Zhang et al. [26] with YOLOX detector [27] for improved
association. Gao et al. [12] implemented an end-to-end long-term memory-augmented transformer
for MOT to refine detection and association.

Tracking by Regression: Many frame-wise tracking models apply regression-based methods
to associate detected objects across frames [1-3,23]. Kalman Filter-based approaches, such as OC-
SORT [3], primarily leverage motion cues, while advanced models like Deep OC-50RT [2] and
DiffMOT [1] enhance the association process with appearance cues to improve tracking in dense
scenes. Huang et al. [28] addressed confusion issues in MOT by proposing an association method
and detection post-processing technique.

Tracking by Depth: Quach et al. [13] incorporate dynamic control variables into a Kalman Fil-
ter, updating object states based on relative depth—defined as the depth ordering of detected objects
w.r.t. the camera. However, their evaluation focused on the accuracy of depth estimation against
RGB-D ground truth without demonstrating its direct impact on tracking performance. Wang et
al. [14] utilize depth from stereo cameras alongside camera pose data. This approach relies heavily
on accurate camera intrinsics and pose calibration. Liu et al. [29] propose a depth-aware tracking
model, yet limited to indoor tracking.

Our work builds on appearance and motion-based models by integrating depth as a novel spatial
feature as an independent decision matrix in the association step. In a frame-wise manner, our
approach resolves ambiguities in challenging scenarios, such as occlusions and visually similar

objects, without requiring training our motion and depth predictor on each dataset.

2.3 Methodology

In a TBD paradigm, objects are initially detected in individual frames and subsequently as-

sociated across time in a frame-wise manner For object detection, we use the known model

12



(al ~ Fromplabie Visual conskAent Fpjecion

Saxgmantasan {FYS) witt hrar maticn Eum-ehul [hegth Exlimalion

- II=1 v - -

Clgnat ‘ tast rordinear malon
g |

e '
St b J

-
crwcmn

[r—
. Manrmnatie

Figure 2.1: (a): Overview of the proposed framework, which integrates appearance scores from
Reldentification (RE-1D), motion scores derived from HAS, and depth scores. We use an advanced
linear solver module and incorporate a PVS module for precise motion analysis. The Histogram
Analysis block, as well as the RE-ID and HAS blocks, generate individual score matrices R €
BNobs*Nerk where Nops represents the number of new observations in the current frame and Ny
denotes the number of tracklets. These score matrices capture similarities based on appearance,
motion, and depth, enabling a comprehensive assessment for object association. The Histogram
Analysis block, in particular, also performs a comparison of pixel intensity distributions between
the depth maps of two objects within the same frame, highlighting variations in depth based on their
distances from the camera. (b), (c): Examples. Zero-shot monocular depth estimation and PVS
modules in two scenarios.
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YOLOX [30]. We perform object association in two steps. In the first step, we categorize de-
tected objects based on their detection confidence (DF) as in [31]: high-confidence (DF > 0.6)
and low-confidence (DF < 0.6). We match high-confidence objects with existing tracklets from
previous frames using our matching technique detailed in Sec. 2.3.5. In the second step, the remain-
ing unmatched objects are associated with future positions of remaining tracklets, solely based on
the 2D bounding box overlap (lIoU). We predict the position of future tracklets using a non-linear
Kalman filter (see Sec. 2.3.1).

Current MOT frameworks heavily rely on loU and 2D appearance-based Reldentification (RE-
ID) models, which may fail under heavy occlusion or similar objects. To address these limitations,
our framework consists of four main components, as illustrated in Fig. 2.1 (a): an appearance-
motion fusion model (Sec. 2.3.1), a depth-aware association process (Sec. 2.3.3), and two modules
for refining motion-based object associations — Promptable Visual Segmentation (PVS) (Sec. 2.3.2)
and a novel Hierarchical Alignment Score (HAS) (Sec. 2.3.4). Notably, we avoid training or fine-
tuning any components, relying on existing pre-trained models to ensure the generalization and

adaptability of our framework across various scenarios.
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2.3.1 Appearance-Motion Fusion for MOT

Non-linear Kalman Filter: Our DepthMOT framework incorporates non-linear Kalman Filter
(KF) to create motion scores. KF-based models operate in two main steps: prediction and update.
In the Prediction Step, the state estimate x at time t is derived based on the state estimate at

t — 1 using the transition model:

Fye1 = Fedy g1,
] @)
Py 1 =FiP; g 1F; +Qq,
where F is the state transition matrix, representing state evolution over time. Py, ; is the error
covariance matrix, captures the uncertainty of the predicted state. Py, _; 1s updated by incorporating
the process noise covariance matrix Q;, accounting for model uncertainties.
In the Update Step, the Kalman Gain K; is computed to balance the predicted state against the
observation as follows:
T T -1
K: =Py 1H,; (Htpqt—ng + R:) '
Byye = By 1 + Ko(ze — Hege 1), (8)
Py = (I-K:iHe )Py,
where Pyj;_; is the error covariance matrix, and Ry is the observation noise covariance. K; weights
the correction based on the observed measurement z;. This leads to an updated state estimate and
reduced uncertainty in Py;. OC-SORT [3] introduces Observation-Centric Re-Update (ORU) to
enhance KF robustness and address scenarios with lost detections. ORU compensates for missed

observations by re-updating KF parameters as follows:
T T -1
K: =Py 1H, (Htpﬂt—ng + Rt) ;
By = Ty + Ke(Ze — Hege ), ©)
Pt|t =(I- KthJPﬂt—l:
where z; is the trajectory interpolating between the last-seen observation z;, and the re-associated
observation z;, using:

Zy = Traj, ;. (Zt,, Zt,, 1), 11 <t <ta (10)
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where Traj,,,., denotes the interpolation function, enabling backtracking over missing frames.

We define each KF state as x = [u,v, s, 7, 4,7, 5|7, where (u,v) denote the 2D coordinates
of the object’s center, s the bounding box scale, and r the aspect ratio of the bounding box (as-
sumed constant). The derivatives i, ©, and § correspond to the temporal changes in u, v, and
s, respectively [3]. Additionally, each detected object provides a bounding box defined as d =
[u, v, w, h,c]T, where (u,v) are the center coordinates, w and h are the width and height, and c the
detection confidence.

As shown in Eq. 13, in the association step, our framework calculates a matching score matrix
linking observations in the current frame to existing tracklets. This matrix includes two motion-
based components: Sju and Sang. The score Sy is based on the IoU between bounding boxes,
which measures their spatial overlap. In parallel, Sy captures the directional similarity between the
new observations and existing tracklets. Higher values for Siu and Sapg reflect greater similarity
between the observation and the corresponding tracklet, while lower values suggest divergence [3].

Reldentification: To extract appearance features, we utilize the pre-trained FastRelD [32], a
RE-ID model based on convolutional neural networks (CNN) that has been trained for the MOT [1,
2]. FastRelD extracts features from each cropped object in the frame, which are then compared
across tracklets and observations using cosine similarity, yielding an appearance-based score matrix
Semb- To maintain consistent appearance features for each tracklet, we apply an exponential moving
average (EMA) [33, 34], updating each tracklet’s embeddings after each association step.

The embedding update for each tracklet is given by:

emb; =C -emb;_1 + (1 — C) - embpew, (1)

where C is a dynamic coefficient defined as in [2], C =T + (1 - T) - (1 — ﬁ“}%hﬁ) In this
formulation, ¢ represents the detection confidence, thresh is a detection threshold, and T is a fixed
parameter, set to 0.95 following prior work.
2.3.2 Promptable Visual Segmentation (PVS)

For each frame, the object detection outputs bounding boxes. To have a fine object shape align-

ment, we apply Promptable Visual Segmentation (PVS), which extends static image segmentation
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to the video domain by enabling the generation of a spatio-temporal mask for a segment of inter-
est across frames. In PVS, a prompt, such as a point, bounding box, or initial mask, is applied to
a frame to define the target object, and the model then propagates this mask through subsequent
frames. This task has emerged as a powerful method for fine-grained object segmentation in video
sequences [35-37].

