Security Auditing for Network Function
Virtualization (NFV) and Microservices

Alaa Ogqaily

A THESIS
IN THE DEPARTMENT OF
CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Doctor of Philosophy (Information and Systems)

AT CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

August 2025

© Alaa Oqaily, 2025

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared
By: Alaa Oqaily
Entitled: Security Auditing for Network Function Virtualization (NFV)

and Microservices

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Information and Systems)

complies with the regulations of this University and meets the accepted standards with re-
spect to originality and quality.

Signed by the Final Examining Committee:

Chair

Dr. Mohsen Ghafouri
External Examiner

Dr. Rongxing Lu

Examiner
Dr. Otmane Ait Mohamed

Examiner
Dr. Suryadipta Majumdar

Examiner

Dr. Jun Yan
Thesis Supervisor

Dr. Lingyu Wang and Dr. Yosr Jarraya

Approved by

Dr. Farnoosh Naderkhani, Graduate Program Director

28/05/2025

Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Security Auditing for Network Function Virtualization (NFV) and Microservices

Alaa Ogqaily, Ph.D.

Concordia University, 2025

Advancements in virtualization technologies and frameworks have profoundly trans-
formed the deployment and management of networks and applications. Network Functions
Virtualization (NFV), for instance, has revolutionized the networking landscape by decou-
pling Network Functions (NFs) from dedicated hardware, offering enhanced flexibility,
scalability, and cost-efficiency. In parallel, the microservice architecture has transformed
cloud application development by structuring it as a collection of small, loosely coupled
services. This design enables independent development, deployment, and scaling of in-
dividual functionalities, promoting agility and resilience in modern cloud environments.
However, despite their benefits, NFV and microservices introduce novel security and pri-
vacy challenges. For instance, attackers could exploit inconsistencies across different sys-
tem layers to bypass security mechanisms, resulting in cloud-level breaches that remain
undetected by NFV tenants. Similarly, the distributed nature of microservice architectures
expands the attack surface and complicates the management of data privacy across multi-
ple independent services. To facilitate their adoption, robust security auditing solutions are
crucial for ensuring compliance and detecting potential breaches. However, existing secu-
rity auditing solutions face significant challenges. They often fall short in verifying NFV
security because they focus on individual levels, which can lead to overlooking cross-level

inconsistencies or vulnerabilities. As a result, potential breaches may go undetected, since

iii

issues at one level might not be visible or addressed by audits focused solely on other levels.
Moreover, verifying each level separately would be both expensive and impractical. Addi-
tionally, the complexity and scale of these virtual environments can render verification solu-
tions, such as formal security checks, prohibitively expensive. This could lead to delays in
detecting misconfigurations, creating a significant window of vulnerability where services
or infrastructure remain exposed to potential attacks. Moreover, the distributed nature of
microservices, combined with privacy concerns, makes it difficult to centralize data for se-
curity verification using existing solutions. This thesis presents novel solutions for security
verification in virtualized environments, addressing the aforementioned challenges. Firstly,
it introduces NFVGuard+, a cross-level security verification approach that efficiently en-
sures security throughout the NFV stack by conducting resource-intensive verification at
one level and then propagating the results to other levels using relatively lightweight con-
sistency checks. Furthermore, its practicality is ensured by automating key verification
processes by leveraging a novel Entity-Relationship (ER) model of the NFV stack. Sec-
ondly, it presents MLFM, an approach that combines the efficiency of Machine Learning
(ML) with the rigor of Formal Methods (FM) to enable fast and provable detection of se-
curity violations in large NFV environments. The core idea is an iterative teacher-learner
interaction, where FM (the teacher) progressively refines verification results to generate
representative training data, while ML (the learner) utilizes this data to build increasingly
accurate models. This interaction allows a relatively small subset of configuration data to
train an effective ML model, which can then be used to prioritize verification efforts on
configurations most likely to contain security violations. Finally, it introduces FLFM, a
Federated Learning (FL)-guided Formal Method (FM) approach for the security verifica-
tion of microservice-based cloud applications. FLFM enables scalable and decentralized
verification while preserving privacy by eliminating the need for applications to share their

sensitive local data.

v

Acknowledgments

The successful completion of this thesis reflects a collaborative journey shaped by the
insights, efforts, and unwavering support of many individuals. I am truly grateful to every-
one who contributed to this endeavor and stood by me throughout the process.

First and foremost, I offer my deepest thanks and praise to Allah, whose infinite mercy
and blessings have guided and sustained me throughout this journey. By His will and grace,
I have reached this stage, and I am truly grateful for the strength and clarity He granted me
in times of hardship. After the blessings of His Majesty Allah, I would like to extend my
heartfelt gratitude to my supervisor, Dr. Lingyu Wang. His continuous support, insightful
guidance, and unwavering encouragement have been a cornerstone of my academic jour-
ney. His mentorship has not only deepened my understanding of the field but also inspired
me to persevere through the many challenges of doctoral research. 1 am truly grateful for
the opportunity to work under his supervision.

I also wish to sincerely thank my co-supervisor, Dr. Yosr Jarraya, for her continuous
support and guidance throughout my Ph.D. journey. Her expertise, thoughtful feedback,
and unwavering dedication played a crucial role in the progress and success of my research,
and I am truly grateful for her meaningful contributions and commitment.

I 'am also deeply grateful to my colleagues at the Audit Ready Cloud research group for
an inspiring seven-year journey marked by collaboration, innovation, and shared discov-
ery in cutting-edge research areas. Being part of such a committed and talented team has

played a pivotal role in shaping my academic and professional development. Specifically,

I am immensely thankful to Sudershan Lakshmanan, Dr. Mohammad Ekramul Kabir, Dr.
Mengyuan Zhang, and Dr. Makan Pourzandi for the unwavering support, encouragement,
understanding, and collective commitment to advancing knowledge, which have been in-
strumental in driving our collaborative success and enriching this journey.

Finally, I would like to express my heartfelt and profound gratitude to my family for
their unwavering support, love, and encouragement throughout my entire Ph.D. journey.
Their constant presence, understanding, and belief in me have been a source of strength and
motivation, especially during the most challenging moments. Whether through offering a
listening ear, providing emotional comfort, or simply being there when I needed them, my
family has been my anchor. Without their support, this achievement would not have been

possible, and I am forever grateful for everything they have done for me.

vi

Contents

List of Figures Xi
List of Tables Xvi
1 Introduction 1
1.1 Motivation v v e e e e e e e, 1
1.2 Problem Statement 2
1.3 Research Contributions o o v v i e 2

1.3.1 Cross-Level Security Verification System for Network Functions
Virtualization L 3
1.3.2 Machine Learning Meets Formal Method for Faster Identification
of Security Breaches in Network Functions Virtualization 4

1.3.3 Security Verification for Microservices Using Federated Learning-

Guided FormalMethod o oL 5

1.4 Relationships between the Research Topics 7

1.5 Thesis Structure 8

2 Related Work 10
2.1 Security Verification System for Network Functions Virtualization 10

2.2 Security Verification for NFV Using Machine Learning and Formal Method 12

vii

2.3 Security Verification for Microservices Using Federated Learning-Guided

Formal Method 13

Cross-Level Security Verification System for Network Functions Virtualiza-

tion 17
3.1 Introduction 17
3.2 Preliminarieso 21
3.2.1 BackgroundonNFV o oo 21
3.2.2 Security Properties for NFV o000 21
3.2.3 Challenges to Cross-Level Security Verification 23
324 ThreatModel 25
33 OVEIVIEW o oo e e e 26
3.4 ER Model Construction and Consistency Property Identification 27
3.4.1 Constructing the Entity Relationship (ER) Model 27
3.4.2 Automated Consistency Property Derivation. 29
3.5 Cross-Level Security Verification 32
3.6 Application to OpenStack/Tacker 38
3.6.1 Deploying the NFV Testbed 38
3.6.2 NFVGuard+ Implementation 42
377 EXperiments e e e e e e 43
3.7.1 Experiments with SyntheticData. 43
3.7.2 Experiments withRealData 54
3.8 Discussion. e e 55
39 Summary 59

Machine Learning Meets Formal Method for Faster Identification of Security

Breaches in Network Functions Virtualization 61

viii

4.1
4.2
4.3

4.4
4.5

4.6
4.7

Introductiono 61
Preliminaries 64
Methodology 67
43.1 OVerview oo e e e 67
4.3.2 Iterative Teacher (FM)-Learner (ML) Interaction 69
43.3 MLFM Algorithm and Use Cases 72
Implementation 74
EXPERIMENTS e 77
4.5.1 Datasets and Experimental Settings 77
452 Experimental Results 78
Discussion 83
Summary e e e e 85

Security Verification for Microservices Using Federated Learning-Guided Formal

Method 87
5.1 Imtroduction 87
5.2 Preliminaries L 90
52.1 XGBoost 90
5.2.2 Federated Learning 91
5.2.3 Threat Model and Assumptions 94
5.3 Horizontal FLFM (H-FLFM) Methodology 95
531 Overview 95
5.3.2 Training Stage - Local Model Training 96
5.3.3 Training Stage - Global Model Learning 98
5.34 Application Stage 100
5.4 Vertical FLFM (V-FLFM) Methodology 100
541 OVerview 100

X

5.4.2 Training Stage - Training Data Building 101

5.4.3 Training Stage - Global Model Learning 103

54.4 Application Stage o 104

5.5 Implementation 104

5.6 Experiment 107
5.6.1 Investigated Properties 107

5.6.2 Experimental Settings and Datasets 110

5.6.3 H-FLFM Experimental Results 111

5.6.4 V-FLFM Experimental Results 116

57 Summary e 120

6 Conclusion 121
Bibliography 122

List of Figures

Figure 3.1 A motivating example illustrating the challenges of cross-level se-

curity verification in NFV andourideas. 18
Figure 3.2 The multilevel NFV model [1]. 22
Figure 3.3 An overview of the NFVGuard+ approach. 25
Figure 3.4 The ER model of the NFV stack. 30

Figure 3.5 Thumbnail of the ER model showing entities for verifying VNFFG
configuration consistency property at L1. 36
Figure 3.6 The process of generating VNF and VNFFG/NS TOSCA template
descriptors. e 40
Figure 3.7 The topology of our NFV testbed (left) consisting of 20 tenants, 200
VNFFGs, and 200 VNFs and detailed view (in Horizon [2]) of an attack
scenario similar to the motivating example in Section 3.1 (right). 40
Figure 3.8 Verification performance for the consistency properties while vary-
ing the number of servicechains. 46
Figure 3.9 Verification time for the topology consistency properties in case of
compliance (left), in case of reporting the first breach verifying between
levels L2/L.3 (middle), and in case of reporting the first breach verifying

between L1/L2 (right). 47

Xi

Figure 3.10 Verification time for the security properties virtual resource isolation
(left) and mapping unicity VLANs-VXLANs (middle) in case of compli-
ance and in case of reporting the first breach. Verification time for finding
all compliance breaches (10 breaches) for the consistency property L1/L.2
using SAT and ALLSAT solvers (right).

Figure 3.11 Verification time for the topology consistency properties, virtual
resource isolation, and mapping unicity VLANs-VXLANS in case of re-
porting all compliance breaches using ALLSAT solver, with (left) report-
ing all breaches for verifying between levels L2/L.3, (middle) reporting all
breaches for verifying between L1/L.2, and (right) reporting all breaches for
verifying virtual resource isolation and mapping unicity VLANs-VXLANSs.

Figure 3.12 Verification time for reporting all breaches for the security property
mapping unicity VLANs-VXLANs while varying the number of breaches
(left) and the time for parallelizing the verification of the virtual resource
isolation property (right).

Figure 3.13 Comparing the verification time of the multi-level security property
without (the grayscale bar) and with (the bar with patterns) the utilization
of ERmodel.

Figure 3.14 Verification performance for the consistency property L1/L.2 using
ALLSAT and SAT solvers.

Figure 3.15 The topology of a part of a real cloud data center operating NFV
used In OUr EXPeriments. vt i i e e e e e e

Figure 4.1 Motivatingexample,

Figure 4.2 ETSI NFV reference architecture [3] (left) and an example NFV

deployment corresponding to the motivating example (right)

Xii

49

51

Figure 4.3 Two example NFV security properties: Mapping unicity VLANs-
VXLANs (left) and No VNFs co-residence (right) (shaded nodes indicate
violations) L

Figure 4.4 Overview of the MLFM approach

Figure 4.5 An example of the iterative teacher (FM)-learner (ML) interaction

Figure 4.6 The MLFM system architecture

Figure 4.7 Recall and F1 score for combinations of ML models and sampling
methods, trained on 20% of dataset DS1 for property P1 (a and b) and on
DS2forP2(candd)

Figure 4.8 Running time of MLFM for combinations of ML models and sam-
pling methods, with 20% of training data under P1 (a) (b), or P2 (c) (d), for
bothusecases L

Figure 4.9 Running time of MLFM vs. the baseline (FM only) under property
P1 (a) and (b) or P2 (c) and (d), using different percentages of training data
either by changing the sample size m (a) and (c) or by changing the number
ofiterationsn (b)and (d)

Figure 4.10 The time (in minutes) for identifying different percentages of viola-
tions by MLFM and the baseline for P1 (a) or P2 (b). The tradeoff between
running time and recall values of MLFM and the baseline for partial verifi-
cationof P1 (c)orP2(d)

Figure 4.11 The time (in minutes) for identifying different percentages of vio-
lations by NOD [4] and by MLFM integrated with NOD, using 25,000 (a)
and 50,000 (b)records

Figure 5.1 Motivatingexample

Figure 5.2 An example illustrating XGBoost training

Xiii

Figure 5.3 Anexample illustrating XGBoost training in the HFL (left) and VFL

(right) settings e

Figure 5.4 Overview of the horizontal FLFM approach
Figure 5.5 An example of the horizontal FLFM training
Figure 5.6 Overview of the vertical FLFM approach

Figure 5.7 An example of the vertical FLFM training

Figure 5.8 The FLFM architecture

Figure 5.9 The execution time (in hours) (a) and recall (b) for identifying vi-

olations in datasets with different levels of heterogeneity by H-FLFM and

BYMLEM [S] © o v o v oo e e e e e e

Figure 5.10 The execution time of H-FLFM (in hours) for different sample sizes
and for various numbers of iterations (aggregation and local iterations) (a).
Execution time (in minutes) of H-FLFM using the best performing param-
eters (i.e., m = 250 and n = 10), while varying the number of aggregation

iterations and compared to the execution time of MLFM using the same

applicable parameters (b) L Lo

Figure 5.11 The execution time (in minutes) for identifying different percent-
ages of violations by H-FLFM and MLFM (a). The time (in minutes) for

identifying different percentages of violations by H-FLFM under different

scenarios (b) e

Figure 5.12 The percentage of records shared with the central authority by V-

FLFM and the baseline approach for the partial verification case (a) and

the recall of V-FLFM and the baseline approach(b)

X1V

Figure 5.13 The percentage of records shared with the central authority by V-
FLFM and the baseline approach for the priority-based verification case (a)
and the execution time (in minutes) for identifying different percentages of
violations by V-FLFM and the baseline approach (b)

Figure 5.14 Percentage of shared records by V-FLFM and the baseline approach
for partial verification (a) and priority-based verification (b) using different
datasets, and using different datasets, and the recall of V-FLFM and the

baseline approach using different datasets (¢)

XV

List of Tables

Table 1.1 List of acronyms used in thesis and their terminology 9
Table 2.1 Comparing our solution with existing solutions. 12
Table 2.2 Comparing our solution with existing solutions. 16
Table 3.1 Examples of NFV security properties [6] 24

Table 3.2 Example of consistency properties identified from the ER model en-

tities and relationships. L Lo o 31
Table 3.3 An excerpt of the data sources for some of the entities in the ER

model, along with a description of the types of data they contain. 33
Table 3.4 Example property instances for evaluating the effectiveness of NFV-

Guard+. 44
Table 3.5 The experimental results of NFVGuard+ for the real data. The aver-

age time, CPU, and memory required for the verification of three sample

NFV security properties, i.e., VNFs co-residence, virtual resource isola-

tion, and mapping unicity VLANs-VXLANSs, based on real data. 55

Table 5.1 Main parameters evaluated in the experiments. 111

Xvi

Chapter 1

Introduction

1.1 Motivation

The rise of NFV and microservices represents a fundamental shift toward modular,
software-driven architectures, replacing rigid, hardware-bound systems with agile and dy-
namic solutions that enable greater flexibility and scalability. However, their significant
advantages come at the cost of increased complexity, which introduces novel security and
privacy challenges. For instance, in NFV systems, security threats can span across multiple
levels, each managed by autonomous managerial components, making traditional, level-
specific verification methods insufficient. Similarly, the distributed nature of microservices
expands the attack surface and increases the risk of misconfigurations compared to mono-
lithic architectures, while also raising privacy concerns that hinder centralized security ver-
ification. Existing approaches often fall short in delivering scalable, efficient, and cross-
level verification without imposing high computational costs or compromising data privacy.
These challenges highlight the pressing need for novel security verification techniques that
can address the complexity and scale of modern virtualized systems while maintaining ac-
curacy and preserving privacy. This research aims to explore these challenges and propose

effective strategies to ensure the security and reliability of virtualized services.

1.2 Problem Statement

In this thesis, we propose security auditing solutions to ensure the security of virtual-
ized network functions and microservices architecture. Specifically, we propose a formal
cross-level security verification solution to overcome the limitations of traditional level-
specific approaches. To enhance efficiency, our method utilizes consistency check results
to perform verification at a single level and propagates these results across other levels,
significantly reducing overhead while preserving verification accuracy. Moreover, to ad-
dress scalability challenges, we propose a Machine Learning—Formal Method (MLFM)
approach that combines the efficiency of Machine Learning (ML) with the rigor of For-
mal Methods (FM) for fast and provable detection of security violations. In particular, FM
serves as the verifier, guiding the generation of high quality training data to build an effec-
tive ML model. This model is then used to identify configurations likely to violate security
properties and prioritize them for formal verification, significantly improving the speed
of detecting violations without compromising accuracy. Finally, to address the scalability
and privacy concerns in microservice-based architectures, we present FLFM, a Federated
Learning—guided Formal Method approach. FLFM allows decentralized security verifica-
tion by enabling applications to collaboratively train models without sharing sensitive local
data, ensuring privacy while still prioritizing high-risk configurations for formal analysis.
Together, these contributions offer a scalable, efficient, and privacy-aware solution for se-

curity verification in both NFV and microservice-based cloud environments.

1.3 Research Contributions

In the following, we outline the key research contributions presented in this thesis. First,
we propose NFVGuard+, a cross-level security verification system for Network Functions

Virtualization (NFV). Second, we introduce MLFM, a Machine Learning—Formal Method

approach for faster identification of security breaches in NFV. Finally, we present FLFM,
a Federated Learning—guided Formal Method solution designed for security verification in

microservice-based environments

1.3.1 Cross-Level Security Verification System for Network Functions

Virtualization

Network Functions Virtualization (NFV) is a popular solution for providing multi-
tenant network services on top of existing cloud infrastructures in an agile and cost-effective
manner. However, as NFV employs multiple levels of virtualization, it also introduces
novel security challenges, such as cloud-level security breaches that are invisible to NFV-
level tenants. Towards verifying the security of NFV across all the levels (a.k.a. cross-level
security verification), existing solutions are mostly insufficient, as each such solution typ-
ically only focuses on one specific level (e.g., cloud, SDN, or SFC), and verifying every
level separately would be expensive or even infeasible. In this work, we propose an ef-
ficient and practical system, NFVGuard+, for cross-level security verification for NFV.
Particularly, the efficiency of NFVGuard+ is achieved by first performing the costly secu-
rity verification at one level, and then extrapolating the verification result to other levels
through conducting relatively lightweight consistency checks. Chapter 3 details our work
on cross-level security verification for NFV.

Specifically, the main contributions of this work are as follows:

1. To the best of our knowledge, we are the first to propose a cross-level security veri-
fication system for NFV that automates the identification of properties and their data

sources, thereby reducing the need for human intervention.

2. We are also the first to capture knowledge about system entities and their relation-

ships across different levels of the NFV stack by developing an Entity Relationship

(ER) model for NFV. Additionally, we offer a concrete guideline for effectively iden-
tifying security properties using the ER model, which could be valuable for develop-

ing other security measures for NFV beyond just security verification.

3. We implement our solution and integrate it into a real NFV testbed built on Open-
Stack/Tacker [2], a widely used platform for deploying NFV [68]. Furthermore, we
conduct experimental evaluations using both synthetic and real data, showcasing the

efficiency and practicality of our solution.

1.3.2 Machine Learning Meets Formal Method for Faster Identifica-

tion of Security Breaches in Network Functions Virtualization

By virtualizing proprietary physical devices, Network Functions Virtualization (NFV)
enables agile and cost-effective deployment of network services on top of an existing cloud
infrastructure. However, the added complexity also increases the chance of misconfigura-
tions that could leave the services or infrastructure vulnerable to security threats. To that
end, formal method-based security verification is a standard solution for providing rigorous
mathematical proofs that the configurations satisfy the desired security properties, or the
counterexamples (i.e., misconfigurations). Nonetheless, a major challenge is that the sheer
scale of large NFV environments can render formal security verification so costly that the
significant delays before misconfigurations can be identified may leave a wide attack win-
dow. In this work, we propose a novel approach, MLFM, that combines the efficiency of
Machine Learning (ML) and the rigor of Formal Methods (FM) for fast and provable iden-
tification of misconfigurations violating security properties in NFV. Our key idea lies in
an iterative teacher-learner interaction in which the teacher (FM) can gradually (over sev-
eral iterations) provide more representative verification results as training data, while the
learner (ML) can leverage such data to gradually obtain more accurate ML models. As a re-

sult, a small portion of the configuration data will be enough to obtain a relatively accurate

4

ML model, which can then be applied to the remaining data to prioritize the verification
of data that are more likely to cause violations. Chapter 4 further details our approach of
combining ML and FM for fast and provable identification of security breaches in NFV.

In summary, the main contributions of this work are:

1. To the best of our knowledge, we are the first to integrate Machine Learning (ML)
with Formal Methods (FM), namely MLFM, combining the rigor of FM, which is
crucial for proving security compliance, with the efficiency of ML, which is essential

for handling large NFV environments, to prioritize verification tasks in NFV.

2. To implement MLFM, we design an iterative teacher-learner interaction approach,
supported by a detailed algorithm. The methodology is realized through a con-
straint satisfaction problem solver, Sugar [67], along with several well-known ma-
chine learning algorithms (decision tree, random forest, support vector machine, and
XGBoost) and sampling techniques (uncertainty sampling and query-by-committee)
borrowed from the active learning literature [46] for selecting representative data

records.

3. We conduct experimental evaluations of our work across two distinct use cases: one
focused on minimizing verification time and the other on ensuring result complete-
ness. The experimental results showcase the advantages of our work by detecting
violations much more faster than the baseline FM [67] and further enhancing the

efficiency of a state-of-the-art security verification tool [4].

1.3.3 Security Verification for Microservices Using Federated Learning-

Guided Formal Method

The microservice architecture divides a single application into loosely coupled, au-

tonomous microservices to allow for independent development, deployment, and scaling of

different functionalities. The architecture is widely adopted in modern cloud environments
due to its numerous benefits, such as enhanced scalability, flexibility, and cost efficiency
in application development and maintenance. On the other hand, the sheer scale and dis-
tributed nature of microservice-based applications may also lead to novel challenges for
existing security solutions. Particularly, the standard practice of using formal methods to
provide rigorous mathematical proof about security compliance may face two major chal-
lenges in the context of microservices. First, large scale microservice applications can
cause formal methods to become very slow in identifying security breaches, which may
leave a wide attack window. Second, the prohibitive overhead and potential privacy con-
cerns may both prevent the collection of data from all the microservices for performing
security verification at a central location. In this work, we propose FLFM, a novel ap-
proach that combines the efficiency and privacy-friendliness of Federated Learning (FL)
and the rigor of formal method (FM) for security verification in microservices. Specifi-
cally, FLFM works in two stages. First, each application samples a small but representative
subset of its configuration data, and then labels such data using FM verification. This al-
lows a relatively accurate FL model to be jointly trained by all the applications using only
a small subset of data from each application. Second, the FL. model can then be applied by
each application to its remaining data in order to “guide” the FM verification for identifying
security breaches faster, through prioritizing more suspicious candidates. Chapter 5 further
describes our idea of utilizing the efficiency and privacy-friendliness of FL and the rigor of
formal method (FM) for security verification in microservice.

Particularly, the main contributions of this work are as follows:

1. We propose a novel approach that leverages Federated Learning (FL) to guide for-
mal methods (FM), namely FLFM, for faster identification of security breaches in
microservice applications, while preserving the privacy of local data.

2. We provide comprehensive methodologies for both horizontal and vertical Federated

6

Learning (FL) scenarios and implement our solution using a federated XGBoost al-
gorithm [109], an uncertainty sampling technique [113], and the Sugar constraint

satisfaction problem solver [67].

3. We conduct experimental evaluations of FLFM and compare its performance with

the centralized MLFM approach, demonstrating its effectiveness.

1.4 Relationships between the Research Topics

In the following, we outline the relationships between the three research topics and
how they were identified. The primary objective of the first research topic was to develop
an efficient and practical cross-level security auditing solution for verifying multiple lev-
els of the NFV stack using formal methods. However, a key limitation of this approach
is scalability. The complexity of formal security verification methods may restrict their
ability to handle the sheer scale of virtualized services. This, in turn, could lead to signifi-
cant delays in detecting misconfigurations and security threats, creating an extended attack
window. Additionally, the inherent complexity of formal methods leaves minimal room for
further performance optimizations. This leads to the second research topic, which leverages
the efficiency of machine learning to create a scalable and provable solution for the faster
identification of security breaches in NFV, while preserving the rigor of formal methods,
which is crucial for ensuring security compliance. Finally, while this solution is effective
in centralized environments like NFV, it is inadequate for distributed applications such as
microservices. This leads to the third research topic, which leverages the efficiency and
privacy benefits of Federated Learning (FL) alongside the rigor of formal methods (FM)
to address the challenges posed by distributed environments. In summary, the three topics
of this thesis are interrelated and serve as complementary elements of a unified solution,

aimed at achieving secure, efficient, and privacy-preserving security verification for virtual

environments.

1.5 Thesis Structure

This thesis is structured into six chapters. Chapter 1 provides an introduction to the
research. Chapter 2 reviews the relevant literature. Chapter 3 presents the results of our
cross-level security verification system for network functions virtualization. Chapter 4
details our approach to integrating formal methods with machine learning to prioritize ver-
ification tasks in NFV. Chapter 5 focuses on leveraging federated learning to enhance FM
for faster detection of security breaches in microservice applications. Finally, Chapter 6
concludes the thesis, summarizing key findings and contributions. Additionally, Table 1.1

lists and defines the terminologies used throughout this thesis in alphabetical order.

Acronym

Terminology

Cp Connection Point
DPI Deep Packets Inspector
ETSI European Telecommunications Standards Institute
FC Flow Classifier
FL Federated Learning
FM Formal Method
FW Firewall
GDPR General Data Protection Regulation
IDS Intrusion Detection System
MANO Management and Orchestration
ML Machine Learning
MS Microservice
NFP Network Forwarding Path
NFV Network Function Virtualization
NFVO NFV Orchestrator
NLP Natural Language Processing
NS Network Service
NSD Network Service Descriptor
PPG PortPair Group
SDN Software Defined Networking
SFC Service Function Chain
VDU Virtual Deployment Unit
VIM Virtual Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VNFD VNF Descriptor
VNFFGD VNFFG Descriptor
VNFFG Virtual Network Function Forwarding Graph
VNFM VNF Manager

Table 1.1: List of acronyms used in thesis and their terminology

Chapter 2

Related Work

In this chapter, we review related works of prior research on our identified problem

areas.

2.1 Security Verification System for Network Functions
Virtualization

Most existing security verification solutions (e.g., [7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22]) in NFV focus on the verification of one particular level (mostly SFC).
In particular, ChainGuard [12], SFC-Checker [14], Cohen et al. [19], and AuditBox [20],
all verify the correct forwarding behavior of SFCs. Other solutions, including NFVSense
[9], CloudVaults [11], APPD [22], and Cheng et al. [10], focus on SFC integrity verifi-
cation. VSFC [13] verifies various SFC violations (e.g., packet injection attacks and path
non-compliance) and vVHSFC [8] utilizes a lightweight Verified Routing Protocol (VRP)
to detect various hybrid SFC violations and attacks. EnsureS [7] introduces an SFC path
validation model that employs batch hashing and tag verification. VeriNeS [21] proposes

a runtime verification framework for detecting anomalies in network services. In contrast,

10

Zoure et al. [23] investigate NFV network service anomalies and the challenges in achiev-
ing verification.

Several solutions (e.g., [16, 17, 15, 18]) focus on verifying SFCs functionality and
performance. They cover a wide range of verification aspects, such as performance and ac-
counting [16], SLA-related performance properties [17], verification of reachability poli-
cies [18], and detection of dependencies and conflicts between network functions [15].
Unlike all those works, the main focus of our approach is to ensure the security of an
NFV stack at all levels. Also, unlike us, most of those works do not formally model the
verification problem.

There are a few solutions (e.g., [24, 25]) that tackle the multi-level aspect of NFV.
Lakshmanan et al. [25] propose employing Neural Machine Translation (NMT) to detect
cross-level inconsistency attacks. However, their utilization of NMT for detection is con-
sidered less reliable in terms of accuracy compared to FMs. On the other hand, Alhebaishi
et al. [24] model and address cross-layer and co-residency attacks through VM placement
optimization, focusing on a narrower range of attacks compared to our approach.

Also, there exist other works (e.g., [26, 27, 28, 29, 30, 31, 32, 4]) that verify security
properties in virtual networks, e.g., clouds and SDN. Among them, ISOTOP [30] and Xu et
al. [33] cover the consistency between different cloud layers. Additionally, there are other
solutions, e.g., NetPlumber [26], Veriflow [27], and NoD [4] that verify flow rules against
various security and functionality properties in virtual networks. However, none of these
works considers NFV, and extending them to NFV would require significant efforts due to
the added complexity. Table 2.1 compares existing solutions with NFVGuard+. It lists the
solutions, whether they target NFV or other virtual environments, the NFV stack level they
address, and the verified properties along with their verification methods. The symbols (v")

and (X) mean supported and not supported, respectively.

