
Security Auditing for Network Function

Virtualization (NFV) and Microservices

Alaa Oqaily

A THESIS

IN THE DEPARTMENT OF

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy (Information and Systems)

AT CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

August 2025

© Alaa Oqaily, 2025

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Alaa Oqaily

Entitled: Security Auditing for Network Function Virtualization (NFV)

and Microservices

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Mohsen Ghafouri

External Examiner
Dr. Rongxing Lu

Examiner
Dr. Otmane Ait Mohamed

Examiner
Dr. Suryadipta Majumdar

Examiner
Dr. Jun Yan

Thesis Supervisor
Dr. Lingyu Wang and Dr. Yosr Jarraya

Approved by

Dr. Farnoosh Naderkhani, Graduate Program Director

28/05/2025

Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

Abstract

Security Auditing for Network Function Virtualization (NFV) and Microservices

Alaa Oqaily, Ph.D.

Concordia University, 2025

Advancements in virtualization technologies and frameworks have profoundly trans-

formed the deployment and management of networks and applications. Network Functions

Virtualization (NFV), for instance, has revolutionized the networking landscape by decou-

pling Network Functions (NFs) from dedicated hardware, offering enhanced flexibility,

scalability, and cost-efficiency. In parallel, the microservice architecture has transformed

cloud application development by structuring it as a collection of small, loosely coupled

services. This design enables independent development, deployment, and scaling of in-

dividual functionalities, promoting agility and resilience in modern cloud environments.

However, despite their benefits, NFV and microservices introduce novel security and pri-

vacy challenges. For instance, attackers could exploit inconsistencies across different sys-

tem layers to bypass security mechanisms, resulting in cloud-level breaches that remain

undetected by NFV tenants. Similarly, the distributed nature of microservice architectures

expands the attack surface and complicates the management of data privacy across multi-

ple independent services. To facilitate their adoption, robust security auditing solutions are

crucial for ensuring compliance and detecting potential breaches. However, existing secu-

rity auditing solutions face significant challenges. They often fall short in verifying NFV

security because they focus on individual levels, which can lead to overlooking cross-level

inconsistencies or vulnerabilities. As a result, potential breaches may go undetected, since

iii

issues at one level might not be visible or addressed by audits focused solely on other levels.

Moreover, verifying each level separately would be both expensive and impractical. Addi-

tionally, the complexity and scale of these virtual environments can render verification solu-

tions, such as formal security checks, prohibitively expensive. This could lead to delays in

detecting misconfigurations, creating a significant window of vulnerability where services

or infrastructure remain exposed to potential attacks. Moreover, the distributed nature of

microservices, combined with privacy concerns, makes it difficult to centralize data for se-

curity verification using existing solutions. This thesis presents novel solutions for security

verification in virtualized environments, addressing the aforementioned challenges. Firstly,

it introduces NFVGuard+, a cross-level security verification approach that efficiently en-

sures security throughout the NFV stack by conducting resource-intensive verification at

one level and then propagating the results to other levels using relatively lightweight con-

sistency checks. Furthermore, its practicality is ensured by automating key verification

processes by leveraging a novel Entity-Relationship (ER) model of the NFV stack. Sec-

ondly, it presents MLFM, an approach that combines the efficiency of Machine Learning

(ML) with the rigor of Formal Methods (FM) to enable fast and provable detection of se-

curity violations in large NFV environments. The core idea is an iterative teacher-learner

interaction, where FM (the teacher) progressively refines verification results to generate

representative training data, while ML (the learner) utilizes this data to build increasingly

accurate models. This interaction allows a relatively small subset of configuration data to

train an effective ML model, which can then be used to prioritize verification efforts on

configurations most likely to contain security violations. Finally, it introduces FLFM, a

Federated Learning (FL)-guided Formal Method (FM) approach for the security verifica-

tion of microservice-based cloud applications. FLFM enables scalable and decentralized

verification while preserving privacy by eliminating the need for applications to share their

sensitive local data.

iv

Acknowledgments

The successful completion of this thesis reflects a collaborative journey shaped by the

insights, efforts, and unwavering support of many individuals. I am truly grateful to every-

one who contributed to this endeavor and stood by me throughout the process.

First and foremost, I offer my deepest thanks and praise to Allah, whose infinite mercy

and blessings have guided and sustained me throughout this journey. By His will and grace,

I have reached this stage, and I am truly grateful for the strength and clarity He granted me

in times of hardship. After the blessings of His Majesty Allah, I would like to extend my

heartfelt gratitude to my supervisor, Dr. Lingyu Wang. His continuous support, insightful

guidance, and unwavering encouragement have been a cornerstone of my academic jour-

ney. His mentorship has not only deepened my understanding of the field but also inspired

me to persevere through the many challenges of doctoral research. I am truly grateful for

the opportunity to work under his supervision.

I also wish to sincerely thank my co-supervisor, Dr. Yosr Jarraya, for her continuous

support and guidance throughout my Ph.D. journey. Her expertise, thoughtful feedback,

and unwavering dedication played a crucial role in the progress and success of my research,

and I am truly grateful for her meaningful contributions and commitment.

I am also deeply grateful to my colleagues at the Audit Ready Cloud research group for

an inspiring seven-year journey marked by collaboration, innovation, and shared discov-

ery in cutting-edge research areas. Being part of such a committed and talented team has

played a pivotal role in shaping my academic and professional development. Specifically,

v

I am immensely thankful to Sudershan Lakshmanan, Dr. Mohammad Ekramul Kabir, Dr.

Mengyuan Zhang, and Dr. Makan Pourzandi for the unwavering support, encouragement,

understanding, and collective commitment to advancing knowledge, which have been in-

strumental in driving our collaborative success and enriching this journey.

Finally, I would like to express my heartfelt and profound gratitude to my family for

their unwavering support, love, and encouragement throughout my entire Ph.D. journey.

Their constant presence, understanding, and belief in me have been a source of strength and

motivation, especially during the most challenging moments. Whether through offering a

listening ear, providing emotional comfort, or simply being there when I needed them, my

family has been my anchor. Without their support, this achievement would not have been

possible, and I am forever grateful for everything they have done for me.

vi

Contents

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Research Contributions . 2

1.3.1 Cross-Level Security Verification System for Network Functions

Virtualization . 3

1.3.2 Machine Learning Meets Formal Method for Faster Identification

of Security Breaches in Network Functions Virtualization 4

1.3.3 Security Verification for Microservices Using Federated Learning-

Guided Formal Method . 5

1.4 Relationships between the Research Topics 7

1.5 Thesis Structure . 8

2 Related Work 10

2.1 Security Verification System for Network Functions Virtualization 10

2.2 Security Verification for NFV Using Machine Learning and Formal Method 12

vii

2.3 Security Verification for Microservices Using Federated Learning-Guided

Formal Method . 13

3 Cross-Level Security Verification System for Network Functions Virtualiza-

tion 17

3.1 Introduction . 17

3.2 Preliminaries . 21

3.2.1 Background on NFV . 21

3.2.2 Security Properties for NFV . 21

3.2.3 Challenges to Cross-Level Security Verification 23

3.2.4 Threat Model . 25

3.3 Overview . 26

3.4 ER Model Construction and Consistency Property Identification 27

3.4.1 Constructing the Entity Relationship (ER) Model 27

3.4.2 Automated Consistency Property Derivation 29

3.5 Cross-Level Security Verification . 32

3.6 Application to OpenStack/Tacker . 38

3.6.1 Deploying the NFV Testbed . 38

3.6.2 NFVGuard+ Implementation . 42

3.7 Experiments . 43

3.7.1 Experiments with Synthetic Data 43

3.7.2 Experiments with Real Data . 54

3.8 Discussion . 55

3.9 Summary . 59

4 Machine Learning Meets Formal Method for Faster Identification of Security

Breaches in Network Functions Virtualization 61

viii

4.1 Introduction . 61

4.2 Preliminaries . 64

4.3 Methodology . 67

4.3.1 Overview . 67

4.3.2 Iterative Teacher (FM)-Learner (ML) Interaction 69

4.3.3 MLFM Algorithm and Use Cases 72

4.4 Implementation . 74

4.5 EXPERIMENTS . 77

4.5.1 Datasets and Experimental Settings 77

4.5.2 Experimental Results . 78

4.6 Discussion . 83

4.7 Summary . 85

5 Security Verification for Microservices Using Federated Learning-Guided Formal

Method 87

5.1 Introduction . 87

5.2 Preliminaries . 90

5.2.1 XGBoost . 90

5.2.2 Federated Learning . 91

5.2.3 Threat Model and Assumptions 94

5.3 Horizontal FLFM (H-FLFM) Methodology 95

5.3.1 Overview . 95

5.3.2 Training Stage - Local Model Training 96

5.3.3 Training Stage - Global Model Learning 98

5.3.4 Application Stage . 100

5.4 Vertical FLFM (V-FLFM) Methodology 100

5.4.1 Overview . 100

ix

5.4.2 Training Stage - Training Data Building 101

5.4.3 Training Stage - Global Model Learning 103

5.4.4 Application Stage . 104

5.5 Implementation . 104

5.6 Experiment . 107

5.6.1 Investigated Properties . 107

5.6.2 Experimental Settings and Datasets 110

5.6.3 H-FLFM Experimental Results 111

5.6.4 V-FLFM Experimental Results . 116

5.7 Summary . 120

6 Conclusion 121

Bibliography 122

x

List of Figures

Figure 3.1 A motivating example illustrating the challenges of cross-level se-

curity verification in NFV and our ideas. 18

Figure 3.2 The multilevel NFV model [1]. 22

Figure 3.3 An overview of the NFVGuard+ approach. 25

Figure 3.4 The ER model of the NFV stack. 30

Figure 3.5 Thumbnail of the ER model showing entities for verifying VNFFG

configuration consistency property at L1. 36

Figure 3.6 The process of generating VNF and VNFFG/NS TOSCA template

descriptors. 40

Figure 3.7 The topology of our NFV testbed (left) consisting of 20 tenants, 200

VNFFGs, and 200 VNFs and detailed view (in Horizon [2]) of an attack

scenario similar to the motivating example in Section 3.1 (right). 40

Figure 3.8 Verification performance for the consistency properties while vary-

ing the number of service chains. 46

Figure 3.9 Verification time for the topology consistency properties in case of

compliance (left), in case of reporting the first breach verifying between

levels L2/L3 (middle), and in case of reporting the first breach verifying

between L1/L2 (right). 47

xi

Figure 3.10 Verification time for the security properties virtual resource isolation

(left) and mapping unicity VLANs-VXLANs (middle) in case of compli-

ance and in case of reporting the first breach. Verification time for finding

all compliance breaches (10 breaches) for the consistency property L1/L2

using SAT and ALLSAT solvers (right). 48

Figure 3.11 Verification time for the topology consistency properties, virtual

resource isolation, and mapping unicity VLANs-VXLANs in case of re-

porting all compliance breaches using ALLSAT solver, with (left) report-

ing all breaches for verifying between levels L2/L3, (middle) reporting all

breaches for verifying between L1/L2, and (right) reporting all breaches for

verifying virtual resource isolation and mapping unicity VLANs-VXLANs. 49

Figure 3.12 Verification time for reporting all breaches for the security property

mapping unicity VLANs-VXLANs while varying the number of breaches

(left) and the time for parallelizing the verification of the virtual resource

isolation property (right). 51

Figure 3.13 Comparing the verification time of the multi-level security property

without (the grayscale bar) and with (the bar with patterns) the utilization

of ER model. 52

Figure 3.14 Verification performance for the consistency property L1/L2 using

ALLSAT and SAT solvers. 53

Figure 3.15 The topology of a part of a real cloud data center operating NFV

used in our experiments. 55

Figure 4.1 Motivating example . 63

Figure 4.2 ETSI NFV reference architecture [3] (left) and an example NFV

deployment corresponding to the motivating example (right) 65

xii

Figure 4.3 Two example NFV security properties: Mapping unicity VLANs-

VXLANs (left) and No VNFs co-residence (right) (shaded nodes indicate

violations) . 66

Figure 4.4 Overview of the MLFM approach 68

Figure 4.5 An example of the iterative teacher (FM)-learner (ML) interaction . 70

Figure 4.6 The MLFM system architecture . 74

Figure 4.7 Recall and F1 score for combinations of ML models and sampling

methods, trained on 20% of dataset DS1 for property P1 (a and b) and on

DS2 for P2 (c and d) . 79

Figure 4.8 Running time of MLFM for combinations of ML models and sam-

pling methods, with 20% of training data under P1 (a) (b), or P2 (c) (d), for

both use cases . 80

Figure 4.9 Running time of MLFM vs. the baseline (FM only) under property

P1 (a) and (b) or P2 (c) and (d), using different percentages of training data

either by changing the sample size m (a) and (c) or by changing the number

of iterations n (b) and (d) . 81

Figure 4.10 The time (in minutes) for identifying different percentages of viola-

tions by MLFM and the baseline for P1 (a) or P2 (b). The tradeoff between

running time and recall values of MLFM and the baseline for partial verifi-

cation of P1 (c) or P2 (d) . 83

Figure 4.11 The time (in minutes) for identifying different percentages of vio-

lations by NOD [4] and by MLFM integrated with NOD, using 25,000 (a)

and 50,000 (b) records . 83

Figure 5.1 Motivating example . 89

Figure 5.2 An example illustrating XGBoost training 92

xiii

Figure 5.3 An example illustrating XGBoost training in the HFL (left) and VFL

(right) settings . 93

Figure 5.4 Overview of the horizontal FLFM approach 97

Figure 5.5 An example of the horizontal FLFM training 98

Figure 5.6 Overview of the vertical FLFM approach 102

Figure 5.7 An example of the vertical FLFM training 103

Figure 5.8 The FLFM architecture . 105

Figure 5.9 The execution time (in hours) (a) and recall (b) for identifying vi-

olations in datasets with different levels of heterogeneity by H-FLFM and

by MLFM [5] . 113

Figure 5.10 The execution time of H-FLFM (in hours) for different sample sizes

and for various numbers of iterations (aggregation and local iterations) (a).

Execution time (in minutes) of H-FLFM using the best performing param-

eters (i.e., m = 250 and n = 10), while varying the number of aggregation

iterations and compared to the execution time of MLFM using the same

applicable parameters (b) . 115

Figure 5.11 The execution time (in minutes) for identifying different percent-

ages of violations by H-FLFM and MLFM (a). The time (in minutes) for

identifying different percentages of violations by H-FLFM under different

scenarios (b) . 116

Figure 5.12 The percentage of records shared with the central authority by V-

FLFM and the baseline approach for the partial verification case (a) and

the recall of V-FLFM and the baseline approach (b) 117

xiv

Figure 5.13 The percentage of records shared with the central authority by V-

FLFM and the baseline approach for the priority-based verification case (a)

and the execution time (in minutes) for identifying different percentages of

violations by V-FLFM and the baseline approach (b) 118

Figure 5.14 Percentage of shared records by V-FLFM and the baseline approach

for partial verification (a) and priority-based verification (b) using different

datasets, and using different datasets, and the recall of V-FLFM and the

baseline approach using different datasets (c) 119

xv

List of Tables

Table 1.1 List of acronyms used in thesis and their terminology 9

Table 2.1 Comparing our solution with existing solutions. 12

Table 2.2 Comparing our solution with existing solutions. 16

Table 3.1 Examples of NFV security properties [6] 24

Table 3.2 Example of consistency properties identified from the ER model en-

tities and relationships. 31

Table 3.3 An excerpt of the data sources for some of the entities in the ER

model, along with a description of the types of data they contain. 33

Table 3.4 Example property instances for evaluating the effectiveness of NFV-

Guard+. 44

Table 3.5 The experimental results of NFVGuard+ for the real data. The aver-

age time, CPU, and memory required for the verification of three sample

NFV security properties, i.e., VNFs co-residence, virtual resource isola-

tion, and mapping unicity VLANs-VXLANs, based on real data. 55

Table 5.1 Main parameters evaluated in the experiments. 111

xvi

Chapter 1

Introduction

1.1 Motivation

The rise of NFV and microservices represents a fundamental shift toward modular,

software-driven architectures, replacing rigid, hardware-bound systems with agile and dy-

namic solutions that enable greater flexibility and scalability. However, their significant

advantages come at the cost of increased complexity, which introduces novel security and

privacy challenges. For instance, in NFV systems, security threats can span across multiple

levels, each managed by autonomous managerial components, making traditional, level-

specific verification methods insufficient. Similarly, the distributed nature of microservices

expands the attack surface and increases the risk of misconfigurations compared to mono-

lithic architectures, while also raising privacy concerns that hinder centralized security ver-

ification. Existing approaches often fall short in delivering scalable, efficient, and cross-

level verification without imposing high computational costs or compromising data privacy.

These challenges highlight the pressing need for novel security verification techniques that

can address the complexity and scale of modern virtualized systems while maintaining ac-

curacy and preserving privacy. This research aims to explore these challenges and propose

effective strategies to ensure the security and reliability of virtualized services.

1

1.2 Problem Statement

In this thesis, we propose security auditing solutions to ensure the security of virtual-

ized network functions and microservices architecture. Specifically, we propose a formal

cross-level security verification solution to overcome the limitations of traditional level-

specific approaches. To enhance efficiency, our method utilizes consistency check results

to perform verification at a single level and propagates these results across other levels,

significantly reducing overhead while preserving verification accuracy. Moreover, to ad-

dress scalability challenges, we propose a Machine Learning–Formal Method (MLFM)

approach that combines the efficiency of Machine Learning (ML) with the rigor of For-

mal Methods (FM) for fast and provable detection of security violations. In particular, FM

serves as the verifier, guiding the generation of high quality training data to build an effec-

tive ML model. This model is then used to identify configurations likely to violate security

properties and prioritize them for formal verification, significantly improving the speed

of detecting violations without compromising accuracy. Finally, to address the scalability

and privacy concerns in microservice-based architectures, we present FLFM, a Federated

Learning–guided Formal Method approach. FLFM allows decentralized security verifica-

tion by enabling applications to collaboratively train models without sharing sensitive local

data, ensuring privacy while still prioritizing high-risk configurations for formal analysis.

Together, these contributions offer a scalable, efficient, and privacy-aware solution for se-

curity verification in both NFV and microservice-based cloud environments.

1.3 Research Contributions

In the following, we outline the key research contributions presented in this thesis. First,

we propose NFVGuard+, a cross-level security verification system for Network Functions

Virtualization (NFV). Second, we introduce MLFM, a Machine Learning–Formal Method

2

approach for faster identification of security breaches in NFV. Finally, we present FLFM,

a Federated Learning–guided Formal Method solution designed for security verification in

microservice-based environments

1.3.1 Cross-Level Security Verification System for Network Functions

Virtualization

Network Functions Virtualization (NFV) is a popular solution for providing multi-

tenant network services on top of existing cloud infrastructures in an agile and cost-effective

manner. However, as NFV employs multiple levels of virtualization, it also introduces

novel security challenges, such as cloud-level security breaches that are invisible to NFV-

level tenants. Towards verifying the security of NFV across all the levels (a.k.a. cross-level

security verification), existing solutions are mostly insufficient, as each such solution typ-

ically only focuses on one specific level (e.g., cloud, SDN, or SFC), and verifying every

level separately would be expensive or even infeasible. In this work, we propose an ef-

ficient and practical system, NFVGuard+, for cross-level security verification for NFV.

Particularly, the efficiency of NFVGuard+ is achieved by first performing the costly secu-

rity verification at one level, and then extrapolating the verification result to other levels

through conducting relatively lightweight consistency checks. Chapter 3 details our work

on cross-level security verification for NFV.

Specifically, the main contributions of this work are as follows:

1. To the best of our knowledge, we are the first to propose a cross-level security veri-

fication system for NFV that automates the identification of properties and their data

sources, thereby reducing the need for human intervention.

2. We are also the first to capture knowledge about system entities and their relation-

ships across different levels of the NFV stack by developing an Entity Relationship

3

(ER) model for NFV. Additionally, we offer a concrete guideline for effectively iden-

tifying security properties using the ER model, which could be valuable for develop-

ing other security measures for NFV beyond just security verification.

3. We implement our solution and integrate it into a real NFV testbed built on Open-

Stack/Tacker [2], a widely used platform for deploying NFV [68]. Furthermore, we

conduct experimental evaluations using both synthetic and real data, showcasing the

efficiency and practicality of our solution.

1.3.2 Machine Learning Meets Formal Method for Faster Identifica-

tion of Security Breaches in Network Functions Virtualization

By virtualizing proprietary physical devices, Network Functions Virtualization (NFV)

enables agile and cost-effective deployment of network services on top of an existing cloud

infrastructure. However, the added complexity also increases the chance of misconfigura-

tions that could leave the services or infrastructure vulnerable to security threats. To that

end, formal method-based security verification is a standard solution for providing rigorous

mathematical proofs that the configurations satisfy the desired security properties, or the

counterexamples (i.e., misconfigurations). Nonetheless, a major challenge is that the sheer

scale of large NFV environments can render formal security verification so costly that the

significant delays before misconfigurations can be identified may leave a wide attack win-

dow. In this work, we propose a novel approach, MLFM, that combines the efficiency of

Machine Learning (ML) and the rigor of Formal Methods (FM) for fast and provable iden-

tification of misconfigurations violating security properties in NFV. Our key idea lies in

an iterative teacher-learner interaction in which the teacher (FM) can gradually (over sev-

eral iterations) provide more representative verification results as training data, while the

learner (ML) can leverage such data to gradually obtain more accurate ML models. As a re-

sult, a small portion of the configuration data will be enough to obtain a relatively accurate

4

ML model, which can then be applied to the remaining data to prioritize the verification

of data that are more likely to cause violations. Chapter 4 further details our approach of

combining ML and FM for fast and provable identification of security breaches in NFV.

In summary, the main contributions of this work are:

1. To the best of our knowledge, we are the first to integrate Machine Learning (ML)

with Formal Methods (FM), namely MLFM, combining the rigor of FM, which is

crucial for proving security compliance, with the efficiency of ML, which is essential

for handling large NFV environments, to prioritize verification tasks in NFV.

2. To implement MLFM, we design an iterative teacher-learner interaction approach,

supported by a detailed algorithm. The methodology is realized through a con-

straint satisfaction problem solver, Sugar [67], along with several well-known ma-

chine learning algorithms (decision tree, random forest, support vector machine, and

XGBoost) and sampling techniques (uncertainty sampling and query-by-committee)

borrowed from the active learning literature [46] for selecting representative data

records.

3. We conduct experimental evaluations of our work across two distinct use cases: one

focused on minimizing verification time and the other on ensuring result complete-

ness. The experimental results showcase the advantages of our work by detecting

violations much more faster than the baseline FM [67] and further enhancing the

efficiency of a state-of-the-art security verification tool [4].

1.3.3 Security Verification for Microservices Using Federated Learning-

Guided Formal Method

The microservice architecture divides a single application into loosely coupled, au-

tonomous microservices to allow for independent development, deployment, and scaling of

5

different functionalities. The architecture is widely adopted in modern cloud environments

due to its numerous benefits, such as enhanced scalability, flexibility, and cost efficiency

in application development and maintenance. On the other hand, the sheer scale and dis-

tributed nature of microservice-based applications may also lead to novel challenges for

existing security solutions. Particularly, the standard practice of using formal methods to

provide rigorous mathematical proof about security compliance may face two major chal-

lenges in the context of microservices. First, large scale microservice applications can

cause formal methods to become very slow in identifying security breaches, which may

leave a wide attack window. Second, the prohibitive overhead and potential privacy con-

cerns may both prevent the collection of data from all the microservices for performing

security verification at a central location. In this work, we propose FLFM, a novel ap-

proach that combines the efficiency and privacy-friendliness of Federated Learning (FL)

and the rigor of formal method (FM) for security verification in microservices. Specifi-

cally, FLFM works in two stages. First, each application samples a small but representative

subset of its configuration data, and then labels such data using FM verification. This al-

lows a relatively accurate FL model to be jointly trained by all the applications using only

a small subset of data from each application. Second, the FL model can then be applied by

each application to its remaining data in order to “guide” the FM verification for identifying

security breaches faster, through prioritizing more suspicious candidates. Chapter 5 further

describes our idea of utilizing the efficiency and privacy-friendliness of FL and the rigor of

formal method (FM) for security verification in microservice.

Particularly, the main contributions of this work are as follows:

1. We propose a novel approach that leverages Federated Learning (FL) to guide for-

mal methods (FM), namely FLFM, for faster identification of security breaches in

microservice applications, while preserving the privacy of local data.

2. We provide comprehensive methodologies for both horizontal and vertical Federated

6

Learning (FL) scenarios and implement our solution using a federated XGBoost al-

gorithm [109], an uncertainty sampling technique [113], and the Sugar constraint

satisfaction problem solver [67].

3. We conduct experimental evaluations of FLFM and compare its performance with

the centralized MLFM approach, demonstrating its effectiveness.

1.4 Relationships between the Research Topics

In the following, we outline the relationships between the three research topics and

how they were identified. The primary objective of the first research topic was to develop

an efficient and practical cross-level security auditing solution for verifying multiple lev-

els of the NFV stack using formal methods. However, a key limitation of this approach

is scalability. The complexity of formal security verification methods may restrict their

ability to handle the sheer scale of virtualized services. This, in turn, could lead to signifi-

cant delays in detecting misconfigurations and security threats, creating an extended attack

window. Additionally, the inherent complexity of formal methods leaves minimal room for

further performance optimizations. This leads to the second research topic, which leverages

the efficiency of machine learning to create a scalable and provable solution for the faster

identification of security breaches in NFV, while preserving the rigor of formal methods,

which is crucial for ensuring security compliance. Finally, while this solution is effective

in centralized environments like NFV, it is inadequate for distributed applications such as

microservices. This leads to the third research topic, which leverages the efficiency and

privacy benefits of Federated Learning (FL) alongside the rigor of formal methods (FM)

to address the challenges posed by distributed environments. In summary, the three topics

of this thesis are interrelated and serve as complementary elements of a unified solution,

aimed at achieving secure, efficient, and privacy-preserving security verification for virtual

7

environments.

1.5 Thesis Structure

This thesis is structured into six chapters. Chapter 1 provides an introduction to the

research. Chapter 2 reviews the relevant literature. Chapter 3 presents the results of our

cross-level security verification system for network functions virtualization. Chapter 4

details our approach to integrating formal methods with machine learning to prioritize ver-

ification tasks in NFV. Chapter 5 focuses on leveraging federated learning to enhance FM

for faster detection of security breaches in microservice applications. Finally, Chapter 6

concludes the thesis, summarizing key findings and contributions. Additionally, Table 1.1

lists and defines the terminologies used throughout this thesis in alphabetical order.

8

Acronym Terminology

CP Connection Point

DPI Deep Packets Inspector

ETSI European Telecommunications Standards Institute

FC Flow Classifier

FL Federated Learning

FM Formal Method

FW Firewall

GDPR General Data Protection Regulation

IDS Intrusion Detection System

MANO Management and Orchestration

ML Machine Learning

MS Microservice

NFP Network Forwarding Path

NFV Network Function Virtualization

NFVO NFV Orchestrator

NLP Natural Language Processing

NS Network Service

NSD Network Service Descriptor

PPG PortPair Group

SDN Software Defined Networking

SFC Service Function Chain

VDU Virtual Deployment Unit

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VNFD VNF Descriptor

VNFFGD VNFFG Descriptor

VNFFG Virtual Network Function Forwarding Graph

VNFM VNF Manager

Table 1.1: List of acronyms used in thesis and their terminology

9

Chapter 2

Related Work

In this chapter, we review related works of prior research on our identified problem

areas.

2.1 Security Verification System for Network Functions

Virtualization

Most existing security verification solutions (e.g., [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22]) in NFV focus on the verification of one particular level (mostly SFC).

In particular, ChainGuard [12], SFC-Checker [14], Cohen et al. [19], and AuditBox [20],

all verify the correct forwarding behavior of SFCs. Other solutions, including NFVSense

[9], CloudVaults [11], APPD [22], and Cheng et al. [10], focus on SFC integrity verifi-

cation. vSFC [13] verifies various SFC violations (e.g., packet injection attacks and path

non-compliance) and vHSFC [8] utilizes a lightweight Verified Routing Protocol (VRP)

to detect various hybrid SFC violations and attacks. EnsureS [7] introduces an SFC path

validation model that employs batch hashing and tag verification. VeriNeS [21] proposes

a runtime verification framework for detecting anomalies in network services. In contrast,

10

Zoure et al. [23] investigate NFV network service anomalies and the challenges in achiev-

ing verification.

Several solutions (e.g., [16, 17, 15, 18]) focus on verifying SFCs functionality and

performance. They cover a wide range of verification aspects, such as performance and ac-

counting [16], SLA-related performance properties [17], verification of reachability poli-

cies [18], and detection of dependencies and conflicts between network functions [15].

Unlike all those works, the main focus of our approach is to ensure the security of an

NFV stack at all levels. Also, unlike us, most of those works do not formally model the

verification problem.

There are a few solutions (e.g., [24, 25]) that tackle the multi-level aspect of NFV.

Lakshmanan et al. [25] propose employing Neural Machine Translation (NMT) to detect

cross-level inconsistency attacks. However, their utilization of NMT for detection is con-

sidered less reliable in terms of accuracy compared to FMs. On the other hand, Alhebaishi

et al. [24] model and address cross-layer and co-residency attacks through VM placement

optimization, focusing on a narrower range of attacks compared to our approach.

