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Abstract

Stability of Localized Solutions to Lattice Dynamical Systems

Bocheng Ruan

This thesis focuses on the stability of spatial localized solutions of lattice dynamical systems (LDSs).

In particular, I focus on the stability of spatially localized single- and multi-pulse solutions to lattice dynam-

ical systems. By linearizing the nonlinear system around steady-state solutions and applying exponential

dichotomy theory, an isomorphism between the localized solutions and the stable front and back solutions is

constructed. Then, the proof constructs Evans functions about the localized solutions from Evans functions

of the front and back solutions. It gives that eigenvalues of the front and back solutions lead to nearby

eigenvalues for the localized solution, which can in turn be used to verify instability of the solution. Fur-

thermore, Rouché’s theorem is used to prove that the number of roots in the single-pulse solution is the sum

of front and back solutions’, and the multi-pulse solution’s is the sum of each single-pulse solution’s. This

work is widely applicable to a range of scalar LDSs, particularly the well-studied discrete Nagumo equation.

Finally, this thesis concludes with a discussion of possible avenues for future work.
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Chapter 1

Introduction

Lattice dynamical systems are mathematical frameworks used to describe the evolution of dynamic

systems over discrete, individual spatial locations. These systems are characterized by state variables that

evolve according to coupled ordinary differential equations, often leading to complex behaviors, such as the

emergence of localized patterns or coherent structures. Such localized patterns, also referred to as spatially

localized structures, are solutions where nontrivial features arise within a larger homogeneous background.

Localized patterns take the form of a spatially homogeneous background with a nontrivial or activated

state existing within a compact region of space [4]. These patterns are not merely theoretical ideas, they have

real-world implications across various scientific disciplines to help us predict, control, and better understand

how complex systems behave. For instance, these patterns have been observed in ecosystems [14], where

vegetation clusters form distinct regions; in semiconductors [17], where charge distributions stabilize in

specific areas; and in social systems such as crime hotspots [11], where criminal activity concentrations

occur in compact regions. Localized patterns often emerge as a result of the interplay between local growth

and spreading processes, as described by reaction-diffusion equations. In such systems, front and back

solutions, which are monotonic spatially-extended solutions connecting two homogeneous states, play a

critical role not only in understanding the existence of localized behavior but also in determining the stability

of localized structures [15, 13]. In this thesis, the connection between the stability of front and back solutions

to a localized solution is made rigorous by appealing to the theory of the Evans function.

Historically, lattice dynamical systems have been studied to understand the effect of spatial inhomo-

geneity coming from the discrete jumps between spatial locations. Early work by Keener [9] focused on the

propagation or its failure of waves in coupled systems of excitable cells, establishing foundational principles
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that continue to influence contemporary research. More recently, Bramburger and Sandstede studied the ex-

istence and bifurcation structure of localized patterns in one [6] and two [5] discrete spatial dimensions.

The spatial evolution of localized patterns is a particularly challenging problem due to their dependence on

multiple interconnected components. Recent work on the spatially-continuous Swift-Hohenberg equation

has demonstrated that the stability of localized structures can be understood in terms of the stability of front

and back solutions [13]. Here we outline a similar framework by using front and back solutions to better

understand the stability properties of localized solutions to lattice dynamical systems.

In this work, the Evans function is used to analyze the stability of N -pulse solutions that have exactly

N ≥ 1 significant non-zero, disconnected, and bounded region(s). A closely related strategy has been used

to demonstrate the existence of snaking localized solutions in continuous space [15, 13], thus forming the

basis for the work herein. The main objective is to demonstrate the stability of localized solutions by utilizing

the framework of the Evans function. The results herein rely on an initial assumption that there exist front

and back solutions, which can roughly be glued together to create localized/pulse solutions [12, 6, 3]. Since

these front and back solutions represent heteroclinic orbits to a related spatial dynamical system, they decay

exponentially in space toward their limiting states and thus provide the existence of exponential dichotomies

to study their stability. An isomorphism is then established between the exponential dichotomies of localized

solutions and front/back solutions as they decay to the homogeneous background state. This allows for a

construction of the Evans function for these asymptotic solutions. The main results are: eigenvalues of

the front and back solutions lead to eigenvalues of the localized solution, and their eigenvalues become

exponentially close together as the region of localization grows. In addition, Rouché’s theorem [10, Theorem

on p. 111] is used to determine that the number of eigenvalues in a single-pulse solution is the sum of the

eigenvalues in front and back solutions’ and the number of eigenvalues in a multi-pulse solution is the sum

of the eigenvalues in each single pulse solution. Thus, a clear approach to analyzing the stability of localized

solutions is proven for lattice dynamical systems.

This thesis is organized as follows. In Chapter 2, we present the general framework for lattice dynamical

systems that we study. We further provide a brief overview of the work on the existence of single- and multi-

pulse solutions, while also discussing a specific system where out hypotheses can be verified. In Chapter 3,

as it has been proven that the pulse solutions can indeed be created by gluing the front and back solutions

together, we will demonstrate the stability for single- and multi-pulse solutions by using the Evans function,

respectively. Chapter 4 summarizes and discusses potential future research avenues.
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Chapter 2

Background

In this chapter, we provide foundational concepts and key results related to lattice dynamical systems.

These elements form the theoretical groundwork for the developments in Chapter 3.

2.1 Lattice Dynamical Systems

Lattice dynamical systems are infinite systems of coupled ordinary differential equations, for which

variables are arranged according to a regular structure as lattice points, with some rules that depend on

their neighbours and even long-distance connections. The general form of systems on the one-dimensional

integer lattice Z can be described by

u̇i = fi({uj}j∈Z) (2.1)

for all i ∈ Z, where u̇i is the time derivative du/dt, ui are time-dependent functions, and fi are functions

that typically only depend on finitely many states uj , termed the neighbours.

One of the most typical and widely studied examples in lattice dynamical systems is the reaction-

diffusion class of systems. Many researchers have studied various properties of thier solutions, such as

traveling wave solutions, pattern formation, and synchronization [16, 18, 19, 1]. Given that coupled map

lattices often exhibit symmetry and reversibility, we will focus on lattice systems of Nagumo-type [7]. These
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models are derived from the Nagumo partial differential equation (PDE) taking the form

∂u

∂t
=

∂2u

∂x2
+ f(u, µ), (2.2)

where ∂2u/∂x2 is the second spatial derivative, and f is a bistable nonlinearity. Some common examples

in the study of pulses and pattern formation are f(u, µ) = u(1− u)(u− µ) and f(u, µ) = µu+ 2u3 − u5

with µ ∈ [0, 1].

To move from the PDE framework to a lattice dynamical system one can use a finite-difference approxi-

mation. First, we consider evenly-spaced points arranged in a line, spaced apart by length ∆x, and introduce

the notation Un := u(n∆x, t). To approximate ∂2u/∂x2 at grid points, we will use neighboring values. By

using a Taylor series expansion, we can expand Un+1 := u((n + 1)∆x, t) and Un−1 := u((n − 1)∆x, t)

around Un

Un+1 =

Un⏟ ⏞⏞ ⏟
u(n∆x, t)+∆x

∂u

∂x
(n∆x, t) +

(∆x)2

2

∂2u

∂x2
(n∆x, t) +O

(︁
(∆x)3

)︁
,

Un−1 = u(n∆x, t)−∆x
∂u

∂x
(n∆x, t) +

(∆x)2

2

∂2u

∂x2
(n∆x, t) +O

(︁
(∆x)3

)︁
.

Adding these two expansions together and solving for ∂2u/∂x2 gives

∂2u

∂x2
≈ Un+1 − 2Un + Un−1

(∆x)2

which is the central difference approximation for the second derivative. Then, we define a scaled diffusion

coefficient d = 1/(∆x)2, representing the coupling strength between neighboring lattice sites. Substituting

this into (2.2), we obtain the discrete analogue of the Nagumo PDE

U̇n = d(Un+1 + Un−1 − 2Un) + f(Un, µ) (2.3)

where U̇n is the time derivative of a state Un which only depends on time, d(Un+1 + Un−1 − 2Un) is the

discrete diffusion operation, and f(Un, µ) is the nonlinear reaction with a bifurcation parameter µ. Lattice

systems of the form (2.3) will be the focus of investigation in this thesis.

A primary goal in discretizing space is to study the effect of breaking the continuous spatial symmetry

that is exhibited by the Nagumo PDE. Our main research object will be steady-state solutions which are
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solutions to the lattice dynamical system (2.3) that do not change in time. In steady-state, the system is

in perfect balance and thus does not exhibit any temporal evolution, meaning U̇n = 0 for all n. Steady

states are some of the most widely-studied potential limit states of dynamical systems, and as we show in

Section 2.3 below, are the only possible limit states for the LDSs that we study herein due to a gradient-flow

structure in a Hilbert space.

2.2 Existence of Localized Solutions

Solutions of (2.3) with U̇n = 0 are steady states, and we can recast the steady-state equation as a first-

order discrete dynamical system by setting (un, vn) = (Un−1, Un) to get

⎧⎪⎨⎪⎩
un+1 = vn

vn+1 = 2vn − un − 1

d
f(vn, µ)

(2.4)

where µ is a bifurcation parameter that can be used to determine the existence, stability, and structure of

localized solutions. Inspired by (2.4), in this section we consider planar discrete-time dynamical systems for

full generality to other LDSs. Since this thesis does not focus on bifurcations, we consider the bifurcation

parameter µ to be fixed and the evolution of un governed by a discrete-time dynamical system of the form

that is not dependent on µ,

un+1 = F (un), (2.5)

where F : R2 → R2 is a smooth mapping function, ensuring a unique relationship between un and un+1 at

every step. We assume that F is a diffeomorphism and therefore backwards-in-space orbits are also uniquely

determined by the inverse mapping

un−1 = F−1(un).

Localized solutions manifest themselves as an orbits to (2.5), asymptotically connecting to a fixed point

as n → ±∞ and are bounded away from this fixed point for finitely many iterations. Specifically, these fixed

points exhibit different steady states at u = 0 and u = u∗, typically stemming from nonlinear interactions
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such as a bistable function f .

Hypothesis 2.1. The system possesses a symmetry operator R : R2 → R2 (R ◦R = id) such that:

F−1(un) = R ◦ F ◦ R(un)

If we apply R to a trajectory {un}n∈Z and set vn = Run, it will result in a solution {vn}n∈Z =

{Ru−n}n∈Z which follows the same path in reverse order. If un is a bounded sequence to (2.5), then so it

Ru−n too.

Hypothesis 2.2. 0 and u∗ are hyperbolic fixed points for F of (2.5).

Equilibrium points 0 and u∗ are hyperbolic, which means the linearization is characterized by the ab-

sence of any eigenvalue on the unit circle around an equilibrium. Since the fixed points 0 and u∗ are

hyperbolic, the reverser R guarantees that they are saddles, and the stable manifold theorem guarantees that

one-dimensional stable manifolds

W s(0) :=
{︂
{un}n∈Z : lim

n→∞
un = 0

}︂
and W s(u∗) :=

{︂
{un}n∈Z : lim

n→∞
un = u∗

}︂

and one-dimensional unstable manifolds

W u(0) :=

{︃
{un}n∈Z : lim

n→−∞
un = 0

}︃
and W u(u∗) :=

{︃
{un}n∈Z : lim

n→−∞
un = u∗

}︃

exist for the equilibria 0 and u∗. We also notice the reversibility of F and manifolds for equilibria, with

symmetry operator R it holds

W s(0) = RW u(0) and W s(u∗) = RW u(u∗).

