
NEXT-GENERATION DATA CENTERS: EXPERIMENTAL

ANALYSIS OF TOPOLOGIES AND ALGORITHMS FOR

NEXT-GENERATION DATA CENTERS

Abdeltif Azzizi

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science (Computer Science)

Concordia University

Montréal, Québec, Canada

July 2025

© Abdeltif Azzizi, 2025

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Abdeltif Azzizi

Entitled: Next-Generation Data Centers: Experimental Analysis

of Topologies and Algorithms for Next-Generation Data

Centers

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Abdelhak Bentaleb

Examiner
Dr. Abdelhak Bentaleb

Examiner
Dr. Roch Glitho

Supervisor
Dr. Chadi Assi

Approved by
Dr. Denis Pankratov, Graduate Program Director

2025

Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Next-Generation Data Centers: Experimental Analysis of Topologies

and Algorithms for Next-Generation Data Centers

Abdeltif Azzizi

In recent years, data center networks (DCNs) have faced growing pressure from AI

and ML workloads with intensive communication patterns and stringent latency re-

quirements. Traditional hierarchical architectures like Clos (Fat-Tree) increasingly

struggle with scalability bottlenecks, operational complexity, and congestion under

bursty traffic. To address these challenges, this work explores the Structured Re-

Arranged Topology (STRAT), which combines expander-graph-inspired path diver-

sity with deterministic structure to enable efficient, scalable, and fault-tolerant de-

signs. Unlike rigid designs, STRAT supports incremental growth, reduced cabling

complexity, and better load distribution. This thesis evaluates STRAT not only in

simulation but also on real programmable-switch hardware, demonstrating its practi-

cal viability. A key contribution is DEALER, a congestion-aware, data-plane-friendly

forwarding algorithm leveraging programmable switches. DEALER uses a distributed

distance-vector protocol and local queue occupancy to balance load among equal-cost

and slightly longer paths, achieving significant improvements over ECMP in high-

load scenarios while running at line rate on commercial ASICs. To further enhance

STRAT, this work integrates a hybrid electrical-optical fabric with Optical Circuit

Switching (OCS) links, guided by proactive, ML-based flow classification. An XG-

Boost model predicts elephant flows early, enabling their diversion to pre-configured

optical paths with minimal control overhead. Simulations show reductions in tail

latency and improved throughput. Together, these contributions offer a practical,

holistic redesign for DCNs, uniting scalable graph-based topologies, programmable

forwarding logic, and ML-guided optical hybridization to meet the performance, effi-

ciency, and scalability demands of modern AI and cloud workloads.

iii

Acknowledgments

The completion of this thesis marks the culmination of a long, challenging, and re-

warding journey—one that would have been impossible without the steadfast support,

patience, and encouragement of many wonderful people.

To my parents, Lalla Khadija El Hassani and Boubker Azzizi: Your unwaver-

ing belief in my abilities has been my anchor. Thank you for the countless sacrifices,

for celebrating every small victory, and for reminding me—on the difficult days—that

perseverance and passion always prevail. You are the reason this work exists, thank

you for everything.

To my siblings, Ayoub, Layla, and Ilyass: Thank you for your constant encour-

agement and sacrifices, all the work has been motivated by you and for you. Your

support has meant more than words can say.

To Laaraichi family Your kindness and generosity when I first arrived made all the

difference. Thank you for welcoming me as one of your own, for helping me settle in,

and for showing me such genuine care and hospitality.

To my supervisor, Dr. Chadi Assi: Your insightful guidance, high standards,

and patient mentorship pushed me to refine my ideas and elevate this thesis far

beyond what I first imagined. Thank you for challenging me to think critically, for

offering constructive feedback at every stage, and for sharing your deep expertise so

generously.

Each of you has shaped this work in meaningful ways. I am deeply grateful for your

support and honored to have you alongside me in this journey.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 1

1.3 Thesis Contributions . 2

1.3.1 Experimental Evaluation and Validation of Expander-Based

STRAT Topologies . 2

1.3.2 A Hybrid Optical-Electrical STRAT Architecture with ML-

Driven Flow Classification . 3

1.4 Thesis Organization . 3

2 Experimental Evaluation and Validation of Expander-Based STRAT

Topologies 4

2.1 Introduction . 4

2.2 Related Works . 5

2.2.1 STRAT: STructured Re-Arranged Topology 8

2.3 Trident4®-Based Testbed: Architecture 9

2.4 Testbed Architecture & Design . 11

2.5 Investigated Topologies . 13

2.6 DEALER Algorithm . 16

2.6.1 Background & Motivation . 16

2.6.2 Proposed Routing Algorithm 17

2.6.3 PathPort & Updating Routing Tables: 23

v

2.6.4 Forwarding Protocol: Dynamic Expander Algorithm for Load-

Effected Routing . 23

2.7 Routing Validation in P4 & Simulation Results 25

2.8 Routing Implementation in TD4® . 25

2.9 Experimental Results . 28

2.9.1 Aggregate Delivery Under Uniform Traffic 28

2.9.2 Congestion hotspots . 29

2.9.3 Cost–Performance Trade-off 30

2.9.4 Key Take-aways . 30

2.9.5 Distributed DNN training Traffic Pattern 31

2.10 Conclusion . 34

3 ML-Driven Optical–Electrical Expander Fabrics for Low-Latency

Data-Center Networks 35

3.1 Introduction . 35

3.2 Related Works . 36

3.2.1 Limitations of Electrical Packet-Switched Architectures 37

3.2.2 Hybrid Optical-Electrical DCNs: Toward Scalable and Energy-

Efficient Interconnects . 38

3.3 STRAT: A Structured Expander Topology for Flat, Resilient DCNs . 40

3.4 Machine Learning for Flow Classification and OCS Scheduling 41

3.5 Hybrid-STRAT: Hybrid Expander Topology 42

3.5.1 Methodology . 42

3.5.2 Hybrid-STRAT: Expander Upgrade 43

3.6 Experimental Testbed . 45

3.6.1 Simulation Components . 45

3.6.2 ML Classifier Training Data 48

3.7 Results and Evaluation . 49

3.8 Conclusion . 52

4 Conclusion 54

vi

List of Figures

2.1 Trident4-X11C Architecture . 9

2.2 Unfolding a 2-layer Clos . 10

2.3 Testbed Architecture . 11

2.4 STRAT 11 . 14

2.5 STRAT 14 . 14

2.6 STRAT 16 . 14

2.7 2-Tier Clos . 15

2.8 3-Tier Clos . 15

2.9 8-node expander network . 19

2.10 PING 2 propagation . 20

2.11 Routing tables for various optimization scenarios 21

2.12 DEALER Algorithm . 24

2.13 Primary & Alternative Members Mapping in TD4® 27

2.14 Different ECMP grouping over a small 8-node STRAT 28

2.15 Packet Delivery Ratio STRAT 14 vs Clos3 29

2.16 Packet Delivery Ratio STRAT 16 & 11 vs Clos2 29

2.17 Hotspots map for STRAT 14 . 30

2.18 Hotspots map for Clos 3-Tier . 30

2.19 Network Load at 95% Throughput vs Network Cost 31

2.20 STRAT 16 . 32

2.21 STRAT 14 . 32

2.22 Throughput comparison . 32

2.23 Ring traffic STRAT vs Clos . 33

2.24 STRAT 11 . 34

2.25 Ring Traffic Heatmap . 34

3.1 Operations of optical switch . 42

vii

3.2 STRAT based on optical switches . 44

3.3 OMNeT++ Custom Classifier . 46

3.4 OMNeT++ Custom Host . 47

3.5 Pure EPS STRAT 64 vs Hybrid STRAT 64 Average Packet Delay . . 50

3.6 Pure EPS STRAT 64 vs Hybrid STRAT 64 Maximum Packet Delay . 50

3.7 Delay vs hop count: Hybrid vs EPS (STRAT-64) 52

viii

List of Tables

2.1 Topology Metric Comparison and Summary 16

2.2 SP RT Node 2 . 21

2.3 OSP RT Node 2 . 21

2.4 OSP RT Opt. 1 . 21

2.5 OSP RT Opt. 2 (loop-less) . 21

2.6 Routing Table . 26

2.7 RT ECMP Mapping . 26

2.8 Reliability metrics . 31

3.1 Training dataset statistics. 49

ix

Chapter 1

Introduction

1.1 Background

As the digital economy expands, the demand for more efficient and scalable data

center topologies continues to rise. Modern data centers must not only handle large

volumes of data but also provide the infrastructure necessary for rapid data process-

ing and retrieval. This demand is fueled by the proliferation of cloud services, big

data analytics, and artificial intelligence. The exponential growth in artificial intel-

ligence (AI) applications significantly impacts data center operations. AI workloads,

characterized by intensive data processing and the need for real-time analytics, re-

quire data centers to be exceptionally responsive and adaptable. Addressing these

needs is crucial for maintaining system efficiency and ensuring that the infrastructure

can manage the increasing complexity and volume of both traditional and AI-driven

tasks, while being constrained by cost, space and power.

1.2 Motivation

Modern data centers are the backbone of the digital economy, powering applications

in cloud computing, big data, and artificial intelligence. However, the exponential in-

crease in computation and data traffic has revealed significant challenges in traditional

data center designs. Issues such as scalability bottlenecks, high energy consumption,

complex management, and the need for predictable performance under diverse work-

loads are increasingly critical [15, 39, 42]. These problems are amplified by the shift

1

toward service-oriented architectures and the growing diversity of applications run-

ning on virtualized platforms [27, 37]. Additionally, evolving architectural trends

such as full disaggregation, programmable infrastructure, and AI-driven automation

are reshaping how data centers are built and operated [30,41].

To address these challenges, there is a growing emphasis on rethinking network

topologies, integrating intelligent routing algorithms, and leveraging hybrid electrical-

optical fabrics. This thesis is motivated by the urgent need to explore and evaluate

novel data center network designs that can meet the scalability, performance, and

energy-efficiency demands of next-generation workloads. By focusing on experimen-

tal validation of expander-based architectures and machine-learning-enhanced hybrid

switching, this work contributes toward bridging the gap between theoretical innova-

tion and practical deployment.

1.3 Thesis Contributions

Building upon the motivation outlined in the preceding section, this thesis makes the

following key contributions to the advancement of scalable, resilient, and cost-effective

data center network architectures:

1.3.1 Experimental Evaluation and Validation of Expander-

Based STRAT Topologies

Chapter 2 presents a comprehensive experimental and simulation-based evaluation of

STRAT, an expander-graph-inspired flat topology, positioned as a practical alterna-

tive to conventional Clos architectures in data center networks. First, we construct

a real-world testbed using commercial off-the-shelf Broadcom Trident4 switches to

model both STRAT and Clos topologies at scale. This testbed enables rigorous

performance evaluation under realistic conditions. Second, we conduct architectural

and metric-based comparisons through OMNeT++ simulations and hardware test-

ing. STRAT consistently outperforms Clos in key metrics such as throughput (up to

43% improvement), switch count (about 40% fewer), and traffic distribution under

load. Finally, we introduce DEALER—a lightweight, programmable routing algo-

rithm tailored for STRAT—which leverages expander path diversity and local queue

2

awareness. DEALER achieves significantly lower drop ratios and better load balanc-

ing compared to traditional ECMP routing, and is validated both in simulation and

on hardware.

1.3.2 A Hybrid Optical-Electrical STRAT Architecture with

ML-Driven Flow Classification

Chapter 3 proposes a novel hybrid architecture that augments STRAT with a sparse

overlay of Optical Circuit Switching (OCS) links to enhance throughput and man-

age long-lived flows more effectively. Inspired by communication patterns found in

distributed deep learning, we overlay structured optical rings that offload elephant

flows while retaining mice flows within the electrical STRAT fabric. To support this

design, we incorporate an XGBoost-based classifier trained on the UNIV1 dataset to

distinguish mice from elephant flows using early packet-level features. The model gen-

eralizes well across workloads, achieving an F1 score of approximately 0.91–0.93, and

enables real-time traffic steering. The hybrid STRAT architecture is implemented and

evaluated in OMNeT++, demonstrating significant improvements in latency, packet

delivery, and throughput under diverse traffic conditions compared to purely electrical

designs.

1.4 Thesis Organization

This thesis is structured as follows. Chapter 1 introduces the background and moti-

vation, detailing the limitations of current hierarchical and electrical-only data cen-

ter architectures, and presenting the case for exploring flat and hybrid alternatives.

Chapter 2 focuses on the design, implementation, and evaluation of STRAT, show-

casing its architectural benefits and validating its performance through both physical

testbed experiments and simulations. Chapter 3 builds upon this by introducing a

hybrid STRAT variant enhanced with optical links and machine learning-based flow

classification, with results from extensive OMNeT++ simulations. Finally, Chapter 4

concludes the thesis by summarizing key findings and outlining directions for future

research in scalable, programmable data center networking.

3

Chapter 2

Experimental Evaluation and

Validation of Expander-Based

STRAT Topologies

2.1 Introduction

This chapter presents an experimental and simulation-based evaluation of two data

center network (DCN) topologies: the widely adopted hierarchical Clos architecture

and STRAT, a flat, expander-based topology designed around passive optical inter-

connects. While Clos offers proven scalability and performance, it incurs hardware

complexity and suffers from congestion in oversubscribed scenarios. STRAT, by con-

trast, eliminates aggregation and spine layers entirely—using only Top-of-Rack (ToR)

switches interconnected via static optical patch panels—to reduce cost, simplify de-

ployment, and enhance path diversity. Our goal is to assess these topologies based

on their inherent architectural properties—namely throughput, congestion resilience,

scalability, and cost—without relying on congestion control protocols or centralized

traffic engineering. To this end, we adopt simple forwarding schemes based purely

on local information: ECMP for Clos, and ECMP with Dynamic Group Multipath

(DGM) for STRAT. We evaluate both topologies on a physical testbed built from

commercial Ethernet switches and further validate scalability through packet-level

simulations of networks with up to 256 switches and 1,024 hosts using OMNeT++.