Also, there exist other works (e.g., [26, 27, 28, 29, 30, 31, 32, 4]) that verify security

properties in virtual networks, e.g., clouds and SDN. Among them, ISOTOP [30] and Xu et

al. [33] cover the consistency between different cloud layers. Additionally, there are other

solutions, e.g., NetPlumber [26], Veriflow [27], and NoD [4] that verify flow rules against

various security and functionality properties in virtual networks. However, none of these

works considers NFV, and extending them to NFV would require significant efforts due to

the added complexity. Table 2.1 compares existing solutions with NFVGuard+. It lists the

solutions, whether they target NFV or other virtual environments, the NFV stack level they

address, and the verified properties along with their verification methods. The symbols (✓)

and (:) mean supported and not supported, respectively.

11

Solution NFV
Levels

Property MethodL1 L2 L3

[21] ✓ ✓ : : Security Graph theoretic
[34] ✓ : ✓ : Network Custom algorithms

[16, 12, 17] ✓ : : ✓ Correctness, performance Trusted shim layer, graph theoretic

[7, 9, 11, 8, 18, 14, 15, 13, 19, 20],
[10, 22]

✓ : : : Network, correctness, integrity
Remote attestation, MaxSAT solver, graph theoretic, custom algorithms, trusted shim,

verified routing protocol, packet pair dispersion, tag-based verification, and machine learning

[29, 32, 26, 27, 31] : : : :
Security, operational, network,

identity and access control
Graph theoretic, CSP solver, custom algorithms

NFVGuard+, [25] ✓ ✓ ✓ ✓ Security and consistency CSP solver, machine learning

Table 2.1: Comparing our solution with existing solutions.

2.2 Security Verification for NFV Using Machine Learn-

ing and Formal Method

Most existing solutions related to security verification for NFV (e.g., [16, 12, 35, 36,

14, 15, 13, 17]) focus on the verification of service function chaining (SFC). Those works

employ either custom algorithms (such as [16, 15, 13]), graph-based methods (such as

[12, 14, 17]), or formal methods (such as [35, 36]). Unlike those existing works (which

focus on the SFC only), our previous work, NFVGuard [6], aims to verify the entire NFV

stack (including both SFC and underlying infrastructure, and their consistency) using for-

mal method. However, the increased scope also leads to increased complexity and longer

verification time, which has motivated us to propose MLFM.

Besides NFV, there also exist security verification solutions for other virtual infras-

tructures, such as cloud and SDN (e.g., [26, 4, 37, 38, 31, 39, 29]), including formal

method-based ones [4, 37, 38, 31]. Unlike MLFM, most such solutions do not specifi-

cally address the delay in verification (so they may benefit from MLFM in that aspect),

with the exception of NOD [4] which is optimized for large applications (our experiments

in Section 5.6 show it can further benefit from MLFM). In contrast to formal method, cus-

tom algorithms (e.g., [26] and [29]) may enjoy improved efficiency for specific properties

but they generally lack the level of expressiveness of formal method-based approaches (in-

cluding MLFM). Also designed to reduce verification time, the proactive approach (e.g.,

[40, 41]) performs the verification in advance based on predicted events, which is parallel

to, and can be integrated with, our approach.

12

There exist works that combine machine learning and formal method in other contexts,

such as automated program verification (for synthesizing invariants used to verify the cor-

rectness of a program, e.g., [42, 43, 44, 45]). In particular, Ezudheen et al. [42] develop

learning-based algorithms for synthesizing invariants for programs that generate Horn-style

proof constraints. Garg et al. [43] propose the ICE-learning framework for not only taking

(counter-)examples but also handling implications. Ren et al. [44] propose a method based

on selective samples to improve the efficiency of invariant synthesizing. Finally, Vizel et

al. [45] study the relationship between SAT-based Model Checking (SAT-MC) and Ma-

chine Learning-based Invariant Synthesis (MLIS). Although the goals are very different

(efficient verification vs. invariant synthesizing), our teacher-learner approach is similar to

those existing works, with a key difference being that we additionally employ the sampling

strategies from the active learning literature [46] to more effectively identify representative

samples.

2.3 Security Verification for Microservices Using Feder-

ated Learning-Guided Formal Method

Existing security solutions for the microservice architecture mostly focus on verifying

the correctness of the microservices interactions (e.g., [47, 48, 49]), anomaly detection

(e.g., [50, 51]), access control for microservices (e.g., [52, 53, 54, 55]), or performance

analysis (e.g., [56]). Those works employ either formal methods (such as [47, 48, 49]),

graph-based methods (such as [50, 52, 56, 55]), ML methods (such as [51]), sidecar-based

methods (such as [53]), or token-based methods (such as [54]). In contrast to those ex-

isting solutions, we tackle two unique challenges in the microservice architecture, i.e., the

inherent complexity of formal security verification solutions may prevent them from han-

dling the sheer scale of microservice applications, which can cause considerable delay in

13

identifying security violations, and collecting data from all the microservice applications

to perform security verification at a central location may be infeasible due to data confiden-

tiality and privacy concerns.

Federated learning has been extensively leveraged in many security applications, such

as anomaly (e.g., [57, 58, 59]) and intrusion detection (e.g., [60, 61]), mostly within the

Internet of Things (IoT) architectures. To the best of our knowledge, there do not exist

solutions that employ federated learning for compliance verification (directly or indirectly),

nor does any work combine federated learning with formal methods for faster verification

as we propose in this work.

Security verification solutions have also been developed for various virtual infrastruc-

tures, such as NFV, cloud, and SDN (e.g., [4, 35, 6, 36, 5, 37, 38, 31, 39, 40, 41]). Most

of the FM-based solutions (e.g., [4, 35, 6, 36, 37, 38, 31, 39]) do not explicitly tackle the

delay in verification (so they may benefit from FLFM in this regard), except for NOD [4],

which is specifically optimized for large applications (NOD can potentially benefit from

our approach, as shown in [5]), and MLFM [5], which is less efficient than our work, as

shown through experiments in Section 5.6. Unlike formal methods, custom algorithms

(e.g., [26] and [29]) benefit from enhanced efficiency for specific properties; however, they

often lack the expressiveness found in formal method-based approaches. The proactive

approach (e.g., [40, 41]) optimizes the verification time by performing the verification in

advance based on predicted events, which is parallel to and can be integrated with our

approach.

Table 2.2 summarizes the comparison between existing solutions and FLFM. The first

and second columns enlist existing works and their objectives. The next two columns com-

pare their applications and verification methods. The following two columns compare the

coverage in terms of whether they work on a single microservice (MS-level) or they can

support multiple microservice applications (App-level) as addressed in our work. The last

14

column enlists the type of utilized federated learning (horizontal or vertical), if applica-

ble. The symbols (✓), (:), and (N/A) mean supported, not supported, and not applicable

respectively.

15

S
o

lu
ti

o
n

O
b

je
c
ti

v
e

A
p

p
li

c
a

ti
o

n

M
e
th

o
d C
o
v
e
r
a

g
e

F
L

ty
p

e

M
S

-l
e
v
e
l

A
p

p
-l

e
v
e
l

Malchain [50] Anomaly detection Microservice-based cloud applications Graph theoretic and ML : ✓ N/A

ucheck [47] Correctness verification Microservice-based applications Formal method ✓ : N/A

AUTOARMOR [52]
Inter-service access control

policy generation
Microservice-based cloud applications Graph theoretic : ✓ N/A

Meng et al.[48] Correctness verification Microservice-based cloud applications Formal method : ✓ N/A

Meadows et al.[53]
Anomaly detection

and access control
Microservice-based applications Secure sidecar : ✓ N/A

Venčkauskas et al. [54] Access control Microservice-based applications Token-based ✓ : N/A

Dai et al. [49]
Interaction correctness

of a microservice system
Microservice systems Model checking : ✓ N/A

Zhang, et al. [56]
Performance analysis and

anomaly detection
Microservice architectures Graph theoretic : ✓ N/A

Pahl et al. [51] Anomaly detection Microservices-based Internet of Things (IoT) system ML ✓ : N/A

Mothukuri et al. [57] Anomaly detection Internet of Things (IoT) Federated learning N/A N/A Horizontal

MV-FLID [60] Intrusion detection Internet of Things (IoT) Federated learning N/A N/A Horizontal

Liu et al. [59] Anomaly detection Internet of Things (IoT) Federated learning N/A N/A Horizontal

NOD [4] Network verification Cloud deployment SMT Solver N/A N/A N/A

NFVGuard [6]
Security and consistency

verification
Network Functions Virtualization Formal method N/A N/A N/A

MLFM Security verification Network Functions Virtualization ML and Formal method N/A N/A N/A

FLFM Security verification Microservice-based cloud applications
Federated learning

and formal method
✓ ✓

Horizontal

& vertical

Table 2.2: Comparing our solution with existing solutions.

16

Chapter 3

Cross-Level Security Verification System

for Network Functions Virtualization

3.1 Introduction

The adoption rate of NFV is increasing1 due to the many benefits of virtualizing pro-

prietary physical devices in the network architecture, such as the capability for operators to

scale their network services on-demand, and the lower cost of using existing cloud infras-

tructure. However, to attain such benefits, NFV involves multiple levels of virtualization

and operates the managerial components at each level autonomously [63]. As a ramifica-

tion, this additional complexity opens the door to potential inconsistencies among different

levels of the NFV stack, which can be exploited to conduct stealthy attacks, e.g., “invisible”

(to end users) security breaches at lower levels of an NFV stack [1]. To tackle such threats,

verifying the security across different levels of an NFV stack (a.k.a. cross-level security

verification) becomes essential.

To that end, most existing works (e.g., [7, 8, 9, 11, 13, 15, 16, 12, 17, 14, 18, 19, 20,

21, 22]) are insufficient as they typically focus on one particular level of the NFV stack,

192% of carriers have either deployed or plan to deploy network functions virtualization soon [62]

17

- No mapping between the resources

across different levels of NFV

- A naive solution (i.e., verifying all

levels individually) is expensive (if not

infeasible)

Cross-level security verification

Challenges

Consistency

verification

Consistency

verification

Verification for all

properties at L1

Idea 2

- Automated consistency property

derivation

- Cross-level security

verification

Virtual firewall

VDU3

VM4

Configuration

consistency

between adjacent

levels property

Cross-level inconsistencies in NFV stack

VDU2

Bob

L4: Physical infrastructure

Eve

Virtual

IDS

Virtual

firewall

VM3

L1:

Service

orchestration Virtual

router

VDU3

VDU4

VM4

L2:

Resource

management

L3:

Virtual

infrastructure VM1 VM2

VDU: Virtual Deployment Unit

VDU1

The Provider

Malicious

VM

Idea 1

Inconsistent

configuration

between

adjacent levels,

because VDU4

 is not mapped

to a VM

Are Bob’s and Eve’s
virtual networks properly

isolated on all levels?

VDU4

VM3

Verification for all

properties at L2

Verification for all

properties at L3

Verification for all

properties at L1

Verification for all

properties at L3

Verification for all

properties at L2

Figure 3.1: A motivating example illustrating the challenges of cross-level security verifi-

cation in NFV and our ideas.

such as service function chaining (SFC), instead of verifying the entire NFV stack. Addi-

tionally, utilizing those existing solutions to separately verify each level of NFV would be

expensive, or even infeasible (as doing so would require translating given security proper-

ties to all NFV levels, which is not always possible). On the other hand, developing a new

approach to cross-level verification for NFV involves the following major challenges: (i)

how to determine the system entities and their relationships at multiple levels in NFV to

locate the possible data sources for verification, (ii) how to instantiate the high-level secu-

rity requirements (e.g., network isolation) into specific system-level security properties to

enable automated verification in NFV, and (iii) how to conduct the cross-level verification

in an efficient and accurate manner while handling the sheer size and multi-level of NFV.

In the following, we further highlight those challenges using a motivating example.

Motivating Example. The left side of Figure 3.1 shows a simplified view of the NFV

stack (Sec 2.1 provides more background on NFV stack) of two tenants, Bob and Eve (as

indicated by the two dashed line boxes), which involve four levels (L1-L4 as indicated by

the shaded planes) and their corresponding virtual and physical resources. We assume that,

by exploiting real-world vulnerabilities (e.g., CVE-2024-1085 [64], CVE-2024-0193 [65],

18

or CVE-2024-0646 [66]) in a specific way [1], a malicious tenant (Eve) could inject a

malicious virtual machine, Malicious VM, into Bob’s network to secretly inspect his

traffic at L3, without causing any detectable changes in the upper levels. Knowing about

such potential threats, the provider is concerned with the following question: “Are Bob’s

and Eve’s virtual networks properly isolated at all levels?”

The first column on the right side of the figure shows the existing challenges in cross-

level security verification as follows. First, the mapping between the resources across dif-

ferent levels of the NFV stack (which might be useful for cross-level security verification)

is unknown. Second, a naive solution which separately conducts security verification at

each level of NFV through utilizing (multiple) existing works (e.g., [12, 14, 19, 20]) is ex-

pensive or even infeasible (e.g., its not always possible to re-define an L1 property at L4 in

a meaningful way). To address those challenges, our two main ideas are illustrated in the

next two columns of the figure. Specifically, our first idea is to identify the mapping be-

tween the resources in different levels of NFV and automatically identify the corresponding

consistency properties (needed for the next idea). Our second idea is to only verify every

property at the level where its specified (e.g., L2 in this case), and then implicitly extend

the result of such verification to other levels by verifying the consistency between adjacent

levels.

To instantiate those ideas, we propose a security verification system, NFVGuard+, for

the efficient and practical cross-level security verification of NFV stack. NFVGuard+ lever-

ages formal methods to model the audit data and properties as a Constraint Satisfaction

Problem (CSP) and employs the Sugar solver [67] to verify compliance. To facilitate this,

we first create an Entity-Relationship (ER) model to systematically capture NFV entities

and their relationships. Next, we identify consistency properties from the ER model and

design an algorithm to automatically derive them from the model. We then develop our

19

cross-level security verification approach, utilizing the ER model for data collection, pro-

cessing, and formal verification. Finally, we demonstrate the applicability of our solution

by integrating it into a real NFV testbed based on OpenStack/Tacker [2] and evaluate its

efficiency through experiments with both real and synthetic data.

Security Capabilities of NFVGuard+. NFVGuard+ is designed to ensure the config-

uration of NFV stack complies with given security and consistency properties. Its re-

sults can provide either formal proof for such security compliance, or (in the case of

non-compliance) counterexamples, i.e., policy violations in the NFV configuration. Al-

though not specifically designed for attack detection, the policy violations identified by

NFVGuard+ can potentially indicate the presence of misconfigurations, vulnerability ex-

ploitations, or other threats that have caused such policy violations, as long as these leave

some traces in the logs or configuration. However, it is not designed to provide specific de-

tails about the underlying vulnerabilities (which requires vulnerability analysis) or attacks

(which requires intrusion detection). Finally, it cannot detect policy violations leaving no

traces, such as those caused by side-channel attacks or log tampering.

Comparison to Existing Solutions. In comparison to most existing NFV security verifi-

cation solutions (e.g. [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]), which

primarily focus on a single level (mostly SFC), NFVGuard+ has a different focus, i.e.,

ensuring the security across all levels of the NFV stack. As we will demonstrate later in

Section 3.2.3, this cannot be easily achieved using existing single-level solutions due to

some unique challenges. Furthermore, although some approaches (e.g., [25, 24]) touch on

the multilevel aspect of NFV, they do not formally model the verification problem as we do,

cannot provide the same rigorous security proof provided by formal methods [25], or focus

on a narrow scope of attacks (e.g., through VM placement optimization [24]). A detailed

comparison is provided in Table 2.1.

20

3.2 Preliminaries

This section provides the preliminaries.

3.2.1 Background on NFV

NFV is a network architecture concept that virtualizes various network functions, such

as routers, firewalls, load balancers, and intrusion detection systems (IDS) [3]. Figure 4.2

illustrates the multilevel NFV deployment model [1] (on the right) with the mapping to a

simplified view of the ETSI NFV reference architecture [3] (on the left). The NFV de-

ployment model complements the ETSI NFV reference architecture with deployment de-

tails found in multiple open source platforms including Networking Automation Platform

(ONAP) [69], Tacker [70], OpenStack [2]. Specifically, the deployment model depicts

the NFV stack at four abstraction levels: Service Orchestration (L1) (which supports the

specification, on-boarding, and lifecycle management of network services. Also, it could

optionally include the SDN Orchestrator (SDNO) for the automated management of net-

work resources and services), Resource Management (L2) (which supports the instantiation

of network services and the management of computing, storage, and network resources),

Virtual Infrastructure (L3) (which hosts the virtual resources needed to support upper lev-

els, and optionally the SDN controller (SDN-C)), and Physical Infrastructure (L4) (which

includes all the physical resources).

3.2.2 Security Properties for NFV

Security properties of NFV define the desired security states of the NFV deployment

that are usually specified by the tenants and/or providers. Very often, these properties are

inspired by security standards (e.g., ETSI [63] and ISO 27002 [71]) that outline fundamen-

tal security principles and recommendations for guiding the providers and for assisting the

21

VNFM

NFVO

VDU

SDN-C

vNetwork

VLAN

vSwitch

Containerized

Node

Cloud tenant as

network service provider NFV Client

VNF

Virtualized

Node

VDU

L1: Service Orchestration

L2: Resource Management

L3: Virtual Infrastructure

OSS/BSS

L4: Physical Infrastructure

SubnetSubnet

Bridge

Ctn CtnVM VM

SFC

Cloud tenant

VNFFGD VNFD

EMS

NSD

VNFFG:NFP

Hypervisor

Virtual

Resources

NFVI Block

Service
Description

VNF Block

EMS

VNF

Hardware

ETSI

 Architecture

(Simplified View)

Network path Cross-level mapping

VIM

SDNO

Controller Node

Figure 3.2: The multilevel NFV model [1].

tenants in assessing the overall security compliance with the provider’s NFV infrastructure.

For this purpose, we conduct a study on the standards related to NFV (e.g., IETF-RFC7498

[72], and ETSI [63]), along with the standards related to various components of an NFV

stack, such as cloud and SDN (e.g., ISO 27002 [71] and CCM [73]). Then, we extract a

list of security properties from those standards and the literature that can be used for the

security verification of NFV. Table 3.1 shows extracted properties, their instantiation as

sub-properties, descriptions of the sub-properties, and corresponding standards that require

those properties for security compliance. Please note that while this list is not meant to be

comprehensive, it can be easily extended to encompass additional security properties and

even user-defined properties. Our approach can verify any security property as long as its

22

expressed using formal methods. However, in this work we focus on verifying the compli-

ance of security properties related to the static configuration of the virtualized infrastruc-

ture, such as the proper configuration of isolation mechanisms. Dynamic properties, such

as those related to reachability and network forwarding functionality, are beyond the scope

of this work and will be addressed in future work. To add specificity to our discussions,

we provide a sample property, and subsequently, in Section 3.5, we show its verification

process.

Example 3.2.1 Virtual resources isolation (no common ownership) property. Aims at

verifying that each virtual resource is exclusively owned by a single tenant unless specified

by a user-defined policy. Specifically, in this work we aim to verify that all VDUs com-

posing a specific SFC at the management level are owned by a unique tenant, namely the

owner of the SFC service.

3.2.3 Challenges to Cross-Level Security Verification

Conducting security verification across different levels of NFV-stack (a.k.a. cross-level

security verification for NFV) exhibits several unique challenges.

Identifying the NFV-Stack Entities and Their Relationships. To develop a cross-level

verification system and identify the necessary input data for verifying various security prop-

erties, its essential to thoroughly understand the NFV system’s design and workflow, which

might be intractable as the NFV stack is a complex system with many inter-dependent en-

tities located at different abstraction levels (as explained in Section 3.2.1). Moreover, the

NFV standards (e.g., IETF-RFC7498 [72] and ETSI [63]) do not provide the necessary de-

tails for fully understanding the NFV system workflow and mapping the states of network

services across the layers.

23

Security Properties Sub-Properties Description Standards

Physical resource

isolation [37]
No VNFs co-residence

VNFs of a tenant should not be placed on the same server as

VNFs of a non-trusted tenant

ISO [74], NIST800 [75],

CCM [73], ETSI [63]

Virtual resource

isolation [37]
No common ownership

Tenant-specific resources should belong to a unique tenant, unless

permitted by a user-defined policy

CCM [73], ETSI [63],

IETF-RFC7665, RFC-

7498 [72]

Mapping unicity

VLANs-VXLANs
VLANs and VXLANs should be mapped one-to-one on a given server

ISO [74],

NIST800 [75],

CCM [73],

ETSI [63],

IETF-RFC7665,

RFC-7498 [72]

Correct association

Ports-Virtual Networks

VNFs should be attached to the virtual networks they are connected

to through the right ports

Topology

isolation

[37]

Overlay tunnels isolation

In each VTEP end, VNFs are associated with their physical location

(at L2) and to the VXLAN assigned to the networks they are attac-

hed to at L1

Mappings unicity Virtual

Networks Segments
Virtual networks and segments should be mapped one-to-one

Mappings unicity

Ports-VLANs
Ports should be mapped to unique VLANs

Mappings unicity

Ports-Segments
vPorts should be mapped to unique segments

Policy and state

correctness [76]
-

A policy can be dynamically changing. The changed policy should be

reconfigured in VNF node as soon as possible

ETSI [63, 77], IETF-R

FC7665, RFC8459[72]

Functionality of VNF

and VNFFGs [16, 13]
-

Check if VNFs and the composition (i.e., service chaining) of these

functions work as intended

ETSI [77], IETF-RFC-

7665, RFC8459 [72]

SFC ordering and

sequencing as defined

by the specification [12]

-
SFCs should maintain the order of VNFs with the correct traffic forw-

arding behavior as defined by the specifications

ETSI [63, 77], IETF-

RFC7665, RFC8459 [72]

Topology

consistency

[37]

VNFFG configuration

consistency between

L1/L2

Consistency between the size of VNFFGs, the sequences of VNFs

and the classifiers at L1 and their parallel implementation at L2
ISO [74],

NIST800 [75],

CCM [73],

IETF-RFC-8459 [72],

ETSI [63, 77]

Virtual links consistency
VNFs should be connected to the VLANs and VXLANs in L2 that

corresponds to the virtual networks they are connected to in L1

VNF location consistency Consistency between VNFs locations at L2 and L1

CPs-Ports consistency
Consistency between CPs defined at L1 and their created counterpa-

rts; Ports in (L2)

Table 3.1: Examples of NFV security properties [6]

Locating the Data Sources for Security Properties. To verify a given security prop-

erty, it’s necessary to identify all relevant data sources and determine what data to collect

from each source. This would require a good understanding of the property and accurately

mapping its semantics to the corresponding NFV system resources, which also requires

adequate awareness of the entities and their relationships within the NFV stack. Several

security properties may require data from multiple levels of the NFV stack, depending on

the involved data sources and their associated relationships. E.g., verifying SFC traffic iso-

lation property [34], entails collecting data from the VDUs at L2, as well as from VMs and

vSwitches at L3.

Data Correlation and Aggregation. Data sources are typically scattered across multiple

physical servers and different NFV stack levels, each with its own data format (e.g., SFC

traffic steering data is stored as OpenFlow rules at L3 and as database instances at L2).

24

Therefore, its necessary to process the data into a consistent format and piece together

related data within the same level (i.e., data aggregation), especially when audit data is

scattered across different tables (e.g., the SFC data resides in different Neutron tables and

Nova databases). Moreover, we need to link between data across different levels (i.e., data

correlation) to obtain the necessary information for verification. These challenges will be

addressed in Sections 3.4 and 3.5.

Figure 3.3: An overview of the NFVGuard+ approach.

3.2.4 Threat Model

Our in-scope threats include both external attackers who exploit existing vulnerabilities

in the NFV stack, and insiders such as cloud users and tenant administrators who cause

security breaches either by mistakes or with malicious intents. Similar to most security

verification solutions (e.g., [71, 29]), we trust the NFV provider for the integrity of the

audit input data (e.g., logs and configurations). We also assume that the ER model cor-

rectly captures all the relations between the NFV system entities within the same level and

captures all the mapping between cross-level entities, and any new changes in the system

design affecting those relationships and mappings will be updated in the ER model. We

assume that the properties defined in the work are correct and complete i.e., it encompasses

all the data and required relations to describe the given property. We also assume that

one-level security property verification combined with verifying consistency properties for

all levels would be sufficient for cross-level verification of a security property (as detailed

in Section 3.4). Whereas, consistency property inspects whether the specifications set by

25

the tenants or service providers are implemented correctly in the NFV system and that the

implementation of resources at a specific level is instantiated correctly at the underlying

level(s). This work focuses on the verification of consistency properties and security prop-

erties related to the static configuration of the virtualized infrastructure, such as the proper

configuration of isolation mechanisms. Any property violation that is not reflected on logs

and configurations is beyond the scope of this work. Although dynamic properties, such as

reachability-related properties, also can be verified through formal methods (Lopes et al.

[4]), these are out of the scope and they will be investigated in our future work.

Additionally, although our cross-level security verification solution can detect a vio-

lation of security properties, its not designed to attribute such a violation to underlying

vulnerabilities (i.e., vulnerability analysis) or specific attacks (i.e., intrusion detection).

However, mitigation solutions (e.g., [78, 79]) can be applied to address the risks associ-

ated with security breaches or vulnerabilities. These include security hardening options

such as updating and patching vulnerabilities, enforcing strict security policies and access

controls, conducting regular security audits, penetration testing, hypervisor introspection,

remote attestation, and rollback to known good configuration.

3.3 Overview

Figure 3.3 shows an overview of NFVGuard+ including its three major steps and appli-

cation to NFV.

1. Constructing the ER Model. To model the interconnectivity between different com-

ponents in an NFV system, we construct the ER model that mainly captures: (i) the rela-

tionship between NFV entities within the same level, and (ii) the mapping between NFV

entities from different levels (detailed in Section 3.4.1).

2. Automated Consistency Property Derivation. We automatically derive consistencies

26

(which will be used in cross-level security verification later) between different entities in

the NFV stack based on the ER model. More specifically, we derive properties that include

the: (i) consistency of entity configurations, (ii) consistency of the relationship between

two entities, and (iii) consistency of cross-level mapping (detailed in Section 3.4.2).

3. Cross-level Security Verification. We conduct cross-level security verification by uti-

lizing two major steps: (i) verifying a security property for one level, and (ii) applying that

verification result to other levels using the consistency results. We also provide a general

guideline for the users to identify new properties (detailed in Section 3.5).

Application to Openstack/Tacker. As a potential application of our solution, we inte-

grate NFVGuard+ with OpenStack/Tacker (a popular choice for NFV deployment) [2]. In

our implementation, the user-defined network service descriptors are uploaded to Tacker

through Horizon/CLI [2]. We choose the latest version of OpenStack (i.e., Rocky) and

Tacker (i.e., Tacker-0.10.0) [2] to obtain the most recent features of NFV deployments. Fi-

nally, the traffic steering among the VNF elements is handled by the OvS switches [80].

We will detail the testbed data generation approach, report implementation challenges, and

describe the integration of NFVGuard+ into the testbed in Section 3.6.

3.4 ER Model Construction and Consistency Property Iden-

tification

This section shows how the ER model is built and how the consistency properties are

identified based on the model.

3.4.1 Constructing the Entity Relationship (ER) Model

To capture the relationships between NFV entities (e.g., between VNFFG and Path

entities) both within and across NFV levels, we devise an ER model for the NFV stack

27

(shown in Figure 3.4). The shaded nodes represent NFV-related entities, while non-shaded

nodes represent entities related to the underlying infrastructure. The directed edges show

the relationships between those entities at the same level, while (1:1), (1:M), (M:1), and

(M:M) represent the corresponding cardinalities of the relations. The dashed line edges

represent the cross-level mapping between the entities at different levels, which have a

(1:1) cardinality.

We construct the model by performing a comprehensive study of the system configura-

tions of a real NFV testbed implemented using OpenStack/Tacker [2] (detailed in Section

3.6), and relevant literature on modeling and deploying NFV and virtualized infrastructures

(e.g., [1, 30, 38]). We further validate our model with several industrial experts on NFV

from a large telecommunication vendor. In the following, we elaborate on our ER model

construction process.

Constructing the Nodes of the ER Model. According to the NFV deployment model (dis-

cussed in Section 3.2.1), we divide the ER model into four levels, the Service orchestration

level (L1), resource management level (L2), virtual infrastructure level (L3), and physical

infrastructure level (L4). Then, to capture the system entities at each level, we study the

deployment details of NFV environments [2, 1] and the supporting technologies (such as

network virtualization technologies like VLAN and VXLAN [81]) for implementing the

NFV. Then, we represent the identified entities as the ER model nodes.

Example 3.4.1 In this example, we identify the NS provider, NSD, and NS nodes in

the ER model. The NS provider uploads the Network Service Descriptors (NSDs) at the

Service Orchestration level (L1), which define the network service based on user require-

ments. Each NSD creates one or more NSs, stored as entities in the NFV system, along

with the NS provider’s ID and information. Thus, the NS provider, NSD, and NS entities

are represented as nodes in the ER model, as shown in Figure 3.4 at L1.

28

Constructing the Edges of ER Model. We construct the ER model with two types of

edges based on the: (i) relationships between NFV entities at the same level, and (ii) map-

pings between entities from different levels. In particular, we identify the relationships and

constraints among same-level entities and represent them as directed edges with cardinal-

ity attributes. Additionally, some system entities at one level are implemented as different

entities at the next level. The relationships between these entities can be utilized for ver-

ification. We represent these relationships as cross-level mapping edges connecting NFV

entities across different levels.

Example 3.4.2 Since the NSD creates the NS (as explained in Example 2), we establish

a directed edge between these entities, labeled CreatedFrom(M:1)(Figure 3.4 at L1), to

represent their relationship. The cardinality ((M:1)) reflects the constraints governing this

relationship: the NSD can create multiple NSs, but each created NS belongs to only one

NSD template. Furthermore, VNF specifications at L1 of the NFV system are instantiated

as VDUs at L2. Thus, we represent this relationship as a cross-level mapping between the

VNF and VDU entities.