Definition 2.1. A heteroclinic orbit is a solution that connects two distinct steady-state solutions 0 and

u∗ such that limn→−∞ un = 0 (limn→−∞ un = u∗) and limn→∞ un = u∗ (limn→∞ un = 0). A

homoclinic orbit is a trajectory returns to the same fixed point such that limn→±∞ un = 0 (limn→±∞ un =

u∗).

In spatial dynamics formulation (2.4), if a localized solution satisfies (un, vn) → (0, 0) as n → ±∞,
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and its trajectory starts at the trivial equilibrium (0, 0), spends arbitrarily many iterations near the excited

equilibrium (u∗, u∗), and then returns to the trivial equilibrium (0, 0), it is referred to as a homoclinic

solution. Furthermore, a single-pulse solution corresponds to its trajectory that actives one such excursion

away from (0, 0) to (u∗, u∗) and finally return to (0, 0), while a multi-pulse solution corresponds to its

trajectory that actives multiple excursions before finally returning (0, 0).

Hypothesis 2.3. W u(0) and W s(u∗) intersect transversely, and the reverser R gives that W s(0) and

W u(u∗) intersect transversely too.

Since the manifolds in Hypothesis 2.3 are assumed to intersect transversely, it implies that W u(0) ∩

W s(u∗) ̸= ∅ and W s(0) ∩W u(u∗) ̸= ∅ give front and back solutions of (2.5), respectively, that are robust

under small perturbations. As the consequence, they are heteroclinic orbits from 0 to u∗ and u∗ to 0,

respectively. In addition, Hypothesis 2.1 implies that if there exists a front solution {Uf
n}n∈Z of (2.3) such

that

lim
n→−∞

Uf
n = 0 and lim

n→∞
Uf
n = u∗,

then there also exists a corresponding a back solution {U b
n}n∈Z = {RUf

−n}n∈Z such that

lim
n→−∞

U b
n = u∗ and lim

n→∞
U b
n = 0.

It allowes for spatial matching to form a localized solution (homoclinic orbit) through gluing front and

back solutions. The localized solution {un}n∈Z may therefore be symmetrical, satisfying {un}n∈Z =

R{un}n∈Z. This symmetry could be either inversion such that u−n = Run or bipartite such that u−n+1 =

Run for all n ∈ Z. More specifically, symmetric solutions with an axis of symmetry at n = 0 are on-site

solutions and at n = 1/2 are off-site solutions. This study of heteroclinic orbits in lattice dynamical systems

is essential for understanding localized structures.

Theorem 2.1. ([6, Theorem 2.4]) Suppose Hypotheses 2.1, 2.2, and 2.3 are satisfied. Then, there exists

M ≫ 1 such that for all N ≥ M there exists a homoclinic orbit of (2.5) that spends N iterations in a

neighbourhood of u∗.

These homoclinic solutions in Theorem 2.1 are called single-pulse solutions to the LDS. The reason is

that there is a single compact activated component to the pattern whose length is determined by N .
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(a)

0
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0 n

(b)

0

u∗

0 n

(c)

0

u∗

0 n

(d)

Figure 2.1: A visual depiction of the results of Theorem 2.1. (a) and (b) Asymmetric solutions that are
mapped into each other by the reverser R; (c) On-site and (d) off-site symmetric solutions that are mapped
into themselves by the reverser R. Roughly, on-site solutions have an odd number of points that are activated
on the plateau, while off-site have an even number.

In the proof of Theorem 2.1, the local coordinate transformations are applied to express the system in a

simplified standard form, thereby providing a clear analysis of the interactions between stable and unstable

manifolds. First of all, a smooth coordinate transformation to local coordinates about u∗ that is guaranteed

by the stable manifold theorem, which maps un to a new set of variables vn = (vsn, v
u
n), representing the

stable and unstable components of the solution, respectively. Then, reversibility conditions implies that for

every solution vsn in the forward time direction, there exists a solution vun in the opposite direction. To further

characterize solutions, there exists a unique solution vn that remains close to u∗ for all n, for trajectories that

remain in a neighborhood of u∗. Therefore, the transformed system enables the identification of trajectories

that transition between fixed points, laying the groundwork for constructing homoclinic orbits.

Then, symmetric homoclinic orbits are constructed with reverser R and other corresponding symmetric

matching conditions, and they are further divided into on- or off-site solutions. Moreover, asymmetric

homoclinic orbits can be constructed without reverser R. They often bifurcate from symmetric ones via

pitchfork bifurcations and come in pairs, mapped into each other by R. With these matching conditions,
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both symmetric and asymmetric homoclinic orbits have been proven to exist.

Theorem 2.2. ([3, Theorem 2.4]) Suppose Hypotheses 2.1, 2.2, and 2.3 are satisfied. For each k ≥ 2, there

exists Mk ≫ 1 so that for each set of integers N1, . . . , N2k−1 ≥ Mk there is a homoclinic orbit of (2.5) that

spends N1 iterates in a neighbourhood of u∗, followed by N2 iterates in a neighbourhood of 0, followed by

N3 iterates in a neighbourhood of u∗, and so on (see Figure 2.2).

0

u∗

0 n

N1 N3

N2

Figure 2.2: A visual depiction of the results of theorem 2.2. The k-pulse solution is an oscillating homoclinic
orbit. In a compact region, it activates the plateau near u∗ a total of k times and rapidly transitions to near
zero k − 1 times, and it ends its oscillations and returns to zero outside the region.

These homoclinic solutions in Theorem 2.2 are called multi-pulse solutions to the LDS becauese they

have k ≥ 2 compact activated components that are separated by regions where the pattern is near zero (as

given by the Nj with j even).

The proof of Theorem 2.2 as an extension of Theorem 2.1 which is limited to the single-pulse solution

only, a smooth coordinate transformation of the local coordinates about 0 has also been analyzed. By the

analogous steps as the local coordinates about u∗, it establishes that trajectories originating from u∗ eventu-

ally return to a neighbourhood of 0 and vice versa. Similarly, symmetric 2-pulse solution can be constructed

by gluing of orbit segments satisfying specific symmetry conditions, while asymmetric 2-pulse solutions

fail to satisfy the reverser R to have more flexible combinations. In this way one can construct single- and

multi-pulse solutions to the LDSs as homoclinic and multi-homoclinic orbits of (2.5), respectively.

Theorem 2.1 deals with the existence of single-pulse solutions, while theorem 2.2 will deal with the

existence of multi-pulse solutions. In Chapter 3, we will analyze the stability of both single- and multi-pulse

solutions, beginning with the former and then bootstrapping the proof to the latter.

9



2.3 Application to the Cubic-Quintic Model

The results of the previous subsection can be applied to specific LDSs to explicitly confirm the hypothe-

ses. In particular, consider the real cubic–quintic discrete Ginzburg–Landau equation studied in [6]

U̇n = d(Un+1 + Un−1 − 2Un)− µUn + 2U3
n − U5

n (2.6)

which is significant for understanding nonlinear dynamics in optical systems. It is also the normal form for

a subcritical pitchfork bifurcation which is known to exhibit bistability.

For µ ∈ [0, 1], there are five steady-state solutions 0 and ±
√︁
1±

√
1− µ. Recasting the steady-state

equation of (2.6) by setting (un, vn) = (Un−1, Un) to get

⎧⎪⎨⎪⎩
un+1 = vn

vn+1 = 2vn − un − 1

d
(−µvn + 2v3n − v5n)

(2.7)

and then the eigenvalues at the fixed points (u∗, u∗) to the mapping (2.7) statisfy

λ2 − λ

(︃
2 +

1

d

(︁
µ− 6(u∗)2 + 5(u∗)4

)︁)︃
+ 1 = 0.

Setting a =
(︁
µ− 6(u∗)2 + 5(u∗)4

)︁
/d and using the quadratic formula, we solve

λ =
2 + a±

√︁
(2 + a)2 − 4

2
.

When u∗ = 0,±
√︁
1±

√
1− µ,

a0 =
µ

d
, a±

√
1+

√
1−µ

=
4− 4µ+ 4

√
1− µ

d
, a±

√
1−

√
1−µ

=
4− 4µ− 4

√
1− µ

d
.

For µ ∈ (0, 1) and positive d, a0 and a±
√

1+
√
1−µ

are greater than 0, so λ0 and λ±
√

1+
√
1−µ

are non-zero,

and their norms are not equal to 1, implying that fixed points 0 and ±
√︁
1 +

√
1− µ are hyperbolic. On the

10



other side, a±
√

1−
√
1−µ

are less than 0, and the norms of λ±
√

1−
√
1−µ

are

⃓⃓⃓
λ±

√
1−

√
1−µ

⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓2 + a±

√
1−

√
1−µ

±
√︂
(2 + a±

√
1−

√
1−µ

)2 − 4

2

⃓⃓⃓⃓
⃓⃓

=
1

4

⃓⃓⃓⃓
⃓2 + a±

√
1−

√
1−µ

± i

√︃
4−

(︂
2 + a±

√
1−

√
1−µ

)︂2 ⃓⃓⃓⃓⃓
=

1

4

(︃(︂
2 + a±

√
1−

√
1−µ

)︂2
+ 4−

(︂
2 + a±

√
1−

√
1−µ

)︂2)︃

which is exactly equal to 1, so fixed points ±
√︁
1−

√
1− µ are non-hyperbolic. Therefore, this lays the

foundation for our study of heteroclinic orbits from 0 to u∗ =
√︁
1 +

√
1− µ, or other heteroclinic orbits,

as well as localized solutions.

Moreover, to understand long-term behavior of the system (2.6), system (2.6) can be shown as a gradient

flow on the Hilbert space ℓ2 definded by

ℓ2 =

{︄
{xn}x∈Z :

∑︂
n∈Z

|xn|2 < ∞

}︄
.

Indeed, (2.7) is the negative gradient of the potential

E(U) =
∑︂
n∈Z

(︃
d

2
(Un+1 − Un)

2 +
d

2
(Un−1 − Un)

2 +
1

2
µU2

n − 1

2
U4
n +

1

6
U5
n

)︃
, (2.8)

E(U) : ℓ2 → R, evolving in the direction of steepest descent. Now, we can replace U̇n by a negative

derivative of the potential with respect to Un, that is U̇n = −∂E(U)
∂Un

. Then, we take a quadratic form of

the energy associated with a difference between neighboring points to obtain (2.8). The potential decreases

over time, eventually the system will converge to one of these steady-state solutions. In other words, no

matter where the system starts, it always tends towards an equilibrium as t → ∞. Since (2.6) is a gradient

flow, this motivates only looking at steady-state solutions since these are the only possible limit states for

the differential equation.