For shape alignment, we integrate Segment Anything Model 2 (SAM2) [38], an advanced PV S
framework designed for images and videos. SAM2 has some tracking capabilities but is not de-
signed to track objects by matching bounding boxes and ID continuity, as required in MOT. Our
shape alignment approach works as follows: 1) Given the bounding boxes of tracklets (ie., ob-
jects already being tracked) in the previous frame, SAMZ2 generates segmentation masks for these
tracklets. These masks represent the precise object shape within the bounding boxes. 2) For ob-
jects newly detected in the current frame ¢, SAM2 uses the bounding box of each detected object
in frame ¢ to propagate the segmentation backward to find the corresponding object mask in frame
t — 1. This allows us to retrieve the segmentation of each newly detected object in the previous
frame, even if that object was not explicitly tracked before. 3) Once we have segmentation masks
for both the existing tracklets (from frame ¢ — 1) and the newly detected objects (propagated back-
ward from frame ), we perform mask matching within frame ¢ — 1 by computing the mask IoU
between each tracklet’s mask and the mask of each newly detected object. More details on how
these loUs are integrated into our association process can be found in Sec. 2.3.4. By incorporating
this segmentation-based mask matching, our method ensures that newly detected objects in frame ¢
are correctly linked to their corresponding tracklets from frame ¢ — 1, thereby improving tracking

consistency and reducing ID switches.

2.3.3 Zero-Shot Depth Estimation

To enrich our MOT framework with 3D spatial context, we leverage zero-shot depth estimation
to capture object distances from the camera. Conventional zero-shot depth models have often relied
on camera-specific metadata, such as intrinsics, which can be unavailable or unreliable. Recent
methods, such as ZeroDepth [39] and DMD [40], perform well in predicting depth maps. How-

ever, these methods are limited by their dependence on precise camera parameters, which reduces
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generalizability. Depth Pro [41] overcomes this limitation by achieving accurate depth estimation
without requiring intrinsics. With its ability to estimate depth at high speed and accuracy, as well as
to predict focal length from a single image, Depth Pro is ideally suited for MOT applications where
efficiency and generalization are critical.

We process each frame in the video sequence using Depth Pro, which produces a dense depth
map of the scene. This map provides a relative spatial representation, allowing us to measure the
depth of each object by isolating the depth values within its bounding box. Depth-based measure-
ments add a valuable discriminative layer by distinguishing visually similar objects that occupy
different spatial planes, improving tracking accuracy in crowded scenarios.

For frame-to-frame comparison of depth maps, we evaluated two approaches detailed in the ab-
lation study (Sec. 2.5.5). We found that histogram-based vectonizations of depth values yielded the
most effective results. By constructing a histogram of depth values within each object’s bounding
box, we obtain a compact yet powerful descriptor of the object’s 3D characteristics. To determine
the depth similarity between frames, we compute the cosine similarity between these histograms,
quantifying the similarity of spatial distributions.

As shown in Eq. 13, we integrate the resulting depth similarity score into the overall matching
score matrix. Fig. 2.1 (a) illustrates this approach with two objects in the same frame, where his-
togram differences highlight the depth variance corresponding to their distance from the camera.
This example demonstrates the added discriminatory power depth brings to object tracking. Fig. 2.1

(b) and (c) shows examples of zero-shot depth estimation and PVS modules.

2.3.4 Hierarchical Alignment Score (HAS)

IoU is widely used in MOT to measure spatial overlap and associate objects across consecu-
tive frames. Traditional loU measures the overlap between bounding boxes and ranges from 0 to
1, capturing spatial alignment but overlooking important shape-based cues. Consequently, purely
motion-based methods often fall short in complex scenes with occlusions, where bounding boxes
alone may not accurately represent object shape or position. While recent appearance-based ap-
proaches [2, 33] incorporate visual features, these methods only extract appearance from cropped

bounding boxes, neglecting the spatial context within each frame.
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To address these limitations, we introduce a novel matching metric, HAS, which combines
coarse alignment via bounding box IoU with fine object shape alignment via pixel-level loU, pro-
gressively refining object matching. HAS enhances the matching robustness by integrating both
spatial and shape information, ensuring that matches are not only spatially aligned but also consis-
tent in shape alignment.

We calculate the HAS score Syas as follows:
Suas(X, D) = Sioty,,. (X, D) x exp sesX:D): (12)

where X denotes the predicted state of a tracklet, including its bounding box or segmentation mask
estimated in the current frame, and D represents a new detection in the current frame, including
the observed bounding box or segmentation mask. Sy, represents the bounding box Iol, fa-
cilitating initial coarse matching based on location and scale, while Siu,_ , denotes the pixel-wise
loU, capturing precise shape alignment between objects. The exponential weighting on Sjous,, en-
sures that minor improvements in shape alignment lead to significant increases in the HAS score,
reinforcing high-fidelity matches. While in Eq. 12 we use an exponential weighting to emphasize
fine-grained shape alignment, other non-linearities such as quadratic or sigmoid functions could
be explored in future work to modulate the influence of segmentation-based similarity. Each non-
linearity presents a different rate of amplification and saturation behavior, which may offer advan-
tages under different noise levels or object density conditions.

The core innovation of HAS lies in its hierarchical alignment process. During the initial stages,
the matching function prioritizes bounding box IoU, yielding a coarse spatial alignment based on
object location and scale. As bounding box alignment improves, the influence of the exponential
pixel-wise loU term e:cpS’“‘"S@ becomes more pronounced, refining alignment based on the ac-
tual object shapes. This hierarchical refinement ensures robust association by balancing location
and shape information, progressively emphasizing fine shape details as alignment quality increases.
Fig. 2.2 illustrates a heatmap of Syas, showing how it evolves through the initial stages as a function
of Sy, . and SlDUsgg; the exponential weighting sharply amplifies the influence of fine-grained
segmentation early on, particularly when bounding box overlap is low, emphasizing precise match-

ing.
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Figure 2.2: Hierarchical Alignment Score (HAS). Heatmap of Syas as a function of bounding box
IoU (Siou,,,, ) and segment loU (Sou,, 3]. Contours indicate score levels, demonstrating the hier-
archical influence of both spatial and shape alignment on the overall score. A high Syas suggests
high similarity, while a low Syag indicate dissimilarity

2.3.5 Total Matching Score and Linear Solver

To further enhance tracking performance, we incorporate HAS into a comprehensive score func-

tion, which integrates motion, appearance, and depth cues as follows:

Match; = Suas,(X, D) + Sang, (X, D)
(13)
+ Saepth, (X, D) + Semb, (X, D),

where Semp, {}E'.., D) the appearance score, Septh, {JE', D)) depth similarity, Sang, {}E'.., 1)) captures mo-
tion direction alignment [2], and Suas, [JE' , D) the proposed HAS score. This holistic approach cre-
ates a robust multi-cue framework that effectively balances motion, 2D and 3D spatial alignment,
and appearance features.

The matching score matrix Match, in Eq. 13 is then negated, transforming it into a cost matrix

compatible with the linear solver [42] for optimal assignment.
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2.4 Experimental Results

2.4.1 Datasets and Evaluation Metrics

Datasets. To evaluate our framework’s effectiveness across a variety of challenging tracking
environments, we conduct experiments on DanceTrack, SportsMOT, MOT17, and MOT20. Each
dataset presents distinct scenarios.

DanceTrack: This dataset introduces challenging tracking conditions, where individuals move
in non-linear patterns due to performance-based motion, and face frequent occlusions and crossovers.
DanceTrack is structured with 40 training, 25 validation, and 35 testing sequences, emphasizing
appearance similarity and spatial overlap. This dataset’s complexity in non-linear motion and close-
proximity interactions makes it ideal for assessing performance in dynamic environments.

SportsMOT: Like DanceTrack, SportsMOT involves dynamic, non-linear motions, capturing
fast and unpredictable subject movements typical in sports scenarios. Objects frequently interact and
occlude each other in rapid sequences, making appearance and motion cues critical for consistent
tracking. SportsMOT allows us to test the framework s adaptability to scenarios with distinct motion
patterns and close-range activity.

