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Abstract

Safety and Operations of Autonomous Traffic at Highway Bottlenecks

Ye Chen

A reduction of the available travel lane, commonly referred to as a lane drop, may occur on freeways due
to road design, incidents or road maintenance. Lane drops lead to merging and mandatory lane-changing,
resulting in various traffic problems, including delays, congestion and safety risks. In mixed traffic environments,
the interactions between autonomous vehicles and human-driven vehicles add complexity and alter traffic
dynamics in uncertain ways. Understanding the performance of autonomous vehicles is essential for planning
and developing a control framework. This study investigates AV performance at a lane-drop bottleneck under
varying traffic demands and AV penetration rates, and explores the sensitivity of car-following and lane-
changing behavioural parameters. Using PTV VISSIM-COM for microsimulation, three AV driving logics (i.e.
cautious, normal, and aggressive) were modelled across four traffic demand levels. Safety performance was
assessed using the Surrogate Safety Assessment Model (SSAM) based on surrogate conflicts indicators such as
Time-to-Collision (TTC) and Post-Encroachment Time (PET). The results show trade-offs between safety and
efficiency across driving logics. Cautious AVs enhance safety and flow stability at low penetration rates but lead
to increased delays as penetration rises. Aggressive AVs reduce delays at high penetration rates but increase
risk due to higher speed and more changeable behaviour. Normal AVs provide balanced performance across
most conditions, particularly in moderate penetration scenarios. The findings emphasize the need for adaptive
AV behaviour strategies that respond to real-time traffic composition, AV share and roadway complexity which
is a key to achieving safe and efficient traffic systems.
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Chapter1  Introduction

1.1 Background

Autonomous vehicles (AVs) are known as self-driving or robotic vehicles, using a combination of sensors,
controllers, and onboard computers, along with sophisticated software, which allows the vehicle to control at
least some driving functions instead of a human driver (such as steering, breaking and acceleration). However,
it is also important to understand the difference between autonomous vehicles, connected vehicles (CVs) and
connected autonomous vehicles (CAVs). Transport Canada defines connected vehicles as “the vehicle may be
able to communicate with its occupants, with other vehicles and road users, with the surrounding
transportation infrastructure and equip with internet-based applications and other entities” [1]. Thus, a
connected autonomous vehicle is the vehicle that is capable of fulfilling the operational functions of a
conventional vehicle and is able to communicate with nearby cars and infrastructures for safer and more
efficient driving [2].

According to the Society of Automotive Engineers International, AV can be defined as six levels, from Level
0 (no automation) to Level 5 (full automation) [3]. Each level represents a gradual increase in automation
capabilities, from basic driver assistance to fully autonomous operation. To reach autonomous driving by itself,
AV relies on the sensors to detect the objects surrounding it, identify the obstacles on the road and perform
safety and efficiency with the built-in software functionality and algorithms. As the first step to collect the
surrounding environment data, sensors play an important role in AVs, and its characteristics are further
influencing the decision-making process. Basically, sensors can be divided into two categories, passive and
active sensors. Passive sensors, such as cameras, gain information from the environment and provide output;
active sensors, such as LiDAR (light detection and range) and Radar (radio detection and range) emit
information into the environment and detect the environmental response to provide output [4].

As a relatively new type of vehicle, autonomous vehicles have various benefits for users and other people.
From internal impact, using autonomous vehicles can reduce the drivers’ stress and increase productivity. From
external impact, using autonomous vehicles may reduce crash risks and energy consumption, and also increase
road capacity [5]. The Market Penetration Rates (MPRs) of AVs have been predicted by many researchers. A
survey released that the level 4 robotic taxi will become commercially available on a large scale by 2030, and
fully autonomous trucks will be viable between 2028 and 2031 [6]. According to the report from the Victoria
Transport Policy Institute, autonomous vehicles will become reliable and safe for common use by 2025 and by
at least 2045 half of new vehicles are autonomous considering both operating costs and labour costs. The
potential gains will occur even AVs are expensive and rare, but more benefits will be significant when AVs are
affordable and common [7]. During this transit period, AVs will share the road with human-driven vehicles (HVs),
creating a complex and dynamic traffic environment. In scenarios where AVs operate without lateral moving or
interference of HVs, their full capabilities can be utilized, leading to improve traffic efficiency. But in mixed traffic
conditions, due to the differences in driving behaviour and decision-making between AVs and HVs, might cause
disruptions, reducing traffic efficiency and compromising safety in certain conditions.

To evaluate the performance of AV, simulation software is commonly used for modelling its driving
behaviour. Given the limited availability of real-world AV datasets, simulation studies have been conducted
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using driving parameters from existing literature. The European Union’s CoExist project provides valuable data
on driving behaviour and their impact in mixed traffic environments [8]. Using this data, VISSIM provides three
driving logics of AV: cautious, normal and aggressive. Each driving logic is modelled by a car-following model
and lane-changing behaviour, allowing for a more comprehensive understanding of how AVs interact in various
traffic conditions. As a state-of-art simulation tool, VISSIM offers a detailed performance of AVs, capturing
metrics such as vehicle delay, travel time, and stop delay. Additionally, to better understand the safety impacts
of AVs, the Surrogate Safety Assessment Model (SSAM) is widely used to investigate the crash severity, conflict
types and conduct risk analysis. SSAM provides statistical values and measures such as Time to Collision (TTC),
Post Encroachment Time (PET), maximum speed (MaxS), deceleration rate (DeltaS) and maximum deceleration
(MaxD), which help to determine the type and severity of conflicts [9].

1.2 Problem statement

A reduction in the lane number, commonly referred to a lane drop, is a typical situation on a freeway due
to road design, incidents or road maintenance. Lane drops can lead to unexpected merging and mandatory
lane-changing, resulting in various traffic problems, including oscillations, congestion and safety risks [10].
Previous research has demonstrated that congestion at bottlenecks leads to a reduction in the number of
vehicles able to pass through, a phenomenon known as “capacity drop” [11]. The discharge flow at bottlenecks
is approximately 10% lower than the prevailing flow observed prior to queue formation [12]. Although AVs have
their capabilities of real-time communication and precise motion control, HV in mixed traffic environments may
interfere with AV decision-making. As the AVs tend to maintain larger headways compared to HVs due to
conservative behaviour, their gradual introduction will influence traffic flow in the future[2].

Numerous studies have explored AV impacts under different scenarios, but much of the research has
focused on homogeneous traffic conditions, investigating communication stability [13], longitudinal dynamics
[14] and operations like platoon merging and splitting [15]. However, fewer studies have addressed AVs
behaviour in heterogeneous conditions, representing vehicles with varying static and dynamic characteristics.
Some studies consider scenarios such as considering the use of a dedicated lane on a ramp, highway or
roundabout for AVs [16], [17], [18] or modelling the behaviour of AVs [19], [20]. Despite these efforts, research
on AVs often assumes one type of AVs with HVs interact and there are still lots of uncertainties to be able to
clearly state to what extent.

Key questions remain about AV performance at lane drop bottlenecks and the potential impact of different
AV driving logics. For example, should AVs adopt a more aggressive approach, with reduced headways to
increase road capacity, or a more cautious approach to enhance safety? To what extent would different AV
driving logics affect performance under these conditions? How might varying AV penetration rates influence
traffic dynamics, and would increasing AV MPR significantly improve conditions, even under different traffic
demands? Moreover, we will discuss which specific parameters in AV driving models will affect traffic flow and
whether an optimal balance between AV and HV proportions in mixed traffic. These questions still need further
research to determine optimal AV driving strategies and integration approaches for enhanced performance in
complex traffic environments.

1.3 Research objectives

This thesis aims to assess the efficiency and safety impacts of AVs with varying MPRs and different driving
2



logics in mixed-traffic environment with HVs. The objective is to investigate how AVs with different MPRs
perform in mixed traffic scenarios, particularly at lane drop bottlenecks, to describe the relationship between
MPR and traffic flow efficiency. Additionally, the research will compare the performance differences among
various AV driving logics, such as cautious, normal, and aggressive driving modes, focusing on their interaction
with HVs and how these differences influence traffic flow, and overall operation. Lastly, the study will conduct
a sensitivity analysis of driving behaviour parameters to examine how variations in model parameters affect
traffic performance, enabling us to understand how the model behaves under different conditions and
determine which parameters should be prioritized for calibration, ensuring the model’s reliability and accuracy.

1.4 Thesis organization

This thesis is organized into five chapters. The first chapter introduces the background related to
autonomous vehicles and indicates the problem for AV under mixed traffic environments at a lane drop
bottleneck. The second chapter provides the literature related to autonomous vehicles at the merging section,
lane-changing models, traffic simulation and traffic safety analysis. The third chapter provides the details of the
methodology using simulation software and evaluation. The fourth chapter describes the scenario of the
simulation and results. It includes the operational efficiency and traffic safety evaluation, along with a
parameter study to identify driving behaviour parameters that influence traffic performance. The last chapter
summarizes the work developed in this study and provides the conclusion and recommendations for future
research work.



Chapter 2 Literature review

Researchers have conducted extensive studies to analyse the heterogeneous traffic flow with AV. To better
understand how AVs influence in such environments, this literature reviews both the technologies developed
for AVs and simulation models. Firstly, it introduces the technology and operation of AVs, with a focus on the
scenario of merging. Afterward, some novel models used for AV, such as car-following models and lane changing
models which address how AVs interact with HVs and each other in mixed traffic environments, will be
presented. Lastly, we will review literature that utilizes VISSIM and SSAM and see how the simulations

contribute to understanding traffic flow and safety.

2.1 AV related research

Research in autonomous vehicles has gained significant attention from the technology to the application.
In this section, it explored key research areas relevant to the operation and behaviour of AVs within traffic
system. First, it reviewed the general operational capabilities of AVs, highlighting advancements in sensing
control and decision-making technologies that enable AVs to navigate complex driving environments. The
review then focused on the concept of driving logics with distinct impacts on traffic efficiency and safety. These
behavioural models reflect different priorities, such as improving decision-making uncertainty and safety
navigation. Lastly, the review introduced studies on merging scenarios, highlighting how AV operations vary
under different conditions, such as mixed traffic, fully autonomous scenarios and multi-lane merging
environments, emphasizing the need for further analysis of AV performance across diverse traffic settings.

2.1.1  Operation of AV

Normally, autonomous vehicles operate based on three stages: sense, planning and act. AV relies on
numerous sensors to sense its surroundings and determine the vehicle’s relative and absolute position such as
cameras, LiDAR, radar and GPS.

However, both AV and CV technologies have inherent shortcomings, for example, the line of sight sensing
limitation of AV sensors and the dependency on the high penetration rate of CVs [21], lagged response to the
control input. Studies focus on sensor fusion to improve environmental awareness and reduce the error rates
in object detection and tracking. Ramzi [22] proposed an adaptive optimal controller with relies on bidirectional
platoon communication and deals with parameter uncertainties. Zheng [23] studied the influence of
information flow topology on the closed-loop stability of homogeneous vehicular platoons moving in a rigid
formation. In a mixed platoon with CAVs, AVs, and HVs, under spatial continuous communication interruption,
communication degradation can lead to an increased risk of rear-end collisions. He [24] improved the
cooperative adaptive cruise control model by considering the relative speed and distance of the vehicles using
MATLAB/Simulink and TruckSim co-simulation. Also, the study by Yu [25] presents an interesting finding: in a
mixed platoon with communication degradation, HVs can contribute to a stabilizing platoon by reducing the
backward extension of speed fluctuation and lowering rear-end collision risk.

Path planning for AVs involves creating safe and efficient routes from the current location to the
destination, and motion control ensures the vehicle follows the path. Many research studies address problems
like obstacle avoidance, trajectory prediction [26], [27] and dynamic route adjustments [28] in response to real-
time changes. According to the semantics used to define motion and risk, the existing methods for motion
prediction and risk assessment for AVs are classified into three levels: physics-based models, manoeuvre-based
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models and interaction-aware models [29]. The physics-based model only considers the motion of vehicles
based on basic physical laws, such as constant velocity or constant acceleration. Kinematic and dynamic models
extend physic-based models by considering the kinematics or dynamics of a vehicle, such as the longitudinal
and lateral tire forces [30]. Considering the physical limitations of a vehicle, Vinicius [31] analyses the influence
of occlusion caused by a lack of visibility and predicts the motion using Markov Chains with more realistic
manner inputs. Manoeuvre-based models predict motion by estimating the intention or goal of the other road
users, and interaction-aware models consider the vehicles’ manoeuvres inter-dependencies, for example, Wang
[32], Zhang [33] and Zhou [34] enhanced existing models for AV path planning by predicting the lateral positions
of the surrounding vehicles and contributed to safer and optimal path planning. However, trajectory prototype
methods focus on the individual vehicle’s past motion patterns, and inter-vehicle influences cannot be
considered. To address this problem, Mohammad [35] proposed two layers of reinforcement learning-based
decision-making architecture for learning left-turn policies at unsignalized intersections, by adopting soft actor-
critic principles to learn driving behaviour and using a predictive control framework to ensure left-turn
manoeuvre. This model combines physics-based and machine learning (ML) techniques which better model
complex patterns in motion and have better accuracy and adaptability. Zhang [36] applied a scenario-based
model predictive control approach for decision-making and control systems and demonstrated the capability
of the proposed control architecture to perform safe manoeuvres by testing the result with the HighD dataset.
Similarly, Lu [37] proposed a framework for keyframe-based trajectory prediction by extracting the features
from the scene and encoding them as context.

