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Abstract: In a photovoltaic (PV) system, shading caused by weather and environmental fac-
tors can significantly impact electricity production. For over a decade, artificial intelligence
(AI) techniques have been applied to enhance energy production efficiency in the solar
energy sector. This paper demonstrates how Al-based control systems can improve energy
output in a solar power plant under shading conditions. The findings highlight that Al con-
tributes to the sustainable development of the solar power sector. Specifically, maximum
power point tracking (MPPT) control systems, utilizing metaheuristic and computer-based
algorithms, enable PV arrays to mitigate the impacts of shading effectively. The effect of
shading on a PV module is also simulated using MATLAB R2018b. Using actual PV data
from a solar power plant, power outputs are compared in two scenarios: (I) PV systems
without a control system and (II) PV arrays equipped with MPPT boards. The System
Advisor Model (SAM) is employed to calculate the monthly energy output of the case study.
The results confirm that PV systems using MPPT technology generate significantly more
monthly energy compared to those without MPPTs.

Keywords: solar energy; energy forecasting; PSC; sustainable development; MPPT; SDGs

1. Introduction

The total world energy consumption is expected to grow by 14% between 2020 and
2030 [1].
global energy mix [2]. Economic development and prosperity are heavily dependent on

By 2035, fossil fuels are predicted to account for approximately 75% of the

energy resources. However, the use of fossil fuels emits harmful gases into the atmosphere,
raising environmental concerns, whereas renewable energy sources provide sustainable
alternatives [3]. Consequently, the global adoption of clean energy, including solar power,
has been increasing. As a freely available and sustainable energy source, solar power
can be harnessed almost anywhere in the world. The share of solar energy has risen
significantly, from approximately 180 MW in 2014 to 1418 MW in 2023 [4]. In 2022, solar
power generation produced about 4323 gigawatt-hours of electricity—enough to supply
power to over 470,000 Canadian residences [5].

Photovoltaic (PV) panels convert solar irradiance into electricity. These affordable
and easy-to-install systems offer a promising and sustainable clean energy solution for
consumers. PV systems can be deployed in both urban and remote areas, providing
consistent electricity generation. However, PV power output depends heavily on the
level of irradiance received from the sun. Shading caused by weather or environmental
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conditions can significantly reduce energy production. While there is no substitute for
sunlight, shading due to snowfall is one of the most common challenges faced by PV
systems. The depth of accumulated snow determines the severity of shading. This study
focuses on scientific methods to mitigate shading effects caused by ambient and weather
conditions. However, complete shading—where no irradiance reaches the PV surface
due to heavy snow, dust, pollution, or other obstructions—is beyond the scope of this
research. In practice, maximum power point tracking (MPPT) methods are employed to
optimize power output under partial shading conditions. In a solar power plant, MPPT
control systems help PV arrays operate at optimal points by running artificial intelligence
(Al)-based algorithms.

In recent years, Al-based approaches have gained prominence in addressing PV
shading issues. Although Al lacks a universally agreed-upon definition, in this paper, we
refer to Al as the use of advanced, computer-based techniques and algorithms to process
complex data.

This work presents a study on the use of Al-based MPPT algorithms for photovoltaic
systems. These methods determine the maximum power point for each cycle by examining
voltage—current characteristics. They utilize a dynamic adaptive voltage range for optimal
performance and incorporate Al-based algorithms. Traditional MPPT algorithms encounter
difficulties in accurately tracking maximum power points, leading to diminished efficiency.
An efficient and adaptive MPPT system is essential to accommodate fluctuating and
unexpected irradiance profiles, along with other environmental factors [1].

Comparative investigations demonstrated that Al-based MPPT surpasses traditional
algorithms in tracking precision, response time, and energy output [2]. Al-augmented
MPPT systems markedly boost the feasibility of solar energy solutions in areas with in-
consistent illumination, facilitating the development of sustainable urban energy infras-
tructures [2]. Recent artificial intelligence methodologies, including fuzzy logic controllers
(FLC), Gauss—Newton optimization, and artificial neural networks (ANN), have enhanced
maximum-power point-tracking (MPPT) traditional algorithms and forecasted the optimal
charging conditions [3].