11

Solution NFV L]L?’Ze 15113 Property Method
[21] v VXX Security Graph theoretic
[34] X X Network Custom algorithms
[16, 12, 17] V XX |V Correctness, performance Trusted shim layer, graph theoretic
[7.9,11,8,18, 14,15,13,19,20], | , X | x| x | Network, correctness, integrity .Remote e.meslauon, MaxSAT so‘lvelr, gragh theoretic, custuw algomhms. trusléd shim,)
[10,22] verified routing protocol, packet pair dispersion, tag-based verification, and machine learning

Security, operational, network,
identity and access control
NFVGuard+, [25] vV [VIV Security and consistency CSP solver, machine learning

>
*x

[29, 32, 26, 27, 31] Graph theoretic, CSP solver, custom algorithms

Table 2.1: Comparing our solution with existing solutions.
2.2 Security Verification for NFV Using Machine Learn-
ing and Formal Method

Most existing solutions related to security verification for NFV (e.g., [16, 12, 35, 36,
14, 15, 13, 17]) focus on the verification of service function chaining (SFC). Those works
employ either custom algorithms (such as [16, 15, 13]), graph-based methods (such as
[12, 14, 17]), or formal methods (such as [35, 36]). Unlike those existing works (which
focus on the SFC only), our previous work, NFVGuard [6], aims to verify the entire NFV
stack (including both SFC and underlying infrastructure, and their consistency) using for-
mal method. However, the increased scope also leads to increased complexity and longer
verification time, which has motivated us to propose MLFM.

Besides NFV, there also exist security verification solutions for other virtual infras-
tructures, such as cloud and SDN (e.g., [26, 4, 37, 38, 31, 39, 29]), including formal
method-based ones [4, 37, 38, 31]. Unlike MLFM, most such solutions do not specifi-
cally address the delay in verification (so they may benefit from MLFM in that aspect),
with the exception of NOD [4] which is optimized for large applications (our experiments
in Section 5.6 show it can further benefit from MLFM). In contrast to formal method, cus-
tom algorithms (e.g., [26] and [29]) may enjoy improved efficiency for specific properties
but they generally lack the level of expressiveness of formal method-based approaches (in-
cluding MLFM). Also designed to reduce verification time, the proactive approach (e.g.,
[40, 41]) performs the verification in advance based on predicted events, which is parallel

to, and can be integrated with, our approach.

12

There exist works that combine machine learning and formal method in other contexts,
such as automated program verification (for synthesizing invariants used to verify the cor-
rectness of a program, e.g., [42, 43, 44, 45]). In particular, Ezudheen et al. [42] develop
learning-based algorithms for synthesizing invariants for programs that generate Horn-style
proof constraints. Garg et al. [43] propose the ICE-learning framework for not only taking
(counter-)examples but also handling implications. Ren et al. [44] propose a method based
on selective samples to improve the efficiency of invariant synthesizing. Finally, Vizel et
al. [45] study the relationship between SAT-based Model Checking (SAT-MC) and Ma-
chine Learning-based Invariant Synthesis (MLIS). Although the goals are very different
(efficient verification vs. invariant synthesizing), our teacher-learner approach is similar to
those existing works, with a key difference being that we additionally employ the sampling
strategies from the active learning literature [46] to more effectively identify representative

samples.

2.3 Security Verification for Microservices Using Feder-

ated Learning-Guided Formal Method

Existing security solutions for the microservice architecture mostly focus on verifying
the correctness of the microservices interactions (e.g., [47, 48, 49]), anomaly detection
(e.g., [50, 51]), access control for microservices (e.g., [52, 53, 54, 55]), or performance
analysis (e.g., [56]). Those works employ either formal methods (such as [47, 48, 49]),
graph-based methods (such as [50, 52, 56, 55]), ML methods (such as [51]), sidecar-based
methods (such as [53]), or token-based methods (such as [54]). In contrast to those ex-
isting solutions, we tackle two unique challenges in the microservice architecture, i.e., the
inherent complexity of formal security verification solutions may prevent them from han-

dling the sheer scale of microservice applications, which can cause considerable delay in

13

identifying security violations, and collecting data from all the microservice applications
to perform security verification at a central location may be infeasible due to data confiden-
tiality and privacy concerns.

Federated learning has been extensively leveraged in many security applications, such
as anomaly (e.g., [57, 58, 59]) and intrusion detection (e.g., [60, 61]), mostly within the
Internet of Things (IoT) architectures. To the best of our knowledge, there do not exist
solutions that employ federated learning for compliance verification (directly or indirectly),
nor does any work combine federated learning with formal methods for faster verification
as we propose in this work.

Security verification solutions have also been developed for various virtual infrastruc-
tures, such as NFV, cloud, and SDN (e.g., [4, 35, 6, 36, 5, 37, 38, 31, 39, 40, 41]). Most
of the FM-based solutions (e.g., [4, 35, 6, 36, 37, 38, 31, 39]) do not explicitly tackle the
delay in verification (so they may benefit from FLFM in this regard), except for NOD [4],
which is specifically optimized for large applications (NOD can potentially benefit from
our approach, as shown in [5]), and MLFM [5], which is less efficient than our work, as
shown through experiments in Section 5.6. Unlike formal methods, custom algorithms
(e.g., [26] and [29]) benefit from enhanced efficiency for specific properties; however, they
often lack the expressiveness found in formal method-based approaches. The proactive
approach (e.g., [40, 41]) optimizes the verification time by performing the verification in
advance based on predicted events, which is parallel to and can be integrated with our
approach.

Table 2.2 summarizes the comparison between existing solutions and FLFM. The first
and second columns enlist existing works and their objectives. The next two columns com-
pare their applications and verification methods. The following two columns compare the
coverage in terms of whether they work on a single microservice (MS-level) or they can

support multiple microservice applications (App-level) as addressed in our work. The last

14

column enlists the type of utilized federated learning (horizontal or vertical), if applica-
ble. The symbols (v'), (X), and (N/A) mean supported, not supported, and not applicable

respectively.

15

Coverage|

: ; F 2
3 £ Z $ 3[3] 2
3 2 £ s A
2 =
© & »w | B
< s | <
Malchain [50] Anomaly detection Microservice-based cloud applications Graph theoreticand ML| X | v/ N/A
ucheck [47] Correctness verification Microservice-based applications Formal method X N/A
AUTOARMOR [52] Inter—serylce dceess control Microservice-based cloud applications Graph theoretic X1V N/A
policy generation
Meng et al.[48] Correctness verification Microservice-based cloud applications Formal method X v N/A
Meadows et al.[53] Anomaly detection Microservice-based applications Secure sidecar X1V N/A
and access control
Venckauskas et al. [54] Access control Microservice-based applications Token-based X N/A
Dai et al. [49] Intergctlon cqrrectness Microservice systems Model checking K|V N/A
of a microservice system
Zhang, et al. [56] Performance analy§1s and Microservice architectures Graph theoretic X |V N/A
anomaly detection
Pahl et al. [51] Anomaly detection Microservices-based Internet of Things (IoT) system ML VX N/A
Mothukuri et al. [57] Anomaly detection Internet of Things (IoT) Federated learning | N/A | N/A | Horizontal
MV-FLID [60] Intrusion detection Internet of Things (IoT) Federated learning | N/A| N/A | Horizontal
Livetal. [59] Anomaly detection Internet of Things (IoT) Federated learning | N/A | N/A | Horizontal
NOD [4] Network verification Cloud deployment SMT Solver N/A|N/A| N/A
NEVGuard [6] Security apd CQHSISMCY Network Functions Virtualization Formal method N/A|N/A| NA
verification
MLFEM Security verification Network Functions Virtualization ML and Formal method |[N/A|N/A| N/A
. o . . L Federated learning Horizontal
FLFM Security verification Microservice-based cloud applications and formal method Vv & vertical

Table 2.2: Comparing our solution with existing solutions.

16

Chapter 3

Cross-Level Security Verification System

for Network Functions Virtualization

3.1 Introduction

The adoption rate of NFV is increasing! due to the many benefits of virtualizing pro-
prietary physical devices in the network architecture, such as the capability for operators to
scale their network services on-demand, and the lower cost of using existing cloud infras-
tructure. However, to attain such benefits, NFV involves multiple levels of virtualization
and operates the managerial components at each level autonomously [63]. As a ramifica-
tion, this additional complexity opens the door to potential inconsistencies among different
levels of the NFV stack, which can be exploited to conduct stealthy attacks, e.g., “invisible”
(to end users) security breaches at lower levels of an NFV stack [1]. To tackle such threats,
verifying the security across different levels of an NFV stack (a.k.a. cross-level security
verification) becomes essential.

To that end, most existing works (e.g., [7, 8, 9, 11, 13, 15, 16, 12, 17, 14, 18, 19, 20,

21, 22]) are insufficient as they typically focus on one particular level of the NFV stack,

192% of carriers have either deployed or plan to deploy network functions virtualization soon [62]

17

Cross-level inconsistencies in NFV stack Cross-level security verification

- Are Bob’s and Eve’s Challenges Idea 1 Idea 2
= O virtual networks properly
Sk . <9 .
The Provider isolated on all levels? - No mapping between the resources - Automated consistency property - Cross-level security
across different levels of NFV derivation verification
- A naive solution (i.e., verifying all
/ Bob N U Eve levels individually) is expensive (if not
L1: infeasible)
Service N N X
orchestration || Virtual H V;ggal H leuall] ’» Verification for all Virtual firewall Verification for all
router irewa ties 2 rties
: - properties at L1 Configuration properties at L1
? ?2%2% 2 2 ,. between adjacent Consistency
o ! B levels property verification
Resource

properties at L2 properties at L2

VDU3 :,»“
VDU H vDU2 o / | o
i ‘ VDU4 Verification for all VDU3 VDU4 Verification for all

VDU Virtual Deployment Unit configuration

% % 2% between Consistency
L3: x—> adjacent levels, verification

Virtual Ml VM2 VM3 N Malicious H h,:tr:::;::r?;:g
infrastructur ——" ificati a .) :
infrastructure VM4 VM Verification for all VM3 ‘ VM4 toa VM Verification for all

properties at L3 properties at .3

‘ L4: Physical infrastructure ‘

Figure 3.1: A motivating example illustrating the challenges of cross-level security verifi-
cation in NFV and our ideas.

such as service function chaining (SFC), instead of verifying the entire NFV stack. Addi-
tionally, utilizing those existing solutions to separately verify each level of NFV would be
expensive, or even infeasible (as doing so would require translating given security proper-
ties to all NFV levels, which is not always possible). On the other hand, developing a new
approach to cross-level verification for NFV involves the following major challenges: (i)
how to determine the system entities and their relationships at multiple levels in NFV to
locate the possible data sources for verification, (ii) how to instantiate the high-level secu-
rity requirements (e.g., network isolation) into specific system-level security properties to
enable automated verification in NFV, and (iii) how to conduct the cross-level verification
in an efficient and accurate manner while handling the sheer size and multi-level of NFV.

In the following, we further highlight those challenges using a motivating example.

Motivating Example. The left side of Figure 3.1 shows a simplified view of the NFV
stack (Sec 2.1 provides more background on NFV stack) of two tenants, Bob and Eve (as
indicated by the two dashed line boxes), which involve four levels (L1-L4 as indicated by
the shaded planes) and their corresponding virtual and physical resources. We assume that,

by exploiting real-world vulnerabilities (e.g., CVE-2024-1085 [64], CVE-2024-0193 [65],

18

or CVE-2024-0646 [66]) in a specific way [1], a malicious tenant (Eve) could inject a
malicious virtual machine, Malicious VM, into Bob’s network to secretly inspect his
traffic at L3, without causing any detectable changes in the upper levels. Knowing about
such potential threats, the provider is concerned with the following question: “Are Bob’s
and Eve’s virtual networks properly isolated at all levels?”

The first column on the right side of the figure shows the existing challenges in cross-
level security verification as follows. First, the mapping between the resources across dif-
ferent levels of the NFV stack (which might be useful for cross-level security verification)
is unknown. Second, a naive solution which separately conducts security verification at
each level of NFV through utilizing (multiple) existing works (e.g., [12, 14, 19, 20]) is ex-
pensive or even infeasible (e.g., its not always possible to re-define an L1 property at L4 in
a meaningful way). To address those challenges, our two main ideas are illustrated in the
next two columns of the figure. Specifically, our first idea is to identify the mapping be-
tween the resources in different levels of NFV and automatically identify the corresponding
consistency properties (needed for the next idea). Our second idea is to only verify every
property at the level where its specified (e.g., L2 in this case), and then implicitly extend
the result of such verification to other levels by verifying the consistency between adjacent
levels.

To instantiate those ideas, we propose a security verification system, NFVGuard+, for
the efficient and practical cross-level security verification of NFV stack. NFVGuard+ lever-
ages formal methods to model the audit data and properties as a Constraint Satisfaction
Problem (CSP) and employs the Sugar solver [67] to verify compliance. To facilitate this,
we first create an Entity-Relationship (ER) model to systematically capture NFV entities
and their relationships. Next, we identify consistency properties from the ER model and

design an algorithm to automatically derive them from the model. We then develop our

19

cross-level security verification approach, utilizing the ER model for data collection, pro-
cessing, and formal verification. Finally, we demonstrate the applicability of our solution
by integrating it into a real NFV testbed based on OpenStack/Tacker [2] and evaluate its

efficiency through experiments with both real and synthetic data.

Security Capabilities of NFVGuard+. NFVGuard+ is designed to ensure the config-
uration of NFV stack complies with given security and consistency properties. Its re-
sults can provide either formal proof for such security compliance, or (in the case of
non-compliance) counterexamples, i.e., policy violations in the NFV configuration. Al-
though not specifically designed for attack detection, the policy violations identified by
NFVGuard+ can potentially indicate the presence of misconfigurations, vulnerability ex-
ploitations, or other threats that have caused such policy violations, as long as these leave
some traces in the logs or configuration. However, it is not designed to provide specific de-
tails about the underlying vulnerabilities (which requires vulnerability analysis) or attacks
(which requires intrusion detection). Finally, it cannot detect policy violations leaving no

traces, such as those caused by side-channel attacks or log tampering.

Comparison to Existing Solutions. In comparison to most existing NFV security verifi-
cation solutions (e.g. [7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]), which
primarily focus on a single level (mostly SFC), NFVGuard+ has a different focus, i.e.,
ensuring the security across all levels of the NFV stack. As we will demonstrate later in
Section 3.2.3, this cannot be easily achieved using existing single-level solutions due to
some unique challenges. Furthermore, although some approaches (e.g., [25, 24]) touch on
the multilevel aspect of NFV, they do not formally model the verification problem as we do,
cannot provide the same rigorous security proof provided by formal methods [25], or focus
on a narrow scope of attacks (e.g., through VM placement optimization [24]). A detailed

comparison is provided in Table 2.1.

20

3.2 Preliminaries

This section provides the preliminaries.

3.2.1 Background on NFV

NFV is a network architecture concept that virtualizes various network functions, such
as routers, firewalls, load balancers, and intrusion detection systems (IDS) [3]. Figure 4.2
illustrates the multilevel NFV deployment model [1] (on the right) with the mapping to a
simplified view of the ETSI NFV reference architecture [3] (on the left). The NFV de-
ployment model complements the ETSI NFV reference architecture with deployment de-
tails found in multiple open source platforms including Networking Automation Platform
(ONAP) [69], Tacker [70], OpenStack [2]. Specifically, the deployment model depicts
the NFV stack at four abstraction levels: Service Orchestration (L1) (which supports the
specification, on-boarding, and lifecycle management of network services. Also, it could
optionally include the SDN Orchestrator (SDNO) for the automated management of net-
work resources and services), Resource Management (L2) (which supports the instantiation
of network services and the management of computing, storage, and network resources),
Virtual Infrastructure (L3) (which hosts the virtual resources needed to support upper lev-
els, and optionally the SDN controller (SDN-C)), and Physical Infrastructure (L4) (which

includes all the physical resources).

3.2.2 Security Properties for NFV

Security properties of NFV define the desired security states of the NFV deployment
that are usually specified by the tenants and/or providers. Very often, these properties are
inspired by security standards (e.g., ETSI [63] and ISO 27002 [71]) that outline fundamen-

tal security principles and recommendations for guiding the providers and for assisting the

21

‘ ~ - Network path ———- Cross-level mapping ‘

L1: Service Orchestration

ETSI
Architecture Cloud tenant as)
(Simplified View) network service provider NFYV Client
\ OSS/BSS \

Service

Description NS/Q Ij
—————— VNFEGD || VNFD SDNO rNFVO
| VNFBlock | \L/\HJ L/J

; A% . ———

| Ewms ! N VNEM |
| VNE || T
s I

- v

L2: Resource Management:

|
| NFVIBlock | \ ctond ronams O
; 1 1‘ oud tenant ~gr
| ! ‘\ s
|
| | Tske (Vv T
} Virtual } Controller Node
| | Resources | |
I } / N
: | y ‘L3: Virtual Infrastructure
} || Virtualized Containerized \\\
w ! Node Node N !
| N > e |
} Hypervisor | | } | |
| 1 | Bridge | [SDN-C i J
‘ | L L YSWREL PR I
|
| ‘
| | Hardware }
| |
\

L4: Physical Infrastructure

Figure 3.2: The multilevel NFV model [1].

tenants in assessing the overall security compliance with the provider’s NFV infrastructure.
For this purpose, we conduct a study on the standards related to NFV (e.g., IETF-RFC7498
[72], and ETSI [63]), along with the standards related to various components of an NFV
stack, such as cloud and SDN (e.g., ISO 27002 [71] and CCM [73]). Then, we extract a
list of security properties from those standards and the literature that can be used for the
security verification of NFV. Table 3.1 shows extracted properties, their instantiation as
sub-properties, descriptions of the sub-properties, and corresponding standards that require
those properties for security compliance. Please note that while this list is not meant to be
comprehensive, it can be easily extended to encompass additional security properties and

even user-defined properties. Our approach can verify any security property as long as its

22

expressed using formal methods. However, in this work we focus on verifying the compli-
ance of security properties related to the static configuration of the virtualized infrastruc-
ture, such as the proper configuration of isolation mechanisms. Dynamic properties, such
as those related to reachability and network forwarding functionality, are beyond the scope
of this work and will be addressed in future work. To add specificity to our discussions,
we provide a sample property, and subsequently, in Section 3.5, we show its verification

process.

Example 3.2.1 Virtual resources isolation (no common ownership) property. Aims at
verifying that each virtual resource is exclusively owned by a single tenant unless specified
by a user-defined policy. Specifically, in this work we aim to verify that all VDUs com-
posing a specific SFC at the management level are owned by a unique tenant, namely the

owner of the SFC service.

3.2.3 Challenges to Cross-Level Security Verification

Conducting security verification across different levels of NFV-stack (a.k.a. cross-level

security verification for NFV) exhibits several unique challenges.

Identifying the NFV-Stack Entities and Their Relationships. To develop a cross-level
verification system and identify the necessary input data for verifying various security prop-
erties, its essential to thoroughly understand the NFV system’s design and workflow, which
might be intractable as the NFV stack is a complex system with many inter-dependent en-
tities located at different abstraction levels (as explained in Section 3.2.1). Moreover, the
NFV standards (e.g., IETF-RFC7498 [72] and ETSI [63]) do not provide the necessary de-
tails for fully understanding the NFV system workflow and mapping the states of network

services across the layers.

23

Security Properties

Sub-Properties

Description

Standards

Physical resource
isolation [37]

No VNFs co-residence

VNFs of a tenant should not be placed on the same server as
VNFs of a non-trusted tenant

ISO [74], NIST800 [75],
CCM [73], ETSI [63]

Virtual resource
isolation [37]

No common ownership

Tenant-specific resources should belong to a unique tenant, unless
permitted by a user-defined policy

CCM [73], ETSI [63],
IETF-RFC7665, RFC-
7498 [72]

Topology
isolation
[37]

Mapping unicity
VLANs-VXLANs

VLANSs and VXLANS should be mapped one-to-one on a given server

Correct association
Ports-Virtual Networks

VNFs should be attached to the virtual networks they are connected
to through the right ports

Overlay tunnels isolation

In each VTEP end, VNFs are associated with their physical location
(at L2) and to the VXLAN assigned to the networks they are attac-
hed to at L1

Mappings unicity Virtual
Networks Segments

Virtual networks and segments should be mapped one-to-one

Mappings unicity
Ports-VLANs

Ports should be mapped to unique VLANs

Mappings unicity
Ports-Segments

vPorts should be mapped to unique segments

ISO [74],
NIST800 [75],
CCM [73],
ETSI [63],
IETF-RFC7665,
RFC-7498 [72]

Policy and state
correctness [76]

A policy can be dynamically changing. The changed policy should be
reconfigured in VNF node as soon as possible

ETSI [63, 77], IETE-R
FC7665, RFC8459[72]

Functionality of VNF
and VNFFGs [16, 13]

Check if VNFs and the composition (i.e., service chaining) of these
functions work as intended

ETSI [77], IETF-RFC-
7665, RFC8459 [72]

SFC ordering and
sequencing as defined
by the specification [12]

SFCs should maintain the order of VNFs with the correct traffic forw-
arding behavior as defined by the specifications

ETSI [63, 77], IETF-
RFC7665, RFC8459 [72]

Topology
consistency
[37]

VNFFG configuration
consistency between
L1/L2

Consistency between the size of VNFFGs, the sequences of VNFs
and the classifiers at L1 and their parallel implementation at L2

Virtual links consistency

VNFs should be connected to the VLANs and VXLANSs in L2 that
corresponds to the virtual networks they are connected to in L1

VNF location consistency

Consistency between VNFs locations at L2 and L1

CPs-Ports consistency

Consistency between CPs defined at L1 and their created counterpa-
rts; Ports in (L2)

1SO [74],

NIST800 [75],

CCM [73],
IETF-RFC-8459 [72],
ETSI [63, 77]

Table 3.1: Examples of NFV security properties [6]

Locating the Data Sources for Security Properties. To verify a given security prop-
erty, it’s necessary to identify all relevant data sources and determine what data to collect
from each source. This would require a good understanding of the property and accurately
mapping its semantics to the corresponding NFV system resources, which also requires
adequate awareness of the entities and their relationships within the NFV stack. Several
security properties may require data from multiple levels of the NFV stack, depending on
the involved data sources and their associated relationships. E.g., verifying SFC traffic iso-
lation property [34], entails collecting data from the VDUs at L2, as well as from VMs and

vSwitches at 3.

Data Correlation and Aggregation. Data sources are typically scattered across multiple
physical servers and different NFV stack levels, each with its own data format (e.g., SFC

traffic steering data is stored as OpenFlow rules at L3 and as database instances at L2).

24

Therefore, its necessary to process the data into a consistent format and piece together
related data within the same level (i.e., data aggregation), especially when audit data is
scattered across different tables (e.g., the SFC data resides in different Neutron tables and
Nova databases). Moreover, we need to link between data across different levels (i.e., data
correlation) to obtain the necessary information for verification. These challenges will be

addressed in Sections 3.4 and 3.5.

1. Constructing the ER Model 2. Automated Consistency Property Derivation 3. Cross-Level Security Verification Application to Openstack/Tacker

.. i z g
Relationship between NFV 0’ " Data collection) i Formal verification | ! Deploying the NFV testbed

) evel 1. Consistency of R —, ! ol rcoesss | | ! - i

; el | e e Pkl W | L | | andprocessing !otiessecmcmeoimeciaao) {User v] — 1

entities at same level entity configurations - ‘ ; v 1 Verifying security propertis | | 1} User |me1facer(}-lml.0n CLI) ! | OpenStack Rocky n i

' : I ; il

L OHHO 2. Consistency of relatio- st in onelevel 1 Tacker-0.10.0 OpenvSwitch ~ @vS !
7 - 5 " i1

I ‘Df — Mapping nship between two entities 1 1 ooo 1

L T between NFV I] E
L3 CHHJ entities at 3. Consistency of cross- L4 - i

L4 CHH y different levels levels mapping

Figure 3.3: An overview of the NFVGuard+ approach.

3.2.4 Threat Model

Our in-scope threats include both external attackers who exploit existing vulnerabilities
in the NFV stack, and insiders such as cloud users and tenant administrators who cause
security breaches either by mistakes or with malicious intents. Similar to most security
verification solutions (e.g., [71, 29]), we trust the NFV provider for the integrity of the
audit input data (e.g., logs and configurations). We also assume that the ER model cor-
rectly captures all the relations between the NFV system entities within the same level and
captures all the mapping between cross-level entities, and any new changes in the system
design affecting those relationships and mappings will be updated in the ER model. We
assume that the properties defined in the work are correct and complete i.e., it encompasses
all the data and required relations to describe the given property. We also assume that
one-level security property verification combined with verifying consistency properties for
all levels would be sufficient for cross-level verification of a security property (as detailed

in Section 3.4). Whereas, consistency property inspects whether the specifications set by

25

the tenants or service providers are implemented correctly in the NFV system and that the
implementation of resources at a specific level is instantiated correctly at the underlying
level(s). This work focuses on the verification of consistency properties and security prop-
erties related to the static configuration of the virtualized infrastructure, such as the proper
configuration of isolation mechanisms. Any property violation that is not reflected on logs
and configurations is beyond the scope of this work. Although dynamic properties, such as
reachability-related properties, also can be verified through formal methods (Lopes et al.
[4]), these are out of the scope and they will be investigated in our future work.
Additionally, although our cross-level security verification solution can detect a vio-
lation of security properties, its not designed to attribute such a violation to underlying
vulnerabilities (i.e., vulnerability analysis) or specific attacks (i.e., intrusion detection).
However, mitigation solutions (e.g., [78, 79]) can be applied to address the risks associ-
ated with security breaches or vulnerabilities. These include security hardening options
such as updating and patching vulnerabilities, enforcing strict security policies and access
controls, conducting regular security audits, penetration testing, hypervisor introspection,

remote attestation, and rollback to known good configuration.

3.3 Overview

Figure 3.3 shows an overview of NFVGuard+ including its three major steps and appli-

cation to NFV.

1. Constructing the ER Model. To model the interconnectivity between different com-
ponents in an NFV system, we construct the ER model that mainly captures: (i) the rela-
tionship between NFV entities within the same level, and (ii) the mapping between NFV

entities from different levels (detailed in Section 3.4.1).

2. Automated Consistency Property Derivation. We automatically derive consistencies

26

(which will be used in cross-level security verification later) between different entities in
the NFV stack based on the ER model. More specifically, we derive properties that include
the: (i) consistency of entity configurations, (ii) consistency of the relationship between

two entities, and (iii) consistency of cross-level mapping (detailed in Section 3.4.2).

3. Cross-level Security Verification. We conduct cross-level security verification by uti-
lizing two major steps: (1) verifying a security property for one level, and (ii) applying that
verification result to other levels using the consistency results. We also provide a general
guideline for the users to identify new properties (detailed in Section 3.5).

Application to Openstack/Tacker. As a potential application of our solution, we inte-
grate NFVGuard+ with OpenStack/Tacker (a popular choice for NFV deployment) [2]. In
our implementation, the user-defined network service descriptors are uploaded to Tacker
through Horizon/CLI [2]. We choose the latest version of OpenStack (i.e., Rocky) and
Tacker (i.e., Tacker-0.10.0) [2] to obtain the most recent features of NFV deployments. Fi-
nally, the traffic steering among the VNF elements is handled by the OvS switches [80].
We will detail the testbed data generation approach, report implementation challenges, and

describe the integration of NFVGuard+ into the testbed in Section 3.6.

3.4 ER Model Construction and Consistency Property Iden-
tification

This section shows how the ER model is built and how the consistency properties are

identified based on the model.

3.4.1 Constructing the Entity Relationship (ER) Model

To capture the relationships between NFV entities (e.g., between VNFFG and Path

entities) both within and across NFV levels, we devise an ER model for the NFV stack

27

(shown in Figure 3.4). The shaded nodes represent NFV-related entities, while non-shaded
nodes represent entities related to the underlying infrastructure. The directed edges show
the relationships between those entities at the same level, while (1:1), (1:M), (M:1), and
(M:M) represent the corresponding cardinalities of the relations. The dashed line edges
represent the cross-level mapping between the entities at different levels, which have a
(1:1) cardinality.

We construct the model by performing a comprehensive study of the system configura-
tions of a real NFV testbed implemented using OpenStack/Tacker [2] (detailed in Section
3.6), and relevant literature on modeling and deploying NFV and virtualized infrastructures
(e.g., [1, 30, 38]). We further validate our model with several industrial experts on NFV
from a large telecommunication vendor. In the following, we elaborate on our ER model

construction process.

Constructing the Nodes of the ER Model. According to the NFV deployment model (dis-
cussed in Section 3.2.1), we divide the ER model into four levels, the Service orchestration
level (L1), resource management level (L2), virtual infrastructure level (L3), and physical
infrastructure level (L4). Then, to capture the system entities at each level, we study the
deployment details of NFV environments [2, 1] and the supporting technologies (such as
network virtualization technologies like VLAN and VXLAN [81]) for implementing the

NFV. Then, we represent the identified entities as the ER model nodes.

Example 3.4.1 In this example, we identify the NS provider, NSD, and NS nodes in
the ER model. The NS provider uploads the Network Service Descriptors (NSDs) at the
Service Orchestration level (L1), which define the network service based on user require-
ments. Each NSD creates one or more NSs, stored as entities in the NFV system, along
with the NS provider’s ID and information. Thus, the NS provider, NSD, and NS entities

are represented as nodes in the ER model, as shown in Figure 3.4 at L1.

28

Constructing the Edges of ER Model. We construct the ER model with two types of
edges based on the: (i) relationships between NFV entities at the same level, and (ii) map-
pings between entities from different levels. In particular, we identify the relationships and
constraints among same-level entities and represent them as directed edges with cardinal-
ity attributes. Additionally, some system entities at one level are implemented as different
entities at the next level. The relationships between these entities can be utilized for ver-
ification. We represent these relationships as cross-level mapping edges connecting NFV

entities across different levels.

Example 3.4.2 Since the NSD creates the NS (as explained in Example 2), we establish
a directed edge between these entities, labeled CreatedFrom(M:1)(Figure 3.4 at L1), to
represent their relationship. The cardinality ((M:1)) reflects the constraints governing this
relationship: the NSD can create multiple NSs, but each created NS belongs to only one
NSD template. Furthermore, VNF specifications at L1 of the NFV system are instantiated
as VDUs at L2. Thus, we represent this relationship as a cross-level mapping between the

VNF and VDU entities.

3.4.2 Automated Consistency Property Derivation

This section illustrates how the ER model is utilized to automatically derive consistency
properties (which will be used later for our cross-level verification in Section 3.5).

The relationships between entities in the ER model reflect fixed configuration con-
straints within the NFV system. For instance, the relationship between the Path and Chain
entities at L1 (refer to Figure 3.4) is (1:1), indicating that each Chain is linked to a specific
Path, and each Path corresponds to one Chain. Deviating from these fixed configurations
can lead to unintended service behavior or interruptions.