3.4.2 Automated Consistency Property Derivation

This section illustrates how the ER model is utilized to automatically derive consistency

properties (which will be used later for our cross-level verification in Section 3.5).

The relationships between entities in the ER model reflect fixed configuration con-

straints within the NFV system. For instance, the relationship between the Path and Chain

entities at L1 (refer to Figure 3.4) is (1:1), indicating that each Chain is linked to a specific

Path, and each Path corresponds to one Chain. Deviating from these fixed configurations

can lead to unintended service behavior or interruptions.

Accordingly, we can derive properties, namely consistency properties, to verify whether

29

(1:M)

NS Provider VNFFG VNFFGD

Path

Chain VNF CP

Classifier

Tenant SFC

SFC Path

SFC Classifier

Net

SubNet
VM

Instance

Port Router

(1:M) HasRouter

(1:M) HasSubNet

(1:M) HasVDU

VLAN

VXLAN

vRouter

vPort

VM

Open vSwitch

L2: Resource

Management

Level

L1: Service

Orchestration

Level

L3: Virtual

Infrastructure

Level

LocatedAt

VNFD
(1:M) CreatedFrom

NSD

NS(1:M) HasNS

(1:M) HasVNF

Port Pair

LocatedAt

VDU

Port Pair Group

Segment

(1:1) IsAssigendSeg

Remote VTEP

L4: Physical Infrastructure Level

(1:M) HasNet

(1:M) AssociatedWith

(1:1) composedFrom

(M:1) AssociatedWith (1:1) AttachedTo

(M:M) ComposedOf

(M:1) DefinedOn
(1:M) AttachedTo

(M:1) HasInterfaceOnPort

(M:1) IsMappedToSeg

(1:M) AttachedOnPort

(M:1) CreatedFrom

(M:M) AttachedOnPort

(1:1-2) AttachedOnPort

(1:1) ComposedFrom

(M:1) CreatedFrom

(1:M:M) AttachedOnCP

(1:M) HasVNFFG

(1:M) AssociatedWith

(M:M) ComposedFrom

(M:1) AttachedTo
(M:1) TaggedWith

(1:1) ConnectedTo (M:1) TaggedWith

(1:M) HasPort

(1:1) IsAssociatedWith

(M:1) HasInterfaceOnPort

LocatedAt

(1:M) HasPath

(1:M) HasChain

(1:M) HasRunningVM

(1:1) RelatedToServer

C
ross-level m

apping
V

N
F

 nodes
R

elationship

Figure 3.4: The ER model of the NFV stack.

any instances created within the NFV system comply with the established configurations.

These properties can be automatically obtained by systematically parsing the entities and

edges of the ER model, with the assumption that the model correctly captures all relation-

ships between the NFV system entities at both the same and across different levels (Section

3.2.4). In particular, we can derive the following consistency properties.

Consistency of Entity Configuration. Each node in the ER model represents a system

entity with various configuration options determined by the specifications provided by NFV

tenants. We explore each node to derive a corresponding consistency property that ensures

the alignment of entity configurations with the defined specifications.

Consistency of Relationships Between Entities at the Same Level. The directed edges

between two entities at the same level in the ER model signify their relationship, reflecting

30

system configurations and tenant specifications. We explore these edges to derive consis-

tency properties that ensure the relationships align with both system configurations and

tenant specifications.

Consistency of Relationships Between Entities Across Different Levels. Similarly, the

dashed line edges between two entities in the ER model across adjacent levels represent

a relationship between them. Specifically, this indicates that an entity at a higher level

must have a corresponding implementation at the next level. We explore these edges to

derive consistency properties that ensure the integrity of the mappings. Table 3.2 presents

an excerpt of consistency properties automatically derived from the ER model, including

their corresponding sources, and descriptions.

Property ER model source Description

Classifier integrity L1: Classifier entity
Classifier configurations should be consistent

with tenant-defined specifications

Forwarding correctness

L1: AssociatedWith relationship

between the Classifier and Path

entities

The classifier should be associated with the

correct path as outlined in the tenant specif-

ications to ensure accurate traffic steering

Service chain

configuration consistency

L1, L2: Cross-level mapping

between the Chain and SFC

entities

Service chain created at L1 should be correctly

instantiated as SFC at L2

Table 3.2: Example of consistency properties identified from the ER model entities and

relationships.

The aforementioned consistency properties can be automatically obtained from the ER

model by representing it as a graph. In this graph, entities are depicted as nodes, and rela-

tionships are depicted as directed edges, attributed with relationships and their cardinalities.

By traversing the graph, each node and its connected edges are processed to extract the rel-

evant consistency properties. These properties are then stored in two lists: EntityConsisten-

cyProperty for node-level consistency and EdgeConsistencyProperty for relationship-level

consistency.

31

3.5 Cross-Level Security Verification

This section describes how NFVGuard+ conducts cross-level security verification.

Data Collection. To conduct cross-level security verification in NFV, data must be col-

lected from various sources across different levels of the NFV stack. For example, to

verify whether a VNFFG is correctly implemented according to the specification, we need

to collect data from various levels, including the VNFFG specification from the Tacker

database at L1, data about VDUs and ports from the Nova and Neutron databases at L2,

and the OpenFlow rules at L3 from multiple servers. Typically, this would involve manu-

ally inspecting the configurations at each level to identify relevant data for each property.

However, by utilizing the ER model, we can efficiently identify the necessary data for each

property as follows.

First of all, we must identify the property requirements (what needs to be verified) and

determine their scope (which level they pertain to). Next, we will map these requirements

at each level to the ER model and identify the entities within the model that relate to the

property. For instance, the VNFFG configuration consistency between L1/L2 property (re-

fer to [6]) requires that the VNFFG design (at L1)-including the size of the VNFFG, the

VNF sequences, and the classifiers definition-be correctly instantiated into corresponding

SFC configurations (at L2), including the SFC size, VDU sequences, and classifier details.

One of the requirements for this property at L1 is to determine the size of the VNFFG,

which indicates the number of VNFs that comprise it. By referencing the ER model at L1,

we should relate this requirement with the corresponding entities at this level. Since it per-

tains to the VNFFGs, we will select the VNFFG entity as a relevant entity for this property.

Then, we will examine the relationships associated with this entity to check if they can be

utilized by the property. For example, by examining the relationships associated with the

VNFFG entity, we can observe that the VNFFG may consist of one or more paths, with

each path comprising a chain of VNFs. This highlights the importance of the Path, Chain,

32

and VNF entities in determining the size of the VNFFG.

Afterward, we will collect the relevant data for the property based on the identified

entities and by consulting the data sources table (Table 3.3), which is created in conjunction

with the ER model. For example, the ID of each VNFFG is stored in the VNFFG entity

along with the ID(s) of the path(s) it is composed of, and each Path entity includes the

ID of the chain that makes it up. While, the size of the VNFFG, can be determined from

the data source of the Chain entity, as indicated in the Description column of Table 3.3.

Likewise, the relevant data for the other requirements of the property are identified in the

same manner.

Entity Data source Description

Chain
The vnffgchains table

in Tacker database

Identifies the CPs and the VNFs in the chain

and the sequential order of the VNFs as

outlined in the specifications

Classifier
The vnffgclassifiers

table in Tacker database

Identifies the classified traffic flows entering

the VNF chain path, typically including

details like source port and IP protocol

SFC
The sfc port chains

table in Neutron database

Stores the ID of the chain created at L1 and

document its instantiation and specifications,

including the flow order between VNFs

Open vSwitch

(OVS)

ovs-fields in OVS

and OpenFlow tables

Store information related to the forwarding

behavior of the network services

Table 3.3: An excerpt of the data sources for some of the entities in the ER model, along

with a description of the types of data they contain.

Data Processing. The data required to verify a specific security property could be col-

lected from multiple levels of the NFV stack and it may differ in format, as each level

employs distinct technologies (such as resource management at L2 and virtual networking

elements at L3) and stores data in different formats (e.g., SFC traffic steering is stored as

OpenFlow rules at L3 and as database entries at L2). Moreover, this data could be scattered

(e.g., across different database tables or different OvSs) and might not directly reflect the

necessary information needed for verification. Therefore, we process the collected data to

33

generate meaningful information for verification and ensure its in a consistent format com-

patible with the formal verification engine (e.g., the input format for the Sugar CSP solver).

The processing of the collected data is outlined below.

1. Data correlation: Due to the distributed nature of the audit data (e.g., data may be

scattered across different services at the same level, such as Nova or Neutron in

OpenStack or among physical servers), we need to correlate the collected data within

each level to produce meaningful information for verification [30]. For example,

VNFFG 1 is implemented at L3 as three VMs (VM 01, VM 02, and VM 03) hosted

on two physical servers. To verify the forwarding correctness of VNFFG 1, we need

to collect the flow rules (determines how traffic flows through these VMs) stored

on both physical servers and scattered across multiple tables on each server. For

example, if VM 02 and VM 03 are on the same physical server and we want to verify

whether VM 02 is forwarding traffic to VM 03, we will need to examine the flow

rules stored in tables 0, 5, 10, and the Group table. Therefore, we need to correlate all

these data to piece together sufficient information for verification. The relationships

between system entities at each level of the ER model help to identify the data that

needs to be correlated. For instance, the relationship between the VNFFG entity

and the Path entity indicates that they are interconnected and their data could be

correlated.

2. Data aggregation: Audit data for specific properties, such as consistency properties,

could be distributed across different levels of the NFV stack. Therefore, we must

aggregate the data from these different levels to compile sufficient information for

verification. For example, to verify whether a VNFFG is correctly implemented ac-

cording to the specification, we need to collect the specification data at L1, aggregate

it with the instantiation data at L2, and further combine it with the implementation

data at L3. The cross-level mapping relationships between system entities at each

34

level of the ER model assist in identifying the data that needs to be aggregated.

Formal Verification. We propose to apply formal methods to verify the compliance of the

NFV stack against the identified security and consistency properties. In this work, we for-

malize the properties as a Constraint Satisfaction Problem (CSP), a time-proven technique

for expressing many complex problems. We then apply Sugar [67], a well-established con-

straint solver, to check whether these properties are satisfied. We detail the verification

process as follows.

To systematically verify the NFV-related properties, we need to transform the property

requirements as well as the involved ER model entities and their instances (i.e., the system

data) into the corresponding CSP code. The CSP code mainly consists of four parts:

• Variable and domain declaration. Entities of the ER model—i.e., the nodes repre-

senting system components—are expressed as CSP variables with integer domains.

Each domain encompasses all data instances defined within the system. For exam-

ple, for the VNFFG configuration consistency between L1/L2 property, the VNFFG

entity (refer to Figure 3.5) is expressed as the variable fg defined over the domain

VNFFG such that (domain VNFFG 0 max vnffgs) is a declaration of a CSP

finite domain of VNFFGs, where each value between 0 and max vnffgs is for a

corresponding data instance in the NFV system.

• Relation declaration. The ER model relations, involved in the property require-

ments, are converted into CSP relations over variables with a support consisting

of tuples of system data. For example, the relation between the VNFFG and its

path (refer to Figure 3.5) is defined as the CSP relation (relation HasPath 2

(supports(fg path)), where instances of a given relation are the set of tuples

corresponding to the entities instances. The CSP relations describe the current state

of the system.

35

• Constraint declaration. We define constraints, in terms of CSP predicates, over the

involved relation to specify the conditions that the instances of these relations should

satisfy. Since CSP solvers provide solutions only in case the constraint is satisfied

(SAT), we define constraints using the negative form of the property to obtain a

counter-example in case of a violation.

• Body. We combine different predicates based on the properties to verify using Boolean

operators.

VNFFG

Path

Chain

ClassifierService

Orchestration

Level (1:1) ComposedFrom

(1:M) AssociatedWith

(1:M) HasPath

Cross-level mapping VNF nodesRelationship

Resource Management Level

Figure 3.5: Thumbnail of the ER model showing entities for verifying VNFFG configura-

tion consistency property at L1.

When the CSP solver (i.e., Sugar) solves the constraints and finds no solution (UNSAT),

the verified properties are reported to be compliant. Otherwise, the solution provided by

the CSP solver gives the variables’ instances for which the negative form of the property

is satisfied, meaning that a violation has occurred. For instance, we express the property

virtual resource isolation presented in Example 3.2.1 using the following CSP relations.

HasChain(t, sfc) which evaluates to true if tenant t has/owns a running SFC sfc,

SFCHasVDUs(sfc, vdu)which evaluates to true if the SFC sfc has assigned VDU vdu,

HasVDU(t, vdu) which evaluates to true if the tenant t has a running VDU vdu. Then

we define the negation of the property in terms of a predicate over those relations to obtain

a counter-example in case of a violation, shown as the VirtualResourceIsolation

predicate in Listing 3.1 (an excerpt of Sugar code). Example 3.5.1 shows how Sugar verifies

this property and allows for obtaining the violation evidence.

36

Example 3.5.1 Suppose that a tenant t with the Tenant ID (18e552) is encoded as (10)

in listing 3.1, the Chain (3cf7ca68) he owns as (1), and the VDUs (49ce0b1e, 738bb405)

as (15, 16), respectively. The predicate VirtualResourceIsolation will evaluate

to true if any of the VDUs assigned to the chain (1) that belongs to tenant (10) is owned by

another tenant. According to the relation instance HasVDU(11 16), the chain (1) has a

VDU (16) that does not belong to tenant (10). Therefore, the predicate evaluates true and

the output of Sugar code is (SAT) with evidence about what values breached the property

i.e., (t=10; sfc=1; VDU1=16).

//Domains and variables declaration

(domain TENANT 0 10,000) (domain SFC 0 5000)

(domain VDU 0 100,000)

(int t TENANT) (int sfc SFC) (int vdu VDU)

//Relations Declarations

(relation HasChain 2(supports((10 1)(12 3)))

(relation SFCHasVDUs 2(supports((1 15)(1 16)))

(relation HasVDU 2(supports((10 15)(11 16)))

//Predicate Declaration

(predicate(VirtualResourceIsolation t sfc vdu)

(and (HasChain t sfc)(SFCHasVDUs sfc vdu)

(not(HasVDU t vdu))))

//The Body

(VirtualResourceIsolation t sfc vdu)

Listing 3.1: An excerpt of Sugar source code.

After verifying the NFV-related properties, we ensure the verification result for other

levels using consistencies. The consistency between different levels of the NFV stack can

be utilized to improve the performance of the verification (as we illustrate in the motivat-

ing example in Section 3.1). The key idea is to leverage the consistency result to perform

37

security verification at one level of the NFV stack, instead of verifying the same security

property at each level separately. As long as the NFV stack levels are consistent, the veri-

fication results at one level would be applicable to other levels. We show the performance

improvement that we gain by utilizing the consistency property in experiments (Section

3.1).

3.6 Application to OpenStack/Tacker

In this section, we detail the deployment and data generation of our NFV testbed, dis-

cuss the challenges encountered during this process, and detail the implementation of NFV-

Guard+.

3.6.1 Deploying the NFV Testbed

NFV Testbed Implementation. We build our NFV testbed using OpenStack [2] with

Tacker [70] due to its growing popularity in the real world (e.g., [68]). More specifi-

cally, we rely on OpenStack for the Virtual Infrastructure Manager (VIM), which has been

adopted by 96% of CSPs and more than 60% of the telecom operators in their NFV de-

ployments [82]. We rely on Tacker, an official OpenStack project, for both VNFM and

NFVO modules based on the ETSI MANO architectural framework [3]. We choose the lat-

est version, i.e., OpenStack Rocky and Tacker-0.10.0 [2] to obtain the most recent features

of NFV deployments.

NFV Data Generation. We intend to deploy a large-scale NFV system to assess the per-

formance of NFVGuard+. However, to the best of our knowledge, there is no publicly

available dataset of TOSCA [83] deployment descriptors for a large-scale NFV deploy-

ment. Therefore, we develop Python scripts to generate various Virtual Network Function

38

Descriptors (VNFDs) and Virtual Network Function Forwarding Graph Descriptors (VNF-

FGDs) in TOSCA, and we onboard those to our testbed to deploy different network services

and generate large-scale NFV datasets. To ensure more diversity, we randomly choose a

few parameters in the template while generating the deployment descriptors: 1) the number

of network ports per VNF, 2) the number of VDUs per VNF, 3) the Flavor for each VNF

and VDU, 4) the number of VNFs for each Network Function Path (NFP), 5) the order of

VNFs for each NFP, 6) the flow-classifier criteria for each NFP, and 7) the number of NFPs

for each VNFFG.

Specifically, the scripts first generate a diverse set of VNFDs for a given tenant by cus-

tomizing a base template. After that, they generate multiple VNFFGDs (resp. NSDs) by

creating unique network function paths using the available VNFDs. Then, these descrip-

tors are onboarded to the VNFM and the NFVO modules in Tacker, respectively, through

Horizon/CLI [2]. Once onboarded, the TOSCA templates are interpreted and translated to

Heat templates [2]. Then, using the Heat template, Tacker leverages Nova to provision the

virtual instances implementing the VNFs, and Neutron to provision the virtual networks

that provide the connectivity to and from each VNF. Finally, the traffic steering among

the chains of VNFs is handled by the OvS switches [80]. Figure 3.6 shows the detailed

flowcharts for generating VNFDs and VNFFGDs.

VNFDs Generation. Figure 3.6(a) depicts the procedure to generate multiple VNFDs for

a given tenant. Each VNFD is used to create one or several VNFs of the same type. More

specifically, we use a base template that our generator customizes to create a diversified

set of VNFDs. First, a set of virtual subnets is created, and then the corresponding VNF

images are uploaded to be used within the VNFD templates. For each VNFD to be created,

a set of subnets is selected, and then identifiers for connection points (CPs) and virtual links

(VLs) associated with the VNF are created accordingly. Then, these identifiers are applied

to fill in the VNFD template. Once these VNFDs are generated, they are used to generate

39

Start

Create virtual subnets

Upload VNF Images

Subnets created?
No

Yes

VNF images

uploaded?

No

Yes

Input projectname

& no. of VNFDs (n)

Select CPs and VLs based on

subnet availability

Write the template in TOSCA

End

Generated VNFD

Decrement n;

if (n > 0)?

Yes

No

(a) VNFD Generation

Start

Generate NFFGD

or NSD?

Input no. of

descriptors (n)

Load the base YAML template

Convert YAML template to

JSON

Load already existing network

function paths

Randomly select a subnet to

chain VNFs

VNFDs available?

Randomly select VNFs and a

CP from each VNF

Check if the created path

already exists

Path exists?

Add the created path to

existing paths

Collect the VNFs based on

the order and add to JSON

Build other properties such as

node_template and groups

Convert JSON to YAML and

write the template in TOSCA

If NSD?

Generated VNFFGD / NSD

End

Remove the VNFD imports

for VNFFGD

Order and shuffle the

selected CPs to create a

network path

Yes

No

Yes

No

Yes

No

Decrement n;

if (n > 0)?

No

Yes

(b) VNFFGD/NSD Generation

Figure 3.6: The process of generating VNF and VNFFG/NS TOSCA template descriptors.

Figure 3.7: The topology of our NFV testbed (left) consisting of 20 tenants, 200 VNFFGs,

and 200 VNFs and detailed view (in Horizon [2]) of an attack scenario similar to the moti-

vating example in Section 3.1 (right).

VNFFGDs/NSDs.

VNFFGDs/NSDs Generation. Figure 3.6(b) depicts the process for generating multiple

VNFFGDs (resp. NSDs) for a given tenant. Similar to generating VNFDs, we use a base

40

VNFFGD (resp. NSD) TOSCA template with all the necessary attributes that our gen-

erator modifies accordingly to create a diversified set of VNFFGDs (resp. NSDs). The

generator considers the number of VNFFGDs (resp. NSD), the available VNFDs, and

the VNFFGD/NSD base template as its inputs. The VNFFGD/NSD base template (origi-

nally in YAML format) is first converted into JSON format for easier modification. Then

a list of existing VNFFGD (resp. NSDs) is loaded and checked to avoid the creation of

duplicates. To build new VNFFGDs/NSDs, a subnet is first randomly selected, and then

the CPs connected to this subnet are collected from a random number of VNFDs. After

that, these CPs (each represents a VNF) are shuffled first and then ordered to create a net-

work function path. Once a path is created, its verified against the list of existing paths to

avoid any duplication. Then, the VNFs are collected based on the order of CPs followed

by the creation of other additional information such as node template, groups, and

network src port id to complete the VNFFGD (resp. NSD). To finalize the genera-

tion of VNFFGD (resp. NSD), the JSON is converted into YAML again and then saved as

a TOSCA template file.

Figure 3.7 (left) is generated using OpenStack Horizon [2] to provide an overview of

the network topology of our NFV testbed consisting of 20 tenants, 200 VNFFGs (each

VNFFG consists of 10 VNFs), and each tenant has 10 VNFFGs. The figure shows the in-

terconnections between the provider network and different tenant subnets (which are high-

lighted in different colors for each tenant) with their corresponding routers and VNFs.

Figure 3.7 (right) shows a detailed view of an attack scenario similar to the motivating

example (Section 3.1) where a malicious virtual machine (VM5) from the network of Eve

(nfvdsg18-network1, highlighted in orange), is stealthily added to the service func-

tion chain of Bob implemented in his subnet (nfvdsg18-network2, highlighted in

blue).

NFV Testbed Implementation and Data Generation Challenges. Hereafter, we will

41

discuss the implementation and data generation challenges, causes of failures, and our so-

lutions. Due to space constraints, not all challenges are covered here.

Version Mismatch. Basic NFV implementation with OpenStack requires careful orches-

tration of at least 14 OpenStack services. Version mismatch among these services can lead

to deployment failures and pose significant troubleshooting challenges. For instance, we

encountered a silent failure in OpenFlow rules update, due to a version mismatch between

Neutron and OvS. We addressed this by downgrading Neutron version.

Manual Effort. During the installation process, we encountered an unexpected freeze.

To bypass the freeze and complete the installation, we manually installed some services

specifically, Mistral and Tacker.

Undocumented Deployment Constraints. During data generation, we encountered

VNFFG creation failures due to undocumented deployment constraints within the VNFFG

template. These failures involved the inability to chain VNFs using management ports or

from different subnets, and required traffic to originate from the same subnet. We address

these failures by VNFFG template validation.

3.6.2 NFVGuard+ Implementation

The data collection component is implemented to collect data from different OpenStack

services, such as Tacker, Nova, and Neutron [2], as well as from the instances running on

every compute node of OvSs. Specifically, we rely on the Tacker database to retrieve user-

defined descriptors uploaded to the VNFM and NFVO modules of Tacker (e.g., VNFD and

VNFFGD) as the basis for verifying most of the properties. We also rely on a collection

of OpenStack databases, such as Neutron database for information about SFC network-

ing (e.g., the sequence of service functions, the traffic steering in-between, and the traffic

classifier) and Nova databases (e.g., table Instance) for information about the tenant, the

VDU, and the hosting machine. Finally, we collect the OpenFlow tables and internal OvS

42

databases from all the compute nodes, e.g., to check for properties such as inconsisten-

cies between L2 and L3. To process the collected data, we implement the data processing

component in Python and Bash scripts. First, for each property, our processing compo-

nent identifies the involved relations, and the supports of the relations are either fetched

directly from the collected data (e.g., the support of the relation BelongsTo) or recovered

after data correlation. Second, our processing component formats each group of data as an

n-tuple, e.g., (resource, tenant), (OVS, VLAN, VXLAN), etc. Finally, it uses the n-tuples

to generate part of the Sugar [67] source code and appends the n-tuples with the variable

declarations, relationships, and predicates for each security property. Then we develop

a customized script to generate the Sugar source code for the verification of each prop-

erty. The formal verification component is implemented to feed the generated code into the

Sugar CSP solver version 2.3.3 [67]. Sugar then produces the verification results to either

state the property holds or provide evidence when the property is breached.

3.7 Experiments

This section evaluates the effectiveness of NFVGuard+ in terms of accuracy, efficiency,

and scalability through experiments using real and synthetic datasets. In the following, we

describe our experimental settings and findings.

3.7.1 Experiments with Synthetic Data

Experimental Settings. We deploy our testbed on a SuperServer 6029P-WTR equipped

with Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz and 128GB of RAM. To evaluate the

performance of NFVGuard+, we generate various synthetic datasets of different sizes vary-

ing from 1K up to 5K VNFFGs (representing reasonably large NFV setups [84]), and from

20K to 100K VMs. All data processing and experiments are conducted on the SuperServer

43

with the verification tool, Sugar V2.3.3 [67]. Each experiment is performed 1,000 times to

avoid any fluctuation caused by other operations on the server. The reported results show

the efficiency and scalability of NFVGuard+.

Effectiveness Evaluation of NFVGuard+. To evaluate the effectiveness of our approach,

we apply NFVGuard+ to pre-validated instances of security properties and assess its accu-

racy in verifying those instances. Table 3.4 shows some example security properties, their

investigated instances, the instantiated Sugar code for each instance, and the corresponding

Sugar output.

Property Property instance Instantiated Sugar code Sugar output

VNFFG configuration

consistency between L1/L2

L1: (VNFFG path: 10fp, VNF1: 4f, VNF2: 5f) and

L2: (SFC: 10fp, VDU1: 4f, VDU2: 5f)

((predicate VNFFGConsistencyL1/L2) (and (L1Chain (10fp, 4f, 5f))

(L2Chain(10fp, 4f, 5f)) (10fp = 10fp)))
UNSAT

VNFFG configuration

consistency between L2/L3

L2: (SFC: 10fp, VDU1: 4f, VDU2: 5f) and

L3: (Chain: 10fp, VM1: 4f, VM2: 5f)

((predicate VNFFGConsistencyL2/L3) (and (L2Chain (10fp, 4f, 5f))

(L3Chain (10fp, 4f, 5f)) (10fp = 10fp)))
UNSAT

Virtual resource isolation L2: (Tenant: 1t, SFC: 10fp, VDU1: 4f, VDU2: 5f)
((predicate VirtualResourceIsolation) (and (HasChain (1t, 10fp))

(SFCHasVDUs (10fp, 4f) (10fp, 5f)) (not(HasVDU (1t, 4f) (1t, 5f)))))
UNSAT

Mapping unicity VLANs

-VXLANs
L3: (Port: 9p, Switch: 1s, VLAN: 7l, VXLAN: 10xl)

((predicate MappingUnicity) (and (AssignedVLAN (1s, 9p, 7l))

(MappedToVXLAN (1s, 7l, 10xl)) (MappedToVXLAN (1s, 7l, 10xl))

(not (10xl = 10xl))))

UNSAT

VNFFG configuration

consistency between L1/L2

L1: (VNFFG path: 20fp, VNF1: 10f, VNF2: 11f) and

L2: (SFC: 20fp, VDU1: 10f, VDU2: 11f, VDU3: 12f)

((predicate VNFFGConsistencyL1/L2) (and (L1Chain (20fp, 10f, 11f))

(L2Chain (20fp, 10f, 11f), (20fp, 11f, 12f)) (20fp = 20fp)))

SAT: (VNFFG path: 20fp,

SFC: 20fp, VDU2: 11f,

VDU3: 12f)

VNFFG configuration

consistency between L2/L3

L2: (SFC: 30fp, vRtr: 17f, vFW: 18f, vDPI: 19f) and

L3: (Chain: 30fp, vRtr: 17f, vFW: 18f)

((predicate VNFFGConsistencyL2/L3) (and (L2Chain (30fp, 17f, 18f),

(30fp, 18f, 19f)) (L3Chain (30fp, 17f, 18f)) (30fp = 30fp)))

SAT: (SFC: 30fp,

Chain: 30fp, vFW: 18f,

vDPI: 19f)

Virtual resource isolation L2: (Tenant: 1t, SFC: 10fp, VDU1: 4f, VDU2: 5f)
((predicate VirtualResourceIsolation) (and (HasChain (1t, 10fp))

(SFCHasVDUs (10fp, 4f) (10fp, 5f)) (not(HasVDU (1t, 4f) (2t, 5f)))))

SAT: (Tenant: 1t,

SFC: 10fp, VDU2: 5f)

Mapping unicity VLANs

-VXLANs

L3: (Port: 9p, Switch: 1s, VLAN: 7l, VXLAN: 10xl,

VXLAN: 15xl)

((predicate MappingUnicity) (and (AssignedVLAN (1s, 9p, 7l))

(MappedToVXLAN (1s, 7l, 10xl)) (MappedToVXLAN (1s, 7l, 15xl))

(not (10xl = 15xl))))

SAT: (Port: 9p, Switch: 1s,

VLAN: 7l, VXLAN: 10xl,

VXLAN: 15xl)

Table 3.4: Example property instances for evaluating the effectiveness of NFVGuard+.

The accuracy of our approach depends on the precision of the formal verifier, specif-

ically the Sugar SAT solver. To test the solver’s accuracy, we provide the solver with

pre-validated instances and compare its results with our own. In particular, we verify in-

stances of the VNFFG configuration consistency, virtual resource isolation, and mapping

unicity VLANs-VXLANs properties. These instances are first tested by us for compliance

before being given to the solver. Then, we check if the solver incorrectly identifies any of

the compliant instances as non-compliant. Our evaluation shows that the solver output is

accurate, correctly identifying all instances as compliant. Examples of these instances are

shown in the first four rows of Table 3.4, where the solver output is UNSAT, indicating that

the instances comply with the corresponding properties. For clarity, the instantiated Sugar

44

code has been shortened and simplified. For more details on Sugar syntax and the full code

excerpt, refer to Section 3.4.