The ability of Al methods to handle intricate input—output relationships in a data-
driven manner allows for optimal solutions with improved speed and reliability [6]. While
a vast body of research has explored the application of Al algorithms in MPPT, their direct
impact on power generation in a solar power plant has not yet been fully investigated. In
addition, a real-world application of Al with actual PV system data is examined in this
paper. This study examines energy output in a case study located in Golden, Colorado.
Using the System Advisor Model (SAM), we compare the power generation of a PV system
with and without an MPPT hardware device. The results demonstrate that PV arrays
equipped with MPPT systems can significantly enhance energy production in a solar
power plant.

Section 2 provides an overview of PV electricity generation and the impact of shading
on system performance. Section 3 briefly reviews Al-based MPPT techniques and their
role in sustainable development. Section 4 presents the monthly power production of the
PV system in the case study, comparing two scenarios: with and without MPPT systems.
Section 5 interprets the results of electricity generation under both conditions, followed by
the conclusion in Section 6.

2. PV Systems and Shading Conditions
2.1. PV Cell Model

APV is configured in a series-parallel arrangement to attain the specified output power
and voltage. Utilizing an appropriate electrical circuit model and accurately identifying
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its properties are crucial for predicting solar performance and energy yield. Creating a
photovoltaic model and its associated electrical circuit facilitates the analysis of variations
in the I-V and P-V curves under diverse environmental conditions and climatic factors. A
carefully articulated PV model that includes the system’s characteristics enables designers
to accurately calculate the system’s power output.

The most critical component of a PV module is the PV cell [7]. The cell functions
as a simple p-n junction diode, consisting of two layers of semiconductor material. The
relationship between current I and voltage V in a single-diode Rp model is described by
the following equation:

I=1p, — Tolexp (q (V + IRs)/akT) — 1] — (V + IRs)/Rex, (1)

where I represents the PV current, which is directly affected by the intensity of the sun and
temperature fluctuations. The saturation current Iy is influenced by temperature variations,
« denotes the diode’s ideality factor, and q (—1.6021764 x 10~1%) signifies the charge of
one electron. K (—1.380653 x 10~23) denotes Boltzmann’s constant, T (K) represents the
absolute temperature of the p-n junction, and Rg and Rgpy signify the series and shunt
(parallel) equivalent resistances of the solar panel, respectively [4].

Figure 1 illustrates an analogous circuit of a photovoltaic cell, comprising a current
source, a diode, and a configuration of resistors arranged in parallel and in series.

Iy |
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Figure 1. Equivalent circuit of a PV cell.

2.2. The Effect of Partial and Full Shading on Energy Production

Shading an individual cell in a PV module can diminish the power output to nil. A
conventional PV system for energy generation comprises a PV array, a DC-AC inverter, and
a load. Photovoltaic modules are arranged in various series and parallel configurations to
attain the requisite output voltage and current. Each module has bypass diodes that enable
current from unshaded areas to circumvent the shaded region, thus confining the shading
impact to the specific set of cells safeguarded by the same bypass diode [5,6]. When the
bypass diode activates, the module voltage decreases by an amount equivalent to the total
voltage of the safeguarded cells plus the forward voltage of the diode. Nevertheless, the
current from adjacent unshaded cells persists in circulating around the shaded cluster [5].

A PV module may operate under reduced irradiance due to limited sunlight exposure
or adverse weather conditions, such as dust, snow, ice, pollution-related particles, or cloud
cover [7]. Unlike partial shading, which affects only some portions of a PV module, full
shading occurs when the entire module surface is obstructed. The thickness of the object
covering the solar panel—such as accumulated snow—determines the level of irradiance
received by the PV module [8].

In this study, the SunPower SPR-E19-310-COM (EnergySage, 3 Center Plaza, Boston,
MA, USA) module was selected to design the PV system. Table 1 presents the module’s
characteristics under standard reference conditions (1000 W/ m?; cell temperature = 25 °C),
as provided by the System Advisor Model (SAM) program [9]. Since PV modules gen-
erate less electricity when operating under limited irradiance, shading conditions can
significantly impact power output.
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Table 1. Technical characteristics of the SunPower SPR-E19-310-COM module.

Technical Term Value
Nominal Efficiency 19.02%
Maximum Power (Pmp) 310.149 (W)dc
Maximum Power Voltage (Vmp) 54.7 (V)dc
Maximum Power Current (Imp) 5.7 (A)dc
Open Circuit Voltage (Voc) 64.4 (V)dc
Short Circuit Current (Isc) 6.0 (A)dc
Length x Width 1.559 x 1.046 (m?)