Accordingly, we can derive properties, namely consistency properties, to verify whether

29

L1: Service
Orchestration
Level

INS Provid ‘——(I:M)‘HasVNFFG—% VNFFG |

""""""" i (1:M)

(1:M:M) AttachedOnCP

sapou JNA

~
o,
Ik ! VNFD | | Chain ——(M:M) ComposedFrom— VNF | i CP
?:;‘ L { (1:M) CreatedFrom—— J } }
"E. ——————————— "o T T === 1 |
T H I
. Reconrce T o e T QRE T (M) AssociatedWith emm T e i
| L2: Resource SFC Classifier}------- +
| Management | | 1 [) o Vool e o !
| Level TP I I
i SFC Path ————(M:M) ComposedOf— 4 Port Pair Group! ! !
O e | ——— T e o
S (1:M) Ha: (1:M) AttachedTo } }
2
£ L oo o] SNt Jamomou O BN
S | Port Pair | I
<y 0 | = 0 LI 7z e | |
=] (1:1) AttachedTo | 1 |
= oy i
3. ‘ VDU |- |
= 1) IsAssigendSe. —e -
) (1:1) IsAssigendSeg ! (1:1-2) AttachedOnPor |
| ; e e —
- Loviy IaMa:ppedTuSeg ! ! |
4 |
[\ i 1 | (1:M) Has } |
[| [——— Aooooo oo L 8 i
[.
——1| L3: Virtual i VM h i VLAN vRouter
i B R ey (e B bbb
Infrastructure (M:1) AttachedTo | _ J
Level (M:1) TaggedWith

|
|
(1:1) ConnectedTo (M:1) TaggedWith VXLAN

(M:1) HaslnterfaceOnPort:

(1:1) IsAssociatedWith-
(1:1) RelatedToServer- Remote VTEP

LocatedAt

LocatedAt

any instances created within the NFV system comply with the established configurations.

These properties

edges of the ER

ships between the NFV system entities at both the same and across different levels (Section

L4: Physical Infrastructure Level

Figure 3.4: The ER model of the NFV stack.

can be automatically obtained by systematically parsing the entities and

model, with the assumption that the model correctly captures all relation-

3.2.4). In particular, we can derive the following consistency properties.

Consistency of Entity Configuration. Each node in the ER model represents a system

entity with various configuration options determined by the specifications provided by NFV

tenants. We expl

the alignment of

Consistency of Relationships Between Entities at the Same Level. The directed edges

between two entities at the same level in the ER model signify their relationship, reflecting

ore each node to derive a corresponding consistency property that ensures

entity configurations with the defined specifications.

30

system configurations and tenant specifications. We explore these edges to derive consis-
tency properties that ensure the relationships align with both system configurations and

tenant specifications.

Consistency of Relationships Between Entities Across Different Levels. Similarly, the
dashed line edges between two entities in the ER model across adjacent levels represent
a relationship between them. Specifically, this indicates that an entity at a higher level
must have a corresponding implementation at the next level. We explore these edges to
derive consistency properties that ensure the integrity of the mappings. Table 3.2 presents
an excerpt of consistency properties automatically derived from the ER model, including

their corresponding sources, and descriptions.

Property ER model source Description

Classifier configurations should be consistent
with tenant-defined specifications

L1: AssociatedWith relationship | The classifier should be associated with the
Forwarding correctness between the Classifier and Path | correct path as outlined in the tenant specif-
entities ications to ensure accurate traffic steering

. . L1, L2: Cross-level mapping . .
Service chain between the Chain and SFC Service chain created at L1 should be correctly

configuration consistency .\ instantiated as SFC at L2
entities

Classifier integrity L1: Classifier entity

Table 3.2: Example of consistency properties identified from the ER model entities and
relationships.

The aforementioned consistency properties can be automatically obtained from the ER
model by representing it as a graph. In this graph, entities are depicted as nodes, and rela-
tionships are depicted as directed edges, attributed with relationships and their cardinalities.
By traversing the graph, each node and its connected edges are processed to extract the rel-
evant consistency properties. These properties are then stored in two lists: EntityConsisten-
cyProperty for node-level consistency and EdgeConsistencyProperty for relationship-level

consistency.

31

3.5 Cross-Level Security Verification

This section describes how NFVGuard+ conducts cross-level security verification.

Data Collection. To conduct cross-level security verification in NFV, data must be col-
lected from various sources across different levels of the NFV stack. For example, to
verify whether a VNFFG is correctly implemented according to the specification, we need
to collect data from various levels, including the VNFFG specification from the Tacker
database at L1, data about VDUs and ports from the Nova and Neutron databases at L2,
and the OpenFlow rules at L3 from multiple servers. Typically, this would involve manu-
ally inspecting the configurations at each level to identify relevant data for each property.
However, by utilizing the ER model, we can efficiently identify the necessary data for each
property as follows.

First of all, we must identify the property requirements (what needs to be verified) and
determine their scope (which level they pertain to). Next, we will map these requirements
at each level to the ER model and identify the entities within the model that relate to the
property. For instance, the VNFFG configuration consistency between L1/L2 property (re-
fer to [6]) requires that the VNFFG design (at L1)-including the size of the VNFFG, the
VNF sequences, and the classifiers definition-be correctly instantiated into corresponding
SFC configurations (at L.2), including the SFC size, VDU sequences, and classifier details.
One of the requirements for this property at L1 is to determine the size of the VNFFG,
which indicates the number of VNFs that comprise it. By referencing the ER model at L1,
we should relate this requirement with the corresponding entities at this level. Since it per-
tains to the VNFFGs, we will select the VNFFG entity as a relevant entity for this property.
Then, we will examine the relationships associated with this entity to check if they can be
utilized by the property. For example, by examining the relationships associated with the
VNFFG entity, we can observe that the VNFFG may consist of one or more paths, with

each path comprising a chain of VNFs. This highlights the importance of the Path, Chain,

32

and VNF entities in determining the size of the VNFFG.

Afterward, we will collect the relevant data for the property based on the identified
entities and by consulting the data sources table (Table 3.3), which is created in conjunction
with the ER model. For example, the ID of each VNFFG is stored in the VNFFG entity
along with the ID(s) of the path(s) it is composed of, and each Path entity includes the
ID of the chain that makes it up. While, the size of the VNFFG, can be determined from
the data source of the Chain entity, as indicated in the Description column of Table 3.3.
Likewise, the relevant data for the other requirements of the property are identified in the

Same manner.

Entity Data source Description
‘ The vnffgchains table Identifies the CI”s and the VNFs in the chain
Chain . and the sequential order of the VNFs as
in Tacker database
outlined in the specifications
. Identifies the classified traffic flows entering
. The vnffgclassifiers . i) .
Classifier . the VNF chain path, typically including
table in Tacker database o
details like source port and IP protocol
. Stores the ID of the chain created at L1 and
The sfc_port_chains o - . .
SFC table in Neutron database document its instantiation and specifications,
including the flow order between VNFs
Open vSwitch | ovs-fields in OVS Store information related to the forwarding
(OVYS) and OpenFlow tables behavior of the network services

Table 3.3: An excerpt of the data sources for some of the entities in the ER model, along
with a description of the types of data they contain.

Data Processing. The data required to verify a specific security property could be col-
lected from multiple levels of the NFV stack and it may differ in format, as each level
employs distinct technologies (such as resource management at L2 and virtual networking
elements at L3) and stores data in different formats (e.g., SFC traffic steering is stored as
OpenFlow rules at .3 and as database entries at .2). Moreover, this data could be scattered
(e.g., across different database tables or different OvSs) and might not directly reflect the

necessary information needed for verification. Therefore, we process the collected data to

33

generate meaningful information for verification and ensure its in a consistent format com-
patible with the formal verification engine (e.g., the input format for the Sugar CSP solver).

The processing of the collected data is outlined below.

1. Data correlation: Due to the distributed nature of the audit data (e.g., data may be
scattered across different services at the same level, such as Nova or Neutron in
OpenStack or among physical servers), we need to correlate the collected data within
each level to produce meaningful information for verification [30]. For example,
VNFFG_I is implemented at L.3 as three VMs (VM _01, VM _02, and VM _03) hosted
on two physical servers. To verify the forwarding correctness of VNFFG_I, we need
to collect the flow rules (determines how traffic flows through these VMs) stored
on both physical servers and scattered across multiple tables on each server. For
example, if VM _02 and VM _03 are on the same physical server and we want to verify
whether VM _02 is forwarding traffic to VM_03, we will need to examine the flow
rules stored in tables 0, 5, 10, and the Group table. Therefore, we need to correlate all
these data to piece together sufficient information for verification. The relationships
between system entities at each level of the ER model help to identify the data that
needs to be correlated. For instance, the relationship between the VNFFG entity
and the Path entity indicates that they are interconnected and their data could be

correlated.

2. Data aggregation: Audit data for specific properties, such as consistency properties,
could be distributed across different levels of the NFV stack. Therefore, we must
aggregate the data from these different levels to compile sufficient information for
verification. For example, to verify whether a VNFFG is correctly implemented ac-
cording to the specification, we need to collect the specification data at L.1, aggregate
it with the instantiation data at L2, and further combine it with the implementation

data at L3. The cross-level mapping relationships between system entities at each

34

level of the ER model assist in identifying the data that needs to be aggregated.

Formal Verification. We propose to apply formal methods to verify the compliance of the
NFV stack against the identified security and consistency properties. In this work, we for-
malize the properties as a Constraint Satisfaction Problem (CSP), a time-proven technique
for expressing many complex problems. We then apply Sugar [67], a well-established con-
straint solver, to check whether these properties are satisfied. We detail the verification
process as follows.

To systematically verify the NFV-related properties, we need to transform the property
requirements as well as the involved ER model entities and their instances (i.e., the system

data) into the corresponding CSP code. The CSP code mainly consists of four parts:

* Variable and domain declaration. Entities of the ER model—i.e., the nodes repre-
senting system components—are expressed as CSP variables with integer domains.
Each domain encompasses all data instances defined within the system. For exam-
ple, for the VNFFG configuration consistency between L1/L2 property, the VNFFG
entity (refer to Figure 3.5) is expressed as the variable fg defined over the domain
VNFFG such that (domain VNFFG 0 max_vnffgs) is a declaration of a CSP
finite domain of VNFFGs, where each value between 0 and max_vnffgs is for a

corresponding data instance in the NFV system.

» Relation declaration. The ER model relations, involved in the property require-
ments, are converted into CSP relations over variables with a support consisting
of tuples of system data. For example, the relation between the VNFFG and its
path (refer to Figure 3.5) is defined as the CSP relation (relation HasPath 2
(supports (fg path)), where instances of a given relation are the set of tuples
corresponding to the entities instances. The CSP relations describe the current state

of the system.

35

* Constraint declaration. We define constraints, in terms of CSP predicates, over the
involved relation to specify the conditions that the instances of these relations should
satisfy. Since CSP solvers provide solutions only in case the constraint is satisfied
(SAT), we define constraints using the negative form of the property to obtain a

counter-example in case of a violation.

* Body. We combine different predicates based on the properties to verify using Boolean

operators.

— Relationship — — — Cross-level mapping || VNF nodes

Service
Orchestration
Level

Figure 3.5: Thumbnail of the ER model showing entities for verifying VNFFG configura-
tion consistency property at L1.

When the CSP solver (i.e., Sugar) solves the constraints and finds no solution (UNSAT),
the verified properties are reported to be compliant. Otherwise, the solution provided by
the CSP solver gives the variables’ instances for which the negative form of the property
is satisfied, meaning that a violation has occurred. For instance, we express the property
virtual resource isolation presented in Example 3.2.1 using the following CSP relations.
HasChain (t, sfc) which evaluates to true if tenant ¢ has/owns a running SFC sfc,
SFCHasVDUs (sfc, wvdu) which evaluates to true if the SFC sfc has assigned VDU vdlu,
HasVDU (t, wvdu) which evaluates to true if the tenant ¢ has a running VDU vdu. Then
we define the negation of the property in terms of a predicate over those relations to obtain
a counter-example in case of a violation, shown as the VirtualResourceIsolation
predicate in Listing 3.1 (an excerpt of Sugar code). Example 3.5.1 shows how Sugar verifies

this property and allows for obtaining the violation evidence.

36

Example 3.5.1 Suppose that a tenant 7 with the Tenant _ID (18e552) is encoded as (10)
in listing 3.1, the Chain (3cf7ca68) he owns as (1), and the VDUs (49ceOble, 738bb405)
as (15, 16), respectively. The predicate VirtualResourceIsolation will evaluate
to true if any of the VDUs assigned to the chain (1) that belongs to tenant (10) is owned by
another tenant. According to the relation instance HasVDU (11 16), the chain (1) has a
VDU (16) that does not belong to tenant (10). Therefore, the predicate evaluates true and
the output of Sugar code is (SAT) with evidence about what values breached the property

1.e., (t=10; sfc=1; VDU1=16).

//Domains and variables declaration

(domain TENANT O 10,000) (domain SFC 0 5000)
(domain VDU 0 100,000)

(int t TENANT) (int sfc SFC) (int wvdu VDU)
//Relations Declarations

(relation HasChain 2 (supports((10 1) (12 3)))
(relation SFCHasVDUs 2 (supports((l1 15) (1 16)))
(relation HasVDU 2 (supports((10 15) (11 16)))
//Predicate Declaration

(predicate (VirtualResourcelsolation t sfc vdu)
(and (HasChain t sfc) (SFCHasVDUs sfc wvdu)

(not (HasvDU t wvdu))))

//The Body

(VirtualResourcelsolation t sfc wvdu)

Listing 3.1: An excerpt of Sugar source code.

After verifying the NFV-related properties, we ensure the verification result for other
levels using consistencies. The consistency between different levels of the NFV stack can
be utilized to improve the performance of the verification (as we illustrate in the motivat-

ing example in Section 3.1). The key idea is to leverage the consistency result to perform

37

security verification at one level of the NFV stack, instead of verifying the same security
property at each level separately. As long as the NFV stack levels are consistent, the veri-
fication results at one level would be applicable to other levels. We show the performance
improvement that we gain by utilizing the consistency property in experiments (Section

3.1).

3.6 Application to OpenStack/Tacker

In this section, we detail the deployment and data generation of our NFV testbed, dis-
cuss the challenges encountered during this process, and detail the implementation of NFV-

Guard+.

3.6.1 Deploying the NFV Testbed

NFV Testbed Implementation. We build our NFV testbed using OpenStack [2] with
Tacker [70] due to its growing popularity in the real world (e.g., [68]). More specifi-
cally, we rely on OpenStack for the Virtual Infrastructure Manager (VIM), which has been
adopted by 96% of CSPs and more than 60% of the telecom operators in their NFV de-
ployments [82]. We rely on Tacker, an official OpenStack project, for both VNFM and
NFVO modules based on the ETSI MANO architectural framework [3]. We choose the lat-
est version, 1.e., OpenStack Rocky and Tacker-0.10.0 [2] to obtain the most recent features
of NFV deployments.

NFV Data Generation. We intend to deploy a large-scale NFV system to assess the per-
formance of NFVGuard+. However, to the best of our knowledge, there is no publicly
available dataset of TOSCA [83] deployment descriptors for a large-scale NFV deploy-

ment. Therefore, we develop Python scripts to generate various Virtual Network Function

38

Descriptors (VNFDs) and Virtual Network Function Forwarding Graph Descriptors (VNF-
FGDs) in TOSCA, and we onboard those to our testbed to deploy different network services
and generate large-scale NFV datasets. To ensure more diversity, we randomly choose a
few parameters in the template while generating the deployment descriptors: 1) the number
of network ports per VNE, 2) the number of VDUs per VNEF, 3) the Flavor for each VNF
and VDU, 4) the number of VNFs for each Network Function Path (NFP), 5) the order of
VNFs for each NFP, 6) the flow-classifier criteria for each NFP, and 7) the number of NFPs
for each VNFFG.

Specifically, the scripts first generate a diverse set of VNFDs for a given tenant by cus-
tomizing a base template. After that, they generate multiple VNFFGDs (resp. NSDs) by
creating unique network function paths using the available VNFDs. Then, these descrip-
tors are onboarded to the VNFM and the NFVO modules in Tacker, respectively, through
Horizon/CLI [2]. Once onboarded, the TOSCA templates are interpreted and translated to
Heat templates [2]. Then, using the Heat template, Tacker leverages Nova to provision the
virtual instances implementing the VNFs, and Neutron to provision the virtual networks
that provide the connectivity to and from each VNF. Finally, the traffic steering among
the chains of VNFs is handled by the OvS switches [80]. Figure 3.6 shows the detailed

flowcharts for generating VNFDs and VNFFGDs.

VNFDs Generation. Figure 3.6(a) depicts the procedure to generate multiple VNFDs for
a given tenant. Each VNFD is used to create one or several VNFs of the same type. More
specifically, we use a base template that our generator customizes to create a diversified
set of VNFDs. First, a set of virtual subnets is created, and then the corresponding VNF
images are uploaded to be used within the VNFD templates. For each VNFD to be created,
a set of subnets is selected, and then identifiers for connection points (CPs) and virtual links
(VLs) associated with the VNF are created accordingly. Then, these identifiers are applied

to fill in the VNFD template. Once these VNFDs are generated, they are used to generate

39

‘ Create virtual subnets

Start

Generate NFFGD
or NSD?

v

Input no. of
descriptors (n)

‘ Load the base YAML template ‘

- Path exists?

No

Add the created path to
existing paths

NF images No ‘

Convert YAML template to
JSON

uploaded?

Load already existing network

function paths

Input projectname

& no. of VNFDs (n) ‘

v

Randomly select a subnet to
chain VNFs

-

Select CPs and VLs based on
subnet availability

‘ Write the template in TOSCA ‘

FDs available?

Randomly select VNFs and a
CP from each VNF

Collect the VNFs based on
the order and add to JSON

Build other properties such as
node_template and groups

Remove the VNFD imports
for VNFFGD

v

‘ Convert JSON to YAML and

write the template in TOSCA

Order and shuffle the

selected CPs to create a
network path

v

Check if the created path
already exists

%

(b) VNFFGD/NSD Generation

Generated VNFFGD / NSD

/]

Yes Decrement 7,

if (n > 0)?

(a) VNFD Generation

Figure 3.6: The process of generating VNF and VNFFG/NS TOSCA template descriptors.

Eve’s
subnet

Bob’s
subnet

Testbed Topology

provider
nf-1werl-0239-VDU1L

nf-6a21-¢232-VDU1

nf-f830-3d11-VDUL nf-dwe30-381-VDU1

Figure 3.7: The topology of our NFV testbed (left) consisting of 20 tenants, 200 VNFFGs,
and 200 VNFs and detailed view (in Horizon [2]) of an attack scenario similar to the moti-
vating example in Section 3.1 (right).

VNFFGDs/NSDs.

VNFFGDs/NSDs Generation. Figure 3.6(b) depicts the process for generating multiple

VNFFGDs (resp. NSDs) for a given tenant. Similar to generating VNFDs, we use a base

40

VNFFGD (resp. NSD) TOSCA template with all the necessary attributes that our gen-
erator modifies accordingly to create a diversified set of VNFFGDs (resp. NSDs). The
generator considers the number of VNFFGDs (resp. NSD), the available VNFDs, and
the VNFFGD/NSD base template as its inputs. The VNFFGD/NSD base template (origi-
nally in YAML format) is first converted into JSON format for easier modification. Then
a list of existing VNFFGD (resp. NSDs) is loaded and checked to avoid the creation of
duplicates. To build new VNFFGDs/NSDs, a subnet is first randomly selected, and then
the CPs connected to this subnet are collected from a random number of VNFDs. After
that, these CPs (each represents a VNF) are shuffled first and then ordered to create a net-
work function path. Once a path is created, its verified against the list of existing paths to
avoid any duplication. Then, the VNFs are collected based on the order of CPs followed
by the creation of other additional information such as node _template, groups, and
network_src_port_id to complete the VNFFGD (resp. NSD). To finalize the genera-
tion of VNFFGD (resp. NSD), the JSON is converted into YAML again and then saved as
a TOSCA template file.

Figure 3.7 (left) is generated using OpenStack Horizon [2] to provide an overview of
the network topology of our NFV testbed consisting of 20 tenants, 200 VNFFGs (each
VNFFG consists of 10 VNFs), and each tenant has 10 VNFFGs. The figure shows the in-
terconnections between the provider network and different tenant subnets (which are high-
lighted in different colors for each tenant) with their corresponding routers and VNFs.
Figure 3.7 (right) shows a detailed view of an attack scenario similar to the motivating
example (Section 3.1) where a malicious virtual machine (VM5) from the network of Eve
(nfvdsgl8-networkl, highlighted in orange), is stealthily added to the service func-
tion chain of Bob implemented in his subnet (nfvdsgl8-network2, highlighted in

blue).

NFV Testbed Implementation and Data Generation Challenges. Hereafter, we will

41

discuss the implementation and data generation challenges, causes of failures, and our so-
lutions. Due to space constraints, not all challenges are covered here.

Version Mismatch. Basic NFV implementation with OpenStack requires careful orches-
tration of at least 14 OpenStack services. Version mismatch among these services can lead
to deployment failures and pose significant troubleshooting challenges. For instance, we
encountered a silent failure in OpenFlow rules update, due to a version mismatch between
Neutron and OvS. We addressed this by downgrading Neutron version.

Manual Effort. During the installation process, we encountered an unexpected freeze.
To bypass the freeze and complete the installation, we manually installed some services
specifically, Mistral and Tacker.

Undocumented Deployment Constraints. During data generation, we encountered
VNFFG creation failures due to undocumented deployment constraints within the VNFFG
template. These failures involved the inability to chain VNFs using management ports or
from different subnets, and required traffic to originate from the same subnet. We address

these failures by VNFFG template validation.

3.6.2 NFVGuard+ Implementation

The data collection component is implemented to collect data from different OpenStack
services, such as Tacker, Nova, and Neutron [2], as well as from the instances running on
every compute node of OvSs. Specifically, we rely on the Tacker database to retrieve user-
defined descriptors uploaded to the VNFM and NFVO modules of Tacker (e.g., VNFD and
VNFFGD) as the basis for verifying most of the properties. We also rely on a collection
of OpenStack databases, such as Neutron database for information about SFC network-
ing (e.g., the sequence of service functions, the traffic steering in-between, and the traffic
classifier) and Nova databases (e.g., table Instance) for information about the tenant, the

VDU, and the hosting machine. Finally, we collect the OpenFlow tables and internal OvS

42

databases from all the compute nodes, e.g., to check for properties such as inconsisten-
cies between L2 and L3. To process the collected data, we implement the data processing
component in Python and Bash scripts. First, for each property, our processing compo-
nent identifies the involved relations, and the supports of the relations are either fetched
directly from the collected data (e.g., the support of the relation BelongsTo) or recovered
after data correlation. Second, our processing component formats each group of data as an
n-tuple, e.g., (resource, tenant), (OVS, VLAN, VXLAN), etc. Finally, it uses the n-tuples
to generate part of the Sugar [67] source code and appends the n-tuples with the variable
declarations, relationships, and predicates for each security property. Then we develop
a customized script to generate the Sugar source code for the verification of each prop-
erty. The formal verification component is implemented to feed the generated code into the
Sugar CSP solver version 2.3.3 [67]. Sugar then produces the verification results to either

state the property holds or provide evidence when the property is breached.

3.7 Experiments

This section evaluates the effectiveness of NFVGuard+ in terms of accuracy, efficiency,
and scalability through experiments using real and synthetic datasets. In the following, we

describe our experimental settings and findings.

3.7.1 Experiments with Synthetic Data

Experimental Settings. We deploy our testbed on a SuperServer 6029P-WTR equipped
with Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz and 128GB of RAM. To evaluate the
performance of NFVGuard+, we generate various synthetic datasets of different sizes vary-
ing from 1K up to 5K VNFFGs (representing reasonably large NFV setups [84]), and from

20K to 100K VMs. All data processing and experiments are conducted on the SuperServer

43

with the verification tool, Sugar V2.3.3 [67]. Each experiment is performed 1,000 times to
avoid any fluctuation caused by other operations on the server. The reported results show

the efficiency and scalability of NFVGuard+.

Effectiveness Evaluation of NFVGuard+. To evaluate the effectiveness of our approach,
we apply NFVGuard+ to pre-validated instances of security properties and assess its accu-
racy in verifying those instances. Table 3.4 shows some example security properties, their

investigated instances, the instantiated Sugar code for each instance, and the corresponding

Sugar output.

-VXLANs

(not (10x1 = 10x1))))

Property Property instance Instantiated Sugar code Sugar output
'VNFFG configuration L1: (VNFFG_path: 10fp, VNF1: 4f, VNF2: 5f) and ((predicate VNFFGConsistencyL.1/L2) (and (L1Chain (10fp, 4f, 5f)) UNSAT
consistency between L1/L2 | L2: (SFC: 10fp, VDUI1: 4f, VDU2: 5f) (L2Chain(10fp, 4f, 5f)) (10fp = 10fp))) h
VNFFG configuration L2: (SFC: 10fp, VDU1: 4f, VDU2: 5f) and ((predicate VNFFGConsistencyL.2/L3) (and (L2Chain (10fp, 4f, 5f)) UNSAT
consistency between L2/L3 | L3: (Chain: 10fp, VM1: 4f, VM2: 5f) (L3Chain (10fp, 4f, 5f)) (10fp = 10fp)))

S e . _— X e X ((predicate VirtualResourcelsolation) (and (HasChain (It, 10fp))
Virtual resource isolation L2: (Tenant: 1t, SFC: 10fp, VDUI: 4f, VDU2: 5f) (SFCHasVDUs (10fp, 4f) (10fp, 50) (not(HasVDU (1t, 4 (1t, 50)))) UNSAT

. . ((predicate MappingUnicity) (and (AssignedVLAN (1s, 9p, 71))

Mapping unicity VLANS | | 3. po. op Switch: 1s, VLAN: 71, VXLAN: 10x]) | (MappedToVXLAN (s, 7I, 10x1)) (MappedToVXLAN (Is. 71, 10x])) | UNSAT

VNEFFG configuration
consistency between L1/L2

L1:
L2:

(VNFFG_path: 20fp, VNF1: 10f, VNF2: 11f) and
(SFC: 20fp, VDUI: 10f, VDU2: 11f, VDU3: 12f)

((predicate VNFFGConsistencyL1/L2) (and (L1Chain (20fp, 10f, 11f))
(L2Chain (20fp, 10f, 11f), (20fp, 11f, 12f)) (20fp = 20fp)))

SAT: (VNFFG_path: 20fp,
SFC: 20fp, VDU2: 11f,
VDU3: 12f)

VNFFG configuration
consistency between L2/L3

L2:
L3:

(SFC: 30fp, vRtr: 17f, vFW: 18f, vDPI: 19f) and
(Chain: 30fp, vRtr: 17f, vFW: 18f)

((predicate VNFFGConsistencylL2/L.3) (and (L2Chain (30fp, 17f, 18f),
(30fp, 18f, 19f)) (L3Chain (30fp, 17f, 18f)) (30fp = 30fp)))

SAT: (SFC: 30fp,
Chain: 30fp, vFW: 18f,
vDPI: 19f)

Virtual resource isolation

L2:

(Tenant: 1t, SFC: 10fp, VDUI: 4f, VDU2: 5f)

((predicate VirtualResourcelsolation) (and (HasChain (1t, 10fp))
(SFCHasVDUs (10fp, 4f) (10fp, 5f)) (not(HasVDU (1t, 4f) (2t, 5)))))

SAT: (Tenant: It,
SFC: 10fp, VDU2: 5f)

Mapping unicity VLANs
-VXLANs

L3:

(Port: 9p, Switch: 1s, VLAN: 71, VXLAN: 10xl,

VXLAN: 15x1)

((predicate MappingUnicity) (and (AssignedVLAN (1s, 9p, 71))
(MappedToVXLAN (1s, 71, 10x1)) (MappedToVXLAN (1s, 71, 15x1))
(not (10x1 = 15x1))))

SAT: (Port: 9p, Switch: Is,
VLAN: 71, VXLAN: 10x1,
VXLAN: 15x1)

Table 3.4: Example property instances for evaluating the effectiveness of NFVGuard+.

The accuracy of our approach depends on the precision of the formal verifier, specif-
ically the Sugar SAT solver. To test the solver’s accuracy, we provide the solver with
pre-validated instances and compare its results with our own. In particular, we verify in-
stances of the VNFFG configuration consistency, virtual resource isolation, and mapping
unicity VLANs-VXLANs properties. These instances are first tested by us for compliance
before being given to the solver. Then, we check if the solver incorrectly identifies any of
the compliant instances as non-compliant. Our evaluation shows that the solver output is
accurate, correctly identifying all instances as compliant. Examples of these instances are
shown in the first four rows of Table 3.4, where the solver output is UNSAT, indicating that

the instances comply with the corresponding properties. For clarity, the instantiated Sugar

44

code has been shortened and simplified. For more details on Sugar syntax and the full code
excerpt, refer to Section 3.4.

Next, we inject security breaches at different levels of the NFV stack and test the ac-
curacy of our approach in identifying those breaches. First, by exploiting a privilege esca-
lation vulnerability in OpenStack (OSSA-2017-004 [85]), we would be able to modify the
specification of an SFC and add an additional VNF. Such a modification at L2 will not be
reflected at L1, resulting in a breach of configuration consistency between L1/L2 property.
An instance of this breach is presented in Table 3.4. In verifying the property, the solver
aims to identify any VNFs that are defined in L1 for the given chain but not in L2, and vice
versa. The solver successfully identifies this breach and returns the values that cause the
property violation, specifically: (VNFFG path: 20fp, SFC: 20fp, VDU2: 11f, VDU3: 12f)
(refer to Table 3.4).

Second, we target the flow tables at L3 to create inconsistencies with higher levels. By
triggering a virtual switch reconciliation during a network topology update, outdated flow
rules are reinstalled, causing traffic to be steered according to old definitions [1]. This leads
to a breach in configuration consistency between L3 and upper levels. An instance of this
breach is presented in Table 3.4, where we assume the configuration consistency between
L1/L2 property was verified to be met by the configuration.

In particular, a VNFFG that initially forwarded traffic from a vRtr to a vFW is updated
to route traffic from the vRtr to the vVFW and then to an additional vDPI. While the SFC at
L2 is updated, the L3 flow rules remain unchanged due to the virtual switch reconciliation
vulnerability. In verifying the property, the solver aims to identify any discrepancies in
the traffic steering information collected from the different levels. The solver successfully
identifies this breach and returns the values (SFC: 30fp, Chain: 30fp, vFW: 18f, vDPI: 19f)
as evidence of the violation. Additionally, we generate misconfigurations to create further

breach instances. The last two rows of Table 3.4 provide examples of these instances.

45

|%Forwarding correctness -+ Classifier integrity ¢-Service chain configuration consistency|

Time (s)

0 0
1K 2K 3K 4K 5K K 2K 3K 4K 5K 1K 2K 3K 4K 5K
Number of service chains Number of service chains Number of service chains

Figure 3.8: Verification performance for the consistency properties while varying the num-
ber of service chains.

Our tests demonstrate the effectiveness of our approach in providing accurate results for
the specified security properties. In general, using formal methods in security verification
is known to provide provably accurate results [86, 87] for given security properties. A prac-
tical challenge is for administrators to properly identify and define the security properties
based on their specific needs. One potential solution to this challenge is to automatically ex-
tract security properties from standards using natural language processing (NLP) [88, 89],

though this falls beyond the scope of this work.

