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Abstract

Towards Reliable Image Classification:

A Systematic Robustness Analysis of CNN and Classical Models

Under Natural Corruptions

by Nahid Aghababaeyan

Machine learning models, particularly Convolutional Neural Networks (CNNs), dominate

image classification tasks in critical domains such as medical imaging, autonomous driving,

and insurance. However, despite high accuracy on clean benchmark datasets, these models of-

ten exhibit significant performance degradation under real-world corruptions like noise, blur,

occlusion, or compression artifacts, leading to safety risks and operational failures. Existing

robustness evaluations remain limited, focusing predominantly on deep neural networks, us-

ing narrow accuracy-based metrics, and overlooking classical machine learning approaches,

uncertainty quantification, prediction stability, and computational efficiency.

This thesis presents a comprehensive evaluation of seven model families—ranging from

classical (Logistic Regression, SVM, K-NN, Random Forest, MLP) to deep learning (Lenet-

5, ResNet-18)—on MNIST and Fashion-MNIST. We propose a unified, multi-metric frame-

work assessing accuracy, robustness (flip rate, label variation), uncertainty (Gini index, max

probability), and efficiency (parameter count, training time) under clean, corrupted, and

mixed-noise conditions.

Our findings offer practical insights into model reliability and highlight the trade-offs

between performance, stability, and computational cost—supporting more informed choices

in real-world deployments.
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1. Introduction

1.1 Motivation

Machine learning (ML) models, ranging from classical statistical methods like logistic re-

gression and random forests to deep neural networks (DNNs), have become central to image

classification tasks in diverse domains, including medical imaging, autonomous driving, se-

curity surveillance, and insurance claim processing. In recent years, convolutional neural

networks (CNNs), such as ResNet (He et al. (2016)), have emerged as particularly domi-

nant approaches due to their ability to achieve superior predictive performance, typically

measured by accuracy, precision, and recall.

However, despite their strong pre-deployment performance, these models often struggle

under real-world conditions. For instance, CNN-based medical diagnostic systems have mis-

classified MRI scans affected by artifacts like motion blur, Gaussian noise, or low resolution,

risking incorrect diagnoses (Finlayson et al. (2019)). Autonomous vehicles using CNNs have

similarly failed to recognize partially occluded or weather-affected road signs, leading to

safety hazards (Michaelis et al. (2019)). In insurance, CNNs trained on clean images have

inaccurately assessed vehicle damage claims when encountering realistic distortions such as

glare, blur, or JPEG compression artifacts (Hendrycks et al. (2021)).

These examples highlight the critical need for robustness testing before deploying im-

age classification models in real-world scenarios. Robustness testing evaluates how models

perform under realistic perturbations and noisy conditions, helping practitioners identify

weaknesses that are not visible through traditional accuracy-based evaluations alone. Ro-
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bustness is also important during the model selection phase. For instance, a model with

90% accuracy on clean data but a 20% performance drop under noise may be less practical

and reliable than a model with 85% clean-data accuracy but only a 5% drop under similar

conditions.

This motivates the need for comprehensive robustness testing that extends beyond con-

ventional accuracy metrics. Robust evaluation must capture not only a model’s performance

under corruption, but also its ability to estimate uncertainty, maintain prediction consistency,

and remain well-calibrated in noisy, real-world settings. Incorporating such evaluations in

the pre-deployment phase enables practitioners to detect models with high variance or over-

confidence in out-of-distribution regimes, and to select training procedures that balance

predictive performance with robustness. Ultimately, this approach ensures the deployment

of models that are not only accurate in ideal conditions, but also resilient under stress, reduc-

ing the risk of costly failures and improving the trustworthiness and reliability of automated

decision-making systems.

1.2 Problem Statement and Research Objectives

Although model robustness has received increasing attention in recent years, much of the

existing literature remains heavily focused on deep neural networks—particularly convolu-

tional architectures—and evaluates performance primarily on clean, well-curated datasets

using accuracy as the dominant metric (Dosovitskiy et al. (2020), Tan and Le (2019), Zhang

et al. (2020)). However, high accuracy on ideal inputs does not imply reliable performance

in real-world scenarios, where inputs are often degraded by corruption types such as noise,

occlusion, or compression artifacts.

Moreover, prior robustness studies (Hendrycks and Dietterich (2019), Moosavi-Dezfooli

et al. (2017), Tsipras et al. (2018)) frequently neglect key dimensions of model reliability,

including uncertainty calibration, prediction stability, and computational efficiency—all of

which are critical in safety-sensitive or resource-limited environments. The robustness land-
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scape explored in these studies is also narrow in scope, with an emphasis on modern deep

learning architectures, while classical machine learning models remain underexplored despite

their potential to offer competitive robustness under certain conditions.

To address these limitations, this study undertakes a comprehensive empirical evalua-

tion of seven diverse model families including both calssical ML and deep learning mod-

els—Logistic Regression, Support Vector Machine (SVM), k-Nearest Neighbors (K-NN),

Random Forest, Multi-layer Perceptron (MLP), Lenet-5, and ResNet-18—on the MNIST

and Fashion-MNIST datasets. We assess robustness across three scenarios: clean inputs, ten

distinct types of individual corruption, and a mixed-noise setting that simulates more realis-

tic perturbation patterns. This design enables a systematic investigation into how different

model classes respond to varied degradation conditions.

To address gaps in existing robustness research, we conducted a large-scale empirical

study evaluating both classical and deep learning models. Our study included seven diverse

architectures: Logistic Regression, Support Vector Machine (SVM), k-Nearest Neighbors (K-

NN), Random Forest, Multi-layer Perceptron (MLP), Lenet-5, and ResNet-18. We applied

11 distinct corruption types individually to the test sets of both MNIST and Fashion-MNIST,

alongside the clean test set, resulting in 12 evaluation scenarios per dataset—for a total of

24 distinct evaluation sets.

Our evaluation framework goes well beyond conventional performance measures, offering

a rich and multi-dimensional assessment of model behavior under corruption. In addition to

standard performance measures like accuracy, precision, recall, and F1-score, we incorporate

a broad spectrum of robustness-specific and reliability-driven metrics. These include robust-

ness indicators such as Flip Rate and Label Variation, uncertainty quantification metrics like

the Gini Index and Maximum Predicted Probability, and computational efficiency measures

including parameter count and training time.

By integrating this broad and rigorous set of evaluation metrics, our framework enables

comprehensive, side-by-side comparisons of models across not only predictive performance,

but also robustness, uncertainty, reliability, and efficiency—dimensions often underexplored
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in prior robustness research.

The key contribution of this work is its multi-dimensional analysis of classical and deep

learning models under both clean and corrupted conditions. Unlike prior studies that iso-

late accuracy or robustness, our study offers a statistically grounded benchmark that jointly

considers performance degradation, uncertainty calibration, prediction stability, and compu-

tational cost. To the best of our knowledge, this is the first empirical study to systematically

evaluate such a wide range of model architectures—spanning both traditional and modern

approaches—using a diverse set of metrics across clean, corrupted, and mixed-noise datasets.

1.3 Contributions

This thesis presents a comprehensive empirical investigation into robustness evaluation for

image classification—bridging classical machine learning and deep learning paradigms in a

unified, reproducible framework. Our work pushes the boundaries of existing robustness

literature through the following key contributions:

• A Multi-Dimensional Evaluation Framework: We propose a novel and rigorous

evaluation protocol that goes far beyond standard accuracy-based assessments. Our

framework integrates a diverse suite of metrics covering predictive performance (ac-

curacy, F1-score), robustness and stability (Flip Rate, Label Variation), uncertainty

quantification (Gini Index, maximum predicted probability), and computational effi-

ciency (training time, parameter count). This enables deep, side-by-side comparisons

of models from multiple angles, offering a more complete understanding of model be-

havior under corruption.

• Robustness Analysis Across 24 Evaluation Sets: By applying 11 corruption

types individually, along with a mixed-noise scenario, we construct 12 evaluation sets

per dataset—totaling 24 distinct test environments. This setup allows us to uncover

granular, model-specific degradation patterns and robustness vulnerabilities, produc-
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ing actionable insights for selecting models in real-world, safety-critical, or resource-

constrained deployments.

• Open and Reproducible Benchmarking Toolkit: To support transparency and

facilitate future research, we release a full benchmarking toolkit, including modules

for corruption generation, metric computation, and efficiency profiling. This ensures

that our evaluation pipeline can be reused, extended, and built upon by the broader

research community.

Together, these contributions represent a significant step forward in how robustness is

measured, compared, and understood, especially in contexts where model trustworthi-

ness and operational stability are non-negotiable.
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2. Related Work

2.1 Traditional ML and CNNs in Image Classification

Traditional machine learning (ML) models have historically been used for image classifica-

tion, particularly before the rise of deep learning. Algorithms such as logistic regression,

support vector machines (SVM), k-nearest neighbors (K-NN), random forests, and multi-

layer perceptrons (MLPs) have demonstrated varying levels of success on relatively simple

or low-dimensional visual datasets.

Logistic regression, while limited by its linearity, has been applied to image classification

with reasonable success when combined with dimensionality reduction techniques such as

principal component analysis (Bishop (2006)). SVMs, due to their ability to model non-

linear decision boundaries through kernel methods, have shown improved performance on

moderate-sized image datasets (Cortes and Vapnik (1995)). K-NN classifiers, though concep-

tually simple, can achieve reasonable accuracy using distance metrics in feature space, but

they scale poorly and are heavily reliant on feature quality (Cover and Hart (1967)). Ran-

dom forests offer improved performance over single decision trees by aggregating predictions

across multiple learners, reducing overfitting and increasing robustness (Breiman (2001)).

However, they require manually designed features and cannot automatically extract spatial

patterns from raw image data. MLPs, as early neural network models, possess the theoretical

capability to approximate complex functions but are constrained in image-related tasks due

to their dense connectivity, which fails to exploit spatial structure (LeCun et al. (1998)).

Overall, traditional models often perform well on structured, low-dimensional data but
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struggle with high-dimensional images, primarily because they rely on handcrafted or flat-

tened features that ignore spatial hierarchies (LeCun et al. (2015)). These limitations mo-

tivated the transition to deep learning models, particularly convolutional neural networks

(CNNs).

CNNs are specifically designed for grid-like data such as images, using convolutional

layers to learn spatial hierarchies and localized patterns like edges and textures (LeCun

et al. (2015)). Lenet-5, one of the earliest CNN architectures, demonstrated the effectiveness

of feature learning directly from raw pixels in the task of digit recognition (LeCun et al.

(1998)). Subsequent advancements led to deeper architectures such as ResNet-18 (He et al.

(2016)), which introduced residual connections to mitigate vanishing gradients and allow for

more effective training of deep networks.

Empirical studies consistently show that CNNs outperform traditional ML models on

standard image classification benchmarks. For instance, CNNs such as ResNet achieve sig-

nificantly higher accuracy on the CIFAR-10 dataset than SVMs and random forests, even

when those models use advanced feature engineering (He et al. (2016), Krizhevsky (2009)).

Zhang et al. (Zhang et al. (2017)) observed that CNNs not only generalize better on com-

plex image datasets but also exhibit a degree of robustness to minor transformations, unlike

traditional methods.

This performance advantage largely stems from CNNs’ ability to perform representation

learning: extracting increasingly abstract features directly from data without manual in-

tervention. Additionally, transfer learning—fine-tuning models pretrained on large datasets

such as ImageNet—further boosts CNNs’ performance on domain-specific tasks, often sur-

passing traditional methods even with limited training data (Yosinski et al. (2014)).

2.2 Robustness in Image Classification

Robustness in image classification is defined as a model’s capacity to maintain reliable predic-

tions under various forms of input perturbations, such as noise, blur, brightness changes, or
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adversarial attacks. This quality is essential for deploying ML models in real-world settings,

where inputs frequently deviate from ideal, clean conditions (Gilmer et al. (2019)).

Szegedy et al. (Szegedy et al. (2014)) first revealed that deep networks are highly sensitive

to small, imperceptible adversarial perturbations, raising concerns about their reliability.

Expanding on this, Hendrycks and Dietterich (Hendrycks and Dietterich (2019)) introduced

the ImageNet-C benchmark, which evaluates performance under 15 realistic corruption types.

Their results showed that models like ResNet-50, while achieving high accuracy on clean

data, suffer from substantial performance degradation—up to 30% accuracy loss—under

corruptions.

To address these issues, various strategies have emerged. Data augmentation techniques

like AutoAugment (Cubuk et al. (2019)) and AugMix (Hendrycks et al. (2020b)) enhance

generalization by introducing diverse perturbations during training. Adversarial training,

where models are trained on adversarial examples, increases robustness to both attacks

and natural noise (Madry et al. (2018)). However, Tsipras et al. (Tsipras et al. (2019))

highlighted a robustness-accuracy trade-off, showing that enhancing robustness may lead to

reduced clean accuracy.

Beyond training techniques, architectural innovations also contribute to robustness. Hendrycks

et al. (Hendrycks et al. (2020a)) demonstrated that pretraining on large, diverse datasets

improves both clean and corrupted accuracy. Other methods incorporate feature denoising

modules (e.g., wavelet layers or DnCNN blocks) to mitigate the impact of irrelevant noise

(Xie et al. (2019)).

Despite these advances, robustness remains an open challenge, especially for safety-

critical systems. The continued gap between clean performance and real-world reliability

emphasizes the need for systematic evaluation methods and a better understanding of ro-

bustness trade-offs.

8



2.3 Systematic Evaluation of Robustness, Uncertainty,

and Computational Demands

Benchmarking ML models for image classification must go beyond accuracy on clean data

and consider broader criteria such as robustness, uncertainty calibration, and computational

efficiency. These factors are essential for evaluating models in high-stakes environments like

medical imaging and autonomous systems. Foundational datasets such as MNIST (LeCun

et al. (1998)) and Fashion-MNIST (Xiao et al. (2017)) remain important for evaluating

and comparing model performance. Classical models such as SVMs, logistic regression, and

random forests initially demonstrated strong performance on these datasets (Ciregan et al.

(2012), Wan et al. (2013)). With the introduction of CNNs—including LeNet, ResNet, and

EfficientNet (He et al. (2016), Tan and Le (2019))—performance significantly improved,

particularly on complex or noisy data.

However, concerns about model robustness have grown, with research by Hendrycks et al.

(Hendrycks and Dietterich (2019)) and Michaelis et al. (Michaelis et al. (2019)) showing that

state-of-the-art CNNs degrade significantly under natural corruptions. While comparative

studies have been conducted on the robustness of traditional ML models versus CNNs on

datasets like MNIST and CIFAR (Mu et al. (2019), Zhang et al. (2019)), most focus on

isolated corruption types or a narrow set of models.

Uncertainty quantification is another critical dimension, especially under data shifts.

Metrics such as maximum softmax probability and the Gini index are commonly used to eval-

uate a model’s confidence (Gal and Ghahramani (2016), Lakshminarayanan et al. (2017)).

Although research has increasingly investigated uncertainty in deep models (Malinin and

Gales (2020), Ovadia et al. (2019)), few works systematically include traditional ML models

in these comparisons, particularly under corruptions.

Moreover, computational demands—such as training time, inference latency, and mem-

ory usage—are often overlooked in evaluations of robustness and uncertainty. Yet, these
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considerations are vital for real-world deployments, especially on resource-constrained de-

vices.

This thesis contributes to the literature by offering a unified, systematic evaluation of

five classical models and two CNNs across 11 natural corruption types. It examines their

performance in terms of accuracy, robustness, predictive uncertainty, and computational cost

on MNIST and Fashion-MNIST. By jointly analyzing these dimensions, this work provides

a more comprehensive perspective on the practical trade-offs involved in model selection for

real-world image classification tasks.
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3. Dataset

3.1 Original Dataset

The empirical evaluation is based on two standard datasets extensively utilized in image

classification research: MNIST and Fashion-MNIST, both of which are publicly avail-

able and have been widely adopted for benchmarking image classification models (LeCun

et al. (2010a), Xiao et al. (2017)). These datasets are well-suited for empirical experimenta-

tion due to their standardized structure, balanced class distributions, and human-validated

annotations.

3.1.1 MNIST

The MNIST (Modified National Institute of Standards and Technology) dataset (LeCun

et al. (1998)) is a classical benchmark for handwritten digit recognition. It consists of 70,000

grayscale images of handwritten digits (0 through 9), where each image is of size 28 × 28

pixels. Pixel intensities range from 0 to 255 and are commonly normalized to the [0, 1]

interval during preprocessing. The dataset is split into a training set of 60,000 images and a

test set of 10,000 images.

Each class (digit) is equally represented with 7,000 instances, making the dataset bal-

anced. All labels were manually verified to ensure accuracy, making the dataset reliable for

supervised learning tasks.
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Formal Definition and Analytical Properties

Let X ∈ R28×28 denote an image and y ∈ {0, 1, . . . , 9} its corresponding label. The dataset

is formally defined as:

D = {(Xi, yi)}70,000i=1 ,

with training and test partitions as:

Dtrain = {(Xi, yi)}60,000i=1 , Dtest = {(Xi, yi)}70,000i=60,001.

The relatively low dimensionality (784 features) and approximate linear separability of

MNIST make it an ideal dataset for evaluating fundamental model properties. Linear sepa-

rability refers to the ability to distinguish different classes using a linear decision boundary,

which allows simple models (e.g., logistic regression, SVMs) to achieve high accuracy.

MNIST also lends itself well to detailed empirical investigations across multiple analytical

dimensions. One common approach is invariance analysis, which evaluates a model’s

robustness to affine transformations such as rotation, scaling, and translation. This analysis

reveals whether the model can maintain stable predictions under small geometric changes in

input images. Another mode of evaluation involves noise propagation, where models are

tested on systematically corrupted inputs. In such cases, transformations like the addition of

Gaussian noise or partial occlusion are applied to the original image X through a corruption

operator T , yielding Xcorrupt = T (X). This allows for assessment of a model’s resilience

to noisy or degraded inputs. Finally, statistical benchmarking focuses on evaluating

the consistency and reliability of model predictions across repeated trials. This includes

metrics such as prediction variance, calibration of confidence scores, and test-retest reliability,

providing insight into a model’s generalization performance and stability.
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Figure 3.1: Variability in MNIST Dataset, different handwriting styles.