AVs have varying performance under different scenarios which prompts researchers to establish
specialized models to simulate and analyse these conditions. Platoon formation is an important strategy for
traffic flow in a connected environment and some of the relevant elements of platoons have been widely
discussed, including platoon policy, platoon-based models and platoon size [38]. Tian [39] proposed a model
based on cellular autonomation to explain the space-gap-speed relation of AV on a circular road and an open
road with an on-ramp. Zhou [40] simulated the varied maximum platoon size and the result shows that a smaller
platoon size can improve traffic stability and a larger size can increase capacity. For intersection scenarios, AV
can considerably enhance the operational efficiency of urban traffic and reduce signal delays in intersections
[41]. Remin [42] develops a novel mixed-integer non-linear program to control the trajectory through signalized
intersections. For dedicated lane setting for AV, Ye [43] using a fundamental diagram approach discussed the
impact of setting dedicated lanes for AV in heterogeneous traffic flow. Davis [44] optimized the merging position
for AV into a high-speed dedicated lane considering the deviation of the headway and velocity differences.
Instead of taking into account the merging point and merging impact in a dedicated lane, Reza [45] developed
a model for the different arrangements of AV and HV with four possible lane-allocation policies, including
“dedicated-dedicated lane”, “mixed-mixed lane”, “mixed-AV dedicated lane” and “HV dedicated lane-mixed

lane”.

2.1.2  Driving logic of AV

The operation of AV relies on three core components: perception, decision-making and control. These are
the autonomous driving logic, enabling the vehicle to perceive their surroundings and collect the data about
the environment, including the presence of other vehicles, pedestrians and obstacles, and decide on the
appropriate actions and execute them accurately.

According to the PTV VISSIM group [46], the driving logic of AVs is defined by its behavioural profile, which
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determines how the vehicle handles different situations on the road. The driving logic is categorized into
cautious, normal and aggressive, with distinct characteristics resulting to different driving styles and risk
tolerance [47]. Cautious drivers tend to maintain larger safety margins, such as longer time headways and
greater distances from other vehicles [48], [49]. Azam simulated the cautious AVs at four-leg intersections and
validated them using field data at MPRs from 25% to 100% [50]. The result shows that cautious AVs exhibit
conservative driving patterns, which can lead to smoother traffic flow but may also result in longer delays and
higher emissions due to their conservative nature. While promoting safety, cautious driving can negatively
affect traffic performance, especially at higher demand levels, leading to increased delays and reduced speed
[51]. Aggressive drivers often engage in risky behaviours such as rapid acceleration, close following and
frequent lane changes. This style is associated with higher speeds and more abrupt manoeuvres [52], [53].
Aggressive driving significantly increased the risk of accidents, with aggressive drivers having 35 times the odds
of crashing compared to non-aggressive drivers [54]. However, in terms of traffic flow, aggressive driving can
reduce delays and improve efficiency, especially in high-demand scenarios [48]. Normal driving represents a
balanced approach, avoiding the extremes of cautious and aggressive behaviours. It involves moderate
acceleration and deceleration, maintaining reasonable safety margins without being overly conservative [55],
[56]. Normal driving trends offer a balance between safety and efficiency, performing better than cautious
driving in high-demand scenarios but not as efficiently as aggressive driving [51].

There are also various logical frameworks and decision-making models employed in AVs operation such as
non-monotonic logic, formal method, configuration logic and bounded multi-dimensional modal logic.
Traditional logical systems often struggle to handle the inherent uncertainties and exceptions encountered in
real-world scenarios. Non-monotonic logic provides a solution by enabling systems to adapt to new information
and exceptions. This approach allows multiple factors to be combine into more accurate and robust driver
models, improving decision-making under uncertainly [57]. Formal methods are a branch of computer science
focused on checking the correctness of digital circuits and computer programs. In autonomous driving, formal
methods are increasingly applied to ensure system safety and reliability, such as Temporal Logics (TL), Linear
Temporal Logic (LTL), Computation Tree Logic (CTL) and Signal Temporal Logic (STL) [58]. TT is a tool for
reasoning about time-dependent behaviours, LTL is used for ensuring long-term behaviours like staying in a
lane which specifies properties over sequences of states in time, and CTL is a branching-time logic that models
different potential outcomes of actions. STL is an important tool for formalized driving tasks and safety
specifications based on traffic regulations which can be used for path planning and ensuring compliance with
road rules, particularly in urban environments [59]. Research by Mehdipour et al. [60] demonstrates how formal
methods and temporal logic are employed to ensure safety and efficiency in diverse traffic scenarios. These
methods help AVs manage complex interactions, such as navigating intersections or merging lanes, with a
system-level approach. Configuration logic is a multilevel semantic framework that models the physical
environment and traffic rules, ensuring geometric consistency and safe navigation. Bozga et al. [61] illustrate
how configuration logic can be used to specify traffic rules and characterize sequences of scenes like
intersections, roundabouts and merging roads. This framework helps AVs understand the structure of traffic
situations and make informed decisions. Bounded multi-dimensional modal logic focuses on traffic situations
with spatio-temporal properties. This framework proposed by Xu et al. [62] enables AVs to make rea-time
decision-making by predicting the actions of surrounding vehicles and ensures AVs can react quickly and
appropriately to changes.



2.1.3 AV merging related

Based on AV technology, some studies started to explore the optimal control strategies of merging control
aiming to increase traffic efficiency and improve traffic conditions at traffic bottlenecks. For example, Scholte
et al. [63] propose a control strategy for single vehicle to merging into platoon at highway on-ramp. Xue and
Ding [64] present a platoon-based hierarchical merging control algorithm for on-ramp vehicles with connected
autonomous vehicle technology. However, most previous studies of ramp merging focused on the lower-level
design of vehicle operation, and a few studies addressed the mixed traffic conditions on multi-lane freeway
systems. Many existing strategies on proposed solutions in discrete decision space and the longitudinal and
lateral directions of traffic flow level should be further investigated.

A large number of studies have investigated the highway merging operation differently from the
assumptions presented: the level of technology requested (human-driven vehicle, connected vehicle,
autonomous vehicle, connected and autonomous vehicle), the lane number of mainline in merging area
considered (signal lane, multi lanes), the control logic (centralized, decentralized), the range of control area
(ramp, mainline or both [65]), the merging strategy level (operation control, tactical control or both [66]).The
existing strategies for on-ramp merging summarised here are divided into three categories: considered AV
exclusive merging control, mixed traffic merging control on signal mainline and multiline merging strategies.
Marinescu and Jan et al. [67] were one of the first researchers who tried to study the merging strategy. In their
research, they expended the merging algorithm from freeway to on-ramp merging traffic for two phases—gap
selection and moving into gap.

To simply the traffic situation, without considering the interpreter of uncertain human-driven behaviour,
Xu et al. [68] assumed all the vehicles are AVs and connected by wireless technology with other vehicles and
roadside units and they used a genetic approach to calculate the merging manoeuvres and their merging
sequence to minimization of travel time of mainline vehicles and maximization of the number of merging
vehicles. However, Shi and Qi et al. [69] used an algorithm to determine the number of roadside units and
control the merging process of traffic flow. Ding et al. [70] address the problem of two strings of vehicles in a
longitudinal direction using a rule-based adjusting algorithm to improve the throughput, and reduce the delay,
computational cost, and fuel consumption by comparing with the other two control strategies. Scholte et al.
[63] proposed a strategy to address differences initial positions and velocities, which is satisfactory considering
safety, efficiency and passenger comfort, while this work does not address the mixed traffic situation. Similarly,
Zhou et al. [71] presented a vehicle trajectory planning method using real-world leading vehicle trajectory and
considered different traffic demand levels. Unlike applied fixed planning horizon length, the planning time
varies. Especially in heavy traffic, Xue and Zhang et al. [72] proposed a platoon-based cooperative optimal
control algorithm to adapt to time-varying traffic volume. Meng et al. [73] consider the collision-free control
strategy under nonlinear vehicle dynamics, and the simulation result shows that all vehicles achieve safety for
on-ramp merging with a smooth control input. To determine the sequence of merging, Nishi and Doshi et al.
[74] present a multipolicy decision-making method with a reinforcement learning technique to decide the
merging point and achieve safe merging. Chen and Arem et al. [27] use a third-order vehicle dynamics model
and test 135 scenarios with different initial conditions to optimize desired accelerations for AV.

The following studies address the merging operation strategies in mixed traffic with connected and
autonomous vehicles and human-driven vehicles. Depending on the level of AV, the merging strategies can be
divided into operational control and tactical control. The operational control focuses on the real-time actions
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of vehicles, such as position, speed and acceleration to safely merge into traffic. Tactical control, it focuses on
the broader strategy and planning, requiring for successful merging and addresses the upper-level decisions,
such merging sequence and gap. M. Karimi et al. [75] developed a lower-level control framework for
cooperative AV trajectory optimization considering six scenarios with different combinations of AVs and
conventional vehicles at the merging point. Venkatesh et al. [76] validated the framework using real-world data
to predict the behaviour of HV in mixed traffic and generated the merging interactions between HV and AV. A
typical control problem for AV on-ramp merging is to predict the motion of HV and guide AV into the mainline.
To address this problem, Kherroubi [77] proposed an artificial neural network using field data to predict the
passing intentions of HV drivers. According to the control logic, we can define centralized protocol and
decentralized protocol for AV merging strategies. A centralized protocol relies on a centralized control system,
such as a roadside infrastructure unit, traffic management server, or cloud-based system. The task for all AVs is
decided by the central controller, for example, the best merging positions, speeds and timings for each AV based
on traffic conditions and vehicle dynamics. In decentralized approaches, there is not a global controller, more
relies on local decision-making by individual vehicles. Each vehicle communicates with its closest vehicles and
manages its merging actions [78]. Na Chen [79] proposed a hierarchical cooperative merging control approach
and optimal dynamic vehicle sequence by minimizing predicted traffic disturbances. The results are compared
with the first-in-first-out rule which shows a decreased disturbance. Jing [80] presented a hierarchical and
decentralized cooperative coordination framework for merging control considering both upper and lower levels.
However, these models were tested in simplified scenarios which only considered one main lane and one on-
ramp lane.

For the multi-lane merging scenario, some researchers have considered approaches to achieve smooth
collaborative merging. Subraveti et al. [81] used an incentive-based lane-specific traffic flow model for testing
the performance of individual control measures and the performance of combined control. The result shows
that the individual control led to high delays compared to the combined control, which balance the delays on
mainline and on-ramp. Hu and Sun [82] proposed a cooperative lane changing control optimization model and
time discrete linear cooperative merging control system to ensure the safe and smooth lane changing execution,
which optimizes both main lane and on-ramp vehicles’ trajectories with AV only. Karbalaieali and Osman [83]
considered the merging manoeuvres with different alternatives on a one-mile freeway segment and established
an optimization model with the objective function of minimizing the travel time through a merging junction.
Han and Xu [84] proposed a simulation framework for platooning merging operations including upper-level and
lower-level, using same-lane platooning, multi- lane joining and on-ramp merging modules. However, limited
studies have been conducted on optimal operation control for multi-lane mainstream and single-lane on-ramps
under connected environments with mixed traffic (HVs and AVs), which also consider balancing the traffic
density of main lanes before and after merging.

2.2 Modelling approach for AV merging

Car-following model and lane-changing models are extended by many studies to simulate AV sensing,
decision-making and acting. In the longitudinal direction, a vehicle would follow the preceding vehicle with
appropriate gap acceptance, speed adoption and desired acceleration or deceleration. In the lateral direction,
the vehicle needs to find and decide a proper time for lane changing, merging or diverging and overtaking [85].



These models explain how AVs adjust speed, acceleration and position in response to nearby vehicles during
merging. Here, we summarize these models and their use for better understanding AV modelling.

2.2.1  Car following model

Car-following models are essential in understanding and simulating the longitudinal behaviour of vehicles.
According to their utilized logic and developing process, car following models can be divided into stimulus-
response models, safety distance models, physiology-psychology models, artificial intelligence models, optimal-
velocity models and intelligent driving models.

In stimulus-response models, vehicle behaviour is changed refer to the external movement changes in
preceding vehicles. The General Motors (GM) model is the first stimulus-response model by using the
acceleration/deceleration as a stimulus [86]. Unlike the GM models that describe the relationship between
stimulus and response, the safety distance models focus on maintaining a minimum gap with following and
preceding vehicles. The first general acceleration model was developed by Gipps [87], [88] where each vehicle
follows a set of rules ensuring safe acceleration and deceleration. This model captures realistic driver behaviour
by including safety constraints, but it is less flexible in adapting to varying traffic conditions, so this model has
numeral extensions, calibrations and modifications by various researchers [89], [90], [91], [92]. Later,
considering the results of driver’s physiology and psychology characteristics, Michaels [93] proposed the first
physiology-psychology model and use a “perceptual threshold” for space headway and relative speed for
following vehicles. The famous traffic flow simulation software VISSIM is also used by physiology-psychology
model, the Wiedemann 74 and Wiedemann 99 model. The first artificial intelligence model was proposed by
Kikuchi [94], using fuzzy sets and fuzzy rules to represent the uncertainties in driving behaviour. Since then,
many car following models using artificial intelligence combined with different methods have been constructed
[95], [96], [97].

At the same time, based on the theory and method of statistical physics, Bando et al. [98] established the
first optimal velocity model (OVM), which defines a vehicle’s acceleration based on its current speed and the
distance to the vehicle ahead. Since its development, researchers have extended OV model in various ways to
improve traffic stability and incorporate more realistic driving behaviours. For example, Helbing et al. [99]
introduced the negative velocity difference into OVM and formed the generalized force (GF) model. Jiang et al.
[100] introduced the full velocity difference model (FVDM) by further integrating the positive velocity difference
and demonstrating its improvements in traffic stability over the traditional OVM. These three models represent
the foundational approaches within the optimal velocity model family, each contributing to enhanced realism
and stability in traffic modelling. Expect these, several additional changes have been applied to address various
aspects of driver behaviour and traffic conditions. For example, the extended optimal velocity model (EOVM)
[101], [102] which incorporates factors like driver reaction time, the stochastic optimal velocity model (SOVM)
[103], [104], [105] which considers the unpredictable of driver behaviour and applies randomness, the multi-
anticipative optimal velocity model (MA-OVM) [106], [107] where each vehicle considers the behaviour of
multiple vehicles ahead, the adaptive optimal velocity model (AOVM) [108], [109] which dynamically adjusts
the optimal speed based on road conditions, and the fuzzy logic-based optimal velocity model which uses fuzzy
rules to simulate human-like driving responses.