Efficiency of Verifying the Consistency Properties. In this experiment, we evaluate the
efficiency (in terms of response time, CPU usage, and memory consumption) of NFV-
Guard+ in verifying the consistency properties derived from the ER model (refer to Section
3.4.2). We verify the classifier integrity, forwarding correctness, and service chain configu-
ration consistency properties, which correspond to the consistency properties derived from
the different objects of the ER model, i.e., node, edge, and cross-level edge, respectively.
According to Figure 3.8, the verification time increases almost linearly with the in-
creased number of resources and the verification requires less than 1.5 seconds for all
three properties even for the largest dataset. The verification of service chain configuration
consistency property incurs the lowest response time, CPU, and memory consumption as
shown in Figure 3.8 due to its simplest predicate with a smaller number of variables than
the other two properties. This is expected as complex properties with a higher number of

relations and variables generally take more time to process, and consume more memory

46

10 10 4
[JConsistency property |_1/L2‘ [IConsistency property L1/L2 \EIConsistency property L1/L2-breach|

I ™ R L

1K 2K 3K 4K 5K 1K 2K 3K 4K 5K 1K 2K 3K 4K 5K
Number of VNFFG Number of VNFFG Number of VNFFG

oo

)]
o]

Time (s)
B

-

N
N

Figure 3.9: Verification time for the topology consistency properties in case of compliance
(left), in case of reporting the first breach verifying between levels L2/L.3 (middle), and in
case of reporting the first breach verifying between L1/L2 (right).

and CPU. However, the maximum amount of CPU consumption is less than 12%, while
the maximum memory consumption is only 1%. Hence, though the verification for the
forwarding correctness property takes more time and consumes more resources than the

classifier integrity property, the consumed resource still stays reasonably low.

Efficiency of Cross-Level Security Verification. In this set of experiments, we evaluate
the verification time required by the candidate properties presented under different config-
uration scenarios. More specifically, the first configuration scenario assumes that the NFV
configuration has no violation of any of the considered properties (detailed later in this sec-
tion and depicted in Figures 3.9 (left) and 3.10 (left)), while in the second scenario (detailed
later in this section), we inject several violating instances for each of the tested properties
and consider the time to report the evidence only for the first breach (Figures 3.9 (middle)
and (right) and 3.10 (middle)), in case a fast binary answer on the compliance status of the
system is required by the system administrator/auditor. We then consider the average re-
sponse time to find all compliance breaches (detailed later in this section and Figures 3.10
(right), 3.11 and 3.12 (left)). For each of the investigated scenarios, we consider the con-
sistency properties, VNFFG configuration consistency between L1 and L2, and the VNFFG
configuration consistency between L2 and L3. We also consider the security properties,
virtual resource isolation (L2), and the mapping unicity VLANs-VXLANs (L3).

Note the required time for detecting non-compliance with the consistency properties

47

also depends on the level where the breach is detected. For instance, if we detect a violation
in the consistency property at L1/L2, then the verification stops and we report the time for
non-compliance of the VNFFG configuration as the time for non-compliance of the later
consistency property (Figures 3.9 (right) and 3.11 (middle)). Since the hierarchy of the
NFV stack implies that any faulty configuration at the higher levels would lead to a fault
at the lower levels, to reduce the verification time, we exploit this observation and stop the
verification once we have a violation at higher levels. Otherwise, we continue the process to
verify the non-compliance of the consistency property between lower levels (e.g., L2/L3).
In this case, the verification time is the time for verifying the consistency property between
L1/L2 in case of no breach and the time for reporting non-compliance at the lower levels
L2/L.3 (Figures 3.9 (middle) and 3.11 (left)).

Scenario 1. Cross-Level Security Verification in Case of Compliance: Figure 3.9 (left)
depicts the verification time for the consistency properties in case of compliance. In gen-
eral, the consistency property verification consumes more time for verifying between higher
levels (it requires 1~5s for L1/L.2) than for lower levels (1~3s for L2/L.3) due to a more
complex and higher number of relation instances of the predicates between higher levels.
Moreover, we also observe that with an increased number of VNFFGs, the required time is

increasing almost linearly.

8 0.8
-=-Virtual resource isolation ‘ -~-Mapping unicity VLANs-VXLANs

»*Virtual resource isolation-breach 0.7 l<Mapping unicity VLANs-VXLANs-breach

N
0.6
0.5
Z e 0.4

0 0.3 0
20K 40K 60K 80K 100K 20K 40K 60K 80K 100K 1K 2K 4K 5K

3K
Number of VMs Number of VMs Number of VNFFG

140 ~Consistency property L1/L2-ALLSAT
“-Consistency property L1/L2-SAT

Time (s)
iy

Figure 3.10: Verification time for the security properties virtual resource isolation (left) and
mapping unicity VLANs-VXLANSs (middle) in case of compliance and in case of reporting
the first breach. Verification time for finding all compliance breaches (10 breaches) for the
consistency property L1/L2 using SAT and ALLSAT solvers (right).

Scenario 2. Cross-Level Security Verification in Case of Detecting the First Breach:

48

[Virtual resource isolation

[IConsistency property L1/L |C|Consistency property Ll/L2—breach\

vZConsistency property L2/L

15

o

EZ4Mapping unicity VLANs-VXLANs

S|
w N
N

100

50

K 3K 4K 5K 1K 2K 3K 4K 5K 20K) 4 K 60K] 80K
Number of VNFFG Number of VNFFG Number of VMs

=
~
N

Figure 3.11: Verification time for the topology consistency properties, virtual resource iso-
lation, and mapping unicity VLANs-VXLANSs in case of reporting all compliance breaches
using ALLSAT solver, with (left) reporting all breaches for verifying between levels L2/L.3,
(middle) reporting all breaches for verifying between L1/L2, and (right) reporting all
breaches for verifying virtual resource isolation and mapping unicity VLANs-VXLANS.

Figure 3.9 (middle and right) depict the verification time for the consistency properties
in case of non-compliance and providing the evidence for the first security breach. The
time to detect and report the first breach (~ 3s while the first breach was found at L1/L.2,
and ~ 6s for L2/L.3) is less than the time required for assessing the same property in case
of compliance (~ 8s). This is due to the action of immediately stopping the verification
process after finding the first breach as we mentioned earlier. Also, the time for detecting
breaches between lower levels is not far from the time in the case of compliance, which
can be attributed to the fact that the verification of consistency property between higher
levels is more time-consuming than the one between lower levels. We consider the time
for detecting non-compliance to be reasonable for application in real life as a non-real-time
auditing solution.

Figure 3.10 (left and middle) show the time for verifying the security properties in case
of compliance and reporting the evidence for the first breach. The verification of mapping
unicity VLAN-VXLAN is more efficient (less than 1 second), and the required time in-
creases more slowly than it does for the virtual resource isolation (6 seconds for the largest
dataset) as the latter has more complex predicates involving a higher number of relation
instances. Similarly, as in the case of consistency properties, the time for reporting the

breach is shorter than the time for asserting compliance for both of the security properties.

49

Scenario 3. Cross-Level Security Verification in Case of Detecting All the Breaches:
Figure 3.10 (right) shows the average verification time to find all compliance breaches for
the consistency property L1/L2 for both the case of using SAT [67] and ALLSAT [90]
solvers, while the given number of breaches in each dataset is 10. The figure shows that the
ALLSAT solver is faster than SAT solver in finding all the security property breaches. The
reason is that SAT solvers can only provide a single solution in each run, while ALLSAT
solvers are capable of finding multiple breaches in a single run. As a ramification, to find
all the solutions, we have to run the SAT solver again and again until finding all breaches
(i.e., for determining 10 breaches in the experiment, we have to run the solver 10 times).
Hence, ALLSAT is clearly more applicable when finding an exhaustive list of breaches is
desirable.

Consequently, we analyze the efficiency of the ALLSAT solver in detecting all 10
breaches (Figure 3.11). Figure 3.11 (left) shows the average time for detecting non-
compliance breaches at the lower levels (~ 66s) for the largest dataset (SK VNFFGs), and
Figure 3.11 (middle) shows the verification time for detecting non-compliance breaches at
the higher levels (~ 80s) for the same dataset. The ALLSAT solver could efficiently find
all the violations, and the time for detecting multiple violations is longer than the time of
detecting a single solution and assessing the compliance of the system in case of no breach.
This indicates that the verification time of our solution increases with an increasing num-
ber of violations. Also, the time for finding all the breaches for the consistency property
at L1/L2 is more than that for the consistency property between L2/L.3, which is related to
the complexity of the property at the higher levels. Therefore, the verification time for the
lower levels is less than that of the higher levels, especially that the time for compliance
verification of the consistency property at L1/L.2 is as short as ~ 5s. Moreover, even though
the verification of the higher levels takes more time, its still much faster than the naive ap-

proach of verifying both of the properties, which would take both the time for verifying the

50

250 . . . 60—
t~Mapping unicity VLANs-VXLANs| | F=-Virtual resource isolation|
@ 200 40
£
=15
= 150 20
100 . . . " I
10 20 30 40 50 2 4 6 8 10 12 14 16
Number of violations Number of nodes

Figure 3.12: Verification time for reporting all breaches for the security property mapping
unicity VLANs-VXLANs while varying the number of breaches (left) and the time for
parallelizing the verification of the virtual resource isolation property (right).

consistency property between L1/L2 in case of non-compliance (i.e., ~ 80s) and the time
for verifying the consistency property between L2/L.3 in case of non-compliance (i.e., ~
62s).

Figure 3.11 (right) shows the time for verifying the security properties in case of re-
porting all compliance breaches. The time of reporting all compliance breaches for both of
the security properties is longer than the time for reporting compliance. Moreover, the time
for reporting all breaches of the virtual resource isolation property (~ 2m for the largest
dataset (100K VMs)) is higher than the time for reporting all breaches of the mapping unic-
ity VLANs-VXLANs property, as the latter is more complex. Figure 3.12 (left) studies the
effect of increasing the number of violations on the verification time. In this experiment,
we verify the mapping unicity VLANs-VXLANs property, and we vary the number of viola-
tions encountered in the dataset where the dataset size is (100K VMs). As depicted in the
figure, the time increases almost linearly with the number of violations, and it takes about

3.7m to verify 50 breaches.

Efficiency Improvement Due to the ER Model. This set of experiments is to evaluate the
efficiency improvement (Figure 3.13) resulting from utilizing the ER model in multi-level
security verification by comparing its required time with that of a conventional security
verification approach (i.e., conducting security verification at each level). We verify the

“SFC ordering and sequencing as defined by the specification” security property (defined

51

[security property L2 BBSecurity property L2
Security property L3 EJConsistency property L2/L3 |

3%%

Figure 3.13: Comparing the verification time of the multi-level security property without
(the grayscale bar) and with (the bar with patterns) the utilization of ER model.

18 Mlsecurity property L1 NConsistency property L1/L2 ||
[

Time (s)
=
o

in [6]), which checks if the deployed SFCs maintain the order of VNFs with the correct
traffic forwarding behavior as defined by the specifications.

Figure 3.13 shows the required time for the multi-level verification for the “SFC order-
ing and sequencing as defined by the specification” security property. The grayscale bar
represents verifying this property at each level of the NFV stack as mentioned in the moti-
vating example (Section 3.1). The bars with patterns show the required time for verifying
the same property with the existence of the ER model i.e., by verifying the consistency
between the NFV stack levels after verifying the security property at one level (i.e., L2 in
the figure, the middlebox with solid gray color). Each bar in the figure consists of three
portions, where each portion represents the required time for verifying the security proper-
ties at each level or the consistency properties. With the help of the ER model, its possible
to only conduct the security verification at one level (e.g., L.2) and then conduct the con-
sistency verification for the adjacent levels. Figure 3.13 depicts that the implementation of
the ER model reduces the verification time; for instance, for the largest dataset (SK SFCs),

the implementation of the ER model reduces the overall verification time by 1.4 seconds.

Applicability of NFVGuard+ to Different Solvers. The intention of this experiment is to
investigate the applicability of NFVGuard+ to different SAT solvers. Our implementation
is based on Sugar, which is an SAT-based constraint solver, where the CSP is solved by

a backend SAT solver. Sugar supports MiniSat [67] as the default backend SAT solver.

52

~=Consistency property L1/L2-ALLSAT| >Consistency property L1/L2-ALLSAT| 1.4 —x—Consisténcy prope‘rty L1/L2-ALLSAT
--Consistency property L1/L2-SAT 21 [{=Consistency property L1/L2-SAT Y 1 3|l==Consistency property L1/L2-SAT A
s g LR

2K 3K 4K 5K 1K 2K 3K 4K 5K
Number of VNFFG Number of VNFFG Number of VNFFG

Figure 3.14: Verification performance for the consistency property L1/L2 using ALLSAT
and SAT solvers.

Our next experiment also investigates ALLSAT (i.e., short for all solutions SAT) backend
solver [91], a variant of SAT solvers that deals with enumerating all satisfying assignments
of a propositional logic formula. To the best of our knowledge, clasp [92], PicoSAT [90],
and relsat [93] are the only ALLSAT solvers. Since PicoSAT is the only ALLSAT solver
supported by Sugar, we consider this in our implementation.

More specifically, to demonstrate the applicability of NFVGuard+ to different solvers,
we implement Sugar to assess the consistency properties at L1/L2 using ALLSAT (i.e.,
PicoSAT) and SAT (i.e., MiniSat) solvers. Figure 3.14 illustrates this verification perfor-
mance in terms of time, CPU, and memory. Figure 3.14 depicts that the performance of
both ALLSAT and SAT solvers is mostly similar. Generally, for both these solvers, re-
source consumption increases almost linearly with the increased number of VNFFGs. The
ALLSAT solver requires a slightly longer verification time (Figure 3.14 (left)); to be spe-
cific, ALLSAT takes ~ 1.3 seconds more than the SAT solver to verify the same property
for the largest dataset (SK VNFFGs). On the other hand, ALLSAT solver consumes less
CPU, while the memory consumption is almost the same for both solvers. On the other
hand, though ALLSAT solvers are slower than SAT solvers, the required time by ALLSAT
solver to identify multiple breaches (especially for a larger number of breaches) is less than
an SAT solver as we described earlier in Figure 3.10 (right). Hence, we can conclude that
NFVGuard+ is not solver dependent, and hence a user should choose the solver based on

his/her requirements (e.g., find multiple breaches at a time or one by one).

53

Parallel Execution of the Properties. We can reduce the required time by verifying the
properties in a parallel manner. Though different approaches are used to parallel verifica-
tion [94], Sugar unfortunately, does not support parallelization. Hence, we adopt the search
space splitting technique [94] which adopts a similar logic as in other parallel verification
approaches. Specifically, in our technique, we split the audit data across multiple CSP
instances that implement the same property rather than splitting the search space. In this
way, we reduce the payload of verifying one large CSP instance by verifying less volume
of audit data, and we can run the CSP instances in parallel. We choose the virtual resource
isolation property because its the most resource-consuming property in case of detecting
all non-compliance breaches (refer to Figure 3.11 (right)), and we also evaluate using the
largest dataset with 100K VMs. As shown in Figure 3.12 (right), the time for the first round
(two CSP instances) is reduced by 55% and the required time continues to decrease until

we reach a reduction of 99%.

3.7.2 Experiments with Real Data

We apply NFVGuard+ to the real data collected from a real infrastructure hosted at one
of the largest telecommunications vendors. The examined part of the infrastructure is com-
posed of two racks, connected to two edge switches, which are connected to two aggregate
switches, as depicted in Figure 3.15. The data contains 20 tenants, 111 VMS, 9 subnets,
26 physical servers, 26 vSwitches, 679 OvS flows, 35 VLANSs, and 9 VXLANs. We ap-
ply NFVGuard+ to verify this real data against various properties. We report the average
findings among those properties in Table 3.5. The resource consumption in terms of time,
CPU, and memory increases with the amount of data as shown in Table 3.5. This result also
follows a similar trend to what we found for the synthetic data in previous experiments. We
can also observe that the values of resource consumption in this experiment are generally

much smaller than in previous experiments performed using synthetic datasets (which were

54

Z

Aggregate
switch 1

Edge
switch 1

Rack,

Aggregate switch 2
switch 2 Tenant,g

Figure 3.15: The topology of a part of a real cloud data center operating NFV used in our
experiments.

deliberately scaled up to evaluate the scalability of our solution).

Performance Percentage of dataset
metrics 20% | 40% | 60% | 80% | 100%
Time (S) 0.78 |0.84 |0.88 | 090 | 0.93
CPU (%) 248 | 2.57 |2.62 | 265 |2.66
Memory (%) | 0.041 | 0.044 | 0.046 | 0.046 | 0.047

Table 3.5: The experimental results of NFVGuard+ for the real data. The average time,
CPU, and memory required for the verification of three sample NFV security properties,
i.e., VNFs co-residence, virtual resource isolation, and mapping unicity VLANs-VXLANS,
based on real data.

3.8 Discussion

Complexity of NFVGuard+. The formal method employed in this work relies on solving
Constraint Satisfaction Problems (CSPs), which are NP-complete. Consequently, in the
worst case, solving a CSP for large NFV systems may require exponential time relative
to the size of the input, including the number of entities, constraints, and relationships.
Cross-level relationships within the NFV stack introduce a significant number of variables
and constraints, further increasing the size and complexity of the CSP instance. Each level
has its own policy constraints, and ensuring inter-layer consistency adds additional logical

dependencies. As the number of records (e.g., configuration entries) and constraints grows,

55

the verification time correspondingly increases. While formal methods provide accuracy
and rigor, this approach becomes impractical for real-time or large-scale verification unless

appropriate optimizations are applied.

Practicality and Robustness of NFVGuard+. Although the real dataset used in our exper-
iments is modest in size and lacks cross-level violations, we conducted this experiment to
demonstrate the practical applicability of our verification solution. Specifically, it shows the
system’s ability to operate effectively on real-world data, even in the absence of complex
violations, and confirms the soundness of the formal verification logic under such condi-
tions. Importantly, the results indicate that our approach produces no false positives—a
critical property in real deployments, where false alarms can lead to wasted time and re-
sources. Overall, the experiment validates that the solution behaves as expected in realistic
settings and provides a reliable foundation for broader deployment or future evaluations on
datasets that include actual violations.

The robustness of our solution stems from its ability to perform full-scale verifica-
tion across all configurations and layers of the NFV stack. This comprehensive coverage
strengthens confidence in the overall correctness and consistency of the system by thor-
oughly exploring all possible cross-layer dependencies and misconfigurations. In contrast,
traditional approaches often overlook the multi-layer nature of the NFV stack and the as-
sociated threats and vulnerabilities. Additionally, the robustness is reinforced through the
system’s ability to propagate verification results across layers using consistency checks.
When one layer is verified and its results align with expected mappings or dependencies,
this information can be reused to minimize redundant checks in related layers—enhancing
both efficiency and resilience to misconfigurations. Finally, the use of formal modeling en-
sures soundness and supports modularity, allowing the approach to be applied in large-scale

NFV settings without losing correctness.

A Guideline to Adapt NFVGuard+ to Other NFV Platforms. NFVGuard+ utilizes the

56

constructed ER model to identify the audit data and formulate the NFV security properties.
Although the ER model is based on OpenStack/Tacker, its general enough to be extended to
other platforms, especially because we capture high-level components related to the general
concept of NFV that are common to most of the deployments. We detail how the ER model
will change at each level if we consider different implementation platforms as follows.

The first level in the ER model represents the entities created at the service orchestra-
tion level after processing the network service design specification (NSD) from the NFV
user/provider. At this level, platforms such as ONAP [69], OSM [95], and Tacker are em-
ployed to enable the design, creation, orchestration, and auto-scaling of services on top
of the resource management and virtual infrastructure layers. In our model, we depict
high-level components related to the network service itself (not on the deployed platform),
therefore, our model at this level is general and can be extended to different deployments.
However, the scripts to collect and correlate data may vary with different deployments,
especially when the data needs to be extracted from the configuration files specific to the
deployed platform.

The same thing follows at the second and third levels of our ER model. Different cloud
platforms can be deployed at L2 to instantiate the network services, and most of them offer
similar capabilities of creating, provisioning, and managing the virtual resources required
for instantiating the network services. Our model captures the main virtual components
that are common to those platforms.

For instance, we consider a specific virtual infrastructure level implementation mainly
relying on VLAN and VXLAN as well-established network virtualization technologies and
OvS as a widely used virtual switch implementation. Other platforms may support different
virtualization technologies such as Generic Routing Encapsulation (GRE) [96] or Generic
Network Virtualization Encapsulation (GENEVE) [97]. In this case, the entities of the ER

model at this level will change but not significantly (e.g., replacing the VXLAN entity with

57

GRE), and the properties may either remain applicable or need to be modified or skipped.
As an example, in the case of small to medium clouds, where VLAN tags are sufficient to
implement all L3 virtual networks on top of the physical network, the ER model will be
simplified, and the security properties related to the mapping between VLAN and VXLAN
become unnecessary.

In summary, our ER model and properties formulation cover high-level virtualization
components that are common to most deployments. Therefore, it can be adapted to most
of the deployments with minor changes. The scripts to collect and process audit data need
to be revised according to the implementation details of each deployment. However, this is

a one-time effort that is only needed before initializing the verification process.

Scope of the Security Verification. The security verification is conducted at a specific
level(s) based on the definition of the verified security property. For example, the “Mapping
unicity VLANs-VXLANs” security property (defined in [6]) can be verified only at L3 of
the NFV stack because the data relevant to it exists at that level. Other properties, such
as the “SFC ordering and sequencing as defined by the specification” security property
(defined in [6]) require collecting data from various levels such as L1, L2, or L3. In this
case, it depends on the auditor to define the specifications of the property. Therefore, the
verification is property-dependent and sometimes can extend to all levels to ensure the

correctness of the security property in the entire stack.

Automated Implementation. Since NFVGuard+ works with a static snapshot of the NFV
environment, to maintain the security of the audited system, it needs to run periodically or
on-demand when a change is made to the system. To that end, setting the period between
verifications could be critical: a large interval between two verifications could lead to un-
detected security breaches and a small interval might incur prohibitive overhead. Hence
we intend to improve the efficiency of our approach by exploring and adopting incremental

[39] or proactive [41] techniques. Moreover, our current approach requires some manual

58

effort and expertise in constructing the ER model, identifying the security properties, and
formally encoding them. Although most of these efforts is done only once, we aim to

automate those processes in our future work.

Limitations. NFVGuard+ focuses on verifying the compliance of the NFV stack with re-
spect to consistency properties and security properties. Specifically, the properties within
the scope of this work include those pertaining to the static configuration of the virtualized
infrastructure. This involves ensuring the proper configuration of isolation mechanisms
and maintaining topology consistency. Out of scope properties include dynamic proper-
ties, such as those related to reachability and network forwarding functionality. Although
these properties can be verified using formal methods, they will be addressed in future
work. Furthermore, while our approach can detect violations of security and consistency
properties that may result from vulnerability exploitations, threats, or attacks, its not de-
signed to attribute such a violation to specific underlying vulnerabilities (i.e., vulnerability
analysis) or particular attacks (i.e., intrusion detection). Additionally, it does not detect vi-
olations that are not reflected in logs and configurations, as the accuracy of our audit results

relies on the input data extracted from these sources.

3.9 Summary

We presented NFVGuard+, a novel approach to the formal cross-level security verifica-
tion of the NFV stack. Specifically, we proposed a system entity-relationship (ER) model
that captures the detailed mappings and the relationships between the NFV resources across
different levels in the NFV stack and devised a system that offers an assisted solution for
NFV users to identify and verify the NFV properties by leveraging the ER mode. We
implemented a real NFV testbed using OpenStack/Tacker, integrated our solution into the

testbed, and evaluated our approach through experiments using synthetic data and real data

59

provided by one of the largest telecommunications vendors. The results confirmed the

efficiency and real-life applicability of our approach.

60

Chapter 4

Machine Learning Meets Formal
Method for Faster Identification of
Security Breaches in Network Functions

Virtualization

4.1 Introduction

By decoupling network functions from proprietary hardware devices, Network Func-
tions Virtualization (NFV) allows network services to be implemented as software modules
running on top of generic hardware or virtual machines. This new paradigm allows service
operators to more easily deploy a multi-tenant NFV environment on top of an existing
cloud infrastructure, and it also allows NFV tenants to accelerate the provisioning and de-
ployment of their services. Due to such benefits, the popularity of NFV is on the rise, e.g.,
in the context of 5G and beyond, NFV has become one of the main technology enablers

for operators to scale their network capabilities on-demand at a lower cost by virtualizing

61

dedicated physical devices on top of existing clouds [3].

The benefits of NFV may come at the cost of increased complexity. To support the man-
agement and orchestration of multiple network slices belonging to different tenants on top
of the same cloud infrastructure [98], NFV relies on a mixture of virtualization technolo-
gies, e.g., a Virtual Network Function (VNF) such as virtual firewall seen at tenant-level
may correspond to several virtual machines (VMs) connected through Software-Defined
Networking (SDN) at the cloud infrastructure level [3]. Such increased complexity may
also increase the chance of incorrect (e.g., lack of sufficient network isolation between
different tenants’ network slices [99]) or inconsistent (e.g,. a virtual firewall VNF spec-
ified at the tenant level may be bypassed at the underlying cloud infrastructure level [1])
configurations that could leave the services or infrastructure vulnerable to security threats.
Therefore, the timely identification of such misconfigurations is important to ensure the
security of NFV environments.

To that end, formal method-based security verification solutions (e.g., [100, 26, 4, 35,
6, 36, 29]) can provide rigorous proofs about the compliance or violation (with counterex-
amples) of the configurations w.r.t. given security properties. However, a key challenge
is that the sheer scale of virtual environments can render formal security verification too
costly. For instance, a state-of-the-art security verification tool requires around 12 minutes
to check whether a guest VM can access any SDN controller with merely 5,000 reach-
ability queries [4]. Such a delay can become much more significant under large NFV
environments, resulting in a wide attack window during which the services or infrastruc-
ture are left vulnerable. Moreover, the inherent complexity of formal methods [101] can
leave little room for further performance improvement, e.g., the aforementioned tool [4]
is already heavily optimized (new combined filter-project operator and symbolic packet

representation are added to the back-end verifier).

Motivating example. We further illustrate this issue through an example. The left side

62

of Figure 4.1 shows the simplified view of a large NFV environment where two tenants,
Alice and Bob, host their Virtual Network Functions (VNFs). Suppose our goal is to verify
network isolation, i.e., whether any of Alice’s VNFs can reach any of Bob’s (except what
is explicitly allowed). Even the verification of such a simple property (all-pair reachability)
can become expensive as NFV tenants may own a large number of VNFs. To make things
worse, NFV and its underlying cloud infrastructure typically employ distributed and fine-
grained network access control mechanisms (e.g., per-VM security groups in OpenStack
[102]). Consequently, verifying the reachability of two VNFs/VMs may require inspecting
many rules and configuration data scattered among various data sources (e.g., routing and
NAT rules in virtual routers along the route, host routes of the subnets, and firewall rules
implementing tenant security properties [29]).

g lTime to find all the violations (FM))

i
i
i
i
i
h i
i
i
i

Alice VNFs should be isolated
from Bob’s VNFs

a -

Alice ob

— : ‘
|:> Verification of audit data

lTime to find all the violations (MLFM)
1

@®

|
i

" ‘

i

Subnet_A Subnet_B @ sample !

Virtual e |:>1 D |:> |
infrastructure " § " i & |
L ML model i

L] L . y 1

MLtr;ining ML application and verification of data i

i

____________ ! records based on identified verification order |

Figure 4.1: Motivating example

The right side of Figure 4.1 contrasts how the collected audit data will be processed
under an existing formal method (FM)-based security verification approach (top) and under
our approach (bottom). The barchart-like pattern illustrates the distribution of data records
in the audit data where red (or black) bars represent pairs of VNFs that violate (or satisfy)
the network isolation property. As the upper pattern shows, a FM-based approach would
verify the audit data as is, i.e., all the VNF pairs will be verified in the same order as given

in the audit data. In contrast, our approach leverages ML to reorder those data records such

63

that those that (likely) cause violations (the red bars) will be moved forward, i.e., given a
higher priority for verification than others (the black bars). Consequently, the verification
can identify most of the violations in much less time (even after taking into account the
time taken by ML training).

To that end, our main idea is to employ an iterative teacher-learner interaction, as de-
picted in the middle of Figure 4.1. In each iteration, the teacher (FM) first selects repre-
sentative data records from the audit data, and then provides their verification results as
training data to the learner (ML). Using such data, the learner (ML) trains an ML model,
which is then given back to the teacher (FM) to be tested for identifying more representa-
tive data records (e.g., false positives and false negatives) in the next iteration. Over several
iterations, such an interaction between the teacher and learner will enable a relatively ac-
curate ML model to be trained using only a small portion of the audit data. The ML model

can then be applied to reorder the remaining data for faster identification of violations.

4.2 Preliminaries

This section provides essential background on NFV, discusses NFV security properties,

and defines our threat model.

NFV Background. NFV is a network architecture concept that decouples network func-
tions (e.g., routers, firewalls, and load balancers) from proprietary hardware devices and
virtualizes them as Virtual Network Functions (VNFs) running on top of existing cloud in-
frastructures [3]. Figure 4.2 presents a simplified view of the ETSI NFV reference architec-
ture [3] (left), and an example NFV deployment corresponding to our motivating example
(right). First, the resource management level conceptualizes the virtual resources such as
subnets and VNFs. Second, the underlying virtual infrastructure level implements those

virtual resources using virtual networking elements, such as virtual switches (e.g., OVS_I),

64

VLANSs (for communications within the same server), VXLANSs (for communications be-
tween servers), and network ports, running on top of physical servers (e.g., Server_I). In

this work, NFV configuration data stored in relational databases will be our main inputs.

ETSI architecture NFV deployment _ Network path I Connectlgn
(simplified view) —— Cross-level mapping —— Ownership
~
i i 1 . O
‘ € 1 d?_\l Alice W Bob Resource
management
VNF block |egve|
VNF Z -
L VNF_10 HVNF_101} VNF_31 |- M VNF_2 || VNF_46 |
NFVI block 7 \\ ,/
/ Server_1 \ Server_23 f/
Virtual |VNF_10] [UNF_31]| | [VNF_101]
I I I
resources [Port_10] |[VNF_10] | | [Port_101]
- _ovs1 = == __ o2 Virtual
[infrastructure
e v
| VXLAN 1 i |LVXLAN_1 eve
[—— — — — — Y e e e e e e = =
Hardware =
e

Figure 4.2: ETSI NFV reference architecture [3] (left) and an example NFV deployment
corresponding to the motivating example (right)

NFV Security Properties. Various security properties can be defined to verify the com-
pliance of NFV environments w.r.t. standards (e.g., ETSI [3] and IETF-RFC7498 [103])
or NFV tenants’ requirements (Table 3.1 shows some example NFV security properties).
Our approach can support other security properties as long as they can be verified using the
chosen formal method tool (e.g., Sugar [67] used in this work can handle most properties
formulated using standard first-order logic). To make our discussions more concrete, we

describe two example properties (which will be needed later).

Example 4.2.1 First, the property mapping unicity VLANs-VXLANs ensures the logic seg-
regation between different tenants’ virtual networks through the unique assignment of
VXLAN (communications between servers) identifier to each VLAN (communications

within one server). Figure 4.3 (left) depicts a violation of this property (the shaded nodes

65

show VLAN_I is mapped to both VXLAN_10 and VXLAN_16 on Server_I). Note this prop-
erty can be verified for each VLAN separately. Second, the property no VNF's co-residence
prevents a tenant’s VNFs to be placed on the same physical server with VNFs of non-trusted
tenants (e.g., due to concerns over potential side channel threats). Figure 4.3 (right) shows
a violation of this property where Alice’s VNF_101 and Bob’s VNF_46 on both placed on
server S_23. In contrast to the previous property, verifying this property could involve more

records (all the VNFs of this tenant and the non-trusted tenants).