We also introduce DEALER, a lightweight routing algorithm tailored to STRAT’s

4

topology, and evaluate its effectiveness in dynamic conditions. Our results show that

STRAT achieves up to 43% higher throughput and requires approximately 40% fewer

switches than a comparable Clos topology. These gains are further supported by Load

Area Under Curve (LAUC) analysis and congestion hotspot visualizations.

2.2 Related Works

In data center network design, Jellyfish [44] topology has been proposed as an in-

novative alternative to a conventional fat-tree. Jellyfish utilizes a random regular

graph, which proves to be cost-effective but introduces several challenges, particu-

larly in routing and scalability. Routing in Jellyfish is complex due to its random

structure, making common strategies like shortest path routing and equal-cost multi-

path routing (ECMP) ineffective. Enhanced routing can be achieved using k-shortest

path routing (KSP) with heuristics such as randomization and edge-disjointness to

improve path diversity [4]. Scalability, while generally better than fat-trees, poses is-

sues for smaller systems where fat-trees may be more effective due to their structured

design [60]. Additionally, handling link failures in Jellyfish requires sophisticated algo-

rithms to ensure robust backup paths to maintain connectivity, further complicating

its deployment.

VL2 [18] is a network architecture tailored for dynamic resource allocation within

data centers, facilitating both agility and cost efficiency by supporting large server

pools. This architecture introduces a uniform high capacity between servers, per-

formance isolation, and adheres to Ethernet layer-2 semantics. Despite these bene-

fits, VL2 faces several challenges, including a complex setup due to its reliance on

flat addressing and Valiant Load Balancing (VLB), which can complicate network

management. Additionally, VL2’s functionality hinges significantly on end-system

modifications for address resolution, potentially restricting network flexibility and in-

creasing administrative overhead. Furthermore, the deployment of VL2 may involve

substantial costs and specific high-speed hardware requirements, which may not be

feasible for all data centers to implement immediately [17].

DCube [21] is a network architecture for connecting servers in containerized data

5

centers using dual-port servers and low-end switches. It forms a hypercube-like struc-

ture, improving throughput and resilience to server or switch failures. While it re-

duces infrastructure costs, DCube excels mainly for specific traffic patterns compared

to BCube. DCell [20], a scalable and fault-tolerant architecture, improves capacity,

load balancing, and fault tolerance. However, its complexity increases with scale,

leading to management challenges, traffic imbalances, and congestion issues. Addi-

tionally, high node degrees and complex routing protocols complicate implementation

and maintenance [12].

FIConn [31] is a data center networking topology that utilizes both Ethernet ports

on servers — traditionally one for active connections and the other for backup — to

create a scalable, cost-effective network structure. However, it has notable limitations,

including challenges in network expansion and higher costs as the scale of operations

increases. Moreover, FIConn’s design limits server node degrees to two, which can

restrict performance in large-scale deployments due to insufficient connectivity and

fault tolerance. More advanced alternatives like BCCC [33] have been shown to of-

fer better expandability and efficiency, highlighting areas where FIConn could be

improved [32]. The Dragonfly+ [43] topology is a hierarchical network architecture

designed to improve upon the scalability and efficiency limitations of traditional Fat

Tree and original Dragonfly networks. It organizes routers into groups, where intra-

group connectivity follows a bipartite structure between leaf and spine routers, while

inter-group connectivity forms a completely connected graph through global links.

This hybrid approach combines the benefits of flattened topologies with structured

routing, reducing the number of required global links and enhancing path diversity.

Dragonfly+ uses a novel routing algorithm called Fully Progressive Adaptive Routing

(FPAR), which dynamically chooses between minimal and non-minimal paths based

on local queue lengths and congestion status. Additionally, Dragonfly+ improves

deadlock avoidance by using just two virtual lanes (VLs), compared to three or more

in previous designs, which helps reduce buffer fragmentation and simplifies hardware

requirements. Analytically, Dragonfly+ achieves better scalability, supporting up to

105,000 hosts using 36-port routers, and delivers at least 50% bi-sectional bandwidth

utilization for arbitrary traffic patterns. It also maintains a low network diameter

(typically 3 hops), ensuring low latency across a wide range of workloads. However,

its effectiveness depends heavily on balanced inter-group connectivity and careful

6

traffic engineering. Drawbacks include increased complexity in routing management

due to the need for VL remapping, congestion notifications, and adaptive decision-

making at each router. Physical deployment can also be intricate due to the global

link design and the need to maintain full bi-sectional bandwidth across all groups,

making wiring and layout planning more challenging in large-scale environments. The

HyperX [38] topology is a direct network derived from the hypercube, designed to

leverage high-radix switches for scalable and low-latency communication in datacen-

ter and high-performance computing environments. HyperX arranges switches in a

multi-dimensional lattice, where each node is identified by a coordinate vector and

is connected to other switches that differ by a single coordinate. This geometric

structure enables rich path diversity and fault tolerance, as multiple link-disjoint and

node-disjoint paths can be established between any two nodes. The topology sup-

ports both shortest and near-shortest paths, which can be used adaptively to balance

load or recover from failures. In failure scenarios, HyperX facilitates both protection

(precomputed backup paths) and restoration (on-the-fly rerouting) schemes, ensuring

high survivability even under multiple link faults.

HyperX is characterized by its high path redundancy, low average hop count, and

strong resilience to link and switch failures. The number of available shortest paths

between two nodes is given by ∆!, where ∆ is the number of dimensions in which

their coordinates differ. This extensive path diversity allows robust multipath routing

and enhances load balancing capabilities. However, a key drawback of HyperX is

the increased routing complexity: computing and maintaining large sets of disjoint

paths requires significant overhead, especially in dynamic or large-scale networks.

Additionally, its physical implementation is nontrivial due to the multidimensional

layout, which leads to non-intuitive cabling and potentially higher latency if the

dimensions are not uniformly populated.

The fat-tree based on a Clos topology, widely used in high-performance com-

puting and data center networks, offers uniform high capacity and efficient adaptive

routing. However, it has significant limitations in scalability and complexity. Its phys-

ical layout requires many switches and complex wiring, increasing costs and power

consumption. As the network scales, the switch radix does not keep pace with the

growth in endpoints, leading to longer paths and higher latency for sensitive applica-

tions [36]. Additionally, managing fault tolerance becomes more difficult as network

7

size increases, with more components prone to failure [23].

2.2.1 STRAT: STructured Re-Arranged Topology

STRAT [14] introduces a fundamentally different approach to data center network de-

sign compared to traditional hierarchical and flattened topologies such as Clos, Drag-

onfly, Dragonfly+, HyperX, and Flattened Clos. Unlike these architectures—which

typically rely on multi-tiered designs with dedicated aggregation and spine layers—STRAT

eliminates the hierarchy entirely by using only Top-of-Rack (ToR) switches. Each ToR

in STRAT serves a dual role: it multiplexes local server traffic and forwards transit

traffic for other ToRs, effectively functioning as both an edge and core switch. The

core of STRAT’s innovation lies in its use of static, passive optical patch panels to

directly interconnect ToRs in a highly meshed expander-like topology. This design

eliminates the need for active optical circuit switching or high-radix central routers

seen in Dragonfly-class architectures. As a result, STRAT reduces the entire network

hardware footprint to a single ToR switch model, dramatically simplifying procure-

ment, deployment, and operational complexity. In contrast to Clos and Dragonfly-like

topologies that require extensive cabling, complex fan-out, and high-radix switches to

scale, STRAT enables port aggregation into large bundles, reducing transceiver count

and fiber complexity. Its passive optical fabric also scales linearly by adding loopback

plugs to preinstalled patch panels—without requiring reconfiguration or new switch-

ing layers—making it uniquely amenable to incremental scaling from small clusters to

thousands of nodes. Furthermore, STRAT is designed for compatibility with off-the-

shelf Ethernet ASICs and full packet-based forwarding, without reliance on circuit-

switching or traffic reconfiguration. Its rich path diversity and expander connectivity

confer strong resilience to congestion and failure, while maintaining cost and energy

efficiency. This architectural simplicity, passive scalability, and full deployability with

commodity hardware set STRAT apart from prior work, offering a practical and high-

performance alternative to hierarchical and semi-hierarchical designs in modern data

center networks.

Altogether, STRAT’s design focuses on optimizing data center performance and

operational efficiency while ensuring scalability, cost-effectiveness, and resilience, mark-

ing a significant advancement in network architecture. The work presented in [14]

8

Figure 2.1: Trident4-X11C Architecture

was conducted primarily through simulations, demonstrating its potential data cen-

ter environments. However, to extend and validate these findings, here we investigate

various STRAT topologies against their Clos counterparts using a physical testbed.

By transitioning from simulations to physical experimentation, we provide evidence

and insights into the real-world performance and practical implications of the STRAT

topology. This approach offers a more comprehensive understanding of its efficacy,

scalability, and applicability in actual data center deployments and using commercial

off-the-shelf Ethernet switching ASICs.

2.3 Trident4®-Based Testbed: Architecture

The advent of Software-Defined Networks (SDN) has fundamentally transformed net-

work architecture. In contrast to traditional networks, where decision-making and

data transmission were closely linked, SDN established a distinct separation between

the control plane, which handles decision-making, and the data plane, focused on

data forwarding. This clear division paved the way for programmable data planes

(PDPs), a notable advancement that allows network device functionality to be cus-

tomized. With PDPs, networks gain greater intelligence and flexibility, enabling

9

2 x 2 2 x 2

2 x 2 2 x 2 2 x 2 2 x 2

2 x 2 2 x 2

2 x 2 2 x 2

Figure 2.2: Unfolding a 2-layer Clos

enhanced adaptability. To streamline our network modeling, we harness the cutting-

edge capabilities of these PDPs, opting for Broadcom’s latest off-the-shelf technology,

the TD4® programmable switch. Tailored for high-performance Ethernet operations

in both data center and enterprise environments as depicted in Fig. 2.1 [10], the TD4®

switch represents a significant leap forward. Noteworthy features include 32x400G

ports, adaptable telemetry options, extensive forwarding databases customizable to

specific application needs, and seamless integration with modern data center proto-

cols. Before we can implement our network topologies, we must tackle the issue of

unidirectional switch links. This characteristic necessitates the unfolding of the struc-

ture to ensure their alignment with industry standards when deployed on physical

switches. Unfolding involves redrawing the topology to accommodate the unidirec-

tional flow of data packets, thereby facilitating an accurate representation of network

configurations.

For instance, consider the conventional representation of a 2-Tier Clos topology de-

picted in Fig. 2.2. Initially conceptualized with bidirectional links, this portrayal fails

to acknowledge the unidirectional nature of switch internal communication. Through

unfolding, the topology is redrawn to accurately reflect the unidirectional links present

in real-world networking scenarios. This transformation ensures that our network de-

signs are not only theoretically robust but also operationally feasible, adhering to

10

Topology Builder Routing Tables
Generator

Statistics Collection

BCM API

Trident4

VLANs
Manager

VRFs Routing AlgorithmInterfaces Hosts

Controller

Figure 2.3: Testbed Architecture

established industry standards and practices.

2.4 Testbed Architecture & Design

Our testbed architecture, depicted in Fig. 2.3, is structured hierarchically to facilitate

efficient network configuration. The components of the testbed are as follows:

• Controller: At the core of the system is a script that functions as the controller,

operating at an abstract level to manage configuration tasks and generate net-

work topologies. This controller accepts inputs such as adjacency matrices

or similar representations, along with additional parameters like the number

of hosts per network switch and routing preferences. Since our setup uses a

single physical switch, the controller divides it into multiple virtual switches.

Leveraging the TD4 capability to support numerous VLANs, each switch in

the topology is represented by a VLAN, with the controller assigning the ap-

propriate ports to each virtual switch. To enable each switch to maintain its

own routing table (RT) and routing policies, we utilize Virtual Routing and

Forwarding (VRF) identifiers. This allows multiple routing instances to coexist

11

on the same physical switch, ensuring that independent virtual switches have

distinct routing policies and traffic isolation.

• Topology Builder: This component is a code module generated by the con-

troller, responsible for implementing all the logic defined during the controller’s

setup. It contains a suite of helper functions required to model the network

topology. One key function it performs is setting all switch ports to loopback

mode, ensuring that when a packet exits a port, it re-enters the same port as

though it had been transmitted from a different switch. This behavior enables

the virtual switches to communicate with each other as if they were distinct

physical switches, fully utilizing the queues assigned to each port. In addi-

tion to managing loopback operations, the topology builder creates interfaces

to facilitate communication between VLANs. It also establishes the necessary

Ingress and Egress objects, which are utilized by the routing and forwarding

protocols to direct traffic through the virtual network.

• Routing Algorithm: The controller triggers the designated routing algo-

rithm’s script, which operates on the network’s topology data to generate rout-

ing tables for every node in the network. These routing tables are subsequently

forwarded as input to the Routing Tables Generator. We will cover in detail

the routing algorithm used in the next few sections.

• Routing Tables Generator: After receiving the routing tables generated

by the Routing Algorithm component, the Routing Tables Generator proceeds

to create all essential routes required to establish connectivity to every switch

within the network. Each route is assigned either an egress object or an Equal-

Cost Multipath (ECMP) group containing egress objects. This component op-

erates based on the routing preferences that were given to the controller.

• Statistics Collection: This component is responsible for enabling and collect-

ing the various statistics/metrics that we will be using to compare all of our

topologies.

These components then communicate with the BCM API to execute this code on

TD4® hardware and allow for the creation of an internal topology and the routing

chosen for it.