MOT17 and MOT20: Both MOT17 and MOT20 are established benchmarks for pedestrian
tracking, with relatively linear motion patterns compared to DanceTrack and SportsMOT. MOT17
captures various urban scenes with moderate density and occasional occlusions, while MOT20 is
densely crowded, featuring significant overlap and occlusion among pedestrians. These datasets
are essential for evaluating tracking performance in crowded, urban scenes with a focus on linear
trajectories. However, their emphasis on tracking objects with temporally consistent orientations
with respect to the camera may limit the direct applicability of our framework, which is optimized
for dynamic, non-linear motion with temporally arbitrary orientations.

Metrics. Main performance metrics for MOT are Higher Order Tracking Accuracy (HOTA) [19],
Association Accuracy (AssA), and ID-based F1 Score (IDF1) [43]. HOTA assesses both detection
and association accuracy. IDF1 and AssA primarily evaluate association performance. Multi-Object
Tracking Accuracy (MOTA) [44] and Detection Accuracy (DetA) metrics focus on detection accu-

racy. Regarding computational efficiency, frames per second (FPS) is the primary metric reported in

20



most MOT studies. It is typically measured for the tracking component (i.e., the association stage),

excluding the computational cost of feature extraction, such as detection and RelD [3].

2.4.2 Implementation Details

Model. To ensure consistency and fair comparison with recent studies [1-3], we adopt YOLOX [30]
as the object detector. In our tables, MOT methods using YOLOX as the detector are highlighted in
blue and bold indicates the best performance among TBD trackers (bottom part of each table).

Inference. For inference, all experiments are conducted on a single NVIDIA A100 GPU with a
batch size of one. Our method do not require any training. We note that comparing FPS across
different MOT models is not plausible due to discrepancies in hardware and software configurations
of each model. For instance, [45] uses an NVIDIA GeForce RTX 3090, while [46] employs an
NVIDIA Tesla V100. On the DanceTrack validation set, our association technique achieves an
inference speed of 3.35 FPS. The primary computational bottleneck lies in the computation of mask
IoUs. We adhere to the standard tracking hyperparameters (e.g., detection thresholds and update
smoothing factors) from [2] to ensure consistent evaluation of the association component across

methods.

2.4.3 Benchmark Evaluation

DanceTrack: The performance of DepthMOT on DanceTrack is shown in Table 2.1. Compared
to the state-of-the-art TBD trackers, like Diff MOT [1], Deep OC-SORT (2], and CMTrack [23],
DepthMOT achieves superior results without training for specific datasets. Our framework improves
HOTA by 1.97%, AssA by 3.84%, and IDF1 by 3.54% over Diff MOT. Both AssA and IDFI indicate
the association performance and highlight the effectiveness of using our HAS and depth. The state-
of-the-art JDR tracker MOTRv2 [26] is designed for non-linear motion and outperforms our method
for this dataset; however, our TBD method is more efficient. MOTRv2 demands § Tesla V100
GPUs for multi-stage training. Also, our method outperforms MOTRv2 under linear motion datasets
MOT17 and MOT20 (see Table 2.3).

SportsMOT: Compared to the state-of-the-art Diff MOT [1], our DepthMOT has overall comparable
performance on the SportsMOT dataset, as shown in Table 2.2. It outperforms in IDF1 and AssA,
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Method HOTATIDF11 AssATMOTA?T DetAt

FairMOT [4] 397 408 238 822 66.7
CenterTrack [47] 41.8 357 226 86.8 78.1
TraDes [48] 433 41.2 254 86.2 745

TransTrack [49] 455 452 275 854 759
DiffusionTrack [45] 524 47.5 335 89.5 822

MOTR [46] 542 515 402 79.7 735
MeMOTR [12] 68.5 71.2 584 899 805
MOTRv2 [26] 699 71.7 59.0 919 83.0
GHOST [50] 56.7 5777 398 913 81.1
DeepSORT [51] 456 479 297 878 71.0
ByteTrack [31] 473 525 314 895 716
SORT [42] 479 508 31.2 918 720
MotionTrack [52] 529 538 347 913 809
OC-SORT [3] 55.1 542 380 894 803

StrongSORT++ [34] 55.6 552 38.6 91.1 807
GeneralTrack [53] 59.2 597 42.8 91.8 820

C-BloU [54] 60.6 61.6 454 91.8 813
Deep OC-SORT [2] 61.3 615 458 923 822
CMTrack [23] 61.8 633 464 925 -

DiffMOT [1] 623 63.0 472 928 825
DepthMOT 64.27 66.54 51.04 90.08 81.07

Table 2.1: Comparison with MOT trackers on the DanceTrack test set. Methods are grouped into
JDR in the upper part, followed by TBD in the lower part. Our DepthMOT outperforms the state-
of-the-art TBD tracker DiffMOT, which requires training on each dataset separately.

which are critical for evaluating identity preservation and association accuracy.

MOT17 and MOT20: We evaluate DepthMOT on MOT17 and MOT20 under the private detec-
tion protocol (Le., using method-specific object detections). As shown in Table 2.3, none of the
trackers achieve state-of-the-art performance regarding metrics in MOT17 and MOT20. However,
DepthMOT records the lowest false positive (FP) rate of 1.3. This reduced FP rate highlights the
effectiveness of HAS, which minimizes false associations (grouping different objects in the same
tracklets) and fragmentation.

Analysis of the results: Based on Tab. 2.1 and Tab. 2.2, our framework with hierarchical alignment
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Method HOTA 1 IDF11 AssAT MOTA 1 DetAt

FairMOT [4] 493 535 347 864 702
GTR [55] 545 558 459 679 648
QDTrack [56] 604 623 472 90.1 715

CenterTrack [47] 627 60.0 480 908 817
TransTrack [49] 689 715 575 926 827

ByteTrack [31] 628 69.8 51.2 941 771
BoT-SORT [33] 68.7 70.0 559 945 844
OC-SORT [3] 71.9 722 598 945 864

*ByteTrack [31] 64.1 714 523 959 785
*MixSort-Byte [16] 65.7 744 584 96.2 788
*OC-SORT [3] 73.7 740 615 965 885
*MixSort-OC [16] 74.1 744 620 965 885
*GeneralTrack [53] 74.1 764 61.7 96.8 89.0
*DifftMOT [1] 76.2 76.1 651 97.1 893
*DepthMOT 76.2 769 656 959 885

Table 2.2: Comparison of JDR and TBD trackers on the SportsMOT test set. * indicates that the
detector is trained on the SportsMOT train and validation sets. Our method outperforms in IDF1
and AssA, which reflect how consistently a tracker preserves object identities and maintains accurate
associations over time.

scoring and depth-aware association performs well in scenarios like DanceTrack and SportsMOT,
where rapid, non-linear motions and complex inter-object interactions are prevalent As shown
in Table 2.3, no single model achieves superior results across metrics in the MOT17 and MOT20
benchmarks. However, linear motion prediction models, such as CMTrack [23] and Deep OC-
SORT [2], demonstrate better performance. This can be due to the consistent and predictable pedes-
trian trajectories in these datasets. Additionally, as illustrated in Fig. 2.3 and Fig. 2.1 (c), zero-shot
depth estimation faces challenges in outdoor environments with low illumination, producing low-
contrast depth maps that struggle to distinguish distant objects effectively. This limitation impacts
the accuracy of DepthMOT on MOT17 and MOT20. Despite these factors, DepthMOT, with no
training in individual datasets, performs well in complex, high-occlusion environments while also

demonstrating adaptability across a variety of tracking scenarios.
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Figure 2.3: Challenges. An example of zero-shot depth estimation and PV5S modules, empha-
sizing the encountered challenges under different lighting conditions in the MOT20 dataset. The
highlighted area, marked by a dotted square, illustrates that the depth map of certain objects is not
accurately predicted.
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MOT17

