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Montréal, Québec, Canada

May 2025

© Anthony Forgetta, 2025



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Anthony Forgetta

Entitled: Finding Balance: Energy, Wealth, and Health

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy (Mathematics and Statistics)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final Examining Committee:

Chair
Dr. E. Belilovsky

External Examiner
Dr. T. Ware

Examiner
Dr. Y. Chaubey

Examiner
Dr. A. Sen

Examiner
Dr. W. Sun

Supervisor
Dr. F. Godin

Approved by Dr. Cody Hyndman, Graduate Program Director

July 29, 2025
Dr. Pascale Sicotte, Dean of Faculty



Abstract
Finding Balance: Energy, Wealth, and Health

Anthony Forgetta, Ph.D.
Concordia University, 2025

This dissertation is composed of three manuscripts (manuscript 1 has been published in Energy
Economics, manuscript 2 is currently under review with the Journal of Energy Markets, and
manuscript 3 is currently under review with the Obesity Research and Clinical Practice journal) that
address problems in energy economics, finance, and epidemiology through statistical modeling.

The first manuscript proposes a covariate-dependent mixture model to describe the behavior
of electricity DART spreads (defined as the difference between the day-ahead and real-time prices
of electricity). The model incorporates multiple regimes and allows covariates to impact both
the frequency and severity of DART spread spikes. Using data from the Long Island zone of
the New York Independent System Operator, the model demonstrates a strong fit. Results reveal
that including covariates in the severity component of the model is crucial, while mild additional
performance is obtained with their inclusion in the frequency component. Neural network-based
quantile regression benchmarks are unable to improve performance over our mixture model.

The second manuscript examines the diversification benefits of energy commodities during
turbulent periods such as those marked by the COVID-19 pandemic and the Russia-Ukraine
war, both of which deeply affected energy markets. Revisiting classical allocation strategies, we
incorporate electricity futures—a rarely used asset—alongside crude oil and natural gas futures.
Using mean-variance optimization, the diversification benefits are evaluated by combining these
energy contracts with the S&P 500. Our empirical approach handles the non-stationarity of returns,
volatilities, and correlations. Out-of-sample results show improved performance and diversification,
especially during crisis periods.

The third manuscript extends existing dual-energy X-ray absorptiometry-based body composition
classifications by introducing additional centile cut-offs to capture tail behavior. Using NHANES
(National Health and Nutrition Examination Survey) data, we study the association between these
phenotypes and health risks, including metabolic syndrome (MetS), depression, sleep disorders,
and comorbidities. Nine phenotypes were identified using quantile regression (QR), and logistic
regression was used to assess their relationship with health risks, compared to standard adiposity
measures like body mass index (BMI), waist circumference (WC), and total fat percent. The QR
model has a better (higher) LR+ (positive likelihood ratio) than the median-split model for MetS
and comorbidity but consistently underperforms in LR- (negative likelihood ratio) compared to the
median-split model. Both models perform worse than BMI and WC. Whether results differ over
time or among certain subpopulations should be investigated.
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Kakinami, who helped me mature personally, academically, and professionally. Your teachings and
lessons will stay with me forever.

My thanks go to Concordia University for the knowledge and education that I gained during my
time there.

I would like to thank Plant-E Corp and its team, in particular Pierre Plante, Vincent Marchal,
Shahab Einabadi, and Elizabeth Fernandez de Ordonez, for providing access to their data, for their
invaluable insight into the functioning of power markets, and for their support. In addition, I am
grateful to MITACS for providing me with financial support and the opportunity to gain industry
experience.

To my friends, thank you for all the happy memories, laughs, and smiles.

To my family, words cannot describe how I feel, they cannot do you justice. I will simply say this,
thank you.

iv



Contribution of Authors
This thesis is based on three research articles:

I: Forgetta, A., Godin, F., and Augustyniak, M. Distributional forecasting of electricity DART
spreads with a covariate-dependent mixture model.

This joint work was accepted for publication in Energy Economics. Forgetta is responsible for a
substantial portion of the analysis, as well as the primary portion of the writing with editing by
Godin and Augustyniak.

II: Forgetta, A., Gauthier, G., and Godin, F. Do energy futures add value to stock portfolios?

This joint work has been submitted to the Journal of Energy Markets. Forgetta is responsible for
a substantial portion of the analysis, as well as the primary portion of the writing with editing by
Gauthier and Godin.

III: Forgetta, A. and Kakinami, L. On the use of quantile-regression-based DEXA phenotypes to
assess health risks.

This joint work has been submitted to the Obesity Research and Clinical Practice journal. Forgetta
is responsible for a substantial portion of the analysis, as well as the primary portion of the writing
with editing by Kakinami.

v



Contents
List of Figures viii

List of Tables ix

1 Introduction 1

2 Distributional forecasting of electricity DART spreads with a covariate-dependent
mixture model 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Description of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Explanatory variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Estimated parameters and goodness-of-fit . . . . . . . . . . . . . . . . . . 12
2.4.2 Variable importance assessment . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Out-of-sample performance . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Comparison to the deep quantile regression approach . . . . . . . . . . . . . . . . 20
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Do energy futures add value to stock portfolios? 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Description of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Asset allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Portfolio optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Return moments estimation . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Out-of-sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 On the use of quantile-regression-based DEXA phenotypes to assess health risks 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Description of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Exposures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Health outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Metabolic syndrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.3 Short sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.4 General health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.5 Physical functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.6 Comorbidities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



4.5.1 Demographic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6.1 Median-split phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6.2 Quantile regression phenotypes . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Diagnostic accuracy metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9.2 Model fit and performance . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusion 58

References 60

A Continuous Ranked Probability Score (CRPS) 67

B Hidden Markov Model (HMM) 67

C LMS methodology 70

vii



List of Figures
1 DA, RT, and DART hourly time series for the NYISO Long Island zone between

April 26, 2019 and August 31, 2022. . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Daily, yearly, and weekly seasonal DART patterns. . . . . . . . . . . . . . . . . . 7
3 Scatterplot of the explanatory variables. . . . . . . . . . . . . . . . . . . . . . . . 10
4 Rosenblatt transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Time series of the mixture model parameter estimates and corresponding mixture

distribution risk metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Time series plot of the natural gas price NG. . . . . . . . . . . . . . . . . . . . . . 18
7 Relationships between regime frequencies. . . . . . . . . . . . . . . . . . . . . . . 19
8 Time series of daily asset prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9 Time series of weekly excess returns. . . . . . . . . . . . . . . . . . . . . . . . . . 30
10 One-week-ahead predictions of asset expected returns. . . . . . . . . . . . . . . . 33
11 One-week-ahead predictions of volatilities. . . . . . . . . . . . . . . . . . . . . . 34
12 One-week-ahead Sharpe predictions. . . . . . . . . . . . . . . . . . . . . . . . . . 35
13 One-week-ahead correlation predictions. . . . . . . . . . . . . . . . . . . . . . . . 36
14 Portfolio weights for various window sizes and bounds. . . . . . . . . . . . . . . . 37
15 Annualized Sharpe ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
16 Annualized Sortino ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
18 CVaR(1%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
17 VaR(1%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
19 Maximum drawdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
20 Portfolio wealth curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
21 Flowchart of exclusions for the analytic study sample, NHANES (2011-2018) . . . 46
22 QR and median-split phenotype clusters. . . . . . . . . . . . . . . . . . . . . . . . 56
23 HMM latent states of weekly excess returns. . . . . . . . . . . . . . . . . . . . . . 69

viii



List of Tables
1 Descriptive statistics for the DART spread and explanatory variables. . . . . . . . . 8
2 Mean and median of hourly DART spreads, by year. . . . . . . . . . . . . . . . . . 8
3 Sample Pearson correlations between explanatory variables. . . . . . . . . . . . . 10
4 Full sample nested model comparison. . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Model parameter estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Effects of covariate shocks upon the DART distribution. . . . . . . . . . . . . . . . 16
7 Covariate group contributions to the log-likelihood based on the SAGE algorithm. . 17
8 Out-of-sample nested model comparison, using LASSO-type penalty. . . . . . . . 20
9 Actual over Expected VaR exceedance ratios, full-freq-full-sev vs deep learning. . . 22
10 Descriptive statistics of weekly excess returns. . . . . . . . . . . . . . . . . . . . . 27
11 Annualized sample Sharpe ratios by period. . . . . . . . . . . . . . . . . . . . . . 27
12 Pearson correlations of weekly excess returns, by period. . . . . . . . . . . . . . . 30
13 Weighted descriptive statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
14 QR phenotypes, based on FMI and ASMI. . . . . . . . . . . . . . . . . . . . . . . 55
15 Profile analysis of the AvgAQR-AvgMQR phenotype. . . . . . . . . . . . . . . . . 55
16 Model comparison for health outcomes. . . . . . . . . . . . . . . . . . . . . . . . 57

ix



1 Introduction
Across many disciplines, from energy and financial markets to public health, statistical modeling
plays an important role in making decisions under uncertainty. Many real-world systems exhibit
non-linear behaviors, non-Gaussian distributions, and regime shifts that complicate traditional
methods. Whether the goal is to forecast price spikes, diversify portfolios with alternative
investments, or classify people at risk of developing specific health issues, statistical modeling is
essential to understanding these inherent complexities.

A common challenge in these applications is the ability to take into account structural changes
and tail risks. As a use case, since electricity cannot be efficiently stored on a large scale, its supply
and demand must always be in equilibrium. High-cost generators are often employed to meet
unforeseen demand in real time, often leading to price spikes. Employing a covariate-dependent
mixture model to capture both regular regimes and extreme spikes can therefore provide a framework
for capturing these intricacies, as covariates can be directly incorporated into the model parameters.

In the case of portfolio management, the diversification potential of energy futures is similarly
regime dependent; it is therefore influenced by crises such as the COVID-19 pandemic and the
Russia-Ukraine war, and by events such as the financialization of commodity markets. In these
cases, asset return models must, therefore, have the capacity to dynamically adapt to evolving
market conditions and turbulent periods. A model that empirically forecasts expected asset returns
and volatilities can, therefore, account for the structural breaks that occur during crises.

In epidemiology, obesity is an important area of continued investigation; the ability to model the
entire distributions of muscle mass and fat mass can help reveal critical patterns hidden in the data.
Quantile regression can help capture the full spectrum of data distributions, including tail behaviors,
which have frequently been omitted by traditional models used in the literature on obesity.

From hedge funds to institutional investors to individuals, this collection of studies demonstrates
that tail risks and extreme events must be understood to avoid significant financial costs. For power
merchants, being able to adequately model underlying electricity price spikes can help prevent
significant losses. For institutional investors seeking to diversify their portfolios, it is critical
to understand the underlying asset price dynamics under different market regimes, such as the
COVID-19 pandemic and the Russia-Ukraine war, for sound portfolio management. Even at an
individual level, the ability to identify high-risk patients in the tails of the distribution, as with
obesity, can potentially result in significant savings for the economy as a whole.

The remainder of this thesis is organized as follows. In the next section, chapter 2, we develop
a covariate-dependent mixture model to forecast the distribution of hourly DART spreads. In our
mixture model, the conditional distribution of the DART spread in the regular market regime is
modeled using a Gaussian distribution, whereas spike regimes are modeled using Generalized Pareto
distributions. Covariates such as forecasts of load, weather, and natural gas price, as well as cyclical
indicators, are incorporated into the model parameters. Specifically, the parameters of all regime
distributions, as well as the mixing probabilities, are expressed as functions of these covariates and
are hence time-varying.

In chapter 3, we reexamine whether incorporating energy futures can add value to an equity
portfolio by analyzing an updated data set that includes two new crises, namely the COVID-19
pandemic and the Russia-Ukraine war, which have significantly impacted the energy sector. Our

1



model empirically forecasts asset expected returns and volatilities and can adequately handle the
non-stationary nature of the time series data. Asset allocation is performed using a mean-variance
optimization approach, with the Sharpe ratio used as the objective function. We benchmark our
performance against a static investment in the S&P 500.

In chapter 4, we develop a DEXA-derived (dual energy X-ray absorptiometry) phenotype
classification system that captures kurtosis and considers additional centile cut-offs beyond the
median. We then compare the performance of our models to standard adiposity measures, such as
BMI (body mass index) and waist circumference. This study focuses on metabolic syndrome as
the primary health outcome, but additionally assesses other health risks, such as depression, sleep
disorders, general health, instrumental activities of daily living, and comorbidities.

At the end of this thesis, we provide an appendix that supplements the main chapters. It contains
additional details that are mentioned within the text. The reader is directed to the appendix via
references included throughout the main body of the text.
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2 Distributional forecasting of electricity DART spreads with a
covariate-dependent mixture model

2.1 Introduction
Electricity is a unique commodity as it cannot be efficiently stored at a large scale; that is, its supply
and demand must always be in equilibrium. Transmission maintenance, unexpected interruptions,
and unforeseen demand can give rise to transmission congestion, thus creating bottlenecks within
the power grid. To meet the unforeseen demand in real-time, high marginal cost generators are often
employed due to the slow ramp-up time of large, inexpensive power plants. Taken together, these
characteristics give rise to price spikes (i.e., extreme values). An Independent System Operator
(ISO) is thus needed to oversee the proper functioning of a power grid. For example, the New
York ISO (NYISO) is the ISO responsible for the power grid covering the state of New York. The
purchase and sale of electricity generally occurs in the day-ahead (DA) and real-time (RT) energy
markets, at the corresponding DA and RT energy prices.

The DART spread, defined as the difference between the DA and RT prices, is a quantity of
interest to several market participants. Wholesalers, for instance, perceive it as the opportunity cost
of transacting in the DA market relative to the RT market. Since RT prices are more volatile than DA
prices, wholesale power purchasers are willing to pay a premium to buy electricity in the DA market
to avoid excessive price volatility. Indeed, Longstaff and Wang (2004) found that forward premia
are embedded in DA electricity prices, reflecting the economic risks faced by market participants in
the RT market, such as the possibility of extreme price spikes. Another group exposed to DART
spreads includes virtual bidders, who must offset their DA transactions using the RT market. Since
their profit is determined by the differential between DA and RT prices, modeling the DART spread
is paramount to their success.

While the dynamics of DA or RT prices of electricity have been widely researched (see Weron,
2014, and the references therein), few studies have focused on modeling the DART spread. For
instance, Das et al. (2022) use univariate time series models to generate point forecasts of the
DART spread for the next hour, at a given node of the PJM (the Pennsylvania-New Jersey-Maryland
Interconnection) market grid. Galarneau-Vincent et al. (2023) model the probability of a spike in the
DART spread for every hour of the day for the Long Island zone in the NYISO; several covariates
are used, including load, weather, and cyclical data (such as daily and yearly cycles in the DART
spread).

To contribute to this literature, our study develops a covariate-dependent mixture model to
forecast the distribution of hourly DART spreads. In our mixture model, the conditional distribution
of the DART spread in the regular market regime is modeled using a Gaussian distribution, whereas
spike regimes are modeled using Generalized Pareto distributions.1 Covariates such as forecasts
of load, weather, and natural gas price, as well as cyclical indicators, are incorporated into the
model parameters. Specifically, the parameters of all regime distributions, as well as the mixing
probabilities, are expressed as functions of these covariates and are hence time-varying. Our
approach therefore extends the work by Davison et al. (2002), who model hourly electricity spot
prices using a mixture of Gaussian distributions. As described in the survey paper by Weron (2014),

1The idea of using Generalized Pareto distributions to depict large electricity price movements has previously been
explored in Klüppelberg et al. (2010).
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most studies in the literature consider only a small set of covariates. Our study, however, employs a
comprehensive set of covariates to extract as much information as possible and to determine their
relative importance in explaining the DART spread. Moreover, we adopt the perspective of a market
participant placing bids on both the DA and RT markets; as such, load forecasts, weather forecasts,
and natural gas futures prices are used as they become available—our results therefore accurately
reflect how this model would perform if used in real-time.

There exists a broad literature on the use of factor-based stochastic processes to generate
electricity prices, see for instance Benth et al. (2007). This general approach, surveyed in Deschatre
et al. (2021), can be used to generate distributional forecasts. Such stochastic factors framework
has been developed with the objective of pricing derivatives, for instance. In the context of DART
spread forecasting, our modeling framework has an important advantage over the stochastic factors
approach: it circumvents the need to model the dynamics of a large number of covariates exhibiting
heterogeneous behavior. Indeed, instead of constructing a joint distributional forecast for the set of
all covariates and mapping such distribution into a future DART spread distribution, our approach
directly constructs the distributional relationship between future DART spreads and current covariate
values.

Other studies have computed distributional forecasts of either DA or RT prices using neural
networks. Brusaferri et al. (2020) propose a mixture density network to generate distributional
forecasts for electricity prices in the Italian DA energy market. Afrasiabi et al. (2022) implement a
mixture density network to forecast the statistical properties of electricity prices in CAISO. Marcjasz
et al. (2023) use distributional neural networks to generate probability forecasts for hourly DA
electricity prices in the German market. These studies focus primarily on model performance,
assessed through their ability to generate forecasts—as measured, for example, by the mean absolute
error (MAE), root mean square error (RMSE), continuous ranked probability score, or Kupiec’s
test. Our study, however, analyzes the statistical fit of the proposed model, and assesses the
importance of including a wide variety of covariates to explain the DART spread distribution.
To determine whether the inclusion of covariates is needed in both the frequency and severity
components of the mixture model, we run a nested model comparison. We also apply a Shapley
decomposition to the log-likelihood to help identify the relative importance of each covariate
in the model. To assess the predictive ability of our model upon unseen data, we conduct an
out-of-sample experiment, wherein we examine whether regularization techniques can improve the
out-of-sample performance of the model. Finally, an advantage to using our approach—in relation
to neural networks—is increased model interpretability. This provides a significant advantage
to market participants, for many of whom inference is just as relevant as the ability to generate
accurate forecasts. Nevertheless, this study includes a comparison of the performance of our mixture
model to that of neural-network-based quantile regression benchmarks to assess whether the better
interpretability of our model leads to a sacrifice in accuracy.