12

2.5 Investigated Topologies

Our key goal is to compare network topologies and their inherent throughput and

resilience against congestion, without the confounding variable of congestion man-

agement protocols. Thus, we assume simple forwarding protocols, which make for-

warding decisions purely on the basis of local information and with minimum (or

none) parameter tuning (ECMP for Clos and ECMP with Dynamic Group Multi-

path for STRAT as we will discuss in the next section). In order to keep comparison

fair, we enforce 2 rules. As much as possible, networks are constructed using switches

with the same number of ports. Also, networks service the same number of hosts

(traffic sources and sinks).

TD4® accommodates 144 logical ports, which places a limit on the size of inves-

tigated topologies. Additionally, the chosen topologies should be sufficiently large to

provide meaningful insights across configurations. This rationale guided our selection

of the following topologies:

STRAT 14 and its 3-Tier Clos counterpart

We will evaluate a 3-layer Clos topology that fits within 144 ports. Our 3-Layer Clos

has 27 servers, 9 TORs, 9 Aggregation and 5 Spine switches (23 switches total with 6

ports each) as shown in Fig. 2.8. This Clos can be compared to a STRAT topology,

such as one with a 2:4 (host:network) port configuration requiring 14 switches (TORs)

and supporting 28 servers.

We will also evaluate a 2-layer Clos topology with 12 8-port virtual switches

(4 spine switches and 8 TORs), as illustrated in Fig. 2.7. A comparable STRAT

topology with a 2:6 (host:network) port configuration would require 16 8-port virtual

switches (TORs) and support the same number of 32 servers as depicted in Fig. 2.6.

Additionally, a STRAT topology with a 3:6 (host:network) port configuration would

need 11 switches (TORs) and support 33 servers, as shown in Fig. 2.4 .

Table 2.1 represents a general summary of graph metrics for each of these topolo-

gies. The 3-Tier Clos network stands out with the highest number of nodes (23)

and edges (54), making it the most complex and interconnected topology. However,

this complexity comes with a penalty of increased cost and power, as well as lower

density (0.213) and longer average shortest path length (2.285), compared to STRAT

14. The larger diameter (4) and higher average eccentricity (3.391) of the 3-Tier

13

Figure 2.4: STRAT 11 Figure 2.5: STRAT 14

Figure 2.6: STRAT 16

Clos suggest that network communication latency is increased, potentially leading to

slower performance. Additionally, the 3-Tier Clos has the highest global betweenness

centrality (0.061), suggesting that certain nodes may become critical bottlenecks in

the network. On the other hand, STRAT 14, while less complex with fewer nodes

(14) and edges (28), achieves better efficiency. Its density (0.308) is higher than that

of the 3-Tier Clos, indicating a more tightly connected network, which contributes to

its shorter average shortest path length (1.692) and smaller diameter (2). The lower

average eccentricity (2.0) in STRAT 14 suggests faster communication across the net-

work, and its lower global betweenness centrality (0.058) indicates a more balanced

distribution of traffic, reducing the likelihood of bottlenecks.

When comparing STRAT 11 and STRAT 16 together with the 2-Tier Clos, these

14

Figure 2.7: 2-Tier Clos

Figure 2.8: 3-Tier Clos

topologies also demonstrate superior efficiency and connectivity. Both STRAT 11

and STRAT 16 maintain a high average degree (6.0) and low diameter (2), similar to

STRAT 14, but with even better average shortest path lengths (1.4 and 1.6, respec-

tively). Their lower density values (0.4 and 0.6) compared to 2-Tier Clos suggest they

are optimized for scalability without compromising performance. The 2-Tier Clos,

although having a slightly higher average neighbor degree (6.667), also shows efficient

connectivity with a small diameter (2) and low average shortest path length (1.515).

15

Table 2.1: Topology Metric Comparison and Summary

Metric 2-Tier Clos STRAT 16 STRAT 11 3-Tier Clos STRAT 14

Switches 12 16 11 23 14

Switch Ports 8 8 9 6 6

Number of Hosts 32 32 33 27 28

Edges 32 48 33 54 28

Density 0.4848 0.4 0.6 0.213 0.308

Average Degree 5.333 6.0 6.0 4.696 4.0

Diameter 2 2 2 4 2

Avg. Shortest Path 1.515 1.6 1.4 2.285 1.692

Global Betweenness 0.052 0.043 0.044 0.061 0.058

Average Eccentricity 2.0 2.0 2.0 3.391 2.0

Core Number 4 6 6 3 4

Avg. Neighbor Degree 6.667 6.0 6.0 5.348 4.0

2.6 DEALER Algorithm

2.6.1 Background & Motivation

Expander topologies have shown great potential, often surpassing traditional topolo-

gies even when using current routing algorithms [14,45,49]. However, these algorithms

do not fully exploit the unique capabilities of Expanders [25,62], particularly in terms

of leveraging their multiplicity of paths. The Equal-Cost Multi-Path (ECMP) rout-

ing algorithm improves load balancing and network redundancy but has drawbacks,

including uneven traffic distribution from random flow hashing, especially in environ-

ments with large flows [26,54,58,62]. It also neglects downstream congestion, leading

to poor performance in asymmetric networks or during frequent link failures [3]. In

contrast, MultiPath TCP (MPTCP) enhances throughput by splitting a single TCP

connection into multiple subflows [6]. However, it can cause MPTCP incast issues,

where multiple servers overwhelm a receiver’s buffer with bursty traffic, leading to

packet drops and reduced goodput [56]. FastPass [34] is a centralized load balancer

that improves network utilization by scheduling packet transmissions to reduce queu-

ing. However, its centralized arbiter creates scalability challenges in large data cen-

ters, struggling with high traffic volumes and becoming a single point of failure. The

additional round-trip latency for scheduling can hinder performance in low-latency

environments. Moreover, FastPass requires specialized hardware and is less adapt-

able to changing network conditions, resulting in suboptimal performance in dynamic

settings. Other algorithms, such as Flare [24], LocalFlow [40], and DRILL [16], use

16

state-unaware load balancing, where each hop performs flowlet switching to route

small packet bursts across multiple paths. These methods are praised for their sim-

plicity, scalability, and compatibility with existing hardware. However, they fail to

account for downstream congestion and path utilization, which can lead to inefficient

load balancing and decreased performance [3, 25, 26]. Additionally, their reliance on

inter-packet gaps for defining flowlets makes them vulnerable to changes in network

conditions, traffic loads, and transport protocols. CONGA [3] is a congestion-aware

load balancing system that uses custom switch ASICs to monitor congestion along

paths and shares this information with other switches via specialized packets. Each

switch maintains a congestion feedback table to assist in destination ToR routing

decisions. However, CONGA has limitations [8, 25, 26], including high memory re-

quirements for path information, potential latency inaccuracies due to reliance on

remote feedback, and limited adaptability from its dependence on customized ASICs.

To address these issues, HULA [26] employs programmable data planes to track con-

gestion on the best path to a destination using periodic probes for network utilization

data. Despite being designed for Fat-tree topologies, which support a single ECMP

group, HULA does not fully leverage the multiple paths available in Expander-based

networks [8].

2.6.2 Proposed Routing Algorithm

In this section, we mention a new routing algorithm that was previously introduced

which takes full advantage of the path diversity in Expander topologies [14, 45, 48,

49]. We first test its feasibility using a virtual environment and then confirm its

viability through tests on a physical setup, demonstrating its suitability for modern

data centers. Our analysis is based on the premise that all network links are capable

of bi-directional communication and that a single routing table (RT) entry suffices

for each distinct edge in the graph representation of the network. We initiate our

discussion with the PINGing algorithm, which facilitates the construction of routing

tables. We will then elaborate on the forwarding algorithm that operates within the

data plane. For clarity, we emphasize that each unique graph edge corresponds to a

single routing table entry and that bi-directional communication is supported across

all network links. We will then be creating a new variation of this routing algorithm

which will be implemented on TD4.

17

Constructing Shortest Path Routing Tables (SP RT)

During the initialization phase, we utilize the PINGing algorithm to construct the

routing table. Each network node starts by setting all possible routes to potential

destinations through its interfaces to an initial value of infinity, except for the route

to itself, which is set to zero. The node designated as the destination then announces

its presence to nearby neighbors by sending a PING packet. This packet contains the

node’s identifier and a metric of zero, which can represent parameters such as hop

count or delay.

The processing of PING packets follows a “no reply” policy, meaning that nodes do

not resend PING packets through the same interface from which they were received.

Each node that receives a PING packet executes the following steps:

1. Incoming Interface Registration: The node records the interface through

which the PING was received.

2. Metric Update: The node increases the metric reflecting the distance to the

sender based on the received metric.

3. Metric Comparison and Update: Depending on the chosen options (Option

1 and Option 2 discussed below), the node assesses the relationship between the

newly incremented metric and the currently stored metric to determine if an

update is necessary.

4. PING Resend or Termination: If the stored metric is updated, the node

retransmits the PING packet with the new metric; if not, it concludes the

process.

The initialization phase effectively sets up a complete view of the network by using

the PINGing process, allowing nodes to gather metrics about their neighbors quickly.

This minimizes the time required to establish routes.

The algorithm introduces several configurations to strike a balance between rapid

convergence and the integration of off-shortest path (OSP) entries within the routing

table. These configurations are outlined below:

1. Option 1: In this approach, the algorithm updates the metric for the destination

and broadcasts a revised PING to neighboring nodes if the new metric is lower

18

4

4

1

10

4

4

1

4

4

10

4

4

1

2

3

4

5

6

7

8

Figure 2.9: 8-node expander network

than those associated with all other interfaces. Additionally, if the new metric

is equal to the existing one but is received through a different interface, the

PING is also resent. If neither of these conditions is met, the PING process

stops at that node without any updates. This method guarantees the creation

of routing table entries for shortest paths (SP), while OSP entries can later

be established by referencing the distance vectors (DVs) of neighboring nodes.

Any healthy interfaces can serve as a fallback for packet forwarding instead of

dropping them.

2. Option 2: This configuration is similar to the first, where the algorithm records

the updated metric for the destination and re-broadcasts the PING to nearby

nodes. However, it resends the PING only if the new metric is less than that of

the interface receiving it (unlike Configuration 1, which checks all interfaces). If

this condition is not satisfied, the PING terminates at the current node, and no

updates occur. This results in routing tables containing both guaranteed SP and

OSP entries, eliminating the need to reference the DVs of neighboring nodes.

19

Healthy interfaces can still be utilized as a fallback for forwarding packets.

3. An enhancement to Option 2 which allows for the establishment of reliable

metric entries for all remaining last resort (LR) interfaces by ensuring loop-free

PING propagation. This enables the selective forwarding of packets through

LR interfaces, utilizing their reliable metric values.

To demonstrate our PINGing algorithm we will apply it on the 8 nodes network as

depicted in Fig. 2.9 with varying bandwidths across specific links. The connections

between nodes 2 and 3, as well as between nodes 6 and 7, each have a bandwidth

of 10G. Meanwhile, the links between nodes 1 and 8, and between nodes 4 and 5,

support a higher bandwidth of 100G. The remaining connections between nodes have

a bandwidth of 25G. To quantify bandwidth, we use a metric based on the inverse of

the actual bandwidth, normalized by the highest available bandwidth (100G). In this

network, each node has three interfaces, corresponding to three links connecting them

to their adjacent neighboring nodes. The links are color-coded as follows: interface 1

is blue, interface 2 is green, and interface 3 is red. This topology is now represented as

an undirected weighted graph, where the integer weights correspond to a composite

metric derived from the bandwidth.

8

2

1 3 4

5431

1 2 4 6 7

5 6 7 8

Figure 2.10: PING 2 propagation

Fig. 2.10 illustrates the propagation of the PING originating from node 2, referred

20

to as PING2. In the first PING iteration, the PING2 packet is sent to the nearest

neighboring nodes adjacent to node 2. Node 3 updates its metric to 10 via interface 1,

which is later improved to 8 through interfaces 2 and 3 in the second PING iteration.

The algorithm prioritizes two-hop routes with better metrics over single-hop routes

with worse metrics. After the second iteration, PING2 is terminated at nodes 1 and 4

because it carries a higher metric of 14, worse than what was received in the previous

iteration. Similarly, in the third iteration, PING2 reaches nodes 1, 2, and 4, where it

is terminated due to worse metrics. By the fourth iteration, all PING transmissions

are terminated, as all SP routes are fully established within the network’s three-hop

diameter. Consequently, the fourth iteration is marked as terminal, indicated by

dashed lines.

D S2

1 ∞ 4 ∞
2 0 0 0

3 ∞ 8 8

4 ∞ ∞ 4

5 ∞ ∞ 5

6 ∞ 9 9

7 ∞ 9 9

8 ∞ 5 ∞

Table 2.2: SP RT Node 2

D S2

1 14 4 12

2 0 0 0

3 10 8 8

4 14 12 4

5 15 13 5

6 19 9 9

7 19 9 9

8 15 5 13

Table 2.3: OSP RT Node 2

D S1

1 0 0 0

2 ∞ 4 12

3 ∞ 12 4

4 10 8 8

5 9 9 9

6 5 13 13

7 5 13 13

8 1 ∞ ∞

Table 2.4: OSP RT Opt. 1

D S1

1 0 0 0

2 14 4 12

3 14 12 4

4 10 8 8

5 9 9 9

6 5 13 13

7 5 13 13

8 1 17 17

Table 2.5: OSP RT Opt. 2 (loop-less)

Figure 2.11: Routing tables for various optimization scenarios

Fig. 2.2 is the SP RT for node 2 after PINGing, which depicts the PING messages

received by node 2 initially from all the other nodes as they also PING to broadcast

their presence carrying and updating the specified metric as needed.

21

Constructing OSP RTs With Already Established SP RTs

We can acquire OSP RTs while SP RTs are already established. The entries within

the tables obtained are categorized into two distinct types.