Server_1 DoesNotTrust

HasRunningVNF

’ NGSE0 ‘ ‘ VNF_31 ‘ HasRunningVNF
Open- I
Vswitch 1 [Port_101] [Port_104]
©

VLAN_1 VLAN_12 IsLocatedAT

[VXLAN_10]| [VXLAN_16][VXLAN_S |

Figure 4.3: Two example NFV security properties: Mapping unicity VLANs-VXLANs (left)
and No VNF's co-residence (right) (shaded nodes indicate violations)

Threat Model and Assumptions. Similar to most existing security verification ap-
proaches, our scope is limited to attacks that (directly or indirectly) cause violations to
given security properties, and we assume our solution is deployed by the owner of the NFV
environment who has access to the logs, databases, and configuration data needed for the
security verification (and the integrity of those input data is protected with trusted comput-
ing techniques (e.g., [104])). Under such assumptions, our in-scope threats include both
external attackers who exploit existing vulnerabilities in the NFV environment to violate
the security properties, and insiders such as NFV operators and tenants who cause mis-
configurations violating the properties, either through mistakes or by malicious intentions.
Conversely, out-of-scope threats include attacks that do not cause any violation of the secu-
rity properties, and attacks launched by adversaries who can erase evidences of their attacks
by tampering with the logs, databases, etc.

We assume that the formal specification of security properties as well as the formal

66

verification approach itself are correct and sound. As a security verification solution, our
approach can only identify the violation of given security properties, but is not designed to
attribute such a violation to the underlying vulnerabilities (responsibility of vulnerability
analysis) or specific attacks (responsibility of intrusion detection). Similar to most existing
machine learning approaches, we assume that a dataset required for verifying given secu-
rity properties has been collected. However, we do not require labeled data, which can be
difficult to obtain in a real world NFV environment, as the data records will be labeled by
the teacher (formal method) in our approach (optionally, a small amount of labeled data
records would be helpful for training an initial ML model to speed up the iterative ap-
proach). As with most security applications (e.g., spam or intrusion detection), we assume
the dataset is unbalanced (i.e., the majority of data records belong to the compliance class
w.r.t. the security property), and we make additional efforts in designing our approach to

address this issue.

4.3 Methodology

This section first presents an overview of our approach, followed by details on the

iterative teacher (FM)-learner (ML) interaction and the MLFM algorithm.

4.3.1 Overview

We propose a machine learning-guided formal security verification approach, namely,
MLFM, for fast and provable identification of data records that violate a given security
property in NFV. First, the ML training stage employs an iterative teacher (FM)-learner
(ML) interaction to train an ML model using only a small portion of the audit data. Second,
the ML application stage applies the ML model to reorder the remaining audit data, such

that those that are more likely to violate the property will be verified first. More specifically,

67

Figure 5.4 depicts our approach as follows.

ML training|
Audit data Teacher Lea/rrEzL ML application
Formal — ——
e e | o - —G
verifier

__data

r
o g I\\ MLmodel | geordering data Identifying
Remaining ge*’ records violations
—
data ML model :\7'. Model (ML algorithm

Figure 4.4: Overview of the MLFM approach

The ML Training Stage. As Figure 5.4 (left) shows, in each iteration of the teacher-
learner interaction, the teacher first applies a sampling method to select a small data sample
of fixed size from the audit data (shown as Sampler in the figure) after applying the ML
model received from the learner in the previous iteration (an initial ML model is provided
for the first iteration). The teacher then verifies the data records inside this data sample, and
labels each record based on its verification result (shown as Formal verifier in the figure),
and sends the labeled data sample to the learner. The learner then combines this newly
received data sample with the previously received data samples to train a new ML model
to be sent back to the teacher. This iterative interaction ends when reaching a predefined
condition, e.g., a fixed iteration count, or lack of significant change in the accuracy of the

model between two consecutive iterations.

The ML Application Stage. As Figure 5.4 (right) shows, the final ML model from the
ML training stage is applied to the remaining audit data (i.e., the data not used for training)
in order to identify data records that are more likely to violate the given security property,
namely, the “to be verified” subset, which will be given a higher priority for verification.
On the other hand, the “not to be verified” subset will either be verified afterwards, or not

verified at all, depending on the use cases (detailed in Section 4.3.3).

68

4.3.2 Iterative Teacher (FM)-Learner (ML) Interaction

In the following, we provide more details about the key methodology of our approach,

1.e., the iterative teacher (FM)-learner (ML) interaction.

Sampling (Teacher). The sampler component of the teacher is designed to select repre-
sentative data records from the audit data in order for the learner to effectively enhance the
ML model over each iteration. Choosing the right data records is important because they
could cause either increase or decrease in the accuracy of the next ML model, e.g., data
records having the same (redundant) information or those with the same label may cause
the model to either not improve, or become biased towards the majority data, respectively.
Our approach borrows sampling strategies (such as uncertainty sampling) from the active
learning literature [46]. Although active learning has a different focus (it aims to reduce the
effort of human experts in labeling the data, whereas no human expert is involved in our
case), its sampling strategies are applicable to our approach, because they are also designed
to better represent the characteristics of the property being analyzed such that an ML model

can be trained with minimal labeled data.

Example 4.3.1 The left side of Figure 4.5 shows an excerpt of the audit data corresponding
to the previous Example 4.2.1. Using uncertainty sampling, the sampler (inside the teacher

block) selects a sample of size (m = 2) as the (shaded) record pairs (1, 3) and (6, 4).

Verification (Teacher). The formal verifier component is responsible for labeling the se-
lected sample of data records (which will later be sent to the learner as training data). La-
beling here means to annotate the data records with an extra field representing their classes,
i.e., whether they are compliant with, or violate, the security property. To obtain such la-
bels, the formal verifier performs formal verification by instantiating the security property

(e.g., formulated using first-order logic) with the data records.
Example 4.3.2 Following Example 4.3.1, Figure 4.5 shows how the formal verifier labels

69

The audit data Teacher
of two tenants identified by record-ID

Record- Tenantl-‘ VNFL- | Serverl- Sampl Record Formal feceld ‘L:CLUTl
D D D D (uncertainty pairs | Forma pairs | label D
: ifi Select record
[1 Alice | VNF_101| 523 | sampling) L3 verifier |1’3—+| : Record | Actual
L 64 | (64 - | | opaisl3 pairs | label
e Aice | WNF1 | 55 | (identified as FN) 13 "
Decision Tree (DT,) and add it to D
17 Alice VNF-1 S5 _ Record Predicted
2-ID >= VNF1-ID
18 Alice VNF-3 S-1 VG2 VNFL pairs | class
100,000 records True 13 - Remove record
Class = +| |Class = - - airs 1,3 from P
Record-| Tenant2- | VNF2- | Server2— e b .
1D D D D
2 Bob |VNF 46 S-23 | Learner

Send D

—

Send the decision
tree model for
next iteration

AddD'to the training| Decision Tree (DT,)
data (T), and empty D Server1-ID >= Server2-1D

[4 Bob | VNF-1 | S21 [

23 | Bob | VNF-6 S$-31 True False
68 | Bob | VNF2 | S11 ! VNF2-ID 1= VNF1-1D| | Class = - = Return the final
100,000 records) True False decision tree
@ model

ML algorithm

Figure 4.5: An example of the iterative teacher (FM)-learner (ML) interaction

the selected sample by verifying the No VNF's co-residence property (see Section 5.6.1).
Specifically, the formal verifier finds that the pair (1, 3) violates the property (i.e., Alice’s
VNF (VNF_101) co-resides with Bob’s VNF (VNF_46) on the same server (S-23)), and thus

labels it as “+”. The other pair (6, 4) is labled as “-”, as it does not violate the property.

Records Selection (Teacher). Next, the teacher applies the ML model from the previous
iteration (received from the learner) to the labeled sample of data records. Intuitively, this
allows the teacher to validate this previous ML model (by comparing its results to the la-
bels provided by the formal verifier) and provide the “mistakes” (false positives and false
negatives) as more representative training data to the learner. Specifically, as the ML model
from the previous iteration also classifies the data records into two classes, by comparing
its results to the ground truth, i.e., the labels assigned by the formal verifier component,
the teacher can identify those records that have been correctly classified (i.e., true posi-
tives (TPs)) and those incorrectly classified (i.e., false negatives (FNs) and false positives
(FPs)). Then, the teacher adds the TP, FN, and FP records to a new dataset [J, which is the
training dataset to be sent to the learner. Finally, if the number of records in D is still less

than the desired size of the sample (), the teacher repeats the aforementioned steps as an

70

inner-iteration until it has accumulated totally m records in D. Note that the rationale for
selecting (TP, FP, FN) records is twofold. First, as the positive class (i.e., violations) is gen-
erally smaller due to data imbalance, adding TP and FN records can augment the positive
class to reduce the bias in training [105]. Second, the FN and FP records are incorrectly
classified by the previous ML model and thus may contain more useful information for the

learner to improve the accuracy of its next model.

Example 4.3.3 Following Example 4.3.2, Figure 4.5 shows a decision tree model (DTy)
received from the last iteration is applied to the two pairs of records (1, 3) and (6,4). The
decision tree (DT)) predicts “+”, if the VNF2-ID value is no smaller than the VNFI-ID
value; otherwise, it is predicted as “-”. Therefore, both (1,3) and (6,4) are predicted as
“-”. Comparing such results to the labels previously assigned by the formal verifier (see
Example 4.3.2), we can see the pair (1, 3) is FN and should be added to the dataset D (and
deleted from the audit data), whereas (6,4) is TN and should not be added. Finally, as the

size of D is less than the required size (m=2), we will repeat the inner-iteration.

ML Model Building (Learner). Once the teacher’s dataset D reaches the required size
m, the sample it contains is sent to the learner (D is then emptied in preparation for the
next iteration). The learner adds the received sample to its existing training data (i.e., the
collection of all previous samples), and utilizes this newly enriched training data to build a
new ML model. The ML model is sent back to the teacher if the stopping condition (e.g.,
the specified number of interactions) has not been reached; otherwise, the interaction ends

and the final ML model is given to the next (ML application) stage.

Example 4.3.4 Following Example 4.3.3, the lower part of Figure 4.5 shows that, once the
teacher’s inner-iteration ends, a sample of size two is sent to the learner. The learner adds
the received sample to the existing training data (7") while the teacher empties its dataset

(D). The new training data (1') is then used to build a new decision tree model (D7),

71

which is more accurate than DTj,.

4.3.3 MLFM Algorithm and Use Cases

Algorithm 1 more formally states our approach. The inputs to the algorithm include
the unlabeled audit data, the security property, and the parameters. The initial set of train-
ing data allows a system user to influence the algorithm with his/her domain knowledge
by manually selecting/labeling data records (otherwise, the data can simply be randomly
selected from the audit data and labeled using the formal verifier).

The algorithm has an outer iteration (Lines 2-9) which first builds a new sample through
performing the inner iteration (Lines 3-7), and then adds this new sample to the existing
training data (Line 8) to train a new ML model (Line 9). The outer iteration is repeated
for a fixed number (provided as an input parameter) of times. The final ML model is then
applied to reorder the remaining audit data before verifying it (Line 10). The union of all
the verification results (Lines 5 and 10) is the final output.

The inner iteration builds a sample D of size m as follows. First, it selects a sample of
size m from the audit data by following a given sampling strategy (Line 4). Although not
shown in the algorithm, depending on the sampling strategy being used, this step may in-
volve other parameters such as the current ML model (e.g., with uncertainty sampling [46])
or the training data (e.g., with Query-By-Committee (QBC) sampling [46]). Second, the
sample is verified and labeled (with the verification results) using a formal verifier (Line
5). Third, the current ML model is applied to the sample, and the results are compared to
the labels (verification results) to identify and add the (TP, FP, FN) records to D (Line 6).
Fourth, D is removed from the audit data to avoid being selected again (Line 7). We repeat

the above steps until D contains at least m records.

Complexity Analysis. The worst case complexity of the MLFM algorithm is O(n - (m -
(Ts + Ty,) + Ty) + T,,) where T, T, T;, and T, are the time for sampling (Line 4),

72

Algorithm 1: The MLFM algorithm

1 Inputs: Audit data (AD), security property (SP), initial training data (Tj), initial
model M = TrainClassifier(T), per-iteration sample size (m), and iteration count

(n)
/% Outer—iteration */
2fori=0,i<n,it++ do
/* Inner—iteration %/

while | D |< m do
S = SelectSample(AD, m)
S;= VerifyAndLabel (.S, SP)
AD=AD\ D

T,1=T,UuD;D=¢

9 M1 = TrainClassifier(7;, 1)

10 return Verify(Reorder(AD, M,)) U (I, S;)

N QAW

=]

verifying m records (Line 5), training (Line 9), and verifying remaining records (Line 10),
respectively. Such times would depend on specific algorithms, e.g., T under uncertainty
sampling [46] can be estimated as O(| AD |), since this strategy requires applying the
current ML model on the audit data AD. T,; and T, under a CSP solver is known to be
exponential in the number of variables of the instantiated security property [106]. Finally,
T} under a decision tree classifier is O(n, - n; - log,(n;)) [107] where n, is the number of
attributes and n; the size of training data (i.e., O(n-m)). We will further study the efficiency

of the algorithm through experiments in Section 5.6.

Use Cases. Depending on how the remaining data is verified in Line 10 of the MLFM
algorithm, our approach can be applied for two different use cases. First, MLFM running in
the partial verification case will stop after verifying all the “to be verified” records (which
would appear first after the reordering). This can be useful when the system user wants to
find violations as quickly as possible (but not necessarily to find all the violations), and our
objective in the training is to find an ML model that is the most accurate (since the mis-

classifed violations would not be verified, as further explained in Section 5.6). Second,

73

MLEM in the priority-based verification case will verify all the records (with the “to be
verified” records verified first). Our objective of the training is to find an ML model that
incurs the least overall verification time with acceptable accuracy (since the mis-classified

records will still be verified eventually).

4.4 Implementation

In this section, we describe the architecture and details of our implementation.

System Architecture. Our implementation of MLFM (shown in Figure 4.6) interacts with
an OpenStack/Tacker [70]-based NFV environment to collect audit data. The system also
interacts with a user to obtain other inputs, such as the security property to be verified, the
formal verifier and the ML model to be applied, and the system parameters (the number of
iterations and the sample size, as detailed in Section 4.3.3). Finally, the system returns an

audit report to the user.

N>

NFV Environment Security Properties Audit
S and Parameters “ Report
4 Audit Data MLFM User
MLFM
e —
1) Data Collection —|Data and Audit Repository]] 2) Compliance Verifier
and and
Processing Reporter
3) MLFM Manager
T
H v
4) Sampler 5) ML Model Learner 6) Formal Verifier
| ncertainty ” andom | ! ML Training L, Sugar CSP NOD [31]
| QBC ” | ML Deployment Solver [S5]

Figure 4.6: The MLFM system architecture

Data Collection and Processing. We implement this module using Python and Bash

scripts to collect audit data from multiple sources including logs and configuration

74

databases or files. For instance, to verify the No VNF's co-residence property, the mod-
ule collects the identifiers of VNFs from Tacker and Nova databases [2], their correspond-
ing owners (from Nova database), and the identifiers of servers hosting those VNFs (from
Nova database). As the audit data are usually scattered among different components of the
NFV environment and stored in different formats, the data must first be pre-processed. For
instance, to verify the mapping unicity VLANs-VXLANs property, the data collected from
OpenFlow tables of the OVS databases has unnecessary fields (e.g., cookie and priority)
that must be filtered out. Also, the port and vilan_vid fields must be correlated to create the
relation tuples IsAssignedVLAN(ovs,port,valn) for the verification. Finally, such filtered
and correlated data must be converted into the corresponding input formats required by the

formal verifier as well as for the ML training.

MLFM Manager. We implement this module in Python to manage and coordinate the
interactions between other system modules for performing data collection and processing,

data sampling, formal verification, ML training, etc., as described in Section 4.3.

ML Model Learner. We utilize Python 3.6.9 and Scikit-learn 0.24.1 (an open source ML
library written in Python) to implement this module. We select decision tree, Support
Vector Machine (SVM), and Random Forest (RF) models as they are among the most
commonly used supervised classifiers, and are computationally more efficient compared
to other classifiers such as K-Nearest-Neighbor (KNN) [108]. We also select XGBoost
classifier [109], a scalable tree boosting system with a simpler structure using less resources
than most other ML models, which has recently seen wide application for its high accuracy
and low false positive rate [110, 111]. As our main aim is to reduce the overall delay
before violations can be identified, we do not consider deep learning models as they are
well known for higher complexity and longer training time compared to traditional ML

models [112].

Sampler. We employ the modAL framework [113] to implement sampling strategies in this

75

module. The modAL is an active learning framework for Python3, built on top of Scikit-
learn [114], which allows to rapidly create active learning workflows with flexibility [113].
We select the uncertainty sampling and query-by-committee (with DT, SVM, and RF for
members of the committee) sampling strategies in our implementation, as those are the

most computationally efficient ones compared to other strategies [46].

Formal Verifier. We formalize the security properties together with the audit data as a
Constraint Satisfaction Problem (CSP), a time-proven technique for expressing complex
problems. Using CSP allows the user to specify a wide range of security properties (due
to its expressiveness) in a relatively simple manner (as CSP enables to uniformly present
the audit data as well as the security properties, and in a comprehensible and clean for-
malism, such as first order logic (FOL) [115]). Moreover, there exist many powerful and
efficient CSP solver algorithms to avoid the state space traversal [116], which can make
our approach more scalable for large NFV environments.

Once formulated as a CSP problem, the security verification is performed using
Sugar [67], a well-established SAT-based constraint solver. We choose Sugar as it is an
award-winning solver of global constraint categories (at the International CSP Solver Com-
petitions in 2008 and 2009 [117]). Sugar solves a finite linear CSP by translating it into
a SAT problem using order encoding method, and then solving the translated SAT prob-
lem using the MiniSat solver [118], which is an efficient CDCL SAT solver particularly
effective in narrowing the search space [119]. Adapting our MLFM framework to other
verification methods (such as theorem proving, model checkers, temporal logic, and Data-

log) based on the needs of verification tasks is regarded as a future work.

Example 4.4.1 The predicate that corresponds to the negation of the No VNFs co-
residence property is formulated (by the system user, done only once) as Formula 1 (left),
and a predicate instance returned by Sugar to indicate violation is shown as Formula 2

(right) (i.e., both Alice and Bob have VNFs co-residing on the same server §_23).

76

Vt1,t2 € Tenant, Vvnfl, vnf2 € VNF, Vs1, s2 (1) HasRunningVNF(Alice, VNF_101) A HasRunn— 2)

€ Server : HasRunningVNF(t1,vnf1) A HasRunn— ingVNF (Bob, VNF_46) A DoesNotTrust(Alice,
ingVNF(t2, vaf2) A DoesNotTrust(tl,t2)A Bob) A IsRunningOn(VNF_101,S_23) A IsRun—
IsRunningOn(vnfl, s1) A IsRunningOn(vnf2, s2) ningOn(VNF_46,S_23) A (S-23 == S_23)

A(s1l ==s2)

4.5 EXPERIMENTS

This section describes the datasets and experimental settings, and presents our results.

4.5.1 Datasets and Experimental Settings

We first describe the implementation of our NFV testbed and data generation using the

testbed, and then detail the experimental settings.

NFV Testbed Implementation. We choose to build our NFV testbed using OpenStack [2]
with Tacker [70] mainly due to their growing popularity in real world [68] (other options
such as Open Baton [120], OPNFV [121], and OSM [95] are still at their development
stages). More specifically, we rely on the latest version OpenStack Rocky [2] for man-
aging the virtual infrastructure, and we employ Tacker-0.10.0 [70], an official OpenStack
project, to deploy virtual network services. Our NFV testbed consists of 20 tenants and
200 VNF forwarding graphs (VNFFGs), with each tenant owning around 10 VNFFGs and
each VNFFG consisting of about 10 VNFs.

NFV Data Generation. To evaluate the performance of MLFM under large scale NFV en-
vironments, we would require a large scale NFV deployment. However, to the best of our
knowledge, there do not exist any publicly available large-scale NFV deployment datasets.
Therefore, we develop Python scripts to automatically generate various VNF Descriptors
(VNFDs) and VNFFG Descriptors (VNFFGDs), which are then uploaded (also called on-

boarding) to our NFV testbed to deploy different network services and generate large scale

77

NFV datasets. We randomize parameters of those descriptors to ensure diversity in the gen-
erated data (e.g., the number of network ports per VNF, the flavor of each VNF, the number
of VNFs in each Network Function Path (NFP), and the number of NFPs in each VNFFG).
Our first dataset, DS/, contains 12,500 audit data records for verifying the mapping unicity
VLANs-VXLANs property (P1 henceforth), and our second dataset, DS2, contains 25,000
records for verifying the no VNF's co-residence property (P2 henceforth). Each dataset con-

tains around 10% of (uniformly distributed) records that violate the corresponding property.

Experimental Setting. All experiments are performed on a SuperServer 6029P-WTR run-
ning the Ubuntu 18.04 operating system equipped with Intel(R) Xeon(R) Bronze 3104
CPU @ 1.70GHz and 128GB of RAM without GPUs. All the experiments are performed
using Sugar [67] as the formal verifier (unless mentioned otherwise) and Python 3.6.9 with
Scikit-learn 0.24.1 ML packages for the ML method. For all the experiments, we use the
default parameters for the ML models. Each experiment is repeated 1,000 times to obtain

the average results.

4.5.2 Experimental Results

Best Performing Combination of ML Model/Sampling Method. The first set of the ex-
periments aims to find the best performing combination of ML model and sampling method
(as components of MLFM), from both the accuracy and time performance point of views.
Specifically, Figure 4.7 shows the recall and F1 score results for different combinations
of ML models (DT, RF, SVM and XGBoost, trained on 20% of each dataset) and sam-
pling methods (random sampling, query-by-committee (QBC), and uncertainty sampling)
for both security properties (P1 and P2) and datasets (DS1 and DS2). The results in Fig-
ures 4.7 (a) and (b) show that the combination of XGBoost and uncertainty sampling allows
MLEM to achieve the highest recall (0.97) and F1 score (0.97) for security property P1. On

the other hand, SVM combined with any of these sampling methods has the lowest F1 score

78

(0.80) (i.e., less effective in identifying both classes), and RF with uncertainty sampling has
the lowest recall (0.82) (i.e., less effective in identifying the violations). Similarly, Figure
4.7 (c) shows that XGBoost with uncertainty sampling also has the best recall (0.783) for
security property P2. However, as Figure 4.7 (d) shows, XGBoost has the best F1 score
(0.981) when paired with QBC sampling. Nonetheless, as identifying the violations is more
important to MLFM, XGBoost with uncertainty sampling is considered the best option for

both P1 and P2.

3 3
= 0 = 0
805 205 805 205
0 o]
r:d E & E
SVM XGBoost SVM XGBoost SVM XGBoost SVM XGBoost
ML model ML model ML model ML model

‘-Random =QBC=Uncertainty =Random =QBC=Uncertainty ‘

(a) Recall for P1 (b) F1 score for P1 (c) Recall for P2 (d) F1 score for P2

=Random =QBC =Uncertainty =Random =QBC =Uncertainty

Figure 4.7: Recall and F1 score for combinations of ML models and sampling methods,
trained on 20% of dataset DS1 for property P1 (a and b) and on DS2 for P2 (c and d)

Figure 4.8 shows how the combinations of ML models and sampling methods affect
the running time (in minutes) of MLFM (including both the ML training and application
stages). As explained in Section 4.3.3, the partial verification use case aims to find the
majority of violations in the least time. To that end, Figure 4.8 (a) seems to suggest that
SVM paired with uncertainty sampling is the best option as it requires the least time (15.14
minutes). However, upon further investigation, this is not really the case, because the
lower time consumption is mainly due to its inaccuracy (it misses more violations and
thus, similar to most SAT solvers, Sugar incurs less time when there are less violations to
find [67]). Therefore, considering both the accuracy (Figure 4.7 (a)) and the running time,
XGBoost with uncertainty sampling seems to be the best option (with the second least
time) for partial verification under P1. Figure 4.8 (b) shows that XGBoost with uncertainty
sampling is the best option for priority-based verification for P1, as it requires the least time

(accuracy is less important in this use case as all the records will be verified eventually,

79

~80 ~ 80 ~80

5
~

é 60)) <4
O 40 Q 40 Q 40 Gé 2
E =20 220 i 1
0 0 0

DT RF SVM XGBoost DT RF SVM XGBoost DT RF SVM XGBoost DI RF SVM XGBoost

ML model ML model ML model ML model

FRandom =QBC =Uncertainty ‘ FRandom =QBC=Uncertainty ‘ FRandom =QBC=Uncertainty ‘ FRandom =QBC=Uncertainty ‘

(a) Partial verification (b) Priority-based (c) Partial verification (d) Priority-based
time for P1 verification time for P1 time for P2 verification time for P2

Figure 4.8: Running time of MLFM for combinations of ML models and sampling meth-
ods, with 20% of training data under P1 (a) (b), or P2 (c) (d), for both use cases

as explained in Section 4.3.3). Similarly, Figures 4.8 (c) and (d) show XGBoost with

uncertainty is also the best combination under P2 for both use cases.

Best Performing Parameters m and n. In this set of experiments, we aim to find the
optimal parameters of MLFM, i.e., the number of iterations n and the sample size m (see
Section 4.3.3), in terms of the running time for priority-based verification, and also in
comparison to the baseline approach (i.e., directly applying the formal verifier to the entire
dataset). Specifically, Figure 4.9 (a) shows how changing the sample size m with a fixed
number of iterations (n = 10) impacts the time, with the best performing model (i.e.,
XGBoost with uncertainty sampling) under property P1. The results show that MLFM
takes less time (<1 hour) than the baseline approach (around 1.6 hours) in all cases. As
more training data is used (through larger samples), the time of MLFM initially decreases
due to more accurate ML models, and it reaches the lowest value (0.417 hr, or around
25% of the time of baseline) while using about 20% of the dataset for training. The time
starts to increase afterwards, since the time needed to verify larger samples in the training
stage becomes dominant (compared to the time saved in the application stage). Figure 4.9
(b) shows how changing the number of iterations n with a fixed sample size (m = 250)
impacts the time. Similarly, MLFM takes less time than the baseline approach in all cases.
The optimal percentage of training data is also around 20% (where n = 10). However,

afterwards the time of MLFM stays lower than in the previous experiment, which shows

80

that increasing the number of iterations is a safer choice (than increasing sample size) for
increasing the training data. Figures 4.9 (c) and (d) show similar trends for property P2 (the

longer time is due to more records involved in verification, as shown in Section 4.2).

0

1.8

3 3

(h)

=

1.4

D
l ZWQ/Q/Q/ 2W>
W 0-6\ oooood 28

10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 0% 20% 30% 40% 30% 10% 20% 30% 40% 50%
Percentage of training data Percentage of training data Percentage of training data Percentage of training data

*Baseline eMLFM FBaseline eMLFl\/ﬂ FBaseline eMLFl\/ﬂ
(a) (b) (© (d)

me (h)

1ime

Time (h)

=N

Time (h)

Figure 4.9: Running time of MLFM vs. the baseline (FM only) under property P1 (a) and
(b) or P2 (¢) and (d), using different percentages of training data either by changing the
sample size m (a) and (c) or by changing the number of iterations n (b) and (d)

Comparing MLFM to Other Approaches. In this set of experiments, we compare the
performance of MLFM to both the baseline approach (i.e., directly applying the formal
verifier, Sugar [67]) and a state-of-the-art security verification tool, NOD [4] !. All ex-
periments use the best performing model and parameters (i.e., XGBoost with uncertainty
sampling, 20% training data, m = 250, and n = 10).

First, Figures 4.10 (a) and (b) show the time (in minutes) needed by the baseline ap-
proach (upper curve) and by MLFM (lower curve) for identifying different percentages of
violations under properties P1 (a) and P2 (b), respectively. The figures depict both the
priority-based verification use case (the entire curve) and the partial verification use case
(part of the curve before the dashed line). Specifically, Figure 4.10 (a) shows that MLFM
outperforms the baseline throughout the percentages, e.g., for partial verification, MLFM
can identify 88% of the violations in around 23.3 minutes, which takes the baseline 82.7
minutes. Similarly, Figure 4.10 (b) shows that MLFM outperforms the baseline in case

of partial verification for property P2, where it identifies 82% of the violations in about

' Among existing security verification tools, we do not compare to NFVGuard [6] as it actually forms the
basis of our verification component, and we do not compare to TenantGuard [29] as it is based on custom
algorithms instead of formal method.

81

53.3 minutes, while the baseline takes almost 2.4 hours. However, in case of priority-based
verification (after the 82%) for property P2, MLFM takes more time than the baseline. The
reason lies in the difference between the two properties. As explained in Section 4.2, unlike
P1 (which can be verified for each VLAN independently), P2 may involve all the VNFs of
a tenant, which means the remaining 18% of violations can only be identified using the
baseline approach. Fortunately, there exists an alternative solution, i.e., we run MLFM
and the baseline in parallel, and terminate MLFM as soon as the baseline finishes (as we
already have all the results). As Figure 4.10 (b) shows, this would allow MLFM to identify
around 86% of violations faster than the baseline, while bounding the overall running time
by what is taken by the baseline.

Next, Figures 4.10 (c) and (d) show the tradeoff between the running time (in minutes)
and the recall values of partial verification (i.e., the percentage of violations identified by
the end of partial verification) for P1 (c) and P2 (d). Both figures show similar results, i.e.,
while the baseline naturally requires more time for identifying more violations, MLFM
can achieve a high recall value of 0.98 (P1) and 0.9 (P2) (by increasing the percentage of
training data from 10% to 20%) with negligible change in running time (the difference will
be greater for verifying the remaining records, as shown in Figure 4.9).

Finally, Figures 4.11 (a) and (b) show the time (in minutes) needed by NOD [4] (lower
curve) and MLFM integrated with NOD (upper curve) for identifying different percentages
of violations under the virtual network reachability property [4] (as this property is similar
to P2, we run MLFM in parallel with NOD, as discussed above). We use the benchmarks
provided in [4] to create two datasets with 25,000 and 50,000 reachability pairs, respec-
tively, and around 10% of violations injected randomly. The results show that MLFM can
help NOD to identify around 80% (a) and 81.3% (b) of violations, respectively, in less

(57% and 65%, respectively) time.