Tracker HOTATIDF1T AssATMOTATFP(10*) L FN(10%)] ID;} Frag|AssRt
FairMOT g4] 59.3 723 580 737 275 117 3303 8073 63.6
TransCT [5] 545 622 497 732 231 124 4614 9519 54.2
TransTrac l[4@] 541 635 479 752 502 864 3603 4872 57.1
CSTrack [2 593 723 - 749  2.38 11.4 3567 - -
DTrack [56] 539 663 527 687 266  14.66 3378 8091 57.2
OTR L 572 684 558 719 211 13.6 2115 3897 59.2
CenterTrack [47 522 647 -  61.8 1.8 1.6 3039 - -
MeMOTR |1 ﬂ 588 71.5 584 728 - - - -
DiffusionTrack [45] 60.8 73.8 588 77.9 - - 3819 4815 -
TransMOT [57] 617 751 599 767 362 932 2346 7719 66.5
MixSort-OC [16] 634 778 632 8.9 - - 1509 - -
MixSort-Byte [16] 640 787 642 789 - - 2235 - -
C-BloU [54] 641 797 637 81.1 - - - - -
MOTRV2 [26] 620 750 60.6 78.6 - - - - -
GHOST [50] 628 771 - 1817 - - 2325 - _
ByteTrack [31] 63.1 773 620 803 255 837 2196 2277 68.2
DeconfuseTrack [28] 64.9 80.6 65.1 80.4 - - - - -
MotionTrack [52] 65.1 801 - 8L1 238 816 1140 - _
OC-SORT [3] 63.2 715 632 780 151 10.8 1950 2040 67.5
StrongSORT [34[]34 63.5 785 637 783 - - 1446 - _
StrongSORT++ [34] 644 795 644 796 279 862 1194 1866 71.0
GeneralTrack [53] 640 783 63.1 806 - - 1563 - _
Deep OC-SORT [2] 649 806 659 794 166 988 1023 2196 70.1
CMTrack [23] 655 815 661 807 259 819 912 1653 -
DiffMOT [1] 645 793 646 79.8 - - - _
DepthMOT 627 719 636 76.5 1.3 117 1342 - 688
MOT20
Tracker HOTATIDF1T AssATMOTATFP(10*) L FN(10%)] ID;} Frag|AssRt
GSDT [Es% 53.6 67.5 527 61.1  3.19 13.5 3,1319,875 58.5
CSTrack [21] 540 686 540 666 254 144 3,1967,632 57.6
FairMOT [4] 546 673 547 61.8 10.3  8.89 52437.874 60.7
DiffusionTrack [45] 55.3 663 51.3 728 - - 41174446 -
TransMOT [57] 619 752 60.1 77.5 342  8.08 16152421 66.3
MOTRY2 [26] 603 722 581 76.2 - - - -
GHOST [50] 612 752 - 137 - - 1,264 - _
ByteTrack [31] 613 752 596 718 262 876 12231460 66.2
DeconfuseTrack [28] 63.3 77.6 627 78.1 - - - -
MotionTrack [52 628 765 61.8 780 286 841 1,1651,321 -
OC-SORT [3 62.1 759 620 755 1.80 108 913 1,198 67.5
StrongSORT [34] 61.5 759 632 722 - - 1,066 - -
StrongSORT++ [34] 626 77.0 640 738 166 11.8 770 1,003 69.6
GeneralTrack [53]  61.4 740 595 77.2 - - 1,627 - _
Deep OC-SORT [2] 639 792 657 756 169 108 779 1,536 70.8
CM Track 23] 64.8 799 667 762 222 10.04 730 987 -
DiffMOT [1] 617 749 60.5 767 - - - - -
DepthMOT 624 713 643 73.2 1.3 12 1,141 - 686

Table 2.3: Results on MOT17-test and MOT20-test. The lower parts show TBD methods, which
are relevant to ours. Methods in the blue blocks use the same YOLOX detector. As can be seen,
no tracker performs best across metrics and datasets. Our DepthMOT has the lowest false positive

(EP).
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2.5 Ablations

To evaluate the impact of two key components: the proposed Hierarchical Alignment Score
(HAS) and the integration of depth information, we conduct a comprehensive ablation study on
MOT17 and the DanceTrack validation sets, which represent linear and non-linear motion patterns,

respectively.

2.5.1 Effect of HAS in association:

We first evaluate whether traditional IoU metrics (bounding box IoU or pixel-wise IoU) can
independently have the performance of the proposed HAS method. Table 2.4 shows that using either
bounding box IoU or pixel-wise loU alone results in suboptimal performance on DanceTrack, as
they fail to adequately capture the nuanced alignment between object contours and spatial position.
HAS, by combining both metrics in a hierarchical structure, provides a more balanced approach that

aligns objects more accurately across frames.

2.5.2 Effect of Depth in association:

To examine the contribution of depth information, we compare tracking performance with and
without depth scores. Table 2.4 presents different framework configurations with or without depth
scores and the HAS technique. As shown, on DanceTrack, the combination of both HAS and
depth information yields the highest accuracy, achieving 61.81% HOTA, 49.12% AssA, and 64.13%
IDF1. This improvement demonstrates that depth is an effective auxiliary feature, enhancing object
association by providing an additional spatial cue that helps distinguish objects in scenes with high

overlap or occlusion.

| DanceTrack-val | MOT17-val
Appearance  Mask loU  Bbox loUl HAS Depth | HOTA T AssAt IDFIT | HOTAT AssAt IDFIt
v v 5478 3854 5170 | 6822 6681 T2
v v 5946 4392 5908 | 7042 7083 8073
v v 60.62 415 6116 | 6985  69.65 79T
v v < | 6045 402 6213 | 7019 7065 8052
v v & | 6LBI 4812 G413 | 6988 6973 797

Table 2.4: Ablation study: Impact of HAS and depth on DanceTrack and MOT17 validation set
performance.
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2.5.3 HAS in First and Second Matching Steps:

We first evaluate the effect of applying the HAS technique at different stages of the matching
process. As shown in Table 2.5, there is no difference in the performance metrics for both experi-

ments. To enhance the model’s generalizability, we applied the HAS technique only in the first step

for all datasets.
| DanceTrack-val | MOT17-val
HAS Technique | HOTA1 AssAt IDF11|HOTAt AssAt IDF1{
First Step Only 61.81  49.12 6413 | 6988 69.73 797

First & Second 5teps | 6182 49.15 6415 69.79 69.57  79.57

Table 2.5: Ablation. Comparison of tracking performance with different stages of the HAS tech-
nique applied during the matching process on the DanceTrack validation set. “First Step Only”
applies HAS to the first matching Step, while "First & Second Steps™ applies HAS to both primary
and secondary matching steps.

2.5.4 Depth score in First and Second Matching step:

We further investigate the effect of applying depth scores in the first and second matching steps.
Table 2.6 reveals that using depth in the first matching step yields the highest performance, while
applying depth in the second step does not contribute positively. Table 2.5 and 2.6 align with the
observations made in [2], where the authors, noting the absence of appearance scores in their model

for the second round of matching, have inferred that appearance features are not helpful for the

second step.
| DanceTrack-val | MOT17-val
Depth Score | HOTA t AssAt IDF11 | HOTAt AssAt IDFI ¢
First Step Only 6181  49.12 6413 | 69.88 6973 797

First & Second Steps | 61.69 48.94  63.60 69.87 69.73 79.66

Table 2.6: Ablation. Evaluation of incorporating depth in the first and second matching steps on
the DanceTrack validation set.
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2.5.5 Kernel Density Estimation (KDE) vs. Histogram:

We conducted an experiment to assess the impact of various vectorization techniques on the
final depth score. Kernel Density Estimation (KDE) is a well-established method for converting
pixel values into a probability distribution. As demonstrated in Table 2.7, the histogram approach
exhibits superior performance compared to KDE across all metrics in both datasets. This enhanced
performance of the histogram method may be attributed to its effective representation of depth dis-
tributions within object bounding boxes. In contrast to KDE, which tends to smooth over local vari-
ations, histograms accurately capture the frequency distribution of depth values without averaging,
thereby avoiding the potential over-smoothing of significant spatial variations. In scenarios where
precise distinction of depth at close range is essential, histograms may more effectively preserve

critical differences, thereby improving depth-informed association accuracy in complex scenes.

| DanceTrack-val | MOT17-val
Depth Vectorization Method | HOTAT AssA 1 IDFI{ | HOTAT AssAt IDF1?
KDE 61.26 4835 6284 | 6953 6935 79.32
Histogram 61.81  49.12 6413 | 69.88 6973 797

Table 2.7: Ablation. Evaluation of different vectorization techniques for converting depth maps
into similarity scores on the DanceTrack and MOT17 validation set.