Our findings suggest that the proposed covariate-dependent mixture model provides an adequate
fit to the data. In-sample nested model comparisons highlight the importance of including the entire
set of covariates, in both the frequency and severity components of the mixture model, although
their inclusion in the severity component is more critical. In addition, the SAGE variable importance
assessment algorithm indicates that on a relative basis, the natural gas futures price has the most
significant effect upon model performance. This makes sense since fuel has a large influence
on the marginal cost of producing power. The other groups of covariates have smaller, though
non-negligible effects, each of which is similar in magnitude. Additionally, the regularization
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methods are shown to improve the out-of-sample performance of our model. Finally, a comparison
of our model to neural-network-based benchmarks inspired from the machine learning literature
results in superior out-of-sample performance of our model on our test set in terms of DART spread
quantile predictions.

The remainder of the chapter is organized as follows. Section 2.2 describes the dataset used
for model construction and evaluation, which consists of the DART target variable and explanatory
variables. Section 2.3 specifies the covariate-dependent mixture model. Section 2.4 presents
the model estimation, its performance, and several robustness checks. Section 2.5 compares the
performance of our model with that of a machine learning method performing quantile regression.
Section 2.6 concludes.

2.2 Description of the data
This study aims to develop an effective methodology for generating distributional forecasts of hourly
electricity DART spreads. Our approach is implemented using DART spread data for the NYISO
Long Island zone. Long Island is a peninsula and is thus susceptible to extreme price volatility,
making it an ideal candidate for testing risk management models. The DART spread at hour t is
computed as

DARTt = DAt −RTt ,

where DAt and RTt are respectively the DA and RT prices for hour t on a per MWh basis in US$.
The NYISO’s procedure for reporting prices is described in Section 2.2.1.

The dataset consists of 29172 hourly price observations spanning from April 26, 2019 12:00 to
August 31, 2022 23:00.2 Hours are expressed in the eastern time zone (i.e., EST) and we define the
time index t such that the first hour in the dataset corresponds to t = 0.

Time series of the hourly DA and RT prices are displayed in Panel (a) of Figure 1, whereas
Panel (b) provides the hourly DART time series. As expected, RT prices are more volatile than DA
prices, with the presence of spikes being readily apparent. A significant portion of the dataset covers
COVID-19 pandemic years (2020 and 2021) and the Russia-Ukraine war (starting February 2022).
These events hold significant implications for power prices, arising from shifts in consumption
patterns amidst the pandemic, further exacerbated by energy supply shortages during the conflict.

To assess the presence of cyclical patterns in the variability of the DART spread, we group the
observed DART spreads into buckets based on either the hour of the day, month of the year, or
day of the week. Figure 2 displays the mean, median, and 5% or 95% quantiles from the sample
distribution, for each bucket. The observed time-of-day pattern in Panel (a) is caused by an increase
in consumption during the on-peak hours occurring during the late afternoon. During these hours,
the mean falls below the median, and the mean is consistently negative. This implies that the DA
premium is not sufficiently compensating for the spikes that occur in RT in our sample. Furthermore,
the quantiles increase in magnitude during these hours, thus indicating increased variability in the
DART spread, which can be accounted for by the stress placed upon the grid due to the increased
demand. The seasonality related to winter and summer seasons in Panel (b) is a consequence of
increased electricity demand during these time periods stemming from more intensive heating

2Hours associated with daylight savings are discarded from the dataset.
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(b) Hourly DART spread.

Figure 1: DA, RT, and DART hourly time series for the NYISO Long Island zone between April 26,
2019 and August 31, 2022.

and cooling requirements, respectively. The quantiles increase in magnitude during winter and
summer months, once again due to the higher stress placed upon the grid as a result of the increased
demand for power. Panel (c) does not indicate the presence of a strong seasonal effect related to
the day of the week, both in level and in relation to the variability of the DART. These empirical
observations lead us to include hourly and monthly seasonal covariates in our model, as they display
clear seasonal patterns in the variability of the DART.

Descriptive statistics of the hourly DART spreads are provided in the first row of Table 1. Notice
that the median and mean DART spread have opposite signs. This behaviour is systematically
observed for each year in the sample, as indicated in Table 2. The positive median DART spread
indicates that market participants are usually willing to pay a premium to lock-in a price for
electricity on the next day. Indeed, the proportion of positive DART spreads in the data is 61%.
However, as the mean DART spread is negative, the DART premium was insufficient on average to
compensate for the large negative DART spikes observed in the sample.

2.2.1 Explanatory variables

This section describes the variables that are used as covariates in our mixture model to generate
distributional forecasts of hourly DART spreads. We consider herein the perspective of a market
participant placing bids on both the DA and RT markets. The timeline to collect relevant information,
place a set of bids, and have its outcomes revealed ranges over three days; these are referred to as
the information collection day, the trading day, and the target day:

• Information collection day (Day 1): At 07:30 the NYISO publishes the load forecast for every
hour of the target day. In addition, the two-day-ahead natural gas futures price is reported by
the ICE.

• Trading day (Day 2): At 04:00 the weather forecasts are published by the Darksky data
provider for every hour of the target day. These forecasts are based upon measurements made
by the Huntington weather station in New York. Furthermore, the market participants must
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Figure 2: Daily, yearly, and weekly seasonal DART patterns.

Notes: Sample mean (red filled circles), median (blue squares), and 5% and 95% quantiles (black stars) of the DART
spread, with Panel (a): hourly buckets, Panel (b): monthly buckets, Panel (c): daily buckets.
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Table 1: Descriptive statistics for the DART spread and explanatory variables.

Name Abbr. Unit Min Q1 Median Mean Q3 Max Std

DART spread DART US$/MWh -1971.57 -4.57 2.61 -0.91 10.13 1155.56 46.03

Load forecast LOAD MWh 1281 1863 2154 2336 2586 5271 686.12

Heating Degree Day forecast HDD °F 0.00 0.00 4.00 6.67 12.55 30.72 7.34

Cooling Degree Day forecast CDD °F 0.00 0.00 0.00 2.10 3.78 17.78 3.36

Wind Speed forecast WS m/s 0.90 6.40 8.90 9.62 12.10 33.40 4.24

UV Index forecast UV 0.00 0.00 0.00 1.18 2.00 10.00 1.96

Natural Gas Futures Price NG US$ 2.12 3.98 5.04 7.00 9.21 26.32 4.35

Daily Fourier Basis (Sin) SinD

Daily Fourier Basis (Cos) CosD

Yearly Fourier Basis (Sin) SinY

Yearly Fourier Basis (Cos) CosY

Notes: The dataset ranges from April 26, 2019 12:00 to August 31, 2022 23:00.

Table 2: Mean and median of hourly DART spreads, by year.

Year Mean Median
2019 -2.29 1.48
2020 -0.06 2.57
2021 -0.86 2.27
2022 -0.86 6.53

place their bids for the DA NYISO auction by 05:00. At 11:00, the NYISO then publishes the
DA prices for every hour of the target day based upon the latter auction results.

• Target day (Day 3): The RT prices are progressively revealed on an hourly basis throughout
the day (from 00:00 to 23:00), allowing for the computation of the hourly DART spreads on
the target day.

Therefore, every time a prediction is made for an hour of the target day d, explanatory variables
related to the hourly weather forecasts are obtained on the trading day d −1, whereas the hourly
load forecast and the natural gas price data are taken from the information collection day d−2. The
same natural gas futures price is used as an explanatory variable for every hour t of the target day.
The explanatory variables considered, along with their units of measurement and corresponding
descriptive statistics, are presented in Table 1. These variables account for information pertaining to
load forecasts, weather forecasts, natural gas futures prices, and cyclical indicators. In the literature,
other studies have also used these covariates to forecast electricity prices, as described in Weron
(2014). In most studies, only a subset of these covariates are considered. Our study, however, uses
all these classes of covariates to extract as much information as possible. Such variables are now
described in detail.
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Load forecasts are included because high expected consumption can put upward pressure on
electricity prices. Several variables are extracted from one-day-ahead weather-related forecasts.
Such forecasts include temperature, wind speed, and UV index. Among these, temperature is not
used directly, but is instead transformed into alternative covariates, namely, Heating Degree Day
(HDD) and Cooling Degree Day (CDD), as follows:

HDDt = max(BP−Tt ,0), CDDt = max(Tt −BP,0), (1)

where Tt is the temperature forecast for hour t and BP = 65 °F (18.3 °C) is the threshold
recommended by the NYISO (Fox et al., 2019). Such transformations of the temperature forecasts
are commonly used, including by the NYISO to generate load forecasts, see NYISO (2021) and
Fox et al. (2019), and can more accurately capture the non-linearity present between temperature
and electricity consumption. More precisely, a relatively larger amount of electricity is consumed
when temperatures are either very high or very low due to a larger demand for cooling and heating,
respectively. Alternatively, quadratic terms of the CDD and HDD might also be considered, but for
the sake of parsimony, we only include linear terms.

The wind speed and UV index forecasts are used directly as explanatory variables. The wind
speed has an effect on the amount of available wind generation, and thus upon the available supply
of electricity. The UV index forecast is a proxy for the amount of available sunshine, which
impacts the solar generation of electricity by suppliers. Moreover, available sunshine also affects
the demand for electricity in the Long Island zone due to the presence of solar panels on residential
and commercial buildings (referred to as behind-the-meter generation). The UV index takes on
integer values between 0 and 10.

The main use for natural gas is in electricity generation, where it often serves as the marginal
unit of production in the supply stack. Peaker plants, that is power generators used to quickly
balance supply and demand in real time, are primarily fueled using natural gas. These features thus
make it a significant driver of electricity prices. The natural gas futures price is therefore used as an
explanatory variable.3

To account for the daily and yearly seasonalities in the distribution of the DART spread, as
evidenced in Figure 2, the following variables are included in the model.4 The daily cycle at hour t
is represented by:

CosDt = cos
(︃

2πt
24

)︃
, SinDt = sin

(︃
2πt
24

)︃
, (2)

and the yearly cycle at hour t by:

CosYt = cos
(︃

2πt
365×24

)︃
, SinYt = sin

(︃
2πt

365×24

)︃
. (3)

Table 3 displays Pearson correlations between the explanatory variables used in the mixture
model. The CDD-LOAD pair exhibits a strong positive correlation, since as the demand for cooling

3The natural gas delivery hub is Transco Zone 6 (NY), with an underlying of 2500 million British thermal units (i.e.,
2500 MMBtus).

4In unreported experiments, we also tested the use of dummy variables instead of sine and cosine functions to
represent seasonality, e.g. a dummy variable for each month or each hour of the day. Models using dummies were
generally not able to significantly improve performance, while substantially increasing computational cost.
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Table 3: Sample Pearson correlations between explanatory variables.

LOAD WS UV HDD CDD NG
LOAD 1
WS -0.12 1
UV 0.38 -0.06 1
HDD -0.38 0.23 -0.32 1
CDD 0.88 -0.19 0.49 -0.57 1
NG 0.07 0.00 -0.01 0.11 0.03 1

Notes: The dataset ranges from April 26, 2019 12:00 to August 31, 2022 23:00.

increases, the corresponding load also increases. A few other pairs of variables possess statistically
significant linear relationships, such as LOAD-UV, LOAD-HDD, UV-CDD, and HDD-CDD;
however, their correlations are not strong enough for the variables to be redundant, and as such none
of these are excluded from the model. In addition, Figure 3 provides a scatterplot illustrating the
relationships between the explanatory variables in the sample. It is clear that highly non-linear and
non-trivial relationships exist between the remaining pairs of covariates.

Figure 3: Scatterplot of the explanatory variables.

2.3 Model specification
This section proposes to model the DART spread distribution for every hour of the target day with a
three-regime mixture process that incorporates the covariates discussed in Section 2.2.1. Our model
allows for time-varying mixing probabilities, and it can reproduce the following salient features
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of DART spreads: (1) the occurrence of large negative and positive spikes, (2) the relationships
between DART spread volatility and temperature or energy-related covariates, and (3) the presence
of seasonal patterns over daily and yearly cycles as discussed in Section 2.2.

Let yt and xt denote, respectively, the DART spread at hour t and the vector of covariates used
to predict the DART spread distribution for that hour. The covariates considered are those from
Table 1, that is:

xt = [1, LOADt , HDDt , CDDt , WSt , UVt , CosDt , SinDt , CosYt , SinYt , NGt ]. (4)

Note that as xt is used to explain the DART spread at hour t of the target day, it contains information
that is provided either on the information collection day or the trading day.

The mixture model is composed of three distinct regimes for the DART spread: a regular regime,
a positive spike regime, and a negative spike regime. The probability density function (PDF) of the
mixture model is given by:

f (yt |xt) =
3

∑
i=1

πi(xt) fi(yt |xt), yt ∈ R,

where πi and fi are, respectively, the covariate-dependent mixing probability and conditional PDF
for regime i (i = 1,2,3). A multinomial logistic mapping is used to model the mixing probabilities
as a function of the covariates, that is,

πi(xt) =
exp(x

⊺
t βββ iii)

1+∑
3
k=2 exp(x

⊺
t βββ kkk)

, i = 2,3, (5)

and π1(xt) = 1−π2(xt)−π3(xt).
The conditional distribution of the DART spread in the first regime at hour t (i.e., f1(yt |xt)) is

assumed to be Gaussian with mean µ1(xt) and variance σ2
1 (xt). This normal regime is intended to

produce DART realizations in regular days (i.e., in days when the electricity market is not subject
to excessive stress). The conditional mean in this regime is specified as a linear combination of
covariates: µ1(xt) = x⊺t ηηη111, whereas the conditional scale parameter, σ1(xt), is set to σ1(xt) =
h(x⊺t ζζζ 111), where h is a function5 that transforms the linear predictor x⊺t ζζζ 111. More specifically, h is
set to h(x) = 10arctanx+5π , with domain R and range (0, 10π). The arctan transformation in the
specification of h ensures a positive and bounded conditional variance. The upper bound, set at 10π ,
is sufficiently large so that it is reached only for a very limited number of observations within the
sample.

Since DART spreads can exhibit very large spikes, we model the spike regimes using the
Generalized Pareto Distribution (GPD), which is well-suited for capturing heavy-tailed behavior.
The GPD is often employed to model tail distributions due to the result of Pickands III (1975),
which establishes that the tails of a wide class of distributions converges asymptotically to the GPD.
Moreover, since the tail distribution of a GPD remains GPD-distributed (with modified parameters),
assuming a GPD distribution for the DART spread in spike regimes produces GPD-distributed tails
in such regimes. States 2 and 3 are intended to create regimes that can allow for large positive and

5Empirically, we found that placing an upper bound on the variance terms improved statistical fit. The upper bound
was optimized through manual hyperparameter tuning.
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negative DART spikes, respectively. Their conditional distributions are assumed to be:

f2 (yt |xt) = fGPD (yt ;ξ2,σ2(xt)) , f3 (yt |xt) = fGPD (−yt ;ξ3,σ3(xt)) .

where fGPD denotes the PDF of the GPD:

fGPD(y;ξ ,σ) =

(︁
1+ξ

y
σ

)︁(︂−1
ξ
−1
)︂

σ
1{y≥0}, (6)

with scale and shape parameters σ and ξ , respectively. The third regime corresponds to a reflection
of the GPD to allow for negative values. When the shape parameter satisfies ξ > 0, the GPD is
considered a heavy-tailed distribution, thus making it an ideal candidate to generate spikes. The ξ2
and ξ3 parameters are constrained to the interval (0, 1

2) to ensure that the GPD has a finite mean and
variance. Similarly to the Gaussian regime, the conditional scale parameters in the spike regimes
are obtained through a transform, h, applied to a linear combination of covariates: σi(xt) = h(x⊺t ζζζ iii),
for i = 2,3 (the same transform h is used as in the Gaussian specification). Since the variance of the
GPD described in (6) is given by σ2

(1−ξ )2(1−2ξ )
, the conditional variance in the spike regimes can

be orders of magnitude greater than σ2
i (xt). For example, if ξi = 0.42, which is the value that we

estimate for the negative spike regime (see Section 2.4), the conditional variance is almost 20 times
the value of σ2

i (xt). We remark that the realizations obtained from the spike regimes are not always
spikes per se. Indeed, since the support of the distributions in regimes 2 and 3 are, respectively,
[0,∞) and (∞,0], these regimes can also produce mild DART values. However, the likelihood of
producing a value that is many standard deviations away from the mean is significantly larger in
these regimes than in the Gaussian one. As a consequence, π2 and π3 should not be understood
directly as spike probabilities, although they influence the frequency of large DART outcomes.

Finally, the overall mean and variance of the DART spread in our proposed mixture model are
respectively given by:

E[yt |xt ] = π1µ1 +π2
σ2

1−ξ2
−π3

σ3

1−ξ3
,

V[yt |xt ] = π1(σ
2
1 +µ

2
1 )+π2

(︂
σ2

2
(1−ξ 2

2 )(1−2ξ2)
+
(︁

σ2
1−ξ2

)︁2
)︂
+π3

(︂
σ2

3

(1−ξ 2
3 )(1−2ξ3)

+
(︁

σ3
1−ξ3

)︁2
)︂
−
(︁
E[yt |xt ]

)︁2
.

2.4 Model performance
This section discusses the model estimation results, the diagnostic tests performed to assess model
adequacy, the relative importance of covariates and out-of-sample predictive tests.

2.4.1 Estimated parameters and goodness-of-fit

Model estimation is performed using maximum likelihood on the data set described in Section 2.2,
which contains hourly data for the DART spread, as well as corresponding explanatory variables,
between April 2019 and August 2022.6

6The solnp package in R is used to perform the minimization numerically.
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kurtosis = 0.060.

Figure 4: Rosenblatt transform.