1. The first type, OSP1, pertains to the interface connecting to neighbor S2 of the

source node S. It is applicable when S2’s SP metric to destination M(S2→D)

does not exceed the metric from node S to destination M(S→D) plus the metric

M(S2→S) to reach S2 from S. OSP1 entries in the OSP RT ensure that packets

forwarded through this OSP1 interface can reach the destination using only the

SP RT. The discovered OSP1 entry is the sum of M(S→S2) and M(S2→D).

2. The second type, OSP2, relates to the interface connected to neighbor S4 from

the source node S. It is relevant when S4’s shortest path (SP) metric to destina-

tion M(S4→D) is the same as the metric from node S to destination M(S→D)

plus the metric M(S4→S) to get from S4 to S. However, this only applies if

there is another alternative SP path from neighbor S4 to destination D with

the same metric M(S4→D). The OSP2 entry is essentially the sum of M(S→S4)

and M(S4→D).

Fig. 2.3 shows the presence of SP RT entries (highlighted in green) alongside

OSP1 and OSP2 entries (in blue and red, respectively). Unlike the OSP RT of

Option 1 Fig. 2.4, the OSP RT of Option 2 (Fig. 2.5) was derived without the need

to consult the DVs of neighboring nodes. The primary trade-off with this approach

is the possibility of introducing a few additional hops, although the exact number

depends on the particular configuration of the network topology. Despite this, the

method simplifies routing calculations by eliminating the need for inter-node DV

consultations, offering a more streamlined approach with minimal impact on overall

network performance. Option 2’s OSP RT differs from Option 1’s in that it replaces

infinite metric values with finite ones. For both options, all entries corresponding to

SP, OSP1, and OSP2 in the OSP RTs are the result of loopless PING propagation,

ensuring perfect accuracy. Under a ”no reply” policy, the smallest possible loop would

introduce 3 additional hops to any loopless PING path, which would result in a metric

greater than OSP2’s. However, LR entries in the OSP RTs can be affected by PINGs

that loop en route. Despite the different ways in which LR interface metrics are

represented in Option 1 and Option 2, their behavior in RTs remains identical.

22

2.6.3 PathPort & Updating Routing Tables:

To eliminate loops from the network, we ensure that packets do not visit any node

more than once on their way to the destination. This is achieved by providing the

packet with a PathPort, which records the nodes already visited and prohibits packet

forwarding through any interface that connects to a previously visited node. Although

this approach increases complexity, it significantly improves overall performance in

individual packet forwarding.

For initializing the network and making updates (whether scheduled or triggered

by link status changes), a new copy of the RT is created with initial values set to

infinity. PathPort information for every PING, both in the initialization and update

processes, is timestamped to distinguish between scheduled and triggered updates.

This timestamp prioritizes the more recent PING events and discards older RTs.

The timestamping procedure prevents issues similar to ”counting to infinity” that

can be encountered in Distance Vector (DV) routing protocols by ensuring that two

concurrent PING events started by different events do not overlap in time and interfere

with RT construction. Each RT is associated with the timestamp when the PINGing

process began. This RT is continuously constructed by PINGs with matching time

stamps, and a hold-off timer is reset with every new PING arriving at a node. When

PINGing stops naturally, the hold-off timer in a node will expire, and the newly

constructed RT is copied into the active FT state. In the event of link failures, the

efficient and robust forwarding protocol ensures that packets originally meant to be

routed through the failed interface have ample opportunities for re-routing through

alternative interfaces. This may result in slightly more hops to reach the destination

but maintains network reliability. Both scheduled and triggered updates can re-

build the RTs from scratch in a few hops, generally a few more than the network’s

diameter. The robust forwarding protocol lessens the urgency in accommodating

failures, making the network resilient and efficient.

2.6.4 Forwarding Protocol: Dynamic Expander Algorithm

for Load-Effected Routing

Once the RTs have been constructed by performing PINGing, the Dynamic Expander

Algorithm for Load-Effected Routing (DEALER) depicted in Fig. 2.12 is used to

23

Server sends a packet to host TOR

Destination
Hosted by

TOR?
Yes Packet

Delivered

No

Inter faces
Available?Yes No Packet

Dropped

SP
Available

Yes

No SP + 1
Available

Yes

No SP + 2
Available

Yes

No
Use Last
Resor t

Inter faces

Eliminate inter faces that lead to a previously visited TOR

Local Congestion
Awareness

PathPort Stamping

Stamp the packet with the current TOR and send it tot he next
TOR

From the available inter faces select the least loaded one

Figure 2.12: DEALER Algorithm

24

efficiently route packets within the data plane. When a packet is received at a TOR,

it checks if the destination host is at that TOR; if it is, the packet is immediately

delivered. If the current TOR does not host the destination host it assesses the

available interfaces that have not been visited by the packet meaning the interfaces

that lead to a TOR that has been visited before. From these available interfaces

we pick the optimal one if it exists. By optimal we mean the least loaded interface

amongst the available ones. Then the packet is forwarded to the next TOR using this

optimal interface and we stamp the PathPort of the packet with the current TOR

to mark it as visited. From this algorithm, you get the sense of how we leverage the

diversity of paths by using local congestion awareness.

2.7 Routing Validation in P4 & Simulation Results

To initially validate the routing algorithm and assess its feasibility for deployment on

a PDP, we utilized the P4 programming language alongside Behavioral Model version

2 (BMv2), the advanced successor to the original P4 software switch. BMv2 served

as the backbone of our experiments, allowing for smooth implementation and testing

of the routing protocol. However, it is essential to highlight that virtual testbeds like

BMv2 have limitations when compared to physical testbeds. Differences in hardware

capabilities, performance characteristics, and control over network elements can lead

to significant variations between the two environments. We will illustrate some of

these differences in the following section and suggest potential implementations.

Our initial experiments [2] were carried out on a STRAT topology consisting of

16 switches and 16 hosts, with each switch connected to a single host. The topology

exhibited a diameter of 2, indicating that the longest shortest path between any

pair of nodes required at most two hops. The average shortest-path length was 1.6,

demonstrating efficient connectivity. These results confirm the implementability of

the design on virtual programmable data planes (PDPs).

2.8 Routing Implementation in TD4®

Implementing this proposed routing on TD4® comes with some internal programma-

bility limitations and design considerations that we need to accommodate for and we

25

have to change the algorithm as discussed below.

As can be seen in Fig. 2.12, our forwarding algorithm relies on local congestion

awareness to properly forward packets on the least-loaded path. TD4® allows con-

figuring ECMP groups in various modes. We will be focusing on the one that is of

interest to the proposed forwarding algorithm.

• Dynamic Group Multipath: DGM is a TD4® programable feature that

divides the ECMP group into two sets of egress ports: Primary and Alterna-

tive. The Primary set contains the preferred ports used for normal traffic flow,

while the Alternative set consists of backup ports that are used only if Pri-

mary ports are congested. One can define what this congestion is by assigning

weights to how much the load and queue occupancy should contribute to the

overall congestion metric. Once this metric exceeds a certain threshold DGM

will recognize the Primary ports as congested. At this point, it will begin rout-

ing traffic through the Alternative ports to alleviate congestion and maintain

efficient network performance.

Since the forwarding algorithm partitions all the paths into Shortest Path (SP),

SP + 1, SP + 2 till last resort paths. Implementing it on TD4® poses challenges

due to its support only for Primary and Alternative ports within DGM groups, as

previously noted. To address these constraints, we propose an adaptation of the

forwarding algorithm that accommodates these limitations and challenges.

D 1 2 3 4

1 5 3 2 3

2 3 2 3 1

3 4 3 2 4

4 2 3 4 2

5 5 2 1 3

6 4 1 2 2

7 5 3 3 3

8 3 5 4 4

9 4 2 3 2

Table 2.6: Routing Table

D 1 2 3 4

1 X A P A

2 X A X P

3 X A P X

4 P A X P

5 X A P X

6 X P A A

7 X P P P

8 P X A A

9 X P A P

Table 2.7: RT ECMP Mapping

Consider the RT displayed in Fig. 2.6 that is generated after performing PINGing

on some topology where we color code the SP in green, SP+1 in blue and SP+2 in

red. We proceed by translating this RT into ECMP associations as shown in Fig. 2.7.

26

SP + 1SP SP + 2 LR.....

Primary Alternative

W? W?? W??

Figure 2.13: Primary & Alternative Members Mapping in TD4®

In this table, SP paths are designated as Primary (P), SP+N paths as Alternative

(A), and any remaining entries are unused. One way to also translate this configu-

ration into TD4® is by grouping all SP, SP+1 and SP + 2 in one Primary group

with fractional weights to favor SP, SP+1 then SP+2 and the remaining paths as

Alternative. Fig. 2.13 illustrates this mapping where W1, W2, W3 represent fractional

weights that would be given to each member in the primary group. Here, ensuring

W1 > W2 > W3 guarantees that SP is prioritized for selection. Since we are using

DGM, we are ensuring that the Alternative ports will only be chosen once the Pri-

mary ECMP group exceeds a local congestion metric meaning the routing has a local

congestion awareness. This metric can be set by giving weights and a threshold to

the metric we wish to rely on. In our case, our metric is the queue-occupancy of

an interface. Fig. 2.14 illustrates this approach using the 8-node STRAT topology

in Fig.2.9. Here, We compare ECMP with a random seed, various permutations of

DGM, and DGM + WCMP in terms of packet drop rates, confirming the findings

from our simulations in the previous section. The results show that DGM + WCMP

effectively capitalizes on the diversity of paths in Expander-based topologies, espe-

cially as network load increases, allowing throughput to degrade more gracefully. By

including more options in both primary and alternate port groups, the system can

better manage rising load, offering more routes for traffic to balance and maintain

performance, especially when one favors the primary paths with the given weights.

27

100000 150000 200000 250000 300000 350000
PPS

10 3

10 2

10 1

D
ro

p
Ra

tio

P = {SP} - Alt = {SP + 1}
P = {SP, SP+1} - Alt = {SP+2}
P = {SP, SP+1} (Weighted) - Alt = {SP+2}
ECMP Drop Rate (Random)

Figure 2.14: Different ECMP grouping over a small 8-node STRAT

2.9 Experimental Results

The statistics block in our testbed (Fig. 2.3) programs a dedicated counter for every

⟨switch V, port Ei⟩ pair. The Broadcom TD4® field processor tags each packet with

the matching pair and increments the corresponding counter in hardware, giving loss-

free per-port rates, queue depths, and drop events. Because every interface of every

switch is monitored, we can reconstruct end-to-end flow trajectories and diagnose

congestion anywhere in the fabric.

2.9.1 Aggregate Delivery Under Uniform Traffic

Figures 2.15–2.16 and Table 2.8 summarise packet-delivery rate (PDR) as load rises

from 0.1 to 1.0.

• Higher steady-state reliability. STRAT14 sustains a mean PDR of 98.2%

and never drops below 91.8%; the 3-tier Clos falls to 72.6% at peak load. The

Load-Area-Under-Curve (LAUC) further confirms this gap: 0.886 (STRAT14)

vs. 0.826 (Clos-3), i.e. a flatter degradation profile.

• Graceful collapse. The linear-fit gradient over the heavy-load region (l ∈
[0.7, 1.0]) is −23.5 for STRAT14 but −53.1 for Clos-3, indicating a much steeper

28

0.2 0.4 0.6 0.8 1.0
Network Load (Fraction)

80

85

90

95

100

PD
R

STRAT 14
CLOS 3

Figure 2.15: Packet Delivery Ratio

STRAT 14 vs Clos3

0.2 0.4 0.6 0.8 1.0
Network Load (Fraction)

75

80

85

90

95

100

PD
R

STRAT 11
CLOS 2
STRAT 16

Figure 2.16: Packet Delivery Ratio

STRAT 16 & 11 vs Clos2

throughput cliff for the hierarchical design.

• Consistency across scales. STRAT11 and STRAT16 likewise outperform

the 2-tier Clos, delivering ≈ 10 pp higher mean PDR while cutting the run-out-

of-fuel (ROF) loss fraction by more than half (Table 2.8, col. 5).

2.9.2 Congestion hotspots

Heat maps (Fig. 2.18, 2.17) reveal fundamentally different pressure points:

• Clos-3: drops concentrate on the spine layer, where every packet merges onto

one deterministic downward path; once a spine queue backs up, all traversing

flows suffer.

• STRAT: losses distribute over many ToR–ToR links; DEALER can steer around

any blocked port, so no single interface dominates the drop budget.

Hierarchical fabrics therefore rely on transport-level mechanisms (e.g. DCQCN,

PFC) to throttle sources—mechanisms that are notoriously hard to tune and merely

shift delay to the edge. STRAT removes that complexity by absorbing bursts inside

the network.

29

Figure 2.17: Hotspots map for

STRAT 14 Figure 2.18: Hotspots map for Clos 3-Tier

2.9.3 Cost–Performance Trade-off

Fig. 2.19 shows that STRAT eliminates ∼ 40% of the switches required by an

equivalent Clos. Despite the smaller footprint, STRAT still delivers ∼ 44% more

throughput at 95% load, proving that a flat optical mesh can improve performance

and reduce cost.

2.9.4 Key Take-aways

Across every reliability metric (mean PDR, LAUC, ROF, collapse slope) and at equal

radix, STRAT is both cheaper (fewer devices, less fibre) and more scalable (higher

sustainable load, milder degradation) than its Clos counterparts. Because these gains

are fabric-intrinsic and do not depend on end-host rate control, STRAT is well-suited

for the burst-prone, ever-growing traffic demands of modern large-scale data-centre

workloads. Generally, Clos networks are susceptible to congestion, especially promi-

nent at higher layers of the network topology where there is a unique path down to

the final destination. The industry introduced a number of protocols to deal with

congestion, such as DCQCN , PFC [64], and many others. The aspects they all

share is obtaining some measure of network congestion and an attempt to mitigate it

by slowing down source sending rate. Such protocols have many tuning parameters

which are notoriously difficult to optimize, and simply shift the problem to delay-

ing (buffering) data at the source. More recently, Ultra Ethernet Consortium [47]

30

Clos

STRAT

Figure 2.19: Network Load at 95% Throughput vs Network Cost

has started an effort to augment Ethernet with Infiniband-like features, particularly

targeting demanding AI cluster networks. At a high level, the proposed approach

sprays data packets across all available ECMP paths, and implements transmitter

side buffering controlled by credits issued by the receiver. Potential packet misorder

is also fixed at the receiver.