The amount of snowfall, typically the prime cause of shading, affects the total irradi-
ance received by a solar panel. Daily energy losses due to snowfall can be estimated as
follows [10]:

1.  For a module angle of 30°:

e  Snowfall depth greater than 1” results in a 45% daily energy loss.
e  Snowfall depth less than 1” results in an 11% daily energy loss.

2. For a module angle of 40°:

e  Snowfall depth greater than 1” results in a 26% daily energy loss.
e  Snowfall depth less than 1” results in a 5% daily energy loss.

Alternatively, partial shading conditions (PSCs) occur when only some parts of a PV
surface are affected by an obstruction. Depending on the latitude and longitude, weather
can be the primary cause of partial shading in a solar power plant. For instance, clouds,
snowfall, wind, heavy rain, hail, freezing rain, sandstorms, or a combination of these
elements can impact energy production. In addition to climatic factors, the environment
and location of a PV site can also contribute to shading due to nearby objects such as
buildings, trees, vegetation, pollution, and sand dunes.

When a PV module is partially exposed to sunlight, its I-V and P-V curves exhibit
one global maximum and two local maximum points. In a previous study using MAT-
LAB simulations [11], these curves were analyzed for a PV array consisting of four PV
modules connected in a parallel-series configuration. Figure 2 illustrates the P-V and I-V
characteristics, current (I), and voltage (V) of the circuit under uniform shading conditions
(irradiance = 1000 W/m?; temperature = 25 °C). As shown, with uniform shading, there is
only one maximum point in each of the P-V and I-V curves, representing the maximum
functional point of the PV system. However, under partial shading conditions, these curves
exhibit multiple operational points, with each corresponding to a different module.

Photovoltaic Module Characteristics Curve
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Figure 2. The P-V and I-V characteristics of the uniformly shaded PV arrays.
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Figure 3 illustrates the P-V and I-V curves of partially shaded PV modules within the
array, with each being affected by different levels of solar radiation: 500 W/m?, 100 W/m?,
1000 W/m?, and 300 W/m?. The presence of two local maxima and one global maximum
demonstrates the P-V and I-V relationships of the PV system. Similarly, the I-V curves
exhibit three distinct slopes, corresponding to the points where P-V changes occur.

P-V and I-V curves under PSC for the PV arrays
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Figure 3. The P-V and I-V characteristics of the partially shaded PV arrays.

As expected under partial shading conditions, the generated power of the circuit
results in multiple I-V and P-V curves, with each representing the operational characteristics
of the system when different modules experience shading.

2.3. The Application of an MPPT Method

An MPPT system extracts the optimal output energy from a solar panel operating
under partial shading conditions (PSCs). The nonlinear characteristics of a PV array under
PSCs will result in multi-peak P-V and I-V curves with one global maximum point (GP)
and multiple local maximum points [12,13].

MPPT approaches are designed to alleviate the effects of PSCs on PV system per-
formance, assuring optimal operation at the maximum power point (MPP). An MPPT
controller utilizing an optimization technique is deployed to do this. In an MPPT-based
control system, the control parameters affect the performance of each algorithm, potentially
leading to minor discrepancies in compared outcomes [14]. The controller supplies the
reference voltages or currents necessary for the photovoltaic module. According to these
references, the pulse width modulation (PWM) generator establishes the suitable duty cycle
for the converter.

A voltage regulator is an essential element of any MPPT control system, as it monitors
the reference value supplied by the operational algorithm [15]. This reference value is
identified using a microcontroller (MCU) that is integrated with current and voltage sensors.
Microcontroller units (MCUs) are pivotal in solar energy harvesting, facilitating system
management and communication technologies that empower designers to manage the
output power of photovoltaic (PV) arrays [16].

Microcontroller units (MCUs) can identify power supply conditions (PSCs) and react
appropriately due to their dynamic modulation abilities. Moreover, MCU-based photo-
voltaic systems need fewer components, hence enhancing their reliability and decreasing
costs in comparison to traditional or analog technology. Contemporary sophisticated mi-
crocontrollers have a range of technical capabilities, including the simultaneous generation
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of numerous PWM signals. Consequently, the MPPT system can precisely determine the
best operating point for the PV system [17].

3. Related Works: The Application of Al in PV Systems

Al-driven technologies have been applied across various research fields in the solar
power sector, primarily to handle complex data generated from multiple sources. These
applications range from energy forecasting to analyzing data from control and monitor-
ing systems.