3.1.2 Fashion-MNIST

Fashion-MNIST is a dataset designed to serve as a more challenging alternative to the MNIST

dataset (Xiao et al. (2017)). It includes 70,000 grayscale images, each sized 28 × 28 pixels,

and is divided into 10 fashion-related classes. The dataset is partitioned into 60,000 training

images and 10,000 testing images, maintaining a similar structure to the MNIST dataset.

The Fashion-MNIST dataset is composed of 70,000 black and white images, each 28× 28

pixels in size. The images are labeled as follows:

0: T-shirt/top

1: Trouser

2: Pullover

3: Dress

4: Coat

5: Sandal

6: Shirt

7: Sneaker

8: Bag

9: Ankle boot
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Examples of these images are shown in Figure 3.2, illustrating the variety and complexity

of the clothing items. The dataset is balanced, meaning it contains an equal number of images

for each of the 10 classes, ensuring that no single class is overrepresented.

Fashion-MNIST poses greater complexity and provides a more challenging benchmark

compared to the original MNIST dataset. While MNIST focuses on handwritten digits,

Fashion-MNIST includes a diverse range of clothing items, which introduces additional vari-

ability and complexity. This makes it an excellent resource for evaluating the performance

of machine learning models in more realistic and varied scenarios.

Formal Definition and Analytical Properties

Let X ∈ R28×28 denote a grayscale image and y ∈ {0, 1, . . . , 9} its corresponding label, where

each label represents a clothing category. The dataset can be defined as:

D = {(Xi, yi)}70,000i=1 ,

with training and test sets partitioned as:

Dtrain = {(Xi, yi)}60,000i=1 , Dtest = {(Xi, yi)}70,000i=60,001.

Although Fashion-MNIST shares the same dimensionality and format as MNIST, it intro-

duces more intra-class variability and visual ambiguity. This makes it less linearly separable

and more suitable for evaluating the robustness and generalization ability of machine learning

models, especially in scenarios closer to real-world visual data.
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Figure 3.2: Example images from the Fashion-MNIST dataset.

In summary, the Fashion-MNIST dataset is a crucial and well-known resource for ad-

vancing research in image classification.

3.2 Corrupted Dataset

Model robustness under real-world conditions requires evaluation beyond clean test data. To

evaluate model robustness under realistic input degradations, we applied controlled image

corruptions to the MNIST and Fashion-MNIST test datasets. These label-preserving per-

turbations are adapted from established benchmarks such as ImageNet-C and CIFAR-10-C
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(Hendrycks and Dietterich (2019)), which simulate common real-world degradations affect-

ing classification performance. Each corruption represents typical challenges such as sensor

noise, environmental interference, image processing distortions, or data transmission errors.

We group these corruptions into three categories based on their effect on visual data:

Noise Corruptions, Transformation Filters, and Compression and Occlusion Methods. Each

category targets a specific class of visual degradation, supporting a comprehensive robustness

assessment.

To determine suitable severity levels for each type of corruption, we adopted a clear

and practical approach. The primary objective was to select noise levels that preserved

the semantic integrity of the labels—ensuring that the true class of each sample remained

recognizable to human observers. At the same time, it was essential that the corruptions be

sufficiently challenging to effectively evaluate model robustness.

We avoided severe distortions that could obscure the class identity of the samples, as

well as overly mild corruptions that would fail to expose potential model vulnerabilities. To

identify appropriate severity levels, we closely examined multiple samples for each corruption

type across a range of intensities. This process allowed us to select levels that strike a

meaningful balance between human interpretability and the need for rigorous robustness

evaluation.

Figure 3.3: Samples of MNIST digit ’3’ with different types of noise applied
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Figure 3.4: Samples of Fashion MNIST ’Ankle boot’ with different types of noise applied

3.2.1 Noise Corruptions

Noise corruptions simulate stochastic disturbances introduced at the pixel level. These are

often encountered in low-light imaging, defective sensors, or adverse environmental condi-

tions:

• Gaussian Noise: Gaussian noise is a widely studied corruption method that intro-

duces random fluctuations to pixel intensities, simulating imperfections commonly ob-

served in imaging sensors. These fluctuations follow a Gaussian (normal) distribution,

which was first mathematically formalized by Carl Friedrich Gauss in 1809 (Gauss

(1809)). Due to its statistical properties and natural occurrence, Gaussian noise has

become a standard tool in signal and image processing, and it is frequently used in the

evaluation of model robustness and for test-time data augmentation (Hendrycks and

Dietterich (2019)).

Formally, the corrupted pixel value x̃i,j at location (i, j) is defined as

x̃i,j = clip(xi,j + ηi,j, 0, 1),

where xi,j ∈ [0, 1] denotes the normalized intensity of the original pixel, ηi,j ∼ N (µ, σ2)

is a random noise term drawn from a Gaussian distribution with mean µ and variance
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σ2, and the clip function constrains the resulting value to the valid range of [0, 1].

This formulation ensures that each pixel is perturbed independently, and the corrupted

image remains within valid intensity bounds.

In practice, the majority of Gaussian noise values lie within three standard deviations

from the mean, i.e., ±3σ, which captures approximately 99.7% of the probability mass.

For instance, if the standard deviation is set to σ = 0.1, the perturbations typically

fall within the range [−0.3,+0.3] in normalized units. This range produces perceptible

but bounded distortions that realistically reflect sensor noise.

In our implementation, we parameterize the Gaussian noise with a mean µ = 0 and

variance σ2 = 0.01, resulting in a standard deviation of σ =
√
0.01 ≈ 0.1. The noise

is applied independently to each pixel and scaled according to the image intensity

range. Specifically, for 8-bit images, noise values are multiplied by 255 before being

added to the image. The perturbed pixel values are subsequently clipped to maintain

valid intensity bounds. This setup introduces a moderate level of corruption while

preserving the overall structure of the image, facilitating a realistic and controlled

robustness evaluation.

Figure 3.5: Visualization of Five Gaussian Noise Severities on MNIST Input
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Figure 3.6: Visualization of Five Gaussian Noise Severities on Fashion MNIST Input

• Poisson Noise

Poisson noise introduces noise that depends on the pixel intensity, meaning that

brighter pixels experience more noise. This simulates the natural fluctuations in photon

detection processes, particularly in low-light imaging. The concept of Poisson noise,

as a statistical model for random events, was first proposed by Siméon-Denis Poisson

(Poisson (1837)), and has been widely adopted for simulating noise in imaging systems

where the signal is composed of discrete photon events (Schottky (1918)).

Mathematically, for a given clean pixel intensity x ∈ [0, 1], the corrupted pixel value x̃

is sampled from a Poisson distribution:

x̃ ∼ 1

λ
· Poisson(λx)

where λ is a scaling constant that controls the total photon count, and hence the

noise level. In our implementation, we follow a normalized convention in which λ = 1,

thereby letting the noise variance be implicitly governed by the intensity x itself. This

reflects the key property of Poisson noise: its variance equals its mean. That is,

E[x̃] = x, Var[x̃] = x

To apply this noise, we first normalize the image to the [0, 1] range, simulate Poisson

noise using the skimage.util.random noise function with the mode set to "poisson",
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and subsequently rescale the result to the original intensity range. This method pre-

serves the statistical characteristics of Poisson-distributed fluctuations while maintain-

ing consistency across all image samples. Notably, no explicit severity parameter is

introduced, as the fluctuation level is inherently linked to the input intensity values.

Figure 3.7: Visualization of Five Poisson Noise Severities on MNIST Input

Figure 3.8: Visualization of Five Poisson Noise Severities on Fashion MNIST Input

• Salt and Pepper Noise

Salt and pepper noise is a type of impulse noise that simulates abrupt disruptions

in the imaging process, often caused by sensor faults, transmission errors, or faulty

memory locations. This corruption randomly alters a subset of image pixels to either

the minimum or maximum possible intensity, creating sharp black-and-white specks

that are challenging for both human observers and machine learning models to interpret

reliably (Hendrycks and Dietterich (2019)).

Mathematically, given an image I ∈ RH×W×C , where H, W , and C represent the

height, width, and number of channels respectively, salt and pepper noise produces a
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corrupted image Ĩ as follows:

Ĩ(x, y, c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, with probability p

2

255, with probability p
2

I(x, y, c), with probability 1− p

Here, (x, y) denotes the spatial coordinates of a pixel, c ∈ {1, . . . , C} indicates the

channel index, and p ∈ [0, 1] is the noise level, representing the fraction of pixels

affected by the corruption. A value of Ĩ(x, y, c) = 0 corresponds to pepper noise (black

pixel), while Ĩ(x, y, c) = 255 corresponds to salt noise (white pixel), assuming 8-bit

grayscale or color intensity values.

In our implementation, the severity of the corruption is controlled by the amount

parameter, which we set to p = 0.05, thereby corrupting 5% of the image pixels. This

parameter typically ranges from 0.01 to 0.2 in practice. The value of p plays a critical

role in determining the corruption intensity and, consequently, the difficulty of the

downstream learning task. Salt and pepper noise remains a widely studied corruption

type in both classical image processing and modern robustness research.

Figure 3.9: Visualization of Five Salt and Pepper Noise Severities on MNIST Input

Figure 3.10: Visualization of Five Salt and Pepper Noise Severities on Fashion MNIST Input
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• Speckle Noise:

Speckle noise introduces multiplicative noise, which simulates grainy interference pat-

terns often encountered in coherent imaging systems such as synthetic aperture radar

(SAR) and medical ultrasound. This type of noise serves as a crucial benchmark in

evaluating the robustness of image processing and machine learning models (Goodman

(1975)).

Mathematically, speckle noise can be modeled as follows:

X̃(i, j) = X(i, j) +X(i, j) ·N(i, j)

where: X̃(i, j) denotes the corrupted pixel value at location (i, j), X(i, j) is the original

clean image pixel value at (i, j), and N(i, j) ∼ N (0, σ2) is the multiplicative noise

sampled independently from a Gaussian distribution with zero mean and variance σ2.

This formulation reflects the intensity-dependent nature of speckle noise, where the

noise amplitude scales with the pixel intensity itself.

In our implementation, we apply speckle noise by first sampling noise values N(i, j)

from a normal distribution N (0, σ2) and then computing the noisy image X̃(i, j) using

the above formula. We set the severity of the corruption to σ = 0.1, which produces

visible but moderate degradation. In practice, the severity can vary between σ = 0.05

and σ = 0.2, enabling controlled experimentation with different levels of interference.

Figure 3.11: Visualization of Five Speckle Noise Severities on MNIST Input
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Figure 3.12: Visualization of Five Speckle Noise Severities on Fashion MNIST Input

3.2.2 Transformation Filters

These filters modify the appearance or geometry of an image by applying structured changes.

They simulate common transformations that can occur in real-world environments and are

useful for testing model robustness.

• Gaussian Blur:

Simulates image defocus or motion blur by convolving the input image with a Gaussian

kernel. This operation reduces high-frequency components such as edges and fine

textures, thereby introducing a smoothing effect that is commonly observed in real-

world data corruptions (Lindeberg (1990), Shapiro and Stockman (2001)).

The Gaussian blur operation is defined mathematically as:

I ′(x, y) =
k∑︂

i=−k

k∑︂
j=−k

G(i, j;σ) · I(x+ i, y + j)

where I(x, y) is the original image intensity at pixel location (x, y), I ′(x, y) is the

resulting blurred image, and G(i, j;σ) is the Gaussian kernel defined as:

G(i, j;σ) =
1

2πσ2
exp

(︃
−i2 + j2

2σ2

)︃
Here, (i, j) are the coordinates relative to the center of the kernel, σ is the standard

deviation controlling the spread of the Gaussian distribution, and k determines the

kernel radius (i.e., for a (2k + 1)× (2k + 1) kernel).
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The severity of Gaussian blur is primarily controlled by the kernel size and the standard

deviation σ, with larger values leading to stronger smoothing effects. In our implemen-

tation, a kernel size of 5× 5 was used, corresponding to k = 2. This parameter setting

introduces a moderate level of blur sufficient to simulate realistic degradation. Gener-

ally, the severity can vary from smaller kernels such as 3×3 to larger ones like 11×11,

depending on the desired level of corruption.

Figure 3.13: Visualization of Five Gaussian Blur Noise Severities on MNIST Input

Figure 3.14: Visualization of Five Gaussian Blur Noise Severities on Fashion MNIST Input

• Motion Blur:

This corruption simulates the effect caused by relative motion between the camera and

the scene during exposure, resulting in a linear blur along the direction of motion. It

is commonly observed in real-world scenarios involving dynamic environments, such as

moving vehicles or handheld camera shake.

Mathematically, the motion blur process can be modeled as a convolution of the original

image I(x, y) with a motion blur kernel Kmotion(x, y):

Iblurred(x, y) = (I ∗Kmotion)(x, y) =
k∑︂

i=−k

k∑︂
j=−k

I(x− i, y − j) ·Kmotion(i, j) (3.1)
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where Iblurred(x, y) is the resulting blurred image, ∗ denotes the 2D convolution oper-

ation, and Kmotion(i, j) is a normalized filter kernel of size (2k + 1) × (2k + 1) that

defines the direction and magnitude of the blur. The kernel is typically designed to

have nonzero values along a straight line that aligns with the direction of motion, and

zeros elsewhere.

For a (2k+1)× (2k+1) kernel simulating motion blur along a 45◦ diagonal, the kernel

Kmotion(i, j) can be defined as:

Kmotion(i, j) =

⎧⎪⎪⎨⎪⎪⎩
1

2k+1
, if i = j and − k ≤ i, j ≤ k

0, otherwise

(3.2)

This creates a normalized kernel with uniform weights along the main diagonal, ensur-

ing the sum of all elements equals 1.

In our case, with k = 2, the kernel becomes:

Kmotion =
1

5
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In our implementation, we use this motion blur kernel of size 5 × 5, oriented at an

angle of 45◦ to simulate diagonal motion. The chosen kernel size directly affects the

severity of the blur: larger kernels produce more pronounced distortion, while smaller

ones retain finer image details. By setting the size to 5, we aim for a moderate level

of corruption—sufficient to reflect real motion artifacts without overly degrading the

image to the point of label ambiguity. More broadly, the severity of motion blur can

be tuned by varying the kernel size, typically within the range of 3 to 15.
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Figure 3.15: Visualization of Five Motion Blur Noise Severities on MNIST Input

Figure 3.16: Visualization of Five Motion Blur Noise Severities on Fashion MNIST Input

• Elastic Deformation:

Elastic deformation introduces localized geometric distortions to an image by applying

spatially varying displacement fields. This process simulates non-rigid transformations

such as bending, stretching, or compression, and is particularly relevant for evaluat-

ing a model’s robustness to subtle shape changes that do not significantly alter the

image’s overall structure. This technique was originally proposed by Jaderberg et al.

(Jaderberg et al. (2015)) in the context of spatial transformer networks.

Mathematically, the deformation is applied to each pixel of the input image by adding

a displacement vector derived from a smoothed random displacement field. Let I(x)

denote the intensity at pixel location x = (x, y) in the input image. The transformed

image I′(x) is given by:

I′(x) = I(x+ Gσ ∗ Nα(x))

Here:
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– Nα(x) = α · N (0, 1)2 is a 2D random displacement field, where each component

is independently sampled from a standard normal distribution N (0, 1) and scaled

by the deformation intensity parameter α. That is, for each pixel x,

Nα(x) =

⎡⎣ux(x)

uy(x)

⎤⎦ , ux(x), uy(x) ∼ α · N (0, 1)

– Gσ is a Gaussian kernel with standard deviation σ, defined as:

Gσ(i, j) =
1

2πσ2
exp

(︃
−i2 + j2

2σ2

)︃
for (i, j) ∈ [−k, k]2, where k determines the kernel size (typically chosen such that

k = 3σ).

– The smoothed displacement field Gσ ∗ Nα(x) is the convolution of the Gaussian

kernel with the random displacement field:

Gσ ∗ Nα(x) =
k∑︂

i=−k

k∑︂
j=−k

Gσ(i, j) · Nα(x− (i, j))

This operation ensures the displacement field varies smoothly across space.

In our implementation, we used fixed values of α = 34 and σ = 4, which were chosen

to produce visually noticeable but realistic distortions. These values yield moderately

strong deformations while maintaining coherent image structure. However, in practice,

elastic deformation can be applied with a range of severity levels by varying these

parameters. For instance, α ∈ [20, 50] and σ ∈ [3, 6] offer a reasonable range for

exploring different degrees of shape perturbation.

Figure 3.17: Visualization of Five Elastic Deformation Noise Severities on MNIST Input
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Figure 3.18: Visualization of Five Elastic Deformation Noise Severities on Fashion MNIST

Input

• Brightness/Contrast Adjustment:

This corruption modifies the global luminance characteristics of an image by adjusting

its brightness and contrast levels, without altering the spatial content or structural

features of the scene. It is designed to simulate realistic lighting variations that may

arise in real-world conditions, such as underexposure, overexposure, or inconsistent

ambient illumination (Peli (1990)).

Mathematically, the transformation applied to each pixel intensity Ii,j in the image

can be expressed as:

I ′i,j = clip ((1 + γ) · Ii,j + β · 255, 0, 255)

where I ′i,j is the adjusted pixel intensity at position (i, j), γ ∈ R denotes the contrast

factor, and β ∈ R represents the brightness factor. The function clip(·, 0, 255) ensures

that the output remains within the valid 8-bit image intensity range [0, 255].

In our implementation, we applied a contrast factor of γ = 0.2 and a brightness factor

of β = 0.2. This corresponds to amplifying the contrast by 20% and increasing the

image brightness by an offset of 0.2×255. This form of corruption is commonly adopted

in robustness evaluation frameworks to assess model sensitivity to changes in global

illumination and overall intensity dynamics.
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Figure 3.19: Visualization of Five Brightness Contrast Noise Severities on Mnist Input

Figure 3.20: Visualization of Five Brightness Contrast Noise Severities on Fashion Input

3.2.3 Compression and Occlusion Methods

These corruptions simulate data loss or visual obstruction, which commonly occur in low-

bandwidth scenarios or when parts of the image are blocked.