Next, we inject security breaches at different levels of the NFV stack and test the ac-

curacy of our approach in identifying those breaches. First, by exploiting a privilege esca-

lation vulnerability in OpenStack (OSSA-2017-004 [85]), we would be able to modify the

specification of an SFC and add an additional VNF. Such a modification at L2 will not be

reflected at L1, resulting in a breach of configuration consistency between L1/L2 property.

An instance of this breach is presented in Table 3.4. In verifying the property, the solver

aims to identify any VNFs that are defined in L1 for the given chain but not in L2, and vice

versa. The solver successfully identifies this breach and returns the values that cause the

property violation, specifically: (VNFFG path: 20fp, SFC: 20fp, VDU2: 11f, VDU3: 12f)

(refer to Table 3.4).

Second, we target the flow tables at L3 to create inconsistencies with higher levels. By

triggering a virtual switch reconciliation during a network topology update, outdated flow

rules are reinstalled, causing traffic to be steered according to old definitions [1]. This leads

to a breach in configuration consistency between L3 and upper levels. An instance of this

breach is presented in Table 3.4, where we assume the configuration consistency between

L1/L2 property was verified to be met by the configuration.

In particular, a VNFFG that initially forwarded traffic from a vRtr to a vFW is updated

to route traffic from the vRtr to the vFW and then to an additional vDPI. While the SFC at

L2 is updated, the L3 flow rules remain unchanged due to the virtual switch reconciliation

vulnerability. In verifying the property, the solver aims to identify any discrepancies in

the traffic steering information collected from the different levels. The solver successfully

identifies this breach and returns the values (SFC: 30fp, Chain: 30fp, vFW: 18f, vDPI: 19f)

as evidence of the violation. Additionally, we generate misconfigurations to create further

breach instances. The last two rows of Table 3.4 provide examples of these instances.

45

Figure 3.8: Verification performance for the consistency properties while varying the num-

ber of service chains.

Our tests demonstrate the effectiveness of our approach in providing accurate results for

the specified security properties. In general, using formal methods in security verification

is known to provide provably accurate results [86, 87] for given security properties. A prac-

tical challenge is for administrators to properly identify and define the security properties

based on their specific needs. One potential solution to this challenge is to automatically ex-

tract security properties from standards using natural language processing (NLP) [88, 89],

though this falls beyond the scope of this work.

Efficiency of Verifying the Consistency Properties. In this experiment, we evaluate the

efficiency (in terms of response time, CPU usage, and memory consumption) of NFV-

Guard+ in verifying the consistency properties derived from the ER model (refer to Section

3.4.2). We verify the classifier integrity, forwarding correctness, and service chain configu-

ration consistency properties, which correspond to the consistency properties derived from

the different objects of the ER model, i.e., node, edge, and cross-level edge, respectively.

According to Figure 3.8, the verification time increases almost linearly with the in-

creased number of resources and the verification requires less than 1.5 seconds for all

three properties even for the largest dataset. The verification of service chain configuration

consistency property incurs the lowest response time, CPU, and memory consumption as

shown in Figure 3.8 due to its simplest predicate with a smaller number of variables than

the other two properties. This is expected as complex properties with a higher number of

relations and variables generally take more time to process, and consume more memory

46

Figure 3.9: Verification time for the topology consistency properties in case of compliance

(left), in case of reporting the first breach verifying between levels L2/L3 (middle), and in

case of reporting the first breach verifying between L1/L2 (right).

and CPU. However, the maximum amount of CPU consumption is less than 12%, while

the maximum memory consumption is only 1%. Hence, though the verification for the

forwarding correctness property takes more time and consumes more resources than the

classifier integrity property, the consumed resource still stays reasonably low.

Efficiency of Cross-Level Security Verification. In this set of experiments, we evaluate

the verification time required by the candidate properties presented under different config-

uration scenarios. More specifically, the first configuration scenario assumes that the NFV

configuration has no violation of any of the considered properties (detailed later in this sec-

tion and depicted in Figures 3.9 (left) and 3.10 (left)), while in the second scenario (detailed

later in this section), we inject several violating instances for each of the tested properties

and consider the time to report the evidence only for the first breach (Figures 3.9 (middle)

and (right) and 3.10 (middle)), in case a fast binary answer on the compliance status of the

system is required by the system administrator/auditor. We then consider the average re-

sponse time to find all compliance breaches (detailed later in this section and Figures 3.10

(right), 3.11 and 3.12 (left)). For each of the investigated scenarios, we consider the con-

sistency properties, VNFFG configuration consistency between L1 and L2, and the VNFFG

configuration consistency between L2 and L3. We also consider the security properties,

virtual resource isolation (L2), and the mapping unicity VLANs-VXLANs (L3).

Note the required time for detecting non-compliance with the consistency properties

47

also depends on the level where the breach is detected. For instance, if we detect a violation

in the consistency property at L1/L2, then the verification stops and we report the time for

non-compliance of the VNFFG configuration as the time for non-compliance of the later

consistency property (Figures 3.9 (right) and 3.11 (middle)). Since the hierarchy of the

NFV stack implies that any faulty configuration at the higher levels would lead to a fault

at the lower levels, to reduce the verification time, we exploit this observation and stop the

verification once we have a violation at higher levels. Otherwise, we continue the process to

verify the non-compliance of the consistency property between lower levels (e.g., L2/L3).

In this case, the verification time is the time for verifying the consistency property between

L1/L2 in case of no breach and the time for reporting non-compliance at the lower levels

L2/L3 (Figures 3.9 (middle) and 3.11 (left)).

Scenario 1. Cross-Level Security Verification in Case of Compliance: Figure 3.9 (left)

depicts the verification time for the consistency properties in case of compliance. In gen-

eral, the consistency property verification consumes more time for verifying between higher

levels (it requires 1∼5s for L1/L2) than for lower levels (1∼3s for L2/L3) due to a more

complex and higher number of relation instances of the predicates between higher levels.

Moreover, we also observe that with an increased number of VNFFGs, the required time is

increasing almost linearly.

Figure 3.10: Verification time for the security properties virtual resource isolation (left) and

mapping unicity VLANs-VXLANs (middle) in case of compliance and in case of reporting

the first breach. Verification time for finding all compliance breaches (10 breaches) for the

consistency property L1/L2 using SAT and ALLSAT solvers (right).

Scenario 2. Cross-Level Security Verification in Case of Detecting the First Breach:

48

Figure 3.11: Verification time for the topology consistency properties, virtual resource iso-

lation, and mapping unicity VLANs-VXLANs in case of reporting all compliance breaches

using ALLSAT solver, with (left) reporting all breaches for verifying between levels L2/L3,

(middle) reporting all breaches for verifying between L1/L2, and (right) reporting all

breaches for verifying virtual resource isolation and mapping unicity VLANs-VXLANs.

Figure 3.9 (middle and right) depict the verification time for the consistency properties

in case of non-compliance and providing the evidence for the first security breach. The

time to detect and report the first breach (∼ 3s while the first breach was found at L1/L2,

and ∼ 6s for L2/L3) is less than the time required for assessing the same property in case

of compliance (∼ 8s). This is due to the action of immediately stopping the verification

process after finding the first breach as we mentioned earlier. Also, the time for detecting

breaches between lower levels is not far from the time in the case of compliance, which

can be attributed to the fact that the verification of consistency property between higher

levels is more time-consuming than the one between lower levels. We consider the time

for detecting non-compliance to be reasonable for application in real life as a non-real-time

auditing solution.

Figure 3.10 (left and middle) show the time for verifying the security properties in case

of compliance and reporting the evidence for the first breach. The verification of mapping

unicity VLAN-VXLAN is more efficient (less than 1 second), and the required time in-

creases more slowly than it does for the virtual resource isolation (6 seconds for the largest

dataset) as the latter has more complex predicates involving a higher number of relation

instances. Similarly, as in the case of consistency properties, the time for reporting the

breach is shorter than the time for asserting compliance for both of the security properties.

49

Scenario 3. Cross-Level Security Verification in Case of Detecting All the Breaches:

Figure 3.10 (right) shows the average verification time to find all compliance breaches for

the consistency property L1/L2 for both the case of using SAT [67] and ALLSAT [90]

solvers, while the given number of breaches in each dataset is 10. The figure shows that the

ALLSAT solver is faster than SAT solver in finding all the security property breaches. The

reason is that SAT solvers can only provide a single solution in each run, while ALLSAT

solvers are capable of finding multiple breaches in a single run. As a ramification, to find

all the solutions, we have to run the SAT solver again and again until finding all breaches

(i.e., for determining 10 breaches in the experiment, we have to run the solver 10 times).

Hence, ALLSAT is clearly more applicable when finding an exhaustive list of breaches is

desirable.

Consequently, we analyze the efficiency of the ALLSAT solver in detecting all 10

breaches (Figure 3.11). Figure 3.11 (left) shows the average time for detecting non-

compliance breaches at the lower levels (∼ 66s) for the largest dataset (5K VNFFGs), and

Figure 3.11 (middle) shows the verification time for detecting non-compliance breaches at

the higher levels (∼ 80s) for the same dataset. The ALLSAT solver could efficiently find

all the violations, and the time for detecting multiple violations is longer than the time of

detecting a single solution and assessing the compliance of the system in case of no breach.

This indicates that the verification time of our solution increases with an increasing num-

ber of violations. Also, the time for finding all the breaches for the consistency property

at L1/L2 is more than that for the consistency property between L2/L3, which is related to

the complexity of the property at the higher levels. Therefore, the verification time for the

lower levels is less than that of the higher levels, especially that the time for compliance

verification of the consistency property at L1/L2 is as short as ∼ 5s. Moreover, even though

the verification of the higher levels takes more time, its still much faster than the naive ap-

proach of verifying both of the properties, which would take both the time for verifying the

50

Figure 3.12: Verification time for reporting all breaches for the security property mapping

unicity VLANs-VXLANs while varying the number of breaches (left) and the time for

parallelizing the verification of the virtual resource isolation property (right).

consistency property between L1/L2 in case of non-compliance (i.e., ∼ 80s) and the time

for verifying the consistency property between L2/L3 in case of non-compliance (i.e., ∼

62s).

Figure 3.11 (right) shows the time for verifying the security properties in case of re-

porting all compliance breaches. The time of reporting all compliance breaches for both of

the security properties is longer than the time for reporting compliance. Moreover, the time

for reporting all breaches of the virtual resource isolation property (∼ 2m for the largest

dataset (100K VMs)) is higher than the time for reporting all breaches of the mapping unic-

ity VLANs-VXLANs property, as the latter is more complex. Figure 3.12 (left) studies the

effect of increasing the number of violations on the verification time. In this experiment,

we verify the mapping unicity VLANs-VXLANs property, and we vary the number of viola-

tions encountered in the dataset where the dataset size is (100K VMs). As depicted in the

figure, the time increases almost linearly with the number of violations, and it takes about

3.7m to verify 50 breaches.

Efficiency Improvement Due to the ER Model. This set of experiments is to evaluate the

efficiency improvement (Figure 3.13) resulting from utilizing the ER model in multi-level

security verification by comparing its required time with that of a conventional security

verification approach (i.e., conducting security verification at each level). We verify the

“SFC ordering and sequencing as defined by the specification” security property (defined

51

Figure 3.13: Comparing the verification time of the multi-level security property without

(the grayscale bar) and with (the bar with patterns) the utilization of ER model.

in [6]), which checks if the deployed SFCs maintain the order of VNFs with the correct

traffic forwarding behavior as defined by the specifications.

Figure 3.13 shows the required time for the multi-level verification for the “SFC order-

ing and sequencing as defined by the specification” security property. The grayscale bar

represents verifying this property at each level of the NFV stack as mentioned in the moti-

vating example (Section 3.1). The bars with patterns show the required time for verifying

the same property with the existence of the ER model i.e., by verifying the consistency

between the NFV stack levels after verifying the security property at one level (i.e., L2 in

the figure, the middlebox with solid gray color). Each bar in the figure consists of three

portions, where each portion represents the required time for verifying the security proper-

ties at each level or the consistency properties. With the help of the ER model, its possible

to only conduct the security verification at one level (e.g., L2) and then conduct the con-

sistency verification for the adjacent levels. Figure 3.13 depicts that the implementation of

the ER model reduces the verification time; for instance, for the largest dataset (5K SFCs),

the implementation of the ER model reduces the overall verification time by 1.4 seconds.

Applicability of NFVGuard+ to Different Solvers. The intention of this experiment is to

investigate the applicability of NFVGuard+ to different SAT solvers. Our implementation

is based on Sugar, which is an SAT-based constraint solver, where the CSP is solved by

a backend SAT solver. Sugar supports MiniSat [67] as the default backend SAT solver.

52

Figure 3.14: Verification performance for the consistency property L1/L2 using ALLSAT

and SAT solvers.

Our next experiment also investigates ALLSAT (i.e., short for all solutions SAT) backend

solver [91], a variant of SAT solvers that deals with enumerating all satisfying assignments

of a propositional logic formula. To the best of our knowledge, clasp [92], PicoSAT [90],

and relsat [93] are the only ALLSAT solvers. Since PicoSAT is the only ALLSAT solver

supported by Sugar, we consider this in our implementation.

More specifically, to demonstrate the applicability of NFVGuard+ to different solvers,

we implement Sugar to assess the consistency properties at L1/L2 using ALLSAT (i.e.,

PicoSAT) and SAT (i.e., MiniSat) solvers. Figure 3.14 illustrates this verification perfor-

mance in terms of time, CPU, and memory. Figure 3.14 depicts that the performance of

both ALLSAT and SAT solvers is mostly similar. Generally, for both these solvers, re-

source consumption increases almost linearly with the increased number of VNFFGs. The

ALLSAT solver requires a slightly longer verification time (Figure 3.14 (left)); to be spe-

cific, ALLSAT takes ∼ 1.3 seconds more than the SAT solver to verify the same property

for the largest dataset (5K VNFFGs). On the other hand, ALLSAT solver consumes less

CPU, while the memory consumption is almost the same for both solvers. On the other

hand, though ALLSAT solvers are slower than SAT solvers, the required time by ALLSAT

solver to identify multiple breaches (especially for a larger number of breaches) is less than

an SAT solver as we described earlier in Figure 3.10 (right). Hence, we can conclude that

NFVGuard+ is not solver dependent, and hence a user should choose the solver based on

his/her requirements (e.g., find multiple breaches at a time or one by one).

53

Parallel Execution of the Properties. We can reduce the required time by verifying the

properties in a parallel manner. Though different approaches are used to parallel verifica-

tion [94], Sugar unfortunately, does not support parallelization. Hence, we adopt the search

space splitting technique [94] which adopts a similar logic as in other parallel verification

approaches. Specifically, in our technique, we split the audit data across multiple CSP

instances that implement the same property rather than splitting the search space. In this

way, we reduce the payload of verifying one large CSP instance by verifying less volume

of audit data, and we can run the CSP instances in parallel. We choose the virtual resource

isolation property because its the most resource-consuming property in case of detecting

all non-compliance breaches (refer to Figure 3.11 (right)), and we also evaluate using the

largest dataset with 100K VMs. As shown in Figure 3.12 (right), the time for the first round

(two CSP instances) is reduced by 55% and the required time continues to decrease until

we reach a reduction of 99%.

3.7.2 Experiments with Real Data

We apply NFVGuard+ to the real data collected from a real infrastructure hosted at one

of the largest telecommunications vendors. The examined part of the infrastructure is com-

posed of two racks, connected to two edge switches, which are connected to two aggregate

switches, as depicted in Figure 3.15. The data contains 20 tenants, 111 VMS, 9 subnets,

26 physical servers, 26 vSwitches, 679 OvS flows, 35 VLANs, and 9 VXLANs. We ap-

ply NFVGuard+ to verify this real data against various properties. We report the average

findings among those properties in Table 3.5. The resource consumption in terms of time,

CPU, and memory increases with the amount of data as shown in Table 3.5. This result also

follows a similar trend to what we found for the synthetic data in previous experiments. We

can also observe that the values of resource consumption in this experiment are generally

much smaller than in previous experiments performed using synthetic datasets (which were

54

Aggregate

switch 2

Aggregate

switch 1

Tenant1...
...

Tenant11

Tenant20

...

Edge

switch 1

Rack1

Edge

switch 2

Rack2

Tenant17

Figure 3.15: The topology of a part of a real cloud data center operating NFV used in our

experiments.

deliberately scaled up to evaluate the scalability of our solution).

Performance

metrics

Percentage of dataset

20% 40% 60% 80% 100%

Time (S) 0.78 0.84 0.88 0.90 0.93

CPU (%) 2.48 2.57 2.62 2.65 2.66

Memory (%) 0.041 0.044 0.046 0.046 0.047

Table 3.5: The experimental results of NFVGuard+ for the real data. The average time,

CPU, and memory required for the verification of three sample NFV security properties,

i.e., VNFs co-residence, virtual resource isolation, and mapping unicity VLANs-VXLANs,

based on real data.

3.8 Discussion

Complexity of NFVGuard+. The formal method employed in this work relies on solving

Constraint Satisfaction Problems (CSPs), which are NP-complete. Consequently, in the

worst case, solving a CSP for large NFV systems may require exponential time relative

to the size of the input, including the number of entities, constraints, and relationships.

Cross-level relationships within the NFV stack introduce a significant number of variables

and constraints, further increasing the size and complexity of the CSP instance. Each level

has its own policy constraints, and ensuring inter-layer consistency adds additional logical

dependencies. As the number of records (e.g., configuration entries) and constraints grows,

55

the verification time correspondingly increases. While formal methods provide accuracy

and rigor, this approach becomes impractical for real-time or large-scale verification unless

appropriate optimizations are applied.

Practicality and Robustness of NFVGuard+. Although the real dataset used in our exper-

iments is modest in size and lacks cross-level violations, we conducted this experiment to

demonstrate the practical applicability of our verification solution. Specifically, it shows the

system’s ability to operate effectively on real-world data, even in the absence of complex

violations, and confirms the soundness of the formal verification logic under such condi-

tions. Importantly, the results indicate that our approach produces no false positives—a

critical property in real deployments, where false alarms can lead to wasted time and re-

sources. Overall, the experiment validates that the solution behaves as expected in realistic

settings and provides a reliable foundation for broader deployment or future evaluations on

datasets that include actual violations.

The robustness of our solution stems from its ability to perform full-scale verifica-

tion across all configurations and layers of the NFV stack. This comprehensive coverage

strengthens confidence in the overall correctness and consistency of the system by thor-

oughly exploring all possible cross-layer dependencies and misconfigurations. In contrast,

traditional approaches often overlook the multi-layer nature of the NFV stack and the as-

sociated threats and vulnerabilities. Additionally, the robustness is reinforced through the

system’s ability to propagate verification results across layers using consistency checks.

When one layer is verified and its results align with expected mappings or dependencies,

this information can be reused to minimize redundant checks in related layers—enhancing

both efficiency and resilience to misconfigurations. Finally, the use of formal modeling en-

sures soundness and supports modularity, allowing the approach to be applied in large-scale

NFV settings without losing correctness.

A Guideline to Adapt NFVGuard+ to Other NFV Platforms. NFVGuard+ utilizes the

56

constructed ER model to identify the audit data and formulate the NFV security properties.

Although the ER model is based on OpenStack/Tacker, its general enough to be extended to

other platforms, especially because we capture high-level components related to the general

concept of NFV that are common to most of the deployments. We detail how the ER model

will change at each level if we consider different implementation platforms as follows.

The first level in the ER model represents the entities created at the service orchestra-

tion level after processing the network service design specification (NSD) from the NFV

user/provider. At this level, platforms such as ONAP [69], OSM [95], and Tacker are em-

ployed to enable the design, creation, orchestration, and auto-scaling of services on top

of the resource management and virtual infrastructure layers. In our model, we depict

high-level components related to the network service itself (not on the deployed platform),

therefore, our model at this level is general and can be extended to different deployments.

However, the scripts to collect and correlate data may vary with different deployments,

especially when the data needs to be extracted from the configuration files specific to the

deployed platform.

The same thing follows at the second and third levels of our ER model. Different cloud

platforms can be deployed at L2 to instantiate the network services, and most of them offer

similar capabilities of creating, provisioning, and managing the virtual resources required

for instantiating the network services. Our model captures the main virtual components

that are common to those platforms.

For instance, we consider a specific virtual infrastructure level implementation mainly

relying on VLAN and VXLAN as well-established network virtualization technologies and

OvS as a widely used virtual switch implementation. Other platforms may support different

virtualization technologies such as Generic Routing Encapsulation (GRE) [96] or Generic

Network Virtualization Encapsulation (GENEVE) [97]. In this case, the entities of the ER

model at this level will change but not significantly (e.g., replacing the VXLAN entity with

57

GRE), and the properties may either remain applicable or need to be modified or skipped.

As an example, in the case of small to medium clouds, where VLAN tags are sufficient to

implement all L3 virtual networks on top of the physical network, the ER model will be

simplified, and the security properties related to the mapping between VLAN and VXLAN

become unnecessary.

In summary, our ER model and properties formulation cover high-level virtualization

components that are common to most deployments. Therefore, it can be adapted to most

of the deployments with minor changes. The scripts to collect and process audit data need

to be revised according to the implementation details of each deployment. However, this is

a one-time effort that is only needed before initializing the verification process.

Scope of the Security Verification. The security verification is conducted at a specific

level(s) based on the definition of the verified security property. For example, the “Mapping

unicity VLANs-VXLANs” security property (defined in [6]) can be verified only at L3 of

the NFV stack because the data relevant to it exists at that level. Other properties, such

as the “SFC ordering and sequencing as defined by the specification” security property

(defined in [6]) require collecting data from various levels such as L1, L2, or L3. In this

case, it depends on the auditor to define the specifications of the property. Therefore, the

verification is property-dependent and sometimes can extend to all levels to ensure the

correctness of the security property in the entire stack.

Automated Implementation. Since NFVGuard+ works with a static snapshot of the NFV

environment, to maintain the security of the audited system, it needs to run periodically or

on-demand when a change is made to the system. To that end, setting the period between

verifications could be critical: a large interval between two verifications could lead to un-

detected security breaches and a small interval might incur prohibitive overhead. Hence

we intend to improve the efficiency of our approach by exploring and adopting incremental

[39] or proactive [41] techniques. Moreover, our current approach requires some manual

58

effort and expertise in constructing the ER model, identifying the security properties, and

formally encoding them. Although most of these efforts is done only once, we aim to

automate those processes in our future work.

Limitations. NFVGuard+ focuses on verifying the compliance of the NFV stack with re-

spect to consistency properties and security properties. Specifically, the properties within

the scope of this work include those pertaining to the static configuration of the virtualized

infrastructure. This involves ensuring the proper configuration of isolation mechanisms

and maintaining topology consistency. Out of scope properties include dynamic proper-

ties, such as those related to reachability and network forwarding functionality. Although

these properties can be verified using formal methods, they will be addressed in future

work. Furthermore, while our approach can detect violations of security and consistency

properties that may result from vulnerability exploitations, threats, or attacks, its not de-

signed to attribute such a violation to specific underlying vulnerabilities (i.e., vulnerability

analysis) or particular attacks (i.e., intrusion detection). Additionally, it does not detect vi-

olations that are not reflected in logs and configurations, as the accuracy of our audit results

relies on the input data extracted from these sources.

3.9 Summary

We presented NFVGuard+, a novel approach to the formal cross-level security verifica-

tion of the NFV stack. Specifically, we proposed a system entity-relationship (ER) model

that captures the detailed mappings and the relationships between the NFV resources across

different levels in the NFV stack and devised a system that offers an assisted solution for

NFV users to identify and verify the NFV properties by leveraging the ER mode. We

implemented a real NFV testbed using OpenStack/Tacker, integrated our solution into the

testbed, and evaluated our approach through experiments using synthetic data and real data

59

provided by one of the largest telecommunications vendors. The results confirmed the

efficiency and real-life applicability of our approach.

60

Chapter 4

Machine Learning Meets Formal

Method for Faster Identification of

Security Breaches in Network Functions

Virtualization

4.1 Introduction

By decoupling network functions from proprietary hardware devices, Network Func-

tions Virtualization (NFV) allows network services to be implemented as software modules

running on top of generic hardware or virtual machines. This new paradigm allows service

operators to more easily deploy a multi-tenant NFV environment on top of an existing

cloud infrastructure, and it also allows NFV tenants to accelerate the provisioning and de-

ployment of their services. Due to such benefits, the popularity of NFV is on the rise, e.g.,

in the context of 5G and beyond, NFV has become one of the main technology enablers

for operators to scale their network capabilities on-demand at a lower cost by virtualizing

61

dedicated physical devices on top of existing clouds [3].

The benefits of NFV may come at the cost of increased complexity. To support the man-

agement and orchestration of multiple network slices belonging to different tenants on top

of the same cloud infrastructure [98], NFV relies on a mixture of virtualization technolo-

gies, e.g., a Virtual Network Function (VNF) such as virtual firewall seen at tenant-level

may correspond to several virtual machines (VMs) connected through Software-Defined

Networking (SDN) at the cloud infrastructure level [3]. Such increased complexity may

also increase the chance of incorrect (e.g., lack of sufficient network isolation between

different tenants’ network slices [99]) or inconsistent (e.g,. a virtual firewall VNF spec-

ified at the tenant level may be bypassed at the underlying cloud infrastructure level [1])

configurations that could leave the services or infrastructure vulnerable to security threats.

Therefore, the timely identification of such misconfigurations is important to ensure the

security of NFV environments.

To that end, formal method-based security verification solutions (e.g., [100, 26, 4, 35,

6, 36, 29]) can provide rigorous proofs about the compliance or violation (with counterex-

amples) of the configurations w.r.t. given security properties. However, a key challenge

is that the sheer scale of virtual environments can render formal security verification too

costly. For instance, a state-of-the-art security verification tool requires around 12 minutes

to check whether a guest VM can access any SDN controller with merely 5,000 reach-

ability queries [4]. Such a delay can become much more significant under large NFV

environments, resulting in a wide attack window during which the services or infrastruc-

ture are left vulnerable. Moreover, the inherent complexity of formal methods [101] can

leave little room for further performance improvement, e.g., the aforementioned tool [4]

is already heavily optimized (new combined filter-project operator and symbolic packet

representation are added to the back-end verifier).

Motivating example. We further illustrate this issue through an example. The left side

62

of Figure 4.1 shows the simplified view of a large NFV environment where two tenants,

Alice and Bob, host their Virtual Network Functions (VNFs). Suppose our goal is to verify

network isolation, i.e., whether any of Alice’s VNFs can reach any of Bob’s (except what

is explicitly allowed). Even the verification of such a simple property (all-pair reachability)

can become expensive as NFV tenants may own a large number of VNFs. To make things

worse, NFV and its underlying cloud infrastructure typically employ distributed and fine-

grained network access control mechanisms (e.g., per-VM security groups in OpenStack

[102]). Consequently, verifying the reachability of two VNFs/VMs may require inspecting

many rules and configuration data scattered among various data sources (e.g., routing and

NAT rules in virtual routers along the route, host routes of the subnets, and firewall rules

implementing tenant security properties [29]).

Time to find all the violations (FM)

Time to find all the violations (MLFM)

ML training

Le
ar

ne
r

ML model

-+ -
+ - -+

sample

Te
ac

he
r

Alice VNFs should be isolated
from Bob’s VNFs

Alice

Subnet_A

Bob

Subnet_B
Virtual
infrastructure

Alice’s VNFs Bob’s VNFs Audit data

Verification of audit data

ML application and verification of data
records based on identified verification order

Figure 4.1: Motivating example

The right side of Figure 4.1 contrasts how the collected audit data will be processed

under an existing formal method (FM)-based security verification approach (top) and under

our approach (bottom). The barchart-like pattern illustrates the distribution of data records

in the audit data where red (or black) bars represent pairs of VNFs that violate (or satisfy)

the network isolation property. As the upper pattern shows, a FM-based approach would

verify the audit data as is, i.e., all the VNF pairs will be verified in the same order as given

in the audit data. In contrast, our approach leverages ML to reorder those data records such

63

that those that (likely) cause violations (the red bars) will be moved forward, i.e., given a

higher priority for verification than others (the black bars). Consequently, the verification

can identify most of the violations in much less time (even after taking into account the

time taken by ML training).

To that end, our main idea is to employ an iterative teacher-learner interaction, as de-

picted in the middle of Figure 4.1. In each iteration, the teacher (FM) first selects repre-

sentative data records from the audit data, and then provides their verification results as

training data to the learner (ML). Using such data, the learner (ML) trains an ML model,

which is then given back to the teacher (FM) to be tested for identifying more representa-

tive data records (e.g., false positives and false negatives) in the next iteration. Over several

iterations, such an interaction between the teacher and learner will enable a relatively ac-

curate ML model to be trained using only a small portion of the audit data. The ML model

can then be applied to reorder the remaining data for faster identification of violations.

4.2 Preliminaries

This section provides essential background on NFV, discusses NFV security properties,

and defines our threat model.

NFV Background. NFV is a network architecture concept that decouples network func-

tions (e.g., routers, firewalls, and load balancers) from proprietary hardware devices and

virtualizes them as Virtual Network Functions (VNFs) running on top of existing cloud in-

frastructures [3]. Figure 4.2 presents a simplified view of the ETSI NFV reference architec-

ture [3] (left), and an example NFV deployment corresponding to our motivating example

(right). First, the resource management level conceptualizes the virtual resources such as

subnets and VNFs. Second, the underlying virtual infrastructure level implements those

virtual resources using virtual networking elements, such as virtual switches (e.g., OVS 1),

64

VLANs (for communications within the same server), VxLANs (for communications be-

tween servers), and network ports, running on top of physical servers (e.g., Server 1). In

this work, NFV configuration data stored in relational databases will be our main inputs.