Table 2.8: Reliability metrics

Topology Avg PDR % Min PDR % AUC LAUC ROF % Load ≥95% Slope†

STRAT14 98.15 91.82 0.886 0.0144 1.47 0.8 -23.48

STRAT16 97.83 88.74 0.884 0.0161 1.64 0.8 -33.01

STRAT11 96.68 87.17 0.873 0.0268 2.75 0.7 -32.54

Clos3 (3-tier) 91.27 72.62 0.826 0.0736 7.95 0.6 -53.10

Clos2 (2-tier) 88.95 69.55 0.805 0.0953 10.5 0.5 -42.60

†Linear-fit gradient over l ∈ [0.7, 1.0]; more negative means a steeper collapse in heavy

load.

2.9.5 Distributed DNN training Traffic Pattern

In [53], the authors analyze traffic patterns in distributed deep neural network (DNN)

training workloads and show that the underlying network communication follows a

31

0.2 0.4 0.6 0.8 1.0

Network Load (Fraction)

90

92

94

96

98

100

P
D

R
0.86

0.92

Random-All-All
Ring Traffic Pattern
95% PDR

Figure 2.20: STRAT 16

0.2 0.4 0.6 0.8 1.0

Network Load (Fraction)

92

93

94

95

96

97

98

99

100

P
D

R

0.93

0.87

Random all-to-all
Ring pattern
95% PDR

Figure 2.21: STRAT 14

0.2 0.4 0.6 0.8 1.0
Offered Network Load

10 1

100

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

Delivered Throughput vs Offered Load

STRAT16
STRAT14
STRAT11
Clos3
Clos2

Figure 2.22: Throughput comparison

distinct ring pattern. This behavior stems from the widespread use of ring-AllReduce

collectives in large-scale DNN training systems, which enable efficient gradient ag-

gregation across multiple GPUs. Their traffic heatmaps confirm the emergence of

a predictable, periodic structure due to this ring-like data transfer pattern, a di-

rect consequence of parallelization strategies employed in production-grade training

setups.

Motivated by these findings, our goal is to evaluate whether STRAT can serve as a

viable and efficient alternative to traditional topologies—such as Clos—in supporting

the intensive and structured traffic demands of distributed DNN training. To this

end, we subject both STRAT and Clos to a ring traffic pattern emulating the struc-

ture identified in [53], as illustrated in Fig. 2.25. Our results, shown in Figures 2.24,

32

100

90

80

70

60

50

40

STRAT16

STRAT14

STRAT11

Clos3

Clos2

0.2 0.4 0.6

Network Load (fraction)

0.8

1.0

P
a
c
k
e
t
 D

e
li
v
e
r
y
 R

a
t
e
 (

%
)

Figure 2.23: Ring traffic STRAT vs Clos

2.20, and 2.21, reveal that STRAT maintains over 95% throughput with only a slight

performance degradation (around 6%) under ring traffic compared to an all-to-all sce-

nario. Furthermore, Fig. 2.23 highlights STRAT’s superior performance relative to

Clos under the same conditions. While Clos exhibits noticeable degradation, STRAT

sustains high throughput and consistent delivery, demonstrating resilience even un-

der structured and directed traffic. This robustness under realistic DNN training

workloads illustrates STRAT’s design efficiency and underscores its suitability for

AI training clusters where performance and stability are critical. These results af-

firm STRAT as a compelling topology choice for supporting the high-bandwidth,

low-latency demands of modern machine learning infrastructure.

Analyzing the reliability and throughput metrics across the evaluated topologies

reveals distinct trends in Table 2.8 and Fig. 2.22. STRAT14 exhibits the best perfor-

mance, achieving the highest Area Under the Curve at 0.8856, the lowest LAUC at

0.0144, and the smallest retransmission overhead (ROF) of 0.01465. It also features a

mild tail-slope of −23.48, indicating a gradual decline under heavy loads. STRAT16

performs similarly with slightly higher LAUC and ROF values, while STRAT11 shows

increased degradation but remains better than the Clos networks. In contrast, Clos3

and Clos2 suffer from higher LAUC (0.0736 and 0.0953, respectively) and much

steeper tail-slopes (−53.10 and −42.60), highlighting severe instability as load in-

creases. Throughput analysis shows that STRAT14 also achieves the highest peak

33

delivered throughput at 0.918 of the line rate, with STRAT16 and STRAT11 follow-

ing, while Clos3 and Clos2 peak much lower, at only 0.726 and 0.695 respectively.

0.2 0.4 0.6 0.8 1.0

Network Load (Fraction)

88

90

92

94

96

98

100

P
D

R

0.82

0.76

Random all-to-all
Ring pattern
95% PDR

Figure 2.24: STRAT 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Destination Switch

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

So
ur

ce
 S

w
it

ch

Figure 2.25: Ring Traffic Heatmap

2.10 Conclusion

This chapter presented an in-depth experimental and simulation-based evaluation of

STRAT, an expander-inspired flat topology, as a scalable and cost-effective alternative

to the conventional Clos architecture. Through the construction of a programmable

Trident4 testbed and large-scale OMNeT++ simulations, STRAT was shown to out-

perform Clos in key performance metrics such as throughput, packet delivery ratio,

and congestion resilience—while requiring fewer switches and offering simpler deploy-

ment. The analysis demonstrated that STRAT’s expander properties provide higher

path diversity and more uniform load distribution, particularly under high traffic con-

ditions. Additionally, the proposed DEALER routing algorithm successfully exploited

STRAT’s structural advantages by using localized queue awareness and path history

to reduce packet drops and balance load adaptively. These results position STRAT as

a practical and deployable topology for next-generation data center networks, laying

the groundwork for further enhancements in hybrid integration and dynamic traffic

engineering explored in the following chapter.

34

Chapter 3

ML-Driven Optical–Electrical

Expander Fabrics for Low-Latency

Data-Center Networks

This chapter presents the detailed design of Hybrid–STRAT, a data center archi-

tecture that fuses the structural efficiency of a STRAT expander topology with a

machine-learning-driven hybrid switching mechanism. By integrating optical circuit

switches over a flat electrical base, Hybrid–STRAT dynamically adapts to traffic de-

mands, offloading elephant flows onto high-bandwidth optical paths while retaining

mice flows in the packet-switched electrical mesh.

Unlike traditional Clos-based hybrids, Hybrid–STRAT leverages STRAT’s uni-

form connectivity and low-diameter structure to minimize optical setup costs and

reduce average packet delay. A lightweight XGBoost classifier makes early flow pre-

dictions using packet-level features, enabling fast, accurate routing decisions that

optimize network performance under bursty and heterogeneous loads.

3.1 Introduction

Modern data center networks are under immense pressure to support increasingly

demanding and diverse workloads. Applications such as real-time cloud services, ma-

chine learning model training, high-performance data analytics, and distributed stor-

age systems generate large volumes of traffic with distinct communication patterns.

35

These patterns typically fall into two categories: (1) short-lived, latency-sensitive

flows often referred to as mice, and (2) long-lived, high-throughput elephant flows.

Traditional electrical packet-switched (EPS) data center topologies are being pushed

to their design limits in terms of throughput, energy consumption, and manageability,

especially under such heterogeneous and dynamic traffic conditions. In this chapter,

we present Hybrid–STRAT, a proactive, congestion-aware DCN architecture that

overlays one of three optical circuit-switch (OCS) permutations onto a Structured

Re-Arranged Topology (STRAT) expander fabric. An XGBoost classifier, trained

on production flow traces, predicts flow type within the first few packets and dy-

namically steers elephants to the optical layer while leaving mice in the electrical

packet-switch (EPS) mesh. The design is realised in OMNeT++ with modular C++

components for topology construction, traffic generation, hybrid routing, and queue

management. Under all-to-all traffic from 10–100% line rate, Hybrid–STRAT low-

ers mean packet latency from 1.045 µs to 1.160 µs (11% growth), versus 1.035 µs

to 1.244 µs (20% growth) for pure-EPS STRAT, and cuts 99th-percentile delay by

25–35% (42.3 µs vs. 57.1 µs at full load). Average hop count remains nearly constant

(≈1.76), showing that gains arise from queue suppression rather than path stretch.

By fusing expander-graph path diversity, optical bandwidth efficiency, and machine-

learning-driven traffic engineering, Hybrid–STRAT delivers a scalable, energy-aware,

and traffic-adaptive solution for next-generation AI-centric DCNs.

3.2 Related Works

The increasing demand for low-latency and high-throughput communication in data

centers has accelerated research into hybrid electrical/optical architectures. A key

challenge lies in managing the complexity of flow aggregation and switching to ac-

commodate diverse traffic patterns. Zhao and Shi [63] explore this issue by proposing

machine learning-assisted aggregation schemes for optical cross-connects, demonstrat-

ing improvements in throughput and latency via localized, edge-node ML deployment.

This motivates our design, which leverages XGBoost classifiers to steer flows dynam-

ically in a STRAT-based hybrid topology. The necessity of differentiating traffic

flows based on their characteristics was earlier addressed by Lee and Choi [28], who

proposed a flow-level classification framework for hybrid switching networks. Their

36

classification of short-lived versus long-lived flows laid the conceptual groundwork for

our approach to proactive flow steering using machine learning.They highlight the im-

portance of application-aware configuration in all-optical data center interconnects,

particularly for distributed machine learning workloads. Their findings reinforce our

hybrid design philosophy, where optical overlays are dynamically configured to sup-

port high-volume, latency-tolerant elephant flows. Traffic offloading strategies also

play a crucial role in hybrid architectures. The work of Ye et al. [59] introduces

a threshold-based offloading mechanism for burst traffic, demonstrating that local-

ized decision-making at the ToR level reduces operational overhead. which inspires

our own distributed control mechanism, integrated with machine learning classifiers,

to improve adaptability in the STRAT fabric. Ben-Itzhak et al. [7] present a flat

hybrid packet/circuit architecture with orchestration and dynamic optical routing.

To balance performance and cost, Feng et al. [13] propose the Blocking Loss Curve

(BLOC) model, highlighting the importance of jointly considering traffic partitioning

and resource allocation. This motivates our hybrid STRAT approach, which aims

to maximize efficiency by selectively offloading traffic while preserving EPS resources

for short, latency-sensitive flows. Finally, the need for fast reconfiguration in hybrid

data center networks is addressed by Zhang et al. [61], who formulate a topology

reconfiguration problem as a minimum cost flow model. Their results underscore the

necessity of minimizing reconfiguration overhead.

3.2.1 Limitations of Electrical Packet-Switched Architectures

Current data center networks (DCNs) predominantly rely on hierarchical, electrical

packet-switched (EPS) architectures such as Fat-Tree [29], Leaf-Spine, and BCube [19].

These designs are widely favored due to their scalability, ease of implementation, and

compatibility with commodity switching hardware. Nevertheless, despite their preva-

lence, EPS-based architectures exhibit several significant limitations that constrain

their effectiveness and scalability, especially given today’s rapidly evolving data center

demands.

Firstly, the reliance on high-radix switches introduces inherent scalability chal-

lenges. High-radix switches, essential for providing high port densities, face physical

and thermal limitations as switch ASICs scale [22, 35]. These constraints inhibit

network growth, limiting bandwidth expansion and the number of achievable ports

37

within a single device, consequently creating scalability bottlenecks.

Secondly, hierarchical EPS structures frequently lead to congestion at upper-tier

switches due to oversubscription. This limitation becomes particularly pronounced

during intensive inter-rack communications, a scenario frequently encountered in

cloud computing environments and parallel processing tasks [13, 57]. The result is

uneven bandwidth distribution and increased latency, adversely impacting overall

network performance.

Thirdly, EPS-based systems exhibit substantial inefficiencies in energy consump-

tion. Each packet undergoes multiple stages of processing through successive switches,

resulting in significant cumulative energy usage. These repeated packet-handling

steps contribute to increased operational costs and environmental impacts [11, 35].

Recent studies suggest hybrid architectures integrating optical components could sub-

stantially mitigate these inefficiencies.

Lastly, the static nature of traditional EPS routing strategies limits their adapt-

ability to dynamic, bursty traffic patterns characteristic of modern workloads such

as machine learning and cloud-native applications [50]. Static routing schemes are

unable to respond quickly and effectively to fluctuations in network traffic, resulting

in suboptimal utilization of available resources.

In response to these intrinsic challenges, current research is actively exploring

alternative network architectures. These novel designs aim to separate forwarding

and transport functions, reduce overall hop counts, and enhance energy efficiency, all

while maintaining scalability and robust performance to better accommodate modern

data center workloads.

3.2.2 Hybrid Optical-Electrical DCNs: Toward Scalable and

Energy-Efficient Interconnects

To address the inefficiencies of purely electrical networks, researchers have investi-

gated hybrid DCNs that combine optical switching with electrical packet forwarding.

These designs seek to unite the programmability and low latency of EPS with the

high throughput and energy efficiency of OCS. Typically, short-lived ”mice” flows

remain on the EPS layer for flexible handling, while high-volume ”elephant” flows are

routed through dedicated optical paths.

Prototypes like c-Through and Helios illustrate the viability of dynamic optical

38

circuit allocation based on traffic demands, with Helios achieving over 35% through-

put gains and reduced cooling costs compared to EPS-only setups. More advanced

architectures such as HiFOST utilize nanosecond-scale fast optical switches and flow-

controlled buffering to minimize packet loss and enhance energy savings in large-scale

environments [55]. These hybrid architectures represent a promising direction for fu-

ture data centers by balancing scalability, energy efficiency, and low latency. However,

to the best of our knowledge, no prior work has explored the integration of expander

topologies within hybrid architectures to evaluate their effectiveness.