• JPEG Compression:

JPEG (Joint Photographic Experts Group) compression simulates image degradation

through a lossy compression algorithm that significantly reduces file size by discarding

perceptually less important information. This process, however, introduces visible

artifacts such as blurring, blockiness, and color distortions. The JPEG algorithm,

initially proposed by Wallace et al. (Wallace (1992)), relies primarily on the Discrete

Cosine Transform (DCT) to compact energy into a few frequency coefficients.

The core step of JPEG involves dividing an image into 8×8 pixel blocks, each of which

undergoes a 2D DCT:
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F (u, v) =
1

4
C(u)C(v)

7∑︂
x=0

7∑︂
y=0

f(x, y) cos

[︃
(2x+ 1)uπ

16

]︃
cos

[︃
(2y + 1)vπ

16

]︃
where f(x, y) denotes the intensity value at position (x, y) in the spatial domain, and

F (u, v) represents the corresponding DCT coefficient at frequency indices (u, v). The

normalization terms are defined as C(u) = 1√
2
if u = 0 and C(u) = 1 otherwise

(similarly for C(v)).

Following the DCT, coefficients are quantized using a standard quantization matrix

Q(u, v), scaled according to a quality factor q ∈ [1, 100]. The quantized coefficients

F̂ (u, v) are computed as:

F̂ (u, v) = round

(︃
F (u, v)

Qq(u, v)

)︃
whereQq(u, v) is the quantization matrix adjusted based on the quality factor q; lower q

values increase the entries of Qq, thus yielding higher compression and more distortion.

In our implementation, we applied JPEG compression using a quality factor of q = 50,

representing a moderate severity level. This parameter controls the balance between

compression strength and visual fidelity: lower values result in more aggressive quan-

tization, leading to more pronounced degradation, while higher values preserve more

image detail.

Although we used only a single quality level in our evaluation, JPEG compression

severity can typically be varied by selecting q in the range of 10 (representing high

degradation) to 90 (low degradation).
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Figure 3.21: Visualization of Five JPEG Compression Noise Severities on MNIST Input

Figure 3.22: Visualization of Five JPEG Compression Noise Severities on Fashion MNIST

Input

• Random Occlusion:

This corruption simulates partial visual obstruction by randomly removing rectangular

regions from the image, thereby mimicking scenarios where objects are partially hidden

due to occluding elements or limited visibility (Hendrycks and Dietterich (2019)).

Mathematically, let X ∈ RH×W denote a grayscale input image of height H and width

W . The occluded image X′ is generated by applying a binary mask M ∈ {0, 1}H×W

to X, such that:

X′ = X⊙M

Here, ⊙ denotes the element-wise (Hadamard) product. The mask M is initialized as

an all-ones matrix (i.e., no occlusion), and a square patch of zeros of size s× s, where

s ∈ {1, . . . , Smax}, is placed at a randomly chosen location (i, j) within the image. In

this study, we set Smax = 8. The number of occlusion patches per image is limited by

Nmax = 1.
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In our implementation, each image is subjected to a single occlusion patch (max num patches

= 1) with patch size s× s randomly sampled such that 1 ≤ s ≤ 8. The top-left coordi-

nate (i, j) of the patch is also randomly selected, ensuring that the patch lies entirely

within the image boundaries. The region corresponding to the patch is set to zero

(black) to simulate missing or blocked visual information, with the randomness in

both patch size and location introducing variability in the occlusion effect across the

dataset.

Figure 3.23: Visualization of Five Random Occlusion Noise Severities on MNIST Input

Figure 3.24: Visualization of Five Random Occlusion Noise Severities on Fashion MNIST

Input

3.2.4 Mixed Corruption

In addition to applying individual corruption noises to original images and creating new sets

of images, we also evaluate model performance using a mixed-noise test set. Each image

in this set is randomly corrupted with one of the above types to assess model robustness

across multiple degradation conditions. To ensure the preservation of the labels, we carefully

control the intensity and ratio of corruptions applied. The goal is to keep the corruptions
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subtle enough so that the true class label of the image remains valid. For instance, excessive

rotations, such as rotating an image of the digit ”6” by 180 degrees, would change the label to

”9.” Similarly, corrupting an image too much — such as brightening it to make it completely

white or darkening it to make it completely black — would render the image unrecognizable,

making its label invalid (e.g., a ”6” becomes a blank image with no distinguishable features).

Therefore, we ensure that the applied corruptions do not significantly alter the label

or make the image unsuitable for model testing. Preserving the label during corruption is

crucial, yet it is often overlooked in some studies. If we assume that the corrupted image

retains the same label as the original and generate new images based on this assumption,

we may end up with a large number of invalid images. These corrupted images may no

longer be recognizable or could have labels that no longer align with the content, making

them unreliable for testing. Without a manual labeling process, it’s vital to ensure that the

data generation process preserves both the label and the integrity of the image. To remove

the need for manual labeling in testing, we must guarantee that our data generation process

produces images that are both label-preserving and human-recognizable.

• Mixed-Noise: We randomly select 1,000 samples from each of the corrupted test sets

(for both MNIST and Fashion-MNIST), where each sample is randomly corrupted with

one of the noise types described above. The corruptions are applied in a controlled

manner to avoid invalidating the image labels.
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4. Model Architecture and Training

4.1 Traditional Machine Learning Models

Traditional machine learning (ML) algorithms remain valuable for image classification due

to their computational efficiency, interpretability, and well-understood theoretical founda-

tions (Bishop (2006), Murphy (2012)). Unlike deep learning models, which automatically

learn layered (hierarchical) features—representations built by combining simpler patterns

into increasingly complex ones—traditional machine learning relies on manually engineered

features. This manual feature-engineering approach offers greater transparency, which is

crucial in applications like medical imaging and safety-critical systems where decision trace-

ability is essential (Caruana et al. (2015)).

This study evaluates five classical ML methods: Logistic Regression, Support Vector

Machine (SVM), k-Nearest Neighbors (K-NN), Random Forest, and Multi-layer Perceptron

(MLP). All models were implemented using scikit-learn (Pedregosa et al. (2011)) and trained

on MNIST and Fashion-MNIST datasets. Each 28 × 28 grayscale image was flattened into

a 784-dimensional vector, standardized to zero mean and unit variance, and used as input.

To ensure reproducibility, random seeds were fixed across data loading, model training, and

evaluation. Trained models and scalers were saved for consistent inference on both clean and

corrupted test data, establishing a baseline for robustness analysis.
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4.1.1 Logistic Regression

Logistic regression is a fundamental linear classifier used for binary and multi-class classi-

fication. It models the relationship between input features and class probabilities using a

linear decision function followed by a non-linear transformation. In its multinomial form, it

estimates class probabilities using the softmax function, making it suitable for multi-class

classification tasks such as MNIST (Bishop (2006), Murphy (2012)).

In the context of MNIST, each grayscale image of size 28× 28 is flattened into a feature

vector X ∈ R784. The model computes a score for each class k ∈ {1, . . . , 10} using a linear

function:

zk = β⊤
k X + bk

where:

• βk ∈ R784 is the weight vector for class k, assigning learned importance to each input

pixel,

• bk ∈ R is the bias term for class k,

• zk ∈ R is the logit or unnormalized score for class k.

The class probabilities are then obtained using the softmax function:

P (Y = k | X) =
ezk∑︁10
j=1 e

zj

where e ≈ 2.718 is Euler’s number, and the denominator ensures the probabilities over

all classes sum to 1. The model predicts the class with the highest probability:

Ŷ = argmax
k

P (Y = k | X)

To learn the parameters βk and bk, the model minimizes the negative log-likelihood of

the true class labels, also known as the cross-entropy loss. For a single training example

(X, y), where y is the true class label, the loss is defined as:
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L(X, y) = − logP (Y = y | X) = − log

(︄
ezy∑︁10
j=1 e

zj

)︄
The total loss is computed by averaging over all training examples. Optimization algo-

rithms such as stochastic gradient descent (SGD) or the limited-memory Broyden Fletcher

Goldfarb Shanno (L-BFGS) method are used to minimize this loss and update the parameters

during training.

The model addresses the need for reliable, interpretable classification in real-world appli-

cations where understanding decision-making is crucial. While it performs well for linearly

separable data, its limited capacity for capturing complex non-linear relationships highlights

the importance of testing and comparing it against more expressive models on challenging

datasets.

In this project, the model is implemented using scikit-learn’s LogisticRegression

class, with the lbfgs solver and multinomial option enabled to handle multi-class output.

As a linear model, logistic regression lacks the expressive power needed to model complex,

non-linear patterns. This offers a clear baseline for evaluating robustness improvements

provided by more advanced models. Additionally, because of its fast training time and low

computational cost, logistic regression remains widely applicable in many real-world domains

(Hosmer et al. (2013)), making it important to thoroughly test its robustness under various

conditions.

For clarity, we summarize the notation used throughout this section:

• X ∈ R784: flattened input image (feature vector),

• βk ∈ R784: weight vector for class k,

• bk ∈ R: bias term for class k,

• zk = β⊤
k X + bk: logit (linear score) for class k,

• e: Euler’s number, used in the softmax computation,

• P (Y = k | X): predicted probability of class k,
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• Ŷ : predicted class label,

• L(X, y): cross-entropy loss for true label y.

4.1.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised classification algorithm designed for sep-

arating different classes by finding the optimal boundary, or hyperplane, with the largest

possible margin between classes. This margin maximization principle helps the model gen-

eralize better and reduces overfitting, especially when data is well-separated (Cortes and

Vapnik (1995)).

In the context of MNIST, we employ an SVM with a Radial Basis Function (RBF) kernel

to handle the complex, non-linear relationships present in handwritten digit images. The

RBF kernel enables the SVM to map input features into a higher-dimensional space, where

non-linear separation becomes feasible. The RBF kernel function is defined as:

K(xi, x) = exp(−γ∥xi − x∥2)

where xi are the support vectors, x is the input image vector, and γ controls the kernel’s

width. During prediction, each MNIST image is flattened into a feature vector and trans-

formed using the RBF kernel. The SVM then uses its learned hyperplane to assign the image

to the digit class via the decision function:

f(x) = sign

(︄
n∑︂

i=1

αiyiK(xi, x) + b

)︄

By including SVM in our comparisons, we aim to assess its robustness and classifica-

tion performance relative to both simpler linear models, like Logistic Regression, and more

complex non-linear methods, such as deep learning models.

In this project, we implemented an SVM classifier using scikit-learn with the RBF kernel

and gamma set to scale, which automatically adjusts the kernel’s behavior based on the

data. The model is trained by minimizing hinge loss, which penalizes misclassifications and
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points near the decision boundary. The regularization parameter C is used to control the

trade-off between margin maximization and classification error.

4.1.3 k-Nearest Neighbors (K −NN)

k-Nearest Neighbors (k-NN) is a non-parametric classification method that assigns to each

input sample the majority class among its k closest training examples, typically measured

by Euclidean distance (Cover and Hart (1967)). Unlike parametric models such as logistic

regression, k-NN does not assume a fixed data distribution and instead relies on the entire

training set for predictions.

Each image is represented as a flattened vector of pixel values. To classify a new image, k-

NN computes the Euclidean distance between the new image vector x = (x1, x2, . . . , xn) ∈ Rn

and every training image vector xi = (xi,1, xi,2, . . . , xi,n) ∈ Rn, where n is the number of

features (for MNIST, n = 784):

d(x, xi) =

⌜⃓⃓⎷ n∑︂
j=1

(xj − xi,j)2

Here, d(x, xi) is the Euclidean distance measuring the similarity between the new image

x and the training image xi. The model then selects the k closest training images, denoted

by the set Nk(x), and assigns to the new image the class ŷ that appears most frequently

among these neighbors:

ŷ = argmax
c

∑︂
i∈Nk(x)

I(yi = c)

where I(·) is the indicator function that equals 1 if the condition is true and 0 otherwise,

and yi is the class label of the i-th neighbor in Nk(x).

k-Nearest Neighbors remains a popular choice in many practical applications due to

its simplicity, interpretability, and minimal training cost, as it requires no explicit model

fitting (Cover and Hart (1967), Hastie et al. (2009)). Its non-parametric nature allows it to

adapt flexibly to complex data distributions without assuming a specific underlying model,
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making it particularly useful in scenarios where data structure is unknown or highly irregular

(Bishop (2006)). Furthermore, k-NN is widely applicable across diverse domains such as

recommendation systems, anomaly detection, and certain medical diagnoses, where quick

and understandable decisions are essential (Tan et al. (2005), Zhang and Zha (2017)). Given

its balance of low computational overhead during training and reasonable effectiveness, it

serves as a valuable baseline for evaluating model robustness. In our project, we employed

k-NN to assess generalization under data distribution shifts and noise, thereby highlighting

the trade-offs between computational cost and robustness when compared to more complex

models like deep neural networks and logistic regression.

4.1.4 Random Forest

Random Forest is an ensemble learning algorithm that builds a collection of decision trees

and aggregates their predictions to improve generalization performance (Breiman (2001)).

Each tree is trained on a bootstrap sample—random sampling with replacement—from the

original training data. At each node within a tree, a random subset of features is selected,

and the best feature among them is used to split the data. This dual randomness—both in

data sampling and feature selection—reduces variance and mitigates overfitting, addressing

limitations of individual decision trees.

In the context of image classification tasks such as MNIST, where input features corre-

spond to pixel intensities, Random Forest treats these inputs as numerical variables. Each

tree independently produces a class prediction and is constructed greedily using the following

procedure:

• A bootstrap sample of the training data is drawn.

• Starting at the root node, a random subset of features is selected.

• Among these features, the best split is chosen to minimize an impurity measure (e.g.,

Gini impurity or entropy).
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• The data is split accordingly, and the process repeats recursively for child nodes until

stopping criteria are met (e.g., maximum depth or minimum samples per leaf).

This process continues until the tree is fully grown. Because each tree sees a slightly dif-

ferent subset of data and features, the ensemble benefits from reduced correlation between

trees, improving generalization. Each individual tree uses a splitting criterion such as Gini

impurity:

G = 1−
C∑︂
i=1

p2i

where:

• G is the Gini impurity,

• C is the total number of classes,

• pi is the fraction of samples belonging to class i at a given node.

Alternatively, entropy can be used to measure information gain:

H = −
C∑︂
i=1

pi log(pi)

where:

• H is the entropy,

• pi is again the proportion of class i at the node,

• C is the number of classes.

The final prediction from the Random Forest is made by majority vote across the trees.

Class probabilities can be computed by averaging the predicted probabilities from all trees.

Random Forest does not use gradient-based optimization or minimize a global loss func-

tion. Instead, each decision tree is built using a greedy, local procedure based on impurity

reduction. Its ensemble structure, combining many diverse trees, reduces overfitting and

leads to strong predictive performance.
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It performs well even without extensive preprocessing or hyperparameter tuning, effec-

tively handles non-linear relationships and high-dimensional data, and can estimate predic-

tion uncertainty. However, prediction time can be slower for large ensembles, and inter-

pretability is lower compared to simpler models like logistic regression.

4.1.5 Multi-layer Perceptron (MLP )

A Multi-layer Perceptron (MLP) is a class of feedforward neural networks composed of

multiple fully connected layers. Each neuron in one layer is connected to every neuron in the

next layer, allowing the network to model complex, non-linear relationships between input

and output variables (Rumelhart et al. (1986)). MLPs are widely used in various domains

due to their flexibility and ability to approximate a wide range of functions.

The hidden layers form the core computational structure of a MLP, positioned be-

tween the input and output layers. Each hidden layer applies a non-linear activation func-

tion—commonly the Rectified Linear Unit (ReLU)—to its inputs, enabling the network to

learn non-linear decision boundaries:

ReLU(x) = max(0, x)

where x ∈ R is the pre-activation input to a neuron. These hidden layers transform the input

feature space through learned weights and biases, producing intermediate representations

that capture higher-level patterns in the data.

To reduce overfitting, regularization techniques such as dropout are often applied during

training. Dropout randomly deactivates a fraction of neurons in a layer, forcing the network

to learn more robust and redundant features.

The final output layer typically matches the number of target classes and uses the softmax

activation function to produce a probability distribution over possible classes:

softmax(zi) =
ezi∑︁K
j=1 e

zj
, i = 1, . . . , K

where zi ∈ R is the logit (unnormalized score) for class i, and K is the total number of

classes.
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Training is typically performed using the categorical cross-entropy loss function:

LCE(y, ŷ) = −
K∑︂
i=1

yi log(ŷi)

where yi is the true label encoded as a one-hot vector, and ŷi is the predicted probability

for class i. Optimization algorithms such as stochastic gradient descent (SGD) or Adam are

used to iteratively update the model’s parameters and minimize this loss.

MLPs are a foundational class of neural networks, balancing model capacity and compu-

tational cost, and are often used as a baseline or component in more complex deep learning

architectures.

4.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically de-

signed to capture spatial hierarchies and local patterns within image data (Krizhevsky et al.

(2012), LeCun et al. (1998)). The core idea behind CNNs is to automatically learn spatial

correlations between neighboring pixels or regions through convolutional layers, which ap-

ply localized filters with shared weights across the input. This structure efficiently detects

patterns such as edges, textures, and more complex features, making CNNs exceptionally

effective for image classification, object detection, and other vision tasks.

CNNs are widely popular in both academic research and industry due to their ability to

model complex visual patterns while maintaining computational efficiency through parame-

ter sharing and sparse connectivity. Their success in applications such as image recognition,

medical image analysis, and autonomous driving has established them as a standard choice

in computer vision.

We selected CNNs in this study because they excel at identifying spatial patterns and

hierarchical features in image data, making them highly relevant for evaluating robustness

against image perturbations. To explore different architectural choices and performance

levels, we employed two well-established CNN architectures: Lenet-5, a pioneering model
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for handwritten digit recognition, and ResNet-18, a deeper and more modern architecture

known for its residual learning capability.

4.2.1 Lenet-5

Lenet-5 is a convolutional neural network (CNN) architecture introduced by LeCun et al.

