Deep Generative Models and Their Inversions
For Bidirectional Transformation
Between Data and Latent Distributions

Jeongik Cho

A Thesis
In the Department of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of
Doctor of Philosophy

at Concordia University
Montréal, Québec, Canada

April 2025

©Jeongik Cho, 2025

i

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES
This is to certify that the thesis prepared
By: Jeongik Cho

Entitled: Deep Generative Models and Their Inversions For Bidirectional Trans-
formation Between Data and Latent Distributions

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Computer Science)
complies with the regulations of the University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Chair

Dr. Abdessamad Ben Hamza

External Examiner

Dr. Mirek Pawlak

Examiner
Dr. Charalambos Poullis

Examiner
Dr. Eugene Belilovsky

Examiner

Dr. Nizar Bouguila

Thesis Supervisor

Dr. Adam Krzyzak

Approved by

Dr. Sabine Bergler, Graduate Program Director

May 2025

Dr. Mourad Debbabi, Dean of Faculty

i

Abstract

Deep Generative Models and Their Inversions For Bidirectional Transfor-

mation Between Data and Latent Distributions

Jeongik Cho, Ph.D.

Concordia University, 2025

Generative models aim to transform a simple latent distribution into a complex
data distribution, enabling the synthesis of high-dimensional, realistic data. In con-
trast, generative model inversion addresses the reverse process, mapping a complex
data distribution back into a simple latent representation. In this thesis, we introduce
several novel contributions to architecture-agnostic algorithms of generative models and
their inversions, as well as applications utilizing these methods.

First, we show that using multiple adversarial losses improves the performance and
requires fewer hyperparameters than using an auxiliary classifier. Then, we introduce
a novel encoder-based GAN inversion method for better convergence than a simple
mean squared error by dynamically adjusting the scale of each element of the latent
random variable. Furthermore, we propose an out-of-distribution detection method
that leverages the log probability of the latent vector predicted by the encoder-based
GAN inversion framework. Next, we introduce a novel method that combines the
perceptual VAE and the GAN inversion technique from the second contribution to
improve the GAN inversion performance. Finally, we introduce a novel GAN that allows
the model to perform self-supervised class-conditional data generation and clustering

using a classifier gradient penalty loss.

il

Acknowledgments

I would like to express my sincere gratitude to several individuals who have supported
me throughout the completion of this thesis. Firstly, I extend my deepest appreciation to
my supervisor, Dr. Krzyzak, for continuous guidance and encouragement. His expertise
and mentorship have been invaluable throughout the writing process, providing me with
invaluable advice and inspiration.

In addition, I am deeply grateful for the unwavering support and love of my family. My
parents have always believed in me and have provided unwavering support. In addition,
the constant encouragement of my younger sister has fueled my efforts and passion. I am
immensely grateful for their endless love and support.

I extend my heartfelt thanks to Dr. Yoon and all those who have contributed to the

completion of this thesis.

v

Contents

1 Introduction 1
1.1 Motivationo 1
1.2 Summary 2
1.3 Publications and Contributions of the Co-authors 7
1.4 Background 9

1.4.1 Deep Generative Model 9
1.4.2 Class-conditional GAN 11
1.4.3 Generative Model Inversion 13
1.4.4 Out-of-distribution Detection 16
1.4.5 Deep Generative Model with Codebook 17

2 Previous Works and Analysis 18

2.1 Class-Conditional GAN 18
2.1.1 Auxiliary Classifier GANo 18
2.1.2 Unsupervised Class-Conditional GAN 21

2.2 GAN Inversion 24

2.3 Out-Of-Distribution Detection 28

2.4 Training Generative Model with Discrete Latent Random Variable 30

3 Deep Generative Models and Their Inversions 31
3.1 Conditional Activation GAN: Improved Auxiliary Classifier GAN 31

3.1.1 Mixed Batch Training 34

3.2 Dynamic Latent Scale GAN for GAN Inversion 35
3.2.1 Continuous Attribute Edit with Fixed Linear Classifier 42

3.3 Self-supervised Out-of-distribution Detection with Dynamic Latent Scale GAN 44

3.4 Efficient Integration of Perceptual VAE into Dynamic Latent Scale GAN . . 46

3.5 Training Self-supervised Class-conditional GAN with Classifier Gradient Penalty
and Dynamic Prior o 54
3.5.1 Training Classifier Gradient Penalty GAN with Codebook Architecture 60

Experiments 62
4.1 Conditional Activation GAN and Mixed Batch Training 62
4.1.1 Conditional Activation GAN 62
4.1.2 Mixed Batch Training 0oL 65
4.1.3 Summaryo 69
4.2 Dynamic Latent Scale GAN 70
4.2.1 Experiments Settings oL 70
4.2.2 Dynamic Latent Scale GAN Experiment Results 72
4.2.3 Attribute Editing with Dynamic Latent Scale GAN 75
4.2.4 SUMMAaryo e 81
4.3 Out-of-distribution detection with Dynamic Latent Scale GAN 81
4.3.1 MNIST Experiment Settings 82
4.3.2 Experiment Results oL 84
4.3.3 CelebA Experiments 86
4.3.4 CelebA Results 88
4.3.5 SUmMMAary 91
4.4 Dynamic Latent Scale GAN with Perceptual VAE loss 91
4.4.1 Experiment Settings 91
4.4.2 Experimental Results L 94
4.4.3 Summary 101
4.5 Classifier Gradient Penalty GAN Experiments 102
4.5.1 Gaussian Clusters Experiments 102
4.5.2 MNIST Experiments 110
4.5.3 AFHQ Experiments. 113

vi

4.5.4 Classifier Gradient Penalty GAN with Codebook Experiments

455 SUMMATY . . . o oo e e

5 Conclusions and Future Works

References

List of Figures

10
11

GAN training example
Training encoder with and without latent scale
Gradient direction of ACGAN and CAGAN
DLSGAN beginning of the training and after convergence.
Visualization of L,.. and L.,. of PVDGAN
Example of a classifier’s decision boundary moving. The top plot shows the
classifier decision boundary moving to the right side when the classifier gra-
dient penalty was not applied. The bottom plot shows the classifier decision
boundary moving to the left side when the classifier gradient penalty was ap-
plied. In the top plot, the decision boundary of classifier () moves to the right
toward x = 2.1 to minimize the classification loss. On the other hand, in
the bottom plot, the decision boundary moves to the left toward x = 1.5 to
minimize the classification loss. o000
Flowchart showing the training process of CGPGAN. Values a, - ¢, and ay - ¢y
are used for adversarial training. ”®” represents the inner product.
CAGAN Gaussian clusters
CAGAN generative performance graph
CAGAN in MNIST

ACGAN CAGAN mixed batch training in Gaussian clusters experiments

vil

132

o7

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Generated samples of ACGAN without mixed batch training. 67

Generated samples of ACGAN with mixed batch training. 67
Generated samples of CAGAN without mixed batch training. 68
Generated samples of CAGAN with mixed batch training. 68
Mixed batch training comparison graph. 69
Generative performance for each epoch.o 73
Inversion performance for each epoch. 73
Comprehensive performance for each epoch. 74
Average Lg,. for each epoch. L 74
DLSGAN Unseen real image reconstruction samples 76
Differential latent entropy of scaled latent random variable (Zos). 7
Latent interpolation on most important dimension. 7
Latent interpolation on second most important dimension. 78
Latent interpolation on third most important dimension. 78
Attribute ‘Bangs’ transfer of unseen real images. 79
Attribute ‘Gender’ transfer of unseen real images. 80
Attribute ‘Smile’ transfer of unseen real images. 80
MNIST OOD samples 83
CelebA OOD samples 87
CelebA autoencoder reconstructed samples 90
Generative performance graphs in FFHQ experiments. 94
Generative performance graphs in AFHQ experiments. 95
Inversion performance graphs in FFHQ experiments. 97
Inversion performance graphs in AFHQ experiments. 98
Unseen test image reconstruction examples in FFHQ experiments. 99
Train image reconstruction examples in AFHQ experiments. 100
Vanilla GAN in Gaussian clusters 104

viil

39
40
41
42
43
44
45
46

47
48
49
50
o1
52
23
o4
95
26
57

InfoGAN Gaussian clusters 105

Elastic InfoGAN Gaussian clusters 107
CGPGAN Gaussian clusters 108
CGPGAN Gaussian clusters repeat 109
MNIST generated data with A, =50. 110
MNIST generated data with A\ep, =70. oL 111
MNIST generated data with A\, =120. 112

The entropy of a categorical latent distribution over epochs in MNIST exper-

ments.o e 112
AFHQ dataset generated with CGPGAN when Ay, =80.. 115
AFHQ dataset generated with CGPGAN when Ay, =120. 116
AFHQ dataset generated with CGPGAN when Ay, =160. 117

The entropy of a categorical latent distribution over epoch in AFHQ experiments.118

Generated samples of Vanilla GAN without codebook architecture 120
Generated samples of Vanilla GAN with codebook architecture 121
Generated samples of CGPGAN without codebook architecture 122
Generated samples of CGPGAN with codebook architecture 123

Generated samples of CGPGAN with codebook architecture. d; =4, d. =8. 126
Generated samples of CGPGAN with codebook architecture. d; = 16, d. = 16. 127
Generated samples of CGPGAN with codebook architecture. d; = 32, d. = 32. 128

List of Tables

Summary of Abbreviationso X
Summary of Notation xi
Deep Generative Model Characteristics 10
AEDLSGAN performance 79

X

© oo N O

OOD detection performance for each method in MNIST experiment.
Basic model performances in MNIST experiments.
OOD sample sizes for each OOD dataset in CelebA experiments.
OOD detection performance for each method in CelebA experiments.

Basic model performances in CelebA experiments

Table 1: Summary of Abbreviations
Abbreviation Full Term

GANs Generative Adversarial Networks
VAEs Variational Autoencoders
CGAN Conditional GAN

ACGAN Auxiliary Classifier GAN
CAGAN Conditional Activation GAN
ii.d. Independent and identically distributed
DLSGAN Dynamic Latent Scale GAN
PVDGAN Perceptual VAE DLSGAN

OOD Out-of-distribution

ID In-distribution

CGPGAN Classifier Gradient Penalty GAN
VQ Vector Quantization

MSE Mean Squared Error

NLL Negative Log-Likelihood

Rec Reconstruction

Table 2: Summary of Notation

Symbol Description

X d,-dimensional data random variable

x d,-dimensional data point

Cr d.~dimensional categorical vector corresponding to x

Z d,-dimensional continuous latent random variable

z d.-dimensional continuous latent vector

Z' d,-dimensional continuous latent vector predicted by encoder
C d.-dimensional categorical latent random variable

cr d.-dimensional categorical latent vector

G Generator

D Discriminator

Q Classifier

E, Encoder predicting the continuous latent vector

E, Encoder predicting the log variance vector

D~ Discriminator integrated with Fj

E; Trainable i-th sub-encoder, i.e., E;(z) = [E(z)];

Ay Adversarial loss function for the generator

Ay Adversarial loss function for the discriminator

L Loss

A Loss weight

Eyp@)[] Expectation over distribution p(x)

|- Il2 ¢y norm (Euclidean distance)

avg(x) Average over dimensions of a vector x € R%: aqvg(x) = i ;lil T,
Ve Gradient with respect to x .

. Dot product between vectors

o Hadamard (element-wise) product

argmazx onehot(-) One-hot encoding of the input vector’s index with the largest value
sample(X,n) Function that returns n samples from random variable X’

xi

1 Introduction

1.1 Motivation

Recently, deep generative models such as Diffusion Models [70], GANs (Generative Adversar-
ial Networks) [1], and VAEs (Variational Autoencoders) [2] have demonstrated remarkable
performance in data generation. These generative models are trained to transform simple
latent distributions into complex data distributions. A simple latent distribution refers to
an easy-to-sample distribution like a standard Gaussian, while a complex data distribution
refers to the intricate, real-world distribution of observed data. In general, latent distribu-
tion is simple, easy to sample, and continuous. In particular, when the latent distribution is
a continuous distribution, the generated data distribution is also a continuous distribution.
This means that even when the data distribution is an empirical distribution, it can be ap-
proximated continuously by the generative model. These features of latent distribution allow
generative models to be used not only for data generation, but also for multiple tasks such
as data understanding, data generation, data augmentation, and data post-processing.

Inverse transform sampling and Gaussian Mixture Models (GMMSs) are simple examples
of transformations between a simple latent distribution and a complex data distribution.
Inverse transform sampling uses the inverse cumulative distribution function (CDF) to con-
vert uniform random variables into samples from arbitrary target distributions. It is widely
used in univariate settings where the inverse CDF is tractable. Gaussian Mixture Models
approximate complex distributions by linearly combining multiple simple Gaussian compo-
nents. Since each component follows a Gaussian distribution, GMMs can represent a complex
distribution as a weighted sum of Gaussian components.

Another topic in generative models is generative model inversion. Generative model
inversion addresses the reverse process, mapping a complex data distribution back into a
simple latent representation. These features of generative model inversion allow generative

model inversion to be used not only for tasks where generative models are used but also for

various tasks such as domain transfer, data preprocessing, data manipulation, and anomaly
detection.

Thus, this bidirectional transformation with generative model and generative model in-
version allows complex data distributions to be replaced by simple latent distributions. This
feature allows bidirectional transformation with generative models and generative model in-
version to be used in a very wide range of tasks, including data processing and end-to-end

models.

1.2 Summary

In this thesis, we introduce several contributions about architecture-agnostic algorithms of
generative models and their inversions, as well as applications utilizing these methods. The
main objective of this work is to investigate and improve the invertibility of generative models
for effective representation (feature) learning.

Representation learning, including generative model inversion, aims to extract meaningful
and compact features from high-dimensional data. It can be used for various downstream
tasks, such as classification, regression, clustering, or anomaly detection. For example, latent
vectors obtained through inversion can be clustered to discover inherent data structures, or
used as input to train lightweight classifiers for few-shot learning. Additionally, the latent
space enables interpretable manipulation of attributes, transfer learning across domains, and
multimodal alignment when extended to other data types.

We propose novel inversion techniques that allow accurate recovery of latent vectors from
generated data, enabling better interpretability, reconstruction, and downstream tasks such
as anomaly detection and attribute editing. In most contributions, we discuss generative
adversarial networks (GAN).

e In the first contribution, we introduce two advanced techniques for conditional
GAN (CGAN) [38]. Auxiliary classifier GAN (ACGAN) [3] is a class-conditional GAN that

uses an auxiliary classifier for class-conditional data generation. The classifier of ACGAN is

trained to classify the label of the input data, and the generator is trained so that the gen-
erated class-conditional data is correctly classified by the classifier. We analyze the problem
ACGAN and introduce conditional activation GAN (CAGAN) [4] that can replace ACGAN.
ACGAN’s generator is trained to minimize classification loss for class-conditional data gener-
ation, which results in a trade-off between classification loss and adversarial loss and decreases
the model’s generative performance. On the other hand, the proposed CAGAN is a compos-
ite of multiple GANs, where each GAN is trained to generate each class. Since each GAN
shares all hidden layers, it can be considered a single model. Compared to ACGAN, CAGAN
does not require an additional hyperparameter to adjust the loss ratio between adversarial
loss and classification loss and has better generative performance.

When training conditional GAN, real conditional distribution and fake conditional dis-
tribution can be different. If the discriminator has batch-wise operations, it can use the
conditional distribution of the input batch for real/fake discrimination, which lowers the
generative performance of the model. To prevent the discriminator from using conditional
distribution of input batch, we propose mixed batch training. Mixed batch training is con-
figuring each batch with always equal proportions of real data and fake data. If the ratio
of real data and fake data in every batch is the same, the conditional distribution of every
batch is also the same. For stable training, mixed batch training gradually changes the ratio
of real data and fake data in each batch.

e In the second contribution, we introduce a novel GAN inversion method and a
continuous attribute edit method that utilizes it. When each dimension of a latent random
variable is independent and identically distributed (i.i.d.), the encoder trained with mean
squared error loss to invert the generator does not converge. This is because the entropy
of the latent random variable is too high, so the generator loses information of the latent
random variable. We introduce a dynamic latent scale GAN (DLSGAN) that allows the
encoder to invert the generator by dynamically adjusting the element-wise scale of a latent

random variable so that the generator does not lose information. The scale of the latent

random variable is approximated by tracing the element-wise variance of the predicted latent
random variable of the encoder from previous training steps. The encoder can be integrated
with the discriminator, and the loss for the encoder is added to the generator loss for fast
training.

InterFaceGAN [41] showed that the attributes of generated data are linearly separable
in the latent space of GAN, utilizing it to perform continuous attribute editing of generated
data. InterFaceGAN trains a linear classifier that predicts the attributes of generated data
from latent vectors. By gradually changing the latent vector to change the output of the
linear classifier, the attributes of the generated data can be continuously changed. Based
on this idea, we introduce a method to continuously edit attributes of input data using
DLSGAN. The proposed method trains a class-conditional DLSGAN to fit a fixed linear
classifier. By gradually changing the predicted latent vector to change the output of the
fixed linear classifiers, the attributes of the input data can be continuously changed.

e In the third contribution, we introduce an advanced self-supervised (unsupervised)
out-of-distribution (OOD) detection method using DLSGAN. The entropy of DLSGAN’s la-
tent random variable decreases gradually as training progresses, converging to an appropriate
value. When the DLSGAN converges, in-distribution (ID) data are densely mapped to latent
vectors that are likely sampled from the latent distribution. Therefore, the log probability of
the predicted latent vector represents the relative log probability of the data, and it can be
used for OOD detection. We propose AnoDLSGAN which uses the log probability of the pre-
dicted latent vector of DLSGAN for OOD detection. Each dimension of DLSGAN’s encoder
output is independent of each other and follows simple latent distributions with different
variances. Therefore, it is easy to calculate the log probability of the predicted latent vector.
AnoDLSGAN does not require metric function, pre-trained model, ID data, or additional
hyperparameters for prediction.

e In the fourth contribution, we introduce perceptual VAE DLSGAN (PVDGAN),

a method of adding perceptual variational autoencoder (VAE) loss to DLSGAN efficiently.

Generally, GAN is suffering from low diversity of the generated data. Some works [68, 69, 34,
33] tried to combine VAE or autoencoder loss with GAN to improve the generative perfor-
mance, especially data diversity, of GAN. We propose PVDGAN, which efficiently integrates
perceptual VAE loss into DLSGAN. When each dimension of DLSGAN’s latent random vari-
able is i.i.d. normal distribution, each dimension of the predicted latent random variable of
real data is independent of each other and follows normal distribution. Therefore, the sum
of element-wise scaled normal noise and predicted latent random variable becomes a random
variable with each dimension is i.i.d. normal distribution again. Since this random variable
is paired with real data and follows the latent random variable, it can be used for both VAE
and GAN training. Furthermore, by considering the intermediate layer output of the discrim-
inator as the feature encoder output, the VAE can be trained with perceptual reconstruction
loss, instead of simple reconstruction loss. The forward propagation & backpropagation for
minimizing this perceptual reconstruction loss can be integrated with those of GAN training.
Therefore, PVDGAN does not require additional computations compared to typical GAN or
DLSGAN.

e In the fifth contribution, we introduce classifier gradient penalty GAN (CGPGAN)
for self-supervised class-conditional data generation and clustering. Class-conditional GAN
generates class-conditional data from continuous latent distribution and categorical distribu-
tion. Typically, a class-conditional GAN can be trained only when the label of the target
data is given. We propose CGPGAN that allows the model to perform self-supervised class-
conditional data generation and clustering without knowing labels, optimal prior categorical
probability, or metric function. CGPGAN uses a discriminator, a classifier, and a generator.
The classifier is trained with cross-entropy loss to predict the conditional vector of the fake
data. Also, the conditional vector of real data predicted by the classifier is used to train the
class-conditional GAN. When training class-conditional GAN with this classifier, the decision
boundary of the classifier falls to the local optima where the density of the data is minimized.

CGPGAN adds a classifier gradient penalty loss to the classifier loss to prevent the classifier’s

decision boundary from falling into a narrow range of local optima. It regulates the gradient
of the classifier’s output to prevent the gradient near the decision boundary from becoming
too large. As the classifier gradient penalty loss weight increases, the decision boundary falls
into a wider range of local optima. Therefore, the sensitivity of each class can be adjusted by
the weight of the gradient penalty loss. Additionally, CGPGAN updates the prior categor-
ical probability with the categorical probability of real data predicted by the classifier. As
training progresses, the entropy of the prior categorical probability decreases and converges
according to the classifier gradient penalty loss weight. Furthermore, we propose codebook
architecture for CGPGAN to strengthen the discrete representation and make it easier to
interpret the discrete representation. Instead of directly inputting a one-hot categorical la-
tent vector into the generator, the codebook architecture inputs the trainable page vector of
the corresponding index of the categorical latent vector. Through memorization of codebook

architecture, CGPGAN can enrich the discrete representation and generate high-quality data.

1.3 Publications and Contributions of the Co-authors

”Conditional Activation GAN: Improved Auxiliary Classifier GAN,” In IEEE Ac-
cess, vol. 8, pp. 216729-216740, 2020. [4]

Mainly discussed in section 3.1.

Jeongik Cho Conception and design of the study, contributions to theoretical analysis,
experimental work, data analysis, writing the original draft, editing and

proofing

Kyoungro Yoon Research supervision, funding, editing and proofing

”Dynamic Latent Scale for GAN Inversion,” in Proceedings of the 11th Interna-
tional Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 221-
228, 2022. [51]

Mainly discussed in section 3.2.

Jeongik Cho Conception and design of the study, contributions to theoretical analysis,
experimental work, data analysis, writing the original draft, editing and

proofing

Adam Krzyzak Research supervision, funding, editing and proofing

”Self-supervised Out-of-distribution Detection with Dynamic Latent Scale
GAN,” in Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR), pp. 113-
121, 2022. [52]

Mainly discussed in section 3.3.

Jeongik Cho Conception and design of the study, contributions to theoretical analysis,
experimental work, data analysis, writing the original draft, editing and

proofing

Adam Krzyzak Research supervision, funding, editing and proofing

?Efficient integration of perceptual variational autoencoder into dynamic la-
tent scale generative adversarial network,” in Expert Systems, e13618m 2024. [53]

Mainly discussed in section 3.4.

Jeongik Cho Conception and design of the study, contributions to theoretical analysis,
experimental work, data analysis, writing the original draft, editing and

proofing

Adam Krzyzak Research supervision, funding, editing and proofing

”Training Self-supervised Class-conditional GAN with Classifier Gradient Penalty

9

and Dynamic Prior,” under review in Expert Systems Journal. [86, 87]

Mainly discussed in section 3.5.

Jeongik Cho Conception and design of the study, contributions to theoretical analysis,
experimental work, data analysis, writing the original draft, editing and

proofing

Adam Krzyzak Research supervision, funding, editing and proofing

” Analysis of the rate of convergence of two regression estimates defined by
neural features which are easy to implement,” in Electronic Journal of Statistics 18.1

(2024): 553-598. [85]

Alina Braun Conception and design of the study, contributions to theoretical analysis,
experimental work, data analysis, writing the original draft, editing and

proofing

Michael Kohler Research supervision, major contributions to theoretical analysis, editing

and proofing

Jeongik Cho Experiments and proofing
Adam Krzyzak Research supervision, contributions to theoretical analysis, editing and
proofing

”On the rate of convergence of an over-parametrized deep neural network re-
gression estimate with ReLU activation function learned by gradient descent,”

under revision in Electronic Journal of Statistics.

Michael Kohler Conception and design of the study, contributions to theoretical analysis,

writing the original draft, editing and proofing

Jeongik Cho Experiments and proofing
Adam Krzyzak Research supervision, contributions to theoretical analysis, editing and
proofing

1.4 Background
1.4.1 Deep Generative Model

Recently, generative models have shown impressive performance in deep learning models.
The objective of a generative model is to transform an easy-to-sample distribution, such
as a multi-dimensional Gaussian distribution, into a complex target data distribution. The
distribution that serves as the input for the generative model is called a latent random
variable. In general, the latent distribution is a distribution where each dimension is i.i.d.
and follows a simple distribution, and the target distribution is a complex, high-dimensional
empirical distribution. Some dimensions of the latent random variable should be continuous,
which means a well-trained generative model can sample data continuously from the target
data distribution. Among various generative models, variational autoencoder (VAE) [2],
generative adversarial network (GAN) [1], and diffusion models [70] are demonstrating state-
of-the-art generative performance [12].

A VAE consists of an encoder and a decoder. The encoder of VAE takes input data and
predicts means and variances of a Gaussian distribution. Each dimension of this Gaussian
distribution is independent of the others. Then, the decoder generates data from a latent
vector sampled from the predicted Gaussian distribution. The encoder and the decoder are

trained to minimize the distance between input data and generated data with reconstruction

VAE [2] GAN [1] Diffusion [70]

Data Quality Low High High
Data Diversity High Low High
Sampling Speed Fast Fast Slow

Latent Dimension Low Low High

Table 3: Characteristics of deep generative models by type [12].

loss. Additionally, the encoder is trained with KL (Kullback-Leibler) loss so that the pre-
dicted Gaussian distribution follows the latent distribution. VeryDeepVAE [72] exhibits the
state-of-the-art performance among VAEs by stacking multiple VAEs.

A GAN consists of a discriminator and a generator. In GANs, the discriminator is trained
to distinguish between the samples generated by the generator and the real samples from the
training data. The generator is trained to deceive the discriminator by generating data sam-
ples that are indistinguishable from real samples. Through this adversarial training between
the generator and discriminator, the generator learns to transform the latent distribution into
the data distribution. StyleGAN [19, 20] used architecture consists of a mapping network
and a synthesis network for the generator, and it has shown state-of-the-art performance
among GANs.

A diffusion model consists of an autoencoder. The autoencoder of the diffusion model
is trained to remove Gaussian noise from noisy data. The strength of the noise added to
the data depends on the time step and scheduling function. The diffusion model’s data
generation process starts with the noisiest data and gradually removes the noise. Therefore,
the noise removal process is repeated iteratively by multiple inferences of the autoencoder.
In addition, each denoising step involves adding high-dimensional Gaussian noise, which
makes the latent dimension very high. Latent diffusion model [71] showed state-of-the-art
performance among diffusion models by using a pre-trained autoencoder and performing an
inverse diffusion process only in the latent space. To address the slow sampling speed of
diffusion models, DDGAN [12], which combines GAN and diffusion model, has also shown

state-of-the-art performance.

10

Table 3 displays the general performance of each generative model. In Table 3, data
quality refers to how much each generated data resembles real data. The data diversity
represents how diverse the generated data is. The generative performance of the model can
be considered high when both generated data quality and diversity are high. In general, the
diffusion models exhibit the best generative performance.

Sampling speed represents the computations required to generate each data. VAEs and
GANSs require only one forward propagation of the generative model for each data. On the
other hand, diffusion models gradually replace noise with data, requiring multiple forward
propagation. Generally, diffusion models require more than 100 forward propagation for
image generation.

The latent dimension refers to the dimension of the latent random variable required to
generate data. The high latent dimension makes it difficult to represent data meaningfully.
Since VAEs and GANs perform dimensionality reduction, the latent dimension is typically
lower than the data dimension. On the other hand, diffusion models do not perform dimen-
sionality reduction, and require a latent dimension of the data dimension for each denoising
step. When generating 256 x 256 resolution images, the latent dimension in VAEs or GANs
is typically between 256 to 1024, while in diffusion models is 256 x 256 x 3 = 196,608

(deterministic) or 256 x 256 x 3 x 100 = 19, 660, 800 (non-deterministic, reference algorithm).

1.4.2 Class-conditional GAN

Among variations of GANs, a conditional GAN [38] (CGAN) is a GAN that can generate
conditional data distribution. CGAN’s generator takes an unconditional latent vector and a
conditional vector as input and generates conditional data corresponding to the conditional
vector. In general, the training dataset for CGAN should consist of a target (real) data vector
and the corresponding conditional vector, which can be continuous or discrete. Pix2Pix [14]
is an example of a conditional GAN using a continuous conditional vector. Pix2Pix takes an

image, which is a continuous conditional vector, and generates a corresponding conditional

11

image. For example, Pix2Pix can be trained to take a grayscale image as input and output a
corresponding color image. The work by [15] also employed a conditional GAN to augment
the data for scene graph prediction. In particular, the conditional GAN generates visual
features corresponding to rare scene graphs by conditioning on both the graph structure and
continuous visual features. The generated visual features improve the performance of the
scene graph prediction model through data augmentation.