Figure 4.2: ETSI NFV reference architecture [3] (left) and an example NFV deployment

corresponding to the motivating example (right)

NFV Security Properties. Various security properties can be defined to verify the com-

pliance of NFV environments w.r.t. standards (e.g., ETSI [3] and IETF-RFC7498 [103])

or NFV tenants’ requirements (Table 3.1 shows some example NFV security properties).

Our approach can support other security properties as long as they can be verified using the

chosen formal method tool (e.g., Sugar [67] used in this work can handle most properties

formulated using standard first-order logic). To make our discussions more concrete, we

describe two example properties (which will be needed later).

Example 4.2.1 First, the property mapping unicity VLANs-VXLANs ensures the logic seg-

regation between different tenants’ virtual networks through the unique assignment of

VxLAN (communications between servers) identifier to each VLAN (communications

within one server). Figure 4.3 (left) depicts a violation of this property (the shaded nodes

65

show VLAN 1 is mapped to both VXLAN 10 and VXLAN 16 on Server 1). Note this prop-

erty can be verified for each VLAN separately. Second, the property no VNFs co-residence

prevents a tenant’s VNFs to be placed on the same physical server with VNFs of non-trusted

tenants (e.g., due to concerns over potential side channel threats). Figure 4.3 (right) shows

a violation of this property where Alice’s VNF 101 and Bob’s VNF 46 on both placed on

server S 23. In contrast to the previous property, verifying this property could involve more

records (all the VNFs of this tenant and the non-trusted tenants).

Server_1
VNF_10

Port_101

VLAN_1

VXLAN_10 VXLAN_16

VLAN_12

VXLAN_5

Open-
VSwitch_1

VNF_31

Port_104

Alice

VNF-1 VNF-2 VNF-1000

HasRunningVNF

VNF-101… …

S-5 S-9 S-23 S-3

IsLocatedAT

DoesNotTrust
Bob

VNF-1 VNF-2 VNF-100VNF-46… …

S-21 S-11 S-23 S-2

IsLocatedAT

HasRunningVNF

Figure 4.3: Two example NFV security properties: Mapping unicity VLANs-VXLANs (left)

and No VNFs co-residence (right) (shaded nodes indicate violations)

Threat Model and Assumptions. Similar to most existing security verification ap-

proaches, our scope is limited to attacks that (directly or indirectly) cause violations to

given security properties, and we assume our solution is deployed by the owner of the NFV

environment who has access to the logs, databases, and configuration data needed for the

security verification (and the integrity of those input data is protected with trusted comput-

ing techniques (e.g., [104])). Under such assumptions, our in-scope threats include both

external attackers who exploit existing vulnerabilities in the NFV environment to violate

the security properties, and insiders such as NFV operators and tenants who cause mis-

configurations violating the properties, either through mistakes or by malicious intentions.

Conversely, out-of-scope threats include attacks that do not cause any violation of the secu-

rity properties, and attacks launched by adversaries who can erase evidences of their attacks

by tampering with the logs, databases, etc.

We assume that the formal specification of security properties as well as the formal

66

verification approach itself are correct and sound. As a security verification solution, our

approach can only identify the violation of given security properties, but is not designed to

attribute such a violation to the underlying vulnerabilities (responsibility of vulnerability

analysis) or specific attacks (responsibility of intrusion detection). Similar to most existing

machine learning approaches, we assume that a dataset required for verifying given secu-

rity properties has been collected. However, we do not require labeled data, which can be

difficult to obtain in a real world NFV environment, as the data records will be labeled by

the teacher (formal method) in our approach (optionally, a small amount of labeled data

records would be helpful for training an initial ML model to speed up the iterative ap-

proach). As with most security applications (e.g., spam or intrusion detection), we assume

the dataset is unbalanced (i.e., the majority of data records belong to the compliance class

w.r.t. the security property), and we make additional efforts in designing our approach to

address this issue.

4.3 Methodology

This section first presents an overview of our approach, followed by details on the

iterative teacher (FM)-learner (ML) interaction and the MLFM algorithm.

4.3.1 Overview

We propose a machine learning-guided formal security verification approach, namely,

MLFM, for fast and provable identification of data records that violate a given security

property in NFV. First, the ML training stage employs an iterative teacher (FM)-learner

(ML) interaction to train an ML model using only a small portion of the audit data. Second,

the ML application stage applies the ML model to reorder the remaining audit data, such

that those that are more likely to violate the property will be verified first. More specifically,

67

Figure 5.4 depicts our approach as follows.

Figure 4.4: Overview of the MLFM approach

The ML Training Stage. As Figure 5.4 (left) shows, in each iteration of the teacher-

learner interaction, the teacher first applies a sampling method to select a small data sample

of fixed size from the audit data (shown as Sampler in the figure) after applying the ML

model received from the learner in the previous iteration (an initial ML model is provided

for the first iteration). The teacher then verifies the data records inside this data sample, and

labels each record based on its verification result (shown as Formal verifier in the figure),

and sends the labeled data sample to the learner. The learner then combines this newly

received data sample with the previously received data samples to train a new ML model

to be sent back to the teacher. This iterative interaction ends when reaching a predefined

condition, e.g., a fixed iteration count, or lack of significant change in the accuracy of the

model between two consecutive iterations.

The ML Application Stage. As Figure 5.4 (right) shows, the final ML model from the

ML training stage is applied to the remaining audit data (i.e., the data not used for training)

in order to identify data records that are more likely to violate the given security property,

namely, the “to be verified” subset, which will be given a higher priority for verification.

On the other hand, the “not to be verified” subset will either be verified afterwards, or not

verified at all, depending on the use cases (detailed in Section 4.3.3).

68

4.3.2 Iterative Teacher (FM)-Learner (ML) Interaction

In the following, we provide more details about the key methodology of our approach,

i.e., the iterative teacher (FM)-learner (ML) interaction.

Sampling (Teacher). The sampler component of the teacher is designed to select repre-

sentative data records from the audit data in order for the learner to effectively enhance the

ML model over each iteration. Choosing the right data records is important because they

could cause either increase or decrease in the accuracy of the next ML model, e.g., data

records having the same (redundant) information or those with the same label may cause

the model to either not improve, or become biased towards the majority data, respectively.

Our approach borrows sampling strategies (such as uncertainty sampling) from the active

learning literature [46]. Although active learning has a different focus (it aims to reduce the

effort of human experts in labeling the data, whereas no human expert is involved in our

case), its sampling strategies are applicable to our approach, because they are also designed

to better represent the characteristics of the property being analyzed such that an ML model

can be trained with minimal labeled data.

Example 4.3.1 The left side of Figure 4.5 shows an excerpt of the audit data corresponding

to the previous Example 4.2.1. Using uncertainty sampling, the sampler (inside the teacher

block) selects a sample of size (m = 2) as the (shaded) record pairs (1, 3) and (6, 4).

Verification (Teacher). The formal verifier component is responsible for labeling the se-

lected sample of data records (which will later be sent to the learner as training data). La-

beling here means to annotate the data records with an extra field representing their classes,

i.e., whether they are compliant with, or violate, the security property. To obtain such la-

bels, the formal verifier performs formal verification by instantiating the security property

(e.g., formulated using first-order logic) with the data records.

Example 4.3.2 Following Example 4.3.1, Figure 4.5 shows how the formal verifier labels

69

Figure 4.5: An example of the iterative teacher (FM)-learner (ML) interaction

the selected sample by verifying the No VNFs co-residence property (see Section 5.6.1).

Specifically, the formal verifier finds that the pair (1, 3) violates the property (i.e., Alice’s

VNF (VNF 101) co-resides with Bob’s VNF (VNF 46) on the same server (S-23)), and thus

labels it as “+”. The other pair (6, 4) is labled as “-”, as it does not violate the property.

Records Selection (Teacher). Next, the teacher applies the ML model from the previous

iteration (received from the learner) to the labeled sample of data records. Intuitively, this

allows the teacher to validate this previous ML model (by comparing its results to the la-

bels provided by the formal verifier) and provide the “mistakes” (false positives and false

negatives) as more representative training data to the learner. Specifically, as the ML model

from the previous iteration also classifies the data records into two classes, by comparing

its results to the ground truth, i.e., the labels assigned by the formal verifier component,

the teacher can identify those records that have been correctly classified (i.e., true posi-

tives (TPs)) and those incorrectly classified (i.e., false negatives (FNs) and false positives

(FPs)). Then, the teacher adds the TP, FN, and FP records to a new dataset D, which is the

training dataset to be sent to the learner. Finally, if the number of records in D is still less

than the desired size of the sample (m), the teacher repeats the aforementioned steps as an

70

inner-iteration until it has accumulated totally m records in D. Note that the rationale for

selecting (TP, FP, FN) records is twofold. First, as the positive class (i.e., violations) is gen-

erally smaller due to data imbalance, adding TP and FN records can augment the positive

class to reduce the bias in training [105]. Second, the FN and FP records are incorrectly

classified by the previous ML model and thus may contain more useful information for the

learner to improve the accuracy of its next model.

Example 4.3.3 Following Example 4.3.2, Figure 4.5 shows a decision tree model (DT0)

received from the last iteration is applied to the two pairs of records (1, 3) and (6, 4). The

decision tree (DT0) predicts “+”, if the VNF2-ID value is no smaller than the VNF1-ID

value; otherwise, it is predicted as “-”. Therefore, both (1, 3) and (6, 4) are predicted as

“-”. Comparing such results to the labels previously assigned by the formal verifier (see

Example 4.3.2), we can see the pair (1, 3) is FN and should be added to the dataset D (and

deleted from the audit data), whereas (6, 4) is TN and should not be added. Finally, as the

size of D is less than the required size (m=2), we will repeat the inner-iteration.

ML Model Building (Learner). Once the teacher’s dataset D reaches the required size

m, the sample it contains is sent to the learner (D is then emptied in preparation for the

next iteration). The learner adds the received sample to its existing training data (i.e., the

collection of all previous samples), and utilizes this newly enriched training data to build a

new ML model. The ML model is sent back to the teacher if the stopping condition (e.g.,

the specified number of interactions) has not been reached; otherwise, the interaction ends

and the final ML model is given to the next (ML application) stage.

Example 4.3.4 Following Example 4.3.3, the lower part of Figure 4.5 shows that, once the

teacher’s inner-iteration ends, a sample of size two is sent to the learner. The learner adds

the received sample to the existing training data (T) while the teacher empties its dataset

(D). The new training data (T) is then used to build a new decision tree model (DT1),

71

which is more accurate than DT0.

4.3.3 MLFM Algorithm and Use Cases

Algorithm 1 more formally states our approach. The inputs to the algorithm include

the unlabeled audit data, the security property, and the parameters. The initial set of train-

ing data allows a system user to influence the algorithm with his/her domain knowledge

by manually selecting/labeling data records (otherwise, the data can simply be randomly

selected from the audit data and labeled using the formal verifier).

The algorithm has an outer iteration (Lines 2-9) which first builds a new sample through

performing the inner iteration (Lines 3-7), and then adds this new sample to the existing

training data (Line 8) to train a new ML model (Line 9). The outer iteration is repeated

for a fixed number (provided as an input parameter) of times. The final ML model is then

applied to reorder the remaining audit data before verifying it (Line 10). The union of all

the verification results (Lines 5 and 10) is the final output.

The inner iteration builds a sample D of size m as follows. First, it selects a sample of

size m from the audit data by following a given sampling strategy (Line 4). Although not

shown in the algorithm, depending on the sampling strategy being used, this step may in-

volve other parameters such as the current ML model (e.g., with uncertainty sampling [46])

or the training data (e.g., with Query-By-Committee (QBC) sampling [46]). Second, the

sample is verified and labeled (with the verification results) using a formal verifier (Line

5). Third, the current ML model is applied to the sample, and the results are compared to

the labels (verification results) to identify and add the (TP, FP, FN) records to D (Line 6).

Fourth, D is removed from the audit data to avoid being selected again (Line 7). We repeat

the above steps until D contains at least m records.

Complexity Analysis. The worst case complexity of the MLFM algorithm is O(n · (m ·

(Ts + Tv1) + Tt) + Tv2) where Ts, Tv1 , Tt, and Tv2 are the time for sampling (Line 4),

72

Algorithm 1: The MLFM algorithm

1 Inputs: Audit data (AD), security property (SP), initial training data (T0), initial

model M0 = TrainClassifier(T0), per-iteration sample size (m), and iteration count

(n)

/* Outer-iteration */

2 for i = 0, i < n, i++ do
/* Inner-iteration */

3 while | D |< m do

4 S = SelectSample(AD,m)
5 Si= VerifyAndLabel(S, SP)
6 D = D ∪ TP (Si,Mi) ∪ FP (Si,Mi) ∪ FN(Si,Mi)
7 AD = AD \D

8 Ti+1 = Ti ∪D; D = φ

9 Mi+1 = TrainClassifier(Ti+1)

10 return Verify(Reorder(AD,Mn)) ∪ (
⋃

i
Si)

verifying m records (Line 5), training (Line 9), and verifying remaining records (Line 10),

respectively. Such times would depend on specific algorithms, e.g., Ts under uncertainty

sampling [46] can be estimated as O(| AD |), since this strategy requires applying the

current ML model on the audit data AD. Tv1 and Tv2 under a CSP solver is known to be

exponential in the number of variables of the instantiated security property [106]. Finally,

Tt under a decision tree classifier is O(na · nt · log2(nt)) [107] where na is the number of

attributes and nt the size of training data (i.e., O(n·m)). We will further study the efficiency

of the algorithm through experiments in Section 5.6.

Use Cases. Depending on how the remaining data is verified in Line 10 of the MLFM

algorithm, our approach can be applied for two different use cases. First, MLFM running in

the partial verification case will stop after verifying all the “to be verified” records (which

would appear first after the reordering). This can be useful when the system user wants to

find violations as quickly as possible (but not necessarily to find all the violations), and our

objective in the training is to find an ML model that is the most accurate (since the mis-

classifed violations would not be verified, as further explained in Section 5.6). Second,

73

MLFM in the priority-based verification case will verify all the records (with the “to be

verified” records verified first). Our objective of the training is to find an ML model that

incurs the least overall verification time with acceptable accuracy (since the mis-classified

records will still be verified eventually).

4.4 Implementation

In this section, we describe the architecture and details of our implementation.

System Architecture. Our implementation of MLFM (shown in Figure 4.6) interacts with

an OpenStack/Tacker [70]-based NFV environment to collect audit data. The system also

interacts with a user to obtain other inputs, such as the security property to be verified, the

formal verifier and the ML model to be applied, and the system parameters (the number of

iterations and the sample size, as detailed in Section 4.3.3). Finally, the system returns an

audit report to the user.

2) Compliance Verifier
and

Reporter

Audit
Report

Security Properties
and Parameters

ML Training

ML Deployment

5) ML Model Learner

Uncertainty Random

4) Sampler

QBC …

1) Data Collection
and

Processing

6) Formal Verifier

MLFM
MLFM User

NFV Environment

Audit Data

3) MLFM Manager

Data and Audit Repository

NOD [31]
….

Sugar CSP
Solver [55]

Figure 4.6: The MLFM system architecture

Data Collection and Processing. We implement this module using Python and Bash

scripts to collect audit data from multiple sources including logs and configuration

74

databases or files. For instance, to verify the No VNFs co-residence property, the mod-

ule collects the identifiers of VNFs from Tacker and Nova databases [2], their correspond-

ing owners (from Nova database), and the identifiers of servers hosting those VNFs (from

Nova database). As the audit data are usually scattered among different components of the

NFV environment and stored in different formats, the data must first be pre-processed. For

instance, to verify the mapping unicity VLANs-VXLANs property, the data collected from

OpenFlow tables of the OVS databases has unnecessary fields (e.g., cookie and priority)

that must be filtered out. Also, the port and vlan vid fields must be correlated to create the

relation tuples IsAssignedVLAN(ovs,port,valn) for the verification. Finally, such filtered

and correlated data must be converted into the corresponding input formats required by the

formal verifier as well as for the ML training.

MLFM Manager. We implement this module in Python to manage and coordinate the

interactions between other system modules for performing data collection and processing,

data sampling, formal verification, ML training, etc., as described in Section 4.3.

ML Model Learner. We utilize Python 3.6.9 and Scikit-learn 0.24.1 (an open source ML

library written in Python) to implement this module. We select decision tree, Support

Vector Machine (SVM), and Random Forest (RF) models as they are among the most

commonly used supervised classifiers, and are computationally more efficient compared

to other classifiers such as K-Nearest-Neighbor (KNN) [108]. We also select XGBoost

classifier [109], a scalable tree boosting system with a simpler structure using less resources

than most other ML models, which has recently seen wide application for its high accuracy

and low false positive rate [110, 111]. As our main aim is to reduce the overall delay

before violations can be identified, we do not consider deep learning models as they are

well known for higher complexity and longer training time compared to traditional ML

models [112].

Sampler. We employ the modAL framework [113] to implement sampling strategies in this

75

module. The modAL is an active learning framework for Python3, built on top of Scikit-

learn [114], which allows to rapidly create active learning workflows with flexibility [113].

We select the uncertainty sampling and query-by-committee (with DT, SVM, and RF for

members of the committee) sampling strategies in our implementation, as those are the

most computationally efficient ones compared to other strategies [46].

Formal Verifier. We formalize the security properties together with the audit data as a

Constraint Satisfaction Problem (CSP), a time-proven technique for expressing complex

problems. Using CSP allows the user to specify a wide range of security properties (due

to its expressiveness) in a relatively simple manner (as CSP enables to uniformly present

the audit data as well as the security properties, and in a comprehensible and clean for-

malism, such as first order logic (FOL) [115]). Moreover, there exist many powerful and

efficient CSP solver algorithms to avoid the state space traversal [116], which can make

our approach more scalable for large NFV environments.

Once formulated as a CSP problem, the security verification is performed using

Sugar [67], a well-established SAT-based constraint solver. We choose Sugar as it is an

award-winning solver of global constraint categories (at the International CSP Solver Com-

petitions in 2008 and 2009 [117]). Sugar solves a finite linear CSP by translating it into

a SAT problem using order encoding method, and then solving the translated SAT prob-

lem using the MiniSat solver [118], which is an efficient CDCL SAT solver particularly

effective in narrowing the search space [119]. Adapting our MLFM framework to other

verification methods (such as theorem proving, model checkers, temporal logic, and Data-

log) based on the needs of verification tasks is regarded as a future work.

Example 4.4.1 The predicate that corresponds to the negation of the No VNFs co-

residence property is formulated (by the system user, done only once) as Formula 1 (left),

and a predicate instance returned by Sugar to indicate violation is shown as Formula 2

(right) (i.e., both Alice and Bob have VNFs co-residing on the same server S 23).

76

∀t1, t2 ∈ Tenant, ∀vnf1, vnf2 ∈ VNF, ∀s1, s2 (1)

∈ Server : HasRunningVNF(t1, vnf1) ∧ HasRunn−

ingVNF(t2, vnf2) ∧ DoesNotTrust(t1, t2)∧

IsRunningOn(vnf1, s1) ∧ IsRunningOn(vnf2, s2)

∧(s1 == s2)

HasRunningVNF(Alice, VNF 101) ∧ HasRunn− (2)

ingVNF(Bob, VNF 46) ∧ DoesNotTrust(Alice,

Bob) ∧ IsRunningOn(VNF 101, S 23) ∧ IsRun−

ningOn(VNF 46, S 23) ∧ (S 23 == S 23)

4.5 EXPERIMENTS

This section describes the datasets and experimental settings, and presents our results.

4.5.1 Datasets and Experimental Settings

We first describe the implementation of our NFV testbed and data generation using the

testbed, and then detail the experimental settings.

NFV Testbed Implementation. We choose to build our NFV testbed using OpenStack [2]

with Tacker [70] mainly due to their growing popularity in real world [68] (other options

such as Open Baton [120], OPNFV [121], and OSM [95] are still at their development

stages). More specifically, we rely on the latest version OpenStack Rocky [2] for man-

aging the virtual infrastructure, and we employ Tacker-0.10.0 [70], an official OpenStack

project, to deploy virtual network services. Our NFV testbed consists of 20 tenants and

200 VNF forwarding graphs (VNFFGs), with each tenant owning around 10 VNFFGs and

each VNFFG consisting of about 10 VNFs.

NFV Data Generation. To evaluate the performance of MLFM under large scale NFV en-

vironments, we would require a large scale NFV deployment. However, to the best of our

knowledge, there do not exist any publicly available large-scale NFV deployment datasets.

Therefore, we develop Python scripts to automatically generate various VNF Descriptors

(VNFDs) and VNFFG Descriptors (VNFFGDs), which are then uploaded (also called on-

boarding) to our NFV testbed to deploy different network services and generate large scale

77

NFV datasets. We randomize parameters of those descriptors to ensure diversity in the gen-

erated data (e.g., the number of network ports per VNF, the flavor of each VNF, the number

of VNFs in each Network Function Path (NFP), and the number of NFPs in each VNFFG).

Our first dataset, DS1, contains 12,500 audit data records for verifying the mapping unicity

VLANs-VXLANs property (P1 henceforth), and our second dataset, DS2, contains 25,000

records for verifying the no VNFs co-residence property (P2 henceforth). Each dataset con-

tains around 10% of (uniformly distributed) records that violate the corresponding property.

Experimental Setting. All experiments are performed on a SuperServer 6029P-WTR run-

ning the Ubuntu 18.04 operating system equipped with Intel(R) Xeon(R) Bronze 3104

CPU @ 1.70GHz and 128GB of RAM without GPUs. All the experiments are performed

using Sugar [67] as the formal verifier (unless mentioned otherwise) and Python 3.6.9 with

Scikit-learn 0.24.1 ML packages for the ML method. For all the experiments, we use the

default parameters for the ML models. Each experiment is repeated 1,000 times to obtain

the average results.

4.5.2 Experimental Results

Best Performing Combination of ML Model/Sampling Method. The first set of the ex-

periments aims to find the best performing combination of ML model and sampling method

(as components of MLFM), from both the accuracy and time performance point of views.

Specifically, Figure 4.7 shows the recall and F1 score results for different combinations

of ML models (DT, RF, SVM and XGBoost, trained on 20% of each dataset) and sam-

pling methods (random sampling, query-by-committee (QBC), and uncertainty sampling)

for both security properties (P1 and P2) and datasets (DS1 and DS2). The results in Fig-

ures 4.7 (a) and (b) show that the combination of XGBoost and uncertainty sampling allows

MLFM to achieve the highest recall (0.97) and F1 score (0.97) for security property P1. On

the other hand, SVM combined with any of these sampling methods has the lowest F1 score

78

(0.80) (i.e., less effective in identifying both classes), and RF with uncertainty sampling has

the lowest recall (0.82) (i.e., less effective in identifying the violations). Similarly, Figure

4.7 (c) shows that XGBoost with uncertainty sampling also has the best recall (0.783) for

security property P2. However, as Figure 4.7 (d) shows, XGBoost has the best F1 score

(0.981) when paired with QBC sampling. Nonetheless, as identifying the violations is more

important to MLFM, XGBoost with uncertainty sampling is considered the best option for

both P1 and P2.

DT RF SVM XGBoost

ML model

0

0.5

1

R
e
c
a
ll

Random QBC Uncertainty

(a) Recall for P1

DT RF SVM XGBoost

ML model

0

0.5

1

 F
1

 s
c
o

r
e

Random QBC Uncertainty

(b) F1 score for P1

DT RF SVM XGBoost

ML model

0

0.5

1

R
e
c
a
ll

Random QBC Uncertainty

(c) Recall for P2

DT RF SVM XGBoost

ML model

0

0.5

1

 F
1

 s
c
o

r
e

Random QBC Uncertainty

(d) F1 score for P2

Figure 4.7: Recall and F1 score for combinations of ML models and sampling methods,

trained on 20% of dataset DS1 for property P1 (a and b) and on DS2 for P2 (c and d)

Figure 4.8 shows how the combinations of ML models and sampling methods affect

the running time (in minutes) of MLFM (including both the ML training and application

stages). As explained in Section 4.3.3, the partial verification use case aims to find the

majority of violations in the least time. To that end, Figure 4.8 (a) seems to suggest that

SVM paired with uncertainty sampling is the best option as it requires the least time (15.14

minutes). However, upon further investigation, this is not really the case, because the

lower time consumption is mainly due to its inaccuracy (it misses more violations and

thus, similar to most SAT solvers, Sugar incurs less time when there are less violations to

find [67]). Therefore, considering both the accuracy (Figure 4.7 (a)) and the running time,

XGBoost with uncertainty sampling seems to be the best option (with the second least

time) for partial verification under P1. Figure 4.8 (b) shows that XGBoost with uncertainty

sampling is the best option for priority-based verification for P1, as it requires the least time

(accuracy is less important in this use case as all the records will be verified eventually,

79

DT RF SVM XGBoost

ML model

0

20

40

60

80

T
im

e
 (

m
)

Random QBC Uncertainty

(a) Partial verification

time for P1

DT RF SVM XGBoost

ML model

0

20

40

60

80

T
im

e
 (

m
)

Random QBC Uncertainty

(b) Priority-based

verification time for P1

DT RF SVM XGBoost

ML model

0

20

40

60

80

T
im

e
 (

m
)

Random QBC Uncertainty

(c) Partial verification

time for P2

DT RF SVM XGBoost

ML model

0

1

2

3

4

5

T
im

e
 (

h
)

Random QBC Uncertainty

(d) Priority-based

verification time for P2

Figure 4.8: Running time of MLFM for combinations of ML models and sampling meth-

ods, with 20% of training data under P1 (a) (b), or P2 (c) (d), for both use cases

as explained in Section 4.3.3). Similarly, Figures 4.8 (c) and (d) show XGBoost with

uncertainty is also the best combination under P2 for both use cases.

Best Performing Parameters m and n. In this set of experiments, we aim to find the

optimal parameters of MLFM, i.e., the number of iterations n and the sample size m (see

Section 4.3.3), in terms of the running time for priority-based verification, and also in

comparison to the baseline approach (i.e., directly applying the formal verifier to the entire

dataset). Specifically, Figure 4.9 (a) shows how changing the sample size m with a fixed

number of iterations (n = 10) impacts the time, with the best performing model (i.e.,

XGBoost with uncertainty sampling) under property P1. The results show that MLFM

takes less time (<1 hour) than the baseline approach (around 1.6 hours) in all cases. As

more training data is used (through larger samples), the time of MLFM initially decreases

due to more accurate ML models, and it reaches the lowest value (0.417 hr, or around

25% of the time of baseline) while using about 20% of the dataset for training. The time

starts to increase afterwards, since the time needed to verify larger samples in the training

stage becomes dominant (compared to the time saved in the application stage). Figure 4.9

(b) shows how changing the number of iterations n with a fixed sample size (m = 250)

impacts the time. Similarly, MLFM takes less time than the baseline approach in all cases.

The optimal percentage of training data is also around 20% (where n = 10). However,

afterwards the time of MLFM stays lower than in the previous experiment, which shows

80

that increasing the number of iterations is a safer choice (than increasing sample size) for

increasing the training data. Figures 4.9 (c) and (d) show similar trends for property P2 (the

longer time is due to more records involved in verification, as shown in Section 4.2).

10% 20% 30% 40% 50%

Percentage of training data

0.6

1

1.4

1.8

T
im

e
 (

h
)

Baseline MLFM

(a)

10% 20% 30% 40% 50%

Percentage of training data

0.6

1

1.4

1.8

T
im

e
 (

h
)

Baseline MLFM

(b)

10% 20% 30% 40% 50%

Percentage of training data

1

2

3

T
im

e
 (

h
)

Baseline MLFM

(c)

10% 20% 30% 40% 50%

Percentage of training data

1

2

3

T
im

e
 (

h
)

Baseline MLFM

(d)

Figure 4.9: Running time of MLFM vs. the baseline (FM only) under property P1 (a) and

(b) or P2 (c) and (d), using different percentages of training data either by changing the

sample size m (a) and (c) or by changing the number of iterations n (b) and (d)

Comparing MLFM to Other Approaches. In this set of experiments, we compare the

performance of MLFM to both the baseline approach (i.e., directly applying the formal

verifier, Sugar [67]) and a state-of-the-art security verification tool, NOD [4] 1. All ex-

periments use the best performing model and parameters (i.e., XGBoost with uncertainty

sampling, 20% training data, m = 250, and n = 10).

First, Figures 4.10 (a) and (b) show the time (in minutes) needed by the baseline ap-

proach (upper curve) and by MLFM (lower curve) for identifying different percentages of

violations under properties P1 (a) and P2 (b), respectively. The figures depict both the

priority-based verification use case (the entire curve) and the partial verification use case

(part of the curve before the dashed line). Specifically, Figure 4.10 (a) shows that MLFM

outperforms the baseline throughout the percentages, e.g., for partial verification, MLFM

can identify 88% of the violations in around 23.3 minutes, which takes the baseline 82.7

minutes. Similarly, Figure 4.10 (b) shows that MLFM outperforms the baseline in case

of partial verification for property P2, where it identifies 82% of the violations in about

1Among existing security verification tools, we do not compare to NFVGuard [6] as it actually forms the

basis of our verification component, and we do not compare to TenantGuard [29] as it is based on custom

algorithms instead of formal method.

81

53.3 minutes, while the baseline takes almost 2.4 hours. However, in case of priority-based

verification (after the 82%) for property P2, MLFM takes more time than the baseline. The

reason lies in the difference between the two properties. As explained in Section 4.2, unlike

P1 (which can be verified for each VLAN independently), P2 may involve all the VNFs of

a tenant, which means the remaining 18% of violations can only be identified using the

baseline approach. Fortunately, there exists an alternative solution, i.e., we run MLFM

and the baseline in parallel, and terminate MLFM as soon as the baseline finishes (as we

already have all the results). As Figure 4.10 (b) shows, this would allow MLFM to identify

around 86% of violations faster than the baseline, while bounding the overall running time

by what is taken by the baseline.