(LeCun et al. (1998)) for image classification tasks. It exemplifies how deep learning methods

can automatically learn hierarchical spatial features from images, thereby reducing reliance

on manual feature engineering.

The architecture comprises a sequence of convolutional, pooling, and fully connected

layers that progressively transform the input image through parameterized operations. Each

component and its associated parameters are described below.

The network accepts as input a single-channel grayscale image of size 32×32, represented

as a tensor x ∈ R32×32. The input layer normalizes and prepares the raw pixel data for sub-

sequent processing. This layer functions as the initial data interface, providing normalized

input to the network.

The first convolutional layer (C1) applies six learnable filters W (k) ∈ R5×5, for k =

1, . . . , 6, to the input image according to:

h
(k)
ij = tanh

(︁
(W (k) ∗ x)ij + b(k)

)︁
,

where W (k) denotes the k-th convolution kernel, b(k) is the bias term, ∗ represents the 2D

convolution operation, and tanh is the activation function. This layer is responsible for

extracting low-level local features such as edges and textures from the input image.

Subsequently, the first subsampling layer (S2) performs average pooling with a 2 × 2

kernel and stride 2:

s
(k)
ij =

1

4

1∑︂
m=0

1∑︂
n=0

h
(k)
2i+m,2j+n.

This operation reduces the spatial dimensions of the feature maps, resulting in spatial down-

sampling. The primary role of this layer is to reduce feature map resolution while enhancing

translational invariance and lowering computational complexity.
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The second convolutional layer (C3) applies 16 filters W (k) ∈ R5×5 over selected combi-

nations of feature maps from S2:

h
(k)
ij = tanh

(︁
(W (k) ∗ s(·))ij + b(k)

)︁
.

Here, s(·) indicates a subset of S2 feature maps connected to each filter. This layer learns

more complex and abstract representations by integrating features across multiple channels.

Following this, the second subsampling layer (S4) performs average pooling analogous to

S2, further decreasing the spatial resolution. This stage consolidates features and reduces

dimensionality, contributing to greater robustness to spatial variations.

The output of S4 is flattened and fed into a fully connected layer (F5), wherein each

neuron performs a weighted sum followed by a tanh activation:

ai = tanh(W⊤
i z + bi),

with z representing the flattened input vector, Wi the weight vector for neuron i, and bi

its bias. This layer typically contains 120 neurons, succeeded by another fully connected

layer with 84 neurons. The fully connected layers synthesize the extracted features to form

higher-level abstractions relevant to classification.

The output layer (F6) consists of 10 neurons corresponding to the classification categories.

The softmax function converts the pre-activation outputs (logits) into class probabilities:

softmax(zi) =
ezi∑︁C
j=1 e

zj
, i = 1, . . . , C,

where C = 10 denotes the number of classes. This layer provides a probabilistic interpretation

of the network’s predictions over the target classes.

The network is trained by minimizing the categorical cross-entropy loss:

LCE(y, ŷ) = −
C∑︂
i=1

yi log(ŷi),

where yi is the ground truth label encoded as a one-hot vector, and ŷi the predicted class

probability. The loss function quantifies the discrepancy between predicted probabilities and

true labels, guiding parameter updates.
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During training, parameters {W, b} are optimized using stochastic gradient descent or its

variants (e.g., Adam) to minimize the loss over the training dataset.

Lenet-5 remains a seminal CNN architecture due to its conceptual clarity and efficacy

in image classification, despite the subsequent development of deeper and more complex

networks.

4.2.2 ResNet-18

ResNet-18 is a deep convolutional neural network introduced by He et al. (He et al. (2016)),

designed to address the vanishing gradient problem in deep architectures through the use of

residual connections. These allow the network to learn modifications (residuals) to identity

mappings, facilitating the training of very deep networks and improving both convergence

and accuracy.

Input Layer

The network accepts an input image x ∈ R224×224×3, representing an RGB image. Inputs are

typically normalized by subtracting the dataset mean and dividing by the standard devia-

tion to ensure consistent scale and distribution across the dataset. This preprocessing step

is essential for stabilizing training and ensuring faster convergence, as unnormalized

inputs can lead to unstable gradients and slow learning.

Initial Convolutional Layer

A convolutional layer with 64 filters of size 7×7 and stride 2 is applied. This layer has a large

receptive field, allowing it to capture low-level visual patterns, such as edges, blobs, and

textures, across a wide spatial area. It also downsamples the input, reducing computational

cost early in the network. This is followed by batch normalization and ReLU activation.

Batch normalization stabilizes training by normalizing the layer’s input distribution:

x̂ =
x− µbatch√︁
σ2
batch + ϵ

× γ + β,

where µbatch, σ
2
batch are the batch mean and variance, and γ, β are learnable parameters.

This operation improves gradient flow, reduces internal covariate shift, and supports
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higher learning rates.

The ReLU activation introduces non-linearity by zeroing negative values:

ReLU(x) = max(0, x),

which allows the network to learn complex, non-linear functions that linear layers

cannot model alone.

Max Pooling Layer

A 3 × 3 max pooling layer with stride 2 follows, which further reduces the spatial dimen-

sions while retaining the most dominant features in local regions. This operation introduces

translation invariance and helps the model focus on salient structures in the image,

like edges or corners, without increasing parameter count.

Residual Blocks

The core of ResNet-18 is composed of four stages of residual blocks, each consisting of two

3× 3 convolutional layers followed by batch normalization and ReLU activation. A residual

block learns a transformation function F(x), which is then added to the original input x:

y = F(x, {Wi}) + x,

where y is the output and {Wi} are the weights. This skip connection allows the network

to learn the residual, or difference from identity, which simplifies learning and improves

gradient flow during backpropagation. If dimensions differ due to downsampling, a 1 × 1

convolution with stride 2 is applied to the shortcut path to align them.

Each stage increases the number of channels (64, 128, 256, 512), while the spatial reso-

lution is halved via stride-2 convolution in the first block of each stage. These stages form a

hierarchical feature extraction pipeline:

• Stage 1 (64 channels): Learns fine-grained local patterns, such as textures and

small shapes.
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• Stage 2 (128 channels): Detects repeated patterns or part-level features, like

corners or blobs.

• Stage 3 (256 channels): Captures combinations of parts to form mid-level structures

(e.g., faces, limbs).

• Stage 4 (512 channels): Extracts semantic-level, abstract features relevant to

object categories.

This hierarchical representation enables the network to understand both local and global

aspects of the image progressively.

Global Average Pooling

After the final stage, global average pooling is applied to reduce each H ′ ×W ′ feature map

Fk into a single scalar value:

gk =
1

H ′W ′

H′∑︂
i=1

W ′∑︂
j=1

Fk(i, j),

producing a feature vector that summarizes the presence of high-level features across

the spatial domain. This drastically reduces the number of parameters and prevents overfit-

ting, while preserving the semantic essence of each feature map.

Fully Connected Layer and Softmax

The pooled features are fed into a fully connected (dense) layer that outputs class logits

z ∈ RC , where C is the number of classes. The softmax function then converts these logits

into class probabilities:

ŷi =
ezi∑︁C
j=1 e

zj
, i = 1, . . . , C,

which represent the model’s confidence in each class. This final classification step lever-

ages the high-level representations learned throughout the network.

All convolutional weights are initialized using the normal initialization:
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W ∼ N
(︃
0,

√︃
2

nl

)︃
,

where nl is the number of input units to the layer. This initialization ensures that the

variance of activations remains consistent across layers, promoting stable and efficient

gradient propagation.

Adam optimizer is usually used to minimize the categorical cross-entropy loss:

LCE(y, ŷ) = −
C∑︂
i=1

yi log(ŷi),

where y is the one-hot encoded ground truth label and ŷ is the predicted class distri-

bution. This loss quantifies the discrepancy between predicted and actual labels, guiding

the optimization process. Each component of ResNet-18 plays a crucial role: early layers

extract fine details, intermediate layers build on them to detect more complex structures,

and deeper layers identify high-level semantic features. Residual connections ensure effective

training of this deep network by maintaining gradient flow, while global average pooling and

softmax enable compact and interpretable final predictions. This architecture achieves a

balance between depth, expressiveness, and efficiency, making it a powerful backbone

for a wide range of vision tasks.

Unlike early neural network models such as Lenet-5, ResNet-18 is a considerably deeper

and more sophisticated architecture, capable of learning rich hierarchical representations.

It consistently achieves high accuracy across diverse domains, including medical imaging,

autonomous driving, industrial inspection, and natural image classification. Its success stems

from both its architectural depth and the use of residual connections, which address vanishing

gradients and enable effective training of deeper networks.

Due to its strong performance and wide deployment in real-world, safety-critical appli-

cations, ResNet-18 is an important subject for robustness evaluation. Assessing its behavior

under input perturbations, such as noise, occlusions, or adversarial attacks, is essential for

understanding its reliability beyond ideal conditions. This motivates its selection as a testbed
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in this thesis, to analyze how even high-performing models may degrade under challenging

or non-standard inputs, and to explore methods for enhancing their resilience.

4.3 Training and Implementation Setup

Table 4.1 presents a detailed comparison of the models used in this study, including their

architectural structures, training configurations, and preprocessing requirements. The table

highlights key aspects such as the number of layers, along with the specific training settings

(e.g., batch size) and preprocessing steps (e.g., data normalization, resizing) applied to each

model and training dataset. Given the structure and dimensionality of the MNIST and

Fashion-MNIST datasets, these tailored preprocessing and training strategies were essen-

tial to ensure a fair and consistent evaluation across models with varying complexities and

assumptions.

Table 4.1: Comparison of traditional ML and CNN models used in this study.

Model Type Layers / Params Epochs / Batch Preprocessing

Logistic Regression Traditional 1 layer / ∼7k – Normalization

SVM (Linear) Traditional 1 layer / ∼15k – Normalization

K-NN (k=5) Traditional Non-parametric – Normalization

Random Forest Traditional 100 trees – None

MLP Traditional 2 hidden layers / ∼530k 20 Normalization

Lenet-5 CNN 2 layers / ∼61k 10 / 128 Normalization

ResNet-18 CNN 18 layers / ∼11M 20 / 32 Normalization + Resize

4.3.1 Traditional ML Models

For traditional machine learning models, each image from the MNIST and Fashion-MNIST

datasets was flattened into a 784-dimensional vector and standardized to have zero mean and

unit variance. Given the structure and dimensionality of the datasets, these preprocessing
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were crucial for ensuring a fair and consistent evaluation across traditional models. Logistic

Regression was trained using multinomial loss with ℓ2 regularization via scikit-learn’s

LogisticRegression, modeling all 10 output classes in a single optimization framework.

For Support Vector Machines (SVM), we employed an RBF kernel to capture nonlinear

patterns, using SVC from scikit-learn with default hyperparameters (C = 1.0). Both

models serve as interpretable baselines with minimal architectural complexity.

The k-Nearest Neighbors (K-NN) model was configured with k = 5, balancing locality and

robustness to noise, using Euclidean distance for similarity. Inputs were normalized and stan-

dardized, ensuring pixel values did not disproportionately affect distance metrics. Random

Forest classifiers were built using 100 decision trees, trained on standardized features, and

configured to run in parallel for efficiency. For the Multi-layer Perceptron (MLP), we used

a fully connected architecture with two hidden layers of 512 and 256 neurons, respectively,

both employing ReLU activation and a 20% dropout rate to prevent overfitting. Training

was conducted for 20 epochs using the Adam optimizer and categorical cross-entropy loss.

Model weights and preprocessing scalers were saved and reused across corruption tests to

ensure consistency.

4.3.2 CNN Models

For the CNN models, input preprocessing varied based on architecture requirements. Lenet-

5, originally designed for digit recognition, required images to be padded from 28 × 28 to

32× 32 pixels and reshaped to (32, 32, 1). These grayscale images were normalized to [0, 1].

The model followed its canonical architecture: two convolutional layers with 6 and 16 filters

(5×5 kernels, tanh activations), each followed by average pooling layers (2 × 2, stride 2),

feeding into two fully connected layers (120 and 84 neurons) and a 10-way softmax output.

Lenet-5 was trained using Adam optimizer and categorical cross-entropy loss for 10 epochs

with a batch size of 128.

In contrast, ResNet-18 required higher-dimensional input. To meet its input specifica-

tions, each MNIST and Fashion-MNIST image was resized to 224×224 pixels and converted
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to RGB format using grayscale replication. The model was implemented using TensorFlow

and trained with the initialization for the convolutional layers. Training was conducted for

up to 20 epochs using the Adam optimizer (learning rate 10−3), a batch size of 32, and early

stopping with a patience of three epochs.1

This setup ensured that the training process was computationally efficient and regular-

ized.

1This means that if the model’s performance (such as validation loss or accuracy) does not improve for

three consecutive epochs, the training will be stopped early to prevent overfitting and save computation

time.
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5. Experimental Design and Analysis

5.1 Research Question 1

How do CNNs and traditional ML models differ in handling different natural corruptions?

5.1.1 Research Question Significance

In this study, we aim to systematically evaluate model robustness when exposed to real-

world disturbances, such as noise, blurriness, or distortions. This is particularly important

in practical applications where inputs are often degraded—like camera feeds affected by

weather, motion blur, or low-quality images from embedded vision systems. In these cases,

maintaining reliable performance is more crucial than achieving high accuracy on clean data

alone.

In automotive applications, RGB cameras are commonly used due to their low cost and

scalability. However, they face challenges in maintaining clear and accurate image capture

across varying lighting conditions, such as transitioning from bright daylight to tunnel shad-

ows. Another critical issue is handling motion blur caused by the relative movement between

the vehicle and surrounding objects (Sayed and Brostow (2021) .

Ideally, models should maintain high accuracy across both clean and noisy conditions

to ensure reliability. If not, we may prefer a model with a better average performance or

one that excels in handling specific noise types relevant to the environment. For instance,

in automotive scenarios, a model that maintains 90% accuracy under both clean and blurry

conditions is preferable to one with 96% accuracy on clean data but only 86% when blurry,
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as blur is a more frequent and critical challenge. Understanding which model performs best

under specific types of natural corruptions is essential for designing robust systems. Knowing

which model is more reliable in a particular noisy situation can guide the development of

effective ensemble models or support dynamic model selection to increase robustness. More-

over, if a traditional ML model proves to be more resilient to certain corruptions compared to

CNNs, we could leverage this insight to reduce computational cost and improve interpretabil-

ity by opting for simpler models when appropriate. This not only enhances system efficiency

but also allows for faster and more interpretable solutions in real-world applications.

Despite the growing interest in robust machine learning, existing research primarily fo-

cuses on deep learning models, such as CNNs, while often neglecting traditional ML ap-

proaches. Moreover, robustness studies often rely on simple metrics, such as accuracy and

F1-score on clean datasets, without providing a comprehensive evaluation across different

types of noise and robustness metrics. This limited focus fails to capture the stability and

consistency of predictions under real-world disturbances, leaving a gap in understanding

how traditional models compare to more complex CNN architectures when handling input

degradations.

To address this gap, we design a systematic evaluation experiment that directly compares

the robustness of CNNs and traditional ML models. Our approach goes beyond traditional

performance metrics by assessing prediction stability across a wide range of natural cor-

ruptions. By doing so, we explore the robustness-efficiency trade-off, investigating whether

traditional models can offer comparable robustness to CNNs despite their lower complexity.

Our evaluation involves extensive experiments where we uniformly apply diverse natural

corruptions to both model types. We use comprehensive metrics to assess not only accuracy

but also performance under varying corruption levels. This approach allows us to rank

models based on their resilience, guiding the selection of architectures that ensure reliable

performance in real-world applications.
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5.1.2 Methodology for RQ1

To quantitatively assess the robustness of convolutional neural networks (CNNs) versus tra-

ditional machine learning (ML) models under natural corruptions, we construct a controlled

evaluation framework consisting of 7 classifiers trained and tested on 12 image distributions

per dataset 3.2. This section directly addressing the practical significance of robust classi-

fication.

Dataset and Pre-proceccing

The MNIST and Fashion MNIST datasets are utilized, each containing 60,000 training and

10,000 test images. The official train and test splits, used for model fitting, and evaluation.

No additional hold-out or validation subsets are created to maintain a controlled comparison.

All images are single-channel greyscale with a resolution of 28× 28 pixels.

Let Dtrain = {(xi, yi)}60000i=1 and Dtest = {(xj, yj)}10000j=1 denote the training and test sets for the

MNIST and Fashion-MNIST datasets, where xi ∈ R28×28 and yi ∈ {0, 1, . . . , 9}. Each pixel

value xij is normalized by dividing by 255, such that x′
ij ∈ [0, 1]. No additional preprocessing

such as data augmentation or rebalancing is applied to ensure comparability across models.

Detailed descriptions of the model architectures and training procedures are provided in

Sections 4 and 4.3.

Model Training

We train 7 models—5 traditional ML and 2 CNNs—using fixed training data and default

hyperparameters recommended in their original references or software packages (scikit-learn

developers (2024), TensorFlow Authors (2024) to isolate architectural effects.

Let M = {M1,M2, . . . ,M7} be the set of models, where:

• M1–M5 ∈ Mtraditional: Logistic Regression, Support Vector Machine, K-Nearest Neigh-

bors, Random Forest, and Multi-Layer Perceptron (MLP)

• M6–M7 ∈ MCNN: Lenet-5 and ResNet-18
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Each model Mk is trained using only Dtrain and initialized with a fixed random seed

s = 42. Model-specific parameters θk are optimized using the default loss functions and

solvers provided in their respective open-source implementations (scikit-learn for M1–M5

and TensorFlow/Keras for M6–M7). No manual hyperparameter tuning or validation set is

used. The test set is strictly held out during training.

Corruption Benchmark

To evaluate robustness, we generate corrupted versions of the test split, while keeping the

training distribution unchanged. We apply eleven distinct corruption types (detailed in Sec-

tion 3.2), conservatively chosen severity level that preserves the original image ground-truth

label. This process results in 11 corrupted test sets for MNIST and 11 for Fashion-MNIST,

each containing 10,000 images, in addition to the original clean test set—yielding a total of

12 evaluation sets per dataset and 120,000 test images in total.