Inspired by OVM principles, the intelligent driver model (IDM) was established by Treiber and Helbing [110],
[111]. IDM is a widely used car-following model and it combines desired velocity and safety distance in a single
framework, which is easily adopted for simulating AV and HV interactions [112]. Adaptive cruise control (ACC)
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and cooperative adaptive cruise control (CACC) models are two important models used to simulate AV, and
both models help maintain safety distance and consistent speeds [113]. ACC adjusts the vehicles speed and
maintains a safe gap based on real-time feedback, typically from sensors such as camera, radar or LiDAR. CACC
extends ACC by incorporating vehicle-to-vehicle communications, allowing a network of vehicles to coordinate
their movements. Van defines ACC/CACC as focusing on the impact of AV on traffic flow characteristics and
simulates the vehicles using automated longitudinal control combined with intervehicle communications [114].
Zhao et al. [115] constructed simulation framework of CACC platoon and studied the lane capacity considering
different manoeuvres, such as forming, splitting, dismissing and joining in a platoon. However, the concept of
ACC and CACC is in the development stage and there is no consensus or definition of the model categories is
fixed at this stage.

2.2.2  Lane changing model

Lane-changing behaviour refers to the actions and decisions made by drivers to switch from one lane to
another while driving on a multi-lane road or highway. These manoeuvres are commonly divided into two
categories: mandatory lane changing and discrete lane changing by Gipps [87]. For the mandatory lane change
process, the vehicles are required to leave the current lane, for example, drivers prepare for upcoming exits or
turns. Whereas in discretionary lane changing, drivers wish to get better driving conditions and perform to
overtake slower vehicles, adjust their position, and shorten travel time. Another well-known lane-changing
model is proposed by Sparmann [116], which categorizes the behaviour as slower-to-faster and faster-to-slower.
These behaviours are influenced by the vehicle’s speed, the traffic conditions and the driver’s objectives.

Table 1 Categories of Sparmann lane-changing model

Type of lane changing Slower-to-faster Faster-to-slower
o To increase speed and avoid To avoid upcoming congestion, prepare
Motivation . . .
congestion for an exit or avoid obstacles
Vehicle moves to a faster lane Vehicle moves to a slow lane, reducing

Speed change
to speed up speed

Gap acceptance, speed L .
. i ] Gap acceptance, anticipating merging
Key factors difference, traffic density and . i )
) points or exits, safety distance
safety distance

. . Overtaking slower vehicles on a Preparing for a turn or avoiding
Typical scenario ] o
highway or road congestion in the fast lane
More frequent in autonomous Less frequent, but may occur in
Autonomous behaviour systems aiming to maximize anticipation of upcoming traffic
efficiency scenarios

In the existing lane-changing research, some scholars have considered smooth lane-changing behaviour
to help drivers perform the process without collision with other vehicles. Wei et al. [117] carried out a
simulation of three-lane roadways applying different velocity limits lane changing behaviour using the optimal
velocity model, considering the headway difference, velocity difference, safety distance of the subjective
vehicle and adjacent vehicles and the probability of lane changing. The result is analysed by a fundamental
diagram and compares the effect of lane changing and unchangeable lanes with different headway and velocity
in different lanes. Moreover, Williams and Wu et al. [118] provide an algorithm for vehicle detection, motion

10



prediction and delaying information. Iwamura et al. [119] were concerned the driver’s decision-making process
and established a complex system of traffic flow under different demands with game theory. Nagalur [120]
presented a first-order lane-level traffic flow model to balance the lane flow distribution and help to reduce the
congestion. Nassim et al. [121] developed a lane-changing model based on the real-world data and compared
the TTC and number of lane changing with the Simulation of Urban Mobility (SUMO) simulation result, which
successfully executed lane-changing manoeuvres in unseen traffic situations.

Numerical results reveal the social dilemma which appeared in a middle traffic density or a jam phase. At
present, there are many studies on lane-changing behaviour of a single autonomous vehicle and most of the
research studies used data-driven and simulation methods. There are fewer studies on the influence of lane-
changing behaviour on density and the relationship between individual lanes. The research carried out by Han
and Zhu [122] mainly adopts empirical, simulation methods to analyse the relationship between lane changing
behaviour and density, the rate of changing in or out of the lane under different penetration rate of CACC
vehicles for the four ring-shaped expressway. The result shows that the density of single lane decreases with
the AVs, the rate of changing into lanes and the linear relationship between density and the rate of changing
lanes appears.

2.3 Micro-simulation modelling tools for AVs

There is numerous micro-simulation software used in the evaluation, testing and optimization of vehicle
behaviour in various traffic conditions. Each of these applies different car-following behaviours, lane-changing
and gap-acceptance models, as we mentioned in previous sections. Here we will introduce some popular micro-
simulation modelling tools commonly used for AV research, including Simulation of Urban Mobility (SUMO),
Advanced Interactive Microscopic Simulation for Urban and Non-urban Network (AIMSUN), the Corridor
Simulation (CORSIM) and VISSIM.

2.3.1  Micro-simulation modelling software

SUMO is an open-source micro-simulation tool developed by the German Aerospace Centre (DLR) and is
known for its flexibility and cost-effectiveness [123]. It provides several car-following and lane-changing models
that define the interaction of vehicles on the road. The Krauss model is the default car-following model in SUMO,
which is based on the Safe Speed Model [124]. It defines a safe following distance by calculating the maximum
safe deceleration and speed of the following vehicles and includes a stochastic component, which allows for
some randomness in driver behaviour. A Graphical User Interface (GUI) is provided for the user to control the
simulation and easily access the value of the attribute [125]. SUMO can import road networks from real-world
maps, such as OpenStreetMap, and supports large-scale traffic networks for simulating urban environments,
freeway systems, or complex intersections.

AIMSUN was developed by Barcelo and is widely used for examining traffic-responsive signal control and
priority control for transit vehicles [126]. It has many sub-models to simulate the behaviour, such as the car-
following model, lane-changing model, gap acceptance model for lane-changing or yielding, overtaking, on-
ramp or off-ramp and look-ahead distance [127]. The car-following model implemented in AIMSUN is based on
Gipps’ safety distance model. However, the Gipps model is a one-dimensional model that only considers the
vehicle and its leader, the model in AIMSUN also considers the influence of adjacent lanes. The lane-changing
model in AIMSUN was also developed by Gipps and is defined as a decision process. The gap-acceptance model
in AIMSUN takes into account the distance of vehicles to the collision point, their speed and acceleration rates
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[128]. These more sophisticated models result in fewer problems in modelling multi-lane traffic in congestion
networks [129].

The CORSIM software was developed by the US Federal Highway Administration (FHWA), combining two
microscopic models, NETSIM and FRESIM. It also introduces the Traffic Software Integrated System (TSIS) to
provide an integrated, user-friendly interface [130] and can simultaneously simulate traffic operation on surface
streets and freeways in an integrated fashion [131]. In CORSIM, each driver will try to maintain their desired
headway with other vehicles while also travelling as fast as possible with his desired speed [132]. The lane-
changing model of CORSIM is divided into three types: mandatory lane changes, discretionary lane changes
and positioning lane changes. It allows users to modify selected parameters to calibrate lane-changing
behaviour in the real world, such as maximum deceleration rates, average time/distance, minimum acceptable
gap in an adjacent traffic stream, look-ahead distance, and desire and thresholds for making discretionary lane
changes [133]. The strength of this software is to simulate varied scenarios from signalized intersections to
arterial and freeway corridors, and one of the most well-documented simulation software available.

PTV VISSIM is the leading microscopic simulation software for modelling transport operations and allows
to analysis the performance of traffic, which was developed by the German company PTV Vision in 1992. VISSIM
traffic flow model is a stochastic, time step based, microscopic model. VISSIM uses the psycho-physical
perception model developed by Wiedemann, which contains a psycho-physical car-following model for
longitudinal vehicle movement and a rule-based algorithm for lateral vehicle movement [46]. In order to
simulate multi-traffic flow, this software provides a variety of transit options, such as pedestrians, bicyclists,
motorcycles, cars, trucks, buses, light and heavy rail to customized vehicle types [134]. VISSIM is an effective
tool for evaluating capacity and safety, using application programming interfaces (API) integration for external
driver models and using graphic user-interfaces for visualization. The models of VISSIM and the application of
that in recent years will be presented in the next section.

2.3.2  Models in VISSIM

As we mentioned before, the car-following in VISSIM is Wiedemann'’s traffic flow model, which defines
four different driving states for the driver--free driving, approaching, following, and braking.

In the free driving state, the driver is not influenced by preceding vehicles and aims to reach and maintain
his desired speed. During the approaching driving state, the driver decelerates to match the speed ahead; once
the desired safety distance is achieved, the driver will maintain the same speed as the preceding vehicle. In the
following state, the driver keeps a consistent distance from the preceding vehicle without consciously
decelerating or accelerating. During the braking state, the driver will apply medium to high deceleration rates
when the distance to the preceding vehicles falls below the desired safety threshold. Drivers will switch from
one state to another once they reach a certain threshold like the difference of speed and distance. Figure 1
shows a graphical representation of the Wiedemann car-following model, and the thresholds are shown with a
certain shape [135].
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Figure 1 Schematic of Wiedemann model with various driving regimes and thresholds

VISSIM uses two different models for defining the car following behaviour for drivers, including the
Wiedemann 99 and the Wiedemann 74 model. Since the Wiedemann 74 is used for urban traffic, the
Wiedemann 99 is mainly for interurban traffic which we will use for simulation in this study [136]. According to
Wiedemann model [137] and VISSIM parameters setting, there are ten parameters (CC0-CC9) and the relation
between the parameters and the thresholds are defined as:

The desired distance between two vehicles AX is represented by the length of the front vehicle L and
the desired front -to near distance CCO. This threshold is mathematically defined as:

AX =L+ CCO (0.1)

The minimum following distance between two vehicles BX isa function of desired distance AX, gap time
distribution CC1, and the speed of the vehicle v:

BX=AX+CC1xv (0.2)

In addition, the perception threshold SDX, models the maximum following distance and relates to BX
and “following” distance oscillation CC2. This is about 1.5-2.5 times of BX [138].

SDX = BX + CC2 (0.3)

The action point SDV occurs when the driver observes that he approaches the slower leading vehicle.
This distance is linked to the space headway difference AX, “threshold for entering ‘braking state’” CC3 and
“negative speed difference” CC4.

AX-SDX

SDV = — CC4 (0.4)

Similarly, the acceleration action point OPDV occurs when the following vehicle driver notices that he is
slower than the leading vehicle and starts to accelerate. This distance is related to “positive speed difference”

CC5 and “distance impact on oscillation” CC6.

OPDV = — <% % (AX — L)? — 6 - CC5 (0.5)
1700
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Here, CC6 represents the extent to which distance affects oscillations, where it can either have no impact
or increase with increasing distance.

Finally, & is a variable which is equal to 1 when the subject vehicle speed is greater than CC5, otherwise
the value is equal to 0.

The decreasing speed difference CLDV, similarto SDV, models the perception of small speed differences
at short and decreasing distances [139].

CLDV = <% x (AX — L)% — CC4 (0.6)
1700

“Oscillation acceleration” CC7 is to describe the acceleration oscillation during the following state; CC8

|’I

is “acceleration from standstill” to define the acceleration when starting from standstill condition and is limited
by the desired and maximum acceleration functions assigned to the vehicle type; CC9 is the acceleration at
the speed of 80 km/h. Below is the description of Wiedemann 99 car-following parameters.

Table 2 Wiedemann 99 parameters

Parameters Description Unit
cco Standstill distance: the desired gap between two vehicles. m
cc1 Gap time distribution: addition time gap for driver to maintain following

s
state

2 Following distance oscillation: maximum additional distance beyond the
m
desired safety distance accepted by a following driver

cc3 Threshold for entering “braking state”: time between the beginning of the
s
deceleration process and reaching the maximum safety distance

cca Negative speed difference: speed difference of subject vehicle and leading /
m/s
vehicle (negative value)

ccs Positive speed difference: relative speed limit compared to faster leading /
m/s
vehicle during closing state (positive value)

Distance impact on oscillation: influence of distance on speed oscillation
CCé . : " 1/m/s
during the following condition

Oscillation acceleration: actual acceleration during oscillation during
cc7 i m/s?
following state

Acceleration from standstill: desired acceleration when vehicles starting

ccs from the standstill condition and is limited by the desired and maximum m/s?

acceleration functions
Acceleration at 80 km/h: acceleration at 80 km/h and is limited by the

cco . . . . m/s?
desired and maximum acceleration functions

In VISSIM, lane-changing behaviour is categorized into two types: necessary lane changing and free lane
changing. Necessary lane-changing occurs when a vehicle must switch lanes due to mandatory conditions such
as an upcoming exit or merging. In this case, the driving behaviour parameters contain the maximum acceptable
deceleration for the lane changing vehicle and its leading vehicle in the target lane. Free lane-changing, on the
other hand, occurs when a vehicle voluntarily changes lanes with enough space in the adjacent lane. VISSIM
evaluates if there is enough space in the new lane and determines if lane changes can be performed.
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Several parameters influence lane-changing behaviour in VISSIM, including the look-ahead distance,
minimum headway, safety distance reduction factor, and maximum deceleration for cooperative braking. The
look-ahead distance will affect the vehicle’s movement when approaching a stationary obstacle. With the
shorter look-ahead distance for overtaking it, the less chance of being able to overtake. If the look-ahead
distance is 0, the vehicle will rely on the number of interaction objects to decide whether to overtake. The
number of interaction objects refers to any network objects that may influence the vehicle’ movement, such as
preceding vehicles, red signal heads, reduced speed areas, priority rules for cases and downstream conflict
areas. The number of preceding vehicles is the vehicle perceives along its route or path to react to them. In the
case of autonomous vehicles, even if the number of interactive vehicles is limited to one whose sensors are not
able to detect vehicles through the front vehicle, they are still able to detect all traffic signs with the help of
V2X communication. Another important parameter is the safety distance reduction factor, which modifies the
desired safety distance during lane change. This factor determines how much the safety distance is reduced to
carry out a lane change. During the lane changing, the safety distance is temporarily reduced to a fraction of
the original distance, determined by multiplying the original safety distance by the safety-distance reduction
factor. The maximum deceleration for cooperative braking is another parameter, reflecting the extent to which
a trailing vehicle is braking cooperatively in order to allow the preceding vehicle in the adjacent lane to merge
into its own lane [140].