2.6 Visual Results

Fig. 2.4 and Fig. 2.5 illustrate the tracking performance of our DepthMOT framework on chal-
lenging sequences from the DanceTrack and SportsMOT datasets, respectively. Additionally, Fig. 2.6
and Fig.2.7 showcase the results of DepthMOT on MOT17 and MOT20. For enhanced visualiza-
tion, bounding boxes of individuals with similar IDs are displayed in similar colors, with the unique
ID indicated in red at the top of each bounding box. However, some colors may appear visually

similar due to the high density of individuals in specific frames.
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Figure 2.5: Examples. SportsMOT tracking results
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Figure 2.7: Examples. MOT20 tracking results

2.7 Summary

We proposed the DepthMOT framework for MOT, which incorporates depth information along-

side visual and motion features. Additionally, we introduced a hierarchical alignment score (HAS)
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that prioritizes bounding boxes during the initial association phase and progressively balances pixel-
level segments as matching improves. DepthMOT achieves state-of-the-art results on DanceTrack
and SportsMOT, handling rapid non-linear object motion, high appearance similarity, frequent oc-
clusions, and crossovers. Notably, DepthMOT achieves competitive performance using only pre-

trained models without any training nor fine-tuning.
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Chapter 3

Fast Self-Supervised depth and mask
aware Association for Multi-Object

Tracking

3.1 Introduction

Multi-Object Tracking (MOT) [1, 23, 59] aims to detect and maintain object identities across
video frames. Despite notable advances, existing approaches still struggle under conditions of oc-
clusion, appearance similarity, and rapid motion. These challenges are amplified when 2D cues,
such as bounding box overlap (loU) and appearance re-identification (Re-ID), are the sole drivers
of association. For instance, two pedestrians walking in parallel but at different depths may appear
indistinguishable in 2D, leading to frequent ID switches.

To address these limitations, we propose a combined depth and segmentation aware method that
supplements traditional 2D cues with pixel-aligned geometric reasoning. Specifically, we combine
zero-shot monocular depth estimation with promptable segmentation masks to extract fine-grained
spatial features. The combined depth-segmentation embeddings are processed by a lightweight,
self-supervised encoder that enhances temporal consistency and reduces noise caused by artifacts

from segmentation or depth map. The resulting features serve as an additional matching score
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during data association, complementing motion and appearance 2D cues.

Unlike prior works [13, 14,29] that use depth or segmentation as auxiliary inputs, our approach
introduces depth-segmentation cues as an explicit similarity matrix for matching. This design en-
ables more robust identity preservation, particularly in crowded, occluded, or visually ambiguous
scenes.

We validate our method on the challenging MOT benchmarks DanceTrack and SportsMOT,
which feature crowded and occluded objects with complex non-linear motion, and demonstrate
consistent improvements in association-based metrics such as HOTA, IDF1, and AssA. Our method
achieves competitive performance on benchmarks with simpler, mostly linear motion, such as
MOT17. Our contributions are: 1) We design a self-supervised encoder to enhance depth-segmentation
features’ temporal stability and discriminability. 2) Our MOT method is the first to use the self-
supervised encoder to refine segmentation masks and integrate them into the matching score with-
out computing mask IoU. 3) We achieve competitive or state-of-the-art performance across various

tracking scenarios, especially in dense and occluded scenes.

3.2 Prior Works

Joint Detection-RelD methods (JDR): They unify detection and tracking in a single forward
pass [4,5]. FairMOT [4] pioneered a dual-branch approach combining anchor-free detection with
appearance embeddings. TransCenter [5] extends this with deformable attention, enabling improved
occlusion handling. Recent models in this category go beyond earlier dual-branch architectures by
integrating attention mechanisms or spatial alignment strategies. AFMTrack [60] enhances identity
preservation by introducing an attention-based feature matching network, allowing robust associ-
ation even in dense scenes. DilateTracker [61] integrates dilated attention modules into the joint
detection-RelD framework, significantly boosting identity recall under occlusion.

Tracking by Detection methods (TBD): The tracking-by-detection paradigm remains dominant in
recent literature, where objects are first localized in each frame and then associated temporally [1-
3,6,20,24,26]. The effectiveness of these methods heavily relies on detection quality and the design

of robust association strategies. Depending on their temporal processing technique, these methods
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can be categorized into sequence-level and frame-wise tracking.

Sequence-Level Tracking: Graph-based approaches have gained popularity for maintaining
long-term consistency. Braso et al. [10] and Cetintas et al. [11] frame association as edge prediction
in a spatio-temporal graph, while Lu et al. [25] introduce self-supervised learning via path con-
sistency. However, these still rely primarily on appearance embeddings rather than spatial-aware
cues.

Frame-Wise Tracking: Attention-based models have shown strong potential in object match-
ing across frames. TrackFormer [6] and MOTRv2 [26] leverage transformer decoders for joint
detection and tracking, while MeMOTR [12] incorporates long-term memory. They perform well
under non-linear motion datasets such as DanceTrack but poorly under linear motion datasets such
as MOT17. Earlier dual-attention designs [24] laid the foundation for such approaches. Regression-
based methods like OC-SORT [3], Deep OC-SORT [2], and DiffMOT [1] emphasize motion conti-
nuity and efficient association. Confidence-aware [23] and post-correction strategies [28] have also
emerged to reduce matching errors.

Depth-Aware and Self-Supervised Association: Several works have introduced depth into track-
ing. Quach et al. [13] apply relative depth ordering in Kalman filters, Wang et al. [14] combine
stereo depth with pose estimation, and Liu et al. [29] propose a depth-aware tracker for indoor
scenes. However, these methods treat depth as an auxiliary signal rather than a primary asso-
ciation cue. Self-supervised Re-ID leaming has gained traction recently. Li et al. [59] embed
self-supervision into FairMOT-style pipelines using path consistency, improving generalization.
Nonetheless, it depends on contrastive or clustering objectives and does not utilize fused 3D spatial

information.

3.3 Proposed Approach

Our approach follows the tracking-by-detection paradigm, where objects are first localized in
each frame and then associated over time in a frame-wise manner. For detection, consistent with
recent MOT benchmarks, we use YOLOX [30]. As shown in Fig. 3.1, our method is composed of

three main modules: a depth-segmentation fusion module that combines depth and mask features
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Figure 3.1: (a) Overview of SelfTrEncMOT. Given consecutive video frames and their object de-
tector bounding boxes, we extract motion and appearance embeddings, and compute depth maps
(via zero-shot monocular estimation) and segmentation masks (via Promptable Visual Segmenta-
tion). Depth and segmentation cues are fused into depth-segmentation embeddings and refined by
a self-supervised encoder. The final association score integrates these embeddings with motion and
appearance cues using a linear assignment solver. (b) Architecture of the depth-segmentation au-
toencoder. (c) Example of the encoder’s input embedding.

for each object (See Sec. 3.3.1); a self-supervised encoder that refines these fused features into
stable embeddings (See Sec. 3.3.2); and an appearance-motion module that extracts re-identification
features and motion cues (See Sec. 3.3.3).

Together, these modules generate three similarity scores that are used during object association.
Following ByteTrack [31], the association process is divided into two stages. In the first stage, high-
confidence detections (DC' > 0.6) are matched to existing tracklets using our multi-cue similarity
scores (Sec. 3.3.4). In the second stage, unmatched detections are associated with tracklets using

Intersection-over-Union (IoU), based on predicted positions from a non-linear Kalman filter.