Next, Figures 4.10 (c) and (d) show the tradeoff between the running time (in minutes)

and the recall values of partial verification (i.e., the percentage of violations identified by

the end of partial verification) for P1 (c) and P2 (d). Both figures show similar results, i.e.,

while the baseline naturally requires more time for identifying more violations, MLFM

can achieve a high recall value of 0.98 (P1) and 0.9 (P2) (by increasing the percentage of

training data from 10% to 20%) with negligible change in running time (the difference will

be greater for verifying the remaining records, as shown in Figure 4.9).

Finally, Figures 4.11 (a) and (b) show the time (in minutes) needed by NOD [4] (lower

curve) and MLFM integrated with NOD (upper curve) for identifying different percentages

of violations under the virtual network reachability property [4] (as this property is similar

to P2, we run MLFM in parallel with NOD, as discussed above). We use the benchmarks

provided in [4] to create two datasets with 25,000 and 50,000 reachability pairs, respec-

tively, and around 10% of violations injected randomly. The results show that MLFM can

help NOD to identify around 80% (a) and 81.3% (b) of violations, respectively, in less

(57% and 65%, respectively) time.

82

20% 40% 60% 80% 100%
Percentage of violations identified

0

20

40

60

80

100

T
im

e
 (

m
)

Baseline MLFM

(a)

20% 40% 60% 80% 100%

Percentage of violations identified

0

1

2

3

4

5

T
im

e
 (

h
)

Baseline MLFM

(b)

0.8 0.85 0.9 0.95 0.98

Recall

0

20

40

60

80

100

T
im

e
 (

m
)

Baseline MLFM

(c)

0.7 0.75 0.8 0.85 0.9

Recall

40

80

120

160

200

T
im

e
 (

m
)

Baseline MLFM

(d)

Figure 4.10: The time (in minutes) for identifying different percentages of violations by

MLFM and the baseline for P1 (a) or P2 (b). The tradeoff between running time and recall

values of MLFM and the baseline for partial verification of P1 (c) or P2 (d)

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Percentage of violations identified

5

15

25

35

45

55

65

T
im

e
 (

m
)

NOD MLFM-NOD

(a)

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Percentage of violations identified

0

40

80

120

160

200

T
im

e
 (

m
)

NOD MLFM-NOD

(b)

Figure 4.11: The time (in minutes) for identifying different percentages of violations by

NOD [4] and by MLFM integrated with NOD, using 25,000 (a) and 50,000 (b) records

4.6 Discussion

Model Training and Parameter Selection. As with any machine learning training task,

the percentage of training data required is not fixed and largely depends on the specific se-

curity property being verified—particularly its complexity and the number of its attributes.

In our evaluation, we demonstrated that the selected candidate properties used similar train-

ing data sizes; however, this may vary for other properties with different characteristics. It

is important to note that the selection of training parameters—such as the number of iter-

ations (n) and the sample size (m)—is performed only once for each property, after which

these parameters can be reused in future verification. A key advantage of our approach is

its focus on minimizing the training data size in order to reduce training time, which is a

crucial factor in the overall verification process. This efficiency is achieved through the it-

erative teacher-learner approach, which ensures that even for varying properties, the model

83

can be trained effectively with a small amount of data—making our approach practical,

scalable, and time-efficient.

Significance of MLFM in Practice. NFV configurations are highly dynamic and often

change at runtime; therefore, security verification needs to be fast, ideally completing

within seconds to a few minutes, to detect or prevent issues early. MLFM supports near-

real-time, on-demand security verification, making it suitable for compliance checks in

large-scale NFV environments. It can be deployed continuously, aligned with configura-

tion changes or deployment intervals, or periodically, such as every minute or few minutes,

depending on the system’s needs.

In practice, the MLFM approach is designed with scalability in mind, to overcome the

scalability issue of formal verification and making it practical, efficient, and feasible for

large-scale NFV deployments. Instead of replacing formal methods, MLFM enhances and

guides them, enabling their utilization without alteration or compromising the accuracy of

the security verification. Therefore, it improves the security without impacting system per-

formance or introducing excessive overhead—an essential benefit for real-world NFV en-

vironments. Moreover, MLFM enables faster threat detection and reduces the verification

backlog by prioritizing potentially high-risk configurations, allowing quicker responses to

emerging vulnerabilities. These capabilities make continuous and real-time security audit-

ing possible, which is critical for maintaining secure and resilient NFV systems.

Trade off Between Verification Accuracy and Efficiency. The trade-off between

verification accuracy and efficiency is crucial in deploying security verification solu-

tions—especially in real-world, large-scale environments such as NFV and cloud. achiev-

ing guaranteed accuracy with formal methods often comes at the cost of speed and scal-

ability. MLFM addresses this by using machine learning to prioritize configurations that

84

are more likely to violate security policies, allowing formal verification to be applied se-

lectively and strategically. This significantly reduces verification time—from hours to min-

utes—and lowers resource usage by focusing on high-risk configurations. While it is less

rigorous than exhaustive formal methods, it achieves acceptable accuracy, making it a prac-

tical solution for dynamic NFV and cloud environments. This is especially valuable in

time-sensitive situations where verifying all the configuration is infeasible.

MLFM is also effective when auditors aim to reduce computational load, lack sufficient

resources, or require rapid feedback for faster vulnerability response (i.e., partial verifica-

tion use cases). Comprehensive formal verification can then be reserved for critical con-

figurations or scheduled periodically during off-peak hours, since performing exhaustive

checks on every update is often impractical in large-scale NFV deployments.

Furthermore, when 100% accuracy is required, MLFM offers a practical trade-off be-

tween efficiency and accuracy by prioritizing the verification of high-risk configurations

first, followed by the verifying the remaining records (i.e., the priority-based use case).

This approach ensures that critical threats are addressed promptly, reducing the window

of vulnerability. Although some records may be misclassified and verified later, the entire

dataset is eventually checked. As a result, verification time is significantly reduced with-

out compromising overall security. In summary, MLFM provides a scalable, prioritized,

and accurate verification strategy that aligns well with real NFV deployments, offering a

balanced and highly practical solution.

4.7 Summary

We have presented MLFM, a novel approach to security verification in NFV that could

combine the rigor of formal methods with the efficiency of machine learning for faster

identification of security violations. Specifically, we designed an iterative approach for the

teacher (FM) to gradually provide more representative data samples, such that the learner

85

(ML) could train an ML model using a small portion of the data; the ML model was then

applied to the remaining data to prioritize the verification of likely violations. We imple-

mented MLFM based on OpenStack/Tacker, and our experimental results showed signifi-

cant performance improvements over baseline approaches.

86

Chapter 5

Security Verification for Microservices

Using Federated Learning-Guided

Formal Method

5.1 Introduction

The microservices architecture [122], a widely adopted software development architec-

tural style, organizes and implements modern cloud applications as a collection of small,

loosely coupled services—namely, microservices—with well-defined interfaces and opera-

tions. Each microservice can be developed, deployed, upgraded, and scaled independently,

thereby significantly improving the scalability and flexibility of application development

and maintenance at lower costs. As a result, the microservices architecture has become a

de facto standard for developing large-scale commercial cloud applications, as evidenced

by its adoption by many well-known companies (e.g., Uber [123], Twitter [124], and Net-

flix [125]).

Despite their benefits, microservices can pose novel security and privacy challenges.

87

Since real-world microservices-based applications (mApps) can become very large and

complex (e.g., 1,000 microservices for the case of Uber [123], and O(105) different mi-

croservices scaled to O(103) service instances1 for Twitter in 2016 [124]), they may suf-

fer from a larger attack surface and a higher risk of misconfiguration compared to their

monolithic counterparts. For instance, communications among microservices, which were

previously conducted through local invocations within a monolithic application, are now

exposed through the network, which increases the security risks for the entire application.

Consequently, an adversary can exploit the exposed inter-service communications to attack

the entire application by sending malicious requests from one compromised microservice

to the other microservices [52]. The timely identification of such security threats is impor-

tant to ensure the security of the microservices-based applications.

In this regard, formal method-based security verification solutions (e.g., [47, 100, 26,

4, 6, 5, 48, 49]) are widely adopted to provide rigorous evidence about the compliance or

violation (alongside counterexamples showing security breaches) of configurations w.r.t.

given security properties. However, applying formal methods to microservice applications

may face two major challenges. First, the sheer scale of microservice applications can

exacerbate the inherent complexity of formal methods [101] and cause them to experience

significant delay in identifying security breaches. This delay could result in a wide attack

window inside which the microservice applications will remain vulnerable. Second, due to

the distributed nature of microservice applications, it may be infeasible to perform security

verification at a central location. Collecting configuration data from all the microservices

could either be expensive (in terms of high communication costs) or impossible (e.g., due

to data confidentiality and privacy concerns, considering the fact that such configuration

data may be highly sensitive as they may reveal security flaws, and are typically governed

by different organizations or administrative domains who are reluctant to share such data).

1In production, administrators may use multiple identical instances of a microservice to improve perfor-

mance and provide high availability [52].

88

Figure 5.1: Motivating example

Motivating example. We further illustrate this issue through an example. Specifically,

Figure 4.1 shows two cases of data distribution, where the horizontal case (left) means the

audit data of the two microservice applications share the same attributes (i.e., ID and Re-

quests) but may have different ranges of values (e.g., assume Transportation company A

tends to have higher requests rate than Transportation company B), and the vertical case

(right) means the two applications have different attributes (i.e., ID and DeviceID for Bank-

ing institution, but ID and UserRole for Equifax). The top of each side shows the property

to be verified, while the middle and bottom demonstrate the challenges faced by an existing

solution [5], and the key ideas of our solution, respectively.

More specifically, for the horizontal case (left), suppose we need to verify whether the

Transportation company A and Transportation company B microservice applications are

compliant with the following property, i.e., the number of Requests per second should

be less than or equal to 1,000. To that end, MLFM [5] is an existing work designed to

reduce the verification delay through guiding the formal method verification using a ma-

chine learning model. However, as illustrated in the figure (middle left), since the Requests

value of the Transportation company B tends to be higher than that of the Transportation

89

company A application, the machine learning model trained locally using each individual

application’s data will not be very accurate due to such data heterogeneity. Consequently,

the model is ineffective in prioritizing (through reordering) the data records such that likely

security breaches (represented by red bars in the figure) can be verified first.

In contrast, our solution (lower left) leverages Federated Learning (FL) such that the

two applications can transmit local model parameters (instead of the raw data) to the central

authority, which then aggregates such parameters to obtain a more accurate FL model,

e.g., by taking the average of the Requests thresholds (Step 1). This FL model can then

be applied by each application to more effectively prioritize (reorder) its data records to

reduce the verification time. The vertical case (right) is similar, except that the challenge

faced by MLFM [5] is caused by data unavailability (as each application lacks certain

attributes) instead of data heterogeneity, and that the central authority needs to perform

global verification (in addition to parameter aggregation), which will be detailed later in

Section 5.4.

5.2 Preliminaries

This section provides necessary background information and defines our threat model.

5.2.1 XGBoost

In this work, we employ XGBoost as the main ML model (although our methodology

can be extended to other models). XGBoost [109] is an optimized implementation of the

Gradient Boosted Decision Trees (GBDT) which utilize an ensemble of sequentially trained

decision trees to make the predictions. The training of a single tree would require to first

calculate the gradient (g) and hessian (h) values for each data sample. Then, at the node

level, it builds a gradient (and hessian) histogram for each attribute and finds the value

90

that maximizes the gain i.e., the value that best split the samples by maximizing the loss

reduction after split. Next, it finds the attribute with the maximal gain for the current

node and splits the samples accordingly. If the tree reaches a predefined restrictions such

as the maximum depth or the gain being always smaller than zero, then the current node

is considered as a leaf node that holds the prediction result. The gradient (and hessian)

histogram show a small number of cut points as possible split candidates. The samples are

sorted based on their attribute values and arranged into q buckets corresponding to the cut

points. The gradient (or hessian) of each cut point is the sum of the gradients of the samples

that fall into its bucket.

Figure 5.2 shows an example of finding the best split for a single node. Given the dataset

identified by record ID, the gradients (and hessians, which are omitted for simplicity) are

first calculated. Then, the gradient histograms are built using the calculated gradients. The

histogram of A 1 has two cut points (3,10), the gradient of each cut point consists of the

sum of the gradients of the samples that fall into its bucket e.g., the sample identified by

ID (1) falls under that cut point (3). Since the value of its attribute (i.e., A 1) is less than

the cut point (3). Therefore, the gradient of cut point (3) is the gradient of the sample,

i.e., (8). Afterward, the gain is calculated for each cut point of the histograms, and the cut

point with the highest gain for each histogram is chosen i.e., (10) for histogram of A 1 and

(17) for histogram of A 2. Finally, the attribute with the maximal gain is chosen i.e., A 1.

Accordingly, the current attribute-value pairs that best split the dataset for the current node

are (A 1,10).

5.2.2 Federated Learning

Federated Learning (FL) enables collaborative decentralized privacy-preserving train-

ing of machine learning models among multiple parties to address the data privacy and

security issues [126] raised by regulations (e.g., the General Data Protection Regulation

91

Centralized XGBoost

Dataset

A_2ID A_1

1 1 15
2 6 13.5

Label

1
2

A_2ID A_1

1 1 15
2 6 13.5

Gradient

8
2.5

A_2

2.5
8

14 17
A_1

8
2.5

3 10

A_1

Gain

11
36

Cut point

3
10

A_2

Gain

12
26

Cut point

14
17

Computing gradients1

Compute the gain3

Build gradient histograms2

Best split pairs: A_1, 104

Figure 5.2: An example illustrating XGBoost training

(GDPR) [127], Health Insurance Portability and Accountability Act (HIPAA) [128], and

California Consumer Privacy Act (CCPA) [129]). FL generally requires the participants

to train a local ML model with their local data, and send the local model parameters (also

called local updates) to a central server through a secure channel. The server (also known

as aggregator or coordinator) fuses the local updates to create a global model, which is

often sent back to the participants. This process could be repeated for several iterations to

achieve a desired performance, or until reaching a stopping condition. Federated learning

can be categorized into Horizontal Federated Learning (HFL), Vertical Federated Learning

(VFL), and Federated Transfer Learning (FTL) according to the distribution of data [130].

In this work, we focus on the HFL and VFL cases. Specifically, HFL means all participants

share the same attributes, but they may have different data samples. In contrast, VFL means

all participants share the same data samples, although they may have different attributes.

Figure 5.3 (left) shows an example of XGBoost training in the HFL settings (most of the

solutions that utilize XGBoost in the FL settings exchange the gradients, hessians, and/or

attribute-value split candidates between the parties and the server [131, 132, 133], and we

focus on the gradients and hessians histograms in this work). Specifically, the dataset (bot-

tom left) is divided horizontally between Application 1 and Application 2. First, in each

92

Figure 5.3: An example illustrating XGBoost training in the HFL (left) and VFL (right)

settings

round, communicating for each node, the applications locally compute the histograms and

then send the histograms to the server (Step 1). Then, the server aggregates the histograms

through summation, i.e., the gradient (and hessian) values that fall inside a specific bin

interval are summed within their respective value buckets (Step 2). Next, the applications

receive the aggregated histograms from the server to update the local models (Step 3).

Eventually, each application will end up with histograms that are created as if it had the

entire dataset (e.g., the histogram of attribute A 1 at the top of the figure is identical to the

histogram of the same attribute on the left).

Figure 5.3 (right) shows an example of the XGBoost training algorithm in the VFL set-

tings. The dataset (bottom right) is divided vertically between the applications. Only the

application that has the labels (usually called the active participant), i.e., Application 1, can

compute the gradients (and hessians). Therefore, this application sends the gradient (and

hessian) values to the server (Step 1), once for each tree [134]. Then, the server sends these

93

to the other applications that do not have the labels (Application 2) such that they can com-

pute the corresponding gradients (and hessians) histograms (Step 2). Similar to the HFL

case, in each round, communicating for each node, the applications send the histograms

to the server (Step 3), which then aggregates the histograms through concatenation i.e.,

grouping together the histograms of all attributes, to compute the node parameters (Step

4). The best split (i.e., attribute-value pairs) or the prediction value if the current node is a

leaf node. Finally, the applications receive the node parameters from the server and update

the local models (Step 5). Each party will end up with the same global ML model (e.g., the

split value at the top is the same as the one on the left).

5.2.3 Threat Model and Assumptions

Following the majority of federated learning and microservice approaches, we make

the following assumptions. First, the microservice applications are properly isolated and

can only communicate with the central server through a secure channel. Second, the data

is independently and identically distributed (IID) among all the applications. Third, while

FL protects the privacy of the applications by not exchanging the raw data, potential in-

formation leaks or inference attacks on the exchanged information (e.g., histograms) may

still be possible and are assumed to be prevented using techniques such as homomorphic

encryption or differential privacy. Also, following the security verification literature, we

assume our solution is deployed by the microservice provider or owner, who has reliable

access to the required logs, databases, and configuration data. We also assume that the

formal specification of security properties, as well as the formal verification approach itself

are both sound. Finally, as a security verification solution, our approach is only designed

to identify security violations, and we assume it can work in tandem with other security

solutions to attribute such violations to their root cause (e.g., vulnerabilities or attacks).

94

Under such assumptions, our in-scope threats include both external attackers who ex-

ploit existing vulnerabilities in the microservice architecture to violate security properties,

and insiders such as cloud operators and tenants who cause misconfigurations that violate

those properties, as well as the provider or owner of a microservice application who may

be curious to learn about other applications’ data. On the contrary, our out-of-scope threats

encompass attacks that do not result in breaches of any security properties, attacks launched

by adversaries capable of eliminating evidence of their actions (e.g., logs and databases),

or tampering with the cloud infrastructure or compromising our solution itself, and attacks

launched by malicious insiders such as cloud operators/tenants and microservice applica-

tion providers/owners (e.g., deviating from the FL procedure, poisoning the training data

with adversarial samples, or eavesdropping on the communication channel).

5.3 Horizontal FLFM (H-FLFM) Methodology

This section first presents an overview of our horizontal FLFM (H-FLFM) approach,

and then details its components.

5.3.1 Overview

The horizontal case of FLFM (H-FLFM) is designed for verifying a security property

across several microservice applications that share the same attributes but have different

data values, e.g., one application tends to have larger values than other applications for the

same attribute. In such a case, as illustrated in our motivating example (Section 5.1), the

machine learning models of MLFM trained locally using each application’s own data may

not be accurate enough due to data heterogeneity. Therefore, H-FLFM utilizes Horizontal

Federated Learning (HFL) to enable the applications to collaboratively train a global ML

model to reflect more accurately the combined data of all applications. As detailed in

95

Section 5.2.2), HFL allows the global model to be trained without the need for sharing each

application’s data with either the central authority or between the applications themselves.

Instead, only certain learning parameters will be exchanged between the applications and

the central authority, thereby preserving the confidentiality and privacy for the applications.

At a high level, as demonstrated in Figure 5.4, H-FLFM consists of two stages. First,

during the ML training stage, an iterative teacher (FM)-learner (ML) interaction (as detailed

in [5]) is utilized to train a local ML model using a small portion of the applications’ audit

data. Subsequently, the learning parameters of each application are sent to, and aggregated

by, the central authority. The aggregated parameters are then sent back to the applications

to refine their models for higher accuracy. These steps are repeated until a predefined

stopping condition is met. Second, in the ML application stage, the final ML model of

each application is applied to the remaining local audit data (i.e., the data not used during

training) to prioritize the verification of data records that are more likely to violate the

property. The remainder of this section provides further details and examples of our H-

FLFM methodology.

5.3.2 Training Stage - Local Model Training

The local ML model training occurs concurrently on each microservice application

following the iterative teacher (FM)-learner (ML) interaction introduced in [5]. The goal

is for the teacher to select a minimal yet representative (with respect to the current ML

model) set of records in each iteration, such that the learner can obtain a relatively accurate

ML model using a small amount of data. Specifically, as shown in Figure 5.4 (lower-right

inside Application 1), in each teacher-learner iteration, the teacher employs a sampling

method to select a small fixed-size data sample from the audit data (depicted as Sampler)

by applying the ML model received from the learner in the previous round (an initial ML

model is provided for the first iteration). This sample is verified by the Formal verifier

96

Figure 5.4: Overview of the horizontal FLFM approach

to label its records according to the verification results (depicted as Labeled data) before

being sent to the learner. The learner adds this new sample of labeled data to the previously

received ones to train a new local ML model, which is then sent back to the teacher for the

next iteration. This iterative interaction ends when reaching a predefined condition (e.g., a

fixed iteration count, or lack of significant improvement in the accuracy of the model).

Example 5.3.1 Figure 5.5 (Step 1) shows an example of the local ML training at both

the Uber and Bolt applications. For Uber (lower middle), using the uncertainty sampling

method, the sampler (inside the teacher block) selects a sample of size (m = 1), and assume

data record (1) is selected. Then, the formal verifier verifies this record, and assume it

assigns the (+) label to the record. On the other hand, assume the local DT model classifies

this same record as (−). Therefore, record (1) is a FN record containing representative data,

97

which is selected by the teacher to be part of D (which contains records to be sent to the

learner and removed from the audit data P). Since we assume a required sample size of

(m = 1) in this example, the sample is sent to the learner and added to the existing training

data (T), while the teacher empties its (D). The learner uses (T) to build a new (more

accurate) local ML model, which is sent back to the teacher for the next iteration, until the

iteration count has reached a predefined count (n). The same process occurs in parallel at

the Bolt application (only the differences are highlighted in the figure).

Update local
DT model Teacher

ML training

Send final DT
model to ML
application

Complete (r)
iterations

No

Yes

Next DT

Rs < 0.6 Sampler
(uncertainty

sampling)

Audit data

Remove record
(1) from P

1

Send the gradient
histograms

Central authority

Aggregation of gradient histograms

+ =3
9 65

21 7 8
30 13

3

Learner

ML algorithm

Add D to the
training data (T),

and empty D
Complete (n)

iterations
No

Yes

Rs >= 0.5

+ -
True False

New local DT

Formal
verifier

Rs >= 0.3

+ -
True False

Local DT

Select record
(1) identified

as FN

D

Size of
D < m

No

Yes

Send the DT
model for the
next iteration

Update local
DT model Teacher

ML training

Send final DT
model to ML
application

Complete (r)
iterations

No

Yes

Next DT

Rs < 0.6 Sampler
(uncertainty

sampling)

Audit data

Remove record
(11) from P

1

Learner

ML algorithm

Add D to the
training data (T),

and empty D
Complete (n)

iterations
No

Rs >= 0.7

+ -
True False

New local DT

Formal
verifier

Rs >= 0.1

+ -
True False

Local DT

Select record
(11) identified

as FP

D

Size of
D < m

No

Yes

Send the DT
model for the
next iteration

5

6

5

2 2Yes

3
9 65

21 7 Send the gradient
histograms

4

8
30 13Send the aggregated

gradient histograms
8

30 13Send the aggregated
gradient histograms

4

6

7 7

Transportation company A Transportation company B

Figure 5.5: An example of the horizontal FLFM training

5.3.3 Training Stage - Global Model Learning

The federated global model learning starts at the end of each iteration of the teacher

(FM)-learner (ML) interaction. The goal is for the applications to send their ML model

parameters to the central authority, which then aggregates these parameters and sends the

result back to the applications to refine their local ML models. Specifically, Figure 5.4

(lower left inside Application 1 and top) illustrates these steps using a federated XGBoost

classifier (detailed in Section 5.2.1). First, the applications send their learning parameters

to the central authority, i.e., the gradients and hessians histograms (as detailed in Section

98

5.2.2). Second, the central authority performs an aggregation operation (i.e., summing

the values within their respective value buckets in this case) on the gradient and hessian

histograms received from all the applications to obtain a final histogram representation.

The central authority then sends the final histogram back to each application. Next, each

application uses the received histograms to update its local ML model to obtain a more

accurate model that better reflects global knowledge. Finally, the updated local ML model

is utilized by the next iterative teacher (FM)-learner (ML) interaction to locally train a new

ML model. The central authority and the applications may repeat this process for several

iterations until a stopping condition is reached (e.g., a predefined iteration count or when

the histograms see no significant change between two consecutive iterations).

Example 5.3.2 Following Example 5.3.1, Figure 5.5 (Step 2) shows that, at the end of the

nth iteration of the teacher-learner interaction, each application sends its local ML model

parameters (i.e., gradient and hessian histograms) to the central authority (for clarity, the

figure only displays the gradient histograms). Specifically, two gradient histograms, each

with three gradient values i.e., (5, 21, 7) and (3, 9, 6), are sent by the Uber and Bolt appli-

cations, respectively. Step 3 shows the aggregation of the received gradient histograms at

the central authority. Particularly, the aggregation (i.e., summation) results are represented

in a histogram with the values (8, 30, 13), which are then sent back to the applications (Step

4). Step 5 shows that each application uses the received aggregated gradient histograms

to update its local model. If a predefined number (r) of aggregation iterations is not yet

reached (Step 6), the updated local model is provided to the teacher to trigger a new itera-

tion of the teacher (FM)-learner (ML) interaction for local ML model training. Otherwise,

the updated local model will be utilized by the ML application stage (Step 7).

99

5.3.4 Application Stage

As Figure 5.4 (bottom of Application 1) shows, the final ML model obtained from the

ML training stage is applied to the remaining audit data (i.e., the data not used for the

training) of each application in order to identify data records that are more likely to violate

the given security property, namely, the “to be verified” subset, which is then given a higher

priority for verification. On the other hand, the other records, i.e., the “not to be verified”

subset, will either be verified afterwards, or not verified at all, depending on the use cases

(discussed in Section 5.6).

5.4 Vertical FLFM (V-FLFM) Methodology

This section first presents an overview of our vertical FLFM (V-FLFM) approach and

then details its components.

5.4.1 Overview

The vertical case of FLFM (V-FLFM) is designed for verifying a security property

across several microservice applications that share the same data samples but with differ-

ent attributes. In such a case, as illustrated in our motivating example (Section 5.1), each

application lacks certain attributes, and thus the machine learning models of MLFM trained

locally using each application’s limited collection of attributes would not be accurate due

to data unavailability. Therefore, V-FLFM utilizes Vertical Federated Learning (VFL) to

enable the applications to collaboratively train a global ML model that can more accurately

reflect the collection of all applications’ attributes. Similar to HFL (Section 5.2.2), VFL

allows the global model to be trained without the need for sharing data with other applica-

tions, with only a small amount of data and learning parameters exchanged with the central

authority, thereby preserving confidentiality and privacy for the applications.

100

Similar to the H-FLFM approach, V-FLFM also has two stages: the ML training stage

and the ML application stage, as depicted in Figure 5.6. What is unique to V-FLFM is the

fact that the formal verification can only be performed at the central authority, where all

attributes from the applications are collected. Specifically, during the ML training stage,

the sampler identifies a small representative data sample, which is sent to the central au-

thority for labeling (utilizing the Verifier). The labeled samples are then sent back to the

corresponding applications and used by the Learner to train a global ML model. Each

application’s Learner calculates the learning parameters and sends them to the central au-

thority for aggregation. The aggregated parameters are then returned to the applications to

refine their local models. In the ML application stage, the final ML model of each appli-

cation is applied to the remaining local audit data (i.e., the data not used during training)

to prioritize verifying data records that are more likely to violate the property. Such data

records are then sent to the central authority for verification utilizing the Formal verifier.

The remainder of this section provides more details and examples for our V-FLFM method-

ology.

5.4.2 Training Stage - Training Data Building

V-FLFM requires the applications and the central authority to collaboratively obtain the

training data and build the ML model (in contrast, H-FLFM does not involve the central

authority for obtaining the training data). Specifically, as shown in Figure 5.6 (top-right in-

side Application 1), at the beginning of each iteration, the sampler interacts with the verifier

(left inside Central authority) to build a training dataset. First, a sampling method is used to

select a small representative data sample of fixed size from the audit data after applying the

ML model built by the learner in the previous iteration (an initial ML model is provided for

the first iteration). Second, since the data is vertically distributed, the necessary attributes

for the verification are collected from the applications that hold them. The central authority

101

Figure 5.6: Overview of the vertical FLFM approach

then reassembles these samples into complete data records and verifies them using a for-

mal verification approach. Thereafter, the data records labeled with verification results are

divided into data samples and redistributed to the corresponding applications. The learner

of each application then adds this newly received data sample to its existing training data

(i.e., the collection of all previous samples) and utilizes this enriched training data to build

a new ML model using a vertical federated learning algorithm.

Example 5.4.1 Figure 5.7 shows an example of the ML training over data vertically dis-

tributed between two applications, i.e., Banking institution and Financial institution. First,

in Step 1 , the sampler selects a sample of size (m = 1), using the uncertainty sampling

method, which is assumed to include the data record (1) in this example, for both applica-

tions. Next, in Step 2 , the sample from each application is sent to the Verifier inside the

central authority (omitted on the Financial institution’s side for simplicity). The Verifier

102

reassembles those samples into a complete data record, and then verifies the record and

labels it based on the verification result (Step 3). Then, the labeled data record is divided

into samples and sent back to the corresponding applications (Step 4), which utilize them

to build a new ML model.