Class-conditional GAN is a conditional GAN where the conditional vector is a discrete
categorical vector. Auxiliary Classifier GAN (ACGAN) [3] is an example of class-conditional
GAN. ACGAN takes one or multiple discrete categorical vectors as input and generates data
corresponding to the categorical vectors. In ACGAN, a classifier is trained to predict the
label of real data, and a generator is trained so that the fake data generated with the discrete
categorical vector is correctly classified by the classifier. However, these class-conditional
GANSs can only be trained given the labels (class-conditional vector) of the data. Therefore,
these methods cannot be used with unlabeled datasets.

Unlike ACGAN, class-conditional InfoGAN [39] can generate class-conditional data even if
the data is not labeled. In class-conditional InfoGAN; the classifier and generator are trained
so that the conditional vector of the generated data is correctly classified by the classifier.
InfoGAN has shown that it is possible to generate class-conditional data without knowing
the conditional vector of the real data if the generator and the classifier are trained with
classification loss. This is because the generator tries to generate class-conditional data that is
easy to be classified by the classifier. For example, the MNIST handwritten digits dataset [61]
consists of handwritten images of 10 different digits, each with a proportion of 0.1. If a class-
conditional InfoGAN is trained on the MNIST dataset using a 10-dimensional categorical
conditional vector, with each category assigned a probability of 0.1, then each conditional
vector uniquely represents one of the ten digits. Although InfoGAN does not require a
conditional vector of the real data, it can only be trained given the optimal categorical

probability.

12

Elastic InfoGAN [11] proposed a method for class-conditional data generation even when
the optimal prior categorical probability is not known. In elastic InfoGAN, the categorical
latent probability is updated to minimize generator loss through gradient descent. Elastic
InfoGAN used Gumbel softmax [16, 17] to perform gradient descent on the categorical latent
probability. It also restricted each class to have the same identity by using contrastive loss

[13] with identity-preserving transformations.

1.4.3 Generative Model Inversion

Another topic in deep learning generative models is generative model inversion. Generative
models transform a simple latent distribution into a complex data distribution. Therefore,
the inverse mapping of the generative model transforms a complex data distribution into an
easy-to-sample continuous latent distribution. Generative model inversion can be considered
as unsupervised feature learning (or representation learning), and it can be used for various
tasks such as dimensionality reduction, clustering, independent component analysis, transfer
learning, or multimodal application. For example, some works [45, 46, 52] used generative
model inversion for out-of-distribution detection. InterFaceGAN [41] showed that attributes
of data are linearly separable in latent space, and used it for continuous attribute edit of
generated data. Work [47] improved classifier performance by augmenting the input sample
using generative model inversion. Some works [48, 49] used generative model inversion for
semantic segmentation.

VAESs have an encoder-decoder architecture, where during training, the decoder serves as
a generative model, and the encoder automatically serves for the inversion of the generative
model. Therefore, no additional methods are required to invert VAEs.

GAN does not have a separate encoder to invert the generator during training. There-
fore, an additional method is needed to invert the generator in GAN. Optimization-based
methods [23, 24, 25] perform gradient descent iteratively on the latent vector to minimize

data reconstruction loss between input data and generated data. Those methods require

13

a lot of computation to predict the latent vector of input data since each gradient descent
iteration requires forward propagation & backpropagation in the generator. For example,
StyleGAN2 [20] used an optimization-based method with 1k iterations. It means 1k forward
propagation & backpropagation of the generator are required to predict the latent vector of
a single image. Also, there is no guarantee that the predicted latent vector follows the latent
distribution.

Learning-based methods train an encoder to predict the latent vector of input data points.
Therefore, learning-based methods require additional training of the encoder compared to
optimization-based methods. Instead, learning-based methods require only one inference of
the encoder to predict the latent vector of a single data. This means that learning-based
methods can predict very quickly compared to optimization-based methods. Among the
learning-based methods, [28, 29, 30] used CGAN [38] to train an encoder that inverts the
generator. These methods consider the encoder as a conditional generative model, and train
the encoder to generate a predicted latent vector from generated data. However, since those
methods use conditional GAN, they are difficult to train and the performance is not good.

Recently, StyleGAN [19, 20] has shown remarkable performance in image generation.
StyleGAN converts latent vectors to style vectors through a mapping network consisting of
nonlinear fully connected layers, and then uses the style vectors to generate fake images
through a synthesis network. Thus, the style vector is the intermediate layer output of
the generative model. Some works [35, 36, 37] proposed the StyleGAN-specific inversion
method to find an inverse mapping of the synthesis network of StyleGAN. However, since
these methods are based on StyleGAN architecture, they are not applicable to other model
architectures and cannot be extended to any data domain other than the image domain. Also,
these StyleGAN inversion methods do not map images to latent vectors, but to style vectors.
Since style vectors are intermediate layer outputs of the generator, each dimension of the
style vector follows an unknown complex distribution rather than simple distributions such

as normal or uniform distribution, and each dimension of the style vector is not independent.

14

Therefore, these StyleGAN inversion methods cannot be utilized in generative model inversion
applications using latent space, such as InterFaceGAN [41] or AnoDLSGAN [52].

Works [31, 39] used squared error to train an encoder that predicts the latent vector.
Assuming that the encoder is a Gaussian model, training the encoder with mean squared
error (MSE) loss is a maximum likelihood estimation of the encoder (minimizing negative
log-likelihood). Works [32, 33, 34] added data reconstruction loss to MSE loss for better
performance.

Hybrid methods [26, 27] use both learning-based methods and optimization-based meth-
ods. Hybrid methods use an encoder to predict the latent vector, and then perform gradient
descent on the latent vector to find a more precise latent vector.

Unlike VAEs or GANS, diffusion models are difficult to invert, and inversion may not
be meaningful. The first reason is that diffusion models inherently lose information about
the latent distribution. This is because they are trained such that different latent vectors
(i.e., different noise samples) can generate the same output data. More specifically, during
the reverse diffusion process, the model is explicitly trained to generate the same data point
with a different latent vector. This many-to-one mapping makes it fundamentally difficult to
recover the original latent vector, thus hindering invertibility. The second reason is that the
latent dimension of diffusion models is typically high, as explained in Table 3. The latent
dimension in diffusion models is equal to or n times larger than the data dimension. This
high-dimensionality not only increases the difficulty of inversion but also makes the latent
variables harder to interpret or manipulate in a meaningful way.

Many methods and applications of GAN inversion are introduced in the GAN inversion
survey paper [18].

While most existing works on generative model inversion are empirical, there are some
papers that cover theoretical aspects of generative model inversion. For instance, work [90]
showed that when the generator is L-Lipschitz function, latent vectors can be accurately re-

covered using optimization-based methods. Specifically, they proved that O(d, log L) random

15

Gaussian measurements are sufficient to guarantee an ¢, /¢5 recovery under certain conditions.

Work [91] showed that when the generator’s Jacobian is ill-conditioned, training becomes
unstable and the model’s performance degrades. To address this, they proposed Jacobian
Clamping, which constrains the range of the singular values of the generator’s Jacobian
during training. This result suggests that generative models with well-conditioned Jacobians
are not only more stable to train but also potentially more invertible and effective. This
shows that when training a generative model to be invertible, the model can be trained more

stably.

1.4.4 Out-of-distribution Detection

One of the fields in deep learning is out-of-distribution (OOD) detection. Most deep learning
models assume that their input data and train data are sampled from the same distribution.
However, the input data may not always be sampled from the same distribution as the train
data. Those models do not work properly when the probability that input data is sampled
from train data distribution is low (e.g., outliers, out-of-distribution data). For example, if a
cat image is an input to a dog species classifier, the classifier may output the wrong results.

Adversarial attack (e.g., FGSM [54]) is also an example where the model does not properly
work if input data is not sampled from the train data distribution. An adversarial attack
is manipulating the model’s predictions by adding artificial noise to the input data. When
the model architecture and weights are given, very small noise generated by an adversarial
attack can significantly change the model’s predictions.

OOD detection is detecting inputs that are sampled from a distribution other than the
in-distribution (ID), which is the train data distribution. Therefore, OOD detection is a
binary classification problem of distinguishing between ID data and OOD data.

The main difference between simple classification and OOD detection is that in OOD
detection, no information is given about the OOD data. In other words, the model is trained

only on ID data and needs to detect OOD data that it has never seen before. In general, it is

16

almost impossible to define an OOD dataset and use it for ID-OOD classification in complex
high-dimensional datasets, since the range of OOD data is very wide in high-dimensional
data space.

Some methods [55, 56, 57, 58] used classifiers trained with ID data for OOD detection.
These methods consider the intermediate layer output of the pre-trained classifier as an
encoder, and use the feature vector (intermediate layer output) of input data to calculate the
OOD score of input data. If the OOD score of input data is greater than the threshold, the
input data is classified as OOD data. Otherwise, input data is classified as ID data.

Works [46, 45, 65] used reconstruction error for OOD detection. These methods recon-
struct input data through an encoder and decoder, then use reconstruction error between the
input data and reconstructed data as OOD score.

Works [59, 60] presented image domain-specific OOD detection methods. These methods

cannot be applied to domains other than images.

1.4.5 Deep Generative Model with Codebook

Recently, some generative models, such as vector Quantization VAE (VQVAE) [84] and
Vector Quantization GAN (VQGAN) [83], have used vector quantization to improve the
performance of generative models. These models use a codebook architecture to ensure that
the generators represent discrete features and improve the quality of the generated data.
These models use an encoder to encode real data into low-dimensional quantized latent
vectors and store them in a codebook. Then, the generative model generates data using the
quantized vectors stored in the codebook. Thus, the codebook acts as a kind of memory for
the generative model. This memory architecture allows the generator to generate high-quality
data.

In general, the encoder used in vector quantization methods is trained with autoencoder
loss (reconstruction loss). That is, the encoder encodes the input train data into a complex

low-dimensional quantized vector, and the decoder is trained to reconstruct the input data

17

from the quantized vector. These quantized vectors are stored in the codebook and then
loaded when the generator generates data. The quantized vectors loaded to generate data

are determined by the prior categorical probability of the model.

2 Previous Works and Analysis

2.1 Class-Conditional GAN
2.1.1 Auxiliary Classifier GAN

ACGAN [3] is a class-conditional GAN that can generate class-conditional data distribution,
given a labeled dataset. ACGAN consists of a discriminator, generator, and (auxiliary)
classifier. The discriminator of ACGAN is trained with the adversarial loss of a typical
GAN to distinguish between real and fake data, and the classifier is trained to predict the
label (categorical conditional vector) of the input data. The generator takes latent random
variables and categorical latent random variables as input and generates class-conditional
data. To generate class-conditional data, the generator is trained so that the generated data
is correctly classified by the classifier. Additionally, the classifier of ACGAN is integrated
with a discriminator (shares hidden layers).

The following equations show losses for training ACGAN.

Ld = Lgdv + LZZS + Lgls (1)

Lg = LZdv + Lfls (2)

as = Eq e, [—¢, - log Q(x)] (3)

LYy = Bee, [—cp - log Q(G(z, ¢))] (4)

18

Lyg = Eazer [Aa(D(2), D(G(2, ¢1)))] ()

Lagy = Bz, [Ag(D(G(2, ¢1)))] (6)

In Egs. 1 and 2, Ly and L, represent discriminator loss and generator loss for ACGAN

. . . d g
training, respectively. Lg, and L7, represent adversarial loss for discriminator and genera-

r

e and Lfls represent classification loss on real data and generated (fake)

tor, respectively.
data, respectively. In ACGAN, the discriminator is integrated with the classifier. Therefore,

classification losses L7, and Lfls are included in the discriminator loss L.

cls

In Eq. 3, x and ¢, represent a real data point and its categorical conditional vector,

respectively. () represents d.-dimensioanl classifier of the discriminator, where d. represents

7

class size (dimension of categorical vector). Operation represents the inner product. One

T

can see that L,

is a categorical cross-entropy loss to predict the labels of real data. In Eq. 4,
z and cy represent a latent vector and a categorical latent vector, respectively. G represents
)2

the generator. Therefore, G(z,c¢y) is a fake data point. Same as L], s

cls’ is a categorical

cross-entropy loss to predict the labels of fake data.

In Egs. 5 and 6, Ay and A, represent adversarial loss functions for the discriminator and
generator, respectively. There are several adversarial loss functions [40] and regularizations
[7].

The first problem of ACGAN is that fake data classification loss Lfls in discriminator loss

Ly (Eq. 1) lowers model performance. If real data distribution and fake data distribution

f

‘s 1s the same as real data classification loss

are the same, fake data classification loss L

L’I‘

ns- However, if fake data distribution and real data distribution are different, fake data

classification loss Lfls is meaningless and can generate bad gradients.
The second problem is that there should be an additional hyperparameter to adjust the
ratio of adversarial loss and classification loss. There are several types of adversarial losses

[40] and regularization [7], and the optimal scale for each adversarial loss can be different. It

19

means that the optimal ratio between adversarial loss and classification loss depends on the
type of adversarial loss and regularizations.

Therefore, one can think of a revised ACGAN loss that added a weighting hyperparameter
for classification loss and removed fake data classification loss L({zs in discriminator loss L.
Several works (e.g., [43, 44]) used revised ACGAN loss for class conditional GAN, but those

papers did not analyze it. The revised ACGAN loss is as follows.

Ld = Lgdv + ACZSLZZS (7)

LQ = LZdy +)‘clst (8>

cls

Eqs. 7 and 8 show losses for revised ACGAN. In Eqs. 7 and 8, there is no fake data

classification loss L, . and the ratio between adversarial loss and classification loss can be

cls?

adjusted by classification loss weight \.,,. However, there are still some problems with the
revised ACGAN loss.

The first problem is that there is an important hyperparameter, classification loss weight
Aas- The optimal classification loss weight A\, can vary depending on the adversarial loss
function and the type of regularization. Therefore, it may take a lot of costs to find optimal
classification loss weight A\, for the model.

The second problem is that there is a conflict between adversarial loss and classification
loss, resulting in a decrease in the generative performance of the model. To minimize classi-
fication loss, the generated data points should be moved away from the classifier’s decision
boundary. This produces a conflict between classification loss and adversarial loss.

The third problem is that at the beginning of training, the fake data classification loss

Lf

s of the generator loss produces a meaningless gradient. If the real data distribution is

different from the generated data distribution, fake data classification loss Lfls will produce
a meaningless gradient for the generator since the classifier is not trained with the generated

data. Therefore, when the real and generated data distributions are different at the beginning

20

Figure 1: Left plot: Two-dimensional dataset consisting of four Gaussian clusters. The cen-
ters and probabilities of each cluster are (—1,1),(0,—2),(1,—1),(2,1) and [0.1,0.2,0.3,0.4],
respectively. The standard deviation for all clusters is 0.3. Right plot: Samples generated by
GAN trained only with a continuous latent distribution.

of training, the fake data classification loss LY of the generator loss can lower the training

cls

speed of the model.

2.1.2 Unsupervised Class-Conditional GAN

Typically, when training a GAN, everything is assumed to be continuous. It means that the
data distribution and latent distribution are assumed to be continuous, and the generator
and discriminator of GAN are assumed to be continuous functions (in general, deep learning
models are differentiable continuous functions for error backpropagation). However, some
data distributions may be better represented as both discrete and continuous latent distri-
butions. Specifically, target data distributions with concavities in the probability density
function in the feature space can be better represented using both discrete and continuous
latent random variables. Still, approximating the concave part with a low probability density
of the target data distribution is still not easy for most deep generative models, which is a
continuous function.

The left plot of Fig. 1 shows a data distribution example consisting of four Gaussian
clusters. The probability density function of the data distribution is continuous, and there
are no points where P(z) = 0. However, it is easier and better to represent this data

distribution with a continuous latent distribution and a 4-dimensional discrete categorical

21

latent distribution.

The right plot of Fig. 1 shows generated data with GAN trained only with a contin-
uous latent distribution. One can see that the generator generates samples between each
cluster, which appear to be connecting each cluster. This is because the latent distribution
is continuous, and the generator is a continuous function, making it difficult to represent
concave parts with low probability density. As training progresses, the probability density of
the concave part decreases, but it requires a long training period, and it is hard to say that
the continuous latent distribution correctly represents data distribution (i.e., entangled data
representation).

For data distributions whose probability density function has concave parts in the feature
space, using a discrete latent distribution is more appropriate for model training and dis-
entangled data representation. Class-conditional generative models, such as ACGAN ([3] or
CAGAN [4], take both continuous latent distribution and discrete categorical latent distribu-
tion as inputs and generate class-conditional data distribution. Training model with discrete
categorical latent random variable allows the model to represent concave parts of the dataset
appropriately. However, ACGAN or CAGAN can only be trained when class-conditional
vectors (labels) of real data are given.

Class-conditional InfoGAN [39] can perform class-conditional data generation and in-
version (clustering) by maximizing mutual information of generator input categorical latent
distribution and classifier output distribution, even if the data is not labeled. The following

equations show losses for (class-conditional) InfoGAN.

Lq -)\clchls (9>
Ld = szldv (1())
Ly = L3, + AasLas (11)

22

Lets = e ey [—cp - 10g(Q(G (2, ¢5)))] (12)

Ligo = Bz, [Aa(D(x), D(G(2, ¢1)))] (13)

adv

Lagy = Bercy [Ag(D(G (2 ¢1)))] (14)

In Egs. 9, 10, and 11, Ly, Lg, and L, represent classifier loss, discriminator loss, and
generator loss of InfoGAN, respectively. L., and Ay represent classification loss and clas-
sification loss weight, respectively. In Eqs. 12, 13 and 14, @), D, and G represent classifier,
discriminator, and generator, respectively. In Eq. 12, L. is categorical cross entropy be-
tween categorical latent vector ¢ and predicted probability of generated data Q(G(z,cy)). ¢y
and z represent the categorical latent vector and continuous latent vector sampled from the
categorical latent distribution C' and continuous latent distribution Z, respectively. Opera-
tion ”-” represents the inner product. In Eqgs. 13 and 14, A4 and A, represent adversarial
loss function [6] for GAN training. In InfoGAN, a classifier () can share hidden layers with
a discriminator D for efficiency.

From the above equations, one can see that a classifier () and a generator GG are trained
to minimize classification loss L. InfoGAN has shown that, given an appropriate categor-
ical latent distribution C', it can perform class-conditional data generation and clustering
(inversion) even when the data is unlabeled. However, InfoGAN still needs prior probabil-
ity of categorical latent distribution C'. Without knowing the appropriate categorical latent
distribution C, InfoGAN cannot perform class-conditional data generation and clustering
appropriately. Additionally, InfoGAN’s generator is trained with both adversarial loss and
classification loss like ACGAN. It means that InfoGAN shares the same problems as ACGAN:
adversarial loss and classification loss conflict with each other in generator loss, resulting in a
decrease in the generative performance of the model. Specifically, the density of fake data is

always lower than the density of real data near the decision boundary of classifier). This is

because the generator is trained to move the generated data away from the decision boundary

23

due to the classification loss.

Elastic InfoGAN [11] proposed a method for class-conditional data generation when the
prior probability of a categorical latent distribution is not known. In Elastic InfoGAN;, the
categorical latent distribution probability is updated to minimize generator loss through gra-
dient descent. To allow the gradient to flow up to a categorical latent distribution probability,
Elastic InfoGAN uses Gumbel softmax [16, 17]. Elastic InfoGAN also used contrastive loss
[13] to ensure that each class has the same identity. Contrastive loss allows augmented data
with identity-preserving transformations to be classified in the same class. By training the
classifier with contrastive loss, generators are constrained to generate data with the same
identity if they are of the same class. For example, Elastic InfoGAN has used rotation,
zoom, flip, crop, and gamma change as identity-preserving transformations for image data.

However, there are still several problems with Elastic InfoGAN. First, contrastive loss
can only be used if a good transformation that preserves the identity of the data is known.
Therefore, it cannot be used in data domains where good identity-preserving transformations
are not known. Second, clustering only can be performed based on identity-preserving trans-
formations. For example, on the MNIST handwritten digits dataset, Elastic InfoGAN will
consider digits 6 and 9 as the same class if 180-degree rotation is used for identity-preserving
transformation. Also, like InfoGAN, Elastic InfoGAN uses classification loss for the gener-
ator like ACGAN, which causes conflict between adversarial loss and classification loss and

decreases the generative performance of the model.

2.2 GAN Inversion

Assume that generator GG maps the latent random variable Z to the data random variable X
(i.e., X = G(Z)). The purpose of the learning-based GAN inversion method is to train an
encoder E that inverts the generator G (i.e., Z = E(G(Z))).

When the latent random variable Z is a d,-dimensional random variable where each

dimension is i.i.d., the encoder E can be considered as an integration of d, encoders, where

24

each encoder is trained to recover each element of a latent random variable Z (i.e., Z; =
E\(G(2)),Zy = Ex(G(Z)),...,Za, = E4,(G(Z))). Assuming each encoder is a Gaussian
model, training each encoder with an MSE loss minimizes the negative log-likelihood of each
encoder.

However, the integrated encoder E cannot fully recover the latent random variable Z since
there is no guarantee that the generator GG uses all the information of the latent random
variable Z. For example, when the latent random variable Z has too many dimensions,
generator G' can be trained to ignore some dimensions of the latent random variable Z. Or,
generator GG can be trained so that some elements of the latent random variable Z are less
important than others.

It means that different latent vectors z, and z, sampled from the latent random variable
Z can be mapped to the same or similar generated data points G(z,) and G(z). In this
case, some encoders of the integrated encoder E cannot converge or converge very slowly to
predict some element of the latent random variable Z. In other words, the generator loses
the information of the latent random variable Z, and the encoder E cannot perfectly recover
the latent random variable Z from the generated data random variable G(Z).

The upper part of Fig. 2 shows an example of the problem that occurs when training an
encoder without a dynamic latent scale. In the upper part of Fig. 2, the generator ignores
the third element of the latent vector. Therefore, different latent vectors ([0.9,—0.7,0.5]
and [0.9,—0.7,0.3]), are mapped to the same generated data point A. In this case, the
encoder cannot recover the third element of the latent vector and vibrates to minimize the
non-converging loss, which degrades the performance of the encoder.

Nevertheless, several works [32, 33, 34] used MSE loss to train the encoder to predict the

latent vector of the generated data.

Lene = avg (Z — E/(G(2)))?) (15)
Eq. 15 shows MSE loss for training the encoder that inverts the generator. In Eq. 15,

25

Without latent scale

With latent scale Same scale

- DhEEA

Jojelauan

Figure 2: Training encoder with and without latent scale

Lene represents the encoder loss for the encoder. E; and G represent the (latent) encoder and
the generator, respectively. Z represents the latent random variable, and G(Z) is generated
data random variable. avg is the vector average function. When using simple MSE loss,
encoder Fj can share hidden layers with discriminator D.

InfoGAN [39] proposed a method to train an encoder to predict some dimension of the
latent random variable Z. In InfoGAN, both generators and encoders are trained to min-
imize encoder loss. In addition, InfoGAN’s encoder predicts the mean and variance of the
latent vector and is trained to maximize the log-likelihood of the predicted latent vector.
It was simply assumed that the additional noise of the predicted latent vector follows the
normal distribution in InfoGAN. InfoGAN can be extended to train the encoder to predict
all dimensions of the latent random variable Z. The following equation shows the loss for

InfoGAN predicting all dimensions of the latent random variable.

26

- i+ ESESED o

In Eq. 16, the log variance encoder Ej, predicts the log variance of the additional normal
noise. In InfoGAN, encoders F;, Ej,, and discriminator D can share hidden layers.
When encoders are integrated with the discriminator, the losses for the above GAN

inversion methods are as follows:

Ld = Lgdv +)\encLenc (17>
Lg = LZdv + AenCLenc (18)

In Egs. 17 and 18, Lq and L, represent discriminator loss and generator loss, respectively.

Ld

¢ and L7, represent adversarial loss for GAN training. Several adversarial loss functions

can be found in the work [6]. A, represents encoder loss weight.

VAEGAN [68] integrated perceptual VAE and GAN for better generative and inversion
performance. In VAEGAN;, the generator (decoder) is trained with both adversarial loss of
GAN and perceptual VAE loss. The VAE latent random variable predicted from the encoder
is used to train both GAN and VAE. The following equations show losses for VAEGAN
training when Z ~ N(0, I,,), where d, represents the dimension of latent random variable

Z.

Zy = E)(X) 4 N(0,1,) o ePreX)/2 (19)
Lyee = avg ((E;(G(Z,)) — Ef(X))?) (20)
Lypr = avg (Ei(X)? = Ejp(X) + ") (21)
Lq = L, (22)

Ly = Ly + ArecLrec (23)

27

Le =)\rechec +)\prerrr (24)

Eqgs. 19-24 show losses for training VAEGAN. Z, in Eq. 19 shows the VAE latent random
variable that is used for both GAN and VAE training. Eq. 20 shows perceptual reconstruction
loss for perceptual VAE training. Ey represents the feature encoder. VAEGAN uses feature
encoder E; for perceptual reconstruction loss, instead of using simple MSE reconstruction
loss. The intermediate layer output of the discriminator D is used as the feature encoder Ey.
Encoders E;, E,, and generator G are trained to minimize perceptual reconstruction loss
Lyee. Eq. 21 shows a prior loss for perceptual VAE training. To use Z, for GAN training, Z,
should follow Z ~ N(0,1,,). VAEGAN uses prior loss L,,, to make Z, follow Z. Encoders
E; and £}, are trained to minimize prior loss L,,,.. Eqs. 22, 23, and 24 show losses for the
discriminator, generator, and encoders, respectively. A,.. and A, represent reconstruction
loss weight and prior loss weight, respectively.

In VAEGAN; if the prior loss weight A, is too low, Z, may not follow Z ~ N(0,1,,).
If A\prr =0, VAEGAN is equivalent to training the model with perceptual autoencoder and
GAN, and latent encoder E; becomes equivalent to the encoder of the perceptual autoencoder.
It means that Z, does not have the useful properties of Z (e.g., each dimension is independent,
and each dimension follows a normal distribution). Furthermore, since Z, is used for GAN
training, the generative performance of VAEGAN can decrease. This is because the model is
trained to generate data using Z, and Z, but only Z should be used to evaluate the generation

performance of the model.

2.3 Out-Of-Distribution Detection

OOD detection is a binary classification problem. Therefore, input data should be mapped to
a one-dimensional scalar to classify input data. Most previous works set this one-dimensional
scalar as an OOD score, and if the OOD score of input data is greater than a threshold, input
data is classified as OOD data, otherwise as ID data.

Works [55, 56, 57, 58] used a classifier for OOD detection. Given labels of ID data, these

28

methods train a classifier to predict the label of input data. Considering the intermediate
layer output of the trained classifier as a feature vector of the input data, these methods
calculate the OOD score of input data using the feature vector of it.

The theoretical problem of these methods is that the encoder (input layer ~ intermediate
layer of classifier) may lose the information of input data. For example, consider an 1D
dataset of MNIST handwritten digit images [61] (examples in Fig. 29) with additional noise.
In this dataset, the top left pixel (or dimension) a has a random noise value independent
of the other pixels (or dimensions). The pixel a follows U(0.5,1.0). Assuming that pixel a
does not affect the label of data, the ideal classifier will ignore pixel a so that pixel a does
not affect the prediction. Then, consider a modified ID image where only pixel a = 0.0 and
other pixels are the same as the ID image. This image is definitely an OOD image, but
OOD detection methods using the ideal classifier cannot detect it since the ideal classifier
will ignore pixel a.

Furthermore, other OOD detection methods using pre-trained models potentially have the
same problem (encoder losing information problem). Also, these methods require a labeled
ID dataset.

Works [46, 45, 65] used reconstruction error for OOD detection. These methods first
train autoencoder or GAN with ID data. Then, calculate the OOD score with the difference
between input data and reconstructed data.

The problem with these methods is that it is hard to define a good reconstruction error
function (i.e., metric function). For example, consider the ID dataset is MNIST handwritten
digit images, and the pixel-wise mean squared error function is used as the reconstruction
error function. One can simply think of OOD images that have low pixel-wise mean squared
error but large perceptual error between ID data (e.g., OOD images in Fig. 29). These
methods using pixel-wise mean squared error function may not detect these OOD images.
The opposite is also true. It is hard to define a good perceptual error function, but just assume

that there is a good perceptual error function. If these OOD detection methods use a good

29

perceptual error function, one can also simply think of OOD images that have low perceptual
error but large pixel-wise mean squared error (e.g., slightly increase the brightness). These
OOD detection methods may not detect these OOD images.