Prior to fitting the model, explanatory variables are standardized to a common scale. For any
hour-t, the standardized value of the ith explanatory variable is denoted by x̃(i)t and defined as:

x̃(i)t =
x(i)t − x̄(i)

s(i)
, (7)

where x̄(i) and s(i) denote, respectively, the sample mean and sample standard deviation of x(i)t .
To verify our modeling assumptions from a statistical perspective, we perform an analysis of the

Rosenblatt residuals, a metric that allows to gauge model adequacy at the distributional level, rather
than simply in terms of point forecasts. Denote by θ = [ηηη111, ζζζ 111, ζζζ 222, ζζζ 333, βββ 111, βββ 222, ξ2, ξ3] the set
of model parameters and by θ̂ its maximum likelihood estimate. The normal Rosenblatt residual is
given by Φ−1(F(yt | xt ; θ̂)), where F(· | xt ;θ) corresponds to the CDF of the mixture model and
Φ−1 is the inverse CDF of a standard normal random variable. If the model is well-specified, then
Φ−1(F(yt | xt ; θ̂)) should be approximately standard normal. Figure 4 shows a density histogram
of the Rosenblatt residuals computed from our model. From a visual standpoint, the model appears
to provide a good fit to our dataset. In addition, the Jarque-Bera normality test (see Jarque and
Bera (1987)) applied to the normal Rosenblatt residuals does not reject the null hypothesis at the
1% significance level (i.e., the p-value is 4.69%), thus providing further evidence in favor of the
model.7

7The Jarque-Bera test has very high power due to the large number of observations, making it particularly sensitive
to even minor deviations from normality. Since the sample skewness and excess kurtosis of the normal Rosenblatt
residuals are close to zero, we consider the outcome of the statistical test acceptable in our context.
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To determine whether the inclusion of covariates is needed in both the frequency and severity
components of the mixture model, we compare the log-likelihoods of three nested models, in
addition to the full model. The results of this comparison are shown in Table 4. The null-freq-null-sev
model does not depend upon any covariates. The full-freq-null-sev model only integrates covariates
into the frequency components (i.e., into the mixing probabilities πi, i = 1,2,3), whereas the
null-freq-full-sev assumes that mixing probabilities are constant but allows the parameters of
the severity components (i.e., regimes) µ1 and σi, i = 1,2,3, to depend on covariates. The
full-freq-full-sev model refers to the full model outlined in Section 2.3. In starting with the full
model, the removal of covariates from the severity component leads to a relatively large increase
in the BIC (from 242,412 to 246,111). Conversely, the removal of covariates from the frequency
component does not result in as large of an increase (from 242,412 to 242,643). These findings,
along with the likelihood ratio p-values comparing the full model and nested versions, suggest that
the inclusion of covariates in both the frequency and severity components improves the fit of the
mixture model.

Table 4: Full sample nested model comparison.

Model Params BIC Log-likelihood Likelihood ratio p-value
null-freq-null-sev 8 252601 -126259 < 0.01
full-freq-null-sev 28 246111 -122912 < 0.01
null-freq-full-sev 48 242643 -121075 < 0.01
full-freq-full-sev 68 242412 -120856

Notes: For the likelihood ratio test, nested models are compared to the full model structure (i.e., full-freq-full-sev), with
H0 = nested model is superior.

Table 5 provides estimated parameters for the model, along with the corresponding standard
errors in parentheses. When all standardized covariates are set to 0, the probabilities of occurrence
of the positive and negative spike regimes (states 2 and 3) are 0.21 and 0.32, respectively.8 In
addition, for both the frequency and severity components, a large majority of the loadings are
statistically significant, in the sense that their associated asymptotic Gaussian confidence intervals
do not include zero. For any given covariate, the β̂ 2 and β̂ 3 loadings consistently have the same sign,
implying that spike regime probabilities either both increase or both decrease simultaneously when
the corresponding covariate moves. For example, for positive loadings, increasing the covariate
relative to its mean value causes the underlying DART distribution to become more volatile and
increases the likelihood of observing a spike (and conversely for negative loadings). Furthermore,
since ξ̂ 3 > ξ̂ 2, the left tail of the DART spread in our model is heavier than the right tail. This is
consistent with our empirical observations in Panel (b) of Figure 1, where negative spikes are larger
in absolute terms relative to positive spikes.

Moreover, since all parameter loadings corresponding to the LOAD covariate are positive, spikes
are more likely and tend to be larger in magnitude when the LOAD is high. The fact that the LOAD
has an important influence upon spikes is expected. Indeed, a large demand for electricity tends to
generate stress on the grid, thus creating greater uncertainty. Similarly, every parameter loading

8Setting all standardized covariates to 0 is equivalent to setting all predictors to their sample mean. The regime
probabilities are then computed using Equation (5).
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associated with the HDD covariate is positive, indicating that high values of HDD contribute to
an increased volatility in the DART distribution. However, for the CDD and NG covariates, the
frequency and severity loadings have opposite signs for each one of the two spike regimes (i.e.,
regimes 2 and 3). The net effect on the DART distribution attributed to an increase in CDD or NG
is therefore unclear when simply looking at parameter values.

To gain additional insight into the net impact of the covariates upon the DART distribution,
we present a sensitivity analysis in Table 6. Starting from their average value of 0, we shock each
covariate individually by one standard deviation in either direction, noting its effect upon the mean,
standard deviation, and lower as well as upper quantiles (at the 1% and 99% levels, respectively)
of the DART distribution. As expected based upon our previous discussion of Table 5, increasing
either the LOAD or HDD leads to a corresponding increase in the variability of the DART. Amongst
the weather covariates, HDD has the largest effect upon the DART variability; however, the impact
of CDD is rather marginal. This finding suggests that winter months, which are associated with
a greater demand for heating, lead to greater variability in the DART relative to summer months.
Furthermore, decreasing the UV leads to an increase in the DART variability. This is intuitive,
since a smaller value for UV reduces the supply of inexpensive energy, thus increasing uncertainty9.
Although it is difficult to specify the net impact of NG upon the DART using Table 5, it is clear
from Table 6 that higher levels of NG lead to a net increase in the variability of the DART. This too
agrees with intuition, since as NG becomes more expensive, the uncertainty in the DART increases.
This parallels our discussion in Section 2.2.1, where we explain that natural gas peakers often serve
as the marginal unit of production in the supply stack.

Table 5: Model parameter estimates.

Frequency Severity

Covariate βββ̂ 2 βββ̂ 3 ηηη̂1 ζζζ̂ 1 ζζζ̂ 2 ζζζ̂ 3 ξ̂ 2 ξ̂ 3

Intercept -0.80 (0.07) -0.38 (0.05) 8.83 (0.20) -1.05 (0.03) -0.65 (0.08) 0.08 (0.05) 0.18 (0.01) 0.42 (0.01)
LOAD 0.39 (0.15) 0.25 (0.10) 1.14 (0.29) 0.27 (0.06) 1.30 (0.13) 0.58 (0.12)
HDD 0.25 (0.11) 0.09 (0.08) 0.29 (0.28) 0.06 (0.07) 0.97 (0.09) 0.48 (0.08)
CDD 0.72 (0.15) 0.41 (0.11) 1.07 (0.31) 0.20 (0.07) -0.37 (0.15) -0.14 (0.12)
WS 0.00 (0.04) 0.06 (0.03) 0.40 (0.10) -0.01 (0.02) 0.07 (0.03) 0.10 (0.03)
UV -0.17 (0.08) -0.12 (0.06) -1.73 (0.18) 0.05 (0.04) -0.42 (0.06) -0.31 (0.07)
SinD -1.11 (0.13) -0.64 (0.09) -2.72 (0.30) -0.35 (0.07) 0.70 (0.11) 0.52 (0.10)
CosD -0.23 (0.05) -0.30 (0.04) -0.76 (0.10) 0.06 (0.02) 0.37 (0.05) 0.21 (0.04)
SinY 0.01 (0.08) 0.07 (0.06) 2.48 (0.19) 0.15 (0.04) 0.15 (0.06) 0.68 (0.07)
CosY 0.18 (0.06) 0.18 (0.05) 1.17 (0.12) -0.08 (0.03) 0.18 (0.04) -0.02 (0.04)
NG -0.20 (0.05) -0.13 (0.04) 1.98 (0.15) 0.71 (0.02) 1.71 (0.09) 1.19 (0.06)

Notes: Estimated parameters for the model described in Section 2.3, along with the corresponding standard errors in
parentheses.

Next, we consider the time evolution of the mixture model parameters. That is, for every
hour t, the model uses the covariate vector xt to generate the following parameter estimates: µ̂1,
π̂ i, σ̂ i, i = 1,2,3. Figure 5 reports the evolution of all such parameters using time series plots,
which display clear cyclical patterns. The red shaded regions correspond to summer months (April

9This is especially true for the Long Island zone, for which, as previously mentioned, solar energy plays an important
role due to the large presence of residential and commercial solar panels (i.e. behind-the-meter generation). Whether
this also holds for other zones that are less dependent on solar energy would need to be investigated.

15



Table 6: Effects of covariate shocks upon the DART distribution.

Mean Std. Dev. VaR(1%) VaR(99%)

Covariate -1 0 +1 -1 0 +1 -1 0 +1 -1 0 +1

LOAD -0.37 -2.37 -1.98 20.75 31.79 45.42 -81.72 -128.30 -174.09 23.00 40.16 94.81
HDD -0.93 -2.37 -1.88 23.16 31.79 41.79 -91.92 -128.30 -162.10 26.09 40.16 81.38
CDD -1.57 -2.37 -2.76 31.71 31.79 30.37 -126.40 -128.30 -123.25 42.11 40.16 37.21
WS -1.64 -2.37 -3.16 29.42 31.79 34.20 -117.46 -128.30 -139.37 38.50 40.16 41.93
UV -2.76 -2.37 -1.73 38.36 31.79 25.53 -154.30 -128.30 -102.09 56.24 40.16 30.29
NG -0.10 -2.37 -2.03 15.02 31.79 48.60 -58.24 -128.30 -187.30 19.55 40.16 91.48

Notes: Starting from an average value of 0, we move each standardized covariate individually one standard deviation in
either direction, noting its effect upon the mean, standard deviation, and lower as well as upper quantiles (at the 1% and
99% levels, respectively) of the DART distribution.

through September), whereas the blue shaded regions correspond to winter months (October through
March). In each panel, the black center line represents a weekly rolling average (i.e., 168 hourly
observations), whereas the grey outline corresponds to the actual hourly observations. On top of the
dynamic mixture parameters, the time evolution of several conditional mixture distribution metrics
(median, mean, tail percentiles) are also reported.

Panel (a) in Figure 5, which depicts π̂1, indicates that the regular DART regime is more likely to
occur in summer than in winter. This is consistent with Panels (b) and (c), respectively displaying
π̂2 and π̂3, which suggest that spikes are more likely to occur in winter than in summer. Panels (k)
and (l), which exhibit ˆ︃VaR(1%) and ˆ︃VaR(99%) respectively, confirm this observation. Moreover,
since the conditional mean of the DART spread, Ê(yt | xt), depicted in Panel (i), peaks during the
winter season, the DART spread is generally expected to be larger during this period. This agrees
with our previous findings, in which the demand for heating (HDD) was seen to have a much larger
impact on the variability of the DART spread than the demand for cooling (CDD). Once again
looking at Ê(yt |xt) in Panel (i), we do not observe extreme outcomes being generated. In fact, the
rolling average of the latter quantity oscillates within a band defined by the first and third quartiles
of the empirical distribution of the DART spread (see Table 1). Of special interest is the median
DART spread displayed in Panel (h). The positive median DART spread indicates that market
participants are willing to pay a premium to lock-in a price for electricity on the next day. The mean
DART spread in Panel (i), however, is often negative. This indicates that our model suggests that
the DART premium is insufficient to compensate for the large negative DART spikes. These results
are consistent with the stylized facts observed in Table 2. Finally, the rise in the magnitude of σ̂1,
σ̂2, σ̂3, µ̂1, ˆ︃VaR(50%), V̂(yt |xt), ˆ︃VaR(1%), and ˆ︃VaR(99%) that occurs in 2022— see Panels (d),
(e), (f), (g), (h), (j), (k), and (l), respectively—is driven by the corresponding steep increase in the
average natural gas futures price, displayed in Figure 6.

Figure 7 assesses the relationship between the spike regime probabilities. This analysis aims
to identify the presence of asymmetrical risk (i.e., skewness) in the regime probabilities across
winter and summer months. For example, Panels (a) and (b) in Figure 7 indicate that π̂2 and π̂3 are
correlated in summer, but not in winter; Panels (b) and (c) in Figure 5, which respectively present
π̂2 and π̂3, further corroborate this finding. This suggests that one spike regime dominates the other
in winter, but not in summer. This leads to an asymmetrical regime probability risk in winter, but a
more symmetrical risk in summer.
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2.4.2 Variable importance assessment

To help identify the relative importance of each covariate in the model, the SAGE algorithm is
considered (Covert et al., 2020). It applies a Shapley decomposition to the performance metric—in
our case, the log-likelihood—and thus decomposes total predictive performance into a sum of
contributions from the individual covariates. The SAGE algorithm has the favorable property of
being applicable for any model producing predictive distributions. The contribution of a given
covariate c to the hour-t log-density is given by:

φc,t = ∑
S⊆C\{c}

|S|!(|C|− |S|−1)!
|C|!

[︁
lS∪{c}(xt,S∪{c})− lS(xt,S)

]︁
,

where C is the set of all covariates, |·| denotes the cardinality of a set, xt,S corresponds to the hour-t
covariate vector for the subset of covariates S, and lS(xt,S) is the hour-t log-density of the mixture
model trained exclusively using the subset of covariates S. This can be shown to lead to

lC(xt,C) = φ /0,t + ∑
c∈C

φc,t ,

implying that the total outperformance over the trivial model (i.e., without covariates) is fully
allocated to the various covariates. Moreover, the relative importance of covariate c can be measured
by

ψc =
τ

∑
t=1

φc,t ,

where τ is the number of hours in the sample. Larger values of ψc indicate greater relative importance
of covariate c. The SAGE algorithm can thus be used to assess the incremental effect of each
covariate (or group of covariates) upon the log-likelihood. We thus use the Shapley decomposition
to evaluate the relative importance of the following groups of covariates: load = [LOAD], weather
= [HDD, CDD, WS, UV], cycle = [SinD, CosD, SinY, CosY], and fuel = [NG]. Table 7 displays the
contributions to the log-likelihood from each group of covariates. Fuel has the largest contribution
on a relative basis, and thus helps to explain the dynamics of the DART distribution to a greater
extent than the other covariates. The other groups of covariates have smaller, though non-negligible
effects.

Table 7: Covariate group contributions to the log-likelihood based on the SAGE algorithm.

Group of covariates c Shapley importance score ψc Shapley relative importance
Fuel 2367.27 0.44
Cycle 1274.29 0.24
Weather 956.35 0.18
Load 804.98 0.15

Notes: The Shapley relative importance is calculated by dividing the Shapley importance scores, ψc, by their total sum
across all covariate groups.
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Figure 7: Relationships between regime frequencies.

2.4.3 Out-of-sample performance

To assess the predictive ability of our model upon unseen data (i.e., data not used to train the
model), we conduct an out-of-sample experiment wherein we examine whether regularization
techniques—log-likelihood penalization according to the magnitude of parameters—can improve
the out-of-sample performance of the model. Having a large number of parameters can lead to
overfitting, which can deteriorate out-of-sample performance. Regularization techniques can thus
be used to mitigate the potential impact of overfitting. Optimal parameters are therefore obtained by
minimizing the following objective function:

PL (λ ,θ) =−

(︄
τ

∑
t=1

log f (yt | xt ;θ)

)︄
+

1
2

λ ∥θ∥1
1 , (8)

where ∥θ∥1
1 denotes the L1-norm, or LASSO-type penalty.

The hyperparameter λ is tuned using a grid search and sequential validation approach. More
precisely, a value for λ is initially selected amongst the following set:10

Λ = {0,0.001,0.01,0.1,1,10,100,1000,10000} .

Then, to perform the sequential validation, at the start of every month between May 1, 2020 and
August 1, 2022 inclusively, the model is re-trained using all available historical data; the newly
calibrated parameters are then used to make forecasts for that month. For example, on July 1, 2021
the model is re-trained using all available data between April 26, 2019 12:00 (i.e., the start of the
dataset) and June 29, 2021 23:00 inclusively; we label this training data as D .11 These parameters

10Separate validation and test sets are not used due to the limited length of our sample. Moreover, the optimal value
for λ is independently selected for each model.

11Notice that the last day of the month prior to the day on which re-training occurs—in this case, June 30, 2021—is
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are then used to make hourly forecasts for July 2021. To avoid data leakage, the sample means and
sample standard deviations of the covariates in Equation (7) are computed using the training set D .
This process is repeated for every value in the set Λ.

Using the penalized loss function from Equation (8), an out-of-sample nested model comparison
is presented in Table 8. Performance metrics displayed in the table include, for the four versions
of the model, the likelihood L , the continuously ranked probability score (CRPS) and the mean
absolute error (MAE). The last two are only displayed for the optimal hyperparameter λ ∗, whereas
the likelihood is also shown for λ = 0. The MAE is computed as the average absolute point
prediction error: MAE = ∑

τ
t=1

|ŷt−yt |
τ

, with ŷt is the mean of the predicted distribution for yt .
The CRPS metric measures the extent to which predicted distributions are concentrated around
observations. It is described in more detail in Appendix A.

Across all models, penalization improves the out-of-sample log-likelihood. However, in contrast
to the findings using the full sample, it is unclear whether the inclusion of covariates in the frequency
component improves the predictive ability of the mixture model. The full-freq-full-sev model is
best in terms of the out-of-sample CRPS, which means such covariates help to better concentrate
the predictive distributions around future observations. Nevertheless, the null-freq-full-sev model
has the best out-of-sample performance in terms of likelihood. These mixed findings can be
explained by the drift in the behavior of the DART spread distribution across the sample; for
instance, positive DART spikes are observed more frequently toward the end of the sample data,
entailing non-stationary behavior to which out-of-sample performance is more sensitive.

Table 8: Out-of-sample nested model comparison, using LASSO-type penalty.

Model Nb. Params. L (λ = 0) L (λ ∗) MAE(λ ∗) CRPS(λ ∗)
null-freq-null-sev 8 93,961 93,902 20.96 0.71
full-freq-null-sev 28 91,522 91,503 21.56 0.63
null-freq-full-sev 48 90,259 90,257 20.80 0.62
full-freq-full-sev 68 91,041 90,678 20.89 0.61

Notes: The optimized values of λ , denoted λ ∗, for the null-freq-null-sev, full-freq-null-sev, null-freq-full-sev, and
full-freq-full-sev models are respectively given by: 1000, 10, 0.1, 100.