82

100

5

200

~ , ~ l_/x——"”"—/‘x’; ~
£ %0 S £ 160 _,/—*—/*/x/
g O !) o1
)
g 4 BEE g
g W B o—b6 5 u
0 ! 0 40
20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 0.8 0.85 0.9 0.95 0.98 07 075 08 085 0.9
Percentage of violations identified Percentage of violations identified Recall Recall
Baseline éMLFM ‘*Baseline eMLFM‘ *Baseline ®MLFM *Baseline eMLFM|
(a) (b) © (d)

Figure 4.10: The time (in minutes) for identifying different percentages of violations by
MLEFM and the baseline for P1 (a) or P2 (b). The tradeoff between running time and recall
values of MLFM and the baseline for partial verification of P1 (c) or P2 (d)

65 200

=55
£ E 160
45 10
035 ()
Eos gw
s)
5 (
10% 20% 30% 40% 50% 60% 70% 80% 90%100% 10% 20% 30% 40% 50‘;70 6()7’:. 0% 8‘0% ‘)(J% 1‘007’:
Percentage of violations identified Percentage of violations identified
NODeMLFM-NOD *NODeMLFM-NOD
(a) (b)

Figure 4.11: The time (in minutes) for identifying different percentages of violations by
NOD [4] and by MLFM integrated with NOD, using 25,000 (a) and 50,000 (b) records

4.6 Discussion

Model Training and Parameter Selection. As with any machine learning training task,
the percentage of training data required is not fixed and largely depends on the specific se-
curity property being verified—particularly its complexity and the number of its attributes.
In our evaluation, we demonstrated that the selected candidate properties used similar train-
ing data sizes; however, this may vary for other properties with different characteristics. It
is important to note that the selection of training parameters—such as the number of iter-
ations (n) and the sample size (m)—is performed only once for each property, after which
these parameters can be reused in future verification. A key advantage of our approach is
its focus on minimizing the training data size in order to reduce training time, which is a
crucial factor in the overall verification process. This efficiency is achieved through the it-

erative teacher-learner approach, which ensures that even for varying properties, the model

83

can be trained effectively with a small amount of data—making our approach practical,

scalable, and time-efficient.

Significance of MLFM in Practice. NFV configurations are highly dynamic and often
change at runtime; therefore, security verification needs to be fast, ideally completing
within seconds to a few minutes, to detect or prevent issues early. MLFM supports near-
real-time, on-demand security verification, making it suitable for compliance checks in
large-scale NFV environments. It can be deployed continuously, aligned with configura-
tion changes or deployment intervals, or periodically, such as every minute or few minutes,
depending on the system’s needs.

In practice, the MLFM approach is designed with scalability in mind, to overcome the
scalability issue of formal verification and making it practical, efficient, and feasible for
large-scale NFV deployments. Instead of replacing formal methods, MLFM enhances and
guides them, enabling their utilization without alteration or compromising the accuracy of
the security verification. Therefore, it improves the security without impacting system per-
formance or introducing excessive overhead—an essential benefit for real-world NFV en-
vironments. Moreover, MLFM enables faster threat detection and reduces the verification
backlog by prioritizing potentially high-risk configurations, allowing quicker responses to
emerging vulnerabilities. These capabilities make continuous and real-time security audit-

ing possible, which is critical for maintaining secure and resilient NFV systems.

Trade off Between Verification Accuracy and Efficiency. The trade-off between
verification accuracy and efficiency is crucial in deploying security verification solu-
tions—especially in real-world, large-scale environments such as NFV and cloud. achiev-
ing guaranteed accuracy with formal methods often comes at the cost of speed and scal-

ability. MLFM addresses this by using machine learning to prioritize configurations that

84

are more likely to violate security policies, allowing formal verification to be applied se-
lectively and strategically. This significantly reduces verification time—from hours to min-
utes—and lowers resource usage by focusing on high-risk configurations. While it is less
rigorous than exhaustive formal methods, it achieves acceptable accuracy, making it a prac-
tical solution for dynamic NFV and cloud environments. This is especially valuable in
time-sensitive situations where verifying all the configuration is infeasible.

MLEM is also effective when auditors aim to reduce computational load, lack sufficient
resources, or require rapid feedback for faster vulnerability response (i.e., partial verifica-
tion use cases). Comprehensive formal verification can then be reserved for critical con-
figurations or scheduled periodically during off-peak hours, since performing exhaustive
checks on every update is often impractical in large-scale NFV deployments.

Furthermore, when 100% accuracy is required, MLFM offers a practical trade-off be-
tween efficiency and accuracy by prioritizing the verification of high-risk configurations
first, followed by the verifying the remaining records (i.e., the priority-based use case).
This approach ensures that critical threats are addressed promptly, reducing the window
of vulnerability. Although some records may be misclassified and verified later, the entire
dataset is eventually checked. As a result, verification time is significantly reduced with-
out compromising overall security. In summary, MLFM provides a scalable, prioritized,
and accurate verification strategy that aligns well with real NFV deployments, offering a

balanced and highly practical solution.

4.7 Summary

We have presented MLFM, a novel approach to security verification in NFV that could
combine the rigor of formal methods with the efficiency of machine learning for faster
identification of security violations. Specifically, we designed an iterative approach for the

teacher (FM) to gradually provide more representative data samples, such that the learner

85

(ML) could train an ML model using a small portion of the data; the ML model was then
applied to the remaining data to prioritize the verification of likely violations. We imple-
mented MLFM based on OpenStack/Tacker, and our experimental results showed signifi-

cant performance improvements over baseline approaches.

86

Chapter 5

Security Verification for Microservices
Using Federated Learning-Guided
Formal Method

5.1 Introduction

The microservices architecture [122], a widely adopted software development architec-
tural style, organizes and implements modern cloud applications as a collection of small,
loosely coupled services—namely, microservices—with well-defined interfaces and opera-
tions. Each microservice can be developed, deployed, upgraded, and scaled independently,
thereby significantly improving the scalability and flexibility of application development
and maintenance at lower costs. As a result, the microservices architecture has become a
de facto standard for developing large-scale commercial cloud applications, as evidenced
by its adoption by many well-known companies (e.g., Uber [123], Twitter [124], and Net-
flix [125]).

Despite their benefits, microservices can pose novel security and privacy challenges.

87

Since real-world microservices-based applications (mApps) can become very large and
complex (e.g., 1,000 microservices for the case of Uber [123], and O(10°) different mi-
croservices scaled to O(10%) service instances! for Twitter in 2016 [124]), they may suf-
fer from a larger attack surface and a higher risk of misconfiguration compared to their
monolithic counterparts. For instance, communications among microservices, which were
previously conducted through local invocations within a monolithic application, are now
exposed through the network, which increases the security risks for the entire application.
Consequently, an adversary can exploit the exposed inter-service communications to attack
the entire application by sending malicious requests from one compromised microservice
to the other microservices [52]. The timely identification of such security threats is impor-
tant to ensure the security of the microservices-based applications.

In this regard, formal method-based security verification solutions (e.g., [47, 100, 26,
4, 6,5, 48, 49]) are widely adopted to provide rigorous evidence about the compliance or
violation (alongside counterexamples showing security breaches) of configurations w.r.t.
given security properties. However, applying formal methods to microservice applications
may face two major challenges. First, the sheer scale of microservice applications can
exacerbate the inherent complexity of formal methods [101] and cause them to experience
significant delay in identifying security breaches. This delay could result in a wide attack
window inside which the microservice applications will remain vulnerable. Second, due to
the distributed nature of microservice applications, it may be infeasible to perform security
verification at a central location. Collecting configuration data from all the microservices
could either be expensive (in terms of high communication costs) or impossible (e.g., due
to data confidentiality and privacy concerns, considering the fact that such configuration
data may be highly sensitive as they may reveal security flaws, and are typically governed

by different organizations or administrative domains who are reluctant to share such data).

'In production, administrators may use multiple identical instances of a microservice to improve perfor-
mance and provide high availability [52].

88

H ictri : P : tp H Access control property: DevicelD € {123,552,...
Horizontal data distribution (rate imiting property: Requests <= 1000) Veertical data distribution pleperyiDeelse *
and UserRole == “Analyst
Verification using existing solution
Data unavailability reduces MLFM|
;_efficiency of records sampling ¢
****** BT Banking institution Financial nstitution| +
companyA| company B 'Data heterogeneity reduces! - 1
Requests > 20 ! ™ Requests>80 ! the efficiency of MLFM | DevicelD == 123 E UserRole == Analyst Reordering the records
Decision tree (DT,) | I | Decision tree (DT,) Reordering the records Decision ;ree (DTy) ||| Decision tree (DT,)
4 ! + ! f—Sampling—|
e — — DevicelD UserRol
== — (A | [e N
Ll 10 U S T —Q— Auditdata ||| Auditdata Nimverafrécorcsiohe
Audit data | Audit data i : iolati ' i
: Time to find all the violations sent to the central authority
Central authzooritv80 Verification using our solution Central authority Verification using gu{ solution
{Availability > 22480 | Federated learning improves .~~~ DevicelD U UserRole F-~-.__ FEde_"f'tEd learning IMproves the
/ 2 7 P i) efficiency of MLFM by solving
% the efficiency of MLFM by { S p iabil
- @ @ ------ @ reducing data heterogeneity —| @ @ —®] @ ata unavallagliy
]T:nsportinonzczmnanyﬁkl ¥ ‘ T:nspcrt:[\cngc;rvpany B| \’ * E:Jank\'ng ;r;mutfzna i ; L K :\Jnania\lmsnm:on I :‘ \‘ Reordering the records
equests > 20 - ! equests >80 R ing th evicelD == 123 --~ i serRole == Analyst’ |
o Requests >S50 |}l " N Requests> 50 orcEring therecords A Deviceld =123 1| A DevicelD == 123 IIIIIIIIIIIIIIIII
Decision tree (DTg)= /\ I[Pecision tree DT)= A Decision tree (DTy)» A | [Decision tree (Do)~ A [.
A Decision tree (DT,) ! s Decision tree (0T} o — UserRole == Analyst| | UserRole == Analyst| \ ||| / Sampling
) i : f . A . A Number of records to be
Audit data 1L Audit data Time to find all the violations Audit data Decision tree (DT) |1]Audit data Decision tree DTy} | ¢ to the central authority

Figure 5.1: Motivating example

Motivating example. We further illustrate this issue through an example. Specifically,
Figure 4.1 shows two cases of data distribution, where the horizontal case (left) means the
audit data of the two microservice applications share the same attributes (i.e., ID and Re-
quests) but may have different ranges of values (e.g., assume Transportation company A
tends to have higher requests rate than Transportation company B), and the vertical case
(right) means the two applications have different attributes (i.e., ID and DevicelD for Bank-
ing institution, but ID and UserRole for Equifax). The top of each side shows the property
to be verified, while the middle and bottom demonstrate the challenges faced by an existing
solution [5], and the key ideas of our solution, respectively.

More specifically, for the horizontal case (left), suppose we need to verify whether the
Transportation company A and Transportation company B microservice applications are
compliant with the following property, i.e., the number of Requests per second should
be less than or equal to 1,000. To that end, MLFM [5] is an existing work designed to
reduce the verification delay through guiding the formal method verification using a ma-
chine learning model. However, as illustrated in the figure (middle left), since the Requests

value of the Transportation company B tends to be higher than that of the Transportation

89

company A application, the machine learning model trained locally using each individual
application’s data will not be very accurate due to such data heterogeneity. Consequently,
the model is ineffective in prioritizing (through reordering) the data records such that likely
security breaches (represented by red bars in the figure) can be verified first.

In contrast, our solution (lower left) leverages Federated Learning (FL) such that the
two applications can transmit local model parameters (instead of the raw data) to the central
authority, which then aggregates such parameters to obtain a more accurate FLL model,
e.g., by taking the average of the Requests thresholds (Step 1). This FL model can then
be applied by each application to more effectively prioritize (reorder) its data records to
reduce the verification time. The vertical case (right) is similar, except that the challenge
faced by MLFM [5] is caused by data unavailability (as each application lacks certain
attributes) instead of data heterogeneity, and that the central authority needs to perform
global verification (in addition to parameter aggregation), which will be detailed later in

Section 5.4.

5.2 Preliminaries

This section provides necessary background information and defines our threat model.

5.2.1 XGBoost

In this work, we employ XGBoost as the main ML model (although our methodology
can be extended to other models). XGBoost [109] is an optimized implementation of the
Gradient Boosted Decision Trees (GBDT) which utilize an ensemble of sequentially trained
decision trees to make the predictions. The training of a single tree would require to first
calculate the gradient (g) and hessian (h) values for each data sample. Then, at the node

level, it builds a gradient (and hessian) histogram for each attribute and finds the value

90

that maximizes the gain i.e., the value that best split the samples by maximizing the loss
reduction after split. Next, it finds the attribute with the maximal gain for the current
node and splits the samples accordingly. If the tree reaches a predefined restrictions such
as the maximum depth or the gain being always smaller than zero, then the current node
is considered as a leaf node that holds the prediction result. The gradient (and hessian)
histogram show a small number of cut points as possible split candidates. The samples are
sorted based on their attribute values and arranged into ¢ buckets corresponding to the cut
points. The gradient (or hessian) of each cut point is the sum of the gradients of the samples
that fall into its bucket.

Figure 5.2 shows an example of finding the best split for a single node. Given the dataset
identified by record ID, the gradients (and hessians, which are omitted for simplicity) are
first calculated. Then, the gradient histograms are built using the calculated gradients. The
histogram of A_I has two cut points (3,10), the gradient of each cut point consists of the
sum of the gradients of the samples that fall into its bucket e.g., the sample identified by
ID (1) falls under that cut point (3). Since the value of its attribute (i.e., A_7) is less than
the cut point (3). Therefore, the gradient of cut point (3) is the gradient of the sample,
i.e., (8). Afterward, the gain is calculated for each cut point of the histograms, and the cut
point with the highest gain for each histogram is chosen i.e., (10) for histogram of A_/ and
(17) for histogram of A_2. Finally, the attribute with the maximal gain is chosen i.e., A_1.
Accordingly, the current attribute-value pairs that best split the dataset for the current node

are (A_1,10).

5.2.2 Federated Learning

Federated Learning (FL) enables collaborative decentralized privacy-preserving train-
ing of machine learning models among multiple parties to address the data privacy and

security issues [126] raised by regulations (e.g., the General Data Protection Regulation

91

Centralized XGBoost

= W

@ Build gradient histogramsg

ID Al A_2 | Gradient = =

1 1 15 8
2 13,5 25 |
@ Computing gradients Cut point | Gain|| Cut point | Gain
1r 3 m m 5
: 10 36 17 26

1 1 15 [1 I E
2 6

13.5 2 @) Best split pairs: A_1, 10
Dataset k d

Figure 5.2: An example illustrating XGBoost training

(GDPR) [127], Health Insurance Portability and Accountability Act (HIPAA) [128], and
California Consumer Privacy Act (CCPA) [129]). FL generally requires the participants
to train a local ML model with their local data, and send the local model parameters (also
called local updates) to a central server through a secure channel. The server (also known
as aggregator or coordinator) fuses the local updates to create a global model, which is
often sent back to the participants. This process could be repeated for several iterations to
achieve a desired performance, or until reaching a stopping condition. Federated learning
can be categorized into Horizontal Federated Learning (HFL), Vertical Federated Learning
(VFL), and Federated Transfer Learning (FTL) according to the distribution of data [130].
In this work, we focus on the HFL and VFL cases. Specifically, HFL means all participants
share the same attributes, but they may have different data samples. In contrast, VFL means
all participants share the same data samples, although they may have different attributes.
Figure 5.3 (left) shows an example of XGBoost training in the HFL settings (most of the
solutions that utilize XGBoost in the FL settings exchange the gradients, hessians, and/or
attribute-value split candidates between the parties and the server [131, 132, 133], and we
focus on the gradients and hessians histograms in this work). Specifically, the dataset (bot-

tom left) is divided horizontally between Application_I and Application 2. First, in each

92

Horizontal federated XGBoost

Vertical federated XGBoost

Server
Server
‘s o 2.5 2 Best split pairs:
0 25 25 . = :
‘SD,,OI_I:‘SH ,.I_|DUI—I - A_1,10
/1 [] [] [1 T, / @Concatenategradienthistogram @‘@
. @Aggregategradienthistogram ‘\\ 5 and find node parameters A
" :I\ ‘\ l’ t. : [} “ k
[1 1
Send local / .__ {Send aggregated Send L: Send local Send best Send
@) histograms @ ®: Hisioatan @.)) gradients ®\ histograms @ split pairs Cbi gradiepts|
Application_1 H Application_2 \\ ‘: Application_1 N ' Application_2 l: "
‘8 0 ‘8 2.5 ‘0 2.5 ‘ 8 2.5 DRI 25 8
ID | A_1 |Gradient *\ :
[1 ﬂ L1 ’_‘ [1 |_| [1 I_I T T 11 8 1ol 25
Gradient Aggregated || Gradient Aggregated 2 6 2.5 8 Gradient
histogram histogram | [histogram histogram Compute gradients Sradient histogram
forA_1 forA_1 forA_1 forA_1 1 'ra 1en forA_2
1 1 histogram
ID | A_1 |Label forA 1 ID | A2
| ID [A1] A2 [Label|||[1D [A_1 [A_2 [Label| 1 1 1 - 1| 15
L1] 1 T35 [1 J|["2 1 6 (1352 J|i|[21 6 |2 2 [135

Figure 5.3: An example illustrating XGBoost training in the HFL (left) and VFL (right)
settings

round, communicating for each node, the applications locally compute the histograms and
then send the histograms to the server (Step 1). Then, the server aggregates the histograms
through summation, i.e., the gradient (and hessian) values that fall inside a specific bin
interval are summed within their respective value buckets (Step 2). Next, the applications
receive the aggregated histograms from the server to update the local models (Step 3).
Eventually, each application will end up with histograms that are created as if it had the
entire dataset (e.g., the histogram of attribute A_/ at the top of the figure is identical to the
histogram of the same attribute on the left).

Figure 5.3 (right) shows an example of the XGBoost training algorithm in the VFL set-
tings. The dataset (bottom right) is divided vertically between the applications. Only the
application that has the labels (usually called the active participant), i.e., Application_I, can
compute the gradients (and hessians). Therefore, this application sends the gradient (and

hessian) values to the server (Step 1), once for each tree [134]. Then, the server sends these

93

to the other applications that do not have the labels (Application_2) such that they can com-
pute the corresponding gradients (and hessians) histograms (Step 2). Similar to the HFL
case, in each round, communicating for each node, the applications send the histograms
to the server (Step 3), which then aggregates the histograms through concatenation i.e.,
grouping together the histograms of all attributes, to compute the node parameters (Step
4). The best split (i.e., attribute-value pairs) or the prediction value if the current node is a
leaf node. Finally, the applications receive the node parameters from the server and update
the local models (Step 5). Each party will end up with the same global ML model (e.g., the

split value at the top is the same as the one on the left).

5.2.3 Threat Model and Assumptions

Following the majority of federated learning and microservice approaches, we make
the following assumptions. First, the microservice applications are properly isolated and
can only communicate with the central server through a secure channel. Second, the data
is independently and identically distributed (IID) among all the applications. Third, while
FL protects the privacy of the applications by not exchanging the raw data, potential in-
formation leaks or inference attacks on the exchanged information (e.g., histograms) may
still be possible and are assumed to be prevented using techniques such as homomorphic
encryption or differential privacy. Also, following the security verification literature, we
assume our solution is deployed by the microservice provider or owner, who has reliable
access to the required logs, databases, and configuration data. We also assume that the
formal specification of security properties, as well as the formal verification approach itself
are both sound. Finally, as a security verification solution, our approach is only designed
to identify security violations, and we assume it can work in tandem with other security

solutions to attribute such violations to their root cause (e.g., vulnerabilities or attacks).

94

Under such assumptions, our in-scope threats include both external attackers who ex-
ploit existing vulnerabilities in the microservice architecture to violate security properties,
and insiders such as cloud operators and tenants who cause misconfigurations that violate
those properties, as well as the provider or owner of a microservice application who may
be curious to learn about other applications’ data. On the contrary, our out-of-scope threats
encompass attacks that do not result in breaches of any security properties, attacks launched
by adversaries capable of eliminating evidence of their actions (e.g., logs and databases),
or tampering with the cloud infrastructure or compromising our solution itself, and attacks
launched by malicious insiders such as cloud operators/tenants and microservice applica-
tion providers/owners (e.g., deviating from the FL procedure, poisoning the training data

with adversarial samples, or eavesdropping on the communication channel).

5.3 Horizontal FLFM (H-FLFM) Methodology

This section first presents an overview of our horizontal FLFM (H-FLFM) approach,

and then details its components.

5.3.1 Overview

The horizontal case of FLFM (H-FLFM) is designed for verifying a security property
across several microservice applications that share the same attributes but have different
data values, e.g., one application tends to have larger values than other applications for the
same attribute. In such a case, as illustrated in our motivating example (Section 5.1), the
machine learning models of MLFM trained locally using each application’s own data may
not be accurate enough due to data heterogeneity. Therefore, H-FLFM utilizes Horizontal
Federated Learning (HFL) to enable the applications to collaboratively train a global ML

model to reflect more accurately the combined data of all applications. As detailed in

95

Section 5.2.2), HFL allows the global model to be trained without the need for sharing each
application’s data with either the central authority or between the applications themselves.
Instead, only certain learning parameters will be exchanged between the applications and
the central authority, thereby preserving the confidentiality and privacy for the applications.

At a high level, as demonstrated in Figure 5.4, H-FLFM consists of two stages. First,
during the ML training stage, an iterative teacher (FM)-learner (ML) interaction (as detailed
in [5]) is utilized to train a local ML model using a small portion of the applications’ audit
data. Subsequently, the learning parameters of each application are sent to, and aggregated
by, the central authority. The aggregated parameters are then sent back to the applications
to refine their models for higher accuracy. These steps are repeated until a predefined
stopping condition is met. Second, in the ML application stage, the final ML model of
each application is applied to the remaining local audit data (i.e., the data not used during
training) to prioritize the verification of data records that are more likely to violate the
property. The remainder of this section provides further details and examples of our H-

FLFM methodology.

5.3.2 Training Stage - Local Model Training

The local ML model training occurs concurrently on each microservice application
following the iterative teacher (FM)-learner (ML) interaction introduced in [S]. The goal
is for the teacher to select a minimal yet representative (with respect to the current ML
model) set of records in each iteration, such that the learner can obtain a relatively accurate
ML model using a small amount of data. Specifically, as shown in Figure 5.4 (lower-right
inside Application_I), in each teacher-learner iteration, the teacher employs a sampling
method to select a small fixed-size data sample from the audit data (depicted as Sampler)
by applying the ML model received from the learner in the previous round (an initial ML

model is provided for the first iteration). This sample is verified by the Formal verifier

96

Central authority

H:ILL+ ’I‘IHH = ’I‘IHH R

e ' | Aggregating gradient histograms i

Sending aggregated ‘ e, - __|Sending gradient histogram O
histogram |‘|H [] of application ML model R
T - AN

Application_1 | ~ N
I - : "
Updating ML training ! ID_1 Al 7
Teacher Learner ! '
ML r?OdE' @ : - :
Sampler— Formal Labeled ; ¥
P \verifier|[Sample | [Application_2] H
ML mOde| P | data I 9 . Iy
t A I|i i Same as application_1 !
@ 0 || [oaai]l
T~ ML model ML medel ML algorithm :.
ML application i
Returning final :
ML model icati |
Formal verifier— ‘ Application_n | :I
Training data Same as application_1}
Reordering Identifying ID_3 A1l ¢
|—- data records violations . i

Figure 5.4: Overview of the horizontal FLFM approach

to label its records according to the verification results (depicted as Labeled data) before
being sent to the learner. The learner adds this new sample of labeled data to the previously
received ones to train a new local ML model, which is then sent back to the teacher for the
next iteration. This iterative interaction ends when reaching a predefined condition (e.g., a

fixed iteration count, or lack of significant improvement in the accuracy of the model).

Example 5.3.1 Figure 5.5 (Step (1)) shows an example of the local ML training at both
the Uber and Bolt applications. For Uber (lower middle), using the uncertainty sampling
method, the sampler (inside the teacher block) selects a sample of size (m = 1), and assume
data record (1) is selected. Then, the formal verifier verifies this record, and assume it
assigns the (+) label to the record. On the other hand, assume the local DT model classifies

this same record as (—). Therefore, record (1) is a FN record containing representative data,

97

which is selected by the teacher to be part of D (which contains records to be sent to the
learner and removed from the audit data). Since we assume a required sample size of
(m = 1) in this example, the sample is sent to the learner and added to the existing training
data (7'), while the teacher empties its (D). The learner uses (7') to build a new (more
accurate) local ML model, which is sent back to the teacher for the next iteration, until the
iteration count has reached a predefined count (n). The same process occurs in parallel at

the Bolt application (only the differences are highlighted in the figure).

Central authority

21 9 30
_____________ @ ---1{ 1A+ B = 1408 YT

- H @Aggregat\on of gradient histograms| \\ -
Piae \ \ RIS
Sond 30 - 21 30 " 9
end the aggregated [1 g = 13 Send the gradient 5777 Send the aggregated | 1 g = 13 Send the gradient |13 7 6
gradient histograms histograms lﬂD_D_ gradient histograms histograms
’ \ 7 s
[—ﬁ \
Transportation company A| H Transportation company B :
- 1] X |
® T— (@) ML training H (D W training !
DT model Teacher yiFlotmocel |l teacher !
D | 1
Rs<0.6
o | 10| [Formal] _ 1O Actua o [acual] | |1 o | [0 [Fomar] |[Acta | |
iy abe | Y i |
Next DT sampling) verifier 1| + Select record -[. dabel I g 1 veriier 1| - Select record [[1
T | (1) identified * 1] (11) identified 1
1 asF
Rs>=03 1D [precicted| | L_2FN X Rs>=01 i !
! True/\Fa\se E— class Remove record 1 True/"\False |
! + - 1| - (1) from P ! L '
' No Local DT : Local DT 1
[t F S s————E A I B SRR) (S N e s ————— S 1
: 1 1
SE": f":a'm Learner l i | Sendfinal DT | P \
modeltoML | | 17T T[T T T T T T T s s s s s s s ey i| Sendthe
heoT || i1 1
application : : ;iz‘;‘;’ e | 1 P i| modelforthe || i
i| AddDtothe @ Rs>=05 ool No!| next teration || | ! rve N\ false No!| nextiteration || i
@7_' | training data (T), = @5 —s{True/\False ‘?l’"" f_‘e (n) | 7 ! \
i| andemptyD | MLalgorithm | + - {erations ! ! . 1
i il & Yes! \ . New local DT --__VCE‘__-@-_.-
Audit data e NewlocalDT ™= - - -—=i-= -@ --trF Audit data

Figure 5.5: An example of the horizontal FLFM training

5.3.3 Training Stage - Global Model Learning

The federated global model learning starts at the end of each iteration of the teacher
(FM)-learner (ML) interaction. The goal is for the applications to send their ML model
parameters to the central authority, which then aggregates these parameters and sends the
result back to the applications to refine their local ML models. Specifically, Figure 5.4
(lower left inside Application_I and top) illustrates these steps using a federated XGBoost
classifier (detailed in Section 5.2.1). First, the applications send their learning parameters

to the central authority, i.e., the gradients and hessians histograms (as detailed in Section

98

5.2.2). Second, the central authority performs an aggregation operation (i.e., summing
the values within their respective value buckets in this case) on the gradient and hessian
histograms received from all the applications to obtain a final histogram representation.
The central authority then sends the final histogram back to each application. Next, each
application uses the received histograms to update its local ML model to obtain a more
accurate model that better reflects global knowledge. Finally, the updated local ML model
is utilized by the next iterative teacher (FM)-learner (ML) interaction to locally train a new
ML model. The central authority and the applications may repeat this process for several
iterations until a stopping condition is reached (e.g., a predefined iteration count or when

the histograms see no significant change between two consecutive iterations).

Example 5.3.2 Following Example 5.3.1, Figure 5.5 (Step (2)) shows that, at the end of the
n'" iteration of the teacher-learner interaction, each application sends its local ML model
parameters (i.e., gradient and hessian histograms) to the central authority (for clarity, the
figure only displays the gradient histograms). Specifically, two gradient histograms, each
with three gradient values i.e., (5,21,7) and (3,9, 6), are sent by the Uber and Bolt appli-
cations, respectively. Step (3) shows the aggregation of the received gradient histograms at
the central authority. Particularly, the aggregation (i.e., summation) results are represented
in a histogram with the values (8, 30, 13), which are then sent back to the applications (Step
(4)). Step (5) shows that each application uses the received aggregated gradient histograms
to update its local model. If a predefined number (r) of aggregation iterations is not yet
reached (Step (6)), the updated local model is provided to the teacher to trigger a new itera-
tion of the teacher (FM)-learner (ML) interaction for local ML model training. Otherwise,

the updated local model will be utilized by the ML application stage (Step (7)).

99

5.3.4 Application Stage

As Figure 5.4 (bottom of Application_I) shows, the final ML model obtained from the
ML training stage is applied to the remaining audit data (i.e., the data not used for the
training) of each application in order to identify data records that are more likely to violate
the given security property, namely, the “to be verified” subset, which is then given a higher
priority for verification. On the other hand, the other records, i.e., the “not to be verified”
subset, will either be verified afterwards, or not verified at all, depending on the use cases

(discussed in Section 5.6).

5.4 Vertical FLFM (V-FLFM) Methodology

This section first presents an overview of our vertical FLFM (V-FLEM) approach and

then details its components.

5.4.1 Overview

The vertical case of FLFM (V-FLFM) is designed for verifying a security property
across several microservice applications that share the same data samples but with differ-
ent attributes. In such a case, as illustrated in our motivating example (Section 5.1), each
application lacks certain attributes, and thus the machine learning models of MLFM trained
locally using each application’s limited collection of attributes would not be accurate due
to data unavailability. Therefore, V-FLFM utilizes Vertical Federated Learning (VFL) to
enable the applications to collaboratively train a global ML model that can more accurately
reflect the collection of all applications’ attributes. Similar to HFL (Section 5.2.2), VFL
allows the global model to be trained without the need for sharing data with other applica-
tions, with only a small amount of data and learning parameters exchanged with the central

authority, thereby preserving confidentiality and privacy for the applications.

100

Similar to the H-FLFM approach, V-FLFM also has two stages: the ML training stage
and the ML application stage, as depicted in Figure 5.6. What is unique to V-FLFM is the
fact that the formal verification can only be performed at the central authority, where all
attributes from the applications are collected. Specifically, during the ML training stage,
the sampler identifies a small representative data sample, which is sent to the central au-
thority for labeling (utilizing the Verifier). The labeled samples are then sent back to the
corresponding applications and used by the Learner to train a global ML model. Each
application’s Learner calculates the learning parameters and sends them to the central au-
thority for aggregation. The aggregated parameters are then returned to the applications to
refine their local models. In the ML application stage, the final ML model of each appli-
cation is applied to the remaining local audit data (i.e., the data not used during training)
to prioritize verifying data records that are more likely to violate the property. Such data
records are then sent to the central authority for verification utilizing the Formal verifier.

The remainder of this section provides more details and examples for our V-FLFM method-

ology.