Therefore, reconstruction error-based OOD detection methods are greatly affected by the

type of OOD data and the distance metric for the reconstruction error function.

2.4 Training Generative Model with Discrete Latent Random Vari-

able

Some generative models use latent random variables that are discrete in some dimensions.
For example, class-conditional generative models, such as class-conditional GAN discussed in
section 2.1, use discrete conditional vectors to generate class-conditional data. Also, genera-
tive models using vector quantization, discussed in section 1.4.5, use quantized vector selected
from the codebook with prior probability as the input of the generative model. It can be
said that generative models with vector quantization use discrete latent random variable, as
they select quantized vectors from discrete categorical distributions.

However, models with latent random variables that are discrete in some dimensions should
be careful not to overweight the discrete dimensions relative to the continuous dimensions.
Because, if the latent random variable is completely discrete, the models may not have some
useful properties compared to generative models that use continuous latent random variables.

The following algorithm shows an example of a discrete generative model.

Algorithm 1 Sampling process of perfect discrete generative model
Require: z1,z9,...,1,

1: book < [x1,xa,. .., 2y]

2: z < sample(U(0,1))

3: i < round(z x n+ 0.5)

4: return book [i]

Algorithm 1 shows the sampling process of the perfect discrete generative model. In algo-

rithm 1, training data xq, xs,...,, were given to train the model. In line 1, the generative

30

model simply stores all data in the book. Then, it returns data sampled uniformly from this
book. This simple generative model generates a data distribution that perfectly matches the
train data distribution. Also, latent distribution is continuous (Z ~ U(0,1)). However, it
is impossible to interpret data from the latent distribution, and the model cannot perform
latent interpolation. This is because the model is perfectly discrete. Thus, in addition to
the generative performance of the model, the generalization performance of the model is also
important for a generative model. Methods such as Perceptual Path Length (PPL) [20] can

be used to evaluate the generalization performance of the generative models.

3 Deep Generative Models and Their Inversions

3.1 Conditional Activation GAN: Improved Auxiliary Classifier
GAN

In section 2.1.1, we discussed the problem of ACGAN and revised ACGAN. In this section,
we propose Conditional Activation GAN (CAGAN) to reduce a hyperparameter of ACGAN
and improve the model performance.

A labeled dataset can be thought of as a combination of datasets for each class. The
proposed CAGAN trains GAN for each class to generate class-conditional data, instead
of using a classifier. Among multiple GANs, class-conditional data can be generated by
activating only the GAN corresponding to the input conditional vector to generate data.
Furthermore, since the datasets of each GAN are similar to each other, they can be considered
as a single model by making them share hidden layers.

The following equations represent losses for CAGAN.

Ly =%, L (25)

Ly = 2?2111; (26)

31

Lfi = E:v,cmz,Cf [Ad<Di(17> : ch, Di(G(z, Cf))) C})} (27>

Ly = E.; [A(D(G(z.cp)) - &))] (28)

g

Egs. 25 and 26 show losses for CAGAN. In Egs. 25 and 26, L, and Lz represent i-th
discriminator loss and i-th generator loss, respectively. d. represents the dimension of the
category. ”-” represents the inner product. Eqs. 25 and 26 show that CAGAN losses (Lq4
and L) are the sum of GAN losses for each class (L} and L}).

In Egs. 27 and 28, D’ represent i-th discriminator. ¢, and c¢; represent labels of real data
and generated (fake) data, respectively. A; and A, represent adversarial loss functions for
training GAN. Work [6] summarized several adversarial loss functions for training GAN. c.
and c} represent i-th value of ¢, and cy, respectively. Since ¢, and ¢y are one-hot vectors, they
have only binary (activation) values (0 or 1). In Eq. 27, one can see that i-th discriminator
D' is trained only if activation value ¢! or czj} is 1. Likewise, in Eq. 28, one can see that
generator G is trained with D only if activation value c’]} is 1. Each GAN will not be trained
if its activation value is 0. Since each GAN shares all hidden layers in CAGAN, CAGAN loss

can be combined as the following losses.

Ly = Ex,Cr,Z,Cf [Aa(D(x) - ¢, D(G(z, Cf))) Cf)] (29)
Ly =E.., [Ag(D(G(z,¢cp)) - cf)] (30)

Eqgs. 29 and 30 show combined adversarial losses for training CAGAN. Unlike ACGAN,
the output of D is d.-dimensional adversarial value since D of CAGAN is an integration of
D's.

Note that the binary condition value should be encoded as a 2-dimensional one-hot vector
in CAGAN. For example, consider the 3-label human face image generation task. The first

label has 3 classes (black hair, blond hair, and white hair). The second and third labels are

32

ccccccc E—
Classification loss

Classification loss

&) CAGAN
&, ACGAN Revised ACGAN

Figure 3: Gradient direction (blue arrow) for the fake data in ACGAN, revised ACGAN,
and CAGAN at the beginning of the training. The red line represents the classifier decision
boundary of ACGAN or revised ACGAN.

binary conditions (smiling/not smiling and bangs/no bangs). In this case, condition vector
dimension d. of CAGAN should be 3 + 2 + 2 = 7. Therefore, the discriminator output
dimension of CAGAN is 7. On the other hand, condition vector dimension d. of ACGAN
canbe34+2+4+2=7 but34+1+1=>50r3+1+2 =6 is also available. Therefore, the
discriminator output dimension of ACGAN can be 6 ~ 8.

Fig. 3 shows the gradient direction for the fake data in ACGAN, revised ACGAN, and
CAGAN at the beginning of the training. One can see that the gradient direction for the fake
data is in the wrong direction due to classification loss. This is because the generator should
generate data away from the decision boundary of the classifier to minimize classification
loss. This classification loss lowers the performance of the model because it continues to
generate bad gradients, even as training progresses and the real and fake data distributions
become nearly identical or identical. On the other hand, the gradient direction of CAGAN
is good because it uses only adversarial losses, not classification losses.

Some works [7, 5] used multiple adversarial losses for class-conditional data generation,
but did not analyze why using multiple adversarial losses is better than using classification

loss.

33

3.1.1 Mixed Batch Training

Batch-wise operations such as batch normalization [67] or minibatch standard deviation layer
[8] have been widely used in GAN architecture [8, 19, 20].

However, when training conditional GAN, adversarial loss and conditional generation
can conflict with each other if the discriminator has batch-wise operations, and real condi-
tional distribution and fake conditional distribution are different. This is because when the
conditional distribution of real data and fake data are different, the discriminator uses the
conditional distribution of the input batch for real/fake discrimination.

For example, consider biased MNIST handwritten digit dataset [61], where the percentage
of zero class is far greater than any other number classes. If each class of categorical latent
distribution has the same probability, the discriminator with batch-wise operations will use
a class-conditional distribution of input batch for real/fake discrimination. If there are many
zeros in the input batch, the probability that the input batch was real images becomes high,
and otherwise, it becomes low in the discriminator. Therefore, the adversarial loss to generate
real data and the conditional loss to generate conditional data conflict with each other in the
generator. This lowers the generative performance of conditional GAN. If the conditional
distribution is categorical, the categorical latent distribution can be easy to adjust. However,
if the conditional distribution is complex and continuous (e.g., Pix2Pix [14]), it can be difficult
to control the conditional latent distribution.

To address the problems described above, we introduce mixed batch training to prevent
conflict between adversarial loss and conditional generation. Mixed batch training is to
configure each batch for the discriminator to always have the same ratio of real data and fake
data. If all batches consist of an equal ratio of real data and fake data, each batch always has
the same conditional distribution. Therefore, the discriminator will not discriminate between
real/fake by conditional distribution, and there will be no conflict between adversarial loss
and conditional loss in the generator.

However, mixed batch training makes it easy for the discriminator to discriminate input

34

data. This causes an imbalance between the generator and the discriminator, especially at
the beginning of training when the distance between the fake data distribution and the real
data distribution is far.

The proposed method gradually changes the ratio of real data to fake data to alleviate
this imbalance. For example, one can configure real data : fake data in each 2 batch equals
100 : 0 and 0 : 100 in epoch 1, 10 : 90 and 90 : 10 in epoch 11, 50 : 50 and 50 : 50 in epoch

51. After that, one can continue to configure each batch as 50 : 50.

3.2 Dynamic Latent Scale GAN for GAN Inversion

In section 2.2, we discussed problems of previous GAN inversion methods. In this section,
we introduce a DLSGAN that dynamically adjusts the scale of each element of the latent
random variable Z to prevent the generator G from losing information of the latent random
variable Z.

Assume that the latent random variable Z is d.-dimensional random variable where each
dimension is i.i.d., with the variance o2. When the encoder E is trained enough to predict the
latent random variable Z from the generated data random variable G(Z) with MSE loss, the
variance of each element of the predicted latent random variable Z’ = E(G(Z)) represents
information of the latent random variable Z that can be recovered from the generated data
random variable G(Z). If the variance of n-th predicted latent random variable Z/ is zero,
it means that the encoder F cannot recover any information of n-th latent random variable
Z,, from the generated data random variable G(Z).

On the other hand, if the variance of the n-th predicted latent random variable Z/ is o2,
then the encoder E can recover all information of n-th latent random variable Z,, from the
generated data random variable G(Z). If the variance of the n-th predicted latent random
variable Z! is greater than 0 but lower than ¢?, it means that the encoder F can recover
some information of n-th latent random variable Z,, from the generated data random variable

G(Z). Therefore, if the element-wise variance of the predicted latent random variable Z" and

35

the element-wise variance of the latent random variable Z are the same, it means that the
generator GG does not lose the information of the latent random variable Z, and the encoder
can converge to predict the latent random variable Z from the generated data random variable
G(Z).

DLSGAN dynamically adjusts the scale of each element of the latent random variable
7 according to the variance of each element of the predicted latent random variable Z’ so
that the element-wise variance of scaled latent random variable and scaled predicted latent

random variable are equal. The following equations show the latent scale vector and encoder

loss of DLSGAN.

v E(G(Zos))? (31)

V@
* vl 32)
Lene = avg ((Z = E(G(Z 0 8))) 0 5)°) (33)
Ld = Lgdv +)\encLenc (34>
Ly=1L%, + XencLene (35)

In Egs. 31, 32 and 33, it was assumed that the latent random variable Z is an random
variable with mean 0 and variance 1 where each dimension is i.i.d., and multiplication-
invariant distribution.

Eqgs. 31 and 32 show latent variance vector v and latent scale vector s, respectively.
Operation “o” represents the element-wise multiplication, and ||vec||s represents the L2 norm
of vector vec. DLSGAN uses scaled latent random variable Z o s to generate data G(Z o s).
The latent variance vector v is the approximated element-wise variance of the predicted
latent random variable. More specifically, DLSGAN uses the moving average of squared
predicted fake latent random variable E;(G(Z o s))°* to approximate the latent variance

vector v during the training. It is ideal to approximate the predicted latent variance vector

36

v for every training step with many samples, but for efficiency, the predicted latent variance
vector v is approximated through predicted latent vectors from the past training steps.

The latent scale vector s is the normalized latent variance vector. When all elements of v
are the same (i.e. when the variance of all elements of a predicted latent random variable Z’
are the same), all elements of the latent scale vector s are 1, and the scaled latent random
variable Z o s has the largest differential entropy. On the other hand, when the variance of
only one element of the latent variance vector is not 0, and the other elements are 0, only
that dimension has the scale of \/d,, and other scales are 0, and the scaled latent random
variable Z o s has the least differential entropy. At the beginning of training, the variance
of all dimensions of the encoder output is similar, so the scaled latent random variable Z o s
has large differential entropy. As training progresses, the variance of each dimension of the
encoder output changes, and the scaled latent random variable Z o s decreases.

Eq. 33 shows encoder loss for DLSGAN. The encoder loss L, in DLSGAN is the squared
error loss between the scaled latent random variable Z o s and the predicted scaled latent
random variable E(G(Z o s)) os. In DLSGAN, both encoder E and generator G are trained
to minimize encoder loss L.,. like InfoGAN. Also, encoder E can be integrated into the
discriminator D. Therefore, losses for DLSGAN can be summarized in Eqs. 34 and 35,
which is the same as Eqs. 17 and 18.

The lower part of Fig. 2 shows an example of the dynamic latent scale preventing the
problem caused by the generator losing information. In Fig. 2, the generator ignores the
third element of the latent vector, so the scale of the third element becomes 0. Therefore,
the generator maps the same scaled latent vector to the same generated data point A, and
the encoder can converge because there is no loss for the third element.

DLSGAN is still the maximum likelihood estimation of the encoder (minimize negative
log-likelihood), but the generator G does not lose the information of the latent random
variable Z, which allows the encoder E to converge when training the encoder £ with squared

error loss.

37

Lemma.
When Z; is i-th element of Z and s; is ¢-th element of s, entropy of scaled latent random

variable h(s o Z) can be calculated as follows:

dz
h(soZ)=h(Z)+) logs;
=1

Proof.

Let Y; = s;Z;. Then the probability density function of Y; is

7

Hence,
(si2) =~ [f(o) log fi(w) dy
il ()]
S; S; S; S;
— [a0 Yog fa(2) dz + togs,
= h(Z;) + log s;
Therefore,

d-
h(soZ)=h(Z)+ Zlog Si
i=1

d
Furthermore, > 5~ s? = d,.

And let f(s) = Zfil log s;. Then, from the Lagrangian,

ds d-
L(s,\) = Zlogsi — A (Z 57— dz>
i=1 i=1

38

Setting gradient to zero,

oL 1
852- S; °
Therefore,
1
2 P
% T 9N

Since all s; are the same, the entropy of scaled latent random variable h(s o Z) is maximized
when s = 14,

This proof follows from Theorem 8.6.4 in book [89].

Algorithm 2 shows the algorithm to train DLSGAN.

In algorithm 2, D*, GG, Z, and X represent integrated discriminator, generator, latent
random variable, and data random variable, respectively. Because the encoder F is integrated
with the discriminator D, the integrated discriminator D* outputs two values: 1-dimensional
adversarial value and d,-dimensional predicted latent vector.

In lines 1 and 2, Z is a d,-dimensional latent random variable where each dimension is
i.i.d., and X is a data random variable. In algorithm 2, it was assumed that latent random
variable Z follows a distribution with a mean of 0 and a variance of 1 for convenience (e.g.,
N(0,1%) or U(—+/3,4/3)). sample is a function that samples a single sample from a random
variable. z represents a latent vector sampled from the latent random variable Z. x represents
a data point sampled from the data random variable X.

In line 4, integrated discriminator D* predicts fake adversarial value a; and predicted
latent vector 2z’ from generated data point G(z o s). In line 5, a, represents the adversarial
value of a real data point x. “_” represents not using value. Because the latent vector of the
real data point z is unknown, the predicted latent vector for the real data point x is discarded

in DLSGAN training. In line 6, L., is encoder loss. One can see that the encoder loss L.

is equal to the MSE loss between the scaled latent vector zos and the scaled predicted latent

39

Algorithm 2 Algorithm to train DLSGAN

Require: D*. G, Z, X, v

1:

z < sample(Z)

2: x < sample(X)

®w

x

10:

11:

12:

13:

14:

15:
16:

17:
18:

Vdzv
$ < Vel
ag, 2’ < D*(G(zo0s))
ay, - < D*(x)
Lenc < é”(’z - Z,) © S”%
Lgdv — Ad(aﬂ af)
Ld — Ld + /\encLenc

adv

D* <+ minimize(D*, Ly)
vy 2"

z + sample(Z)

ap, 2’ < D*(G(zo0s))
Lo e 1(z ~ #) o513

LZdv — Ag(af)

Lg — Lgdv +)\encLenc
G < minimize(G, Ly)

vy — 22
v« update(v, concat(vy, v3))

> update D*

> update G

> update v

40

vector 2/ o s. In line 7, Ay is the adversarial loss function for the discriminator D*. One can
find many adversarial losses in GAN adversarial losses compare paper [6].

In line 8, A, is encoder loss weight. In line 9, integrated discriminator D* is updated to
minimize discriminator loss L.

In line 14, A, represents the adversarial loss function for the generator.

In lines 8 and 15, one can see encoder loss Ley. is added to both generator loss L, and
discriminator loss L4. This means that the generator G and discriminator D are trained
cooperatively to reduce the encoder loss L¢,.. Training the encoder E during the GAN
training enables adding encoder loss L.y, to generator loss L,.

In line 16, generator G is updated to minimize the generator loss L,.

In line 18, latent variance vector v is updated with squared predicted latent vector v,
and v,. Because the mean of the predicted latent random variable Z’ becomes automatically
zero, simply squared predicted latent vector 2”2 can be considered as the sample variance of
the predicted latent random variable Z’. A moving average, exponential moving average, or
other scheduling functions can be used for the update function.

In DLSGAN, we assume that each dimension of the latent distribution is independent
and follows a simple distribution. This assumption allows the transformed data distribu-
tion to remain interpretable and easy to understand. If the latent dimensions were not
independent and followed a more complex distribution, such as the latent distribution of au-
toencoders, the resulting representation might be more difficult to interpret and analyze. In
this sense, a simple latent distribution, where each dimension is independent of the other and
follows a simple distribution, is more suitable for representation learning through generative
model inversion. Nevertheless, it is worth considering alternative latent distributions such as
multivariate Gaussian distributions or Gaussian mixture models, where the dimensions are
dependent but the overall distribution remains relatively simple and interpretable. Such dis-
tributions may require additional techniques to appropriately control or adjust the entropy

of the latent distribution.

41

3.2.1 Continuous Attribute Edit with Fixed Linear Classifier

InterFaceGAN [41] showed that the latent random variable of GAN learns disentangled rep-
resentation after linear transformation. InterFaceGAN edits data attributes continuously
through the decision boundary of a linear classifier that predicts attributes of the latent
vector.

However, InterFaceGAN can edit attributes only when the latent vector of the data point
is known, and training a linear classifier requires a highly complex method. First, train the
GAN with the dataset. Second, trains a classifier that classifies each attribute of the dataset.
Third, label the attributes of the latent vector through the trained generator and classifier.
Finally, train the linear classifier to predict attributes from the latent vectors.

In this section, we introduce AEDLSGAN [88] for integrating InterFaceGAN into the
DLSGAN training stage without training a separate classifier or linear classifier. AEDLSGAN
assumes that randomly initialized weights of the linear classifier are already ideal. Therefore,

the only need to do is to train DLSGAN to fit the linear classifier.

¢y = argmax onehot((z o s)w + b) (36)

Eq. 36 shows a fake categorical conditional vector c;. AEDLSGAN predicts fake cat-
egorical conditional vector ¢y from latent vector z with linear classifier weight w and bias
b. Linear classifier weight w and bias b are d, x d. size and d. size matrix, respectively,
where d, is the dimension of the attribute vector. AEDLSGAN assumes that linear classifier
weights w and biases b are already ideal, so those values never change after initialization.
argmax onehot is a function that converts the continuous output value of the linear classifier
into a discrete categorical vector. For example, argmax onehot([0.2,0.5,0.3]) is [0.0, 1.0, 0.0].
And, this predicted fake categorical conditional vector ¢, is used to train class-conditional
GAN with DLSGAN.

Algorithm 3 shows the algorithm to train AEDLSGAN.

42

Algorithm 3 Algorithm to train AEDLSGAN

Require: D*, G, Z, X, v,w,b

10:

11:

12:
13:

14:
15:
16:

17:
18:

19:
20:

z < sample(Z)
¢y < argmax onehot((z o s)w +b)
x, ¢, < sample(X)

Vdsv
S < 1Vl

ar, - < D*(x)

ag, 2« D(G(z09))
Le, «— Agla, - ¢ ap - cy)
Lenc <~ é”(z - Z/) © S”%

Ld — Ld +)\encLenc

adv

D* < minimize(D*, Ly)
vy — 22

z < sample(Z)
cy < argmaz onehot((z o s)w + b)

aj, 2« D*(G(z05))
Lgdv A Ag(af : Cf)
Lenc — i”(z - Z/) © 8”%

Lg <~ Lgdv +)\encLenc
G minimize(G, L)

vy — 22
v < update(v, concat(vy, v3))

> update D*

> update G

> update v

43

In line 3 of algorithm 3, ¢, represents a real categorical latent vector (label) of real data
point x.

In lines 5 and 6, ay and a, represent an adversarial vector of generated data and real
data, respectively. In algorithm 3, CAGAN [4] loss is used for class-conditional GAN loss.
Therefore, ay and a, are vectors, not one-dimensional values. In lines 7 and 15, one can see
that CAGAN loss was used for class-conditional GAN loss.

Unlike simply adding class conditional GAN to DLSGAN, AEDLSGAN can edit at-

tributes continuously like InterFaceGAN.

3.3 Self-supervised Out-of-distribution Detection with Dynamic

Latent Scale GAN

In section 2.3, we discussed the problems of previous OOD detection methods. DLSGAN
[51] is a learning-based GAN inversion method [18] with maximum likelihood estimation of
the encoder. It solves the problem that the generator loses information when training the
InfoGAN [39] that predicts all dimensions of the latent vector through the dynamic latent
scale. The encoder of DLSGAN maps input data to predicted latent vectors.

When the DLSGAN’s encoder maps the input data to the predicted latent vector, we
found that the probability that the predicted latent vector is sampled from latent distribution
can be used for OOD detection. There are two features that allow the predicted latent vector
to be used for OOD detection.

First is the latent entropy optimality. As DLSGAN training progresses, the entropy of
the scaled latent random variable decreases, and the entropy of the scaled encoder output
increases. When DLSGAN converges, the generator generates ID data with a scaled latent
random variable, and the entropy of the scaled latent random variable and scaled encoder
output becomes optimal entropy for expressing ID data with the generator and encoder. It
means that ID data generated by the generator is densely mapped to latent vectors that are

likely sampled from the latent distribution. Therefore, by the pigeonhole principle, OOD data

44

DLSGAN beginning of training DLSGAN after convergence

E(G(Zes))es E(G(Z°s))°s

e
e
e

>

(sez)O

) 0]
0] (1]
> =1
0] 1]
= =
QO QU
—+ (g
[©] o
= =

1
J\

J\
J\

Figure 4: DLSGAN beginning of the training and after convergence.

can only be mapped to latent vectors that are unlikely sampled from the latent distribution.

Fig. 4 shows the training process of the DLSGAN. In Fig. 4, Z, G, s, and F repre-
sent a latent random variable, generator, latent scale vector, and encoder, respectively. “o”
represents element-wise multiplication. One can see that the scaled latent random variable
Z o s has high entropy, and the scaled encoder output F(G(Z o s)) o s has low entropy at the
beginning of the training. As the training progresses, the entropy of the scaled latent random
variable Z o s decreases, and the entropy of scaled encoder output E(G(Z o s)) o s increases.
After DLSGAN converges, the scaled latent random variable Z o s and scaled encoder output
E(G(Z o s)) o s have the same optimal entropy to represent ID data with the generator and
the encoder.

Secondly, elements of the DLSGAN encoder output are independent of each other and
follow a simple distribution (the same as the latent distribution). Therefore, it is very easy
to calculate the log probability of the predicted latent vector.

The following equation shows the negative log probability of the predicted latent vector
of input data.

OOD score = =% log f(E(x)|u:, vi) (37)

In Eq. 37, x and E represent the input data point and DLSGAN’s encoder, respectively.

45

E(x) represents the d.-dimensional predicted latent vector of input data point z. f represents
the probability density function of the latent random variable Z where each dimension is
iid.. p and v represent the latent mean vector and traced latent variance vector for the
probability density function f. p is the mean vector of latent random variable Z. v is traced
latent variance vector of DLSGAN (i.e., v is an approximation of element-wise variance of
E(G(Z))). Ei(x), u;, and v; represent an i-th element of F(z), u, and v, respectively. For
example, assume p = [0,0,0] and v = [1.0,0.5,0.1], and f(x) is probability density function
of normal distribution. When E(z,) = [0.1,—-0.2,0.3] and E(z;) = [-0.3,0.2,—0.1], the
OOD score of z, is higher than z’s.

One can see that the OOD score of input data represents the relative probability that
the latent vector is sampled from the approximated encoder output distribution. Since each
element of the encoder output F(x) is independent of each other, the negative log probability
of the predicted latent vector can be simply calculated by adding the negative log probability
of each element. If the OOD score is greater than the threshold, the input data is classified
as OOD data. Otherwise, it is classified as ID data.

AnoDLSGAN is a self-supervised OOD detection method because it directly estimates the
probability that input data is sampled from ID. Therefore, AnoDLSGAN does not require
any conditional distribution of ID data or a pre-trained model, and only one inference of

encoder F is required for prediction.

3.4 Efficient Integration of Perceptual VAE into Dynamic Latent
Scale GAN

In section 3.2, we introduced DLSGAN, a novel architecture-agnostic GAN inversion method.
In this section, we introduce an architecture-agnostic generative model inversion method that
efficiently integrates perceptual VAE [2] loss into DLSGAN to achieve better performance.
When training DLSGAN, the latent encoder E; of DLSGAN is trained to predict latent ran-

dom variable Z from fake data random variable G(Z o s). It is clear that Ej(X)os = Zos if

46

generator GG perfectly generates real data random variable X, and the latent encoder E; per-
fectly inverts generator G. During DLSGAN training, if latent encoder E; and discriminator
D are integrated, it will be difficult to distinguish between real data random variable X and
fake data random variable G(Z o s) for latent encoder E;. This is because latent encoder Ej
shares hidden layers with discriminator D in adversarial training with generator G. Based on
this intuition, we assumed that latent encoder £ tries to map real data random variable X
to the latent random variable Z during DLSGAN training, even without explicit loss. Under
this assumption, VAE latent random variable Z, that follows GAN latent random variable Z
can be generated by adding scaled normal noise to the predicted real latent random variable
E(X).

When the latent random variable Z follows N(0, I,), we assumed that predicted real
latent random variable E;(X) follows N(0, I;.) o+/v, where v is approximated latent variance
vector in DLSGAN (Eq. 31). Therefore, the sum of scaled normal noise and real latent

random variable £;(X) follows the normal random variable where each dimension is i.i.d..

Zy = B(X) + N(0,I) oI —v (38)

Eq. 38 shows VAE latent random variable Z,. VAE latent random variable Z, can
be used for GAN training because it follows latent random variable Z. It is clear that
Zy ~ Z ~ N(0,1,,) because Ej(X) ~ N(0,1.) o \/v. If VAE latent random variable Z,
is different from GAN latent random variable Z, GAN training with VAE latent random
variable Z, is not only meaningless but rather makes GAN training more difficult. This is
because generator G and discriminator D are trained with two different random variables Z,
and Z, but only Z should be used for generative performance evaluation.

VAE latent random variable Z, is also used for VAE training since there is a corresponding

real data random variable X. The following equation shows perceptual reconstruction loss

for perceptual VAE training in PVDGAN.

47

Lyec = avg ((Ef(G(Zs 0 5)) — E¢(X))?) (39)

In Eq. 39, G(Z, o s) represents the reconstructed data random variable of real data
random variable X. Like VAEGAN;, the generator of PVDGAN is trained to minimize the
perceptual reconstruction loss L,.. using the feature encoder E; (See Eq. 20).

Finding a good distance metric for reconstruction loss is not an easy problem. For exam-
ple, if image VAE is trained with pixel-wise mean squared error, the fake images will be very
blurry. In general, perceptual reconstruction loss tends to generate better gradients than sim-
ple MSE reconstruction loss because humans recognize data perceptually. For example, if the
brightness of the image changes slightly, the MSE distance will change significantly, but the
perceptual distance for humans may change very little. Conversely, if the color of the pupils
of the face picture changes, the perceptual distance for humans can change significantly, even
though the MSE distance changes very little.

Using a pre-trained model (e.g., pre-trained inception model) is one of the most basic
solutions for estimating perceptual reconstruction loss. It is known that the intermediate
layer output of a deep neural network contains the perceptual features of the input [22].
However, using a separate pre-trained model requires additional computations for forward
propagation & backpropagation of the pre-trained model to minimize the distance. Also,
there might be no good pre-trained models for some data domains. Furthermore, it can be
hard to customize a pre-trained model (e.g., the input resolution of the pre-trained model is
fixed, or the model is too large or small).