For example, in [18], Al methods are effectively utilized in geographic information
system (GIS) databases to determine the optimal sites for solar farm installations. Site
selection models consider various interrelated and sometimes unrelated factors, including
environmental, socio-economic, legal, and political considerations. Similarly, as presented
in [19], anomaly detection for PV system maintenance can be performed using deep
learning techniques.

One of the major research areas benefiting from Al is solar power production fore-
casting. In [20], machine learning models are used to predict the energy output of a PV
system. Additionally, Al and machine learning techniques contribute to system modeling
and energy cost predictions [21]. Al applications have also been explored for cost reduction,
climate impact mitigation strategies, and energy efficiency improvements, as outlined in
a literature review [22]. However, MPPT methods have gained significant advantages
through the integration of Al-powered algorithms [23].

Since this paper focuses on PV shading, we examine the advancements in sustainable
electricity production in the context of MPPT systems. Furthermore, we investigate the role
of Al in enhancing energy efficiency for PV systems operating under shading conditions.
The following subsection provides an overview of Al-based algorithms that improve PV
energy generation efficiency and enhance the functionality of MPPT control systems.

3.1. The Role of Al in MPPT Algorithms

Numerous algorithms have been developed by researchers to identify the maximum
power point (MPP) at which a PV system can operate efficiently under shading conditions.

The literature reviews categorize these algorithms according to their functionality, and
the distinctions among the approaches are considerable. These classifications largely em-
phasize MPPT applications, optimization approaches, costs, utilized parameters, efficiency,
tuning mechanisms, system complexity, and convergence speed [14,24].

The predominant classifications of MPPT approaches are as follows: (1) conventional
or classical methods, (2) modern or soft computing methods, (3) hybrid methods, and
(4) power electronics (PE)-based methods.

Conventional approaches, although simple to execute, may become ensnared in local
maxima, leading to one of the local sites being erroneously designated as the MPP in PV
systems functioning under partial shadowing conditions (PSCs) [25]. Moreover, shadowing
circumstances can profoundly affect photovoltaic performance.

Soft computing technologies are often classified into Al-based approaches and meta-
heuristic optimization strategies [26,27]. Meta-heuristic approaches are categorized into
(1) evolutionary algorithms (EA) and (2) population-based or swarm intelligence (SI).

This study categorizes all soft computing MPPT algorithms and prospective hybrid
methods as Al techniques, as stated in Section 1. These strategies are proficient in rapidly
identifying the MPP and improving PV performance efficiency.

Methods based on power electronics (PE) utilize hardware components and the tech-
nical attributes of microcontrollers in MPPT control systems [28]. These technologies,
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categorized as Al-based approaches, are recognized for their high efficiency and rapid
response times, akin to soft computing techniques [29].

3.2. Solar Power Generation and Sustainable Development

The United Nations has defined 17 guiding aims, known as the Sustainable Devel-
opment Goals (SDGs), which establish a framework for addressing the environmental,
political, economic, and human aspects of project developments involving technology [30].
Set to be achieved by 2030, these goals cover various aspects of life and socioeconomic
progress, including the alleviation of poverty, good health, equality, economic growth,
clean water, and more.

Solar power is considered a key driver of economic development due to its role in
electricity generation. The seventh SDG—Affordable and Clean Energy—directly aligns
with Al-driven techniques that enhance the efficiency and sustainability of solar power gen-
eration. To ensure the sustainable development of electricity generation, the technologies
used in solar energy systems should be examined. The role of deep learning and machine
learning in fulfilling the SDGs is explored in [31].

Although the benefits of Al technologies have been widely acknowledged in most
studies, a few papers also highlight the potential negative impacts of utility-scale solar
power plants on SDGs [32]. For instance, one study emphasizes the importance of under-
standing the local communities in which a power plant is located—in this case, Madagascar.
However, the majority of research focuses on the strong relationship between solar power
generation and its positive contributions to SDGs.

Given the focus of this article, we examine the seventh SDG, exploring how to advance
affordable and clean energy. According to the definition of sustainable development [31],
the primary objective is to ensure that future generations can meet their own needs without
compromise. Compared to fossil fuels, solar energy offers significant environmental
benefits, supporting long-term human development [33].

At the same time, the initial phases of renewable energy projects require careful
planning and consideration. Al-based technologies have been integrated into smart grids
and renewable energy systems for over two decades [34]. Al has had a significant impact on
forecasting, monitoring, controlling, and managing energy production in the solar power
sector [35]. As stated in Section 3.1, most advanced computational techniques rely on Al
technology to optimize MPPT algorithms.