L is the negative log-likelihood, CRPS is the continuously ranked probability score, and MAE is
the mean absolute error.

2.5 Comparison to the deep quantile regression approach
Machine learning methods for prediction are receiving extensive attention in the literature. As
such it is interesting to compare the performance of the model developed in our work to modern
machine-learning based forecasting methods. The focus of this chapter is distributional forecasting.
Thus, rather than directly applying existing neural network methods that mainly perform point
forecasting, we consider using deep quantile regression as a benchmark to evaluate the distributional
forecasts made by the mixture model.

As detailed in Koenker and Hallock (2001), the quantile regression loss function for an individual

not included in the training set D due to the trading restrictions imposed in Section 2.2.1
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observation is given by:

L (∆t |α) =

{︄
α∆t , if ∆t ≥ 0,
(α −1)∆t , if ∆t < 0,

where α is the quantile level (between 0 and 1) and ∆t = yt −ˆ︃VaR(α)t , and where ˆ︃VaR(α)t is
the forecast of the level-α quantile of the predicted distribution for time-t DART spread yt . Such
forecast is obtained as the output of a neural network whose inputs are the covariates. The average
loss over the entire dataset is then:

L (y,ˆ︃VaR(α)) =
1
τ

τ

∑
t=1

L (yt −ˆ︃VaR(α)t |α).

We implement a feedforward neural network in R using the Keras package. The input layer
takes in the vector of covariates xt (previously defined in Equation 4), the hidden layers each contain
10 neurons with ReLU activation functions, and the output layer consists of a single neuron (without
an activation function) used to predict the quantile. We tested both one-layer and two-layer neural
networks12. The Adam optimizer (see Kingma (2014)) with a learning rate of 0.01 is used to
minimize the loss function, and the model is trained for 100 epochs.

To compare the quantile forecasts provided by our mixture method against deep quantile
regression, the metric considered is the Actual over Expected (AE) VaR exceedance ratio. It is
defined as:

AE =
∑

τ
t=11(yt>ˆ︃VaR(α)t)

τ(1−α)
.

The Actual over Expected VaR exceedance ratio consists of the actual number of times the VaR is
exceeded in the sample over the expected number of times it is to be exceeded. For example, the
VaR(99%) is expected to be exceeded 1% of the time.

AE VaR exceedance ratios are displayed in Table 9 for both the full-freq-full-sev version of our
model and the deep quantile regression approach (DQR-1 and DQR-2, for the one- and two-layers
neural networks, respectively). Such ratios are reported over both the training set (in-sample), and
out-of-sample using the sequential validation framework detailed in Section 2.4.3. For the in-sample
performance, none of the three strategies dominates the two others. Conversely, out-of-sample, the
mixture model is evidently better, except for the VaR(50%), and a near-tie performance with DQR-1
for VaR(5%). The strength of our mixture model lies in being able to adequately capture the tails of
the distribution. Despite additional flexibility, the neural network models therefore do not exhibit
better predictive performance in our experiment.

2.6 Conclusion
This chapter proposes a method to forecast the distribution of electricity DART spreads. Such a task
is non-trivial due to the complex stylized facts of DART spreads, which include the presence of both
negative and positive spikes, seasonal behaviors, and complex interactions with multiple dependent
covariates. The proposed model is a three-regime mixture model, where spike regimes rely on

12Although more than two layers were not tested due to time constraints, we acknowledge that experimenting with
additional hidden layers is warranted.
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Table 9: Actual over Expected VaR exceedance ratios, full-freq-full-sev vs deep learning.

Confidence level α 5% 10% 50% 90% 95%
In-sample

full-freq-full-sev 1.049 1.081 0.965 0.998 1.003
DQR-1 0.842 1.100 1.001 1.022 1.006
DQR-2 1.225 1.054 0.963 1.019 0.998

Out-of-sample
full-freq-full-sev 1.385 1.199 0.902 0.983 0.996
DQR-1 1.382 1.313 0.972 0.943 0.949
DQR-2 1.822 1.269 1.012 0.937 0.940

Notes: The table entries correspond to the Actual over Expected VaR exceedance ratios at the α = 5%, α = 10%,
α = 50%, α = 90%, and α = 95% VaR confidence levels. The out-of-sample full-freq-full-sev model is trained using
λ ∗.

the Generalized Pareto Distribution, which has the ability to generate extreme values. Regime
probabilities and conditional DART spread distributions in each of the regimes are both dependent
upon explanatory variables.

The model is implemented on hourly data from the Long Island zone of the NYISO; it is shown
to provide an adequate fit to the data. In-sample nested model comparisons highlight the importance
of including the entire set of covariates, in both the frequency and severity components of the mixture
model, although their inclusion in the severity component is more critical. In addition, the SAGE
variable importance assessment algorithm indicates that on a relative basis, the natural gas futures
price has the most significant effect upon model performance. The use of regularization methods
is explored and is shown to improve the out-of-sample model performance on our data. Finally, a
benchmarking experiment reveals that neural-network-based quantile regression benchmarks fail
to outperform our mixture model on our test set, highlighting that the better interpretability of our
model does not come at the expense of accuracy.

Future areas of investigation include: (1) assessing the model’s robustness to alternative data
sets, i.e. other zones in the NYISO or other power markets, (2) modeling the joint distribution
between multiple zones, which can be used to devise locational differential trading strategies, and
(3) using mixture density (neural) networks, see for instance (Bishop, 1994), to obtain additional
flexibility to represent the relationship between the DART spread and explanatory variables when
producing predictive distributions.
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3 Do energy futures add value to stock portfolios?

3.1 Introduction
In light of the major financial crises of the past two decades, commodities have emerged as an
attractive asset class for institutional investors, in part due to the diversification benefits they might
provide. We therefore investigate whether commodities, more specifically, energy futures, can help
to diversify a stock portfolio and thereby improve its risk-adjusted performance.

The literature documenting diversification gains from adding commodities to stock portfolios is
extensive. A widely cited work by Geman (2005) reports that unlike stocks, changes in commodity
prices are mainly affected by weather, geopolitics, and supply factors. In an influential study by
Gorton and Rouwenhorst (2006), the authors highlight that commodities, such as crude oil, have
historically had low correlations with stocks and bonds, making them important diversification
tools. Moreover, even with 10 additional years of data, Bhardwaj et al. (2015) find that the original
conclusions of Gorton and Rouwenhorst (2006) continue to hold, but with an increased correlation
observed during periods of crisis. Using the Standard and Poor’s Goldman Sachs Commodity Index
(GSCI) and the Dow Jones-UBS Commodity Index (DJ-UBSCI), Belousova and Dorfleitner (2012)
observe that the inclusion of energy commodities improves portfolio performance in both bull and
bear markets. Giamouridis et al. (2014) further suggest that the integration of GSCI commodities
using factor-based strategies (e.g. momentum, basis) can also improve portfolio performance.
Bessler and Wolff (2015) find that although the out-of-sample diversification benefits are lower than
previously suggested by in-sample studies, they are still present. Moreover, they find that portfolio
benefits are time-varying, with energy, for example, having a negative impact on the Sharpe ratio
between 1995 and 2000 but a positive impact between 2002 and 2009. Drawing on data from the
S&P 500 energy sector and crude oil markets, Nguyen et al. (2020) propose a stochastic dominance
approach, finding that the inclusion of energy commodities can lead to greater diversification
benefits, especially during periods of high economic uncertainty and economic downturns.

Many studies highlight that diversification benefits from energy commodities vary over time. For
example, the paper by Jensen et al. (2002) indicates that the addition of GSCI energy commodities
during periods of restrictive monetary policy can improve portfolio returns, but leads to poor
performance during periods of expansive monetary policy. Du (2005) similarly finds that the
benefits obtained are regime dependent, with the greatest advantage offered when equity markets
experience high levels of downside risk. Consistent with this perspective, Demidova-Menzel and
Heidorn (2007) report that the greatest benefits are derived during inflationary periods. Leveraging
the Gorton-Rouwenhorst index, Cheung and Miu (2010) find that commodity futures primarily
provide diversification benefits during bull markets, with unconvincing benefits during bear markets.
Relying on crude oil and natural gas data13, Liu and Tu (2012) find that spillover effects between
energy futures reduce the potential for diversification during tranquil periods, but not during crisis
periods.

Other papers question the ability to use energy commodities as diversifiers, thus challenging
the previous conclusions. For example, based on GSCI, DJ-UBSCI, and crude oil data, Daskalaki
and Skiadopoulos (2011) do not find significant out-of-sample benefits from incorporating energy
commodities. Similarly, the results in Hansen-Tangen and Overaae (2015) do not support the

13Liu and Tu (2012) use daily data, whereas previous studies consider a monthly frequency.
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conclusion that GSCI energy commodities yield out-of-sample risk-adjusted benefits when added to
a portfolio of stocks and bonds. As documented by Elsayed et al. (2020), the correlations between
energy markets14 and global financial markets vary over time, further complicating the ability to
use energy commodities as stable diversifiers. By examining crude oil and natural gas data, Lean
et al. (2023) demonstrate that an all-equity portfolio stochastically dominates portfolios that include
energy futures, using a sample data set covering the period from 1990 to 2017. As is evident from
this discussion, the net benefit of using commodities as diversifiers is ambiguous.

The increased financialization of commodity markets further complicates their potential for
diversification. As described in Carmona (2015), financialization refers to the increased role of
institutional investors in commodity markets, as well as the growth in financially settled contracts in
relation to their physically settled counterparts. In the seminal paper by Tang and Xiong (2012), the
authors show that financialization has increased the correlation between commodities, contributing
to boom and bust cycles. In their foundational study, Silvennoinen and Thorp (2013) report that
higher levels in the VIX index15 are associated with increased commodity-stock correlation. In their
frequently cited paper, Creti et al. (2013) emphasize that energy commodities exhibit time-varying
correlations with equity markets, with increased financialization occurring after the 2007-2008
financial crisis, potentially influencing their diversification potential. In a notable study, Cheng and
Xiong (2014) further document that although financial investors provide liquidity to hedgers to
help accommodate their hedging needs, they may also need to quickly unwind their commodity
positions (in an attempt to reduce risk) following unexpected price drops in other markets, thereby
transmitting outside shocks to commodities. They also find that financialization has made it difficult
to differentiate whether movements in futures prices are due to financial trading or actual changes
in fundamentals. Using commodity-linked notes (CLN) as a dataset, Henderson et al. (2015)
demonstrate that financialization affects commodity futures prices as a result of hedge trades carried
out by CLN issuers. In the important paper by Basak and Pavlova (2016), the authors find that
commodity futures prices, volatilities, and correlations increase with financialization, more so
for index commodities than for non-index commodities. Adams et al. (2020) note that due to
financialization, commodities are unlikely to provide effective portfolio diversification benefits,
with financial variables explaining a large proportion of the volatility in commodity futures. Baker
(2021) highlights that financialization increases the volatility of futures prices and decreases their
associated risk premiums. Kang et al. (2023) indicate that financialization significantly increased
the correlation between commodity and stock market returns, as well as the pairwise correlation
between indexed commodity futures.

The diversification potential of crude oil and natural gas has been extensively explored in the
literature. Using 150 years of historical data, Narayan and Gupta (2015) find that oil prices help
predict stock returns, with negative oil price changes being more predictive than positive oil price
changes. In Christoffersen and Pan (2018), the authors show that after financialization, oil volatility
became a strong predictor of stock market returns and volatility. That is, stocks with negative
exposure to the option implied volatility of oil earned higher returns compared to those with positive
exposures. Moreover, a hedge portfolio based on oil volatility risk outperformed those constructed
using risk factors such as momentum, value, and size. Degiannakis et al. (2018) demonstrate that

14Such as the World Energy Price Index (WEPI) and crude oil markets. Moreover, Elsayed et al. (2020) use daily
data, whereas previous studies consider a monthly frequency.

15The Chicago Board of Exchange Volatility Index (VIX index) measures market expectations for the volatility of
the S&P 500 index.
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higher oil prices tend to be associated with lower stock returns for oil-importing economies and
conversely for oil-exporting economies. More precisely, supply-side or precautionary demand oil
shocks were associated with negative movements in stock prices, whereas aggregate demand shocks
were positive. Oil price volatility was also found to impact stock price volatility, with asymmetric
effects (the negative response of stocks to oil price increases was larger in magnitude than the
positive response to oil price declines). Gao et al. (2022) conclude that oil volatility increases
oil inventory and decreases oil consumption, while causing equity prices to fall, particularly in
oil-sensitive industries. In Demiralay et al. (2019), the authors find that commodity futures, such
as natural gas, provide diversification benefits that are higher than those provided by stock-only
portfolios during periods of global uncertainty, such as the 2008 financial crisis. In Gaete and
Herrera (2023), the authors find that energy commodities, particularly natural gas, may offer some
potential to reduce portfolio volatility.

Crises and geopolitical conflicts have also been shown to impact the diversification potential of
energy commodities. Noguera-Santaella (2016) find that geopolitical events positively impacted
oil prices prior to the year 2000, but with negligible impact afterwards. Borgards et al. (2021)
establish that the frequency and severity of price overreactions increased during the COVID-19
pandemic, offering the potential for profitable trading opportunities. In their analysis, Adekoya
and Oliyide (2021) further reveal that the COVID-19 pandemic caused increased connectedness
and risk transmission across commodity and financial markets. Recent research by Zakeri et al.
(2022) highlights the impact of the COVID-19 pandemic and the energy crisis triggered by the
Russia-Ukraine war on the global energy system, resulting in disruptions in energy supply chains
and demand patterns. Chishti et al. (2023) reveal that the Russia-Ukraine war caused a downturn
in the crude oil markets, while natural gas experienced significant benefits. Zhang et al. (2024)
underscore that the Russia-Ukraine war led to an increase in oil volatility and fundamentally changed
the trend of crude oil prices. This analysis therefore reveals the importance of understanding the
behavior of energy markets during crisis periods.

In light of this discussion, we therefore reexamine whether incorporating energy futures can
add value to an equity portfolio by analyzing an updated data set that includes two new crises,
namely the COVID-19 pandemic and the Russia-Ukraine war, which have significantly impacted
the energy sector. While previous studies have focused mainly on the increased volatility and
changing correlation patterns during these events, our analysis advances the discussion by assessing
the financial performance of equity portfolios enhanced with energy commodities. Analyzing their
out-of-sample performance during these turbulent periods therefore provides novel insights into their
effectiveness under stressed market conditions. In contrast to several studies that omit electricity as
a feasible investment opportunity, we additionally include electricity (MISO Texas Hub) alongside
crude oil (WTI Cushing) and natural gas (Henry Hub). Electricity is a fundamentally different
product from crude oil and natural gas as it cannot be stored on a large scale, thus leading to complex
price dynamics and making it difficult to model. In addition, looking ahead, the growing interest in
renewable energy generation may potentially increase the appetite to incorporate electricity into
portfolio management strategies.

Our model empirically forecasts asset expected returns and volatilities and can adequately handle
the non-stationary nature of the time series data. The ability to tackle non-stationary dynamics is
crucial in our framework due to important structural breaks occurring during crises. Asset allocation
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is performed using a mean-variance optimization approach, with the Sharpe ratio16 used as the
objective function. We benchmark our performance against a static investment in the S&P 500. Our
results suggest that despite the increased financialization of commodity markets, energy futures
can improve the out-of-sample risk-return performance, resulting in diversification benefits and
additional profits relative to the stock-only benchmark portfolio, with the greatest benefits achieved
during crisis periods.

The remainder of this chapter is organized as follows. In Section 3.2, we describe the data. In
Section 3.3, we describe the asset allocation strategy, the portfolio optimization approach, and the
estimation procedure. In Section 3.4, we discuss the out-of-sample portfolio performance in relation
to our established benchmark, provide a discussion of the results, and present a sensitivity analysis
to assess the robustness of our model. In Section 3.5, we conclude.

3.2 Description of the data
To reflect the actual positions taken by institutional investors, total return data for the S&P 500
(which account for dividends) are used. Futures price data are utilized for energy commodities. The
energy commodities considered include electricity, crude oil, and natural gas. The electricity futures
data are sourced from the Intercontinental Exchange (ICE), with ticker symbol TDP (MISO Texas
Hub), whereas the crude oil and natural gas futures data are obtained from Bloomberg with ticker
symbols CL1 (WTI Cushing) and NG1 (Henry Hub), respectively.

The front-month (nearest-to-delivery) futures contracts with a monthly delivery period serve
as the basis for the analysis, and futures are rolled over at the close of trading on the last business
day that falls on or before the 20th calendar day of the month prior to the contract month. When
computing the return on the rollover date t, we ensure that the futures contract at time t+1 coincides
with the futures contract at time t.

The risk-free rate data are taken from the St-Louis FRED, where we use the market yield on
U.S. treasury securities at 1-month constant maturity, quoted on an investment basis per annum.

The data set ranges from May 12, 2014 to May 21, 2024, consisting of 524 weekly observations.
The weekly excess returns (returns for the futures) for the various assets are respectively given by

E(S)
t+1 =

St+1 −St

St
− rt+1, E(i)

t+1 =
F(i)

t+1 −F(i)
t

F(i)
t

,

for i ∈ {Electricity (E), Crude oil (C), Natural gas (N)}, where rt+1 denotes the weekly risk-free
rate prevailing in the time interval [t, t +1). We denote by St and F(i)

t the time-t values of the equity
asset and ith energy futures, respectively. Unlike the S&P 500 asset, entering futures contracts
positions does not require an initial capital outlay17, which justifies looking at the return rather than
the excess return. For clarity, from this point forward, the excess return will refer specifically to the

16The Sharpe ratio is defined as
E[R(X)−r]

σ (X) , where R(X) is the return for asset X , r is the risk-free rate, and σ (X) is the
volatility for asset X . The Sharpe ratio is essentially the inverse of the coefficient of variation, adjusted for the risk-free
rate.

17We acknowledge that futures positions do require margin capital in practice (which may allow for treating positions
on futures on a more comparable basis to investments in the S&P 500), hence this is a simplifying assumption that we
make.
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return for the futures assets. Excess returns can thus be understood as the excess return over the
cost of carry associated with the investment instrument.