Instead of using a pre-trained model, PVDGAN uses discriminator intermediate layer
output as feature encoder L output like VAEGAN. Also, PVDGAN uses VAE latent random
variable Z, for GAN training too because it follows GAN latent random variable Z. During
GAN training with VAE latent vector z,, there are forward propagation & backpropagation
on generator G and discriminator D with real data x and reconstructed data G(z, o s).

Therefore, forward propagation & backpropagation for minimizing perceptual reconstruction

48

loss L,.. can be integrated into the forward propagation & backpropagation for the GAN
training. It means that no additional forward propagation & backpropagation for minimizing
reconstruction loss L,.. is required.

In short, when training DLSGAN with GAN latent random variable Z ~ N(0, /,,), and
latent encoder Fj is integrated into discriminator D, VAE latent random variable 7, =
Ej(X)+ N(0,1;.) o /1 — v follows GAN latent random variable Z. Therefore, VAE latent
random variable Z, can be used for both GAN and VAE training. Also, there is already
forward propagation & backpropagation with real data x and reconstructed data G(z, o s)
in GAN training with VAE latent random variable Z,. Therefore, VAE training (minimiz-
ing perceptual reconstruction loss L,..) does not require additional forward propagation &
backpropagation.

Algorithm 4 shows the algorithm to train PVDGAN. In algorithm 4, D*, G, Z, and
X represent the integrated discriminator, generator, latent random variable, and real data
random variable, respectively. In algorithm 4, it was assumed that the latent random variable
Z follows N(0,1;,). D* is the integrated discriminator in which discriminator D, latent
encoder Fj, and feature encoder £y are integrated. Therefore, the integrated discriminator
D* has 3 outputs: 1-dimensional adversarial value output, d,-dimensional latent encoder
output, and ds-dimensional feature encoder output. b and v represent the batch size and
latent variance vector, respectively.

Lines 1-9 show the update process of integrated discriminator D*. In lines 1 and 2,
sample(R,n) is a function that returns n samples from random variable R. x represents
sampled real data points. In line 3, s is the d.-dimensional latent scale vector of DLSGAN
(Eq. 32).

In lines 4 and 5, the integrated discriminator D* outputs 3 values. The first outputs
a, and ay are b x 1 shape adversarial values of real data and fake data, respectively. The
second outputs z,. and 2z’ are b x d, shape predicted latent vectors. The third output y, is

b x dy shape real feature vectors. Unlike the other two outputs, the feature vectors y, are the

49

Algorithm 4 Algorithm to train PVDGAN
Require: D*. G, Z, X,b,v

> update D*
1: z < sample(Z,b)
2: x < sample(X,b)

Vdsv
S < 1Vl

w

Ay Zpy Yp <— D* ()
ag,?,_+ D*(G(z035))
L3, < Aalar, ay)

Lenc < avg (((Z - Z/) © 8)2)

*®

Ld — Lgdv +)\encLenc
9: D* «— minimize(D*, Ly)

10: vy + 22
> update G
11: 2y < 2. [: b/2] + sample(Z,b/2) o y/max(1 — v,0)
12: z < concat(z,, sample(Z,b/2))
13: ay, 2,y < D*(G(z 05))
14: Lgdv — Ag(a’f)
15: Lene < avg (((2[b/2:] — 2'[b/2:]) 0 5)?)
16: Lyec < avg ((yr [: b/2] - yvl" [: b/2])2)

17: Lg < Lgdv +)\encLenc _'_)\’r‘ecLTGC
18: G < minimize(G, L)

19: vy + (2'[b/2 :])? > update v
20: v < update(v, concat(vy, vs))

20

bR A

intermediate layer outputs of the integrated discriminator D*. ”_” represents unused values.
In line 6, A, represents the adversarial function for the discriminator. Several adversarial
loss functions [6] can be used for A;. Encoder loss Le,. of DLSGAN (Eq. 33) is calculated
in line 7. Line 8 shows discriminator loss of PVDGAN. In line 9, integrated discriminator
D* is updated with discriminator loss L.

Lines 11-18 show the update process of PVDGAN’s generator GG. In line 11, z, represents
VAE latent vectors. z, [: b/2] represents first /2 samples of z,. Therefore, z, is 2 x d, shape
matrix. In general cases, all elements of latent variance vector v are less than or equal to 1,
but for stability, we recommend using \/m instead of v/1 — v. In line 12, concat
represents the concatenation function. Therefore, z is b X d, shape matrix, where the first b/2
samples are VAE latent vectors z,, and the last /2 samples are sampled from latent random
variable Z. In line 13, y/ represents predicted feature vectors. In line 14, A, represents the
adversarial function for the generator. In line 15, latent vectors directly sampled from Z are
used for encoder loss. In line 16, feature vectors of real data and paired fake data are used
for perceptual reconstruction loss. In line 18, generator G' is updated with generator loss L.
In line 20, the latent variance vector v is updated with v; from line 10 and v, from line 19.

In algorithm 4, there is no additional forward propagation & backpropagation to minimize
Lyec.. In lines 4 and 13, there is forward propagation of the integrated discriminator D*
for a,, ay, z., and 2’. Since y, and y, are intermediate layer outputs of the integrated
discriminator D*, forward propagation for y, and ¥/ is concurrent with forward propagation
for a,, ay, z., and 2. Similarly, the backpropagation for L,.. on line 16 is incorporated
into the backpropagation for losses LY, and Lc,., which is starting from the output of the
integrated discriminator D*. Therefore, PVDGAN does not require additional computation
compared to basic GAN or DLSGAN (to be precise, there are some additional d-dimensional
vector operations to calculate L,.., but it is very small compared to operations for forward
propagation & backpropagation in most large deep learning models).

The overall algorithm of PVDGAN is similar to DLSGAN’s. The difference between

o1

LFEC

D(x1) D(x3) D(G(zq ©s)) | D(G(z; °s))
E;(x1) E(x2) E|(G(z1 °5)) | E|(G(zz © 5)) [«
o Ef(%q) E¢(x2) > Ef(G(z1 ©5)) | Et(G(z2 °5))
D* D*
LenC
X1 X2 G(zq ©s) G(zy 0 s)
G
Zq Zy -
E(x)+e=17 f

Figure 5: Visualization of reconstruction loss L,.. and encoder loss L.,. of PVDGAN with
two data (z; and x9) and two latent vectors (z; and z3). z; is a VAE latent vector for both
VAE and GAN training. Red blocks represent values not used in PVDGAN training.

DLSGAN and PVDGAN is that PVDGAN uses VAE latent vector z, for training, and the

generator of PVDGAN is trained to minimize the perceptual reconstruction loss L.

The losses of PVDGAN are summarized as follows.

Ld - Lgdv + /\encLenc (40)

Lg = Lgdv + AencLene + ArecLirec (41>

Fig. 5 visualize reconstruction loss L,.. and encoder loss L.,. of PVDGAN with two data
(z1 and x5) and two latent vectors (2; and zp). In Fig. 5, € represents sample(Z,b/2)o+/1 — v.
Unlike VAEGAN [68] or VAE [2], PVDGAN does not use VAE prior loss and encoder
variance estimation. Since training encoder with encoder loss L., is a maximum likelihood
estimation, it can replace VAE prior loss. For the same reason, latent variance vector v

replaces encoder variance estimation. Also, VAEGAN uses 3 models (encoder, decoder,

52

discriminator) for training, while PVDGAN uses only 2 models. Using only 2 models in
PVDGAN is computationally efficient and expected to produce a better perceptual loss. This
is because the discriminator does not need all the information of input data to discriminate
input data, so the discriminator of VAEGAN may lose the information of input data. Assume
that the penultimate layer of the discriminator has only one unit (i.e., output dimension
is 1), and using this penultimate layer output as feature encoder output in VAEGAN (i.e.,
D(xz) = E¢(z)-w+b, where w and b are both 1-dimensional trainable weight). In such a case,
perceptual loss with this feature encoder of VAEGAN is almost meaningless since the feature
encoder output is only one-dimensional. On the other hand, the dimension of the PVDGAN
feature encoder output is at least d, + 1. This is because PVDGAN’s discriminator has a
one-dimensional adversarial value output and d.-dimensional latent encoder output. Also,
the latent encoder Ej is trained not to lose the information of input fake data. Therefore, it
is expected that PVDGAN’s feature encoder will produce a better perceptual reconstruction
loss since it contains more meaningful information than VAEGAN’s.

PVDGAN can be utilized for most generative model inversion applications since it is an
architecture-agnostic method. Simply, the encoder of PVDGAN can be used for embedding
layers of most models. For example, InterFaceGAN [41] showed attributes of generated data
can be linearly separable in the latent space. Adding a linear classifier to PVDGAN’s en-
coder can make a deep classifier. Also, it is possible to perform continuous attribute edits
of input data using the linear classifier and PVDGAN. PVDGAN can also perform out-of-
distribution detection using AnoDLSGAN [52]. InterFaceGAN and AnoDLSGAN assume
that the generative model inversion method transforms data distribution into latent distri-
bution. Therefore, state-of-the-art StyleGAN-specific inversion methods [35, 36, 37] cannot
be applied for these applications since StyleGAN-specific methods only can transform input
images into style vectors, which are intermediate layer outputs.

Also, PVDGAN can be applied for other out-of-distribution detection methods [45, 46],

data augmentation for better model performance [47], semantic segmentation [48], and other

23

applications using generative model inversion [18]. Furthermore, since the PVDGAN is
basically an independent component analysis and representation (feature) learning method, it
can be utilized for other applications using independent component analysis or representation

learning.

3.5 Training Self-supervised Class-conditional GAN with Classi-

fier Gradient Penalty and Dynamic Prior

In section 2.1.2, we discussed problems of previous unsupervised class-conditional data gen-
eration methods. In this section, we introduce Classifier Gradient Penalty GAN (CGPGAN)
which can perform class-conditional data generation and clustering under more general condi-

tions than previous works. CGPGAN can be used under the following very general conditions:

1. The labels of all data are unknown.
2. Optimal categorical latent distribution is unknown.

3. Metric to measure the distance between the data is unknown.

InfoGAN cannot be used under condition 2 because it requires an optimal categorical
latent distribution and Elastic InfoGAN cannot be used under condition 3 because it requires
a metric for identity-preserving transformation.

A CGPGAN consists of a discriminator D, classifier), and (class-conditional) generator
G. The generator G takes d.-dimensional continuous latent vector and d.-dimensional cate-
gorical latent vector as inputs to generate class-conditional data. The classifier () is trained
to predict the label of the generated data, and the label of the real data predicted by the clas-
sifier is used for adversarial training of the discriminator and generator for class-conditional
data generation. The generator G and discriminator D are trained with class-conditional
GAN loss to generate class-conditional data. Instead of ACGAN loss [3], CGPGAN uses

CAGAN loss [4], [7] for better generative performance.

o4

The following equations show the losses for CGPGAN.

Lg = NaasLets + AcgpLegp (42)
La= Lyg, (43)

Ly=1L%, (44)

Legp = Eucy [IVaeep (1= Q(G(2,¢1)) - ¢4)?) 3] (45)

Ligy = vz e, [Aa(D(x) - argmaz onehot(Q(x)), D(G(z, ¢5)) - ¢5)] (46)
Lagy = Eec; [Ag(D(G(z, ¢1)) - ¢f)] (47)

In Eq. 42, Ay and Lg, represent classifier gradient penalty loss weight and classifier
gradient penalty loss, respectively. Classification loss L. is cross-entropy loss, which is
the same as InfoGAN’s classification loss (Eq. 12). In Eq. 44, one can see that there is
no classification loss L in generator loss Ly. Since CGPGAN’s generator is trained with
adversarial losses only, there is no conflict between L. and LY, as in InfoGAN.

Eqgs. 46 and 47 show CAGAN adversarial losses for CGPGAN. Since the true label c;
of the fake data G(z,cs) is known, the adversarial loss for fake data in CGPGAN is the
same as the CAGAN loss. However, the label of the real data = is unknown. Instead, in
CGPGAN, argmazx onehot(Q(x)) is used as the label of the real data x. The argmaz onehot
function replaces the maximum value of the vector with 1 and all other values with 0 (e.g.,
argmazx onehot([0.2,0.5,0.3]) = [0.0,1.0,0.0]).

The classification loss L.s can be minimized by simply classifying the generated data well,
but it can also be minimized by increasing the slope of the decision boundary or by moving
the decision boundary near the generated data with lower density. Therefore, when training
the classifier with cross-entropy loss, we assumed that the decision boundary will naturally

move to the local optima which minimizes the density of the generated data, and the slope

25

of the decision boundary will increase. If the slope of the decision boundary is very large and
the probability density function of the generated data is lumpy, the decision boundary will
converge to a local optima in a very narrow region that minimizes the density of the data.

To avoid classifier decision boundary converging local optima in a narrow region that
minimizes the probability density of generated data P(G(X,C)), CGPGAN uses a classifier
gradient penalty loss L.g, in Eq. 45. By relaxing the slope of the classifier’s decision boundary,
the decision boundary can converge to a local optima in a wider region. One can see that the
classifier gradient penalty loss L., becomes higher when the generated data point G(z,cy)
is near the decision boundary in Eq. 45. In the classifier, the larger the classifier gradient
penalty loss L.g,, the more the decision boundary converges to the local optima in a larger
region. Therefore, CGPGAN can adjust the sensitivity of each category (cluster) through
the weight of the classifier gradient penalty loss A¢gp.

Fig. 6 shows an example of a classifier decision boundary moving to the local optima
that minimizes classification loss Lys. In Fig. 6, P(x) represents the probability density
function of generated data distribution. @Q(z) represents predicted probability of the classifier
(). To minimize classification loss Lys (Eq. 12), P(x) near the decision boundary should
be minimized, and the slope of the classifier output near the decision boundary should be
maximized. Therefore, we assumed that the decision boundary of the classifier will converge
to a local optima near 2 that minimizes P(z), and the classifier output slope near the decision
boundary will be maximized. If classifier gradient penalty L., is added to the classifier loss,
the classifier output slope near the decision boundary softens, so the decision boundary can
converge to a wider range of local optima that minimize P(x) (near 1.5).

Additionally, CGPGAN updates the probability of the categorical latent distribution
P(C) during the training with E, [Q(z)] (i.e., P(C) =~ E,[Q(x)]). Through this approxi-
mation, CGPGAN can approximate P(C) without knowing the optimal prior probability.
However, updating P(C) early in the training can make CGPGAN converge to a trivial solu-

tion (i.e., one category has a probability of 1 and the other has a probability of 0). To avoid

26

1.5

tWithout classifier gradient penalty

Q(x)

Dec

ision

Bouﬁdary

1-Q(x)

=>

0.5+
0 0.5 1 15 25 3 35
1.51+With classifier gradient pently
Decision
Boundary
) Q(x) <= 1-Q(x)
0.5+ P(x)
0 05 1 15 25 3 35

Figure 6:

Example of a classifier’s decision boundary moving. The top plot shows the
classifier decision boundary moving to the right side when the classifier gradient penalty was
not applied. The bottom plot shows the classifier decision boundary moving to the left side
when the classifier gradient penalty was applied. In the top plot, the decision boundary of
classifier @) moves to the right toward x = 2.1 to minimize the classification loss. On the
other hand, in the bottom plot, the decision boundary moves to the left toward x = 1.5 to
minimize the classification loss.

27

converging a trivial solution and ensure that the ratio of real to fake data in each category
is similar, CGPGAN normalizes Q(z) by the batch distribution only at the beginning of
training.

Algorithm 5 shows the training step of CGPGAN.

The training step of CGPGAN requires X (data random variable), Z (continuous latent
random variable), C' (categorical latent random variable), D (discriminator), @ (classifier),
and G (generator).

In lines 1-3, the sample function represents the sampling function from a random variable.
x (real data point), z (continuous latent vector), and c¢; (fake categorical latent vector) are
sampled from X, Z, and C, respectively.

In line 4, G generates fake data 2’ with z and c¢;. In lines 5 and 6, D and @) takes a
fake data point 2’ as input and outputs ay (fake adversarial vector) and ¢ (fake categorical
latent vector prediction), respectively. Similarly, in lines 7-8, D and @) take a real data point
x as input and outputs a, (real adversarial vector) and ¢ (real categorical latent vector
prediction).

In lines 9-11, the real categorical latent vector prediction ¢ is normalized for stable
training only at the beginning of the training. In line 10, the prob normalize function forces
the real categorical latent vector ¢, to approach a uniform distribution. This ensures that
the ratio of real data to fake data in each category is similar, allowing for stable training in
the early stages of CGPGAN training.

1

prob normalize(c) = ¢ — batch average(c) + 7 (48)

Eq. 48 shows the function to normalize the categorical latent vectors ¢, where c is a b x d,
matrix, and b represents the batch size. batch average is a function that computes the
element-wise average vector of c. Therefore, batch average(c) is d.-dimensional vector. One
can see that

batch average(prob normalize(c)) is always | However, the prob normalize

1 1 L]
a4

o8

Algorithm 5 Algorithm to train CGPGAN

Require: X, Z,C,D,Q,G

10:
11:
12:

13:
14:

15:
16:

17:
18:

19:

20:

21:

22:

23:

24:

25:

x < sample(X)
z « sample(Z)
cp < sample(C)
z' < G(z,cp)

a, < D(x)
¢, < Q(z)

af < D(2)
c'f +— Q)

if early in training then
¢ = prob normalize(c..)
end if

¢y < argmax onehot(cl.)

Leas < —cy - log(c})
Legp 4= |lgradient((1 — ¢} - cf)?,a")[3

Ly + Ad(ar “Cp, Ay - Cf)
Lq — /\clchls +)\cgchgp

D <« minimize(D, Ly)
Q) < minimize(Q, L,)

z + sample(Z)
cp < sample(C)
z' <+ G(z,cp)

ay < D(Z‘,)

Ly = Aglay - ¢5)

G — minimize(G, L)

P(C) <« update(P(C),c,)

» T

> update D and @)

> update G

> update P(C')

29

function restricts the representation of the real categorical latent vector c,, so it is disabled
after some training. In line 12, the real categorical latent vector ¢, is calculated from ¢,.

In line 13, Lgs represents classification loss for ¢ prediction. Ly is categorical cross-
entropy loss. In line 14, gradient(y, z) function calculates gradient dy/dzx.

In lines 15 and 16, L; and L, represent discriminator loss and classifier loss, respectively.
Ay represents GAN adversarial loss functions for the discriminator. When training GAN
with R1 or R2 regularization [7], we recommend using R2 regularization because the true
label of generated data is known, unlike real data.

In lines 17 and 18, discriminator D and classifier () are updated to minimize its loss. In
lines 19-24, generator (G is updated to minimize its loss.

In line 25, P(C) is updated with predicted real categorical latent vector ¢,.. The update
function can be a simple moving average, an exponential moving average, or other scheduling

functions. In CGPGAN, P(C) is initialized with uniform distribution (P(C) = [, - .-, 7]);
and ¢ is normalized at the beginning of the training (line 10 in algorithm 5). Thus, at the
beginning of training, P(C) will always be [dic, dic, o dic] This makes P(C') to not converge

to a trivial solution.

Fig. 7 shows overall training process of CGPGAN.

3.5.1 Training Classifier Gradient Penalty GAN with Codebook Architecture

In sections 1.4.5 and 2.4, we discussed models that use discrete latent random variables. In
this section, we propose an architecture that uses codebooks to improve the categorical gen-
eration performance of CGPGAN and generate high-quality data. The proposed architecture
simply replaces the categorical latent vector c; of CGPGAN with the trainable page vector of
the codebook corresponding to the index of the categorical latent vector, instead of directly
inputting the categorical vector ¢; to the generator. For example, if ¢; = [0.0, 1.0, 0.0], the
page vector of the 2nd index of the codebook would be input to the generator instead of the

categorical latent vector c¢;. The codebook is updated with generator losses during train-

60

Classifier

Discriminator

Generator

sample sample

Figure 7: Flowchart showing the training process of CGPGAN. Values a, - ¢, and ay - ¢5 are
used for adversarial training. ”®” represents the inner product.

61

ing, just like other trainable parameters of the generator. Therefore, one can think that the
codebook is the trainable parameter of the generator. The proposed codebook architecture
enforces CGPGAN’s discrete representation and quality of generated data because it is a
kind of memory architecture, like VQGAN [83] or VQVAE [84] using vector quantization.
The difference between the proposed codebook architecture and other vector quantization
generative models is that the proposed codebook architecture does not encode the train data
through an encoder. Therefore, no additional autoencoder training is required. We found this
simple method improves CGPGAN’s generated data quality (precision) and class-conditional

data generation & clustering performance, like other vector quantization generative models.

4 Experiments

In this section, we present experiments to validate our contributions. In general, the experi-

ments were conducted using RTX 3090 and RTX 4090 GPUs.

4.1 Conditional Activation GAN and Mixed Batch Training
4.1.1 Conditional Activation GAN

In this experiment, we trained revised ACGAN and CAGAN to generate Gaussian clusters
and MNIST handwritten digits dataset [61], and compared the generative performance of
each method. The left plot of Fig. 1 shows samples from the Gaussian cluster dataset. The

following hyperparameters were used for both Gaussian clusters and MNIST experiments.

Z ~ N (0, I95)
A =1.0

learning rate = 0.001

optimizer = AdamW £ =0.0

B2 = 0.99

trainable weights ema decay rate = 0.999

62

Figure 8: Generated samples in Gaussian clusters experiments. First plot: samples gener-
ated by revised ACGAN with A\, = 0.01. Second plot: samples generated by revised ACGAN
with Ays = 1.0. Third plot: samples generated by revised ACGAN with A\, = 100.0. Fourth
plot: samples generated by CAGAN.
batch size = 32
train step per epoch = 1000

epochs = 200

In Adam [92] and AdamW [93] optimizers, ; and [2 control the exponential moving
averages of the first-order (mean) and second-order (variance) moments of the gradients,
respectively. A higher 8; makes the optimizer rely more on past gradients, while 35 stabilizes
the learning by controlling the update scale based on gradient variance.

NSGAN loss [1] with R1+R2 [7] regularization was used for adversarial loss. Since real
data and fake data are mixed in each batch in the subsequent mixed batch training exper-
iment, we used R1+R2 regularization for the efficient experiment. A\, represents R1+R2
regularization loss weight (AL, = \.(E, [||V.D(x)|3] + Eu [|| Vo D(2)|13]))-

The leaky ReLLU function was used for the activation function. Equalized learning rate
[8] was used for all trainable weights. For the Gaussian clusters experiments, the model
consists of fully connected layers with 512 units. Full codes for the experiments are available
in https://github.com/jeongik-jo/CAGAN.

Fig. 8 shows samples generated by revised ACGAN and CAGAN. First, in the first
three plots, revised ACGAN does not generate samples near the classifier decision boundary
between label 1 and label 2. This is because the generator tries to avoid generating samples

near the decision boundary to minimize classification loss. For the same reason, the generated

63

https://github.com/jeongik-jo/CAGAN

Unconditional Generative Performance Conditional Generative Performance

—— ACGAN Ags =0.001
704 ACGAN Ags =0.01 704
----- ACGAN As =0.1

—— ACGAN Ags = 0.001
ACGAN Ags = 0.01
—— ACGAN A5 =0.1
—— ACGAN Ags=1
—— ACGAN Ags =10
—— ACGAN Ags = 100
CAGAN

— ACGAN Ags=1

—— ACGAN Age=10

—— ACGAN As =100
CAGAN 501

ID

IS

o
Average FID

ey

o

ol \

0 . . T : . - — 0 - : . :
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 9: Performance of revised ACGAN and CAGAN for each epoch. In the first plot,
ACGAN with Ays = 0.1 is shown as a dashed line for visibility. Left plot: FID between
training data and generated data. Right plot: Average of FIDs for each class.

sample moves further away from the decision boundary as the classification loss weight A
increases. On the other hand, there was a natural division between label 1 and label 2 of
CAGAN in the fourth plot. This is because CAGAN’s generator is trained with adversarial
loss only, so there is no conflict between adversarial loss and classification loss.

In MNIST experiments, we used simple model architecture consisting of CNN layers.
We used fréchet inception distance (FID) to evaluate generative performance of the model.
32,000 train images and generated images were used for FID [9] evaluation. Models were
evaluated every 10 epoch.

Fig. 9 shows the performance of revised ACGAN and CAGAN for each epoch. The
first plot in Fig. 9 shows the unconditional generative performance of the model, and the
second plot shows the conditional generative performance of the model. FID between real
data and fake data, regardless of class, was used for unconditional performance evaluation.
And average FID for each class was used for conditional performance evaluation. In Fig. 9,
one can see that the performance of revised ACGAN depends on the hyperparameter ;.
When A is too large (Ays = 100), the model’s unconditional performance and conditional

generative performance were low because of the high classification loss. When A, is too low

64

(=]
©

10

L]

ARG AN JON G\ -
~— N\~ — B
LYVNHNV Y BE
GO Ly M~y (Y B
LR L TRE
OO S NN (T O
RS NG R
NN H D T E
o OQ % A0 M
N~ N L0 O\

4O /234507587

Figure 10: Generated samples of CAGAN in MNIST experiments. Each row shares the same
latent vector, and each column shares the same conditional vector. Row and column indices
are added for better readability.

(Aas = 0.001), revised ACGAN could generate unconditional data well, but failed to generate
class-conditional data.

Fig. 10 shows generated samples of CAGAN in MNIST experiments, complementing the

quantitative results shown in Fig. 9.

4.1.2 Mixed Batch Training

In mixed batch training experiments, we changed several settings from 4.1.1. We used batch
standard deviation layer [8] as batch-wise operation for mixed batch training experiments.
We inserted the batch standard deviation layer into the penultimate layer of the hidden layers.
We also modified the conditional distribution of the real data to make the conditional latent
distribution different from the conditional distribution of the real data. mix rate per epoch =
0.005 was used for mixed batch training. It means that real data : fake data gradually
changes to the target ratio by 0.5%p for epochs 1 ~ 100. Then, real data : generated data =
50 : 50 is used for epochs 101 ~ 200.

65

Figure 11: Generated samples with real conditional distribution (P(C,.) = [0.4,0.3,0.2,0.1])
in Gaussian clusters experiments. First plot: ACGAN without mixed batch training. Second
plot: ACGAN with mixed batch training. Third plot: CAGAN without mixed batch training.
Fourth plot: CAGAN with mixed batch training.

In Gaussian clusters experiments, we changed real categorical distribution to [0.4,0.3,0.2,0.1].
Therefore, categorical latent distribution of GAN is P(Cy) = [0.1,0.2,0.3,0.4], and real cat-
egorical distribution is P(C,) = [0.4,0.3,0.2,0.1]. Other settings are the same as section
4.1.1.

Fig. 11 shows the data generated by ACGAN and CAGAN trained on the conditional
latent distribution P(C%). One can see that both revised ACGAN and CAGAN show an
improvement in generative performance when mixed batch training is applied. In particular,
both ACGAN and CAGAN generated centroids for each cluster well when mixed batch
training was applied.

In MNIST experiments, we changed the real categorical distribution to [0.55,0.05,0.05, ..., 0.05].
Therefore, categorical latent distribution is P(Cy) = [0.1,0.1,...,0.1], and real categorical
distribution is P(C,) = [0.55,0.05,0.05, ...,0.05].

Figs. 12-15 show generated samples of revised ACGAN and CAGAN without and with
mixed batch training. One can see that both revised ACGAN and CAGAN ignore the input
condition vector and generate the digit 0 when mixed batch training is not applied. Since
there are many digits 0 in real data, and there are batch-wise operations in the discriminator,
ignoring input conditions and generating more digits 0 can minimize adversarial loss for the
generator. Because of this, the generator ignores the input condition vector and generates

digit 0. On the other hand, when mixed batch training is applied, one can see that both

66

O UV 200H9
1 OO0QLLEO WL
> ANEESVEAY S i SES s ol
MO MHOOMN)
JU QU AQ Y
QI I W =N = = N
HJOQVOQOOQ

11111111

ng.

ated samples of ACGAN without mixed batch traini

Gener

12:

Figure

S Eeali 2 vl o i SN SN Sl o
Qggﬁﬁﬁu‘u_nvuﬂvﬂ_ﬂﬂ_ﬂuﬂ

-9 8 -8 -5-9g 03§
qln ' ninyg \nnw)
o Rl S N, RS M A L
+ BAAYOAN AR s BT I
gt L X LYy A

@OV QOQRVOQ

11111111

ng.

ated samples of ACGAN with mixed batch traini

Gener

13:

Figure

67

- ANJRNGIRC BRUIRENC RN I
Yy LOoOLLWWLLZwO
N\ FT I P T
™ MMM D
- ANWaUN '« e Ny S8 O

2/..-....!1...-....-!.....!....'.!

g Q0QQQYNO

11111111

ated samples of CAGAN without mixed batch training.