5.4.2 Training Stage - Training Data Building

V-FLFM requires the applications and the central authority to collaboratively obtain the
training data and build the ML model (in contrast, H-FLFM does not involve the central
authority for obtaining the training data). Specifically, as shown in Figure 5.6 (top-right in-
side Application_I), at the beginning of each iteration, the sampler interacts with the verifier
(left inside Central authority) to build a training dataset. First, a sampling method is used to
select a small representative data sample of fixed size from the audit data after applying the
ML model built by the learner in the previous iteration (an initial ML model is provided for
the first iteration). Second, since the data is vertically distributed, the necessary attributes

for the verification are collected from the applications that hold them. The central authority

101

Central authority

a Same as application_1
@ f@@ ; ID_1 A2

Verifier Aggregator
. verifier -~
/ Concatenating gradient histograms RN
III ~ = - Y AN
-~ Tm=——o_ 1 \
i Y Sy 1 ANN
Sending node = ':#' |:| Sending gradient histogram| \\
parameters = of application ML model N
- Datasample |abeled T i\
. . \ \
Application_1 *~-. datasample i "
H .. 7 T | :
Updating ML training % ID_1 A1 i
ML model Sampler | ! Learner ! '
¥ | M= ! "
Samplin N ! — I
Labeled data ',' Appllcat|on_2 : i
: H
]] :

ML model ML algorithm / i

ML application i

Returning final ‘

ML mogdel Sending ordered F - !

data records for Application_n o

verification Same as application_1

— Reordering D 1 A 3 v

Remaining data|— d - -
|—~ ata records

Figure 5.6: Overview of the vertical FLFM approach

then reassembles these samples into complete data records and verifies them using a for-
mal verification approach. Thereafter, the data records labeled with verification results are
divided into data samples and redistributed to the corresponding applications. The learner
of each application then adds this newly received data sample to its existing training data

(i.e., the collection of all previous samples) and utilizes this enriched training data to build

a new ML model using a vertical federated learning algorithm.

Example 5.4.1 Figure 5.7 shows an example of the ML training over data vertically dis-
tributed between two applications, i.e., Banking institution and Financial institution. First,
in Step (1), the sampler selects a sample of size (m = 1), using the uncertainty sampling
method, which is assumed to include the data record (1) in this example, for both applica-
tions. Next, in Step (2), the sample from each application is sent to the Verifier inside the

central authority (omitted on the Financial institution’s side for simplicity). The Verifier

102

reassembles those samples into a complete data record, and then verifies the record and
labels it based on the verification result (Step (3)). Then, the labeled data record is divided

into samples and sent back to the corresponding applications (Step (4)), which utilize them

to build a new ML model.

Central authority

@ Verifier

Formal 1D
verifier 1

Actual label \

Aggregator
1718

‘,ﬁu . sﬁm I45 Dsz

@ Concatenation of gradient histograms

~~

T + L3 LY

T

Io1g
[

_______________ 1 | 1 \ 510 N
- 1 1 1 \ [I \
Send node Send the gradient Send the gradient Send node
@ @ Send records (D)| @ Send labels @ histograms @ histograms - @ parameters
A) T =~
\ ' 1 SS < 1
Banking institution | “ I " Financial institutionl S 1
L2 - \ T | B ek A--=7
Update local ML training + 1 Update local ML training +
DT model @ Sampler 1 ‘I Learner DT model @ Sampler | Learner
D \ i | D 1
B ot | [T AL e oot | I | e
- sampling) 1 data(® | 4 - sampling) 1 V| da(n)
Next DT Audit data 1 Next DT Audit data
I | [I | I
D_ID<0.3 Remove ::-Gd‘\; / UR<0.3 Remove VER
Sampling using - record (1) B ’ Sampling using record (1) \\—-
X | updated DT from P i ™| updated DT from P]
iterations model DT ML algorithm model DT ML algorithm
Yes Yes
Return the final Return the final
DT model DT model

Figure 5.7: An example of the vertical FLFM training

5.4.3 Training Stage - Global Model Learning

The federated global model learning starts when each application receives the new la-
beled sample. Figure 5.6 (lower left inside Application_I and top) illustrates this using a
vertical federated XGBoost classifier (detailed in Section 5.2.2). First, the VFL algorithm
requires the application holding the labels to transmit them to the central authority, which
then forwards these to the other applications for them to compute the corresponding gradi-
ents and hessians histograms (this step is performed only once for each model, as detailed
in Section 5.2.2). Second, the applications send the histograms to the central authority for
aggregation through concatenation (detailed in Section 5.2.2). The aggregated histograms

are utilized to compute the node parameters, i.e., the best split or the prediction value if

103

the current node is a leaf node, which are then sent back to the applications to update their
local models. Finally, the updated local ML model is utilized by the Sampler to initiate
the training of a new ML model. This training process may repeat for several iterations

until a predefined stopping condition is met.

Example 5.4.2 Following Example 5.4.1, Figure 5.7 (Step (5)) shows that the two appli-
cations send their learning parameters, i.e., (4,18,12) and (6,17, 10) (only the gradient
histograms are shown for clarity), to the central authority. The histograms (Step (6)) are
then concatenated by the Aggregator (inside the central authority), and used to compute
the node parameters. These parameters are then sent back to the applications (Step (7)) to
update their local models. If the predefined number of iterations () has not been reached,
the updated ML model is used in the next iteration of training; otherwise, it is passed to the

ML application stage for utilization in subsequent verification process.

5.4.4 Application Stage

As Figure 5.6 (bottom of Application_I) shows, similar to H-FLFM, the final ML model
obtained from the ML training stage is applied to the remaining audit data (i.e., the data not
used for training) of each application to identify the “to be verified” subset (data records
more likely to violate the given security property), which will be given a higher priority
and sent first to the central authority for verification. On the other hand, the “not to be
verified” subset will either be verified later or not verified at all, depending on the use cases

(discussed in Section 5.6).

5.5 Implementation

This section details our implementation of FLFM.

Architecture. Figure 5.8 overviews our implementation of FLFM. Specifically, FLFM

104

interacts with users to obtain the inputs including the security property to be verified and
the system parameters, such as the number of iterations and the sample size (as detailed in
Sections 5.3 and 5.4), and to deliver to users an audit report as the output. Furthermore,
FLFM also interacts with the cloud environment hosting the microservice applications to

acquire the necessary audit data for verification. The following details the components of

FLFM.
*’Q
Security properties &} Audit report
and parameters
FLFM user
FLFM
Microservice-based cloud application Central authority
! V-FLFM

Data collection ELFM e —
and manager Data and audit repository i
processing [I Aggregation

V-FLEM 0T

Formal verifier

Sugar CSP solver

NOD

Sampler ML model learner Compliance verifier

- i and
Uncertainty Federated ML training : reporter

‘ ,,,,,,, | ML deployment

i
; Compliance verifier
H-FLFM i and

: Sampler ML model learner Formal verifier reporter

i | Uncertainty Local ML training Sugar CsP|[NOD e Ty :
L sees Federated ML training solver || ... ! !
1 1 : I
| ML deployment 1| Aggregation |!
! ! 1

Figure 5.8: The FLFM architecture

Data Collection and Processing. This module (implemented in Python 3.6.9) collects
audit data from the microservice-based applications and converts it into the necessary input

formats for both the formal verifier and ML training.

FLFM Manager. This module (also implemented in Python 3.6.9) triggers either the hor-
izontal or vertical FLFM approach based on the audit property and data distribution. Addi-

tionally, it manages and orchestrates the interactions among other modules for conducting

105

data processing, data sampling, formal verification, ML training, etc., as detailed in Sec-

tions 5.3 and 5.4.

ML Model Learner. We utilize Python 3.6.9 and Scikit-learn 0.24.1 (an open source
ML library written in Python) to implement this module. For both horizontal and verti-
cal federated learning, we choose the XGBoost classifier [109], a scalable tree boosting
algorithm that has seen wide application in real-world for its high accuracy and low false
positive rate, with many awards in ML and data mining competitions [110, 111]. We em-
ploy FedTree [134], an FL system designed for tree-based models, to implement federated
XGBoost. FedTree employs a histogram-sharing strategy for both horizontal and verti-
cal FL. It facilitates distributed computing for practical FLL deployment with configurable
privacy techniques like Differential Privacy and Homomorphic Encryption, and supports
standalone FL simulation on a single machine. Although many FL studies focus on neural
networks, our work excludes them due to their widely recognized higher complexity and
longer training time compared to traditional ML models [112], which is not aligned with

our main objective of reducing the overall delay before violations can be identified.

Aggregation. This module (implemented in Python 3.6.9) aggregates the learning param-

eters received from the microservice-based applications.

Sampler. We utilize the modAL framework [113] to implement sampling strategies within
this module. modAL is an active learning framework for Python3, built on top of Scikit-
learn [114], which enables the rapid creation of active learning workflows with flexibil-
ity [113]. In our implementation, we opt for the uncertainty sampling strategy due to its su-
perior computational efficiency compared to other strategies [46]. Moreover, our previous
work [5] has demonstrated that combining uncertainty sampling with XGBoost achieves

the highest verification performance.

Formal Verifier. We formalize the security properties along with the audit data as a Con-

straint Satisfaction Problem (CSP), a time-proven technique to express intricate problems.

106

Leveraging CSP permits users to articulate a wide range of security properties (owing to its
expressiveness) in a relatively simple manner, since CSP can facilitate the uniform repre-
sentation of audit data and security properties, presenting them in a clear and understand-
able formalism, such as first-order logic (FOL) [115]). As a future work, FLFM may also
be integrated with other robust and efficient CSP solver algorithms, which can circumvent
the costly state space traversal [116] to further enhance the scalability, particularly in larger
environments.

After being formulated as a CSP problem, the security verification is performed using
Sugar [67], a well-established, award-winning SAT-based constraint solver (e.g., the global
constraint categories at the International CSP Solver Competitions in 2008 and 2009 [117]).
Sugar tackles a finite linear CSP by converting it into a SAT problem through the order
encoding method, and then it solves the SAT problem using the MiniSat solver [118],
an efficient CDCL SAT solver recognized for its effectiveness in narrowing the search
space [119]. A future direction is to adapt the FLFM framework to other verification meth-
ods (such as theorem proving, model checkers, temporal logic, and Datalog) based on the

specific requirements of the verification tasks.

5.6 Experiment

This section first describes the investigated properties. Then it covers the experimental
settings, use cases of our approach, and the datasets used. Finally, it presents our evaluation

results for both H-FLFM and V-FLFM.

5.6.1 Investigated Properties

FLFM targets system-wide security properties that cannot be fully verified by analyzing

the configuration of a single application or microservice in isolation. These properties

107

depend on the relationships, communications, or configurations across the entire system,
requiring the aggregation of information from multiple applications or services. These
properties describe policies like communication isolation, role-based access compliance,
and dependency integrity, which span multiple services and require system-wide visibility
or coordination.

Our approach can support the verification of various security or custom properties as
long as they can be verified using the chosen formal method tool. To make our discussion
more concrete, we present two example properties (which will be used to evaluate our

approach later in this section).

Rate Limiting Property. Ensures that applications adhere to predefined thresholds for
request rates, such as a specified number of requests that are allowed within a given time
frame. It serves as a security mechanism to protect networks by regulating traffic flow,
preventing excessive rates that could lead to congestion or overload, and mitigating risks
such as API abuse through excessive calls [135]. Additionally, it safeguards systems from
malicious activities like Denial of Service (DoS) attacks [136] and ensures fair resource
allocation among services. Therefore, verifying rate limits is crucial for maintaining the
security, stability, and quality of service in cloud-based networking environments.

In our work, we assume that the cloud provider hosts several applications for different
clients and enforces traffic rate limits on certain applications (e.g., no more than 1,000 re-
quests per second for banking applications). Our objective is to compare the actual request
rate against rate-limiting policies to ensure the compliance of these applications. Specifi-

cally we verify the following.

Vid € AplicationID,Vr € Requests,Vt € time : AppRequestCount(id,r,t) (3)

<= RateLimit

108

Where AppRequestCount denotes the number of requests r made by an application with
ID id at a specific time interval ending at time ¢, and RateLimit is a constant representing

the rate limit.

Access Control Property. In our work, we assume that two organizations (each with its
own MS applications) work on a shared project. One of them is the project lead (say
organization_A) hence it holds higher priority e.g., owns sensitive data for the project, or
manages role assignments and access control (e.g., issuing permissions). On the other hand,
the other organization (say organization_B) uses the data or shared resources provided by
“organization_A” and maintains its own users access information. For instance, the two
organizations could be a bank and financial institution that performs some tasks on behalf
of the bank, such as risk assessment, credit scoring, or fraud detection.

Our objective is to ensure the compliance of established access control policies across
these applications. For instance, one such policy might state: ”Only users with the role
Analyst from Organization_B are permitted to access SharedResourceX, and only if they
are using a device that has been explicitly approved and registered by organization A”.

Which would be represented as follows.

Vid € ResourcelID, Vdev € DevicelID, Vur € Roles : ResourceUserRole(id, ur) (4)

A(ur == “Analyst”) A UsedDeviceID(id, dev) A ApprovedDevices(id,dev)

Where ResourceUserRole represents the role (ur) of the user who accessed the Share-
dResourceX identified by its ID (id), UsedDevicel D represents the used device (dev) to ac-
cess resource (id), and ApprovedDevices represent the approved devices by organization_A

to access resource (id) from.

109

5.6.2 Experimental Settings and Datasets

Experimental Settings. All experiments are performed on a SuperServer 6029P-WTR
running the Ubuntu 18.04 operating system equipped with Intel(R) Xeon(R) Bronze 3104
CPU@1.70GHz and 128GB of RAM without GPUs. All the experiments are performed
using Sugar [67] as the formal verifier, FedTree [134] standalone simulator to simulate
the federated settings, and Python 3.6.9 with Scikit-learn 0.24.1 ML packages for the ML
method (i.e., XGBoost classifier [109]). For all experiments, we use the default parameters
for the ML models. Each experiment is repeated 1,000 times to obtain the average results.

We evaluate FLFM under two use cases, one for the shortest verification time and the
other for more complete results. First, in the partial verification use case, FLFM will
stop after verifying all the “to be verified” records (i.e., the “not to be verified” records
will not be verified, as detailed in Sections 5.3.4 and 5.4.4). This use case may apply
when the user wants to find violations as quickly as possible (but not necessarily all the
violations). Second, the priority-based verification use case means that FLFM will not
stop after verifying the “to be verified” records, but instead will continue to verify the
remaining (“not to be verified”) records. This use case applies when the user requires
complete verification results (at the cost of a longer running time).

Finally, since our previous work (MLFM) demonstrated through experimental evalua-
tions that combining machine learning with formal methods outperforms traditional formal
methods, we did not directly compare FLFM with traditional approaches. Instead, we focus
on evaluating the performance of FLFM and comparing it with MLFM, as FLFM repre-
sents a distributed extension of MLFM. Our goal is to build upon the results established by

MLEFM and assess how they extend to the federated FLFM setting.

Datasets. To evaluate the performance of FLFM in the horizontal case (H-FLFM), we
generate six sets of datasets, with each set containing two datasets, one for each applica-

tion. Each dataset contains 12,500 data records for verifying the rate limiting property (P1

110

henceforth). Since data heterogeneity is the key factor affecting the ML accuracy in the
horizontal case, the six sets of datasets are designed to have an increasing level of hetero-
geneity, e.g., the last set has 100% heterogeneity, i.e., the two applications do not share any
common data values. Finally, each dataset contains around 10% of (uniformly distributed)
records that violate the corresponding property.

For the vertical case (V-FLFM), we also generate six sets of datasets for both applica-
tions. Each dataset contains 12,500 data records for verifying the access control property
(P2 henceforth). Unlike the horizontal case (where data heterogeneity is the key factor), the
ML accuracy in V-FLFM is mainly affected by the missing attributes in each application.
Each subsequent set of datasets is designed to have 10% more records that result in false
prediction by the ML model due to the lack of attributes (e.g., data records that are identi-
fied by ML as “to be verified” but do not violate the given property). Finally, similar to the
horizontal case, each dataset also contains around 10% of (uniformly distributed) records

that violate the corresponding property.

5.6.3 H-FLFM Experimental Results

We evaluate the H-FLFM performance and how it may be impacted by data hetero-
geneity and other parameters. We also compare the performance of H-FLFM with a state-
of-the-art approach, MLFM [5], which runs at each application to construct an ML model
and identify the data records that violate the given property based on the local data. Table

5.1 lists the parameters evaluated in those experiments.

Parameter Meaning Abbreviation
Number of records selected by
the sampler from the audit data

Sample size m

Local Number of local iterations conducted
iterations between the teacher and the learner n
Global (aggregation) | Number of global iterations conducted between the v

iterations applications and the central authority

Table 5.1: Main parameters evaluated in the experiments.

111

Impact of Data Heterogeneity. The first set of experiments evaluates the impact of differ-
ent levels of data heterogeneity on the performance of H-FLFM in comparison to MLFM,
with respect to the execution time and the recall, respectively. This experiment is per-
formed using the best performing parameters of MLFM as reported in [5] (i.e., XGBoost
with uncertainty sampling, 20% training data, sample size m = 250, and iteration count n
= 10) for both MLFM and H-FLFM.

First, Figure 5.9 (a) shows the execution time for identifying violations (under the
priority-based verification use case) for both H-FLFM and MLFM on datasets with differ-
ent levels of data heterogeneity (ranging from 0% to 100%). The results show that H-FLFM
is faster than MLFM across all levels of data heterogeneity, with an average of around 13%
better performance for H-FLFM. This is expected as the federated global model learning
of H-FLFM allows the applications to build more accurate ML models and consequently
to prioritize the verification of data records more effectively than MLFM does. The re-
sults also show a similar trend for both approaches, i.e., as the level of data heterogeneity
increases, the execution time first increases and then decreases passing around 60% data
heterogeneity. This can be explained by a similar trend in the accuracy of the ML models,
as detailed below.

Second, Figure 5.9 (b) shows the recall values for both H-FLFM and MLFM under
different levels of data heterogeneity. The results show that H-FLFM achieves higher recall
values (i.e., more effective in identifying the violations) than MLFM across all levels of
heterogeneity. The results also show a similar trend for both approaches, i.e., as the level
of data heterogeneity increases, the recall values first decrease and then increase. This can
be explained by the fact that a medium level of heterogeneity (e.g., 40%) means the local
data of an application contains an imbalanced mixture of data from different ranges, which
makes the ML training more challenging; conversely, the ML training is easier either at

a very low level of heterogeneity since the local data has a well balanced mixture of data

112

from different ranges, or at a very high level of heterogeneity since the local data is mostly
from the same range. This also explains the diminishing difference between H-FLFM and
MLFM as the heterogeneity approaches 100% (i.e., the local model is good enough on
local data from the same range). In the subsequent experiments, we choose datasets with
a high heterogeneity level (i.e., 80%) since this is the most challenging case for H-FLFM

(i.e., with the minimum benefit compared to MLFM).

4 leH-FLFM *MLFM | leH-FLFM *MLEM|

' 100
_13¢
< —
g 1.2 ¢ 1 3 80
St 1 S
&= 60

1 L 4
0.9 - ‘ ‘ ‘ ‘ ‘ 40 - ‘ ‘ ‘ ‘ ‘
0 20% 40% 60% 80% 100% 0 20% 40% 60% 80% 100%
Level of heterogeneity Level of heterogeneity

(a) (b)

Figure 5.9: The execution time (in hours) (a) and recall (b) for identifying violations in
datasets with different levels of heterogeneity by H-FLFM and by MLFM [5]

Impact of Parameters. The goal of this set of experiments is to study the impact of the H-
FLFM parameters as listed in Table 5.1. First, Figure 5.10 (a) shows the effect of the sample
size under various numbers of both the local iteration (n) and global (aggregation) iteration
(1), where we choose n = r (i.e., each local iteration is followed by an aggregation).

With respect to the effect of sample size, the results show that, with the sample size
increasing (i.e., more training data is employed during each iteration) from O to 250 records,
the H-FLFM performance improves owing to the enhanced accuracy of the ML model,
where the lowest execution time for H-FLFM is achieved when the sample size reaches
around 250, independently of the number of iterations. The improvement starts to diminish
passing 250 records, since with larger sample sizes, the verification time during the training
stage becomes more dominant (compared to the time saved during the application stage),

leading to overall a longer time.

113

With respect to the effect of the number of iterations, the results show that, for any
given sample size, the execution time of H-FLFM is the lowest under a medium number
of iterations (e.g., 10 iterations), while a smaller number (e.g., 5 iterations) leads to the
highest execution time. This can be explained by the fact that the increase in the number
of iterations initially leads to more accurate ML models (as more training data is used) and
consequently a lower execution time, while further increase in the number of iterations re-
verses the trend, since the accuracy improvement will diminish and the increase in training
time due to the additional iterations will outweigh the time saved in the ML application
stage. Therefore, we can conclude with the optimal H-FLFM parameters of (m = 250,
n = 10, and r = 10).

Figure 5.10 (b) further studies the effect of the number of aggregation iterations on the
execution time (for priority-based verification) of H-FLFM in comparison to MLFM, using
the dataset of 80% heterogeneity. Here we fix the sample size and the number of local
iterations at the best performing parameters of H-FLFM, i.e., (m = 250 and n = 10), while
varying the number of aggregation iterations by performing the aggregation after multiple
local iterations. The results show that increasing the number of aggregation iterations can
significantly reduce the execution time, e.g., from 76 minutes for 1 aggregation to less than
50 minutes for 10 aggregations (i.e., aggregation is performed after every local iteration).
The results also show that H-FLFM is always faster than MLFM, and the difference grows
almost linearly in the number of aggregations, e.g., H-FLFM is 36.7% faster than MLFM

with 10 aggregation iterations.

Performance and Robustness. The goal of this set of experiments is to further study the
performance of H-FLFM in terms of execution time in comparison to MLFM, and the ro-
bustness in handling new data with different characteristics. First, Figure 5.11 (a) compares
the execution time of H-FLFM to MLEFM that is needed to identify different percentages

of violation (for the priority-based verification) using the dataset of 80% heterogeneity and

114

1.9 '[-*—5 iterations 43-10 iterat'ionsQIS i'terations] 1 20 ’9H-FLFM *MLFNH '
—_ £
=) K ~
11 1 B0y
50 r
100 200 300 400 500 1 2 3 4 5 6 7 8 9 10
Sample size Number of aggregation iterations

(a) (b)

Figure 5.10: The execution time of H-FLFM (in hours) for different sample sizes and for
various numbers of iterations (aggregation and local iterations) (a). Execution time (in
minutes) of H-FLFM using the best performing parameters (i.e., m = 250 and n = 10),
while varying the number of aggregation iterations and compared to the execution time of
MLEFM using the same applicable parameters (b)

the best performing parameters (i.e., m = 250, n = 10, and r = 10). The results show that
H-FLFM is always faster than MLFM in identifying violations, and H-FLFM takes around
39% less time than MLFM for identifying all the violations.

Second, Figure 5.11 (b) studies the robustness of H-FLFM and the generality of its ML
model for handling new data records that have different distributions or data ranges from
the local data. Specifically, Local data in the figure refers to the normal scenario used
in previous experiments, i.e., H-FLFM applies its trained ML model to data records with
similar distributions and value ranges as the training data. In addition, we test H-FLFM
under two more challenging scenarios, i.e., Future reverse data which means the ML model
trained at one application is applied to data records with distributions and value ranges
similar to the other application, and Global data which means the ML model is applied
to data records that have mixed distributions and value ranges from both applications. As
expected, H-FLFM performs the best for the local data scenario. The performance becomes
worse under the Global data scenario, and decreases further under the Future reverse data
scenario. Nonetheless, even in the last case, by taking approximately 60 minutes, H-FLFM
is still around 21% faster than MLFM (depicted in Figure 5.11 (a), which requires around

76 minutes).

115

80

’éH—FLFM ;*MLFM))) x 60 J-E-Local data €-Global data-#Future reverse data) L
—~60 |
g
Q
£ 40
=
20 1
n L L L L L L L L L O L L L L L L L L
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Percentage of violations identified Percentage of violations identified
(a) (b)

Figure 5.11: The execution time (in minutes) for identifying different percentages of viola-
tions by H-FLFM and MLFM (a). The time (in minutes) for identifying different percent-
ages of violations by H-FLFM under different scenarios (b)

5.6.4 V-FLFM Experimental Results

We evaluate the V-FLFM performance and how it may be impacted by different pa-
rameters. We also compare the performance of V-FLFM with the baseline approach (i.e.,

applying MLFM on the local data, without the federated global learning step of V-FLFM).

Impact of Parameters. As mentioned in Section 5.4, under the vertical case of FLFM
(V-FLEM), the formal verification is performed at the central authority by collecting all the
attributes from the applications. Therefore, one aspect of the V-FLFM performance is the
percentage of data records that need to be shared with the central authority. Specifically,
Figure 5.12 (a) shows the impact of the V-FLFM parameters (i.e., the sample size and the
number of iterations) on the percentage of shared records for the partial verification case.
It also compares V-FLFM to the baseline approach using the best performing parameters
of MLFM as reported in [5] (i.e., XGBoost with uncertainty sampling, 20% training data,
sample size m = 250, and iteration count n = 10). The results show that V-FLFM performs
better than the baseline (in terms of a lower percentage of shared records) in most cases. For
V-FLFM, the percentage of shared records initially decreases until the sample size reaches
around 200. This shows that a larger sample size allows V-FLFM to be more effective

in identifying violations due to the increasing accuracy of its ML model. As the sample

116

size further increases, the trend reverses, i.e., the percentage of shared records also starts
to increase, since the improvement in model accuracy diminishes while the increase in the
percentage of shared records due to larger samples becomes more dominant. The results
also show that a larger number of iterations generally means more shared records, and
hence a single iteration (with the sample size of (200)) would yield the lowest percentage
of shared records.

Figure 5.12 (b) shows the recall values of both V-FLFM and the baseline approach. The
results show that V-FLFM achieves higher recall with more iterations, since the accuracy
of the ML model generally increases with more iterations of training. The results also show
that different combinations of the sample size and number of iterations can achieve similar
recall values. Therefore, the best combination of the parameters could depend on the users’
preferences (e.g., less shared records or higher recall). In our experiments, we choose the
sample size of (300) and iteration count of (8) as the optimal parameters, which means our
approach shares 28.92% fewer records compared to the baseline approach, while achieving

a 32.25% higher recall compared to the baseline approach.

T 60 [Fiim T o | Tl St o |

2 100 ¢ 1

=

=

S 40 | 1 =807 %///E

& S 60 =

3 20| deiZZ

5 40 |

<

© - : A A : 20 A A A :
100 200 300 400 500 100 200 300 400 500

Sample size Sample size

(a) (b)

Figure 5.12: The percentage of records shared with the central authority by V-FLFM and
the baseline approach for the partial verification case (a) and the recall of V-FLFM and the
baseline approach (b)

Figure 5.13 (a) shows the percentage of records that are shared by V-FLFM and the
baseline approach for the priority-based verification (note that the count of records is taken

as soon as all the violations are identified). The results show that both V-FLFM and the

117

baseline approach lead to more shared records than in the partial verification case (due to
the need for verifying the “not to be verified” records). V-FLFM shows a similar trend as
before, i.e., the percentage of shared records initially decreases due to more accurate ML
models (with the lowest value of around (16.45%) under the sample size of (300) and the
number of iterations of (1)), and then the trend reverses as the increase in shared records

due to larger samples becomes more dominant.

g She Thw Ses. || 100 [[eV-FLEM~Baseline
2] [~
E e’
3 40 1 Q
o) 5
E ——|
220 | e R N}
B
100 200 300 400 500 20% 40% 60% 80% 100%
Sample size Percentage of violations identified

(a) (b)

Figure 5.13: The percentage of records shared with the central authority by V-FLFM and
the baseline approach for the priority-based verification case (a) and the execution time (in
minutes) for identifying different percentages of violations by V-FLFM and the baseline
approach (b)

Performance. The goal of this set of experiments is to further study the performance of
V-FLFM using the best performing parameters in terms of both the execution time and
shared records in comparison to the baseline approach. First, Figure 5.13 (b) compares the
execution time of V-FLFM to the baseline approach for identifying different Percentages
of violations (for the priority-based verification) using the best performing parameters (i.e.,
m =300 and r = 8). The results show that V-FLFM outperforms the baseline in all cases,
e.g., V-FLFM can identify all the violations in around 40 minutes, which takes the base-
line around 86 minutes, i.e., V-FLFM takes around 53.52% less time to identify the same
percentage of violations.

Second, Figure 5.14 compares the percentage of shared records by V-FLFM and the

118

baseline approach using the best performing parameters (i.e., m =300 and r = 8) on six
different datasets. As mentioned in Section 5.6.2, each subsequent dataset contains 10%
more records that are mistakenly identified by ML as “to be verified”, i.e., false violations
(while all the datasets contain 10% of true violations). Figure 5.14 (a) shows that the in-
crease in false violations affects the baseline approach more than V-FLFM for the partial
verification, and V-FLFM outperforms the baseline approach on all the datasets (on aver-
age, V-FLFM shares almost 28.42% less records than the baseline approach). Figure 5.14
(b) shows similar results for the priority-based verification case. Although both approaches
lead to more shared records in this case, V-FLFM shares almost 45.45% less records on
average than the baseline approach over all the datasets. Finally, Figure 5.14 (c) shows
that the recall values of V-FLFM decreases when the number of false violations increases
(which cause the ML model to become less accurate) although it remains to be higher than

the baseline approach.

(=N}

(=}
=)
(=1

OV-FLFMOBaseline BV-FLEMOBaseline |©V-FLEM~Baseline |

< 60 100

g0 £ s

g 840 5w \

@20 ?%’20 H 60

< «

2N Is W NI 0

DS1 DS2 DS3 DS4 DS5 DS6 DS1 DS2 DS3 DS4 DS5 DS6 DS1 DS2 DS3 DS4 DS5 DS6

Datasets Datasets Datasets
(a) (b) (©)

Figure 5.14: Percentage of shared records by V-FLFM and the baseline approach for partial
verification (a) and priority-based verification (b) using different datasets, and using differ-
ent datasets, and the recall of V-FLFM and the baseline approach using different datasets
(©

119

5.7 Summary

We have presented FLFM, a novel approach designed to more quickly identify secu-
rity violations for microservice applications. FLFM combines the efficiency and privacy-
friendliness of Federated Learning (FL) with the rigor of formal methods (FM). In par-
ticular, during the training stage, each microservice application first selects a small yet
representative sample of its configuration data and labels it according to the formal method
verification results obtained for that sample. Then, the applications leverage federated
learning to jointly train a global ML model based on the collection of their samples. In
the application stage, this global ML model is applied to help the applications prioritize
more suspicious data for earlier verification. We provided detailed methodologies for both
the horizontal and vertical FL cases, and our experimental results demonstrated that FLFM

outperforms the baseline approach.

120

Chapter 6

Conclusion

In this thesis, we addressed key security verification challenges in modern virtualized
environments by introducing three novel solutions tailored to the complexity, scalability,
and privacy concerns of NFV and microservice architectures. First, we introduced NFV-
Guard+, a cross-level formal verification solution that validates security properties across
the entire NFV stack without the need for explicit verification at each level. Second, to im-
prove the efficiency of existing security verification solutions, particularly formal methods,
we developed the MLFM approach, which integrates the speed of machine learning with
the rigor of formal methods to accelerate and prioritize verification without compromising
accuracy. Finally, we proposed FLFM, a privacy-preserving, federated learning—guided
formal security verification solution designed for the distributed nature of microservices.