2.3.3  Applications of VISSIM

Testing autonomous vehicles in real-world environments can be expensive or unsafety due to the need for
specialized infrastructure and vehicles, as well as challenges such as extreme weather and critical traffic
scenarios. Simulation software is an essential tool for rapidly testing AVs and controlling every variable in the
environment, from traffic density and road conditions to the behaviour of other road users. VISSIM offers a
wide range of applications, including traffic flow analysis, signal optimization, safety evaluation and
autonomous vehicle simulation. The topics related to VISSIM could be summarised as VISSIM calibration,
driving-behaviour simulation, incident simulation and heterogeneous traffic simulation [141].

The accuracy of model parameters is highly influenced by the accuracy of the vehicle’s movements in the
network, so the calibration is a primary concern for real world simulation users. It may lead to inaccurate results
and unreliable conclusions under improper calibration [142], so it is necessary to consider specific traffic
scenarios and define the characteristics based on that.

Genetic algorithm (GM) is the most used methodology for calibration, by finding optimal or near-optimal
solutions to complex problems. For example, Zhang et al. [143] used a modified GM model optimal multi-
objective function and the mean absolute percent error in the Wiedemann 74 model to obtain realistic results.
Gunarathne [144] also used the GA optimization tool in MATLAB to calibrate the driving behaviour, considering
average standstill distance, additive part of safety distance, look ahead distance, standing distance and driving
distance. Similarly, U.Gazder [145] and Kang [146] calibrated a traffic micro-simulation model with minimum
headway, stand still distance, lateral minimum distance and number of observed vehicles. Different from
calibrating the Wiedemann 74, Abdeen [147] looked at the Wiedemann 99 model and used traffic volume and
travel speed for calibration and average travel time to validate the results. Li et al. [148] calibrated the
parameters in VISSIM by travel time and number of stops distribution at signalized intersections. Claude et al.
[149] identified how the driving behaviour parameters will influence the lane flow distribution and found CC1
is the most relevant parameter for the calibration of freeway capacity. Anuj et al. [150] focused on the
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calibration and validation of driving behaviour parameters to effectively merging traffic, looking at the impacts
such as capacity and speed differences under different traffic flow conditions. Muhammad [151] calibrated and
validated the models based on the traffic volumes and average speed and calculated the difference of VISSIM
model average passing sight distance with Glennon’s model, which presents the passing distances for passenger
cars overtaking truck platoons.

VISSIM can simulate the performance of intersections, roundabouts, and urban freeways. It helps in
optimizing traffic signal timings, analysing queue lengths, and evaluating the effectiveness of intersection
designs. Novera and Qidun [152] applied a step-by-step procedure using an integrated VISSIM and MATLAB
approach to simulate the intersection dynamics. They considered the total number of vehicles entering and
exiting the intersection and evaluated the queue length on each road. Additionally, VISSIM is used to assess the
effectiveness of roundabouts, including capacity, delay, and conflict analysis, which allows planners to evaluate
alternative designs. Fang et al. [153] extracted the data from videos collected at four roundabouts with vehicle
circulation speed, critical gap, follow-up headway, travel time and vehicle queue length. They compared the
VISSIM simulation roundabouts with measured in the field and found the critical gap is the most effective
calibration variable. Lee [16] examined the efficiency of dedicated lanes of AVs in a roundabout with an
unbalanced traffic flow and selected the travel time, delay time, speed of vehicles and the queue of vehicles as
measurements. The results revealed that at lower AV penetration rates, the impact of trafficimbalance is higher
and a dedicated lane for AV only improves the traffic conditions when the penetration rate of AV is higher.
Studies have used VISSIM to compare the performance of signalized versus unsignalized roundabouts, showing
improvements in delay and level of service (LOS) when signalized roundabouts are optimized [154], [155].
Furthermore, VISSIM models complex freeway and urban traffic conditions, including lane changing, merging
behaviour, and bottleneck formations, helping to identify congestion points and optimize traffic flow [156],
[157], [158].

VISSIM can model heterogeneous traffic conditions that include HVs and AVs, allowing researchers to
evaluate the impacts of various levels of AV penetration on traffic flow, safety, and infrastructure. The behaviour
of AV communicating with the leading vehicle can be reproduced well in VISSIM by comparing the data from
real-world scenarios [159]. M. Azam et al. [50] quantify the impacts of varying penetrations of AV when
introduced in mixed traffic conditions at four-leg signalized intersections. Zhou [160] investigates how the
utilization of AV affects the road capacity after traffic accidents and the scenario is set as a one-way double lane,
tested with filed data in Singapore. The result shows that increasing the proportion of automated vehicles on
roads can effectively improve the traffic capacity of urban expressways.

VISSIM integrates with environment modelling tools to evaluate the impact of traffic conditions on
emissions and fuel consumption. By simulating different traffic management strategies, it helps in reducing the
environmental footprint of transport systems. VISSIM can simulate the impact of adverse weather conditions,
such as fog, on fuel consumption. Studies have shown that vehicles consume more fuel under foggy conditions
due to changes in driving behaviour [161]. Additionally, VISSIM’s emission calculations allow for comparative
analysis of different roadway designs and their impact on fuel consumption and emissions. For example, studies
comparing different interchange designs found the certain designs resulted in lower fuel consumption and
emissions [162].
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2.4 Road safety evaluation

2.4.1 Statistical analysis

Methodologically, the following methods of statistical analysis were used to assess road safety:
relationship analysis [163], time series analysis [164], Bayesian methods [165], Poisson and negative binomial
regression [166] and machine learning [167].

Relationship analysis uses correlation, regression, and variance analysis to explore relationships between
variables and road safety outcomes, Singh, D. et al. consider various variables such as vehicle characteristics,
driver attributes, roadway design elements, crash-related factors and environmental influences [163]. Time
series analysis employs dynamic models and forecasting to predict future safety trends based on historical data.
Joanna et al. used structural time-series modelling to forecast and monitor road safety at the regional level in
Poland and they explored the relationship between road accidents/injuries, road traffic exposure and other risk
determinants and assessing impacts of road safety interventions [168]. Techniques like the empirical Bayes (EB)
method control for confounding factors and provide robust estimates of treatment effects. Reyad, P. et al
compared the effectiveness of two improvement projects in the city of Edmonton using a conflicted based
before-and-after study and the EB methods [165]. Poisson and negative binomial regression models are
foundational for analysing crash data, especially when dealing with rare events. Mao et al. apply a bias-
correction procedure to the parameter estimation of Poisson and negative binomial regression and
demonstrate the finite sample bias associated with a small sample of crashes [166]. The first approach within
machine learning was concerned with Neural Network (NN) applications, which can model complex nonlinear
relationships and improve prediction accuracy. Abdel-Aty utilized a probabilistic neural network (PNN) to
classify the data into either crasher or non-crashes and demonstrated the training speed of PNN is much faster
than multilayer feed-forward networks [169].

2.4.2  Applications of SSAM

According to Das et al. [170], the surrogate safety measures used in mixed traffic safety assessment can
be divided into two classes: individual SSMs (surrogate safety measures) and SSM-based models. They further
divide the individual SSMs into five categories and the SSM-based models into six categories. Table 3 shows the
individual SSMs, their focus and key measurements.

Table 3 Categories of individual SSMs

Category Focus Key measures

Use the temporal proximity

Time-based SSMs between two vehicles to flag a
o . . TTC, PET
(TSSMs) traffic interaction as traffic
conflict
) Use the rate of deceleration . .
Deceleration-based o Deceleration rate to avoid crash (DRAC), Max
applied in response to a sudden )
SSMs (DeSSMs) Deceleration
event
Combined SSMs Develop to overcome the Driving volatility (DV), average damping ratio
(CSSMs) limitations of single SSMs (ADR), maximum speed of the vehicle (MaxS)
Distance-based SSMs Depend on the vehicles safe Safe stopping distance (which depends on
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(DSSMs) stooping distance computation response time, initial speed and pavement
condition)

) ) The amount of energy dissipated during a
Describe the influence of speed o )
Energy-based SSMs o ) ] collision (which depends on the speeds and
on kinetic energy involved in ) .
(ESSMs) . the mass of vehicle pairs, and the angle of
collisions . .
approaching vehicle)

Tanmay Das considers surrogate safety models as combining multiple SSMs or using data-driven
probabilistic estimation methods, the summary of six categories of surrogate safety models is shown in Table
4,

Table 4 Categories of surrogate safety models

Category Focus Key measures

Build a probabilistic model using available data  Steering rate, braking
Uncertainty model to present probability density function of rate, and road
random variables for prediction geometry
Model the stochastic behaviour and estimate

Extreme value theory o ] ]
rare, unsafe traffic interactions or conflicts

Causal and counterfactual Calculate the probability of an encounter Initial condition and
model yielding a traffic conflict evasive action
Use vehicle trajectory to define, classify and
Surrogate safety assessment ) . o . TTC, PET, Maxs,
analyse traffic conflicts by combining multiple
model (SSAM) j MaxD, DR
independent SSMs
Deep learning and machine Report the real-time traffic conflict by using
learning based surrogate safety detailed information on crashes, driver
model behaviour and vehicular movements
Fuzzy logic-based surrogate Avoid rigid thresholds and consider system
safety model uncertainties

SSAM (Surrogate Safety Assessment Model) is a tool used in traffic safety analysis to evaluate the safety
performance of road designs and traffic operations. It uses traffic simulation data to identify and analyse
potential conflicts between vehicles, which are surrogate measures of safety.

SSAM are adapted to evaluate the safety performance of AVs, although traditional SSMs may not capture
the unique behaviour of these vehicles. SSAM can be employed to conduct before-and-after evaluations of
safety treatments, and this involves analysing traffic conflicts before and after implementing safety measures
to determine their effectiveness [171]. With the advent of connected vehicle data, SSMs can incorporate real-
time data to enhance predictive accuracy. Chen et al. analysed the signalised-T intersection and identified the
conflicts using SSAM with the indicators TTC and crash index, and the model was introduced to analyse the
temporal and spatial distribution of conflict frequencies during a signal cycle [172].

However, there are still some limitations to SSAM. For example, validating SSMs is resource-intensive and
often relies on relative validation methods rather than absolute crash data [173]. And the potential sampling
and measurement errors can affect the reliability of SSMs [174]. Moreover, existing SSMs may not fully account
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for the severity of potential collisions or the complexity of mixed traffic environments [175]. Recent research
has focused on improving SSAM by developing new indicators, considering machine learning integration [176].

SSAM and traditional statistical analysis of traffic conflicts differ in their approach, data usage, and
application in road safety studies. SSAM relies on vehicle trajectory data, whether simulated or observed, to
assess interactions and identify potential risks before crashes occur. It uses surrogate safety measures such as
time-to-collision and post-encroachment time to evaluate road safety proactively. This makes SSAM particularly
useful in road design and planning, as it allows engineers to assess safety implications before implementing
changes.

In contrast, traditional statistical analysis of conflicts depends on historical crash data to evaluate safety. It
applies statistical methods to determine the significance of geometric and traffic factors in past accidents.
However, this approach is reactive, as it only assesses risk based on past crashes, making it less effective in
predicting future conflicts, especially for new road designs. Additionally, statistical analysis often struggles with
small sample sizes, limiting its effectiveness in scenarios when lack of crash data.

Overall, both traffic surrogate safety assessment and statistical analysis have their unique strengths and
limitations. Surrogate safety measures offer a flexible approach and frequent data collection for real-time safety
assessments, whereas traditional statistical analysis provides well-established methods for understanding and
predicting road safety based on past crash trends but may be less adaptable to new or modified road conditions.
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Chapter 3 Methodology

The aim of this study was to simulate and compare the performance of different driving logic of
autonomous vehicles in the merging section. To observe this, we built up a merging section using VISSIM. The
method involves two parts, including developing a traffic network and analysing simulation output. The first
part of the study applies the VISSIM software to create mixed traffic scenarios and develops a simulation model
of a lane-drop merging section. Different scenarios were generated based on different Market Penetration
Rates (MPRs) of AVs and HVs. The second part analyses the simulation output, focusing on efficiency and safety
performance measures. These results demonstrate the impacts of varying AVs and MPRs on these performance

indicators.
3.1 Microsimulation modelling of traffic network using VISSIM

3.1.1 Modelling of driving behaviour

In VISSIM, AVs can be modelled using different driving behaviours, typically categorized as cautious,
normal, and aggressive. These behaviours define how an AV interacts with other vehicles, the road environment,
and its decision making. The default driving behaviour parameters for three categories of AVs and HVs in VISSIM,
including the car-following model, lane-changing acceleration and deceleration are provided in Table 5, Table
6, Table 7 and Table 8 the values of their parameters were adopted from the CoEXist project [8].

Table 5 Recommended settings for autonomous vehicles

Parameter Cautious Normal Aggressive
Max look-ahead distance(m) 250 250 300
Number of interaction objects 2 2 10
Number of interaction vehicles 1 1 8

The values of parameters show that aggressive AVs are capable of perceiving information on a higher
number of objects and vehicles and longer look-ahead distance as compared to other AV driving logics.
According to the CoEXist database, standstill distances (CCO0), following behaviour in the course of time (CC2-
CC6) and mean queue discharge headway of AVs were obtained.