To the best of our knowledge, no prior work has explored a hybrid data center

topology that integrates a structured expander graph—specifically, the STRAT ar-

chitecture—with both optical circuit-switching (OCS) and electrical packet-switching

(EPS). Our proposed design leverages STRAT’s uniform node degree, low path diam-

eter, and high path diversity to support an efficient dual-layer forwarding model. By

combining the energy efficiency and bandwidth advantages of OCS with the flexibil-

ity and fine-grained control of EPS, Hybrid–STRAT offers a scalable, resilient, and

low-latency solution for modern data center traffic dominated by a mix of short-lived

and high-volume flows.

This chapter is organized as follows:

• STRAT Architecture: We begin by introducing the Structured Re-Arranged

Topology (STRAT), a flat, deterministic expander topology that offers strong con-

nectivity and low-diameter paths using uniform ToR-to-ToR links. Its expander

properties provide multiple disjoint paths, improving resilience and enabling effi-

cient traffic distribution without reliance on hierarchical switching.

• Machine Learning Model: We briefly present the machine learning framework

used to classify flows. Specifically, we employ an XGBoost classifier trained on

early-packet features to distinguish between mice and elephant flows. This model

enables real-time flow steering by providing fast, accurate predictions that guide

traffic onto the most suitable switching layer.

• Hybrid STRAT Architecture: We then detail the proposed hybrid architec-

ture, where three optical overlays are embedded atop the STRAT electrical fab-

ric. These overlays correspond to carefully selected permutations that facilitate

high-throughput optical paths for elephant flows. The architecture also includes

39

dynamic scheduling and routing mechanisms that adapt to real-time traffic con-

ditions.

• Virtual Testbed Environment: Next, we describe the OMNeT++-based sim-

ulation testbed used to evaluate our design. The testbed includes modular compo-

nents for topology generation, traffic injection, hybrid routing, queue simulation,

optical circuit management, and flow-level metrics collection. This environment

enables comprehensive performance analysis under varying load conditions.

• Results and Evaluation: Finally, we present quantitative results comparing

Hybrid–STRAT to a baseline EPS-only STRAT configuration. Metrics include

average and tail packet delay, hop count, and queue behavior under all-to-all

traffic patterns. The results demonstrate significant gains in latency reduction

and queue suppression, validating the effectiveness of our hybrid design.

3.3 STRAT: A Structured Expander Topology for

Flat, Resilient DCNs

Expander-based topologies have emerged as a promising alternative to traditional

multi-tier DCNs. Unlike hierarchical designs, expanders provide a flat architecture

composed of uniformly connected ToR switches, forming graphs with high connec-

tivity and low diameter. Among these, the Structured Re-Arranged Topology

(STRAT) has been shown to outperform other expander designs like Jellyfish and

Xpander in both robustness and performance metrics [1] [14]. STRAT combines the

flexibility of expanders with a more deterministic layout, making it easier to imple-

ment in practice while preserving desirable expander properties such as high algebraic

connectivity and large spectral gap. These structural benefits make STRAT a strong

candidate for hybrid augmentation, where optical links can complement electrical

connectivity by providing high-bandwidth shortcuts for bulk traffic. While STRAT

delivers exceptional performance as an all-electrical topology, it has not yet been ex-

plored as a hybrid platform. We argue that STRAT is particularly well-suited for

hybridization due to its flat architecture, consistent node degrees, and uniform path

diversity. Unlike Clos-based hybrids that require coordination across tiers and rely on

40

high-radix core switches, a hybrid STRAT design can exploit direct ToR-to-ToR op-

tical paths to establish low-latency, high-throughput connections without significant

architectural overhauls.

The reduced average path length in STRAT minimizes the setup and teardown

delays associated with circuit-switching, making dynamic optical scheduling more

feasible. Additionally, STRAT’s uniform connectivity provides multiple candidate

paths for rerouting elephant flows, increasing resilience and simplifying flow schedul-

ing decisions. By introducing OCS overlays across the STRAT fabric, we can enable

a dual-tier forwarding model: mice flows are handled within the EPS fabric, while

elephants are rerouted through fast, energy-efficient optical circuits.

This hybrid STRAT architecture aims to leverage the best of both technologies:

the agility and fine-grained control of EPS and the bulk transport and energy savings

of optical switching.

3.4 Machine Learning for Flow Classification and

OCS Scheduling

A critical component of any hybrid DCN is the accurate and timely classification of

flows. Traditional approaches use static thresholds based on flow size or duration to

identify elephant flows, but these techniques are often brittle and unable to adapt

to dynamic traffic conditions. To address this, recent work has turned to machine

learning models that can infer flow characteristics from early packet-level features.

Studies demonstrate that machine learning techniques such as decision trees, Näıve

Bayes classifiers, and deep reinforcement learning can significantly enhance flow classi-

fication accuracy and enable smarter optical circuit scheduling [46,51]. These models

allow for real-time decision-making under dynamic traffic loads, enabling adaptive

scheduling that reduces average delay and packet loss. For instance, Flow Splitter,

a deep reinforcement learning-based scheduler, adapts to runtime network condi-

tions and effectively separates elephant and mice flows, improving flow completion

times [46]. Other works have shown the promise of auto-regressive neural networks

in predicting server traffic patterns, enabling optical circuits to be pre-allocated for

large flows with high accuracy [5]. These predictive capabilities help ensure that over

80% of data, often carried by fewer than 20% of flows, is routed through optimized

41

Programmable
Packet Switch

Optical Switch

Programmable
Packet Switch

Programmable
Packet Switch

Servers Servers Servers

Operation of Optical Switch

ECMP Group:

- Identical endpoints.
- Entry exists in forwarding

table.
- Populated incrementally.

Figure 3.1: Operations of optical switch

optical paths.

Integrating such ML-based classifiers into hybrid architectures allows real-time,

adaptive flow steering. Mice flows are immediately forwarded through the EPS fabric,

while elephant flows are diverted via OCS based on predicted size, duration, and path

requirements.

3.5 Hybrid-STRAT: Hybrid Expander Topology

3.5.1 Methodology

To attempt to mitigate the issues that pure OCS and EPS topologies suffer from

in this chapter we will propose, build and evaluate a data center architecture that

combines a STRAT-based expander topology, providing low-diameter, resilient, and

uniform connectivity, with a sparse overlay of optical circuit switches to dynamically

carry elephant flows across ToRs. Our architecture incorporates a machine learning-

based flow classification system that predicts flow types using early packet features

and an integrated routing and scheduling framework that adaptively assigns traffic to

42

EPS or OCS paths based on traffic characteristics and network state. In particular,

we design and evaluate a hybrid STRAT topology that integrates both OCS and EPS

switching technologies to manage data center traffic efficiently. To classify elephant

and mice flows early in their lifecycle, we employ a machine learning classifier based on

the XGBoost algorithm. This classifier is trained and tested using a modified version

of the UNI1 dataset [9], referred to as UNIV1. The simulation is implemented in

OMNeT++ using a modified version of the OBS Module to support hybrid switching

behavior and traffic control. We provide a comprehensive performance comparison

between a fully EPS-based STRAT and our proposed hybrid STRAT design. This

architecture aims to address the dual challenge of scalability and performance in

modern DCNs by blending the path diversity of STRAT, the energy efficiency of

optics, and the intelligence of ML-based traffic engineering. Our approach provides a

scalable, robust, and cost-effective solution for future-ready data center networking.

3.5.2 Hybrid-STRAT: Expander Upgrade

STRAT itself can be modelled as a network with optical switches that operate as

demonstrated in Fig. 3.1 where traffic is first directed through a single port and

subsequently through another distinct port. When the queue on the first port grows,

a second channel is activated; once both the first and second queues become busy, a

third channel is employed. As the packet switch detects that the associated ECMP

group is nearing exhaustion—an indication that all links share identical endpoints and

already have an entry in the forwarding table (which is populated incrementally)—it

pinpoints the congested port (e.g., a 25 Gbps link) and propagates an updated ECMP-

to-port association to the affected packet switches, leaving the forwarding table itself

unchanged, Which resembles DEALER algorithm that was described in the previ-

ous chapter. An example of STRAT based on optical switches is displayed in Fig.

3.2. The design of our Hybrid–STRAT is informed and inspired by key observa-

tions in TOPOOPT [52], which demonstrates the benefits of co-designing topology

and communication patterns for distributed machine learning workloads. In partic-

ular, TOPOOPT introduces a method to optimise AllReduce communication by

constructing demand-aware ring overlays atop a direct-connect topology. The most

relevant findings motivating our work are summarised below:

1. AllReduce Topological Flexibility. The AllReduce primitive is inherently

43

Control Plane Coordination

Figure 3.2: STRAT based on optical switches

topology-agnostic with respect to ring permutations, allowing communication to

proceed over any ring structure without correctness loss. This flexibility opens

the door for optimising performance by choosing permutations that balance

path diversity and communication efficiency.

2. Efficient Permutation Selection. The authors propose a group-theoretic

algorithm, TotientPerms, to generate a family of ring permutations with de-

sirable topological properties—specifically, disjoint paths and minimal overlap.

Through evaluation, they show that selecting just three carefully chosen per-

mutations (e.g., with offsets +1, +3, +7) suffices to achieve near-optimal load

balancing and throughput across a variety of ML workloads.

3. Empirical Performance Gains. Using this three-permutation design, the

authors of [52] report significant speedups (up to 3.4×) in DNN training iter-

ations over conventional Fat-Tree and Clos-based designs, without increasing

network cost.

44

Application to Hybrid–STRAT. Building on these insights, we extend the STRAT

architecture by introducing a hybrid electrical/optical variant, Hybrid–STRAT, which

leverages a circuit-switched optical layer to accommodate high-volume, latency-tolerant

elephant flows. Inspired by TOPOOPT, we instantiate three OCS overlays corre-

sponding to the ring permutations ⟨+1⟩, ⟨+3⟩, and ⟨+7⟩. These overlays form a

low-diameter, high-throughput backbone that complements STRAT’s expander-based

EPS.

This design offers several advantages. First, the optical permutations ensure path

diversity and reduce congestion by offloading long flows from the electrical fabric.

Second, the limited number of permutations (three) adheres to practical constraints,

such as the number of transceivers per ToR switch, mirroring the d = 4 node de-

gree adopted in the original TOPOOPT evaluation. Finally, the hybrid structure

preserves STRAT’s cost-efficiency and scalability while improving its suitability for

ML workloads with structured communication patterns. Overall, our hybrid design

is a principled response to the challenges of flow classification and path allocation in

modern data centers, particularly under DNN-driven traffic.

3.6 Experimental Testbed

3.6.1 Simulation Components

The custom OMNeT++ testbed is built entirely from modular C++ blocks that

correspond one-to-one with NED modules. Each block has a single, well-defined re-

sponsibility so that individual pieces can be swapped or extended without recompiling

the entire simulator. Below we expand on the role of every major component in the

setup:

• Network—Topology Builder

At start-up this module parses a pair of simple text files: nodes.conf (servers,

EPS switches, OCS switches) and links.conf (bandwidth, delay, buffer size). It

then instantiates the corresponding NED objects, wires their gates together, and

propagates global parameters such as queue length and routing mode to every

sub-module.

• Generator—Traffic Generator

45

Deployed on each server, the generator draws new flows from a pre-computed traf-

fic matrix. Separate statistical distributions are maintained for mice and elephant

flows, allowing independent control of inter-arrival time and flow size. Packet

bursts are emitted at line rate until either the flow finishes or a queue tail-drops

the packet.

• Classifier—Packet Router

Upon receiving the first packet of any new five-tuple, the classifier as shown in

Fig. 3.3 performs three actions in quick succession: (i) extracts lightweight header

features, (ii) invokes an offline-trained XGBoost model to label the flow as mice

or elephant, and (iii) installs a per-flow forwarding rule. Mice are forwarded over

electrical packet switching (EPS), whereas elephants are diverted to the optical

circuit switch (OCS) overlay. Path selection itself may follow shortest-path, k-

shortest path, or ECMP hashing.

OMNET Custom Classif ier

Queue

Classif ier

Port Selected

Figure 3.3: OMNeT++ Custom Classifier

• QueueBuilder—Output Buffer

Attached to every switch port, this component allocates a finite egress queue,

timestamps each enqueue, and updates queue-length statistics on every dequeue.

Packets that arrive to a full buffer are dropped and marked with an over-flow flag

46

so the logger can attribute latency spikes or completion-time tail events.

• SinkArch—Flow Logger

Every server hosts a SinkArch process that records a concise summary for each

completed flow: end-to-end delay, hop count, reordering depth, and final delivery

status. The logger writes separate CSV files for mice and elephant traffic so that

per-class metrics can be analysed off-line (see Fig. 3.4).

this sink is basically a way for us to simulate an actual host! in OMNET this

translated as a NED module which allows the packets to sink and we also use it

collect statistics . Classification is basically occuring when a packet is received -

Performan MtericsTraff ic Generator

Queue

Incoming Traff icGenerated Traff ic

OMNET SINK

Figure 3.4: OMNeT++ Custom Host

• PacketConstructor—Message Format

All data and control messages inherit from a single Pkt base class defined here.

The header contains source/destination IDs, flow ID, hop count, TTL, and a small

scratchpad for future metadata. Using one unified format across the simulator

simplifies instrumentation and post-processing

• OCSController.cc—Circuit Scheduler

This centralised controller maintains a global view of current traffic demand and

periodically allocates time-slotted optical circuits. After computing a matching,

it broadcasts lightweight control messages that reconfigure every OpticalSwitch

in the fabric.