Table 10: Descriptive statistics of weekly excess returns.

Min Q1 Median Q3 Max Mean Std Skew Exc. Kurt
S&P 500 -0.150 -0.008 0.004 0.015 0.121 0.002 0.023 -0.644 6.667
Electricity -0.636 -0.031 -0.003 0.029 1.714 0.003 0.139 5.011 58.817
Crude oil -0.293 -0.027 0.003 0.031 0.464 0.002 0.060 0.953 10.124
Natural gas -0.246 -0.047 -0.002 0.041 0.697 -0.002 0.078 1.272 12.243

Notes: The data consists of weekly excess returns, ranging between May 12, 2014 to May 21, 2024, spanning
approximately 120 months.

In Table 10, we provide descriptive statistics for asset excess returns. Looking at the standard
deviations, we observe that the energy commodities are more volatile than the S&P 500. Moreover,
of the assets considered, electricity has the largest kurtosis. Electricity cannot be efficiently stored
at a large scale; hence, its supply and demand must always be in equilibrium. Transmission
maintenance, unexpected interruptions, and unforeseen demand can therefore give rise to price
spikes. Such spikes explain the high kurtosis for electricity futures. We also highlight that each of
the energy commodities has a positive skewness whereas the S&P 500 has a negative skewness.

Table 11: Annualized sample Sharpe ratios by period.

Full Normal COVID-19 Russia-Ukraine
S&P 500 0.76 0.76 1.08 0.46
Electricity 0.18 -0.68 0.97 0.48
Crude oil 0.18 -0.50 1.35 -0.18
Natural gas -0.18 -0.53 0.77 -0.56

Notes: The data consists of weekly excess returns, ranging between May 12, 2014 to May 21, 2024. The normal period
ranges between May 12, 2014 to March 12, 2020, the COVID-19 period ranges between March 12, 2020 to February
24, 2022, and the Russia-Ukraine period ranges between February 24, 2022 to May 21, 2024. The annualized sample
Sharpe ratio is computed for each of these periods.

To assess the risk-adjusted performance across the different assets while tracking their fluctuations
over time, we present the sample annualized Sharpe ratios for different periods of the sample in
Table 11. Such sample annualized Sharpe ratios are computed as

√
52

Ē(X)
t

σ̂
(X)
t

,

where the sample mean and sample standard deviation of the weekly excess returns for asset
X ∈ {S,F(E),F(C),F(N)} over the corresponding period, as estimated from n observations, are

27



given by

Ē(X)
t =

1
n

n−1

∑
u=0

E(X)
t−u,

σ̂
(X)
t =

⌜⃓⃓⎷ 1
n−1

n−1

∑
u=0

(︂
E(X)

t−u − Ē(X)
t

)︂2
.

The full sample is broken down into the following three periods. The normal period ranges between
May 12, 2014 to March 12, 2020, the COVID-19 period ranges between March 12, 2020 to February
24, 2022, and the Russia-Ukraine period ranges between February 24, 2022 to May 21, 2024.

The S&P 500 has a positive Sharpe ratio over the full sample period as well as over each
sub-period. For energy futures, we focus on the absolute value of the Sharpe ratios because we can
take either long or short positions. The energy futures have smaller Sharpe ratios, in absolute value,
during the normal period. During the COVID-19 period, crude oil has the largest Sharpe ratio, while
electricity and natural gas have lower Sharpe ratios than the S&P 500. During the Russia-Ukraine
period, the opposite occurs: both natural gas and electricity yield higher absolute Sharpe ratios
relative to the S&P 500, whereas crude oil underperforms the S&P 500. This suggests that adding
energy futures to an equity portfolio has the potential to improve its risk-adjusted profile under
certain market conditions.

It is also interesting to note the signs of the Sharpe ratios across the various sub-periods. For
instance, during the normal period, the Sharpe ratios for the energy futures are negative. That is,
under normal conditions, investors are willing to pay a premium to secure the physical commodity.
Over the COVID-19 pandemic, the Sharpe ratios turn positive. At the start of the pandemic, the
energy sector was depressed due to travel restrictions and economic lock-downs, resulting in excess
supply and even negative oil prices. By the end of the pandemic, however, there was renewed
economic activity and pent-up demand.

In Figure 8, we display the price time series for each of the assets. At the beginning of the
COVID-19 period (i.e., the first vertical red bar), prices were low; but by the end of the pandemic
(i.e., the second vertical red bar), prices rose sharply, thus resulting in an overall net positive
performance over this period. Then, during the Russia-Ukraine period, the Sharpe ratios once
again turn negative (except for electricity). This can be accounted for by the increased uncertainty
surrounding the energy sector during this time-frame, characterized by supply chain bottlenecks
and associated supply shortages.

Figure 9 displays the time series of weekly excess returns for the various assets. Panels (a) and
(c) respectively indicate that the S&P 500 and crude oil react more extensively to the COVID-19
pandemic, as indicated by the increased variability in the associated excess returns. Alternatively,
in Panels (b) and (d), electricity and natural gas respond more intensely to the Russia-Ukraine
period, once again evidenced by the corresponding rise in variability of the related excess returns.
Although electricity is more volatile than the other assets during the Russia-Ukraine period, it
can still potentially help enhancing risk-adjusted performance, as evidenced by its relatively large
Sharpe ratio during that period (see Table 11).

In Table 12, we present the correlations between the excess returns across the various periods
considered. In each panel, the entries above the diagonal correspond to Spearman correlations and
the entries below the diagonal to Pearson correlations. We include Spearman correlations since they
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Figure 8: Time series of daily asset prices.

(a) Daily S&P 500 prices.
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(b) Daily electricity futures prices.
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(c) Daily crude oil futures prices.
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10

20

30

2014 2016 2018 2020 2022 2024

Notes: The data consists of daily prices, ranging between May 12, 2014 to May 21, 2024. The vertical bars demarcate
the different periods considered. That is, the normal period ranges between May 12, 2014 to March 12, 2020, the
COVID-19 period (which includes the market down-turn) ranges between March 12, 2020 to February 24, 2022, and
the Russia-Ukraine period ranges between February 24, 2022 to May 21, 2024.

are not influenced by outliers, unlike Pearson correlations. The Pearson and Spearman correlation
values are quite similar and of the same order of magnitude, with the exception of electricity and
natural gas, for which the Spearman correlation is roughly twice the Pearson correlation in the full
and Russia-Ukraine periods. This suggests that the relationship between electricity and natural gas
is non-linear and characterized by spikes.
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Figure 9: Time series of weekly excess returns.

(a) S&P 500.
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Notes: The data consists of weekly excess returns, ranging between May 12, 2014 to May 21, 2024. The vertical bars
demarcate the different periods considered. That is, the normal period ranges between May 12, 2014 to March 12, 2020,
the COVID-19 period ranges between March 12, 2020 to February 24, 2022, and the Russia-Ukraine period ranges
between February 24, 2022 to May 21, 2024. In Panel (b), the spikes on May 23, 2022 and May 20, 2024 reach roughly
1.7 and 1.3, respectively, far exceeding the y-axis limit of 0.7 imposed for clarity.

Table 12: Pearson correlations of weekly excess returns, by period.

Full Normal
S&P 500 Electricity Crude oil Natural gas S&P 500 Electricity Crude oil Natural gas

S&P 500 1 0.05 0.24 0.10 1 0.10 0.26 0.10
Electricity 0.10 1 0.11 0.59 0.11 1 0.13 0.65
Crude oil 0.28 0.04 1 0.14 0.41 0.13 1 0.14
Natural gas 0.13 0.28 0.11 1 0.13 0.59 0.15 1

COVID-19 Russia-Ukraine
S&P 500 Electricity Crude oil Natural gas S&P 500 Electricity Crude oil Natural gas

S&P 500 1 0.05 0.31 0.19 1 -0.02 0.12 0.03
Electricity 0.11 1 0.03 0.62 0.12 1 0.09 0.43
Crude oil 0.24 -0.05 1 0.08 0.10 0.05 1 0.14
Natural gas 0.18 0.42 0.04 1 0.04 0.19 0.15 1

Notes: The data consists of weekly excess returns, ranging between May 12, 2014 to May 21, 2024. The normal period
ranges between May 12, 2014 to March 12, 2020, the COVID-19 period ranges between March 12, 2020 to February
24, 2022, and the Russia-Ukraine period ranges between February 24, 2022 to May 21, 2024. Pearson (below the
diagonals) and Spearman (bold numbers above the diagonals) correlations are presented.

In general, the correlations between the assets are weak. An exception is electricity and natural
gas, which have a higher correlation relative to the other pairs of assets. Natural gas is an important
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fuel in electricity generation and often serves as the marginal unit of production to quickly balance
supply and demand in real time, thus making it a significant driver of electricity prices. Nevertheless,
during the Russia-Ukraine war, their correlation weakens, which helps reduce portfolio volatility
by means of diversification. Moreover, in that same time period, the signs of their Sharpe ratios
decouple, further highlighting their diversification potential.

In the top right, bottom left and bottom right panels of Table 12, we present the Pearson
correlations over the normal, COVID-19, and Russia-Ukraine periods. As previously indicated
in the literature, we can observe that the correlations are time-varying. For example, for the S&P
500 and crude oil as well as electricity and natural gas pairs, the correlations are the highest in the
normal period, and then they progressively decrease during the two crisis periods.

Overall, our analysis of the descriptive statistics shows that energy commodities can improve
the risk-adjusted expected portfolio return, as they demonstrate higher Sharpe ratios compared
to the S&P 500 over certain periods. Additionally, they offer diversification benefits, given their
generally weak correlations with the S&P 500. However, achieving enhanced investment strategies
requires dynamically re-adjusting the portfolio to capture the time-varying characteristics of the
various assets, such as the signs and magnitudes of their expected excess returns, their volatilities
and corresponding Sharpe ratios, and their correlations.

3.3 Asset allocation
This section outlines the portfolio optimization framework, detailing the allocation strategy across
the portfolio’s various assets. It also describes the model used to estimate the moments of the
asset returns, which are essential to calculate the predicted Sharpe ratios of the different allocation
options.

3.3.1 Portfolio optimization

We consider the perspective of an investor seeking to enhance the risk-adjusted returns of an equity
portfolio through an overlay consisting of energy futures. The returns for asset X are thus given by

R(X)
t+1 =

Xt+1 −Xt

Xt
,

and the one-week-ahead conditional moments for assets X ,Y ∈ {S,F(E),F(C),F(N)} are

µ
(X)
t = Et

[︂
R(X)

t+1

]︂
, Σ

(X ,Y )
t = Covt [R

(X)
t+1,R

(Y )
t+1].

Since taking positions in futures does not require bearing the cost of capital, our methodology fully
allocates the capital to the S&P 500 asset on each time step. As such, the number of S&P 500 shares
held at any time t until t +1 is Wt/St , where Wt is the wealth at time t. Without loss of generality,
consider an initial wealth of W0 = 1.

In general, denoting by NF(i)(t) the number of long positions on the ith futures between t and
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t +1, the wealth at time t +1 evolves according to

Wt+1 =Wt
St+1

St
+ ∑

i∈{E,C,N}
NF(i)(t)(F

(i)
t+1 −F(i)

t )

=Wt

(︄
St+1

St
+ ∑

i∈{E,C,N}

NF(i)(t)F
(i)

t

Wt

F(i)
t+1 −F(i)

t

F(i)
t

)︄
,

which implies that

Wt+1 −Wt

Wt
=

St+1 −St

St
+ ∑

i∈{E,C,N}
ω

F(i)
t

F(i)
t+1 −F(i)

t

F(i)
t

,

where ω
F(i)

t
is the weight associated with futures asset i at time t, which can be either positive or

negative depending on whether a long or short futures position is used. The weight associated with
a futures contract is thus interpreted as the exposure to the corresponding futures position, as a
proportion of the portfolio’s total nominal wealth. The one-week-ahead conditional mean of the
portfolio returns is

Et

[︃
Wt+1

Wt
−1
]︃
= ωωω t µµµ

⊺
t , (9)

with µµµ t = [µ
(S)
t ,µ

(E)
t ,µ

(C)
t ,µ

(N)
t ] and where ωωω t = [1,ω

F(E)
t

,ω
F(C)

t
,ω

F(N)
t

]. The one-week-ahead
conditional variance of the portfolio returns is

Vt

[︃
Wt+1

Wt
−1
]︃
= ωωω tΣΣΣtωωω

⊺
t , (10)

where ΣΣΣt = [Σ
(X ,Y )
t ] denotes the conditional covariance matrix of returns. The one-week-ahead

Sharpe ratio is

SRt =
ωωω t µµµ

⊺
t − rt+1√︁

ωωω tΣΣΣtωωω
⊺
t
.

The one-week-ahead Sharpe ratio serves as the objective function for portfolio optimization, with the
allocation being re-optimized each week based on updated market conditions. Thus, we numerically
solve18 for weights that maximize the Sharpe ratio on a weekly basis. To avoid excessive exposures
to any of the energy futures, the weights are constrained to lie in the interval −K < ω

F(i)
t

< K,

for i ∈ {E,C,N}, and for some deterministic bound19 K. The methodology used to estimate the
moments in Equations (9) and (10) is discussed in the next section.

18The solnp package in R is used to perform the optimization numerically.
19In Bessler and Wolff (2015), the strategic weights for commodities are fixed (i.e., static) at K = 5% and K = 15%

for the conservative and aggressive investor clientele, respectively.
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3.3.2 Return moments estimation

At any time point t, the calculation of the one-week-ahead Sharpe ratio for a given strategy requires
estimates of the conditional means µµµ t and covariances ΣΣΣt . The approach used to derive such
estimates takes into consideration the highly non-stationary nature of our data sample and is thus
characterized by changing asset return dynamics. Several conventional econometric models were
contemplated for the estimation of volatilities and correlations, such as the Dynamic Conditional
Correlation model, GARCH models and Hidden Markov Models. Such models gave unsatisfactory
results in unreported tests (see Appendix B); empirical models constructed using a rolling window
approach are better able to cope with non-stationarity and can more easily track the time-varying
distribution of the underlying data. A sample-based rolling window estimation approach is therefore
employed, as outlined in Bessler and Wolff (2015).

Figure 10: One-week-ahead predictions of asset expected returns.

(a) S&P 500 expected return.

−0.1

0.0

0.1

2016 2018 2020 2022 2024

N = 12 N = 52

(b) Electricity expected return.

−0.1

0.0

0.1

2016 2018 2020 2022 2024

(c) Crude oil expected return.

−0.1

0.0

0.1

2016 2018 2020 2022 2024

(d) Natural gas expected return.

−0.1

0.0

0.1

2016 2018 2020 2022 2024

The data is weekly from June 1, 2015, to May 21, 2024, with a rolling window of 12 or 52 weeks. Vertical bars
mark three periods: normal (June 1, 2015 – March 12, 2020), COVID-19 (March 12, 2020 – February 24, 2022), and
Russia-Ukraine (February 24, 2022 – May 21, 2024). In Panel (b), values between May 30 and August 15, 2022, range
from 0.19 to 0.32, exceeding the y-axis limit.

Estimates for the one-week-ahead expected return for asset j and return covariance between
assets j and k are

ˆ︁µ( j)
t =

1
N

N−1

∑
u=0

R( j)
t−u, ˆ︁σ (k, j)

t =
1

N −1

N−1

∑
u=0

(︂
R(k)

t−u − µ̂
(k)
t

)︂(︂
R( j)

t−u − µ̂
( j)
t

)︂
,

for which the rolling sample means are computed using the last N time steps (i.e., the window size
is N periods). This process is repeated at each time point t, where the portfolio is rebalanced.

In Figure 10, the predicted expected asset returns for the N = 12 and N = 52-week rolling
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Figure 11: One-week-ahead predictions of volatilities.

(a) S&P 500 volatility.
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The weekly data spans June 1, 2015 – May 21, 2024, with a rolling window of 12 or 52 weeks. Vertical bars mark
three periods: normal (June 1, 2015 – March 12, 2020), COVID-19 (March 12, 2020 – February 24, 2022), and
Russia-Ukraine (February 24, 2022 – May 21, 2024).

window horizons are displayed. For each of the assets considered, the expected returns react
negatively after the onset of the COVID-19 pandemic, but then rebound shortly afterwards. In
addition, the expected returns for electricity and natural gas become increasingly more volatile in
response to the Russia-Ukraine period, whereas the expected returns for the S&P 500 and crude oil
remain relatively more stable.

Figure 11 presents the predicted volatilities (i.e., the square root of the predicted variances) for
each of the assets at the N = 12 and N = 52-week rolling window horizons. The volatilities for the
S&P 500 and crude oil jump upward in response to the COVID-19 pandemic and then progressively
begin to revert to more normal levels. On the other hand, the volatilities for electricity and natural
gas jump upward in response to the energy crisis, but do not react as strongly to the COVID-19
pandemic.

In Figure 12, we present the predicted Sharpe ratios for each asset for both the N = 12 and
N = 52-week rolling window horizons.

In Figure 13, we present the predicted asset correlations for the N-week rolling window horizons,
with N ∈ {12,52}. Starting with N = 12, we can observe that for each of the asset pairs, the
correlations oscillate between positive and negative values. An exception is the electricity and
natural gas pair for which the correlation is generally positive prior to the energy crisis, but then
begins to oscillate between positive and negative values thereafter. However, for N = 52, the
correlations are generally positive for each of the asset pairs considered, which therefore suggests
fewer estimated diversification benefits for larger window sizes.

In Figure 14, we present the optimized portfolio weights time series for each of the energy
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Figure 12: One-week-ahead Sharpe predictions.

(a) S&P 500.
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The weekly data spans June 1, 2015 – May 21, 2024, with a rolling window of 12 or 52 weeks. Vertical bars mark
three periods: normal (June 1, 2015 – March 12, 2020), COVID-19 (March 12, 2020 – February 24, 2022), and
Russia-Ukraine (February 24, 2022 – May 21, 2024).

futures as a function of both the window size and the imposed bounds. We can observe that the
constraints are often binding. This suggests that the bounds are preventing our model from taking
on excessively large positions, thus acting as a layer of security for investors20. In addition, we
can observe that for a given limit K, increasing the window size tends to decrease the variability of
the associated futures positions for each of the energy commodities, and therefore leads to more
stability and less turnover. However, larger window sizes are associated with slower reactions to
crisis events, potentially leading to under-reaction.