Table 6 Parameters value of car-following model of AV and HV

Parameter Units Cautious Normal Aggressive Human-driven
Cco m 1.5 1.5 1 1.5
Ccc1 s 1.5 0.9 0.6 0.9
CcC2 m 0 0 0 4
CC3 3 -10 -8 -6 -8
Ccca m/s -0.1 -0.1 -0.1 -0.35
CC5 m/s 0.1 0.1 0.1 0.35
CCé6 1/ (m.s) 0 0 0 11.44
cc7 m/s? 0.1 0.1 0.1 0.25
Cc8 m/s? 3 3.5 4 3.5
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cco | /s | 1.2 15 2 15
Table 7 Parameters value of lane-changing of AV and HV

Cautious Normal Aggressive Human-driven
Parameter Trailing Trailing Trailing Trailing
Own . Own . Own . Own .
vehicle vehicle vehicle vehicle
Maximum
. -3.5 -2.5 -4 -3 -4 -4 -4 -3
deceleration
-1 m/s per
) 80 80 100 100 100 100 200 200
distance
Accepted
. -1 -1 -1 -1 -1 -1.5 -1 -0.5
deceleration

From Table 8 we can find that cautious AVs apply less aggressive braking and less speed changing;
aggressive AVs will decelerate rapidly, allowing them to stop quickly when necessary; normal AVs can decelerate
more aggressively than cautious AVs, though not to the same extent as aggressive AVs.

Table 8 Behavioural functionality value of AV and HDV

Behavioural ) ) )
. . Cautious Normal Aggressive Human-driven
functionality
Min. headway 1 0.5 0.5 0.5

Safety distance

) 1 0.6 0.5 0.6
reduction factor

Max. deceleration for
_ _ -2.5 -3 -6 -3
cooperative braking

The values of parameters show that cautious AVs maintain a greater headway with the vehicle ahead to
ensure they have enough time to react to suddenly braking or changing. Normal AVs maintain a reasonable
headway time between vehicles, allowing them to follow closely enough to maintain traffic flow while ensuring
the distance for stopping. Aggressive AVs will follow other vehicles closely, reducing the headway time to allow
themselves quicker movement through congested areas.

Cooperative lane change is another driving behaviour parameter setting for AVs. It defines how vehicles
cooperate to facilitate smoother traffic flow during lane changing. For example, when vehicle A observes that
a leading vehicle B on the adjacent lane intends to merge into its lane, vehicle A will try to change lanes to
create space for vehicle B. However, this manoeuvre depends on new route compatibility, relative speed with
vehicle B and collision time thresholds. In this study, we will analyse how cooperative lane-change behaviour
affects traffic efficiency and compare it with non-cooperative lane-change behaviour.

3.1.2 Modelling of geometry and vehicle input

In this study, we used a hypothetical 650-meter-long two-lane merging model VISSIM, as illustrated in
Figure 2. According to the Manual on Uniform Traffic Control Devices, for roadways having a posted speed limit
of 70 km/h (45mph) or greater, the transition taper length for a land reduction should be computed by the
formula L = 0.62 WS for speeds in km/h (L = WS for speeds in mph). For roadways having a posted speed
limit is less than 70 km/h (45 mph), the formula L = WS? /155 for speeds in km/h (L = WS?2/60 for speeds

21



in mph) should be used to compute taper length. Under both formulas, L equals the taper length in meters
(feet), W is the width offset distance in meters (feet), and S equals the 85"-percentile speed or the posted
or statutory speed limit. In this case, the taper of the merging section is suggested at 155 m.

The scenarios were prepared under varying demand levels, the MPRs of AVs and HVs, and the category of
AVs. The values of size, speed, and lateral distances for AVs were adopted from the values for HVs. The lanes in
the model are defined as “free lane selection”, which allows vehicles to overtake on each lane. Additionally, the
speed for all the vehicles was uniformly set as 70 + 2 km/h to simulate consistent flow conditions in the network.

495m

merging lane

3, 5m 3 5m

mainstream lane

650m

Figure 2 Network used for an extended merging

3.2 Simulation output

Each simulation scenario runs 10 times to collect output on various performance measures. Each
simulation run lasted a total of 3900 seconds, including a warm-up period of 300 seconds to ensure steady state
conditions were reached before recording. The results will reflect system performance using VISSIM, traffic
safety indicators from SSAM and parameter sensitivity analysis.

3.2.1  Analysing vehicle efficiency using VISSIM

VISSIM is a traffic simulation software used to generate delay and travel time measurements. In VISSIM,
vehicle delay refers to the average delay of all vehicles, calculated as the difference between the ideal travel
time and the actual travel time. The ideal of travel time is the travel time which can be achieved under free
flow conditions, without interference from other vehicles, signal controls or other reasons for stops. Stop delay

refers to the time a vehicle spends at a complete standstill when its speed is zero [177].

3.2.2  Analysing vehicle conflict using SSAM

The Surrogate Safety Assessment Model (SSAM) is a software application used to analyse traffic conflicts
by directly processing vehicle trajectory data. By importing the trajectory data from VISSIM, SSAM obtains
detailed information about vehicle positions and dimensions approximately every tenth of a second, enabling
it to assess the traffic conditions. SSAM analyses vehicle-to-vehicle interactions to identify conflict events and
catalogues all events found, providing output that includes the number, type, severity and locations of
simulated conflicts [178].

SSAM utilizes five surrogate safety measures to evaluate the likelihood and severity of simulated conflicts,
including time to collision (TTC), post encroachment time (PET), deceleration rate (DR), maximum speed (MaxS)
and difference in vehicle speeds (DeltaS). It also provides statistical data regarding the minimum, maximum,
mean and variance of each of these measures.

TTC, PET and DR are intended to reflect the severity of the conflict event itself, specifically the likelihood
of a collision resulting from the conflict. TTC indicates the minimum time observed during a conflict before a
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potential collision occurs, based on the current vehicle position, speeds, and trajectories. It serves as a critical
indicator of collision risk, where lower TTC values indicate a higher probability of a crash. PET is defined as the
minimum time interval between when the first vehicle last occupied a position, and the second vehicle
subsequently arrived at the same position. Smaller PET values suggest a greater chance of collision. A higher
DR indicates a higher probability of collision, as it reflects the reactive braking efforts of the second vehicle to
avoid an impact. Higher deceleration typically signals a more urgent or severe response to an imminent collision
risk.

MaxS and DeltaS indicate the potential severity of a collision, should the conflict event result in an impact
rather than a near-miss. Higher MaxS values reflect a higher likely severity of the resulting collision, as vehicles
traveling at higher speeds carry more kinetic energy, potentially leading to more destructive impacts. A higher
Delta$S indicates a higher severity of the resulting collision. A larger difference in vehicle speeds at the time of
minimum TTC (tMiInTTC) suggests a more forceful collision, as the momentum would not be synchronized,
leading to a more violent crash. MaxS and DeltaS can also be combined with the mass of the vehicles involved
to calculate momentum, providing a better estimate of potential collision severity.

These measurements are widely used in TSSM and CSSMS for mixed traffic safety assessment. However,
there are some limitations. For example, TTC can only report the number of conflicts rather than the severity
of conflicts and assumes constant vehicle speeds without considering the acceleration and deceleration.
Similarly, PET does not consider the vehicle pairs’ speed differences or distance and assumes a fixed spatial
collision point, ignoring the spatial dynamics. Given these limitations, it is important to combine multiple
surrogate measurements to obtain a comprehensive safety assessment.

It is important to determine the chance of conflicts and the potential severity of resulting collisions when
analysing traffic safety. If a location that experiences frequent conflicts with high severity in terms of TTC, PET,
and DR but low MaxS and DeltaS may not be concerned for safety improvements because the resulting crashes
are more likely to result in minor property damage rather than severe injuries or fatalities. On the other hand,
locations with fewer conflicts but much higher MaxS and DeltaS values present a higher risk of serious injury or
fatality in the collision, having greater prioritizing for safety upgrades.
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Figure 3 Surrogate measures on conflict point diagram [178]

Conflicts in SSAM are categorized into four types: unclassified, crossing, rear-end and lane-change, based
on the conflict angle, which is calculated for each pair of conflicting vehicles or determined by link and lane
information. If the link and lane information are unavailable for both vehicles, the conflict angles are used to
classify the conflict. If the |conflict angle| > 85° the conflict is classified as a crossing. If
|conflict angle| < 30°, it is classified as rear-end. If 30° < |[conflict angle| < 85°, it is considered as a
lane-change. If the conflict angle is unknown, the conflict is labelled as unclassified. However, when the link
and lane information are available, it is used to classify conflicts more precisely based on vehicle positions
throughout the event. If both vehicles occupy the same lane (on the same link) at the start or end of the conflict
event, classification follows these rules. If the vehicles occupy the same lane at both the start and end of the
event, the conflict is classified as a rear-end. If either vehicle changes lanes during the event but remains on
the same link, the event is classified as a lane-change. If either vehicle changes links during the event, the
conflict angle is used to determine the classification as described earlier [179]. SSAM provide the default value
of TTC of 1.5 seconds, suggested by a previous study [180].
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Chapter4  Simulation and result

This chapter presents the results of the microsimulation analysis, focusing on the operational performance,
traffic safety, and sensitivity of key behavioural parameters for autonomous vehicles under varying penetration
rates and traffic demand levels. This chapter is structured into four main sections: analysis of traffic efficiency
including stop delay and vehicle delay; sensitivity analysis of car-following and lane-changing model parameters
on traffic efficiency; evaluation of safety outcomes using surrogate measures; assessment of lane-changing
parameters influences on safety performance.

4.1 Operation performance

For operation performance assessment, the scenarios were created based on the following three factors:
demand level, MPRs of AVs and category of AVs. The vehicle input for the simulation varied with four different
scenarios: 1500 veh/h, 1650 veh/h, 1800 veh/h and 1950 veh/h. For each scenario, the MPRs of AV were
adjusted from 0% to 100% in 10% increments, with the remaining percentage of vehicles being HV. The
categories of AVs include cautious AVs with cooperative lane-change (referred to as with coop. in the results
shown below), cautious AVs without cooperative lane-change (referred to as without coop. in the results shown
below), normal AVs with coop., normal AVs without coop., aggressive AVs with coop. and aggressive AVs without
coop.. A total of 264 simulation scenarios were conducted by combining four demand levels, eleven proportion
levels of AVs and six driving logics. With the help of delay measurement and network evaluation, the data on
stop delays and vehicle delays are shown below.

Figure 4 shows the stop delay of AVs at four demand levels, where the X-axis represents the MPRs of AVs,
ranging from 0 to 1 and the Y-axis represents stop delay. For all demand levels, stop delay increases for cautious
AVs as the penetration rate rises, while normal and aggressive AVs (especially with cooperative lane-change)
maintain relatively low stop delays. At full penetration rate and demand in 1950 veh/h, delays for cautious AVs
reach over 25 s/veh, while normal AVs rise steadily, reaching only 4 s/veh. Cautious driving logic performs worst
at higher penetration rates of AVs, and cooperation helps but does not eliminate inefficiencies completely,
especially at higher demands. Aggressive AV with or without cooperative lane-change performs similarly at all
demand levels and is the best overall which continues to minimize delays under higher AV penetration. Normal
AVs provide a balanced performance but tend to increase slightly in delay at higher penetration rates without
cooperation.
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Figure 4 Stop delay for different driving logic under varying demand

Figures 5-8 illustrate the effect on vehicle delay under all the tested scenarios. The X-axis represents the
MPRs of AVs, ranging from 0 to 1; the Y-axis represents vehicle delay, negative values indicate improvement
(reduced delay), and positive values indicate worsening delays.

Cautious AVs show the most significant fluctuations with increasing demand. At low demand (1500 veh/h),
the delay increase is less than 150%, while from Figure 8, we can see that at higher demand level, cautious AVs
delays increase progressively with higher AV penetration, and at 100% AV the vehicle delay increment is above
320% compared to all HVs. Normal AVs with cooperative lane-change show decreasing delay as AV penetration
increases and at full AV penetration, delay decreases by 30% approximately compared with all HVs. While, for
the normal AVs without cooperation, the delay remains relatively stable under varying AVs MPR. For aggressive
behaviour, with cooperations results in the most significant reductions among all logics, and without
cooperation has similar reductions although slightly less than with cooperation.
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These results show the effectiveness of AV driving behaviour across varying penetration levels. Cautious

AVs lead to increased delays as their penetration grows. In contrast, aggressive AVs show decreasing delays with

higher penetration rates. Normal AVs maintain stable performance across all penetration levels. Additionally,

cooperation improves performance for all driving logics, consistently reducing delays, even though the extent

of improvement may vary depending on the AV behaviour type.

4.2 Parameters influencing operational impact

We conducted a sensitivity study to determine the influence of car following parameters (Wiedeman 99)
and lane changing parameters, all parameters are performed for human-driven vehicles only. Based on VISSIM
default values, we chose an increment of 10% of the initial value and simulated with 42 random seeds, 15 runs,

3600 simulation second intervals and 15 mins warm-up period. The vehicle input for the simulation varied with
four different scenarios: 1500 veh/h, 1800 veh/h and 2100 veh/h.

Table 9 Testing parameters value

Parameter Units 70% 80% 90% szflil;lt 110% 120% 130%
Ccco m 1.05 1.20 1.35 1.50 1.65 1.80 1.95
cc2 m 2.8 3.2 3.6 4.0 4.4 4.8 5.2
CC3 s -5.6 -6.4 -7.2 -8.0 -8.8 -9.6 -10.4
Wiedeman cc4a m/s -0.24 -0.28 -0.32 -0.35 -0.39 -0.42 -0.46
99 CC5 m/s 0.24 0.28 0.32 0.35 0.39 0.42 0.46
parameters Ccce 1/(m.s) 8.01 9.15 10.30 11.44 12.58 13.73 14.87
cc7 m/s? 0.17 0.20 0.23 0.25 0.28 0.30 0.33
ccs m/s? 2.45 2.80 3.15 3.50 3.85 4.20 4.55
Ccco m/s? 1.05 1.20 1.35 1.50 1.65 1.80 1.95
min.
headway m 0.35 0.4 0.45 0.5 0.55 0.6 0.65
(front/rear)
to slower
lane s 7.7 8.8 9.9 11 12.1 13.2 14.3
Lane safety
changing distance
parameters reduction 0.42 0.48 0.54 0.6 0.66 0.72 0.78
factor
maximum
deceleration m/s? -2.1 -2.4 -2.7 -3 -3.3 -3.6 -39

The tables below show the deviation between the stop delay, stops, vehicle delays, vehicle amount, queue

delays and acceleration compared to initial value. For each input demand, the average deviation for the

evaluated measurement is determined. If the average deviation for the parameter is larger than the others, the
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parameter has a relevant influence on the traffic operation.