3.3.1 Depth-Segmentation Fusion

Zero-Shot Depth Estimation: Each frame in the video sequence is processed using Depth
Pro [41] to generate a depth map, which provides a relative spatial representation of the scene.
Promptable Visual Segmentation (PVS): To achieve fine-grained shape alignment beyond bound-
ing boxes, we incorporate PVS, a method that enables segmentation mask propagation across frames
by leveraging prompts (e.g., points, bounding boxes, or masks). PVS extends static image seg-
mentation to the video domain, facilitating consistent mask generation for the same object across

time [35-37].
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For implementation, we use Segment Anything Model 2 (SAM2) [38], a prompt-driven segmen-
tation framework designed for both images and videos. We use SAM2 for spatio-temporal shape
alignment. Although SAM2 supports limited tracking, it is not designed for object ID consistency
and bounding box matching as required in standard MOT tasks.

Our segmentation-driven fusion process proceeds as follows: For each tracklet in frame t—1,
the corresponding bounding box is used as a prompt input to SAM2 to generate a precise segmen-
tation mask that reflects object shape within the box. Next, for each newly detected object in frame
t, its bounding box is used to prompt SAM2 in reverse (i.e., propagate backward) to recover its seg-
mentation in frame t—1, aligning it with existing tracklets for direct association. Once segmentation
masks are obtained for both existing tracklets (from —1) and new detections (backward-propagated
to t—1), we perform pixel-wise multiplication of each mask with its corresponding depth map. This
yields fused depth-segmentation embeddings that encode both fine-grained object shape and relative

spatial location.

3.3.2 Self-Supervised Depth-Segmentation Encoder

Computing the mask loU between segmentation outputs is computationally expensive and intro-
duces major latency into the tracking pipeline. Additionally, both segmentation and depth estimation
used in the depth-segmentation fusion are subject to limitations. SAM2 may produce misaligned
masks when propagating segments across frames, particularly under fast motion or occlusion. We
use DepthPro [41], a recent zero-shot monocular depth estimator, to obtain dense depth maps from
RGB frames. DepthPro, while effective, can generate noisy depth maps in regions with poor tex-
ture or challenging lighting. These imperfections degrade the stability and reliability of the fused
features.

To address this, we introduce a lightweight depth-segmentation encoder designed specifically
to suppress noise and enhance the temporal consistency of fused features. The encoder is part of
the compact convolutional autoencoder that learns to denoise and compress the fused maps into
discriminative embeddings suitable for tracking. The encoder uses three convolutional layers with
kernel size 4 x 4 and stride 2, increasing channels from 1 to 32, 64, and 128, followed by batch nor-

malization and ReL.U activations. The resulting feature map is flattened and passed through a linear
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layer to produce a 2048-dimensional bottleneck. The decoder mirrors this with transposed convo-
lutions that progressively upsample and reduce channels back to 1. The bottleneck embeddings,
computed per object, serve as compact descriptors for matching, while reconstruction ensures that
the bottleneck retains key structural cues. This encoder is trained in a self-supervised manner to en-
hance the discriminative quality and temporal consistency of the fused depth-segmentation features.

The training process of our autoencoder proceeds as follows:

(1) At each training step, the depth-segmentation embeddings of tracklets from frame —1 and

newly detected objects from frame f are passed through a shared autoencoder.

(2) A reconstruction loss is computed using Mean Squared Error (MSE) between each input and
its reconstructed output:

Lrecon = Hﬁ—ﬁ{z. (14)

where f; is the original depth-segmentation map, ﬁ,, 15 its reconstruction.

(3) Additionally, we apply MSE loss between the bottleneck (latent) representations of the track-

let at frame £—1 and its corresponding detection at frame ¢:
CLrottieneck = |[Be—1 — be[3 , (15)

where b;_; and b; are the bottleneck embeddings for frame t—1 and frame ¢, respectively.

(4) The final objective is a sum of the two losses:

Liotal = Lrecon + Lbottleneck- (16)

This self-supervised refinement not only filters out noise from the segmentation and depth
sources but also improves temporal coherence in the feature embeddings, leading to more reliable
object association under challenging visual conditions. To further stabilize temporal dynamics in
the encoder features across frames, inspired by [33, 34], we apply the tracklet embedding update
strategy:

emb; =C -emb;_1 + (1 — C) - embpew, (17
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Figure 3.2: Qualitative results of the depth-segmentation autoencoder. Top: input fused embed-
dings; Bottom: reconstructions. The encoder preserves key spatial details and object boundaries,
supporting robust association, despite variations in scale and structure.

where C is dynamically computed as in [2],C =T +(1-T)- (1 - %‘%_ﬂ%mh—h)f DC is the detection
confidence score output by the object detector, thresh is a fixed confidence threshold (set to 0.6),
and 7 is a hyperparameter (set to 0.95). Figure 3.2 represents the input-output pairs of the depth-
segmentation autoencoder, where the top row shows the input fused depth and mask-aware maps,
and the bottom row illustrates the corresponding reconstructions. This visualization highlights how
the encoder preserves critical structural cues despite compression. This result shows that despite
the major reduction in dimension, the reconstructed masks retain useful information. The refined
embeddings output by the encoder are then compared using cosine similarity to compute the depth-
segmentation similarity score S.4. The raw depth-segmentation product is never directly used for

matching; only the encoder-refined features participate in similarity computation.

3.3.3 Appearance-Motion Fusion for MOT

Nonlinear Kalman Filter: Our SelfTrEncMOT method uses a nonlinear Kalman Filter to
model object motion dynamics and predict tracklet locations across frames. This filter operates
in two main steps: it first propagates previous state estimates based on learned motion priors, then
corrects predictions using new observations. To enhance robustness to missed detections, we incor-

porate the observation-centric re-update (ORU) mechanism from OC-SORT [3], which interpolates



virtual measurements when intermediate detections are absent. This approach allows tracklets to
be updated more consistently over time, even during short-term occlusions. Each state includes
bounding box geometry and motion velocities, enabling accurate position forecasting under com-
plex dynamics.

Motion Matching: During association, a matching score matrix is computed using two motion-
based components: Sioy and Sang. Sjou measures spatial overlap between predicted and observed
bounding boxes, while Sapg captures angular consistency in motion direction. Higher scores in both
terms reflect stronger association confidence [3].

Appearance Matching: We adopt FastRelD [32], a model based on convolutional neural net-
works (CNN) trained for MOT [1, 2], to extract the appearance embeddings from each detected ob-
ject. These features are compared across frames using cosine similarity to compute an appearance-

based score matrix Samb.

3.3.4 Total Matching Score and Linear Solver

To associate detected bounding boxes with existing tracklets, we compute a total matching score

that integrates motion, appearance, and depth-segmentation cues as follows:

Match; = Siou, (X, D) + Sang, (X, D) + Sea, (X, D) + Semb, (X, D), (18)

where Siou, {JE' , D) represents spatial overlap between predicted and observed bounding boxes,
Sang, {JE' , D) captures angular motion similarity [2], Semb, {JE' , D) measures appearance similar-
ity using cosine distance between FastRelD embeddings, and Sy, (X, D) is the proposed depth-
segmentation similarity score obtained from the cosine similarity between encoder embeddings.
The matching score matrix Match, is then negated to form a cost matrix suitable for linear as-
signment. We use the Hungarian algorithm [42] to perform optimal data association at each time

step.
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3.4 Experimental Results

3.4.1 Datasets and Evaluation Metrics

Datasets. We evaluate our approach across three diverse benchmarks to assess its effectiveness
under varying motion dynamics, crowd densities, and interaction complexities.

SportsMOT features fast, unpredictable subject movement, common in athletic or competitive
contexts. The motion is highly dynamic, and inter-object occlusions occur frequently and abruptly.
This dataset tests the method’s resilience to rapid motion shifts and closely interacting subjects,
making both appearance and motion cues essential.

DanceTrack presents performance-driven scenarios where subjects exhibit highly non-linear
motion, frequent occlusions, and close-proximity interactions. The dataset includes 40 training, 25
validation, and 35 test sequences, placing emphasis on appearance similarity and spatial ambiguity.
These characteristics make DanceTrack particularly suitable for evaluating tracking robustness in
dynamic and visually crowded environments.

MOT17 is awidely used benchmark for multi-pedestrian tracking in urban environments, featur-
ing scenes of moderate crowd density and structured pedestrian movement. It serves as a standard
for evaluating trackers under relatively linear and predictable motion. While useful for general-
purpose benchmarking, MOT17 is less representative of the non-linear and appearance-ambiguous
motion patterns targeted by our method.