20Alternative objective functions to the Sharpe ratio that more directly capture the tail risk related to the energy
futures positions may also be considered, such as the Sortino ratio.
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Figure 13: One-week-ahead correlation predictions.

(a) (S&P 500, Electricity) correlation.
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The data is weekly from June 1, 2015, to May 21, 2024. The rolling window spans N = 12 or N = 52 weeks. Vertical
bars mark three periods: normal (June 1, 2015 – March 12, 2020), COVID-19 (March 12, 2020 – February 24, 2022),
and Russia-Ukraine (February 24, 2022 – May 21, 2024).
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3.4 Performance assessment
3.4.1 Out-of-sample

Performance is evaluated using a back-test, where the out-of-sample portfolio performance is
assessed on the period from June 1, 2015 to May 21, 2024. Data prior to June 1, 2015 is excluded
from the back-test to ensure a sufficient sample for computing the initial rolling window estimate of
the moments.

The results are assessed in terms of the annualized sample Sharpe and Sortino ratios, the
maximum drawdown, VaR(1%), and CVaR(1%). The annualized portfolio sample Sharpe ratio is
given by

√
52

µ̂
(W )√︃

1
N−1 ∑

N
t=1

(︂
R(W )

t − rt − µ̂
(W )
)︂2

,

where (R(W )
t − rt) denotes the portfolio excess return at time t and µ̂

(W ) = 1
N ∑

N
t=1(R

(W )
t − rt) is the

sample mean of portfolio excess returns computed out-of-sample from t = 1, . . . ,N. The annualized
portfolio sample Sortino ratio is defined as

√
52

µ̂
(W )√︃

1
N−1 ∑

N
t=11(R(W )

t −rt)<0

(︂
R(W )

t − rt

)︂2
,

such that 1A is an indicator variable equal to 1 if event A occurs and 0 otherwise. Finally, the
maximum drawdown for the portfolio is calculated as

max
t∈{1,...,N}

(︃
HWMt −Wt

HWMt

)︃
,

where the high-water mark is HWMt = max j∈{1,...,t}Wj. The maximum drawdown computes the
maximum observed loss from a peak to a trough over a time period.

3.4.2 Benchmarks

The performance of the optimized portfolio is evaluated against the following benchmark portfolios,
which are static investments in either (1) the S&P 500, (2) electricity, (3) crude oil, or (4) natural
gas. Without loss of generality, consider an initial wealth of W (S)

0 =W (i)
0 = 1. The wealth at time

t +1 for the S&P 500 static benchmark portfolio, denoted as W (S)
t+1, evolves according to

W (S)
t+1 =W (S)

t
St+1

St
,

whereas the wealth at time t +1 for the static ith energy futures benchmark portfolio, indicated as
W (i)

t+1, is governed by

W (i)
t+1 =W (i)

t (1+ rt+1)+W (i)
t

F(i)
t+1 −F(i)

t

F(i)
t

.
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As previously explained, since futures contracts do not require initial capital, the capital is therefore
held in a risk-free asset.

3.4.3 Results

In Figures 15 through 19, we present out-of-sample portfolio performance metrics for each of the
optimized portfolios, as well as for the benchmark portfolios. Performance metrics considered
include the annualized Sharpe and Sortino ratios, the weekly VaR(1%) and CVaR(1%), and the
maximum drawdown. We perform sensitivity tests with respect to the size of the rolling window
(i.e., using N ∈ {12,24,52} week window sizes) and to the limits imposed on the futures weights
during optimization (i.e., at K ∈ {5%,15%,50%} of nominal wealth).

Figure 15: Annualized Sharpe ratio.
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Three periods: normal (June 1, 2015 – March 12, 2020), COVID-19 (March 12, 2020 – February 24, 2022), and
Russia-Ukraine (February 24, 2022 – May 21, 2024).

In Figures 15 and 16, we display the annualized Sharpe and Sortino ratios for each portfolio,
across every period. We first look at the benchmark portfolios, which reflect the performance of
static positions in individual assets. Amongst these, the S&P 500 has the highest Sharpe and Sortino
ratios in absolute value over the full sample. Recall that short positions on futures can be used,
which justifies looking at the absolute value. Hence, a static investor selecting a single asset class
would be better served with the S&P 500.

However, the performance of the various assets fluctuates substantially across the different
periods. For example, the asset with the highest Sharpe and Sortino ratios in absolute value is
electricity during the normal period, crude oil during the COVID-19 period, and natural gas during
the Russia-Ukraine period (for the Sharpe ratio only). This highlights the importance of using a
dynamic portfolio strategy that adapts to fluctuating prospective return distributions, which may
thus yield superior risk-adjusted expected returns.

Both the position limit K and the window size N impact the performance of dynamic portfolios.
Regardless of the window size N, adopting more conservative bounds (i.e., K ∈ {5%,15%})
generally enhances the Sharpe and Sortino ratios compared to more aggressive bounds (i.e., K =
50%). Indeed, in almost all periods and for most window sizes N, the Sharpe ratio and Sortino
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Figure 16: Annualized Sortino ratio.
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ratios obtained using K = 50% are amongst the smallest. Furthermore, as highlighted in Figures
17, 18, and 19, the corresponding VaR(1%), CVaR(1%), and maximum drawdown also show
higher levels of risk when using K = 50%. We therefore choose to focus our remaining analysis
on K ∈ {5%,15%}. In either case, using K = 5% or K = 15%, the VaR(1%), CVaR(1%), and
maximum drawdown values in Figures 17, 18, and 19 indicate comparable tail risk.

With respect to the window size N, when market conditions suddenly change, shorter window
sizes can perform better by adjusting more quickly. For example, when transitioning from the
COVID-19 period to the Russia-Ukraine period, the corresponding Sharpe and Sortino ratios for the
N = 12 week portfolios are the highest; this can be seen by looking at the blue bars on the bottom
right sub-panels of both Figure 15 and Figure 16.

In Figures 17, 18, and 19 we show the VaR(1%), CVaR(1%), and maximum drawdown for the
various strategies. For any window size N, portfolios using K ∈ {5%,15%} exhibit VaR(1%),
CVaR(1%), and maximum drawdown metrics that are comparable to those of the S&P 500
benchmark across every period considered. This suggests that adding energy commodities does not
inherently increase the tail risk of the portfolio due to the diversification benefits achieved.
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Figure 18: CVaR(1%).
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Figure 17: VaR(1%).
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The portfolio wealth curves are displayed in Figure 20, which indicate how a dollar that is
initially invested in a portfolio grows over time. Relative to the S&P 500, the K ∈ {5%,15%}
portfolios consistently achieve higher relative wealth, thus indicating the robustness of our model in
relation to the window size used to estimate asset return moments. Moreover, in Panels (b), (c), and
(d), we can observe that the wealth curves are close together during the normal period, and only
begin to differentiate substantially during the COVID-19 crisis (onward). This implies that most
of the benefits of including energy futures are realized during the crisis periods, which is aligned
with the existing literature, which often finds that the greatest diversification benefits from energy
commodities occurs during turbulent periods. This finding, however, is retrospective. That is, using
our methodology, portfolio managers can only recognize a regime change after the fact, thereby
introducing a delay between the start of the new regime and its detection by the traders.
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Figure 19: Maximum drawdown.
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Figure 20: Portfolio wealth curves.

(a) Benchmark portfolio wealth curves.
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(b) Portfolio wealth curves with N = 12 weeks.
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The data is weekly from June 1, 2015, to May 21, 2024, with three periods: normal (June 1, 2015 – March 12, 2020),
COVID-19 (March 12, 2020 – February 24, 2022), and Russia-Ukraine (February 24, 2022 – May 21, 2024).
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3.5 Conclusion
The objective of this chapter is to revisit whether energy futures can add value to an equity portfolio
in light of recent data covering the COVID-19 pandemic and the Russia-Ukraine war, two crises that
have profoundly influenced the energy landscape. While previous works covering these crises have
focused primarily on the increased volatility and changing correlations during these crisis periods,
our paper builds upon existing literature by assessing the financial performance of equity portfolios
enhanced with energy futures. Moreover, while several studies omit electricity as a viable investment
opportunity, we also include electricity along with crude oil and natural gas. This paper proposes an
empirically-based mean-variance asset allocation strategy to enhance the risk-adjusted return profile
of a stock portfolio using energy futures. Our model has the ability to capture the non-stationary
dynamics inherent in the underlying data and adjust portfolio positions accordingly. Our results
demonstrate improvements in the out-of-sample Sharpe and Sortino ratios relative to the static S&P
500 benchmark portfolio in each period considered, particularly during crisis periods. Furthermore,
imposing moderate bounds on energy futures positions stabilizes allocations and substantially
reduces risk. Hence, despite the increased financialization of commodity markets in recent years,
energy futures can improve the out-of-sample risk-return performance of a conventional equity
portfolio. A contributing factor is the divergent behaviours of the various energy commodities
across the different periods and crises. For example, electricity and natural gas, which are highly
correlated in regular time periods, have opposite trends during the Russia-Ukraine conflict.
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4 On the use of quantile-regression-based DEXA phenotypes to
assess health risks

4.1 Introduction
According to the World Health Organization, as of 2022, 1 in 8 people globally are living with
obesity. In 2019, the obesity epidemic and its associated health risks caused an estimated 5 million
deaths from non-communicable diseases. The global costs of this epidemic are expected to hit US$ 3
trillion per year by 2030. The importance of accurately identifying patients at risk of obesity-related
health effects is thus paramount.

Using body mass index (BMI) as a proxy, obesity is generally defined as a BMI ≥ 30kg/m2.
However, BMI does not differentiate between muscle mass and fat mass, and its limitations are
well described in Rothman (2008); Frankenfield et al. (2001); Nuttall (2015). Dual energy X-ray
absorptiometry (DEXA) is thus often used for assessing body composition with higher precision as
it can differentiate between fat mass and muscle mass.

Following this approach, Prado et al. (2014) constructed fat and muscle mass phenotypes using
DEXA data from a representative sample of the US adult population. Simultaneously assessing
fat mass and muscle mass can help to identify nuanced health risks, thus allowing for better risk
stratification. For example, two individuals with the same BMI might have different fat-to-muscle
ratios, resulting in different health outcomes. Prado et al. thus developed four mutually exclusive
DEXA-derived phenotypes based on whether an individual was above or below the median of
DEXA-measured adiposity and muscle mass indices for their respective sex and age reference
curves. The lambda-mu-sigma methodology (LMS; Appendix C) used by Prado et al. has been
well-validated in the literature (Cole and Green (1992); Flegal and Cole (2013)) and was originally
developed to construct growth charts for children. However, previous work by Kakinami et al.
(2022) has shown that median-split phenotypes are not more effective than BMI at identifying
cardiometabolic risk.

These studies have some limitations. Using the medians of the fat-mass and muscle-mass
indices to construct the DEXA-derived phenotypes might be too simplistic. Additionally, the LMS
methodology does not capture the kurtosis, which is an important measure to help identify patients
lying in the tails of the distributions. Thus, a more rigorous exploration of the DEXA-derived
phenotype clustering space is needed. For instance, quantile regression may better capture the full
spectrum of the data distribution, including the tail behavior. Lastly, these studies only focus on
metabolic risk factors, such as cardiovascular disease and diabetes. However, in Dixon (2010),
obesity has been shown to have an effect upon various health outcomes, including physical and
mental health, quality of life, and comorbidities. The consideration of other health risks must
therefore be investigated, as the effects of obesity on health are widespread. The objective of this
study was thus to develop a DEXA-derived phenotype classification system that:

• captures kurtosis,

• and considers additional centile cut-offs beyond the median.

We then compare the performance of our models to standard adiposity measures, such as BMI and
waist circumference. This study focused on metabolic syndrome as the primary health outcome,
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but additionally assessed other health risks, such as depression, sleep disorders, general health,
instrumental activities of daily living, and comorbidities.

The remainder of this chapter is organized as follows. In Section 4.2, we describe the data. In
Section 4.3, we present the different exposures. In Section 4.4, we introduce the health outcomes. In
Section 4.5, we outline the covariates. In Section 4.6, we provide model specifications. In Section
4.7, we detail the diagnostic accuracy metrics used in this study. Section 4.8 is a statistical analysis.
In Sections 4.9 and 4.10, we report on our findings together with a related discussion. In Section
4.11, we conclude.

4.2 Description of the data
Data was from the 2011-2018 waves of the National Health and Nutrition Examination Survey
(NHANES). NHANES was designed to evaluate the health and nutritional status of both children
and adults using a cross-sectional representative sample of the US general population, combining
both interviews and physical examinations (NHANES (2024); Curtin et al. (2012)). The first stage
in the complex survey design consisted of selecting primary sampling units (PSUs), which were
selected with a probability in proportion to a measure of size (PPS). The measure of size (MOS)
is a weighted average of population counts. The weights give a higher probability of selection to
PSUs containing larger proportions of demographic subgroups that were selected for oversampling
(where oversampling was used to increase the reliability and precision of estimates of health status
indicators for population subgroups identified by NHANES). In the second stage, the sampled PSUs
were divided into segments, which were selected with PPS. In the third stage, dwelling units within
each segment were listed and then randomly sampled. In the fourth and final stage, individuals
from a list of all people residing in the selected dwelling units were randomly sampled. Each
annual sample is nationally representative. However, due to time and cost constraints, NHANES
can only survey a relatively small number of participants per year. Single-year data might thus lead
to unstable parameter estimates and may further increase the possibility of patient disclosure, hence
data is publicly released according to a two-year cycle. As previously discussed, the participants in
NHANES have an unequal probability of selection, with an additional adjustment for sample person
non-response. Sample weights were thus used to produce unbiased national estimates. Participants
provided written consent; the study was approved by the National Center for Health Statistics’
institutional review board.

The data was filtered according to the pipeline depicted in the flowchart in Figure 21. As the
Prado et al. methodology identified phenotypes exclusively among adults, participants below the
age of 20 were excluded. The 2011-2018 waves of NHANES include 39156 participants, of which
4426 were retained for our study.
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Start

Input: NHANES 2011-2018 (N = 39,156)

Age < 20: (N = 16,539 excluded)

DXA contraindications:
Weight > 136kg, Height > 196cm
(N = 1,787 excluded)

Missing DEXA data:
(N = 10,622 excluded)

Missing adiposity measures:
(N = 67 excluded)

Missing Metabolic Syndrome ID:
(N = 5,715 excluded)

Output: Analytic sample (N = 4,426 retained)

Figure 21: Flowchart of exclusions for the analytic study sample, NHANES (2011-2018)

4.3 Measures
4.3.1 Exposures

To obtain lean and fat mass, a whole body DEXA scan (Hologic QDR 4500A) was used. To
ensure the quality of the DEXA scans administered at the NHANES mobile examination centers,
the Hologic Anthropomorphic Spine Phantom was scanned daily for accurate calibration of the
densitometer (CDC and NCHS (2021)). The fat mass index (FMI) and appendicular skeletal mass
index (ASMI) were computed by dividing the DEXA-measured fat and appendicular skeletal mass
(i.e. lean soft tissue from the arms and legs) in kilograms, respectively, by the square of the height
in meters (Heymsfield et al. (1990); Hattori et al. (1997)).

Trained examiners measured waist circumference (in cm) in accordance with standard procedures.
Height (cm) and weight (kg) were measured using a stadiometer and an electronic digital scale,
respectively. BMI (kg/m2) and waist-to-height ratio were calculated with these measured values
(Ashwell et al. (2012)). Total percent fat (%) was determined using DEXA data.
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4.4 Health outcomes
4.4.1 Metabolic syndrome

Cardiometabolic risk factors include high-density lipoprotein (HDL, mg/dl), triglycerides (TG,
mg/dl), fasting plasma glucose (FPG, mg/dl), and blood pressure expressed as systolic and diastolic
pressures (mmHg).

As described in the NHANES laboratory procedures manual (NHANES (2016)), a phlebotomist
used venipuncture to obtain blood samples from participants in the mobile examination centers,
which were then transported to Johns Hopkins University Lipoprotein Analytical Laboratory for
analysis. Serum samples were stored at -20 °C until being shipped, or at -80 °C if they were stored
for over a month. Fasting plasma glucose was measured using a hexokinase enzymatic method
in a central laboratory. Systolic and diastolic blood pressure (SBP and DBP, respectively) were
measured on the participant’s right arm using a sphygmomanometer after spending 5 minutes in a
resting, seated position. Since multiple SBP and DBP readings were recorded, details on how the
averages were calculated are available in the documentation on the NHANES website.

The criteria for metabolic syndrome (MetS), according to the National Cholesterol Education
Program (NCEP) guidelines, requires that participants present with at least three of the following
factors: waist circumference > 88cm for females or > 102cm for males, blood pressure ≥
135mmHg (systolic) or ≥ 85mmHg (diastolic), TG ≥ 150mg/dl, HDL < 50mg/dl for females
or < 40mg/dl for males, or FPG ≥ 100mg/dl (Miller et al. (2014)).

4.4.2 Depression

Mental-health-related questionnaire data was obtained from the mental health depression screener
(DPQ). The following nine symptoms from the DPQ questionnaire were used for this health outcome:
(1) have little interest in doing things, (2) feeling down, depressed, or hopeless, (3) trouble sleeping
or sleeping too much, (4) feeling tired or having little energy, (5) poor appetite or overeating, (6)
feeling bad about yourself, (7) trouble concentrating on things, (8) moving or speaking slowly or
too fast, and (9) thought you would be better off dead. For each symptom, points range from 0
to 3, corresponding to not at all, several days, more than half the days, and nearly every day. A
score ≥ 10 was used to identify those with major depression in accordance with guidelines that
demonstrate this has a sensitivity and specificity of 88% (Kroenke et al. (2001)).

4.4.3 Short sleep

The sleep hours variable from the sleep disorders questionnaire was used for this health outcome.
Participants self-reported their average amount of sleep during workdays, in hours. Short sleep was
defined as less than 6 hours per night (Beccuti and Pannain (2011)).