Let C = {c1, c2, . . . , c11} denote the set of 11 natural corruption functions, where each

ck : R28×28 → R28×28 applies a unique distortion (3.2). For each test image xj ∈ Dtest,

a set of corrupted versions is generated:

x
(k)
j = ck(xj), ∀k ∈ {1, . . . , 11}

The evaluation dataset includes:

• D(0)
test: original clean test set

• D(k)
test = {(x(k)

j , yj)}10000j=1 : the corrupted versions for each k ∈ {1, . . . , 11}

This yields 12 evaluation subsets per dataset.

Evaluation Protocol and Metrics

Each saved model is evaluated on the clean test set as well as on all 11 corrupted variants

of the test datasets.
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For each model Mk and each version D(m)
test , predictions are computed as:

ŷ
(m)
j,k = Mk(x

(m)
j ; θk) for j = 1, . . . , 10000, m = 0, . . . , 12

For each dataset, we calculate performance and stability metrics. We use classical metrics like

accuracy, precision, recall, and F1-score to measure classification quality. To assess stability

under corruption, we include the average flip rate, which shows how often predictions change

due to corruptions, and label variation, which counts the number of unique predicted labels

per input across different corruptions.

5.1.3 Evaluation Metrics

Accuracy

Accuracy measures the proportion of test samples for which the predicted class exactly

matches the true label, reflecting the overall reliability of a classifier on both clean and

corrupted inputs. In multi-class classification problems like MNIST or Fashion MNIST,

accuracy counts how often the predicted label is correct, regardless of the class. It is formally

defined as

Accuracy =
Number of Correct Predictions

Total Number of Predictions
=

∑︁C
i=1 TPi

N
,

where C is the number of classes, TPi is the number of correctly predicted samples for

class i, and N is the total number of samples.

Accuracy is widely used as a baseline metric due to its simplicity and interpretability

(LeCun et al. (1998, 2010b).

Precision

Precision measures the correctness of positive predictions for each class individually, answer-

ing: “Of all samples predicted as class i, how many truly belong to class i?” In multi-class
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settings, precision is computed per class treating that class as positive and all others as

negative, then aggregated (weighted by class frequency). Its formula is

Precisionweighted =
C∑︂
i=1

(︃
ni

n
· TPi

TPi + FPi

)︃
where TP is the count of correctly predicted samples of class i, and FP is the count of

samples incorrectly predicted as class i. ni is the number of true instances (support) for

class i and n is the total number of instances. C is the total number of classes (10).

Precision is particularly important when false positives are costly or misleading, such as

distinguishing visually similar classes. We include weighted precision to evaluate the quality

of positive class predictions across all classes.

Recall

Recall, or sensitivity, measures the ability to correctly identify all true instances of each class,

answering: “Of all samples truly belonging to class i, how many did the model correctly

predict?” It is defined as

Recallweighted =
C∑︂
i=1

(︃
ni

n
· TPi

TPi + FNi

)︃
where FN is the count of samples of class i missed by the model. Also, ni is the number of

true instances for class i and n is the total number of instances. C is the total number of

classes (10).

Like precision, recall is computed per class and aggregated with weighting. Recall is criti-

cal when missing true class instances is costly, for example, ensuring all ”Sneaker” images

are recognized in Fashion MNIST. We use recall to assess model sensitivity across classes,

especially under corrupted inputs.

F1-score

The F1-score combines precision and recall into a single balanced metric, calculated as the

harmonic mean:

F1 = 2× Precision× Recall

Precision + Recall
.
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This metric penalizes large imbalances between precision and recall, providing a robust

measure of classification effectiveness, especially for imbalanced classes. We selected the

weighted F1-score to summarize overall class-wise performance, balancing false positives

and false negatives.

Average Flip Rate

Average Flip Rate measures how often the model’s predicted labels change when the input

is corrupted compared to clean inputs, (Hendrycks and Dietterich (2019). It is calculated as

the mean proportion of samples whose predicted labels differ between clean and corrupted

versions. Formally, for a dataset of N samples, it is defined as

Average Flip Rate =
1

K

K∑︂
k=1

(︄
1

N

N∑︂
j=1

I(ŷcleanj ̸= ŷcorruptedkj )

)︄
,

where ŷcleanj and ŷcorruptedj denote the predicted labels for the j-th sample on clean and

corrupted inputs respectively, K is number of corruption types (maximum 11), and I(·) is

the indicator function that equals 1 if the condition is true and 0 otherwise.

This metric quantifies prediction stability by capturing how sensitive the model is to input

perturbations: a lower Average Flip Rate indicates more consistent predictions and greater

robustness to noise or corruption. While the exact term Average Flip Rate is not standard-

ized, similar concepts measuring prediction consistency or flip points have been explored in

robustness and interpretability literature (Hendrycks and Dietterich (2019), Yousefzadeh and

O’Leary (2020). It complements traditional accuracy-based robustness metrics by focusing

on prediction consistency rather than correctness alone.

Label Variation

Label Variation quantifies the average number of unique predicted labels assigned to each

input sample across all corrupted variants of the dataset. Formally, given K corrupted

versions and N samples, it is defined as
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Label Variation =
1

N

N∑︂
j=1

⃓⃓⃓⃓
⃓
K⋃︂
k=1

{ŷcorruptedkj }

⃓⃓⃓⃓
⃓ ,

where ŷcorruptedkj is the predicted label for the j-th sample under the k-th corruption, and

| · | denotes the number of unique predicted labels for that sample.

This metric measures prediction consistency across corruptions: a lower Label Variation

indicates that the model tends to assign the same label to an input despite different cor-

ruptions, reflecting greater stability and robustness. The range of Label Variation is from

1 (perfect stability, same predicted label across all corruptions) up to the total number of

classes M (maximum instability, with predictions varying across all possible classes). Values

closer to 1 are desirable.

While Label Variation is a novel metric, it captures an important aspect of prediction

stability by measuring the diversity of predicted labels under corruptions. This complements

more common robustness metrics like Average Flip Rate and aligns with recent research

emphasizing prediction consistency and annotation variability (Hendrycks and Dietterich

(2019), Pham et al. (2023), Yousefzadeh and O’Leary (2020).

5.1.4 RQ1 Results

5.1.4.1 MNIST Results

As you can see in Table 5.1, the comparison of different classification models in terms of ac-

curacy on the MNIST test dataset shows several insights into their robustness. As expected,

deep learning models dominate the leaderboard, with ResNet-18 consistently delivering top-

tier accuracy across almost all datasets. Impressively, ResNet-18 achieves near-perfect ac-

curacy on the clean data (99.36%) and maintains remarkable resilience under challenging

distortions like Elastic Deformation (92.69%) and Gaussian Blur (98.84%). This confirms

its strong generalization ability even in the presence of complex image transformations.

Interestingly, Lenet-5 emerges as a surprisingly robust contender, outperforming even
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ResNet-18 in certain scenarios such as Gaussian Noise (96.23%) and Motion Blur (98.02%).

This suggests that simpler convolutional architectures still hold significant value, especially

when dealing with specific noise types or moderate distortions. Furthermore, Lenet-5 leads

in the Mixed distortion setting with an accuracy of 92.62%, indicating its versatility and

adaptability to combined real-world corruptions. This is a nice, unexpected, and interesting

result, likely because Lenet-5’s relatively shallow architecture focuses on more generalizable

and stable features, making it less sensitive to complex noise patterns that can disrupt

deeper, more intricate models.

Random Forest and MLP models show moderate resilience overall, with Random For-

est excelling in handling Salt Pepper Noise (96.78%), which is quite intriguing. This sug-

gests that ensemble methods like Random Forest can effectively aggregate multiple decision

boundaries to filter out sparse, high-intensity noise such as salt and pepper artifacts. The

robustness of Random Forest in this scenario may stem from its inherent ability to model

non-linearities and isolate noisy features through voting among trees, a strength not shared

by simpler models like Logistic Regression or SVM.

On the other hand, classical machine learning models such as Logistic Regression, SVM,

and K-NN experience dramatic drops in accuracy under corruptions, often falling below 15%

in cases like Brightness Contrast and Gaussian Noise.

Overall, while deep learning models typically excel on clean data and many types of dis-

tortions, our results show that greater architectural complexity does not always guarantee

improved robustness. This phenomenon is likely related to the inherent simplicity of the

dataset. In relatively simple datasets like MNIST, highly complex models such as ResNet-18

tend to rely on subtle and fine-grained image patterns to achieve maximum accuracy. How-

ever, this reliance can make them more sensitive to distortions and noise, thereby reducing

their robustness in certain real-world noisy conditions.

Therefore, achieving near-perfect accuracy with a highly complex model does not neces-

sarily guarantee practical robustness, especially when dealing with imperfect or corrupted

data. This underscores the importance of finding the right balance between model complex-
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ity, generalization, and robustness, rather than focusing solely on maximizing accuracy on

clean datasets.

Table 5.1: Accuracy of Different Models Across Datasets (Max in Bold)

Dataset Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.9216 0.9661 0.9443 0.9704 0.9780 0.9843 0.9936

Brightness Contrast 0.1135 0.1028 0.1010 0.2531 0.1032 0.6787 0.2009

Elastic Deformation 0.4746 0.4676 0.5097 0.7331 0.5760 0.8115 0.9269

Gaussian Blur 0.8852 0.8813 0.9224 0.6097 0.9232 0.9772 0.9884

Gaussian Noise 0.1726 0.1028 0.1370 0.7115 0.1128 0.9623 0.6657

JPEG Compression 0.6950 0.2786 0.9382 0.9040 0.3990 0.9840 0.9933

Motion Blur 0.8707 0.8633 0.9224 0.7332 0.9110 0.9802 0.9769

Poisson Noise 0.9183 0.9658 0.9444 0.9688 0.9776 0.9840 0.9936

Random Occlusion 0.8713 0.9394 0.9319 0.9376 0.9395 0.9457 0.9596

Speckle Noise 0.9182 0.9662 0.9444 0.9690 0.9773 0.9846 0.9935

Salt Pepper Noise 0.2156 0.1080 0.1310 0.9678 0.1806 0.9542 0.8312

Mixed 0.6118 0.5612 0.6484 0.7789 0.6084 0.9262 0.8512

Following the accuracy analysis, the precision results shown in Table 5.2 reveal similar

patterns across different models and datasets. As expected, ResNet-18 consistently achieves

high precision on clean data (99.36%) and challenging distortions like Elastic Deformation

(92.86%) and Gaussian Blur (98.85%).

Interestingly, Lenet-5 shows notable precision improvements in noise conditions where it

previously demonstrated accuracy advantages, such as Gaussian Noise (96.67%) and Bright-

ness Contrast (88.18%). Additionally, Random Forest maintains its strong performance

with Salt Pepper Noise (96.78%), reinforcing its robustness in handling this specific type of

distortion.

Overall, the precision scores in most cases follow the same trend as accuracy scores,

indicating that the models’ ability to correctly identify positive instances is closely related

to their general performance on clean and noisy data for the MNIST dataset, which has

balanced data across each class.
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Table 5.2: Precision of Different Models Across Datasets (Max in Bold)

Dataset Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.9215 0.9663 0.9444 0.9704 0.9780 0.9844 0.9936

Brightness Contrast 0.0129 0.0106 0.0102 0.4312 0.0107 0.8818 0.5143

Elastic Deformation 0.4969 0.6394 0.5604 0.7554 0.6201 0.8194 0.9286

Gaussian Blur 0.8884 0.9112 0.9255 0.8450 0.9332 0.9777 0.9885

Gaussian Noise 0.1766 0.0106 0.2782 0.8140 0.1323 0.9667 0.8545

JPEG Compression 0.7671 0.7977 0.9394 0.9172 0.5817 0.9841 0.9933

Motion Blur 0.8761 0.9042 0.9251 0.8637 0.9215 0.9804 0.9773

Poisson Noise 0.9181 0.9660 0.9446 0.9688 0.9776 0.9841 0.9936

Random Occlusion 0.8720 0.9401 0.9323 0.9383 0.9403 0.9469 0.9606

Speckle Noise 0.9180 0.9663 0.9445 0.9690 0.9773 0.9847 0.9935

Salt Pepper Noise 0.2307 0.7443 0.1720 0.9678 0.2191 0.9578 0.8991

Mixed 0.6992 0.8447 0.7153 0.8590 0.7152 0.9349 0.9006

As shown in Table 5.3, ResNet-18 achieves the highest recall on clean data (99.36%),

confirming its strong capability to correctly identify positive instances in uncorrupted set-

tings. However, its performance drops significantly in noisy conditions, particularly in the

Brightness Contrast (20.09%) and Gaussian Noise (66.57%) scenarios.

Interestingly, Lenet-5 demonstrates superior recall in these challenging cases, with 67.87%

for Brightness Contrast and 96.23% for Gaussian Noise. This suggests that simpler archi-

tectures may retain more stable feature representations under noise, while more complex

models like ResNet-18 may become sensitive to subtle distortions.

For structural distortions such as Elastic Deformation (92.69%) and Motion Blur (97.69%),

ResNet-18 outperforms other models, leveraging its deeper architecture to capture complex

spatial relationships. However, in the Mixed distortion scenario, Lenet-5 achieves higher

recall (92.62%), indicating that less complex models can offer more consistent performance

when facing combined noise types.

Notably, Random Forest shows excellent recall under Salt Pepper Noise (96.78%), re-

flecting the robustness of ensemble methods to sparse, high-intensity noise. In contrast,
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traditional models like Logistic Regression and SVM generally show low recall under most

distortions, highlighting their limitations in handling noisy data.

Table 5.3: Recall of Different Models Across Datasets (Max in Bold)

Dataset Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.9216 0.9661 0.9443 0.9704 0.9780 0.9843 0.9936

Brightness Contrast 0.1135 0.1028 0.1010 0.2531 0.1032 0.6787 0.2009

Elastic Deformation 0.4746 0.4676 0.5097 0.7331 0.5760 0.8115 0.9269

Gaussian Blur 0.8852 0.8813 0.9224 0.6097 0.9232 0.9772 0.9884

Gaussian Noise 0.1726 0.1028 0.1370 0.7115 0.1128 0.9623 0.6657

JPEG Compression 0.6950 0.2786 0.9382 0.9040 0.3990 0.9840 0.9933

Motion Blur 0.8707 0.8633 0.9224 0.7332 0.9110 0.9802 0.9769

Poisson Noise 0.9183 0.9658 0.9444 0.9688 0.9776 0.9840 0.9936

Random Occlusion 0.8713 0.9394 0.9319 0.9376 0.9395 0.9457 0.9596

Speckle Noise 0.9182 0.9662 0.9444 0.9690 0.9773 0.9846 0.9935

Salt Pepper Noise 0.2156 0.1080 0.1310 0.9678 0.1806 0.9542 0.8312

Mixed 0.6118 0.5612 0.6484 0.7789 0.6084 0.9262 0.8512

The F1 scores in Table5.4 across different datasets highlight the models’ ability to main-

tain a balance between precision and recall, especially under varying data distortions. Gener-

ally, deep learning models such as Lenet-5 and ResNet-18 demonstrate superior performance

with consistently higher F1 scores compared to classical machine learning models like Logistic

Regression, SVM, and K-NN.

For clean data, all models perform well, with ResNet-18 achieving the highest F1 score.

However, in challenging conditions, such as Brightness Contrast and Gaussian Noise, tradi-

tional models experience a sharp drop in F1, while Lenet-5 and ResNet-18 maintain com-

paratively stable performance.

In datasets involving structured distortions like Elastic Deformation and Motion Blur,

models like Random Forest and MLP show moderate robustness, but deep learning models

still outperform. The significant variation in F1 scores among models under noise and

distortion reflects the difference in their ability to generalize and adapt to challenging data
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conditions.

Table 5.4: F1 Scores of Different Models Across Datasets (Max in Bold)

Dataset Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.9215 0.9661 0.9441 0.9704 0.9780 0.9843 0.9936

Brightness Contrast 0.0231 0.0192 0.0185 0.2002 0.0193 0.6690 0.0807

Elastic Deformation 0.4715 0.4982 0.5079 0.7333 0.5804 0.8123 0.9268

Gaussian Blur 0.8856 0.8843 0.9222 0.6196 0.9228 0.9773 0.9884

Gaussian Noise 0.1053 0.0192 0.1120 0.6800 0.0660 0.9628 0.6846

JPEG Compression 0.6800 0.2954 0.9382 0.9053 0.4143 0.9840 0.9933

Motion Blur 0.8713 0.8686 0.9221 0.7517 0.9104 0.9802 0.9768

Poisson Noise 0.9181 0.9658 0.9442 0.9688 0.9776 0.9840 0.9936

Random Occlusion 0.8712 0.9393 0.9316 0.9374 0.9395 0.9458 0.9595

Speckle Noise 0.9180 0.9662 0.9442 0.9690 0.9773 0.9846 0.9935

Salt Pepper Noise 0.1861 0.0299 0.1193 0.9678 0.1720 0.9546 0.8427

Mixed 0.6261 0.6269 0.6619 0.7940 0.6336 0.9276 0.8608

Table 5.5 shows the average flip rate and label variation for each model, indicating pre-

diction stability under input perturbations. Lenet-5 achieves the lowest flip rate (0.1409)

and label variation (2.37), reflecting its robustness and consistent predictions, especially

compared to more complex models like ResNet-18 (0.2133, 2.74).

Traditional models such as Logistic Regression (0.4094), SVM (0.4603), and K-NN (0.3805)

exhibit higher flip rates, indicating sensitivity to minor input changes. Similarly, MLP shows

a relatively high flip rate (0.4287), while Random Forest demonstrates moderate stability

(0.2707, 2.86), likely due to its ensemble structure.
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Figure 5.1: Comparison of average Model Performance Metrics on the MNIST Datasets

Table 5.5: Flip Rate and Label Variation Summary for MNIST

Model Average Flip Rate Label Variation

Logistic Regression 0.4094 3.64

SVM 0.4603 2.6

K-NN 0.3805 4.05

Random Forest 0.2707 2.86

MLP 0.4287 3.79

Lenet-5 0.1409 2.37

ResNet-18 0.2133 2.74

The comprehensive evaluation of multiple classification models on the MNIST dataset re-

veals key insights into their accuracy, robustness, and stability across various noise and distor-

tion conditions. As anticipated, deep learning models—particularly ResNet-18—consistently
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achieve the highest accuracy and precision on clean data and many distortion types, such as

Elastic Deformation and Gaussian Blur, demonstrating superior generalization and feature

extraction capabilities from complex patterns.