The verification of Hypothesis 2.3 for heteroclinic orbits of (2.7) connecting (0, 0) and (u∗, u∗) was

proven in [6], thus allowing for the application of Theorems 2.1 and 2.2 to provide the existence of localized

single- and multi-pulse solutions. Single-pulse solutions to (2.7) are shown in Figure 2.1. Furthermore, these

results were extended to prove the existence of a heteroclinic connection between (0, 0) and cyclic/periodic

11



solutions of (2.7) to apply Theorem 2.1 to demonstrate the existence of localized solutions with oscillator

plateaus. Different from flat plateaus constructed by heteroclinic connections between 0 and u∗, the oscil-

lation plateaus where the solution profile exhibits periodic oscillations around non-zero steady states over a

finite spatial region before decaying toward to 0 have been studied. Similarly, these oscillation plateaus can

also be glued together by the front and back solutions, and their stabilities can be analyzed through front

and back solutions. In particular, F in the map (2.5) can be replaced with a second iterate map F 2. This

means that 2-cycle becomes a pair of the fixed points {u∗
1,u

∗
2} such that u∗

1 = F (u∗
2) and u∗

2 = F (u∗
1).

Therefore, the heteroclinic connection between 0 and 2-cycle can be transformed into a standard hetero-

clinic connection defined in Section 2.2, and all the previous theory can apply to this second iterate map.

These steady-state solutions enriches the diversity of spatial localized solutions in LDSs.
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Chapter 3

Stability Analysis

The previous section reviewed results on the existence of localized patterns to LDSs. The natural follow-

up investigation is to understand their local stability properties. In this chapter, we work to understand the

stability of localized solutions to LDSs using knowledge of the stability of front and back solutions. In

particular, in Section 3.1 we analyze the stability of single-pulse solutions and then in Section 3.2 we extend

this analysis to multi-pulse solutions.

3.1 Single-Pulse Solutions

In this section, we begin by the main result concerning the stability of localized single-pulse solutions,

and then it is followed by a detailed proof, drawing upon the framework of Evans function via exponential

dichotomies.

3.1.1 Main Result for Single-Pulse Solutions

We begin by assuming U∗
n(µ) is a localized steady-state single-pulse solution of (2.3), which we recall

is guaranteed to exist by Theorem 2.1 in Section 2.2. Then, we set Un = U∗
n(µ) + Vne

λt where Vn is

time-independent. If λ has a positive real part, then the solution is unstable. Plugging into (2.3), we get

U̇∗
n(µ) + λVne

λt = d
(︁
(U∗

n+1(µ) + Vn+1e
λt) + (U∗

n−1(µ) + Vn−1e
λt)− 2(U∗

n(µ) + Vne
λt)
)︁

+ f(U∗
n(µ) + Vne

λt, µ)

13



and linearizing about Vn = 0 for all n gives

U̇∗
n(µ) + λVne

λt = d
(︁
(U∗

n+1(µ) + Vn+1e
λt) + (U∗

n−1(µ) + Vn−1e
λt)− 2(U∗

n(µ) + Vne
λt)
)︁

+ f(U∗
n(µ), µ) + f ′(U∗

n(µ), µ)Vne
λt.

(3.1)

Since U∗
n(µ) is a localized steady-state solution of (2.3), it follows that

U̇∗
n(µ) = d(U∗

n+1(µ) + U∗
n−1(µ)− 2U∗

n(µ)) + f(U∗
n(µ), µ)

and so (3.1) can be simplified to

λVn = d(Vn+1 + Vn−1 − 2Vn) + f ′(U∗
n(µ), µ)Vn.

The above linear LDS can be re-cast as a first-order discrete dynamical system by setting (ūn, v̄n) =

(Vn−1, Vn) to get

⎧⎪⎨⎪⎩
ūn+1 = v̄n

v̄n+1 = 2v̄n − ūn +
f ′(U∗

n(µ), µ)

d
v̄n +

λ

d
v̄n.

(3.2)

Furthermore, we can rewrite (3.2) as

V n+1 = An(λ)V n, n ∈ Z, An(λ) =

⎛⎜⎝ 0 1

−1 2− (f ′(U∗
n(µ), µ)− λ)/d

⎞⎟⎠ , V n =

⎛⎜⎝ūn

v̄n

⎞⎟⎠ . (3.3)

We now recall the definition of an exponential dichotomy to better understand (3.3).

Definition 3.1. ([2, Definition 2.1]) A linear discrete dynamical system Vn+1 = AnVn has an exponential

dichotomy on the integer interval

I = {n ∈ Z : n− ≤ n ≤ n+}, n± ∈ Z ∪ {±∞}

if there exists some constants C,α > 0 such that

PnΦ(n,m) = Φ(n,m)Pm, n,m ∈ I
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and

|Φ(n,m)Pm| ≤ Ce−α(n−m), n ≥ m in I

|Φ(n,m)(I − Pm)| ≤ Ce−α(m−n), n ≤ m in I

where Φ(n,m) is a solution operator of Vn+1 = AnVn, defined as

Φ(n,m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
An−1An−2 . . . Am+1Am n > m

I n = m

A−1
n A−1

n+1 . . . A
−1
m−2A

−1
m−1 n < m

(3.4)

and Pm (P 2
m = Pm) is a projector in R2.

Define Φs(n,m;λ) := Φ(n,m)Pm, Φu(n,m;λ) := Φ(n,m)(I − Pm), and the associated projections

P s,u(n;λ) := Φs,u(n, n;λ). The range of P s,u(n;λ) is denoted as RanP s,u(n;λ), representing stable

and unstable eigenspaces such that R2 = RanP s(n;λ) ⊕ RanP u(n;λ) at every n. Therefore, Vn can be

uniquely decomposed as Vn = V s
n + V u

n where V s
n = PnVn ∈ RanP s(n;λ) and V u

n = (I − Pn)Vn ∈

RanP u(n;λ), and then we obtain

Vn = Φ(n,m)Vm = Φ(n,m)PmVm +Φ(n,m)(I − Pm)Vm = Φ(n,m)V s
m +Φ(n,m)V u

m = V s
n + V u

n .

Directly following results from the definition of exponential dichotomy,

∥V s
n∥ = ∥Φ(n,m)PmV s

m∥ ≤ Ce−α(n−m)∥V s
m∥, n ≥ m in I

∥V u
n ∥ = ∥Φ(n,m)(I − Pm)V u

m∥ ≤ Ce−α(m−n)∥V u
m∥, n ≤ m in I,

evolving that the stable (unstable) component of Vn exponentially decays as n → ∞ (n → −∞), while the

unstable (stable) component of Vn exponentially grows as n → ∞ (n → −∞).

Following the definition of exponential dichotomy, we now introduce a hypothesis that will be used in

the stability analysis.

Hypothesis 3.1. For some fixed µ, we have that f ′(0, µ) and f ′(u∗(µ), µ) are negative.
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Based on this hypothesis, we can establish the following lemma to identify the key condition for the

system (3.3) to have exponential dichotomy.

Lemma 3.1. If λ ̸∈ [f ′(0, µ)− 4d, f ′(0, µ)], then the system

⎧⎪⎨⎪⎩
ūn+1 = v̄n

v̄n+1 = 2v̄n − ūn − f ′(0, µ)

d
v̄n +

λ

d
v̄n

(3.5)

has an exponential dichotomy on Z. We denote these dichotomies by Φs,u
0 (n,m;λ) and denote the associated

projections by P s,u
0 (n;λ).

Similarly, if λ ̸∈ [f ′(u∗, µ)− 4d, f ′(u∗, µ)], then the system

⎧⎪⎨⎪⎩
ūn+1 = v̄n

v̄n+1 = 2v̄n − ūn − f ′(u∗(µ), µ)

d
v̄n +

λ

d
v̄n

(3.6)

has an exponential dichotomy on Z. We denote these dichotomies by Φs,u
u∗ (n,m;λ) and denote the associated

projections by P s,u
u∗ (n;λ).

Before proceeding with the proof of Lemma 3.1, we comment that the values of λ in these intervals

constitute the essential spectrum. Precisely, the essential spectrum is part of the spectrum of the linearization

about a bounded solution to an LDS for which there is no exponential dichotomy. Coupling Hypothesis 3.1

with the assumption that d > 0 gives that the essential spectrum is contained in the left half of the complex

plane, meaning that the essential spectrum cannot lead to instability of the front, back, or localized solutions.

Thus, we focus here exclusively on the point spectrum, which is defined below as roots of the Evans function

away from the essential spectrum.

Proof. The system (3.5) can be rewritten in the form V n+1 = A0(λ)V n where

A0(λ) =

⎛⎜⎝ 0 1

−1 2− (f ′(0, µ)− λ)/d

⎞⎟⎠ (3.7)
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is a constant matrix, so the existence of exponential dichotomies is equivalent to A0(λ) not having eigenval-

ues on unit circle in the complex plane. The characteristic polynomial of A0(λ) is

λ̃2 −
(︃
2− f ′(0, µ)− λ

2

)︃
λ̃+ 1 = 0

and we use the quadratic formula to obtain eigenvalues λ̃ of A0(λ)

λ̃ =
2− (f ′(0, µ)− λ) /d±

√︂
(2− (f ′(0, µ)− λ) /d)2 − 4

2

To ensure |λ̃| ≠ 1, (2− (f ′(0, µ)− λ) /d)2 − 4 cannot be negative, leading

2−
(︁
f ′(0, µ)− λ

)︁
/d > 2 or 2−

(︁
f ′(0, µ)− λ

)︁
/d < −2

Therefore, λ > f ′(0, µ) or λ < f ′(0, µ)− 4d confirms that A0(λ) is hyperbolic, so the system (3.5) has an

exponential dichotomy on Z. The proof for the system (3.6) is the same.

Hypothesis 3.2. There exists front and back solutions to (2.3), denoted {Uf
n (µ)}n∈Z and {U b

n(µ)}n∈Z, and

constants C > 0, η > 1 such that

⃓⃓⃓
Uf
n (µ)− u∗(µ)

⃓⃓⃓
≤ Cη−n, n ≥ 0⃓⃓⃓

U b
n(µ)− 0

⃓⃓⃓
≤ Cη−n, n ≥ 0⃓⃓⃓

Uf
n (µ)− 0

⃓⃓⃓
≤ Cηn, n ≤ 0⃓⃓⃓

U b
n(µ)− u∗(µ)

⃓⃓⃓
≤ Cηn, n ≤ 0.

The back solution can be understood as the “inverse” of the front solution, which represents a transition

in the opposite direction. If we assume reversibility, as was done for the existence results in Hypothesis 2.1,

the front and back solutions are symmetrically-related under the reverser, and so the existence of one implies

the existence of the other. Sometimes, the back solution may not be a perfect reversal of the front solution,

and they are not always symmetric. However, only symmetric front and back are considered in Hypothesis

3.2, the reason will be explained in Hypothesis 3.3.
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Lemma 3.2. The system

⎧⎪⎨⎪⎩
ūn+1 = v̄n

v̄n+1 = 2v̄n − ūn − f ′(U j(µ), µ)

d
v̄n +

λ

d
v̄n

(3.8)

with j = f, b has two exponential dichotomies on Z+ and Z−. We denote these dichotomies by Φ
+,s/u

Uj (n,m;λ)

and Φ
−,s/u

Uj (n,m;λ), and denote the associated projections by P
+,s/u

Uj (n;λ) and P
−,s/u

Uj (n;λ).

Proof. Consider two difference equations V n+1 = Au∗
(λ)V n which is the system (3.6) and V n+1 =

A+
f,n(λ)V n which is the system (3.8) with front solutions on Z+, and Hypothesis 3.2 implies that

Au∗
(λ)−A+

f,n(λ) → 0 as n → ∞.