According to PTV VISSIM, stop delay refers to the average delay experienced by each vehicle in seconds
due to stops, excluding stops at public transit stops and in parking lots. Vehicle delay, on the other hand,
represents the average delay experienced by all vehicles in the segment. Stops indicate the average number of
stops per vehicle, excluding stops at public transit stops and in parking lots. The term "vehicles" refers to the
total number of vehicles in the segment, and “Acc” refers to the acceleration of vehicles. Queue delay refers to
the additional time a vehicle spends specifically in a queue, which usually means slow speeds or waiting to pass
through a bottleneck.

Table 10 Resulting average deviation under traffic input 1500 veh/h

Stop Vehicle . Queue
Stops Vehicles Acc
delay delay delay
Cco 17.72% 20.53% 13.25% 0.06% -2.90% 111.84%
cc2 16.56% 10.11% 8.70% 0.29% -2.43% 38.44%
cc3 5.66% 15.51% 7.51% 0.10% -2.01% 99.28%
Cca 17.57% 13.89% 8.17% 0.04% -2.84% 100.00%
Wiedemann99 CC5 17.57% 13.89% 8.17% 0.04% -2.84% 100.00%
CC6 20.16% 11.50% 5.68% 0.10% -2.16% 24.61%
cc7 15.07% 17.23% 9.18% 0.02% -2.67% 89.66%
CC8 1.60% 14.80% 7.54% 0.00% -0.40% 103.05%
Ccco 2.40% 2.30% 1.42% 0.00% -0.46% 16.84%
min.
headway 7.88% 14.38% 6.62% 0.00% -0.79% 87.79%
(front/rear)
safety
distance
. 14.78% 9.72% 5.00% 0.02% -1.85% 49.84%
Lane-changing reduction
factor
maximum
deceleration
for 6.30% 17.19% 9.98% 0.02% -1.23% 117.14%
cooperative
braking

Table 11 Resulting average deviation under traffic input 1800 veh/h

Stop Vehicle ) Queue
Stops Vehicles Acc
delay delay delay
CCo 18.18% 29.48% 25.83% 1.86% -18.60% 34.01%
Wiedemann99 cc2 9.92% 12.70% 11.12% 0.72% -10.31% 13.90%
CC3 3.69% 5.68% 5.51% 0.44% -5.47% 6.89%

31



cca 4.16% 5.57% 5.65% 0.34% -6.21% 7.33%
CC5 4.16% 5.57% 5.65% 0.34% -6.21% 7.33%
CCe 7.13% 5.59% 4.25% 0.26% -7.01% 5.75%
cc7 3.77% 4.28% 3.41% 0.31% -8.02% 5.39%
ccs 5.47% 6.23% 5.44% 0.24% -3.55% 7.42%
Ccco 3.10% 8.52% 6.81% 0.41% -2.24% 9.83%
min.
headway 5.56% 6.94% 5.51% 0.39% -4.46% 7.33%
(front/rear)
safety
distance
] 5.36% 8.41% 7.17% 0.49% -4.82% 9.54%
. reduction
Lane-changing
factor
maximum
deceleration
for 6.48% 4.93% 4.52% 0.29% -3.44% 6.00%
cooperative
braking
Table 12 Resulting average deviation under traffic input 2100 veh/h
Stop Vehicle ) Queue
Stops Vehicles Acc
delay delay delay
cco 2.76% 3.17% 5.18% 2.14% -32.17% 5.16%
cc2 3.39% 6.57% 5.57% 1.58% -12.29% 6.69%
cc3 6.71% 2.37% 2.26% 0.39% -23.68% 2.20%
cca 3.56% 0.88% 0.53% 0.31% -23.04% 0.88%
Wiedemann99 CC5 3.56% 0.88% 0.53% 0.31% -23.04% 0.88%
Ccce 2.84% 1.45% 1.73% 0.51% -7.30% 2.01%
cc7 3.77% 4.45% 1.49% 0.54% -9.83% 1.85%
ccs 2.83% 2.29% 1.84% 0.61% -6.44% 2.32%
CcC9 1.84% 1.41% 1.29% 0.29% -4.52% 1.57%
min.
headway 6.37% 1.98% 1.42% 0.41% -16.16% 1.36%
(front/rear)
) safety
Lane-changing )
distance
] 3.79% 2.27% 1.82% 0.44% -18.19% 2.07%
reduction
factor
maximum 5.77% 2.71% 2.91% 0.80% -6.56% 3.35%
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deceleration
for

cooperative

braking

These results show that the standstill distance CCO is one of the most relevant parameters in the
Wiedemann 99 car-following model to calibrate safety distance. With increasing CCO, the safety distance
increases and lane capacity decreases. Similarly, the modification of the following variation CC2 for Wiedemann
99 leads to comparable changes as CCO, affecting the following variation. The higher CC2 is set, the more
distance for vehicles is kept.

On the other hand, CC9 for Wiedemann 99 has a relatively minor influence on operation under all demand
levels. This parameter, which presents the acceleration at 80 km/h, does not apply to this scenario. Other
parameters within Wiedemann 99 (CC3 to CC8) only affect the operational aspect under low traffic demand
conditions. As demand increases, these parameter changes have less effect compared to CCO and CC2.

For the lane-changing parameters, variations in their values significantly impact the operational outcomes,
particularly under a traffic volume of 1500 veh/h. As demand increases, the effects of lane-changing parameters
become less.

Under low demand conditions, all parameter adjustments have less effects on acceleration. However, with
higher demand levels (1800 veh/h and 2100 veh/h), the acceleration is affected more by car-following
parameters than lane-changing parameters with the average deviation shown in the table. Conversely, queue
delay shows a great difference with different parameter adjustments compared to the default value under low
demand. As traffic volume increases, queue delays tend to maintain a similar level as the default value, which
is limited to the lane capacity.

In conclusion, these results highlight the relationships among demand, parameter settings and operational
impact within the Wiedemann 99 car-following model and lane-changing model. The majority of parameters in
the Wiedemann 99 model demonstrate notable effects on operations, particularly under conditions of low
demand. Notably, CCO and CC2 show significant influences on operational outcomes, with adjustments to these
parameters leading to great changes in safety distances and following behaviours. However, CC9 shows a
relatively minimal impact across all demand conditions, indicating its limited influence on operational dynamics.
Similarly, lane-changing parameters show more effects under conditions of low demand.

4.3 Conflict performance

For conflict performance assessment, the scenarios were created based on the following three factors:
demand level, MPRs of AVs and category of AVs. The vehicle input for the simulation varied with four different
scenarios: 1500 veh/h, 1650 veh/h, 1800 veh/h and 1950 veh/h. For each scenario, the MPRs of AV were
adjusted from 0% to 100% in 10% increments, with the remaining percentage of vehicles being HV. The
categories of AVs include cautious AVs and aggressive AVs. For the conflict thresholds, the maximum time-to-
collision is 1.5 seconds, maximum post-encroachment time is 5 seconds.

Figures 9-13 compare cautious and aggressive vehicle behaviour using SSAM measuring metrics with
aggregated average data, like TTC, PET and other safety-related surrogates under varying demand levels. To
examine the effects of driving behaviour and traffic demand level on those conflict metrics, a two-way ANOVA
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was conducted. The analysis was performed using a significant level of p = 0.05, meaning that any p-value
below 0.05 was considered statistically significant. Additionally, DF stands for Degrees of Freedom, and F value
is a ratio that compares the variance within groups.

Figure 14 shows the number of conflicts during the simulation, including lane-changing conflicts, near-end
conflicts and total conflicts number. Figures 15-18 illustrate the spatial distribution of conflict points along the
merging area, providing the insight into where conflicts are most likely to occur under various traffic conditions.

From Figure 9 we can find that under low demand levels, both cautious AVs and aggressive AVs start lower
TTC value (around 0.75 s) at 0% penetration rate and gradually decrease; while under high demand level, both
logics start the TTC value around 0.8 s and decline steeper than under low demand. The TTC values of Aggressive
AVs remain consistently higher than those of cautious AVs and decline slightly more gradually than cautious
AVs. The trend for cautious AVs steepens after 60% penetration and ends at the lowest TTC at full penetration.

Table 13 shows that driving behaviour has a high F-value (52.97) and very low p-value, indicating a strong
and statistically significant effect on TTC. Traffic demand level shows a very low F-value (0.268) and a high p-
value (0.8482), meaning it does not significantly affect TTC. The differences in TTC across low, medium and high
traffic levels are not statistically meaningful. The interaction between driving behaviour and demand level is
also not significant, suggesting that the effect of driving logic on TTC does not depend on traffic demand level.

Aggressive AVs offer better TTC performance than cautious ones across all penetration rates at all demand
levels. This is due to more assertive gap acceptance leading to more stable flows and fewer abrupt slowdowns.
Cautious AVs exhibit worsening TTC with increased penetration, especially after 60%, indicating potential

platooning or compounding hesitancy.
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Figure 9 Time-to-collision under varying demand levels

Table 13 Two-way ANOVA results examining the effects of driving behaviour and traffic demand level on Time to
Collision (TTC)

DF Sum of Squares Mean Square F Value P Value

Demand level 3 0.00281 9.37992E-4 0.26812 0.8482
Driving behaviour 1 0.1853 0.1853 52.96738 <0.0001
Interaction 3 0.00134 4.4646E-4 0.12762 0.94346

Figure 10 illustrates the post-encroachment time for cautious and aggressive driving logics. At low demand
levels, mixed traffic with cautious AV have larger gaps between vehicles in conflict zones as the PET values are
higher than aggressive logic, which indicates safer vehicle interactions. Under low demand levels, PET remains
relatively stable with a slight increase at 50% penetration. Under high demand levels, the PET values show a
slight increase, but the values drop as the penetration rate rises. For aggressive AVs, the PET values drop slightly
at all penetration rates and are lower than cautious ones under all demand levels. Additionally, at a high
demand level, the PET values for aggressive and cautious AVs approach one another, suggesting reduced
behavioural distinction.

The ANOVA results in Table 14 show that both driving behaviour and demand level are significantly
influenced PET. However, the effect of driving behaviour on PET does not significantly depend on traffic demand
level.

The PET results suggest that cautious AVs provide better safety margins than aggressive AVs. However, as
traffic demand and AV penetration increase, the safety advantage of cautious behaviours diminishes. The
convergence of PET values at high demand levels indicates that the impact of driving logic becomes less distinct
under congested conditions.
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Figure 10 Post encroachment time under varying demand levels

Table 14 Two-way ANOVA results examining the effects of driving behaviour and traffic demand level on Post

encroachment time (PET)

DF Sum of Squares Mean Square F Value P Value

Demand level 3 0.17128 0.05709 5.59763 0.00155
Driving behaviour 1 0.10322 0.10322 10.12064 0.00209
Interaction 3 0.07022 0.02341 2.29503 0.0841

Figure 11 illustrates the deceleration rate of cautions and aggressive AV under varying penetration rates
and different demand levels. As the AV penetration rate increases, the DR of cautious AVs become less negative,
while aggressive ones show an increase in its negative trend. Under higher demand level, both logics show a
diminishing negative trend. However, cautious AV has less negative DR values than aggressive ones, indicating
smoother braking. This reflects conservative behaviour, with larger gaps reducing the need for abrupt

deceleration. For aggressive logic, DR values are more negative than cautious ones, indicating stronger braking
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actions.
The results in Table 15 show that both driving behaviour and traffic demand level independently influence

deceleration rate, but they do not interact each other.
The results of the deceleration rate suggest that cautious AVs support more stable and gradual braking
due to conservative gap management, especially as penetration increases. Aggressive AVs, on the other hand,

continue to show stronger brakes, which may indicate more reactive driving.
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Figure 11 Deceleration rate under varying demand levels

Table 15 Two-way ANOVA results examining the effects of driving behaviour and traffic demand level on Deceleration

rate (DR)

DF Sum of Squares Mean Square F Value P Value

Demand level 3 7.68375 2.56125 16.45213 <0.0001
Driving behaviour 1 22.52897 22.52897 144.71425 <0.0001
Interaction 3 0.13858 0.04619 0.29672 0.82766
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Figure 12 illustrates the maximum speed for cautious and aggressive vehicles under varying penetration
rates under four demand levels. As demand level increases, maximum speeds decrease for both driving logics.
For cautious AV, maximum speeds drop with a higher penetration rate, suggesting cautious vehicles face more
interactions and adapt by driving slower. For aggressive AV, the MaxS is consistently higher than the cautious
one, highlighting faster and more decisive manoeuvres.

Table 16 shows that driving behaviour has a very high F-value (193.11) and an extremely low p-value
(<0.0001), indicating a strong and statistically significant effect on the dependent variable. Traffic demand level
also shows a high F-value (22.99) with a very low p-value (<0.001), suggesting that it significantly influences the
outcome. In contrast, the interaction between driving behaviour and demand level has a very low F-value (0.16)
and a high p-value (0.921), indicating that the combine effect of these two factors is not statistically significant.

The results of maximum speeds highlight the trade-off between safety and performance. Cautious AVs
prioritize conservative speed adjustments in dense environments, whereas aggressive AVs maintain higher
operational speeds, potentially enhancing throughput but with less conservative behaviour.
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Figure 12 Maximum speed under varying demand levels
Table 16 Two-way ANOVA results examining the effects of driving behaviour and traffic demand level on Maximum
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speed (MaxS)

DF Sum of Squares Mean Square F Value P Value

Demand level 3 38.60055 12.86685 22.99513 <0.0001
Driving behaviour 1 108.05668 108.05668 193.1147 <0.0001
Interaction 3 0.27344 0.09115 0.16289 0.92103

Figure 13 shows the difference in vehicle speeds for cautious and aggressive vehicles under varying
penetration rates under four demand levels. Across all demand levels, the speed difference for both driving
logics shows little variation. However, cautious AVs show decreasing variation in speed with higher penetration
rates, suggesting more uniform and predictable behaviour. In contrast, the overall variation in speed increases
for aggressing AVs, reflecting more dynamic and varied driving responses.