However, an intriguing and somewhat unexpected finding is the robust performance of

the simpler Lenet-5 architecture under several noise conditions, including Gaussian Noise,

Brightness Contrast, and Mixed distortions. Lenet-5 frequently outperforms ResNet-18 in

these cases, suggesting that less complex models can retain more stable, generalized features

and are less prone to overfitting subtle data perturbations. This is further supported by

Lenet-5’s lowest flip rate and label variation, indicating greater prediction stability under

input perturbations.

Classical machine learning models like Logistic Regression, SVM, and K-NN show con-

siderable vulnerability to corruptions, often dropping below 20% accuracy in difficult noise

scenarios. Random Forest stands out among them by effectively handling Salt Pepper Noise,

likely due to its ensemble nature that aggregates decisions from multiple trees, offering re-

silience to sparse, high-intensity noise.

From the boxplot analysis 5.1, it is clear that the range between the minimum and

maximum average performance metrics across all datasets varies from approximately 65%

to 96%. This wide variation highlights the critical importance of selecting an appropriate

model for each specific task, as it can significantly influence the final outcomes.

The results also showed that for MNIST, a relatively simple image dataset, increased

architectural complexity does not always translate to better robustness. Instead, a balance

between model complexity and generalization is critical.

In practical terms, ResNet-18 is preferred when achieving the highest possible accuracy on

clean or mildly distorted data is the goal. Conversely, Lenet-5 is better suited for real-world

scenarios where mixed or severe noise corruptions are present, offering more dependable

performance and stability.

Overall, the MNIST experiments highlight the importance of selecting models not solely

based on peak accuracy but also considering robustness and stability metrics, especially for
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deployment in environments where data quality cannot be guaranteed.

(a) Clean sample (b) Motion blur sample (c) Speckle noise sample

Figure 5.2: Samples of MNIST images: (a) clean, (b) with motion blur, and (c) with speckle

noise.

Figure 5.2 demonstrates how various machine learning models respond to a specific

MNIST digit under three conditions: a clean image, a motion-blurred version, and a speckle

noise–corrupted version. The same digit is shown in each condition to highlight how model

predictions vary when different types of corruption are introduced. Predictions are compared

across all models traditional models and deep learning models. This visualization supports

the broader thesis analysis by showcasing model behavior under two distinct corruptions,

motion blur and speckle noise, drawn from the larger set of distortions studied.

5.1.4.2 FASHION MNIST Results

For each dataset and corruption type, the table 5.6 displays the accuracy scores achieved by

each model. The highest accuracy value for each row is highlighted in bold to indicate the

model that performs best under that specific condition.

Notably, ResNet-18 demonstrates superior performance by achieving the highest accuracy

in 6 out of the 12 scenarios (including the Clean dataset). This highlights ResNet-18’s
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robustness, especially in complex data conditions. In contrast, Lenet-5 outperforms the

other models in 5 scenarios, particularly in cases involving Gaussian Blur, Gaussian Noise,

and Mixed corruptions. The Random Forest model only excels in one scenario, specifically

Salt Pepper Noise.

This comparison underscores the resilience of deep learning architectures (ResNet-18 and

Lenet-5) compared to traditional machine learning models when dealing with data corrup-

tion.

Table 5.6: Accuracy of Different Models Across Datasets (Max in Bold)

Dataset / Corruption Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.8346 0.8836 0.8533 0.8760 0.8870 0.8856 0.9292

Brightness Contrast 0.2460 0.1000 0.0989 0.1207 0.1934 0.5783 0.5588

Elastic Deformation 0.4828 0.4805 0.5190 0.6503 0.5439 0.6144 0.6884

Gaussian Blur 0.7961 0.8145 0.7771 0.6782 0.8300 0.8725 0.7150

Gaussian Noise 0.3036 0.1337 0.3094 0.7658 0.4238 0.8655 0.5154

JPEG Compression 0.6633 0.6452 0.6984 0.8605 0.7941 0.8838 0.8967

Motion Blur 0.7821 0.7954 0.7592 0.6702 0.8131 0.8602 0.6801

Poisson Noise 0.8288 0.8827 0.8518 0.8736 0.8873 0.8851 0.8915

Random Occlusion 0.7999 0.8655 0.8417 0.8407 0.8543 0.8309 0.8980

Speckle Noise 0.8255 0.8830 0.8510 0.8766 0.8851 0.8815 0.8918

Salt Pepper Noise 0.3570 0.3255 0.5367 0.8694 0.5759 0.8480 0.7066

Mixed 0.6158 0.5922 0.6239 0.7225 0.6765 0.8118 0.7410

The second table 5.7, generally follows a similar trend as the first table (Accuracy Scores),

with ResNet-18 achieving the highest F1 score in 6 out of 12 scenarios and Lenet-5 in 5

scenarios. However, some differences are observed.

For Brightness Contrast, although Lenet-5 remains the best-performing model, the

gap between Lenet-5 (0.5526) and ResNet-18 (0.4913) is larger compared to the accuracy

scores. This indicates that Lenet-5 maintains a relatively better balance between precision

and recall under brightness variations.

For Gaussian Noise, Lenet-5 significantly outperforms ResNet-18 in both accuracy and
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F1 scores, with the gap slightly widening in the F1 score. This suggests that Lenet-5’s

architecture is more resilient to random noise distortions.

In the case of Salt Pepper Noise, although Random Forest achieves the highest F1

score, the difference from Lenet-5 is smaller than in the accuracy comparison. This shows

that Lenet-5’s performance remains competitive in terms of precision and recall despite

Random Forest’s superior accuracy.

These differences highlight that F1 scores reveal variations in how models handle corrup-

tions, particularly in scenarios with noise and brightness distortions.

Table 5.7: F1 Scores of Different Models Across Datasets (Max in Bold)

Dataset / Corruption Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.8335 0.8829 0.8534 0.8745 0.8866 0.8866 0.9288

Brightness Contrast 0.1311 0.0182 0.0219 0.0512 0.0798 0.5526 0.4913

Elastic Deformation 0.4743 0.4812 0.5067 0.6484 0.5296 0.6147 0.6816

Gaussian Blur 0.7856 0.8072 0.7729 0.6618 0.8231 0.8733 0.7013

Gaussian Noise 0.2823 0.0818 0.3262 0.7707 0.4164 0.8673 0.5267

JPEG Compression 0.6458 0.6500 0.7016 0.8598 0.7847 0.8849 0.8973

Motion Blur 0.7732 0.7874 0.7542 0.6505 0.8045 0.8610 0.6676

Poisson Noise 0.8280 0.8821 0.8518 0.8721 0.8869 0.8861 0.8922

Random Occlusion 0.7985 0.8647 0.8416 0.8379 0.8530 0.8311 0.8971

Speckle Noise 0.8247 0.8824 0.8509 0.8753 0.8848 0.8825 0.8924

Salt Pepper Noise 0.3626 0.3658 0.5511 0.8682 0.5850 0.8497 0.7117

Mixed 0.6145 0.6308 0.6388 0.7333 0.6802 0.8144 0.7444

The precision scores in Table 5.8 generally align with previous results but reveal some

nuanced differences. Notably, Lenet-5 shows a much higher precision than ResNet-18 under

Brightness Contrast, indicating fewer false positives in this scenario. For Gaussian

Noise, the precision gap between these two models narrows, suggesting ResNet-18 better

manages false positives than reflected in accuracy or F1. In Salt Pepper Noise, Random

Forest maintains the highest precision, with Lenet-5 closely behind, showing both models

effectively handle positive predictions despite noise.
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Table 5.8: Precision of Different Models Across Datasets (Max in Bold)

Dataset / Corruption Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.8329 0.8829 0.8565 0.8749 0.8878 0.8888 0.9288

Brightness Contrast 0.1651 0.0100 0.1121 0.0368 0.0534 0.7465 0.7092

Elastic Deformation 0.4785 0.5844 0.5176 0.6803 0.5464 0.6322 0.7045

Gaussian Blur 0.7851 0.8171 0.7849 0.7301 0.8315 0.8774 0.7550

Gaussian Noise 0.4254 0.7338 0.6049 0.7978 0.5870 0.8719 0.7977

JPEG Compression 0.6837 0.7935 0.7563 0.8608 0.7946 0.8873 0.8989

Motion Blur 0.7728 0.8030 0.7686 0.7242 0.8150 0.8673 0.7144

Poisson Noise 0.8274 0.8820 0.8549 0.8723 0.8885 0.8882 0.9006

Random Occlusion 0.7973 0.8645 0.8449 0.8398 0.8546 0.8328 0.8990

Speckle Noise 0.8241 0.8822 0.8539 0.8758 0.8862 0.8846 0.9001

Salt Pepper Noise 0.3902 0.7549 0.6251 0.8683 0.6438 0.8538 0.8126

Mixed 0.6325 0.7652 0.6885 0.7632 0.7271 0.8227 0.7657

Recall scores in Table 5.9 show ResNet-18 leading in 6 cases and Lenet-5 in 5. Lenet-5

excels in Brightness Contrast and Gaussian Noise, while ResNet-18 performs best on

Elastic Deformation and other noise types. Random Forest stands out in Salt Pepper

Noise.
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Table 5.9: Recall Scores of Different Models Across Datasets (Max in Bold)

Dataset / Corruption Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.8346 0.8836 0.8533 0.8760 0.8870 0.8856 0.9292

Brightness Contrast 0.2460 0.1000 0.0989 0.1207 0.1934 0.5783 0.5588

Elastic Deformation 0.4828 0.4805 0.5190 0.6503 0.5439 0.6144 0.6884

Gaussian Blur 0.7961 0.8145 0.7771 0.6782 0.8300 0.8725 0.7150

Gaussian Noise 0.3036 0.1337 0.3094 0.7658 0.4238 0.8655 0.5154

JPEG Compression 0.6633 0.6452 0.6984 0.8605 0.7941 0.8838 0.8967

Motion Blur 0.7821 0.7954 0.7592 0.6702 0.8131 0.8602 0.6801

Poisson Noise 0.8288 0.8827 0.8518 0.8736 0.8873 0.8851 0.8915

Random Occlusion 0.7999 0.8655 0.8417 0.8407 0.8543 0.8309 0.8980

Speckle Noise 0.8255 0.8830 0.8510 0.8766 0.8851 0.8815 0.8918

Salt Pepper Noise 0.3570 0.3255 0.5367 0.8694 0.5759 0.8480 0.7066

Mixed 0.6158 0.5922 0.6239 0.7225 0.6765 0.8118 0.7410

Table 5.10 summarizes the flip rate—the frequency of prediction changes under input

corruptions—and label variation—the diversity of predicted classes—for each model. Lenet-

5 shows the lowest flip rate (0.1917) and label variation (2.66), indicating it maintains more

stable and consistent predictions despite corruptions. In contrast, traditional models like

Logistic Regression and SVM have higher flip rates and label variation, reflecting greater

sensitivity and less robustness. The results highlight Lenet-5’s resilience and ability to con-

fidently handle corrupted inputs, likely due to its convolutional architecture effectively cap-

turing invariant features.

The boxplot in Figure 5.3 reveals the distribution of model performance across vari-

ous corruptions on the Fashion MNIST dataset. Among the models evaluated, ResNet-18

consistently achieves the highest median performance with low variability, underscoring its

robustness and stability in handling corrupted data. Lenet-5 performs competitively, rank-

ing just behind ResNet-18, though with slightly greater variance. In contrast, traditional

models such as Logistic Regression and SVM exhibit lower median scores coupled with wider

variability, indicating a higher sensitivity to input corruptions.
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Figure 5.3: Comparison of average Model Performance Metrics on the Fashion MNIST

Datasets

Table 5.10: Flip Rate and Label Variation Summary for Fashion MNIST

Model Flip Rate Label Variation

Logistic Regression 0.3911 4.01

SVM 0.4054 2.78

K-NN 0.362 3.84

Random Forest 0.2829 3.16

MLP 0.3315 3.35

Lenet-5 0.1917 2.66

ResNet-18 0.2928 3.22

72



When considering multiple evaluation metrics—accuracy, F1-score, precision, recall, and

robustness indicators including flip rate and label variation—ResNet-18 leads in half of the

tested scenarios, demonstrating strong generalizability across a broad range of corruptions.

Lenet-5 dominates in nearly as many cases, particularly excelling in noise-heavy settings

such as Gaussian Noise and Brightness Contrast, likely due to its convolutional architecture’s

aptitude for capturing local spatial distortions.

Overall, ResNet-18 stands out as the top-performing model, consistently delivering high

scores and maintaining stability under challenging corruptions. Lenet-5 also proves resilient,

achieving the lowest flip rate (0.1917) and label variation (2.66), which reflect its ability to

make consistent predictions despite data degradation. The boxplot analysis further confirms

the advantage of deep learning models, which demonstrate higher median performances and

tighter interquartile ranges compared to traditional methods.

Interestingly, ensemble-based Random Forest outperforms deep models under Salt and

Pepper Noise, showing approximately 15% higher accuracy and F1-score than ResNet-18.

This suggests that certain traditional models may better handle specific types of impulse

noise. Additionally, SVM and Logistic Regression deliver surprisingly strong precision in

Gaussian Blur and Gaussian Noise conditions, occasionally rivaling or exceeding the perfor-

mance of deep networks on these metrics.
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(a) Clean sample (b) Motion blur sample (c) Speckle noise sample

Figure 5.4: Samples of Fashion MNIST images: (a) clean, (b) with motion blur, and (c) with

speckle noise.

Figure 5.4 shows how different models classify a Fashion MNIST shirt (class 6) under

three conditions: clean, motion blur, and speckle noise. The same item is used across all

cases to highlight how corruption affects predictions across traditional and deep learning

models. This example also reinforces patterns observed in the broader quantitative results.

For instance, ResNet-18, which exhibited reduced accuracy under motion blur in the full

evaluation, incorrectly classifies the blurred shirt image here. Similarly, SVM, K-NN, and

Random Forest fail to identify the corrupted shirt correctly. This case visualizes the models’

vulnerabilities and complements the overall analysis presented.

These findings highlight that while deep learning architectures generally offer superior ro-

bustness and stability, traditional machine learning models remain relevant, providing in-

terpretable and computationally efficient alternatives in targeted scenarios. This nuanced

understanding encourages a complementary approach to model selection based on the nature

of data corruptions encountered.
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5.1.5 RQ1 Conclusion

This study reveals clear differences between CNNs and traditional ML models in handling

various natural corruptions on MNIST and Fashion MNIST datasets. Deep CNNs such as

ResNet-18 generally achieve the highest accuracy on clean and structured distortions, while

shallower CNNs like Lenet-5 demonstrate greater robustness and prediction stability under

heavy noise conditions.

Among traditional models, Random Forest performs well on specific noise types such as

Salt Pepper Noise but overall struggles with complex corruptions. Logistic Regression, SVM,

and K-NN exhibit significant accuracy degradation under noise.

In summary, CNNs provide stronger overall performance and robustness, while traditional

models maintain niche strengths depending on corruption type, highlighting the importance

of model selection based on specific noise and distortion characteristics.
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5.2 Research Question 2

How does uncertainty estimation relate to model robustness in CNNs and traditional ML

models under natural image corruptions?

5.2.1 Research Question Significance

Knowing how CNNs and traditional machine learning models differ in confidence calibration

and uncertainty measurement is very important, especially when these models are exposed to

real-world problems like noisy or corrupted data. In many applications-such as self-driving

cars or medical diagnosis-it’s not enough for a model to simply make predictions; we also

need to know how much we can trust those predictions. If a model is too confident about a

wrong answer, it could lead to dangerous mistakes, like a car misreading a traffic sign or a

medical system missing a disease.

If we ignore how well a model’s confidence matches reality, we risk using systems that

make errors without warning. For example, a CNN might give a very high confidence score

to a misclassified, blurry image, while a traditional model might be more cautious and signal

uncertainty. This difference matters because it can help us decide when to trust the model

and when to ask for human help. Without understanding these differences, we could end up

with unreliable systems that fail when faced with unexpected or poor-quality data.

Uncertainty metrics can be calculated in real time, as the model is making predictions.

If we find that these metrics are good indicators of when the model is likely to be wrong-

especially under different types of data corruption-we can use them to make smarter de-

cisions in practice. For example, if a model shows low confidence on a corrupted image,

an autonomous vehicle could slow down or ask for human input, reducing the risk of an

accident.

By studying how confidence and uncertainty behave in both CNNs and traditional models

under challenging conditions, we can choose or design models that are not just accurate, but

also safe and reliable. This research question is significant because it helps bridge this gap.
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5.2.2 Methodology for RQ2

To assess the differences in uncertainty between CNNs and traditional ML models, we fol-

lowed a similar methodology to that used in Research Question 1. Using the previously

trained and saved models, we evaluated each on the clean test set and the eleven previously

generated corrupted datasets. For each evaluation, we computed two uncertainty metrics:

the maximum predicted probability (Hendrycks and Gimpel (2017)) and the Gini index (Gini

(1912)). We then averaged each metric across all corruption types for each model to enable

a consistent comparison of uncertainty behavior under varying conditions.

5.2.3 Evaluation Metrics

Max Probability (Max-P)

Max-P Uncertainty measures the model’s confidence in its predictions by evaluating the

maximum predicted class probability for each input (Hendrycks and Gimpel (2017)). It is

calculated as the mean of the maximum predicted probabilities across all samples.