• OpticalSwitch.cc—OCS Crossbar

Each optical switch is a bufferless, non-blocking crossbar whose state is a permu-

tation matrix loaded by the OCSController. The hardware-accurate cut-through

47

model forwards incoming packets immediately if a circuit is active; packets arriv-

ing during reconfiguration are dropped, reflecting real-device behaviour.

• OCSChannel.ned—Optical Link

Finally, high-capacity inter-rack links are instantiated with this channel type.

In addition to standard OMNeT++ parameters (data rate, propagation delay)

the channel exposes a configurable setupDelay field to emulate the hardware

reconfiguration time of the underlying optical technology.

3.6.2 ML Classifier Training Data

The eXtreme Gradient Boosting algorithm is a natural fit for our flow–classification

task:

1. Tabular, Heterogeneous Features. Early–life flow descriptors (first–burst

size, inter-arrival variance, packet-size moments, etc.) are low-dimensional, nu-

meric, and non-linear. Gradient-boosted decision trees model such tabular data

without heavy preprocessing, capturing both sharp thresholds (e.g., the 10 KB

mice/elephant cut-off) and higher-order feature interactions.

2. Class Imbalance and Robustness. Elephant flows form < 5% of all con-

nections yet dominate byte volume. XGBoost offers built-in instance weighting

and scale pos weight tuning, reducing bias toward the majority (mice) class

and delivering the high F1 scores reported below. The ensemble is also tolerant

of outliers and sporadic missing values common in packet traces.

3. Efficiency and Interpretability. Training on ∼1.2 M labelled flows finishes

in seconds and supports incremental updates, allowing periodic retraining with

new traces. Feature-importance diagnostics consistently highlight burst size,

early RTT, and packet-size variance as dominant predictors—insights that can

inform future traffic-engineering heuristics.

Deep neural networks demand larger feature sets and longer training, while linear

models underfit the strongly non-linear boundary between mice and elephant flows.

XGBoost therefore strikes the optimal balance of accuracy, speed, and operational

transparency for our hybrid STRAT scheduler. This machine–learning classifier that

48

Table 3.1: Training dataset statistics.

DC Type # Sites Trace Sites Servers Devices

University 3 3 1 740 59

Enterprise 2 1 3 088 196

Cloud 5 0 57 000 2 791

Total 10 4 61 828 3 046

steers flows toward the EPS or OCS fabrics was trained on the public trace corpus

collected and described in [9]. The corpus covers ten production data-centers (3

university, 2 private–enterprise, 5 cloud) and combines SNMP link statistics (10–30 s

granularity, ≥10 days each), complete Layer-2/3 topologies, and 12-hour packet-level

captures taken from representative edge switches (1–4 sniffers per site) as described

in 3.1. Across the traces we observe fewer than 10 000 concurrently active flows per

rack, heavy-tailed flow inter-arrival times, and a clear dichotomy between mice (≤10

KB, <100 ms) and elephant flows (tens of MB, multi-second). These characteristics

make the data set ideal for supervised training of a binary routing decision: features

such as initial burst size, inter-arrival variance, and early-life packet size distribution

reliably separate mice and elephant traffic classes.

During preprocessing we down-sampled SNMP counters to 1-s intervals, parsed

PCAP files into flow records, labelled flows as mice or elephants using the 10 KB

cut-off suggested by the authors, and balanced the classes via stratified sampling

before feeding features into an XGBoost classifier. Five-fold cross-validation on the

university/enterprise subset yields an F1 score of 0.93, and testing on unseen cloud

traces confirms robust generalisation (F1 = 0.91), indicating that the model effectively

captures vendor- and workload-independent flow signatures.

3.7 Results and Evaluation

Average-delay evolution Fig. 3.5 tracks the mean per-packet latency as offered

load rises from 10% to 100% of line-rate. For the hybrid STRAT–64 fabric the delay

climbs gently from 1.045 µs to 1.160 µs—an 11% increase that is almost linear with

load. The EPS variant starts at a comparable 1.035 µs but reaches 1.244 µs at full

load, i.e. a 20% rise overall and 7–8% slower than the hybrid in the saturation

49

Figure 3.5: Pure EPS STRAT 64 vs Hybrid STRAT 64 Average Packet Delay

Figure 3.6: Pure EPS STRAT 64 vs Hybrid STRAT 64 Maximum Packet Delay

50

regime. The widening gap confirms that optical bypass in the hybrid path suppresses

queuing delay more effectively once buffers begin to fill.

Figure 3.6 complements the average view with the worst packet delay recorded.

Hybrid STRAT–64 grows from 24.6 µs to 42.3 µs (≈ 72% inflation), while EPS

rises from 33.8 µs to 57.1 µs. Across the entire load range EPS max-delay remains

25–35% higher than the hybrid—evidence that electronic queues occasionally spike

much deeper when every hop is a store-and-forward switch. The hybrid’s flatter curve

indicates tighter tail-latency control: the optical bypass limits queue build-up to a

few outlier packets even under full utilisation.

Net effect. Taken together, the two figures show that STRAT–64’s hybrid fabric

not only keeps mean latency lower but also reins in the worst-case delay, delivering

a narrower latency distribution as load approaches line-rate. EPS maintains parity

only at very light loads; beyond ∼ 30% utilisation its purely electronic path incurs a

steadily increasing penalty in both average and tail latency.

Delay–hop analysis for STRAT–64 (EPS vs. Hybrid). Figure 3.7 fixes the

average hop count on the abscissa and overlays the average packet delay for both

forwarding schemes across all offered-load points. Because STRAT–64 has a two-

hop diameter, the measured hop count remains essentially constant at ≈ 1.762 for

every load level and for both the pure-electronic and the optical–electronic hybrid

variants. Consequently, any vertical spread between the two marker sets reflects

per-hop processing and queuing differences rather than longer routes.

At light loads (≤ 20% of line rate) the two curves almost coincide: EPS is

marginally faster (by ≤ 1%), indicating that its purely electronic path handles sparse

traffic with negligible contention. From about 30% load upwards the hybrid begins to

outperform EPS, and the gap widens monotonically. By 50% load the EPS delay is al-

ready ∼2.5% higher; at 80–100% load the penalty reaches 6–8% (1.244 µs vs. 1.160 µs

at full load). Since hop count never changes, this vertical separation implies that the

hybrid’s optical bypass absorbs queue build-up more gracefully: each hop contributes

the same propagation time, but fewer packets contend for the residual electronic

buffers inside the hybrid path. In short, STRAT–64 guarantees a fixed hop budget,

and within that budget the hybrid variant delivers lower and more load-resilient per-

hop latency, whereas EPS accrues additional microseconds as its electronic switches

51

Figure 3.7: Delay vs hop count: Hybrid vs EPS (STRAT-64)

saturate.

3.8 Conclusion

Hybrid–STRAT fuses the path diversity of the STRAT expander fabric, the band-

width efficiency of optical circuit switching, and the adaptivity of machine-learning-

driven traffic engineering into a single, flat data-centre architecture. By steering

elephant flows onto three pre-computed OCS permutations and retaining mice flows

in the electrical mesh, our design achieves up to 8% lower mean latency and

25–35% lower 99th-percentile delay than a pure-EPS STRAT of identical cost,

without increasing hop count or sacrificing resilience. An XGBoost classifier, trained

on real production traces, enables per-flow decisions with an F1 score above 0.9 and

executes fast enough for on-path deployment. These results demonstrate that ex-

pander graphs are well-suited to hybridisation: their uniform node degree and low

diameter minimise optical set-up overhead while preserving multiple fallback paths

for congestion control. More broadly, our study shows that carefully co-designing

topology, optical overlays, and data-driven scheduling can unlock substantial latency

and energy gains in AI-centric DCNs.

Future work will (i) port Hybrid–STRAT to a hardware testbed with MEMS

OCS, (ii) extend the classifier to predict flow deadlines and QoS tiers, and (iii) explore

joint optimisation of optical permutation count, circuit duration, and power budgets.

We believe these steps will further consolidate hybrid expander fabrics as a practical

52

blueprint for next-generation, scale-out cloud infrastructures.

53

Chapter 4

Conclusion

This thesis presents a comprehensive experimental and architectural rethinking of

data center networks, with an emphasis on addressing the limitations of hierarchi-

cal Clos-based architectures in the face of modern workload demands. Our work

makes three core contributions that together advance the state-of-the-art in scalable,

resilient, and energy-efficient data center design.

First, we proposed and implemented STRAT, a structured expander-based topol-

ogy that removes the traditional aggregation and core layers by using only Top-of-

Rack switches connected via passive optical patch panels. This topology was eval-

uated through both simulations and physical testbed experiments built on commer-

cial Broadcom Trident4 switches. STRAT demonstrated significant gains in scala-

bility, cost-effectiveness, and congestion resilience, outperforming Clos topologies in

throughput (up to 43% improvement) while requiring roughly 40% fewer switches.

These gains were achieved without relying on transport-level congestion control or

complex traffic engineering.

Second, we introduced DEALER—a data-plane-compatible, congestion-aware

forwarding algorithm optimized for expander-like networks such as STRAT. DEALER

uses local queue occupancy and distributed distance-vector logic to make dynamic

routing decisions. Unlike ECMP, DEALER maintains high throughput under load

imbalances and supports multi-path forwarding with minimal control-plane overhead.

Its feasibility was demonstrated through a P4-based prototype and a TD4 hardware

implementation, showcasing how practical expander routing can be brought to pro-

grammable commercial ASICs.

54

Third, we extended STRAT into a hybrid optical-electrical architecture by overlay-

ing a sparse set of Optical Circuit Switching links and employing machine learning for

proactive flow classification. A lightweight XGBoost model was trained to identify

elephant flows using the early packet signature, enabling their redirection to high-

bandwidth optical paths. This ML-driven hybrid STRAT fabric achieved lower tail

latencies and improved throughput while maintaining deployment feasibility through

structured ring permutations and low control overhead.

Future Work. While our results establish STRAT as a promising candidate for

next-generation DCNs, several avenues remain open for exploration:

• Scalability beyond testbed constraints: Our current evaluation was limited

by the number of virtual switches supported by a single TD4 instance. Scaling

the STRAT topology to thousands of nodes across multiple physical switches,

and integrating a control plane for distributed coordination, presents a practical

next step.

• Fine-grained flow steering: Future work could explore integrating per-flow

telemetry and reinforcement learning to make more nuanced forwarding deci-

sions beyond binary flow classification. This would enable STRAT to handle

diverse workloads, including mixed latency-sensitive and throughput-intensive

traffic.

• Integration with emerging Ethernet standards: The rise of initiatives

such as the Ultra Ethernet Consortium calls for STRAT to be evaluated within

newer protocols that provide credit-based flow control, receiver-side reordering,

and hardware-based packet spraying, to further improve reliability.

• Energy-aware forwarding: As sustainability becomes critical, incorporat-

ing energy-efficiency metrics into routing decisions—such as shutting down idle

paths or prioritizing low-power optical links—could yield additional operational

gains.

• End-host stack compatibility: While STRAT and DEALER operate trans-

parently within the network, further integration with NIC-level capabilities

(e.g., RDMA, programmable NICs) may enhance performance, particularly in

AI and HPC workloads.

55

Overall, this thesis bridges the gap between theoretical expander-based designs

and practical, high-performance network deployments. By unifying scalable topolo-

gies, programmable forwarding, and intelligent hybridization, we present a holistic

architecture capable of meeting the stringent demands of next-generation data cen-

ters.

56

Bibliography

[1] Mohamad Al Adraa, Chadi Assi, Mohammed Almekhlafi, Maurice Khabbaz,

Vladimir Pelekhaty, and Michael Y. Frankel. Comprehensive performance and ro-

bustness analysis of expander-based data centers. IEEE Transactions on Network

and Service Management, 21(1):670–683, 2024.

[2] Mohamad Al Adraa, Abdeltif Azzizi, Chadi Assi, Michael Y. Frankel, and

Vladimir Pelekhaty. Expander-based dc routing: A programmable data plane

perspective. In ICC 2024 - IEEE International Conference on Communications,

pages 433–439, 2024.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, and George Varghese. Conga: Distributed

congestion-aware load balancing for datacenters. In Proceedings of the 2014

ACM Conference on SIGCOMM, SIGCOMM ’14, page 503–514, New York, NY,

USA, 2014. Association for Computing Machinery.

[4] Zaid Alzaid, Xin Yuan, and Saptarshi Bhowmik. Multi-path routing on the

jellyfish networks. ArXiv, abs/2012.02131, 2020.

[5] Mihail Balanici and S. Pachnicke. Server traffic prediction using machine learning

for optical circuit switching scheduling. IEEE Access, pages 1–3, 2019.

[6] Sébastien Barré, Christoph Paasch, and Olivier Bonaventure. Multipath tcp:

From theory to practice. In Jordi Domingo-Pascual, Pietro Manzoni, Sergio

Palazzo, Ana Pont, and Caterina Scoglio, editors, NETWORKING 2011, pages

444–457, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

57

[7] Y. Ben-Itzhak, C. Caba, and José Soler. Utilizing optical circuits in hybrid

packet/circuit data-center networks. Proceedings of the 9th ACM International

on Systems and Storage Conference, 2016.

[8] Cristian Hernandez Benet, Andreas J. Kassler, Theophilus Benson, and Gergely

Pongracz. Mp-hula: Multipath transport aware load balancing using pro-

grammable data planes. In Proceedings of the 2018 Morning Workshop on

In-Network Computing, NetCompute ’18, page 7–13, New York, NY, USA, 2018.

Association for Computing Machinery.

[9] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic charac-

teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM

Conference on Internet Measurement, IMC ’10, page 267–280, New York, NY,

USA, 2010. Association for Computing Machinery.

[10] Broadcom. Bcm56890 series ethernet switches. https://broadcom.

com/products/ethernet-connectivity/switching/strataxgs/

bcm56890-series. Accessed: 2024-09-04.