Update local
DT model Sampler

ML training
Learner

ML algorithm

Return the final
DT model

Complete (r)
iterations

No

Yes

Next DT

UR < 0.6

Sampling using
updated DT

model

Sampler
(uncertainty

sampling)
Audit data

DT

UR < 0.3 Remove
record (1)

from P

Training
data (T)

D

Update local
DT model Sampler

ML training
Learner

ML algorithm

Return the final
DT model

Complete (r)
iterations

No

Yes

Next DT

D_ID < 0.6

Sampling using
updated DT

model

Sampler
(uncertainty

sampling)
Audit data

DT

D_ID < 0.3 Remove
record (1)

from P

Training
data (T)

D

Central authority

+ =4
181212 6

1710 12101817
4 6

Concatenation of gradient histograms6

Aggregator Verifier

Formal
verifier

1

Send records (D)2

3

Send labels4 Send the gradient
histograms5

6
17104

181212

1

Send node
parameters

Send node
parameters7 75 Send the gradient

histograms

Financial institutionBanking institution

Figure 5.7: An example of the vertical FLFM training

5.4.3 Training Stage - Global Model Learning

The federated global model learning starts when each application receives the new la-

beled sample. Figure 5.6 (lower left inside Application 1 and top) illustrates this using a

vertical federated XGBoost classifier (detailed in Section 5.2.2). First, the VFL algorithm

requires the application holding the labels to transmit them to the central authority, which

then forwards these to the other applications for them to compute the corresponding gradi-

ents and hessians histograms (this step is performed only once for each model, as detailed

in Section 5.2.2). Second, the applications send the histograms to the central authority for

aggregation through concatenation (detailed in Section 5.2.2). The aggregated histograms

are utilized to compute the node parameters, i.e., the best split or the prediction value if

103

the current node is a leaf node, which are then sent back to the applications to update their

local models. Finally, the updated local ML model is utilized by the Sampler to initiate

the training of a new ML model. This training process may repeat for several iterations

until a predefined stopping condition is met.

Example 5.4.2 Following Example 5.4.1, Figure 5.7 (Step 5) shows that the two appli-

cations send their learning parameters, i.e., (4, 18, 12) and (6, 17, 10) (only the gradient

histograms are shown for clarity), to the central authority. The histograms (Step 6) are

then concatenated by the Aggregator (inside the central authority), and used to compute

the node parameters. These parameters are then sent back to the applications (Step 7) to

update their local models. If the predefined number of iterations (r) has not been reached,

the updated ML model is used in the next iteration of training; otherwise, it is passed to the

ML application stage for utilization in subsequent verification process.

5.4.4 Application Stage

As Figure 5.6 (bottom of Application 1) shows, similar to H-FLFM, the final ML model

obtained from the ML training stage is applied to the remaining audit data (i.e., the data not

used for training) of each application to identify the “to be verified” subset (data records

more likely to violate the given security property), which will be given a higher priority

and sent first to the central authority for verification. On the other hand, the “not to be

verified” subset will either be verified later or not verified at all, depending on the use cases

(discussed in Section 5.6).

5.5 Implementation

This section details our implementation of FLFM.

Architecture. Figure 5.8 overviews our implementation of FLFM. Specifically, FLFM

104

interacts with users to obtain the inputs including the security property to be verified and

the system parameters, such as the number of iterations and the sample size (as detailed in

Sections 5.3 and 5.4), and to deliver to users an audit report as the output. Furthermore,

FLFM also interacts with the cloud environment hosting the microservice applications to

acquire the necessary audit data for verification. The following details the components of

FLFM.

Figure 5.8: The FLFM architecture

Data Collection and Processing. This module (implemented in Python 3.6.9) collects

audit data from the microservice-based applications and converts it into the necessary input

formats for both the formal verifier and ML training.

FLFM Manager. This module (also implemented in Python 3.6.9) triggers either the hor-

izontal or vertical FLFM approach based on the audit property and data distribution. Addi-

tionally, it manages and orchestrates the interactions among other modules for conducting

105

data processing, data sampling, formal verification, ML training, etc., as detailed in Sec-

tions 5.3 and 5.4.

ML Model Learner. We utilize Python 3.6.9 and Scikit-learn 0.24.1 (an open source

ML library written in Python) to implement this module. For both horizontal and verti-

cal federated learning, we choose the XGBoost classifier [109], a scalable tree boosting

algorithm that has seen wide application in real-world for its high accuracy and low false

positive rate, with many awards in ML and data mining competitions [110, 111]. We em-

ploy FedTree [134], an FL system designed for tree-based models, to implement federated

XGBoost. FedTree employs a histogram-sharing strategy for both horizontal and verti-

cal FL. It facilitates distributed computing for practical FL deployment with configurable

privacy techniques like Differential Privacy and Homomorphic Encryption, and supports

standalone FL simulation on a single machine. Although many FL studies focus on neural

networks, our work excludes them due to their widely recognized higher complexity and

longer training time compared to traditional ML models [112], which is not aligned with

our main objective of reducing the overall delay before violations can be identified.

Aggregation. This module (implemented in Python 3.6.9) aggregates the learning param-

eters received from the microservice-based applications.

Sampler. We utilize the modAL framework [113] to implement sampling strategies within

this module. modAL is an active learning framework for Python3, built on top of Scikit-

learn [114], which enables the rapid creation of active learning workflows with flexibil-

ity [113]. In our implementation, we opt for the uncertainty sampling strategy due to its su-

perior computational efficiency compared to other strategies [46]. Moreover, our previous

work [5] has demonstrated that combining uncertainty sampling with XGBoost achieves

the highest verification performance.

Formal Verifier. We formalize the security properties along with the audit data as a Con-

straint Satisfaction Problem (CSP), a time-proven technique to express intricate problems.

106

Leveraging CSP permits users to articulate a wide range of security properties (owing to its

expressiveness) in a relatively simple manner, since CSP can facilitate the uniform repre-

sentation of audit data and security properties, presenting them in a clear and understand-

able formalism, such as first-order logic (FOL) [115]). As a future work, FLFM may also

be integrated with other robust and efficient CSP solver algorithms, which can circumvent

the costly state space traversal [116] to further enhance the scalability, particularly in larger

environments.

After being formulated as a CSP problem, the security verification is performed using

Sugar [67], a well-established, award-winning SAT-based constraint solver (e.g., the global

constraint categories at the International CSP Solver Competitions in 2008 and 2009 [117]).

Sugar tackles a finite linear CSP by converting it into a SAT problem through the order

encoding method, and then it solves the SAT problem using the MiniSat solver [118],

an efficient CDCL SAT solver recognized for its effectiveness in narrowing the search

space [119]. A future direction is to adapt the FLFM framework to other verification meth-

ods (such as theorem proving, model checkers, temporal logic, and Datalog) based on the

specific requirements of the verification tasks.

5.6 Experiment

This section first describes the investigated properties. Then it covers the experimental

settings, use cases of our approach, and the datasets used. Finally, it presents our evaluation

results for both H-FLFM and V-FLFM.

5.6.1 Investigated Properties

FLFM targets system-wide security properties that cannot be fully verified by analyzing

the configuration of a single application or microservice in isolation. These properties

107

depend on the relationships, communications, or configurations across the entire system,

requiring the aggregation of information from multiple applications or services. These

properties describe policies like communication isolation, role-based access compliance,

and dependency integrity, which span multiple services and require system-wide visibility

or coordination.

Our approach can support the verification of various security or custom properties as

long as they can be verified using the chosen formal method tool. To make our discussion

more concrete, we present two example properties (which will be used to evaluate our

approach later in this section).

Rate Limiting Property. Ensures that applications adhere to predefined thresholds for

request rates, such as a specified number of requests that are allowed within a given time

frame. It serves as a security mechanism to protect networks by regulating traffic flow,

preventing excessive rates that could lead to congestion or overload, and mitigating risks

such as API abuse through excessive calls [135]. Additionally, it safeguards systems from

malicious activities like Denial of Service (DoS) attacks [136] and ensures fair resource

allocation among services. Therefore, verifying rate limits is crucial for maintaining the

security, stability, and quality of service in cloud-based networking environments.

In our work, we assume that the cloud provider hosts several applications for different

clients and enforces traffic rate limits on certain applications (e.g., no more than 1,000 re-

quests per second for banking applications). Our objective is to compare the actual request

rate against rate-limiting policies to ensure the compliance of these applications. Specifi-

cally we verify the following.

∀id ∈ AplicationID, ∀r ∈ Requests, ∀t ∈ time : AppRequestCount(id, r, t) (3)

<= RateLimit

108

Where AppRequestCount denotes the number of requests r made by an application with

ID id at a specific time interval ending at time t, and RateLimit is a constant representing

the rate limit.

Access Control Property. In our work, we assume that two organizations (each with its

own MS applications) work on a shared project. One of them is the project lead (say

organization A) hence it holds higher priority e.g., owns sensitive data for the project, or

manages role assignments and access control (e.g., issuing permissions). On the other hand,

the other organization (say organization B) uses the data or shared resources provided by

“organization A” and maintains its own users access information. For instance, the two

organizations could be a bank and financial institution that performs some tasks on behalf

of the bank, such as risk assessment, credit scoring, or fraud detection.

Our objective is to ensure the compliance of established access control policies across

these applications. For instance, one such policy might state: ”Only users with the role

Analyst from Organization B are permitted to access SharedResourceX, and only if they

are using a device that has been explicitly approved and registered by organization A”.

Which would be represented as follows.

∀id ∈ ResourceID, ∀dev ∈ DeviceID, ∀ur ∈ Roles : ResourceUserRole(id, ur) (4)

∧(ur == “Analyst”) ∧ UsedDeviceID(id, dev) ∧ ApprovedDevices(id, dev)

Where ResourceUserRole represents the role (ur) of the user who accessed the Share-

dResourceX identified by its ID (id), UsedDeviceID represents the used device (dev) to ac-

cess resource (id), and ApprovedDevices represent the approved devices by organization A

to access resource (id) from.

109

5.6.2 Experimental Settings and Datasets

Experimental Settings. All experiments are performed on a SuperServer 6029P-WTR

running the Ubuntu 18.04 operating system equipped with Intel(R) Xeon(R) Bronze 3104

CPU@1.70GHz and 128GB of RAM without GPUs. All the experiments are performed

using Sugar [67] as the formal verifier, FedTree [134] standalone simulator to simulate

the federated settings, and Python 3.6.9 with Scikit-learn 0.24.1 ML packages for the ML

method (i.e., XGBoost classifier [109]). For all experiments, we use the default parameters

for the ML models. Each experiment is repeated 1,000 times to obtain the average results.

We evaluate FLFM under two use cases, one for the shortest verification time and the

other for more complete results. First, in the partial verification use case, FLFM will

stop after verifying all the “to be verified” records (i.e., the “not to be verified” records

will not be verified, as detailed in Sections 5.3.4 and 5.4.4). This use case may apply

when the user wants to find violations as quickly as possible (but not necessarily all the

violations). Second, the priority-based verification use case means that FLFM will not

stop after verifying the “to be verified” records, but instead will continue to verify the

remaining (“not to be verified”) records. This use case applies when the user requires

complete verification results (at the cost of a longer running time).

Finally, since our previous work (MLFM) demonstrated through experimental evalua-

tions that combining machine learning with formal methods outperforms traditional formal

methods, we did not directly compare FLFM with traditional approaches. Instead, we focus

on evaluating the performance of FLFM and comparing it with MLFM, as FLFM repre-

sents a distributed extension of MLFM. Our goal is to build upon the results established by

MLFM and assess how they extend to the federated FLFM setting.

Datasets. To evaluate the performance of FLFM in the horizontal case (H-FLFM), we

generate six sets of datasets, with each set containing two datasets, one for each applica-

tion. Each dataset contains 12,500 data records for verifying the rate limiting property (P1

110

henceforth). Since data heterogeneity is the key factor affecting the ML accuracy in the

horizontal case, the six sets of datasets are designed to have an increasing level of hetero-

geneity, e.g., the last set has 100% heterogeneity, i.e., the two applications do not share any

common data values. Finally, each dataset contains around 10% of (uniformly distributed)

records that violate the corresponding property.

For the vertical case (V-FLFM), we also generate six sets of datasets for both applica-

tions. Each dataset contains 12,500 data records for verifying the access control property

(P2 henceforth). Unlike the horizontal case (where data heterogeneity is the key factor), the

ML accuracy in V-FLFM is mainly affected by the missing attributes in each application.

Each subsequent set of datasets is designed to have 10% more records that result in false

prediction by the ML model due to the lack of attributes (e.g., data records that are identi-

fied by ML as “to be verified” but do not violate the given property). Finally, similar to the

horizontal case, each dataset also contains around 10% of (uniformly distributed) records

that violate the corresponding property.

5.6.3 H-FLFM Experimental Results

We evaluate the H-FLFM performance and how it may be impacted by data hetero-

geneity and other parameters. We also compare the performance of H-FLFM with a state-

of-the-art approach, MLFM [5], which runs at each application to construct an ML model

and identify the data records that violate the given property based on the local data. Table

5.1 lists the parameters evaluated in those experiments.

Parameter Meaning Abbreviation

Sample size
Number of records selected by

the sampler from the audit data
m

Local

iterations

Number of local iterations conducted

between the teacher and the learner
n

Global (aggregation)

iterations

Number of global iterations conducted between the

applications and the central authority
r

Table 5.1: Main parameters evaluated in the experiments.

111

Impact of Data Heterogeneity. The first set of experiments evaluates the impact of differ-

ent levels of data heterogeneity on the performance of H-FLFM in comparison to MLFM,

with respect to the execution time and the recall, respectively. This experiment is per-

formed using the best performing parameters of MLFM as reported in [5] (i.e., XGBoost

with uncertainty sampling, 20% training data, sample size m = 250, and iteration count n

= 10) for both MLFM and H-FLFM.

First, Figure 5.9 (a) shows the execution time for identifying violations (under the

priority-based verification use case) for both H-FLFM and MLFM on datasets with differ-

ent levels of data heterogeneity (ranging from 0% to 100%). The results show that H-FLFM

is faster than MLFM across all levels of data heterogeneity, with an average of around 13%

better performance for H-FLFM. This is expected as the federated global model learning

of H-FLFM allows the applications to build more accurate ML models and consequently

to prioritize the verification of data records more effectively than MLFM does. The re-

sults also show a similar trend for both approaches, i.e., as the level of data heterogeneity

increases, the execution time first increases and then decreases passing around 60% data

heterogeneity. This can be explained by a similar trend in the accuracy of the ML models,

as detailed below.

Second, Figure 5.9 (b) shows the recall values for both H-FLFM and MLFM under

different levels of data heterogeneity. The results show that H-FLFM achieves higher recall

values (i.e., more effective in identifying the violations) than MLFM across all levels of

heterogeneity. The results also show a similar trend for both approaches, i.e., as the level

of data heterogeneity increases, the recall values first decrease and then increase. This can

be explained by the fact that a medium level of heterogeneity (e.g., 40%) means the local

data of an application contains an imbalanced mixture of data from different ranges, which

makes the ML training more challenging; conversely, the ML training is easier either at

a very low level of heterogeneity since the local data has a well balanced mixture of data

112

from different ranges, or at a very high level of heterogeneity since the local data is mostly

from the same range. This also explains the diminishing difference between H-FLFM and

MLFM as the heterogeneity approaches 100% (i.e., the local model is good enough on

local data from the same range). In the subsequent experiments, we choose datasets with

a high heterogeneity level (i.e., 80%) since this is the most challenging case for H-FLFM

(i.e., with the minimum benefit compared to MLFM).

0 20% 40% 60% 80% 100%
Level of heterogeneity

0.9

1

1.1

1.2

1.3

1.4

T
im

e
 (

h
)

H-FLFM MLFM

(a)

0 20% 40% 60% 80% 100%
Level of heterogeneity

40

60

80

100

R
e
c
a
ll

H-FLFM MLFM

(b)

Figure 5.9: The execution time (in hours) (a) and recall (b) for identifying violations in

datasets with different levels of heterogeneity by H-FLFM and by MLFM [5]

Impact of Parameters. The goal of this set of experiments is to study the impact of the H-

FLFM parameters as listed in Table 5.1. First, Figure 5.10 (a) shows the effect of the sample

size under various numbers of both the local iteration (n) and global (aggregation) iteration

(r), where we choose n = r (i.e., each local iteration is followed by an aggregation).

With respect to the effect of sample size, the results show that, with the sample size

increasing (i.e., more training data is employed during each iteration) from 0 to 250 records,

the H-FLFM performance improves owing to the enhanced accuracy of the ML model,

where the lowest execution time for H-FLFM is achieved when the sample size reaches

around 250, independently of the number of iterations. The improvement starts to diminish

passing 250 records, since with larger sample sizes, the verification time during the training

stage becomes more dominant (compared to the time saved during the application stage),

leading to overall a longer time.

113

With respect to the effect of the number of iterations, the results show that, for any

given sample size, the execution time of H-FLFM is the lowest under a medium number

of iterations (e.g., 10 iterations), while a smaller number (e.g., 5 iterations) leads to the

highest execution time. This can be explained by the fact that the increase in the number

of iterations initially leads to more accurate ML models (as more training data is used) and

consequently a lower execution time, while further increase in the number of iterations re-

verses the trend, since the accuracy improvement will diminish and the increase in training

time due to the additional iterations will outweigh the time saved in the ML application

stage. Therefore, we can conclude with the optimal H-FLFM parameters of (m = 250,

n = 10, and r = 10).

Figure 5.10 (b) further studies the effect of the number of aggregation iterations on the

execution time (for priority-based verification) of H-FLFM in comparison to MLFM, using

the dataset of 80% heterogeneity. Here we fix the sample size and the number of local

iterations at the best performing parameters of H-FLFM, i.e., (m = 250 and n = 10), while

varying the number of aggregation iterations by performing the aggregation after multiple

local iterations. The results show that increasing the number of aggregation iterations can

significantly reduce the execution time, e.g., from 76 minutes for 1 aggregation to less than

50 minutes for 10 aggregations (i.e., aggregation is performed after every local iteration).

The results also show that H-FLFM is always faster than MLFM, and the difference grows

almost linearly in the number of aggregations, e.g., H-FLFM is 36.7% faster than MLFM

with 10 aggregation iterations.

Performance and Robustness. The goal of this set of experiments is to further study the

performance of H-FLFM in terms of execution time in comparison to MLFM, and the ro-

bustness in handling new data with different characteristics. First, Figure 5.11 (a) compares

the execution time of H-FLFM to MLFM that is needed to identify different percentages

of violation (for the priority-based verification) using the dataset of 80% heterogeneity and

114

100 200 300 400 500
Sample size

0.7

1.1

1.5

1.9

T
im

e
(h

)

(a)

1 2 3 4 5 6 7 8 9 10
Number of aggregation iterations

50

60

70

80

T
im

e
(m

)

H-FLFM MLFM

(b)

Figure 5.10: The execution time of H-FLFM (in hours) for different sample sizes and for

various numbers of iterations (aggregation and local iterations) (a). Execution time (in

minutes) of H-FLFM using the best performing parameters (i.e., m = 250 and n = 10),

while varying the number of aggregation iterations and compared to the execution time of

MLFM using the same applicable parameters (b)

the best performing parameters (i.e., m = 250, n = 10, and r = 10). The results show that

H-FLFM is always faster than MLFM in identifying violations, and H-FLFM takes around

39% less time than MLFM for identifying all the violations.

Second, Figure 5.11 (b) studies the robustness of H-FLFM and the generality of its ML

model for handling new data records that have different distributions or data ranges from

the local data. Specifically, Local data in the figure refers to the normal scenario used

in previous experiments, i.e., H-FLFM applies its trained ML model to data records with

similar distributions and value ranges as the training data. In addition, we test H-FLFM

under two more challenging scenarios, i.e., Future reverse data which means the ML model

trained at one application is applied to data records with distributions and value ranges

similar to the other application, and Global data which means the ML model is applied

to data records that have mixed distributions and value ranges from both applications. As

expected, H-FLFM performs the best for the local data scenario. The performance becomes

worse under the Global data scenario, and decreases further under the Future reverse data

scenario. Nonetheless, even in the last case, by taking approximately 60 minutes, H-FLFM

is still around 21% faster than MLFM (depicted in Figure 5.11 (a), which requires around

76 minutes).

115

20% 40% 60% 80% 100%
Percentage of violations identified

0

20

40

60

80

T
im

e
(m

)

H-FLFM MLFM

(a)

20% 40% 60% 80% 100%
Percentage of violations identified

0

20

40

60

T
im

e
(m

)

(b)

Figure 5.11: The execution time (in minutes) for identifying different percentages of viola-

tions by H-FLFM and MLFM (a). The time (in minutes) for identifying different percent-

ages of violations by H-FLFM under different scenarios (b)

5.6.4 V-FLFM Experimental Results

We evaluate the V-FLFM performance and how it may be impacted by different pa-

rameters. We also compare the performance of V-FLFM with the baseline approach (i.e.,

applying MLFM on the local data, without the federated global learning step of V-FLFM).

Impact of Parameters. As mentioned in Section 5.4, under the vertical case of FLFM

(V-FLFM), the formal verification is performed at the central authority by collecting all the

attributes from the applications. Therefore, one aspect of the V-FLFM performance is the

percentage of data records that need to be shared with the central authority. Specifically,

Figure 5.12 (a) shows the impact of the V-FLFM parameters (i.e., the sample size and the

number of iterations) on the percentage of shared records for the partial verification case.

It also compares V-FLFM to the baseline approach using the best performing parameters

of MLFM as reported in [5] (i.e., XGBoost with uncertainty sampling, 20% training data,

sample size m = 250, and iteration count n = 10). The results show that V-FLFM performs

better than the baseline (in terms of a lower percentage of shared records) in most cases. For

V-FLFM, the percentage of shared records initially decreases until the sample size reaches

around 200. This shows that a larger sample size allows V-FLFM to be more effective

in identifying violations due to the increasing accuracy of its ML model. As the sample

116

size further increases, the trend reverses, i.e., the percentage of shared records also starts

to increase, since the improvement in model accuracy diminishes while the increase in the

percentage of shared records due to larger samples becomes more dominant. The results

also show that a larger number of iterations generally means more shared records, and

hence a single iteration (with the sample size of (200)) would yield the lowest percentage

of shared records.

Figure 5.12 (b) shows the recall values of both V-FLFM and the baseline approach. The

results show that V-FLFM achieves higher recall with more iterations, since the accuracy

of the ML model generally increases with more iterations of training. The results also show

that different combinations of the sample size and number of iterations can achieve similar

recall values. Therefore, the best combination of the parameters could depend on the users’

preferences (e.g., less shared records or higher recall). In our experiments, we choose the

sample size of (300) and iteration count of (8) as the optimal parameters, which means our

approach shares 28.92% fewer records compared to the baseline approach, while achieving

a 32.25% higher recall compared to the baseline approach.

100 200 300 400 500

Sample size

0

20

40

60

S
h

ar
ed

 r
ec

o
rd

s
(%

)

2-Iters 4-Iters 6-Iters

8-Iters 10-Iters Baseline

(a)

100 200 300 400 500
Sample size

20

40

60

80

100

R
ec

al
l

2-Iters 4-Iters 6-Iters

8-Iters 10-Iters Baseline

(b)

Figure 5.12: The percentage of records shared with the central authority by V-FLFM and

the baseline approach for the partial verification case (a) and the recall of V-FLFM and the

baseline approach (b)

Figure 5.13 (a) shows the percentage of records that are shared by V-FLFM and the

baseline approach for the priority-based verification (note that the count of records is taken

as soon as all the violations are identified). The results show that both V-FLFM and the

117

baseline approach lead to more shared records than in the partial verification case (due to

the need for verifying the “not to be verified” records). V-FLFM shows a similar trend as

before, i.e., the percentage of shared records initially decreases due to more accurate ML

models (with the lowest value of around (16.45%) under the sample size of (300) and the

number of iterations of (1)), and then the trend reverses as the increase in shared records

due to larger samples becomes more dominant.

100 200 300 400 500
Sample size

0

20

40

60

S
h

ar
ed

 r
ec

o
rd

s
(%

)

2-Iters 4-Iters 6-Iters

8-Iters 10-Iters Baseline

(a)

20% 40% 60% 80% 100%
Percentage of violations identified

0

25

50

75

100

T
im

e
(m

)

V-FLFM Baseline

(b)

Figure 5.13: The percentage of records shared with the central authority by V-FLFM and

the baseline approach for the priority-based verification case (a) and the execution time (in

minutes) for identifying different percentages of violations by V-FLFM and the baseline

approach (b)

Performance. The goal of this set of experiments is to further study the performance of

V-FLFM using the best performing parameters in terms of both the execution time and

shared records in comparison to the baseline approach. First, Figure 5.13 (b) compares the

execution time of V-FLFM to the baseline approach for identifying different Percentages

of violations (for the priority-based verification) using the best performing parameters (i.e.,

m =300 and r = 8). The results show that V-FLFM outperforms the baseline in all cases,

e.g., V-FLFM can identify all the violations in around 40 minutes, which takes the base-

line around 86 minutes, i.e., V-FLFM takes around 53.52% less time to identify the same

percentage of violations.

Second, Figure 5.14 compares the percentage of shared records by V-FLFM and the

118

baseline approach using the best performing parameters (i.e., m =300 and r = 8) on six

different datasets. As mentioned in Section 5.6.2, each subsequent dataset contains 10%

more records that are mistakenly identified by ML as “to be verified”, i.e., false violations

(while all the datasets contain 10% of true violations). Figure 5.14 (a) shows that the in-

crease in false violations affects the baseline approach more than V-FLFM for the partial

verification, and V-FLFM outperforms the baseline approach on all the datasets (on aver-

age, V-FLFM shares almost 28.42% less records than the baseline approach). Figure 5.14

(b) shows similar results for the priority-based verification case. Although both approaches

lead to more shared records in this case, V-FLFM shares almost 45.45% less records on

average than the baseline approach over all the datasets. Finally, Figure 5.14 (c) shows

that the recall values of V-FLFM decreases when the number of false violations increases

(which cause the ML model to become less accurate) although it remains to be higher than

the baseline approach.

DS1 DS2 DS3 DS4 DS5 DS6

Datasets

0

20

40

60

S
h
a
re

d
 r

e
c
o
rd

s
(%

) V-FLFM Baseline

(a)

DS1 DS2 DS3 DS4 DS5 DS6

Datasets

0

20

40

60

80

S
h

a
re

d
 r

e
c
o

rd
s

(%
)

V-FLFM Baseline

(b)

DS1 DS2 DS3 DS4 DS5 DS6

Datasets

40

60

80

100
R

e
c
a
ll

V-FLFM Baseline

(c)

Figure 5.14: Percentage of shared records by V-FLFM and the baseline approach for partial

verification (a) and priority-based verification (b) using different datasets, and using differ-

ent datasets, and the recall of V-FLFM and the baseline approach using different datasets

(c)

119

5.7 Summary

We have presented FLFM, a novel approach designed to more quickly identify secu-

rity violations for microservice applications. FLFM combines the efficiency and privacy-

friendliness of Federated Learning (FL) with the rigor of formal methods (FM). In par-

ticular, during the training stage, each microservice application first selects a small yet

representative sample of its configuration data and labels it according to the formal method

verification results obtained for that sample. Then, the applications leverage federated

learning to jointly train a global ML model based on the collection of their samples. In

the application stage, this global ML model is applied to help the applications prioritize

more suspicious data for earlier verification. We provided detailed methodologies for both

the horizontal and vertical FL cases, and our experimental results demonstrated that FLFM

outperforms the baseline approach.

120

Chapter 6

Conclusion

In this thesis, we addressed key security verification challenges in modern virtualized

environments by introducing three novel solutions tailored to the complexity, scalability,

and privacy concerns of NFV and microservice architectures. First, we introduced NFV-

Guard+, a cross-level formal verification solution that validates security properties across

the entire NFV stack without the need for explicit verification at each level. Second, to im-

prove the efficiency of existing security verification solutions, particularly formal methods,

we developed the MLFM approach, which integrates the speed of machine learning with

the rigor of formal methods to accelerate and prioritize verification without compromising

accuracy. Finally, we proposed FLFM, a privacy-preserving, federated learning–guided

formal security verification solution designed for the distributed nature of microservices.

The following discusses the limitations and our future research focus:

1. First, although our cross-level security verification approach for NFV is platform-

agnostic, the current implementation of data collection and processing is limited to

OpenStack/Tacker. To address this limitation, future work will focus on a more mod-

ular design with a clear methodology for extending support to other open-source

NFV platforms, such as OPNFV and OSM.

121

2. Second, our machine learning-guided formal method for faster identification of se-

curity breaches is currently limited to NFV environments. A future direction is to

extend MLFM to other large-scale virtual infrastructures, such as cloud platforms

and SDNs. Additionally, while MLFM focuses solely on security verification, an

important next step is to integrate it with security enforcement mechanisms to en-

able faster attack prevention. Furthermore, MLFM currently operates in a static,

on-demand manner using data snapshots, and future work will explore continuous

security verification through real-time monitoring with data streams.

3. Third, for our security verification of microservices using federated learning-guided

formal methods, there are several potential future directions. One promising av-

enue is the integration of privacy-preserving mechanisms, such as secure multi-party

computation or differential privacy, to further strengthen security while ensuring data

confidentiality. Additionally, improving FLFM’s adaptability by incorporating adap-

tive federated learning techniques could enhance its efficiency in addressing evolv-

ing security threats. Moreover, in real-world scenarios, data distribution is rarely

perfectly horizontal or vertical; both types may coexist. Developing hybrid FL solu-

tion capable of handling both types of partitioning simultaneously represents another

important direction for our future research.

122

Bibliography

[1] S. Lakshmanan Thirunavukkarasu, M. Zhang, A. Oqaily, G. Singh Chawla, L. Wang,

M. Pourzandi, and M. Debbabi, “Modeling NFV deployment to identify the cross-

level inconsistency vulnerabilities.” IEEE (CloudCom), 2019.