Directly following from [2, Proposition 2.5], the result shows that the system V n+1 = A+
f,n(λ)V n has an

exponential dichotomy on Z+. Similarly, we can use two difference equations V n+1 = A0(λ)V n which is

the system (3.5) and V n+1 = A−
f,n(λ)V n which is the system (3.8) with front solutions on Z− to show that

the system V n+1 = A−
f,n(λ)V n has an exponential dichotomy on Z−.

Hypothesis 3.3. The localized solutions {U∗
n(µ)}n∈Z are parametried by constants N ≥ N∗ for some

N∗ ≥ 1, so that there exists constants C > 0, η > 1 such that

U∗
n(µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uf
n+N (µ) + wf,−

n+N (N), n ≤ −N

Uf
n+N (µ) + wf,+

n+N (N), −N ≤ n ≤ 0

U b
n+N (µ) + wb,+

n−N (N), 0 ≤ n ≤ N

U b
n+N (µ) + wb,−

n−N (N), N ≤ 0

(3.9)

and

|wf,−
n (N)| ≤ Cη−N+n, n ≤ 0 (3.10)

|wf,+
n (N)| ≤ Cη−N , 0 ≤ n ≤ N (3.11)

|wb,−
n (N)| ≤ Cη−N , N ≤ n ≤ 0 (3.12)

|wb,+
n (N)| ≤ Cη−N−n, 0 ≤ n (3.13)
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Since U∗
n(µ) is unique when n = −N, 0, N , we have

wf,−
0 (N)− wf,+

0 (N) = 0,(︁
Uf
N (µ) + wf,+

N (N)
)︁
−
(︁
U b
N (µ) + wb,+

N (N)
)︁
= 0,

wb,+
0 (N)− wb,−

0 (N) = 0.

Hypothesis 3.3 says that the single-pulse solution of interest here is constructed by “gluing” a front and

a back together, with small corrections w, and inequalities (3.10)−(3.13) imply that the localized solution

hardly deviates from the fronts or the backs for N large. Different from symmetric single-pulse solution,

asymmetric single-pulse solution can be seen as gluing of front and back solutions which do not reflect each

other, and small perturbations could potentially destabilize the pulse. They may remain stable if they are

constructed by gluing both stable front and back solutions. On the other side, the study of the stability of

symmetric pulses is more common.

In the following theorem we show that roots of the Evans functions for the front and back solutions,

denoted Df (λ) and Db(λ) below, lead to nearby roots of the Evans function for the localized solution,

defined as DN (λ) below.

Theorem 3.1. Suppose Hypotheses 3.1, 3.2, and 3.3 are satisfied, and define

Ω = C \ {[f ′(0, µ)− 4d, f ′(0, µ)] ∪ [f ′(u∗, µ)− 4d, f ′(u∗, µ)]}

and Evans functions of front and back solutions

Df (λ) := det
(︂
RanP−,u

Uf (0;λ) RanP+,s
Uf (0;λ)

)︂
,

Db(λ) := det
(︂
RanP−,u

Ub (0;λ) RanP+,s
Ub (0;λ)

)︂
,

where P
±,s/u

Uf (0;λ) and P
±,s/u

Ub (0;λ) are projections to the systems V n+1 = A±
f,n(λ)V n and V n+1 =

A±
b,n(λ)V n, respectively. Fix λ∗ ∈ Ω and suppose that for mf ,mb ≥ 0 and for some δ > 0, we have

Df (λ) = (λ− λ∗)
mf +O

(︁
|λ− λ∗|mf+1

)︁
, (3.14)

Db(λ) = (λ− λ∗)
mb +O

(︁
|λ− λ∗|mb+1

)︁
(3.15)
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for λ ∈ Bδ(λ∗). Then, we can define an analytic function DN (λ) such that

DN (λ) =
(︁
Df (λ) + O(e−αN )

)︁ (︁
Db(λ) + O(e−αN )

)︁
+ O(e−2αN ), (3.16)

and there exists a δ∗ sufficiently small, with δ > δ∗ > 0, and an N∗ > 0 sufficiently large, such that the

following hold uniformly in N ≥ N∗:

(i) DN (λ) has precisely mf + mb roots, counted with multiplicity, in Bδ∗(λ∗). These values of λ are

O(e−αN ) close to λ∗, with α > 0.

(ii) The system (3.2) has a bounded, nontrivial solution at λ ∈ Bδ∗(λ∗) if and only if DN (λ) = 0.

The proof is in the following subsection since it is long and requires multiple steps.

3.1.2 Proof of Theorem 3.1

Using (3.9), we can solve the eigenvalue problem (3.2) in pieces by solving the equations

V
f,−
n+1 = Af,−

n (λ)V
f,−
n , n ≤ 0 (3.17)

V
f,+
n+1 = Af,+

n (λ)V
f,+
n , 0 ≤ n ≤ N (3.18)

V
b,−
n+1 = Ab,−

n (λ)V
b,−
n , −N ≤ n ≤ 0 (3.19)

V
b,+
n+1 = Ab,+

n (λ)V
b,+
n , 0 ≤ n (3.20)

and then constructing the solution as

V n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V
f,−
n+N , n ≤ −N

V
f,+
n+N , −N ≤ n ≤ 0

V
b,−
n−N , 0 ≤ n ≤ N

V
b,+
n−N , N ≤ n

Thus, we have a bounded solution to (3.2) if and only if we have solutions to (3.17)−(3.20) along with the

matching conditions

V
f,+
N − V

b,−
−N = 0, (3.21)
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V
f,+
0 − V

f,−
0 = 0, (3.22)

V
b,+
0 − V

b,−
0 = 0. (3.23)

From Lemma 3.8, we have exponential dichotomies for each equation (3.17)−(3.20), which can be chosen

so that they depend analytically on λ ∈ Bδ(λ∗) for δ > 0 small. That is, we have

⃓⃓⃓
Φf,−,s
U∗ (n,m;λ)

⃓⃓⃓
≤ Ce−α(n−m), n ≥ m⃓⃓⃓

Φf,−,u
U∗ (n,m;λ)

⃓⃓⃓
≤ Ce−α(m−n), n ≤ m

⎫⎪⎬⎪⎭ n,m ≤ 0, (3.24)

⃓⃓⃓
Φf,+,s
U∗ (n,m;λ)

⃓⃓⃓
≤ Ce−α(n−m), n ≥ m⃓⃓⃓

Φf,+,u
U∗ (n,m;λ)

⃓⃓⃓
≤ Ce−α(m−n), n ≤ m

⎫⎪⎬⎪⎭ 0 ≤ n,m ≤ N, (3.25)

⃓⃓⃓
Φb,−,s
U∗ (n,m;λ)

⃓⃓⃓
≤ Ce−α(n−m), n ≥ m⃓⃓⃓

Φb,−,u
U∗ (n,m;λ)

⃓⃓⃓
≤ Ce−α(m−n), n ≤ m

⎫⎪⎬⎪⎭ −N ≤ n,m ≤ 0, (3.26)

⃓⃓⃓
Φb,+,s
U∗ (n,m;λ)

⃓⃓⃓
≤ Ce−α(n−m), n ≥ m⃓⃓⃓

Φb,+,u
U∗ (n,m;λ)

⃓⃓⃓
≤ Ce−α(m−n), n ≤ m

⎫⎪⎬⎪⎭ 0 ≤ n,m. (3.27)

We denote the associated projections P i,±,j
U∗ (n;λ) := Φi,±,j

U∗ (n, n;λ) where i = f, b for front/back solutions

and j = s, u for stable/unstable components. Moreover, as a consequence of Hypothesis 3.1, we have that

⃓⃓⃓
P f,+,u
U∗ (N ;λ)− P u

u∗(0;λ)
⃓⃓⃓
≤ Ce−αN , (3.28)⃓⃓⃓

P b,−,s
U∗ (−N ;λ)− P s

u∗(0;λ)
⃓⃓⃓
≤ Ce−αN . (3.29)

We now let a := (af,+, ab,−) ∈ ˜︁Va, b := (bf,−, bf,+, bb,−, bb,+) ∈ ˜︁Vb and λ ∈ ˜︁Vλ, where the spaces ˜︁Va, ˜︁Vb,˜︁Vλ are defined as follows:

˜︁Va := RanP u
u∗(0;λ∗)⊕ RanP s

u∗(0;λ∗)

˜︁Vb :=
(︂
RanP f,−,u

U∗ (0;λ∗)⊕ RanP f,+,s
U∗ (0;λ∗)

)︂
⊕
(︂
RanP b,−,u

U∗ (0;λ∗)⊕ RanP b,+,s
U∗ (0;λ∗)

)︂
˜︁Vλ := Bδ(λ∗) ⊂ Ω
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where ˜︁Va and ˜︁Vb are endowed with the maximum norm over components such that ∥˜︁Va∥∞ = max{∥af,+∥, ∥ab,−∥}

and ∥˜︁Vb∥∞ = max{∥bf,−∥, ∥bf,+∥, ∥bb,−∥, ∥bb,+∥).

For δ sufficiently small and N > N∗ sufficiently large, we can then write solutions to the eigenvalue

problem (3.2) for the localized structure U∗
n in fixed-point form as

V n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V
f,−
n = Φf,−,u

U∗ (n, 0;λ)bf,− n ≤ 0

V
f,+
n = Φf,+,s

U∗ (n, 0;λ)bb,+ +Φf,+,u
U∗ (n,N ;λ)af,+ 0 ≤ n ≤ N

V
b,−
n = Φb,−,s

U∗ (n,−N ;λ)ab,− +Φb,−,s
U∗ (n, 0;λ)bb,− −N ≤ n ≤ 0

V
b,+
n = Φb,+,s

U∗ (n, 0;λ)bb,+ 0 ≤ n.

(3.30)

Lemma 3.3. There exists an N∗ such that for all N > N∗, the following holds uniformly in N . There exists

an operator F : ˜︁Vλ × ˜︁Vb → ˜︁Va such that V n as given by (3.30) with a = F (λ)b solves (3.16) for any b and

λ. F is analytic in λ and linear in b, and satisfies

|F (λ)b| ≤ Ce−αN |b|. (3.31)

Proof. To begin, substituting from (3.30) into (3.21) gives us:

0 = Φf,+,s
U∗ (N, 0;λ)bb,+ +Φf,+,u

U∗ (N,N ;λ)af,+ − Φb,−,s
U∗ (−N,−N ;λ)ab,− − Φb,−,s

U∗ (−N, 0;λ)bb,−

=
(︂
P f,+,u
U∗ (N ;λ)− P u

u∗(0;λ)
)︂
af,+ + af,+ +

(︂
P s
u∗(0;λ)− P b,−,s

U∗ (N ;λ)
)︂
ab,− − ab,−

+Φf,+,s
U∗ (N, 0;λ)bb,+ − Φb,−,s

U∗ (−N, 0;λ)bb,−. (3.32)

Define

G(λ)(a, b) =
(︂
P f,+,u
U∗ (N ;λ)− P u

u∗(0;λ)
)︂
af,+ +

(︂
P s
u∗(0;λ)− P b,−,s

U∗ (N ;λ)
)︂
ab,−

+Φf,+,s
U∗ (N, 0;λ)bb,+ − Φb,−,s

U∗ (−N, 0;λ)bb,−.

G(λ)(a, b) is analytic in λ because all projections and solutions operators involved are analytic in lambda.