[11] Yueping Cai, Li Zhou, and Yao Yan. Software defined data center network archi-

tecture with hybrid optical wavelength routing and electrical packet switching.

In OptoElectronics and Communication Conference and Australian Conference

on Optical Fibre Technology, pages 682–684. IEEE, 2014.

[12] Zina Chkirbene, S. Foufou, R. Hamila, Z. Tari, and Albert Y. Zomaya. Lacoda:

Layered connected topology for massive data centers. J. Netw. Comput. Appl.,

83:169–180, 2017.

[13] Zhang Feng, Weiqiang Sun, Jie Zhu, Junyi Shao, and Weisheng Hu. Resource al-

location in electrical/optical hybrid switching data center networks. IEEE/OSA

Journal of Optical Communications and Networking, 9:648–657, 2017.

[14] Michael Y. Frankel, Vladimir Pelekhaty, and John P. Mateosky. Flat, highly con-

nected optical network for data centers. In 2019 Optical Fiber Communications

Conference and Exhibition (OFC), pages 1–3, 2019.

[15] R. Friedrich and J. Rolia. Next generation data centers: trends and implications.

2007.

58

https://broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56890-series
https://broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56890-series
https://broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56890-series

[16] Soudeh Ghorbani, Brighten Godfrey, Yashar Ganjali, and Amin Firoozshahian.

Micro load balancing in data centers with drill. In Proceedings of the 14th ACM

Workshop on Hot Topics in Networks, HotNets-XIV, New York, NY, USA, 2015.

Association for Computing Machinery.

[17] A. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon

Kim, Parantap Lahiri, D. Maltz, Parveen Patel, and S. Sengupta. Vl2: a scalable

and flexible data center network. pages 51–62, 2009.

[18] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta

Sengupta. Vl2: a scalable and flexible data center network. SIGCOMM Comput.

Commun. Rev., 39(4):51–62, aug 2009.

[19] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng

Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: a high perfor-

mance, server-centric network architecture for modular data centers. SIGCOMM

Comput. Commun. Rev., 39(4):63–74, August 2009.

[20] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu

Lu. Dcell: a scalable and fault-tolerant network structure for data centers. pages

75–86, 2008.

[21] Deke Guo, Chaoling Li, Jie Wu, and Xiaolei Zhou. Dcube: A family of net-

work structures for containerized data centers using dual-port servers. Comput.

Commun., 53:13–25, 2014.

[22] Fadoua Hassen and L. Mhamdi. High-radix packet-switching architecture for

data center networks. In 2017 IEEE 18th International Conference on High

Performance Switching and Routing (HPSR), pages 1–6. IEEE, 2017.

[23] Nikhil Jain, A. Bhatele, L. Howell, David Böhme, I. Karlin, E. León,

M. Mubarak, Noah Wolfe, T. Gamblin, and M. Leininger. Predicting the perfor-

mance impact of different fat-tree configurations. SC17: International Conference

for High Performance Computing, Networking, Storage and Analysis, pages 1–13,

2017.

59

[24] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. Dynamic

load balancing without packet reordering. SIGCOMM Comput. Commun. Rev.,

37(2):51–62, mar 2007.

[25] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman,

Changhoon Kim, and Jennifer Rexford. Clove: Congestion-aware load balanc-

ing at the virtual edge. In Proceedings of the 13th International Conference

on Emerging Networking EXperiments and Technologies, CoNEXT ’17, page

323–335, New York, NY, USA, 2017. Association for Computing Machinery.

[26] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer

Rexford. Hula: Scalable load balancing using programmable data planes. In

Proceedings of the Symposium on SDN Research, SOSR ’16, New York, NY,

USA, 2016. Association for Computing Machinery.

[27] S. Khan and Albert Y. Zomaya. Handbook on Data Centers. Springer, 2015.

[28] G. Lee and J. Choi. Flow classification for ip differentiated service in optical

hybrid switching network. In Optical Network Design and Modeling (ONDM),

pages 635–642, 2005.

[29] Charles E. Leiserson. Fat-trees: Universal networks for hardware-efficient super-

computing. IEEE Transactions on Computers, C-34(10):892–901, 1985.

[30] Moises Levy and A. Subburaj. Emerging trends in data center management au-

tomation. In 2021 IEEE 11th Annual Computing and Communication Workshop

and Conference (CCWC), pages 480–485, 2021.

[31] Dan Li, Chuanxiong Guo, Haitao Wu, Kun Tan, and Songwu Lu. Ficonn: Using

backup port for server interconnection in data centers. IEEE INFOCOM 2009,

pages 2276–2285, 2009.

[32] Dan Li, Chuanxiong Guo, Haitao Wu, Kun Tan, Yongguang Zhang, Songwu

Lu, and Jianping Wu. Scalable and cost-effective interconnection of data-center

servers using dual server ports. IEEE/ACM Transactions on Networking, 19:102–

114, 2011.

60

[33] Zhenhua Li, Zhiyang Guo, and Yuanyuan Yang. Bccc: An expandable network

for data centers. IEEE/ACM Transactions on Networking, 24:3740–3755, 2014.

[34] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans

Fugal. Fastpass: A centralized ”zero-queue” datacenter network. SIGCOMM

Comput. Commun. Rev., 44(4):307–318, aug 2014.

[35] Mohammad Naimur Rahman and Amir Esmailpour. A hybrid data center ar-

chitecture for big data. Big Data Research, 3:29–40, 2016. Special Issue on Big

Data from Networking Perspective.

[36] Crisṕın Gómez Requena, Francisco Gilabert Villamón, M. E. Gómez, P. López,

and J. Duato. Ruft: Simplifying the fat-tree topology. 2008 14th IEEE

International Conference on Parallel and Distributed Systems, pages 153–160,

2008.

[37] J. Rolia, S. Singhal, and R. Friedrich. Adaptive internet data centers. 2000.

[38] Ori Rottenstreich. Path diversity and survivability for the hyperx datacenter

topology. IEEE Transactions on Network and Service Management, 20(3):2370–

2385, 2023.

[39] Gunnar Schomaker, Stefan Janacek, and Daniel Schlitt. The energy demand of

data centers. In Energy Efficiency in Data Centers, pages 113–124. 2015.

[40] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J. Freedman. Scalable,

optimal flow routing in datacenters via local link balancing. In Proceedings of the

Ninth ACM Conference on Emerging Networking Experiments and Technologies,

CoNEXT ’13, page 151–162, New York, NY, USA, 2013. Association for Com-

puting Machinery.

[41] Sudipta Sengupta. Cloud data center networks: technologies, trends, and chal-

lenges. In Proceedings of the 2011 ACM Symposium on Cloud Computing, 2011.

[42] Yizhou Shan, Will Lin, Zhi Guo, and Yiying Zhang. Towards a fully disaggre-

gated and programmable data center. Proceedings of the 13th ACM SIGOPS

Asia-Pacific Workshop on Systems, 2022.

61

[43] Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir Zdornov, Barak

Gafni, and Eitan Zahavi. Dragonfly+: Low cost topology for scaling datacenters.

In 2017 IEEE 3rd International Workshop on High-Performance Interconnection

Networks in the Exascale and Big-Data Era (HiPINEB), pages 1–8, 2017.

[44] Georgos Siganos, S. Tauro, and M. Faloutsos. Jellyfish: A conceptual model for

the as internet topology. Journal of Communications and Networks, 8:339–350,

2006.

[45] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish:

Networking data centers randomly. In 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12), pages 225–238, San Jose, CA,

April 2012. USENIX Association.

[46] Yinan Tang, Hongxiang Guo, Tongtong Yuan, Xiong Gao, X. Hong, Yan Li,

J. Qiu, Y. Zuo, and Jian Wu. Flow splitter: A deep reinforcement learning-

based flow scheduler for hybrid optical-electrical data center network. IEEE

Access, 7, 2019.

[47] Ultra Ethernet Consortium. Ultra ethernet consortium. https://

ultraethernet.org/, 2024. Accessed: 2024-06-25.

[48] Asaf Valadarsky, Michael Dinitz, and Michael Schapira. Xpander: Unveiling

the secrets of high-performance datacenters. In Proceedings of the 14th ACM

Workshop on Hot Topics in Networks, HotNets-XIV, New York, NY, USA, 2015.

Association for Computing Machinery.

[49] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. Xpander:

Towards optimal-performance datacenters. In Proceedings of the 12th

International on Conference on Emerging Networking EXperiments and

Technologies, CoNEXT ’16, page 205–219, New York, NY, USA, 2016. Asso-

ciation for Computing Machinery.

[50] Haoyu Wang, Kevin Zheng, Charles Reiss, and Haiying Shen. Ncc: Neighbor-

aware congestion control based on reinforcement learning for datacenter net-

works. Proceedings of the 51st International Conference on Parallel Processing,

2022.

62

https://ultraethernet.org/
https://ultraethernet.org/

[51] Lin Wang, Xinbo Wang, M. Tornatore, Kwang-joon Kim, Sun Me Kim, Dae-

Ub Kim, Kyeong-Eun Han, and B. Mukherjee. Scheduling with machine-

learning-based flow detection for packet-switched optical data center networks.

IEEE/OSA Journal of Optical Communications and Networking, 10:365–375,

2018.

[52] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia,

Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. TopoOpt: Co-

optimizing network topology and parallelization strategy for distributed train-

ing jobs. In 20th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 23), pages 739–767, Boston, MA, April 2023. USENIX

Association.

[53] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Zhijao Jia, Dheevatsa Mudi-

gere, Ying Zhang, Anthony Kewitsch, and Manya Ghobadi. Topoopt: Op-

timizing the network topology for distributed dnn training. arXiv preprint

arXiv:2202.00433, 2022.

[54] Kang Xi, Yulei Liu, and H. Jonathan Chao. Enabling flow-based routing control

in data center networks using probe and ecmp. In 2011 IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), pages 608–613,

2011.

[55] Fulong Yan, Xuwei Xue, and Nicola Calabretta. Hifost: a scalable and low-

latency hybrid data center network architecture based on flow-controlled fast

optical switches. Journal of Optical Communications and Networking, 10(7):1–

14, 2018.

[56] Jiamin Yao, Shanchen Pang, Joel José Puga Coelho Rodrigues, Zhihan Lv, and

Shuyu Wang. Performance evaluation of mptcp incast based on queuing network.

IEEE Transactions on Green Communications and Networking, 6(2):695–703,

2022.

[57] Raj Yavatkar. An architecture for high-speed packet-switched networks. PhD

thesis, University of California, 1989.

63

[58] Jin-Li Ye, Chien Chen, and Yu Huang Chu. A weighted ecmp load balanc-

ing scheme for data centers using p4 switches. In 2018 IEEE 7th International

Conference on Cloud Networking (CloudNet), pages 1–4, 2018.

[59] Tong Ye, Jianke Li, Xiaodan Pan, and Tony T. Lee. Asynchronous optical traffic

offloading of hybrid optical/electrical data center networks. IEEE Transactions

on Cloud Computing, 10(2):805–820, 2022.

[60] Xin Yuan, S. Mahapatra, Wickus Nienaber, S. Pakin, and M. Lang. A new

routing scheme for jellyfish and its performance with hpc workloads. 2013 SC -

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC), pages 1–11, 2013.

[61] Shuyuan Zhang, Shu Shan, and Shizhen Zhao. Reducing reconfiguration time in

hybrid optical-electrical datacenter networks. Proceedings of the 7th Asia-Pacific

Workshop on Networking, 2023.

[62] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu, Chenchen Qi, Xuemei

Shi, and Guohui Wang. Hashing linearity enables relative path control in data

centers. In 2021 USENIX Annual Technical Conference (USENIX ATC 21),

pages 855–862. USENIX Association, July 2021.

[63] Li Zhao and Peng Shi. Machine learning assisted aggregation schemes for optical

cross-connect in hybrid electrical/optical data center networks. OSA Continuum,

3:2573–2590, 2020.

[64] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia,

and Ming Zhang. Congestion control for large-scale rdma deployments. In

Proceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication, SIGCOMM ’15, page 523–536, New York, NY, USA, 2015. As-

sociation for Computing Machinery.

64

	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Thesis Contributions
	Experimental Evaluation and Validation of Expander-Based STRAT Topologies
	A Hybrid Optical-Electrical STRAT Architecture with ML-Driven Flow Classification

	Thesis Organization

	Experimental Evaluation and Validation of Expander-Based STRAT Topologies
	Introduction
	Related Works
	STRAT: STructured Re-Arranged Topology

	Trident4®-Based Testbed: Architecture
	Testbed Architecture & Design
	Investigated Topologies
	DEALER Algorithm
	Background & Motivation
	Proposed Routing Algorithm
	PathPort & Updating Routing Tables:
	Forwarding Protocol: Dynamic Expander Algorithm for Load-Effected Routing

	Routing Validation in P4 & Simulation Results
	Routing Implementation in TD4®
	Experimental Results
	Aggregate Delivery Under Uniform Traffic
	Congestion hotspots
	Cost–Performance Trade-off
	Key Take-aways
	Distributed DNN training Traffic Pattern

	Conclusion

	ML-Driven Optical–Electrical Expander Fabrics for Low-Latency Data-Center Networks
	Introduction
	Related Works
	Limitations of Electrical Packet-Switched Architectures
	Hybrid Optical-Electrical DCNs: Toward Scalable and Energy-Efficient Interconnects

	STRAT: A Structured Expander Topology for Flat, Resilient DCNs
	Machine Learning for Flow Classification and OCS Scheduling
	Hybrid-STRAT: Hybrid Expander Topology
	Methodology
	Hybrid-STRAT: Expander Upgrade

	Experimental Testbed
	Simulation Components
	ML Classifier Training Data

	Results and Evaluation
	Conclusion

	Conclusion