4.4.4 General health

The general health condition of a participant was obtained through the current health status
questionnaire, and was further dichotomized for modeling purposes. We created two categories
to represent high and low general health conditions: excellent, very good, and good factor levels
correspond to high, whereas fair and poor correspond to low (Reichmann et al. (2011)).
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4.4.5 Physical functioning

We used the activities of daily living (ADL) and the instrumental activities of daily living (IADL)
from the physical functioning questionnaire to assess a participant’s physical functioning (Jindai
et al. (2016)). The ADL domain includes the following functional limitations: (1) getting in and
out of bed, (2) using a fork or knife; or drinking from a cup, (3) walking between rooms on the
same floor, and (4) dressing yourself. The IADL domain includes: (1) house chores, (2) managing
money, and (3) preparing meals. Responses were coded as 0 if the participant reported performing
an activity with no difficulty; responses were coded as 1 if the participant reported some difficulty,
much difficulty, or unable to do. For each of the ADL and IADL domains, a response equal to
1 in any of the associated functional limitations was interpreted as corresponding to a physical
functioning deficiency (Jindai et al. (2016)).

4.4.6 Comorbidities

We examined the presence of comorbidities (i.e., presenting with two or more illnesses) amongst
the sample participants (King et al. (2018)). In the medical conditions questionnaire, we included
the following yes/no items: doctor ever said you had (1) asthma, (2) arthritis, (3) gout, (4) thyroid
problems, (5) liver conditions, (6) cancer or malignancy, (7) cardiovascular disease or CVD (which
includes congestive heart failure, coronary heart disease, angina pectoris, heart attack or stroke),
and (8) chronic obstructive pulmonary disease or COPD (which includes emphysema or chronic
bronchitis). The presence of at least two medical conditions was necessary to receive a positive
comorbidity classification.

4.5 Covariates
4.5.1 Demographic characteristics

Sex, ethnicity, marital status, and education level were self-reported during the interview section of
the NHANES survey. The ratio of family income to poverty was calculated based on self-reported
previous year’s household income according to the Department of Health and Human Services
guidelines, with adjustments for household size, geographic location, and inflation.

4.6 Model specification
4.6.1 Median-split phenotypes

Using the LMS methodology described in Cole and Green (1992); Flegal and Cole (2013), Prado
et al. developed four mutually exclusive phenotypes based on whether an individual was above or
below the median of DEXA-measured adiposity and muscle mass indices for their respective sex
and age reference curves: high-adiposity, high-muscle (HAmedian-HMmedian, ≥ 50th centile FMI
and ≥ 50th centile ASMI), high-adiposity, low-muscle (HAmedian-LMmedian, ≥50th centile FMI and
< 50th centile ASMI), low-adiposity, high-muscle (LAmedian-HMmedian, < 50th centile FMI and ≥
50th centile ASMI), and finally low-adiposity, low-muscle (LAmedian-LMmedian, < 50th centile FMI
and < 50th centile ASMI).
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4.6.2 Quantile regression phenotypes

As an extension to ordinary least squares regression, quantile regression was used to robustly
estimate the conditional quantile of a response variable, across different values of the predictor
variables. It has been used, for example, to develop growth charts to help identify abnormal growth.
The τth conditional quantile of a random variable Y given a K-dimensional random vector X is
defined as

QY |X = inf{y : FY |X(y)≥ τ},

where FY |X(·) denotes a conditional cumulative distribution function (CDF). In the case of quantile
regression, the τth conditional quantile is expressed as a linear function of the form

QY |X = Xβτ ,

for some K-dimensional parameter vector βτ . The optimal set of parameters can be obtained by
solving

βτ = argmin
β∈RK

E[ρτ(Y,Xβ )],

where ρτ is the pinball loss function, defined as

ρτ(y, ŷ) =

{︄
(y− ŷ)τ, if y ≥ ŷ
(ŷ− y)(1− τ), otherwise

where y is the realization of the random variable Y and ŷ is the quantile forecast. We can then
replace the theoretical expectation with the empirical mean computed using the observed data,
{(yi,xi)}n

i=1, to estimate

βββ̂ τ = argmin
β∈RK

1
n

n

∑
i=1

ρτ

(︁
yi,x⊤i β

)︁
.

As a first step, hyperparameter tuning was used to select an adequate set of sex-, ethnicity-, and
age-stratified lower and upper centile cut-offs (that is, conditional quantiles) in order to construct
the DEXA-derived phenotypes. The 25% and 75% centiles were selected as the cut-offs for both
the FMI and ASMI indices to ensure a reasonable number of observations in each phenotype.
The resulting DEXA-derived phenotypes will be referred to hereafter as quantile regression (QR)
phenotypes.

4.7 Diagnostic accuracy metrics
Several metrics can be used to address the merits of a diagnostic test (Šimundić (2009)). The
sensitivity of a diagnostic test is the proportion of true positive subjects with the disease amongst
the total group of subjects with the disease. This can be interpreted as the probability of obtaining a
positive test result (T+), given that the subject has the disease (D+), or (T+ |D+). On the other hand,
the specificity of a diagnostic test is the proportion of true negative subjects without the disease
amongst the total group of subjects without the disease. This can be understood as the probability of
getting a negative test result (T-), given that the subject does not have the disease (D-), or (T- |D-).
Sensitivity and specificity do not depend upon disease prevalence.
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From a clinical standpoint, however, the point of view taken by physicians for the purpose of
diagnosis is the presence/absence of disease given a positive/negative test result, that is: (D+ |T+)
and (D- |T-). The predictive values are thus of greater interest (Baeyens et al. (2019)). The positive
predictive value (PPV) is the probability that a subject has the disease, given a positive test result,
or (D+ |T+). The negative predictive value (NPV) is the probability that a subject does not have
the disease, given a negative test result, or (D- |T-). Unlike sensitivity and specificity, however,
predictive values depend upon disease prevalence. PPV increases with higher prevalence, whereas
NPV is decreasing.

A metric that is both clinically relevant and independent of disease prevalence is thus ideal. We
therefore additionally considered the likelihood ratio. The positive likelihood ratio (LR+) refers to
how many times more likely it is to obtain a positive test result amongst subjects with the disease,
relative to those without, or (T+ |D+)/(T+ |D-). LR+ is a good indicator for ruling-in a disease, with
larger values providing greater diagnostic ability (i.e. strong diagnostic tests have LR+ > 10). LR+
can also be expressed as sensitivity/(1-specificity). Conversely, the negative likelihood ratio (LR-)
tells us how likely it is to get a negative test result amongst subjects with the disease, relative to
those without, or (T- |D+)/(T- |D-). LR- is a good indicator for ruling-out a disease, with lower
values giving us increased diagnostic ability (i.e. strong diagnostic tests have LR- < 0.1). LR-
can also be defined as (1-sensitivity)/specificity. In general, likelihood ratios equal to 1 are not
diagnostic.

4.8 Statistical analysis
Statistical analyses were performed using R and packages survey, srvyr, and quantreg. The
complex survey design accounts for sampling weights, primary sampling units, as well as strata.
The quantile regression and logistic regression models were trained using the in-sample training set,
consisting of the NHANES waves 2011-2016 (n = 3,524). Performance was then assessed using the
NHANES waves 2017-2018 (n = 902) as an out-of-sample validation set. In addition to this, the
quantile regression model further incorporated bootstrapped replicates. The predicted quantiles were
used to segment the FMI/ASMI coordinate space into nine distinct phenotypes, while controlling
for age, gender, and race. The FMI/ASMI distributions are graphically presented using histograms,
whereas the resulting QR phenotype clusters are displayed with scatterplots. We additionally looked
at the overlap between the AvgAQR-AvgMQR phenotype with the median-split phenotypes in a
profile analysis, and compared the adiposity profiles amongst the patients in the overlapping regions.
This analysis was performed to assess whether the median-split model incorrectly classified patients
with similar adiposity profiles into different phenotypes. After constructing the QR phenotypes,
these clusters were then used to predict the presence of the health outcome of interest by means of
logistic regression. The logistic regression model can be defined as:

log
P(Y = 1|X)

P(Y = 0|X)
= Xβ , (11)

such that the β coefficients correspond to the log-odds. The odds ratios are then given by
exp(β ). An odds ratio can be interpreted as the odds of disease for exposed

odds of disease for unexposed , such that the odds of

an event is given by P(event)
1−P(event) . In the case of a single categorical predictor, the reference group

is unexposed. Performance was then assessed using LR+ and LR-, and AIC. Additional health
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outcomes, including depression, short sleep, general health, physical functioning, and comorbidities
were also investigated. Finally, the predictive power of other adiposity measures was explored,
including BMI, waist circumference, and total fat %.

4.9 Results
4.9.1 Descriptive statistics

Descriptive statistics did not vary significantly across the in-sample (NHANES 2011-2016) and
out-of-sample (NHANES 2017-2018) datasets (data not shown). In Table 1, the weighted descriptive
statistics for NHANES 2011-2016 and 2017-2018 are provided. In either dataset, the LAQR-LMQR
group is characterized by the lowest BMI, lean mass index (i.e., ASMI / squared height, in kg/m2,
as outlined in Minetto et al. (2021)), and waist circumference. In contrast, the HAQR-HMQR
group exhibits the highest BMI, lean mass index, and waist circumference; and is predominantly
female. Additionally, the LAQR-HMQR group stands out for its relatively higher levels of education,
suggesting potential socioeconomic differences across the groups.

Recall that the lower and upper centile cut-offs for the QR phenotypes were respectively set
at 25% and 75% (Table 14). For the purpose of illustration, the LAQR-LMQR phenotype has FMI
and ASMI values that both fall below the 25% centile cut-offs; the AvgAQR-AvgMQR phenotype
has FMI and ASMI values that both fall between the 25% and 75% centile cut-offs; and the
HAQR-HMQR phenotype has FMI and ASMI values that both fall above the 75% centile cut-offs.

Figure 22 illustrates the overlap between the QR and median-split phenotypes in a representative
sub-sample from NHANES 2011-2016 and 2017-2018. The scatter plots show a positive association
between ASMI and FMI, where increased fat mass is often accompanied by increased muscle
mass (and vice versa). The profile analysis (Table 15) provides further context; the majority of the
patients classified as AvgAQR-AvgMQR by the QR model are in the two extremes of the median-split
phenotypes (i.e. LAmedian-LMmedian and HAmedian-HMmedian).

4.9.2 Model fit and performance

Based on in-sample AIC, the BMI model was optimal for MetS, general health, and IADL, while
the WC model was best for depression, short sleep, and comorbidity (Table 16). Examining
out-of-sample performance, the BMI and WC models tend to have the optimal LR+ and LR- values.
The QR model generally shows a better (lower) AIC than the median-split model across outcomes,
except for short sleep and IADL. Out-of-sample, the QR model has a better (higher) LR+ than the
median-split model for MetS and comorbidity (with short sleep being ambiguous, as both models
show LR+ values ≤ 1). However, the QR model consistently underperforms in LR- compared to
the median-split model (with short sleep again ambiguous as LR- ≥ 1 for both models).

4.10 Discussion
Comparing the QR model to the median-split model, we find that the QR model generally has a better
in-sample fit than the median-split model for most outcomes, except short sleep and IADL. As the
data is densely populated close to the center, the median-split model thereby assigns nearby points
to different classes. Indeed, for points close to the center, the differences in adiposity measures
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across the median-split phenotypes are minimal, both in- and out-of-sample, thus underscoring a
limitation of the median-split model. Previous studies by Rousseeuw and Hubert (2011); Huber and
Ronchetti (2011) have discussed the trade-off between the robustness and efficiency of the median.
The efficiency trade-off implies that when the data are densely concentrated, the median may fail to
detect differences between nearby points, which can potentially result in less reliable boundaries for
the phenotypes. In contrast, the QR model mitigates this inconsistency. For instance, it defines its
AvgAQR-AvgMQR phenotype to encompass data points that, under Prado’s classification, would fall
into various phenotype categories. Nevertheless, as the data become sparser further from the center,
the discrepancies between the QR and median-split models diminish. Future work may therefore
address whether having the nine phenotypes identified using the QR model is necessary, or whether
there exists an optimal number of phenotypes falling somewhere between four (as suggested in the
median-split model) and nine.

In addition, the QR model has relatively larger out-of-sample LR+ values for METS and
co-morbidity, thus indicating a relative strength in confirming these health outcomes. However, the
median-split model achieves better out-of-sample LR- values, hence indicating an advantage in
ruling out these outcomes compared to the QR model. The trade-off between the LR+ and LR- values
are a direct consequence of the way in which the thresholds are set when constructing the phenotypes.
That is, the higher specificity (fewer false positives) of the QR model comes at the expense of
reduced sensitivity (more false negatives), thereby improving the LR+ but deteriorating the LR-. To
help make this point clear, consider the generic HA-HM phenotype as an example. The QR model
uses the 75% centiles as cut-offs, whereas the median-split model uses the medians. The higher
threshold imposed by the QR model results in fewer patients being classified as HAQR-HMQR
relative to HAmedian-HMmedian, which ultimately results in fewer false positives but more false
negatives when predicting the associated health outcomes. The relative importance of LR+ versus
LR- is contingent upon the clinical context, as well as on the primary goal of the diagnostic test
(Jaeschke et al. (1994)). For example, if the goal is to ensure that the patients identified as high-risk
are indeed more likely to have the disease, as in the case of high-risk treatments, then a higher LR+
is preferable. Conversely, if there is substantial danger in leaving the target disease undiagnosed
and therefore untreated, then a lower LR- is advantageous, even if it means treating the disease
unnecessarily in some patients. In this context, whether higher LR+ or lower LR- is more important
is nevertheless unclear and therefore requires further investigation.

Our study suggests that the HAQR-HMQR phenotype is associated with higher metabolic and
general health risks. In addition, we find that the LAQR-HMQR phenotype may act as a protective
factor. This highlights the importance of using body composition profiles to enhance the evaluation
of health risks. For example, in Zamboni et al. (2008), high fat mass accompanied by low muscle
mass has been shown to contribute to disability, morbidity, and mortality, especially in older adults.

The BMI and WC models consistently demonstrate the best in-sample fit and out-of-sample
performance among the models evaluated. However, while BMI and WC may perform well overall,
they are likely to misclassify certain groups, as discussed in Nuttall (2015); Ode et al. (2007);
Zamboni et al. (2008); Després (2012). In the elderly, for example, sarcopenia can result in
ambiguous BMI values, while athletes with high lean mass can have an elevated BMI despite their
low body fat levels. In addition, BMI cutoffs may not be widely applicable across different racial
and ethnic sub-populations. Hence, although QR may not outperform BMI and WC in general, it
could potentially be better in specific demographics where these traditional measures are prone to
fail. Future work addressing this issue is therefore needed.
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As an alternative to DEXA, other methods to assess body composition or adiposity should be
explored, such as magnetic resonance imaging (MRI), computed tomography (CT), three-dimensional
optical imaging (3DO), ultrasound, and bioelectrical impedance analysis (BIA), to list a few.
However, as explained in Lukaski (1987); Tewari et al. (2018); Thomas et al. (2025), there are
many considerations that must be taken into account when selecting a method for measuring body
composition, such as cost, portability, safety, and accuracy. For example, BIA is more cost-effective
relative to DEXA, is safe for all populations, but has nevertheless been shown to underestimate
fat-free mass. In the case of CT scans, their relatively higher levels of radiation exposure limits their
use to patients with illness. An interesting alternative is the smartphone camera, which is relatively
inexpensive, safe, portable, and agrees well with DEXA when used in conjunction with machine
learning models.

This study is not without limitations. The HAQR-LMQR and LAQR-HMQR phenotypes had
limited representation, containing a relatively small number of patients. Hence, despite NHANES
being a large representative sample of the US adult population, focusing on a larger sample
with more people at the extremes would help to better validate performance in the tails of the
distribution. Moreover, as an alternative to using quantile regression, clustering techniques could
also be used to generate DEXA-derived phenotypes. The machine learning literature includes
several different approaches, such as K-means clustering. However, compared to quantile regression,
clustering models are often more sensitive to outliers, which can distort both cluster assignments
and the resulting group structure (Nowak-Brzezińska and Gaibei (2022); Abdussamad and Inayat
(2024)). The cross-sectional design used in our study further limits our ability to establish causality.
Longitudinal studies would therefore be required for causal inference and to determine whether
changes in phenotypes can predict health outcomes (Prado et al. (2014)). Other adiposity metrics
might also be explored. For example, a prior study by Woolcott and Bergman (2018) used a
sex-stratified linear combination of the height-to-waist circumference to predict whole-body fat
percentage, resulting in improved accuracy relative to BMI. Lastly, this study focused on adults at
least 20 years of age. Moreover, the maximum age observed in our sample is 80 years. The results
of our study cannot therefore be extended to the general US population, particularly to younger and
older age groups. Thus, further research is needed to better understand the risks faced by vulnerable
subpopulations, such as older adults, where sarcopenia and sarcopenic obesity are known to have
harmful health effects (Wannamethee and Atkins (2015)).

4.11 Conclusion
In this paper, we used quantile regression as an alternative to the LMS methodology to construct
DEXA-derived phenotypes, as it was better suited to capture high-risk or atypical patients. The QR
model was more effective than the median-split model in correctly identifying patients with MetS
and comorbidities; but it underperformed in identifying individuals without these conditions. The
BMI and WC models consistently demonstrated the best overall performance among the models
evaluated. However, even though QR may not outperform BMI and WC in general, whether it
could be better among vulnerable subpopulations should be explored. Whether the classification
performances diverge in longitudinal studies should also be investigated.
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Table 14: QR phenotypes, based on FMI and ASMI.

FMI LCF FMI UCF ASMI LCF ASMI UCF QR phenotype
− − − − LA-LM
+ − − − AvgA-LM
+ + − − HA-LM
− − + − LA-AvgM
+ − + − AvgA-AvgM
+ + + − HA-AvgM
− − + + LA-HM
+ − + + AvgA-HM
+ + + + HA-HM

Notes: Data was from NHANES (2011-2018). FMI LCF is the lower centile cut-off for the FMI index, FMI UCF is the
upper centile cut-off for the FMI index, ASMI LCF is the lower centile cut-off for the ASMI index, and ASMI UCF is
the upper centile cut-off for the ASMI index. LA is low-adiposity, AvgA is average adiposity, HA is high adiposity, LM
is low muscle mass, AvgM is average muscle mass, and HM is high muscle mass. For ease of visual representation, −
is used to denote < and + is used to denote >.