Table 17 shows that driving behaviour has a very high F-value (177.44) and a very low p-value (<0.001),
indicating a strong and statistically significant effect on vehicle speed variation. This suggests that autonomous
vehicles with different behavioural profiles (aggressive, cautious) exhibit significantly different average speeds.
Travel demand level also shows a high F-value (12.11) and a low p-value (<0.001), meaning it significantly affects
vehicle speed. However, the interaction between driving behaviour and demand level has a low F-value (1.37)
and a high p-value (0.257), indicating that the combined effect of those two factors is not significant.

The trends suggest that cautious AVs promote more uniform traffic flow at higher market penetration,
contributing to predictable vehicle behaviour. In contrast, the increased variability among aggressive AVs may

lead to more fluctuating speed patterns, potentially affecting flow stability under higher AV penetration rates.
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Figure 13 Difference in vehicle speeds under varying demand levels
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Table 17 Two-way ANOVA results examining the effects of driving behaviour and traffic demand level on Difference

in vehicle speeds (DeltaS)

DF Sum of Squares Mean Square F Value P Value

Demand level 3 12.12408 4.04136 12.11387 <0.0001
Driving behaviour 1 59.19775 59.19775 177.44359 <0.0001
Interaction 3 1.37421 0.45807 1.37305 0.25702

Figure 14 shows the total conflicts of cautious AV and aggressive AV under varying penetration rates.

Cautious AV has higher total conflicts compared to aggressive AV at all penetration rate under all demand levels,

which due to conservative driving behaviour, creates bottlenecks and frequent interactions. For aggressive AV,

conflicts increase moderately under higher demand levels but remain relatively stable at varying penetration

rates.
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Figure 14 Total conflicts under varying demand levels

Figures 15-18 use conflict points and location data, showing the distribution of conflicts compared with
cautious and aggressive vehicles under 0%, 50% and 100%, with kernel density estimates. The X-axis shows the
position on the road, Y-axis shows the conflict density, and the curve shape shows how delay is distributed. A
high density of conflicts is observed around the position at 510, suggesting a hotspot likely due to merging or
lane changing. Under the same penetration rate, aggressive AVs show a sharper peak in conflict density at
hotspot, indicating riskier interactions. Cautious AVs produce a more distributed conflict profile, suggesting
smoother and safer interactions over space.

Figure 15 shows both cautious and aggressive driving logics exhibit similar conflict density distributions
under low traffic demand, characterized by sharp peaks, indicating localized concentrations of conflicts. As
demand increases to 1650 veh/h shown in Figure 16, the conflict distribution for cautious AVs becomes more
spread out with a higher penetration rate, suggesting a smoother and less concentrated pattern of interactions.
In contrast, aggressive AVs tend to maintain a relatively sharper and more consistent conflict profile.
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Figure 15 Conflict points distribution in demand 1500 veh/h
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Figure 16 Conflict points distribution in demand 1650 veh/h

At higher demand levels (1800 veh/h and 1950 veh/h) shown in Figure 17 and Figure 18, the conflict
densities tend to become wider distributed at lower AV penetration rates for both driving logics. However, as
AV penetration increases, a divergence appears: cautious AVs continue to show increasingly distributed conflict
profiles, while aggressive AVs revert to sharper, more localized peaks, indicating increased conflict
concentration in the hotspot.
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Figure 17 Conflict points distribution in demand 1800 veh/h
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Figure 18 Conflict points distribution in demand 1950 veh/h

The conflict density distribution plots illustrate a minimal difference in conflict behaviour between
cautious and aggressive AVs when the traffic flow is light and interactions are limited. As traffic demand
increases, notable differences emerge. The conflict density distribution for cautious AVs begins to spread out,
particularly at higher AV penetration rates. This broader distribution indicates a more dispersed pattern of
conflict locations or timing, due to the conservative behaviour of cautious AVs in managing space and reacting
to surrounding vehicles. Under higher traffic demand, at a low AV penetration rate, both driving logics show
more spread-out conflict distributions, which means that when most vehicles are human-driven, conflicts
happen in many different locations, due to inconsistent driving behaviour in heavy traffic. With more cautious
AVs, conflict distribution becomes even more spread out, which suggests that cautious AVs maintain more
space and react earlier. This behaviour may improve safety by reducing intense conflict. For aggressive AVs, the
conflict density becomes more concentrated, forming sharper peaks. This indicates that aggressive AVs tend to
create localized hotspots of conflict, especially near the bottleneck. Their behaviour, such as fast merging and
less yielding may help maintain flow but also increase the risk of intense interactions in certain areas.

4.4  Parameters influencing conflict impact

To evaluate how individual lane-changing parameters influence traffic safety, we conducted a parameter
study. By varying one parameter at a time across different driving behaviours, such as the number of interaction
objects, number of interaction vehicles and maximum deceleration, the safety impacts are then quantified
using established metrics like TTC, PET and DR.

The number of interaction objects refers to the number of preceding vehicles or the number of other
network objects, such as reduced speed areas, conflict areas and priority rules along the path in order to react
to them. The number of vehicles measures the number of preceding vehicles that the vehicle perceives along
its route or path to react to them. Maximum deceleration refers to the highest rate at which a vehicle can safely

reduce its speed.
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Table 18 Testing parameter values

Default value of  Default value of Testing values for each
Parameter . .
cautious AVs Aggressive AVs parameter
Number of interaction objects 2 10 2 4 6 8 10
Number of interaction vehicles 1 9 1 3 5 7 9
Maximum deceleration (m/s?) -3.5 -4 -2 -3 -4 -5 -6

Figure 19 and Figure 20 show how adjustments to the number of interaction objects of cautious AVs and
aggressive AVs affect the safety outcomes. The number of interaction objects influences cautious and
aggressive AVs differently. Cautious AVs maintain stable safety performance regardless of object number. This
is because cautious AVs are programmed to maintain larger time gaps, earlier braking and more defensive
manoeuvres, allowing them to respond safely. In contrast, aggressive AVs become riskier in fewer interaction
objects, as they are more likely to make assertive manoeuvres, such as sharp lane changes or close-gap merging.
This can lead to higher conflict intensity, as reflected in surrogate safety metrics like shorter PET and higher DR.
Aggressive AVs rely on quick, opportunistic decisions, so when fewer objects are perceived, they may not
anticipate downstream conflicts effectively.
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Figure 20 Safety metrics for varying number of interaction objects of aggressive AVs

Figure 21 and Figure 22 show how changes in the number of interaction vehicles affect safety outcomes
for both cautious AVs and aggressive AVs. The results indicate that both logics tend to perform better when the
number of interaction vehicles is lower. Cautious AVs show stable severity of conflict likelihood across varying
levels of AV penetration. Aggressive AVs, on the other hand, also benefit from having fewer interaction vehicles,
but their performance is more sensitive to changes in interaction vehicles.
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Figure 23 and Figure 24 show the varying maximum deceleration influence the safety. Varying the
maximum deceleration setting showed minimal impact on the performance for both driving logics. This lack of
significant difference can be attributed that under normal traffic conditions, even near bottlenecks, vehicles
rarely operate at their maximum deceleration limits.

—— S=-2 m/s? —— S=-2m/s?
0.80 - —m— S=-3m/s? 1.20 4 —m— $=-3 m/s?
— @ S=-4 m/s? 115 —e— S=-4m/s?
0.75 - —4— §=-5 m/s? ’ —4— S=-5m/s?
—v— S=-6 m/s2 1.10 —v— S=-6 m/s2
0.70 1.05
D 0
) £ 1.00 1
65 =
P 0.65 5
- B 0.95 1
0.60
0.90 -
0.55 0.85 -
0.80 -
0.50 T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Penetration rate Penetration rate
—— 8=-2m/s?
06 —m— S=-3 m/s?
9.0 —e S=-4m/s?
-0.8 - —4— S=-5m/s?
-1.0 1 8.5 —v— S=-6 m/s?
—~-1.2
Nl) @ 8.0 4
E 144 £
o Q754
O _16- ‘g "o
—=— S=-2 m/s?
-1.8 e S=-3 m/s? 7.0
20 —A— S=-4 m/s?
—v— S=-5m/s? 6.5
-2.2 -~ S=-6m/s?
T T T T T T 6 0
- T T T T T T
0.0 0.2 0.4 . 0.6 0.8 1.0 00 02 04 08 o8 10
Penetration rate .
Penetration rate
—— S=-2m/s?
—=— 3=-3 m/s?
6.0 - —e— S=-4 m/s?
—4— S=-5 m/s?
—v— S=-6 m/s?
5.5
Q)
E50-
%)
i)
©
0 45
4.0+
35

T T
0.0 0.2 0.4 0.6 0.8 1.0
Penetration rate

Figure 23 Safety metrics for varying maximum deceleration of cautious AVs

49



—=— §=-2 m/s? —=— S=-2m/s?

0.82 - e S=-3 m/s? —e— S=-3 m/s?
—4A— S=-4 m/s? 1157
0.80 )
—=—S=-5m/s 1104
0.78 - —v— $=-6 m/s?
076 1.05
_.1.00
@ 0.74 4 »
O =
0.72 L 0.95
E o
0.70 + 0.90 +
0.68 0.85 1
0.66 | \/
0.80 A
0.64
T T T T T T 075 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Penetration rate Penetration rate
—=— S=-2 m/s? 10.8 -
—e— S=-3 m/s? ]
-2.0 4 —A— S=-4 m/s? 067
—=— S=-5m/s? 10.4
-2.14 . 2
—v - S=-6m/s 10.2 4
-2.2
_ D 10.0
Nt\g 2.3 % 9.8+
£ %
X 94 T 9.6
& -24 <
o5 9.4 4 —=— 5=-2 m/s?
i 02 —e S=-3 m/s?
-2.6 - ’ —A— S=-4 m/32
9.0 —=— S=-5 m/s?
—2.7 1 8.8 —v— S=-6 m/82
T T T T T T T T T T T T
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 04 06 08 1.0
Penetration rate Penetration rate
7.6+
7.4
7.24
7.0+
Q)
£68+
?
*= 6.6
9]
[a}
64 / —=— S=2m/s?
62 L —e— S=-3 m/s?
: —4&— S§=-4 m/s?
6.0 ] —m— S=-5m/s?
—v— $=-6 m/s?
5.8 T T

T T
0.0 0.2 0.4 0.6 0.8 1.0
Penetration rate

Figure 24 Safety metrics for varying maximum deceleration of aggressive AVs

In conclusion, the number of interaction objects affects the two driving logics in different ways. Cautious
AVs remain stable and are less sensitive to environmental complexity because their driving decisions remain
predictable safe under both simple and complex interaction scenarios. Aggressive AVs show a greater sensitivity
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to the number of interaction objects and require more situational awareness to maintain safe performance.
This implies that improving perception systems and cooperative information sharing is important for aggressive
AVs in complex or constrained environments.

Moreover, vehicles with more interaction vehicles will result in higher potential severity of collision. A
higher number of interaction vehicles leads to more frequent adjustments in speed, headway or changing lanes,
which can increase the likelihood of traffic conflicts. A lower number of perceived vehicles decreased the total
conflict count but resulted in more severe conflicts due to late reactions. More interaction vehicles can increase
the frequency of reactions and potential conflicts. These findings suggest that reducing interaction complexity,
either by fewer surrounding vehicles or by the improved coordination, can lower conflict risk and increase
stability. In particular, the sensitivity of aggressive AVs to interaction complexity highlights the need for careful
calibration of AV behaviour models in mixed traffic.

Varying the maximum deceleration setting showed minimal impact on the performance of both cautious
and aggressive AVs. Even for aggressive AVs, which have shorter headways and quicker responses, the maximum
deceleration threshold is not engaged unless a critical conflict happens. Most interactions are managed through
moderate braking and lane-changing behaviour before applying the maximum deceleration. As a result, the
differences in this parameter do not influence merging conflict outcomes, particularly when AVs are operating
within a structured, rule-based driving environment.

51



Chapter 5  Conclusions

5.1 Summary

This study investigated the performance of autonomous vehicles (AVs) with different driving logics in a
mixed traffic environment. The analysis focused on varying AVs market penetration rates and traffic demand
levels. These scenarios are placed on lane-drop bottlenecks, where mandatory lane changes frequently lead to
congestion and safety risks. As AVs become increasingly integrated into road networks, understand their
behaviour in complex merging scenarios is critical for ensuring safe and efficient traffic flow, especially in mixed
traffic.

Using VISSIM microsimulation and surrogate safety analysis, the study modelled three AV driving styles—
cautious, normal and aggressive. Efficiency was evaluated through stop delay and vehicle delay, while safety
was assessed using surrogate indicators such as time-to-collision (TTC), post-encroachment time (PET),
deceleration rate (DR), and conflict counts. The results highlight important trade-offs between traffic efficiency
and safety outcomes, as well as the influence of behavioural model parameters on system dynamics.

This study emphasizes the importance of adaptive AV behaviour design, where AVs can adjust their driving
logic based on real-time traffic composition, penetration rate, and environment complexity. Such adaptability
will be essential for achieving both safe and efficient traffic flow as autonomous vehicles become an integral
part of future transportation systems.

5.2 Findings

The simulation results highlight that each AV driving logic presents distinct benefits and limitations.

Cautious AVs adopt conservative behaviours, such as smoother acceleration, longer headways and gradual
braking, which help maintain stable and uniform traffic flow, though often at the cost of increased delays.
Aggressive AVs, on the other hand, follow vehicles more closely, change lanes more assertively, and decelerate
rapidly, aiming to minimize traffic delays but with higher potential risks. Normal AVs offer a balanced strategy,
maintaining reasonable headway and responding dynamically to traffic conditions.