Evaluation Metrics. For a comprehensive assessment, we adopt standard MOT evaluation met-
rics: Higher Order Tracking Accuracy (HOTA), Association Accuracy (AssA), Detection Accuracy
(DetA) [19], Identification F1 Score (IDF1) [43], and Multi-Object Tracking Accuracy (MOTA) [44].
HOTA provides a balanced evaluation of detection and association accuracy. IDF1 and AssA specif-
ically emphasize identity preservation and association quality, while MOTA focuses on detection-
level performance. In terms of computational efficiency, we report frames per second (FPS) based
on the tracking component, consistent with prior MOT works where runtime typically reflects the

association stage [3].



3.4.2 Implementation Details

Model. For consistency and fair benchmarking, we adopt YOLOX [30] as the default object detec-
tor, following recent MOT methods [1-3]. In our tables, methods using YOLOX are marked in blue
for clarity. The hyperparameter 7 is used in Eq. 17 to calculate C, and is set to 0.95. It is fixed for
all datasets and experiments. We adhere to the standard tracking hyperparameters (e.g., detection
thresholds and update smoothing factors) from [2] to ensure consistent evaluation of the association
component across methods.

Training. SAM2 and DepthPro are not fine-tuned but used in their released form. The depth-
segmentation autoencoder is trained offline, independently of the tracking method. Training is
performed separately on fused depth-segmentation embeddings extracted from the training split of
each dataset. We use a single NVIDIA A100 GPU with a batch size of 64 for all benchmarks.
The method is trained for 12 epochs using the Adam optimizer with a learning rate of le?. The
loss function in Eq. 16 combines two Mean Squared Error (MSE) terms: one for reconstruction and
another for bottleneck alignment across frames, as described in Section 3.3.2. To encourage stronger
temporal consistency, only the bottleneck loss is used for the final two epochs. After training, only
the encoder is retained and integrated into the tracker for online inference. We train our method for
each dataset separately.

Inference. All experiments are conducted on a single NVIDIA A100 GPU with a batch size of
one. Overall runtime of a MOT method (i.e., the feature extraction including object detection and
the association parts) varies depending on the feature extractor backbones. As a result, FPS is often
reported only for the association part [3]. Moreover, reported FPS values in prior works may not
be directly comparable due to heterogeneous hardware setups (e.g., RTX 3090 in [45] vs. Tesla
V100 in [46]). On the DanceTrack validation set, our tracker runs efficiently, with the association
stage sustaining over 125 frames per second (FP5). In our results tables, we divide MOT methods
into TBD (bottom part) and JDE. (upper part), and mark in bold the best-performing method in each

category.
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3.4.3 Benchmark Evaluation

Results for SportsMOT: The SportsMOT benchmark poses unique challenges due to its dynamic,
non-linear object trajectories, frequent occlusions, and visually similar targets interacting at close
range. As shown in Table 3.1, compared to the state-of-the-art DiffMOT [1], our SelfTrEnc-
MOT achieves better results across HOTA, AssA, and IDF1 association and identification metrics.
These improvements reflect the effectiveness of integrating depth-segmentation cues and our self-
supervised encoder. Together, these components support robust association in visually ambiguous

and fast-paced sports tracking scenarios.

Method HOTAT IDFIt AssAt|MOTAT DetAt
FairMOT [4] 493 535 347 | 864 702
CenterTrack [47] 627 60.0 480 | 908 817
TransTrack [49] 689 715 575 | 926 827
ByteTrack [31] 628 698 512 941 771
BoT-SORT [33] 687 700 559 045 844
OC-SORT [3] 719 722 598 945 864
DiffMOT [1] 721 728 605 945 860

*ByteTrack [31] 641 714 513 959 T8S5
*MixSort-Byte [16] 657 744 584 96.2  TR8
*OC-50RT [3] 737 740 615 96.5 88.5
*MixSort-OC [16] 741 744 620 96.5 88.5
*GeneralTrack [53] 741 764 617 %96.8 89.0
*DifftMOT [1] 762 761 651 97.1 893
*Self TrEncMOT 764 711 660 9584 BRA

Table 3.1: Comparison with MOT trackers on the SportsMOT test set. The lower part shows TBD
methods, which are relevant to ours. Methods marked with * indicate the detector was trained on
SportsMOT’s train and validation sets. YOLOX-based methods are highlighted in blue. The top
part includes JDR methods, which have higher computational requirements for training than TBD
methods.

Results for Dance Track: We evaluate Self TrEncMOT on the DanceTrack benchmark in Table 3.2.
Compared to the TBD state-of-the-art, such as Difft MOT [1], Deep OC-SORT [2], and CMTrack [23],
our Self TrEncMOT achieves better performance in the association metrics HOTA, IDF1, and AssA.
The current state-of-the-art under this dataset is MOTRwv2 [26], which is a Joint Detection-RelD,

relying on a fully transformer-based architecture with joint training for detection and tracking.

MOTRv2 requires significantly higher computational requirements than our method, e.g., 8x Tesla
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V100 GPUs for multi-stage training. Our method requires 1x GPU and single-stage training.
MOTRv2 underperforms for the linear motion dataset MOT17 (see Table 3.3).

Method HOTAt IDFIT AssAt | MOTAT DetAf
FairMOT [4] 39.7 40.8 23.8 82.2 66.7
CenterTrack [47] 41.8 357 22.6 86.8 T8.1
TransTrack [49] 45.5 452 215 85.4 759
MOTRv2 [26] 69.9 7.7 590 91.9 3.0
ByteTrack [31] 47.3 52.5 3l4 80.5 71.6
MotionTrack [52] 529 538 347 91.3 80.9
OC-50RT [3] 55.1 542 380 80.4 80.3

StrongSORT++ [34]  55.6 552 386 91.1 80.7
General Track [53] 59.2 .7 42.8 QL8 82.0

C-BloU [54] 60.6 6l1.6 454 QL8 81.3
Deep OC-50RT [2] 61.3 61.5 45.8 923 822
CMTrack [23] 61.8 63.3 46.4 925 -

DiffMOT [1] 623 63.0 472 92.8 82.5
SelfTrEncMOT 6414 66,47 5085 00.08 8lLO6

Table 3.2: Comparison on the DanceTrack test set. Methods are grouped into JDR in the upper
part and TBD in the lower part. Methods using YOLOX are highlighted in blue. SelfTrEncMOT
ranks first among TBD methods in identity association metrics (HOTA, AssA, IDF1). The state-
of-the-art MOTRv2 requires significantly more computational resources than our method (e.g., 8x
GPU versus 1x GPU for training).

Results for MOT17: As shown in Table 3.3, our method does not surpass state-of-the-art perfor-
mance on MOT17. This is primarily because object motions in this dataset are mostly linear (e.g.,
cars and pedestrians moving in predictable directions). In such scenarios, motion patterns leave
limited scope for depth information to provide substantial additional benefits. Nevertheless, Self-
TrEncMOT achieves competitive results, demonstrating robust tracking performance comparable to

leading methods.