Table 15: Profile analysis of the AvgAQR-AvgMQR phenotype.

NHANES 2011-2016
Median-split phenotypes

NHANES 2017-2018
Median-split phenotypes

Adiposity measures LA-HM
(N = 87)

HA-HM
(N = 249)

HA-LM
(N = 82)

LA-LM
(N = 230)

LA-HM
(N = 16)

HA-HM
(N = 51)

HA-LM
(N = 14)

LA-LM
(N = 50)

BMI 27 29 28 26 28 29 28 26
Waist circumference, cm 96 101 100 92 95 104 99 94
Waist-to-height 0.54 0.57 0.57 0.53 0.54 0.59 0.57 0.54
Lean mass index, kg/m2 20 20 19 18 21 20 19 19

Notes: In-sample and out-of-sample profile analysis of the adiposity measures for the AvgAQR-AvgMQR phenotype,
bucketed in terms of the median-split phenotypes.
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Figure 22: QR and median-split phenotype clusters.

(a) NHANES 2011-2016.
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(b) NHANES 2017-2018.
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Notes: The vertical bars correspond to the 25% and 75% sample quantiles for the FMI index, whereas the horizontal
bars correspond to the 25% and 75% sample quantiles for the ASMI index. For purposes of demonstration, we illustrate
the overlap between the QR and median-split phenotypes for white males between the ages of 20 and 60 years, as this
corresponds to our largest sub-group.
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Table 16: Model comparison for health outcomes.

QR Median-split BMI WC Total fat %
NHANES 2011-2016: AIC

MetS 13613 13768 *12814 12976 13778
Depression 6120 6150 6124 *6115 6130
Short Sleep 8416 8407 8397 *8381 8400
General Health 9395 9496 *9336 9384 9456
IADL 2696 2685 *2664 2675 2681
Co-morbidity 8520 8533 8512 *8413 8476

NHANES 2017-2018: LR+
MetS 2.19 1.82 *2.62 2.57 1.46
Depression 1.14 1.33 1.36 *1.45 1.15
Short Sleep 1.00 0.90 *1.09 0.98 0.97
General Health 1.28 1.52 *1.68 1.59 1.22
IADL 0.93 1.17 1.05 *1.20 1.10
Co-morbidity *1.65 1.43 1.56 1.46 1.15

NHANES 2017-2018: LR-
MetS 0.64 0.44 0.44 *0.19 0.21
Depression 0.90 0.67 0.77 *0.58 0.64
Short Sleep 1.00 1.11 *0.94 1.02 1.07
General Health 0.81 0.74 0.63 *0.53 0.53
IADL 1.04 0.90 0.89 0.76 *0.70
Co-morbidity 0.83 0.77 0.67 *0.59 0.64

Notes: The QR model reference group = AvgA-AvgM. The median-split model reference group = LA-HM. The BMI
model reference group = normal. The WC model reference group = normal. The Total fat % model reference group =
normal. The optimal values for each health outcome are displayed with an asterisk, that is lowest AIC, highest LR+,
lowest LR-.
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5 Conclusion
In chapter 2, we propose a method to forecast the distribution of electricity DART spreads, which
are characterized by negative and positive spikes, seasonal behaviors, and complex dependencies on
various covariates. A three-regime mixture model is developed and spike regimes are modeled using
a Generalized Pareto Distribution. Both the frequency and severity components of the mixture model
depend on covariates, whereby in-sample nested model comparisons reveal that their inclusion in the
severity component is more critical. Using SAGE, we find that natural gas futures prices have the
largest (relative) impact on model fit; moreover, regularization improves out-of-sample performance.
In addition, the neural-network-based quantile regression benchmark fails to outperform the mixture
model on the test set, which thus highlights that the improved interpretability of our model does not
come at the expense of accuracy. Future areas of investigation include: (1) assessing the model’s
robustness to alternative data sets and (2) modeling the joint distribution between multiple zones,
which can be used to construct locational differential trading strategies.

In chapter 3, we revisit whether energy futures can add value to an equity portfolio, taking into
account the effects of the COVID-19 pandemic and the Russia-Ukraine war, which have profoundly
impacted the energy sector. In the literature, many papers that study the effects of these crises
focus on volatility and correlations, whereas we additionally assess the financial performance of
equity portfolios enhanced with energy futures. Although many studies omit electricity as an
investment opportunity due to its complex price dynamics, we include it alongside crude oil and
natural gas. We therefore propose an empirically-based mean-variance asset allocation strategy to
enhance the risk-adjusted return profile of an equity portfolio using energy futures. Our model can
dynamically adjust to changing market conditions, and our results demonstrate an improvement
in the out-of-sample Sharpe and Sortino ratios relative to the static S&P 500 benchmark portfolio,
specifically during crisis periods. In addition, imposing moderate bounds on energy futures positions
helps stabilize allocations and reduces risk. Despite the increased financialization of commodity
markets, energy futures can improve the out-of-sample risk-return performance of a traditional
equity portfolio. A contributing factor is the divergent behaviour of the various energy commodities
in different periods. For example, electricity and natural gas, which are strongly correlated in regular
time periods, show opposite trends during the Russia-Ukraine war. Future areas of investigation
include: (1) using explanatory variables to improve forecasts of expected returns, volatilities, and
correlations and (2) exploring additional energy commodities, such as wind and solar.

In chapter 4, we use quantile regression (QR) as an alternative to the LMS methodology
to construct DEXA-derived phenotypes, as it is better suited to capture higher moments in the
underlying data. The QR model generally shows a better (lower) AIC than the median-split model
across health outcomes. Out-of-sample, the QR model has a better (higher) LR+ (positive likelihood
ratio) than the median-split model for MetS and comorbidity. However, the QR model consistently
underperforms in LR- (negative likelihood ratio) compared to the median-split model. Overall,
the BMI (body mass index) and WC (waist circumference) models consistently demonstrate
the best in-sample fit and out-of-sample performance among the models evaluated. Although
QR may not outperform BMI and WC in general, it could potentially be better among certain
subpopulations. This therefore needs to be explored more fully in future work. Whether the
classification performances diverge in longitudinal studies should also be investigated.

This collection of manuscripts highlights the importance of understanding tail risks and extreme
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events in a variety of domains, ranging from risk and portfolio management to epidemiology. Across
these different contexts, we show the importance of accounting for nonlinear, non-Gaussian data that
exhibit regime changes and structural breaks. Using flexible methodologies such as mixture models,
dynamic asset allocation, and quantile regression, our studies demonstrate the value added from
being able to model rare but critical events that impact real-world dynamics. Despite the different
use cases considered, an overarching theme emerges: the ability to generate distributional forecasts
and model extreme events, while accounting for potential structural breaks in the data, is necessary
for informed decision making under uncertainty. Whether we are trying to hedge a financial position,
improve the risk-adjusted performance of a portfolio, or develop targeted interventions in vulnerable
sub-populations, we need to account for tail risk. Future work would benefit from the continued
exploration of dynamic and interpretable statistical models to help guide critical decision making.

59



References
Abdussamad, A. M. and Inayat, A. (2024). Addressing limitations of the K-means clustering

algorithm: Outliers, non-spherical data, and optimal cluster selection. AIMS Math,
9:25070–25097.

Adams, Z., Collot, S., and Kartsakli, M. (2020). Have commodities become a financial asset?
Evidence from ten years of financialization. Energy Economics, 89:104769.

Adekoya, O. B. and Oliyide, J. A. (2021). How COVID-19 drives connectedness among commodity
and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques. Resources
Policy, 70:101898.

Afrasiabi, M., Aghaei, J., Afrasiabi, S., and Mohammadi, M. (2022). Probability density function
forecasting of electricity price: Deep Gabor convolutional mixture network. Electric Power
Systems Research, 213:108325.

Ashwell, M., Gunn, P., and Gibson, S. (2012). Waist-to-height ratio is a better screening tool
than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and
meta-analysis. Obesity Reviews, 13(3):275–286.

Baeyens, J.-P., Serrien, B., Goossens, M., and Clijsen, R. (2019). Questioning the “SPIN and
SNOUT” rule in clinical testing. Archives of Physiotherapy, 9:1–6.

Baker, S. D. (2021). The financialization of storable commodities. Management Science,
67(1):471–499.

Basak, S. and Pavlova, A. (2016). A model of financialization of commodities. The Journal of
Finance, 71(4):1511–1556.

Beccuti, G. and Pannain, S. (2011). Sleep and obesity. Current Opinion in Clinical Nutrition &
Metabolic Care, 14(4):402–412.

Belousova, J. and Dorfleitner, G. (2012). On the diversification benefits of commodities from the
perspective of Euro investors. Journal of Banking & Finance, 36(9):2455–2472.

Benth, F. E., Kallsen, J., and Meyer-Brandis, T. (2007). A non-Gaussian Ornstein–Uhlenbeck
process for electricity spot price modeling and derivatives pricing. Applied Mathematical Finance,
14(2):153–169.

Bessler, W. and Wolff, D. (2015). Do commodities add value in multi-asset portfolios? An
out-of-sample analysis for different investment strategies. Journal of Banking & Finance,
60:1–20.

Bhardwaj, G., Gorton, G., and Rouwenhorst, G. (2015). Facts and fantasies about commodity
futures ten years later. Technical report, National Bureau of Economic Research.

Bishop, C. M. (1994). Mixture density networks. Neural Computing Research Group Report:
NCRG/94/004, Aston University. Available at https://publications.aston.ac.uk/id/
eprint/373/1/NCRG_94_004.pdf.

60

https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf
https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf


Borgards, O., Czudaj, R. L., and Van Hoang, T. H. (2021). Price overreactions in the commodity
futures market: An intraday analysis of the COVID-19 pandemic impact. Resources Policy,
71:101966.

Brusaferri, A., Matteucci, M., Ramin, D., Spinelli, S., and Vitali, A. (2020). Probabilistic day-ahead
energy price forecast by a mixture density recurrent neural network. In 2020 7th International
Conference on Control, Decision and Information Technologies (CoDIT), pages 523–528.

Carmona, R. (2015). Financialization of the commodities markets: A non-technical introduction.
Commodities, Energy and Environmental Finance, pages 3–37.

CDC and NCHS (2021). Technical Documentation for the 1999-2004 Dual-Energy X-Ray
Absorptiometry (DXA) Multiple Imputation Data Files.

Cheng, I.-H. and Xiong, W. (2014). Financialization of commodity markets. Annual Reviews of
Financial Economics, 6(1):419–441.

Cheung, C. S. and Miu, P. (2010). Diversification benefits of commodity futures. Journal of
International Financial Markets, Institutions and Money, 20(5):451–474.

Chishti, M. Z., Khalid, A. A., and Sana, M. (2023). Conflict vs sustainability of global energy,
agricultural and metal markets: A lesson from Ukraine-Russia war. Resources Policy, 84:103775.

Christoffersen, P. and Pan, X. N. (2018). Oil volatility risk and expected stock returns. Journal of
Banking & Finance, 95:5–26.

Cole, T. J. and Green, P. J. (1992). Smoothing reference centile curves: the lms method and
penalized likelihood. Statistics in Medicine, 11(10):1305–1319.

Covert, I., Lundberg, S. M., and Lee, S.-I. (2020). Understanding global feature contributions
with additive importance measures. Advances in Neural Information Processing Systems,
33:17212–17223.
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multimorbidity and functional limitations among adults 65 or older, NHANES 2005–2012.
Preventing Chronic Disease, 13.

Kakinami, L., Plummer, S., Cohen, T. R., Santosa, S., and Murphy, J. (2022). Body-composition
phenotypes and their associations with cardiometabolic risks and health behaviours in a
representative general US sample. Preventive Medicine, 164:107282.

Kang, W., Tang, K., and Wang, N. (2023). Financialization of commodity markets ten years later.
Journal of Commodity Markets, 30:100313.

King, D. E., Xiang, J., and Pilkerton, C. S. (2018). Multimorbidity trends in United States adults,
1988–2014. The Journal of the American Board of Family Medicine, 31(4):503–513.

Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
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A Continuous Ranked Probability Score (CRPS)
Let X be a random variable, with F being the CDF of its predicted distribution. Assume x is a
realization (i.e. observation) of X . The CRPS for such observation is defined as

CRPS(F,x) =
∫︂

∞

−∞

(F(y)−H (y− x))2 dy

where H denotes the Heaviside step function: H (z) = 1{z≥0}. It measures the concentration of
the predicted distribution around the realized value. The smallest possible value of the CRPS is 0,
which occurs if the predictive distribution is degenerate and fully concentrated on x. Conversely, the
larger the CRPS is, the less concentrated around x the predicted distribution will be.

The total CRPS score for a predictive model is obtained by averaging CRPS scores over all
observations:

CRPS =
1
τ

τ

∑
t=1

CRPS(Ft ,xt),

where xt is observation t, Ft is its predicted distribution, and τ denotes the total number of
observations. The CRPS generalizes the MAE and reduces to the MAE if the forecasts are
deterministic, i.e., if predictive distributions Ft are degenerate for all t.

B Hidden Markov Model (HMM)
Let {νn}n∈N represent a discrete Markov chain with latent states indexed by j ∈ {1, . . . ,K}. The
probability density function (PDF) of the excess return E(X)

t , where X ∈ {S,F(E),F(C),F(N)}, is
denoted by

f ( j)(e(X)
t ) = f

E(X)
t |νt ,ν1:t−1,E

(X)
1:t−1

(︂
e(X)

t | j,ν1:t−1,E
(X)
1:t−1

)︂
,

where f (1), . . . , f (K) constitutes a set of densities corresponding to the latent states. We define the
predictive probabilities at time t as

ηt,i = P
(︂

νt = i | E(X)
1:t−1 = e(X)

1:t−1

)︂
,

where ηt,i denotes the probability that the regime at time t is i, conditional on the information
(filtration) available up to time t −1. The predictive probabilities η := {(ηt,1, · · · ,ηt,K)}n

t=1 can be
computed recursively using

ηt+1,i =
∑

K
j=1 Pj,i f ( j)(e(X)

t )ηt, j

∑
K
l=1 f (l)(e(X)

t )ηt,l

,

where Pj,i = P(νt+1 = i | νt = j) is the ( j, i)-th entry of the transition matrix, that is, the probability
to transition from state j to i. The conditional density is given by

f
E(X)

t |E(X)
1 ,...,E(X)

t−1
(e(X)

t | e(X)
1 , . . . ,e(X)

t−1) =
K

∑
j=1

f ( j)(e(X)
t )ηt, j,

67



and so the maximum likelihood estimate of the set of parameters is found using

Θ̂ = argmax
Θ

n

∑
t=1

log

(︄
K

∑
j=1

f ( j)
Θ

(e(X)
t )ηt, j

)︄
,

where we assume that η1, j = π j for j = 1, · · · ,K, that is, the initial distribution of the predictive
probabilities is set equal to the stationary probabilities. In the case of an HMM with two hidden
states and with Gaussian density functions, we have

Θ = [µ1,µ2,σ1,σ2,P1,1,P2,2] ,

and if we replace the Gaussian densities with NIG densities, we get

Θ
NIG =

[︂
α1,α2,β1,β2,δ1,δ2,µ

NIG
1 ,µNIG

2 ,PNIG
1,1 ,PNIG

2,2

]︂
.

Moreover, we have that
fN = N (µ,σ2),

fNIG =
αδ exp(δγ)K1

(︂
α
√︁

δ 2 +(x−µ)2
)︂

exp(β (x−µ))

π
√︁

δ 2 +(x−µ)2
.

The most likely sequence of latent states, given a sequence of observations, is then computed using
the Viterbi algorithm. That is, first, calculate

δ j(1) = fν1( j) f
E(X)

1 |ν1
(e(X)

1 | j), j = 1, . . . ,K.

Then, for t = 1, . . . ,n−1, calculate

Ψ j(t) = argmax
k∈{1,...,K}

[︁
δk(t)Pk, j

]︁
, j = 1, . . . ,K,

δ j(t +1) = max
k∈{1,...,K}

[︁
δk(t)Pk, j

]︁
f
E(X)

t+1|νt+1
(e(X)

t+1 | j), j = 1, . . . ,K,

such that Ψ j(t) records which state k leads to state j at time t + 1 with the highest probability
path, and where δ j(t +1) is the probability of the most likely path that ends in state j at time t +1.
Finally, proceed recursively to get the most likely path. First,

ν
∗
n = argmax

k∈{1,...,K}
δk(n),

which gives the final state of the most likely path. Then, for t = n−1, . . . ,1,

ν
∗
t := Ψν∗

t+1
(t),

where we go backwards in time to recover the optimal sequence of latent states. In Figure 23 below,
we present the most likely paths for each asset, using an HMM with two hidden states, for both
Gaussian and NIG densities.
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Figure 23: HMM latent states of weekly excess returns.
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Notes: The data consists of weekly excess returns, ranging between May 12, 2014 to May 21, 2024. The vertical bars
demarcate the different periods considered. That is, the normal period ranges between May 12, 2014 to March 12, 2020,
the COVID-19 period ranges between March 12, 2020 to February 24, 2022, and the Russia-Ukraine period ranges
between February 24, 2022 to May 21, 2024.
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C LMS methodology
The LMS parameters consist of the power in the Box-Cox transformation (L), the median (M), and
the generalized coefficient of variation (S) (Flegal and Cole (2013)). Assuming normality, if we
let A denote the value of the anthropometric variable and let Z refer to the desired percentile in
standard deviation units, then we have that

A =

{︄
M(1+LSZ)1/L, if L ̸= 0
M exp(SZ), if L = 0

or, conversely, given a value of A, the corresponding z-score Z is given by

Z =

{︄
[(X/M)L −1]/LS, if L ̸= 0
ln(X/M)/S, if L = 0

where the method of maximum penalized likelihood is used to obtain values for L, M, and S,
smoothed with respect to either age or height (Cole and Green (1992)). The LMS methodology
captures the mean, variance, and skewness of a distribution.
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