The following discusses the limitations and our future research focus:

1. First, although our cross-level security verification approach for NFV is platform-
agnostic, the current implementation of data collection and processing is limited to
OpenStack/Tacker. To address this limitation, future work will focus on a more mod-
ular design with a clear methodology for extending support to other open-source

NFV platforms, such as OPNFV and OSM.

121

2. Second, our machine learning-guided formal method for faster identification of se-
curity breaches is currently limited to NFV environments. A future direction is to
extend MLFM to other large-scale virtual infrastructures, such as cloud platforms
and SDNs. Additionally, while MLFM focuses solely on security verification, an
important next step is to integrate it with security enforcement mechanisms to en-
able faster attack prevention. Furthermore, MLFM currently operates in a static,
on-demand manner using data snapshots, and future work will explore continuous

security verification through real-time monitoring with data streams.

3. Third, for our security verification of microservices using federated learning-guided
formal methods, there are several potential future directions. One promising av-
enue is the integration of privacy-preserving mechanisms, such as secure multi-party
computation or differential privacy, to further strengthen security while ensuring data
confidentiality. Additionally, improving FLFM’s adaptability by incorporating adap-
tive federated learning techniques could enhance its efficiency in addressing evolv-
ing security threats. Moreover, in real-world scenarios, data distribution is rarely
perfectly horizontal or vertical; both types may coexist. Developing hybrid FL solu-
tion capable of handling both types of partitioning simultaneously represents another

important direction for our future research.

122

Bibliography

[1] S.Lakshmanan Thirunavukkarasu, M. Zhang, A. Oqaily, G. Singh Chawla, L. Wang,
M. Pourzandi, and M. Debbabi, “Modeling NFV deployment to identify the cross-

level inconsistency vulnerabilities.” IEEE (CloudCom), 2019.
[2] OpenStack, “OpenStack,” 2020, available at: https://www.openstack.org/.

[3] “ETSI: Network Functions Virtualisation Architectural Framework,” https://www.et

si.org/. Last accessed 16 June 2022.

[4] N. P. Lopes, N. Bjgrner, P. Godefroid, K. Jayaraman, and G. Varghese, “Checking
beliefs in dynamic networks,” in /12th USENIX NSDI, 2015.

[S] A. Oqaily, Y. Jarraya, L. Wang, M. Pourzandi, and S. Majumdar, “Mlfm: Machine
learning meets formal method for faster identification of security breaches in net-
work functions virtualization (nfv),” in European Symposium on Research in Com-

puter Security. Springer, 2022, pp. 466—4809.

[6] A. Oqaily, L. Sudershan, Y. Jarraya, S. Majumdar, M. Zhang, M. Pourzandi,
L. Wang, and M. Debbabi, “NFVGuard: Verifying the Security of Multilevel Net-
work Functions Virtualization (NFV) Stack,” in 2020 IEEE (CloudCom). 1EEE,
2020, pp. 33-40.

123

[71]

[8]

[9]

[10]

[11]

[12]

S. Pradeep, Y. K. Sharma, U. K. Lilhore, S. Simaiya, A. Kumar, S. Ahuja, M. Mar-
gala, P. Chakrabarti, and T. Chakrabarti, “Developing an sdn security model (en-
sures) based on lightweight service path validation with batch hashing and tag veri-

fication,” Scientific Reports, vol. 13, no. 1, p. 17381, 2023.

S. Chen, J. Li, B. Chen, D. Guo, and K. Li, “vhsfc: Generic and agile verification
of service function chain with parallel vnfs,” in 2023 26th International Conference
on Computer Supported Cooperative Work in Design (CSCWD). 1EEE, 2023, pp.
498-503.

M. Oqaily, S. Majumdar, L. Wang, M. Ekramul Kabir, Y. Jarraya, A. Asadujjaman,
M. Pourzandi, and M. Debbabi, “A tenant-based two-stage approach to auditing
the integrity of virtual network function chains hosted on third-party clouds,” in
Proceedings of the Thirteenth ACM Conference on Data and Application Security
and Privacy, 2023, pp. 79-90.

S.-T. Cheng, C.-Y. Zhu, C.-W. Hsu, and J.-S. Shih, “The anomaly detection mecha-
nism using extreme learning machine for service function chaining,” in 2020 Inter-

national Computer Symposium (ICS). 1EEE, 2020, pp. 310-315.

B. Larsen, H. B. Debes, and T. Giannetsos, “Cloudvaults: Integrating trust exten-
sions into system integrity verification for cloud-based environments,” in Computer
Security: ESORICS 2020 International Workshops, DETIPS, DeSECSys, MPS,
and SPOSE, Guildford, UK, September 17—18, 2020, Revised Selected Papers 25.
Springer, 2020, pp. 197-220.

M. Flittner, J. M. Scheuermann, and R. Bauer, “Chainguard: Controller-independent
verification of service function chaining in cloud computing,” in I[EEE (NFV-SDN),

2017, pp. 1-7.

124

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

X. Zhang, Q. Li, J. Wu, and J. Yang, “Generic and agile service function chain

verification on cloud,” in IWQoS, 2017.

B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J.-M. Kang, “SFC-
Checker: Checking the correct forwarding behavior of service function chaining,”

in NFV-SDN, 2016.

Y. Wang, Z. Li, G. Xie, and K. Salamatian, “Enabling automatic composition and

verification of service function chain,” in IWQoS, 2017.

S. K. Fayazbakhsh, M. K. Reiter, and V. Sekar, “Verifiable network function out-
sourcing: Requirements, challenges, and roadmap,” in HotMiddlebox, 2013, pp. 25—
30.

Y. Zhang, W. Wu, S. Banerjee, J.-M. Kang, and M. A. Sanchez, “SLA-verifier: State-

ful and quantitative verification for service chaining,” in INFOCOM, 2017.

G. Marchetto, R. Sisto, F. Valenza, J. Yusupov, and A. Ksentini, “A formal approach
to verify connectivity and optimize vnf placement in industrial networks,” IEEE

Transactions on Industrial Informatics, vol. 17, no. 2, pp. 1515-1525, 2020.

R. Cohen, L. Katzir, and A. Yehezkel, “Efficient service chain verification using

sketches and small samples,” in 2021 IEEE (NFV-SDN). 1EEE, 2021, pp. 1-7.

G. Liu, H. Sadok, A. Kohlbrenner, B. Parno, V. Sekar, and J. Sherry, “Don’t yank
my chain: Auditable NF service chaining,” in /8th USENIX (NSDI’21), 2021, pp.
155-173.

M. Zoure, T. Ahmed, and L. Réveillere, “VeriNeS: Runtime verification of out-

sourced network services orchestration,” in 36th ACM, 2021, pp. 1138-1146.

125

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. Asadujjaman, M. Oqaily, Y. Jarraya, S. Majumdar, M. Pourzandi, L. Wang, and
M. Debbabi, “Artificial Packet-Pair Dispersion (APPD): A Blackbox Approach to
Verifying the Integrity of NFV Service Chains,” in 2021 IEEE (CNS). 1EEE, 2021,
pp- 245-253.

M. Zoure, T. Ahmed, and L. Réveillere, “Network services anomalies in nfv: Survey,
taxonomy, and verification methods,” IEEE Transactions on Network and Service

Management, vol. 19, no. 2, pp. 1567-1584, 2022.

N. Alhebaishi, L. Wang, and S. Jajodia, “Modeling and mitigating security threats
in network functions virtualization (nfv),” in Data and Applications Security and
Privacy XXX1V: 34th Annual IFIP WG 11.3 Conference, DBSec 2020, Regensburg,

Germany, June 25-26, 2020, Proceedings 34. Springer, 2020, pp. 3-23.

S. Lakshmanan, M. Zhang, S. Majumdar, Y. Jarraya, M. Pourzandi, and L. Wang,
“Caught-in-translation (cit): Detecting cross-level inconsistency attacks in network
functions virtualization (nfv),” IEEE Transactions on Dependable and Secure Com-

puting, 2023.

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte,
“Real time network policy checking using header space analysis,” in 10th USENIX
NSDI’13,2013.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow: Verifying

Network-Wide invariants in real time,” in /0th USENIX (NSDI’13), 2013, pp. 15-27.

P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static check-

ing for networks,” in /9th USENIX (NSDI’12), 2012, pp. 113-126.

Y. Wang, T. Madi, S. Majumdar, Y. Jarraya, A. Alimohammadifar, M. Pourzandi,

126

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

L. Wang, and M. Debbabi, “TenantGuard: Scalable runtime verification of cloud-

wide VM-level network isolation,” in NDSS, 2017.

T. Madi, Y. Jarraya, A. Alimohammadifar, S. Majumdar, Y. Wang, M. Pourzandi,
L. Wang, and M. Debbabi, “ISOTOP: Auditing virtual networks isolation across
cloud layers in OpenStack,” ACM TOPS, vol. 22, no. 1, pp. 1:1-1:35, 2018.

S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang, and M. Deb-
babi, “Security compliance auditing of identity and access management in the cloud:

Application to OpenStack,” in /IEEE (CloudCom), 2015.

S. Bleikertz, C. Vogel, T. GroB3, and S. Modersheim, “Proactive security analysis of

changes in virtualized infrastructures,” in ACSAC, 2015, pp. 51-60.

Y. Xu, Y. Liu, R. Singh, and S. Tao, “Identifying SDN state inconsistency in Open-
Stack,” in ACM SOSR, 2015.

G. S. Chawla, M. Zhang, S. Majumdar, Y. Jarraya, M. Pourzandi, L. Wang, and
M. Debbabi, “VMGuard: State-based proactive verification of virtual network iso-

lation with application to NFV,” IEEE (TDSC), vol. 18, no. 4, pp. 1553-1567, 2020.

G. Marchetto, R. Sisto, J. Yusupov, and A. Ksentini, “Virtual network embedding
with formal reachability assurance,” in [4th International Conference on Network

and Service Management, 2018, pp. 368-372.

S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto, and R. Sisto, “Formal
verification of virtual network function graphs in an sp-devops context,” in European

Conference on Service-Oriented and Cloud Computing. Springer, 2015, pp. 253—
262.

T. Madi, Y. Jarraya, A. Alimohammadifar, S. Majumdar, Y. Wang, M. Pourzandi,

L. Wang, and M. Debbabi, “ISOTOP: auditing virtual networks isolation across

127

[38]

[39]

[40]

[41]

[42]

[43]

[44]

cloud layers in OpenStack,” ACM Transactions on Privacy and Security (TOPS),
vol. 22, no. 1, pp. 1-35, 2018.

T. Madi, S. Majumdar, Y. Wang, Y. Jarraya, M. Pourzandi, and L. Wang, “Auditing
security compliance of the virtualized infrastructure in the cloud: Application to

OpenStack,” in ACM CODASPY, 2016.

S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang, and M. Deb-
babi, “User-level runtime security auditing for the cloud,” IEEE Transactions on

Information Forensics and Security, vol. 13, no. 5, pp. 1185-1199, 2017.

S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar, M. Pourzandi, L. Wang,
and M. Debbabi, “Proactive verification of security compliance for clouds through
pre-computation: Application to OpenStack,” in European Symposium on Research

in Computer Security. Springer, 2016, pp. 47-66.

S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar, M. Pourzandi, L. Wang,
and M. Debbabi, “Leaps: Learning-based proactive security auditing for clouds,”

in European Symposium on Research in Computer Security. Springer, 2017, pp.

265-285.

P. Ezudheen, D. Neider, D. D’Souza, P. Garg, and P. Madhusudan, “Horn-ice learn-
ing for synthesizing invariants and contracts,” In: Proceedings of the ACM on Pro-

gramming Languages, vol. 2, no. OOPSLA, pp. 1-25, 2018.

P. Garg, C. Loding, P. Madhusudan, and D. Neider, “Ice: A robust framework for
learning invariants,” in International Conference on Computer Aided Verification.

Springer, 2014, pp. 69-87.

S. Ren and X. Zhang, “Synthesizing conjunctive and disjunctive linear invariants by

K-means++ and SVM.” Int. Arab J. Inf. Technol., vol. 17, no. 6, pp. 847-856, 2020.

128

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Y. Vizel, A. Gurfinkel, S. Shoham, and S. Malik, “IC3-flipping the E in ICE,” in
International Conference on Verification, Model Checking, and Abstract Interpreta-

tion. Springer, 2017, pp. 521-538.
B. Settles, “Active learning literature survey,” 2009.

A. Panda, M. Sagiv, and S. Shenker, “Verification in the age of microservices,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems, 2017, pp.
30-36.

X. Meng, X. Duan, W. Tao, Y. Luan, J. Zhang, and D. Wu, “Modeling and veri-
fication of industrial microservice architecture based on formal methods,” in 202/

China Automation Congress (CAC). 1EEE, 2021, pp. 3776-3780.

F. Dai, H. Chen, Z. Qiang, Z. Liang, B. Huang, and L. Wang, “Automatic analysis
of complex interactions in microservice systems,” Complexity, vol. 2020, pp. 1-12,

2020.

M. M. Ghorbani, F. F. Moghaddam, M. Zhang, M. Pourzandi, K. K. Nguyen, and
M. Cheriet, “Malchain: Virtual application behaviour profiling by aggregated mi-
croservice data exchange graph,” in 2020 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). 1EEE, 2020, pp. 41-48.

M.-0O. Pahl and F.-X. Aubet, “All eyes on you: Distributed multi-dimensional iot
microservice anomaly detection,” in 2018 14th International Conference on Network

and Service Management (CNSM). 1EEE, 2018, pp. 72-80.

X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, “Automatic policy generation for
{Inter-Service} access control of microservices,” in 30th USENIX Security Sympo-

sium (USENIX Security 21), 2021, pp. 3971-3988.

129

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

C. Meadows, S. Hounsinou, T. Wood, and G. Bloom, “Sidecar-based path-aware
security for microservices,” in Proceedings of the 28th ACM Symposium on Access

Control Models and Technologies, 2023, pp. 157-162.

A. Venckauskas, D. Kukta, S. Grigalitinas, and R. Briizgiené, “Enhancing microser-

vices security with token-based access control method. 23 (6), 3363, 2023.

M.-O. Pahl, F.-X. Aubet, and S. Liebald, “Graph-based iot microservice security,’
in NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium.
IEEE, 2018, pp. 1-3.

Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood, and M. Chabbi,
“{CRISP}: Critical path analysis of {Large-Scale} microservice architectures,” in

2022 USENIX Annual Technical Conference (USENIX ATC 22), 2022, pp. 655-672.

V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and G. Srivas-
tava, ‘“Federated-learning-based anomaly detection for iot security attacks,” IEEE

Internet of Things Journal, vol. 9, no. 4, pp. 2545-2554, 2021.

Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu, “Multi-task network anomaly detection
using federated learning,” in Proceedings of the 10th international symposium on

information and communication technology, 2019, pp. 273-279.

Y. Liu, S. Garg, J. Nie, Y. Zhang, Z. Xiong, J. Kang, and M. S. Hossain, “Deep
anomaly detection for time-series data in industrial iot: A communication-efficient
on-device federated learning approach,” IEEE Internet of Things Journal, vol. 8,

no. 8, pp. 63486358, 2020.

D. C. Attota, V. Mothukuri, R. M. Parizi, and S. Pouriyeh, “An ensemble multi-view
federated learning intrusion detection for iot,” IEEE Access, vol. 9, pp. 117 734—

117745, 2021.

130

[61] Z. He, J. Yin, Y. Wang, G. Gui, B. Adebisi, T. Ohtsuki, H. Gacanin, and H. Sari,
“Edge device identification based on federated learning and network traffic feature

engineering,” IEEE Transactions on Cognitive Communications and Networking,

vol. 8, no. 4, pp. 1898-1909, 2021.

[62] Omdia, “NFV/Edge Adoption and Vendor Perception Survey,” 2021, available
at: https://omdia.tech.informa.com/OMO019961/NFVEdge- Adoption-and-Vendor-

Perception-Survey—2021.

[63] M. Bursell, A. Dutta, H. Lu, M. Odini, K. Roemer, K. Sood, M. Wong, and
P. Worndle, “Network functions virtualisation (NFV), NFV security, security and
trust guidance, v. 1.1. 1,7 in Technical Report, GS NFV-SEC 003. European

Telecommunications Standards Institute, 2014.

[64] National Institute of Standards and Technology, “CVE-2024-1085 Detail,” 2024,
https://nvd.nist.gov/vuln/detail/CVE-2024-1085. Last accessed 19 May 2024.

[65] National Institute of Standards and Technology, “CVE-2024-0193 Detail,” 2024,
https://nvd.nist.gov/vuln/detail/CVE-2024-0193. Last accessed 19 May 2024.

[66] National Institute of Standards and Technology, “CVE-2024-0646Detail,” 2024, ht

tps://mvd.nist.gov/vuln/detail/CVE-2024-0646. Last accessed 19 May 2024.

[67] N. Tamura and M. Banbara, “Sugar: A CSP to SAT translator based on order encod-

ing,” Proceedings of the Second International CSP Solver Competition, 2008.

[68] OpenStack, “Verizon launches industry-leading large OpenStack NFV deployment,”
2016, available at: https://www.openstack.org/news/view/215/verizon-launches-

industry-leading-large-openstack-nfv-deployment.

[69] ONAP, “Open Network Automation Platform,” 2022, available at:

https://www.onap.org.

131

[70] OpenStack, “OpenStack Tacker,” 2020, https://wiki.openstack.org/wiki/Tacker. Last

accessed 16 June 2022.

[71] ISO Std IEC, “ISO 27002: 2005, Information Technology-Security Techniques-

Code of Practice for Information Security Management, 2005.

[72] IETF, SFC, “Internet Engineering Task, SFC Active WG Working Group
Documents,” 2020. [Online]. Available: https://www.redhat.com/en/blog/2018-yea

r-open-source-networking-csps

[73] “Cloud Security Alliance,” available at: https://cloudsecurityalliance.org/research/c

cm/.

[74] IEC ISO Std, “ISO 27017, Information technology-Security techniques (DRAFT),

2012.

[75] SP, NIST, “800-53,” Recommended security controls for federal information sys-
tems, pp. 80053, 2003.

[76] M.-K. Shin, Y. Choi, H. H. Kwak, S. Pack, M. Kang, and J.-Y. Choi, “Verification

for NFV-enabled network services,” in ICTC, 2015.

[77] ETSI, “Network Functions Virtualisation (NFV); NFV Security; Problem State-
ment,” ETSI GS NFV-SEC, vol. 1, 2014.

[78] F. Sierra-Arriaga, R. Branco, and B. Lee, “Security issues and challenges for virtu-
alization technologies,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1-37,
2020.

[79] D. Tank, A. Aggarwal, and N. Chaubey, “Virtualization vulnerabilities, security is-
sues, and solutions: a critical study and comparison,” International Journal of Infor-

mation Technology, pp. 1-16, 2019.

132

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Linux Foundation, “Open vSwitch,” 2016.

A. Wang, M. Iyer, R. Dutta, G. N. Rouskas, and 1. Baldine, “Network virtualiza-
tion: Technologies, perspectives, and frontiers,” Journal of Lightwave Technology,

vol. 31, no. 4, pp. 523-537, 2012.

OpenStack, “Heavy reading study on CSPs and OpenStack,” 2016, https://object-s
torage-ca-ymq- 1.vexxhost.net/swift/v1/6e4619c416{f4bd19e1c087f27a43eea/ww
w-assets-prod/pdf-downloads/OpenStack-survey-results-public-presentation.pdf.

Last accessed 16 June 2022.

Oasis, “Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA),” 2013, available at:https://docs.oasis-open.org/tosca/tosca-

primer/v1.0/tosca-primer-v1.0.pdf.

H. Hawilo, M. Jammal, and A. Shami, “Exploring microservices as the architecture
of choice for network function virtualization platforms,” IEEE Network, vol. 33,

no. 2, pp. 202-210, 2019.

OpenStack, “OSSA-2017-004: OpenStack - Incorrect role assignment with feder-
ated keystone,” 2017, available at: https://security.openstack.org/ossa/OSSA-201
7-004.html.

D. Ishii and S. Fujii, “Formalizing the soundness of the encoding methods of sat-
based model checking,” in 2020 International Symposium on Theoretical Aspects of

Software Engineering (TASE). 1EEE, 2020, pp. 105-112.

J. C. Blanchette, M. Fleury, P. Lammich, and C. Weidenbach, “A verified sat solver
framework with learn, forget, restart, and incrementality,” Journal of automated rea-

soning, vol. 61, pp. 333-365, 2018.

133

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

S. Manandhar, K. Singh, and A. Nadkarni, “Towards automated regulation analysis
for effective privacy compliance,” in ISOC Network and Distributed System Security

Symposium, 2024.

M. W. P. Shuvo, M. N. Hoq, S. Majumdar, and P. Shirani, “On reducing underuti-
lization of security standards by deriving actionable rules: An application to iot,” in

International Conference on Research in Security Standardisation. Springer, 2023,

pp. 103-128.

A. Biere, “PicoSAT essentials,” Journal on Satisfiability, Boolean Modeling and

Computation, vol. 4, no. 2-4, pp. 75-97, 2008.

T. Toda and T. Soh, “Implementing efficient all solutions SAT solvers,” JEA, vol. 21,
pp. 144, 2016.
M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp: A conflict-driven

answer set solver,” in International Conference on Logic Programming and Non-

monotonic Reasoning. Springer, 2007, pp. 260-265.

R. J. Bayardo Jr and J. D. Pehoushek, “Counting models using connected compo-

nents.” in AAAI/IAAL 2000, pp. 157-162.

R. Martins, V. Manquinho, and I. Lynce, “An overview of parallel SAT solving,”

Constraints, vol. 17, no. 3, pp. 304-347, 2012.

OSM, “Open Source MANO,” 2022, available at: https://osm.etsi.org/.

D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Rfc2784: Generic Routing

Encapsulation (GRE),” 2000.

J. Gross, 1. Ganga, and T. Sridhar, “Rfc 8926 geneve: Generic network virtualization

encapsulation,” 2020.

134

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5G network slicing using
SDN and NFV: A survey of taxonomy, architectures and future challenges,” Com-

puter Networks, vol. 167, p. 106984, 2020.

Z. Kotulski, T. W. Nowak, M. Sepczuk, M. Tunia, R. Artych, K. Bocianiak, T. Osko,
and J.-P. Wary, “Towards constructive approach to end-to-end slice isolation in 5G
networks,” EURASIP Journal on Information Security, vol. 2018, no. 1, pp. 1-23,
2018.

K. Jayaraman, N. Bjgrner, G. Outhred, and C. Kaufman, “Automated analysis and

debugging of network connectivity policies,” Microsoft Research, pp. 1-11, 2014.

A. Souri, N. J. Navimipour, and A. M. Rahmani, “Formal verification approaches
and standards in the cloud computing: a comprehensive and systematic review,’

Computer Standards & Interfaces, vol. 58, pp. 1-22, 2018.

OpenStack Training Labs, “OpenStack Training Labs,” available at:

https://wiki.openstack.org/wiki/Documentation/training-labs.

P. Quinn and T. Nadeau, “Rfc 7948, problem statement for service function chain-

ing,” Internet Engineering Task Force (IETF), ed, 2015.

N. Schear, P. T. Cable II, T. M. Moyer, B. Richard, and R. Rudd, “Bootstrapping and
Maintaining Trust in the Cloud,” in Proceedings of the 32Nd Annual Conference on

Computer Security Applications, 2016, pp. 65-77.

M. C. Monard and G. E. Batista, “Learmng with skewed class distrihutions,” Ad-
vances in Logic, Artificial Intelligence, and Robotics: LAPTEC, vol. 85, no. 2002,
p. 173, 2002.

S. Buss and J. Nordstrom, “Proof complexity and sat solving,” Handbook of Satisfi-

ability, vol. 336, pp. 233-350, 2021.

135

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

H. M. Sani, C. Lei, and D. Neagu, “Computational complexity analysis of decision
tree algorithms,” in International Conference on Innovative Techniques and Appli-

cations of Artificial Intelligence. Springer, 2018, pp. 191-197.

A. E. Mohamed, “Comparative study of four supervised machine learning tech-

niques for classification,” Information Journal of applied science and technology,

vol. 7, no. 2, 2017.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 785-794.

Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, and J. Peng, “XGBoost classifier for
DDoS attack detection and analysis in SDN-based cloud,” in IEEE international

conference on big data and smart computing (BigComp), 2018, pp. 251-256.

F. Neutatz, M. Mahdavi, and Z. Abedjan, “Ed2: A case for active learning in error
detection,” in Proceedings of the 28th ACM International Conference on Information

and Knowledge Management, 2019, pp. 2249-2252.

P. Maji and R. Mullins, “On the reduction of computational complexity of deep

convolutional neural networks,” Entropy, vol. 20, no. 4, p. 305, 2018.

T. Danka and P. Horvath, “modAL: A modular active learning framework for

Python,” arXiv preprint arXiv:1805.00979, 2018.

O. Kramer, “Scikit-learn,” in Machine learning for evolution strategies. Springer,

2016, pp. 45-53.

M. Ben-Ari, Mathematical logic for computer science. Springer Science & Busi-

ness Media, 2012.

136

[116] I. Sassi, S. Anter, and A. Bekkhoucha, “A graph-based big data optimization ap-
proach using hidden markov model and constraint satisfaction problem,” Journal of

Big Data, vol. 8, no. 1, pp. 1-29, 2021.

[117] “Sugar: a SAT-based Constraint Solver,” https://cspsat.gitlab.io/sugar/. Last ac-
cessed 8 November 2021.

[118] N. Eén and N. Sorensson, “An extensible sat-solver,” in International conference on

theory and applications of satisfiability testing. Springer, 2003, pp. 502-518.

[119] W. Gong and X. Zhou, “A survey of sat solver,” in Proceedings of AIP Conference,
vol. 1836, no. 1. AIP Publishing LLC, 2017, p. 020059.

[120] Open Baton, “Open Baton,” 2017, https://openbaton.github.io/. Last accessed 16
June 2022.

[121] OPNFYV, “Open Platform for NFV,” 2018, available at:https://www.opnfv.org/.

[122] D. S. Linthicum, “Practical use of microservices in moving workloads to the cloud,”

IEEE Cloud Computing, vol. 3, no. 5, pp. 6-9, 2016.

[123] T. Hoff, “Lessons learned from scaling uber to 2000 engineers, 1000 services, and
8000 git repositories,” available at: https://goo.gl/IMRvoT. Last accessed 6 Novem-
ber 2023.

[124] M. Benedict and V. Charanya, “How we built a metering and chargeback system to
incentivize higher resource utilization of twitter infrastructure,” available at: http:

//bit.ly/3aETlIgs. Last accessed 6 November 2023.

[125] T. MAURO, “Adopting Microservices at Netflix: Lessons for Architectural Design,”

available at: https://goo.gl/Dyrtvl. Last accessed 6 November 2023.

137

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

L.Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,”

Computers & Industrial Engineering, vol. 149, p. 106854, 2020.

G. D. P. Regulation, “General data protection regulation (gdpr),” Intersoft Consult-

ing, Accessed in October, vol. 24, no. 1, 2018.

P. F. Edemekong, P. Annamaraju, and M. J. Haydel, “Health insurance portability

and accountability act,” 2018.

E. Goldman, “An introduction to the california consumer privacy act (ccpa),” Santa

Clara Univ. Legal Studies Research Paper, 2020.

Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept
and applications,” ACM Transactions on Intelligent Systems and Technology (TIST),
vol. 10, no. 2, pp. 1-19, 2019.

K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q. Yang, “Secure-
boost: A lossless federated learning framework,” IEEE Intelligent Systems, vol. 36,

no. 6, pp. 87-98, 2021.

Z. Tian, R. Zhang, X. Hou, J. Liu, and K. Ren, “Federboost: Private federated learn-
ing for gbdt,” arXiv preprint arXiv:2011.02796, 2020.

Y. J. Ong, Y. Zhou, N. Baracaldo, and H. Ludwig, “Adaptive histogram-based gra-

dient boosted trees for federated learning,” arXiv preprint arXiv:2012.06670, 2020.

Q. Li, Z. Wu, Y. Cai, Y. Han, C. M. Yung, T. Fu, and B. He, “Fedtree: A federated

learning system for trees,” in Proceedings of Machine Learning and Systems, 2023.

A. El Malki, U. Zdun, and C. Pautasso, “Impact of api rate limit on reliability
of microservices-based architectures,” in 2022 IEEE International Conference on

Service-Oriented System Engineering (SOSE). 1EEE, 2022, pp. 19-28.

138

[136] J. Castro, N. Laranjeiro, and M. Vieira, “Detecting dos attacks in microservice ap-
plications: Approach and case study,” in Proceedings of the 11th Latin-American

Symposium on Dependable Computing, 2022, pp. 73-78.

139

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Research Contributions
	Cross-Level Security Verification System for Network Functions Virtualization
	Machine Learning Meets Formal Method for Faster Identification of Security Breaches in Network Functions Virtualization
	Security Verification for Microservices Using Federated Learning-Guided Formal Method

	Relationships between the Research Topics
	Thesis Structure

	Related Work
	Security Verification System for Network Functions Virtualization
	Security Verification for NFV Using Machine Learning and Formal Method
	Security Verification for Microservices Using Federated Learning-Guided Formal Method

	Cross-Level Security Verification System for Network Functions Virtualization
	Introduction
	Preliminaries
	Background on NFV
	Security Properties for NFV
	Challenges to Cross-Level Security Verification
	Threat Model

	Overview
	ER Model Construction and Consistency Property Identification
	Constructing the Entity Relationship (ER) Model
	Automated Consistency Property Derivation

	Cross-Level Security Verification
	Application to OpenStack/Tacker
	Deploying the NFV Testbed
	NFVGuard+ Implementation

	Experiments
	Experiments with Synthetic Data
	Experiments with Real Data

	Discussion
	Summary

	Machine Learning Meets Formal Method for Faster Identification of Security Breaches in Network Functions Virtualization
	Introduction
	Preliminaries
	Methodology
	Overview
	Iterative Teacher (FM)-Learner (ML) Interaction
	MLFM Algorithm and Use Cases

	Implementation
	EXPERIMENTS
	Datasets and Experimental Settings
	Experimental Results

	Discussion
	Summary

	Security Verification for Microservices Using Federated Learning-Guided Formal Method
	Introduction
	Preliminaries
	XGBoost
	Federated Learning
	Threat Model and Assumptions

	Horizontal FLFM (H-FLFM) Methodology
	Overview
	Training Stage - Local Model Training
	Training Stage - Global Model Learning
	Application Stage

	Vertical FLFM (V-FLFM) Methodology
	Overview
	Training Stage - Training Data Building
	Training Stage - Global Model Learning
	Application Stage

	Implementation
	Experiment
	Investigated Properties
	Experimental Settings and Datasets
	H-FLFM Experimental Results
	V-FLFM Experimental Results

	Summary

	Conclusion
	Bibliography