3.4.4 Ablation Study

To assess the effectiveness of depth-segmentation guided association in our method, we per-
form an ablation study (Table 3.4) comparing three setups: (1) appearance with mask lIoU, (2)
appearance with bounding box IoU, and (3) appearance with bounding box IoU augmented by our

depth-segmentation encoder. We evaluate on the DanceTrack and MOT17 validation sets, which
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Method HOTAT IDF11 AssAt|MOTA®|FP(10*), FN(10*). ID.| Frag| AssRt

FairMOT [4] 593 723 580 | 737 275 1.7 3303 8,073 a36
CenterTrack [47] 522 847 - 67.8 1.2 Le 3039 - -
TransTrack [49] 541 635 479 ‘ 75.2 502 864 3603 4872 571
MOTRv2 [26] 620 750 606 TRG - - - - -
ByteTrack [31] 631 TI3 620 303 255 837 219 2277 68.2
MotionTrack [32] 65.1 801 - 811 238 816 1,140 - -
OC-S0RT [3] 632 TI5 632 T80 1L.51 108 1,950 240 &7.5
StrongSORT++ [34] e44 795 44 To6 279 862 1,194 1,866 TLO
General Track [53] 640 783 631 806 - - 1563 - -
C-Bloll [54] el 797 637 BL1 - - - - -
Deep OC-SORT [2] o49 806 659 794 1.66 988 1,023 2,19 T0.1
CMTrack [23] 655 BlS 661  BOT 259 819 912 1653 -
DiffMOT [1] 645 793 ede  TOR - - - - -
Self TrEncMOT 6348 T&12 6325 T9.16 19 96 1008 - 638

Table 3.3: Comparison on the MOT17 test set. The JDR methods are in the upper part, and the TBD
methods are in the lower part. Methods using YOLOX are highlighted in blue. State-of-the-art is
CMTrack, which performs weakly for challenging datasets such as DanceTrack. MOTRv2 ranks
lower than all TBD methods, including ours.

represent non-linear motion and structured pedestrian movement, respectively.

Ahlation Setting |  DanceTrack-val | MOTI7-val
Appearance Mask Iol) Bbox loU  Depth-Segmentation | HOTAT AssAt IDFIt | HOTAT AssAt IDFIT

v v 5478 3852 5171 | 626 GGEl  TT.20
v v 5946 4393 5011 | TO43  TODEZ  BOT3
v v v 6061 4704 6L34 | TLIZZ TLT® BLE2

Table 3.4: Ablation study on DanceTrack and MOT17 validation sets. We evaluate combinations
of appearance and loU-based cues, with and without our encoder-refined depth-segmentation asso-
ciation module.

Complementarity with Box-Level Cues: Switching from mask IoU to bounding box loU improves
performance significantly, particularly in structured settings like MOT17. However, further gains
from depth-segmentation integration indicate that relying on 2D overlap alone remains insufficient
for robust identity tracking, especially under occlusion.

Role of Depth-Segmentation Association: Adding the encoder-refined depth-segmentation em-
beddings to appearance and bounding box cues yields consistent gains across both datasets. The
improvement is especially pronounced on DanceTrack, where motion is more irregular and visual

ambiguity is higher, highlighting their complementary value beyond 2D geometry.



3.5 Qualitative Results on Multiple Datasets

We present qualitative results of our Self TrEncMOT tracker on three benchmarks: SportsMOT
(See Figure 3.3), DanceTrack (See Figure 3.4), and MOT17 (See Figure 3.5). These datasets dif-
fer in motion complexity, occlusion, and crowd density. Our Self TrEncMOT maintains consistent
identity association across diverse scenarios, highlighting its robustness to motion variation, visual

ambiguity, and occlusion.

Figure 3.3: Qualitative results of SelfTrEncMOT on the SportsMOT dataset. Despite rapid motion
and visual clutter, Self TrEncMOT yields strong identity association across time.

3.6 Summary

We presented Self TrEncMOT, a novel tracking method that incorporates encoder-refined depth-
segmentation embeddings as a standalone cue for robust object association. By fusing zero-shot
monocular depth with promptable segmentation and refining the result via self-supervised leamning,
our method captures fine-grained spatial and geometric context often missed by traditional motion
or appearance cues. Evaluations on diverse benchmarks confirm that Self TrEncMOT is stable in

identity preservation under occlusion, visual ambiguity, and crowd density. This work highlights
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Figure 3.4: Tracking visualization on the DanceTrack dataset. The model demonstrates robust
identity preservation in crowded and fast-motion scenarios.

Figure 3.5: Qualitative tracking results on MOT17. SefTrEncMOT maintains consistent identities
across occlusions.



the effectiveness of pixel-aligned, depth-aware reasoning in advancing multi-object tracking perfor-

mance.

3.7 Comparison of Proposed Frameworks

Table 3.5 presents a comparative evaluation of our proposed Multi-Object Tracking frameworks

DepthMOT and SelfTrEncMOT. While DepthMOT offers stronger association accuracy on Dance-

Track, Self TrEncMOT consistently achieves competitive or superior performance across all datasets

with significantly higher runtime speed, which is mainly due to the avoidance of calculating loU for

segmentation masks.

Method DanceTrack SportsMOT MOT17
HOTAT AssAT IDFIT[FPST|HOTAT AssAT IDFIT|HOTAT AssAT IDFIT
DepthMOT 64.27 5L04 6654 [ 335 Ta.2 63.6 Ta.9 67 6l.6 T1.9
Self TrtEncMOT | o414 50.85 e6d] 125 T6.4 66.0 T1.1 6348 6325 TRI12

Table 3.5: Performance comparison between DepthMOT and Self TrEncMOT on three benchmarks.
Bold indicates best results.

47



Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we introduced two novel tracking frameworks designed to address persistent chal-
lenges in Multi-Object Tracking (MOT), including non-linear motion, occlusion, and visual ambi-
guity. Both frameworks leverage geometric cues, specifically monocular depth and segmentation,
to go beyond conventional 2D appearance-based association, offering more robust identity preser-
vation in dynamic scenes.

The first framework, DepthMOT, integrates zero-shot monocular depth estimation into the asso-
ciation process and introduces a novel Hierarchical Alignment Score (HAS) that combines bound-
ing box loU with pixel-level alignment. This approach enables strong spatial differentiation be-
tween visually similar objects, especially in crowded or overlapping scenarios, without requiring
any task-specific training or fine-tuning. The code is available at: https://github.com/
Milad-Khanchi/DepthMOT.

The second framework, Self TtEncMOT, focuses on enhancing association robustness through
a self-supervised encoder that processes combined depth-segmentation features. By improving
the temporal stability and discriminability of these spatial embeddings, this method provides a
lightweight but effective representation for pixel-aligned matching, reducing the reliance on compu-
tationally expensive mask-loU operations. The code can be found at: https://github. com/

Milad-Khanchi/Sel fTrEncMOT.
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Comprehensive evaluations on benchmark datasets, Dance Track and SportsMOT, demonstrate
the effectiveness of both approaches. While DepthMOT achieves state-of-the-art or competitive re-
sults in association-based metrics such as HOTA, IDF1, and AssA, particularly in non-linear motion
settings, Self TrEncMOT offers competitive performance with improved stability under occlusion
and appearance ambiguity. Together, these methods highlight the value of incorporating monoc-
ular depth and refined spatial features into the MOT pipeline, offering new directions for robust,

geometry-aware tracking.

4.2 Future Work

While the proposed frameworks demonstrate competitive performance in both crowded and

structured scenes, several avenues remain open for future exploration:

= Temporal Modeling of Depth Features: Current depth maps are used on a per-frame basis
without explicit modeling of temporal consistency. Future work could explore recurrent or

transformer-based architectures to exploit the sequential nature of depth evolution.

* End-to-End Integration: Our current pipeline relies on external modules for depth estima-
tion and segmentation. A unified, end-to-end trainable model that jointly learns depth-aware

embeddings and association logic could yield further improvements in speed and robustness.

= Multi-Modal Fusion: Incorporating other sensory cues such as optical flow, stereo depth, or
LiDAR could enhance robustness in domains like autonomous driving and surveillance where

multimodal data 1s available.

* Domain Adaptation and Generalization: Evaluating and extending the model to unseen
environments, such as night-time scenes, remains an important step to ensure broader appli-

cability.

= Selective Tracking for Region-of-Interest (ROI): Current MOT pipelines process all de-
tected objects in a scene. However, in real-world applications such as sports analytics, surveil-

lance, or driver monitoring, it is often sufficient to track specific objects within predefined
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regions of interest (ROI). Future adaptations of our framework could incorporate spatial fil-
tering or ROI-aware mechanisms to restrict association to relevant areas. This would reduce

computational cost and enhance real-time performance.

In summary, this work establishes a promising direction in MOT by demonstrating how geomet-
ric context and pixel-aligned representations can be leveraged effectively for identity preservation,
especially under visual complexity. Future advancements in this direction hold the potential to

bridge the gap between appearance- and structure-based tracking paradigms.
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