[2] OpenStack, “OpenStack,” 2020, available at: https://www.openstack.org/.

[3] “ETSI: Network Functions Virtualisation Architectural Framework,” https://www.et

si.org/. Last accessed 16 June 2022.

[4] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese, “Checking

beliefs in dynamic networks,” in 12th USENIX NSDI, 2015.

[5] A. Oqaily, Y. Jarraya, L. Wang, M. Pourzandi, and S. Majumdar, “Mlfm: Machine

learning meets formal method for faster identification of security breaches in net-

work functions virtualization (nfv),” in European Symposium on Research in Com-

puter Security. Springer, 2022, pp. 466–489.

[6] A. Oqaily, L. Sudershan, Y. Jarraya, S. Majumdar, M. Zhang, M. Pourzandi,

L. Wang, and M. Debbabi, “NFVGuard: Verifying the Security of Multilevel Net-

work Functions Virtualization (NFV) Stack,” in 2020 IEEE (CloudCom). IEEE,

2020, pp. 33–40.

123

[7] S. Pradeep, Y. K. Sharma, U. K. Lilhore, S. Simaiya, A. Kumar, S. Ahuja, M. Mar-

gala, P. Chakrabarti, and T. Chakrabarti, “Developing an sdn security model (en-

sures) based on lightweight service path validation with batch hashing and tag veri-

fication,” Scientific Reports, vol. 13, no. 1, p. 17381, 2023.

[8] S. Chen, J. Li, B. Chen, D. Guo, and K. Li, “vhsfc: Generic and agile verification

of service function chain with parallel vnfs,” in 2023 26th International Conference

on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2023, pp.

498–503.

[9] M. Oqaily, S. Majumdar, L. Wang, M. Ekramul Kabir, Y. Jarraya, A. Asadujjaman,

M. Pourzandi, and M. Debbabi, “A tenant-based two-stage approach to auditing

the integrity of virtual network function chains hosted on third-party clouds,” in

Proceedings of the Thirteenth ACM Conference on Data and Application Security

and Privacy, 2023, pp. 79–90.

[10] S.-T. Cheng, C.-Y. Zhu, C.-W. Hsu, and J.-S. Shih, “The anomaly detection mecha-

nism using extreme learning machine for service function chaining,” in 2020 Inter-

national Computer Symposium (ICS). IEEE, 2020, pp. 310–315.

[11] B. Larsen, H. B. Debes, and T. Giannetsos, “Cloudvaults: Integrating trust exten-

sions into system integrity verification for cloud-based environments,” in Computer

Security: ESORICS 2020 International Workshops, DETIPS, DeSECSys, MPS,

and SPOSE, Guildford, UK, September 17–18, 2020, Revised Selected Papers 25.

Springer, 2020, pp. 197–220.

[12] M. Flittner, J. M. Scheuermann, and R. Bauer, “Chainguard: Controller-independent

verification of service function chaining in cloud computing,” in IEEE (NFV-SDN),

2017, pp. 1–7.

124

[13] X. Zhang, Q. Li, J. Wu, and J. Yang, “Generic and agile service function chain

verification on cloud,” in IWQoS, 2017.

[14] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J.-M. Kang, “SFC-

Checker: Checking the correct forwarding behavior of service function chaining,”

in NFV-SDN, 2016.

[15] Y. Wang, Z. Li, G. Xie, and K. Salamatian, “Enabling automatic composition and

verification of service function chain,” in IWQoS, 2017.

[16] S. K. Fayazbakhsh, M. K. Reiter, and V. Sekar, “Verifiable network function out-

sourcing: Requirements, challenges, and roadmap,” in HotMiddlebox, 2013, pp. 25–

30.

[17] Y. Zhang, W. Wu, S. Banerjee, J.-M. Kang, and M. A. Sanchez, “SLA-verifier: State-

ful and quantitative verification for service chaining,” in INFOCOM, 2017.

[18] G. Marchetto, R. Sisto, F. Valenza, J. Yusupov, and A. Ksentini, “A formal approach

to verify connectivity and optimize vnf placement in industrial networks,” IEEE

Transactions on Industrial Informatics, vol. 17, no. 2, pp. 1515–1525, 2020.

[19] R. Cohen, L. Katzir, and A. Yehezkel, “Efficient service chain verification using

sketches and small samples,” in 2021 IEEE (NFV-SDN). IEEE, 2021, pp. 1–7.

[20] G. Liu, H. Sadok, A. Kohlbrenner, B. Parno, V. Sekar, and J. Sherry, “Don’t yank

my chain: Auditable NF service chaining,” in 18th USENIX (NSDI’21), 2021, pp.

155–173.

[21] M. Zoure, T. Ahmed, and L. Réveillère, “VeriNeS: Runtime verification of out-

sourced network services orchestration,” in 36th ACM, 2021, pp. 1138–1146.

125

[22] A. Asadujjaman, M. Oqaily, Y. Jarraya, S. Majumdar, M. Pourzandi, L. Wang, and

M. Debbabi, “Artificial Packet-Pair Dispersion (APPD): A Blackbox Approach to

Verifying the Integrity of NFV Service Chains,” in 2021 IEEE (CNS). IEEE, 2021,

pp. 245–253.

[23] M. Zoure, T. Ahmed, and L. Réveillère, “Network services anomalies in nfv: Survey,

taxonomy, and verification methods,” IEEE Transactions on Network and Service

Management, vol. 19, no. 2, pp. 1567–1584, 2022.

[24] N. Alhebaishi, L. Wang, and S. Jajodia, “Modeling and mitigating security threats

in network functions virtualization (nfv),” in Data and Applications Security and

Privacy XXXIV: 34th Annual IFIP WG 11.3 Conference, DBSec 2020, Regensburg,

Germany, June 25–26, 2020, Proceedings 34. Springer, 2020, pp. 3–23.

[25] S. Lakshmanan, M. Zhang, S. Majumdar, Y. Jarraya, M. Pourzandi, and L. Wang,

“Caught-in-translation (cit): Detecting cross-level inconsistency attacks in network

functions virtualization (nfv),” IEEE Transactions on Dependable and Secure Com-

puting, 2023.

[26] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte,

“Real time network policy checking using header space analysis,” in 10th USENIX

NSDI’13, 2013.

[27] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow: Verifying

Network-Wide invariants in real time,” in 10th USENIX (NSDI’13), 2013, pp. 15–27.

[28] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static check-

ing for networks,” in 19th USENIX (NSDI’12), 2012, pp. 113–126.

[29] Y. Wang, T. Madi, S. Majumdar, Y. Jarraya, A. Alimohammadifar, M. Pourzandi,

126

L. Wang, and M. Debbabi, “TenantGuard: Scalable runtime verification of cloud-

wide VM-level network isolation,” in NDSS, 2017.

[30] T. Madi, Y. Jarraya, A. Alimohammadifar, S. Majumdar, Y. Wang, M. Pourzandi,

L. Wang, and M. Debbabi, “ISOTOP: Auditing virtual networks isolation across

cloud layers in OpenStack,” ACM TOPS, vol. 22, no. 1, pp. 1:1–1:35, 2018.

[31] S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang, and M. Deb-

babi, “Security compliance auditing of identity and access management in the cloud:

Application to OpenStack,” in IEEE (CloudCom), 2015.

[32] S. Bleikertz, C. Vogel, T. Groß, and S. Mödersheim, “Proactive security analysis of

changes in virtualized infrastructures,” in ACSAC, 2015, pp. 51–60.

[33] Y. Xu, Y. Liu, R. Singh, and S. Tao, “Identifying SDN state inconsistency in Open-

Stack,” in ACM SOSR, 2015.

[34] G. S. Chawla, M. Zhang, S. Majumdar, Y. Jarraya, M. Pourzandi, L. Wang, and

M. Debbabi, “VMGuard: State-based proactive verification of virtual network iso-

lation with application to NFV,” IEEE (TDSC), vol. 18, no. 4, pp. 1553–1567, 2020.

[35] G. Marchetto, R. Sisto, J. Yusupov, and A. Ksentini, “Virtual network embedding

with formal reachability assurance,” in 14th International Conference on Network

and Service Management, 2018, pp. 368–372.

[36] S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto, and R. Sisto, “Formal

verification of virtual network function graphs in an sp-devops context,” in European

Conference on Service-Oriented and Cloud Computing. Springer, 2015, pp. 253–

262.

[37] T. Madi, Y. Jarraya, A. Alimohammadifar, S. Majumdar, Y. Wang, M. Pourzandi,

L. Wang, and M. Debbabi, “ISOTOP: auditing virtual networks isolation across

127

cloud layers in OpenStack,” ACM Transactions on Privacy and Security (TOPS),

vol. 22, no. 1, pp. 1–35, 2018.

[38] T. Madi, S. Majumdar, Y. Wang, Y. Jarraya, M. Pourzandi, and L. Wang, “Auditing

security compliance of the virtualized infrastructure in the cloud: Application to

OpenStack,” in ACM CODASPY, 2016.

[39] S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang, and M. Deb-

babi, “User-level runtime security auditing for the cloud,” IEEE Transactions on

Information Forensics and Security, vol. 13, no. 5, pp. 1185–1199, 2017.

[40] S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar, M. Pourzandi, L. Wang,

and M. Debbabi, “Proactive verification of security compliance for clouds through

pre-computation: Application to OpenStack,” in European Symposium on Research

in Computer Security. Springer, 2016, pp. 47–66.

[41] S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar, M. Pourzandi, L. Wang,

and M. Debbabi, “Leaps: Learning-based proactive security auditing for clouds,”

in European Symposium on Research in Computer Security. Springer, 2017, pp.

265–285.

[42] P. Ezudheen, D. Neider, D. D’Souza, P. Garg, and P. Madhusudan, “Horn-ice learn-

ing for synthesizing invariants and contracts,” In: Proceedings of the ACM on Pro-

gramming Languages, vol. 2, no. OOPSLA, pp. 1–25, 2018.

[43] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Ice: A robust framework for

learning invariants,” in International Conference on Computer Aided Verification.

Springer, 2014, pp. 69–87.

[44] S. Ren and X. Zhang, “Synthesizing conjunctive and disjunctive linear invariants by

K-means++ and SVM.” Int. Arab J. Inf. Technol., vol. 17, no. 6, pp. 847–856, 2020.

128

[45] Y. Vizel, A. Gurfinkel, S. Shoham, and S. Malik, “IC3-flipping the E in ICE,” in

International Conference on Verification, Model Checking, and Abstract Interpreta-

tion. Springer, 2017, pp. 521–538.

[46] B. Settles, “Active learning literature survey,” 2009.

[47] A. Panda, M. Sagiv, and S. Shenker, “Verification in the age of microservices,” in

Proceedings of the 16th Workshop on Hot Topics in Operating Systems, 2017, pp.

30–36.

[48] X. Meng, X. Duan, W. Tao, Y. Luan, J. Zhang, and D. Wu, “Modeling and veri-

fication of industrial microservice architecture based on formal methods,” in 2021

China Automation Congress (CAC). IEEE, 2021, pp. 3776–3780.

[49] F. Dai, H. Chen, Z. Qiang, Z. Liang, B. Huang, and L. Wang, “Automatic analysis

of complex interactions in microservice systems,” Complexity, vol. 2020, pp. 1–12,

2020.

[50] M. M. Ghorbani, F. F. Moghaddam, M. Zhang, M. Pourzandi, K. K. Nguyen, and

M. Cheriet, “Malchain: Virtual application behaviour profiling by aggregated mi-

croservice data exchange graph,” in 2020 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). IEEE, 2020, pp. 41–48.

[51] M.-O. Pahl and F.-X. Aubet, “All eyes on you: Distributed multi-dimensional iot

microservice anomaly detection,” in 2018 14th International Conference on Network

and Service Management (CNSM). IEEE, 2018, pp. 72–80.

[52] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, “Automatic policy generation for

{Inter-Service} access control of microservices,” in 30th USENIX Security Sympo-

sium (USENIX Security 21), 2021, pp. 3971–3988.

129

[53] C. Meadows, S. Hounsinou, T. Wood, and G. Bloom, “Sidecar-based path-aware

security for microservices,” in Proceedings of the 28th ACM Symposium on Access

Control Models and Technologies, 2023, pp. 157–162.

[54] A. Venčkauskas, D. Kukta, Š. Grigaliūnas, and R. Brūzgienė, “Enhancing microser-

vices security with token-based access control method. 23 (6), 3363,” 2023.

[55] M.-O. Pahl, F.-X. Aubet, and S. Liebald, “Graph-based iot microservice security,”

in NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium.

IEEE, 2018, pp. 1–3.

[56] Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood, and M. Chabbi,

“{CRISP}: Critical path analysis of {Large-Scale} microservice architectures,” in

2022 USENIX Annual Technical Conference (USENIX ATC 22), 2022, pp. 655–672.

[57] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and G. Srivas-

tava, “Federated-learning-based anomaly detection for iot security attacks,” IEEE

Internet of Things Journal, vol. 9, no. 4, pp. 2545–2554, 2021.

[58] Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu, “Multi-task network anomaly detection

using federated learning,” in Proceedings of the 10th international symposium on

information and communication technology, 2019, pp. 273–279.

[59] Y. Liu, S. Garg, J. Nie, Y. Zhang, Z. Xiong, J. Kang, and M. S. Hossain, “Deep

anomaly detection for time-series data in industrial iot: A communication-efficient

on-device federated learning approach,” IEEE Internet of Things Journal, vol. 8,

no. 8, pp. 6348–6358, 2020.

[60] D. C. Attota, V. Mothukuri, R. M. Parizi, and S. Pouriyeh, “An ensemble multi-view

federated learning intrusion detection for iot,” IEEE Access, vol. 9, pp. 117 734–

117 745, 2021.

130

[61] Z. He, J. Yin, Y. Wang, G. Gui, B. Adebisi, T. Ohtsuki, H. Gacanin, and H. Sari,

“Edge device identification based on federated learning and network traffic feature

engineering,” IEEE Transactions on Cognitive Communications and Networking,

vol. 8, no. 4, pp. 1898–1909, 2021.

[62] Omdia, “NFV/Edge Adoption and Vendor Perception Survey,” 2021, available

at: https://omdia.tech.informa.com/OM019961/NFVEdge-Adoption-and-Vendor-

Perception-Survey–2021.

[63] M. Bursell, A. Dutta, H. Lu, M. Odini, K. Roemer, K. Sood, M. Wong, and

P. Wörndle, “Network functions virtualisation (NFV), NFV security, security and

trust guidance, v. 1.1. 1,” in Technical Report, GS NFV-SEC 003. European

Telecommunications Standards Institute, 2014.

[64] National Institute of Standards and Technology, “CVE-2024-1085 Detail,” 2024,

https://nvd.nist.gov/vuln/detail/CVE-2024-1085. Last accessed 19 May 2024.

[65] National Institute of Standards and Technology, “CVE-2024-0193 Detail,” 2024,

https://nvd.nist.gov/vuln/detail/CVE-2024-0193. Last accessed 19 May 2024.

[66] National Institute of Standards and Technology, “CVE-2024-0646Detail,” 2024, ht

tps://nvd.nist.gov/vuln/detail/CVE-2024-0646. Last accessed 19 May 2024.

[67] N. Tamura and M. Banbara, “Sugar: A CSP to SAT translator based on order encod-

ing,” Proceedings of the Second International CSP Solver Competition, 2008.

[68] OpenStack, “Verizon launches industry-leading large OpenStack NFV deployment,”

2016, available at: https://www.openstack.org/news/view/215/verizon-launches-

industry-leading-large-openstack-nfv-deployment.

[69] ONAP, “Open Network Automation Platform,” 2022, available at:

https://www.onap.org.

131

[70] OpenStack, “OpenStack Tacker,” 2020, https://wiki.openstack.org/wiki/Tacker. Last

accessed 16 June 2022.

[71] ISO Std IEC, “ISO 27002: 2005,” Information Technology-Security Techniques-

Code of Practice for Information Security Management, 2005.

[72] IETF, SFC, “Internet Engineering Task, SFC Active WG Working Group

Documents,” 2020. [Online]. Available: https://www.redhat.com/en/blog/2018-yea

r-open-source-networking-csps

[73] “Cloud Security Alliance,” available at: https://cloudsecurityalliance.org/research/c

cm/.

[74] IEC ISO Std, “ISO 27017,” Information technology-Security techniques (DRAFT),

2012.

[75] SP, NIST, “800-53,” Recommended security controls for federal information sys-

tems, pp. 800–53, 2003.

[76] M.-K. Shin, Y. Choi, H. H. Kwak, S. Pack, M. Kang, and J.-Y. Choi, “Verification

for NFV-enabled network services,” in ICTC, 2015.

[77] ETSI, “Network Functions Virtualisation (NFV); NFV Security; Problem State-

ment,” ETSI GS NFV-SEC, vol. 1, 2014.

[78] F. Sierra-Arriaga, R. Branco, and B. Lee, “Security issues and challenges for virtu-

alization technologies,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–37,

2020.

[79] D. Tank, A. Aggarwal, and N. Chaubey, “Virtualization vulnerabilities, security is-

sues, and solutions: a critical study and comparison,” International Journal of Infor-

mation Technology, pp. 1–16, 2019.

132

[80] Linux Foundation, “Open vSwitch,” 2016.

[81] A. Wang, M. Iyer, R. Dutta, G. N. Rouskas, and I. Baldine, “Network virtualiza-

tion: Technologies, perspectives, and frontiers,” Journal of Lightwave Technology,

vol. 31, no. 4, pp. 523–537, 2012.

[82] OpenStack, “Heavy reading study on CSPs and OpenStack,” 2016, https://object-s

torage-ca-ymq-1.vexxhost.net/swift/v1/6e4619c416ff4bd19e1c087f27a43eea/ww

w-assets-prod/pdf-downloads/OpenStack-survey-results-public-presentation.pdf.

Last accessed 16 June 2022.

[83] Oasis, “Topology and Orchestration Specification for Cloud Applica-

tions (TOSCA),” 2013, available at:https://docs.oasis-open.org/tosca/tosca-

primer/v1.0/tosca-primer-v1.0.pdf.

[84] H. Hawilo, M. Jammal, and A. Shami, “Exploring microservices as the architecture

of choice for network function virtualization platforms,” IEEE Network, vol. 33,

no. 2, pp. 202–210, 2019.

[85] OpenStack, “OSSA-2017-004: OpenStack - Incorrect role assignment with feder-

ated keystone,” 2017, available at: https://security.openstack.org/ossa/OSSA-201

7-004.html.

[86] D. Ishii and S. Fujii, “Formalizing the soundness of the encoding methods of sat-

based model checking,” in 2020 International Symposium on Theoretical Aspects of

Software Engineering (TASE). IEEE, 2020, pp. 105–112.

[87] J. C. Blanchette, M. Fleury, P. Lammich, and C. Weidenbach, “A verified sat solver

framework with learn, forget, restart, and incrementality,” Journal of automated rea-

soning, vol. 61, pp. 333–365, 2018.

133

[88] S. Manandhar, K. Singh, and A. Nadkarni, “Towards automated regulation analysis

for effective privacy compliance,” in ISOC Network and Distributed System Security

Symposium, 2024.

[89] M. W. P. Shuvo, M. N. Hoq, S. Majumdar, and P. Shirani, “On reducing underuti-

lization of security standards by deriving actionable rules: An application to iot,” in

International Conference on Research in Security Standardisation. Springer, 2023,

pp. 103–128.

[90] A. Biere, “PicoSAT essentials,” Journal on Satisfiability, Boolean Modeling and

Computation, vol. 4, no. 2-4, pp. 75–97, 2008.

[91] T. Toda and T. Soh, “Implementing efficient all solutions SAT solvers,” JEA, vol. 21,

pp. 1–44, 2016.

[92] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp: A conflict-driven

answer set solver,” in International Conference on Logic Programming and Non-

monotonic Reasoning. Springer, 2007, pp. 260–265.

[93] R. J. Bayardo Jr and J. D. Pehoushek, “Counting models using connected compo-

nents,” in AAAI/IAAI, 2000, pp. 157–162.

[94] R. Martins, V. Manquinho, and I. Lynce, “An overview of parallel SAT solving,”

Constraints, vol. 17, no. 3, pp. 304–347, 2012.

[95] OSM, “Open Source MANO,” 2022, available at: https://osm.etsi.org/.

[96] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Rfc2784: Generic Routing

Encapsulation (GRE),” 2000.

[97] J. Gross, I. Ganga, and T. Sridhar, “Rfc 8926 geneve: Generic network virtualization

encapsulation,” 2020.

134

[98] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5G network slicing using

SDN and NFV: A survey of taxonomy, architectures and future challenges,” Com-

puter Networks, vol. 167, p. 106984, 2020.

[99] Z. Kotulski, T. W. Nowak, M. Sepczuk, M. Tunia, R. Artych, K. Bocianiak, T. Osko,

and J.-P. Wary, “Towards constructive approach to end-to-end slice isolation in 5G

networks,” EURASIP Journal on Information Security, vol. 2018, no. 1, pp. 1–23,

2018.

[100] K. Jayaraman, N. Bjørner, G. Outhred, and C. Kaufman, “Automated analysis and

debugging of network connectivity policies,” Microsoft Research, pp. 1–11, 2014.

[101] A. Souri, N. J. Navimipour, and A. M. Rahmani, “Formal verification approaches

and standards in the cloud computing: a comprehensive and systematic review,”

Computer Standards & Interfaces, vol. 58, pp. 1–22, 2018.

[102] OpenStack Training Labs, “OpenStack Training Labs,” available at:

https://wiki.openstack.org/wiki/Documentation/training-labs.

[103] P. Quinn and T. Nadeau, “Rfc 7948, problem statement for service function chain-

ing,” Internet Engineering Task Force (IETF), ed, 2015.

[104] N. Schear, P. T. Cable II, T. M. Moyer, B. Richard, and R. Rudd, “Bootstrapping and

Maintaining Trust in the Cloud,” in Proceedings of the 32Nd Annual Conference on

Computer Security Applications, 2016, pp. 65–77.

[105] M. C. Monard and G. E. Batista, “Learmng with skewed class distrihutions,” Ad-

vances in Logic, Artificial Intelligence, and Robotics: LAPTEC, vol. 85, no. 2002,

p. 173, 2002.

[106] S. Buss and J. Nordström, “Proof complexity and sat solving,” Handbook of Satisfi-

ability, vol. 336, pp. 233–350, 2021.

135

[107] H. M. Sani, C. Lei, and D. Neagu, “Computational complexity analysis of decision

tree algorithms,” in International Conference on Innovative Techniques and Appli-

cations of Artificial Intelligence. Springer, 2018, pp. 191–197.

[108] A. E. Mohamed, “Comparative study of four supervised machine learning tech-

niques for classification,” Information Journal of applied science and technology,

vol. 7, no. 2, 2017.

[109] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings

of the 22nd ACM SIGKDD international conference on knowledge discovery and

data mining, 2016, pp. 785–794.

[110] Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, and J. Peng, “XGBoost classifier for

DDoS attack detection and analysis in SDN-based cloud,” in IEEE international

conference on big data and smart computing (BigComp), 2018, pp. 251–256.

[111] F. Neutatz, M. Mahdavi, and Z. Abedjan, “Ed2: A case for active learning in error

detection,” in Proceedings of the 28th ACM International Conference on Information

and Knowledge Management, 2019, pp. 2249–2252.

[112] P. Maji and R. Mullins, “On the reduction of computational complexity of deep

convolutional neural networks,” Entropy, vol. 20, no. 4, p. 305, 2018.

[113] T. Danka and P. Horvath, “modAL: A modular active learning framework for

Python,” arXiv preprint arXiv:1805.00979, 2018.

[114] O. Kramer, “Scikit-learn,” in Machine learning for evolution strategies. Springer,

2016, pp. 45–53.

[115] M. Ben-Ari, Mathematical logic for computer science. Springer Science & Busi-

ness Media, 2012.

136

[116] I. Sassi, S. Anter, and A. Bekkhoucha, “A graph-based big data optimization ap-

proach using hidden markov model and constraint satisfaction problem,” Journal of

Big Data, vol. 8, no. 1, pp. 1–29, 2021.

[117] “Sugar: a SAT-based Constraint Solver,” https://cspsat.gitlab.io/sugar/. Last ac-

cessed 8 November 2021.

[118] N. Eén and N. Sörensson, “An extensible sat-solver,” in International conference on

theory and applications of satisfiability testing. Springer, 2003, pp. 502–518.

[119] W. Gong and X. Zhou, “A survey of sat solver,” in Proceedings of AIP Conference,

vol. 1836, no. 1. AIP Publishing LLC, 2017, p. 020059.

[120] Open Baton, “Open Baton,” 2017, https://openbaton.github.io/. Last accessed 16

June 2022.

[121] OPNFV, “Open Platform for NFV,” 2018, available at:https://www.opnfv.org/.

[122] D. S. Linthicum, “Practical use of microservices in moving workloads to the cloud,”

IEEE Cloud Computing, vol. 3, no. 5, pp. 6–9, 2016.

[123] T. Hoff, “Lessons learned from scaling uber to 2000 engineers, 1000 services, and

8000 git repositories,” available at: https://goo.gl/1MRvoT. Last accessed 6 Novem-

ber 2023.

[124] M. Benedict and V. Charanya, “How we built a metering and chargeback system to

incentivize higher resource utilization of twitter infrastructure,” available at: http:

//bit.ly/3aETlqs. Last accessed 6 November 2023.

[125] T. MAURO, “Adopting Microservices at Netflix: Lessons for Architectural Design,”

available at: https://goo.gl/DyrtvI. Last accessed 6 November 2023.

137

[126] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,”

Computers & Industrial Engineering, vol. 149, p. 106854, 2020.

[127] G. D. P. Regulation, “General data protection regulation (gdpr),” Intersoft Consult-

ing, Accessed in October, vol. 24, no. 1, 2018.

[128] P. F. Edemekong, P. Annamaraju, and M. J. Haydel, “Health insurance portability

and accountability act,” 2018.

[129] E. Goldman, “An introduction to the california consumer privacy act (ccpa),” Santa

Clara Univ. Legal Studies Research Paper, 2020.

[130] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept

and applications,” ACM Transactions on Intelligent Systems and Technology (TIST),

vol. 10, no. 2, pp. 1–19, 2019.

[131] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q. Yang, “Secure-

boost: A lossless federated learning framework,” IEEE Intelligent Systems, vol. 36,

no. 6, pp. 87–98, 2021.

[132] Z. Tian, R. Zhang, X. Hou, J. Liu, and K. Ren, “Federboost: Private federated learn-

ing for gbdt,” arXiv preprint arXiv:2011.02796, 2020.

[133] Y. J. Ong, Y. Zhou, N. Baracaldo, and H. Ludwig, “Adaptive histogram-based gra-

dient boosted trees for federated learning,” arXiv preprint arXiv:2012.06670, 2020.

[134] Q. Li, Z. Wu, Y. Cai, Y. Han, C. M. Yung, T. Fu, and B. He, “Fedtree: A federated

learning system for trees,” in Proceedings of Machine Learning and Systems, 2023.

[135] A. El Malki, U. Zdun, and C. Pautasso, “Impact of api rate limit on reliability

of microservices-based architectures,” in 2022 IEEE International Conference on

Service-Oriented System Engineering (SOSE). IEEE, 2022, pp. 19–28.

138

[136] J. Castro, N. Laranjeiro, and M. Vieira, “Detecting dos attacks in microservice ap-

plications: Approach and case study,” in Proceedings of the 11th Latin-American

Symposium on Dependable Computing, 2022, pp. 73–78.

139

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Research Contributions
	Cross-Level Security Verification System for Network Functions Virtualization
	Machine Learning Meets Formal Method for Faster Identification of Security Breaches in Network Functions Virtualization
	Security Verification for Microservices Using Federated Learning-Guided Formal Method

	Relationships between the Research Topics
	Thesis Structure

	Related Work
	Security Verification System for Network Functions Virtualization
	Security Verification for NFV Using Machine Learning and Formal Method
	Security Verification for Microservices Using Federated Learning-Guided Formal Method

	Cross-Level Security Verification System for Network Functions Virtualization
	Introduction
	Preliminaries
	Background on NFV
	Security Properties for NFV
	Challenges to Cross-Level Security Verification
	Threat Model

	Overview
	ER Model Construction and Consistency Property Identification
	Constructing the Entity Relationship (ER) Model
	Automated Consistency Property Derivation

	Cross-Level Security Verification
	Application to OpenStack/Tacker
	Deploying the NFV Testbed
	NFVGuard+ Implementation

	Experiments
	Experiments with Synthetic Data
	Experiments with Real Data

	Discussion
	Summary

	Machine Learning Meets Formal Method for Faster Identification of Security Breaches in Network Functions Virtualization
	Introduction
	Preliminaries
	Methodology
	Overview
	Iterative Teacher (FM)-Learner (ML) Interaction
	MLFM Algorithm and Use Cases

	Implementation
	EXPERIMENTS
	Datasets and Experimental Settings
	Experimental Results

	Discussion
	Summary

	Security Verification for Microservices Using Federated Learning-Guided Formal Method
	Introduction
	Preliminaries
	XGBoost
	Federated Learning
	Threat Model and Assumptions

	Horizontal FLFM (H-FLFM) Methodology
	Overview
	Training Stage - Local Model Training
	Training Stage - Global Model Learning
	Application Stage

	Vertical FLFM (V-FLFM) Methodology
	Overview
	Training Stage - Training Data Building
	Training Stage - Global Model Learning
	Application Stage

	Implementation
	Experiment
	Investigated Properties
	Experimental Settings and Datasets
	H-FLFM Experimental Results
	V-FLFM Experimental Results

	Summary

	Conclusion
	Bibliography