Figure 14: Gener

SN &
o Oy U0 Do W] &
o Runl NI SRR G Il
- RO RN I IR
oy bwai) gy
g I 3T
M T M (V) ™) f) 60 o
J™ § (U~ g [N
] = S S My o e —

MO QORVOQDO

11111111

ng.

ated samples of CAGAN with mixed batch traini

Gener

15:

Figure

68

Unconditional Generative Performance Conditional Generative Performance

—— ACGAN not mixed

70 4 - ACGAN mixed 70 4
—— CAGAN not mixed
—— CAGAN mixed

60 60 -

—— ACGAN not mixed
ACGAN mixed

—— CAGAN not mixed

—— CAGAN mixed

Average FID
ey
o

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 16: Mixed batch training comparison graph.

revised ACGAN and CAGAN correctly generate class-conditional data.

Fig. 16 shows the performance of revised ACGAN and CAGAN with and without mixed
batch training for each epoch in MNIST experiments. One can see that mixed batch training
clearly improves the generative performance of models when real conditional distribution and

fake conditional distribution are different.

4.1.3 Summary

In the first contribution, we introduced a novel class-conditional GAN that uses only multiple
adversarial loss instead of classification loss. CAGAN is a composite of multiple GANs, where
each GAN is trained to generate each class. Since each GAN shares all hidden layers, it can
be considered a single model. Because CAGAN only uses adversarial loss, it has fewer
hyperparameters than ACGAN. Also, CAGAN does not use classification loss, so there is no
conflict between adversarial loss and classification loss as there is with ACGAN. Therefore,
CAGAN has better performance than ACGAN. In the experiments in section 4.1.1, we showed
that CAGAN has a faster training speed, and better convergence compared to ACGAN.
We also propose mixed batch training to train conditional GAN, when the conditional

distribution is biased and there are batch-wise operations in the discriminator. When train-

69

ing conditional GAN, real conditional distribution and fake conditional distribution can be
different. If the discriminator has batch-wise operations, it can use the conditional distribu-
tion of the input batch for real/fake discrimination, which lowers the generative performance
of the model. Mixed batch training is configuring the ratio of real data to fake data in each
batch to be always the same. It prevents the discriminator from relying on the conditional
distribution of the input batch to distinguish between real and fake samples. In the experi-
ments in section 4.1.2, we showed that mixed batch training enables the generator to generate

class-conditional data on an imbalanced dataset correctly.

4.2 Dynamic Latent Scale GAN

4.2.1 Experiments Settings

In the DLSGAN experiment, we compared our method with several variations of MSE loss
methods. Many papers are using several variations of MSE loss to predict latent vectors (e.g.,
[31], [32], [33], [34], [39], [45]). Our experiment can be seen as a comparison between our
methods and theirs. We know that there are several StyleGAN-specific inversion methods
(e.g., [35], [36], [37]), but our method is an architecture-agnostic method, so we did not
compare our method with them.

We compared the performance of baseline, DLSGAN (ours), MSEGAN, and InfoGAN.
Baseline is training an encoder that inverts the generator of the GAN with MSE loss (Lepe =
in — 2|3, Eq. 15) after training the GAN without encoder loss. Therefore, the baseline
requires additional computation compared to other methods. The encoder architecture for
the baseline is the same as the discriminator architecture. MSEGAN is training a GAN with
MSE loss during the training (Egs. 15, 17, and 18). InfoGAN is trained with InfoGAN loss
(Egs. 16, 17, and 18).

We trained GAN to generate the FFHQ dataset [19] resized to 256 x 256 resolution. Of
the 70k images of the FFHQ dataset, the first 50k images were used as training images, and

the remaining 20k images were used as unseen images.

70

We used a simple model architecture consisting of convolution and skip connections. We
used a skip connection directly connecting the input to improve the inversion performance of
the model. We did not use StyleGAN architecture because some methods used in StyleGAN
make GAN inversion difficult (e.g., low learning rate in mapping network) or impossible (e.g.,
mixing regularization). Furthermore, experiments with simple model architecture can show
a more general performance of the proposed method.

NSGAN with R1 regularization [7] was used as an adversarial loss like StyleGAN.

The following hyperparameters were used for the experiments.

Aene = 1.0
A1 = 10.0
Z ~ N(0, Io)
learning rate = 0.003

weight decay = 0.0001
optimizer = AdamW

B1=0.0

B2 =0.99
trainable weights ema decay rate = 0.999

batch size = 8

epochs = 100

A1 is R1 regularization weight (A1 L1 = A\aE, [[|[VoD(2)||3]).

We used an exponential moving average for trainable weights during the evaluation.
trainable weights ema decay rate is a decay rate for generator and discriminator weights.

For the wupdate function for DLSGAN, we used an exponential moving average with
decay rate = 0.999. We also compared the effect of the encoder loss L.,. on generator
loss L.

We used FID [9], Precision, and Recall [10] methods for generative performance evalua-

tion. Among 70k images, the first 50k images were used as a training dataset, and the last

71

20k images were used as a test dataset. Pre-trained inception model and size of the neigh-
borhood k = 3 were used for Precision and Recall evaluation. Average PSNR and average
SSIM between 20k generated images and reconstructed images of generated images were used
to evaluate the inversion performance of each method (i.e., the difference between G(z) and
G(E(G(z))) where z ~ Z). The higher the PSNR and SSIM, the better the image reconstruc-
tion performance. The PSNR ranges from zero to infinity, while the SSIM ranges from zero
to one. Average PSNR and average SSIM between test images and reconstructed images of
training images were used to evaluate the comprehensive performance of GAN inversion (i.e.,
the difference between x and G(FE(x)) where x ~ X). The real image reconstruction perfor-
mance is high when both the generative performance and the inversion performance are high.
Therefore, real image reconstruction performance shows the comprehensive performance of
generative performance and inversion performance.
Full codes for the DLSGAN experiments are available at https://github.com/jeongik-jo/

DLSGAN.

4.2.2 Dynamic Latent Scale GAN Experiment Results

Fig. 17 shows the generative performance of each method. First, the FID evaluation showed
little difference in the generative performance among the methods. However, for the Precision
& Recall evaluation, DLSGAN showed slightly higher recall.

Fig. 18 shows the inversion performance of each method. One can see that the inversion
performance (fake data reconstruction performance) of DLSGAN is significantly higher than
other methods.

Fig. 19 also clearly shows that DLSGAN has the best comprehensive performance (real
data reconstruction performance).

Fig. 20 shows the average encoder loss L.,. according to the training methods for each
epoch. One can see that encoder loss L.,. hardly changes from 1.0 except for DLSGAN.

This shows that encoder E trained without dynamic latent scale fails to converge because

72

https://github.com/jeongik-jo/DLSGAN
https://github.com/jeongik-jo/DLSGAN

Fake PSNR

Generative performance

Recall

Generative performance

0.25 1

0.20 1

0.15

0.10

0.05 4

0.00 1

—— Baseline
—— DLSGAN {ours)
— InfoGAN
—— MSEGAN

Epochs

Figure 17: Generative performance for each epoch.

0.8 1
0.6
c
o
n
2
£ 044
0.2 4 —— Baseline
—— DLSGAN (ours)
— InfoGAN
—— MSEGAN
0.0 +— T T T T T
0 20 40 60 80 100
Epochs
Generative performance
40
—— Baseline
35 —— DLSGAN (ours)
— InfoGAN
—— MSEGAN
30 4
254
O 204
'Sy
15 4
10 4
54
0 T T T T T
0 20 40 60 80 100
Epochs
Inversion performance
17.5 4
15.0 4
12.5 4 7
10.0 4
7.5 4
5.0 4
—— Baseline
——— DLSGAN (ours)
237 InfoGAN
—— MSEGAN
0.0 — T T T T T
0 20 40 60 80 100
Epochs

Fake SSIM

80 100

Inversion performance

0.5
0.4 4
0.3 A
-~y s
LAVAI - g
0.2 1
014 —— Baseline
——— DLSGAN (ours)
— InfoGAN
—— MSEGAN
0.0 T T T T T
20 40 60 80 100
Epochs

Figure 18: Inversion performance for each epoch.

73

Real PSNR

Comprehensive performance Comprehensive performance

0.5
17.5 - —— Baseline
—— DLSGAN (ours)
—— InfoGAN
15.0 4 0.4 4 o
. —— MSEGAN
12.5 1
=
10.0 e]
wn
o
QU
] "oz A&WOQWW
5.0 4
—— Baseline
0.1+
—— DLSGAN {ours)
257 — InfoGAN
—— MSEGAN
0.0 T T T T T T 0.0 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Figure 19: Comprehensive performance for each epoch.

Average encoder loss

1.2 A A
1.0 4
0.8
H
< 06
0.4
—— Baseline
0.2 { — DLSGAN (ours)
— InfoGAN
—— MSEGAN
0.0 T T T T T T
0 20 40 60 80 100

Epochs

Figure 20: Average L.,. for each epoch.

74

generator GG loses information of latent random variable Z.
In the encoder loss of InfoGAN (Eq. 16), the squared error is scaled by dividing it by

Epy (G(Z)) .

e However, when this value becomes too small, it can cause numerical instability.

Although we added a small constant ¢ = 1077 to the denominator to mitigate this issue,

Ew(G(2)) ig very small. This numerical instability results in the

instability still occurs when e
spike observed in the InfoGAN loss in Fig. 20.

Fig. 21 shows the result of reconstructing the unseen images for each method. One can
see that DLSGAN performs significantly better than the other methods.

Fig. 22 shows the differential entropy of scaled latent random variable Z o s with dynamic
latent scale for each epoch. One can see that the latent entropy decreases as the training
progresses with a dynamic latent scale. Like encoder loss L., of Fig. 20, one can see that the
differential entropy of the scaled latent random variable Z o s decreases faster when scaled
encoder 1oss AepeLenc is added to the generator loss L,. Note that differential entropy can be
negative.

Figs. 23, 24, and 25 show the interpolating value of the specific dimension of the latent
random variable from —2.0 to 2.0. Figure 3 shows the latent interpolation of the values of
important dimensions in DLSGAN from —2 to 2.

The larger the value of the scale vector s, the more important (more informative) dimen-

sion. One can see that dimensions with large scale contain a lot of information.

4.2.3 Attribute Editing with Dynamic Latent Scale GAN

Since the FFHQ dataset does not have attribute labels, we used an aligned & cropped CelebA
[42] dataset for AEDLSGAN experiments. Images of aligned & cropped CelebA dataset have
218 x 178 resolution, so we resized the images to 256 x 256 resolution. Model architecture
and most hyperparameter settings are the same as section 4.2.1.

We trained AEDLSGAN with three attributes of the CelebA dataset: bangs, gender, and

smile. All elements of linear classifier weights w are initialized with N (0, 12), and we did not

75

Baseline DLSGAN(ours) Input InfoGAN MSEGAN

Figure 21: Unseen real image reconstruction samples for each method. The third column is
the input images.

76

Differential entropy of scaled latent random variable

1400 4 —— DLSGAN (ours)
1350

1300

=
N
1%
o

Differential entropy
I
=]
=1
o
!

-
-
u
o

1100 -

1050

T T T T T T
0 20 40 60 80 100
Epochs

Figure 22: Differential latent entropy of scaled latent random variable (Z o s).

Figure 23: Latent interpolation on most important dimension.

7

Figure 25: Latent interpolation on third most important dimension.

78

FIDJ| 10.7735

Precision? 0.6743
Recallt 0.3734
Fake PSNR? 19.4202
Fake SSIM?T 0.6170
Real PSNR?T 15.0686
Real SSIM1T 0.4178

Last epoch average L.,. 0.1609

Table 4: Performance of AEDLSGAN. 1 represents the higher the better, and | represents
the lower the better.

Y

Figure 26: Attribute ‘Bangs’ transfer of unseen real images. The first column shows input
images, and the second column shows reconstructed images. The right part shows continuous
attribute edits of attribute 'Bangs’.
use b for simplicity.

Full codes for the AEDLSGAN experiments are available at https://github.com/jeongik-jo/
AEDLSGAN.

Table 4 shows the performance of AEDLSGAN. About 20k unseen images and generated
images were used for evaluation.

Figs. 26, 27, 28 shows continuous attributes transfer of unseen real images. The first
column of figures shows the input images, and the second column shows the reconstructed

images through predicted latent vectors. Based on the thick white line, the images on the right

79

https://github.com/jeongik-jo/AEDLSGAN
https://github.com/jeongik-jo/AEDLSGAN

&5 é é |
LR dE

-SE--VE--

I\ =

éaaaaa@@@@

Figure 27: Attribute ‘Gender’ transfer of unseen real images. The first column shows input
images, and the second column shows reconstructed images. The right part shows continuous
attribute edits of attribute 'Gender’.

W~

\g, \g; \

Q @ ¢z Q_ e
) ‘,‘ % b Ay _‘
& i i) Ed B

-'L .'L -Yn = “HE > =

= : L= 3 = 3

Figure 28: Attribute ‘Smile’ transfer of unseen real images. The first column shows input
images, and the second column shows reconstructed images. The right part shows continuous
attribute edits of attribute "Smile’.

80

side show results of continuous attribute transfer. In the right part, the score ((2' o s)w/+/d.)
changes from —1 to 1. If the score is positive, the image has the attribute ‘has bangs,” ‘male,’
and ‘smile,” respectively. If the score is negative, the image has the attribute ‘no bangs,’
‘female,” and ‘not smile,” respectively. One can see that AEDLSGAN can edit the attribute

of the input image continuously.

4.2.4 Summary

In the second contribution, we introduced DLSGAN, a novel encoder-based GAN inversion
method for better convergence than in a simple mean squared error. DLSGAN dynamically
adjusts the scale of each element of the latent random variable to prevent the generator from
losing information of the latent random variable. The entropy of the scaled latent random
variable gradually decreases until it becomes suitable to represent the data. This allows
the model to converge better, resulting in better inversion performance. The scale of the
latent random variable is approximated by tracing the element-wise variance of the predicted
latent random variable of the encoder from previous training steps. In the experiments
in section 4.2.2, DLSGAN showed better performance than MSEGAN, InfoGAN, and the
encoder trained with MSE loss.

Additionally, we propose AEDLSGAN which utilizes DLSGAN to continuously edit the
attributes of input data. AEDLSGAN trains a class-conditional GAN with the proposed GAN
inversion method to fit a fixed linear classifier. In section 4.2.3, we showed that AEDLSGAN
can continuously modify the attribute of input data by progressively changing the predicted

latent vector to alter the output of the fixed linear classifier.

4.3 Out-of-distribution detection with Dynamic Latent Scale GAN

To compare OOD detection performance, we trained five types of models: AnoDLSGAN,
MSEGAN, InfoGAN [39], autoencoder, and classifier. Each model is trained only with the

ID train dataset.

81

Training AnoDLSGAN is the same as training DLSGAN (Egs. 33, 17, and 18). MSEGAN
is trained with simple MSE losses (Egs. 15, 17, and 18). And InfoGAN is trained with
InfoGAN losses (Egs. 16, 17, and 18). Autoencoder is trained with pixel-wise mean squared
error reconstruction loss. The classifier is trained with cross-entropy loss. AnoDLSGAN,
InfoGAN, and autoencoder were trained without labels, while the classifier was trained with
labels. The same encoder and decoder architecture was used for training each method (the
classifier uses only the encoder for training).

We used negative log probability OOD score and reconstruction OOD score for OOD
detection with DLSGAN, InfoGAN, and MSEGAN. The negative log probability score of
DLSGAN is the proposed AnoDLSGAN. Pixel-wise mean squared reconstruction error is used
for the reconstruction OOD score. Also, reconstruction OOD score is used for autoencoder
[65]. Energy score [57] with ReAct [58] is used for OOD detection with the classifier.

Training GANs and an autoencoder take more time than classifiers because those mod-
els use both an encoder and decoder for training. GAN and classifier require one encoder
inference to classify one data, while autoencoder requires one encoder and decoder inference.

We experimented with two cases where the ID dataset is the MNIST handwritten digits

dataset [61] or the CelebA dataset [42].

4.3.1 MNIST Experiment Settings

In MNIST experiments, the MNIST dataset [61] was used as the ID dataset, and Corrupted
MNIST [62] (CMNIST), Fashion MNIST [63] (FMNIST), and Kuzushiji MNIST [64] (KM-
NIST) datasets were used as OOD dataset. All datasets are available through Tensorflow
datasets [73]. For the preprocessing, we added padding to the images to make the resolution
32 x 32 and normalized the pixel values to be between —1 and 1. In the MNIST experiment,
we used 7-fold cross-validation. Each MNIST dataset has 70,000 images, so each ID train
dataset has 60, 000 images, the ID test dataset has 10,000 images, and each OOD test dataset

has 10,000 images in each fold.

82

Ine

58 Naize
lur

aulse noise

Glass blur

'\]' Q il Wetian blur

Dattad line

FRAMIST
Shat nalse

Shot noise

1\} b S ol Canny edpes

Figure 29: Sample ID and OOD images for MNIST experiments. Column 1: ID images.
Columns 2-13: near OOD images. Columns 14-25: far OOD images. OOD intensity = 0.1
was used to generate near OOD images.

Fig. 29 shows samples of ID images and OOD images for the MNIST experiment.
The first column of Fig. 29 shows ID images. Columns 13-23 (right part of the right
white line) show far OOD images of the OOD dataset (CMNIST, FMNIST, KMNIST).
Columns 2-12 (between the two white lines) show near OOD images. Near OOD im-
ages are generated by linear interpolation between far OOD images and ID images (i.e.,
near OOD image = far OOD image x OOD intensity+1D image x (1—0OOD intensity)).
We used OOD intensity = 0.1 to generate near OOD images. The near OOD images are
hard to distinguish for humans without looking very closely.

Images from the CMNIST dataset were generated by adding corruption to the images
from the MNIST dataset. Therefore, each image from the CMNIST dataset has a corre-
sponding original image from the MNIST dataset. When generating near OOD images with
the CMNIST dataset, corresponding images from the MNIST dataset were used as ID images,
not random images from the MNIST dataset.

The Following hyperparameters were used for training models.

batch size = 32
learning rate = 0.001

optimizer = Adam | g, = 0.0

By = 0.99

83

epoch = 30

learning rate decay rate per epoch = 0.95

learning rate decay rate per epoch is a value multiplied by the learning rate for each
epoch.

The following hyperparameters were used for training GANs.

>\enc =1
)\rl - 01
Z ~ N(0, Is6)

Aene and A, represents encoder loss weight and R1 regularization weight [7] (AL, =
M1l|[VeD(X)|[3), respectively. Also, v decay rate = 0.999 was used for DLSGAN. It repre-
sents the exponential moving average decay rate for variance vector v of DLSGAN. Equalized
learning rate [8] was used for both the encoder and decoder. We simply used CNNs and fully
connected layers for the model architecture. Full codes for the MNIST experiments are

available at https://github.com/jeongik-jo/AnoDLSGAN

4.3.2 Experiment Results

Table 5 shows the OOD detection performance for each method. We used AUROC (area
under ROC curve) to evaluate OOD detection performance. Threshold values to calculate
AUROC are a set of every 10th element when OOD scores of ID data are sorted (i.e., set of
0-th, 10-th, 20-th, ..., elements).

Each value in Table 5 is the average AUROC multiplied by 100. “NLL” and “Rec”
represent that the method used a negative log likelihood (probability) OOD score and re-
construction error OOD score (pixel-wise mean squared error), respectively. “NLL” with
DLSGAN is the proposed AnoDLSGAN, and “Rec” with GANSs is similar to [45] and [46].

Y

In “Energy” of Table 5, “t” represents the temperature of the energy score [57], and “p”
represents the activation percentage of ReAct [58]. When p = 1.0, it is the same as when

ReAct was not applied.

84

https://github.com/jeongik-jo/AnoDLSGAN

GAN Auto- Classifier
encoder

Reconst-
ruction [65]

DLSGAN [51] | InfoGAN [39] MSEGAN Energy score [57] with ReAct [58]

AUROC (x100)

Rec

p=0.85 | p=0.90 | p=0.95 | p=1.0 | p=0.85 | p=0.90 | p=0.95 | p=1.0

Shot noise ‘
|
82.38

|
|
59.19 59.12
73.30 73.78 59.56 59.48
KMNIST 84.34 | 71.96 72.98 60.20 60.10
Shot noise 71.55 | 69.67 68.46 71.23 | 73.06 7212 T74.34
Impulse noise \ 83.55 83.27 81.94 82.03
Glass blur 72.23 60.84
Motion blur 80.51 65.29
|
Spatter 63.21 | 64.48

Dotted line 64.04 63.51
71.91 71.01

= o 2

sXele]

[SBeS|

eXele]

KMNIST

|
|
Canny edges \
|
|

Table 5: OOD detection performance for each method in MNIST experiment.

In Table 5, one can see that the overall performance of AnoDLSGAN is the best.

Energy score with ReAct showed good performance in easy OOD of far OOD datasets
detection (Fog, FMNIST, and KMNIST) but showed relatively poor performance in some
CMNIST datasets (Dotted line, Spatter, Zigzag). Also, it could hardly detect the near OOD
images.

Comparing p=1.0 with the others in the energy score, ReAct improved the performance
on some far OOD datasets (Canny edges, Zigzag, Dotted line, and KMNIST), but for most
datasets, ReAct degraded or did not improve the OOD detection performance.

OOD detection using reconstruction error (i.e., “Rec” with DLSGAN, InfoGAN, and Au-
toencoder in Table 5) showed good performance with far OOD datasets but not in near OOD
datasets. This shows that the reconstruction-based OOD detection methods cannot properly
detect OOD data when OOD data have low reconstruction error, even if the perceptual dis-
tance from ID data is far. Also, AnoDLSGAN showed significantly better performance with
near OOD detection, even if the ID image reconstruction performance (PSNR and SSIM in

Table 6) of the autoencoder was much better than AnoDLSGAN’s.

)

DLSGAN InfoGAN MSEGAN Autoencoder Classifier

FID 5.1614 6.9579 6.7274 - -
PSNR 15.4209 14.2021 14.5149 28.9784 -
SSIM 0.5642 0.4764 0.4990 0.9627 -

Accuracy - - - - 0.9947

Table 6: Basic model performances in MNIST experiments.

AnoDLSGAN showed much better performance when compared to InfoGAN using the
NLL OOD score. This indicates that AnoDLSGAN performs better than InfoGAN because
ID data is densely mapped to the latent space due to the latent entropy optimality of DLS-
GAN.

All methods failed to detect shot noise near OOD images. Shot noise near OOD images
are very difficult to detect, even for humans.

Table 6 shows the basic performance of each model. In table 6, PSNR and SSIM represent
ID image reconstruction performance. The FID of GANs is below 10, within the range of
0 to 400, indicating good generative performance. For autoencoder, the PSNR is around 30
and the SSIM is close to 1, indicating high reconstruction performance. GANs show lower
reconstruction performance compared to the autoencoder since they also have to perform the
generation task. Also, the accuracy of the classifier is very high. The high performance of

models indicates that the MNIST OOD detection experiments were performed properly.

4.3.3 CelebA Experiments

In CelebA experiments, we used CelebA [42] images as ID dataset, and train images of
Coil100[74], Deep weeds[75], STL10 [76], Cassava|77], Colorectal histology [78], Malaria[79],
Stanford dogs [80, 81], Stanford online products [82] as OOD datasets. We resized all images
to 128 x 128 resolution. In CelebA experiments, we used OOD intensity = 0.5 to generate
near OOD images.

Fig. 30 shows ID and OOD images for CelebA experiments.

In CelebA experiments, we used 10,000 images of the CelebA test dataset as test ID

86

Coil100
i Colorectal
histology
Stanford
dogs
Stanford
online
products
t110
Colorectal
histology
Malaria
online
products

Wl Stanford
dogs
| stanford

g}' Cassava

Figure 30: Sample ID and OOD images for CelebA experiments. Column 1: ID images.
Columns 2-9: near OOD images. Columns 10-17: far OOD images. OO Dintensity = 0.5
was used to generate near OOD images.

OOD Dataset Sample Size
Coil 100 [74] 7200
Deep weeds [75] 10000
STL 10 [76] 4992
Cassava [77] 5648
Colorectal histology [78] 4992
Malaria [79] 10000
Stanford dogs [80, 81] 10000

Stanford online products [82] 10000

Table 7: OOD sample sizes for each OOD dataset in CelebA experiments.

87

images. However, some datasets have fewer than 10,000 images. To equalize the number
of ID images and OOD images for each ID-OOD pair, we reduced the number of ID images
to match the number of OOD images if the number of OOD images was less than 10, 000,
and reduced the number of OOD images to match the number of ID images if it was greater
than 10,000. Table 7 shows the number of images used for each ID-OOD pair. For example,
7,200 ID images and 7,200 OOD images were used for Coil 100 evaluation.
The following hyperparameters were used for CelebA experiments.
batch size = 16
learning rate = 0.001
optimizer = Adam | g, = 0.0
B2 = 0.99
epoch = 10

ema decay rate = 0.999

In CelebA experiments, we used the exponential moving average for trainable weights.
ema decay rate represents the exponential moving average decay rate for trainable weights.
The generator (decoder) architecture was similar to StyleGAN2 [20], while the discriminator
(encoder) architecture was simply consists of CNN layers and skip connections. Also, the

following hyperparameters were used for training GANs.

>\enc =1
)\rl - 10
Z ~ N(0, I512)

Full codes for the CelebA experiments are available at https://github.com/jeongik-jo/

AnoDLSGAN_CeleDbA.

4.3.4 CelebA Results

Table 8 shows OOD detection performance for each method in CelebA experiments. Similar

to the MNIST experiments, one can see that the overall performance of the proposed An-

88

https://github.com/jeongik-jo/AnoDLSGAN_CelebA
https://github.com/jeongik-jo/AnoDLSGAN_CelebA

GAN Auto- Classifier
encoder
DLSGAN [51] | InfoGAN [30] | MSEGAN | Reconst- Encrgy score [57] with ReAct [58]
AUROC(x100) ruction

NLL [oo [NiL | Ree | NLL | Rec Ree t=1.0 | t=1.0 | t=1.0 | t=1.0 | t=10.0 | t=10.0 | t=10.0 | t=10.0
(ours) - - : - p=0.85 | p=0.90 | p=0.95 | p=1.0 | p=0.85 | p=0.90 | p=0.95 | p=1.0
N Coil100 72.26 | 50.65 | 51.28 [N35MO0N 4525 35720 B2 69.60 | 69.91 | 70.33 70.96 | 62.18 | 6416 | 65.61 66.59
e Deep weeds 87.86 | 83.61 | 67.37 | 68.65 77.12 | 74.78 83.98 | 78.69 | 79.85 | 81.54 8331 | 80.26 | 82.07 | 83.82 85.50
a STL10 74.06 | 74.23 | 51.82 | 63.82 | 52.89 | 63.90 = 58.92 | 79.52 | 79.98 | 80.53 81.17 | 73.60 | 75.29 | 76.48 77.04
r Cassava 87.77 | 87.45 | 81.36 | 74.30 81.26 | 76.57 82.68 | 80.19 | 81.56 | 83.31 8546 | 79.33 | 81.66 | 83.82 = 85.95
Colorectal histology | 73.46 | 75.90 | 64.11 | 65.69 ' 56.79 | 71.83 | 50.09 | 74.44 | 7523 | 7617 77.20 | 7552 | 7648 | 77.21 77.84
o) Malaria 76.08 | 71.58 | 68.80 | 63.86 64.60 | 68.96 = 4846 | 73.67 | 73.40 | 7340 73.55 | 7425 | 7421 | 7398 73.67
O [Stanford dogs 78.76 | 79.06 | 53.35 | 69.05 55.94 | 69.33 68.32 | 78.67 | 79.56 | 80.63 81.88 | 72.98 | 75.06 | 76.67 77.77
D | Stanford online | 86.12 | 80.38 | 68.21 | 74.16 67.97 | 71.94 6521 | 77.70 | 78.14 | 78.69 79.37 | 7172 | 7342 | 7471 7550
r Coill00 97.54 | 80.36 | 86.49 | 69.27 86.75 | 70.31 6526 | 7072 | 7041 | 69.34 65.77 | 6501 | 63.01 | 68.75 66.30
X Deep weeds 99.46 [198.06 | 97.61 | 94.95 | 99.09 | 95.52 | 99.22 | 72.75 | 74.36 | 76.54 8342 | 83.98 | 86.84 | 89.87 | 94.34
) STLI0 96.97 | 95.00 | 89.56 | 92.65 90.07 | 91.27 = 91.93 | 78.64 | 78.29 | 77.63 75.69 | 74.30 | 76.16 | 77.06 76.13
Cassava 99.61 | 98.70 | 99.44 | 96.51 | 99.04 | 96.28 | 99.28 | 7834 | 77.16 | 7544 7176 | 80.80 | 82.85 | 83.98 83.47
o | Colorectal histology | 96.27 | 96.65 | 80.48 | 9020 79.11| 9110 7558 | 7849 | 7885 | 79.26 7833 | 8041 | 8205 | 8366 8535
o Malaria 99.91 | 97.25 [[99:86"| 94.77 [99:817 96.85 86.37 | 82.83 | 80.60 | 76.95 72.93 | 78.13 | 79.59 | 79.97 81.68
[| Stanford dogs 98.21 | 96.45 | 92.38 | 94.52 93.31 | 93.20 | 96.28 | 77.58 | 77.74 | 77.85 77.76 | 7401 | 76.08 | 77.49 78.20
Stanford online | 99.21 | 96.52 | 95.27 | 95.44 | 95.77 | 94.39 = 91.58 | 76.76 | 76.26 | 75.33 73.02 | 7258 | 74.42 | 7531 = 74.63

Table 8: OOD detection performance for each method in CelebA experiments.

oDLSGAN is the best. For far OOD images, the proposed AnoDLSGAN performed the best.
Similar to the MNIST experiments, ReAct increased model performance with some far OOD
datasets (e.g., Coil100, STL10, Cassava, Malaria, Stanford online with ¢ = 1), but decreased
model performance with some other far OOD datasets (e.g., Deep weeds with ¢ = 1 and
t = 10, Cassava, Colorectal histology with ¢t = 10).