Let:

- N be the number of test samples per corruption set (N = 10,000),

- C be the total number of classes (C = 10),

- K be the number of test sets (K = 12),

- p
(m)
j,k,c denote the predicted probability assigned to class c by model Mk for the j-th sample

in the m-th test set,

The Maximum Predicted Probability (Max-P) for a single sample is defined as:

Max-P
(m)
j,k = max

c∈{1,...,C}
p
(m)
j,k,c

To compute the average Max Probability across all test samples and all test sets:

Average Max-P =
1

N

N∑︂
j=1

Max− P
(m)
j,k ,

This metric quantifies the model’s overall certainty in its predictions. A lower Average
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Max-P indicates that the model is less confident and more uncertain across the dataset,

while a higher value reflects more confident predictions. The minimum possible value is 1/k

(when predictions are maximally uncertain and uniform across classes), and the maximum

is 1 (when the model is completely certain in its predictions). Max-P is widely used in

uncertainty estimation for its simplicity and interpretability.

Gini Index

The Gini Index, originally introduced by Corrado Gini in 1912 (Gini (1912)), quantifies the

impurity or uncertainty in a set of predicted class probabilities for each input sample. In

the context of machine learning, especially in classification tasks, it is widely used due to

its computational efficiency and interpretability as a measure of how mixed or uncertain the

model’s predictions are.

Let:

- N be the number of test samples per corruption set (N = 10,000),

- C be the total number of classes (C = 10),

- K be the number of test sets (K = 12),

- p
(m)
j,k,c denote the predicted probability assigned to class c by model Mk for the j-th sample

in the m-th test set,

Formally, the Gini Index for a single sample is defined as:

Gini
(m)
j,k = 1−

C∑︂
c=1

(︂
p
(m)
j,k,c

)︂2
To compute the Average Gini Index across all test samples:

Average Gini =
1

N

N∑︂
j=1

Gini
(m)
j,k

This metric captures the degree of uncertainty in the model’s predictions: a lower Average

Gini indicates more confident, pure predictions (with probability mass concentrated on a

single class), while a higher value reflects greater uncertainty and class mixing. The minimum

possible value is 0 (when predictions are completely certain), and the maximum is 1− 1/C
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(when predictions are maximally uncertain and uniform across classes). The Gini Index is

widely used in machine learning for its computational efficiency and interpretability as a

measure of prediction uncertainty.

5.2.4 RQ2 Results

5.2.4.1 MNIST Results

Table 5.11: Gini Index Across Models and Corruptions (Min in bold)

Dataset Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.1007 0.0548 0.0666 0.2631 0.0101 0.0138 0.0075

Brightness Contrast 0.0 0.792 0.72 0.8212 0.0 0.1016 0.224

Elastic Deformation 0.1664 0.4662 0.2552 0.6443 0.1056 0.1131 0.0654

Gaussian Blur 0.1236 0.1334 0.088 0.6718 0.0173 0.0213 0.0161

Gaussian Noise 0.0237 0.792 0.6808 0.7781 0.1793 0.0348 0.1934

JPEG Compression 0.131 0.6787 0.1305 0.708 0.1633 0.0149 0.0093

Motion Blur 0.1231 0.1523 0.0919 0.6453 0.0191 0.0199 0.0284

Poisson Noise 0.1071 0.0563 0.0672 0.2894 0.0109 0.0142 0.0080

Random Occlusion 0.1265 0.0797 0.0765 0.3361 0.0220 0.0359 0.0286

Speckle Noise 0.1057 0.0557 0.0671 0.2841 0.0105 0.0141 0.0075

Salt Pepper Noise 0.0431 0.7894 0.5571 0.4852 0.0976 0.0396 0.1155

Mixed 0.0945 0.4006 0.2714 0.5660 0.0632 0.0416 0.0703

Table 5.11 presents Gini Index values for models trained on MNIST clean data and tested

on corrupted datasets, where lower values indicate greater prediction confidence. ResNet

achieves the lowest Gini Index across most corruptions and clean data, demonstrating supe-

rior robustness compared to other architectures. This performance is attributed to its deep

residual architecture, which enables learning abstract, hierarchical features that generalize

effectively to unseen distortions.

MLP maintains relatively low uncertainty despite its simpler structure, suggesting that

neural networks inherently generalize better to corrupted inputs even without explicit corruption-
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augmented training. In contrast, classical models such as SVM and K-NN exhibit high Gini

Index values under corruption, reflecting increased prediction uncertainty due to their re-

liance on handcrafted features and rigid decision boundaries.

Random Forest shows significant degradation under corrupted test conditions, likely

stemming from overfitting to noise-free feature correlations during training. LeNet demon-

strates intermediate robustness, outperforming classical models but underperforming relative

to ResNet, highlighting the benefits of convolutional architectures while underscoring the im-

portance of network depth for feature abstraction. These results collectively emphasize how

architectural choices in deep learning models directly influence robustness to input pertur-

bations.

Table 5.12: Max p for each model and dataset/corruption (Max in bold)

Dataset / Corruption Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.9327 0.9634 0.9510 0.8266 0.9931 0.9908 0.9949

Brightness Contrast 1.0000 0.3110 0.4000 0.2985 1.0000 0.9288 0.8429

Elastic Deformation 0.8825 0.6303 0.8049 0.5034 0.9247 0.9217 0.9551

Gaussian Blur 0.9170 0.8976 0.9353 0.4819 0.9880 0.9857 0.9893

Gaussian Noise 0.9834 0.3110 0.4129 0.3590 0.8504 0.9766 0.8625

JPEG Compression 0.9078 0.4198 0.9057 0.4543 0.8749 0.9901 0.9938

Motion Blur 0.9163 0.8818 0.9324 0.5054 0.9867 0.9868 0.9811

Poisson Noise 0.9284 0.9623 0.9504 0.8096 0.9924 0.9905 0.9947

Random Occlusion 0.9137 0.9459 0.9433 0.7702 0.9846 0.9752 0.9802

Speckle Noise 0.9293 0.9628 0.9509 0.8132 0.9928 0.9906 0.9950

Salt Pepper Noise 0.9699 0.3137 0.5427 0.6777 0.9285 0.9732 0.9191

Mixed 0.9353 0.6631 0.7795 0.5680 0.9520 0.9715 0.9510

Table 5.12 reports the average maximum predicted probability (Max p) across vari-

ous corruptions for models trained only on clean data. Consistent with our research question

on how uncertainty estimation relates to robustness in CNNs and traditional machine learn-

ing models, several key observations emerged.

On clean data, all models demonstrate high average Max p values, with ResNet-18
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(0.9949) and MLP (0.9931) showing the strongest confidence. This indicates well-calibrated

certainty under ideal conditions. Under challenging corruptions such as Brightness Contrast,

classical models like SVM (0.3110) and Random Forest (0.2985) exhibit a sharp decline in

confidence, reflecting greater uncertainty. In contrast, Logistic Regression and MLP main-

tain very high confidence (1.0000), which may suggest overconfidence despite the presence

of corrupted inputs.

Deep learning models, including MLP, Lenet-5, and ResNet-18, consistently sustain

higher average Max p values across corruptions such as Gaussian Blur, JPEG Compres-

sion, and Salt Pepper Noise. This highlights their ability to maintain confident predictions

even when confronted with unseen distorted data. Conversely, the confidence of classical

models degrades significantly with noise and corruption, particularly for SVM and K-NN

under Salt Pepper Noise, suggesting that their uncertainty estimates may be more reflective

of true prediction difficulty.

These findings address the significance of the research question by illustrating that, while

traditional models tend to express reduced confidence on corrupted data, deep learning

models often maintain high confidence, which may not always correspond to true robustness.
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5.2.4.2 FASHION MNIST Results

Table 5.13: Gini Index Across Models and Corruptions (Min in bold)

Dataset / Corruption Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.1809 0.157 0.1482 0.2844 0.0959 0.1515 0.0605

Brightness Contrast 0.0927 0.3625 0.7994 0.7611 0.1942 0.3283 0.3089

Elastic Deformation 0.2076 0.3936 0.3676 0.5938 0.2253 0.3000 0.2120

Gaussian Blur 0.2124 0.2062 0.2042 0.4704 0.1631 0.1669 0.2280

Gaussian Noise 0.0858 0.4014 0.5506 0.7559 0.3094 0.1741 0.2433

JPEG Compression 0.1317 0.2619 0.2627 0.5263 0.1746 0.1548 0.0900

Motion Blur 0.2179 0.2237 0.2193 0.4810 0.1697 0.1737 0.2668

Poisson Noise 0.1824 0.1606 0.1487 0.3122 0.0974 0.1532 0.0823

Random Occlusion 0.1879 0.1820 0.1556 0.3794 0.1082 0.1864 0.0840

Speckle Noise 0.1822 0.1608 0.1486 0.3145 0.0971 0.1543 0.0824

Salt Pepper Noise 0.1017 0.4084 0.3288 0.4775 0.1845 0.1864 0.1737

Mixed 0.1604 0.2769 0.3189 0.5066 0.1743 0.1985 0.1774

As shown in Table 5.13, which presents Gini Index values across various corruptions for mod-

els trained on clean Fashion-MNIST data, ResNet-18 consistently demonstrates the lowest

Gini Index values across most corruptions. This includes the clean set (0.0605), Poisson

Noise (0.0823), and JPEG Compression (0.0900), indicating strong uncertainty calibration

and architectural robustness. Notably, Logistic Regression unexpectedly shows the lowest

Gini Index under Gaussian Noise (0.0858) and Salt Pepper Noise (0.1017), suggesting more

cautious prediction behavior than typically associated with linear models.

The K-NN algorithm exhibits extremely high uncertainty under Brightness Contrast

(0.7994), likely stemming from its sensitivity to pixel-level variations. Random Forest classi-

fiers also demonstrate elevated Gini values across multiple corruptions, indicative of predic-

tion instability. While MLP and Lenet-5 maintain moderate calibration, their performance

is consistently surpassed by ResNet-18 in most corruption scenarios.
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Table 5.14: Max p for each model and dataset/corruption (Max in bold)

Dataset / Corruption Logistic Regression SVM K-NN Random Forest MLP Lenet-5 ResNet-18

Clean 0.8719 0.8928 0.8870 0.7951 0.9321 0.8944 0.9583

Brightness Contrast 0.9344 0.7930 0.2015 0.3337 0.8676 0.7648 0.7743

Elastic Deformation 0.8509 0.7256 0.7084 0.5294 0.8355 0.7835 0.8490

Gaussian Blur 0.8481 0.8576 0.8446 0.6434 0.8812 0.8829 0.8368

Gaussian Noise 0.9401 0.7564 0.5559 0.3745 0.7662 0.8783 0.8285

JPEG Compression 0.9075 0.8243 0.7930 0.6191 0.8680 0.8920 0.9382

Motion Blur 0.8441 0.8457 0.8335 0.6316 0.8771 0.8783 0.8063

Poisson Noise 0.8705 0.8904 0.8867 0.7744 0.9309 0.8931 0.9429

Random Occlusion 0.8665 0.8748 0.8814 0.7206 0.9231 0.8681 0.9413

Speckle Noise 0.8711 0.8902 0.8867 0.7723 0.9313 0.8922 0.9426

Salt Pepper Noise 0.9286 0.7332 0.7455 0.6610 0.8650 0.8690 0.8778

Mixed 0.8859 0.8178 0.7337 0.6067 0.8724 0.8594 0.8734

As shown in Table 5.14, ResNet-18 achieves the highest confidence on clean data (0.9583)

and several corruptions like Poisson Noise (0.9429), Speckle Noise (0.9426), and Random

Occlusion (0.9413), aligning with its low Gini values and suggesting consistent, calibrated

confidence.

Interestingly, Logistic Regression shows unusually high confidence under extreme cor-

ruptions such as Gaussian Noise (0.9401) and Brightness Contrast (0.9344), despite having

higher Gini indices—indicating overconfidence in uncertain conditions. This overconfidence

is risky, especially when predictions are wrong but the model remains highly confident .

K-NN, on the other hand, shows low Max−P under Brightness Contrast (0.2015), which

matches its high Gini (0.7994), reflecting a correctly cautious attitude in uncertain scenarios.

Overall, ResNet-18 combines high Max − P with low Gini across many corruptions,

reflecting both confident and trustworthy predictions, while some traditional models (like

Logistic Regression) appear overconfident in noisy conditions.
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5.2.5 RQ2 Conclusion

Correlation Study

To investigate how uncertainty estimation relates to model robustness in CNNs and tradi-

tional machine learning models under natural image corruptions, we performed a correlation

analysis between uncertainty measures and model performance.

Specifically, for each model and dataset, we collected 12 paired observations of the un-

certainty metric (either Gini index or Max-P) and the corresponding F1 score. These 12

values correspond to one clean dataset and 11 corrupted versions, capturing a range of input

perturbations that impact model robustness.

We employed Spearman’s rank correlation coefficient for this analysis due to its ability to

measure monotonic relationships without assuming linearity or normality in the data. This

is important as the relationship between uncertainty estimation and performance may be

non-linear or affected by outliers.

A strong negative Spearman correlation between the Gini index and F1 score indicates

that lower uncertainty (lower Gini) corresponds to higher F1 scores, reflecting better robust-

ness. Similarly, a strong positive correlation between Max-P and F1 score indicates that

higher maximum softmax probabilities align with better model performance.

This analysis provides insights into how well different uncertainty estimators can serve

as proxies for robustness across both CNN and traditional ML models under natural corrup-

tions.

Results of correlation study

The Spearman correlation results presented in Table 5.15 and Table 5.17 reveal a consistent,

strong negative relationship between the Gini index and F1 score across multiple models

on both MNIST and Fashion-MNIST datasets. Specifically, the Support Vector Machine

(SVM) model exhibits the highest negative correlations of −0.992 on MNIST and −0.933

on Fashion-MNIST, demonstrating that a lower Gini index corresponds to a higher

84



F1 score, indicating better model confidence and accuracy under corrupted inputs. Other

models, including K-NN, Random Forest, Lenet-5, and ResNet-18, also show strong negative

correlations with magnitudes above 0.8, emphasizing the reliability of the Gini index as a

proxy for prediction uncertainty and robustness. In contrast, Logistic Regression consistently

displays weak and statistically insignificant correlations, highlighting the metric’s limited

usefulness for simpler linear classifiers.

Similarly, the correlations between maximum softmax probability (Max-P) and F1 score,

detailed in Table 5.16 for MNIST and Table 5.18 for Fashion-MNIST, demonstrate a robust

positive relationship across most models. SVM again leads with very strong positive corre-

lations (0.993 for MNIST and 0.923 for Fashion-MNIST), indicating that a higher Max-P

aligns with a higher F1 score, reflecting greater model certainty and better performance

under corruptions. K-NN, Lenet-5, ResNet-18, Random Forest, and MLP similarly maintain

high positive correlations (above 0.8), confirming Max-P as an effective confidence measure

for assessing model performance. Logistic Regression is the only exception, exhibiting mod-

erate negative or weak correlations, further reinforcing its reduced suitability for uncertainty

estimation via Max-P in these settings.

Together, these results from both uncertainty metrics across two benchmark datasets

underscore their strong and consistent predictive power regarding F1 score variations under

corrupted data conditions, especially for complex, non-linear, and deep learning models.

They provide practical, unsupervised tools for monitoring model reliability, facilitating real-

time detection of performance degradation without requiring labeled data.
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Table 5.15: Spearman Correlation between Gini Index and F1 Score for MNIST

Model Spearman ρ (Gini vs F1) p-value

Logistic Regression 0.371 0.236

SVM -0.993 1.32× 10−10

K-NN -0.928 1.33× 10−5

Random Forest -0.902 6.00× 10−5

MLP -0.490 0.106

Lenet-5 -0.977 4.64× 10−8

ResNet-18 -0.984 7.53× 10−9

Table 5.16: Spearman Correlation between Max-P and F1 Score for MNIST

Model Spearman ρ (Max-P vs F1) p-value

Logistic Regression -0.364 0.245

SVM 0.993 1.32× 10−10

K-NN 0.928 1.33× 10−5

Random Forest 0.909 4.19× 10−5

MLP 0.490 0.106

Lenet-5 0.977 4.64× 10−8

ResNet-18 0.977 4.64× 10−8
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Table 5.17: Spearman Correlation between Gini Index and F1 Score for Fashion-MNIST

Model Spearman ρ (Gini vs F1) p-value

Logistic Regression 0.545 0.0666

SVM -0.944 3.93× 10−6

K-NN -0.993 1.3× 10−10

Random Forest -0.748 0.00512

MLP -0.951 2.04× 10−6

Lenet-5 -0.984 7.46× 10−9

ResNet-18 -0.909 4.19× 10−5

Table 5.18: Spearman Correlation between Max-P and F1 Score for Fashion MNIST

Model Spearman ρ p-value

Logistic Regression -0.545 0.0666

SVM 0.923 1.86e-5

K-NN 0.991 3.99e-10

Random Forest 0.804 0.0016

MLP 0.930 1.17e-5

Lenet-5 0.991 3.99e-10

ResNet-18 0.909 4.19e-5

5.3 Research Question 3

What are the trade-offs between computational complexity and robustness across different

models?
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5.3.1 Research Question Significance

Considering model complexity is crucial in real-world machine learning practice because com-

putational resources can be costly and not all organizations have access to high-performance

infrastructure (Dean and Ghemawat (2012)). Selecting an efficient model that matches the

specific needs of an application ensures that resources are used wisely, minimizing both fi-

nancial and operational burdens. For example, training deep learning models for large-scale

image processing tasks, such as those used in healthcare diagnostics or autonomous vehicles,

can require significant investment in hardware and energy, making it impractical for many

settings (Esteva et al. (2017)). Beyond cost, model complexity also affects interpretabil-

ity, deployment feasibility, and maintenance requirements. Not every use case demands

the most complex model; in many scenarios, simpler models can achieve sufficient accuracy

while being faster, easier to interpret, and more adaptable to changing conditions (Caruana

and Niculescu-Mizil (2006)). Therefore, carefully considering model complexity when choos-

ing an architecture is essential to balance performance, efficiency, and practical deployment

constraints in diverse real-world environments.

5.3.2 Methodology for RQ3

To address the question of model complexity in relation to practical deployment, a systematic

methodology was employed to ensure a fair and meaningful comparison across all evaluated

models. All models were trained using the same hardware environment—a NVIDIA T4

GPU server provided via Google Colab Pro—within the same session to eliminate

variability arising from hardware differences or fluctuating system loads. This controlled

computational setup is crucial for producing reliable and directly comparable results con-

cerning the training efficiency of each model. In addition to measuring training time, the

number of trainable parameters was also calculated for every model, offering a quantitative

assessment of model size and intrinsic complexity. Parameter count serves as a widely ac-

cepted metric to evaluate the resource demands and scalability of machine learning models
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in real-world applications (Goodfellow et al. (2016)).