Moreover, we can see that G is linear in a and b. From (3.28) and (3.29) and definition of the dichotomies,

|G(λ)(a, b)| ≤ Ce−αN (|a|+ |b|). (3.33)
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Define the map K as

K : ˜︁Va → C2

(af,+, ab,−) ↦→ af,+ − ab,−

Since ˜︁Va = RanP u
u∗(0;λ∗) ⊕ RanP s

u∗(0;λ∗) = C2, K is a linear isomorphism. Equation (3.32) can be

written as

Φb,−,s
U∗ (−N, 0;λ)bb,− +Φf,+,s

U∗ (N, 0;λ)bb,+

= (af,+ − ab,−) +
(︂
P f,+,u
U∗ (N ;λ)− P u

u∗(0;λ)
)︂
af,+ +

(︂
P s
u∗(0;λ)− P b,−,s

U∗ (N ;λ)
)︂
ab,−

G(λ)(0, b) = K(a) +G(λ)(a, 0) = (K +G(λ)J)(a)

where J(a) := (a, 0). By (3.31), for N ≥ N∗ with N∗ sufficiently large, (K +G(λ)J) is invertible so that

we have the solution operator

a = −(K +G(λ)J)−1G(λ)(0, b) =: F (λ)b.

Finally, from (3.33) we have (3.31) for the above defined F (λ)b.

Following from Lemma 3.3 and substituting from (3.30) into (3.22) and (3.23) gives us

0 = Φf,+,s
U∗ (0, 0;λ)bb,+ +Φf,+,u

U∗ (0, N ;λ)af,+ − Φf,−,u
U∗ (0, 0;λ)bf,−

= P f,+,s
U∗ (0;λ)bb,+ − P f,−,u

U∗ (0;λ)bf,− +Φf,+,u
U∗ (0, N ;λ)(F (λ)b)f,+ (3.34)

and

0 = Φb,+,s
U∗ (0, 0;λ)bb,+ − Φb,−,s

U∗ (0,−N ;λ)ab,− − Φb,−,s
U∗ (0, 0;λ)bb,−

= P b,+,s
U∗ (0;λ)bb,+ − P b,−,s

U∗ (0;λ)bb,− − Φb,−,s
U∗ (0,−N ;λ)(F (λ)b)b,− (3.35)
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(F (λ)b)f,+ and (F (λ)b)b,− are the components of F (λ)b in RanP u
u∗(0;λ∗) and RanP s

u∗(0;λ∗), respec-

tively. According to the exponential dichotomies (3.25)−(3.26) and Lemma 3.3, we obtain

Φf,+,u
U∗ (0, N ;λ)(F (λ)b)f,+ = O(e−2αN |b|), (3.36)

Φb,−,s
U∗ (0,−N ;λ)(F (λ)b)b,− = O(e−2αN |b|) (3.37)

uniformly in λ near λ∗. Rewrite (3.34) and (3.35) and combine them in matrix form,

⎛⎜⎝0

0

⎞⎟⎠ =

⎡⎢⎣
⎛⎜⎝−P f,−,u

U∗ (0;λ) P f,+,s
U∗ (0;λ) 0 0

0 0 −P b,−,u
U∗ (0;λ) P b,+,s

U∗ (0;λ)

⎞⎟⎠
+

⎛⎜⎝Φf,+,u
U∗ (0, N ;λ) 0

0 −Φb,−,s
U∗ (0,−N ;λ)

⎞⎟⎠F (λ)

⎤⎥⎦ b

=: [PN (λ) +RN (λ)]b.

From (3.36) and (3.37), we can observe that RN (λ) = O(e−2αN ) uniformly in λ near λ∗. Define P̂ f,−,u
U∗ (0;λ)

as P f,−,u
U∗ (0;λ) restricted to RanP f,−,u

U∗ (0;λ∗)

P̂ f,−,u
U∗ (0;λ) := P f,−,u

U∗ (0;λ)

⃓⃓⃓⃓
RanP f,−,u

U∗ (0;λ∗)

and similarly for the other projections P f,+,s
U∗ (0;λ), P b,−,u

U∗ (0;λ), and P b,+,s
U∗ (0;λ), then we obtain

P̂N (λ) =

⎛⎜⎝−P̂ f,−,u
U∗ (0;λ) P̂ f,+,s

U∗ (0;λ) 0 0

0 0 −P̂ b,−,u
U∗ (0;λ) P̂ b,+,s

U∗ (0;λ)

⎞⎟⎠ .

Define R̂N (λ) as RN (λ) restricted to Ṽb

R̂N (λ) = RN (λ)

⃓⃓⃓⃓
Vb

.

Now, we can define

DN (λ) := det
(︂
P̂N (λ) + R̂N (λ)

)︂
.
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Since R̂N (λ) is a small deviation exponentially approching 0 as N → ∞, there exists a C which does not

depend on λ or N such that for λ ∈ Bδ with δ sufficiently small and N ≥ N∗, with N∗ sufficiently large,

R̃N (λ) ≤ C|R̂N (λ)| = Ce−2αN .

Therefore, we can rewrite DN (λ) as

det
(︂
P̂N (λ)

)︂
+ R̃N (λ) = 0.

Since P̂N (λ) is block diagonal, its determinate is just the multiplication of determinates of two blocks,

det
(︂
P̂N (λ)

)︂
= det

(︂
−P̂ f,−,u

U∗ (0;λ) P̂ f,+,s
U∗ (0;λ)

)︂
· det

(︂
−P̂ b,−,u

U∗ (0;λ) P̂ b,+,s
U∗ (0;λ)

)︂

where P̂ f,−,u
U∗ (0;λ), P̂ f,+,s

U∗ (0;λ), P̂ b,−,u
U∗ (0;λ), and P̂ b,+,s

U∗ (0;λ) restricted in λ near λ∗, and

RanP f,−,u
U∗ (0;λ)

⃓⃓⃓⃓
RanP f,−,u

U∗ (0;λ∗)

→ RanP f,−,u
U∗ (0;λ)

is an isomorphism with uniform bound in λ near λ∗, and similarly for RanP f,+,s
U∗ (0;λ), RanP b,−,u

U∗ (0;λ),

and RanP b,+,s
U∗ (0;λ). So then we have a nontrivial solution if and only if

det
(︂
RanP f,−,u

U∗ (0;λ) RanP f,+,s
U∗ (0;λ)

)︂
· det

(︂
RanP b,−,u

U∗ (0;λ) RanP b,+,s
U∗ (0;λ)

)︂
+ R̂N (λ) = 0.

Now since we also have that |P f,−,u
U∗ (0;λ) − P−,u

Uf (0;λ)| ≤ Ce−αN , and analogously for projections asso-

ciated with the other exponential dichotomies, we have

0 =
(︂
det
(︂
RanP−,u

Uf (0;λ) RanP+,s
Uf (0;λ)

)︂
+O(e−αN )

)︂
·(︂

det
(︂
RanP−,s

Ub (0;λ) RanP b,+,s
Ub (0;λ)

)︂
+O(e−αN )

)︂
+O(e−2αN )

which can then be written

DN (λ) =
(︁
Df (λ) + O(e−αN )

)︁ (︁
Db(λ) + O(e−αN )

)︁
+ O(e−2αN ) = 0. (3.38)
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Since, by assumption, (3.14) and (3.15) hold for λ ∈ Bδ(λ∗).

To prove the next lemma, we evoke Rouché’s theorem, which is stated as follows:

Theorem 3.2. ([10, Theorem on p. 111]) Let K ⊂ C a closed, bounded region with ∂K a simple closed

contour, and suppose f, g : K → C are analytic with

|g(z)| < |f(z)|, z ∈ ∂K.

Then, f and g have the same number of zeros in K, counting multiplicities.

Lemma 3.4. Suppose that (3.14) and (3.15) hold for λ ∈ Bδ0(λ∗) and DN (λ) is as defined in (3.16) for

λ ∈ Bδ1(λ∗). Then there exists a δ∗ satisfying min{δ0, δ1} > δ∗ > 0 such that for N∗ > 0 sufficiently large,

DN (λ) has exactly mf +mb zeroes in Bδ∗(λ∗), uniformly in N ≥ N∗, which are O(e−αN/h(mf ,mb)) close

to λ∗, with h(mf ,mb) = 2max{mf ,mb}+ ϵ and ϵ > 0 arbitrarily small.

Proof. We let z = λ− λ∗ and expand (3.16) as

DN (λ) = Df (λ)Db(λ) +Df (λ)O(e−αN ) +Db(λ)O(e−αN ) + O(e−2αN ) + O(e−2αN )

= zmf+mb + zmf O(zmb+1) + zmb O(zmf+1) + O(zmf+mb+2) + zmf O(e−αN )

+ O(e−αNzmf ) + zmb O(e−αN ) + O(e−αNzmb) + O(e−2αN )

= zmf+mb +O(zmf+mb+1) + O(zmf+mb+2) + O(e−αNzmf ) + O(e−αNzmf+1)

+ O(e−αNzmb) + O(e−αNzmb+1) + O(e−2αN )

= zmf+mb +O(zmf+mb+1) + O(e−αNzmf ) + O(e−αNzmb) + O(e−2αN )

Then, we define

f(z) = zmf+mb

g(z) = O(zmf+mb+1) + O(e−αN (zmf + zmb)) + O(e−2αN )

with an appropriate contour K = Br(0) for some r > 0, ensuring that the error terms in g(z) are small

enough. We wish to find the smallest r such that f and g have the same number of zeros in K near λ∗. We
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require

O(rmf+mb+1) + O(e−αN (rmf + rmb)) + O(e−2αN ) < rmf+mb . (3.39)

By rewiriting (3.39), we have

O(e−2αN ) < rmf+mb
(︁
1−O(r)−O(e−αN (r−mb + r−mf ))

)︁
. (3.40)

For N∗ sufficiently large, there exists a constant C such that we can write (3.40) as

Ce−2αN < rmf+mb
(︁
1− Cr − Ce−αN (r−mb + r−mf )

)︁
. (3.41)

The choice of r gives the distance over which we can apply Rouché’s theorem, and we choose r =

C−1e−αN/h(mf ,mb),

C2e−2αN < e
−αN

mf+mb
h(mf ,mb)

(︃
1− e

−αN 1
h(mf ,mb) − e

−2αN
mf

h(mf ,mb) − e
−2αN

mb
h(mf ,mb)

)︃

where h(mf ,mb) is a function to be determined. we require mf+mb

h(mf ,mb)
≤ 1 as well as mf

h(mf ,mb)
< 1

2

and mb
h(mf ,mb)

< 1
2 , where we require strict inequalities to ensure the second factor in (3.41) can be

made arbitrarily close to 1 without requiring dependence of the constant on mf or mb. Thus, we need

h(mf ,mb) > 2max{mf ,mb}, and so we conclude that r = O(e−αN/h(mf ,mb)), where h(mf ,mb) =

2max{mf ,mb}+ ϵ, where ϵ > 0. Therefore, DN (λ) has exactly mf +mb zeros in a small neighborhood

of λ∗, exponentially closing to λ∗ for large N .

3.2 Multi-Pulse Solutions

In Section 3.1, the stability of a single-pulse localized solution was analyzed and compared to that of

front and back solutions. We can take this further by noting that a 2-pulse solution is the combination of

two single-pulse solutions The stable single-pulse solution can be constructed using the symmetry of front

and back solutions. Therefore, a symmetric 2-pulse solution is stable in each component if it is constructed

from two stable single-pulse solutions that are reflections of each other. Although many asymmetric 2-

pulse solutions are often unstable, especially when glued of unstable single-pulse solutions. However, if an
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asymmetric 2-pulse solution is the gluing of two stable single-pulse solutions, and when the single-pulse

solution is such that its localized plateau remains near u∗ for a longer stretch than the other single-pulse,

it can still remain stable. The key is that both one-pluse solutions must be stable, so the 2-pulse solution

glued of them can also be stable under appropriate conditions. This intuition extends inductively to N -pulse

solutions that are comprised of N single-pulses glued together.