For the Near OOD dataset, the proposed AnoDLSGAN and Energy score with ¢ = 1 or
t = 10, without ReAct, performed well. AnoDLSGAN significantly outperformed the Energy
score on the near OOD Coil100 and Stanford online datasets, and there was no significant
performance difference on the other near OOD datasets. DLSGAN with reconstruction OOD
score showed good performance except for the Coil100 data.

Overall, the performance of AnoDLSGAN was the best.

Fig. 31 shows autoencoder reconstructed images of near and far OOD images. Since
the autoencoder is trained to reconstruct the input, it tries to reconstruct the input image
even if it is an OOD image. This means that the autoencoder can also reconstruct OOD
images correctly, which is why the near OOD detection performance of the autoencoder with
reconstruction score was not good.

Table 9 shows the basic performance of each model in CelebA experiments. The overall

performance of the models is lower than that of the MNIST experiment (table 6) because

89

Figure 31: Autoencoder reconstructed samples in CelebA experiments. Row 1: near OOD
images. Row 3: far OOD images. Row 2 and 4: reconstructed images of left images.

DLSGAN InfoGAN MSEGAN Autoencoder Classifier

FID 8.1337 7.4739 7.7283 - -
PSNR 15.8093 14.9347 14.3391 23.9455 -
SSIM 0.3727 0.3502 0.3268 0.6328 -

Accuracy - - - - 0.9267

Table 9: Basic model performances in CelebA experiments

90

the complexity and dimensionality of the dataset is higher than that of the MNIST dataset.
Still, the GANs show good generative performance with FIDs below 10, and the autoencoder
shows acceptable performance with PSNR above 20 and SSIM above 0.6. The accuracy of
the classifier is also acceptable at over 90%. Therefore, as table 6, acceptable basic model

performances show that the CelebA OOD detection experiments were performed correctly.

4.3.5 Summary

In the third contribution, we introduced AnoDLSGAN, a method for out-of-distribution
detection using DLSGAN. In DLSGAN, the entropy of the scaled latent random variable
becomes suitable for representing the data. Furthermore, since each dimension of the latent
random variable is independent and follows a simple distribution, it is possible to calculate the
probability of the input data. AnoDLSGAN performs out-of-distribution detection through
the calculated log probability of the input data. In the experiments in sections 4.3.1-4.3.4,
we showed that AnoDLSGAN has higher OOD detection performance than other methods

on the MNIST dataset and CelebA dataset.

4.4 Dynamic Latent Scale GAN with Perceptual VAE loss

4.4.1 Experiment Settings

We compared PVDGAN with other architecture-agnostic encoder-based GAN inversion meth-
ods [32, 33, 34] (MSEGAN uses MSE encoder loss (Eq. 15) to train the encoder and the
generator), InfoGAN [39], DLSGAN [51], VAEGAN [68]) in the experiments. Full codes for
experiments are available in https://github.com/jeongik-jo/PVDGAN.

Flickr Faces HQ (FFHQ) dataset [19] and Animal Face HQ (AFHQ) dataset [21] resized
to 256 x 256 resolution were used for the experiments. In the FFHQ dataset, 50, 000 images
were used as the training dataset, and 20,000 images were used as the test dataset among
70,000 images. In the AHFQ dataset, all 16,130 images were used as both training dataset

and test dataset. Pixel values were normalized between —1 to 1.

91

https://github.com/jeongik-jo/PVDGAN

Non-saturating GAN loss [1] was used as an adversarial loss function. The following

equations show adversarial loss functions used in the experiments.

Ag(ar,as) = log(1 4 ¢=*) + log(1 +) (49)
Ay(ay) =log(l +e %) (50)

Also, \y1L,q is added to discriminator loss for R1 regularization [7], where \,; represents

R1 regularization loss weight. The following equations show R1 regularization loss.

L = [V.D(X)[3 (51)

We used a simple model architecture consisting of only convolutional layers and skip
connections. Equalized learning rate [8] was used for all trainable weights. All methods used
the same model architecture except for the VAEGAN. VAEGAN requires two encoders (VAE
encoder and discriminator) and one decoder (generator), while other methods require one
encoder (discriminator) and decoder (generator). Therefore, the computation and memory
required per each training step are higher than other methods. In our experiments, VAEGAN
required approximately 30% additional computation time compared to other methods. There
was no significant difference in computation time between MSEGAN, InfoGAN, DLSGAN,
and PVDGAN. The penultimate layer output of the discriminator was used as the feature
encoder output of PVDGAN and VAEGAN. The feature vector dimension d; was 4x4x512 =
8,192.

The following hyperparameters were used for experiments.

A1 = 3.0
d, =1024
Z ~ N(0,14,)

92

learning rate = 0.003
optimizer = Adam B =0.0
B2 = 0.99
trainable weights ema decay rate = 0.999
latent variance vector ema decay rate = 0.999
batch size = 8

epochs = 100

MSEGAN, InfoGAN, PVDGAN, and DLSGAN used encoder loss weight \.,. = 1.0.
Also, PVDGAN and VAEGAN used reconstruction loss weight \,... = 1.0. VAEGAN used
three different prior loss weights A, = 0, 1, and 10.

We used Frechet Inception Distance (FID) [9], Precision & Recall [10] metrics with a
pre-trained inception model for generative performance evaluation. Generative performance
indicates how close the generated data distribution is to the target real data distribution. The
lower the FID score, the higher the generative performance of the model. In the Precision
& Recall evaluation, precision indicates the percentage of generated data that is close to the
real data, and recall indicates the percentage of real data that is close to the generated data.
Precision and recall have values between zero to one, with higher values indicating better
generative performance. In general, a high precision indicates that the quality of generated
data is high, and a high recall indicates that the diversity of data is high. Pre-trained
inception model and size of the neighborhood k& = 3 were used for both FID and Precision
& Recall evaluation.

Inversion performance indicates how well the encoder can invert the generator. It is
evaluated through real data and fake data reconstruction performance via the encoder and
the generator. Average Peak Signal-to-noise Ratio (PSNR) and Structural Similarity (SSIM)
were used for inversion performance evaluation as DLSGAN [51]. PSNR and SSIM are both
metrics that indicate image reconstruction performance. PSNR ranges from 0 to infinity,

with higher values indicating better reconstruction performance. SSIM ranges from —1 to 1,

93

FFHQ Generative Performance

MSEGAN

InfoGAN

DLSGAN
PVDGAN (ours)
VAEGAN Ay =0
VAEGAN Ay = 1
VAEGAN Apr =10

[a)] 204
15 A
10 A
5
01— . T T T T
0 20 40 60 80 100
Epochs
FFHQ Generative Performance FFHQ Generative Performance
0.7 { 0.354
0.6 0.30 1
0.5 1 0.25 4
s —
2 0.4 = 0.20
2 S
o -4
<034 —— MSEGAN 0.15 1 —— MSEGAN
—— InfoGAN —— InfoGAN
02 —— DLSGAN 0.104 —— DLSGAN
—— PVDGAN (ours) —— PVDGAN (ours)
014 —— VAEGAN Aprr=0 0.054 —— VAEGAN A =0
—— VAEGAN Ap, =1 —— VAEGAN Ay =1
004 ! VAEGAN Apr= 10 0.00 4 VAEGAN A, =10
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Figure 32: Generative performance graphs in FFHQ experiments.

with higher values indicating better reconstruction performance.

4.4.2 Experimental Results

Figs. 32 and 33 show the generative performance of each method in FFHQ and AFHQ
experiments. In the FID evaluation in FFHQ and AFHQ experiments, PVDGAN performs
similarly or better than MSEGAN, InfoGAN, and DLSGAN. This is because PVDGAN
integrated perceptual VAE into DLSGAN, which allows generative models to generate diverse
data more easily. This can be seen more clearly with the Precision & Recall evaluation.
In both FFHQ and AFHQ experiments, PVDGAN shows similar precision to MSEGAN,
InfoGAN, and DLSGAN. On the other hand, PVDGAN showed higher recall than those

94

Precision

AFHQ Generative Performance

MSEGAN

InfoGAN

DLSGAN
PVDGAN (ours)
VAEGAN Apyr =0
VAEGAN Apr =1
VAEGAN Apyr = 10

0 20 40 60 80 100

Epochs

AFHQ Generative Performance

0.7

0.6

0.5

0.4

0.3 A

0.2

0.1

0.0

MSEGAN
InfoGAN
DLSGAN
PVDGAN (ours)
VAEGAN Ay =0
VAEGAN Ay = 1
VAEGAN Apr =10

NERERN

T T T T T

0 20 40 60 80 100

Epochs

Recall

AFHQ Generative Performance

0.5

0.4+

0.3

0.2 9

0.14

0.0

MSEGAN
InfoGAN

DLSGAN
PVDGAN (ours)
VAEGAN Ay =0
VAEGAN Aprr = 1
VAEGAN Aprr =10

Epochs

Figure 33: Generative performance graphs in AFHQ experiments.

95

methods. It shows that PVDGAN could generate more diverse data (recall) without reducing
the quality of the data (precision), because it integrated perceptual VAE into GAN.

VAEGAN showed the worst generative performance in both experiments in FID evalua-
tion. This is because Z, (Eq. 19), which VAEGAN uses to train the GAN, does not follow
7, so the generator is trained with two different random variables. In the FID evaluation
(Figs. 32 and 33), the generative performance of PVDGAN increases as A, increases. This
is because as A, increases, Z, gets closer to Z. In Precision & Recall evaluation, VAE-
GAN always shows low precision but high recall. VAEGAN uses VAE loss to achieve high
recall, but the quality of each data decreased, resulting in low precision. In precision eval-
uation, especially AFHQ experiments (Fig. 33), the precision of VAEGAN increased when
Aprr increased like FID evaluation.

Figs. 34 and 35 show the inversion performance of each method in FFHQ and AFHQ
experiments. In Figs. 34 and 35, Fake PSNR and Fake SSIM represent generated image
reconstruction performance, and Real PSNR and Real SSIM represent real target image
reconstruction performance. In both experiments, PVDGAN showed better inversion per-
formance than MSEGAN, InfoGAN, and DLSGAN. VAEGAN with A, = 0 showed the
best real data reconstruction performance (Real PSNR and Real SSIM in Figs. 34 and 35).
However, when A,,, = 0, VAEGAN is equivalent to being trained with a perceptual autoen-
coder rather than a perceptual VAE. It means that the predicted latent distribution does
not have useful features of latent distribution (i.e., each dimension follows an unknown com-
plex distribution rather than simple distributions such as normal or uniform distribution,
and each dimension is not independent). It can be seen more clearly through the inversion
performance of the model (Fake PSNR and Fake SSIM in Figs. 34 and 35). VAEGAN with
Aprr = 0 has lower generative performance and generated data inversion performance but has
higher real data inversion performance than PVDGAN. It indicates that the predicted latent
distribution E(X) of VAEGAN with A, = 0 does not follow the latent distribution Z, but

follows a complex unknown distribution.

96

Fake PSNR

Real PSNR

FFHQ Inversion Performance

16 4
141
124
104 —— MSEGAN
—— InfoGAN
—— DLSGAN
8 —— PVDGAN (ours)
—— VAEGAN A, =0
6 —— VAEGAN Apr =1
—— VAEGAN Ay, = 10
0 20 40 60 80 100
Epochs
FFHQ Inversion Performance
16
14 4
124
104 —— MSEGAN
—— InfoGAN
—— DLSGAN
8 —— PVDGAN (ours)
—— VAEGAN Apr=0
6 —— VAEGAN Apr=1
—— VAEGAN Apr =10
0 20 40 60 80 100
Epochs

Figure 34: Inversion performance graphs in FFHQ

97

Fake SSIM

Real SSIM

FFHQ Inversion Performance

0.4 4

0.3

0.2 q

0.14

0.0 4

—0.14

-0.2

MSEGAN
InfoGAN
DLSGAN
PVDGAN (ours)
VAEGAN Ay =0
VAEGAN Ay =1
VAEGAN Ay =10

0 20 40 60 80

100
Epochs

FFHQ Inversion Performance

0.4

0.3 4

0.2 9

0.14

0.0 1

—0.1

MSEGAN
InfoGAN
DLSGAN
PVDGAN (ours)
VAEGAN Aprr =0
VAEGAN Aprr =1
VAEGAN Aprr =10

LETETT

0 20 40 60 80

100
Epochs

experiments.

Fake PSNR

Real PSNR

AFHQ Inversion Performance

201

18 A

16

MSEGAN
InfoGAN
DLSGAN
PVDGAN (ours)
VAEGAN Apr =0
VAEGAN Apr =1
VAEGAN Apyr = 10

0 20 40 60 80

100
Epochs

AFHQ Inversion Performance

16

14 A

124

10 1

MSEGAN
InfoGAN
DLSGAN
PVDGAN (ours)
VAEGAN Ay =0
VAEGAN Ay = 1
VAEGAN Apr =10

0 20 40 60 80

100
Epochs

Fake SSIM

Real SSIM

AFHQ Inversion Performance

0.3

0.2 4

0.14

0.0 1

—0.14

-0.2

MSEGAN
InfoGAN
DLSGAN
PVDGAN (ours)
VAEGAN Ay =0
VAEGAN Ay =1
VAEGAN Ay =10

0 20 40 60 80

100
Epochs

AFHQ Inversion Performance

0.25 1

0.20 1

0.15 1

0.10 1

0.05 1

0.00 1

—0.05 1

MSEGAN
InfoGAN
DLSGAN
PVDGAN (ours)
VAEGAN Aprr =0
VAEGAN Aprr =1
VAEGAN Aprr =10

0 20 40 60 80

100
Epochs

Figure 35: Inversion performance graphs in AFHQ experiments.

98

MSEGAN InfoGAN DLSGAN PVDGAN (ours) Input VAEGAN A, =0 VAEGAN A, =1 VAEGAN A, = 10

Figure 36: Unseen test image reconstruction examples in FFH(Q experiments. Column 5 is
input images.

99

MSEGAN InfoGAN DLSGAN PVDGAN (ours) Input VAEGAN A, =0 VAEGAN A, =1 VAEGAN A, = 10

R I o D3 3

N =

Figure 37: Train image reconstruction examples in AFH(Q experiments. Column 5 is input
images.

100

Figs. 36 and 37 show the reconstruction performance of real data and generated data
in FFHQ and AFHQ experiments. In both experiments, VAEGAN with low A, shows
better real data reconstruction than other methods as Fig. 34. However, as previously
analyzed, the encoder output of a VAEGAN trained with low A, does not follow the latent
distribution, and thus does not have the useful properties of generative model inversion (i.e.,
each dimension is not independent, and each dimension follows complex distribution). On
the other hand, VAEGAN’s reconstruction performance decreases as A, increases in both
experiments.

PVDGAN showed better reconstruction performance compared to MSEGAN, InfoGAN,
and DLSGAN in some samples in FFHQ experiments (Fig. 36). For example, PVDGAN
showed better hair reconstruction in row 3 and background reconstruction in rows 6 and 8
than MSEGAN, InfoGAN, and DLSGAN.

AFHQ reconstruction samples (Fig. 37) show a clear difference between PVDGAN and
other methods. In row 3, PVDGAN reconstructs the pattern of the cat better than MSEGAN,
InfoGAN, and DLSGAN. Similarly, in row 7, PVDGAN reconstructs the pose of the cheetah
better than MSEGAN, InfoGAN, and DLSGAN.

We trained the models to generate two-dimensional Gaussian clusters and MNIST dataset
[61]. In Gaussian clusters experiments, we compare the performance of Vanilla GAN [1],
InfoGAN [39], Elastic InfoGAN [11], and our proposed CGPGAN. In MNIST experiments,

we compared the clustering of CGPGANSs according to classifier gradient penalty loss weight

)\creg-

4.4.3 Summary

In the fourth contribution, we introduced PVDGAN, a novel method that combines percep-
tual VAE and DLSGAN to improve GAN inversion performance. When DLSGAN is trained
with a normal latent random variable where each dimension is i.i.d., and the latent encoder

is integrated into the discriminator, a sum of a predicted latent random variable of real data

101

and a scaled normal noise follows the normal random variable where each dimension is i.i.d..
Since this random variable is paired with real data and follows the latent random variable, it
can be used for both VAE and GAN training. Furthermore, by considering the intermediate
layer output of the discriminator as the feature encoder output, the VAE can be trained to
minimize the perceptual reconstruction loss. In the experiments in section 4.4.2, we showed
that integrating perceptual VAE into DLSGAN improved the generative and inversion per-
formance of DLSGAN. PVDGAN also showed better overall performance than MSEGAN,
InfoGAN, and VAEGAN.

4.5 Classifier Gradient Penalty GAN Experiments

In this section, we trained the models to generate two-dimensional Gaussian clusters, MNIST
dataset [61], and AFHQ dataset [21]. In Gaussian clusters experiments, we compare the
performance of Vanilla GAN [1], InfoGAN [39], Elastic InfoGAN [11], and our proposed
CGPGAN. In MNIST and AFHQ experiments, we compared the clustering of CGPGAN
according to classifier gradient penalty loss weight A.gp,.

Full codes for Gaussian clusters and MNIST experiments in sections 4.5.1 and 4.5.2 are
available at https://github.com/jeongik-jo/CGPGAN. Full codes for AFHQ generation
experiments in section 4.5.3 are available at https://github.com/jeongik-jo/CGPGAN-HQ.
Full codes for AFHQ generation codebook architecture experiments in section 4.5.4 are avail-

able at https://github.com/jeongik-jo/CGPGAN_codebook.

4.5.1 Gaussian Clusters Experiments

In Gaussian clusters experiments, we used the dataset consisting of four 2-dimensioanl Gaus-
sian clusters as a training dataset. The left plot of Fig. 1 shows the target data distribution
used in the experiments. One can see that there are four Gaussian clusters with different
probabilities in data distribution. The generator, discriminator, and classifier consisting of

four fully connected hidden layers with 512 units were used for training. The following

102

https://github.com/jeongik-jo/CGPGAN
https://github.com/jeongik-jo/CGPGAN-HQ
https://github.com/jeongik-jo/CGPGAN_codebook

hyperparameters were used for experiments.

Z ~ N(0, Is6)
learning rate = 0.0001

weight decay = 0.0001
optimizer = AdamW

/81 = 00

By = 0.99
batch size = 16

Ap =1
train step per epoch = 2000
epoch = 100

activation function = Leaky ReLU

A2 Tepresents R2 regularization [7] loss weight (AvaLyae = AaBe o, [V, (D(G(z,¢1)) - ¢f)13]).

NSGAN loss [1] was used for adversarial loss. Classification loss weight A\ys = 1.0 was
used for InfoGAN, elastic InfoGAN, and CGPGAN. We used exponential moving average
with decay rate = 0.999 as update function for CGPGAN. In InfoGAN, Elastic InfoGAN,
and CGPGAN, classifier) and discriminator D do not share hidden layers. Equalized
learning rate [8] was used for all trainable weights. Also, exponential moving average [8] with
decay rate = 0.999 was used for generator weights. In CGPGAN and Elastic InfoGAN, d. =
16 was used, and P(C') was updated after epoch 30 (i.e., in CGPGAN, early in training in
line 9 of algorithm 5 was T'rue until epoch 30). Since we assumed that there is no good metric
to measure the distance between data, we did not use identity preserving transformations
in Elastic InfoGAN. Only gradient descent on a categorical latent distribution with Gumbel
softmax was used for Elastic InfoGAN.

Fig. 38 shows samples generated with vanilla GAN (trained only with adversarial loss).
The left plot of Fig. 38 shows data generated by a vanilla GAN with a one-dimensional
categorical latent distribution. Since there is no discrete dimension in the latent distribution,

the vanilla GAN generates a lot of samples between clusters. This shows that when training a

103

-'.. K del
- bt 4
N . o A
.0 . r.‘vt '
21 .1 . .’I;%S;r -
-2 oW
D3 ; .
) 1 0 1 2 375 -1 0

Figure 38: Vanilla GAN (trained only with adversarial loss) is trained with both continuous
latent distribution and categorical latent distribution. Left plot: 1-dimensional categorical
latent distribution (P(C) = [1.0]). Right plot: 4-dimensional optimal categorical latent
distribution (P(C') =[0.1,0.2,0.3,0.4]).

GAN with only continuous latent vectors, the latent space is entangled and it is not suitable
for representing data with concave parts with low density.

The right plot of Fig. 38 shows data generated by a vanilla GAN trained with optimal
categorical latent distribution (P(C) = [0.1,0.2,0.3,0.4]). One can see that the generator of
vanilla GAN did not use the information of categorical latent distribution, and training was
exclusively performed only with a continuous latent distribution. Therefore, the generator
output was also continuous, which caused a sample generation between each cluster. This
means that even if the generator takes a discrete categorical latent distribution as input,
additional loss is required to make the generator use categorical latent distribution meaning-
fully.

Fig. 39 shows data generated by InfoGAN trained with the optimal categorical latent
distribution. Unlike the Vanilla GAN, one can see that the model generates class-conditional
distribution with the categorical latent distribution. However, one can still see the problems
of InfoGAN in this figure.

The first problem was that even though the categorical latent distribution was optimal,
most class was not mapped to the correct cluster. We repeated the InfoGAN training eight
times, and some classes were assigned correctly in some iterations, but never all classes were

assigned correctly. For example, in the second and fourth plots, class 3 was assigned correctly.

104

Figure 39: InfoGAN trained with 4-dimensional optimal categorical latent distribution
(P(C) =10.1,0.2,0.3,0.4]). Eight times repeated.

105

In the fifth plot, classes 0 and 1 were assigned correctly. In the sixth plot, classes 1 and 3 were
assigned correctly. However, there was never an iteration when all four classes were assigned
correctly. This is because when the decision boundary of the InfoGAN classifier is not
initialized ideally, the decision boundary of the classifier converges to local optima, resulting in
inaccurate cluster assignments. And since the probability of the classifier’s decision boundary
being ideally initialized is very low, InfoGAN was not able to assign all classes correctly.

The second problem is that the generator does not generate data near the decision bound-
ary of the classifier. In Fig. 39, one can see that the generator of InfoGAN does not generate
data near the decision boundary of the classifier. This is because classification loss and
adversarial loss conflict with the generator of InfoGAN.

Fig. 40 shows data generated by elastic InfoGAN. We tested several combinations of
hyperparameters (temperature ¢t and learning rate for the categorical latent distribution ir),
but Elastic InfoGAN could not generate class-conditional data correctly.

Fig. 41 shows samples generated by CGPGAN trained with different A.4,. In the first
and second plots of Fig. 41, each category is assigned to each cluster correctly. Because
the probability density function of the generated data distribution is smooth due to the
simplicity of the data and small model, each class is assigned correctly, even though there was
no classifier gradient penalty in the first plot. Also, the probability of each category is very
accurate, and there was a natural division between clusters, unlike InfoGAN. This is because
CGPGAN’s generator is only trained with adversarial losses of CAGAN, not classification
loss, so there is no conflict between those losses. In the third and fourth plots, multiple
clusters were assigned to the same category. This is because A4, was too high, causing the
classifier to converge to local optima in a wide region. This shows that CGPGAN can adjust
the sensitivity of each category via ..

Fig. 42 shows the results of eight iterations of CGPGAN training with A,y = 0.1. One

can see that CGPGAN is generating class-conditional data correctly over multiple iterations.

106

.3

B ';y

LR Y]
R

CoNouswNEOg

Figure 40: Elastic InfoGAN trained with different temperatures and learning rates. Con-
trastive loss was not used. Row 1: t = 0.1, Row 2: ¢t = 0.3, Row 3: ¢t = 1.0, Column 1:
Ir =0.0001, Column 2: [r = 0.0003, Column 3: Ir = 0.001. Categories with a probability of

less than 1% were omitted.

107

-2

-3

-2 -1 0 1 2 32 -1 0 1 2 3

Figure 41: CGPGAN trained with different A.4,. Categories with a probability of less
than 1% were omitted. Top left plot: A,y = 0.0. Categorical probability after training was
P(C) = [0.2003,0.3029,0.0994, 0.3973]. Top right plot: A.y, = 1.0 Categorical probability
after training was P(C) = [0.1973,0.0956,0.4054,0.3018]. Bottom left plot: A, = 10.0.
Categorical probability after training was P(C') = [0.0992,0.4002,0.5006]. Bottom right
plot: Ay = 100.0. Categorical probability after training was P(C') = [0.9002, 0.0998].

108

Figure 42: CGPGAN trained with A, = 0.1. Categories with a probability of less than
1% were omitted. Eight times repeated. Each run converges differently because the model’s
weights are initialized differently for each run, and latent vectors for training are different
each time. The numbers in the upper left of each plot indicate the number of each experiment

number.

109

PR MMEOAR
CO=>0 00K
DdNALd IV E
L0000 0 0F
L L+ LFTCE

AN o 00D o fg

Figure 43: MNIST generated data with \., = 50. Each row has the same continuous
latent vector, and each column has the same categorical latent vector. Out of d. categories,
those with a probability less than 1% were omitted. The probabilities for each category are
[0.0975, 0.1059, 0.0384, 0.0740, 0.0974, 0.0902, 0.0395, 0.0601, 0.0657, 0.0385, 0.0274, 0.0563, 0.0504,
0.1002,0.0138,0.0447]. FID: 1.3140, precision: 0.8158, recall: 0.6763.

4.5.2 MNIST Experiments

In this experiment, we trained CGPGAN to generate the MNIST handwritten digits dataset
[61]. The MNIST dataset consists of 10 digits from 0 to 9, with each digit representing about
10% of the total.

The generator, discriminator, and classifier simply consist of CNNs. learning rate =
0.001, d. = 32, epoch = 300 were used for the experiments. The categorical latent distribution
of CGPGAN was updated after epoch 100. Other hyperparameters are the same as in section
4.5.1. We used FID [9], precision & recall [10] for generative performance evaluation. All
evaluation methods used the Inception model. 32k training samples were used for generative
performance evaluation.