By integrating both training time and parameter count, the analysis captures not only

the computational cost associated with model development but also the implications for

memory usage and potential inference speed. This dual perspective is particularly relevant

when considering deployment scenarios where resources may be limited, such as edge devices

or real-time applications. Furthermore, maintaining a consistent experimental setup ensures

that the observed differences in complexity are attributable to the models themselves rather

than external factors. This methodological rigor supports the broader goal of identifying

models that offer an optimal balance between performance, robustness, and practical feasi-

bility, ultimately guiding practitioners in making informed decisions about model selection

for diverse real-world contexts.

5.3.3 RQ3 Results

The results presented in Table 5.19 provide several valuable insights into the relationship

between model complexity, as measured by training time and number of parameters, and the

practical considerations for deploying machine learning models on the MNIST and Fashion-

MNIST datasets. First, it is evident that traditional models such as Logistic Regression and

Random Forest are extremely lightweight in terms of both parameter count and training time,

making them highly accessible for environments with limited computational resources. For

instance, Logistic Regression required only 0.04 minutes to train on MNIST and maintained

a parameter count of just 7,850, while Random Forest demonstrated similarly low complexity

with only 100 parameters and a training time under three minutes. These characteristics

make such models attractive for rapid prototyping or deployment on edge devices, although

this often comes at the cost of reduced performance and robustness when evaluated under

more challenging or corrupted input conditions (see RQ1 5.1.4).

In contrast, deep learning models, particularly ResNet-18, exhibit a dramatic increase

in both training time and parameter count, with over 11 million parameters and more than

37 minutes of training required for both datasets. While this increased complexity often
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Table 5.19: Training Time and Model Complexity of Each Model on MNIST and Fashion-

MNIST

Model
MNIST Fashion-MNIST

Training Time (min) Parameters Training Time (min) Parameters

Logistic Regression 0.04 7,850 3.44 7,850

SVM 39.42 15,549 27.63 21,586

K-NN ≈0 60,000 ≈0 60,000

Random Forest 2.44 100 0.28 100

MLP 0.48 535,818 28.21 535,818

Lenet-5 20.19 61,706 21.01 61,706

ResNet-18 37.69 11,196,042 37.69 11,196,042

translates to higher accuracy and improved robustness to natural corruptions, it also im-

poses significant demands on hardware, energy consumption, and deployment infrastructure.

Lenet-5 represents an intermediate point, offering a balance between complexity and perfor-

mance (see 5.1.4 for the performance results), with a moderate parameter count and training

time that are substantially lower than ResNet-18 but higher than traditional models.

The observed differences in training time between datasets for certain models, such as

MLP and SVM, also highlight the impact of dataset characteristics on computational ef-

ficiency. For example, SVM training is notably slower on MNIST compared to Fashion-

MNIST, likely due to differences in data distribution and feature complexity.

Overall, this table was instrumental in answering the research question by quantifying

the trade-offs between model complexity and resource requirements. It demonstrates that

while deep neural networks can offer superior performance and robustness, their practical

deployment may be constrained by resource limitations. Conversely, simpler models, despite

their lower computational demands, may not always meet the performance or robustness

needs of certain applications. These insights underscore the importance of aligning model

choice with the specific computational, operational, and performance requirements of the
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intended application, reinforcing that model complexity is a critical factor in real-world

machine learning practice.

5.3.4 RQ3 Conclusion

Figures 5.5 and 5.6 present the trade-off between average F1-score drop and training time

for each model, evaluated on the MNIST and Fashion-MNIST datasets. The average F1-

score drop is calculated by first measuring the difference between the F1-score on the clean

dataset and the F1-score on each of the 11 corrupted versions for a given model, and then

averaging these differences across all corruptions for that model.

Figure 5.5: F1 score drops versus training time for the models on the MNIST dataset.

In both plots, ResNet-18 appears at the far right due to its high training time, which

aligns with its architectural complexity. However, it does not achieve the lowest average

F1-score drop. Notably, Lenet-5 consistently appears at the lowest point on both plots,

indicating the smallest performance degradation under corruption. With a training time
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of approximately three minutes, Lenet-5 offers an effective balance between robustness and

computational efficiency.

Figure 5.6: F1 score drops versus training time for the models on the Fashion MNIST dataset.

For MNIST, ResNet-18 ranks second in terms of robustness, which is expected given its

deep architecture. In contrast, on the Fashion-MNIST dataset, Random Forest demonstrates

the second-best robustness, outperforming other traditional models. Additionally, the MLP

performs better than K-NN, Logistic Regression, and SVM on Fashion-MNIST in terms of

average F1-score drop. On MNIST, K-NN ranks just below Lenet-5, followed by Logistic

Regression and then MLP.

These findings highlight the importance of dataset-specific model selection. While more

complex models like ResNet-18 require significantly more resources, their robustness under

corruption does not necessarily exceed that of simpler architectures like Lenet-5. Further-

more, strong performance on clean data does not guarantee robustness in real-world scenarios

involving noise and corruptions.

The results demonstrate that increased computational complexity does not always lead
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to improved robustness. ResNet-18, despite its long training time, does not significantly

outperform simpler models in terms of F1-score drop. Lenet-5, a much less complex CNN,

achieves the highest robustness with minimal training time. Some traditional models—such

as Random Forest and MLP—also show competitive robustness depending on the dataset.

Therefore, selecting a model involves weighing the cost of computational resources against

the desired level of robustness under corrupted conditions.
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6. Conclusions and Future Work

This thesis is motivated by the need for reliable machine learning (ML) systems in safety-

critical domains such as medical diagnosis, insurance risk assessment, and autonomous driv-

ing. In such applications, robustness evaluation during pre-deployment is essential to en-

sure stable, calibrated, and trustworthy model behavior, helping prevent costly failures.

This work addresses this need by introducing a statistically grounded, multi-dimensional

robustness evaluation framework that captures not only predictive performance, but also

model stability, uncertainty calibration, and computational efficiency. Our framework sys-

tematically evaluates seven diverse model families—ranging from classical machine learning

algorithms to modern convolutional neural networks (CNNs)—on two widely used image

classification benchmarks: MNIST and the more challenging Fashion-MNIST. Each model is

tested under 11 corruption types, allowing consistent and controlled comparisons across vary-

ing degradation scenarios. By incorporating a diverse set of evaluation metrics—including

uncertainty (Gini Index), confidence (Maximum Predicted Probability), prediction stabil-

ity (Flip Rate, Label Variation), and computational efficiency—we deliver a comprehensive,

multi-dimensional analysis of model robustness.

Building on this foundation, the primary contribution of this work is the development of a

modular and publicly available robustness evaluation framework that can be easily adapted to

any image classification dataset. This framework enables practitioners to simulate real-world

corruptions and comprehensively assess models across critical dimensions—performance, un-

certainty, stability, and efficiency—before deployment. By facilitating robust model selection

and validation in pre-production stages, it supports more informed and reliable decision-
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making in high-stakes applications.

In addition to introducing this evaluation framework, we conduct a detailed empirical

analysis to uncover deeper insights into model behavior. Through correlation studies and

comparative evaluations, we examine the relationships between robustness, uncertainty, and

efficiency across model types. These findings offer a more principled understanding of perfor-

mance trade-offs and provide practical guidance for selecting models suitable for deployment

in real-world, safety-critical environments.

MNIST: A Simpler Yet Revealing Benchmark

Across the MNIST dataset, convolutional neural networks (CNNs) consistently outperformed

classical models on both clean and corrupted inputs, highlighting their superior capacity for

feature extraction and generalization. Among all models, Lenet-5 emerged as the most

consistent overall in terms of average accuracy and F1-score. While ResNet-18 often led

in individual corruptions, Lenet-5 was more frequently ranked within the top two across

all 11 corruption types. Notably, even when not the best performer, Lenet-5’s performance

was consistently close to the top model, demonstrating minimal performance drop across

corruptions such as brightness/contrast, Gaussian noise, motion blur, and mixed noise.

Interestingly, ResNet-18, despite its architectural depth, underperformed on certain

perturbations. It did not rank first or even second on corruptions like salt-and-pepper noise,

and experienced substantial drops in performance on Gaussian noise and brightness contrast.

This suggests that deeper CNNs may be more sensitive to high-frequency or intensity-altering

corruptions unless explicitly trained with robustness in mind.

Random Forest demonstrated surprising robustness, particularly on salt-and-pepper

noise, where it ranked first. This is likely due to its ensemble structure, which confers

resilience to localized and sparse noise patterns. It also secured second place on Gaussian

noise and brightness contrast, highlighting its adaptability despite being a non-deep model.

MLP (Multi-Layer Perceptron) consistently appeared within the top three, ranking third

in five out of the 11 corruptions with competitive performance metrics. Although it is simpler
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Figure 6.1: MNIST - Heatmap of F1 Score Drop Across Models and Corruptions

and less specialized than CNNs, it performed well likely because its fully connected layers

can still capture important patterns—especially when the distortions do not heavily disrupt

the overall shape of the digits.

In contrast, Logistic Regression, SVM, and K-NN suffered significant performance

degradation under most corruptions. These models showed particularly poor results on

Gaussian noise and brightness contrast, indicating their limited reliability and lack of effective

feature learning under noisy or distorted conditions.

A visual inspection of the F1 drop heatmap 6.1 further supports these findings. The

gradient of colors across rows reveals that no model is immune to corruption-induced degra-

dation.
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Model Stability under Corruption: Flip Rate and Label Variation

Lenet-5 led in prediction stability, achieving the lowest Flip Rate and Label Variation across

all corruptions. This confirms its robustness not only in accuracy but also in maintaining

consistent predictions under degraded inputs.

ResNet-18 and Random Forest followed, with Random Forest showing slightly better

label consistency, although ResNet-18 held a lower Flip Rate. Notably, SVM exhibited

strong label consistency (second-best Label Variation), despite a high Flip Rate—suggesting

its predicted class boundaries remained stable even if individual predictions fluctuated.

Logistic Regression remained the least stable model, with both the highest Label Varia-

tion and one of the highest Flip Rates, further highlighting its lack of resilience in corrupted

settings.

Fashion-MNIST: A More Challenging Benchmark

Fashion-MNIST introduced greater visual complexity compared to MNIST, making it a more

demanding benchmark for evaluating model performance. As with MNIST, convolutional

neural networks (CNNs) outperformed classical models on both clean and corrupted inputs.

Lenet-5 and ResNet-18 each achieved top performance on 5 out of the 11 corruption

types. However, when considering average performance across all corruptions—based on

both accuracy and F1-score—Lenet-5 emerged as the most consistently high-performing

model overall. It maintained strong results across most distortions, with the only noticeable

weakness being on random occlusion, where it still performed competitively.

Following Lenet-5,ResNet-18 demonstrated high performance across many corruptions

but showed significant performance drops on Gaussian blur, Gaussian noise, and motion

blur. This highlights that ResNet-18’s effectiveness can vary depending on the nature of

the corruption, making its reliability more context-dependent compared to Lenet-5.

Among classical models, Random Forest again delivered notable results, leading on

salt-and-pepper noise and ranking second on Gaussian noise and elastic deformation. Inter-
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Figure 6.2: Fashion MNIST - Heatmap of F1 Score Drop Across Models and Corruptions

estingly, unlike in MNIST where it performed better on brightness contrast, its strengths in

Fashion-MNIST shifted to more spatially complex distortions. This suggests some sensitivity

to dataset characteristics.

MLP (Multi-Layer Perceptron) continued to show competitive results, placing in the top

three for 5 out of 11 corruption types. Compared to MNIST,MLP appeared more frequently

in second place rankings than third, indicating slightly stronger relative performance on this

more complex dataset.

A surprising shift in Fashion-MNIST was the stronger showing from SVM, which ap-

peared in the top three on three challenging corruptions: random occlusion, motion blur,

and Gaussian blur. This suggests that under certain structured distortions, margin-based

classifiers like SVM can still hold their ground.

In contrast, Logistic Regression andK-NN consistently underperformed, especially on

corruptions such as Gaussian noise and brightness contrast, reinforcing their limited ability

to generalize under complex perturbations.

A visual inspection of the F1 drop heatmap 6.2 further supports these findings.
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Model Stability under Corruption: Flip Rate and Label Variation

The Flip Rate and Label Variation metrics further reveal how stable each model’s predictions

remain under corruption.

Lenet-5 again stood out as the most stable model, achieving the lowest Flip Rate (0.1917)

and the lowest Label Variation (2.66). This indicates strong consistency in its outputs, even

as input quality degrades.

Random Forest and ResNet-18 followed in prediction stability, with Random Forest rank-

ing second in Label Variation (3.16), ahead of ResNet-18 (3.22). Interestingly, Random

Forest, not ResNet-18, held the second position in output consistency across corruptions.

Moreover, resNet-18 showed a significant drop in stability compared to Lenet-5, with notice-

ably higher Flip Rates and more variable label outputs.

SVM, despite its success in certain corruptions, showed mixed stability: while it had the

second-lowest Label Variation (2.78), it ranked last in Flip Rate (0.4054), indicating frequent

changes in predicted labels across corrupted inputs.

Logistic Regression remained the least stable model overall, with the highest Label Vari-

ation (4.01) and one of the worst Flip Rates (0.3911), underscoring its poor resilience in

noisy or distorted environments.

Uncertainty, Confidence, and Robustness

A central contribution of this thesis is the systematic incorporation of uncertainty and con-

fidence measures as complementary indicators of model robustness. By leveraging the Gini

Index (as a proxy for predictive uncertainty) and Maximum Predicted Probability (Max-P,

as a measure of model confidence), we gain unsupervised, real-time insights into how models

behave under unseen input corruptions—critical for safety-critical applications where labels

may not be available post-deployment.

On both MNIST and Fashion-MNIST, ResNet-18 and the MLP consistently lead the

combined Gini/Max-P rankings, indicating they not only achieve high average confidence
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but also maintain calibrated uncertainty distributions across diverse corruptions. LeNet-5

follows closely, reinforcing the value of compact architectures in balancing confidence and

uncertainty. Classical methods like Logistic Regression tend to be overconfident, displaying

high confidence scores despite poor generalization performance across corruptions. K-NN

exhibits a similar trend, though to a lesser extent, suggesting moderate misalignment between

its confidence and actual robustness.

Intriguingly, the correlation patterns between these metrics and downstream F1 per-

formance shift markedly between datasets. On MNIST, deep models (ResNet-18, LeNet-5)

exhibit the strongest positive correlation between low uncertainty (high Max-P) and high F1,

whereas on Fashion-MNIST, simpler models like K-NN and MLP demonstrate unexpectedly

strong correlations. This dataset-dependent reordering underscores that uncertainty and

confidence signals are not universally transferable—they must be interpreted in the context

of data complexity and feature distributions.

Taken together, these findings highlight two key takeaways: 1. **Real-Time Monitoring

without Labels:** Gini Index and Max-P can function as unsupervised robustness monitors,

flagging instances of distributional shift or extreme input degradation purely from model

outputs, which is invaluable for live systems lacking immediate ground truth. 2. **Dataset

Sensitivity of Uncertainty Signals:** The utility and interpretability of uncertainty and confi-

dence diagnostics are inherently tied to dataset characteristics; practitioners should calibrate

and validate these metrics on representative benchmarks before trusting them in production.

By formalizing and empirically validating these uncertainty–confidence robustness indi-

cators, this work provides a practical toolkit for anticipating and mitigating failure modes

in deployed ML systems, thereby advancing both the theory and practice of robust model

evaluation.

Computational Efficiency and Trade-offs

While ResNet-18 delivered top-tier performance, it came with the highest computational

cost. Surprisingly, Lenet-5 achieved the lowest average F1-score drop while maintaining
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minimal training time. This trade-off between robustness and complexity suggests that

model depth is not synonymous with reliability.

Traditional models like Random Forest and MLP performed well on Fashion-MNIST

despite their lower complexity, reinforcing the idea that robustness must be evaluated in

conjunction with dataset characteristics and real-world constraints.

Future Work

As machine learning systems are increasingly deployed in real-world environments, future

work must extend robustness evaluation beyond conventional models and datasets. This

includes investigating performance on larger, more diverse, and less curated datasets that

better reflect deployment conditions. Additionally, there is growing interest in optimizing

both robustness and computational efficiency simultaneously, especially for applications in

resource-constrained environments.

A particularly promising direction involves evaluating the robustness of vision-language

models (VLMs) and agentic multimodal systems. Recent models such as CLIP, BLIP,

Flamingo, and GPT-4o exemplify a shift toward agents that can perceive, reason, and act

across multiple modalities. These systems are already being adopted across industries. In

healthcare, they are used to interpret medical images and generate diagnostic reports (Tiu

et al. (2022), Wang et al. (2023)). In autonomous vehicles, vision-language models sup-

port perception, planning, and language-guided navigation (Kim et al. (2023), Shen et al.

(2023)). Assistive technologies benefit from real-time scene understanding and multi-

modal interaction for users with visual or cognitive impairments (Alayrac et al. (2022), Yang

et al. (2022)). In e-commerce and robotics, these systems enable visual search, product

recommendation, and task planning from natural language instructions (Li et al. (2022),

Radford et al. (2021)). Such applications demonstrate the versatility of multimodal agents,

but also highlight the need to rigorously evaluate their robustness in dynamic, unstructured

environments.
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While VLMs offer impressive zero-shot and generalization capabilities, their behavior

under input corruptions, distribution shifts, and uncertainty remains underexplored. Ro-

bustness in this context is critical not just for performance, but for safety, trustworthiness,

and usability in real-world scenarios. Therefore, a key area of future research is to bench-

mark the robustness of multimodal models against traditional CNNs and classical ML models

across corruption benchmarks and uncertainty metrics.

This research direction will help uncover new trade-offs, inform deployment decisions, and

contribute to the development of resilient, reliable, and generalizable AI systems.
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