In terms of efficiency, the results show that cooperation is beneficial for all driving logics and helps reduce
delays. However, the impact of AV behaviour varies with penetration level: cautious AVs lead to increased delays
as their penetration grows, while aggressive AVs show decreasing delays with higher penetration rates. Normal
AVs maintain stable performance across all penetration levels.

From a safety perspective, simulation metrics such as time-to-collision, post-encroachment time
demonstrate key differences between cautious and aggressive AVs. Aggressive AVs exhibit better TTC values
and fewer recorded conflicts due to quicker responses, but their higher speeds and fluctuating driving patterns
increase the severity and risk of potential collisions, particularly under high density conditions. Cautious AVs,
although show lower TTC values at higher penetration due to platooning effects, show advantages in merging
margins, stable deceleration profiles and lower speed variability, reinforcing their role in maintaining a uniform
traffic stream.

This study contributes an understanding of how AV behaviour settings interact with traffic conditions and
network complexity. It highlights that no single AV behaviour is optimal across all scenarios. Cautious AVs are
best suited for early-stage deployment, ensuring stability and predictability in mixed traffic. Normal AVs provide
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the most versatile and balanced strategy, especially in transitional periods with moderate AV penetration.
Aggressive AVs are most effective in high penetration, fully automated networks, where their assertiveness is
supported by uniform behaviour and coordination.

5.3 Future work

Despite these insights, the study has some limitations. The simulation framework does not account for
real-world variability such as communication failures, sensor errors, or human unpredictability. Future research
could incorporate connected vehicle technologies, real-time decision-making algorithms, or multiple lane
freeway scenarios to further evaluate the performance of different AV logics under realistic traffic conditions.
Additionally, although this study utilizes the surrogate safety assessment models to evaluate conflicts, the
analysis primarily relied on individual safety indicators in an isolated manner. While these metrics provide
valuable insights, analysing them independently may not fully capture the composite safety performance of
different AV driving logics. Future work should focus on applying a weighted scoring system or a multi-criteria
evaluation framework to gain a comprehensive safety index.

In conclusion, this study emphasizes the importance of adaptive AV behaviour design, where AVs can
adjust their driving logic based on real-time traffic composition, penetration rate, and environment
complexity. Such adaptability will be essential for achieving both safe and efficient traffic flow as autonomous
vehicles become an integral part of future transportation systems.
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Appendix A

This appendix presents the results of the two-way ANOVA for the effects of driving behaviour and traffic
demand on conflict performance metrics discussed in Section 4.3. Factor A presents the different demand level,
categorized into 1500 veh/h, 1650 veh/h, 1800 veh/h and 1950 veh/h; Factor B presents the different driving
behaviour, categorized into cautious and aggressive. The following dependent variables were analyzed
separately: time-to-collision (TTC), post-encroachment-time (PET), deceleration rate (DR), maximum speed

(MaxS) and difference of vehicle speed (DeltaS).

TTC
Table A1 Two-way ANOVA results of demand level and TTC value
N Mean SD SEM Variance
1500 22 0.71118 0.06234 0.01329 0.00389
1650 22 0.70996 0.07665 0.01634 0.00587
1800 22 0.7117 0.07806 0.01664 0.00609
1950 22 0.72393 0.07976 0.017 0.00636
Table A2 Two-way ANOVA results of driving behaviour and TTC value
N Mean SD SEM Variance
aggressive 44 0.76008 0.02214 0.00334 4.90356E-4
cautious 44 0.66831 0.0782 0.01179 0.00611
Table A3 TTC value calculation
N Mean SD SEM Variance
88 0.71419 0.07345 0.00783 0.00539
Table A4 Two-way ANOVA results of interaction between driving behaviour and demand level
N Mean SD SEM Variance
1500 aggressive 11 0.75059 0.01478 0.00446 2.18442E-4
cautious 11 0.67177 0.06727 0.02028 0.00453
1650 aggressive 11 0.75622 0.01253 0.00378 1.57097E-4
cautious 11 0.66371 0.08644 0.02606 0.00747
1800 aggressive 11 0.7604 0.03072 0.00926 9.43481E-4
cautious 11 0.663 0.08145 0.02456 0.00663
1950 aggressive 11 0.77311 0.02207 0.00665 4.87163E-4
cautious 11 0.67474 0.08689 0.0262 0.00755
Table A5 Two-way ANOVA results of driving behaviour and demand level
DF Sum of Squares Mean Square F Value P Value
Demand level 3 0.00281 9.37992E-4 0.26812 0.8482
Driving behaviour 1 0.1853 0.1853 52.96738 <0.0001
Interaction 0.00134 4.4646E-4 0.12762 0.94346
Model 7 0.18946 0.02707 7.73637 <0.0001
Error 80 0.27988 0.0035
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Corrected Total 87 0.46933

At the 0.05 level, the population means of Demand level are not significantly different.
At the 0.05 level, the population means of Driving behaviour are significantly different.
At the 0.05 level, the interaction between Demand level and Driving behaviour is not significant.
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Figure A1 Two-way ANOVA results of driving behaviour and demand level for TTC value

PET

Table A6 Two-way ANOVA results of demand level and PET value

N Mean SD SEM Variance
1500 22 0.9268 0.09256 0.01973 0.00857
1650 22 0.97115 0.09374 0.01998 0.00879
1800 22 1.00708 0.11236 0.02395 0.01262
1950 22 1.04624 0.1309 0.02791 0.01714
Table A7 Two-way ANOVA results of driving behaviour and PET value
N Mean SD SEM Variance
aggressive 44 0.95357 0.11976 0.01805 0.01434
cautious 44 1.02207 0.10125 0.01526 0.01025
Table A8 Two-way ANOVA results of interaction between driving behaviour and demand level
N Mean SD SEM Variance
1500 aggressive 11 0.85849 0.07768 0.02342 0.00603
cautious 11 0.99512 0.04111 0.0124 0.00169
1650 aggressive 11 0.91858 0.07376 0.02224 0.00544
cautious 11 1.02372 0.08325 0.0251 0.00693
1800 aggressive 11 0.98632 0.1144 0.03449 0.01309
cautious 11 1.02785 0.11169 0.03367 0.01247
1950 aggressive 11 1.0509 0.11921 0.03594 0.01421
cautious 11 1.04158 0.1474 0.04444 0.02173
Table A9 Two-way ANOVA results of driving behaviour and demand level
DF Sum of Squares Mean Square F Value P Value
Demand level 3 0.17128 0.05709 5.59763 0.00155
Driving behaviour 1 0.10322 0.10322 10.12064 0.00209
Interaction 3 0.07022 0.02341 2.29503 0.0841
Model 7 0.34473 0.04925 4.82837 1.42309E-4
Error 80 0.81595 0.0102
Corrected Total 87 1.16068

At the 0.05 level, the population means of Demand level are significantly different.
At the 0.05 level, the population means of Driving behaviour are significantly different.

At the 0.05 level, the interaction between Demand level and Driving behaviour is not significant.

(a) Factor A

69



1.06

1.04

1.02

1.00 +

Mean

0.98 +

0.96

0.94 +

0.92 +

T T T T T T T
1500 1650 1800 1950
Demand level

(b) FactorB

1.03

1.02
1.01 4
1.00

< 0.99 -
3]
=

0.98 +
0.97 +
0.96

0.95

T T T
aggressive cautious

Driving behaviour

(c) Interaction



1.05 +

1.00

& 0.95

0.90

0.85

/

—
Demand level

-@- 1500
-@- 1650
1800

-0~ 1950

Driving behaviour|
@ aggressive

T
aggressive

Driving behaviour

T
cautious

T
1500

T
1650

T T T
1800 1950

Demand level

Figure A2 Two-way ANOVA results of driving behaviour and demand level for PET value

DR
Table A10 Two-way ANOVA results of demand level and DR value
N Mean SD SEM Variance
1500 22 -2.51239 0.6589 0.14048 0.43415
1650 22 -2.10213 0.7011 0.14948 0.49155
1800 22 -1.8724 0.66243 0.14123 0.43882
1950 22 -1.73175 0.55493 0.11831 0.30795
Table A11 Two-way ANOVA results of driving behaviour and DR value
Mean SD SEM Variance
aggressive 44 -2.56064 0.34758 0.0524 0.12081
cautious 44 -1.54869 0.59223 0.08928 0.35074
Table A12 Two-way ANOVA results of interaction between driving behaviour and demand level
N Mean SD SEM Variance
1500 aggressive 11 -2.99012 0.12229 0.03687 0.01495
cautious 11 -2.03467 0.62824 0.18942 0.39468
1650 aggressive 11 -2.63713 0.19275 0.05812 0.03715
cautious 11 -1.56713 0.60448 0.18226 0.36539
1800 aggressive 11 -2.42625 0.18791 0.05666 0.03531
cautious 11 -1.31856 0.45975 0.13862 0.21137
1950 aggressive 11 -2.18908 0.22582 0.06809 0.05099
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cautious 11 -1.27442 0.36821 0.11102 0.13558

Table 13 Two-way ANOVA results of driving behaviour and demand level

DF Sum of Squares Mean Square F Value P Value
Demand level 3 7.68375 2.56125 16.45213 <0.0001
Driving behaviour 1 22.52897 22.52897 144.71425 <0.0001
Interaction 3 0.13858 0.04619 0.29672 0.82766
Model 7 30.3513 4.3359 27.85154 <0.0001
Error 80 12.45432 0.15568
Corrected Total 87 42.80562

At the 0.05 level, the population means of Demand level are significantly different.
At the 0.05 level, the population means of Driving behaviour are significantly different.

At the 0.05 level, the interaction between Demand level and Driving behaviour is not significant.
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Figure A3 Two-way ANOVA results of driving behaviour and demand level for DR value
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MaxS

Table A14 Two-way ANOVA results of demand level and MaxS value

N Mean SD SEM Variance
1500 22 9.80933 1.34423 0.28659 1.80696
1650 22 9.02589 1.40384 0.2993 1.97077
1800 22 8.48241 1.40047 0.29858 1.96131
1950 22 8.03219 1.24545 0.26553 1.55114
Table A15 Two-way ANOVA results of driving behaviour and MaxS value
N Mean SD SEM Variance
aggressive 44 9.94557 0.88318 0.13314 0.78001
cautious 44 7.72934 1.07938 0.16272 1.16505
Table A16 MaxS value calculation
N Mean SD SEM Variance
88 8.83745 1.48438 0.15824 2.20338
Table A17 Two-way ANOVA results of interaction between driving behaviour and demand level
N Mean SD SEM Variance
1500 aggressive 11 10.88824 0.53284 0.16066 0.28392
cautious 11 8.73043 0.97459 0.29385 0.94983
1650 aggressive 11 10.18211 0.59179 0.17843 0.35021
cautious 11 7.86967 0.92051 0.27755 0.84735
1800 aggressive 11 9.64846 0.59119 0.17825 0.3495
cautious 11 7.31635 0.88201 0.26594 0.77794
1950 aggressive 11 9.06346 0.61511 0.18546 0.37837
cautious 11 7.00091 0.73435 0.22141 0.53927
Table A18 Two-way ANOVA results of driving behaviour and demand level
DF Sum of Squares Mean Square F Value P Value
Demand level 3 38.60055 12.86685 22.99513 <0.0001
Driving behaviour 1 108.05668 108.05668 193.1147 <0.0001
Interaction 3 0.27344 0.09115 0.16289 0.92103
Model 7 146.93067 20.9901 37.51268 <0.0001
Error 80 44.76373 0.55955
Corrected Total 87 191.6944

At the 0.05 level, the population means of Demand level are significantly different.

At the 0.05 level, the population means of Driving behaviour are significantly different.

At the 0.05 level, the interaction between Demand level and Driving behaviour is not significant.
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Figure A4 Two-way ANOVA results of driving behaviour and demand level for MaxS value

DeltaS
Table A19 Two-way ANOVA results of demand level and Delta$ value
N Mean SD SEM Variance
1500 22 6.33533 0.81461 0.17367 0.66359
1650 22 5.95788 0.98308 0.20959 0.96645
1800 22 5.64886 1.14487 0.24409 1.31072
1950 22 5.33294 1.10206 0.23496 1.21454
Table A20 Two-way ANOVA results of driving behaviour and Delta$S value
N Mean SD SEM Variance
aggressive 44 6.63893 0.55972 0.08438 0.31329
cautious 44 4.99857 0.78823 0.11883 0.62131
Table A21 Delta$ value calculation
N Mean SD SEM Variance
88 5.81875 1.06881 0.11394 1.14236
Table A22 Two-way ANOVA results of interaction between driving behaviour and demand level
N Mean SD SEM Variance
1500 aggressive 11 6.97163 0.46753 0.14097 0.21859
cautious 11 5.69904 0.53313 0.16074 0.28423
1650 aggressive 11 6.7336 0.49327 0.14873 0.24332
cautious 11 5.18215 0.67997 0.20502 0.46237
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o aggressive 11 6.60055 0.53214 0.16045 0.28317

cautious 11 4.69716 0.69047 0.20818 0.47674

1950 aggressive 11 6.24995 0.54989 0.1658 0.30238

cautious 11 4.41592 0.63097 0.19024 0.39812

Table A23 Two-way ANOVA results of driving behaviour and demand level
DF Sum of Squares Mean Square F Value P Value
Demand level 3 12.12408 4.04136 12.11387 <0.0001
Driving behaviour 1 59.19775 59.19775 177.44359 <0.0001
Interaction 3 1.37421 0.45807 1.37305 0.25702
Model 7 72.69605 10.38515 31.12919 <0.0001
Error 80 26.68916 0.33361
Corrected Total 87 99.38521

At the 0.05 level, the population means of Demand level are significantly different.
At the 0.05 level, the population means of Driving behaviour are significantly different.

At the 0.05 level, the interaction between Demand level and Driving behaviour is not significant.
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Figure A5 Two-way ANOVA results of driving behaviour and demand level for DeltaS value
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