Figs. 43-45 show the difference in class-conditional data generation of CGPGAN accord-

ing to Aegp-

110

10 11 12

rerUbsVvLYE
Ny NR

VAR i Vall N il W B

S SR XN SR
WPWWwbhowWww AN
OHOoOvOH-O0H_0

=
7
7
7
>
Es
]

i e e T N O
CCOOOQOE
R 00 Qo g of *a A E

L.i
4
Lr
4
74
m
d

44 7 02>5/081 239

Figure 44: MNIST generated data with A., = 70. Each row has the same continuous
latent vector, and each column has the same categorical latent vector. Out of d. categories,
those with a probability less than 1% were omitted. The probabilities for each category are
[0.0975,0.1051,0.0993, 0.0765, 0.0901, 0.0454, 0.0988, 0.0964, 0.0668, 0.0270, 0.1012, 0.0957].
FID: 1.4724, precision: 0.8122, recall: 0.6728.

First, in Fig. 43, since A,y was too low, the classifier decision boundary converged on a
local optima in a narrow region. Thus, some digits were split into multiple categories. In Fig.
43, the digit 2 was divided into categories 4 (column 4) and 11 (column 11), and digit 7 was
divided into categories 6 and 15. However, the same digit splitting into multiple categories
does not mean that CGPGAN performed an incorrect class-conditional data generation. If
we ignore the human knowledge of each digit, digit 2 with a loop and without a loop, and
digit 7 with a horizontal line in the center and without a horizontal line can be considered
different categories. One can see that the digit 2 in category 4 has a loop, but category 11 has
no loop. And the sum of the probabilities of those two categories is 0.074 4+ 0.0274 = 0.1014,
which is similar to the proportion of the digit 2 in the MNIST digits dataset (about 10%).
Likewise, the digit 7 in category 6 does not have a horizontal line, but category 15 has it. The
sum of the probability of those two categories is 0.0902 + 0.0138 = 0.1040, which is about

10%. These splits show that the optimal clustering (and class-conditional data generation)

111

3000 Q0Q0O0E
O ese~on NOE
DO DT OLDDOE

Figure 45: MNIST generated data with A, = 120. Each row has the same continuous
latent vector, and each column has the same categorical latent vector. Out of d. categories,
those with a probability less than 1% were omitted. The probabilities for each category are
[0.1013,0.2940, 0.0491, 0.0908, 0.0586, 0.1004, 0.0947,0.2110]. FID: 1.6374, precision: 0.8076,
recall: 0.6734.

Categorical entropy

Epochs

Figure 46: The entropy of a categorical latent distribution over epochs in MNIST experi-
ments.

112

can depend on the sensitivity of each cluster.

As A, increases, the classifier decision boundary converges to the local optima over a
wider region. In Fig. 45, A,y = 120 was used for training. One can see that multiple
digits are clustered into one category, except for digit 1. For example, digits 3, 5, and 8
were clustered in category 2, and digits 4 and 9 were clustered in category 8. It means that
the distance between those digits is closer than other digits for the model. The digit 1 was
divided into two categories based on whether it was tilted or not in Figs. 43, 44, 45. It means
that for the model, it is easy to distinguish between a tilted digit 1 and a vertical digit 1.

Fig. 46 shows the entropy of a categorical latent distribution over epochs. The entropy
was calculated every 10 epochs. In Fig. 46, one can observe that as A\, increases, the lower
the entropy of the categorical latent distribution. One can also see that the decreased entropy
converges stably. This shows that CGPGAN can adjust the sensitivity of each category via
Aegp-

In this experiment, we showed that CGPGAN can properly generate the class-conditional
data of the MNIST handwritten digit by adjusting A.g,. In particular, when A, is low so the
sensitivity of each cluster is high, CGPGAN found that there are different patterns within
some digits (e.g., digits 1, 2, and 7 in Fig. 43). When A, is high so the sensitivity of each
cluster is low, CGPGAN found that some digits have a similar pattern (e.g., digits 3, 5,
8, and 4, 9). This means that CGPGAN can generate class-conditional data by adjusting
the sensitivity of each cluster according to A.4,. Separately, all three CGPGANs have good

unconditional generative performance from FID and precision & recall.

4.5.3 AFHQ Experiments

In this section, we trained CGPGAN to generate AFHQ dataset [21]. The AFH(Q dataset
consists of animal face images. We resized the images to 256 x 256 resolution and used them
for training.

The following hyperparameters were used to train the model.

113

Z ~ N(0, I1024)

learning rate = 0.003

wetghtdecay = 0.0001
optimizer = AdamW

p1=0.0
B2 = 0.99
batch size = 8
Are = 10.0
epoch = 150
d. =16

decay rate = 0.999

The model simply consists of CNNs with skip connections, and P(C) was updated after
epoch 50. Other settings are the same as section 4.5.1.

Figs. 47-49 show generated samples of CGPGAN trained with the AFHQ dataset. In
Figs. 47-49, each row has the same continuous latent vector, and each column has the same
categorical latent vector. One can see that each column in the figures has similar patterns.
For example, in Fig. 48, animals in the third column have black noses. Animals in the
fourth and sixth columns have white noses with black mask patterns, and the fifth column
has black fur. The other figure’s animal faces also show a similar pattern if they are in the
same column.

Fig. 50 shows the entropy of categorical latent distribution in the AFHQ experiment. In
the AFHQ experiment, categorical entropy did not consistently decrease as A, increased.
This is because the dataset is high dimensional and complex, so there are many possible
converged patterns of the decision boundaries. Thus, the initial separation by the classifier
has a strong influence on the converged decision boundary.

Nevertheless, one can still see that the categorical entropy converges stably. Except when
Aegp = 180, the categorical entropy of C' decreases from epoch 51, when P(C') starts to be

updated, to approximately epoch 100. After that, the categorical entropy doesn’t change

114

Figure 47: AFHQ dataset generated with CGPGAN when A, = 80. Each row has the same
continuous latent vector, and each column has the same categorical latent vector. Out of d,.
categories, those with a probability less than 1% were omitted. The probabilities for each
category are [0.1022,0.4298,0.0521,0.2549, 0.0837,0.0240, 0.0400]. FID: 9.9898, precision:
0.7296, recall: 0.3059.

115

Figure 48: AFHQ) dataset generated with CGPGAN when A.;, = 120. Each row has the same
continuous latent vector, and each column has the same categorical latent vector. Out of d,.
categories, those with a probability less than 1% were omitted. The probabilities for each
category are [0.5311,0.2330,0.0144,0.0150,0.0139, 0.0160, 0.1660]. FID: 10.4323, precision:
0.7300, recall: 0.3051.

116

Figure 49: AFHQ dataset generated with CGPGAN when A.;, = 160. Each row has the same
continuous latent vector, and each column has the same categorical latent vector. Out of d,.
categories, those with a probability less than 1% were omitted. The probabilities for each
category are [0.0141,0.0730,0.0968,0.0792,0.0911,0.0148,0.6268]. FID: 9.7840, precision:
0.7397, recall: 0.3219.

117

Categorical entropy

2.54 \

2.04

Entropy
Ju
v

—— Acegp=60
Acgp =80
—— Acgp=100
— Aep=120
0.5 —— Acgp =140
—— Acgp=160
Acgp = 180

1.0

0.0

0 20 40 60 8 100 120 140
Epochs

Figure 50: The entropy of a categorical latent distribution over epoch in AFHQ experiments.

much. This shows that the decision boundary of CGPGAN has stably converged to the local

optima. For A.g, = 180, all categories were merged into single category around epoch 120.

4.5.4 Classifier Gradient Penalty GAN with Codebook Experiments

In this section, we compared the performance of Vanilla GAN and CGPGAN with and
without codebook architecture. AFHQ dataset [21] resized to 256 x 256 resolution was used
as the training dataset.

Models are trained with NSGAN adversarial loss [1] (i.e., A; and A,) with R2 regu-
larization [7]. Equalized learning rate [8] was used for all trainable parameters. Also, an
exponential moving average of generator parameters with decay rate = 0.999 was used for
generative performance evaluation. The model architecture is simply composed of CNNs.

Vanilla GAN is a GAN that simply uses only adversarial losses.

In without codebook architecture, the d,-dimensional continuous latent vector and d; x
d. shape multiple categorical latent vectors are the input to the generator, where d; and
d. represent label dimension and category dimension. The label represents the number of
categorical vectors. That is, for d; labels d. categories distribution, the class-conditional
vector consists of d; one-hot vectors, where the dimension of each one-hot vector is d.. Then

the input latent vector is projected to the 4 x 4 x 1024 shape feature maps.

118

In with codebook architecture, d.-dimensional continuous latent vector is projected to
4 x 4 x 512 shape feature maps, then 4 x 4 x 512 shaped page vectors are concatenated. The
codebook is d; x d. x d, shape trainable matrix, where d, represents the dimension of the
page vector. It means that there are d; x d. page vectors, and d, = 4 x 4 x 512/d;.

The following hyperparameters were used for the experiments:
T~ U(—\/g, \/3)1024
learning rate = 0.003

wetght decay = 0.0001
optimizer = AdamW

£ =0.0
P2 = 0.99
batch size = 8
Ao = 10
epoch = 150

activation function = Leaky ReLU

For CGPGAN, P(C) starts to be updated after epoch 50 (i.e., the probnormalize function
is disabled from epoch 50), and A5 = 1, Asgp = 10 were used for model training.

FID [9] and precision & recall [10] were used for generative performance evaluation.

Figs. 51-54 show the generated samples of Vanilla GAN and CGPGAN, with and without
codebook architecture when label dimension d; = 4 and categorical vector dimension d, = 4.
In Figs. 51-54, each row has the same continuous latent vector, and each column has the
same categorical latent vector. The categorical vector corresponding to each column was
sampled from a categorical latent distribution.

Fig. 51 shows generated samples of Vanilla GAN without codebook architecture. Thus,
the categorical latent vector is concatenated with the continuous latent vector and input into
the generator. In Fig. 51, changes in the categorical latent vector changed some features of
the samples. For example, in row 2, the categorical vector determines whether the animal is

a cat or a tiger. In row 4, the categorical vector determines the pattern of the cat. However,

119

Figure 51: Generated samples of Vanilla GAN without codebook architecture. Each row has
the same continuous latent vector, and each column has the same categorical latent vector.
d; =4, d. = 4. FID: 10.6690, precision: 0.7349, recall: 0.2742.

120

.
& B

*

)

‘a

H)

g
Wv<

H

1

o "

),

3

o
&

\

1

3

Figure 52: Generated samples of Vanilla GAN with codebook architecture. Each row has
the same continuous latent vector, and each column has the same categorical latent vector.
d; =4, d. = 4. FID: 74.2704, precision: 0.6324, recall: 0.0000.

121

Figure 53: Generated samples of CGPGAN without codebook architecture. Each row has
the same continuous latent vector, and each column has the same categorical latent vector.
d; =4, d. = 4. FID: 10.6059, precision: 0.7077, recall: 0.3242.

122

Figure 54: Generated samples of CGPGAN with codebook architecture. Each row has
the same continuous latent vector, and each column has the same categorical latent vector.
d; =4, d. = 4. FID: 10.1116, precision: 0.7981, recall: 0.2012.

123

overall, the impact of categorical vectors was not significant. For example, in rows 5 and 6,
the categorical vector had no effect on the sample generated.

Fig. 52 shows generated samples of Vanilla GAN with codebook architecture. One can
see that Vanilla GAN with codebook architecture had mode collapse for each categorical
vector. Therefore, there is no diversity of images for each class. This results in very low
generative performance for the Vanilla GAN with codebook architecture. One can see that
the FID of the model is 74.2704, which is quite high compared to other models, and the recall
of the model is 0.0000, which means that there is little diversity in the generated data.

Fig. 53 shows generated samples of CGPGAN without codebook architecture. Compared
to Vanilla GAN without codebook architecture (Fig. 51), the categorical vector in CGPGAN
without codebook architecture has a greater impact on the generated image. For example,
in rows 1, 3, 5, 6, and 8, one can see that the species of animal changes according to the
categorical latent vector. In rows 2 and 7, the pattern of the animal changed according to the
categorical latent vector. However, it is difficult for humans to interpret the features of each
category, and the differences in features between categories are not significant. The generative
performance of CGPGAN without codebook architecture was similar to Vanilla GAN without
codebook architecture. Compared to Vanilla GAN without codebook architecture, CGPGAN
without codebook architecture showed better image diversity (recall), but slightly lower image
quality (precision). Overall, the FIDs were similar.

Fig. 54 shows generated samples of CGPGAN with codebook architecture. Compared
to CGPGAN without codebook architecture (Fig. 53), one can see that there are significant
feature differences in each class in CGPGAN with codebook architecture. For example, the
images in column 2 are lionesses, and the images in columns 4 and 5 are cats with different
patterns. Also, one can see that the continuous latent vector is used to represent continuous
features like pose or mouth openness. For example, the animals are facing at the same angle
and tilting their heads at the same angle in all rows. Overall, one can see that CGPGAN

with codebook architecture uses continuous latent vectors to represent continuous features

124

like pose, and categorical latent vectors to represent discrete features like species or pattern.
The generative performance of CGPGAN with codebook architecture was similar to other
methods. The precision of CGPGAN with codebook architecture is 0.7981, which is higher
than Vanilla GAN without codebook architecture at 0.7349 and CGPGAN without codebook
architecture at 0.7077. However, CGPGAN with codebook architecture had a recall of 0.2012,
lower than Vanilla GAN without codebook architecture at 0.2742 and CGPGAN without
codebook architecture at 0.3242. Overall, the FID for CGPGAN with codebook architecture
was similar to Vanilla GAN without codebook architecture and CGPGAN without codebook
architecture.

Figs. 54-57 show the difference of CGPGAN with codebook architecture according to label
dimension d; and categorical latent dimension d.. One can see that as d; and d, increase, the
diversity of images for each class decreases. For example, in Fig. 54 with d; =4 and d. = 4,
the image changes significantly depending on the continuous latent vector, but in Fig. 57
with d; = 32 and d. = 32, the image changes little even if the continuous latent vector is
varied. This is because as d; and d,. increase, the number of real data belonging to each class
decreases.

In summary, the codebook architecture in CGPGAN enforces a discrete representation of
the data being generated so that the features of each class of data are clearly distinguishable.
This makes the class-conditional data more interpretable. The codebook architecture in
CGPGAN reduced the diversity of the generated data (recall), but increased the quality

(precision).

4.5.5 Summary

In the fifth contribution, we introduced CGPGAN, a novel GAN that allows the model
to perform self-supervised class-conditional data generation and clustering without knowing
labels, optimal categorical probability, or metric function. When training class-conditional

GAN with the classifier, the decision boundary of the classifier falls to the local optima

125

Figure 55: Generated samples of CGPGAN with codebook architecture. Each row has
the same continuous latent vector, and each column has the same categorical latent vector.
d; =4, d. = 8. FID: 9.7836, precision:0.7805, recall:0.2593.

126

Figure 56: Generated samples of CGPGAN with codebook architecture. Each row has
the same continuous latent vector, and each column has the same categorical latent vector.
d; =16, d. = 16. FID: 10.8957, precision: 0.7636, recall: 0.2619.

127

Figure 57: Generated samples of CGPGAN with codebook architecture. Each row has
the same continuous latent vector, and each column has the same categorical latent vector.
d; = 32, d. = 32. FID: 10.0439, precision: 0.7840, recall: 0.2487.

128

where the density of the data is minimized. CGPGAN adds a classifier gradient penalty loss
to the classifier loss to prevent the classifier’s decision boundary from falling into a narrow
range of local optima. The gradient penalty regulates the gradient of the classifier’s output
to prevent the gradient near the decision boundary from becoming too large. Additionally,
CGPGAN updates the categorical latent distribution with the categorical probability of
real data predicted by the classifier. As training progresses, the entropy of the categorical
latent distribution decreases and converges according to the classifier gradient penalty loss
weight. In the experiments in sections 4.5.1-4.5.3, we showed that CGPGAN can perform
self-supervised class-conditional data generation, without any prior probability or metric
function.

We also proposed codebook architecture for CGPGAN to strengthen the discrete repre-
sentation and make it easier to interpret the discrete representation of the model. Instead
of directly inputting a one-hot categorical latent vector into the generator, the codebook
architecture inputs the trainable page vector of the corresponding index of the categorical
latent vector. In the experiments in sections 4.5.4, we showed that the codebook architec-
ture improved the quality of CGPGAN’s generated data and made each class distinct and

interpretable.

5 Conclusions and Future Works

In this thesis, we made several contributions to the architecture-agnostic algorithms of gen-
erative models and their inversions, as well as applications utilizing these methods.

In the first contribution, we introduced a novel class-conditional GAN that uses only
multiple adversarial loss instead of classification loss. Since CAGAN only uses adversarial
loss, it has fewer hyperparameters than ACGAN. Also, CAGAN does not use classification
loss, so there is no conflict between adversarial loss and classification loss as there is with

ACGAN. We also propose mixed batch training to train conditional GAN, when the condi-

129

tional distribution is biased and there are batch-wise operations in the discriminator. Mixed
batch training prevents the discriminator from relying on the conditional distribution of the
input batch to distinguish between real and fake samples.

In the second contribution, we introduced DLSGAN, a novel encoder-based GAN inversion
method for better convergence than in a simple mean squared error. DLSGAN dynamically
adjusts the scale of each element of the latent random variable based on the variance of en-
coder output to prevent the generator from losing information of the latent random variable.
This allows the model to converge better, resulting in better inversion performance. Addi-
tionally, we propose AEDLSGAN which utilizes DLSGAN to continuously edit the attributes
of input data. AEDLSGAN trains a class-conditional DLSGAN to fit a fixed linear classifier.
It enables continuous modification of input data attributes by progressively changing the
predicted latent vector to alter the output of the fixed linear classifier.

In the third contribution, we introduced AnoDLSGAN, a method for out-of-distribution
detection using DLSGAN. In DLSGAN, the entropy of the scaled latent random variable
becomes suitable for representing the data. Furthermore, since each dimension of the latent
random variable is independent and follows a simple distribution, it is possible to calculate
the probability of the input data.

In the fourth contribution, we introduced PVDGAN, a novel method that combines per-
ceptual VAE and DLSGAN to improve GAN inversion performance. When DLSGAN is
trained with a normal latent random variable where each dimension is i.i.d., and the latent
encoder is integrated into the discriminator, a sum of a predicted latent random variable of
real data and a scaled normal noise follows the normal random variable where each dimension
is i.i.d.. Since this random variable is paired with real data and follows the latent random
variable, it can be used for both VAE and GAN training. Furthermore, by considering the
intermediate layer output of the discriminator as the feature encoder output, the VAE can
be trained to minimize the perceptual reconstruction loss.

In the fifth contribution, we introduced CGPGAN, a novel GAN that allows the model

130

to perform self-supervised class-conditional data generation and clustering without knowing
labels, optimal categorical probability, or metric function. When training class-conditional
GAN with the classifier, the decision boundary of the classifier falls to the local optima where
the density of the data is minimized. CGPGAN adds a classifier gradient penalty loss to the
classifier loss to prevent the classifier’s decision boundary from falling into a narrow range of
local optima. The gradient penalty regulates the gradient of the classifier’s output to prevent
the gradient near the decision boundary from becoming too large. Additionally, CGPGAN
updates the categorical latent distribution with the categorical probability of real data pre-
dicted by the classifier. We also proposed codebook architecture for CGPGAN to strengthen
the discrete representation and make it easier to interpret the discrete representation of the
model. Instead of directly inputting a one-hot categorical latent vector into the generator,
the codebook architecture inputs the trainable page vector of the corresponding index of the
categorical latent vector.

For each contribution, we use the same model architecture and compare our method
against other architecture-agnostic state-of-the-art algorithms. The results demonstrate that
the proposed algorithm outperforms existing methods in at least one of the following aspects:
generative performance (measured by FID), inversion performance (measured by PSNR and
SSIM), or OOD detection performance (measured by AUROC).

In summary, we have introduced several architecture-agnostic deep learning algorithms
that enable bidirectional transformation between data distributions and latent distributions.
Since the proposed algorithms are architecture-agnostic, those algorithms can be widely used
in most deep learning applications, not only for data generation and data manipulation, but
also for general tasks such as data processing, data augmentation, and feature representation.
We also introduced several architecture-agnostic applications using proposed methods, such
as data domain transfer, anomaly detection, and clustering. These applications demonstrate
that the proposed algorithms can be widely used in various applications.

Compared to diffusion models, GANs have the advantage of lower latent dimensionality

131

and easier inversion. However, the generative performance of GANs is generally lower than
that of diffusion models, and they often suffer from unstable training and poor convergence.
In contrast, diffusion models are known for their stable training and strong generative quality,
but their multi-step sampling process makes inversion inherently difficult. Interestingly, a
VAE can be seen as a one-step diffusion model, as it maps a latent distribution directly to
data in a single decoding step. Based on this view, a promising direction is to combine the
strengths of GANs and VAEs to improve both generative performance and invertibility. We
also think that better regularization for the discriminator and incorporating memory-based
architecture could be fundamental ways to improve the generative performance of GANs.
Another promising direction is to extend the codebook architecture of CGPGAN to large
language models (LLMs). CGPGAN is an unsupervised model that learns to embed data into
a codebook, which functions as an explicit memory structure. By integrating this mechanism
into LLMs, we aim to address the long-term memory limitations of current models. We
believe that a self-supervised codebook architecture could serve as a memory module that

helps LLMs retain and recall information over longer contexts.

References

[1] Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, Yoshua Bengio, ” Generative Adversarial Nets,” in Commun.

ACM, vol. 63, no. 11, pp. 139-144, Nov. 2020. https://doi.org/10.1145/3422622

[2] Diederik P Kingma, Max Welling, ”Auto-Encoding Variational Bayes,” in arXiv

preprint, Dec 2013, arXiv:1312.6114. https://arxiv.org/abs/1312.6114v11

[3] Augustus Odena, Christopher Olah, Jonathon Shlens, ”Conditional Image Synthesis
with Auxiliary Classifier GANs,” in proceedings of the 34th International Conference
on Machine Learning, PMLR 70:2642-2651, 2017. https://proceedings.mlr.press/

v70/odenal7a.html

132

https://doi.org/10.1145/3422622
https://arxiv.org/abs/1312.6114v11
https://proceedings.mlr.press/v70/odena17a.html
https://proceedings.mlr.press/v70/odena17a.html

[4]

Jeongik Cho, Kyoungro Yoon, ”Conditional Activation GAN: Improved Auxiliary Clas-
sifier GAN,” In IEEE Access, vol. 8, pp. 216729-216740, 2020. https://doi.org/10.

1109/ACCESS.2020.3041480

Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, Jan
Kautz, "Few-Shot Unsupervised Image-to-Image Translation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 10551-
10560. https://openaccess.thecvf.com/content_ICCV_2019/html/Liu_Few-Shot_

Unsupervised_Image-to-Image_Translation_ICCV_2019_paper.html

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet, ” Are
GANs Created Equal? A Large-Scale Study,” in Advances in Neural Informa-
tion Processing Systems (NIPS), 2018. https://papers.nips.cc/paper/2018/hash/

ed6de7elbcaaced9ab54f1e9d0d2f800d-Abstract.html

Lars Mescheder, Andreas Geiger, Sebastian Nowozin, "Which Training Methods for
GANSs do actually Converge?” in Proceedings of Machine Learning Research (PMLR),

2018. https://proceedings.mlr.press/v80/meschederi8a.html

Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen, ”Progressive Growing of
GANSs for Improved Quality, Stability, and Variation,” in International Conference on
Learning Representations (ICLR), Vancouver, Canada, Apr. 30-May 3, 2018. https:

//openreview.net/forum?id=Hk99zCeAb

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
Sepp Hochreiter, "GANs Trained by a Two Time-Scale Update Rule Con-
verge to a Local Nash Equilibrium,” in Advances in Neural Information
Processing Systems (NIPS), 2017. https://papers.nips.cc/paper/2017/hash/

8a1d694707eb0fefe65871369074926d-Abstract.html

133

https://doi.org/10.1109/ACCESS.2020.3041480
https://doi.org/10.1109/ACCESS.2020.3041480
https://openaccess.thecvf.com/content_ICCV_2019/html/Liu_Few-Shot_Unsupervised_Image-to-Image_Translation_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Liu_Few-Shot_Unsupervised_Image-to-Image_Translation_ICCV_2019_paper.html
https://papers.nips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
https://papers.nips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
https://proceedings.mlr.press/v80/mescheder18a.html
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://papers.nips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://papers.nips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html

[10]

[11]

[13]

Tuomas Kynkadnniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, Timo Aila, ”Im-
proved precision and recall metric for assessing generative models,” in Advances in Neu-
ral Information Processing Systems (NIPS) proceedings, 2019. https://proceedings.
neurips.cc/paper/2019/hash/0234c510bc6d908b28c70££313743079-Abstract.

html

Utkarsh Ojha, Krishna Kumar Singh, Cho-Jui Hsieh, Yong Jae Lee, ”Elastic-InfoGAN:
Unsupervised Disentangled Representation Learning in Class-Imbalanced Data,” in Ad-
vances in Neural Information Processing Systems (NIPS), 2020. https://proceedings.
neurips.cc/paper/2020/hash/d1e39c9bdabc80ac3d8eadd658163967-Abstract.

html

Zhisheng Xiao, Karsten Kreis, Arash Vahdat, "Tackling the Generative Learning
Trilemma with Denoising Diffusion GANs”, in International Conference on Learning

Representations (ICLR) 2022. https://arxiv.org/abs/2112.07804

Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton, ” A simple frame-
work for contrastive learning of visual representations,” in Proceedings of the 37th In-
ternational Conference on Machine Learning (ICML), 2020. https://dl.acm.org/doi/

abs/10.5555/3524938.3525087

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, in IEEE / CVF
Computer Vision and Pattern Recognition Conference (CVPR), 2017. https:
//openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_

Translation_With_CVPR_2017_paper.pdf

Boris Knyazev, Harm de Vries, Catalina Cangea, Graham W. Taylor, Aaron Courville,
Eugene Belilovsky. ”Generative compositional augmentations for scene graph predic-
tion,” in Proceedings of the IEEE/CVF International Conference on Computer Vision.
2021.

134

https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d1e39c9bda5c80ac3d8ea9d658163967-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d1e39c9bda5c80ac3d8ea9d658163967-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d1e39c9bda5c80ac3d8ea9d658163967-Abstract.html
https://arxiv.org/abs/2112.07804
https://dl.acm.org/doi/abs/10.5555/3524938.3525087
https://dl.acm.org/doi/abs/10.5555/3524938.3525087
https://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf

[16]

[17]

[18]

[20]

[21]

Eric Jang, Shixiang Gu, Ben Poole, ”Categorical reparameterization with gumbel-
softmax,” in International Conference on Learning Representations (ICLR), 2017.

https://openreview.net/pdf?id=rkE3y85ee

Chris J. Maddison, Andriy Mnih, Yee Whye Teh, ” The concrete distribution: A contin-
uous relaxation of discrete random variables,” in International Conference on Learning

Representations (ICLR), 2017. https://openreview.net/forum?id=S1jE5L5gl

Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, Ming-Hsuan Yang,
"GAN Inversion: A Survey,” in IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2022, doi: 10.1109/TPAMI.2022.3181070. https://ieeexplore.ieee.org/

abstract/document/9792208

Tero Karras, Samuli Laine, Timo Aila, ” A Style-Based Generator Architecture for Gen-
erative Adversarial Networks,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 4396-4405. https://doi.org/10.1109/CVPR.

2019.00453

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila,
” Analyzing and Improving the Image Quality of StyleGAN,” in 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 8107-8116.

https://doi.org/10.1109/CVPR42600.2020.00813

Yunjey Choi, Youngjung Uh, Jaecjun Yoo, Jung-Woo Ha, ”StarGAN v2: Diverse Image
Synthesis for Multiple Domains,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). https://openaccess.thecvf.com/content_CVPR_
2020/html/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_

CVPR_2020_paper .html

135

https://openreview.net/pdf?id=rkE3y85ee
https://openreview.net/forum?id=S1jE5L5gl
https://ieeexplore.ieee.org/abstract/document/9792208
https://ieeexplore.ieee.org/abstract/document/9792208
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR42600.2020.00813
https://openaccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html

[22]

[23]

[24]

[25]

[20]

[27]

Matthew D. Zeiler, Rob Fergus, ”Visualizing and Understanding Convolutional Net-
works,” in European Conference on Computer Vision (ECCV) 2014. https://link.

springer.com/chapter/10.1007/978-3-319-10590-1_53

Raymond A. Yeh, Chen Chen, Teck Yian Lim, Alexander G. Schwing, Mark Hasegawa-
Johnson, Minh N. Do, ”"Semantic Image Inpainting with Deep Generative Models,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6882-6890.

https://doi.org/10.1109/CVPR.2017.728

Zachary C. Lipton, Subarna Tripathi, ”Precise Recovery of Latent Vectors from Gener-
ative Adversarial Networks,” In International Conference on Learning Representations
(ICLR) workshop, Toulon, France, Apr. 24-26, 2017. https://openreview.net/forum?