By enabling the implementation of diverse optimization algorithms and enhancing
system flexibility, Al allows for sustainable and efficient improvements in solar power
generation. The study in [36] underscores the important role of local communities in the sus-
tainable development of solar power plants. However, our focus remains on technological
advancements in Al methods that support sustainability and align with the seventh SDG.

4. Monthly Power Production of the Case Study

Solar energy practitioners and non-technical solar power users employ PV planning
tools, online applications, and software products to estimate the energy output generated
by a system. In order to submit a reliable PV planning software to report the most accurate
electricity output by this paper’s case study, we investigated thirty-one commercial and
open-source software (the complete list is available in Annex I [37]). We finally selected the
System Advisor Model (SAM) to calculate the energy production of our case study. The
PV model used in the tool and the validity of the research studies are presented in [38—41].
Provided by the U. S. Department of Energy [9], National Renewable Energy Laboratory
(NREL), this model has been widely utilized by researchers and PV practitioners to plan
solar energy projects. The output data of more than 10 solar power plants for certain



Energies 2025, 18, 2960

8of 12

years are publicly available on the website [9]. The hourly power production of the solar
power plants is available in [42]. The reported data were measured and collected at the
power plants. The recorded output powers are available in Excel files for the entirety of
2012. This paper examines a case study of a photovoltaic system installed at the Research
Support Facility 2 (RSF 2) of the National Renewable Energy Laboratory (NREL) in Golden,
Colorado, United States. The PV system comprises a 408 kW solar power plant installed
on the top of the A-wing addition of the RSEF. It is situated at 39.74° N, 105.18° W, with an
elevation of 1829 m. The whole technical explanation of the case study is available in [42].

SAM is a free desktop application allowing for renewable energy practitioners to
examine the technical, economic, and financial feasibility of renewable energy projects [9].
In addition, it provides various output reports, including daily, monthly, and annual energy
production. The model uses the meteorological data available in its weather library. Using
SAM simulation (version 2023.12.17), we designed a PV power system, choosing the same
inverter and module as the actual project. Two different planning scenarios were applied
to design a separate PV system for the case study. Later, the monthly power generation of
these solar plants was compared. The new version of the design tool incorporates MPPTs,
whereas previous versions of SAM did not account for MPPT design. We employed two
different versions of the SAM to simulate the following two scenarios:

1. A system designed without MPPT.
2. A system equipped with MPPT.

SAM provides both monthly and annual energy production summaries, along with
the technical characteristics of the designed systems. The brand and type of PV module
used in the designs were selected similarly to ensure consistency across both systems. The
following section outlines the two scenarios and the designs of the PV systems.

Scenario 1. PV arrays without MPPT

To design a PV system without MPPT, we employed an older version of SAM (version
2014.1.14). Table 2 projects the technical features of the designed system, which generated
408.3 kW power.

Table 2. Technical characteristics of the case study without MPPT.

Technical Term Value
Nameplate DC 408.3 DC (kW)
Modules—number and type 1323 (SunPower SPR-E19-310-COM)
Strings 162
Modules per string 8
Inverters—number and type 1 (5C2500U)
Number of strings 63

Scenario 2. PV arrays equipped with an MPPT control system.

Using SAM (version 2023.12.17), Table 3 depicts the technical characteristics of the
designed PV system equipped with MPPT. Since choosing a one- or three- MPPT systems
for the PV system does not affect the estimated output power, we used a single MPPT
system to reduce complexity and minimize the additional cost of the final design.

As depicted in Tables 2 and 3, the two different versions of SAM designed two slightly
different PV systems, despite the similarity in the input data used for the case study. The
fact is that the SAM was improved, along with its libraries, offering more PV types with
an upgraded technical performance. Consequently, the same number of modules resulted
in noticeable differences in energy production; approximately 0.5% extra (410.33 kW vs.
408.3 kW).
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Table 3. Sizing summary of the PV system for NREL’s RSF 2 building.
Technical Term Value
Nameplate DC 410.33 DC (kW)
Modules—number and type 1323 (SunPower SPR-E19-310-COM)
Strings 63
Modules per string 21
Inverters—number and type 1 (SC2500U)
Number of strings 63
MPPT voltage range 800-1500 (V) DC

5. Discussion of Results

Using the SAM, we compared the monthly power outputs of two scenarios to deter-
mine which design produces more energy. Figure 4 presents the monthly power generation
of the designed systems. It is important to note that the designed systems do not reflect
the actual monthly energy generation of RSF2, as the SAM uses default typical-year (TMY)
weather files for most long-term analyses. For instance, heavy snowfall results in zero
energy output for the power plant on certain days, which is not accounted for in the TMY.
However, the simulation reports distinct monthly power production levels. Comparing the
two monthly power production results shows that the PV system equipped with MPPTs
generates more energy than the system configured without MPPTs.
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Figure 4. Monthly power production for the case study.