3.2.1 Main Result for Multi-Pulse Solutions

We begin by assuming U∗
n(µ) is a localized steady-state multi-pulse solution of (2.3), guaranteed to exist

by Theorem 2.2 in Section 2.2. Then, we make the connection between multi-pulses and the single-pulses

of the previous subsections precise with the following assumption.

Hypothesis 3.4. The localized solutions {U∗
n(µ)}n∈Z are parametried by constants N1, . . . , Nk, M1, . . . ,M2k ≥

N∗ for some N∗ ≥ 1, so that there exists constants C > 0, η > 1 such that

U∗,i
n (µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uf
n+Ni

(µ) + wf,−
n+Ni

(Ni), n ∈ [−Ni −M2i−1 : −Ni]

Uf
n+Ni

(µ) + wf,+
n+Ni

(Ni), n ∈ [−Ni : 0]

U b
n−Ni

(µ) + wb,−
n−Ni

(Ni), n ∈ [0 : Ni]

U b
n−Ni

(µ) + wb,+
n−Ni

(Ni), n ∈ [Ni : Ni +M2i]

(3.42)

and by taking the “gluing” point of the front and back of the first pulse U∗,1
n (µ) as n = 0, the localized

solution is U∗
n(µ) = U∗,i

n−Si
(µ) if n ≥ Si −Ni −M2i−1, M1 = M2k = ∞, Si =

∑︁2i−1
j=2 N⌊j/2+1⌋ +Mj for

all i ∈ [1 : k], and

|wf,−
n (Ni)| ≤ Cη−N+n, n ∈ [−M2i−1 : 0] (3.43)

|wf,+
n (Ni)| ≤ Cη−N , n ∈ [0 : Ni] (3.44)

|wb,−
n (Ni)| ≤ Cη−N , n ∈ [−Ni : 0] (3.45)

|wb,+
n (Ni)| ≤ Cη−N−n, n ∈ [0 : M2i] (3.46)

where N = min{N1, . . . , Nk,M1, . . . ,M2k}. Since U∗
n(µ) is unique when n = Si−Ni−M2i−1, we have

wf,−
0 (Ni)− wf,+

0 (Ni) = 0, (3.47)
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(︂
Uf
Ni
(µ) + wf,+

Ni
(Ni)

)︂
−
(︂
U b
−Ni

(µ) + wb,−
−Ni

(Ni)
)︂
= 0, (3.48)

wb,−
0 (Ni)− wb,+

0 (Ni) = 0, (3.49)(︂
U b
M2i

(µ) + wb,+
M2i

(Ni)
)︂
−
(︂
Uf
−M2i+1

(µ) + wf,−
−M2i+1

(Ni+1)
)︂
= 0. (3.50)

The “gluing” method in Hypothesis 3.4 is very similar to that in Hypothesis 3.2. Equations (3.47) and

(3.49) ensures the uniqueness of front and back solutions, equation (3.49) glues together front and back

solutions near u∗, and additional equation (3.50) glues together single-pulse solutions at their tails near 0.

Theorem 3.3. Suppose Hypotheses 3.1, 3.2, and 3.4 are satisfied, and define

Ω = C \ {[f ′(0, µ)− 4d, f ′(0, µ)] ∪ [f ′(u∗, µ)− 4d, f ′(u∗, µ)]} (3.51)

and Evans functions of front and back solutions

Df (λ) := det

(︃
RanP−,u

Uf (0;λ) RanP+,s
Uf (0;λ)

)︃
, (3.52)

Db(λ) := det

(︃
RanP−,u

Ub (0;λ) RanP+,s
Ub (0;λ)

)︃
, (3.53)

where P
±,s/u

Uf (0;λ) and P
±,s/u

Ub (0;λ) are projections to the systems V n+1 = A±
f,n(λ)V n and V n+1 =

A±
b,n(λ)V n, respectively. Fix λ∗ ∈ Ω and suppose that for mf ,mb ≥ 0 and for some δ > 0, we have

Df (λ) = (λ− λ∗)
mf

+O
(︂
|λ− λ∗|m

f+1
)︂
, (3.54)

Db(λ) = (λ− λ∗)
mb

+O
(︂
|λ− λ∗|m

b+1
)︂

(3.55)

for λ ∈ Bδ(λ∗). Then, we can define an analytic function DN (λ) such that

DN (λ) =
k∏︂

i=1

(︁
Df (λ) + O(e−αN )

)︁ (︁
Db(λ) + O(e−αN )

)︁
+ O(e−2αN ) (3.56)

and there exists a δ∗ sufficiently small, with δ > δ∗ > 0, and an N∗ > 0 sufficiently large, such that the

following hold uniformly in N ≥ N∗ where N = min{N1, . . . , Nk,M1, . . . ,M2k}:

(i) DN (λ) has precisely k(mf +mb) roots, counted with multiplicity, in Bδ∗(λ∗). These values of λ are

O(e−αN ) close to λ∗, with α > 1.
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(ii) The system (3.2) has a bounded, nontrivial solution at λ ∈ Bδ∗(λ∗) if and only if DN (λ) = 0.

The proof is in the following subsection by using the similar strategies as in Subsection 3.1.2.

3.2.2 Proof of Theorem 3.3

To begin, using (3.42) we can solve the eigenvalue problem (3.2) in pieces by solving the equations of

each pulse

V
f,−,i
n+1 = Af,−,i

n (λ)V
f,−,i
n , n ∈ [−M2i−1 : 0] (3.57)

V
f,+,i
n+1 = Af,+,i

n (λ)V
f,+,i
n , n ∈ [0 : Ni] (3.58)

V
b,−,i
n+1 = Ab,−,i

n (λ)V
b,−,i
n , n ∈ [−Ni : 0] (3.59)

V
b,+,i
n+1 = Ab,+,i

n (λ)V
b,+,i
n , n ∈ [0 : M2i] (3.60)

and then constructing the solution as

V
i
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V
f,−,i
n+Ni

, n ∈ [−Ni −M2i−1 : −Ni]

V
f,+,i
n+Ni

, n ∈ [−Ni : 0]

V
b,−,i
n−Ni

, n ∈ [0 : Ni]

V
b,+,i
n−Ni

, n ∈ [Ni : Ni +M2i].

Thus, we have a bounded solution to (3.2) if and only if we have solutions to (3.57)−(3.60) along with the

matching conditions

V
f,+,i
0 − V

f,−,i
0 = 0, (3.61)

V
f,+,i
Ni

− V
b,−,i
−Ni

= 0, (3.62)

V
b,+,i
0 − V

b,−,i
0 = 0, (3.63)

V
b,−,i
M2i

− V
f,+,i+1
−M2i+1

= 0. (3.64)
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From Lemma 3.8, we have exponential dichotomies for each equation (3.57)−(3.60), which can be chosen

so that they depend analytically on λ ∈ Bδ(λ∗) for δ > 0 small. That is, we have

⃓⃓⃓
Φf,−,s
U∗,i (n,m;λ)

⃓⃓⃓
≤ Ce−α(n−m), n ≥ m⃓⃓⃓

Φf,−,u
U∗,i (n,m;λ)

⃓⃓⃓
≤ Ce−α(m−n), n ≤ m

⎫⎪⎬⎪⎭ n,m ∈ [−M2i−1 : 0], (3.65)

⃓⃓⃓
Φf,+,s
U∗,i (n,m;λ)

⃓⃓⃓
≤ Ce−α(n−m), n ≥ m⃓⃓⃓

Φf,+,u
U∗,i (n,m;λ)

⃓⃓⃓
≤ Ce−α(m−n), n ≤ m

⎫⎪⎬⎪⎭ n,m ∈ [0 : Ni], (3.66)

⃓⃓⃓
Φb,−,s
U∗,i (n,m;λ)

⃓⃓⃓
≤ Ce−α(n−m), n ≥ m⃓⃓⃓

Φb,−,u
U∗,i (n,m;λ)

⃓⃓⃓
≤ Ce−α(m−n), n ≤ m

⎫⎪⎬⎪⎭ n,m ∈ [−Ni : 0], (3.67)

⃓⃓⃓
Φb,+,s
U∗,i (n,m;λ)

⃓⃓⃓
≤ Ce−α(n−m), n ≥ m⃓⃓⃓

Φb,+,u
U∗,i (n,m;λ)

⃓⃓⃓
≤ Ce−α(m−n), n ≤ m

⎫⎪⎬⎪⎭ n,m ∈ [0 : M2i]. (3.68)

We denote the associated projections P j,±,l
U∗,i (n;λ) := Φj,±,l

U∗,i (n, n;λ) where j = f, b for front/back solutions

and l = s, u for stable/unstable components in individual pulses. Moreover, as a consequence of Hypothesis

3.1, we have that

⃓⃓⃓
P f,−,s
U∗,i (−M2i−1;λ)− P s

0(0;λ)
⃓⃓⃓
≤ Ce−αN , (3.69)⃓⃓⃓

P f,+,u
U∗,i (Ni;λ)− P u

u∗(0;λ)
⃓⃓⃓
≤ Ce−αN , (3.70)⃓⃓⃓

P b,−,s
U∗,i (−Ni;λ)− P s

u∗(0;λ)
⃓⃓⃓
≤ Ce−αN , (3.71)⃓⃓⃓

P b,+,u
U∗,i (M2i;λ)− P u

0 (0;λ)
⃓⃓⃓
≤ Ce−αN . (3.72)

We now let au
∗

i := (af,+,u∗

i , ab,−,u∗

i ) ∈ ˜︁V u∗
a , a0i := (ab,+,0

i , af,−,0
i ) ∈ ˜︁V 0

a , bi := (bf,−i , bf,+i , bb,−i , bb,+i ) ∈ ˜︁Vb,

and λ ∈ ˜︁Vλ, where the spaces ˜︁V u∗
a , ˜︁V 0

a , ˜︁Vb, ˜︁Vλ are defined as follows:

˜︁V u∗
a :=

k⨁︂
i=1

RanP u
u∗(0;λ∗)⊕ RanP s

u∗(0;λ∗)

˜︁V 0
a :=

k−1⨁︂
i=1

RanP u
0 (0;λ∗)⊕ RanP s

0(0;λ∗)

˜︁Vb :=

k⨁︂
i=1

(︂
RanP f,−,u

U∗,i (0;λ∗)⊕ RanP f,+,s
U∗,i (0;λ∗)

)︂
⊕
(︂
RanP b,−,u

U∗,i (0;λ∗)⊕ RanP b,+,s
U∗,i (0;λ∗)

)︂
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˜︁Vλ := Bδ(λ∗) ⊂ C

where ˜︁V u∗
a , ˜︁V 0

a and ˜︁Vb are endowed with the maximum norm over components such that ∥˜︁V u∗
a ∥∞ =

maxi∈[1:k]{∥a
f,+,u∗

i ∥, ∥ab,−,u∗

i ∥}, ∥˜︁V 0
a ∥∞ = maxi∈[1:k−1]{∥a

b,+,0
i ∥∥af,−,0

i ∥} and ∥˜︁Vb∥∞ =

maxi∈[1:k]{∥b
f,−
i ∥, ∥bf,+i ∥, ∥bb,−i ∥, ∥bb,+i ∥}.