1d=HJC88BzF1

Antonia Creswell, Anil Anthony Bharath, ”Inverting the Generator of a Generative
Adversarial Network,” in IEEE Transactions on Neural Networks and Learning Sys-
tems, vol. 30, no. 7, pp. 1967-1974, July 2019. https://doi.org/10.1109/TNNLS.2018.

2875194

David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei
Zhou, Antonio Torralba, ”Seeing What a GAN Cannot Generate,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2019, pp. 4502-4511. https://openaccess.thecvf.com/content_ICCV_2019/html/

Bau_Seeing_What_a_GAN_Cannot_Generate_ICCV_2019_paper.html

David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan Zhu,
Antonio Torralba, ”Semantic photo manipulation with a generative image prior,” in
ACM Transactions on Graphics (TOG), Volume 38, Issue 4, Jul. 2019. https://doi.

org/10.1145/3306346.3323023

136

https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/CVPR.2017.728
https://openreview.net/forum?id=HJC88BzFl
https://openreview.net/forum?id=HJC88BzFl
https://doi.org/10.1109/TNNLS.2018.2875194
https://doi.org/10.1109/TNNLS.2018.2875194
https://openaccess.thecvf.com/content_ICCV_2019/html/Bau_Seeing_What_a_GAN_Cannot_Generate_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Bau_Seeing_What_a_GAN_Cannot_Generate_ICCV_2019_paper.html
https://doi.org/10.1145/3306346.3323023
https://doi.org/10.1145/3306346.3323023

28]

[29]

[30]

[31]

[32]

[33]

[34]

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier
Mastropietro, Aaron Courville, ” Adversarially Learned Inference,” in International
Conference on Learning Representations (ICLR), Toulon, France, Apr. 24-26, 2017.

https://openreview.net/forum?id=B1E1R4cgg

Jeff Donahue, Philipp Kréhenbiihl, Trevor Darrell, ” Adversarial Feature Learning,”
in International Conference on Learning Representations (ICLR) conference, Toulon,

France, Apr. 24-26, 2017. https://openreview.net/forum?id=BJtNZAFgg

Jeff Donahue, Karen Simonyan, 7Large Scale Adversarial Represen-
tation Learning,” in Advances in Neural Information Processing Sys-
tems 32 (NeurIPS 2019). https://papers.nips.cc/paper/2019/hash/

18cdf49eab4eec029238fcc95f76ced1-Abstract.html

Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, Jose M. Alvarez, " Invert-
ible Conditional GANs for image editing,” in arXiv preprint, 2016, arXiv: 1611.06355.

https://arxiv.org/abs/1611.06355

Lucy Chai, Jonas Wulff, Phillip Isola, ”Using latent space regression to analyze and

29

leverage compositionality in GANSs,” in International Conference on Learning Represen-
tations (ICLR) conference, Vienna, Austria, May 4, 2021. https://openreview.net/

forum?id=sjuuTmévj0

Jiapeng Zhu, Yujun Shen, Deli Zhao, Bolei Zhou, ”In-Domain GAN Inversion for Real
Image Editing,” in European Conference on Computer Vision (ECCV), 2020. https:

//doi.org/10.1007/978-3-030-58520-4_35

Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky, "It Takes (Only) Two: Adversarial
Generator-Encoder Networks,” in Proceedings of the AAAI Conference on Artificial

Intelligence, 2018. https://ojs.aaai.org/index.php/AAAI/article/view/11449

137

https://openreview.net/forum?id=B1ElR4cgg
https://openreview.net/forum?id=BJtNZAFgg
https://papers.nips.cc/paper/2019/hash/18cdf49ea54eec029238fcc95f76ce41-Abstract.html
https://papers.nips.cc/paper/2019/hash/18cdf49ea54eec029238fcc95f76ce41-Abstract.html
https://arxiv.org/abs/1611.06355
https://openreview.net/forum?id=sjuuTm4vj0
https://openreview.net/forum?id=sjuuTm4vj0
https://doi.org/10.1007/978-3-030-58520-4_35
https://doi.org/10.1007/978-3-030-58520-4_35
https://ojs.aaai.org/index.php/AAAI/article/view/11449

[35]

[38]

[39]

[40]

Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro,
Daniel Cohen-Or, "Encoding in Style: A StyleGAN Encoder for Image-to-Image
Translation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021, pp. 2287-2296. https://openaccess.thecvf.com/
content/CVPR2021/html/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_

for_Image-to-Image_Translation_CVPR_2021_paper.html

Rameen Abdal, Yipeng Qin, Peter Wonka, ”Image2StyleGAN: How to Embed
Images Into the StyleGAN Latent Space?,” in Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pp. 4432-4441, 2019. https:
//openaccess.thecvf.com/content_ICCV_2019/html/Abdal_Image2StyleGAN_How_

to_Embed_Images_Into_the_StyleGAN_Latent_Space_ICCV_2019_paper.html

Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, Youngjung Uh, ”Exploiting
Spatial Dimensions of Latent in GAN for Real-Time Image Editing,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 852-861. https://openaccess.thecvf.com/content/CVPR2021/html/Kim_
Exploiting_Spatial_Dimensions_of_Latent_in_GAN_for_Real-Time_Image_CVPR_

2021 _paper.html

Mehdi Mirza, Simon Osindero, ”Conditional Generative Adversarial Nets,” in arXiv

preprint, 2014, arXiv:1411.1784. https://arxiv.org/abs/1411.1784

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter
Abbeel, ”InfoGAN: Interpretable Representation Learning by Information Max-
imizing Generative Adversarial Nets,” in Advances in Neural Information Pro-
cessing Systems 29 (NIPS 2016). https://papers.nips.cc/paper/2016/hash/

7c9d0b1f96aebd7bbeca8c3edaal9ebb-Abstract.html

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet, ” Are

GANs Created Equal? A Large-Scale Study,” in Advances in Neural Information

138

https://openaccess.thecvf.com/content/CVPR2021/html/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Abdal_Image2StyleGAN_How_to_Embed_Images_Into_the_StyleGAN_Latent_Space_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Abdal_Image2StyleGAN_How_to_Embed_Images_Into_the_StyleGAN_Latent_Space_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Abdal_Image2StyleGAN_How_to_Embed_Images_Into_the_StyleGAN_Latent_Space_ICCV_2019_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kim_Exploiting_Spatial_Dimensions_of_Latent_in_GAN_for_Real-Time_Image_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kim_Exploiting_Spatial_Dimensions_of_Latent_in_GAN_for_Real-Time_Image_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kim_Exploiting_Spatial_Dimensions_of_Latent_in_GAN_for_Real-Time_Image_CVPR_2021_paper.html
https://arxiv.org/abs/1411.1784
https://papers.nips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://papers.nips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html

[41]

[42]

[43]

[44]

[45]

[46]

Processing Systems 31 (NeurIPS 2018). https://papers.nips.cc/paper/2018/hash/

ed6de7elbcaaced9a54f1e9d0d2f800d-Abstract.html

Yujun Shen, Jinjin Gu, Xiaoou Tang, Bolei Zhou, "Interpreting the Latent Space of
GANSs for Semantic Face Editing,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020, pp. 9240-9249. https://doi.org/10.1109/

CVPR42600.2020.00926

Ziwei Liu, Ping Luo, Xiaogang Wang, Xiaoou Tang, "Deep Learning Face Attributes
in the Wild,” in International Conference on Computer Vision (ICCV), 2015. https:

//mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim,
Jaegul Choo, 7StarGAN: Unified Generative Adversarial Networks for Multi-
Domain Image-to-Image Translation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 8789-8797.
https://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_

Unified_Generative_CVPR_2018_paper.html

Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan, Xilin Chen, ”AttGAN:
Facial Attribute Editing by Only Changing What You Want,” in IEEE Transactions
on Image Processing, vol. 28, no. 11, pp. 5464-5478, Nov. 2019. https://doi.org/10.

1109/TIP.2019.2916751

Thomas Schlegl, Philipp Seebdck, Sebastian M. Waldstein, Georg Langs, Ursula
Schmidt-Erfurth, ”f-AnoGAN: Fast unsupervised anomaly detection with generative
adversarial networks,” in Medical Image Analysis, vol. 54, pp. 30-44, 2019. https:

//doi.org/10.1016/j.media.2019.01.010

Pouya Samangouei, Maya Kabkab, Rama Chellappa, ”Defense-GAN: Protecting Clas-

sifiers Against Adversarial Attacks Using Generative Models,” in International Confer-

139

https://papers.nips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
https://papers.nips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
https://doi.org/10.1109/CVPR42600.2020.00926
https://doi.org/10.1109/CVPR42600.2020.00926
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
https://doi.org/10.1109/TIP.2019.2916751
https://doi.org/10.1109/TIP.2019.2916751
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1016/j.media.2019.01.010

[47]

[48]

[49]

[51]

ence on Learning Representations (ICLR), 2018. https://openreview.net/forum?id=

BkJ3ibb0-

Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhang, ”Ensem-
bling With Deep Generative Views,” in Proceedings of the IEEE/CVFE Conference
on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 14997-15007.
https://openaccess.thecvf.com/content/CVPR2021/html/Chai_Ensembling_

With_Deep_Generative_Views_CVPR_2021_paper.html

Rameen Abdal, Peihao Zhu, Niloy J. Mitra, Peter Wonka, ”Labels4Free: Un-
supervised Segmentation Using StyleGAN,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 13970-13979.
https://openaccess.thecvf.com/content/ICCV2021/html/Abdal_Labels4Free_

Unsupervised_Segmentation_Using StyleGAN_ICCV_2021_paper.html

Nontawat Tritrong, Pitchaporn Rewatbowornwong, Supasorn Suwajanakorn, ”Re-
purposing GANs for One-Shot Semantic Part Segmentation,” In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 4475-4485. https://openaccess.thecvf.com/content/CVPR2021/html/
Tritrong_Repurposing_GANs_for_0One-Shot_Semantic_Part_Segmentation_CVPR_

2021 _paper.html

Edo Collins, Raja Bala, Bob Price, Sabine Susstrunk, ”Editing in Style: Uncover-
ing the Local Semantics of GANs,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 5771-5780.
https://openaccess.thecvf.com/content_CVPR_2020/html/Collins_Editing_

in_Style_Uncovering_the_Local_Semantics_of_GANs_CVPR_2020_paper.html

Jeongik Cho, Adam Krzyzak, "Dynamic Latent Scale for GAN Inversion,” in Pro-
ceedings of the 11th ICPRAM, 2022, pp.221-228. https://www.scitepress.org/Link.

aspx?doi=10.5220/0010816800003122

140

https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=BkJ3ibb0-
https://openaccess.thecvf.com/content/CVPR2021/html/Chai_Ensembling_With_Deep_Generative_Views_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chai_Ensembling_With_Deep_Generative_Views_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Abdal_Labels4Free_Unsupervised_Segmentation_Using_StyleGAN_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Abdal_Labels4Free_Unsupervised_Segmentation_Using_StyleGAN_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Tritrong_Repurposing_GANs_for_One-Shot_Semantic_Part_Segmentation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Tritrong_Repurposing_GANs_for_One-Shot_Semantic_Part_Segmentation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Tritrong_Repurposing_GANs_for_One-Shot_Semantic_Part_Segmentation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Collins_Editing_in_Style_Uncovering_the_Local_Semantics_of_GANs_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Collins_Editing_in_Style_Uncovering_the_Local_Semantics_of_GANs_CVPR_2020_paper.html
https://www.scitepress.org/Link.aspx?doi=10.5220/0010816800003122
https://www.scitepress.org/Link.aspx?doi=10.5220/0010816800003122

[52]

[54]

[56]

[58]

Jeongik Cho, Adam Krzyzak, ”Self-supervised Out-of-distribution Detection with
Dynamic Latent Scale GAN,” in Structural, Syntactic, and Statistical Pat-
tern Recognition (S+SSPR), 2022. https://link.springer.com/chapter/10.1007/

978-3-031-23028-8_12

Jeongik Cho, Adam Krzyzak, ”Efficient integration of perceptual variational autoen-
coder into dynamic latent scale generative adversarial network.” in Expert Systems

(2024), €13618. https://onlinelibrary.wiley.com/doi/full/10.1111/exsy.13618

[an J. Goodfellow, Jonathon Shlens, Christian Szegedy, ”Explaining and harnessing
adversarial examples,” in arXiv preprint, 2014, arXiv:1412.6572. https://arxiv.org/

abs/1412.6572

Kimin Lee, Kibok Lee, Honglak Lee, Jinwoo Shin, ”A Simple Unified Framework for

7

Detecting Out-of-Distribution Samples and Adversarial Attacks,” in Advances in Neural
Information Processing Systems (NIPS) 31, 2018. https://proceedings.neurips.cc/

paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html

Shiyu Liang, Yixuan Li, R. Srikant, "Enhancing The Reliability of Out-of-distribution
Image Detection in Neural Networks,” in International Conference on Learning Repre-

sentations (ICLR), 2018. https://openreview.net/forum?id=H1VGkIxRZ

Weitang Liu, Xiaoyun Wang, John Owens, Yixuan Li, ”Energy-based Out-of-
distribution Detection,” in Advances in Neural Information Processing Sys-
tems (NIPS) 33, 2020. https://proceedings.neurips.cc/paper/2020/hash/

£5496252609¢c43eb8a3d147ab9b9c006-Abstract.html

Yiyou Sun, Chuan Guo, Yixuan Li, "ReAct: Out-of-distribution Detection
With Rectified Activations,” in Advances in Neural Information Processing
Systems (NIPS) 34, 2021. https://proceedings.neurips.cc/paper/2021/hash/

01894d6£048493d2cacde3c579c315a3-Abstract.html

141

https://link.springer.com/chapter/10.1007/978-3-031-23028-8_12
https://link.springer.com/chapter/10.1007/978-3-031-23028-8_12
https://onlinelibrary.wiley.com/doi/full/10.1111/exsy.13618
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://openreview.net/forum?id=H1VGkIxRZ
https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/01894d6f048493d2cacde3c579c315a3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/01894d6f048493d2cacde3c579c315a3-Abstract.html

[59]

[61]

[62]

[63]

[64]

Jihun Yi, Sungroh Yoon, ”Patch SVDD: Patch-level SVDD for Anomaly Detection and
Segmentation,” in Proceedings of the Asian Conference on Computer Vision (ACCV),
2020. https://openaccess.thecvf.com/content/ACCV2020/html/Yi_Patch_SVDD_
Patch-level _SVDD_for_Anomaly_Detection_and_Segmentation_ACCV_2020_paper.

html

Xudong Yan, Huaidong Zhang, Xuemiao Xu, ”Learning Semantic Context from Nor-
mal Samples for Unsupervised Anomaly Detection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2021. https://ojs.aaai.org/index.php/AAAT/

article/view/16420

Yann LeCun, Corinna Cortes, Christopher J.C. Burges, "THE MNIST DATABASE of

handwritten digits,” ATT Labs, 2010. http://yann.lecun.com/exdb/mnist/

Norman Mu, Justin Gilmer, "MNIST-C: A Robustness Benchmark for Computer Vi-

sion,” in arXiv preprint, 2019, arXiv:1906.02337. https://arxiv.org/abs/1906.02337

Han Xiao, Kashif Rasul, Roland Vollgraf, ”Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms,” in arXiv preprint, 2017,

arXiv:1708.07747. https://arxiv.org/abs/1708.07747

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Ya-
mamoto, David Ha, "Deep Learning for Classical Japanese Literature,” in arXiv

preprint, 2018, arXiv:1812.01718. https://arxiv.org/abs/1812.01718

Tensorflow autoencoder tutorial. https://www.tensorflow.org/tutorials/

generative/autoencoder. Accessed on: Jan. 24, 2023.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila,
"Training Generative Adversarial Networks with Limited Data,” in Advances in Neural
Information Processing Systems (NIPS) 33, 2020. https://proceedings.neurips.cc/

paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html

142

https://openaccess.thecvf.com/content/ACCV2020/html/Yi_Patch_SVDD_Patch-level_SVDD_for_Anomaly_Detection_and_Segmentation_ACCV_2020_paper.html
https://openaccess.thecvf.com/content/ACCV2020/html/Yi_Patch_SVDD_Patch-level_SVDD_for_Anomaly_Detection_and_Segmentation_ACCV_2020_paper.html
https://openaccess.thecvf.com/content/ACCV2020/html/Yi_Patch_SVDD_Patch-level_SVDD_for_Anomaly_Detection_and_Segmentation_ACCV_2020_paper.html
https://ojs.aaai.org/index.php/AAAI/article/view/16420
https://ojs.aaai.org/index.php/AAAI/article/view/16420
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1906.02337
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1812.01718
https://www.tensorflow.org/tutorials/generative/autoencoder
https://www.tensorflow.org/tutorials/generative/autoencoder
https://proceedings.neurips.cc/paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html

[67]

[69]

[70]

[71]

73]

Sergey loffe, Christian Szegedy, ”Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” in Proceedings of the 32nd International
Conference on Machine Learning, PMLR 37:448-456, 2015. https://proceedings.mlr.

press/v37/ioffelb5.html

Anders Boesen Lindbo Larsen, Sgren Kaae Sgnderby, Hugo Larochelle, Ole Winther,
“Autoencoding beyond pixels using a learned similarity metric” in Proceedings of
The 33rd International Conference on Machine Learning (PMLR), 2016. http://

proceedings.mlr.press/v48/larsenl6.html

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, Brendan Frey,
”Adversarial Autoencoders,” in arXiv preprint, 2015. https://arxiv.org/abs/1511.

05644

Jonathan Ho, Ajay Jain, Pieter Abbeel, 7”Denoising Diffusion Probabilis-
tic Models,” in Part of Advances in Neural Information Processing Sys-
tems 33 (NeurIPS 2020). https://proceedings.neurips.cc/paper/2020/hash/

4c5bcfec8584af0d967f1ab10179cadb-Abstract.html

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Bjorn Ommer,
"High-Resolution Image Synthesis With Latent Diffusion Models,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2022, pp. 10684-10695. https://openaccess.thecvf.com/content/CVPR2022/html/
Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_

CVPR_2022_paper.html

Rewon Child, ” Very Deep VAEs Generalize Autoregressive Models and Can Outperform
Them on Images,” in International Conference on Learning Representations (ICLR) 2021

Conference, 2021. https://openreview.net/forum?id=RLRXCV6DbEJ]
Tensorflow datasets. https://www.tensorflow.org/datasets

143

https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v48/larsen16.html
http://proceedings.mlr.press/v48/larsen16.html
https://arxiv.org/abs/1511.05644
https://arxiv.org/abs/1511.05644
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
https://openreview.net/forum?id=RLRXCV6DbEJ
https://www.tensorflow.org/datasets

[74]

[75]

[76]

[77]

[78]

[30]

S. A Nene, S. K Nayar, H. Murase and others, ” Columbia object image library (coil-20),”
in Technical report CUCS-005-96. https://www.cs.columbia.edu/CAVE/software/

softlib/coil-100.php

Alex Olsen, Dmitry A. Konovalov, Bronson Philippa, Peter Ridd, Jake C. Wood,
Jamie Johns, Wesley Banks, Benjamin Girgenti, Owen Kenny, James Whinney, Bren-
dan Calvert, Mostafa Rahimi Azghadi, Ronald D. White, "DeepWeeds: A Multi-
class Weed Species Image Dataset for Deep Learning,” in Scientific Reports, 2019.

https://doi.org/10.1038/s415698-018-38343-3

Adam Coates, Honglak Lee, Andrew Y. Ng, "An Analysis of Single Layer Networks
in Unsupervised Feature Learning,” in AISTATS, 2011. https://ai.stanford.edu/

~acoates/st110/

Ernest Mwebaze, Timnit Gebru, Andrea Frome, Solomon Nsumba, Jeremy Tusubira,

Y

7iCassava 2019 Fine-Grained Visual Categorization Challenge,” in arXiv preprint, 2019,

arXiv:1908.02900. https://arxiv.org/abs/1908.02900

Jakob Nikolas Kather, Frank Gerrit Zollner, Francesco Bianconi, Susanne M Melchers,
Lothar R Schad, Timo Gaiser, Alexander Marx, Cleo-Aron Weis, ”Multi-class texture
analysis in colorectal cancer histology,” in Scientific reports, 2016. https://zenodo.

org/record/53169%# . XGZemKwzbmG

Sivaramakrishnan Rajaraman, Sameer K. Antani, Mahdieh Poostchi, Kamolrat Silamut,
Md. A. Hossain, Richard J. Maude, Stefan Jaeger, George R. Thoma, ”Pre-trained
convolutional neural networks as feature extractors toward improved malaria parasite

detection in thin blood smear images,” in PeerJ, 2018.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, Fei-Fei Li, ” Novel Dataset

for Fine-Grained Image Categorization,” in First Workshop on Fine-Grained Visual

144

https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
https://doi.org/10.1038/s41598-018-38343-3
https://ai.stanford.edu/~acoates/stl10/
https://ai.stanford.edu/~acoates/stl10/
https://arxiv.org/abs/1908.02900
https://zenodo.org/record/53169#.XGZemKwzbmG
https://zenodo.org/record/53169#.XGZemKwzbmG

[81]

[33]

[84]

[85]

Categorization, IEEE Conference on Computer Vision and Pattern Recognition, 2011.

http://vision.stanford.edu/aditya86/ImageNetDogs/main.html

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, Li Fei-Fei, "ImageNet: A
Large-Scale Hierarchical Image Database,” in [EEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2009. http://vision.stanford.edu/aditya86/

ImageNetDogs/main.html

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, Silvio Savarese, ”"Deep Metric Learning via
Lifted Structured Feature Embedding,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. https://cvgl.stanford.edu/projects/lifted_

struct/

Patrick Esser, Robin Rombach, Bjorn Ommer, ”Taming Transformers for High-
Resolution Image Synthesis,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp. 12873-12883. https:
//openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_

for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html?ref=

Aaron van den Oord, Oriol Vinyals, koray kavukcuoglu, ”Neural Discrete Repre-
sentation Learning,” in Part of Advances in Neural Information Processing Sys-
tems 30 (NIPS 2017), 2017. https://proceedings.neurips.cc/paper/2017/hash/

7a98af17e63a0ac09ce2e96d03992fbc—-Abstract.html

Alina Braun, Michael Kohler, Jeongik Cho, Adam Krzyzak, ”Anal-
ysis of the rate of convergence of two regression estimates defined
by mneural features which are easy to implement,” in FElectronic Jour-
nal of Statistics 18.1 (2024): 553-598. https://projecteuclid.org/
journals/electronic-journal-of-statistics/volume-18/issue-1/
Analysis-of-the-rate-of-convergence-of-two-regression-estimates/10.

1214/23-EJS2207 . full

145

http://vision.stanford.edu/aditya86/ImageNetDogs/main.html
http://vision.stanford.edu/aditya86/ImageNetDogs/main.html
http://vision.stanford.edu/aditya86/ImageNetDogs/main.html
https://cvgl.stanford.edu/projects/lifted_struct/
https://cvgl.stanford.edu/projects/lifted_struct/
https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html?ref=
https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html?ref=
https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html?ref=
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-18/issue-1/Analysis-of-the-rate-of-convergence-of-two-regression-estimates/10.1214/23-EJS2207.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-18/issue-1/Analysis-of-the-rate-of-convergence-of-two-regression-estimates/10.1214/23-EJS2207.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-18/issue-1/Analysis-of-the-rate-of-convergence-of-two-regression-estimates/10.1214/23-EJS2207.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-18/issue-1/Analysis-of-the-rate-of-convergence-of-two-regression-estimates/10.1214/23-EJS2207.full

[36]

[89]

[90]

Jeongik Cho, " Training Self-supervised Class-conditional GANs with Classifier Gradient
Penalty and Dynamic Prior,” in viXra preprint, 2024, viXra:2307.0121. https://vixra.

org/abs/2307.0121

Jeongik Cho, "Training Classifier Gradient Penalty GAN with Codebook Architecture,”

in viXra preprint, 2024, viXra:2409.0063. https://vixra.org/abs/2409.0063

Jeongik Cho, "Dynamic Latent Scale GAN for GAN Inversion,” in viXra preprint, 2022,

viXra:2109.0028. https://vixra.org/abs/2109.0028

Thomas M. Cover, Joy A. Thomas, ”Elements of Information Theory,” 2nd ed., John
Wiley & Sons, 2006. ISBN: 9780471241959. DOI: 10.1002/047174882X.

Ashish Bora, Ajil Jalal, Eric Price, Alexandros G. Dimakis, ” Compressed Sensing using
Generative Models,” in Proceedings of the 34th International Conference on Machine
Learning (PMLR) 70:537-546, 2017. https://proceedings.mlr.press/v70/boral7a.

html

Augustus Odena, Jacob Buckman, Catherine Olsson, Tom Brown, Christopher Olah,
Colin Raffel, Ian Goodfellow, ”Is Generator Conditioning Causally Related to GAN Per-
formance?,” in Proceedings of the 35th International Conference on Machine Learning

(PMLR) 80:3849-3858, 2018. https://proceedings.mlr.press/v80/odenal8a.html

Diederik P. Kingma, Jimmy Ba, “Adam: A method for stochastic optimization,” in

arXiv preprint, 2014. https://arxiv.org/abs/1412.6980

Ilya Loshchilov, Frank Hutter, “Decoupled Weight Decay Regularization,” in Interna-
tional Conference on Learning Representations (ICLR) 2019 Conference, 2019. https:

//openreview.net/forum?id=Bkg6RiCqY7

146

https://vixra.org/abs/2307.0121
https://vixra.org/abs/2307.0121
https://vixra.org/abs/2409.0063
https://vixra.org/abs/2109.0028
https://doi.org/10.1002/047174882X
https://proceedings.mlr.press/v70/bora17a.html
https://proceedings.mlr.press/v70/bora17a.html
https://proceedings.mlr.press/v80/odena18a.html
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

	Introduction
	Motivation
	Summary
	Publications and Contributions of the Co-authors
	Background
	Deep Generative Model
	Class-conditional GAN
	Generative Model Inversion
	Out-of-distribution Detection
	Deep Generative Model with Codebook

	Previous Works and Analysis
	Class-Conditional GAN
	Auxiliary Classifier GAN
	Unsupervised Class-Conditional GAN

	GAN Inversion
	Out-Of-Distribution Detection
	Training Generative Model with Discrete Latent Random Variable

	Deep Generative Models and Their Inversions
	Conditional Activation GAN: Improved Auxiliary Classifier GAN
	Mixed Batch Training

	Dynamic Latent Scale GAN for GAN Inversion
	Continuous Attribute Edit with Fixed Linear Classifier

	Self-supervised Out-of-distribution Detection with Dynamic Latent Scale GAN
	Efficient Integration of Perceptual VAE into Dynamic Latent Scale GAN
	Training Self-supervised Class-conditional GAN with Classifier Gradient Penalty and Dynamic Prior
	Training Classifier Gradient Penalty GAN with Codebook Architecture

	Experiments
	Conditional Activation GAN and Mixed Batch Training
	Conditional Activation GAN
	Mixed Batch Training
	Summary

	Dynamic Latent Scale GAN
	Experiments Settings
	Dynamic Latent Scale GAN Experiment Results
	Attribute Editing with Dynamic Latent Scale GAN
	Summary

	Out-of-distribution detection with Dynamic Latent Scale GAN
	MNIST Experiment Settings
	Experiment Results
	CelebA Experiments
	CelebA Results
	Summary

	Dynamic Latent Scale GAN with Perceptual VAE loss
	Experiment Settings
	Experimental Results
	Summary

	Classifier Gradient Penalty GAN Experiments
	Gaussian Clusters Experiments
	MNIST Experiments
	AFHQ Experiments
	Classifier Gradient Penalty GAN with Codebook Experiments
	Summary

	Conclusions and Future Works
	References