5.1. Hypothesis Testing for Both PV Systems: With and Without MPPTs

As illustrated in Figure 4, there are two sets of data presenting power generation with
respect to MPPT for the case study (RSF 2) over 12 months in a typical year. To understand
the important role of an MPPT-based control system in increasing energy production, we
performed a t-test on the results. The one-tail ¢-test formula in Excel was used to calculate
the results in the table. Our hypothesis is defined as the PV system equipped with an MPPT
control system providing the same power generation as the system without MPPT. The
alternative hypothesis is defined as the designed PV system with MPPT providing greater
monthly power production. The hypotheses are described as follows:

Ho: Monthly Power Production (with MPPTs) = Monthly Power Production (without MPPTs).
Ha: Monthly Power Production (with MPPTs) > Monthly Power Production (without MPPTs).

The test has an o« = 0.05 level of significance, and normal distribution is not assumed
since the number of comparable data points is only 12 months. Table 4 presents the results,
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showing a high correlation in power production for both scenarios of about 97%. As
presented, the p-value (about 2.5 x 107°) is significantly less than « = 0.05, so the null
hypothesis is rejected, indicating that the monthly power generation for the designed PV
system equipped with MPPT offers greater energy production.

Table 4. t-test results for monthly productions: Adding MPPTs to the PV system (RSF 2).

With MPPTs Without MPPTs
Mean 62,969.37 52,092.4
Variance 286,554,699.79 214,483,699.21
Pearson correlation 0.9683194
t stat 8.2306124
P (T < t) one-tail 24902145 x 10~°
T critical one-tail 1.7958848

5.2. Comparison with Other Methods

As noted in Section 3, most previous studies considered Al as a promising means of
tracking the maximum power point more efficiently. Metaheuristic algorithms and machine
learning techniques are Al-based methods that provide rapid optimization. However, the
role of an MPPT control system equipped with microcontrollers implementing Al algo-
rithms has not been investigated in an actual solar power plant. This study highlights the
importance of MPPT control systems in solar power generation when ambient conditions
cause partial or full shading, which degrades PV power outputs.

5.3. Al-Based Approaches and Sustainable Development

As stated in Section 3, solar power plants play an undeniable role in achieving the
seventh goal of the SDGs. The ecological footprint of a solar power plant, compared
to other fossil fuel energy resources, is remarkably low. Considering the technological
aids offered by Al to the solar energy sector, we argue that Al-driven methods provide
greater efficiency when shading conditions play an important role in the site’s location.
Furthermore, using soft computing techniques and microcontrollers for MPPT purposes
addresses the need for sustainable development, as no additional environmental resources
are needed to enhance an existing power plant. Therefore, to establish maximum efficiency
and improve the technical characteristics of a solar power plant, we must utilize Al in the
plant’s development. We also argue that using MCU-based systems for MPPT purposes
demonstrates the potential hardware applications of Al-based technologies.

6. Conclusions

Al-driven approaches have demonstrated significant potential in advancing sustain-
able development within the solar power generation sector. This progress aligns with the
goal of achieving affordable and clean energy (SDG 7) by 2030. This paper demonstrates
that MPPT systems can increase power generation, using a solar power plant as a case
study. The PV design system equipped with MPPT offers additional energy production, by
approximately 20%, depending on the month of operation. These Al-powered devices not
only address shading conditions but also increase the sustainability of developing solar
power plants. Project managers, engineers, and policymakers can leverage Al methods to
optimize solar power plants by incorporating MPPT-based control systems. The primary
challenge lies in the additional costs associated with integrating Al-powered MPPT systems
into existing PV plants, which may impact the development of older solar power plants
that currently operate without MPPT solutions.
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Future research directions can experiment with adapting Al to different environmental
conditions, including different latitudes and the effect of various seasons. In addition, the
integration of such solar power plants using MPPT control systems should be studied.
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