For δ sufficiently small and N1, . . . , Nk,M1, . . . ,M2k > N∗ sufficiently large, we can then write solu-

tions to the eigenvalue problem (3.2) for the localized structure U∗
n as

V
f,−,i
n = Φf,−,s

U∗,i (n,−M2i−1;λ)a
f,−,0
i−1 +Φf,−,u

U∗,i (n, 0;λ)b
f,−
i n ∈ [−M2i−1 : 0] (3.73)

V
f,+,i
n = Φf,+,s

U∗,i (n, 0;λ)b
f,+
i +Φf,+,u

U∗,i (n,Ni;λ)a
f,+,u∗

i n ∈ [0 : Ni] (3.74)

V
b,−,i
n = Φb,−,s

U∗,i (n,−Ni;λ)a
b,−,u∗

i +Φb,−,u
U∗,i (n, 0;λ)b

b,−
i n ∈ [−Ni : 0] (3.75)

V
b,+,i
n = Φb,+,s

U∗,i (n, 0;λ)b
b,+
i +Φb,+,u

U∗,i (n,M2i;λ)a
b,+,0
i n ∈ [0 : M2i] (3.76)

with af,−,0
0 = ab,+,0

k = 0.

In the next lemma, we will solve matching conditions (3.62) and (3.64).

Lemma 3.5. There exists an N∗ such that for all N > N∗, the following holds uniformly in N . There exists

operators F1 : ˜︁Vλ × ˜︁Vb → ˜︁V u∗
a and F2 : ˜︁Vλ × ˜︁Vb → ˜︁V 0

a such that V n as given by (3.73)−(3.76) with

au
∗
= F1(λ)b and a0 = F2(λ)b solves (3.56) for any b and λ. F1 and F2 are analytic in λ and linear in b,

and satisfies

|F1(λ)b| ≤ Ce−αN |b|, (3.77)

|F2(λ)b| ≤ Ce−αN |b|. (3.78)

Proof. For all i ∈ [1 : k], substituting from (3.73)−(3.76) into euqations (3.62) and (3.64) gives us

0 = Φf,+,s
U∗,i (Ni, 0;λ)b

b,+
i +Φf,+,u

U∗,i (Ni, Ni;λ)a
f,+,u∗

i

− Φb,−,s
U∗,i (−Ni,−Ni;λ)a

b,−,u∗

i − Φb,−,s
U∗,i (−Ni, 0;λ)b

b,−
i

= af,+,u∗

i − ab,−,u∗

i +Φf,+,s
U∗,i (Ni, 0;λ)b

b,+
i − Φb,−,s

U∗,i (−Ni, 0;λ)b
b,−
i (3.79)

+
(︂
P f,+,u
U∗,i (Ni;λ)− P u

u∗(0;λ)
)︂
af,+,u∗

i +
(︂
P s
u∗(0;λ)− P b,−,s

U∗,i (−Ni;λ)
)︂
ab,−,u∗

i
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and

0 = Φb,+,s
U∗,i (M2i, 0;λ)b

b,+
i +Φf,+,u

U∗,i (M2i,M2i;λ)a
b,+,0
i

− Φf,+,u
U∗,i+1(−M2i+1,−M2i+1;λ)a

f,−,0
i − Φf,−,u

U∗,i+1(M2i+1, 0;λ)b
f,−
i+1

= ab,+,0
i − af,−,0

i +Φb,+,s
U∗,i (M2i, 0;λ)b

b,+
i − Φf,−,u

U∗,i+1(−M2i+1, 0;λ)b
f,−
i+1 (3.80)

+
(︂
P b,+,u
U∗,i (M2i;λ)− P u

0 (0;λ)
)︂
ab,+,0
i +

(︂
P s
0(0;λ)− P f,−,s

U∗,i+1(−M2i+1;λ)
)︂
af,−,0
i

Define

G1(λ)(a
u∗
i , bi) :=

(︂
P f,+,u
U∗,i (Ni;λ)− P u

u∗(0;λ)
)︂
af,+,u∗

i +
(︂
P s
u∗(0;λ)− P f,+,s

U∗,i (−Ni;λ)
)︂
ab,−,u∗

i

− Φf,+,s
U∗,i (Ni, 0;λ)b

b,+
i +Φb,−,s

U∗,i (−Ni, 0;λ)b
b,−
i

and

G2(λ)(a
0
i , bi) :=

(︂
P b,+,u
U∗,i (M2i;λ)− P u

0 (0;λ)
)︂
ab,+,0
i +

(︂
P s
0(0;λ)− P f,−,s

U∗,i (−M2i+1;λ)
)︂
af,−,0
i

− Φb,+,s
U∗,i (M2i, 0;λ)b

b,+
i +Φf,−,u

U∗,i+1(−M2i+1, 0;λ)b
f,−
i+1.

Now, G1(λ)(a
u∗
, b) and G2(λ)(a

0, b) are analytic in λ and linear in au
∗

and b, and a0 and b, respectively.

We also notice that G2(λ)(a
0, b) is different from G1(λ)(a

u∗
, b), the elements in a0 or b are not multiples,

so bf1 and bbk are not assigned with some element in a0. Moreover, from (3.69) and (3.72) and definition of

the dichotomies,

|G1(λ)(a
u∗
, b)| ≤ Ce−αN (|au∗ |+ |b|), (3.81)

|G2(λ)(a
0, b)| ≤ Ce−αN (|a0|+ |b|). (3.82)

Define the map K1 and K2 as

K1 : ˜︁V u∗
a →

k⨁︂
i=1

C2

(af,+,u∗

i , ab,−,u∗

i ) ↦→ af,+,u∗

i − ab,−,u∗

i

33



and

K2 : ˜︁V 0
a →

k−1⨁︂
i=1

C2

(ab,+,0
i , af,−,0

i ) ↦→ ab,+,0
i − af,−,0

i

Since ˜︁V u∗
a =

⨁︁k
i=1RanP

u
u∗(0;λ∗) ⊕ RanP s

u∗(0;λ∗) =
⨁︁k

i=1C2, and ˜︁V 0
a =

⨁︁k
i=1RanP

u
u∗(0;λ∗) ⊕

RanP s
u∗(0;λ∗) =

⨁︁k−1
i=1 C2, K1 and K2 are linear isomorphisms. Equations (3.79) and (3.80) can be

written as

G1/2(λ)(0, b) = K1/2(a
u∗/0) +G1/2(λ)(a

u∗/0, 0) = (K1/2 +G1/2(λ)J1/2)(a
u∗/0) (3.83)

where J1/2(a
u∗/0) := (au

∗/0, 0). By (3.77) and (3.78), for N ≥ N∗ with N∗ sufficiently large, (K1/2 +

G1/2(λ)J1/2) is invertible so that we have the solution operator

au
∗/0 = −(K1/2 +G1/2(λ)J1/2)

−1G1/2(λ)(0, b) =: F1/2(λ)b. (3.84)

Finally, from (3.81)−(3.82) and (3.83), we have (3.77) and (3.78).

Using operators F1 and F2 from Lemma 3.5 and substituting from (3.73)−(3.76) into equations (3.61)

and (3.63) gives us

0 = Φf,+,s
U∗,i (0, 0;λ)b

f,+
i +Φf,+,u

U∗,i (0, Ni;λ)a
f,+,u∗

i − Φf,−,s
U∗,i (0,M2i−1;λ)a

f,−,0
i−1 − Φf,−,u

U∗,i (0, 0;λ)b
f,−
i

= P f,+,s
U∗,i (0;λ)bf,+i − P f,−,u

U∗,i (0;λ)bf,−i (3.85)

+Φf,+,u
U∗,i (0, Ni;λ)(F1(λ)b)

f,+,u∗

i − Φf,−,s
U∗,i (0,−M2i−1;λ)(F2(λ)b)

f,−,0
i−1

and

0 = Φb,+,s
U∗,i (0, 0;λ)b

b,+
i +Φb,+,u

U∗,i (0,M2i;λ)a
b,+,0
i − Φb,−,s

U∗,i (0,−Ni;λ)a
b,−,u∗

i − Φb,−,u
U∗,i (0, 0;λ)b

b,−
i

= P b,+,s
U∗,i (0;λ)b

b,+
i − P b,−,u

U∗,i (0;λ)bb,−i (3.86)

+Φb,+,u
U∗,i (0,M2i;λ)(F2(λ)b)

b,+,0
i − Φb,−,s

U∗,i (0,−Ni;λ)(F1(λ)b)
b,−,u∗

i .
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(F1(λ)b)
f,+,u∗

i and (F1(λ)b)
b,−,u∗

i are the components of F1(λ)b in RanP u
u∗(0;λ∗) and RanP s

u∗(0;λ∗);

(F2(λ)b)
f,−,0
i−1 and (F2(λ)b)

b,+,0
i are the components of F2(λ)b in RanP s

0(0;λ∗) and RanP u
0 (0;λ∗), re-

spectively. According to the exponential dichotomies (3.65)−(3.68) and lemma 3.5, we obtain

Φf,−,s
U∗,i (0,M2i−1;λ)(F2(λ)b)

f,−,0
i−1 = O(e−2αN |b|), (3.87)

Φf,+,u
U∗,i (0, Ni;λ)(F1(λ)b)

f,+,u∗

i = O(e−2αN |b|), (3.88)

Φb,−,s
U∗,i (0,−Ni;λ)(F1(λ)b)

b,−,u∗

i = O(e−2αN |b|), (3.89)

Φb,+,u
U∗,i (0,M2i;λ)(F2(λ)b)

b,+,0
i = O(e−2αN |b|) (3.90)

uniformly in λ near λ∗. Temporarily rewrite solution operators and projectors so that the following equations

do not exceed the lateral length:

P−,u
f,i := P f,−,u

U∗,i (0;λ) P+,s
f,i := P f,+,s

U∗,i (0;λ)

P−,u
b,i := P b,−,u

U∗,i (0;λ) P+,s
b,i := P b,+,s

U∗,i (0;λ)

Φ+,u
f,i := Φf,+,u

U∗,i (0, Ni;λ) Φ−,s
b,i := Φb,−,s

U∗,i (0,−Ni;λ)

Φ−,s
f,i := Φf,−,s

U∗,i (0,−M2i−1;λ) Φ+,u
b,i := Φb,+,u

U∗,i (0,M2i;λ)

Rewrite (3.85) and (3.86) and combine them in matrix form,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P−,u
f,1 P+,s

f,1 0 0 0 0 0 0 0

0 0 −P−,u
b,1 P+,s

b,1 0 0 0 0 0

0 0 0 0
. . . 0 0 0 0

0 0 0 0 0 −P−,u
f,k P+,s

f,k 0 0

0 0 0 0 0 0 0 −P−,u
b,k P+,s

b,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ+,u
f,1 0 0 0 0

0 −Φ−,s
b,1 0 0 0

0 0
. . . 0 0

0 0 0 Φ+,u
f,k 0

0 0 0 0 −Φ−,s
b,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
F1(λ) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Φ−,s
f,1 0 0 0 0

0 Φ+,u
b,1 0 0 0

0 0
. . . 0 0

0 0 0 −Φ−,s
f,k 0

0 0 0 0 Φ+,u
b,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

F2(λ)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b
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=: [PN (λ) +R1
N (λ) +R2

N (λ)]b

From (3.87)−(3.90), we can observe that

R1
N (λ) = O(e−2αN ) and R2

N (λ) = O(e−2αN )

uniformly in λ near λ∗. If b ̸= 0 and [PN (λ) + R1
N (λ) + R2

N (λ)]b = 0, we can find a bounded nontrivial

solution for the eigenvalue problem (3.57)−(3.62) uniformly in λ near λ∗. Define P̂−,u
f,i as P−,u

f,i restricted

to RanP f,−,u
U∗,i (0;λ∗)

P̂−,u
f,i := P−,u

f,i

⃓⃓⃓⃓
RanP f,−,u

U∗,i (0;λ∗)

and similarly for the other projections P f,+,s
U∗,i , P b,−,u

U∗,i , and P b,+,s
U∗,i .

P̂N (λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P̂−,u
f,1 P̂+,s

f,1 0 0 0 0 0 0 0

0 0 −P̂−,u
b,1 P̂+,s

b,1 0 0 0 0 0

0 0 0 0
. . . 0 0 0 0

0 0 0 0 0 −P̂−,u
f,k P̂+,s

f,k 0 0

0 0 0 0 0 0 0 −P̂−,u
b,k P̂+,s

b,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Define R̂1
N (λ) as R1

N (λ) restricted to ˜︁Vb

R̂1
N (λ) = R1

N (λ)

⃓⃓⃓⃓
˜︁Vb

and similarly for R2
N (λ). Define

DN (λ) := det
(︂
P̂ (λ) + R̂1

N (λ) + R̂2
N (λ)

)︂

and there exists a bounded nontrivial solution at λ ∈ Bδ∗(λ∗) if and only if DN (λ) = 0. When N is large

enough, R̂1
N (λ) and R̂2

N (λ) are small deviations exponentially approching 0 for P̂N (λ), we can rewrite
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DN (λ) as

det
(︂
P̂ (λ)

)︂
+ R̃(λ) = 0

where

R̃N (λ) = O
(︂⃓⃓⃓
R̂1

N (λ) + R̂2
N (λ)

⃓⃓⃓)︂
= O(e−2αN ). (3.91)

So, there exists a C which does not depend on λ or N such that for λ ∈ Bδ(λ∗) with δ sufficiently small

and N ≥ N∗, with N∗ sufficiently large,

R̃N (λ) ≤ Ce−2αN .

Since P̂N (λ) is block diagonal, its determinate is just the multiplication of determinates of these blocks,

det
(︂
P̂ (λ)

)︂
=

k∏︂
i=1

det

(︃
−P̂−,u

f,i P̂+,s
f,i

)︃
· det

(︃
−P̂−,u

b,i P̂+,s
b,i

)︃
.

Each P̂ in P̂ (λ) is previously defined, and

RanP−,u
f,i

⃓⃓⃓⃓
RanP f,−,u

U∗,i (0;λ∗)

→ RanP−,u
f,i

is an isomorphism with uniform bound in λ near λ∗, and similarly for RanP f,+,s
U∗,i , RanP b,−,u

U∗,i , and RanP b,+,s
U∗,i .

So, we have a bounded nontrivial solution if and only if

DN (λ) =
k∏︂

i=1

det

(︃
−RanP−,u

f,i RanP+,s
f,i

)︃
· det

(︃
−RanP−,u

b,i RanP+,s
b,i

)︃
+ R̃N (λ) = 0.

Since corrections (3.43)−(3.46) have been added to both front and back of each pulse (3.42), we also have

that

|P f,−,u
U∗,i (0;λ)− P−,u

Uf ,i
(0;λ)| ≤ Ce−αN ,

|P f,+,s
U∗,i (0;λ)− P−,s

Uf ,i
(0;λ)| ≤ Ce−αN ,
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|P b,−,u
U∗,i (0;λ)− P−,u

Ub,i
(0;λ)| ≤ Ce−αN ,

|P b,+,s
U∗,i (0;λ)− P−,s

Ub,i
(0;λ)| ≤ Ce−αN .

By performing operations similar to R̃N , we obtain

0 =

k∏︂
i=1

(︃
det

(︃
RanP−,u

Uf ,i
(0;λ) RanP+,s

Uf ,i
(0;λ)

)︃
+O(e−αN )

)︃
·(︃

det

(︃
RanP−,u

Ub,i
(0;λ) RanP+,s

Ub,i
(0;λ)

)︃
+O(e−αN )

)︃
+O(e−2αN )

which can then be written

DN (λ) =

k∏︂
i=1

(︁
Df (λ) + O(e−αN )

)︁ (︁
Db(λ) + O(e−αN )

)︁
+ O(e−2αN ) = 0.

Since, by assumption, (3.52) and (3.53) hold for λ ∈ Bδ(λ∗).

Lemma 3.6. Suppose that (3.54) and (3.55) hold for λ ∈ Bδ0(λ∗) and DN (λ) is as defined in (3.56) for

λ ∈ Bδ1(λ∗). Then there exists a δ∗ satisfying min{δ0, δ1} > δ∗ > 0 such that for N∗ > 0 sufficiently large,

DN (λ) has exactly k(mf +mb) zeroes in Bδ∗(λ∗), uniformly in N ≥ N∗, which are O(e−αN/(k·h(mf ,mb)))

close to λ∗, with h(mf ,mb) = 4max{mf ,mb}+ ϵ and ϵ > 0 arbitrarily small.

Recall Theorem 3.2, it will be used again to prove Lemma 3.6.

Proof. To begin, we let z = λ− λ∗,

DN (λ) =

k∏︂
i=1

(︁
zmf+mb +O(zmf+mb+1) + O(e−αNzmf ) + O(e−αNzmb)

)︁
+O(e−2αN )

=

k∑︂
i=0

(︃
k

i

)︃
z(k−i)(mf+mb)

(︁
O(zmf+mb+1) + O(e−αNzmf ) + O(e−αNzmb)

)︁i
+O(e−2αN )

= zk(mf+mb) +O(zmf+mb+1) + O(e−αNzmf ) + O(e−αNzmb) + h.o.t+O(e−2αN ).

Then, we define

f(z) = zk(mf+mb)

g(z) = O(zmf+mb+1) + O(e−αN (zmf+mb + zmf + zmb)) + O(e−2αN )
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with an appropriate contour K = Br(0) for some r > 0, ensuring that the error terms in g(z) are small

enough. We wish to find the smallest r such that f and g have the same number of zeros in K near λ∗. We

require

O(rmf+mb+1) + O(e−αN (rmf + rmb)) + O(e−2αN ) < rk(mf+mb). (3.92)

By rewiriting (3.92), we have

O(e−2αN ) < rk(mf+mb)
(︂
1−O(r1+(k−1)(mf+mb))−O(e−αN (r−kmb−(k−1)mf + r−kmf−(k−1)mb))

)︂
.

(3.93)

For N∗ sufficiently large, there exists a constant C such that we can write (3.93) as

Ce−2αN < rk(mf+mb)
(︂
1− Cr1+(k−1)(mf+mb) − Ce−αN (r−kmb−(k−1)mf + r−kmf−(k−1)mb)

)︂
. (3.94)

The choice of r gives the distance over which we can apply Rouché’s theorem, and we chooce r =

C−1e−αN/(k·h(mf ,mb)),

C2e−2αN < e
−αN

mf+mb
h(mf ,mb)

(︄
1− e

−αN
1+(k−1)(mf+mb)

k·h(mf ,mb) − e
−2αN

k(mf+mb)−mf
k·h(mf ,mb) − e

−2αN
k(mf+mb)−mb

k·h(mf ,mb)

)︄

where h(mf ,mb) is a function to be determined. We require mf+mb

h(mf ,mb)
≤ 1 as well as k(mf+mb)−mf

k·h(mf ,mb)
< 1

2

and k(mf+mb)−mb

k·h(mf ,mb)
< 1

2 , where we require strict inequalities to ensure the second factor in (3.94) can be

made arbitrarily close to 1 without requiring dependence of the constant on mf or mb. We can simplify

above three inequalities to clearly obtain the necessary conditions for h(mf ,mb),

mf +mb ≤ h(mf ,mb), 2mb + 2mf

(︃
1− 1

k

)︃
< h(mf ,mb), and 2mf + 2mb

(︃
1− 1

k

)︃
< h(mf ,mb).

Thus, we chooce h(mf ,mb) > 4max{mf ,mb} to hold these inequalities for all k ≥ 2, and so we conclude

that r = O(e−αN/(k·h(mf ,mb))), where h(mf ,mb) = 4max{mf ,mb}+ ϵ, where ϵ > 0. Therefore, DN (λ)

has exactly k(mf +mb) zeros in a small neighborhood of λ∗, exponentially closing to λ∗ for large N .
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Chapter 4

Conclusion

This thesis analyzes the stability of spatially localized single- and multi-pulse solutions of the discrete

Nagumo equation. On the basis of the existence of spatially localized solutions [6, 3], linearizing the non-

linear system around the steady-state solutions and applying exponential dichotomy theory, an isomorphism

between localized solutions and front and back solutions is constructed. Then, deriving the spectral condi-

tion through the Evans function, stable front and back solutions are sufficient to obtain a stable localized

solution. For single-pulse solutions, the stability requires symmetry between front and back solutions and

ensures exponential decay of perturbations. Extending the analysis to multi-pulse solutions, it indicates

that if each constituent pulse is individually stable and symmetrically bonded in space, the stability can be

attained. If these multi-pulse solutions are asymmetrically bonded in space, the stability can also be main-

tained under appropriate conditions. This method is not limited to analyzing discrete Nagumo equation, but

can also be widely applied to other lattice equations, partial differential equations, or approximate solutions

of certain nonlinear systems with similar structures.

In this thesis, we consider only the stability of localized steady-state solutions. However, in many non-

linear systems, asymmetric solutions are more common than symmetric solutions, especially in equations

involving bifurcation phenomena or symmetry breaking. For systems, such as the Nagumo equation or

other nonlinear reaction-diffusion systems, as the bifurcation parameter µ changes, the solution may un-

dergo bifurcation. The originally symmetric solution may become unstable, while the asymmetric solution

may become a new stable solution. The stability of asymmetric pulse solutions and their appropriate condi-

tions are also valuable and worth studying. Especially in practical applications, the study of the stability of

asymmetric solutions can be more attractive.
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In the future research, the stability of spatial localized solutions can be extended to the more complex

situation of time-periodic localized solutions [1], often called breathers. These solutions possess both spa-

tiality and temporal periodicity, representing a subtle balance between temporal and spatial oscillations.

In Hodgkin-Huxley model, time-periodic localized solutions can effectively simulate information trans-

mission and signal propagation between neurons, and better explain phenomena such as pulse coupling

and synchronicities of neurons [8]. The existing research on localized synchrony patterns in the bistable

Ginzburg−Landau system [1] could be applied to study this model as my future potential research. In vari-

ous other application fields, time-periodic localized solutions also play a crucial role. In the future research,

we will conduct multi-scale analysis, such as bifurcation phenomena and numerical simulation methods,

to reveal the appropriate conditions and stability for the formation of local periodic solutions in various

nonlinear systems, providing new perspectives and methods for solving practical problems.
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